10799 lines
126 KiB
Plaintext
10799 lines
126 KiB
Plaintext
|
P RE FA CE
|
|||
|
THE RE are many books on Navigation available for the use of the student, and among them some are exceedingly good. Why, then , add yet another volume to a mass of literature already sufiiciently, and more than sufficiently, large ? Well, it seemed to me that for many reasons another work designed on somewhat novel principles might be useful. Most writers have treated the subject from the point of View of addressing themselves either to the highly educated or to the totally uneducated, and there is I think, room for a treatise designed to meet the requirements of those Who lie between the two extremes men who, while ignorant of mathematics and astronomy, possess intelligence and a certain amount of rudimentary kn owl e dge .
|
|||
|
Navigation is in many respects a peculiar subj ect. All the problems being based upon the higher mathematics and astronomy, the solutions of them can be calculated and formulated only by men thoroughly conversant with those sciences ; but Navigation has to be put in practice by men who are not, and cannot be expected to be possessed of much knowledge of those matters. More over, mariners have to work their problems in a hurry, and frequently under adverse circumstances. To sit in a
|
|||
|
|
|||
|
P RE FA CE
|
|||
|
THERE are many books on Navigation available for the use of the student, and among them some are exceedingly good. Why, then, add yet another volume to a mass of literature already sufficiently, and more than sufficiently, large ? Well, it seemed to me that for many reasons another work designed on somewhat novel principles might be useful. Most writers have treated the subj ect from the point of view of addressing themselves either to the highly educated or to the totally uneducated, and there is, I think, room for a treatise designed to meet the requirements of those who lie between the two extremes men who, while ignorant of mathematics and astronomy, possess intelligence and a certain amount of rudimentary knowledge.
|
|||
|
Navigation is in many respects a peculiar subject. All the problems being based upon the hi gher mathemati cs and astronomy, the solutions of them can be calculated and formulated only by men thoroughly conversant with those sciences ; but Navigation has to be put in practice by men who are not, and cannot be expected to be possessed of much knowledge of those matters. More over, mariners have to Work their problems in a hurry, and frequently under adverse circumstances. To sit in a
|
|||
|
|
|||
|
vi
|
|||
|
|
|||
|
PREFA C E
|
|||
|
|
|||
|
comfortable chair in a warm and cosy room, and leisurely
|
|||
|
|
|||
|
work out abstract calculations from imaginary observa
|
|||
|
|
|||
|
tions, i s quite a different thing from taking real observations on a wet, slippery, and tumbling deck, and working them
|
|||
|
|
|||
|
in a dimly- lit cabin full of confusion and noise, and with little time to spare for the operation.
|
|||
|
|
|||
|
T herefore, for the i conven ence ' of the practical m an ,
|
|||
|
|
|||
|
it is necessary that the scientific man should reduce the
|
|||
|
|
|||
|
formulas to the simplest possible dimensions. With
|
|||
|
|
|||
|
those formulas the practical man can find his way about
|
|||
|
|
|||
|
all right if he learns and remembers them, and how to
|
|||
|
|
|||
|
work them ; but, as it i s very difficult t o remember a
|
|||
|
|
|||
|
lot of formulas learnt by heart, it is highly desirable
|
|||
|
|
|||
|
that the practical man should have some idea of what he
|
|||
|
|
|||
|
is doing and why he does it.
|
|||
|
|
|||
|
Few things appear to be more difficult than for one
|
|||
|
|
|||
|
well up on any subj ect of a scientific character to impart
|
|||
|
|
|||
|
his knowledge to another who is scientifically ignorant. A
|
|||
|
|
|||
|
thorough past-master may succeed in explaining matters popularly in language which can be understood by the
|
|||
|
|
|||
|
many but the expositions of writers on highly technical
|
|||
|
|
|||
|
subj ects—
|
|||
|
|
|||
|
whether
|
|||
|
|
|||
|
connected
|
|||
|
|
|||
|
with
|
|||
|
|
|||
|
Science,
|
|||
|
|
|||
|
Art ,
|
|||
|
|
|||
|
Philosophy,
|
|||
|
|
|||
|
or anything else— are frequently rendered so obscure, by
|
|||
|
|
|||
|
the lavish employment of highly technical language, as to be unintelligible except to the educated few.
|
|||
|
|
|||
|
All
|
|||
|
|
|||
|
the Epitomes
|
|||
|
|
|||
|
N i’
|
|||
|
- or e s ,
|
|||
|
|
|||
|
Inm an ’ s ,
|
|||
|
|
|||
|
Raper’ s,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
many other books give explanations of the various pro
|
|||
|
|
|||
|
blems in Navigation somewhat too minute and too diffuse,
|
|||
|
|
|||
|
I
|
|||
|
|
|||
|
venture
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
think,
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
attractive
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
ordinary
|
|||
|
|
|||
|
reader ,
|
|||
|
|
|||
|
with the result that the formulas are generally learnt
|
|||
|
|
|||
|
by heart. A man must be gifted with a gigantic memory
|
|||
|
|
|||
|
if he can remember how to work everything from
|
|||
|
|
|||
|
Logarithms to Lunars. Moreover, in most works the
|
|||
|
|
|||
|
definitions, though of course absolutely scientific and
|
|||
|
|
|||
|
correct, are so scientific and so correct as to be somewhat
|
|||
|
|
|||
|
unintelligible to the unscientific person, whose ideas on geometry are very hazy. Books such as Captain Martin’s and Mr. Lecky’s are most valuable, but they preconceive
|
|||
|
|
|||
|
a considerable amount of knowledge on the part of the
|
|||
|
|
|||
|
student . Books such as Rosser’s ‘ Self- Instructor ’ are
|
|||
|
|
|||
|
equally valuable in their way, but they seem to have been
|
|||
|
|
|||
|
written on the supposition that everything must be learnt
|
|||
|
|
|||
|
by heart and nothing understood by brain. So it occurred
|
|||
|
|
|||
|
to me that an attempt to give— conversationally— as if Pupil and T eacher were talkingfl suffi cient expl anation
|
|||
|
|
|||
|
of navigational problems to throw some light upon the
|
|||
|
|
|||
|
meaning of the formulas used, and some additional in
|
|||
|
|
|||
|
formation for the benefit of those desirous of obtaining it,
|
|||
|
|
|||
|
might be useful ;
|
|||
|
|
|||
|
and ,
|
|||
|
|
|||
|
having myself
|
|||
|
|
|||
|
started
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
study
|
|||
|
|
|||
|
Navigation somewhat ignorant of the sciences upon which
|
|||
|
|
|||
|
it is founded, I determined to try and impart to others in a
|
|||
|
|
|||
|
similar plight what knowledge I have gathered to gether. My definitions and explanations may be sometimes
|
|||
|
scientifically inaccurat e. Let that pass . My purpose
|
|||
|
|
|||
|
is gained if they convey an accurate idea.
|
|||
|
|
|||
|
That portion of the work which treats of the ‘ Day’s
|
|||
|
|
|||
|
ork -V
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
‘ Sailings, ’
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on,
|
|||
|
|
|||
|
contains
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
very
|
|||
|
|
|||
|
short
|
|||
|
|
|||
|
treatise on plane right- angled triangles, by the solution of which all such problems are worked . The student need not
|
|||
|
|
|||
|
read it if he d oes not want to, and if it bothers him
|
|||
|
|
|||
|
he had much better not do so. The method of working
|
|||
|
|
|||
|
every problem is given, and for all practical purposes
|
|||
|
|
|||
|
it. i s sufficient if he learns and remembers that. The
|
|||
|
|
|||
|
learning is really easy enough ; it is the remembering
|
|||
|
|
|||
|
v iii
|
|||
|
|
|||
|
PRE FA CE
|
|||
|
|
|||
|
that i s diffi cult.
|
|||
|
|
|||
|
But ,
|
|||
|
|
|||
|
if
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
i m agi n ar y
|
|||
|
|
|||
|
person I am
|
|||
|
|
|||
|
en
|
|||
|
|
|||
|
deav ouring to instruct will read the chap ter on Plan e
|
|||
|
|
|||
|
Trigonometry, I think it will help him greatly in
|
|||
|
|
|||
|
learning how to work the problem ; or if he learns the
|
|||
|
|
|||
|
working of the problem first, and then wants ‘ to know the reason why, ’ a perusal of it may giv e him sufficient insight to enable him easily to remember how every
|
|||
|
|
|||
|
problem is to be solved. If my reader wishes to obtain an Extra Master’s certificate of competency he must
|
|||
|
|
|||
|
learn enough of Plane Trigonometry t o enable him t o
|
|||
|
|
|||
|
construct plane triangles and solve th em, for that will be
|
|||
|
|
|||
|
required
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
him .
|
|||
|
|
|||
|
Of cour se if he is well up in T ri gon ometry,
|
|||
|
|
|||
|
or has time to master that angul ar science, so much the
|
|||
|
|
|||
|
better but if such is not the case, I think he will find in
|
|||
|
|
|||
|
the foll owing pages all the information necessary for hi s
|
|||
|
|
|||
|
p urp o s e .
|
|||
|
|
|||
|
In the same way Nautical Astronomy is preceded by
|
|||
|
|
|||
|
a sketch of the movements of the heavenly bodies and ,
|
|||
|
contains a short ch apter on Spherical Trigonom etry it i s
|
|||
|
|
|||
|
not the least necessary for the student to read it but if he
|
|||
|
|
|||
|
does so before or after tackling the various problems, it will , I think, help him to understand their n ature and the methods by whi ch they are solved. Be it remembered
|
|||
|
|
|||
|
that even a v erv little an d very hazy knowledge of thi s
|
|||
|
|
|||
|
kin d i s sufficient to ensur e that you do not forget how a problem i s to be work ed. Moreover, shoul d a ‘ blue
|
|||
|
|
|||
|
ticket ’ be the obj ect of ambition, the aspir ant to such
|
|||
|
|
|||
|
honour s will have to solve some spherical triangles, and
|
|||
|
|
|||
|
to draw the fi gures appropriate to some of the problems.
|
|||
|
|
|||
|
In this instance also it is better that the subject should
|
|||
|
|
|||
|
be thoroughly studied and understood ; but if the pro spective Extra Master h as not t he time nor inclin ation
|
|||
|
|
|||
|
to do so, I think that the little I say will answer all the requirements of the case.
|
|||
|
Most problems can be solved in various ways. I have given the formula which is, in my opinion, the simplest but I claim no infallibility for my opinion.
|
|||
|
Norie’s Tables are used throughout, except in some portions of the Double Altitude and Lunar problems, because I happened to be taught with those Tables, and have always used them ; every reference to a Table therefore refers to Norie, but as many men prefer Inman or Raper a comparative statement will be foun d on page xxiii, giving the equivalent in Inman and Raper to every Table in Norie.
|
|||
|
I have treated what may be called the mechanical part of the business— for instance, the use of the lead an d the log— very shortly. Such matters can be learnt only by practice, an d if information is required concerning them, are they not fully and clearly explained in the Epitomes and in manuals and books of instruction innumerable
|
|||
|
I have not touched upon the Rule of the Road at sea, though it is scarcely necessary to mention that it is of the first importance that a seaman shoul d be intimately acquainted with it. Such kn owledge comes only from habit and experience. I would only say that before going up for examination , a candidate shoul d be thoroughly drilled on this subj ect by a competent instructor. A man whose knowledge and judgment may be perfectly reliable at sea, may be much puzzled when he finds himself seated opposite an examiner playing about with small toy ships on a table. Captain Blackburne has published a little book on the subject, which will be found of great service to the student or candidate.
|
|||
|
|
|||
|
PREFA CE
|
|||
|
|
|||
|
I have endeavoured to take the simpler problems first,
|
|||
|
|
|||
|
and lead graduall y up to the more difficul t ones ; but this
|
|||
|
|
|||
|
is not easy of accomplishment, as the problems overlap
|
|||
|
|
|||
|
each other so frequently. And I have treated of the whole subj ect, from a Mate ’s to an Extra Master’ s work, whi ch has n ot, I think , been attempted in any single work.
|
|||
|
I have also tried to explain , as far as p ossible, how
|
|||
|
|
|||
|
every portion of a problem is worked as the case crop s up
|
|||
|
|
|||
|
in the problem ; for nothing is more bothersome than having
|
|||
|
|
|||
|
to constantly turn back and refer to some previous explana
|
|||
|
|
|||
|
tion.
|
|||
|
|
|||
|
The explanation of every diagram is, wherever possible, placed on the same page with the diagram or on the oppo
|
|||
|
|
|||
|
site page, for I have found it very troublesome to have to
|
|||
|
|
|||
|
tur n
|
|||
|
|
|||
|
over pages
|
|||
|
|
|||
|
to fin d
|
|||
|
|
|||
|
what
|
|||
|
|
|||
|
angle
|
|||
|
|
|||
|
an d so-
|
|||
|
|
|||
|
-so,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
line
|
|||
|
|
|||
|
this
|
|||
|
|
|||
|
or that is an d I opine that others also must have foun d
|
|||
|
|
|||
|
it equally troublesome . T his method of treating the sub
|
|||
|
|
|||
|
j ect involves muc h repetition, b ut repetition is n ot vi cious on the contrary, when something h as to be remembered, it is good, and I have taken some pains not to avoid
|
|||
|
|
|||
|
rep etition .
|
|||
|
|
|||
|
I do not flatter myself that the difficul ty of self
|
|||
|
|
|||
|
i nstruction is entirely got over in thi s work, but I hope it may go some way towards at tain in g that desir able en d.
|
|||
|
|
|||
|
As far as practical work at sea is concerned, very little, i f any, supplementary instruction woul d be necessary in
|
|||
|
|
|||
|
order to enable anyone to find his way about but for the
|
|||
|
|
|||
|
B oard of T rade Examination the personal instruction of a
|
|||
|
|
|||
|
good master is certainly desir able, for in most cases the problems, as given in the examination , are far more puzzling than as they present themselves at sea. F or one
|
|||
|
|
|||
|
thing, at sea you know whereabouts you are, and any
|
|||
|
|
|||
|
PREFA CE
|
|||
|
|
|||
|
xi
|
|||
|
|
|||
|
large mistake manifests itself in the working of a problem
|
|||
|
|
|||
|
but in the examination room no such check upon inaccuracy
|
|||
|
|
|||
|
exists.
|
|||
|
|
|||
|
As an amateur I have written mainly for amateurs ;
|
|||
|
|
|||
|
but if this book proves of any assistance to those whose
|
|||
|
|
|||
|
business is upon the sea, I shall indeed be pleased.
|
|||
|
|
|||
|
For convenience sake the book is divided into two
|
|||
|
|
|||
|
volumes, a big volume being cumbrous to handle. T he first volume contains Logarithms, the Sailings, a Day’ s Work, the Use of the Compass, some chart work, and the simpler nautical astronomical problems . The
|
|||
|
|
|||
|
second volume treats of other nautical astronomical pro
|
|||
|
|
|||
|
bl ems ,
|
|||
|
|
|||
|
and magnetism ;
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
further information
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
the subj ect of charts, an d shows how the working
|
|||
|
|
|||
|
formulas are deduced ; and i t con tains numerous exerci ses,
|
|||
|
|
|||
|
together with the data from the Nautical Almanac of
|
|||
|
|
|||
|
1898 necessary to work them.
|
|||
|
|
|||
|
HINTS TO CANDID A TES
|
|||
|
|
|||
|
No particular and regul ar sequence i s, I believe, foll owed in the examination papers in the order in which
|
|||
|
|
|||
|
problems are given ; but I fancy they generally come in something like the following somewhat appallin g pro
|
|||
|
|
|||
|
cession :
|
|||
|
|
|||
|
M M For
|
|||
|
|
|||
|
a tes a nd
|
|||
|
|
|||
|
a s ters
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
Mul t i p li c a ti on
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
comm on Logs .
|
|||
|
|
|||
|
“7 Divi sion by common Lo gs.
|
|||
|
|
|||
|
Day s 3 .
|
|||
|
|
|||
|
Y k ’
|
|||
|
|
|||
|
Vor .
|
|||
|
|
|||
|
4 .
|
|||
|
|
|||
|
L a t it ude
|
|||
|
|
|||
|
by Meridian
|
|||
|
|
|||
|
Al titude
|
|||
|
|
|||
|
of the
|
|||
|
|
|||
|
Sun.
|
|||
|
|
|||
|
5 .
|
|||
|
|
|||
|
Parallel
|
|||
|
|
|||
|
S ail i n g .
|
|||
|
|
|||
|
6 .
|
|||
|
|
|||
|
Mercator’s
|
|||
|
|
|||
|
Sailin g.
|
|||
|
|
|||
|
1 . Time of High Water.
|
|||
|
|
|||
|
8 .
|
|||
|
|
|||
|
A mplit u d e .
|
|||
|
|
|||
|
9 .
|
|||
|
|
|||
|
Time Azimuth .
|
|||
|
|
|||
|
10 .
|
|||
|
|
|||
|
Longitude
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
S un
|
|||
|
|
|||
|
Chronometer
|
|||
|
|
|||
|
an d Al titude
|
|||
|
|
|||
|
Azi m uth .
|
|||
|
|
|||
|
11 .
|
|||
|
|
|||
|
Time
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Star’s
|
|||
|
|
|||
|
Meri di an
|
|||
|
|
|||
|
passage.
|
|||
|
|
|||
|
12 .
|
|||
|
|
|||
|
To find
|
|||
|
|
|||
|
names
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
S tars
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
Nautical
|
|||
|
|
|||
|
Alman a c
|
|||
|
|
|||
|
within a given distance of the Meridian at a certain time,
|
|||
|
|
|||
|
and also the distance they pass North or South of the
|
|||
|
|
|||
|
Z enith .
|
|||
|
|
|||
|
13 .
|
|||
|
|
|||
|
C o mput e
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Obs.
|
|||
|
|
|||
|
M er .
|
|||
|
|
|||
|
Al t .
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
Star
|
|||
|
|
|||
|
for
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
gi v en
|
|||
|
|
|||
|
pl a c e .
|
|||
|
|
|||
|
14 .
|
|||
|
|
|||
|
Latitude by Meridian Al titude
|
|||
|
|
|||
|
of a Star.
|
|||
|
|
|||
|
15 .
|
|||
|
|
|||
|
Star Time Azimuth.
|
|||
|
|
|||
|
16 .
|
|||
|
|
|||
|
Latitude by Reduction
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the Meri dian .
|
|||
|
|
|||
|
17 .
|
|||
|
|
|||
|
S umner .
|
|||
|
|
|||
|
HINTS TO CA NDIDATES
|
|||
|
|
|||
|
18 .
|
|||
|
|
|||
|
Latitude by Pole
|
|||
|
|
|||
|
Star.
|
|||
|
|
|||
|
19 .
|
|||
|
|
|||
|
Latitude
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
Moon’s
|
|||
|
|
|||
|
Meri di an
|
|||
|
|
|||
|
Altitude .
|
|||
|
|
|||
|
20 .
|
|||
|
|
|||
|
Correction
|
|||
|
|
|||
|
for
|
|||
|
|
|||
|
soundin g s .
|
|||
|
|
|||
|
M fi For E x tra. a s ter ’s Cer ti ca te
|
|||
|
|
|||
|
21 .
|
|||
|
|
|||
|
Lon gitude
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
Error
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Chronometer
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
Lun ar
|
|||
|
|
|||
|
Observati on .
|
|||
|
|
|||
|
22 .
|
|||
|
|
|||
|
Latitude
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
D o u bl e
|
|||
|
|
|||
|
Altitude .
|
|||
|
|
|||
|
23 .
|
|||
|
|
|||
|
Position of
|
|||
|
|
|||
|
Ship
|
|||
|
|
|||
|
by Double Chronometer
|
|||
|
|
|||
|
Problem .
|
|||
|
|
|||
|
24 .
|
|||
|
|
|||
|
Great
|
|||
|
|
|||
|
Cir cle Problem .
|
|||
|
|
|||
|
25 .
|
|||
|
|
|||
|
Error of Chronometer
|
|||
|
|
|||
|
by Altitude
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Sun or that
|
|||
|
|
|||
|
of any other heavenly body.
|
|||
|
|
|||
|
26 .
|
|||
|
|
|||
|
Solution of a right-angled plane trian gle.
|
|||
|
|
|||
|
27 .
|
|||
|
|
|||
|
Solution of an oblique-angled plane triangle.
|
|||
|
|
|||
|
28 .
|
|||
|
|
|||
|
Solution of a right-angled spherical triangle .
|
|||
|
|
|||
|
The manner in which problems are presented is con
|
|||
|
|
|||
|
stantly varied ; different expressi ons an d different words
|
|||
|
|
|||
|
are employed to denote the same facts. Y ou may be told
|
|||
|
|
|||
|
that the Sun is bearing North, or that the observer is
|
|||
|
|
|||
|
South
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Sun ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Sun
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
South
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Z enith.
|
|||
|
|
|||
|
You may be given the date in Astronomical Time, or in
|
|||
|
|
|||
|
Civil Time, in Apparent Time or in Mean Time at Ship
|
|||
|
|
|||
|
or at Greenwich. Y ou may be given the absolute date
|
|||
|
|
|||
|
such and such a time, Mean or Apparent at Ship , or you
|
|||
|
|
|||
|
may be told that a Chronometer showed so many hours,
|
|||
|
|
|||
|
minutes, seconds, which Chronometer had been foun d to
|
|||
|
|
|||
|
be so much fast or slow on Apparent Time at Ship at
|
|||
|
|
|||
|
some earlier period, since when the Ship had run so many miles on such and such a course, and you would have to
|
|||
|
|
|||
|
find the Ship date by allowing for the Difference of Longi
|
|||
|
|
|||
|
tude due to the run. In fact, the Examiners ring the
|
|||
|
|
|||
|
changes as much as possible, and very properly so, for it
|
|||
|
|
|||
|
is but right that candidates should not only work the
|
|||
|
|
|||
|
problems but also show an intelligent knowledge of what
|
|||
|
|
|||
|
they are doing. Nevertheless, these changes are apt to
|
|||
|
|
|||
|
HINTS TO CA NDID A TES
|
|||
|
|
|||
|
be puzzling. T hey would not puzzle anyone in actual
|
|||
|
|
|||
|
practice at sea ; but the nervous conditi on of most men
|
|||
|
|
|||
|
i s apt to fall below the norm al, and the brain to become
|
|||
|
|
|||
|
unn aturally c onfused when they are shut up i n an ex
|
|||
|
|
|||
|
amination room for long hours, and so much depends
|
|||
|
|
|||
|
upon their efforts. T herefore, read the statement of each
|
|||
|
|
|||
|
problem very carefully, and if you notice anything um
|
|||
|
|
|||
|
usual, anything you do not quite understand in the word
|
|||
|
|
|||
|
in g, j ust think it ov er quietly until y ou quite understan d
|
|||
|
|
|||
|
what you have got to do ; tran slate it, as it were, in your
|
|||
|
|
|||
|
head in to the language y ou have been accustomed to.
|
|||
|
|
|||
|
Don ’t hur ry over your work. Remember that it takes a
|
|||
|
|
|||
|
long time t o discover an error in a problem returned, an d
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
havin g
|
|||
|
|
|||
|
found
|
|||
|
|
|||
|
it ,
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
may have to
|
|||
|
|
|||
|
do
|
|||
|
|
|||
|
most
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
work ov er again .
|
|||
|
|
|||
|
ABB REVIATIO NS
|
|||
|
|
|||
|
p oi t o p The
|
|||
|
|
|||
|
n s of the c m ass
|
|||
|
|
|||
|
o p m the c
|
|||
|
|
|||
|
as s card .
|
|||
|
|
|||
|
i i t nd ca ed t i by he r initial l tte ers. Vida
|
|||
|
|
|||
|
Par
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
Alt .
|
|||
|
|
|||
|
Colat i o D ff. L ng.
|
|||
|
Mer. D ifi . Lat.
|
|||
|
V OL . I.
|
|||
|
|
|||
|
tit La ud e. o pl t C m emen of the
|
|||
|
t it La ude or Go. tit La ud e. o it L ng ude. i t D s ance. iD fference. i ti D fference of La t ud e. iD fference of Lon
|
|||
|
|
|||
|
gitud e .
|
|||
|
|
|||
|
p t D e ar ure.
|
|||
|
|
|||
|
i i M M er d ian or
|
|||
|
|
|||
|
er
|
|||
|
|
|||
|
dional .
|
|||
|
|
|||
|
i io l i Mer d na D ffer
|
|||
|
|
|||
|
tit ence of La ude.
|
|||
|
|
|||
|
i t i o R gh Ascens n.
|
|||
|
|
|||
|
li tio D ec na n.
|
|||
|
|
|||
|
i i t m m Se
|
|||
|
|
|||
|
D -
|
|||
|
|
|||
|
a e er.
|
|||
|
|
|||
|
Horizontal l Para
|
|||
|
|
|||
|
M T S .
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
i Sid .
|
|||
|
|
|||
|
T
|
|||
|
|
|||
|
me
|
|||
|
|
|||
|
Sid . Time
|
|||
|
|
|||
|
Z i en th ol P e. it i t Zen h D s ance. ol i t P ar D s ance. Al t i t ud e.
|
|||
|
|
|||
|
ll Para ax in Alt
|
|||
|
|
|||
|
t ud e.
|
|||
|
|
|||
|
The Sun.
|
|||
|
o The S un’s L wer
|
|||
|
|
|||
|
iL mb .
|
|||
|
pp The Sun’s U er
|
|||
|
|
|||
|
iL mb. i t i o R gh Ascens n of
|
|||
|
M th e ean S un.
|
|||
|
ltit True A ude. pp t A aren Altitude. v ltit Obser ed A ude
|
|||
|
|
|||
|
pp t i A aren T me at
|
|||
|
|
|||
|
Ship. i ip Mean T me at Sh . Equation of Time
|
|||
|
|
|||
|
pp t A aren Time at
|
|||
|
|
|||
|
i Greenw ch . i Mean T me at
|
|||
|
|
|||
|
i Greenw ch . i l i S derea T me (the
|
|||
|
t i same h ng as
|
|||
|
|
|||
|
Na uo
|
|||
|
|
|||
|
ti l l ) m ca A anac . i l i S derea T me of
|
|||
|
|
|||
|
v tio Obser a n t i m (sa e h ng as
|
|||
|
|
|||
|
RA . of
|
|||
|
|
|||
|
i i ) Mer d an .
|
|||
|
|
|||
|
ol l P ar Ang e.
|
|||
|
|
|||
|
o l H ur Ang e.
|
|||
|
|
|||
|
o o M T he
|
|||
|
|
|||
|
n .
|
|||
|
|
|||
|
oo M n’s Lower
|
|||
|
|
|||
|
iL mb .
|
|||
|
|
|||
|
xv i
|
|||
|
|
|||
|
A BBREVIA TIONS
|
|||
|
|
|||
|
oo M n’s Upper
|
|||
|
|
|||
|
t l t A S ar or P a ne .
|
|||
|
|
|||
|
Far Limb.
|
|||
|
|
|||
|
Y
|
|||
|
|
|||
|
ear
|
|||
|
|
|||
|
Limb .
|
|||
|
|
|||
|
o o Sun and M n’ s
|
|||
|
|
|||
|
t o M S ar and
|
|||
|
|
|||
|
o n’ s
|
|||
|
|
|||
|
i far
|
|||
|
|
|||
|
L
|
|||
|
|
|||
|
mb .
|
|||
|
|
|||
|
t M S ar and
|
|||
|
|
|||
|
oo n’ s
|
|||
|
|
|||
|
nea r
|
|||
|
|
|||
|
Limb .
|
|||
|
|
|||
|
lP us.
|
|||
|
|
|||
|
ference .
|
|||
|
|
|||
|
is to or to .
|
|||
|
|
|||
|
il l y aux iar ang e.
|
|||
|
|
|||
|
SY MBOLS
|
|||
|
|
|||
|
l q E ua . x Multiplicat ion.
|
|||
|
|
|||
|
iv io D
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
n .
|
|||
|
|
|||
|
‘w D if
|
|||
|
|
|||
|
o so is . x An unkn wn qua ntitv . 0 An unknown
|
|||
|
|
|||
|
V O ABBRE IATI NS OF TRI-GO N’O METRICAL RATIO S
|
|||
|
|
|||
|
S in
|
|||
|
|
|||
|
iS ne ; 0 0 5
|
|||
|
|
|||
|
S ec
|
|||
|
|
|||
|
t Secan ; Co sec
|
|||
|
|
|||
|
o c sine ; Tan
|
|||
|
|
|||
|
t Tangen ; Cot
|
|||
|
|
|||
|
t Cc - a ngent ;
|
|||
|
|
|||
|
t V Cosecan ;
|
|||
|
|
|||
|
ers
|
|||
|
|
|||
|
Versine ; Ha v
|
|||
|
|
|||
|
v Ha ersine
|
|||
|
|
|||
|
C ONTENT S
|
|||
|
T HT Z FI R S T V' O L U M E
|
|||
|
|
|||
|
PREFA C E
|
|||
|
|
|||
|
D D HINTS T O CAN I ATES
|
|||
|
|
|||
|
V LIST OF ABBRE IATIO NS US ED
|
|||
|
|
|||
|
N ComBARAT IV E S T AT EMENT OF
|
|||
|
|
|||
|
O RIE,
|
|||
|
|
|||
|
TABLES
|
|||
|
|
|||
|
IN MAN,
|
|||
|
|
|||
|
AND
|
|||
|
|
|||
|
PAGES
|
|||
|
RAPER
|
|||
|
i xxii —xxv
|
|||
|
|
|||
|
PART I
|
|||
|
|
|||
|
CHAPTE R I
|
|||
|
ARITHMETIC
|
|||
|
|
|||
|
U PRO PORTION, O R R LE or TH REE
|
|||
|
|
|||
|
F DD D E’CIMAL
|
|||
|
|
|||
|
RACTIONS ; A
|
|||
|
|
|||
|
IT I ON,
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
U
|
|||
|
|
|||
|
BTRAC
|
|||
|
|
|||
|
TIO
|
|||
|
|
|||
|
N ,
|
|||
|
|
|||
|
V CATION, AND D I ISIO N
|
|||
|
|
|||
|
D RE U CTION OF D EOIMALS
|
|||
|
|
|||
|
U M LTIPLI
|
|||
|
|
|||
|
1 4—1 8
|
|||
|
|
|||
|
CHAPT ER I I
|
|||
|
|
|||
|
LOGARITHMS
|
|||
|
|
|||
|
H M C ARACTERISTIC O R IND Ex ;
|
|||
|
|
|||
|
ANTIS SA
|
|||
|
|
|||
|
U LOGS . OF NAT RAL NU MBERS A U NATU R L N MBERS or LOGS .
|
|||
|
|
|||
|
MULTI PLICATION AND D IVISION BY Loo s .
|
|||
|
|
|||
|
CONTENTS OF
|
|||
|
|
|||
|
U F U LOGS . or N MBERS CONS IST I NG o r MO RE THAN
|
|||
|
|
|||
|
OR
|
|||
|
|
|||
|
U FIG RES
|
|||
|
|
|||
|
U D m LOGS . or N MBERS COMPO S E or INTEGERS AND B Ec ALs,
|
|||
|
|
|||
|
Y OR or D ECD IALS ONL
|
|||
|
|
|||
|
H MU T E IR
|
|||
|
|
|||
|
L TI PLICATION AND
|
|||
|
|
|||
|
D IVISION
|
|||
|
|
|||
|
PROPO RTIONAL LO GS.
|
|||
|
H T EORY or Loo s .
|
|||
|
|
|||
|
PA G E*
|
|||
|
25 —29
|
|||
|
|
|||
|
CHAPT ER III
|
|||
|
INSTRUMENTS USED IN CHART AND COMPASS
|
|||
|
WORK
|
|||
|
|
|||
|
TRE HARTNER’ S COMP AS S
|
|||
|
Azmum MIRROR
|
|||
|
|
|||
|
D D TEE LEA AND LEA LIN E
|
|||
|
m TEE Loc s p AND LOG LINE ;
|
|||
|
|
|||
|
HA RPO O N AN D
|
|||
|
|
|||
|
LOG
|
|||
|
|
|||
|
PARALLEL BULERS ,
|
|||
|
U TEE PELO R S
|
|||
|
|
|||
|
D WI DEBS ,
|
|||
|
|
|||
|
PRO T RACTO R S
|
|||
|
|
|||
|
STATIO N POIN TER
|
|||
|
|
|||
|
TAFFRAIL
|
|||
|
|
|||
|
CHAPTER IV
|
|||
|
THE ’ PRACTICAL USE OF THE COMPASS
|
|||
|
|
|||
|
VARIATION AND D EvI ATI ON
|
|||
|
|
|||
|
U U To FIND CO MPAS S CO RSES FRO M T RUE CoU Rs ES AND TR E
|
|||
|
|
|||
|
U CO URSES FROM C OMP AS S CO RSE S
|
|||
|
|
|||
|
U T o T R N POIN TS INT O D EGREES , M D OVABLE COMPAS S CAR .
|
|||
|
|
|||
|
&c . ,
|
|||
|
|
|||
|
A ND
|
|||
|
|
|||
|
I'I CL' VERS A
|
|||
|
|
|||
|
To AS CERTAI N TEE D EvIATIO N
|
|||
|
|
|||
|
NAPIER’ S D IAGRAM
|
|||
|
Emm zs
|
|||
|
|
|||
|
53- 56
|
|||
|
|
|||
|
CHAPTER V
|
|||
|
THE SAILINGS
|
|||
|
|
|||
|
TEE TRAvERSE TABLE S AND HO W T Q U SE THE )!
|
|||
|
|
|||
|
T AB LE
|
|||
|
|
|||
|
X XV .
|
|||
|
|
|||
|
AND
|
|||
|
|
|||
|
HOW TO
|
|||
|
|
|||
|
U SE
|
|||
|
|
|||
|
IT
|
|||
|
|
|||
|
xx
|
|||
|
|
|||
|
CO NTENTS OF
|
|||
|
|
|||
|
CHAPT ER VIII
|
|||
|
CHARTS
|
|||
|
|
|||
|
EAC H;
|
|||
|
|
|||
|
H ow T o FIN D T HE S HI P’ S PO SIT ION ON THE C HA RT
|
|||
|
|
|||
|
D H D T o KIN THE S I P’ S PLA C E BY BEARI NGS O F THE LAN
|
|||
|
|
|||
|
U T O ALLow ' FOR -A C RRE NT
|
|||
|
|
|||
|
D D S UMMA RY OF POIN T S T O BE C ONS I ERE
|
|||
|
|
|||
|
I N C HAR TI NG
|
|||
|
|
|||
|
PROBL EMS
|
|||
|
|
|||
|
Y M THEO R OF
|
|||
|
|
|||
|
C '
|
|||
|
ERC AT O R S
|
|||
|
|
|||
|
H ART
|
|||
|
|
|||
|
M U D To C ONS TR U C T A
|
|||
|
|
|||
|
‘
|
|||
|
E
|
|||
|
|
|||
|
R
|
|||
|
|
|||
|
C
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
T
|
|||
|
|
|||
|
O
|
|||
|
|
|||
|
R
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
CHA RT
|
|||
|
|
|||
|
Fo R A
|
|||
|
|
|||
|
GIvEN LATI T
|
|||
|
|
|||
|
E
|
|||
|
|
|||
|
2 1 6—22 1
|
|||
|
|
|||
|
DEFINITIONS
|
|||
|
TRI GO NO AIET RICAL
|
|||
|
|
|||
|
3226 —22 7
|
|||
|
|
|||
|
CHAP TE R N .
|
|||
|
INSTRUMENTS USED IN NAUTICAL ASTRONOMY
|
|||
|
HORIZ ON GLAS S
|
|||
|
|
|||
|
H ow T O D ETERMINE
|
|||
|
H Y T E O R OP SEETAN I
|
|||
|
|
|||
|
D IN EX
|
|||
|
|
|||
|
E RRO R
|
|||
|
|
|||
|
ARTIFIC IA L H O RIE O N
|
|||
|
|
|||
|
245
|
|||
|
|
|||
|
THE FIRST VOLUME
|
|||
|
|
|||
|
CHAPTER X I
|
|||
|
|
|||
|
MOVEMENTS OF THE HEAVENLY BODIES
|
|||
|
|
|||
|
Y T H E T E RMS ‘ E AS T ERL ’ A ND V RO T AT IO N A ND RE OLU T IO N OF T H E E ART H
|
|||
|
|
|||
|
IN C LINAT IO N O F E ART H ’ S AX IS AND IT S E FFE C T S
|
|||
|
D D LAT ITU E , LO NGIT U E , RIGHT AS C E NS ION , D EC LINAT IO N
|
|||
|
APPARENT TI ME
|
|||
|
D SI EREAL A ND S OLAR T IME
|
|||
|
|
|||
|
T HE PLANET s
|
|||
|
THE MO ON
|
|||
|
Y D U GREENWIC H T I ME ALWA 'S T o BE U SE WIT H THE NA T IC AL
|
|||
|
|
|||
|
A M '
|
|||
|
|
|||
|
'
|
|||
|
|
|||
|
L
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
C
|
|||
|
|
|||
|
E NGLIS H ’ S GLO B E S T AR-FIN D E R
|
|||
|
|
|||
|
257— 2 60
|
|||
|
|
|||
|
CHAPTER X II
|
|||
|
LATITUDE B'Y -MERIDIAN ALTITUDE OF . THE SUN
|
|||
|
|
|||
|
THE SIMPLE PROBLEM WIT HOU T ANY C ORREC T I O N S
|
|||
|
|
|||
|
C O RREC TIO N FOR D IP
|
|||
|
|
|||
|
S EMI- D IAMET ER
|
|||
|
|
|||
|
RE FRAC T ION
|
|||
|
|
|||
|
PA RALLAx
|
|||
|
|
|||
|
CHANGE OF D ECLI NAT I ON S INC E GREE NWIC H
|
|||
|
|
|||
|
NOON '
|
|||
|
|
|||
|
F D Y L IN ING T HE
|
|||
|
|
|||
|
A _ 'I‘-IT U D E ,_ A PPL ING ALL
|
|||
|
|
|||
|
D D D AS R EQUIRE BY BOAR OF TRA E
|
|||
|
|
|||
|
T HE
|
|||
|
|
|||
|
C O RREC T IO NS
|
|||
|
|
|||
|
V D U D PRINCIPLE INV OL E IN D ETERMINAT IO N OF LATIT E
|
|||
|
|
|||
|
2 73—2 74
|
|||
|
|
|||
|
C HAPTER XIII LONGITUDE BY SUN AND CHRONOMETER
|
|||
|
|
|||
|
M A-PPA RE NT AND
|
|||
|
|
|||
|
EAN TIME
|
|||
|
|
|||
|
D M U D LONGITU E
|
|||
|
|
|||
|
EAS RE B Y ARC O N EQU AT O R O R ANG LE AT
|
|||
|
|
|||
|
PO LE
|
|||
|
D NAMING LO NGIT U E
|
|||
|
|
|||
|
C ORREC TIO N OF ELEME NT S
|
|||
|
|
|||
|
286— 287 2 8 8 — 2 89
|
|||
|
|
|||
|
xx ii
|
|||
|
|
|||
|
CONTENTS OF THE FIRST V OLUME
|
|||
|
|
|||
|
U FO RM LAS
|
|||
|
|
|||
|
US E
|
|||
|
|
|||
|
O F TABLES
|
|||
|
|
|||
|
XXXI .
|
|||
|
|
|||
|
A ND
|
|||
|
|
|||
|
XX X- II .
|
|||
|
|
|||
|
W U EAS T AND
|
|||
|
|
|||
|
ES T H O R AN GLE S
|
|||
|
|
|||
|
CORRE CTION OF CHRO NOME T ER
|
|||
|
|
|||
|
U D W F M LL S TAT EMENT OF
|
|||
|
|
|||
|
ET HO OF
|
|||
|
|
|||
|
O RK ING
|
|||
|
|
|||
|
PROBLEM AND
|
|||
|
|
|||
|
E XAMPLES
|
|||
|
|
|||
|
U D H O R AN GLE S BEYON
|
|||
|
|
|||
|
LIMI T S
|
|||
|
|
|||
|
O F TAB LES
|
|||
|
|
|||
|
XXXI .
|
|||
|
|
|||
|
AN D
|
|||
|
|
|||
|
XXXII .
|
|||
|
|
|||
|
J OHN SO N’ S TAB LE S
|
|||
|
|
|||
|
F D H EXAMPLE OF IN IN G S I P'S PO S IT IO N
|
|||
|
|
|||
|
M D U D PRINCIPLE OP
|
|||
|
|
|||
|
ET H O O F R A T IN G LO NGIT E
|
|||
|
|
|||
|
TEE C O NVE RS E PRO BLEM : T O FIND T HE
|
|||
|
U METE R FRO M A KNOWN LO NGIT D E
|
|||
|
|
|||
|
H ERRO R OF C RO NO
|
|||
|
|
|||
|
322 —324
|
|||
|
|
|||
|
CHAPTER X IV
|
|||
|
OBSERVATIONS USED FOR MAKING COMPASS
|
|||
|
CORRECTION
|
|||
|
|
|||
|
D U ALTIT U E AZ IM' TH OF THE S UN H TIM E AZ IMU T OF THE S U N BY TABLES U TI ME AZ IM T HS OF A S T AR O R PLANE T U FO RM LA PO E TIM E A Z IMU TII
|
|||
|
|
|||
|
3 3 7—341
|
|||
|
|
|||
|
CHAPTER XV
|
|||
|
|
|||
|
REDUCTION TO THE MERIDIAN
|
|||
|
|
|||
|
D U Y D M F ETHO AND
|
|||
|
|
|||
|
O RM LAS T o BE EMP LO E
|
|||
|
|
|||
|
U F M RIGO RO S
|
|||
|
|
|||
|
O RMULA FO B Ex - E RI D LAN S
|
|||
|
|
|||
|
D M D U LA TITU E BY
|
|||
|
|
|||
|
E RI IAN AL TIT D E OF A S TAR
|
|||
|
|
|||
|
US MM ARY OF T HE O RD LNA RY PRO BLEMS AND
|
|||
|
|
|||
|
NEC ES S ARY
|
|||
|
|
|||
|
352 4354
|
|||
|
|
|||
|
COMPARAT IV E STATEMENT OF NORIE , INMAN AND RAP ER TABLE S ,
|
|||
|
|
|||
|
oN m a ED . 1696
|
|||
|
|
|||
|
INMAN ED. '92 I RAPER ED. '9 8
|
|||
|
|
|||
|
j Sub ec t
|
|||
|
|
|||
|
l Tab e
|
|||
|
|
|||
|
Pag e
|
|||
|
|
|||
|
1" 1“ 29
|
|||
|
|
|||
|
o v t i to iT m To c n er Arc n
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
oo vtot i i to I To c n er T me n Are
|
|||
|
|
|||
|
Fac t r
|
|||
|
|
|||
|
c orrect V ar. in 1" O
|
|||
|
|
|||
|
R. A.
|
|||
|
|
|||
|
I.
|
|||
|
II .
|
|||
|
III .
|
|||
|
III.
|
|||
|
|
|||
|
t tio of D 2°
|
|||
|
|
|||
|
m D and
|
|||
|
|
|||
|
D ec .,
|
|||
|
|
|||
|
a nd
|
|||
|
|
|||
|
E.
|
|||
|
|
|||
|
T .
|
|||
|
|
|||
|
I Aug en a n
|
|||
|
|
|||
|
S.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
d tio fi of t 2‘i
|
|||
|
|
|||
|
Re uc
|
|||
|
|
|||
|
D n of
|
|||
|
|
|||
|
B . P. for gure
|
|||
|
|
|||
|
Ear h
|
|||
|
|
|||
|
v l oi 1- 16
|
|||
|
|
|||
|
T ra erse Ta b e for P nts and Quarter
|
|||
|
|
|||
|
oi t P n s
|
|||
|
|
|||
|
v l d 18-107 idio l t 108- 1 14
|
|||
|
tio of o t 1 15
|
|||
|
|
|||
|
Tra erse Ta b e for eg rees
|
|||
|
|
|||
|
Mer
|
|||
|
|
|||
|
na Pa r s
|
|||
|
|
|||
|
00 1 rec n
|
|||
|
|
|||
|
Mean Ref. for Bar me er
|
|||
|
|
|||
|
IV .
|
|||
|
|
|||
|
V.
|
|||
|
|
|||
|
V V I.
|
|||
|
|
|||
|
I
|
|||
|
|
|||
|
I
|
|||
|
|
|||
|
I .
|
|||
|
|
|||
|
IX .
|
|||
|
|
|||
|
X.
|
|||
|
|
|||
|
K LA
|
|||
|
|
|||
|
X II.
|
|||
|
|
|||
|
116 1 16
|
|||
|
116 1 16 117
|
|||
|
1 18—121
|
|||
|
1 18 121 ,
|
|||
|
119 1 20 ,
|
|||
|
|
|||
|
XIII. XIV .
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
123
|
|||
|
|
|||
|
124
|
|||
|
|
|||
|
a nd T lIérmonIet er
|
|||
|
f tio Mean Re rac n
|
|||
|
|
|||
|
of Ho i o Dip Sea
|
|||
|
|
|||
|
rzn
|
|||
|
|
|||
|
ll Para ax in Alt.
|
|||
|
|
|||
|
of o o Dip S h re HOI Iz n
|
|||
|
|
|||
|
tio of to Correc n
|
|||
|
|
|||
|
Ob s. Al t. 6)
|
|||
|
|
|||
|
fi nd T r. Alt.
|
|||
|
|
|||
|
f o to (9 Dec . r m 1888 1890
|
|||
|
|
|||
|
o t oo To c rrec 6) D ec. at N n at Sea.
|
|||
|
|
|||
|
o t iod p To c rrec 6) Dec. for changes in er
|
|||
|
|
|||
|
s
|
|||
|
|
|||
|
qof ftoio of i 8 E
|
|||
|
|
|||
|
ua
|
|||
|
|
|||
|
m ur y ears
|
|||
|
n T e 18
|
|||
|
|
|||
|
8- 1 895
|
|||
|
|
|||
|
of i i i d t l Mean P ac es
|
|||
|
|
|||
|
p l Pr nc a F xe
|
|||
|
|
|||
|
S a rs
|
|||
|
|
|||
|
X
|
|||
|
|
|||
|
IV
|
|||
|
|
|||
|
‘
|
|||
|
.
|
|||
|
|
|||
|
XV .
|
|||
|
|
|||
|
125 126
|
|||
|
|
|||
|
o tio of t to Mean R. A.
|
|||
|
|
|||
|
C rrec n
|
|||
|
|
|||
|
Ob s. Alt. S ar
|
|||
|
|
|||
|
find T r
|
|||
|
|
|||
|
o tio of XVI. fi di i of Hi t XVI ‘
|
|||
|
.
|
|||
|
|
|||
|
126 1 26
|
|||
|
|
|||
|
I Alt. C rrec
|
|||
|
For n
|
|||
|
|
|||
|
W n
|
|||
|
|
|||
|
Mer. Pas sag e .
|
|||
|
|
|||
|
ng T me
|
|||
|
|
|||
|
gh a er
|
|||
|
|
|||
|
V of ol X II.
|
|||
|
|
|||
|
o tio of d d d f o l KV
|
|||
|
|
|||
|
II .
|
|||
|
|
|||
|
‘
|
|||
|
|
|||
|
127 127
|
|||
|
|
|||
|
m T o fi nd the Lat . by Alt .
|
|||
|
|
|||
|
Pe
|
|||
|
|
|||
|
C rr ec n
|
|||
|
|
|||
|
Lat . e uce r
|
|||
|
|
|||
|
T ab e
|
|||
|
|
|||
|
V X
|
|||
|
|
|||
|
II .
|
|||
|
|
|||
|
V { { fz of lt of — ‘ III f 128 130 .
|
|||
|
|
|||
|
COT-e iou Sa
|
|||
|
|
|||
|
App. A .'s
|
|||
|
|
|||
|
S un and
|
|||
|
|
|||
|
d o i to i XIX.
|
|||
|
|
|||
|
1 31
|
|||
|
|
|||
|
For re uci ng L ng. n T me and the
|
|||
|
|
|||
|
vre erse
|
|||
|
|
|||
|
D of Ho i o Diff t XX. H i d t i XXI. D d i i XXII.
|
|||
|
|
|||
|
131
|
|||
|
|
|||
|
I ista nc e
|
|||
|
|
|||
|
S ea
|
|||
|
|
|||
|
r z n for
|
|||
|
|
|||
|
eren
|
|||
|
|
|||
|
e gh s
|
|||
|
|
|||
|
1 32-1 213 For re ucing (9 D ec . to a ny Greenw c h
|
|||
|
|
|||
|
a te
|
|||
|
|
|||
|
1 34- 1 35 For re uc ng G R. A . to any Greenw ch
|
|||
|
|
|||
|
D t to v iX
|
|||
|
|
|||
|
III .
|
|||
|
|
|||
|
1 36
|
|||
|
|
|||
|
o otf oi t (XIV .
|
|||
|
|
|||
|
i t t XXV .
|
|||
|
|
|||
|
t l i (X
|
|||
|
|
|||
|
V
|
|||
|
|
|||
|
I .
|
|||
|
|
|||
|
V o ti X II.
|
|||
|
|
|||
|
1 38-1 51 1 5 2-265 266- 274 2 15-280
|
|||
|
|
|||
|
V fi dii t to L
|
|||
|
|
|||
|
III .
|
|||
|
|
|||
|
i i (XIX .
|
|||
|
|
|||
|
ll XXX .
|
|||
|
|
|||
|
of ili l X
|
|||
|
|
|||
|
X
|
|||
|
|
|||
|
X
|
|||
|
|
|||
|
”
|
|||
|
.
|
|||
|
|
|||
|
l ZKK I.
|
|||
|
|
|||
|
I p XX
|
|||
|
|
|||
|
II .
|
|||
|
|
|||
|
o i D t to (XIII.
|
|||
|
|
|||
|
2 81 -284 285- 29 1 29 2- 308 29 3- 309
|
|||
|
310- 318
|
|||
|
31 9 320 ,
|
|||
|
|
|||
|
S a e
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
Log . S ine , Ta ns, and S ec s
|
|||
|
|
|||
|
e ery
|
|||
|
|
|||
|
Quar er P n
|
|||
|
|
|||
|
L gs.
|
|||
|
|
|||
|
Numb ers
|
|||
|
|
|||
|
Log . S nes, Tangen s, S eca n s , Ge Na ura S nes
|
|||
|
|
|||
|
(A ) and (B ) for c rrec ng Lo ng. and
|
|||
|
|
|||
|
n ng A z.
|
|||
|
(C) Az mu h for Lots.
|
|||
|
|
|||
|
68°
|
|||
|
|
|||
|
Log . R s ng
|
|||
|
|
|||
|
I Para a x in Alt .
|
|||
|
|
|||
|
orrec t ion
|
|||
|
|
|||
|
A ux
|
|||
|
|
|||
|
a ry
|
|||
|
|
|||
|
A ng
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
A .
|
|||
|
|
|||
|
) m Log . HoraI y Ang e (In an, Log. Hav
|
|||
|
|
|||
|
(Ra er, Log. Sin Sq .)
|
|||
|
|
|||
|
L
|
|||
|
|
|||
|
gs . for I ed ucing
|
|||
|
|
|||
|
G) D ec.,
|
|||
|
|
|||
|
R A .
|
|||
|
|
|||
|
.,
|
|||
|
|
|||
|
are.
|
|||
|
|
|||
|
any Greenw ch a e
|
|||
|
|
|||
|
6 3—6 5
|
|||
|
17 18
|
|||
|
|
|||
|
35
|
|||
|
|
|||
|
395 -422
|
|||
|
|
|||
|
64
|
|||
|
|
|||
|
706—723
|
|||
|
|
|||
|
32 44
|
|||
|
|
|||
|
1 1 9-304 66 67 68
|
|||
|
|
|||
|
ASS- 5 1 7 “
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
65
|
|||
|
|
|||
|
726-821 725
|
|||
|
|
|||
|
39
|
|||
|
|
|||
|
676 - 684
|
|||
|
|
|||
|
69
|
|||
|
|
|||
|
82 8-89 2
|
|||
|
|
|||
|
xx iv
|
|||
|
|
|||
|
COMPA RATIV E STA TEME NT OF
|
|||
|
|
|||
|
l Tab e
|
|||
|
|
|||
|
NORIE ED . 1 896
|
|||
|
|
|||
|
j Sub ect
|
|||
|
|
|||
|
34 11- 3 62
|
|||
|
|
|||
|
op tio l Pr or na Lo gs. o t D t T o c rrec Ap p. Lunar
|
|||
|
|
|||
|
is . fo r Pa r .
|
|||
|
|
|||
|
a nd
|
|||
|
|
|||
|
Re
|
|||
|
|
|||
|
f .
|
|||
|
|
|||
|
V i t l ers nes ( Na ura )
|
|||
|
|
|||
|
d tio Re tar a n
|
|||
|
|
|||
|
l tio Acce era n
|
|||
|
|
|||
|
o it i L ga r hm c D ifi erence
|
|||
|
|
|||
|
o of o v d C rr.
|
|||
|
|
|||
|
Lo g.
|
|||
|
|
|||
|
D iff .
|
|||
|
|
|||
|
w h en
|
|||
|
|
|||
|
G)
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
b ser e
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
of t Co rr.
|
|||
|
|
|||
|
Lo g. D ifi .
|
|||
|
|
|||
|
wh en
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
s ar
|
|||
|
|
|||
|
i .
|
|||
|
|
|||
|
oh
|
|||
|
|
|||
|
t d Ampli u es
|
|||
|
|
|||
|
Time Amplitnd s
|
|||
|
|
|||
|
of p i ip p i To fi nd
|
|||
|
|
|||
|
A .
|
|||
|
|
|||
|
T .
|
|||
|
|
|||
|
di Meri an
|
|||
|
|
|||
|
r nc
|
|||
|
|
|||
|
l ti l o jet P i TO fi nd when ce es a
|
|||
|
|
|||
|
la st a rs as s ng
|
|||
|
|
|||
|
m b
|
|||
|
|
|||
|
c
|
|||
|
|
|||
|
'
|
|||
|
15
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
r
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
V ti l er ca .
|
|||
|
|
|||
|
of o j t To find A lt.
|
|||
|
|
|||
|
c ela t ial b ec “ hen o n
|
|||
|
|
|||
|
i V ti l Pr me er ca
|
|||
|
|
|||
|
o fi d o L gs. for
|
|||
|
|
|||
|
n ing c rr
|
|||
|
|
|||
|
“
|
|||
|
p
|
|||
|
|
|||
|
R .
|
|||
|
|
|||
|
A .
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
D ec .
|
|||
|
|
|||
|
D t for a ny Greenwi c h a e
|
|||
|
|
|||
|
ll l t Para
|
|||
|
|
|||
|
ax
|
|||
|
|
|||
|
"
|
|||
|
I II
|
|||
|
|
|||
|
Alt .
|
|||
|
|
|||
|
for P a ne
|
|||
|
|
|||
|
s
|
|||
|
|
|||
|
t l t To correc
|
|||
|
|
|||
|
Lo o
|
|||
|
|
|||
|
Difi’ .
|
|||
|
|
|||
|
when
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
P ane
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
o d b se rv e t l T o correc
|
|||
|
|
|||
|
A anx il ia n a ng e
|
|||
|
|
|||
|
“ hen a
|
|||
|
|
|||
|
l t o d P a ne 15 bse rve
|
|||
|
|
|||
|
d D w To re
|
|||
|
|
|||
|
uc e
|
|||
|
|
|||
|
E .
|
|||
|
|
|||
|
T .
|
|||
|
|
|||
|
a n) Gree nn-Ic li
|
|||
|
|
|||
|
p t q tio of Lo gs. for co m u ing the E ua
|
|||
|
|
|||
|
ate
|
|||
|
n
|
|||
|
|
|||
|
q l lt E ua
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
s .
|
|||
|
|
|||
|
o ti fo m For c nver ng reig n eas ures
|
|||
|
|
|||
|
fi d t o o d M For n ing exac
|
|||
|
|
|||
|
T G .
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.c
|
|||
|
|
|||
|
rres p
|
|||
|
|
|||
|
n
|
|||
|
|
|||
|
D t ing to T rue Luna r
|
|||
|
|
|||
|
H D To re duce
|
|||
|
|
|||
|
P
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
t m Gree
|
|||
|
|
|||
|
'
|
|||
|
nc
|
|||
|
|
|||
|
h
|
|||
|
|
|||
|
Da
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
is .
|
|||
|
|
|||
|
a nd
|
|||
|
|
|||
|
S .
|
|||
|
|
|||
|
o . t
|
|||
|
|
|||
|
a ny
|
|||
|
|
|||
|
q t i l i fi of Corr. of
|
|||
|
|
|||
|
E ua o r a Par . to ' gure
|
|||
|
|
|||
|
t Ea r h
|
|||
|
|
|||
|
i p l o H o H l d Pr nci a P rt s,
|
|||
|
|
|||
|
a rb urs
|
|||
|
|
|||
|
ead a n s ,
|
|||
|
|
|||
|
n p i m W &c .
|
|||
|
T i e of 11 .
|
|||
|
|
|||
|
. at
|
|||
|
|
|||
|
P .
|
|||
|
|
|||
|
a nd C
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
dS
|
|||
|
|
|||
|
r ng
|
|||
|
|
|||
|
INMAN ED . ’ 92
|
|||
|
|
|||
|
l Ta b e
|
|||
|
|
|||
|
Pa ge
|
|||
|
|
|||
|
4 6 7—486
|
|||
|
|
|||
|
RAP EB ED . ’ 9 8
|
|||
|
|
|||
|
l Ta b e
|
|||
|
|
|||
|
Pa ge i
|
|||
|
|
|||
|
— 4 6 2 -4 6 5
|
|||
|
462 16 5
|
|||
|
|
|||
|
73
|
|||
|
|
|||
|
59 ,
|
|||
|
|
|||
|
59A
|
|||
|
|
|||
|
26
|
|||
|
|
|||
|
90 0- 90 8
|
|||
|
|
|||
|
69 66
|
|||
|
|
|||
|
61—, 6696
|
|||
|
|
|||
|
7 3
|
|||
|
|
|||
|
2 7 27A
|
|||
|
|
|||
|
6 64 665 ,
|
|||
|
|
|||
|
0675- 6711
|
|||
|
|
|||
|
666-6 70
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
900 90 "
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
540—1 634
|
|||
|
|
|||
|
l T ab e
|
|||
|
|
|||
|
I NMA N
|
|||
|
|
|||
|
ED .
|
|||
|
|
|||
|
1 89 2
|
|||
|
|
|||
|
B A PER ED . '98
|
|||
|
l T ab e
|
|||
|
|
|||
|
oi t of p P n s
|
|||
|
|
|||
|
m Co
|
|||
|
|
|||
|
as s. & c .
|
|||
|
|
|||
|
t d d t Leng h o f a egree o f Lo ng . in
|
|||
|
|
|||
|
i‘lf .
|
|||
|
|
|||
|
La
|
|||
|
|
|||
|
s.
|
|||
|
|
|||
|
o v i D p t t For c n ert ng
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
ar
|
|||
|
|
|||
|
ure i n o
|
|||
|
|
|||
|
Di if .
|
|||
|
|
|||
|
Lo ng .
|
|||
|
|
|||
|
o i i to D p t For c
|
|||
|
|
|||
|
nv ert
|
|||
|
|
|||
|
ng
|
|||
|
|
|||
|
D ifi .
|
|||
|
|
|||
|
Lo ng
|
|||
|
|
|||
|
n
|
|||
|
|
|||
|
i tit d Fur
|
|||
|
|
|||
|
co rrect
|
|||
|
|
|||
|
ng
|
|||
|
|
|||
|
Mid .
|
|||
|
|
|||
|
La
|
|||
|
|
|||
|
ue
|
|||
|
|
|||
|
e a r ure
|
|||
|
|
|||
|
of j t D is ta nce
|
|||
|
|
|||
|
Ob ec s see n a t sea
|
|||
|
|
|||
|
o itio i P s
|
|||
|
|
|||
|
n
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
o
|
|||
|
|
|||
|
Bea r
|
|||
|
|
|||
|
ng s
|
|||
|
|
|||
|
a nd
|
|||
|
|
|||
|
Di .
|
|||
|
|
|||
|
t a nc e
|
|||
|
|
|||
|
r un
|
|||
|
|
|||
|
o o SI whols a nd A b b rm ia t ions use d in N Int ica l As t r n my
|
|||
|
|
|||
|
tio idi Re duc M n ( 0 t he er a n
|
|||
|
|
|||
|
of d Le ngt h
|
|||
|
|
|||
|
a eg ree in La t . a nd Lo ng .
|
|||
|
|
|||
|
l T rue Bea rinzf o f Po e t ta r
|
|||
|
|
|||
|
-4 7
|
|||
|
I”
|
|||
|
|
|||
|
688- 69 1
|
|||
|
|
|||
|
ALo g . Ha v en -ines
|
|||
|
|
|||
|
tio of d Red uc n
|
|||
|
|
|||
|
La t it u e
|
|||
|
|
|||
|
D t of Red nf: tio u ( I .7
|
|||
|
|
|||
|
on a cco un
|
|||
|
.
|
|||
|
|
|||
|
Ref.
|
|||
|
|
|||
|
of a ili d C orrect ion
|
|||
|
|
|||
|
ux a ry a ng le A fo r Ba r. a n
|
|||
|
|
|||
|
m Ther .
|
|||
|
m i — m ‘orra po nd ing T ne r o
|
|||
|
|
|||
|
et e r Se nes
|
|||
|
|
|||
|
m A n n -O no ic a l l« a t . l
|
|||
|
|
|||
|
m A i I I e T int io ne in A l ira l t . C1u‘I rt s
|
|||
|
|
|||
|
D t l 5 e1 . is a nce Ta b es
|
|||
|
|
|||
|
635 —6 43
|
|||
|
|
|||
|
l Tab e
|
|||
|
|
|||
|
NORIE INMA N A ND RA PER TA BLES
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
XXV
|
|||
|
|
|||
|
RAI‘JCR ED . ”499
|
|||
|
|
|||
|
j t Sub ec
|
|||
|
|
|||
|
v p l l S h eri ca Tra erse Tab e
|
|||
|
|
|||
|
of f t t di di t di t No.
|
|||
|
|
|||
|
ee sub e n ng l ’ at f eren
|
|||
|
|
|||
|
s ances
|
|||
|
|
|||
|
i do i fo d o o t i d lP aces at wh ch i l I Time S gna s t p E ac s
|
|||
|
|
|||
|
l p l m cks or s s ay be un and c a
|
|||
|
|
|||
|
t q itl m Se imens rual Ine ua y
|
|||
|
|
|||
|
o t i of d pp ll A m r xi a e R se and Fa
|
|||
|
|
|||
|
Ti es
|
|||
|
|
|||
|
o d i d i v i tio l L gs. for re uc ng a y ar a
|
|||
|
|
|||
|
ns
|
|||
|
|
|||
|
b a ne
|
|||
|
|
|||
|
fi di q tio of d Diff For n ng the E ua n
|
|||
|
|
|||
|
Seco n
|
|||
|
|
|||
|
erences
|
|||
|
|
|||
|
o o di H of oo p C rres n ng
|
|||
|
|
|||
|
P
|
|||
|
.
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
S -D
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
Mn
|
|||
|
|
|||
|
o ti of t C rrec on for red ncmg Tr. Al t . to A pp. A lt.
|
|||
|
|
|||
|
Su nor S ar
|
|||
|
|
|||
|
oi ttio od i o di to of of oio t of ti p M m m C rrec n for re uc ng Tr. Alt.
|
|||
|
|
|||
|
App. Alt.
|
|||
|
|
|||
|
A z u h and c rres n ng change
|
|||
|
|
|||
|
Alt .
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
n nu e
|
|||
|
|
|||
|
o t oo o d o of Di t p m For c
|
|||
|
|
|||
|
M u ing the
|
|||
|
|
|||
|
n’s S ec n C rr.
|
|||
|
|
|||
|
s ance
|
|||
|
|
|||
|
o i to o Di t p pl Err r of Sh ‘s ace due
|
|||
|
|
|||
|
1 ’ err r in Lunar s anc e
|
|||
|
|
|||
|
me
|
|||
|
|
|||
|
oid p l l S her a Tab es
|
|||
|
|
|||
|
o o ti o of o t p L gs. for c m u ng C rr.
|
|||
|
|
|||
|
Lil -t . b v acc un
|
|||
|
|
|||
|
NOTES ON THE TABLES '
|
|||
|
|
|||
|
It will be seen that Norie, Inman, and Raper all contain the Tables essential to the work of the Navigator.
|
|||
|
|
|||
|
But some Tables are more convenient than others. For
|
|||
|
|
|||
|
example, Noric’s Log. Horary An gle T able correspond s to Inman ’s Log. Haversine Table and to Raper’s Log .
|
|||
|
|
|||
|
Sine Square Table, but the two latter are more convenient than the Log. Horary Angle of Norie for two reason s . The first i s that while Inman and Raper each give a. complete Table, Norie, for some reason known best to
|
|||
|
|
|||
|
himself, limits the Horary Angle to 8 hours, an d con
|
|||
|
|
|||
|
sequently it
|
|||
|
|
|||
|
might
|
|||
|
|
|||
|
v ery
|
|||
|
|
|||
|
well
|
|||
|
|
|||
|
happen
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
bright
|
|||
|
|
|||
|
st ra ,.
|
|||
|
|
|||
|
such as V ega, or Capella, might be rendered useless for
|
|||
|
|
|||
|
finding Time if the observer was ignorant of other
|
|||
|
|
|||
|
methods than Noric’s for calculating the Hour Angle. An d the second reason is that Norie, unfortunately, does not give the arc corresponding to Time in his Horary
|
|||
|
|
|||
|
T able. The three T ables, though bearing different names , deal with the same thing, for the Log. Horary Angle is
|
|||
|
|
|||
|
really 3. Log. Haversine ; and Log. Haversine of any
|
|||
|
|
|||
|
angle is the Log. Sine Square of half the same angle.
|
|||
|
|
|||
|
i ov itt i p ov itio m 1 S nce the ab e was wr en a. new and
|
|||
|
|
|||
|
uch m r ed ed
|
|||
|
|
|||
|
n of
|
|||
|
|
|||
|
l o t i i o pl t v i l i m Norie’s Tab es, c n a n ng a c
|
|||
|
|
|||
|
e e Ha ers ne Tab e, has been s sued .
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
A PCITED H‘Z TIQ
|
|||
|
|
|||
|
1 8000 .
|
|||
|
|
|||
|
It w ould b e mere waste of time
|
|||
|
|
|||
|
make two sums of it, thus
|
|||
|
|
|||
|
1 231
|
|||
|
5 678 901 1 121 3
|
|||
|
i7i as
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
o ne
|
|||
|
|
|||
|
sum ,
|
|||
|
|
|||
|
thus
|
|||
|
|
|||
|
2ud .
|
|||
|
|
|||
|
Under
|
|||
|
|
|||
|
ord inarv circu mstanc e s
|
|||
|
|
|||
|
of mul tipli ca tion
|
|||
|
|
|||
|
by L ogs . one woul d put t he numbers, or angles, or time on
|
|||
|
|
|||
|
the l eft, t he L ogs . equal to them on the ri ght, and t he num b er, angle, or time equal t o the resultant Log. t o the
|
|||
|
|
|||
|
i h g t“
|
|||
|
|
|||
|
r
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
it,
|
|||
|
|
|||
|
t hu s
|
|||
|
|
|||
|
1 2-3 Log . = 2 -0899 05
|
|||
|
|
|||
|
456 Log.
|
|||
|
|
|||
|
-6 5 896 5
|
|||
|
|
|||
|
But t he exi gencies of space, and general convenience frequent ly rend er i t. necess arv to put the answer als o on t he left and the above sum would be written thus :
|
|||
|
1 23 LQg . 456 Log.
|
|||
|
|
|||
|
Preport ion
|
|||
|
|
|||
|
'
|
|||
|
or
|
|||
|
|
|||
|
Rul e
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Th ree
|
|||
|
|
|||
|
A s ‘ t im e ’ an d arc ’ are menti one d in t he l lOVV‘l D f ’
|
|||
|
|
|||
|
examp le s, it is w ell t o s t at e t hat t irne is c oun t e d in h our s
|
|||
|
|
|||
|
m h an d d re mi u s i ( m n ut es , d C e con s
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
s ),
|
|||
|
|
|||
|
a rc in
|
|||
|
|
|||
|
g e
|
|||
|
|
|||
|
es ,
|
|||
|
|
|||
|
n te ,
|
|||
|
|
|||
|
s econds
|
|||
|
|
|||
|
There are c ixty seconds of t ime or of arc
|
|||
|
|
|||
|
ARITHMETIC
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
in a minute, sixty minutes of time in an hour, sixty minutes of are in a degree.
|
|||
|
A simple proportion takes the following form As 2 is
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
6 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
s ub s t i t u ti n g
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
abbreviations,
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
4: 3
|
|||
|
|
|||
|
6 .
|
|||
|
|
|||
|
All simple proportions consist of four parts or terms .
|
|||
|
|
|||
|
In
|
|||
|
|
|||
|
this
|
|||
|
|
|||
|
case
|
|||
|
|
|||
|
these
|
|||
|
|
|||
|
terms
|
|||
|
|
|||
|
are
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
4 ,
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
6 .
|
|||
|
|
|||
|
Of these 2 and
|
|||
|
|
|||
|
6 are called the ‘ extremes, ’ and 4 and 3 are called the
|
|||
|
|
|||
|
‘ means.’
|
|||
|
|
|||
|
The fact upon which the solution of problems in pro
|
|||
|
|
|||
|
portion rests is, that the product of the ‘ means is equal to the product of the extremes . ’
|
|||
|
|
|||
|
For instance, in the above proportion, 4 and 3 are the
|
|||
|
|
|||
|
‘ means, ’ 2 and 6 the extremes.’ And 4 multiplied by 3
|
|||
|
|
|||
|
equals
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
m ul ti p li e d
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
6 .
|
|||
|
|
|||
|
4x
|
|||
|
|
|||
|
and 2 x
|
|||
|
|
|||
|
This
|
|||
|
|
|||
|
form of simple proportion you will not have much
|
|||
|
|
|||
|
occasion to use ; but you will have to use simple pro
|
|||
|
|
|||
|
portion to find an unknown fourth term from three
|
|||
|
|
|||
|
known terms. If you have any three terms of a prop or
|
|||
|
|
|||
|
tion you can find the fourth term by the following rules (1 ) If two means ’ and one ‘ extrem ' e are known, the
|
|||
|
product of the ‘ mean s ’ divided by the known ‘ extreme , ’ gives the other extreme.’
|
|||
|
(2) If two extremes an d one mean ’ are known, the product of the two extremes divided by the known
|
|||
|
|
|||
|
m mean gives the other mean. ’ This is easy enough. You must re ember, however, that the first and second terms in a proportion must be of
|
|||
|
|
|||
|
the same n ature, that is, they must be multiples of the same quantity or measure, and that the fourth term will be of the same nature as the third . Thus , suppose you were given the following proportion, :1: representing the ‘extreme ’ you want to find
|
|||
|
|
|||
|
m As
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
h .
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
. : 1 8 111 1 : 1 2 °
|
|||
|
|
|||
|
x .
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
A R ITHMETIC
|
|||
|
|
|||
|
B efore multiplying the two means together you must
|
|||
|
|
|||
|
make the first and second terms of the same nature, that
|
|||
|
|
|||
|
i s, mul tiples of the same quantity, which in this case can
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
easily
|
|||
|
|
|||
|
done
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
t ur ni n g
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
h .
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
111 .
|
|||
|
|
|||
|
into
|
|||
|
|
|||
|
mi nut e s
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
time.
|
|||
|
|
|||
|
Ai m ,
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
avoid
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
trouble
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
c o mp o u n d
|
|||
|
|
|||
|
multiplication ,
|
|||
|
|
|||
|
it is best to reduce 1 2 48’ into minutes of arc.
|
|||
|
|
|||
|
to work out the problem
|
|||
|
|
|||
|
As l h l om zl s 2 2 1 2 3 43 2 9:
|
|||
|
|
|||
|
As 70m
|
|||
|
|
|||
|
70 70
|
|||
|
|
|||
|
(1 9 7’ 2 9 or 3 : 1 7’
|
|||
|
|
|||
|
Here we mul tiply the t wo means together, an d the
|
|||
|
|
|||
|
product i s 1 3824 thi s we divide by the kn own extreme, ’
|
|||
|
|
|||
|
m 1 0
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
which gives us as the other extreme 1 9 7' an d i i
|
|||
|
|
|||
|
over.
|
|||
|
|
|||
|
Turn
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
34’
|
|||
|
|
|||
|
into
|
|||
|
|
|||
|
s econds ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
divide
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
70 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
we
|
|||
|
|
|||
|
ha v e
|
|||
|
|
|||
|
1 9 7’ 29 " divide the 1 9 7' bv 60 to tur n them in t o d egrees,
|
|||
|
|
|||
|
and we g et 3° 7’ 29 Remember always that what you
|
|||
|
|
|||
|
get in the fourth term is of the same natur e as the “third
|
|||
|
|
|||
|
et rm ,
|
|||
|
|
|||
|
whether
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
degree s
|
|||
|
|
|||
|
mil es, feet , tons, or anyt hing
|
|||
|
|
|||
|
You will fin d lat er on the utilitv of thi s rule in determining, among other t hing s , the amount a h eavenl y bo dy will ri se or fall in a cert ain time if vou know how
|
|||
|
|
|||
|
A RITHMETIC
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
much it has risen or fallen in a given time. For example,
|
|||
|
|
|||
|
suppose at 9 h .
|
|||
|
|
|||
|
s 1 8 m 28
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
the Altitude of
|
|||
|
|
|||
|
some
|
|||
|
|
|||
|
heavenly
|
|||
|
|
|||
|
bod y was 32 °
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
h.
|
|||
|
|
|||
|
m 35 .
|
|||
|
|
|||
|
30 s .
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Altitude of the same body was 35° 1 4' 1 8 and that you
|
|||
|
|
|||
|
wanted to
|
|||
|
|
|||
|
know what
|
|||
|
|
|||
|
its Altitude
|
|||
|
|
|||
|
was
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
9h .
|
|||
|
|
|||
|
m 2 2 .
|
|||
|
|
|||
|
s 1 4 .
|
|||
|
|
|||
|
How would you proceed In the following way.
|
|||
|
|
|||
|
First find out ho w much the body rose in the first
|
|||
|
|
|||
|
i n terval .
|
|||
|
|
|||
|
At 9“ At 9 35
|
|||
|
o Theref re in 0 1 7
|
|||
|
|
|||
|
28” 30
|
|||
|
2
|
|||
|
|
|||
|
it or se
|
|||
|
|
|||
|
Next you must find how much it would rise in second interval. What i s the second interval ?
|
|||
|
9 h 2 2 m l 4a 9 18 28
|
|||
|
o i t v l 0 3 46 is the sec nd n er a .
|
|||
|
|
|||
|
Now
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
h av e
|
|||
|
|
|||
|
three
|
|||
|
|
|||
|
known
|
|||
|
|
|||
|
terms,
|
|||
|
|
|||
|
17m .
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
s.
|
|||
|
|
|||
|
(the
|
|||
|
|
|||
|
first
|
|||
|
|
|||
|
i n t e rv a l),
|
|||
|
|
|||
|
s 3 m 46
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
(t h e
|
|||
|
|
|||
|
second
|
|||
|
|
|||
|
i n t erv a l ),
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
2° 55' 58"
|
|||
|
|
|||
|
(the increase of Alti tude in the first interval), and require to find the fourth unknown term.
|
|||
|
|
|||
|
W As
|
|||
|
|
|||
|
2 I]
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
3m 468
|
|||
|
|
|||
|
2° 55' 58" x 60
|
|||
|
|
|||
|
60
|
|||
|
|
|||
|
1 0558 secs . o f arc. 226
|
|||
|
|
|||
|
63348 21 1 16 21 1 16
|
|||
|
|
|||
|
2044
|
|||
|
|
|||
|
secs. of arc. or
|
|||
|
|
|||
|
3 42 1 3066
|
|||
|
|
|||
|
3 550 3066
|
|||
|
|
|||
|
4848 4088
|
|||
|
|
|||
|
l (near y)
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
A RITHMETIC
|
|||
|
|
|||
|
Therefore 38 ’ 55” i s the amount the body will rise in
|
|||
|
|
|||
|
m 3 .
|
|||
|
|
|||
|
6 4
|
|||
|
|
|||
|
s.,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
this
|
|||
|
|
|||
|
amount
|
|||
|
|
|||
|
added
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
32°
|
|||
|
|
|||
|
1 8’
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
known Altitude
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
h m 9 1 8 .
|
|||
|
|
|||
|
2 8 .
|
|||
|
|
|||
|
s.,
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
the Altitude
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
the time
|
|||
|
|
|||
|
required,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
h.
|
|||
|
|
|||
|
22
|
|||
|
|
|||
|
m .
|
|||
|
|
|||
|
14
|
|||
|
|
|||
|
s.
|
|||
|
|
|||
|
T ime
|
|||
|
|
|||
|
A l t it ud e
|
|||
|
|
|||
|
ltit o y At 9h 1 8m 2 89 the A ude of the b d was 32 ° 1 8’ 2 0
|
|||
|
|
|||
|
In
|
|||
|
|
|||
|
it o 3 46
|
|||
|
|
|||
|
i se
|
|||
|
|
|||
|
38 55
|
|||
|
|
|||
|
o ltit Theref re at 9 2 2 1 4 the A ud e was
|
|||
|
|
|||
|
32 57 1 5
|
|||
|
|
|||
|
This
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
long
|
|||
|
|
|||
|
sum ,
|
|||
|
|
|||
|
but by using proportional Logs ,
|
|||
|
|
|||
|
as will hereafter be explained, the work i s very much
|
|||
|
|
|||
|
shortened.
|
|||
|
|
|||
|
Decimal Fractions
|
|||
|
|
|||
|
A vulgar fraction consi sts of two parts, the numerator and the denominator the numerator is above the line and
|
|||
|
|
|||
|
the denominator below it. The denominator expresses
|
|||
|
|
|||
|
the value of each equal part into which any unit is divided, and the numerator expresses the number of such parts .
|
|||
|
|
|||
|
Thus % is a vulgar fraction ; the numerator is 3 and the
|
|||
|
|
|||
|
denominator
|
|||
|
|
|||
|
4 .
|
|||
|
|
|||
|
The denominator shows that each part
|
|||
|
|
|||
|
is one-fourth of the whole, and the numerator shows that
|
|||
|
|
|||
|
there are three such part s . T ake another fraction, g for
|
|||
|
|
|||
|
example. Here the unit i s divided into 5 equal parts
|
|||
|
|
|||
|
the denominator shows this ; and there are 3 of these
|
|||
|
|
|||
|
parts, as indicated by the numerator ; the value of the
|
|||
|
|
|||
|
fraction is therefore three-fifths .
|
|||
|
|
|||
|
The denominator of a vulgar fraction may be any
|
|||
|
|
|||
|
number you like the denominator of a decimal fraction
|
|||
|
|
|||
|
must be ten or some multiple of ten, and therein lies the difference between a vulgar and a decimal fraction. In
|
|||
|
|
|||
|
decimal fractions the denominator is expressed by a dot,
|
|||
|
|
|||
|
thus : 1 i s one-tenth. The figures after the dot are
|
|||
|
|
|||
|
called decimal places. The number of decimal places
|
|||
|
|
|||
|
A RITHMETIC
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
shows the value of the denominator ; thus 1‘ i s $3 , '01 is
|
|||
|
|
|||
|
1 0 0,
|
|||
|
|
|||
|
i s w l ru :
|
|||
|
|
|||
|
12
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
12
|
|||
|
T3 3 ,
|
|||
|
|
|||
|
123 is
|
|||
|
|
|||
|
and so on.
|
|||
|
|
|||
|
Y ou can always, of course, express a decimal fraction
|
|||
|
|
|||
|
as a vulgar fraction ex actly, but you cannot always express a vulgar fraction as a decimal fraction exactly.
|
|||
|
|
|||
|
T he decimal equivalent of a vulgar fraction is often self
|
|||
|
|
|||
|
evident thus 4 is evidently the same thing as and 1 11 i s written decimall'y as 5' ; and even in those cases in
|
|||
|
|
|||
|
which the conversion is not self-evident, the process of turning vulgar fractions into decimals is very simple. All
|
|||
|
|
|||
|
you have to do is to divide the numerator by the denom
|
|||
|
|
|||
|
inator— this will give you the decimal exactly if the vulgar
|
|||
|
|
|||
|
fraction can be turned exactly into a decimal fraction,
|
|||
|
|
|||
|
and if it cannot the process will give you the decimal very
|
|||
|
|
|||
|
n early .
|
|||
|
|
|||
|
Thus
|
|||
|
|
|||
|
3
|
|||
|
13
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
vulgar fraction,
|
|||
|
|
|||
|
and can be expressed
|
|||
|
|
|||
|
exactly as a decimal fraction thus 10 3-0 3
|
|||
|
|
|||
|
Some vulgar fractions , as for instance 4, cannot be expressed exactly as a decimal fraction .
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
fi m ' 333 etc . a d tn nttu .
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
10 9
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
Such a decimal fraction i s called a recurring decimal ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
written
|
|||
|
|
|||
|
thus,
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
with
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
dot
|
|||
|
|
|||
|
over the
|
|||
|
|
|||
|
3 .
|
|||
|
|
|||
|
In turning vulgar fractions into decimals, you may
|
|||
|
|
|||
|
arrive at a decimal containing three or more, and perhaps
|
|||
|
|
|||
|
a lot more figures . Console yourself by the reflection that .
|
|||
|
|
|||
|
for navigational purposes, one decimal place, or at any
|
|||
|
|
|||
|
rate two decimal places, are good enough. Thus 1 234
|
|||
|
|
|||
|
would be called ' 12
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
probably
|
|||
|
|
|||
|
1' .
|
|||
|
|
|||
|
If the figure to the
|
|||
|
|
|||
|
right of the second or
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the first
|
|||
|
|
|||
|
decimal
|
|||
|
|
|||
|
place
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
5 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
bigger than
|
|||
|
|
|||
|
5 ,
|
|||
|
|
|||
|
increase the
|
|||
|
|
|||
|
second
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
first
|
|||
|
|
|||
|
figure
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
one ,
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
A RITH BLETIO
|
|||
|
|
|||
|
thus
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
26
|
|||
|
|
|||
|
should
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
called
|
|||
|
|
|||
|
-1 3 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
' 36
|
|||
|
|
|||
|
should
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
call ed
|
|||
|
|
|||
|
4 , because in the first case ' 1 3 i s n earer to the truth than
|
|||
|
|
|||
|
“ 1 2 an d in the secon d place 4 i s nearer to the truth
|
|||
|
|
|||
|
than 3
|
|||
|
|
|||
|
The immen se advantage of the decimal system is, that compoun d addition , subtraction, mul tiplication , and divi sion are don e away with. Its weakn ess is, that some
|
|||
|
|
|||
|
fractions cann ot be expressed absolutely by its means,
|
|||
|
|
|||
|
but they can be expressed quite nearly enough for all
|
|||
|
|
|||
|
n avigational work . Decimals are wt mderfully useful in
|
|||
|
|
|||
|
n avigation, as you will appreciate ful ly later on in fact, problems coul d not be worked without them .
|
|||
|
|
|||
|
Ad dition of Decimals
|
|||
|
|
|||
|
The quantiti es to be added t ogether must be written
|
|||
|
|
|||
|
down so that the decimal points are all in the same
|
|||
|
|
|||
|
perpendicul ar lin e, un der one another. T hen proceed to add as in ordinary ari thm etic, and place the decimal
|
|||
|
|
|||
|
point in the sum in a line with and un der the decimal
|
|||
|
|
|||
|
points in the quantities added.
|
|||
|
|
|||
|
For
|
|||
|
|
|||
|
example, add
|
|||
|
|
|||
|
together
|
|||
|
|
|||
|
1 7 89 ,
|
|||
|
|
|||
|
78 0 1 ,
|
|||
|
|
|||
|
0 26
|
|||
|
|
|||
|
1 0000 ,
|
|||
|
|
|||
|
11
|
|||
|
|
|||
|
002 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
1 00 01 .
|
|||
|
|
|||
|
There you are.
|
|||
|
|
|||
|
The 1 01 90 ,
|
|||
|
|
|||
|
being
|
|||
|
|
|||
|
a whole
|
|||
|
|
|||
|
num ber,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
to the left of the decimal point , and the fr action 837 is
|
|||
|
|
|||
|
to the right of i t.
|
|||
|
|
|||
|
lo
|
|||
|
|
|||
|
ARIT HMETIC
|
|||
|
|
|||
|
Here are a few examples, to which I would ask your
|
|||
|
|
|||
|
closest attention
|
|||
|
|
|||
|
(1 )
|
|||
|
|
|||
|
Mul tiplv
|
|||
|
|
|||
|
1 8 -5
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
1 9 -2 .
|
|||
|
|
|||
|
There is one decimal place in each of the two factors,
|
|||
|
|
|||
|
185
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
19
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
i s,
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
decimal
|
|||
|
|
|||
|
places
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
all,
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
you p oint 0 11 two decimal places from the right of the
|
|||
|
|
|||
|
p ro du c t ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
dot
|
|||
|
|
|||
|
comes
|
|||
|
|
|||
|
between
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
5 .
|
|||
|
|
|||
|
Of
|
|||
|
|
|||
|
course, zeros on the right of a decimal without any di git s t o the ri ght of them are of no value, but they must n ever be st ruck off a product till the decimal point has
|
|||
|
|
|||
|
been placed.
|
|||
|
|
|||
|
(2)
|
|||
|
|
|||
|
Mul tiply
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
042
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
198 .
|
|||
|
|
|||
|
Here
|
|||
|
|
|||
|
there
|
|||
|
|
|||
|
are three
|
|||
|
|
|||
|
d e cima l
|
|||
|
|
|||
|
plac es
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
1 0 42 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
none
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
1 93 .
|
|||
|
|
|||
|
T herefore we po int off three decimal p la ces
|
|||
|
|
|||
|
from the ri ght ih the product.
|
|||
|
|
|||
|
(3)
|
|||
|
|
|||
|
Mult iplv
|
|||
|
|
|||
|
79 -89
|
|||
|
|
|||
|
bv
|
|||
|
|
|||
|
‘ 0042 .
|
|||
|
|
|||
|
Here t here are two decima l plac es 111 1 9 -8 9 . and four
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
0 042 ,
|
|||
|
|
|||
|
therefore six
|
|||
|
|
|||
|
d e c i ma l
|
|||
|
|
|||
|
p la ce s
|
|||
|
|
|||
|
are
|
|||
|
|
|||
|
point e d
|
|||
|
|
|||
|
off
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
t he pro duc t .
|
|||
|
|
|||
|
A RITHMETIC
|
|||
|
|
|||
|
11
|
|||
|
|
|||
|
(4)
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
0 045
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
10 .
|
|||
|
|
|||
|
‘ 0045 10
|
|||
|
0 156
|
|||
|
|
|||
|
Here we have altogether four decimal places to point
|
|||
|
|
|||
|
off in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
product
|
|||
|
|
|||
|
450 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
zero must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
placed
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the left of 450 to make up the number. Z eros required
|
|||
|
|
|||
|
to make up the number of decimal places in a product
|
|||
|
|
|||
|
must be placed to the lef t of the left-hand digit .
|
|||
|
|
|||
|
Although the last zero is valueless , it must be counted
|
|||
|
|
|||
|
when pointing off the product .
|
|||
|
|
|||
|
(5)
|
|||
|
|
|||
|
Mul t i p l y
|
|||
|
|
|||
|
0 001
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 002 .
|
|||
|
|
|||
|
'000 1 ' 0002
|
|||
|
0 0000002
|
|||
|
|
|||
|
This is rather an extreme case. We have eight decimal places in the factors, and therefore we must add seven zeros to the left of the product 2 before we can place the decimal pomt.
|
|||
|
(6) Multiply 79 8 9 by 1 2 1 2 .
|
|||
|
79 i ! i 1 2 1 -2
|
|||
|
1 5 978 798 9 1 5 978 79 8 9
|
|||
|
9682 668
|
|||
|
|
|||
|
Three decimal places in the factors, therefore three in
|
|||
|
|
|||
|
the prod uct .
|
|||
|
|
|||
|
In such a case as this, after the decimal place has been
|
|||
|
|
|||
|
put in according to the rule, you can check the result by
|
|||
|
|
|||
|
taking two’ simple n umbers nearly equal to those in the
|
|||
|
|
|||
|
question, an d multiplying them in your head. Thus in this
|
|||
|
|
|||
|
case, instead of
|
|||
|
|
|||
|
79 8 9
|
|||
|
|
|||
|
take
|
|||
|
|
|||
|
80 ,
|
|||
|
|
|||
|
and instead of
|
|||
|
|
|||
|
121 2
|
|||
|
|
|||
|
take
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
20 .
|
|||
|
|
|||
|
12
|
|||
|
|
|||
|
A RITHME’I‘IC
|
|||
|
|
|||
|
The product
|
|||
|
|
|||
|
of 80 and
|
|||
|
|
|||
|
120
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
9 600 .
|
|||
|
|
|||
|
Thi s is suffi ciently
|
|||
|
|
|||
|
near to 9682 668 to show that the decimal point has been
|
|||
|
|
|||
|
put in correctly. If you had made a mistake and put
|
|||
|
|
|||
|
down
|
|||
|
|
|||
|
9 68 -2668 ,
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
woul d
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
found
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
out.
|
|||
|
|
|||
|
So much for multiplication of decimals. Y ou will
|
|||
|
|
|||
|
have to do plenty of it in the course of your navigational
|
|||
|
|
|||
|
studies, so I will pass on to
|
|||
|
|
|||
|
Division of Decimals
|
|||
|
|
|||
|
D ivision of decimal fractions is managed exactly in
|
|||
|
|
|||
|
the same way as division in ordinary arithmetic. As in
|
|||
|
|
|||
|
mul tiplication, the only di fficulty consi sts in plac ing the
|
|||
|
|
|||
|
decimal point correctly in the quotient. Y ou must place
|
|||
|
|
|||
|
in the quotient that num ber of decimal places which,
|
|||
|
|
|||
|
added
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n um b e r
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
decimal
|
|||
|
|
|||
|
places
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
d i i z' s o r ,
|
|||
|
|
|||
|
equals the number of decimal plac es in the d ir id end . It
|
|||
|
|
|||
|
is really the same rul e as in multiplication, because the
|
|||
|
|
|||
|
product of the divisor and quotient is, of course, the
|
|||
|
|
|||
|
divi dend. Here are a few examples
|
|||
|
|
|||
|
(1 )
|
|||
|
|
|||
|
Divide
|
|||
|
|
|||
|
461 43
|
|||
|
|
|||
|
16
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
31 2
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
312 2 31 22
|
|||
|
1 4923 1 2488
|
|||
|
2435 1 2 1 854
|
|||
|
|
|||
|
1 478
|
|||
|
|
|||
|
Here we have three decimal places in the divi dend, and
|
|||
|
|
|||
|
onl y one in the divisor. It i s to nec es s aiw add two
|
|||
|
|
|||
|
decim al places t o those in the divi sor to m ake them equal
|
|||
|
|
|||
|
to t he number of decimal places in the dividend ; you
|
|||
|
|
|||
|
con s equen t ly
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
t wo
|
|||
|
|
|||
|
in t he
|
|||
|
|
|||
|
quotient ,
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
here it
|
|||
|
|
|||
|
is ,
|
|||
|
|
|||
|
1 4 78 .
|
|||
|
|
|||
|
A RITI—IMETIC
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
As a check on the result, notice that, roughly speaking,
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
are
|
|||
|
|
|||
|
di vi d i ng
|
|||
|
|
|||
|
4600
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
300 ,
|
|||
|
|
|||
|
so that
|
|||
|
|
|||
|
14
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
15
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
evidently
|
|||
|
|
|||
|
pretty near the answer.
|
|||
|
|
|||
|
(2)
|
|||
|
|
|||
|
Divide
|
|||
|
|
|||
|
‘ 702
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 09 .
|
|||
|
|
|||
|
-009 -702 78
|
|||
|
|
|||
|
Now you have three decimal places in the dividend,
|
|||
|
|
|||
|
and three in the divisor, therefore you want none in the
|
|||
|
|
|||
|
quotient,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
an swer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
78 .
|
|||
|
|
|||
|
(3) Divide ‘63675 by 849
|
|||
|
|
|||
|
84-9 6 3675 (75
|
|||
|
5 943
|
|||
|
42 45 4245
|
|||
|
|
|||
|
Here are five decimal places in the dividend, and only
|
|||
|
|
|||
|
one in the divisor, therefore there must be four in the
|
|||
|
|
|||
|
quotient . But we have only two figures, and to make up
|
|||
|
|
|||
|
the four necessary places two zero s must be put to the
|
|||
|
|
|||
|
left of them, and then the decimal point. So the answer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 075 .
|
|||
|
|
|||
|
As in the product of a multiplication sum, so
|
|||
|
|
|||
|
in the quotient of a division m su , zeros to make up the
|
|||
|
|
|||
|
number of decimal places required must be placed to the
|
|||
|
|
|||
|
left of the left- hand digit.
|
|||
|
|
|||
|
Check.— If in doubt about the position of the decimal
|
|||
|
|
|||
|
point,
|
|||
|
|
|||
|
multiply
|
|||
|
|
|||
|
84
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 075 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
result
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
3675
|
|||
|
|
|||
|
shows
|
|||
|
|
|||
|
the decimal point is correctly placed.
|
|||
|
|
|||
|
(4)
|
|||
|
|
|||
|
Divide
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
2 50 .
|
|||
|
|
|||
|
250 5-00 2
|
|||
|
|
|||
|
In
|
|||
|
|
|||
|
this
|
|||
|
|
|||
|
case, in order
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
make
|
|||
|
|
|||
|
five
|
|||
|
|
|||
|
divisible
|
|||
|
|
|||
|
by 250 ,
|
|||
|
|
|||
|
you must add two zeros after the decimal point which ,
|
|||
|
|
|||
|
makes no difference to the value of the dividend. Then
|
|||
|
|
|||
|
you have two decimal places in the dividend, and none in
|
|||
|
|
|||
|
the divisor
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
quotient ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
here
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
are,
|
|||
|
|
|||
|
02 .
|
|||
|
|
|||
|
14
|
|||
|
|
|||
|
ARITHMETIC
|
|||
|
|
|||
|
In all cases where the divisor will not go into the
|
|||
|
|
|||
|
divi den d, add zeros to the dividend, placing them to the
|
|||
|
|
|||
|
right of the decimal point if there is no fraction, or to the
|
|||
|
|
|||
|
right of the fraction if there is one. These zeros make
|
|||
|
|
|||
|
no difference to the value of the divi dend, but they count as decimal places when placing the decimal point in the
|
|||
|
|
|||
|
quo ti en t .
|
|||
|
|
|||
|
(5) Divide
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
50000 .
|
|||
|
|
|||
|
5 000 0
|
|||
|
|
|||
|
1 -70000 34 1 50000
|
|||
|
200000
|
|||
|
2 00000
|
|||
|
|
|||
|
Here there are five decimal places in the top line of
|
|||
|
|
|||
|
the dividend, and we borrowed another in the third line, makin g six 111 all . But there are none in the divisor, so
|
|||
|
|
|||
|
we must have six decimal places in the quotient, and four
|
|||
|
|
|||
|
ze ro s
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
placed
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
left
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
34 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
answer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 00034 .
|
|||
|
|
|||
|
(6) Div ide
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 00001 .
|
|||
|
|
|||
|
No decimal point in the dividend and six in the
|
|||
|
|
|||
|
divisor. Add 6 zeros to the right of the 1 in the dividend ,
|
|||
|
|
|||
|
an d divide out .
|
|||
|
|
|||
|
0 00001 1 0 00000 1 000000
|
|||
|
|
|||
|
Red uction of Decimals
|
|||
|
|
|||
|
You must understan d the reduction of decimal frac
|
|||
|
|
|||
|
tions The subj ect naturally divides itself into tw o .
|
|||
|
|
|||
|
branches, the one dealing with reducing ordinary quantities into decimals, and the other with reducing decimals into
|
|||
|
|
|||
|
ordinary quantities. Let us first deal with turning ordinary quantities into decimals.
|
|||
|
|
|||
|
S upp o s e
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
were
|
|||
|
|
|||
|
asked to turn
|
|||
|
|
|||
|
1 0l .
|
|||
|
|
|||
|
1 2s .
|
|||
|
|
|||
|
6d .
|
|||
|
|
|||
|
into
|
|||
|
|
|||
|
pounds and decimals of a pound. The first step would
|
|||
|
|
|||
|
be to find what decimal of a shilling Sixpence is, and the
|
|||
|
|
|||
|
A RITHMETIO
|
|||
|
|
|||
|
15
|
|||
|
|
|||
|
second to find what decimal of a pound the shillings and
|
|||
|
|
|||
|
decimal of a shilling i s. In expressing a penny as the
|
|||
|
|
|||
|
decimal of a shilling, consider the penny as a vulgar
|
|||
|
|
|||
|
fraction of a shilling
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
penny
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 T?
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
shilling
|
|||
|
|
|||
|
then
|
|||
|
|
|||
|
turn the vulgar fraction into a decimal by dividing the
|
|||
|
|
|||
|
numerator by the denominator as has been already ex
|
|||
|
|
|||
|
pl ain e d .
|
|||
|
|
|||
|
First then turn the 6 pence into decimals of a shilling
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
di v i d i n g
|
|||
|
|
|||
|
them
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
12 ,
|
|||
|
|
|||
|
thus
|
|||
|
|
|||
|
:
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
Sixp ence is 5' of a shilling, and we now
|
|||
|
|
|||
|
pounds and 1 2 5 shillings. Next turn the
|
|||
|
|
|||
|
into
|
|||
|
|
|||
|
decimals
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
p oun d
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
dividing
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
20 .
|
|||
|
|
|||
|
20 1 2-50 -625 1 20
|
|||
|
|
|||
|
50 40
|
|||
|
|
|||
|
1 00 1 00
|
|||
|
|
|||
|
Here we have three decimal places in the dividend, having borrowed a zero in addition to the two decimal
|
|||
|
|
|||
|
places in the first line and, as there are no decimal places
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
divisor,
|
|||
|
|
|||
|
we must
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
three in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
quo ti en t ,
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
25 .
|
|||
|
|
|||
|
1 2 5 of a shilling is therefore 6 25 of a
|
|||
|
|
|||
|
pound, and tacking this on to the pounds, we find that
|
|||
|
|
|||
|
1 02 1 2s
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
Now suppose you want to reverse the process and ,
|
|||
|
turni ng decimals into ordinary quantities, require to find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
value
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 0'625l .
|
|||
|
|
|||
|
You must first turn the decimals of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
p oun d
|
|||
|
|
|||
|
into
|
|||
|
|
|||
|
shillings
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
mul tip l yin g
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
20 ,
|
|||
|
|
|||
|
thus
|
|||
|
|
|||
|
0 25 20
|
|||
|
|
|||
|
1 2 500
|
|||
|
|
|||
|
Therefore 6 25 of a pound x
|
|||
|
|
|||
|
shillings .
|
|||
|
|
|||
|
Then
|
|||
|
|
|||
|
16
|
|||
|
|
|||
|
ARI’I'H METIC
|
|||
|
|
|||
|
turn the decimals of a shilling into pence by multiplying
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
12 ,
|
|||
|
|
|||
|
thus
|
|||
|
|
|||
|
T herefore, 5' of a shilling x
|
|||
|
|
|||
|
p ence. And you fin d
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
1 2s.
|
|||
|
|
|||
|
6d .
|
|||
|
|
|||
|
It i s not improbable that you will spend more time at
|
|||
|
|
|||
|
sea in dealing with are and time than with money, unless you happen to hit upon a treasure island, so I append a few examples here.
|
|||
|
|
|||
|
(1 ) Turn 37° 48' 00” into degrees and decimals of a
|
|||
|
|
|||
|
degr ee.
|
|||
|
|
|||
|
In one degree there are
|
|||
|
|
|||
|
Therefore, divide 48’ by
|
|||
|
|
|||
|
60 to brin g it into decimals of a degree. 48’ -1
|
|||
|
|
|||
|
of a
|
|||
|
|
|||
|
degree. The answer, t herefore, is 378 ° T o reverse the above an d express 378 ° in degrees and
|
|||
|
|
|||
|
minutes . To turn 8' of a degree into minutes you must
|
|||
|
|
|||
|
mul tiply it
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
60 .
|
|||
|
|
|||
|
8°
|
|||
|
'
|
|||
|
|
|||
|
therefore, 37 8°
|
|||
|
|
|||
|
3 7°
|
|||
|
|
|||
|
(2) Fin d what decimal fraction of a day 1 4 hour s
|
|||
|
|
|||
|
1 8 minutes i s .
|
|||
|
|
|||
|
T here are 60 minutes in an hour, therefore, to
|
|||
|
|
|||
|
t ur n
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
min ut e s
|
|||
|
|
|||
|
in t o
|
|||
|
|
|||
|
d ec im al s
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
an
|
|||
|
|
|||
|
h our ,
|
|||
|
|
|||
|
divi d e
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
60 .
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
Therefore 1 8 minute s = 3' of an hour.
|
|||
|
|
|||
|
\' ow t o fin d what decimal fraction of a day 1 4 3 hours
|
|||
|
|
|||
|
i s . There are 24 hours in a day, therefore divide 1 4 3 by
|
|||
|
|
|||
|
24 1 4-3 5 9 58 1 20
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
ARITHMETIC
|
|||
|
|
|||
|
Thus, suppose you want to know what decimal fraction of an hour ten minutes i s. You proceed thus
|
|||
|
|
|||
|
6 1 0000
|
|||
|
|
|||
|
-1 666 & c. & c.
|
|||
|
|
|||
|
i s the correct an swer. X—Vell, 1' 7 i s near enough for you .
|
|||
|
Remember always to add 1 to the last digit if the next
|
|||
|
|
|||
|
one is
|
|||
|
|
|||
|
5 or more
|
|||
|
|
|||
|
than
|
|||
|
|
|||
|
5 .
|
|||
|
|
|||
|
Thus
|
|||
|
|
|||
|
1 66
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
called
|
|||
|
|
|||
|
'1 7 ,
|
|||
|
|
|||
|
b e c aus e
|
|||
|
|
|||
|
'1 7
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
nearer
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
truth
|
|||
|
|
|||
|
than
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
6 .
|
|||
|
|
|||
|
It i s generally easy to place the decimal point, even in division , by using a little common sense. If the number
|
|||
|
|
|||
|
to the left of the decimal point in the divisor is less than
|
|||
|
|
|||
|
the number to the left of the decimal point in the dividend , there must be at least one whole num ber in the quotient .
|
|||
|
|
|||
|
If ,
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
c ont rary ,
|
|||
|
|
|||
|
the whole num ber
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the dividend
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
less than that in the divi sor, the decimal point must c ome
|
|||
|
|
|||
|
fir st in the quotient.
|
|||
|
|
|||
|
I V hen the decimal place has been put in according to
|
|||
|
|
|||
|
the rule, look at the result and see that it i s roughl y ab out the ri ght amount .
|
|||
|
|
|||
|
CHAPT ER II
|
|||
|
LOGARITHMS
|
|||
|
|
|||
|
L O GARIT HMS
|
|||
|
|
|||
|
are
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
invention
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
most
|
|||
|
|
|||
|
talented
|
|||
|
|
|||
|
man ,
|
|||
|
|
|||
|
John Napi er, of Merchistoun. L ogarithms, or, as they
|
|||
|
|
|||
|
are called for convenience sake, Logs , enable us to sub stitute addition for multipli cation , and subtraction for division — an immense boon to the mariner. If the
|
|||
|
|
|||
|
wretched sailor had to multiply and divide the long rows
|
|||
|
|
|||
|
of figures and the numerous angles which abound in great
|
|||
|
|
|||
|
profusion in hi s calculations, he would not be done work ing one set of sights before it was time to begin working
|
|||
|
|
|||
|
another set, and every sea- going ship would have to be fitted with a private lunatic asylum. But with the help
|
|||
|
|
|||
|
of Logs , Navigation becomes easy, for addition and sub traction are simple operations, which do not consume much time, or cause any great amount of chafe of the brain.
|
|||
|
|
|||
|
Every natural ’ number, that is to say every number
|
|||
|
|
|||
|
in the natural ordinary sense of the word, has a Log. 5 and
|
|||
|
|
|||
|
p er contra every Log. has a natural number. If you have to multiply two numbers or two dozen numbers together, or i f you have to divide two numbers or two dozen numbers, all you have to do is to find the appropriate Logs , and add or subtract them the result will be the Log. of a natural
|
|||
|
|
|||
|
number, which i s the result of the multiplication or divi sion of the numbers . W hat you have got to learn
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
is :
|
|||
|
|
|||
|
1 st ,
|
|||
|
|
|||
|
how
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
the Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
any natural
|
|||
|
|
|||
|
9
|
|||
|
-l
|
|||
|
|
|||
|
20
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
number ;
|
|||
|
|
|||
|
2 md ,
|
|||
|
|
|||
|
how to
|
|||
|
|
|||
|
fin d the natur al
|
|||
|
|
|||
|
number of any
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
3rd ,
|
|||
|
|
|||
|
how
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
add
|
|||
|
|
|||
|
Logs. together ;
|
|||
|
|
|||
|
4th ,
|
|||
|
|
|||
|
how
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
subtract Logs. from each other.
|
|||
|
|
|||
|
A Log. generally consists of two parts, a whole num
|
|||
|
|
|||
|
ber containing one or more digits— this is called the Cha
|
|||
|
|
|||
|
racteristic or In dex — and a number of digits separated
|
|||
|
|
|||
|
from the characteristic by a decimal point thi s decimal part of the Log. is called the Mantissa.’ Though
|
|||
|
|
|||
|
‘ Characteri stic ’ is the proper term to employ, Index ’ is more generally used, and for the future I shall speak of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n d e I
|
|||
|
|
|||
|
’
|
|||
|
x
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
For in stance, take any Log , say 2 9 44483
|
|||
|
|
|||
|
2 is the In dex , an d 944483 i s the Mantissa.
|
|||
|
|
|||
|
Natural numbers and L ogs. are tabulated in Table
|
|||
|
|
|||
|
X X IV .
|
|||
|
|
|||
|
headed
|
|||
|
|
|||
|
‘ Logarithms
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Numbers. ’
|
|||
|
|
|||
|
In the left
|
|||
|
|
|||
|
hand column, headed
|
|||
|
|
|||
|
you will find natural numbers
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
page
|
|||
|
|
|||
|
1 37 ,
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
999
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
page
|
|||
|
|
|||
|
1 51 .
|
|||
|
|
|||
|
Zeros in
|
|||
|
|
|||
|
n atural numbers make no difference to the Mantissa of a
|
|||
|
|
|||
|
Log. For instance, the Mantissa or decimal part of the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
10 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 00 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 000 ,
|
|||
|
|
|||
|
and so on,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
same ;
|
|||
|
|
|||
|
the Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
15 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 50 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 500 ,
|
|||
|
|
|||
|
&c. is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
same ;
|
|||
|
|
|||
|
the Log.
|
|||
|
|
|||
|
o f 1 72 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 720 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 7200 ,
|
|||
|
|
|||
|
&c.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
same.
|
|||
|
|
|||
|
T herefore
|
|||
|
|
|||
|
you need take no notice of that portion of ‘ Logarithms
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
Numbers ’
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
contained
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
page
|
|||
|
|
|||
|
1 36 .
|
|||
|
|
|||
|
It is
|
|||
|
|
|||
|
useless and confusing, so leave it alone. To fi nd f the L og . o a na tura l n mnbmz— Remember
|
|||
|
that the T able gives you the Ma ntissa only, and that having first got that you must afterwards find the Index.
|
|||
|
|
|||
|
S up p o s e
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
require
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
single
|
|||
|
|
|||
|
n umb er ,
|
|||
|
|
|||
|
say
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
Look for 200 in the left- hand column headed
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
to the right of it, in column headed
|
|||
|
|
|||
|
you will find
|
|||
|
|
|||
|
301 030
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
Suppose you require
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
number consisting
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
fi gur e s ,
|
|||
|
|
|||
|
say
|
|||
|
|
|||
|
23 .
|
|||
|
|
|||
|
Look
|
|||
|
|
|||
|
for
|
|||
|
|
|||
|
2 30
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
‘ No . ’ column ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
column
|
|||
|
|
|||
|
0 ‘
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
will fin d 361 728
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the Mantissa of
|
|||
|
|
|||
|
23 .
|
|||
|
|
|||
|
S up p os e
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
21
|
|||
|
|
|||
|
you want the Log. of a number containing three figures,
|
|||
|
|
|||
|
s ay 2 34.
|
|||
|
|
|||
|
Look
|
|||
|
|
|||
|
for 2 34 in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
’
|
|||
|
o.
|
|||
|
|
|||
|
column,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
0 ‘
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
column you
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
36921 6
|
|||
|
|
|||
|
that is the Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
234 .
|
|||
|
|
|||
|
Suppose you want the Log. of a number contain
|
|||
|
|
|||
|
ing
|
|||
|
|
|||
|
four
|
|||
|
|
|||
|
figures,
|
|||
|
|
|||
|
say
|
|||
|
|
|||
|
2 341 .
|
|||
|
|
|||
|
Look
|
|||
|
|
|||
|
for
|
|||
|
|
|||
|
2 34
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
’
|
|||
|
o.
|
|||
|
|
|||
|
column, and in a line with it, in the column headed
|
|||
|
|
|||
|
you will fin d 369401 ;
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2341 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
you wanted the Log. of 2342 you would find the Manti ssa
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
2 ‘
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
c o l umn ,
|
|||
|
|
|||
|
by following
|
|||
|
|
|||
|
along
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
234
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
’
|
|||
|
o.
|
|||
|
|
|||
|
column .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
wanted
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
2 343 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Mantissa will be in the 3 ’ column. If you wanted the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2344 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
column, and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
2349 .
|
|||
|
|
|||
|
Now to find the Index.
|
|||
|
|
|||
|
The Index is always one less than the number of
|
|||
|
|
|||
|
figures in the natural number. If the natural number
|
|||
|
|
|||
|
consists of one figure the Index will be zero (0) if the
|
|||
|
|
|||
|
number has two figures the Index will be 1 if the num
|
|||
|
|
|||
|
ber has
|
|||
|
|
|||
|
three
|
|||
|
|
|||
|
figures
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
In d ex
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on.
|
|||
|
|
|||
|
Consequently, in the case of the natural number 2 which
|
|||
|
|
|||
|
I have used above, as 2 consi sts of one figure the Index
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
301 030 ,
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 301 030 .
|
|||
|
|
|||
|
It i s useless expressing the zero, an d you
|
|||
|
|
|||
|
would
|
|||
|
|
|||
|
wri t e
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og .
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
3 01 030 .
|
|||
|
|
|||
|
23
|
|||
|
|
|||
|
contains
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
fi gu re s ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
In dex
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Man ti s s a
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
23
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
361 72 8 ,
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
the Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
23 is
|
|||
|
|
|||
|
1 361 728 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
of 2 34 i s
|
|||
|
|
|||
|
36921 6 ,
|
|||
|
|
|||
|
and the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
234
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
36921 6 ,
|
|||
|
|
|||
|
because
|
|||
|
|
|||
|
234
|
|||
|
|
|||
|
c ont ain s
|
|||
|
|
|||
|
thr e e
|
|||
|
|
|||
|
figures,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
consequently
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
The Mantissa of 2341 is
|
|||
|
|
|||
|
369 401 ,
|
|||
|
|
|||
|
and the
|
|||
|
|
|||
|
Log .
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2 341
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3 369 401 ,
|
|||
|
|
|||
|
because
|
|||
|
|
|||
|
2341
|
|||
|
|
|||
|
~ contains four figures. To fi nd f the na tura l number s o L ogs . -L ook out the
|
|||
|
|
|||
|
Mantissa of the Log. in the table in the columns
|
|||
|
|
|||
|
&c. &c., and, wherever i t may be, you will find
|
|||
|
|
|||
|
its
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number in the
|
|||
|
|
|||
|
same line with it
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
’
|
|||
|
o.
|
|||
|
|
|||
|
LOGA RITIl MS
|
|||
|
|
|||
|
column . The value of the Ind er will show you how many figures there are in the natural number. You
|
|||
|
|
|||
|
know that the Index of a Log. i s always one less than the natural number of the L g o ., an d p er contra. the natural number must always be one more than the Index
|
|||
|
|
|||
|
of its Log.
|
|||
|
|
|||
|
C o n s e qu e n t l y,
|
|||
|
|
|||
|
if
|
|||
|
|
|||
|
the Index
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number will consist of one figure .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural number will contain two figure s. If the Index i s
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n atur al
|
|||
|
|
|||
|
number will contain
|
|||
|
|
|||
|
three figures,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on and so on. If the natural number belonging to the
|
|||
|
|
|||
|
Mantissa of a L og. does not contain one figure more than
|
|||
|
|
|||
|
the Index of the Log. you must add zeros till it does. If
|
|||
|
|
|||
|
the Mantissa of a Log. gives you more figures in the
|
|||
|
|
|||
|
natural number than there ought to be according to the
|
|||
|
|
|||
|
Index of the L og , then the n atural number contains a
|
|||
|
|
|||
|
decimal fraction, and you must put a dot after the proper number of figures as determined by the Index. T ake any
|
|||
|
|
|||
|
Log , say 6 9 89 70 ; yo u want to know its n atural number.
|
|||
|
|
|||
|
Look for 698970 in the T able in one of the c olumns
|
|||
|
|
|||
|
headed from 0 ’ to
|
|||
|
|
|||
|
Y ou wi ll fin d 6989 70 in column
|
|||
|
|
|||
|
O
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
p.
|
|||
|
|
|||
|
1 43 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
alongside
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
l eft
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
No
|
|||
|
|
|||
|
c o l um n
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
see
|
|||
|
|
|||
|
5 00 .
|
|||
|
|
|||
|
Your Log.
|
|||
|
|
|||
|
was
|
|||
|
|
|||
|
6 9 89 70 .
|
|||
|
|
|||
|
It had zero
|
|||
|
|
|||
|
in the In dex, therefore its natural number must consi st
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
fi gur e
|
|||
|
|
|||
|
:
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
50 0 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
5 .
|
|||
|
|
|||
|
Suppose
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
to have
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
1 6 9 89 70 .
|
|||
|
|
|||
|
1 in the
|
|||
|
|
|||
|
Index shows there must be two figures in the natur al
|
|||
|
|
|||
|
n um b e r ,
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natur al
|
|||
|
|
|||
|
number is
|
|||
|
|
|||
|
500 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
50 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the L og. had been 2 6 9 89 70 the natural num ber woul d be
|
|||
|
|
|||
|
500 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og .
|
|||
|
|
|||
|
had
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
36 9 89 70 ,
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
In d e x
|
|||
|
|
|||
|
requi res four figures in t he num ber, but there are only
|
|||
|
|
|||
|
thr ee
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
500 .
|
|||
|
|
|||
|
Y ou
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
add
|
|||
|
|
|||
|
e r o Z “
|
|||
|
3.
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
and make
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
5000 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the natural
|
|||
|
|
|||
|
number of
|
|||
|
|
|||
|
36 9 89 70 .
|
|||
|
|
|||
|
An d
|
|||
|
|
|||
|
so on.
|
|||
|
|
|||
|
Take
|
|||
|
|
|||
|
another
|
|||
|
|
|||
|
Log ,
|
|||
|
|
|||
|
say
|
|||
|
|
|||
|
2 6 62663 .
|
|||
|
|
|||
|
Look for the
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
23
|
|||
|
|
|||
|
Mantissa 662663 in the Table— you will find it in column
|
|||
|
|
|||
|
p 9
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
1 42
|
|||
|
|
|||
|
—and alongside to
|
|||
|
|
|||
|
the left, in the
|
|||
|
|
|||
|
ol mn N ’ o. c
|
|||
|
|
|||
|
u
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
you will
|
|||
|
|
|||
|
see
|
|||
|
|
|||
|
459 .
|
|||
|
|
|||
|
The Mantissa being in the 9 column
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
course
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
added to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
numb er
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
o.
|
|||
|
|
|||
|
column, so 4599 i s the natural number. The Index of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
there
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
three figures in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural number ; therefore cut off three figures by a
|
|||
|
|
|||
|
decimal
|
|||
|
|
|||
|
point,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
n um b e r
|
|||
|
|
|||
|
459 9 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
had
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
w o ul d
|
|||
|
|
|||
|
have been
|
|||
|
|
|||
|
4599 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the Index
|
|||
|
|
|||
|
had
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n atura l
|
|||
|
|
|||
|
number would
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
459 9 .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
had
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
0 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
u number wo
|
|||
|
|
|||
|
ld have been
|
|||
|
|
|||
|
4 599 .
|
|||
|
|
|||
|
Now ,
|
|||
|
|
|||
|
having
|
|||
|
|
|||
|
seen
|
|||
|
|
|||
|
how
|
|||
|
|
|||
|
to find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
a number
|
|||
|
|
|||
|
and the number of a Log , let us consider multiplication
|
|||
|
|
|||
|
and divi sion . Multip lica tion a nd D ivision by L ogs — T o multiply
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
n
|
|||
|
|
|||
|
um
|
|||
|
|
|||
|
b
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
r
|
|||
|
|
|||
|
s ,
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
each
|
|||
|
|
|||
|
num b er ,
|
|||
|
|
|||
|
add them
|
|||
|
|
|||
|
together and find the natural number of the resul tant
|
|||
|
|
|||
|
Log. To divide one number by another. T ake the Log.
|
|||
|
|
|||
|
of the Divisor from the Log. of the Dividend, and find
|
|||
|
|
|||
|
the natural numb er of the resulting Log. For instance,
|
|||
|
|
|||
|
4x
|
|||
|
|
|||
|
by ordinary multiplication 4
|
|||
|
|
|||
|
by ordinary
|
|||
|
|
|||
|
division ; now Work the same sum by L ogs . The L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
6 02060 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of 2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3 01 030 .
|
|||
|
|
|||
|
Add them
|
|||
|
|
|||
|
together.
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
n a t ur a l
|
|||
|
|
|||
|
numb e r
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
90309 0
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
8 00 .
|
|||
|
|
|||
|
Zero in
|
|||
|
|
|||
|
Index gives one figure in the number, therefore
|
|||
|
|
|||
|
numb e r
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
80 0 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
8 .
|
|||
|
|
|||
|
Subtract
|
|||
|
|
|||
|
6 01 030
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
6 02060 .
|
|||
|
|
|||
|
' 602 0 60
|
|||
|
‘301 030
|
|||
|
‘301 030
|
|||
|
|
|||
|
24
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
The natural number
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
301 030
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
200 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the In dex
|
|||
|
|
|||
|
being
|
|||
|
|
|||
|
z er o ,
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
20 0 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
Suppose you wish to multiply
|
|||
|
|
|||
|
8197 by
|
|||
|
|
|||
|
5 32 9 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
also
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
divide
|
|||
|
|
|||
|
8197 by
|
|||
|
|
|||
|
5 329 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
8197is
|
|||
|
|
|||
|
91 3655 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the Index
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
because
|
|||
|
|
|||
|
there
|
|||
|
|
|||
|
are
|
|||
|
|
|||
|
four figures
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number,
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
91 3655 .
|
|||
|
|
|||
|
The Mantissa of
|
|||
|
|
|||
|
5329
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
72 6 646 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
72 6 6 46 ,
|
|||
|
|
|||
|
because
|
|||
|
|
|||
|
there
|
|||
|
|
|||
|
are four figures in the number.
|
|||
|
|
|||
|
3 91 3655 3 726646
|
|||
|
76 40301
|
|||
|
|
|||
|
You will not find the exact number 640301 in the Tables ,
|
|||
|
|
|||
|
but you will find something near enough to it, namely,
|
|||
|
|
|||
|
640283 in the
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
column
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
p.
|
|||
|
|
|||
|
1 42 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
give
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
436 in the
|
|||
|
|
|||
|
N’ o.
|
|||
|
|
|||
|
c o lumn
|
|||
|
|
|||
|
the n atural number, therefore, is
|
|||
|
|
|||
|
4368 .
|
|||
|
|
|||
|
7 in the Index requires eight figures in the natural
|
|||
|
|
|||
|
number, but you have only four, and you must therefore
|
|||
|
|
|||
|
add four zeros
|
|||
|
|
|||
|
and the natural number
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
436 8 0000 ,
|
|||
|
|
|||
|
Therefore 81 9 7 x 5329 43680000 nearly. Now for the
|
|||
|
|
|||
|
division .
|
|||
|
|
|||
|
39 1 3655 3 726646
|
|||
|
|
|||
|
0 1 87009
|
|||
|
|
|||
|
Y ou will not
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
1 87009
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Tables,
|
|||
|
|
|||
|
but
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
will .
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
something
|
|||
|
|
|||
|
near
|
|||
|
|
|||
|
enough,
|
|||
|
|
|||
|
namely,
|
|||
|
|
|||
|
1 869 56
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
8 ‘
|
|||
|
|
|||
|
’
|
|||
|
|
|||
|
c olumn
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
page
|
|||
|
|
|||
|
1 37 ,
|
|||
|
|
|||
|
with
|
|||
|
|
|||
|
the number
|
|||
|
|
|||
|
1 53
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N ‘
|
|||
|
|
|||
|
’
|
|||
|
o.
|
|||
|
|
|||
|
c o lumn .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number, therefore,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 538 .
|
|||
|
|
|||
|
Z ero
|
|||
|
|
|||
|
in the Index gives one figure in the number, therefore the
|
|||
|
|
|||
|
n atur a l
|
|||
|
|
|||
|
n u mb e r
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
15
|
|||
|
|
|||
|
38 .
|
|||
|
|
|||
|
Therefore 8197
|
|||
|
|
|||
|
5329
|
|||
|
|
|||
|
1 5 38 ,
|
|||
|
|
|||
|
or 14 very nearly.
|
|||
|
|
|||
|
Whenever you can check the answers easily as far as
|
|||
|
|
|||
|
number of figures or position of the decimal point goes, do
|
|||
|
|
|||
|
so . For example, as in the last case you were multiplying
|
|||
|
|
|||
|
8000 by 5000 roughly speaking, the answer would be
|
|||
|
|
|||
|
40 000000 .
|
|||
|
|
|||
|
Thi s agrees with 43680000 sufficiently to
|
|||
|
|
|||
|
26
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
to the Log. of the first four numbers already found, and
|
|||
|
|
|||
|
the result i s the Log. required . Remember tha t a zero
|
|||
|
|
|||
|
fi counts a s a
|
|||
|
|
|||
|
g ur e.
|
|||
|
|
|||
|
F or instance, suppose you want the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
1 23456 .
|
|||
|
|
|||
|
Tick
|
|||
|
|
|||
|
off
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
first
|
|||
|
|
|||
|
four
|
|||
|
|
|||
|
figures
|
|||
|
|
|||
|
thus ,
|
|||
|
|
|||
|
and find the Log , or, to be accurate, the Mantissa
|
|||
|
|
|||
|
of the Log. of
|
|||
|
|
|||
|
1 2 34 .
|
|||
|
|
|||
|
It
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
09 1 31 5 .
|
|||
|
|
|||
|
In the same line in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
D i ‘
|
|||
|
|
|||
|
ff ’
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
column
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
352 .
|
|||
|
|
|||
|
Multiply 352 by
|
|||
|
|
|||
|
56 (the remaining figures in your number).
|
|||
|
|
|||
|
35 2 56
|
|||
|
|
|||
|
2112 1 760
|
|||
|
|
|||
|
1 9 71 2
|
|||
|
|
|||
|
From the product 1 971 2 cut off from the right as many
|
|||
|
|
|||
|
fi gur e s
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
mul tip lier
|
|||
|
|
|||
|
contained,
|
|||
|
|
|||
|
n am e l y
|
|||
|
|
|||
|
two .
|
|||
|
|
|||
|
That
|
|||
|
|
|||
|
leaves 1 9 7 to be added to the Log. of the first four figures.
|
|||
|
|
|||
|
09 1 3 1 5 1 97
|
|||
|
|
|||
|
0915 1 2
|
|||
|
|
|||
|
091 51 2 is the Log. required. The reason for this process is very simple. The
|
|||
|
numbers in the column Diff. ’ are the differences between the Logs. of two con secutive numbers . The di fference
|
|||
|
|
|||
|
between the two numbers is 1 00 the difference between
|
|||
|
|
|||
|
the number whose Log. you have taken out and the
|
|||
|
|
|||
|
number whose Log.
|
|||
|
|
|||
|
you require is
|
|||
|
|
|||
|
56 .
|
|||
|
|
|||
|
The differe nc e in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
‘ D iif ’ .
|
|||
|
|
|||
|
column
|
|||
|
|
|||
|
between the Mantissa
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
have taken
|
|||
|
|
|||
|
out
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n ex t
|
|||
|
|
|||
|
larger
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
352 .
|
|||
|
|
|||
|
It i s a simple sum in
|
|||
|
|
|||
|
proportion, as 1 00
|
|||
|
|
|||
|
56
|
|||
|
|
|||
|
352
|
|||
|
|
|||
|
m .
|
|||
|
|
|||
|
Now for the Index. You must count all the figures
|
|||
|
|
|||
|
i n your number. T here are six figures, therefore the
|
|||
|
|
|||
|
In d ex
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
5 .
|
|||
|
|
|||
|
Therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 2 3456
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
50 91512 .
|
|||
|
|
|||
|
In all questions of this kind it is advisable after
|
|||
|
|
|||
|
the answer has been obtained to check it by seeing that
|
|||
|
|
|||
|
the Log. found lies between the Log. of the right two numbers . The Log. of 1 23456 should lie between Log.
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
27
|
|||
|
|
|||
|
1 234 and Log. 1235 and since 091 51 2 is between 091 31 5 and 091 667 it is evident that no mistake has been
|
|||
|
|
|||
|
made. fi m T o nd the na tur a l nu ber cor resp on d ing to a Log . to
|
|||
|
f fi more tha n our gures — Now supp o se you are o ccupi ed
|
|||
|
|
|||
|
in the reverse process, and having the Log. 50 9 1 51 2 you
|
|||
|
|
|||
|
want to fin d its natural number. . Look for the Log. in
|
|||
|
|
|||
|
the T ables. Y ou won ’t find 091 51 2 anywhere. In such
|
|||
|
|
|||
|
a c ase you must take out the natur al number to four
|
|||
|
|
|||
|
figures, for the nearest less L og , and write it down . Then find the difference between this nearest less L og.
|
|||
|
|
|||
|
and your Log. divide thi s difference by the figure in the column, adding as many zeros to the difference as
|
|||
|
may be necessary“, and add the quotient to the first four fi gures of the natural number already taken out and
|
|||
|
|
|||
|
written down.
|
|||
|
|
|||
|
You want
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n atural
|
|||
|
|
|||
|
numb er
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
50
|
|||
|
|
|||
|
91 51 2 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
nearest
|
|||
|
|
|||
|
less
|
|||
|
|
|||
|
Mantissa in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Table
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 9 1 31 5 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
which the natural number is 1234 ; write that down .
|
|||
|
|
|||
|
Next find the difference between 09 1 31 5 (the nearest Log .)
|
|||
|
|
|||
|
an d 09 1 51 2 (your L og ).
|
|||
|
09 1 5 12
|
|||
|
091 315
|
|||
|
|
|||
|
1 97
|
|||
|
|
|||
|
T he
|
|||
|
|
|||
|
difference
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
197 .
|
|||
|
|
|||
|
In
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
line
|
|||
|
|
|||
|
with
|
|||
|
|
|||
|
091 31 5 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Di f ‘
|
|||
|
|
|||
|
f’
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
c o lum n ,
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
Will
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
352 .
|
|||
|
|
|||
|
Y ou have got to
|
|||
|
|
|||
|
divide
|
|||
|
|
|||
|
197
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
352 ,
|
|||
|
|
|||
|
adding
|
|||
|
|
|||
|
zeros
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
197 .
|
|||
|
|
|||
|
l 352 1 9 70 y 56 near
|
|||
|
|
|||
|
1 760
|
|||
|
|
|||
|
2 100 21 12
|
|||
|
|
|||
|
56
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
tacked
|
|||
|
|
|||
|
0 11
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
four
|
|||
|
|
|||
|
figures
|
|||
|
|
|||
|
already taken
|
|||
|
|
|||
|
o ut ,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
1 234 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
r e quire d
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
1 23456 .
|
|||
|
|
|||
|
Y ou will note that the division of 1 97 by 352
|
|||
|
|
|||
|
did not
|
|||
|
|
|||
|
come out
|
|||
|
|
|||
|
exactly,
|
|||
|
|
|||
|
but
|
|||
|
|
|||
|
the pro duct,
|
|||
|
|
|||
|
56 ,
|
|||
|
|
|||
|
was
|
|||
|
|
|||
|
much
|
|||
|
|
|||
|
more nearly correct than 55 ; and as you knew by the
|
|||
|
|
|||
|
Index that you only wanted two more additional figures ,
|
|||
|
|
|||
|
28
|
|||
|
|
|||
|
LOGA RI'I‘HMS
|
|||
|
|
|||
|
it was useless proceeding further. Had you proceeded further, the sum would have worke d out thus
|
|||
|
352 1 970 (559
|
|||
|
1 760
|
|||
|
|
|||
|
2 100
|
|||
|
1 760
|
|||
|
|
|||
|
3400 3 1 68
|
|||
|
|
|||
|
2 32
|
|||
|
|
|||
|
This would have given you 559 t o tack on to 1 234
|
|||
|
|
|||
|
already found, an d your natural number would be
|
|||
|
|
|||
|
1 234559 .
|
|||
|
|
|||
|
B ut
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
In d ex
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L g o .
|
|||
|
|
|||
|
was
|
|||
|
|
|||
|
5 ,
|
|||
|
|
|||
|
there could
|
|||
|
|
|||
|
only be six whole figures in the natural number, which
|
|||
|
|
|||
|
would
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
1 2345 5 -9 .
|
|||
|
|
|||
|
All you wanted was a
|
|||
|
|
|||
|
number consi sting of six figures, and 1 23456 i s nearer than 1 23455 with a useless { 17.
|
|||
|
|
|||
|
Here are some examples
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
79841 2 .
|
|||
|
|
|||
|
ti Man ssa. of 7984 t Par s for 1 2
|
|||
|
|
|||
|
8972 9 7 Difi . 5 5
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
12
|
|||
|
|
|||
|
Log. of 79841 2 5 89 7304
|
|||
|
|
|||
|
660
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
548208 .
|
|||
|
|
|||
|
ti Man ssa of 5482 t Par s for 08
|
|||
|
|
|||
|
i 738939
|
|||
|
|
|||
|
D ff .
|
|||
|
|
|||
|
79
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
08
|
|||
|
|
|||
|
ly 7 near .
|
|||
|
|
|||
|
Log. of 548208 5 -738945
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L g o .
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
400006 .
|
|||
|
|
|||
|
ti Man s s a. of 4000 t Par s for 06
|
|||
|
|
|||
|
602 060 6
|
|||
|
|
|||
|
Log. of 400006
|
|||
|
|
|||
|
56 02066
|
|||
|
|
|||
|
D ifi .
|
|||
|
|
|||
|
632
|
|||
|
1 08 06
|
|||
|
648
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
whose
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
9 02030 .
|
|||
|
|
|||
|
43902 030
|
|||
|
t Nat. No. 7980 902003 Neares Log.
|
|||
|
|
|||
|
D ifi 54 2 70 5 . 2 70
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
79 805 .
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
whose
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
01 2839 .
|
|||
|
|
|||
|
6 01 2839
|
|||
|
t Nat. No. 1 030 01 2 837 Neares Log. v D ifi . 420 2 000 005 ery nearly
|
|||
|
2 1 00
|
|||
|
|
|||
|
The num ber i s 1 030005 very nearly.
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
29
|
|||
|
|
|||
|
Find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
whose
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
56
|
|||
|
|
|||
|
39 48 6 .
|
|||
|
|
|||
|
Log. 4360
|
|||
|
|
|||
|
5 6 39486 6 39 48 6
|
|||
|
|
|||
|
T he
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
436000 .
|
|||
|
|
|||
|
Hitherto we have considered and used numbers com
|
|||
|
|
|||
|
posed entirely of integers or whole numbers, but you may
|
|||
|
|
|||
|
require the Log. of a number consisting partly of integers
|
|||
|
|
|||
|
and partly
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
decimals,
|
|||
|
|
|||
|
such
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
23 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
composed
|
|||
|
|
|||
|
entirely
|
|||
|
|
|||
|
of decimals,
|
|||
|
|
|||
|
such
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
‘23 .
|
|||
|
|
|||
|
f f L ogs . o numbers comp osed o intege-rs a nd d ecima ls .
|
|||
|
|
|||
|
Use the whole of the number, d ecima ls an d all, to find
|
|||
|
|
|||
|
the Mantissa of the Log. T hus to fin d the Log. of 1 2
|
|||
|
|
|||
|
Look out the Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
12 ,
|
|||
|
|
|||
|
which,
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
know,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
same
|
|||
|
|
|||
|
as that
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 20 ;
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
079 1 81 .
|
|||
|
|
|||
|
Now for the
|
|||
|
|
|||
|
Index. You have only one integer, and therefore the
|
|||
|
|
|||
|
Index is zero and the Log. of 1 2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 79 1 81 .
|
|||
|
|
|||
|
In the case
|
|||
|
|
|||
|
of numbers composed of integers and decimals, the Index i s always either 0 or a p ositive or p lus quantity.
|
|||
|
|
|||
|
In the c ase of numbers consisting entirely of decimals ,
|
|||
|
the Index will be a nega tive or minus quantity. As one
|
|||
|
|
|||
|
integer gives zero in the Index, it is obvious that
|
|||
|
|
|||
|
no integer will give an Index one less than zero or ,
|
|||
|
|
|||
|
minus
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
The Index of a decimal, say 2 or ' 23 or ‘234
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so on,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
—1 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index of
|
|||
|
|
|||
|
02 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
0 23 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
0 234 ,
|
|||
|
|
|||
|
and so on, is
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index of
|
|||
|
|
|||
|
0 02 ,
|
|||
|
|
|||
|
or 0 02 3 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
i s 0 0234
|
|||
|
|
|||
|
3 & & & — ,
|
|||
|
|
|||
|
c.
|
|||
|
|
|||
|
c.
|
|||
|
|
|||
|
c .
|
|||
|
|
|||
|
B ut ,
|
|||
|
|
|||
|
as
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
adding
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
sub
|
|||
|
|
|||
|
tracting, it would be awfully confusing to mix up minus
|
|||
|
|
|||
|
and plus quantities, the arithmetical complement
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the minus Indices i s always used. 1 0 — 1 9 1 0
|
|||
|
|
|||
|
10— 3
|
|||
|
|
|||
|
7 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
therefore 9 is the arithmetical
|
|||
|
|
|||
|
complement (ar. co ). of 1 8 i s the ar. cc . of 2 7 i s the
|
|||
|
|
|||
|
ar. co.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
and so on ;
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
9 ,
|
|||
|
|
|||
|
8 ,
|
|||
|
|
|||
|
7 ,
|
|||
|
|
|||
|
& & c .
|
|||
|
|
|||
|
c.
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
are always used instead of
|
|||
|
|
|||
|
—1 ,
|
|||
|
|
|||
|
—2 ,
|
|||
|
|
|||
|
—3 ,
|
|||
|
|
|||
|
& & c .
|
|||
|
|
|||
|
c.
|
|||
|
|
|||
|
f L og. o a f m d eci a l ra ction.— Suppose you want the
|
|||
|
|
|||
|
30
|
|||
|
|
|||
|
LOGARITHMS
|
|||
|
|
|||
|
Log. of a decimal fraction. V ery well. Look for the
|
|||
|
|
|||
|
figures in the decimal fraction in the Table in the same
|
|||
|
|
|||
|
way as i f they were integers, and take out the Mantissa .
|
|||
|
|
|||
|
Remember that zeros have no value in finding the Man
|
|||
|
|
|||
|
tissa, unless they occur between digits. The Mantissa of
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
20 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
2 00 i s
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
s am e ,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
301 030 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
23 ,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
0 23 ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
0 023 &c . is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
same,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
361 728 .
|
|||
|
|
|||
|
But introduce a zero or zeros among the digits
|
|||
|
|
|||
|
and the Mantissas are by no means the same ; the Man
|
|||
|
|
|||
|
tissa of
|
|||
|
|
|||
|
2 03 i s
|
|||
|
|
|||
|
not
|
|||
|
|
|||
|
361 728
|
|||
|
|
|||
|
but
|
|||
|
|
|||
|
30 749 6 ,
|
|||
|
|
|||
|
and the Mantissa
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
003
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
301 681 .
|
|||
|
|
|||
|
New for the ' Index. If the decimal p oint is followed
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
digit,
|
|||
|
|
|||
|
the Index will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
minus
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
which you
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
9 .
|
|||
|
|
|||
|
If the decimal point is followed by one zero, the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
minus
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
8 .
|
|||
|
|
|||
|
If the
|
|||
|
|
|||
|
decimal point is followed by two zeros, the Index will be
|
|||
|
|
|||
|
minus
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
you will
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
7 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on .
|
|||
|
|
|||
|
Thus the Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
361 728
|
|||
|
|
|||
|
;
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
0 23 is
|
|||
|
|
|||
|
83
|
|||
|
|
|||
|
61 728 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on .
|
|||
|
|
|||
|
What you do is, in fact, to borrow 1 0 for the use of the‘
|
|||
|
|
|||
|
Index when it i s minus, an d c all the balance p lus. T hi s
|
|||
|
|
|||
|
is the reason why, when you come later on to deal with
|
|||
|
|
|||
|
cosines and such things, you will have to drop tens in the
|
|||
|
|
|||
|
Index. You will be giving back tens, which you have borrowed in order to turn minu s Indices into plus Indices
|
|||
|
|
|||
|
for the sake of convenience but you need not bother your
|
|||
|
|
|||
|
head about this now.
|
|||
|
|
|||
|
Now suppose you want to reverse the operation, and
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n atural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
Log
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
say 9
|
|||
|
|
|||
|
361 728 .
|
|||
|
|
|||
|
361 728
|
|||
|
|
|||
|
gi v e s
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
23 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index i s
|
|||
|
|
|||
|
9 .
|
|||
|
|
|||
|
Therefore if the 9 is really
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
plus
|
|||
|
|
|||
|
9 ,
|
|||
|
|
|||
|
the natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
have
|
|||
|
|
|||
|
ten
|
|||
|
|
|||
|
figur es,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
woul d be 2300000000 but if the Index 9 represent s minus
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
n atural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
decimal,
|
|||
|
|
|||
|
23 .
|
|||
|
|
|||
|
If your Log.
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
83
|
|||
|
|
|||
|
61 728 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
either
|
|||
|
|
|||
|
2 30000000
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
0 23 ,
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
on .
|
|||
|
|
|||
|
‘ Well, ’ you may say,
|
|||
|
|
|||
|
how
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
31
|
|||
|
|
|||
|
am I to know which i t is The nature of your work will
|
|||
|
|
|||
|
tell you. The difi erence between 2 3 (twenty-three hun
|
|||
|
|
|||
|
dredths) and
|
|||
|
|
|||
|
(two thousand three hundred
|
|||
|
|
|||
|
millions) i s so great that you cannot very well make a
|
|||
|
|
|||
|
mi st ak e . Here is how the Logs . of a natural number decreasing
|
|||
|
in value from four integers or whole numbers to decimals
|
|||
|
|
|||
|
would look carried right through the scale.
|
|||
|
|
|||
|
T ake
|
|||
|
|
|||
|
any
|
|||
|
|
|||
|
number,
|
|||
|
|
|||
|
say
|
|||
|
|
|||
|
3456 .
|
|||
|
|
|||
|
The Mantissa or decimal
|
|||
|
|
|||
|
part of the Log. will of course always remain the same
|
|||
|
|
|||
|
the Index only will change.
|
|||
|
|
|||
|
3456 345 -6
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
345 6
|
|||
|
|
|||
|
3 456
|
|||
|
|
|||
|
3 456
|
|||
|
|
|||
|
0 3456
|
|||
|
|
|||
|
0 03456
|
|||
|
|
|||
|
3 5 38574 2 5385 74 1 5 38574 0 5 38574 1 or 9 5 38574 2 or 8 5385 74 3 or 75 38 574
|
|||
|
|
|||
|
and so on and so on.
|
|||
|
|
|||
|
Take any Log. and reverse the process. Take
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
60659 6 .
|
|||
|
|
|||
|
i v 36 0659 6 g es nat. number 4042
|
|||
|
|
|||
|
2 6 065 96
|
|||
|
|
|||
|
4042
|
|||
|
|
|||
|
1 0 06596
|
|||
|
0 6 06596
|
|||
|
|
|||
|
40 42 40 42
|
|||
|
|
|||
|
1 or 9 606596
|
|||
|
|
|||
|
‘ 404 2
|
|||
|
|
|||
|
2 or 8 6 06596
|
|||
|
|
|||
|
0 4042
|
|||
|
|
|||
|
3 or 70 0659 6
|
|||
|
|
|||
|
0 04042
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
and so on and so on.
|
|||
|
|
|||
|
To multip ly a nd d ivid e mix ed numbers — To multiply
|
|||
|
|
|||
|
and divi de mixed numbers— that is, numbers consisting of
|
|||
|
|
|||
|
integers and decimals— ad d and subtract the Logs as has .
|
|||
|
|
|||
|
been
|
|||
|
|
|||
|
explained before ;
|
|||
|
|
|||
|
the operation i s quite
|
|||
|
|
|||
|
simple ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the only possible difficulty you can experience i s in respect
|
|||
|
|
|||
|
of the Indic es.
|
|||
|
|
|||
|
In addition of the Logs , as the Indices are either zero or plus quantities, the Index of the sum is either zero or p lus . But in subtraction the result may be a minus
|
|||
|
|
|||
|
quantity. Therefore in subtraction of the Logs , if the
|
|||
|
|
|||
|
32
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
L g o . of the divi sor exceeds the Log. of the dividend, you
|
|||
|
|
|||
|
will have to borrow 10 for the use of the Index of the Log.
|
|||
|
|
|||
|
of the dividend. If you paid the ten back, the Index
|
|||
|
|
|||
|
would be minus, but you keep the ten in order to make
|
|||
|
|
|||
|
the In dex plus, as already explained.
|
|||
|
|
|||
|
Here are some examples
|
|||
|
|
|||
|
I .
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
68 2
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
17 8 ,
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
Logs.
|
|||
|
|
|||
|
6 82 Log . 08 33784
|
|||
|
|
|||
|
1 78
|
|||
|
|
|||
|
1 2 50420
|
|||
|
|
|||
|
2 0 842 04
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
nearest
|
|||
|
|
|||
|
less
|
|||
|
|
|||
|
Mantissa
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
0
|
|||
|
|
|||
|
84204
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 83861 ,
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
1 21 3 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
d iffer en c e
|
|||
|
|
|||
|
between
|
|||
|
|
|||
|
them
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
343 .
|
|||
|
|
|||
|
T hi s 343 divided by the D ifi . in the Tables,
|
|||
|
|
|||
|
35 7 ,
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
tacked
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
1 21 3 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Index
|
|||
|
|
|||
|
being
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
there
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
three
|
|||
|
|
|||
|
integers
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
answer.
|
|||
|
|
|||
|
2 0 842 04
|
|||
|
t Nat. No. 1 2 1 3 0 838 61 Neares Log.
|
|||
|
|
|||
|
i to t to D
|
|||
|
|
|||
|
ff .
|
|||
|
|
|||
|
357
|
|||
|
|
|||
|
3430
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
be acked on
|
|||
|
|
|||
|
1213
|
|||
|
|
|||
|
32 1 3
|
|||
|
|
|||
|
and 121 3 9 is the answer.
|
|||
|
|
|||
|
Check — D ecimal point i s right , because 6 x 1 7
|
|||
|
|
|||
|
1 02 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
pretty
|
|||
|
|
|||
|
near
|
|||
|
|
|||
|
121 .
|
|||
|
|
|||
|
It is unnecessary to go through all the steps in every
|
|||
|
|
|||
|
example for the future, as you must h ave got it well into your head how to add and subtract Logs. If not, turn
|
|||
|
|
|||
|
back an d study ' that questi on a little more. In the next
|
|||
|
|
|||
|
example, therefore, I merely give the figures.
|
|||
|
|
|||
|
II .
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
1 82
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
49 5 .
|
|||
|
|
|||
|
1 82 7 Log. 6 495
|
|||
|
|
|||
|
2 2 61 738
|
|||
|
|
|||
|
30 7431 7
|
|||
|
|
|||
|
Nat. No. 1 1 8 6
|
|||
|
|
|||
|
t 0 74085 Neares Log.
|
|||
|
|
|||
|
i to t t o D ff 366 2 320 6 .
|
|||
|
|
|||
|
be acked on
|
|||
|
|
|||
|
1 1 86
|
|||
|
|
|||
|
2 196
|
|||
|
|
|||
|
The ans wer i s 1 1 86 6 .
|
|||
|
|
|||
|
Check —
|
|||
|
|
|||
|
An s w e r
|
|||
|
|
|||
|
should
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
somewhere
|
|||
|
|
|||
|
near
|
|||
|
|
|||
|
200
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
6 ,
|
|||
|
|
|||
|
or 1200 thus decimal is evidently in the right place.
|
|||
|
|
|||
|
LOGA RITHMS
|
|||
|
|
|||
|
borrowed and not returned. So much for quantities composed of integers and decimals.
|
|||
|
f To multip ly a nd d ivid e numbers consis ting entir ely o decimals — Un der these circumstances the Indices are
|
|||
|
|
|||
|
always minus. You have, therefore, to borrow ten for each Log. Pay back both the tens if you can, in which case the In dex of the result i s a plus quantity. But if
|
|||
|
|
|||
|
you can only pay back one ten, the Index, though really a minus quantity, is converted into a plus quantity by retaining the ten.
|
|||
|
|
|||
|
I .
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
2 34 by
|
|||
|
|
|||
|
0 234 .
|
|||
|
|
|||
|
Log. of 2 34 i s 9 36921 6 (the Index i s really
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
because there i s no integer in the number). The Log. of
|
|||
|
|
|||
|
0 234 is 83 6821 6 (the In dex i s really
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
because,
|
|||
|
|
|||
|
if
|
|||
|
|
|||
|
such
|
|||
|
|
|||
|
an expression is permissible, there is one less than no
|
|||
|
|
|||
|
integer in the number).
|
|||
|
|
|||
|
9 3 692 1 6 83 692 1 6
|
|||
|
|
|||
|
1 7 738432
|
|||
|
|
|||
|
You have borrowed twenty, namely ten on each Log.
|
|||
|
|
|||
|
retain ten to preserve a plus Index, and pay back ten, and
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
get
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L o g.
|
|||
|
|
|||
|
77 38432 .
|
|||
|
|
|||
|
738432 gives you the natural
|
|||
|
|
|||
|
number 5476 nearly and near enough, which with 7 or
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
in the Index, gives you “ 005476 as the product of 2 34 x
|
|||
|
|
|||
|
0 234 .
|
|||
|
|
|||
|
Check — 2 x 0 2
|
|||
|
|
|||
|
0 04 .
|
|||
|
|
|||
|
II .
|
|||
|
|
|||
|
Multiply 7
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 25 .
|
|||
|
|
|||
|
-7 Log. 9 845098
|
|||
|
|
|||
|
8 25
|
|||
|
|
|||
|
9 9 16454
|
|||
|
|
|||
|
Nat. No. °5 775 97 61 5 52
|
|||
|
|
|||
|
T he
|
|||
|
|
|||
|
answer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
775 .
|
|||
|
|
|||
|
Here also you have borrowed two tens and only
|
|||
|
|
|||
|
returned one, therefore the Index of the Log. of the product represents a minus quantity.
|
|||
|
|
|||
|
Check — 7 8 x ‘
|
|||
|
|
|||
|
“ 56 .
|
|||
|
|
|||
|
LO GA RITI—IMS
|
|||
|
|
|||
|
35
|
|||
|
|
|||
|
111 .
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
0 49
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0 063 .
|
|||
|
|
|||
|
0 49 Log. 80 9 01 9 6
|
|||
|
0 063
|
|||
|
|
|||
|
Nat. No. 0 003087 6 4895 37
|
|||
|
|
|||
|
T he
|
|||
|
|
|||
|
answer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 003087 .
|
|||
|
|
|||
|
For the same reason as in the two preceding ex
|
|||
|
|
|||
|
amples the Index of the Log. of the product represents a minus quantity.
|
|||
|
|
|||
|
Check — 0 5 x 0 06 0 0030 .
|
|||
|
|
|||
|
IV .
|
|||
|
|
|||
|
S up p o se
|
|||
|
|
|||
|
you want
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
divide 0 234
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
3 45 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
0 234
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
8
|
|||
|
|
|||
|
369 21 6 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the Log. of
|
|||
|
|
|||
|
' 345
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
9
|
|||
|
|
|||
|
53781 9 .
|
|||
|
|
|||
|
83 692 1 6 9 5 3781 9
|
|||
|
|
|||
|
8 831 397
|
|||
|
|
|||
|
831 39 7
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
natural
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
6 78 3 .
|
|||
|
|
|||
|
8 in the Index
|
|||
|
|
|||
|
makes
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
number
|
|||
|
|
|||
|
0 6783 ,
|
|||
|
|
|||
|
which is
|
|||
|
|
|||
|
the quotient
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
0 234
|
|||
|
|
|||
|
“ 345 .
|
|||
|
|
|||
|
In this case you have borrowed ten for each L ogu
|
|||
|
|
|||
|
they neutralise each other ; and you have borrowed an
|
|||
|
|
|||
|
additional ten in order to be able to subtract, and you
|
|||
|
|
|||
|
retain this ten to provide a pl us In dex.
|
|||
|
|
|||
|
But if you do not require to borrow ten to preserve a
|
|||
|
|
|||
|
plus Index , it will be a positive one. T hus
|
|||
|
|
|||
|
v .
|
|||
|
|
|||
|
Divide
|
|||
|
|
|||
|
2 24 by
|
|||
|
|
|||
|
0 35 .
|
|||
|
|
|||
|
2 2 4 Log. 9 3502 48
|
|||
|
|
|||
|
0 35
|
|||
|
|
|||
|
85 44068
|
|||
|
|
|||
|
Nat. No. 6 4 0 8061 80
|
|||
|
|
|||
|
Ten has not been borrowed, and the Index zero, as
|
|||
|
|
|||
|
above.
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
answer
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
6
|
|||
|
|
|||
|
4 .
|
|||
|
|
|||
|
VI .
|
|||
|
|
|||
|
Divide
|
|||
|
|
|||
|
1'
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
0
|
|||
|
|
|||
|
001 .
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
Log. 9 0 00000
|
|||
|
|
|||
|
0 001
|
|||
|
|
|||
|
60 00000
|
|||
|
|
|||
|
Nat. No. 1 000 30 00000
|
|||
|
|
|||
|
and 1 000 is the answer.
|
|||
|
|
|||
|
To
|
|||
|
|
|||
|
sum
|
|||
|
|
|||
|
p u .
|
|||
|
|
|||
|
In division by Logs , (1 ) when the Index
|
|||
|
|
|||
|
of the Log. of the dividend is greater than the Index of
|
|||
|
|
|||
|
D2
|
|||
|
|
|||
|
36
|
|||
|
|
|||
|
LOGA RITH MS
|
|||
|
|
|||
|
the Log. of the divisor, the Index of the Log. of the quotient is a p lus quantity. (2) When the In dex of the Log. of the dividend is less than the Index of the Log. of the divisor, the Index of the quotient i s a minus quantity, and has to be turned into a plus quantity by borrowing a ten .
|
|||
|
|
|||
|
Proportional Log s. and how to Use them
|
|||
|
|
|||
|
T able
|
|||
|
|
|||
|
X XX IV .
|
|||
|
|
|||
|
gives
|
|||
|
|
|||
|
Pr op orti on a l
|
|||
|
|
|||
|
Logs.
|
|||
|
|
|||
|
for Time or
|
|||
|
|
|||
|
A ‘
|
|||
|
|
|||
|
’
|
|||
|
rc
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
h m 0 0
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
or 0° 0’ to 3 h .
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
The hours
|
|||
|
|
|||
|
and minutes, or degrees and minutes, are at the top, and the seconds are given at the sides. L ook out the
|
|||
|
|
|||
|
time or arc, and write down the appropriate Log.
|
|||
|
|
|||
|
Find the arithmetical complement of the Log. of the
|
|||
|
|
|||
|
first term.
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
arithmetical
|
|||
|
|
|||
|
c o mp l em en t ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
ar.
|
|||
|
|
|||
|
co .,
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
found
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
taking
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og .
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
1 00 000 .
|
|||
|
|
|||
|
Then add
|
|||
|
|
|||
|
together the ar. co. Log. of the first term and the Logs.
|
|||
|
|
|||
|
of the second and third terms the result, rej ecting ten s
|
|||
|
|
|||
|
in the Index , is the L og. of the answer at.
|
|||
|
|
|||
|
Fer
|
|||
|
|
|||
|
exa mp l e ,
|
|||
|
|
|||
|
take
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
sum
|
|||
|
|
|||
|
we
|
|||
|
|
|||
|
have worked
|
|||
|
|
|||
|
on p.
|
|||
|
|
|||
|
5 ,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
As 1 7m 24 3m 46.
|
|||
|
|
|||
|
2 ° 55 ' 58
|
|||
|
|
|||
|
1 7m
|
|||
|
|
|||
|
(23328 1
|
|||
|
2 ‘ Log. 1 '0240
|
|||
|
|
|||
|
L g = ar. co .
|
|||
|
|
|||
|
o.
|
|||
|
|
|||
|
8 -9 760
|
|||
|
|
|||
|
op 46“ Pr
|
|||
|
|
|||
|
L .
|
|||
|
|
|||
|
og .
|
|||
|
|
|||
|
op 2 ° 55 ’ 58 ” Pr . Log.
|
|||
|
|
|||
|
38' 55
|
|||
|
|
|||
|
009 8
|
|||
|
|
|||
|
op Pr
|
|||
|
|
|||
|
L g .
|
|||
|
|
|||
|
o.
|
|||
|
|
|||
|
00 651
|
|||
|
|
|||
|
T hi s, you will admit, is a simple an d expeditious working a sum in proportion.
|
|||
|
|
|||
|
That is all there is to be said about Logarithms, and quite enough too. I could never see the obj ect of requiring such an intimate knowledge of Logs. in all their twists and turns and subtleties on the part of candidates for a
|
|||
|
|
|||
|
LOGARIT HMS
|
|||
|
|
|||
|
37
|
|||
|
|
|||
|
certificate of competency, seeing that all the problems
|
|||
|
given for a master can be solved if you know how to find the Log. of a natural number of four integers, and to take out the natural number of four integers of the nearest Log. But so it i s ; the knowledge i s required, and must be acquired. It i s a puzzling subj ect, and the student should work a lot of exercises in it. For this reason any amount of exercises are given in the second volume.
|
|||
|
|
|||
|
f I n ca s e you
|
|||
|
|
|||
|
s hould
|
|||
|
|
|||
|
like
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
know
|
|||
|
|
|||
|
no
|
|||
|
|
|||
|
w ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
s o me
|
|||
|
|
|||
|
utur e
|
|||
|
|
|||
|
f f time,
|
|||
|
|
|||
|
wha t
|
|||
|
|
|||
|
Loga rithms
|
|||
|
|
|||
|
r ea lly
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
r
|
|||
|
|
|||
|
e ,
|
|||
|
|
|||
|
here
|
|||
|
|
|||
|
ollows a v ery br ie
|
|||
|
|
|||
|
d escrip tion ; bu t d on ’ t bo ther to rea d it unless you ha ve a
|
|||
|
mind to .
|
|||
|
|
|||
|
The Logarithm of a number is the power to which the
|
|||
|
|
|||
|
base must be raised to produce that number. Any number
|
|||
|
|
|||
|
may be the base, but in all Nautical Tables 1 0 is the base.
|
|||
|
|
|||
|
With
|
|||
|
|
|||
|
the base
|
|||
|
|
|||
|
10 ,
|
|||
|
|
|||
|
s up p o s e
|
|||
|
|
|||
|
the Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 00 i s
|
|||
|
|
|||
|
wanted.
|
|||
|
|
|||
|
10 x 10
|
|||
|
|
|||
|
1 00 ;
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 0 is ten squared,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
1 02 ,
|
|||
|
|
|||
|
that is 1 0
|
|||
|
|
|||
|
raised to power 2
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 00 .
|
|||
|
|
|||
|
Suppose you
|
|||
|
|
|||
|
w an t
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
1 000 .
|
|||
|
|
|||
|
10 x 10 x 10
|
|||
|
|
|||
|
1 000 ;
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 03 ,
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
raised to
|
|||
|
|
|||
|
power
|
|||
|
|
|||
|
3;
|
|||
|
|
|||
|
therefore
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 000 .
|
|||
|
|
|||
|
Now you will see why a d d ition of their Logs . i s the s ame as multip lica tion o f m nu bers .
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10 is
|
|||
|
|
|||
|
1 05 .
|
|||
|
|
|||
|
(1 0 x 1 0) x (1 0 x 1 0
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 0)
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 05 .
|
|||
|
|
|||
|
10 x 10 is
|
|||
|
|
|||
|
10 x 10 x 10
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 03 .
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 02 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 03 .
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
therefore the addition of the Logs. of 10 x 1 0 and of
|
|||
|
|
|||
|
1 0 x 1 0 x 10 produces the same result as the multiplica
|
|||
|
|
|||
|
tion of the
|
|||
|
|
|||
|
numbers
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
0 ,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
1 05 .
|
|||
|
|
|||
|
Also you will see why subtra ction of their Logs .
|
|||
|
|
|||
|
produces the same result as division of numbers .
|
|||
|
|
|||
|
Suppose you want
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
divide
|
|||
|
|
|||
|
1 000
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
1 00 .
|
|||
|
|
|||
|
The Log.
|
|||
|
|
|||
|
38
|
|||
|
|
|||
|
LOGARITHMS
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 000
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
3 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
1 000
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
=
|
|||
|
|
|||
|
1 ,
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log .
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
10 .
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0 .
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
18
|
|||
|
|
|||
|
2 .
|
|||
|
|
|||
|
2 —2 = O .
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
The Log. of
|
|||
|
|
|||
|
Suppose you want to raise a number to any given
|
|||
|
|
|||
|
power. All you have to do is to multiply the Log. of the
|
|||
|
|
|||
|
number by the given power. F or instance, suppose you
|
|||
|
|
|||
|
wi sh to rai se 1 02 to its fifth power, that i s to say to
|
|||
|
|
|||
|
The
|
|||
|
|
|||
|
Log
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
power
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
be raised.
|
|||
|
|
|||
|
2
|
|||
|
|
|||
|
x5=
|
|||
|
|
|||
|
10 .
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
x
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
So
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
see
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
1 02
|
|||
|
|
|||
|
multiplied
|
|||
|
|
|||
|
together
|
|||
|
|
|||
|
five
|
|||
|
|
|||
|
times
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
1 010 ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
2 ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Log. of
|
|||
|
|
|||
|
1 02 ,
|
|||
|
|
|||
|
multiplied
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
5 is
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og.
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
10m .
|
|||
|
|
|||
|
The Logs. of all numbers which are not tens or
|
|||
|
|
|||
|
multiples of tens are obviously fractional. From what
|
|||
|
|
|||
|
has been said it is also obvious that Logs. of numbers
|
|||
|
|
|||
|
between one and ten must lie between zero and one, and
|
|||
|
|
|||
|
that the Logs. of numbers between ten and one hundred
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
more
|
|||
|
|
|||
|
than
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
less
|
|||
|
|
|||
|
than
|
|||
|
|
|||
|
two,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
so
|
|||
|
|
|||
|
0 11 .
|
|||
|
|
|||
|
Hence it i s that the Index of a Log. is one less than the
|
|||
|
|
|||
|
number of digits in its natural number. The Logs. of
|
|||
|
|
|||
|
fractions must always be of a minus description. If you
|
|||
|
|
|||
|
divide the less ‘by the greater, the result must be less than
|
|||
|
|
|||
|
unity. Ten divided by one hundred expressed in Logs. i s
|
|||
|
|
|||
|
one minus two. 1 2
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
Hence the minus Indices
|
|||
|
|
|||
|
already spoken about, which are for convenience sake
|
|||
|
|
|||
|
expressed as plus Indices by using their arithmetical .
|
|||
|
|
|||
|
complements.
|
|||
|
|
|||
|
CHAPTER III
|
|||
|
"INSTRUMENTS USED ’IN CHART
|
|||
|
COMPASS WORK
|
|||
|
instruments which are nec essary for th e purpose of navigating a ship by D ead Reckoning are the follow
|
|||
|
|
|||
|
1 .
|
|||
|
|
|||
|
M
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
rin
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
r
|
|||
|
|
|||
|
’
|
|||
|
s
|
|||
|
|
|||
|
C ompass .
|
|||
|
|
|||
|
2“ .
|
|||
|
|
|||
|
Instrument for
|
|||
|
|
|||
|
taking Bearings
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
connect ion with
|
|||
|
|
|||
|
fl the Mariner’s Compass.
|
|||
|
|
|||
|
3 .
|
|||
|
|
|||
|
Lead.
|
|||
|
|
|||
|
;
|
|||
|
s
|
|||
|
|
|||
|
Log.
|
|||
|
|
|||
|
r
|
|||
|
e
|
|||
|
|
|||
|
Parallel Rulers .
|
|||
|
|
|||
|
w
|
|||
|
o
|
|||
|
|
|||
|
D ividers .
|
|||
|
|
|||
|
P rot rac t or s .
|
|||
|
|
|||
|
The .
|
|||
|
|
|||
|
following. i nstruments ,
|
|||
|
|
|||
|
though
|
|||
|
|
|||
|
necessary, are extremely useful, namely
|
|||
|
|
|||
|
a bsolutely
|
|||
|
|
|||
|
lor 8 .
|
|||
|
|
|||
|
Pe
|
|||
|
|
|||
|
us .
|
|||
|
|
|||
|
9 .
|
|||
|
|
|||
|
Sta tion Pointer.
|
|||
|
|
|||
|
The M ariner’s Compa ss con si st s of a Compass Card under whi ch are sec ured one or more magnets lying exact ly
|
|||
|
m paralle l with a. line ]o1n1ng the North and South points on
|
|||
|
the Co pass Card and with their Positive or Red Pole s -
|
|||
|
towards the North p oint . Thi s Card is fitted under i ts cent re with a cap of agate or some similar hard stone
|
|||
|
|
|||
|
40
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
which rests upon the hard and sharp point of an upright metal rod, firmly fixed to the bottom of the Compass Bowl. By this means the card is accurately and delicately balanced upon its centre. The Compass Bowl i s made of copper, because that metal does not affect the Needle. The bowl is hung on gimbals, so arranged that it always remains horizontal, no matter at what angle the binnacle to which the gimbals are fastened may be canted. The binnacle is generally a hollow wooden column, fitted with slides inside for the compensating magnets, and having some arrangement on either side at the same height as the Compass Needles for supporting the soft iron correctors ; it should also have perpendicular slots on both its forward and after sides, in the fore and aft line for placing a Flinders Bar, should it be required.
|
|||
|
The essentials of a good Compass are, that its Magnets should be extremely powerful, and as light as possible. The cap in the Compass Card should be perfectly smooth, not rough or cracked, and the pivot on which it is balanced should also be quite smooth and free from rust. The Card, if deflected mechanically, should return to exactly the point from which it was twi sted. It must be divided into points, half points, and quarter points and degrees with the greatest accuracy. The point of the pivot should be in the same plane as the gimbals of the bowl when the ship is upright. In the case of a Standard Compass, a clear view of the Horizon all round should if possible be obtainable, so that the bearing of any obj ect can be taken with the ship’s head in any position. The vertical line, called the Lubber Line, marked on the Compass Bowl, must be exactly in the fore and aft line of the ship .
|
|||
|
In choosing a Compass go to a good maker, and pay a good price for a good article.
|
|||
|
|
|||
|
42
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
which the reflection of an object can be projected on to
|
|||
|
|
|||
|
the rim of the Compass Card . To take a bearing with the Azimuth Mirror, turn the
|
|||
|
instrument round until the object is roughly in a line with
|
|||
|
|
|||
|
your eye and the centre of the Compass Card. Then, looking at the rim of the Compass Card through the lens, revolve the prism till the image of the object falls on the
|
|||
|
|
|||
|
rim of the Compass Card ; read off the degree on which
|
|||
|
|
|||
|
the image appears, and you have the bearing of the object. Some little difficulty may at first be experienced in using
|
|||
|
|
|||
|
the instrument ; in this case, as in so many others, ‘ practice makes perfect, ’ and after a few trials and the
|
|||
|
|
|||
|
exercise of a little patience you will find that you can get
|
|||
|
|
|||
|
the bearings
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
obj ec t s
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
shore,
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
s hi p s ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
s un ,
|
|||
|
|
|||
|
moon, and stars with very great accuracy and case. It is
|
|||
|
|
|||
|
not advisable to take the Azimuth of a star whose Altitude
|
|||
|
|
|||
|
exceeds
|
|||
|
|
|||
|
As the prism inverts the obj ect observed, ships, objects
|
|||
|
|
|||
|
on shore, or a coast-line appear upside down, but you will
|
|||
|
|
|||
|
soon become accustomed to that.
|
|||
|
|
|||
|
See that the Compass is level by putting pennies, or sovereigns if yo u have them, on the glass till the air
|
|||
|
|
|||
|
bubble is as near the centre as possible.
|
|||
|
|
|||
|
A shadow pin— a pin placed perpen dicularly over the
|
|||
|
|
|||
|
pivot of the Compass— affords an easy way of getting
|
|||
|
|
|||
|
Azimuths
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
S un .
|
|||
|
|
|||
|
Take the bearing of the shadow
|
|||
|
|
|||
|
of the pin and reverse it, and you have the bearing
|
|||
|
|
|||
|
of the Sun .
|
|||
|
|
|||
|
The Lead and Lead Line
|
|||
|
|
|||
|
There are two descriptions of ordinary Leads, namely,
|
|||
|
|
|||
|
Hand Leads and Deep Sea Leads. Their names indicate
|
|||
|
|
|||
|
the difference between them. Hand Leads are of different
|
|||
|
|
|||
|
weights,
|
|||
|
|
|||
|
but
|
|||
|
|
|||
|
they
|
|||
|
|
|||
|
rarely
|
|||
|
|
|||
|
exceed
|
|||
|
|
|||
|
9 lb .
|
|||
|
|
|||
|
Deep Sea Leads
|
|||
|
|
|||
|
CHA RT A ND COMPA SS WORK
|
|||
|
|
|||
|
43
|
|||
|
|
|||
|
often weigh 30 lb. and even more. Hand Leads are hove by one man, and are no use except in shallow water. When a ship is going 9 knots it takes a good leadsman to ge t bottom in 9 fathoms .
|
|||
|
Deep Sea Leads are for getting soundings in deep water, 1 00 fathoms an d more sometimes. It is necessary when using an ordinary Deep Sea Lead to heave the ship to. The line i s reeled off until there is a s ufficient amount of loose line to reach the bottom. The Lead, which has an aper ture in the lo wer end of it, in which grease is put (this is called the arming), is taken on to the lee cathead or fore tack bumpkin ; the end of the lead line is passed forward from the lee quarter, where the reel is, outside everything and secured to the lead. A line of men is formed along the bulwarks, each of whom has a coil of
|
|||
|
lead line in his hand. When all is ready the man at the
|
|||
|
cathead heaves the Lead from him as far to leeward as he is able, calling out ‘ Watch there, watch. ’ E ach man as his coil runs out repeats this to the next man astern until the bottom is reached, or until all the lin e is run out if the Lead has not reached the bottom.
|
|||
|
T his clumsy operation is nowadays almost completely superseded by Lord Kelvin’s Patent Sounding Machine. It depends for accuracy upon the increase of pressure in the sea as the depth increases , which the instrument records thus
|
|||
|
A glass tube descends with the lead. It is her metically closed at the upper end and open at the lower its interior surface is coated with a chemical pre paration, which becomes discoloured when salt water touches it. As the depth of water increases the pressure becomes greater, and the air in the glass tube is com pressed as the salt water is forced into it the discolora tion of the chemical coating shows exactly how high the
|
|||
|
|
|||
|
44
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
water rose in the tube, and by means of a scale applied to the side of the tube the d epth of water which causes
|
|||
|
|
|||
|
that pressure is read off. To accelerate the descent of the Lead, piano wire is
|
|||
|
used for the lead line ; the wire is wound upon a drum
|
|||
|
|
|||
|
fixed to one of the ship’ s quarters, which enables a few
|
|||
|
|
|||
|
men to b an] in the Lead after a cast, instead of, as under
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
old
|
|||
|
|
|||
|
system,
|
|||
|
|
|||
|
very
|
|||
|
|
|||
|
often
|
|||
|
|
|||
|
requiring
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
whole
|
|||
|
|
|||
|
s
|
|||
|
|
|||
|
h
|
|||
|
|
|||
|
i
|
|||
|
|
|||
|
’
|
|||
|
p
|
|||
|
|
|||
|
s
|
|||
|
|
|||
|
company. With Lord Kelvin’s machine bottom can be
|
|||
|
|
|||
|
reached at 1 00 fathoms, with the ship going, it i s said, as
|
|||
|
much as 1 5 or 1 6 knots.
|
|||
|
|
|||
|
The old- fashioned lead line is marked as under
|
|||
|
|
|||
|
t o p i l t it At 2 fa h ms a ece of ea her w h two end s
|
|||
|
|
|||
|
3
|
|||
|
|
|||
|
three
|
|||
|
|
|||
|
5
|
|||
|
|
|||
|
white lca ico
|
|||
|
|
|||
|
7
|
|||
|
|
|||
|
ti red bun ng
|
|||
|
|
|||
|
10
|
|||
|
|
|||
|
l t ea her with a hole in it
|
|||
|
|
|||
|
13
|
|||
|
|
|||
|
lb ue serge
|
|||
|
|
|||
|
15
|
|||
|
|
|||
|
white lca ico
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
t i red bun ng
|
|||
|
|
|||
|
20
|
|||
|
|
|||
|
t it ot a s rand w h two kn s
|
|||
|
|
|||
|
25
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
30
|
|||
|
|
|||
|
th ree
|
|||
|
|
|||
|
35
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
40
|
|||
|
|
|||
|
of ur
|
|||
|
|
|||
|
45
|
|||
|
|
|||
|
o ne
|
|||
|
|
|||
|
50
|
|||
|
|
|||
|
fi ve
|
|||
|
|
|||
|
o ne
|
|||
|
|
|||
|
six
|
|||
|
|
|||
|
one
|
|||
|
v se en
|
|||
|
|
|||
|
o ne
|
|||
|
eight
|
|||
|
|
|||
|
o ne
|
|||
|
in ne
|
|||
|
|
|||
|
1 00
|
|||
|
|
|||
|
one
|
|||
|
p i t i a ece of bun ng
|
|||
|
|
|||
|
and then the marking is repeated for the secon d hundred. The difierence of materi al i s to enable the leadsman
|
|||
|
at night to identify the sounding without reference to the
|
|||
|
|
|||
|
colour.
|
|||
|
|
|||
|
CHA RT A ND COMPA SS WORK
|
|||
|
|
|||
|
45
|
|||
|
|
|||
|
In heaving the Hand Lead, the leadsman must use
|
|||
|
|
|||
|
his own judgment as to the depths obtained by reference
|
|||
|
|
|||
|
to the position of the marks . He reports the sounding
|
|||
|
|
|||
|
by the follo wing cries
|
|||
|
|
|||
|
and so on .
|
|||
|
|
|||
|
o di S un ng t o 5 fa h ms
|
|||
|
6
|
|||
|
61
|
|||
|
|
|||
|
iCr es
|
|||
|
By the m ark fi ve
|
|||
|
p By the d ee six l And a h a f six t l i t q A uar er ess e gh q t And a uar er ten
|
|||
|
|
|||
|
The Log ship and Log Line
|
|||
|
|
|||
|
The old-fashioned Logship is generally a piece of wood
|
|||
|
|
|||
|
in the form of the segment of a circle . It has lead run into
|
|||
|
|
|||
|
its circular p art, so that when in the water it will float up right with the rim down . A hole i s bored in each corner,
|
|||
|
|
|||
|
and it is fastened to the L og line with three cords, in such
|
|||
|
|
|||
|
a fashion that its plane is perpendicular to the pull of the line. ~One of these cords i s so fastened to the Logship,
|
|||
|
|
|||
|
that when a heavy strain
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
put upon
|
|||
|
|
|||
|
it,
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
comes
|
|||
|
|
|||
|
loose ,
|
|||
|
|
|||
|
which allows the Logship to lie flat in the water when it
|
|||
|
|
|||
|
i s being hauled on board after use .
|
|||
|
|
|||
|
Sometimes a conical canvas bag is used for a Log
|
|||
|
|
|||
|
ship, arranged so that it presents its mouth to the direction
|
|||
|
|
|||
|
of the pull of
|
|||
|
|
|||
|
the Log
|
|||
|
|
|||
|
line while the Log
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
being
|
|||
|
|
|||
|
hove ,
|
|||
|
|
|||
|
and its point when it is being hauled in.
|
|||
|
|
|||
|
The idea in each of these cases is to make the Log
|
|||
|
|
|||
|
ship as nearly stationary as possible while the line is run
|
|||
|
|
|||
|
ning out, and to offer the least possible resistance when
|
|||
|
|
|||
|
it is being hauled on board.
|
|||
|
|
|||
|
The principle involved in the Log line is a simple
|
|||
|
|
|||
|
proportion. The ordinary length of the Log glass is
|
|||
|
|
|||
|
28 seconds. o As 2 8 sec nd s
|
|||
|
|
|||
|
o 1 h ur
|
|||
|
|
|||
|
l li the ength o f ne
|
|||
|
run out in 2 8“
|
|||
|
|
|||
|
l t li t th e eng h of ne ha t o l w u d run out in l n
|
|||
|
|
|||
|
46
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
Now, supposing the ship to be travelling one mile in
|
|||
|
|
|||
|
one hour, we have the following proportion
|
|||
|
|
|||
|
o 2 8 sec nds
|
|||
|
|
|||
|
o 1 h ur
|
|||
|
60
|
|||
|
|
|||
|
a:
|
|||
|
|
|||
|
t l l 1 nau ica mi e
|
|||
|
|
|||
|
2 040
|
|||
|
|
|||
|
i t 60 m nu es 60
|
|||
|
|
|||
|
2040 yard s
|
|||
|
3
|
|||
|
|
|||
|
o o 2 8 sec nds 3600 sec nd s
|
|||
|
|
|||
|
t 61 20 fee
|
|||
|
|
|||
|
61 20
|
|||
|
28
|
|||
|
|
|||
|
48960 1 2240
|
|||
|
ft . in.
|
|||
|
v l 3600 ) 1 71 360 (47 7 y y er near 1 4400
|
|||
|
|
|||
|
2 7360 2 52 00
|
|||
|
|
|||
|
2 1 60 12
|
|||
|
|
|||
|
25920
|
|||
|
2 5200
|
|||
|
|
|||
|
That is to say, if a ship is travelling at the rate of 1 knot per hour, she will run out 47 ft. 7 in . of line, very nearly, in 28 seconds . It i s, therefore, quite clear that if she is sailing at the rate of 2 knots per hour, she will run out in 28 seconds twice 47 ft. 7 in. if she is going 3 knots
|
|||
|
,
|
|||
|
three times 47 ft. 7 in. Again, if a 1 4-second glass is used, she will clearly
|
|||
|
only run out half the line she would, had a 28-second glass been used, and therefore if she ran out 47 ft. 7 in. in 1 4 seconds, she would run out twice 47 ft. 7 in. in 28 seconds. In other words, she woul d be goin g two
|
|||
|
knot s. The Log line is marked thus About 1 0 fathoms of stray line are allowed between
|
|||
|
|
|||
|
the Logship and the first mark on the line, which consists
|
|||
|
of a piece of white bunting or rag. At the di stance of 47 ft . 7 in . from this mark a piece of twin e with 1 knot
|
|||
|
is placed ; at a further di stance of 47 ft. 7 in . a piece of
|
|||
|
twine w' ith 2 knots i s placed ; at a further di stance of
|
|||
|
|
|||
|
CHA RT AND COMPA SS WORK
|
|||
|
|
|||
|
47
|
|||
|
|
|||
|
47 ft. 7 in. a piece with 3 knots is placed, and so on
|
|||
|
|
|||
|
generally up to about 7 knots. Halfway between these
|
|||
|
|
|||
|
knots a single knot is placed. So we have the following
|
|||
|
|
|||
|
marks, at a distance of the half of 47 ft. 7 in. apart : A
|
|||
|
|
|||
|
white piece of rag, 1 knot, 1 knot, 1 ' knot, 2 knots, 1 knot ,
|
|||
|
|
|||
|
3 knots, 1
|
|||
|
|
|||
|
knot,
|
|||
|
|
|||
|
4
|
|||
|
|
|||
|
k
|
|||
|
|
|||
|
n
|
|||
|
|
|||
|
o
|
|||
|
|
|||
|
t
|
|||
|
|
|||
|
s ,
|
|||
|
|
|||
|
1
|
|||
|
|
|||
|
knot, 5 knots, 1 knot, 6 knots,
|
|||
|
|
|||
|
1 knot, 7 knots, 1 knot. If the 28-second glass is used,
|
|||
|
|
|||
|
the knots run out indicate the speed of the ship ; but if
|
|||
|
|
|||
|
the 1 4- second glass is used, the number of knots run out must be doubled to give you her speed.
|
|||
|
|
|||
|
In practice the Log is hove thus
|
|||
|
|
|||
|
A man stands with the reel, on which the Log line is
|
|||
|
|
|||
|
held above his head, so that it can run clear of everything. Another man holds the Log glass, seein g that the upp er bulb is clear of sand. The man heaving the Log sees
|
|||
|
|
|||
|
that the Logship is properly fastened, and asks if the
|
|||
|
|
|||
|
Log glass is clear. He then throws the Log as far to
|
|||
|
|
|||
|
leeward as he can, and lets the Logship run the line off the reel, till the white mark passes through his hands,
|
|||
|
|
|||
|
when he says Turn to the man holding the Log glass,
|
|||
|
|
|||
|
who instantly reverses it. When the sand has run out, the
|
|||
|
|
|||
|
man
|
|||
|
|
|||
|
holding
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
glass
|
|||
|
|
|||
|
calls
|
|||
|
|
|||
|
t p S ‘
|
|||
|
|
|||
|
’
|
|||
|
o
|
|||
|
|
|||
|
,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
L og
|
|||
|
|
|||
|
line
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
seized and prevented from running out any more. The
|
|||
|
|
|||
|
numb er of knots r un out gi ves the speed of the vessel, as
|
|||
|
|
|||
|
explained already.
|
|||
|
|
|||
|
Patent Logs, which indicate the number of miles the
|
|||
|
|
|||
|
sh1p has gone through the water, possess so great an ad
|
|||
|
|
|||
|
vantage over the ordinary Log, which only tells you the rate of the ship at the moment of heaving the Log, that
|
|||
|
|
|||
|
the latter has become quite out of date, patent Logs being
|
|||
|
|
|||
|
now invariably used at sea.
|
|||
|
|
|||
|
The patent Logs most commonly used are two in
|
|||
|
|
|||
|
number. One is called the Harpoon Log, and the other
|
|||
|
|
|||
|
the Tafi’rail Log.
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
The Harpoon Log is shaped like a torpedo, and has
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
one
|
|||
|
|
|||
|
end
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
metal
|
|||
|
|
|||
|
loop
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
which
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Lo g
|
|||
|
|
|||
|
line
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
fastened ,
|
|||
|
|
|||
|
and at the other, fans which cause the machine to spin
|
|||
|
|
|||
|
round as it is drawn through the water. The spinning of the instrument sets a clockwork machinery in motion
|
|||
|
,
|
|||
|
which records the speed of the vessel up on dials, the rotation of the instrument being, of course, dependent
|
|||
|
|
|||
|
upon t- he rate at which it is dragged through the water .
|
|||
|
|
|||
|
When you want to know the distance your ship has
|
|||
|
|
|||
|
run , you must haul in the Log and read it off on the
|
|||
|
|
|||
|
dial.
|
|||
|
|
|||
|
The Taffrail Log is called so because the dial which contains the recording machinery is secured to the taffrail.
|
|||
|
|
|||
|
It is connected by a long line with a fan towing astern, which revolves when dragged through the water, and
|
|||
|
|
|||
|
makes the line spin round. This causes the machinery in
|
|||
|
|
|||
|
the dial to indicate on the face of the dial the distance
|
|||
|
|
|||
|
travelled . The advantage of using the T affrail Log is
|
|||
|
|
|||
|
that it can be consulted at any time without having to
|
|||
|
|
|||
|
haul the line in and, as it is usually fitted with a small
|
|||
|
|
|||
|
gong which strikes as every one-eighth of a mile is run
|
|||
|
|
|||
|
out, it is a simple matter to find out the speed of the ship at any moment by noting the time elapsing between
|
|||
|
|
|||
|
two successive strokes of the gong.
|
|||
|
|
|||
|
Paral lel Rulers
|
|||
|
For chart work parallel rulers are indispensable. They are simply rulers so arranged that you can move them over. a chart and their edges will always remain p arallel to any line from which they may have started. Of course there i s some danger, if the distance to be moved is considerable, of the ruler slipping, particularly when a ship is knocking about . And I strongly m reco
|
|||
|
|
|||
|
50
|
|||
|
|
|||
|
INSTRUMENTS USED IN
|
|||
|
|
|||
|
Pr ot r a ct o r s
|
|||
|
The most useful form of protractor for chart work is made of horn or celluloid . It is very convenient to have a thread or piece of silk attached to the centre as the measurement of angles is greatly facilitated thereby. The ordinary protractor is divided into degrees radiating from the centre. It i s usually a semicircle, the horizontal line passing through the centre being marked 90° at each end, and the vertical line 0°
|
|||
|
T o measure a Course ruled on the chart, place the centre of the protractor on the point where the Course cuts any Meridian, and see that the zero on the vertical line of the protractor is also on the same Meridian. You can now rea d off the angle of the Course where it passes under the semicircular edge of the protractor.
|
|||
|
|
|||
|
The above instruments are essential, and the following will be found very useful
|
|||
|
|
|||
|
The Pelorus
|
|||
|
A Pelorus is a dumb Compass Card— that is, a card without a needle— fitted with sight vanes for taking bear ings. It i s usually placed on a stand, and so mounted that the Card can be turned round to any desired position, and there fixed by means of a screw. The sight vanes can also be turned round and fixed to the Card at any required b e arin g .
|
|||
|
It is a handy instrument for determining Compass Error, and also for placing the Ship ’ s Head in any positi on that may be wished. Its use will be more fully explained later on in the chapter on Magnetism and Compass Cor rection.
|
|||
|
|
|||
|
CHART AND CO MPAS S WORK
|
|||
|
|
|||
|
5I .
|
|||
|
|
|||
|
A Station Poin t-s r is an instrument with three legs
|
|||
|
by whi ch, when used in conjunction with a chart the
|
|||
|
|
|||
|
angular distance between three obj ects on shore is known
|
|||
|
|
|||
|
either by measurement or by their bearings. With the
|
|||
|
|
|||
|
three legs measuring the an gular distanc e between the
|
|||
|
|
|||
|
three obj ects and clamped, plac e the instrument 0 11 the
|
|||
|
|
|||
|
Chart in such a position that the legs are exactly even
|
|||
|
|
|||
|
with
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
three
|
|||
|
|
|||
|
obj ect s
|
|||
|
|
|||
|
on the
|
|||
|
|
|||
|
C ha rt
|
|||
|
|
|||
|
;
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
s
|
|||
|
|
|||
|
h
|
|||
|
|
|||
|
i
|
|||
|
|
|||
|
p
|
|||
|
|
|||
|
’
|
|||
|
s
|
|||
|
|
|||
|
position
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
indic ated by the Centre of
|
|||
|
|
|||
|
CHAP TER IV
|
|||
|
THE PRACTICAL USE OF THE COMPASS
|
|||
|
|
|||
|
A COMPAS S Card is , like 5 11 other circles, divi ded into 360 degrees . E ach degree consists of 60 minutes and
|
|||
|
|
|||
|
each minute contain s 60 seconds
|
|||
|
|
|||
|
It has four Cardin al
|
|||
|
|
|||
|
P oin ts, Nort h, S outh, East, an d IVest ; four Q uadr antal
|
|||
|
|
|||
|
Points,
|
|||
|
|
|||
|
NE ,
|
|||
|
|
|||
|
SE ,
|
|||
|
|
|||
|
S IV ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
NI V ;
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
twenty - four inter
|
|||
|
|
|||
|
mediate Points, as shown in the figure, thus making
|
|||
|
|
|||
|
thirty-two Point s in all . As there are 360° in any circle,
|
|||
|
|
|||
|
eac h Point c ontain s 1 1 ° 1 5' that i s, 360° divide d by
|
|||
|
|
|||
|
Each Point is subdivided into half and quarter Points .
|
|||
|
|
|||
|
As the C omp ass Card moves freely on its pivot. the
|
|||
|
|
|||
|
North Point of the Card is caused by the C ompass Needle
|
|||
|
|
|||
|
to point towards the North Pole of the earth;
|
|||
|
|
|||
|
In speaking of the direction of any object from the
|
|||
|
|
|||
|
ship, or of the direction in which a ship i s proceedin g, it i s equally accurate to use Points, half Points, and quarter Points, or Degrees, Minutes, and Seconds but as in many cases their use simpli fies calcul ation very much,
|
|||
|
it is advisable for the student to use D egrees and parts
|
|||
|
|
|||
|
of D egr ees . The B earing by Compass of any obj ect is the angle, at
|
|||
|
the c entre of the Compass Card, between the North and S outh lin e on the Card and an imaginary straight line
|
|||
|
|
|||
|
drawn from the centre of the Compass Card to the obj ect.
|
|||
|
|
|||
|
A Bearing is measured along the circumference of the
|
|||
|
|
|||
|
Compass Card, so many D egrees and parts of a D egr ee
|
|||
|
|
|||
|
THE PRA CTICAL U S E OF THE COMPA SS
|
|||
|
|
|||
|
53
|
|||
|
|
|||
|
from the North or South Points on the Compass Card to where the imaginary line cuts the circumference of the C ard .
|
|||
|
On the inside of each Compass B owl a vertical line i s marked, indicating the line of the keel of the vessel. This is called the ‘ lubber line .’ \V hatever D egree, Point, half
|
|||
|
|
|||
|
D F 1 IG.
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
-COMPAS S CAR
|
|||
|
|
|||
|
Point, or quarter Point is opposite the lubber line, is the Compass Course you are steering.
|
|||
|
Va ria tion — The Compass Needle is supposed to point North and South with unswerving fi delity true as the Needle to the Pole ’ is the idea. But unfortunately the idea is inaccurate, for the Needle very rarely points to the North and South Poles of the earth if it did, the mariner
|
|||
|
|
|||
|
54
|
|||
|
|
|||
|
THE PRA CTICA L U S E OF THE COMPA S S
|
|||
|
|
|||
|
would be relieved of much anxi ety and bother. It points towards what are called the North and South Magnetic
|
|||
|
|
|||
|
Poles of the earth, situat ed in about Latitude 70° N and
|
|||
|
|
|||
|
L on gi tu de
|
|||
|
|
|||
|
9 7° IV ,
|
|||
|
|
|||
|
and in Latitude
|
|||
|
|
|||
|
74°
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
L on gi tu d e
|
|||
|
|
|||
|
1 47° E I t .
|
|||
|
|
|||
|
it points in that direction goodn ess onl y
|
|||
|
|
|||
|
knows
|
|||
|
|
|||
|
but it
|
|||
|
|
|||
|
does—
|
|||
|
|
|||
|
that
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
say ,
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
does when no
|
|||
|
|
|||
|
di s
|
|||
|
|
|||
|
turb ing
|
|||
|
|
|||
|
causes
|
|||
|
|
|||
|
affect
|
|||
|
|
|||
|
it .
|
|||
|
|
|||
|
Wh en the Needl e does not point T rue North and
|
|||
|
|
|||
|
S outh it makes a certain an gle wi t h the Meridian or True
|
|||
|
|
|||
|
North and South line.
|
|||
|
|
|||
|
Thi s angle
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
called
|
|||
|
|
|||
|
the I i ‘
|
|||
|
|
|||
|
'
|
|||
|
ar a
|
|||
|
|
|||
|
tion ’ of the Compass. V ariation varies in different parts
|
|||
|
|
|||
|
of the globe, and is also constantly changing, but as the
|
|||
|
|
|||
|
fl change is slow and the V ariation l S given on all charts,
|
|||
|
you can alway s find what it is bv looking at your chart, unl ess you are using an antedil uvian one. The C ompass Needl e affected b y V ari ation and by nothing else is said t o p oint Cor rect Ma g netic.
|
|||
|
|
|||
|
D evia tion — But another an d very inc onveni ent in u
|
|||
|
|
|||
|
ence comes into operation in most ships, and in all vessels buil t of ir on or steel. The ship itself i s a Magnet, and its M agn etism affects the Comp ass N eedl e, causing it to diverge from the Correct Magnetic Meri dian. The angle which it makes with the Correct Magnetic Meridian is
|
|||
|
|
|||
|
called the ‘ D evia tion of the C omp as s.
|
|||
|
|
|||
|
Thus it wi ll be seen that any obj ect may have three
|
|||
|
|
|||
|
different bearings from a ship— namely, fir st, a True B earin g. T his i s the an gle formed by an imaginary line dr awn from the obj ect to the Compass , and the T rue Meri di an whi ch p asses through the Compass . Second, a Correct Ma g netic B earing, whi ch i s the angle forme d by an imaginary line drawn from the obj ect to the Compass, and the Magnetic Meridian which passes through the Comp ass . T hird, a Comp a ss Bearing, whi ch is the angle
|
|||
|
formed by an imaginary line dr awn from the obj e ct to the
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
55
|
|||
|
|
|||
|
Compass and the North and South line of the Compass
|
|||
|
|
|||
|
Card.
|
|||
|
|
|||
|
If you want to know how an obj ect bears for a- ny
|
|||
|
|
|||
|
charting work, you must first take the Bearing by Compass , and then correct the Compass B earing for the Deviation
|
|||
|
|
|||
|
d ue to the position of the ship ’ s head ; thi s correction will give you the Correct Magnetic B earing. This i s suffi cient if you are using a Magnetic chart, that is to say, a chart the Compasses drawn on which show the Magnetic
|
|||
|
|
|||
|
Points. But if you are using a chart showing only the
|
|||
|
|
|||
|
True Points, or if for any other reason you want the T rue B earing, you must correct the Correct Magnetic bearing
|
|||
|
|
|||
|
for V ariation. This will give you the True B earing of the
|
|||
|
|
|||
|
obj ect, whatever it may be. The way of making these
|
|||
|
|
|||
|
corrections will be explained later on.
|
|||
|
|
|||
|
Now, as to Courses, the same facts and considerations
|
|||
|
|
|||
|
apply.
|
|||
|
|
|||
|
The True Course of a ship is the angle between her
|
|||
|
|
|||
|
track through the water and the Meridian— that is to say, the True North and South line. To find it from a Com
|
|||
|
|
|||
|
p ass Course, three allowanc es— namely, for Leeway, D e
|
|||
|
viation, and V ariation— must be m ade . To a C orrect Magnetic Course, V ariation only must be applied.
|
|||
|
The Correct Magnetic Course of a ship i s the angle between the ship’ s track and the Magnetic Meridian, that is, the line j oining the North an d South Magnetic Pole of
|
|||
|
the earth . To fin d it from a Compass Course, Leeway
|
|||
|
|
|||
|
and Deviation must be applied.
|
|||
|
|
|||
|
The Compass Course of a ship i s the angle between
|
|||
|
|
|||
|
the line of the ship’s keel and the line of the North and
|
|||
|
|
|||
|
South Points on the Compass Card .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
know
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
T rue
|
|||
|
|
|||
|
Course
|
|||
|
|
|||
|
between
|
|||
|
|
|||
|
two
|
|||
|
|
|||
|
p
|
|||
|
|
|||
|
l
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
c
|
|||
|
|
|||
|
e
|
|||
|
|
|||
|
s ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
want the Correct Magnetic Course, you must apply the
|
|||
|
|
|||
|
V ariation to the True Course, and there you are. Then
|
|||
|
|
|||
|
56
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA S S
|
|||
|
|
|||
|
if you want the Compass Course the Devi ation, if any, appli ed to the Correct Magnetic Cour se, will give it t o you ; and if your ship makes no Leeway, and there are no currents, y ou will get to your destination if you steer your C omp as s Course thus found . But if y ou are makin g Leeway , or if ti des or currents are setting y ou across your C ourse, allowance must be made for them.
|
|||
|
It i s in making these corrections and allowances that the whole system of steering by Compass an d using the Chart consist s.
|
|||
|
The converse, of cour se, holds true. If you know your Compass Cour se between two places, and w ant the Correct Magneti c Cour se, you must correct the former for D evi ation ; and if y ou require the T rue Cour se you must correct the Correct Magn eti c Cour se for V ariation .
|
|||
|
|
|||
|
m Correct ion of Co pass Cour ses
|
|||
|
|
|||
|
As in workin g all problems in the various sailings T rue
|
|||
|
|
|||
|
Cour ses must be used, it i s very necessary to un derstand h ow to turn a Comp as s Cour s e into a T rue Cour se.
|
|||
|
|
|||
|
f To fin d a T r ue Cou rse rom a Comp a ss Course — In the first place bear in min d always that as the rim of the
|
|||
|
|
|||
|
Compass Card represent s the Horizon, you must always imagine your self to be looking from the centre of the
|
|||
|
|
|||
|
Card out towards the rim in the direction of the Course
|
|||
|
|
|||
|
to be corrected. The first thing to do i s to correct y our Compass
|
|||
|
|
|||
|
C our se for Leeway if the ship has made any . Leeway i s
|
|||
|
|
|||
|
the angle between the line of the keel and the track of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
s hip
|
|||
|
|
|||
|
through
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
t e wa r ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
caused
|
|||
|
|
|||
|
by the wind
|
|||
|
|
|||
|
forcing the vessel sideways as well as forward. The
|
|||
|
|
|||
|
amoun t of Leeway can only be j udged by experience.
|
|||
|
|
|||
|
The correction for Leeway must always be made in the
|
|||
|
|
|||
|
58
|
|||
|
|
|||
|
TIIE PRA CTIC A L USE OF THE COMPA S S
|
|||
|
|
|||
|
Magnetic into a T rue C ourse— that i s to say, if the
|
|||
|
|
|||
|
V ariation
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
W l t es
|
|||
|
|
|||
|
er
|
|||
|
|
|||
|
'z ,
|
|||
|
|
|||
|
apply it
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
right ; i f it i s
|
|||
|
|
|||
|
E a s ter ly,
|
|||
|
|
|||
|
apply
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
f le
|
|||
|
|
|||
|
t .
|
|||
|
|
|||
|
The next operation is to allow for Deviation, and here
|
|||
|
|
|||
|
comes the difficulty. You d o kn ow the Deviations on
|
|||
|
|
|||
|
every position of the Ship ’ s Head by Comp a ss , but you do
|
|||
|
|
|||
|
not know the Deviation for the Ship’ s Head on any given
|
|||
|
|
|||
|
Cor-res t Ma gne tic Cours e, and you have to find it out. The simplest plan is to find it by inspection— by drawing a small p ortion of a Napier’ s curve, as explained later on, and measuring off the Deviation from it ; but you must
|
|||
|
|
|||
|
also know how to calculate the Deviation, and the best
|
|||
|
|
|||
|
way of doing so is as follows. Judge, by reference
|
|||
|
|
|||
|
to your Devi ation Card, whether the Deviation appli cable to the Correct Magneti c C our se which you wish
|
|||
|
|
|||
|
to convert into a Compass Cour se will be to the right or
|
|||
|
|
|||
|
to the left ; then write down three Comp a ss Cour ses, within the limits of which the Compass Cour se to be
|
|||
|
|
|||
|
derived from the Correct Magnetic Course you are dealing
|
|||
|
|
|||
|
with is pretty certain to be included . To these Compass
|
|||
|
|
|||
|
C ourses apply their respec tive D eviation s, which, of course, you know. You have now thr ee Correct Magnetic Courses. If the Correct Magnetic Course you are correcting i s the
|
|||
|
|
|||
|
same as one of these three Correct Magnetic Courses,
|
|||
|
|
|||
|
then the Deviation which you used to find that Correct
|
|||
|
|
|||
|
Magneti c Course is the D eviation to be applied to the
|
|||
|
|
|||
|
C orrect M agnetic Cour se you wi sh to convert into a
|
|||
|
|
|||
|
C omp as s C our se. D on ’ t forget that in tur ning your three Compass Courses into C orrect Magneti c Courses,
|
|||
|
|
|||
|
you apply the Deviation directly, that is, East to the
|
|||
|
|
|||
|
right, West to the left ; and that in converting the Correct Magnetic into a Compass Course, you apply
|
|||
|
|
|||
|
the Deviation indirectly, that is, East to the left, West to
|
|||
|
|
|||
|
the ri ght .
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA S S
|
|||
|
|
|||
|
59
|
|||
|
|
|||
|
But it may, and probably will , happen that not one of
|
|||
|
the three Compass Courses you have turned into Correct Magnetic Courses coincides exactly with the Correct Magnetic Course you have to turn into a Compass Course.
|
|||
|
|
|||
|
In such an event you must do a little sum in simple pro
|
|||
|
|
|||
|
porti on . Y ou have got three Correct Magnetic Courses, on
|
|||
|
|
|||
|
which you know the Deviation. Y ou find that the Correct Magnetic Course you have to convert to a
|
|||
|
|
|||
|
Compass Course lies between two of them. Take the difference between these two Correct Magnetic Courses,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
A .
|
|||
|
|
|||
|
T ake the difference between one of them
|
|||
|
|
|||
|
and the Correct Magnetic Course you are dealing with,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
B .
|
|||
|
|
|||
|
T ake the difference between the Deviations
|
|||
|
|
|||
|
on the two Correct Magnetic Courses used, and call it
|
|||
|
|
|||
|
C .
|
|||
|
|
|||
|
Then as A is to B so is C to the answer.
|
|||
|
|
|||
|
Multiply
|
|||
|
|
|||
|
B
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
C
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
divi de
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
result
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
A .
|
|||
|
|
|||
|
The result gives you
|
|||
|
|
|||
|
the portion of Deviation to be added to or subtracted from
|
|||
|
|
|||
|
the Deviation belonging to that Correct Magnetic Course
|
|||
|
|
|||
|
from which B was measured whether it is to be added or
|
|||
|
|
|||
|
subtracted, will be apparent on the face of the case.
|
|||
|
|
|||
|
It may also h appen that, having turned your three Compass Courses into Correct Magnetic, you will find that the Correct Magnetic you desire to turn into Com pass does no t lie within their limits, but i s less than the least of them, or greater than the greatest of them ; in which case you must select one or two more Compass
|
|||
|
|
|||
|
Courses to convert until you have two Correct Magnetic
|
|||
|
|
|||
|
C ourses, one greater and the other less than the Correct Magnetic Course you are dealing with, or, if you are
|
|||
|
|
|||
|
lucky, one of which coincides exactly with it. This is a long explanation, and sounds complicated, but it really is
|
|||
|
|
|||
|
simple, and its simplicity will best be shown by one or two examples, worked with the following Deviation Card.
|
|||
|
|
|||
|
60
|
|||
|
|
|||
|
THE PRACTICA L U SE OF THE COMPA SS
|
|||
|
|
|||
|
It will be seen that the Deviation i s given for the Ship’ s Head on every Point by Compass.
|
|||
|
|
|||
|
s u r rox CARD
|
|||
|
|
|||
|
H d l p Shi ’s ea by t d d o p S an ar C m ass
|
|||
|
|
|||
|
Devia tion
|
|||
|
|
|||
|
D iev ation
|
|||
|
|
|||
|
Now suppose you want to s ail from any one place t o
|
|||
|
|
|||
|
another,
|
|||
|
|
|||
|
let
|
|||
|
|
|||
|
us
|
|||
|
|
|||
|
call
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
B .
|
|||
|
|
|||
|
You lay the edge of
|
|||
|
|
|||
|
your parallel
|
|||
|
|
|||
|
ruler
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
A
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
B ,
|
|||
|
|
|||
|
and working
|
|||
|
|
|||
|
them
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
nearest Compass on the Magnetic Chart you find that the
|
|||
|
|
|||
|
Correct Magn etic Course to steer is, let us say, S b W }1 W.
|
|||
|
|
|||
|
On looking at the Deviation Card you see that the
|
|||
|
|
|||
|
Deviation with the Ship’s Head on S b W 5 W is chang
|
|||
|
|
|||
|
ing very rapidl y. On a S b W C ompas s C o urse it i s 6° 1 8 '
|
|||
|
|
|||
|
W,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
SSW
|
|||
|
|
|||
|
C omp a s s
|
|||
|
|
|||
|
Course
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
0°
|
|||
|
|
|||
|
56' E .
|
|||
|
|
|||
|
It i s
|
|||
|
|
|||
|
probable that by applying the Deviations to these two C ompass Cour ses youwill get the two Correct Magneti c
|
|||
|
|
|||
|
Courses between which the Course you wish to steer lies.
|
|||
|
|
|||
|
Proceed thus. Turn the Compass Course into degrees
|
|||
|
|
|||
|
and parts of a degree, and apply the Deviation.
|
|||
|
|
|||
|
o p o W C m ass C urse S b D ev i at i on
|
|||
|
|
|||
|
o p o W W S 1 1° 1 5’
|
|||
|
|
|||
|
C m ass C urse S S
|
|||
|
|
|||
|
W 6° 1 8'
|
|||
|
|
|||
|
D ev i at i on
|
|||
|
|
|||
|
W S 22° 30’
|
|||
|
0° 56' E
|
|||
|
|
|||
|
o t ti o o t ti o W M W S C rrec
|
|||
|
|
|||
|
agne c C urse S 4° 57'
|
|||
|
|
|||
|
M C rrec
|
|||
|
|
|||
|
agne c C urse 2 3° 26 '
|
|||
|
|
|||
|
Now the Correct Magnetic Course we want to steer i s
|
|||
|
|
|||
|
S b W 5 W, which i s S 1 6° 52' 30" W, and thi s lies between
|
|||
|
|
|||
|
THE PRA C" ICA L USE OF THE COMPA S S
|
|||
|
|
|||
|
61
|
|||
|
|
|||
|
the above Correct Magneti c Cours es , namely, S 4° 57’ W and S 2 3° 2 6’ W.
|
|||
|
|
|||
|
To proceed.
|
|||
|
i i F nd the d fference be t t ween th e two Correc t i o Magne c C urs es
|
|||
|
W S 4° 57’ W S 23° 2 6'
|
|||
|
w 1 8° 29 '
|
|||
|
|
|||
|
i i F nd the d fference be
|
|||
|
|
|||
|
t t ween the neares Cor
|
|||
|
|
|||
|
t ti o M rec
|
|||
|
|
|||
|
agne c C
|
|||
|
|
|||
|
l W y name
|
|||
|
|
|||
|
S 4° 57
|
|||
|
,
|
|||
|
|
|||
|
W S 1 6° 5 2’ 30"
|
|||
|
|
|||
|
urs e ,
|
|||
|
a nd
|
|||
|
|
|||
|
W S 4° 5 7’
|
|||
|
|
|||
|
W S 1 6° 52 ’ 30”
|
|||
|
|
|||
|
11 ° 55 30
|
|||
|
|
|||
|
i i F nd the d fference be
|
|||
|
|
|||
|
t vi tio ween the D e a ns
|
|||
|
|
|||
|
t o o d ue
|
|||
|
|
|||
|
the C mpas s
|
|||
|
|
|||
|
oC urses you ha ve con
|
|||
|
|
|||
|
v ter ed
|
|||
|
|
|||
|
W 6 ° 1 8 ’
|
|||
|
|
|||
|
0° 56’ E
|
|||
|
|
|||
|
7° 1 4 '
|
|||
|
|
|||
|
Then, as 1 8° 29 ’ 1 1 ° 55’ 30
|
|||
|
|
|||
|
7° 1 4'
|
|||
|
|
|||
|
a
|
|||
|
|
|||
|
.
|
|||
|
|
|||
|
To Simplify the sum, use the nearest decimals of a
|
|||
|
|
|||
|
degree, and say : as
|
|||
|
|
|||
|
cc .
|
|||
|
|
|||
|
Multiply the second and third term, an d divi de by the
|
|||
|
|
|||
|
first term.
|
|||
|
|
|||
|
1 8 -5
|
|||
|
|
|||
|
4-6
|
|||
|
|
|||
|
Therefore,
|
|||
|
|
|||
|
or 4° 36' is the c orrection to be applied
|
|||
|
|
|||
|
to the Deviation on the nearest Course, which is S b W,
|
|||
|
|
|||
|
or S 1 1 ° 1 5’ W, and it must be subtracted, because the
|
|||
|
|
|||
|
Deviation Westerly is decreasing.
|
|||
|
|
|||
|
vi tio o p o W ( ) D e a n on S 1 1 ° 1 5’
|
|||
|
|
|||
|
C m a ss C urse
|
|||
|
|
|||
|
(Correct ion)
|
|||
|
|
|||
|
W 6 ° 1 8’
|
|||
|
4° 3 6 '
|
|||
|
W
|
|||
|
|
|||
|
1° 42 ' i s therefore the Deviation to be applied to the
|
|||
|
|
|||
|
Correct Magnetic C ourse S b W 5 W.
|
|||
|
|
|||
|
S b Wé W
|
|||
|
Deviation
|
|||
|
|
|||
|
W S IB° 52 ’ BO
|
|||
|
|
|||
|
1 ° 42 ’
|
|||
|
|
|||
|
W
|
|||
|
|
|||
|
SbW
|
|||
|
|
|||
|
S w 1 8 ° 34' 30'f
|
|||
|
|
|||
|
W o p o to t is the C m ass C urse
|
|||
|
|
|||
|
s eer.
|
|||
|
|
|||
|
T ake another case. Suppose you find from the chart that the Correct Magnetic Course to the place to which
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
want
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
go
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
40°
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
you want
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
find
|
|||
|
|
|||
|
out
|
|||
|
|
|||
|
what
|
|||
|
|
|||
|
Compass Course to steer.
|
|||
|
|
|||
|
62
|
|||
|
|
|||
|
THE PR ACTIC A L U SE OF THE COMPA SS
|
|||
|
|
|||
|
Take two Compass Courses from the Deviation Card,
|
|||
|
|
|||
|
and correct them for Deviation.
|
|||
|
|
|||
|
o p o m C
|
|||
|
|
|||
|
ass C urses
|
|||
|
|
|||
|
D eviation
|
|||
|
|
|||
|
NE = N 45 ° E
|
|||
|
|
|||
|
o t c rrec ed for 2 ° 35 ’ E
|
|||
|
|
|||
|
o t NE b N = N 33° 45 ’ E c rrec ed for 6 ° 42 ' E
|
|||
|
|
|||
|
o o M C rr.
|
|||
|
|
|||
|
g a . C urse
|
|||
|
|
|||
|
N 47° 35 ’ E
|
|||
|
|
|||
|
N 40° 2 7’ E
|
|||
|
|
|||
|
Here you have hit so nearly upon the Correct
|
|||
|
|
|||
|
Magneti c Course that no sum in proporti on is necessary, and in steering NE b N by Compass, you will be within 1 ° of the Correct Magnetic Course you require, and
|
|||
|
|
|||
|
goodness knows that is near enough.
|
|||
|
|
|||
|
Again, suppose you want to find the Compass Course to steer in order to sail S 42° E Correct Magnetic.
|
|||
|
|
|||
|
o p o C m ass C urses
|
|||
|
|
|||
|
Deviation
|
|||
|
|
|||
|
S SE SbE
|
|||
|
|
|||
|
o t W S 2 2° 30' E c rrec ed for 2 6° 1 6 ’ o t W S 1 1 ° 1 5 ’ E c rrec ed for 20° 5 8 '
|
|||
|
|
|||
|
o o M C rr.
|
|||
|
|
|||
|
g a . C urse
|
|||
|
|
|||
|
S 48° 46 ’ E
|
|||
|
|
|||
|
S 31 ° 43’ E
|
|||
|
|
|||
|
T he Cor rect Magnetic Course you require to convert
|
|||
|
|
|||
|
into a Compass Course lies between these two, and a sum in proportion must be done.
|
|||
|
|
|||
|
48 ° 46’ 3 1 ° 43'
|
|||
|
|
|||
|
42° 0 ' 3 1 ° 43’
|
|||
|
|
|||
|
1 70
|
|||
|
|
|||
|
3’
|
|||
|
|
|||
|
1 0° 1 7'
|
|||
|
|
|||
|
o Th eref re, 1 7° 3 '
|
|||
|
|
|||
|
1 0° 1 7
|
|||
|
|
|||
|
5 ° 48 ’
|
|||
|
|
|||
|
Or put for convenience sake decimally,
|
|||
|
|
|||
|
17
|
|||
|
|
|||
|
1 0-3
|
|||
|
|
|||
|
5 -8
|
|||
|
|
|||
|
on
|
|||
|
|
|||
|
Multiply the secon d and third terms and divide by the
|
|||
|
|
|||
|
first
|
|||
|
|
|||
|
17)
|
|||
|
51
|
|||
|
87
|
|||
|
|
|||
|
(3 5
|
|||
|
|
|||
|
o ti o i ( q ) the c rrec n re u red
|
|||
|
|
|||
|
vi tio o ( M ) D e a
|
|||
|
|
|||
|
n on S 3 1 ° 43 ’ E C rr.
|
|||
|
|
|||
|
g a .
|
|||
|
|
|||
|
(C orre ct i on)
|
|||
|
|
|||
|
v i t i o o t ti ) ( D e a n on S 42° E C rrec Magne c
|
|||
|
|
|||
|
W 20° 2 8’
|
|||
|
3° 30’
|
|||
|
W 23° 5 8 '
|
|||
|
|
|||
|
o t ti voi tio W M C rrec
|
|||
|
|
|||
|
agne c C urse S 42 ° 0’ E
|
|||
|
|
|||
|
De a n 23° 58’
|
|||
|
|
|||
|
o p o to t e C m a ss C urs
|
|||
|
|
|||
|
s eer
|
|||
|
|
|||
|
S 18° 2' E
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
63
|
|||
|
|
|||
|
Now for B earings. To turn a True Bearing into a
|
|||
|
|
|||
|
Compass B earing, first convert True into Correct Mag
|
|||
|
|
|||
|
netic, by applying the V ariation, and then apply the
|
|||
|
|
|||
|
Deviation d ue to
|
|||
|
|
|||
|
the p osition
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
hip
|
|||
|
|
|||
|
’
|
|||
|
s
|
|||
|
|
|||
|
H d ea .
|
|||
|
|
|||
|
Remember that the D eviation due to the B ea ring has
|
|||
|
|
|||
|
nothing whatever to d o with it. In all these cases
|
|||
|
|
|||
|
you will find it conveni ent to work with Degrees and parts of a Degree, therefore accustom yourself to turn Points and parts of a Point into Degrees and parts of a
|
|||
|
|
|||
|
Degree.
|
|||
|
|
|||
|
Y Q A TAB LE or THE ANGLES WHIC H EVER POINT AND
|
|||
|
|
|||
|
UARTE R POINT
|
|||
|
|
|||
|
M D or T HE COMPAS S MAKE S WIT H T HE
|
|||
|
|
|||
|
ERI IAN
|
|||
|
|
|||
|
o t N r h
|
|||
|
|
|||
|
Points
|
|||
|
|
|||
|
Poi tn s
|
|||
|
|
|||
|
o t S u h
|
|||
|
|
|||
|
NbE NNE
|
|||
|
|
|||
|
Nbw
|
|||
|
|
|||
|
0
|
|||
|
0_
|
|||
|
1
|
|||
|
1 — 31 1 —s Ls
|
|||
|
2
|
|||
|
2 —i
|
|||
|
|
|||
|
Nw b N
|
|||
|
|
|||
|
2— i
|
|||
|
|
|||
|
g1
|
|||
|
|
|||
|
“
|
|||
|
|
|||
|
I
|
|||
|
|
|||
|
NE b E Nw b w
|
|||
|
|
|||
|
h
|
|||
|
u
|
|||
|
k
|
|||
|
b
|
|||
|
|
|||
|
— H
|
|||
|
N
|
|||
|
|
|||
|
kl b
|
|||
|
|
|||
|
w l
|
|||
|
|
|||
|
Fa
|
|||
|
|
|||
|
FI
|
|||
|
|
|||
|
“
|
|||
|
|
|||
|
!
|
|||
|
0
|
|||
|
|
|||
|
SE b S Sw b s SE b E Swb w
|
|||
|
|
|||
|
ENE
|
|||
|
|
|||
|
EbN
|
|||
|
West
|
|||
|
|
|||
|
Eb S
|
|||
|
|
|||
|
64
|
|||
|
|
|||
|
THE PRA CTICA L U SE OF THE COMPA SS
|
|||
|
|
|||
|
The scale upon the preceding page shows you the
|
|||
|
|
|||
|
number of degrees due to any Point, half Point, or quarter Point, an d vice ve-rsa . At s ea you have alway s a Comp ass
|
|||
|
|
|||
|
with you, wi th degrees in dic ated on the Card ; all the
|
|||
|
|
|||
|
Epitomes contain T ables giving degrees for points and
|
|||
|
|
|||
|
points for degrees, and the Board of Trade Examin ers
|
|||
|
|
|||
|
will provide you with a compass card containing a T able
|
|||
|
|
|||
|
of Angles similar to the one overleaf, so calculation is
|
|||
|
|
|||
|
really unnecessary ; but at the same time there is no
|
|||
|
|
|||
|
harm in knowing how to calculate for your self the
|
|||
|
|
|||
|
number of D egrees cont ained in any Course given in
|
|||
|
|
|||
|
Points and parts of Points, and the Points and parts of
|
|||
|
|
|||
|
Points equivalent to any number of D egrees.
|
|||
|
|
|||
|
To turn P oints into D egrees, eta — If y ou w ant t o ex
|
|||
|
|
|||
|
press Points in Degrees as every Point contains 1 1 °
|
|||
|
|
|||
|
all you have to do i s to multiply the Compass Course by
|
|||
|
|
|||
|
11°
|
|||
|
|
|||
|
For example, if
|
|||
|
|
|||
|
the Course
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
E
|
|||
|
|
|||
|
3
|
|||
|
4
|
|||
|
|
|||
|
N— that
|
|||
|
|
|||
|
is,
|
|||
|
|
|||
|
74 Points from North, or in decimals — this multi
|
|||
|
|
|||
|
plied by 1 1 °
|
|||
|
|
|||
|
or in decimals
|
|||
|
|
|||
|
will pro duc e the
|
|||
|
|
|||
|
number of D egrees in E g N . Thus
|
|||
|
|
|||
|
EN
|
|||
|
1 1° 15'
|
|||
|
|
|||
|
7% Poi tn s from North
|
|||
|
4 1 1 D egrees
|
|||
|
|
|||
|
72 5 Points D egrees
|
|||
|
|
|||
|
362 5 1 450 725 72 5
|
|||
|
|
|||
|
8 1 5 625 Degrees
|
|||
|
|
|||
|
‘5625
|
|||
|
|
|||
|
But the 5 625 must be turned into minutes
|
|||
|
|
|||
|
60
|
|||
|
|
|||
|
i t 33 7500 m nu es.
|
|||
|
|
|||
|
75
|
|||
|
There remains '75 to be turn ed into secon ds 60
|
|||
|
45 -00
|
|||
|
|
|||
|
an d 81 ° 33’ 40 i s the are required. Therefore, E N is
|
|||
|
|
|||
|
equal
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
81 °
|
|||
|
|
|||
|
33' 45"
|
|||
|
|
|||
|
E .
|
|||
|
|
|||
|
To turn D egrees etc. into P oints .—' Now for the revers e
|
|||
|
|
|||
|
of this problem— namely, to express Degrees in Points.
|
|||
|
|
|||
|
66
|
|||
|
|
|||
|
THE PRACTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
Error is caused by V ariation or by Deviation, or by both combined. \Ve will consider the effect of Error from
|
|||
|
|
|||
|
whatever cause it arises.
|
|||
|
|
|||
|
Consi der yourself to be in the mi ddle of the Compass, looking towards its circumference. Suppose the North
|
|||
|
|
|||
|
seeking end of the Needle to be from some cause or other
|
|||
|
|
|||
|
drawn to the right. The Error will be Easterly. Y ou
|
|||
|
|
|||
|
can see this for yourself. Set the movable Compass Card
|
|||
|
|
|||
|
pointing true North suppose the Needle to be deflected
|
|||
|
|
|||
|
two Points to the right, the Error will be t wo points to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
rig
|
|||
|
|
|||
|
h
|
|||
|
|
|||
|
t ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
E rro r
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
in
|
|||
|
|
|||
|
scientific
|
|||
|
|
|||
|
works
|
|||
|
|
|||
|
call ed p lus
|
|||
|
|
|||
|
;
|
|||
|
|
|||
|
but I presum e, because the Error i s towards the East when
|
|||
|
|
|||
|
you are looking North, it i s commonly called E a s terly
|
|||
|
|
|||
|
Error. It is called Easterly Error when either end
|
|||
|
|
|||
|
of the Needle is dr awn towards your right, even i f i t
|
|||
|
|
|||
|
is drawn towards the West for instance, leave the
|
|||
|
|
|||
|
Compass Card in the same position, and look toward the South . The South- seeking end of the Needle has been
|
|||
|
|
|||
|
drawn towards your right hand, and the Deviation i s Easterly, though the South—seeking Pole of the Needle i s
|
|||
|
|
|||
|
deflected towards the “ 7est . Hence the rule always to be
|
|||
|
|
|||
|
ob served i s, that when the Needle is drawn to the right, D eviation i s E a sterly when the Needle i s drawn to the
|
|||
|
|
|||
|
f le t ,
|
|||
|
|
|||
|
it
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
l Ves terly.
|
|||
|
|
|||
|
Another rule never to be forgotten is, that when the Tr ue B ea r ing i s to th e right of th e m C np a ss B ea-r ing ,
|
|||
|
the Error i s E asterly. \Vhen it i s to the left it i s
|
|||
|
|
|||
|
\Vesterly. T hi s sounds odd in connection with the fore
|
|||
|
|
|||
|
going rule, but a glance at the Compass Card will Show
|
|||
|
|
|||
|
it is true. Make the North Point of the movable card to coincide
|
|||
|
|
|||
|
with the North Point of the fixed card ; now shift the
|
|||
|
|
|||
|
movable card round two Points to the right : the Needle
|
|||
|
|
|||
|
i s now pointing to NNE (True), NNE i s to the right of
|
|||
|
|
|||
|
THE PRACTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
67
|
|||
|
|
|||
|
North, therefore the Error i s two Points easterly. Shift
|
|||
|
|
|||
|
the card in any way you like, say till the North-seeking
|
|||
|
|
|||
|
end
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Needle
|
|||
|
|
|||
|
points
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
WNW .
|
|||
|
|
|||
|
WNW is six
|
|||
|
|
|||
|
Points to the left of North, therefore the Error i s Six Point s Westerly. Now if you look the other way towards
|
|||
|
|
|||
|
the South, the South-seeking end of the Needle will point to E SE (T rue). E SE i s six Points to the left of South , and the Error i s of cour se six Points Westerly, although
|
|||
|
the South-seeking end is actually drawn to the East)
|
|||
|
The only thing to be absolutely remembered is, that looking from the centre of the Compass towards any part
|
|||
|
|
|||
|
of the circumference, if T r ue Bearing is to the right
|
|||
|
|
|||
|
of the Compass Bearing, D eviation i s Easterly ; if it ' is to the left i t i s Westerly. And if the Needle i s
|
|||
|
|
|||
|
drawn to the right of True it gives Easterly Deviation
|
|||
|
|
|||
|
if it i s drawn to the left of True it gives Westerly
|
|||
|
|
|||
|
Deviation.
|
|||
|
|
|||
|
Supposing you know that with the Ship ’s Head in a
|
|||
|
|
|||
|
certain direction there is such and such an Error, and you want to find out what Course to steer in order to counter
|
|||
|
|
|||
|
act that error and make the required True Course. Let
|
|||
|
|
|||
|
us imagine you want to steer NE (True), and you know that with the Ship’s Head NE you have 1 4 Points Westerly
|
|||
|
|
|||
|
Error. Fix the movable card pointing North an d South (True), then the Compass NE will of course be pointing NE (True). But the Needle is deflected to the left, because the Error is Westerly 1 4Points. Revolve the Card till the
|
|||
|
|
|||
|
NE Point points to NE b N AN if, therefore, you steer NE by your C ompass, you would be steering NE b N gN
|
|||
|
|
|||
|
(True), which w ould
|
|||
|
|
|||
|
not do
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
all .
|
|||
|
|
|||
|
You would have to
|
|||
|
|
|||
|
steer
|
|||
|
|
|||
|
NE
|
|||
|
|
|||
|
b
|
|||
|
|
|||
|
g E E ,
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
11 ,
|
|||
|
|
|||
|
Points to
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
right of
|
|||
|
|
|||
|
NE
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
your Compass. Therefore, it is plain that to allow for an Error, if the Error is Westerly, you must steer the amount of Error to the right of the Course wanted, as shown on
|
|||
|
|
|||
|
68
|
|||
|
|
|||
|
THE PRA CTICA L USE OF -THE COMPA SS
|
|||
|
|
|||
|
your Compass . If the Error i s E asterly, steer the amount
|
|||
|
|
|||
|
of Error to the left of your Comp ass . Here comes another
|
|||
|
|
|||
|
golden rule in finding what Course to steer. Knowing
|
|||
|
|
|||
|
the True Course and the Error of your Compass Easterly
|
|||
|
|
|||
|
Error must be allowed for to the Left, Westerly to the
|
|||
|
|
|||
|
Ri ght .
|
|||
|
|
|||
|
Don’t forget these three important facts.
|
|||
|
|
|||
|
i f l s t,
|
|||
|
|
|||
|
T rue
|
|||
|
|
|||
|
is to the right, Error is Easterly ; and if True is to the left,
|
|||
|
|
|||
|
Error is Westerly.
|
|||
|
|
|||
|
2nd ,
|
|||
|
|
|||
|
if
|
|||
|
|
|||
|
the needle
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
deflected
|
|||
|
|
|||
|
to the
|
|||
|
|
|||
|
right of True the Error is Easterly, and if to the left of
|
|||
|
|
|||
|
True the Error is Westerly . 3rd, knowing the Error, steer the amount of it to the left if the Error is Easterly, and
|
|||
|
to the right if it i s Westerly, in order to counteract the
|
|||
|
|
|||
|
Erro r . (In the ordinary Masters’ Examination it i s required
|
|||
|
|
|||
|
that the candidate should be able to ascertain the Correct
|
|||
|
|
|||
|
Magnetic Bearing by taking the Compass Bearings of a distant obj ect with the S hip’ s Head in the Cardinal and
|
|||
|
|
|||
|
Quadrantal Points, and to draw and un derstand a Napier’s
|
|||
|
|
|||
|
Diagram.)
|
|||
|
|
|||
|
To Ascertain the Deviat ion
|
|||
|
|
|||
|
In order to ascertain the Devi ation of your Compass, it is necessary to know how to find the Correct Magnetic
|
|||
|
|
|||
|
Bearing of a distant object at sea, so as to compare it
|
|||
|
|
|||
|
with its hearing by Comp as s . The following method i s
|
|||
|
|
|||
|
usually adopted.
|
|||
|
|
|||
|
Take the Compass Bearings of an object not less than
|
|||
|
|
|||
|
5 or 6 miles distant, with the Ship’ s Head on the four
|
|||
|
|
|||
|
Cardinal and on the four Quadrantal Points by Compass
|
|||
|
|
|||
|
by swinging the ship.
|
|||
|
|
|||
|
If the Bearings are all the same ,
|
|||
|
|
|||
|
the Compass has no D eviation . But if they differ, write
|
|||
|
|
|||
|
them down and turn them into degrees . If they are all in
|
|||
|
|
|||
|
the same Q uadrant, their sum divide d by 8 will give the
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
69
|
|||
|
|
|||
|
Correct Magnetic Bearing of the distant object. For
|
|||
|
example :
|
|||
|
|
|||
|
H d p Shi 8 ea by t d d o p S an ar C m ass
|
|||
|
|
|||
|
of D t t Bearing
|
|||
|
|
|||
|
is an
|
|||
|
|
|||
|
853; z Ob]6
|
|||
|
|
|||
|
s andai d
|
|||
|
|
|||
|
1 as
|
|||
|
|
|||
|
H d p Shi 8 t d d o S an ar
|
|||
|
|
|||
|
ea by
|
|||
|
p C m ass
|
|||
|
|
|||
|
t t Bearing of Dis an
|
|||
|
|
|||
|
gpyifg Obj ec
|
|||
|
|
|||
|
nd ard
|
|||
|
ru s
|
|||
|
|
|||
|
Here we have 8 Compass Bearings, all in one Quadrant and their sum divided by 8 will give us
|
|||
|
,
|
|||
|
the ‘ Correct Magnetic ’ Bearing of the distant obj ect.
|
|||
|
|
|||
|
Thus
|
|||
|
|
|||
|
8 )285
|
|||
|
|
|||
|
ov 35° a nd 5 °
|
|||
|
|
|||
|
er
|
|||
|
|
|||
|
50
|
|||
|
60
|
|||
|
|
|||
|
Therefore
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
C o rr e ct
|
|||
|
|
|||
|
Magnetic
|
|||
|
|
|||
|
B e ari n g
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
35°
|
|||
|
|
|||
|
38
|
|||
|
|
|||
|
’E .
|
|||
|
|
|||
|
If the Bearings are not in the same Quadra nt , but are
|
|||
|
|
|||
|
all Easterly or all Westerly, while some are North and
|
|||
|
|
|||
|
some are South, see which of the Bearings are the more numerous, those from North or those from South change
|
|||
|
|
|||
|
the names of the less numerous Bearings by subtracting
|
|||
|
|
|||
|
each from 1 80° so as to make all the B earings of the same
|
|||
|
|
|||
|
name — that i s, all from North or from South towards
|
|||
|
|
|||
|
East, or towards West, as the case may be. Add them
|
|||
|
|
|||
|
together, and divi de by 8 and the result i s the Correct Magnetic Bearing of the di stant obj ect . If it
|
|||
|
|
|||
|
is 90° the Correct Magnetic Bearing will be due East
|
|||
|
|
|||
|
or West. If it is more than 90° take it from 1 80° and
|
|||
|
|
|||
|
change m its ' na e from North to S outh, or i v ce versa .
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
Thus N 90° E will of course be East, and N 1 00° E
|
|||
|
|
|||
|
will
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
80°
|
|||
|
|
|||
|
E .
|
|||
|
|
|||
|
Here is an example
|
|||
|
|
|||
|
i H d p Sh
|
|||
|
|
|||
|
‘
|
|||
|
s
|
|||
|
|
|||
|
e a by
|
|||
|
|
|||
|
t d d S an ar Compm
|
|||
|
|
|||
|
oN rt h
|
|||
|
|
|||
|
i of p Cam as Bear ng Di t j t s -a nt Ob ec
|
|||
|
S 84° W
|
|||
|
|
|||
|
i H d p Sh
|
|||
|
|
|||
|
’
|
|||
|
s
|
|||
|
|
|||
|
t d d S an a r
|
|||
|
|
|||
|
p ea by
|
|||
|
Com ass
|
|||
|
|
|||
|
o i of p C m ass Bear ng Di t t j t s an Ob ec
|
|||
|
|
|||
|
Here we have
|
|||
|
|
|||
|
some of
|
|||
|
|
|||
|
the Bearings in
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
N\V ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
some in the S\V Quadrants ; of course \Vest i s N' 90° “ T
|
|||
|
|
|||
|
or
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
90°
|
|||
|
|
|||
|
“
|
|||
|
|
|||
|
7
|
|||
|
,
|
|||
|
|
|||
|
whichever
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
li ke .
|
|||
|
|
|||
|
There are more Bearings
|
|||
|
|
|||
|
in the N\V Quadr ant than in the W S ' Quadrant, and
|
|||
|
|
|||
|
therefore we will change the
|
|||
|
|
|||
|
Bearings into N\V
|
|||
|
|
|||
|
S 84° W
|
|||
|
t Wes
|
|||
|
|
|||
|
N 96° W
|
|||
|
N 90° N 8 1 ° IV N 76° \V
|
|||
|
N 79° W
|
|||
|
|
|||
|
S 83° W
|
|||
|
S 79 ° \V
|
|||
|
|
|||
|
o t ti i M C rrec
|
|||
|
|
|||
|
agne c Bear ng
|
|||
|
|
|||
|
N 97° W
|
|||
|
N 101° W
|
|||
|
8 708
|
|||
|
N 88—37° W
|
|||
|
|
|||
|
T ake another combinati on . Suppose all the Bearings
|
|||
|
|
|||
|
are in the Northern or all in the Southern half of the
|
|||
|
|
|||
|
Compass, but some of them are East and some
|
|||
|
|
|||
|
In
|
|||
|
|
|||
|
such a case add the Easterly ones together, and add the ones together ; then take the difference of the
|
|||
|
|
|||
|
sums,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
divide it
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
8 ,
|
|||
|
|
|||
|
and name
|
|||
|
|
|||
|
the product
|
|||
|
|
|||
|
E ast
|
|||
|
|
|||
|
or “ Test according to whether the sum of the Easterly
|
|||
|
|
|||
|
or “ v esterly B earings i s the greater. The resul t i s the Correct Magnetic Bearing.
|
|||
|
|
|||
|
Shoul d any of the C ompass B earings be due North or
|
|||
|
|
|||
|
due South, they are to be reckoned as zero in the additions,
|
|||
|
|
|||
|
but the difference is still to be divided by eight. Here i s
|
|||
|
|
|||
|
an example
|
|||
|
|
|||
|
TIIE PRACTICA L USE OF THE COMPASS
|
|||
|
|
|||
|
71
|
|||
|
|
|||
|
i H d p Sh ’s ea by t d d o p S an ar C m ass
|
|||
|
|
|||
|
o p C m ass B Di t t s an Obj ec
|
|||
|
|
|||
|
i H d o i of p Sh 's ea by
|
|||
|
|
|||
|
t d d o Di t t j p m S an ar C
|
|||
|
|
|||
|
a ss
|
|||
|
|
|||
|
p C m ass Bear ng s an Ob ec t
|
|||
|
|
|||
|
t SE Q uadran
|
|||
|
s S° E S 4° E S l o° E 8 9° E
|
|||
|
S 28° E
|
|||
|
|
|||
|
t W Q S
|
|||
|
|
|||
|
ua dra n
|
|||
|
|
|||
|
s w 2 ° s no w s 6°W W S l 9°
|
|||
|
|
|||
|
S28° E
|
|||
|
w s1 9°
|
|||
|
8 )S 9° E
|
|||
|
s 1 ° 7’ E
|
|||
|
|
|||
|
T hus
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Correct
|
|||
|
|
|||
|
Magnetic
|
|||
|
|
|||
|
Bearing
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
S
|
|||
|
|
|||
|
1°
|
|||
|
|
|||
|
7’
|
|||
|
|
|||
|
E .
|
|||
|
|
|||
|
To find
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
D
|
|||
|
|
|||
|
evia
|
|||
|
|
|||
|
tion
|
|||
|
|
|||
|
_
|
|||
|
.
|
|||
|
|
|||
|
—Having
|
|||
|
|
|||
|
t h us
|
|||
|
|
|||
|
found
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Correct
|
|||
|
|
|||
|
Magnetic Bearing of the di stant obj ect, the next proceeding
|
|||
|
|
|||
|
is to find the D eviation of your Compass on the eight equi
|
|||
|
|
|||
|
distant positions oi the Ship’ s Head from the observations
|
|||
|
|
|||
|
on which you have derived your Correct Magnetic Bearing.
|
|||
|
|
|||
|
You can begin where you like. It does not matter.
|
|||
|
|
|||
|
Suppose we begin on North. Write down the Bearing of
|
|||
|
|
|||
|
the obj ect by Compass with the Ship’s Head North, and under it write the Correct Magnetic Bearing ; the difi erence
|
|||
|
|
|||
|
is the Deviation with the Ship’s Head North by Compass.
|
|||
|
|
|||
|
fl If the Compass Bearing and the Correct Magnetic
|
|||
|
|
|||
|
Bearing are both in the same Quadr ant, you have only to
|
|||
|
|
|||
|
subtract the less from the greater. Thus, suppose the
|
|||
|
|
|||
|
di st an t
|
|||
|
|
|||
|
obj ect
|
|||
|
|
|||
|
bore
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
Compass N
|
|||
|
|
|||
|
75 °
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Correct
|
|||
|
|
|||
|
Magneti c
|
|||
|
|
|||
|
Bearing
|
|||
|
|
|||
|
was
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
80°
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
differe n c e ,
|
|||
|
|
|||
|
namely
|
|||
|
|
|||
|
i s the Deviation . But the B earings may be in di erent
|
|||
|
|
|||
|
Quadrants.
|
|||
|
|
|||
|
Suppose
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
obj ect
|
|||
|
|
|||
|
bore
|
|||
|
|
|||
|
by
|
|||
|
|
|||
|
Compass
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
75°
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Correct Magnetic Bearing was
|
|||
|
|
|||
|
S 80° E .
|
|||
|
|
|||
|
Well, from
|
|||
|
|
|||
|
N 75° E to East i s
|
|||
|
|
|||
|
and from East to S 80° E is
|
|||
|
|
|||
|
in this case y ou must Obviously add them together,
|
|||
|
|
|||
|
and the Deviation is
|
|||
|
|
|||
|
Or, if you like, take one Bearing
|
|||
|
|
|||
|
from 1 80° so as to make them both of the same name, and
|
|||
|
|
|||
|
72
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA S S
|
|||
|
|
|||
|
then take the less from the greater. Thus S 80° E taken
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
1 80°
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
1 00° E .
|
|||
|
|
|||
|
N 1 00° E
|
|||
|
|
|||
|
N 75° E i s
|
|||
|
|
|||
|
which is the Deviation.
|
|||
|
|
|||
|
B ut ,
|
|||
|
|
|||
|
a gai n ,
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Bearings may lie on
|
|||
|
|
|||
|
opposite
|
|||
|
|
|||
|
sides
|
|||
|
|
|||
|
of the North or South Points. Suppose the Compass
|
|||
|
|
|||
|
B e arin g
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
distant
|
|||
|
|
|||
|
obj ect
|
|||
|
|
|||
|
to
|
|||
|
|
|||
|
be
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
5°
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
and its
|
|||
|
|
|||
|
Correct
|
|||
|
|
|||
|
M a gn eti c
|
|||
|
|
|||
|
B e ari n g
|
|||
|
|
|||
|
N
|
|||
|
|
|||
|
1 3° “ 7 ,
|
|||
|
|
|||
|
obviously
|
|||
|
|
|||
|
you
|
|||
|
|
|||
|
must
|
|||
|
|
|||
|
add
|
|||
|
|
|||
|
them together. Y ou have 5° on one side of North, and
|
|||
|
|
|||
|
1 3° on the other side, therefore they are 1 8° apart, and
|
|||
|
|
|||
|
the Deviation is
|
|||
|
|
|||
|
To na me the D evia tion — Fancy yoursel f situated in the
|
|||
|
|
|||
|
mi ddle of the C ompass Card and looking out to the rim
|
|||
|
|
|||
|
and towards the Bearings then if the Correct Magnetic
|
|||
|
|
|||
|
is to the right of the Compass, the Deviation is Easterly i f Correct Magnetic i s to the left it is \Vesterly.
|
|||
|
|
|||
|
Having thus foun d the Deviation and n amed it
|
|||
|
|
|||
|
correctly for the Ship’s Head North by Compass, proceed
|
|||
|
|
|||
|
to find the D eviations, and name them with the Ship ’ s
|
|||
|
|
|||
|
Head
|
|||
|
|
|||
|
NE ,
|
|||
|
|
|||
|
East,
|
|||
|
|
|||
|
SE ,
|
|||
|
|
|||
|
South,
|
|||
|
|
|||
|
SW ,
|
|||
|
|
|||
|
\V est,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
W N ’ .
|
|||
|
|
|||
|
If
|
|||
|
|
|||
|
you c an do one you can do all. It only requires a little
|
|||
|
|
|||
|
care in naming them correctly. Here are the examples
|
|||
|
|
|||
|
given above completed. No. 1 is
|
|||
|
|
|||
|
i H d p Sh ’s ea by
|
|||
|
|
|||
|
t d d p m S an ar Co
|
|||
|
|
|||
|
a ss
|
|||
|
|
|||
|
fl
|
|||
|
De ation
|
|||
|
|
|||
|
With the Ship’ s Head North by Compass, the Compass
|
|||
|
|
|||
|
bearing
|
|||
|
|
|||
|
of
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
distant
|
|||
|
|
|||
|
obj ect
|
|||
|
|
|||
|
was N
|
|||
|
|
|||
|
40°
|
|||
|
|
|||
|
E ,
|
|||
|
|
|||
|
an d
|
|||
|
|
|||
|
the
|
|||
|
|
|||
|
Correct
|
|||
|
|
|||
|
Magn etic Bearin g N 35° 38’ E ; the differen ce, 4°
|
|||
|
|
|||
|
is
|
|||
|
|
|||
|
the D evi ation, and it i s \Vesterly, because the Correct
|
|||
|
|
|||
|
74
|
|||
|
|
|||
|
THE PRA CTICA L USE OF THE COMPA SS
|
|||
|
|
|||
|
m Napier’s Diag ra
|
|||
|
|
|||
|
A Napier’s Cur ve is a most ingenious and useful
|
|||
|
|
|||
|
invention, for which the author deserves the thanks of all
|
|||
|
|
|||
|
those who go down to the sea in ships, and especially of those who go up for examination . It offers the simplest
|
|||
|
|
|||
|
of all methods of turning Compass Courses into Correct Magnetic C ourses, or Correct Magnetic C ourses into Compass Courses, and of ascertaining the Deviation of
|
|||
|
|
|||
|
the Compass with the Ship’s Head in any position.
|
|||
|
|
|||
|
The principle of Napier’s D iagram is very diifi cult to
|
|||
|
|
|||
|
explain, and I give up the attempt. Y ou have got to
|
|||
|
|
|||
|
imagine as best you can the circular rim of the Compass
|
|||
|
|
|||
|
Card represented as straight.
|
|||
|
|
|||
|
The diagram consists of a straight line marked North
|
|||
|
|
|||
|
at the top and bottom, and South in the middle, and divided into the thirty-two Points of the Compass. The
|
|||
|
|
|||
|
degrees are given from zero at the top to 90° at East,
|
|||
|
|
|||
|
from 90° at East to zero at South, from zero at South to
|
|||
|
|
|||
|
9 0°
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
YV est ,
|
|||
|
|
|||
|
and
|
|||
|
|
|||
|
from
|
|||
|
|
|||
|
90° at “ T est
|
|||
|
|
|||
|
to zero at
|
|||
|
|
|||
|
North
|
|||
|
|
|||
|
at
|
|||
|
|
|||
|
the bottom. Lines are drawn forming an angle of 60°
|
|||
|
|
|||
|
with the medial line of the Diagram, and intersecting each
|
|||
|
|
|||
|
other at every Compass Point. The right - hand side of
|
|||
|
|
|||
|
the medial line is East, the left-hand side is West . The lines drawn from right to left downwards are plain, those from left to right are dotted. A glance at the accompany
|
|||
|
|
|||
|
ing diagram (fi g. 2) will show thi s at once.
|
|||
|
|
|||
|
To d ra w a f curve o D evia tion — Tu practic e you woul d
|
|||
|
|
|||
|
of course have first to find the D eviation on the four
|
|||
|
|
|||
|
Cardinal and the four Quadrantal Points but these will
|
|||
|
|
|||
|
be given you at the Board of Trade Examination.
|
|||
|
|
|||
|
With a pair of dividers measure anywhere on the
|
|||
|
|
|||
|
medial line the D eviation with the Ship ’ s Head North ;
|
|||
|
|
|||
|
then, if the D eviation is Easterly, measure it on the d otted
|
|||
|
|