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Most studies on visual perception assume a limited region in visual
space to be Euclidean. In a series of alley experiments, in which exten-
sive configurations of stimulus points in a frameless space were dealt
with, it was found that a horizontal or slanted plane extending from the
subject is best described by hyperbolic geometry, whereas a fron-
toparallel plane in front of the subject is best described by Euclidean
geometry. Theoretical problems around these findings and two proper-
ties of visual space (VS) were discussed: (1) VS is closed in the sense
that no percepts can appear at an infinite distance. (2) VS is dynamic
in the sense that its global structure critically depends upon the con-
figuration of objects in the physical space. Two questions were also
discussed: (1) How far is VS extended beyond the farthest percept
under various conditions? (2) How does the sky, as the boundary of
VS, in daytime as well as at night, change its shape in accordance with
what we see in VS? ] 1997 Academic Press

RIEMANNIAN REPRESENTATION OF VISUAL SPACE

Let us denote by VS the space we are perceiving in front
of ourselves and by X the physical space from which light
stimuli come. VS is a coherent complex that is segmented
into figures, background, and the self. The self is a percept
and it is to be distinguished from the body that is a physical
object in X (Ko� hler, 1929). Both VS and the self are final
products of the long series of processes. The series underly-
ing VS consists of the physical process in X from physical
objects to the retina and the physiological process from the
retina to the brain. The process underlying the self stems
from proprioceptive stimulation. Some parts of the self, such
as hands, may be visible, but the main function of the self in
VS is to determine fundamental directions of VS, above and
below as well as to the right and left, and to function as the
origin for distances, how far away figures are. We regard VS
to be three-dimensional. It is through VS that we guide our
bodies in X so as to reach, manipulate, or avoid objects
therein. The global structure of VS was described before in
(Indow, 1991, 1995). The following five features will be rele-
vant to the discussion in this article.

VS1. VS is closed. At the end of our line of regard, no mat-
ter where it is directed, there is always a percept appearing

at a finite distance. Indoors, it may be a table or the wall,
and outdoors, trees, terrain, or the sky. Neither infinity nor
nothing can be percepts. In a segmented VS, however, there
exits a terra incognita between the self and percepts.

VS2. We perceive a number of geometrical patterns in VS;
straight lines and their lengths, a flat plane, angles,
betweenness, parallelness, etc.

VS3. VS is dynamic. The size and structure of VS change
according to the physical condition in X, especially to the
farthest physical objects. In other words, VS is not a solid
container into which various percepts are placed. Rather it
is like a balloon.

VS4. Under ordinary conditions, the sky appears as a
vault, and when visible, the horizon is always at the ``eye-
level'' no matter whether the eyes are directed upward or
downward (Sedgwick, 1980, 1986). Hence, according to the
height of eye and the direction of regard, the areas occupied
by sky and ground or ocean change in VS.

VS5. VS is stable. Unless we fixate something, VS is a
product based on multiple glances. Nevertheless, we usually
see a coherent VS. When the direction of regard is changed
or the body moves, we feel the change of the direction or the
position of self in a stable VS.

Most people may think that none of the mathematically
well-established geometries is suitable for describing the
global structure of VS. However, to account for results of
the so-called alley experiment, Luneburg (1947, 1950), a
geometer, postulated that VS is a Riemannian space (R) of
constant curvature (K) and conjectured that K<0. The idea
was reiterated by Blank (1958, 1959), a theoretical physicist.
Following the style of Busemann (1942, 1955), the basic
motives for this postulation can be briefly summarized as
follows:

RS1. If VS is finitely compact and convex and if the dis-
tance $ we see between any two percepts in VS satisfies
Fre� chet's conditions ($ik t$ki o0, $ii t0, $ij �$jk o or
t$ik where ``t, o, and � '' respectively denote ``to appear
equal to, larger than, and to be concatenated''), then VS
is regarded as a metric space. These prerequisites are not
contradictory to our perceptual experience.
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RS2. If VS is locally Euclidean, as tacitly assumed in most
studies of visual perception in a limited location in VS, then
VS is a Riemannian space R. The geometrical property of a
local region in R is characterized by the Gaussian total cur-
vature K therein.

RS3. If a space R allows free mobility, K should not
change from region to region. For R of constant curvature,
three geometries are possible; elliptic (K>0), Euclidean
(K=0), and hyperbolic (K<0). It is called the
Helmholtz�Lie problem to discuss the conditions of physi-
cal space under which a physical object can move from one
position to another without changing its shape and size. The
conclusion is that the physical space must be structured
according to either one of these geometries (Busemann,
1955; Freudenthal, 1965; Suppes et al., 1989). As to VS, we
have to deal with invariance of a perceived figure, not that
of a solid object as its physical counterpart. With the same
logic, we can argue that, if we can see two congruent figures
at any two locations in a subspace of VS by appropriately
adjusting the size and shape of respective physical objects,
then the subspace must be a R of constant K (Indow, 1991).
Furthermore, if a similarity transformation is possible in a
subspace of VS to change the size of a figure keeping its
shape strictly invariant, then the subspace must be
Euclidean. Mathematically speaking, unless K=0, a
proportional change in lengths introduces some distortion
in angles.

Wang (1951, 1952) discussed free-mobility of small line
segments, instead of figures, and showed that the possible
geometries of the so-called G-spaces of Busemann (more
general than R) are limited to the above-mentioned three if
the dimensionality of the G-space is even or three. We are
concerned only with 3D VS as R3 or subplanes in VS as R2.
This condition may seem easier to test experimentally.
However, if we design an experiment to verify the prerequi-
site of VS being R of constant curvature, it seems to me
more important to rely upon a more overall cognitive
impression such as the perceptual congruence or similarity
rather than to carry out piecemeal tests of mobility of line
segments. I do not know any psychophysical experiment in
which the possibility of continuous maintenance of percep-
tual congruence or similarity of a figure over a wide range
of VS has been carefully tested. The possibility of perceptual
similarity transformation will be a necessary condition to
have a realistic picture (tempo l'oeil) of a scene. This
problem will not be discussed in this article. The possibility
of perceptual congruence is presupposed in the procedure to
match two figures. This procedure is widely used in many
experiments. It is not clear to what extent this overall
impression guarantees that the subject sees strict identities
in lengths and angles. However, whenever the matching is
possible in a subspace of VS, we can say that the subspace
can be regarded as an R of constant curvature within that

degree of uncertainty. The physical space X is a 3D
Euclidean space E 3.

We can fit theoretical equations to the data of so-called
alley experiments, and all the results were shown in Indow
(1991) and Indow 6 Watanabe (1984a). In this experiment,
pairs of stimulus points [QLi , QRi] are presented, one on
the left and the other on the right of the median line and
i=1 to n from the farthest pair to the nearest pair to the
subject. All are on the horizontal plane passing though the
eyes, and the farthest pair [QL1 , QR1] is fixed. The subject
is asked to adjust the positions of the remaining Q's in two
ways. The head is fixed, but the subject is allowed to move
the eyes during the adjustments. The resulting configuration
[QLi , QRi] is called a parallel alley (P) when adjusted so
that each series, QLi and QRi appears straight and the two
are parallel, and a distance alley (D) when adjusted so that
all pairs, QLi and QRi appear to have the same lateral distan-
ces. In experiments in which no framework, such as a wall
or the edges of table, is visible, the two alleys do not coincide
and the D-alley, [QLi , QRi]D , lies outside of the P-alley,
[QLi , QRi]P . This was true not only for [QLi , QRi] on the
horizontal plane but also for [QLi , QRi] on a slanted plane
passing through the eyes. This fact implies that each of these
planes in VS with various upward directions of regard is R2

of K<0. We had satisfactory fits of theoretical equations to
[QLi , QRi]P and [QLi , QRi]D by adjusting two free
parameters, K and _. The latter parameter _ will be
explained in the next section. Always K turned out to be
negative, which implies that VS under this condition is
structured as a hyperbolic space.

EUCLIDEAN MAP OF VS

There are various ways to depict Rm in a Euclidean space
EM, where m and M denote respective dimensions. Herein,
Poincare� 's model for R2 or R3 will be used to define the
theoretical alley curves. In contrast to other models in
which a larger dimension M is necessary to represent Rm, no
extra dimension is needed in this model (M=m), and let us
call it the Euclidean map (EM) of R. Although this can be
used as a model for either case K>0 or K<0 (Indow,
1979), only the hyperbolic case will be explained herein.
Fig. 1a shows EM2 for VS2 slanted with regard to the
horizontal plane, where (!, ', `) are the Cartesian coor-
dinate axes with the origin O corresponding to the self. A
point P will be defined by polar coordinates \0 , ., and �,
the meaning of which will be clear from the figure. Fig. 1c is
the physical space X3 where the two eyes are denoted by R,
L and a stimulus point is denoted by Q. What are meant by
#, e0 , ,, and % will also be clear. The following charac-
teristics of EM are important for the subsequent discussion.

EM1. If a slanted plane VS2 with an elevation angle � is
regarded as R2 of constant K, it is represented within the
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FIG. 1. Euclidean map EM of visual space VS as R of K<0 (a,b) and
physical space X (c).

basic circle, BC(�). BC(�) in the region !>0 corresponds to
infinite perceptual radial distance ($0=�). As mentioned
in VS1, all Q's beyond a certain distance, max e0 in Fig. 1c,
appear in VS at a finite distance, max $0 . This visual radial
distance is represented by max \0 in Figs. 1a and 1b. BC(�)
being a circle is due to the condition that K is constant
within the slanted plane. This condition does not necessarily
imply that either max \0 or max e0 must be of constant
length irrespective of angle , or .. If the entire VS3 is
regarded as a R of constant K, it is represented within the
semisphere obtained by rotating BC(�), &90%<�<90%.

EM2. Within a BC(�) and in the range of � in which K
remains, constant, a geodesic between any two points in
R2(�), which represents a straight line in VS, is given by the
circle that passes these points and is orthogonal to BC(�)

at both ends (circles A and B passing through P in Fig. 1a).
As shown by B, one side can be in the region where ! is
negative, the region having no perceptual counterpart in
VS. Any straight line starting from O in EM, such as the axis
!(�) or ', is orthogonal to the BC(�), and hence represents
a perceptual straight line in VS extending from the self in
that direction. The length of this perceptual radial line
(depth distance) will be denoted by $0 .

EM3. VS and EM are not isometric but conformal.
Denote by \jk the length of the above mentioned arc
between Pj and Pk , and by $jk the perceptual distance
between corresponding points in VS. Then, $jk {\jk , but

q=
- &K

2
, K<0, (1)

$jkBq&1 sinh&1[q\jk(1+(q\0j)
2)&1�2 (1+(q\0k)2)&1�2],

(2)

where B denotes ``being proportional.'' The same size of \jk

in EM represents shorter visual distance $jk in VS when
points are far from O and hence the radial distances from O
to Pj and Pk , \0j and \0k , are large. When it is not necessary
to specify a point, radial distances in VS and in EM will be
represented by $0 and \0 . Then, two are related as follows:

$0Bq&1 tanh&1[q\0]. (3)

Because $0 to BC(�) is infinity, the radius of BC(�) is
\0=q&1. Derivations of these equations are explained in
Indow (1991). In contrast to distance, any angle in EM is
the undistorted representation of the corresponding per-
ceived angle in VS. In other words, EM is conformal with
VS. Hence, a right angle in EM implies that the correspond-
ing perceptual angle in VS is also a right angle.

EM4. If max \0 remains constant independent of the
directional angle . in VS2, the relationship between the
dotted circle and BC(�) depends only upon K. In this case,
it is convenient to define max\0 to be 2 as the unit to
measure \jk and \0 . In terms of this unit for EM, the range
of K is so constrained that &1<K<0.

THEORETICAL EQUATIONS AND
MAPPING FUNCTIONS

Theoretical geodesics representing P- and D-alleys on the
horizontal plane VS2 are readily defined in EM from the
properties stated above (Fig. 1b where �=0). There are an
infinite number of geodesic circles passing through PL1 and
PR1 which do not intersect within the semicircle represent-
ing max \0 . Luneburg defined as the representation of
P-alley such a set of non-intersecting geodesics that are
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orthogonal to the '-axis, because P-alley extends in the
direction of the axis !(�) and the two axes, !(�) and ', are
orthogonal. Let us denote by H a plane or a line in VS that
appears frontoparallel to the self. The representation of an
H-line in the horizontal plane of VS is given by a geodesic
circle that is orthogonal to the !(�)-axis (Fig. 1b). The
D-circles passing through PL1 and PR1 are the loci of geodesic
on H that represents the same constant lateral length as
$LR . Notice that the curves connecting these loci are circles
in EM but not geodesics because they are not orthogonal to
BC(�). As shown by heavy curves in Fig. 1b, when K<0,
the D-circles are outside of the P-circles for any pairs
[PL , PR] closer than [PL1 , PR1].

In order to have theoretical curves for stimulus point Q,
point P(\0 , ., �) on these theoretical curves in EM must be
mapped into the physical space X. Let us represent the posi-
tion of Q in terms of bipolar coordinates, # (or e0), ,, and
% (Fig. 1c). In the region where the convergence angle # is
effective, we can use # instead of e0 . In order to account for
the experimental result of the D-alley being outside of the
P-alley in X, it is sufficient to assume that the mapping is
``monotone.'' In order to have theoretical curves in X,
however, it is necessary to quantify relationships between
(\0 , ., �) and (# (or e0), ,, %). Luneburg defined the follow-
ing simple mapping functions in the a priori manner:

\0= g(# ; _)=2e&_#, .=,, �=%. (4)

Let us call (4) Luneburg's mapping functions. In so far as
P- and D-alleys on a slanted VS in laboratory experiments
are concerned, the theoretical curves projected from EM
into X through the Luneburg's mapping functions describe
the data well. The equations have two parameters, K in the
equations in EM and _ in the mapping functions to X.
Always the most appropriate values of K and _ were
estimated for configuration [Qj] constructed by each sub-
ject (e.g., Indow, 1991; Indow 6 Watanabe, 1984a). In some
alley experiments, Q 's were also adjusted to form fron-
toparallel lines. With a fixed point Q0i on the x-axis at a dis-
tance e0i , [QLi , QRi]P and [QLi , QRi]D were adjusted to
satisfy the condition that the five Q 's appear fronto-parallel
(an H-curve). The distance e0i was appropriately defined
each for [QLi , QRi]P and [QLi , QRi]D , i>1. All the results
were fitted by the respective theoretical equations with the
same values of K and _. For instance, K=&0.38 and
_=19.8 (K with the unit defined in EM4 and # in radians)
gave such curves in X that passed through the total con-
figuration of stimulus points [Qi] for P- and D-alleys as
well as for H-curves passing though Q0i .

MP1. The mapping functions (4) are completely ego-
centric. This is the reason why all the experiments were
performed only in frameless VS: small light points in the

dark or small objects on a table at eyelevel (%=0) where the
edges of table and the wall of the room were invisible.

MP2. The last two equations in (4) imply that directions
from the self in VS are preserved in EM (EM3). The first
equation g(# ; _) implies that \0 and hence $0 depend upon
# only and the equation remains invariant for all directions
from the self. If this is the case, VS is a R satisfying isotropy
and max\0 forms a circle in Fig. 1.

MP3. The first equation is meaningful only in the region
where # changes significantly with e0 . In most of the
laboratory experiments we performed, the distance e01 to Q1

was less than 5 m. In an experiment carried out in a gym-
nasium, e01 to Q1 was about 16.10 m. Including this experi-
ment, individual values of K and _ obtained in experiments
before 1979 were listed in Table 1 of Indow and Watanabe
(1984a).

FINDINGS FROM LABORATORY EXPERIMENTS

The following findings are relevant to the subsequent dis-
cussions. For other findings in my laboratory and in
experiments conducted by many other investigators, con-
sult Indow (1991).

EF1. Values of K(<0) remain almost invariant in
each subject for the following change of context:
e01=150t417 m, the interval between QL1 and
QR1=12t76 cm, %=0t90%, and Q= a small light point
in the dark and a small black object in an illuminated
frameless space. Individual differences of K are relatively
small, in the range from &0.3 to &0.4. What changes with
the context more systematically is the value of _. It tends to
be larger in an illuminated space than in a dark space.

EF2. The alley experiment in the a dark gymnasium gave
clearly different values of K and _ : |K| was about 2 times
and _ was 2.1 to 2.5 times larger than those in the laboratory
room (Fig. 5 in Indow 1991).

EF3. Presenting the total configuration of stimulus points
[Qj] for P- and D-alleys and H-lines constructed by a sub-
ject, we can ask the subject to make paired comparison
judgments on perceptual distances $jk between various pairs
of points. Always, ratios between two perceptual distances,
from a common point Qi to Qj and Qk , $ij �$ik , were
assessed, and from these raw data we can obtain the matrix
of scaled distances D=(djk), j, k=1 to n, including the self
as a point. Then, through a MDS program in which K is
involved as a free parameter, we can construct such a con-
figuration [Pj] in EM that satisfies two criteria: (A) the
degree of coincidence between the pattern of [Pj] and the
theoretical equations for alleys and H-lines in EM, and (B)
the degree of coincidence between data djk and the theoretical
distances $� jk that are obtained through (2) from interpoint
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distances \jk of [Pj]. The judgments on ratios between $'s
were shown to be very consistent and the optimized K
turned out to be negative in the laboratory experiments
(Indow, 1982, 1991). It was not necessary to assume map-
ping functions in advance. The Luneburg mapping func-
tions (4) were not well supported, especially the exponential
form between \0 and #, by the a posteriori mapping rela-
tionship that we obtained by comparing [Pj] constructed in
EM with [Qj] in X.

EF4. The parallel lines we see in our daily life are not
extended in the form of a P-alley. In most cases, they are
running horizontally or vertically on a frontoparallel H-
plane. Experiments to construct horizontal P- and D-alleys
on an H-plane and also to ask judgments on ratios between
$'s have been performed. The results in these two
approaches (one using and the other not using the
Luneburg's mapping functions) were unequivocal. The
geometry of perceptually frontoparallel plane is Euclidean,
K=0 (Indow, 1979, 1982, 1988; Indow 6 Watanabe, 1984b,
1988). This result is in agreement with the observation in
daily life that, on a frontoparallel plane H and between two
H`s, we can have similarity transformation to keep the
shape invariant while the size is altered (RS3 in the first
section). On a slanted plane where K<0 (including %=0),

FIG. 2. Relationships between three radial distances, e0 and binocular convergence # in physical space X, \0 in Euclidean map EM, and $0 in visual
space VS: (a) e0 � \0 , (b) \0 � $0 , (c) e0 and # � $0 , (d) e0 � #.

we can imagine continuous translocation of a figure keeping
its perceptual shape and size invariant, provided that the
size and shape of the object in X are appropriately adjusted.
However, such a translocation is not imaginable from a
frontoparallel plane to a slanted plane. In other words, there
is no logical ground to postulate that these two subspaces
VS2 must have the same value of K.

BOUNDARY OF VS AND THE ROLE OF K

We see a number of curved surfaces in VS and also in a
picture. A vase or a torso appears to have different cur-
vature from point to point and the same is true in its photo
(e.g., Koenderink et al., 1992). On the other hand, we can-
not see the curvature of the VS itself. When we say that a
horizontal or slanted plane in VS (Fig. 1b, �=0 or >0) has
K<0, it does not mean that we cannot see straight lines in
this plane. It only means that the behavior of perceptual
straight lines and angles therein obey hyperbolic geometry;
for instance, the frontoparallel geodesics representing a con-
stant perceptual length (thick arc) reduces its size in EM
when it moves toward BC(�). When K becomes closer to 0,
BC(�) goes to infinity and the total VS is represented in a
small area around O in EM. Then it will be intuitively clear
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that both D-curves and P-geodesics become the same
parallel straight lines.

In this section, the discussion will be limited to perceptual
radial distance $0 in a given direction . on a slanted plane
VS2(�). Assume that $0 , changing from 0 to max $0 in the
given direction, behaves as a geodisic of R1 with constant K.
Max $0 is the distance to the boundary of the VS in this
direction. Define max \0 representing max $0 , to be 2, then
BC(�)=2�- &K=q&1, as shown with regard to the direc-
tion of ' in Fig. 1b. The perceptual counterpart of the
boundary, max $0 , may not be a visible entity by itself.
Sometimes it is more convenient to use q' instead of ' (the
bottom of Fig. 1b), then BC(�)=1 and max $0 is represented
by q max $0=- &K.

FIG. 3. R=max $0 �$01 under various conditions, in which $01 is based upon Luneburg's mapping function and max $0 corresponds to max \01=2.

Fig. 2a shows three curves, A, B, and C, to relate the
radial distance \0 in EM to its representation e0 in X in a
given direction (%, ,). This functional form g can be different
according to the direction g and the context. Fig. 2b shows
the relationship between perceptual distance $0 and \0 . This
curve is fixed for a given value of K and a fixed unit for $0 .
How $0 changes according to e0 or the binocular con-
vergence # is given in Fig. 2c, which depends upon the func-
tion g in Fig. 2a. Fig. 2d gives # as a function of e0 , which
depends upon the interpupil distance only. The first equa-
tion of Luneburg's mapping functions (4) gives \0 as a func-
tion of #. It will be clear from Fig. 2d that to use # becomes
meaningless for e0 larger than a certain value. According
to the Luneburg equation, max \0=2 is defined by the
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distance at which #=0. However, defining max \0 and
hence max $0 in this way is not practical. The real boundary
of VS may correspond to max e0 , in which #>0, if
calculated. In the next paragraph, a different definition of
max $0 is discussed.

Outdoors, the perceptual distance to the sky (�>0) and
the horizon (�=0), when these are visible, may correspond
to max $0 , but indoors it is not clear what delimits VS. Let
us consider the situation in which there is a stimulus Q in X
that appears in VS as the farthest percept in that direction.
As in Fig. 1b denote by Q1 this stimulus and by P1 its
representation in EM. If we know the values of K and \01 ,
in so far as max \0 under the given condition is defined to
be 2, the ratio

R=max $0 �$01=tanh&1(- &K)�tanh &1 \- &K
2

\01+
(5)

can be determined and we know how far the boundary of
VS is beyond the farthest percept. The boundary may
not be perceptible. Fig. 3 shows the ratio R under various
conditions of the alley experiment, in which theoretical
curves using Luneburg's mapping function \0= g(# ; _)
described the data well and \01 was given through #. Geo M
is the geometrical mean of individual values of R. Condi-
tions 1 to 3 were described before. The background (dimly
illuminated checkerboard) was presented behind the fixed
point pair [QL1 , QR1] at three different distances in 4 and 6.
In Condition 4, positions of [QLi , QRi] were adjusted as
described in the first section. In 6, as in Indow 6 Watanabe
(1984a), only one pair [QL1 , QR1] was presented that
appeared to move toward the subject (apparent movement).
The subject adjusted their trajectories so that the movement
was straight and parallel (P-alley) or with the constant
width (D-alley). In Condition 5, three moving patterns were
projected on the screen behind [QLi , QRi]. Though the con-
figuration of points does not necessarily appear as being
embedded in the scene, the background pattern by itself
gave the impression of a dynamic perspective.

Compared with other conditions, R is smaller in Condi-
tions 1 and 6. In Condition 1, nothing was visible beyond
the fixed light points [QL1 , QR1]. In Condition 6, there
were no Q1 's remaining at e01 . In the illuminated space
Condition 2, where the subject saw the configuration of
objects in front of large white curtain, R is large. Though the
subject did not have a clear impression about the distance
between the farthest pair of percepts and the curtain, the
boundary of VS must be at or beyond the perceived back-
ground. When stationary light points were presented in
front of a background, 4 and 5, the condition of the back-
ground had only a minor, if any, effect on R. However, R's
were larger in these conditions than in the cases without

background, 1 and 3. In the large light point configurations
without background, R of Condition 3 was in between R of
Condition 1 and the R's of Conditions 4 and 5.

Throughout these results, we can say that the size of VS,
max $0 , changes in accordance with the perceptual distance
$01 to the farthest object Q1 . The distance $01 is determined
by the position of Q1 in X and also by other conditions in
X. Outdoors, $01 is much larger than $01 in Condition 3.
However, it is still true that there is max $0 of a finite length
beyond $01 (VS1 in the first section), and the two are related
as discussed above, provided that K remains constant in the
given direction. As pointed out in VS2, VS is dynamic.
When the retina is stimulated by dim light reflected from a
large homogeneous wall completely covering the visual
field, the VS is not structured and the subject sees the fog of
light extending from right in front of self (Metzger, 1930). In
order for the VS to be segmented into the wall and self with
a terra incognita in between, some heterogeneity in the
stimulation is necessary. Furthermore, how far the wall
appears from the self depends upon this heterogeneity.
Under ordinary conditions, the retinal stimulation consists
of images of objects in X at various distances from the body,
then we see a stable 3D pattern of percepts in front of self
and VS organizes itself in accordance with this pattern.

OUTDOOR VS

The sky, in daytime as well as at night, appears as a vault.
This fact, however, does not tell anything about the cur-
vature of VS as R3. A curved surface having positive or
negative curvature can exist in a 3D Euclidean space, E 3. An
experiment was carried out at a beach in which a configura-
tion of 11 stars clearly distinguishable from others was used
as [Qj]. As described in EF3, through ratio judgments
$ij �$ik where i, j, k refer to stars or the self, the matrix
D=(djk), 12_12, was obtained with two subjects. The sub-
ject was allowed to move the head. Otherwise. it was
impossible to see the entire configuration of stars. Scaled
results were highly consistent, e.g., djk rdkj . At first, the
configuration [Pj] was constructed in E 3 by a metric MDS
program (Indow, 1968). The interstar distance, $jk , was
defined by the length of the chord, not that of the arc along
the perceived vault. This is the condition to meet the logic
of MDS and also it was easier for the subjects to see the dis-
tance in this way. Later, the data were processed by a more
flexible MDS program that allows to construct [Pj] in EM3

by optimizing the value of K, either positive or negative, and
allows more flexibility to the relationship between data djk

and interpoint distance d� jk in [Pj]. As shown in Fig. 10 in
Indow (1991), the representations according to three
geometries, Euclidean, elliptic, and hyperbolic, gave [Pj]'s
in EM that were indistinguishable to each other and also
satisfied the criterion B in EF3 equally well (Fig. 9 in that
article). Namely, d� jk is in each [Pj], with K=0, K<0, or
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K>0, turned out to be proportional to data djk with the
same level of very small scatters. The other criterion A was
not applicable in this case. The perceived sky can be
represented be a curved surface in a R3 of constant K. In
order to differentiate geometries, however, we need such
a [Qi] that has stimulus points in between stars and self
to form a 3D configuration in a stronger sense. The
indistinguishability in EM does not imply that each [Pj]
represents the same configuration of stars embedded in the
same form of vault. Only [Pj] in E3 (EM of K=0) directly
tells us the shape of sky the subject is perceiving. In the other
two cases, [Pj]'s in EM give more or less distorted pictures
of the perceptual sky (RS3). Because the sky is an extended
form of H-plane, in which K was shown to be 0 (EF4), it is
not implausible that [Pj] in E3 truly represents the night
sky in which the stars were embedded under this observa-
tion condition. Putting aside the problem of which
geometry is most appropriate to describing this VS, it was
common in all three representations that the shape of [Pj]
in EM clearly deviates from a semicircle. Namely, max \0

changes its length according to direction and the isotropy
condition in MP2 does not hold herein. The perceived sky
extended most in the direction of ', next in the direction of
`, and least in the direction of !, in Fig. 1, which may be
ascribed to the following circumstances. The subject faced
toward the dark ocean and nothing was visible in the direc-
tion of !. The silhouette of terrain and lights of town were
visible in the right and left peripheries ('). In the zenith
direction (`) there were stars. Again, the result shows that
how VS extends critically depends upon what we see in
respective directions (VS3).

The sky in daytime is generally regarded as a bowl flat-
tened in the zenith direction. In this case, no object is visible
in this direction and we perceive objects as being at various
distances on the ground. The attempt by meteorologists and
other scientists to determine the shape of the sky has a long
history in Europe. The study is based on the following
assumption. The perceived sky in the direction of !, in Fig. 1a
is represented by an arc of a circle having the radius r that is
vertically shifted by the amount 2 (Fig. 4a), where Z and H
respectively correspond to the zenith and horizon. The
ground line intersects the radius from the center of the circle
to Z at the point O that corresponds to the self. Namely, OZ
and OH represent the largest perceptual distances in the
respective directions, max $0(Z) and max $0(H). Let us call
this form of sky a shifted circle. The subject is asked to bisect
the arc between Z and H. Under this hypothesis, and the
ratio R(HZ)=max $0(H)�max $0(Z)=cot |, this angle | is
related to the bisecting angle : in the following way:

tan :=(cos |&cos 2|)�sin |. (6)

If there is no shift and the sky is a semicircle, R(HZ)=1 and
:=45%, of course. According to Filehne (1912), this method

was used by Smith in 1728 (:=23%) and followed by
Reimann in 1890 (:=22.33%), which implies that
R(HZ)r3.5. This ratio should depend upon condition of
the sky. According to Table 1 in Neuberger (1951) and
Table 1 in Miller 6 Neuberger (1945), for the daytime sky
R(HZ)r2.3 when cloudy and R(HZ)r2.1 when clear, and
for a clear moonlit night sky R(HZ)r2.2. It was not stated
what was visible in the direction of H. Eq. (6) is based on
Euclidean geometry. No one paid attention to the angle ; in
Fig. 4a under this assumption. For :=22%(R(HZ)=3.5)
and 31%(R(HZ)=2.3), ;=32% and 47%. According to my
observation, these are too acute for the angle by which the
sky appears to meet the ground or ocean at the horizon.

Fig. 4b depicts a shifted circle in EM with q=- &K�2 for
the sky in VS, where max q\0 changes its size as a function
of � as if the center is shifted on the `-axis in Fig. 1. Now it

FIG. 4. Bisection of perceived sky: Shifted circle in VS as (a) E3, and
shifted circle in EM for VS3 as R3 of K<0 (b and c).

96 TAROW INDOW



File: 480J 115109 . By:DS . Date:23:04:97 . Time:10:28 LOP8M. V8.0. Page 01:01
Codes: 6694 Signs: 5730 . Length: 56 pic 0 pts, 236 mm

is convenient to define the unit in EM so that BC=1
(Fig. 1b). In these coordinates with q, q\0(H)=- &K<1.0.
It was assumed that the bisecting point M was determined
in terms of a chord (Fig. 4c). In the experiment with stars
stated before, the subject experienced difficulty to feel dis-
tances between stars as an arc along the vault. Hence, it is
more likely that the subject bisects the sky so that
$(ZM)t$(MH). Then, \(ZM){\(MH) in II. If K, R(HZ)
with a value of q\0(Z), and the angle ; are given, under the
condition that $(ZM)=$(MH),

\(MH)
\(ZM)

=\1&(q\0(H))2

1&(q\0(Z))2+ (7)

from (2) and : is determined. This value of : has to
reproduce the given R(HZ) through

R(HZ)=
max $0(H)
max $0(Z)

=
tanh&1 q\0(H)
tanh&1 q\0(Z)

(8)

Then, when K=&0.88, q max \0(Z)=0.6 and ;=65%,
then the following conditions in EM satisfy (7) and (8);
:=21%, R(HZ)=2.5. Because VS and EM are conformal
(EM4), we can say that the perceived sky having
R(HZ)=2.5 meets the horizon with the angle of 65%, a more
reasonable prediction than that from (6). The perceived sky
is not shifted in this representation. It is the locus of max $0

that varies according to (3) with max q\0 as a function of �
in EM, in which the ratio between max $0 at �=?�2 and
max $0 at �=0 is 1 : 2.5. Because K{0, it is not possible to
draw this sky on the sheet of paper without distorting either
length or angle (RS3 in the first section). Fig. 4 gives a
schematic illustration of the sky under discussion. It would
not be fruitful to pursue this argument any further because
there is no a priori guarantee for either hypothesis to hold:
the sky as a shifted circle in Euclidean VS (Fig. 4a) or the
representation by a shifted circle in EM for the sky in VS
with K<0 (Fig. 4b). The sky bisecting experiments were
referred to here only with the purpose of showing that the
assumption of VS being Euclidean has been taken for
granted, explicitly and implicitly, in various contexts and
that calculation based on a different geometry leads to
different predictions.

For outdoor VS, the information on max $0 and its rela-
tion to the physical condition in X is important, because all
perceptual phenomena take place within this boundary. As
shown in Fig. 2d, to take binocular convergence # as the
determining variable is meaningless when [Qi] extends
over a large area. It was unfortunate that Battro et al. (1976)
used Luneburg's mapping function (4) in their P- and
D-alley experiments performed in a large gardens and in a
polo field in daytime. Of the largest [QLi , QRi], QL1 and
QR1 were at x=240 and y=\48 m. Using \0= g(# ; _),
they reported that K�0 in 38 cases and K<0 in 52 cases.

The use of # for these stimulus configurations made it dif-
ficult to evaluate the fits of theoretical curves. However, it is
clear that there were subjects giving the P-alley inside of the
D-alley as well as subjects giving the reversed relationship.
This is not surprising. Under this condition, trees and
terrain, etc., must have been visible beyond the field and
max e0 is much larger than e01=245 m. Then, [QLi , QRi] is
represented in a small portion of the dotted circle (max \0)
in Fig. 1b, and hence the discrepancy between P- and
D-alleys cannot be large.

A number of outdoor experiments on $0=G(e0 ; g) in a
direction g (Fig. 2c) have been made, in which equisection,
fractionation, magnitude estimation, etc., were used to
obtain a scaled value d0 of $0 . Often a power function
d0 BG(e0)=e;

0 was fitted in the range 0<e0<e01 and ; was
slightly smaller than 1.0 on average for the direction
g : (%=,=0): 0.95 in Cook (1978), 0.86 in Da Silva 6 Da
Silva (1983), 0.85t0.99 according to e01 in Teghtsoonian 6
Teghtsoonian (1970), etc. In some indoor settings, ; was
slightly larger than 1.0 (Ku� napas, 1960; Teghtsoonian 6
Teghtsoonian, 1969; etc.). In all these studies, large
individual differences were found in ;. In other words, there
must have been two groups of subjects having different
forms of G(e0), one convex and the other concave upward
as B and C curves in Fig. 2c. Galanter 6 Galanter (1973)
used as Q an aircraft with the sky as the background or a
small boat with water as the background. Always, Q passed
perpendicular to the line of regard at various distances e0 .
The distances e0 were determined with a radar and covered
a wide range from a few hundred yards to more than 5 miles.
The exponent ; systematically changed according to % in
Fig. 1b (,=0); 1.25t1.27 when % is close to 0% (H-direc-
tion), 1.0 for 12%, and 0.80 for 90% (Z-direction). Baird 6
Wagner (1982) performed an experiment at night in the
Dartmouth College campus in which Q is a building at a
distance e0 . Then, the scaled perceptual distance d0 was a
power function of e0 with the exponent ;=1.17, and d0 to
the sky right above the building was a power function of d0

to that building with ;=0.46.
These studies are not related to the geometry of the VS

and the dependency of form of G(e0) on individual, direc-
tion, and context may be ascribed to differences in mapping
function and�or the process to make judgment on $0 . If we
scale perceptual distances $0 to have data d0 , it is crucial to
test consistency in d0 , as discussed before in the experiment
with stars. Provided d0B$0 , the exponent ; in G(e0) being
larger than 1.0 means that \0= g(e0 , g) in Fig. 2a is not so
convex upward as A and B in the range 0<e0<e01 . The
boundary of VS in the direction g may be behind the
farthest percept (max e0>e01) or at e01(max e0=e01). Out-
doors, often we see the sky filling the gap between some
farthest percepts, e.g., between buildings. The buildings and
the sky appear at the same radial distance. In this case, the
sky may or may not correspond to the boundary VS. When
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we do not see any percept appearing with the same distance
as the sky, the distance to sky is max $0 . Then, it is an inter-
esting question to ask in what part in the physical space X
does correspond to max e0 . This problem will be discussed
elsewhere in connection with the appearance of horizon.

We have to take into account the geometrical structure of
VS when the appearance of 3D figures at various e0 in X
becomes the matter of concern. To the best of my
knowledge, linear perspective, the set of rules artists use to
accurately create 2D projections of the outline forms of 3D
patterns in X, is completely based on Euclidean geometry
(e.g., Kemp, 1990; Sedgwick, 1986). Yokochi (1995)
analyzed many 18th century paintings in Japan (Kokan,
Hiroshige, Okyo, etc.) and China (Ching Dynasty) and
showed that the linear perspective was only partially
followed. It is possible to think of linear perspectives based
on other geometries (Finch, 1977). Realistic painting is
essentially a similarity transformation on the H-plane of
the original scene in VS3. Hence, it would be an interesting
project to compare various linear perspectives based on dif-
ferent geometries as to which gives the most natural impres-
sion of a large scale scene, especially from the viewpoint of
the geometry of the VS.
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