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Relativistic Doppler Effect
and the Principle of Relativity

W. Engelhardta

Abstract
The frequency shifts predicted by the ‘relativistic’ Doppler
effect are derived in the photon picture of light. It turns
out that, in general, the results do not depend exclusively
on the relative velocity between observer and light source.
In this respect, the relativistic Doppler effect is not distinct
from the classical one, where the shifts are also different
depending on whether the source or the observer moves.
The ‘relativistic’ formulae for these two cases have been
confirmed by experiment and are described in many text-
books. It was, however, not recognized that they are at
variance with Einstein’s relativity principle extended to
electromagnetic waves.
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I Introduction

When a wave with angular frequency ω and phase velocity
c propagates in a medium, an observer moving with velocity v
parallel to c experiences a shifted frequency ω1 = ω (1− v/c).
When the source oscillating with frequency ω moves with veloc-
ity v away from the observer, who is at rest in the medium, he
will also measure a shifted frequency ω2 = ω/ (1 + v/c) which is,
however, different from ω1. These frequency shifts are known as
‘classical Doppler effect’ and may be observed in sound waves,
for example. Because of the intervening medium, they do not
merely depend on the relative velocity between observer and
source, in contrast to other mechanical phenomena such as col-
lision processes between material bodies which, in Newtonian
mechanics, depend only on relative motion.

Electromagnetic waves share with sound the property that
their propagation velocity is independent of the motion of the
source, as Einstein postulated in 1905 [1]. He formulated in
the same paper a second postulate, his ‘extended principle of
relativity’, namely that all physical phenomena, including the
electromagnetic ones, should only depend on relative velocities,
as far as constant motion is concerned. From these postulates
he deduced the Lorentz transformation, which led to the conse-
quence that the velocity of light is constant in all inertial sys-
tems, regardless how they move relatively to each other.

It is obvious that Einstein’s postulates are not compatible
with a medium (‘ether’) theory of light. If both postulates are
realized in nature, the Doppler effect of light must distinguish
itself from that of sound, insofar as the frequency shift of light
can only depend on the relative velocity between source and
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observer. Amazingly, the new ‘relativistic’ Doppler formulae,
which are derived from the Lorentz transformation in textbooks,
do not have this property: As in the case of sound, there is still
a difference depending on whether the observer moves and the
source is at rest, or whether the source moves and the observer
is at rest. Even more surprising, the formulae applying to the
different situations have been checked by experiment to some
extent and were found to be correct within experimental error.
As far as we can see, it was not recognized that these results
cast doubt on the validity of Einstein’s relativity principle with
regard to the physics of electromagnetic waves.

In this paper the formulae for the relativistic Doppler effect
are derived without using the Lorentz transformation (Section
II). This can be done in the photon picture of light in combina-
tion with the relativistic modification of Newtonian mechanics
applied to detector and source. We find indeed different fre-
quency shifts depending on whether the observer moves or the
source. In Section III these results are compared with those de-
duced by Einstein from the Lorentz transformation. It turns out
that there is practical agreement with the formulae derived in
Section II. In Section IV the conclusion drawn from the Lorentz
transformation that a wave front ‘appears’ tilted, if there is a
relative velocity between observer and source, is scrutinized and
found to be untenable. In Section V consequences of our analysis
for the principle of relativity and for the Lorentz transformation
are discussed.
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II Doppler effect derived in the photon picture
of light

Without using the Lorentz transformation, the Doppler ef-
fect can be explained in the photon picture which was estab-
lished by the Planck-Einstein quantum theory of light. Accord-
ing to this model the energy of a photon is:

E = ~ω (1)

and its momentum:
p = ~ω/c (2)

For a body with finite mass the relativistically modified formulae
of Newtonian mechanics apply:

E = mc2 (3)

~p = m~v (4)

m =
m0√

1− |~v |2 /c2

(5)

They are valid as long as the De Broglie wavelength of a moving
body is small compared to its dimensions. The rest-mass m0

takes into account any internal energy which may be of kinetic
or potential form.

Let us assume that a detector with mass m moves with veloc-
ity v in x-direction and absorbs a photon with total momentum
p, as depicted in Figure 1. The momentum balance before and
after absorption yields:

p cosα +mv = m′ v′x (6)

p sinα = m′ v′y (7)
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Figure 1: Absorption of a photon in a moving detector

where m′ = m′0/
√

1−
(
v′ 2x + v′ 2y

)
/c2 is the mass of the detec-

tor after absorption, and v′x,y are its velocity components. The
energy balance requires:

c p+mc2 = m′ c2 (8)

The rest-mass of the detector is increased when it absorbs a
certain amount of energy W :

m′0 = m0 +
W

c2
(9)

With (1) this energy may be expressed by a frequency ~ω1 =
W , and can be determined experimentally by measuring the
excitation energy of the detector. Eliminating from (6) and (7)
the velocity components after absorption one obtains together
with (9) and (5):

m′ 2 =

(
m0 +

W

c2

)2

+
1

c2

(
p2 +m2 v2 + 2 pmv cosα

)
(10)
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Inserting this into (8) yields:

W = ~ω1 = p c
1− (v/c) cosα√

1− v2/c2 (1 +W/ (2m0 c2))
(11)

The very small ratio of photon energy to rest-energy of the de-
tector may be neglected, and one obtains with (2) and the ab-
breviation β = v/c the final result:

ω1 = ω
1− β cosα√

1− β2
(12)

It is distinguished from the classical formula for sound by the de-
nominator which describes the ‘quadratic’ part of the Doppler ef-
fect for light and leads to an increase of the measured frequency.
The necessary energy is, of course, taken from the kinetic energy
of the detector.

Let us assume now that a source with mass m moves with
velocity v in x-direction and emits a photon, as depicted in Fig-
ure 2. The momentum balance before and after emission yields
in this case:

mv = p cosα +m′v′x (13)

0 = p sinα +m′ v′y (14)

and the energy balance requires:

mc2 = c p+m′ c2 (15)

The excitation energy of the emitting atom may be expressed
by a frequency: W = ~ω. After de-excitation the rest-mass of
the source is decreased by the amount W/c2:

m′0 = m0 −
W

c2
(16)
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Figure 2: Emission of a photon by a moving source

Eliminating from (13-16) the mass m′ and the velocity compo-
nents of the source after emission one obtains with (5):

p c =
W
√

1− β2 (1−W/ (2m0 c
2))

1− β cosα
(17)

Ignoring again the ratio W/ (2m0 c
2) one finds with (1) and (2)

the frequency of the emitted photon:

ω2 = ω

√
1− β2

1− β cosα
(18)

This is the classical Doppler formula for a moving source, mul-
tiplied with the ‘dilation’ factor

√
1− v2/c2, which leads to a

relative decrease of the emitted frequency.
If both source and detector move with the same velocity, the

motion dependent factors in (12) and (18) cancel out so that just
the frequency ~ω = W is measured. The cancellation occurs
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also when detector and source move in opposite directions, but
α is 90 degrees. The null result of the experiment published in
[2], where source and detector are placed at the periphery of a
rotating disk, confirms this expectation.

The relativistic Doppler formulae contain - in contrast to the
classical formulae - the dilation factor. From the above deriva-
tion it is evident that the dilation factor originates from the fact
that inelastic scattering processes were considered. If the pho-
tons are neither emitted nor absorbed, but just elastically scat-
tered at moving mirrors, the rest-mass of the mirrors remains
unchanged and the dilation factor does not play a role. This
may be shown explicitly by replacing the absorbing detector in
Figure 1 by a mirror which reflects the impinging photon into
the y-direction. Momentum and energy balance become now at
constant rest-mass:

mv + p1 cosα = m′ v′x , p1 sinα = m′ v′y + p2

p1 − p2 = (m′ −m) c (19)

Eliminating the velocity components after reflection yields with
(5) the relationship:(

m′ 2 −m2
)
c2 = 2mv p1 cosα + p2

1 + p2
2 − 2 p1 p2 sinα (20)

Together with the energy balance in (19) one obtains the result:

p2 = p1 −
2mv p1 cosα+ p2

1 + p2
2 − 2 p1 p2 sinα

(m′ +m) c

= p1 (1− β cosα) , for m0 →∞ (21)

For an infinitely large rest-mass of the mirror, this is the classi-
cal Doppler formula without the dilation factor, in contrast to
equation (12).
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Just as in the classical description, the frequencies ω1 and ω2

in the relativistic formulae (12) and (18) are not equal at α 6= 0,
if one identifies in (18) β, the velocity of the source, with −β in
(12), the velocity of the detector. This means that the relativis-
tic Doppler effect does not depend exclusively on the relative
velocity between observer and source, which clearly contradicts
Einstein’s extended relativity principle. On the other hand, for-
mula (12) has been confirmed in a Mössbauer experiment with
a moving detector [3], and formula (18) was early verified by
measuring the emission from moving atoms [4]. The outcome
of these experiments and the null result reported in [2] refute
Einstein’s relativity postulate with respect to its application on
electromagnetic waves. This was apparently not recognized in
the literature, but it was erroneously claimed that the exper-
iments confirm the extended relativity principle. The reason
for this misinterpretation must be sought in the fact that the
relativistic Doppler formulae have also been derived from the
Lorentz transformation which rests on Einstein’s relativity prin-
ciple. The connection between Lorentz transformation and the
relativistic Doppler effect will be discussed in the next Section.

III Doppler effect and Lorentz transformation

Einstein derived on page 911 of his paper [1] from the Lorentz
transformation a new formula for the Doppler effect which ap-
plies to a moving observer. His deduction may be delineated
as follows. Let us assume that there is a coordinate system
(x, y) and a second system (x′, y′) which coincides with the un-
primed system at t = 0, but moves with velocity v in positive
x-direction. The Lorentz transformation and its inverse are then
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given by the expressions:

t′ =
t− v x/c2√

1− v2/c2
, x′ =

x− v t√
1− v2/c2

, y′ = y

t =
t′ + v x′/c2√

1− v2/c2
, x =

x′ + v t√
1− v2/c2

, y = y′ (22)

A plane light wave travelling in vacuo in the direction of the
wave vector ~k with phase velocity ω/k = c in the unprimed
system is described by:

cos (ω t− k x cosα− k y sinα) (23)

In the primed system it is also a plane wave described by:

cos (ω′ t′ − k′ x′ cosα′ − k′ y′ sinα′) (24)

When the amplitude of the wave vanishes at a certain space-
time point, it must vanish in both systems which requires that
the phase in (23) at (x, y, t) must be equal to the phase in (24)
at (x′, y′, t′):

ω t−k x cosα−k y sinα = ω′ t′−k′ x′ cosα′−k′ y′ sinα′ (25)

The propagation velocity is the same in both systems:

ω/k = ω′/k′ = c (26)

which follows from differentiation of the phases in (25) with
respect to time in the two systems. Inserting the second line of
(22) into (23) one obtains:

cos

(
t′
ω − k v cosα√

1− v2/c2
− x′ k cosα− ω v/c2√

1− v2/c2
− y′ k sinα

)
(27)
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Since, in view of (25), the expression (27) should be equal to (24)
for all values of (x′, y′, t′), we find with (26) the identifications:

ω′ =
ω (1− β cosα)√

1− β2
(28)

k′ cosα′ =
k (cosα− β)√

1− β2
, k′ sinα′ = k sinα (29)

These transformation formulae are independent of where the
source or where the detector is located. If one assumes with
Einstein that the detector is at rest in the moving primed sys-
tem, the measured frequency ω1 is according to (28):

ω1 =
ωS (1− β cosα)√

1− β2
(30)

in agreement with (12) and the formula given by Einstein in [1].
It can also be found in textbooks, for example [5, 6]. The angle
α is, in principle, a function of time, if the source is located at
a finite distance R from the detector:

α (t) = α + ∆α (t) ' α +
v t

R
sinα (31)

Choosing the distance sufficiently large, however, the temporal
change can be made arbitrarily small for finite observation times.

If one assumes that the source is at rest in the moving primed
system, it has the velocity −v with respect to the detector.
Equation (28) yields in this case:

ωS =
ω2 (1 + β cosα)√

1− β2
(32)
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Resolved with respect to the detector frequency ω2 one obtains:

ω2 =
ωS
√

1− β2

1 + β cosα
(33)

in agreement with (18) for v → −v. Again, the angle α changes
slowly in time as in (31), but for R → ∞ it stays constant.
Formula (33), which was first confirmed experimentally by Ives
and Stilwell [4], can be found in all textbooks dealing with the
subject.

As demonstrated above, both formulae of Section II can also
be derived from the Lorentz transformation, but they are not
equal, since:

ω1 − ω2 =
ωS β

2 sin2 α√
1− β2 (1 + β cosα)

(34)

With the exception of the case α = 0, which, exclusively, is
considered by Feynman [5], the frequencies (30) and (33) have
the same property as the classical ones: They do not depend
on the relative velocity alone, in contradiction to the relativity
principle.

It should be noted that the derivation of (33) did not make
any use of equations (29), which predict a change of the angle α
when the source starts to move. From equation (31) we rather
concluded that α is neither influenced by the velocity of the ob-
server, nor by the velocity of an infinitely distant source. This
was in perfect agreement with the postulate that the propaga-
tion of the wave is independent of the motion of the source. The
apparent inconsistency between (31) and (29) requires to take
a closer look at the phenomenon of aberration, which will be
discussed in the next Section.
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IV Aberration

Einstein has used the Lorentz transformation to give a new
interpretation of the astronomically observed phenomenon of
aberration. From the two equations (29) one can eliminate k
and obtain the transformation law for the angle between the
velocity and the wave vector:

cosα′ =
cosα− β

1− β cosα
(35)

This equation can be found on page 912 of Einstein’s paper [1].
The interpretation of (35) is that a wave travelling at the angle
α in the unprimed system with respect to the x-axis will ‘appear’
to travel at the angle α′ with respect to the x′-axis in the moving
primed system where the observer is at rest. For small β one
obtains:

α− α′ = αA =
β sinα

1− β cosα
(36)

Since the earth changes annually its velocity with respect to the
fixed stars, one should observe an aberration angle αA given by
(36) in the focal plane of a telescope. This is indeed the case
and was already discovered in the early eighteenth century by
Bradley [7]. He gave an explanation on the basis of the ether
theory and the finite velocity of light. Aberration is a first order
effect and follows also from the Galilei transformation. Hence,
the explanation did not have to wait for the construction of the
Lorentz transformation.

Similarly as in (28), it is not specified in (35) in which system
the source or the observer are located. If we assume now that the
observer is at rest and the source moves, we have to interchange
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the primes in (35) and put v → −v as before. The result is:

cosα =
cosα′ + β

1 + β cosα′
(37)

which is not distinguished from (35). This means that aberra-
tion is a symmetric phenomenon according to the Lorentz trans-
formation which depends only on the relative velocity between
source and observer.

In Figure 3 four cases are selected with different velocities of
a telescope and a star. In the upper row the predictions of the
Lorentz transformation concerning the occurrence of aberration
are sketched on the basis of equations (35) and (37). In case
I a telescope is at rest and a star - also at rest - is located
on its optical axis at infinite distance. The plane wave fronts
of the light entering the telescope are imaged by the lens to a
diffraction spot which lies in the focal plane on the optical axis.
When the telescope moves parallel to the wave fronts (case II)
equation (35) predicts a tilting of the wave fronts so that the
image of the star is shifted to the left of the optical axis. In case
III the star moves with the same velocity as the telescope to the
right. This case is equivalent to case I, as the relative velocity
vanishes. Equations (35) and (37) predict no aberration of the
image in this case, since α = α′ = 90 degrees. In case IV the
telescope is at rest and the star moves to the left. The relative
velocity is not distinguished from that of case II and equation
(37) predicts, consequently, the same aberration of the image as
in case II.

In the lower row of Figure 3 the aberration shifts are sketched
which can be inferred from astronomical observations. As the
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Figure 3: Aberration shift as predicted by the Lorentz trans-
formation (upper row). Aberration shift as inferred from astro-
nomical observations (lower row)
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earth reverses its velocity within half a year, one observes aber-
ration for all fixed stars by the same amount in agreement with
equation (35). Case II applies and the aberration angle is given
by the ratio of the earth’s velocity to the velocity of light accord-
ing to equation (36). This is also in agreement with Bradley’s
ether theory. If the motion of the stars would not change dur-
ing terrestrial observation periods, the relevant relative velocity
would be exclusively determined by the annual changes of the
earth’s velocity. Any motion of the stars, as in case III or IV,
would have no influence on the actual observation, since the true
position of the stars is unknown.

There are, however, double star systems [8] the components
of which change their velocity on a time scale ranging from days
to years. Spectroscopic binaries, in particular, which are too
close to be resolved by a telescope, have velocities exceeding
the earth’s velocity round the sun. They revolve around their
common center of gravity within days, a period during which
the motion of the earth is practically constant. In this case
equation (37) predicts an aberration shift which should have a
magnitude given by the ratio of the star’s velocity to the velocity
of light. The components of the binary system should be easily
separable, when their changing velocities are comparable to the
earth’s velocity round the sun. This is, however, not observed.
The binary components remain unresolved which means that
their velocity has no influence on aberration, as depicted in case
IV in the lower row, in agreement with equation (31). Rotating
binary systems follow the same pattern as all fixed stars and
are observed within a period of a year under the same universal
aberration angle, i.e. their apparent position changes with an
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annual period common to all distant stars, as depicted in case
III, lower row.

The astronomical observations on double star systems favor
apparently equation (31) rather than equation (37), as (31) pre-
dicts no detectable tilting of the wave front when the star moves,
provided it is sufficiently far away. If a star would rotate on an
orbit which has the same diameter as the earth’s orbit round the
sun, it would appear under the same parallax angle under which
a star at rest is normally observed from the orbiting earth. It is
well known that the parallax angle even of the closest stars is an
order of magnitude smaller than the universal aberration angle
due to the earth’s velocity. The parallax angle of spectroscopic
double star systems is so small that it cannot be resolved by a
telescope. Their large velocity does not change this in any way.

The correct prediction of the terrestrially observed aberra-
tion angle by equation (36) must be considered as fortuitous.
The Lorentz transformation fails completely to predict correctly
the observations made on double star systems, when equation
(37) is applied. It is, of course, a contradiction to say on the
one-hand-side that two coordinate systems move such that the
y′- and the y-axis remain parallel during the motion, as follows
from the Lorentz transformation (22), and say on the other hand
, one and the same wave front spans an angle α with the y-axis,
but a different angle α′ with the y′-axis. The usual terminolog-
ical escape from the discrepancy is to say that the wave fronts
appear tilted rather than they are tilted. This wording only
covers the problem, but it does not solve it.
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V Discussion and conclusion

The Lorentz transformation may be seen as a formalism of
merely kinematic nature to ensure that the velocity of light is
the same in all inertial systems, independent of their motion. It
ignores completely the dynamics involved in the interaction of
light with matter. Hence, it would be surprising, if it could pre-
dict the exact formulae of the relativistic Doppler effect, which
were rigorously derived in Section II on the basis of the dynamic
formulae (1-5). The ratio of photon energy to rest-energy in (11)
and (17), although negligible in practice, did not appear in the
derivations of Section III. Under this aspect the agreements with
the approximate formulae in Section II must be considered as
more or less fortuitous.

Surprisingly, it was not recognized in the literature that the
correct Doppler formulae of Section II, which appear to be con-
firmed by the Lorentz transformation, are at variance with its
underlying idea: Extension of the principle of relativity from me-
chanics to light. Given now the fact that the relativistic Doppler
formulae are confirmed by experiment, Einstein’s extended rel-
ativity principle must be rejected. His conclusion drawn from
his two postulates, namely that the velocity of light is constant
in all inertial systems, appears untenable. Only Einstein’s pos-
tulate that the velocity of light is independent of the motion of
the source, which holds also for a medium theory, has been con-
firmed by experiment. Observations on the cosmic background
radiation, as measured with earthbound detectors, show that
there is a unique reference system in which the background ra-
diation is isotropic and electromagnetic waves propagate with
velocity c in all directions. The motion of the earth relative
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to this system can clearly be determined by using the Doppler
effect.

The Lorentz transformation predicts an apparent tilting of
the angle spanned by the wave vector and the relative velocity
between observer and source. This claim is refuted by astro-
nomical observations on moving light sources, as pointed out in
Section IV. Neither the velocity of an infinitely distant source
nor the velocity of an observer influences the direction of the
wave vector. This is in agreement with the postulate that the
propagation of light in free space is independent of the motion
of the source. As aberration is of first order in β, the observed
asymmetry of the effect proves even more convincingly than the
comparison of the different Doppler formulae that the Lorentz
transformation contradicts experimental facts. The terrestrial
observation of aberration, which depends only on the velocity
of the earth, has nothing to do with a hypothetical tilting of
the wave fronts, but can be explained satisfactorily by the finite
travel time of light between the imaging element and the focal
plane of a telescope.

Apart from the relativistic Doppler effect, the null result of
the Michelson-Morley experiment has been taken as experimen-
tal proof for the validity of the Lorentz transformation. In re-
cent work by the present author [9] it has been shown in detail
that the outcome of the Michelson-Morley experiment proves
the opposite: The Lorentz-Fitzgerald contraction, which is de-
rived from the Lorentz transformation, cannot be real. If this
were the case, Michelson should have measured a fringe shift.
The misinterpretation of this experiment in the literature is due
to a wrong assumption concerning the reflection angle of pho-
tons at a moving mirror. Adopting the correct physical law of
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reflection, a fringe-shift is not expected.
Taking the experimental evidence together, sufficient proof

has been presented that the Lorentz transformation does not
represent a physical law which is realized in nature. Its under-
lying principle, that optical phenomena depend only on relative
velocities, cannot be maintained.
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