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VIII. A Dynamical Theory of the Electromagnetic Field. By J. Clerk Maxwell, F.B.S.

Received October 27,—Read December 8, 1864.

PART I.—INTRODUCTORY.

(1) The most obvious mechanical phenomenon in electrical and magnetical experiments

is the mutual action by which bodies in certain states set each other in motion while

still at a sensible distance from each other. The first step, therefore, in reducing these

phenomena into scientific form, is to ascertain the magnitude and direction of the force

acting between the bodies, and when it is found that this force depends in a certain

way upon the relative position of the bodies and on their electric or magnetic condition,

it seems at first sight natural to explain the facts by assuming the existence of some-

thing either at rest or in motion in each body, constituting its electric or magnetic state,

and capable of acting at a distance according to mathematical laws.

In this way mathematical theories of statical electricity, of magnetism, of the mecha-

nical action between conductors carrying currents, and of the induction of currents have

been formed. In these theories the force acting between the two bodies is treated with

reference only to the condition of the bodies and their relative position, and without

any express consideration of the surrounding medium.

These theories assume, more or less explicitly, the existence of substances the parti-

cles of which have the property of acting on one another at a distance by attraction

or repulsion. The most complete development of a theory of this kind is that of
%

M. W. Weber*, who has made the same theory include electrostatic and electromagnetic

phenomena.

In doing so, however, he has found it necessary to assume that the force between

two electric particles depends on their relative velocity, as well as on their distance.

This theory, as developed by MM. W. Weber and C. Neumann f, is exceedingly

ingenious, and wonderfully comprehensive in its application to the phenomena of

statical electricity, electromagnetic attractions, induction of currents apd diamagnetic

phenomena ; and it comes to us with the more authority, as it has served to guide the

speculations of one who has made so great an advance in the practical part of electric

science, both by introducing a consistent system of units in electrical measurement, and

by actually determining electrical quantities with an accuracy hitherto unknown.

* Electrodynamische Maassbestimnmngen. Leipzic Trans, vol. i. 1849, andTaylor's Scientific Memoirs, vol.r.

art. xiv. .

f " Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires electricas vel magneticas decli-

netur."—Halis Saxomim, 1858.
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(2) The mechanical difficulties, however, which are involved in the assumption of

particles acting at a distance with forces which depend on their velocities are such as

to prevent me from considering this theory as an ultimate one, though it may have been,

and may yet be useful in leading to the coordination of phenomena.

I have therefore preferred to seek an explanation of the fact in another direction, by

supposing them to be produced by actions which go on in the surrounding medium as

well as in the excited bodies, and endeavouring to explain the action between distant

bodies without assuming the existence of forces capable of acting directly at sensible

distances.

(3) The theory I propose may therefore be called a theory of the Electromagnetic Field),

because it has to do with the space in the neighbourhood of the electric or magnetic bodies,

and it may be called a Dynamical Theory, because it assumes that in that space there is

matter in motion, by which the observed electromagnetic phenomena are produced.

(4) The electromagnetic field is that part of space which contains and surrounds

bodies in electric or magnetic conditions.

It may be filled with any kind of matter, or we may endeavour to render it empty of

all gross matter, as in the case of Geisslbr's tubes and other so-called vacua.

There is always, however, enough of matter left to receive and transmit the undulations

of light and heat, and it is because the transmission of these radiations is not greatly

altered when transparent bodies of measurable density are substituted for the so-called

vacuum, that we are obliged to admit that the undulations are those of an eethereal

substance, and not of the gross matter, the presence of which merely modifies in some

way the motion of the aether.

We have therefore some reason to believe, from the phenomena of light and heat,

that there is an sethereal medium filling space and permeating bodies, capable of being

set in motion and of transmitting that motion from one part to another, and of com-

municating that motion to gross matter so as to heat it and affect it in various ways.

(5) Now the energy communicated to the body in heating it must have formerly

existed in the moving medium, for the undulations had left the source of heat some time

before they reached the body, and during that time the energy must have been half in

the form of motion of the medium and half in the form of elastic resilience. From

these considerations Professor W. Thomson has argued *, that the medium must have a

density capable of comparison with that of gross matter, and has even assigned an infe-

rior limit to that density.

(6) We may therefore receive, as a datum derived from a branch of science inde-

pendent of that with which we have to deal, the existence of a pervading medium, of

small but real density, capable of being set in motion, and of transmitting motion from

one part to another with great, but not infinite, velocity.

Hence the parts of this medium must be so connected that the motion of one part

* " On the Possible Density of the Luminiferous Medium, and on the Mechanical Yalue of a Cubic Mile of

Sunlight/' Transactions of the Royal Society of Edinburgh (1854), p. 57.
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depends in some way on the motion of the rest; and at the same time these connexions

must be capable of a certain kind of elastic yielding, since the communication of motion

is not instantaneous, but occupies time.

The medium is therefore capable of receiving and storing up two kinds of energy,

namely, the "actual" energy depending on the motions of its parts, and "potential"

energy, consisting of the work which the medium will do in recovering from displace-

ment in virtue of its elasticity. .

The propagation of undulations consists in the continual transformation of one of

these forms of energy into the other alternately, and at any instant the amount of

energy in the whole medium is equally divided, so that half is energy of motion, and

half is elastic resilience.

(7) A medium having such a constitution may be capable of other kinds of motion

and displacement than those which produce the phenomena of light and heat, and some

of these may be of such a kind that they may be evidenced to our senses by the pheno-

mena they produce.

(8) Now we know that the luminiferous medium is in certain cases acted on by

magnetism; for Faraday f discovered that when a plane polarized ray traverses a trans-

parent diamagnetic medium in the direction of the lines of magnetic force produced by

magnets or currents in the neighbourhood, the plane of polarization is caused to rotate.

This rotation is always in the direction in which positive electricity must be carried

round the diamagnetic body in order to produce the actual magnetization of the field.

M. VEEDETf has since discovered that if a paramagnetic body, such as solution of

perehloride of iron in ether, be substituted for the diamagnetic body, the rotation is in

the opposite direction.

Now Professor W. Thomson^ has pointed out that no distribution of forces acting

between the parts of a medium whose only motion is that of the luminous vibrations, is

sufficient to account for the phenomena, but that we must admit the existence of a

motion in the medium depending on the magnetization, in addition to the vibratory

motion which constitutes light.

It is true that the rotation by magnetism of the plane of polarization has been

observed only in media of considerable density ; but the properties of the magnetic field

are not so much altered by the substitution of one medium for another, or for a vacuum,

as to allow us to suppose that the dense medium does anything more than merely modify

the motion of the ether. We have therefore warrantable grounds for inquiring whether

there may not be a motion of the ethereal medium going on wherever magnetic elects

are observed, and we have some reason to suppose that this motion is one of rotation,

having the direction of the magnetic force as its axis.

(9) We may now consider another phenomenon observed in the electromagnetic

* Experimental Besearches, Series 19.

f Comptes Bendus (1856, second half year, p. 529, and 1857, first half year, p. 1209).

% Proceedings of the Boyal Society, June 1856 and June 1861.
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field. When a body is moved across the lines of magnetic force it experiences what is

called an electromotive force ; the two extremities of the body tend to become oppo-

sitely electrified, and an electric current tends to flow through the body. When the

electromotive force is sufficiently powerful, and is made to act on certain compound

bodies, it decomposes them, and causes one of their components to pass towards one

extremity of the body, and the other in the opposite direction.

Here we have evidence of a force causing an electric current in spite of resist-

ance; electrifying the extremities of a body in opposite ways, a condition which is

sustained only by the action of the electromotive force, and which, as soon as that force

is removed, tends, with an equal and opposite force, to produce a counter current through

the body and to restore the original electrical state of the body ; and finally, if strong

enough, tearing to pieces chemical compounds and carrying their components in oppo-

site directions, while their natural tendency is to combine, and to combine with a force

which can generate an electromotive force in the reverse direction.

This, then, is a force acting on a body caused by its motion through the electro-

magnetic field, or by changes occurring in that field itself; and the effect of the force is

either to produce a current and heat the body, or to decompose the body, or, when it

can do neither, to put the body in a state of electric polarization,—a state of constraint

in which opposite extremities are oppositely electrified, and from which the body tends

to relieve itself as soon as the disturbing force is removed.

(10) According to the theory which I propose to explain, this "electromotive force"

is the force called into play during the communication of motion from one part of the

medium to another, and it is by means of this force that the motion of one part causes

motion in another part. When electromotive force acts on a conducting circuit, it pro-

duces a current, w7hich, as it meets with resistance, occasions a continual transformation

of electrical energy into heat, which is incapable of being restored again to the form of

electrical energy by any reversal of the process.

(11) But when electromotive force acts on a dielectric it produces a state of polari-

zation of its parts similar in distribution to the polarity of the parts of a mass of iron

under the influence of a magnet, and like the magnetic polarization, capable of being

described as a state in which every particle has its opposite poles in opposite con-

ditions *.

In a dielectric under the action of electromotive force, we may conceive that the

electricity in each molecule is so displaced that one side is rendered positively and the

other negatively electrical, but that the electricity remains entirely connected with the

molecule, and does not pass from one molecule to another. The effect of this action on

the whole dielectric mass is to produce a general displacement of electricity in a cer-

tain direction. This displacement does not amount to a current, because when it has

attained to a certain value it remains constant, but it is the commencement of a current,

and its variations constitute currents in the positive or the negative direction according

* Faraday, Exp. Ees. Series XI. ; Mossom, Mem. della Soc. Italiana (Modena), vol. xxiy. part 2. p. 49.
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as the displacement is increasing or decreasing. In the interior of the dielectric there

is no indication of electrification, because the electrification of the surface of any molecule

is neutralized by the opposite electrification of the surface of the molecules in contact

with it; but at the bounding surface of the dielectric, where the electrification is not

neutralized, we find the phenomena which indicate positive or negative electrification.

The relation between the electromotive force and the amount of electric displacement

it produces depends on the nature of the dielectric, the same electromotive force pro-

ducing generally a greater electric displacement in solid dielectrics, such as glass or

sulphur, than in air.

(12) Here, then, we perceive another effect of electromotive force, namely, electric

displacement, which according to our theory is a kind of elastic yielding to the action

of the force, similar to that which takes place in structures and machines owing to the

want of perfect rigidity of the connexions.

(13) The practical investigation of the inductive capacity of dielectrics is rendered

difficult on account of two disturbing phenomena. The first is the conductivity of the

dielectric, which, though in many cases exceedingly small, is not altogether insensible.

The second is the phenomenon called electric absorption *, in virtue of which, when the

dielectric is exposed to electromotive force, the electric displacement gradually increases,

and when the electromotive force is removed, the dielectric does not instantly return to

its primitive state, but only discharges a portion of its electrification, and when left to

itself gradually acquires electrification on its surface, as the interior gradually becomes

depolarized. Almost all solid dielectrics exhibit this phenomenon, which gives rise to

the residual charge in the Leyden jar, and to several phenomena of electric cables

described by Mr. F. Jenkin f.

(14) We have here two other kinds of yielding besides the yielding of the perfect

dielectric, which we have compared to a perfectly elastic body. The yielding due to

conductivity may be compared to that of a viscous fluid (that is to say, a fluid having

great internal friction), or a soft solid on which the smallest force produces a permanent

alteration of figure increasing with the time during which the force acts. The yielding

due to electric absorption may be compared to that of a cellular elastic body containing

a thick fluid in its cavities. Such a body, when subjected to pressure, is compressed by

degrees on account of the gradual yielding of the thick fluid ; and when the pressure is

removed it does not at once recover its figure, because the elasticity of the substance of

the body has gradually to overcome the tenacity of the fluid before it can regain com-

plete equilibrium.

Several solid bodies in which no such structure as we have supposed can be found,

seem to possess a mechanical property of this kind J; and it seems probable that the

* Faraday, Exp. Ees. 1233-1250.

t Eeports of British. Association, 1859, p. 248 ; and Eeport of Committee of Board of Trade on Submarine

Cables, pp. 136 & 464.

$ As, for instance, the composition of glue, treacle, &c, of which small plastic figures are made, which after

being distorted gradually recover their shape.
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same substances, if dielectrics, may possess the analogous electrical property, and if

magnetic, may have corresponding properties relating to the acquisition, retention, and

loss of magnetic polarity.

(15) It appears therefore that certain phenomena in . electricity and magnetism lead

to the same conclusion as those of optics, namely, that there is an sethereal medium

pervading "all bodies, and modified only in degree by their presence; that the parts of

this medium are capable of being set in motion by electric currents and magnets ; that

this motion is communicated from one part of the medium to another by forces arising

from the connexions of those parts; that under the action of these forces there is a

certain yielding depending on the elasticity of these connexions ; and that therefore

energy in two different forms may exist in the medium, the one form being the actual

energy of motion of its parts, and the other being the potential energy stored up in the

connexions, in virtue of their elasticity. .

(16) Thus, then, we are led to the conception of a complicated mechanism capable

of a vast variety of motion, but at the same time so connected that the motion of one

part depends, according to definite relations, on the motion of other parts, these motions

being communicated by forces arising from the relative displacement of the connected

parts, in virtue of their elasticity. Such a mechanism must be subject to the general

laws of Dynamics, and we ought to be able to work out all the consequences of its

motion, provided we know the form of the relation between the motions of the parts.

(17) We know that when an electric current is established in a conducting circuit,

the neighbouring part of the field is characterized by certain magnetic properties, and

that if two circuits are in the field, the magnetic properties of the field due to the two

currents are combined. Thus each part of the field is in connexion with both currents,

and the two currents are put in connexion with each other in virtue of their con-

nexion with the magnetization of the field. The first result of this connexion that I

propose to examine, is the induction of one current by another, and by the motion of

conductors in the field.

The second result, which is deduced from this, is the mechanical action between con-

ductors carrying currents. The phenomenon of the induction of currents has been

deduced from their mechanical action by Helmholtz* and Thomson f . I have followed

the reverse order, and deduced the mechanical action from the laws of induction. I

have then described experimental methods of determining the quantities L, M,.N, on

which these phenomena depend.

(18) I then apply the phenomena of induction and attraction of currents to the

exploration of the electromagnetic field, and the laying down systems of lines of mag-

netic force which indicate its magnetic properties. By exploring the same field with a

magnet, I show the distribution of its equipotential magnetic surfaces, cutting the lines

of force at right angles.

* "Conservation of Force," Physical Society of Berlin, 1847; and Taylok's Scientific Memoirs, 1853,

p. 114.

f Beports of the British Association, 1848; Philosophical Magazine, Dec. 1851.
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In order to bring these results within the power of symbolical calculation, I then

express them in the form of the General Equations of the Electromagnetic Field.

These equations express

—

(A) The relation between electric displacement, true conduction, and the total

current, compounded of both.

(B) The relation between the lines of magnetic force and the inductive coefficients of

a circuit, as already deduced from the laws of induction.

(G) The relation between the strength of a current and its magnetic effects, according

to the electromagnetic system of measurement.

(D) The value of the electromotive force in a body, as arising from the motion of the

body in the field, the alteration of the field itself, and the variation of electrio

potential from one part of the field to another.

(E) The relation between electric displacement, and the electromotive force which

produces it.

(F) The relation between an electric current, and the electromotive force which pro-

duces it.

(G) The relation between the amount of free electricity at any point, and the electric

displacements in the neighbourhood.

(H) The relation between the increase or diminution of free electricity and the elec-

tric currents in the neighbourhood.

There are twenty of these equations in all, involving twenty variable quantities.

(19) I then express in terms of these quantities the intrinsic energy of the Electro-

magnetic Field as depending partly on its magnetic and partly on its electric polariza-

tion at every point.

From this I determine the mechanical force acting, 1st, on a moveable conductor

carrying an, electric current ; 2ndly, on a magnetic pole ; 3rdly, on an electrified body.

The last result, namely, the mechanical force acting on an electrified body, gives rise

to an independent method of electrical measurement founded on its electrostatic effects.

The relation between the units employed in the two methods is shown to depend on

what I have called the " electric elasticity" of the medium, and to be a velocity, which

has been experimentally determined by MM. Weber and Kohlrausch.

I then show how to calculate the electrostatic capacity of a condenser, and the

specific inductive capacity of a dielectric.

The case of a condenser composed of parallel layers of substances of different electric

resistances and inductive capacities is next examined, and it is shown that the pheno-

menon called electric absorption will generally occur, that is, the condenser, when

suddenly discharged, will after a short time show signs of a residual charge.

(20) The general equations are next applied to the case of a magnetic disturbance

propagated through a non-conducting field, and it is shown that the only disturbances

which can be so propagated are those which are transverse to the direction of propaga-

tion, and that the velocity of propagation is the velocity v, found from experiments such
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as those of Weber, which expresses the number of electrostatic units of electricity

which are contained in one electromagnetic unit.

This velocity is so nearly that of light, that it seems we have strong reason to con-

clude that light itself (including radiant heat, and other radiations if any) is an electro-

magnetic disturbance in the form of waves propagated through the electromagnetic field

according to electromagnetic laws. If so, the agreement between the elasticity of the

medium as calculated from the rapid alternations of luminous vibrations, and as found

by the slow processes of electrical experiments, shows how perfect and regular the

elastic properties of the medium must be when not encumbered with any matter denser

than air. If the same character of the elasticity is retained in dense transparent bodies,

it appears that the square of the index of refraction is equal to the product of the

specific dielectric capacity and the specific magnetic capacity. Conducting media are

shown to absorb such radiations rapidly, and therefore to be generally opaque.

The conception of the propagation of transverse magnetic disturbances to the exclu-

sion of normal ones is distinctly set forth by Professor Faraday* in his "Thoughts on

Eay Vibrations/' The electromagnetic theory of light, as proposed by him, is the same

in substance as that which I have begun to develope in this paper, except that in 1846

there were no data to calculate the velocity of propagation.

(21) The general equations are then applied to the calculation of the coefficients of

mutual induction of two circular currents and the coefficient of self-induction in a coil.

The want of uniformity of the current in the different parts of the section of a wire at

the commencement of the current is investigated, I believe for the first time, and the

consequent correction of the coefficient of self-induction is found.

These results are applied to the calculation of the self-induction of the coil used in

the experiments of the Committee of the British Association on Standards of Electric

Eesistance, and the value compared with that deduced from the experiments.

PART II.—ON ELECTROMAGNETIC INDUCTION.

Electromagnetic Momentum of a Current.

(22) We may begin by considering the state of the field in the neighbourhood of an

electric current. We know that magnetic forces are excited in the field, their direction

and magnitude depending according to known laws upon the form of the conductor

carrying the current. When the strength of the current is increased, all the magnetic

effects are increased in the same proportion. Now, if the magnetic state of the field

depends on motions of the medium, a certain force must be exerted in order to increase

or diminish these motions, and when the motions are excited they continue, so that the

effect of the connexion between the current and the electromagnetic field surrounding

it, is to endow the current with a kind of momentum, just as the connexion between

the driving-point of a machine and a fly-wheel endows the driving-point with an addi-

* Philosophical Magazine, May 1846, or Experimental Researches, iii. p. 447.
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tional momentum, which may be called the momentum of the fly-wheel reduced to

the driving-point. The unbalanced force acting on the driving-point increases this

momentum, and is measured by the rate of its increase.

In the case of electric currents, the resistance to sudden increase or diminution of

strength produces effects exactly like those of momentum, but the amount of this mo-

mentum depends on the shape of the conductor and the relative position of its different

parts.

Mutual Action of two Currents.

(23) If there are two electric currents in the field, the magnetic force at any point is

that compounded of the forces due to each current separately, and since the two currents

are in connexion with every point of the field, they will be in connexion with each other,

so that any increase or diminution of the one will produce a force acting with or con-

trary to the other.

Dynamical Illustration of Beduced Momentum.

(24) As a dynamical illustration, let us suppose a body C so connected with two

independent driving-points A and B that its velocity is p times that of A together with

q times that of B. Let u be the velocity of A, v that of B, and w that of C, and let &f,

hy, iz be their simultaneous displacements, then by the general equation of dynamics*,

where X and Y are the forces acting at A and B.

But
dw du dv

and
}>z=.phw-{-qly.

Substituting, and remembering that Ix and ly are independent,

Y= 5(Qp2W+C2H
(1)

We may call Cp*u+Opqv the momentum of C referred to A, and Cpqu+Ctfv its

momentum referred to B ; then we may say that the effect of the force X is to increase the

momentum of C referred to A, and that of Y to increase its momentum referred to B.

If there are many bodies connected with A and B in a similar way but with different

values ofp and q, we may treat the question in the same way by assuming

L=2(qp»), M=2(CJp2), and N=2(C22

),

* Lagkakge, Mec. Anal. ii. 2. § 5.
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where the summation is extended to all the bodies with their proper values of C, p, and q.

Then the momentum of the system referred to A is

\m +M#,
and referred to B,

and we shall have

(2)

X=j
i
(Lu+Mv),

Y= |(M„+N,),

where X and Y are the external forces acting on A and B.

(25) To make the illustration more complete we have only to suppose that the

motion of A is resisted by a force proportional to its velocity, which we may call Rw,

and that of B by a similar force, which we may call St;, R, and S being coefficients of

resistance. Then if f and n are the forces on A and B

(3)

If the velocity of A be increased at the rate —^ then in order to prevent B from moving
(a/v

d
a force, *7=-^(Mw) must be applied to it.

This effect on B, due to an increase of the velocity of A, corresponds to the electro-

motive force on one circuit arising from an increase in the strength of a neighbouring

circuit.

This dynamical illustration is to be considered merely as assisting the reader to under-

stand what is meant in mechanics by Reduced Momentum. The facts of the induction

of currents as depending on the variations of the quantity called Electromagnetic Mo-

mentum, or Electrotonic State, rest on the experiments of Faraday*, FELicif, &c.

Coefficients of Induction for Two Circuits.

(26) In the electromagnetic field the values of L, M, N depend on the distribution

of the magnetic effects due to the two circuits, and this distribution depends only on

the form and relative position of the circuits. Hence L, M, N are quantities depending

on the form and relative position of the circuits, and are subject to variation with the

motion of the conductors. It will be presently seen that L, M, N are geometrical

quantities of the nature of lines, that is, of one dimension in space ; L depends on the

form of the first conductor, which we shall call A, N on that of the second, which we

shall call B, and M on the relative position of A and B.

(27) Let | be the electromotive force acting on A, x the strength of the current, and

* Experimental Researches, Series I., IX. f Annales de Chimie, ser. 3. xxxiv. (1852) p. 64.
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E the resistance, then Hx will be the resisting force. In steady currents the electro-

motive force just balances the resisting force, but in variable currents the resultant

force |=Eo? is expended in increasing the " electromagnetic momentum," using the

word momentum merely to express that which is generated by a force acting during a

time, that is, a velocity existing in a body.

In the case of electric currents, the force in action is not ordinary mechanical force, at

least we are not as yet able to measure it as common force, but we call it electromotive

force, and the body moved is not merely the electricity in the conductor, but something

outside the conductor, and capable of being affected by other conductors in the neighbour-

hood carrying currents. In this it resembles rather the reduced momentum of a drivings-

point of a machine as influenced by its mechanical connexions, than that of a simple

moving body like a cannon ball, or water in a tube.

Electromagnetic Relations of two Conducting Circuits.

(28.) In the case of two conducting circuits, A and B, we shall assume that the

electromagnetic momentum belonging to A is

La? +My,
and that belonging to B,

. Mar+%,
where L, M, N correspond to the same quantities in the dynamical illustration, except

that they are supposed to be capable of variation when the conductors A or B are

moved.

Then the equation of the current x in A will be

g=Ea?+^(La?+My), . . (4)

and that of y in B
d

^=Sj/+ ^(M#+%), (5)

where I and q are the electromotive forces, x and y the currents, and E and S the

resistances in A and B respectively,

Induction of one Current by another.

(29) Case 1st. Let there be no electromotive force on B, except that which arises

from the action of A, and let the current of A increase from to the value x, then

d
S^+^(M^+%)=0,

whence

Y=
j
ydt=—-gX)

that is, a quantity of electricity Y, being the total induced current, will flow through B
when x rises from to x. This is induction by variation of the current in the primary

3s2
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conductor. When M is positive, the induced current due to increase of the primary

current is negative.

Induction by Motion of Conductor.

(30) Case 2nd. Let x remain constant, and let M change from M to M', then

M'-M
mmX —

y, X y

so that if M is increased, which it will be by the primary and secondary circuits

approaching each other, there will be a negative induced current, the total quantity of

electricity passed through B being Y.

This is induction by the relative motion of the primary and secondary conductors.

Equation of Work and Energy.

(31) To form the equation between work done and energy produced, multiply (1) by

x and (2) by y, and add

^+^=B^+%2+^(I^+My)+y^(Mo;+%) (8)

Here %x is the work done in unit of time by the electromotive force § acting on the

current x and maintaining it, and ny is the work done by the electromotive force q.

Hence the left-hand side of the equation represents the work done by the electromotive

forces in unit of time.

Heatproduced by the Current.

(32) On the other side of the equation we have, first,

E^+S^=H, ........... (9)

which represents the work done in overcoming the resistance of the circuits in unit of

time. This is converted into heat. The remaining terms represent work not converted

into heat. They may be written

Intrinsic Energy of the Currents.

(33) If L, M, N are constant, the whole work of the electromotive forces which is

not spent against resistance will be devoted to the development of the currents. The

whole intrinsic energy of the currents is therefore

|I^2+M^+i%2=E (10)

This energy exists in a form imperceptible to our senses, probably as actual motion, the

seat of this motion being not merely the conducting circuits, but the space surrounding

them.
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Mechanical Action between Conductors.

(34) The remaining terms,

2 (it
X + ^ ^+2 ^ y — yy ....... . (1.1 J

represent the work done in unit of time arising from the variations of L, M, and N, or,

what is the same thing, alterations in the form and position of the conducting circuits

A and B.

Now if work is done when a body is moved, it must arise from ordinary mechanical

force acting on the body while it is moved. Hence this part of the expression shows

that there is a mechanical force urging every part of the conductors themselves in that

direction in which L, M, and N will be most increased.

The existence of the electromagnetic force between conductors carrying currents is

therefore a direct consequence of the joint and independent action of each current on

the electromagnetic field. If A and B are allowed to approach a distance ds> so as to

increase M from M to M f while the currents are x and y, then the work done will be

(M'—M)xy,

and the force in the direction of ds will be

and this will be an attraction if x and y are of the same sign, and if M is increased as

A and B approach.

It appears, therefore, that if we admit that the unresisted part of electromotive force

goes on as long as it acts, generating a self-persistent state of the current, which

we may call (from mechanical analogy) its electromagnetic momentum, and that this

momentum depends on circumstances external to the conductor, then both induction of

currents and electromagnetic attractions may be proved by mechanical reasoning.

What I have called electromagnetic momentum is the same quantity which is called

by Faraday* the electrotonic state of the circuit, every change of which involves the

action of an electromotive force, just as change of momentum involves the action of

mechanical force.

If, therefore, the phenomena described by Faraday in the Ninth Series of his Expe-

rimental Eesearches were the only known facts about electric currents, the laws of

Ampere relating to the attraction of conductors carrying currents, as well as those

of Faraday about the mutual induction of currents, might be deduced by mechanical

reasoning.

In order to bring these results within the range of experimental verification, I shall

next investigate the case of a single current, of two currents, and of the six currents

in the electric balance, so as to enable the experimenter to determine the values of

L, M, N.
* Experimental Researches, Series I. 60, &c.
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Case of a single Circuit.

(35) The equation of the current x in a circuit whose resistance is R, and whose

coefficient of self-induction is L, acted on by an external electromotive force fj, is

d
£5

'
" XY^V T~" J± J-it.t' » * a « * • • e » • IJLOJ

When 5 is constant, the solution is of the form

^-t
x=b-\-(a—b)e L

where a is the value of the current at the commencement, and b is its final value.

The total quantity of electricity which passes in time £, where t is great, is

ocdt^=^btJr(a—b)-n . .......... (14)
JLV

The value of the integral of x2 with respect to the time is

^dt=m+{a-b)h^^j (15)

The actual current changes gradually from the initial value a to the final value #, but

the values of the integrals of x and x2 are the same as if a steady current of intensity

\(a+b) were to flow for a time 2— , and were then succeeded by the steady current 6.

The time 2~ is generally so minute a fraction of a second, that the effects on the galvano-

meter and dynamometer may be calculated as if the impulse were instantaneous.

If the circuit consists of a battery and a coil, then, when the circuit is first completed,

the effects are the same as if the current had only half its final strength during the time

2 ~. This diminution of the current, due to induction, is sometimes called the counter-
R

current.

(36) If an additional resistance r is suddenly thrown into the circuit, as by breaking

contact, so as to force the current to pass through a thin wire of resistance r, then the

original current is #==J>5 and the final current is b=
R R+ r

The current of induction is then ^%^T̂ -^. and continues for a time 2^-—-. This2 R(R-fr)' R+ r

current is greater than that which the battery can maintain in the two wires R and r,

and may be sufficient to ignite the thin wire r.

When contact is broken by separating the wires in air, this additional resistance is

given by the interposed air, and since the electromotive force across the new resistance

is very great, a spark will be forced across.
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If the electromotive force is of the form E sinj?£, as in the case of a coil revolving in

a magnetic field, then

ar=-— sin (jp#—-a),

where
g
2=R2+I/p9

, and tana=-j£'

Case of two Circuits.

(37) Let It be the primary circuit and S the secondary circuit, then we have a case

similar to that of the induction coil.

The equations of currents are those marked A and B, and we may here assume

L, M, N as constant because there is no motion of the conductors. The equations

then become

E*+L S+MJ=&

Sy+Mg+Nt=o.
(13*)

To find the total quantity of electricity which passes, we have only to integrate these

equations with respect to t; then if o? , y be the strengths of the currents at time 0,

and xx , y x
at time t, and if X, Y be the quantities of electricity passed through each

circuit during time #,

X=:s {g*4-L(^o—^i)4-M(y —yj},

Y=^{M(d? -o?
1
)+N(y -y 1 )}.

(14*)

When the circuit E is completed, then the total currents up to time t, when t is

great, are found by making

#* =:U, 0C
l
:=: -^^, ^o^U, y l

zzz\)
\

then

JSl.— (h j I v wmmm "zr I , X — ""-"* "7™" 0u
i

. . . • • • • • y J- ^ y
\ K/ o

The value of the total counter-current in E is therefore independent of the secondary

circuit, and the induction current in the secondary circuit depends only on M, the

coefficient of induction between the coils, S the resistance of the secondary coil, and

x
x
the final strength of the current in R.

When the electromotive force g ceases to act, there is an extra current in the pri-

mary circuit, and a positive induced current in the secondary circuit, whose values are

equal and opposite to those produced on making contact.

(38) All questions relating to the total quantity of transient currents, as measured

by the impulse given to the magnet of the galvanometer, may be solved in this way

without the necessity of a complete solution of the equations. The heating effect of
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the current, and the impulse it gives to the suspended coil of Weber's dynamometer,

depend on the square of the current at every instant during the short time it lasts.

Hence we must obtain the solution of the equations, and from the solution we may find

the effects both on the galvanometer and dynamometer ; and we may then make use of

the method of Weber for estimating the intensity and duration of a current uniform

while it lasts which would produce the same effects,

(39) Let n19 n2 be the roots of the equation

(LN~-M>2+(EN+LS>+ES=0
5 (16)

and let the primary coil be acted on by a constant electromotive force Ke, so that c is

the constant current it could maintain ; then the complete solution of the equations for

making contact is

^L- 2̂{(l+
N)^-(|+N)^+ s?^ • • • • m

y=T^^-^> as)

From these we obtain for calculating the impulse on the dynamometer,

£*»=(*
o L M2

V a R"*RN+LSf' (
19

)

Wdt-c%—— (20)iy 2 S(RN+LS) l '

The effects of the current in the secondary coil on the galvanometer and dynamometer
are the same as those of a uniform current

i MR
~* CRN+LS

for a time

9 /L N'

(40) The equation between work and energy may be easily verified. The work done

by the electromotive force is

%§xdt=c2(Rt— L).

Work done in overcoming resistance and producing heat,

TL$tfdt+&Sfdt=<?(Bt-$L).
Energy remaining in the system,

—— Q.lJ JLJt

(41) If the circuit E is suddenly and completely interrupted while carrying a current

c, then the equation of the current in the secondary coil would be

M -It

Ny=c-e «

This current begins with a value c -^ , and gradually disappears.
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The total quantity of electricity is c~^ , and the value of §y*dt is ^
2

o§m*

The effects on the galvanometer and dynamometer are equal to those of a uniform

current A c— for a time 2 -^ •

2 N S

The heating effect is therefore greater than that of the current on making contact.

(42) If an electromotive force of the form |=E cos pt acts on the circuit R, then if

the circuit S is removed, the value of $ will be

a?= j sin (jpt— a),

where
A2=R2+Ly,

and
Jjp

tan a=-jp»

The effect of the presence of the circuit S in the neighbourhood is to alter the value

of A and a, to that which they would be if E become

and L became

T 2
MN

Hence the effect of the presence of the circuit S is to increase the apparent resistance and

diminish the apparent self-induction of the circuit R.

On the Determination of Coefficients of Induction by the Electric Balance.

(43) The electric balance consists of six con-

ductors joining four points, ACDE, two and two.

One pair, A C, of these points is connected through

the battery B. The opposite pair, D E, is connected

through the galvanometer G. Then if the resistances

of the four remaining conductors are represented by

P, Q, R, S, and the currents in them by #, x—z, y,

and y-\-z, the current through G will be z. Let the

potentials at the four points be A, C, D, E. Then the conditions of steady currents may

be found from the equations

P#=A-D Q(#-s)=D-C,

%=A-E S(y+s)=E—C,

Gs=D-E B(#+y)=-A+C+F.

Solving these equations for -z
9
we find

4p+a+s4+B(F+!)(<3+^ (22>

MDCCCLXV. 3 T

>. (21)
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In this expression F is the electromotive force of the battery, z the current through

the galvanometer when it has become steady. P, Q, E, S the resistances in the four

arms. B that of the battery and electrodes, and G that of the galvanometer.

(44) If PS=QR, then £=0, and there will be no steady current, but a transient

current through the galvanometer may be produced on making or breaking circuit on

account of induction, and the indications of the galvanometer may be used to determine

the coefficients of induction, provided we understand the actions which take place.

We shall suppose PS=QR, so that the current z vanishes when sufficient time is

allowed, and

x(P+Q)=y(B,+S)= (p + Q)(ft + S
)
+B(P+ cj)(R + sy

Let the induction coefficients between P, Q, E S, be

given by the following Table, the coefficient of induction

of P on itself being p, between P and Q, A, and so on.

Let g be the coefficient of induction of the galvanometer

on itself, and let it be out of the reach of the inductive

influence of P, Q, R, S (as it must be in order to avoid

direct action of P, Q, R, S on the needle). Let X, Y, Z be the integrals of #, y, z

with respect to t. At making contact #, y, z are zero. After a time z disappears, and

s and y reach constant values. The equations for each conductor will therefore be

PX +(p+h )x+{k +1 )y=SAdt-$T)dt,
)

Q(X-Z)+(h+q )x+(m+n)y=§Ddt~lCdt,

RY +(k+m)x+(r +o)y=]Adt-]Edt,

S(Y-f Z) +(l +n )w+(o +s)y=$Edt-§Cdt,

GZ=$Dtd-~$Edt.

P Q E S

p P h & I

Q h
9. m n

K Jc m r

S I n s

(24)

1

Solving these equations for Z, we find

F PS p-Q-i+l+A(p-a) +*(i-p) +*(i+i) -m(p+|) (25)

+w(i-s)+°(i-!t)}

(45) Now let the deflection of the galvanometer by the instantaneous current whose
intensity is Z be «.

Let the permanent deflection produced by making the ratio of PS to QR,
? instead of

unity, be 6,

Also let the time of vibration of the galvanometer needle from rest to rest be T.
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Then calling the quantity

we find Z 2sml*T9

z tau 9 7T 1 — g

,. ( Z i )

In determining r by experiment, it is best to make the alteration of resistance in one

of the arms by means of the arrangement described by Mr. Jenkin in the Report of the

British Association for 1863, by which any value off from 1 to 1*01 can be accurately

measured.

We observe (a) the greatest deflection due to the impulse of induction when the

galvanometer is in circuit, when the connexions are made, and when the resistances are

so adjusted as to give no permanent current.

We then observe (j3) the greatest deflection produced by the permanent current when

the resistance of one of the arms is increased in the ratio of 1 to g , the galvanometer

not being in circuit till a little while after the connexion is made with the battery.

In order to eliminate the effects of resistance of the air, it is best to vary g till /3= 2&

nearly; then 2sini* /oon

7r^ *' tan |/3

If all the arms of the balance except P consist of resistance coils of very fine wire of

no great length and doubled before being coiled, the induction coefficients belonging to

these coils will be insensible, and r will be reduced to £ . The electric balance there-

fore affords the means of measuring the self-induction of any circuit whose resistance is

known.

(46) It may also be used to determine the coefficient of induction between two

circuits, as for instance, that between P and S which we have called m ; but it would be

more convenient to measure this by directly measuring the current, as in (37), without

using the balance. We may also ascertain the equality of ^ and £ by there being no

current of induction, and thus, when we know the value ofp, we may determine that of

q by a more perfect method than the comparison of deflections.

Exploration of the Electromagnetic Field.

(47) Let us now suppose the primary circuit A to be of invariable form, and let us

explore the electromagnetic field by means of the secondary circuit B, which we shall

suppose to be variable in form and position.

We may begin by supposing B to consist of a short straight conductor with its extre-

mities sliding on two parallel conducting rails, which are put in connexion at some

distance from the sliding-piece.

3t2
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Then, if sliding the moveable conductor in a given direction increases the value of M,

a negative electromotive force will act in the circuit B, tending to produce a negative

current in B during the motion of the sliding-piece.

If a current be kept up in the circuit B, then the sliding-piece will itself tend to

move in that direction, which causes M to increase. At every point of the field there

will always be a certain direction such that a conductor moved in that direction does

not experience any electromotive force in whatever direction its extremities are turned.

A conductor carrying a current will experience no mechanical force urging it in that

direction or the opposite.

This direction is called the direction of the line of magnetic force through that point.

Motion of a conductor across such a line produces electromotive force in a direction

perpendicular to the line and to the direction of motion, and a conductor carrying a

current is urged in a direction perpendicular to the line and to the direction of the

current.

(48) We may next suppose B to consist of a very small plane circuit capable of being

placed in any position and of having its plane turned in any direction. The value of M
will be greatest when the plane of the circuit is perpendicular to the line of magnetic

force. Hence if a current is maintained in B it will tend to set itself in this position,

and will of itself indicate, like a magnet, the direction of the magnetic force.

On Lines of Magnetic Force.

(49) Let any surface be drawn, cutting the lines of magnetic force, and on this sur-

face let any system of lines be drawn at small intervals, so as to lie side by side without

cutting each other. Next, let any line be drawn on the surface cutting all these lines,

and let a second line be drawn near it, its distance from the first being such that the

value ofM for each of the small spaces enclosed between these two lines and the lines

of the first system is equal to unity.

In this way let more lines be drawn so as to form a second system, so that the value of

M for every reticulation formed by the intersection of the two systems of lines is unity.

Finally, from every point of intersection of these reticulations let a line be drawn

through the field, always coinciding in direction with the direction of magnetic force.

(50) In this way the whole field will be filled with lines of magnetic force at regular

intervals, and the properties of the electromagnetic field will be completely expressed

by them.

For, 1st, If any closed curve be drawn in the field, the value ofM for that curve will

be expressed by the number of lines of force which pass through that closed curve.

2ndly. If this curve be a conducting circuit and be moved through the field, an

electromotive force will act in it, represented by the rate of decrease of the number of

lines passing through the curve.

3rdly. If a current be maintained in the circuit, the conductor will be acted on by

forces tending to move it so as to increase the number of lines passing through it, and
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the amount of work done by these forces is equal to the current in the circuit multi-

plied by the number of additional lines.

4thly. If a small plane circuit be placed in the field, and be free to turn, it will place

its plane perpendicular to the lines of force. A small magnet will place itself with its

axis in the direction of the lines of force.

5thly. If a long uniformly magnetized bar is placed in the field, each pole will be

acted on by a force in the direction of the lines of force. The number of lines of force

passing through unit of area is equal to the force acting on a unit pole multiplied by a

coefficient depending on the magnetic nature of the medium, and called the coefficient

of magnetic induction.

In fluids and isotropic solids the value of this coefficient p is the same in whatever

direction the lines of force pass through the substance, but in crystallized, strained, and

organized solids the value of p may depend on the direction of the lines of force with

respect to the axes of crystallization, strain, or growth.

In all bodies \h is affected by temperature, and in iron it appears to diminish as the

intensity of the magnetization increases.

On Magnetic Equipotential Surfaces.

(51) If we explore the field with a uniformly magnetized bar, so long that one of its

poles is in a very weak part of the magnetic field, then the magnetic forces will perform

work on the other pole as it moves about the field.

If we start from a given point, and move this pole from it to any other point, the

work performed will be independent of the path of the pole between the two points

;

provided that no electric current passes between the different paths pursued by the pole.

Hence, when there are no electric currents but only magnets in the field, we may

draw a series of surfaces such that the work done in passing from one to another shall

be constant whatever be the path pursued between them. Such surfaces are called

Equipotential Surfaces, and in ordinary cases are perpendicular to the Lines of mag-

netic force.

If these surfaces are so drawn that, when a unit pole passes from any one to the

next in order, unity of work is done, then the work done in any motion of a magnetic

pole will be measured by the strength of the pole multiplied by the number of surfaces

which it has passed through in the positive direction.

(52) If there are circuits carrying electric currents in the field, then there will still

be equipotential surfaces in the parts of the field external to the conductors carrying the

currents, but the work done on a unit pole in passing from one to another will depend

on the number of times which the path of the pole circulates round any of these

currents. Hence the potential in each surface will have a series of values in arith-

metical progression, differing by *the work done in passing completely round one of the

currents in the field.

The equipotential surfaces will not be continuous closed surfaces, but some of them
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will be limited sheets, terminating in the electric circuit as their common edge or

boundary. The number of these will be equal to the amount of work done on a unit

pole in going round the current, and this by the ordinary measurement = 4sry, where y
is the value of the current.

These surfaces, therefore, are connected with the electric current as soap-bubbles are

connected with a ring in M. Plateau's experiments. Every current y has 4<ry surfaces

attached to it. These surfaces have the current for their common edge, and meet it at

equal angles. The form of the surfaces in other parts depends on the presence of other

currents and magnets, as well as on the shape of the circuit to which they belong.

PART III.—GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.

(53.) Let us assume three rectangular directions in space as the axes of x, y, and 3,

and let all quantities having direction be expressed by their components in these three

directions.

Electrical Currents (p, q, r).

(54) An electrical current consists in the transmission of electricity from one part of

a body to another. Let the quantity of electricity transmitted in unit of time across

unit of area perpendicular to the axis of x be called jp, then p is the component of the

current at that place in the direction of x.

We shall use the letters p, q, r to denote the components of the current per unit of

area in the directions of #, y, z.

Electrical Displacements (f, g, h).

(55) Electrical displacement consists in the opposite electrification of the sides of a

molecule or particle of a body which may or may not be accompanied with transmission

through the body. Let the quantity of electricity which would appear on the faces

dy.dz of an element dx, dy, dz cut from the body be f.dy.dz, then /is the component

of electric displacement parallel to x. We shall use /, g, h to denote the electric

displacements parallel to x, y, z respectively.

The variations of the electrical displacement must be added to the currents p, q, r to

get the total motion of electricity, which we may call/, #', r\ so that

1 , dh

• e (A)

Electromotive Force (P, Q, E).

(56) Let P, Q, R represent the components of the electromotive force at any point.

Then P represents the difference of potential per unit of length in a conductor
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placed in the direction of x at the given point. We may suppose an indefinitely short

wire placed parallel to x at a given point and touched, during the action of the force P,

by two small conductors, which are then insulated and removed from the influence of

the electromotive force. The value of P might then be ascertained by measuring the

charge of the conductors.

Thus if I be the length of the wire, the difference of potential at its ends will be PZ,

and if C be the capacity of each of the small conductors the charge on each will be

|CPZ. Since the capacities of moderately large conductors, measured on the electro-

magnetic system, are exceedingly small, ordinary electromotive forces arising from

electromagnetic actions could hardly be measured in this way. In practice such measure-

ments are always made with long conductors, forming closed or nearly closed circuits.

Electromagnetic Momentum (F, G, H).

(57) Let F, G, II represent the components of electromagnetic momentum at any

point of the field, due to any system of magnets or currents.

Then F is the total impulse of the electromotive force in the direction of x that would

be generated by the removal of these magnets or currents from the field, that is, if P
be the electromotive force at any instant during the removal of the system

F=ftdt.

Hence the part of the electromotive force which depends on the motion of magnets or

currents in the field, or their alteration of intensity, is

P=-^, Q=-A K=-^. ...... (29)
dt at at

Electromagnetic Momentum of a Circuit,

(58) Let s be the length of the circuit, then if we integrate

j"(*i+G5+ni)* (»)

round the circuit, we shall get the total electromagnetic momentum of the circuit, or the

number of lines of magnetic force which pass through it, the variations of which measure

the total electromotive force in the circuit. This electromagnetic momentum is the

same thing to which Professor Faraday has applied the name of the Electrotonic State.

If the circuit be the boundary of the elementary area dy dz, then its electromagnetic

momentum is

and this is the number of lines of magnetic force which pass through the area dydz.

Magnetic Force {a, |3, y).

(59) Let a, |8, y represent the force acting on a unit magnetic pole placed at the

given point resolved in the directions of w9 y, and z.
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Coefficient of Magnetic Induction (^).

(60) Let p be the ratio of the magnetic induction in a given medium to that in air

under an equal magnetizing force, then the number of lines of force in unit of area

perpendicular to x will be pa, (p is a quantity depending on the nature of tHe medium,

its temperature, the amount of magnetization already produced, and in crystalline bodies

varying with the direction).

(61) Expressing the electric momentum of small circuits perpendicular to the three

axes in this notation, we obtain the following

Equations of Magnetic Force.

(JbU

W3

W=

dR dG ]

dy dz'

d¥ dK
dz dx'

dG d¥
dx d/ii

. (B)

Equations of Currents.

(62) It is known from experiment that the motion of a magnetic pole in the electro-

magnetic field in a closed circuit cannot generate work unless the circuit which the pole

^escribes passes round an electric current. Hence, except in the space occupied by the

electric currents,

udx+fidy-\-ydz=d<p (31)

a complete differential of <p, the magnetic potential.

The quantity <p may be susceptible of an indefinite number of distinct values, according

to the number of times that the exploring point passes round electric currents in its

course, the difference between successive values of <p corresponding to a passage com-

pletely round a current of strength c being inc.

Hence if there is no electric current,

but if there is a current jp',

Similarly,

_dp
dy dz

0;

dy

dy

da

dz

dj$

dz
-T =±vp'.

dy

dx **§[ >

dB dx . ,

We may call these the Equations of Currents.

» * • * »• » * « . (C)
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Electromotive Force in a Circuit.

(63) Let | be the electromotive force acting round the circuit A, then

5=J(*£+Q|+b£)*» .......... (32)

where ds is the element of length, and the integration is performed round the circuit.

Let the forces in the field be those due to the circuits A and B, then the electro-

magnetic momentum of A is

J(F§+at+H£)&=I*+M«, (33)

where u and v are the currents in A and B, and

%=-§
t
(Lu+M.v) (34)

Hence, if there is no motion of the circuit A,

dt dx

dG dV
dt

~~ dy' '

_ dR dW
'™~MO

"

dt dz
'

(35)

where T is a function of #, y^ z
9
and £, which is indeterminate as far as regards the

solution of the above equations, because the terms depending on it will disappear on

integrating round the circuit. The quantity *¥* can always, however, be determined in

any particular case when we know the actual conditions of the question. The physical

interpretation of **¥ is, that it represents the electric potential at each point of space.

Electromotive Force on a Moving Conductor.

(64) Let a short straight conductor of length &, parallel to the axis of #, move with

a velocity whose components are -^, -^, ~, and let its extremities slide along two

7

parallel conductors with a velocity ~ . Let us find the alteration of the electro-
tit

magnetic momentum of the circuit of which this arrangement forms a part.

In unit of time the moving conductor has travelled distances ~, -^, ~ along the
O/Z ttz az

directions of the three axes, and at the same time the lengths of the parallel conductors

ds
included in the circuit have each been increased by ^-

Hence the quantity

foJ+Gj+H*)*.
MDCCCLXV. 3 U
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will be increased by the following increments,

fd¥ dx , d¥ dy , d¥ dz\ -, , ,
• n i ,

® t- -7-+-,- -r+T- -r h due to motion ot conductor,
\dx dt dy dt dz dt/

ds fd¥ dx . dG dy , dH dz\ i , i ,*, £ . .

,

—a-r-l -r -T-+-T- -r-H—r- -r )? due to lengthening ot circuit.
dt \dx ds dx ds dx ds/ ° °

The total increment will therefore be

/d¥ dGyly /dR d¥\dz
#

\% dx J dt \ dx dz J dt
'

or, by the equations of Magnetic Force (8),

/ dy n dz'

If P is the electromotive force in the moving conductor parallel to x referred to unit

of length, then the actual electromotive force is Ya ; and since this is measured by the

decrement of the electromagnetic momentum of the circuit, the electromotive force due

to motion will be

(65) The complete equations of electromotive force on a moving conductor may now

be written as follows :

—

Equations of Electromotive Force.

^ / dy n dz\ dF d"^
v =tA{y^-Pdt)-w-'te'

„ ( dz dx\ dG d^t

E

dt r dt J dt dy

dx dy\ dft^dW
dt dz

(D)

/ n dx dy \
(*{PTt- a dt)

The first term on the right-hand side of each equation represents the electromotive

force arising from the motion of the conductor itself. This electromotive force is per-

pendicular to the direction of motion and to the lines of magnetic force ; and if a

parallelogram be drawn whose sides represent in direction and magnitude the velocity

of the conductor and the magnetic induction at that point of the field, then the area of

the parallelogram will represent the electromotive force due to the motion of the con-

ductor, and the direction of the force is perpendicular to the plane of the parallelogram.

The second term in each equation indicates the effect of changes in the position or

strength of magnets or currents in the field.

The third term shows the effect of the electric potential Y. It has no effect in

causing a circulating current in a closed circuit. It indicates the existence of a force

urging the electricity to or from certain definite points in the field.
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Electric Elasticity.

(66) When an electromotive force acts on a dielectric, it puts every part of the

dielectric into a polarized condition, in which its opposite sides are oppositely electri-

fied. The amount of this electrification depends on the electromotive force and on the

nature of the substance, and, in solids having a structure defined by axes, on the direc-

tion of the electromotive force with respect to these axes. In isotropic substances, if k

is the ratio of the electromotive force to the electric displacement, we may write the

Equations of Electric Elasticity,

Q=h/, V (E)

E= Mi.

Electric Resistance.

(67) When an electromotive force acts on a conductor it produces a current of elec-

tricity through it. This effect is additional to the electric displacement already con-

sidered. In solids of complex structure, the relation between the electromotive force

and the current depends on their direction through the solid. In isotropic substances,

which alone we shall here consider, if £ is the specific resistance referred to unit of

volume, we may write the

Equations of Electric Resistance,

• •••(F)

Electric Quantity.

(68) Let e represent the quantity of free positive electricity contained in unit of

volume at any part of the field, then, since this arises from the electrification of the

different parts of the field not neutralizing each other, we may write the

Equation of Free Electricity,

(69) If the medium conducts electricity, then we shall have another condition, which

may be called, as in hydrodynamics, the

Equation of Continuity,

^4.^+^4 *==()
dt dx dy dz

(70) In these equations of the electromagnetic field we have assumed twenty variable

3 u2
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quantities, namely,

For Electromagnetic Momentum

Magnetic Intensity . .

Electromotive Force

Current due to true conduction

Electric Displacement

Total Current (including variation of displacement)

Quantity of free Electricity .

Electric Potential

¥ G H
a, a 7

P Q R

P 1 r

f 9 h

p' 4
/yJ

e

"\Tf

Between these twenty quantities we have found twenty equations, viz.

Three equations of Magnetic Force (B)

Electric Currents (C)

Electromotive Force (D)

Electric Elasticity (E)

Electric Resistance (F)

Total Currents ......... (A)

One equation of Free Electricity (G)

„ Continuity (H)

These equations are therefore sufficient to determine all the quantities which occur

in them, provided we know the conditions of the problem. In many questions, how-

ever, only a few of the equations are required.

Intrinsic Energy of the Electromagnetic Field.

(71) We have seen (33) that the intrinsic energy of any system of currents is found

by multiplying half the current in each circuit into its electromagnetic momentum.

This is equivalent to finding the integral

E=i2(Fp'+G#'+Hr')dV (37)

over all the space occupied by currents, where p, %, r are the components of currents,

and F, G, H the components of electromagnetic momentum.

Substituting the values ofp\ q\ rf from the equations of Currents (C), this becomes

1

8?r Kg-f)+«(£-£)+H(l4;)h
Integrating by parts, and remembering that a, /3, y vanish at an infinite distance, the

expression becomes
i x r /<m dG\

,
„/<zf <m\ . /dG d¥\] 7Tr

where the integration is to be extended over all space. Referring to the equations of

Magnetic Force (B), p. 482, this becomes

(38)
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where a, )3, y are the components of magnetic intensity or the force on a unit magnetic

pole, and ^a, ^/3, py are the components of the quantity of magnetic induction, or the

number of lines of force in unit of area.

In isotropic media the value of p is the same in all directions, and we may express

the result more simply by saying that the intrinsic energy of any part of the magnetic

field arising from its magnetization is

" r
8tt

per unit of volume, where I is the magnetic intensity.

(72) Energy may be stored up in the field in a different way, namely, by the action

of electromotive force in producing electric displacement. The work done by a variable

electromotive force, P, in producing a variable displacement, f, is got by integrating

ft*/
from P= to the given value of P.

Since 7=kf^ equation (E), this quantity becomes

Hence the intrinsic energy of any part of the field, as existing in the form of electric

displacement, is

P(P/+Q^+EA)^.

The total energy existing in the field is therefore

E=2- l(^a+^/3+y^)+i(P/+Q^+M)MV. ... . (I)

The first term of this expression depends on the magnetization of the field, and is

explained on our theory by actual motion of some kind. The second term depends on

the electric polarization of the field, and is explained on our theory by strain of some

kind in an elastic medium.

(73) I have on a former occasion* attempted to describe a particular kind of motion

and a particular kind of strain, so arranged as to account for the phenomena. In the

present paper I avoid any hypothesis of this kind ; and in using such words as electric

momentum and electric elasticity in reference to the known phenomena of the induc-

tion of currents and the polarization of dielectrics, I wish merely to direct the mind of

the reader to mechanical phenomena which will assist him in understanding the elec-

trical ones. All such phrases in the present paper are to be considered as illustrative,

not as explanatory.

(74) In speaking of the Energy of the field, however, I wish to be understood literally.

All energy is the same as mechanical energy, whether it exists in the form of motion or

in that of elasticity, or in any other form. The energy in electromagnetic phenomena is

mechanical energy. The only question is, Where does it reside % On the old theories

* " On Physical Lines of Force," Philosophical Magazine, 1861-62.
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it resides in the electrified bodies, conducting circuits, and magnets, in the form of an

unknown quality called potential energy, or the power of producing certain effects at a

distance. On our theory it resides in the electromagnetic field, in the space surrounding

the electrified and magnetic bodies, as well as in those bodies themselves, and is in two

different forms, which may be described without hypothesis as magnetic polarization

and electric polarization, or, according to a very probable hypothesis, as the motion and

the strain of one and the same medium.

(75) The conclusions arrived at in the present paper are independent of this hypo-

thesis, being deduced from experimental facts of three kinds :

—

1. The induction of electric currents by the increase or diminution of neighbouring

currents according to the changes in the lines of force passing through the circuit.

2. The distribution of magnetic intensity according to the variations of a magnetic

potential.

3. The induction (or influence) of statical electricity through dielectrics.

We may now proceed to demonstrate from these principles the existence and laws of

the mechanical forces which act upon electric currents, magnets, and electrified bodies

placed in the electromagnetic field.

PAET IV.—MECHANICAL ACTIONS IN THE FIELD.

Mechanical Force on a Moveable Conductor.

(76) We have shown (§§ 34 & 35) that the work done by the electromagnetic forces

in aiding the motion of a conductor is equal to the product of the current in the con-

ductor multiplied by the increment of the electromagnetic momentum due to the

motion.

Let a short straight conductor of length a move parallel to itself in the direction of

#, with its extremities on two parallel conductors. Then the increment of the electro-

magnetic momentum due to the motion of a will be.

/d¥ dx dG dy d\l dz\ v

'

I dx ds ' dx ds ' dx ds J

That due to the lengthening of the circuit by increasing the length of the parallel con-

ductors will be

The total increment is

/d¥ dx
(

d¥ dy dF dz\ .
^

I dx ds ' dy ds ' ds ds J

dhx<
\dyfdG d¥\ dz/d'F dll

It Ubds I dx dy J ds \ dz

which is by the equations of Magnetic Force (B), p. 482,

fl^(s^y-S^)-

Let X be the force acting along the direction of x per unit of length of the conductor,

then the work done is Xa&r.
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Let C be the current in the conductor, and letj?', q', r' be its components, then

Xa*=Cato(Jpy-|p/3),

or 'X=[Ayq f

—pfir\

Similarly, Y=t»»> -prf, (J)

These are the equations which determine the mechanical force acting on a conductor

carrying a current. The force is perpendicular to the current and to the lines of force,

and is measured by the area of the parallelogram formed by lines parallel to the current

and lines of force, and proportional to their intensities.

Mechanical Force on a Magnet.

(77) In any part of the field not traversed by electric currents the distribution of

magnetic intensity may be represented by the differential coefficients of a function

which may be called the magnetic potential. When there are no currents in the field,

this quantity has a single value for each point. When there are currents, the potential

,

has a series of values at each point, but its differential coefficients have only one value,

namely,

££— „ ^_« **—„

Substituting these values of «, /3, y in the expression (equation 38) for the intrinsic

energy of the field, and integrating by parts, it becomes

\j 8t \ doc ' dy ' dz

The expression

•dY.

indicates the number of lines of magnetic force which have their origin within the

space V. Now a magnetic pole is known to us only as the origin or termination of

lines of magnetic force, and a unit pole is one which has 4<zr lines belonging to it, since

it produces unit of magnetic intensity at unit of distance over a sphere whose surface

is 4-r.

Hence if m is the amount of free positive magnetism in unit of volume, the above

expression may be written ivm, and the expression for the energy of the field becomes

T£=—%(%<pm)dV. (40)

If there are two magnetic poles m
t
and m2 producing potentials (p l

and p2 in the field

,

then if ma is moved a distance dx, and is urged in that direction by a force X, then the

work done is Xefcr, and the decrease of energy in the field is

and these must be equal by the principle of Conservation of Energy.
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Since the distribution <p x
is determined by m15 and <p2 by m2 , the quantities ^ 1

m
1
and

p2 m2 will remain constant.

It can be shown also, as Green has proved (Essay, p. 10), that

so that we get

X.dw=d(7n2<p l )^

or

L

« (K)where a
x
represents the magnetic intensity due to m

x
.

Similarly, Y=m2fi 1 ,

So that a magnetic pole is urged in the direction of the lines of magnetic force with

a force equal to the product of the strength of the pole and the magnetic intensity.

(78) If a single magnetic pole, that is one pole of a very long magnet, be placed in

the field, the only solution of <p is

a1== -!!!il, . . (41)
/x r

where m
x
is the strength of the pole and r the distance from it.

The repulsion between two poles of strength m
x
and m2 is

dp= rn^
(42)

dr pr* '

In air or any medium in which ^=1 this is simply —L?> but in other media the force

acting between two given magnetic poles is inversely proportional to the coefficient of

magnetic induction for the medium. This may be explained by the magnetization of

the medium induced by the action of the poles.

Mechanical Force on an Electrified Body.

(79) If there is no motion or change of strength of currents or magnets in the field,

the electromotive force is entirely due to variation of electric potential, and we shall

have (§ 65)

v dW dW ^ dV
x==

—

'-r" 5 \4=— -y-9 lt= r~"
ax dy dz

Integrating by parts the expression (I) for the energy due to electric displacement, and

remembering that P, Q, E vanish at an infinite distance, it becomes

*s{*(i+i+s)h,

or by the equation of Free Electricity (G), p. 485,
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By the same demonstration as was used in the case of the mechanical action on a magnet,

it may be shown that the mechanical force on a small body containing a quantity e2 of

free electricity placed in a field whose potential arising from other electrified bodies

is lf
x , has for components

dx

P)

So that an electrified body is urged in the direction of the electromotive force with a

force equal to the product of the quantity of free electricity and the electromotive force.

If the electrification of the field arises from the presence of a small electrified body

containing e
x
of free electrity, the only solution of If

x
is

*>=s£' (43)

where r is the distance from the electrified body.

The repulsion between two electrified bodies e19 e2 is therefore

«**!=*!$. (44)

Measurement of Electrical Phenomena by Electrostatic Effects.

(80) The quantities with which we have had to do have been hitherto expressed in

terms of the Electromagnetic System of measurement, which is founded on the mecha-

nical action between currents. The electrostatic system of measurement is founded on

the mechanical action between electrified bodies, and is independent of, and incom-

patible with, the electromagnetic system ; so that the units of the different kinds of

quantity have different values according to the system we adopt, and to pass from the

one system to the other, a reduction of all the quantities is required.

According to the electrostatic system, the repulsion between two small bodies charged

with quantities q x , tj2 of electricity is

where r is the distance between them.

Let the relation of the two systems be such that one electromagnetic unit of elec-

tricity contains v electrostatic units ; then ^=1;^ and q2=ve2 , and this repulsion becomes

ff "£A=^!A by equation (44), ....... (45)

whence #, the coefficient of "electric elasticity " in the medium in which the experi-

ments are made, i. e. common air, is related to v, the number of electrostatic units in one

electromagnetic unit, by the equation
k=4:vv2

. ........... (46)

mdccclxv. 3 x
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The quantity v may be determined by experiment in several ways. According)to the

experiments of MM. Weber and Kohlrausch,

#=310,740,000 metres per second.

(81) It appears from this investigation, that if we assume that the medium which

constitutes the electromagnetic field is, when dielectric, capable of receiving in every

part of it an electric polarization, in which the opposite sides of every element into

which we may conceive the medium divided are oppositely electrified, and if we also

assume that this polarization or electric displacement is proportional to the electro-

motive force which produces or maintains it, then we can show that electrified bodies

in a dielectric medium will act on one another with forces obeying the same laws as are

established by experiment.

The energy, by the expenditure of which electrical attractions and repulsions are pro-

duced, we suppose to be stored up in the dielectric medium which surrounds the electri-

fied bodies, and not on the surface of those bodies themselves, which on our theory

are merely the bounding surfaces of the air or other dielectric in which the true springs

of action are to be sought.

Note on the Attraction of Gravitation.

(82) After tracing to the action of the surrounding medium both the magnetic and

the electric attractions and repulsions, and finding them to depend on the inverse square

of the distance, we are naturally led to inquire whether the attraction of gravitation,

which follows the same law of the distance, is npt also traceable to the action of a

surrounding medium.

Gravitation differs from magnetism and electricity in this ; that the bodies concerned

are all of the same kind, instead of being of opposite signs, like magnetic poles and

electrified bodies, and that the force between these bodies is an attraction and not a

repulsion, as is the case between like electric and magnetic bodies.

The lines of gravitating force near two dense bodies are exactly of the same form as

the lines of magnetic force near two poles of the same name; but whereas the poles are

repelled, the bodies are attracted. Let E be the intrinsic energy of the field surrounding

two gravitating bodies Mj , M2 , and let E' be the intrinsic energy of the field surrounding

two magnetic poles m,, m2 , equal in numerical value to M
2 , M2 , and let X be the gravi-

tating force acting during the displacement he, and X' the magnetic force,

3&F=.aE, X&r=SE',;

now X and X' are equal in numerical value, but of opposite signs; so that

XE=-&E',
or

E=C-E'
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where «, j3, y are the components of magnetic intensity. If R be the resultant gravi-

tating force, and R! the resultant magnetic force at a corresponding part of the field,

R=~R', and a2
+/3

2+y2=R2=R'2
.

Hence

Iij=z:C— 2rT~R d v (4»)

The intrinsic energy of the field of gravitation must therefore be less wherever there is

a resultant gravitating force.

As energy is essentially positive, it is impossible for any part of space to have nega-

tive intrinsic energy. Hence those parts of space in which there is no resultant force,

such as the points of equilibrium in the space between the different bodies of a system,

and within the substance of each body, must have an intrinsic energy per unit of volume

greater than
JLpa

where R is the greatest possible value of the intensity of gravitating force in any part of

the universe.

The assumption, therefore, that gravitation arises from the action of the surrounding

medium in the way pointed out, leads to the conclusion that every part of this medium

possesses, when undisturbed, an enormous intrinsic energy, and that the presence of

dense bodies influences the medium so as to diminish this energy wherever there is a

resultant attraction.

As I am unable to understand in what way a medium can possess such properties, I

cannot go any further in this direction in searching for the cause of gravitation.

PART Y.—THEORY OF CONDENSERS.

Capacity of a Condenser.

(83) The simplest form of condenser consists of a uniform layer of insulating matter

bounded by two conducting surfaces, and its capacity is measured by the quantity of

electricity on either surface when the difference of potentials is unity.

Let S be the area of either surface, a the thickness of the dielectric, and k its coeffi-

cient of electric elasticity; then on one side of the condenser the potential is ^„ and on

the other side ^,+1, and within its substance

-~^=2~=Jcf. (48)

Since -^ and therefore/is zero outside the condenser, the quantity of electricity on its

first surface =— Sf, and on the second +S/. The capacity of the condenser is there-

fore Sf=
jjjjj

in electromagnetic measure.

3x2
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Specific Capacity of Electric Induction (D).

(84) If the dielectric of the condenser be air, then its capacity in electrostatic mea-

S
sure is -— (neglecting corrections arising from the conditions to be fulfilled at the

edges). If the dielectric have a capacity whose ratio to that of air is D, then the capa-

DS
city of the condenser will be —-•

Hence D=^, .. (49)

where k is the value of Tc in air, which is taken for unity.

Electric Absorption.

(85) When the dielectric of which the condenser is formed is not a perfect insulator,

the phenomena of conduction are combined with those of electric displacement. The

condenser, when left charged, gradually loses its charge, and in some cases, after being

discharged completely, it gradually acquires a new charge of the same sign as the original

charge, and this finally disappears. These phenomena have been described by Professor

Faeaday (Experimental Researches, Series XI.) and by Mr. F. Jenkin (Report of Com-

mittee of Board of Trade on Submarine Cables), and may be classed under the name of

"Electric Absorption."

(86) We shall take the case of a condenser composed of any number of parallel layers

of different materials. If a constant difference of potentials between its extreme

surfaces is kept up for a sufficient time till a condition of permanent steady flow of

electricity is established, then each bounding surface will have a charge of electricity

depending on the nature of the substances on each side of it. If the extreme surfaces

be now discharged, these internal charges will gradually be dissipated, and a certain

charge may reappear on the extreme surfaces if they are insulated, or, if they are con-

nected by a conductor, a certain quantity of electricity may be urged through the con-

ductor during the reestablishment of equilibrium.

Let the thickness of the several layers of the condenser be a
x ,
#2, &c.

Let the values of k for these layers be respectively k„ Tc^ #3 , and let

a
l
fc2 -\-a2k2-{-8tc.=ak, . (50)

where Jc is the " electric elasticity" of air, and a is the thickness of an equivalent con-

denser of air.

Let the resistances of the layers be respectively r 19 r2, &c, and let f\+r2+ &c. =r be

the resistance of the whole condenser, to a steady current through it per unit of surface.

Let the electric displacement in each layer be f„ f<2 , &c.

Let the electric current in each layer be p x^p^ &c.

Let the potential on the first surface be ^„ and the electricity per unit of surface e
x
.

Let the corresponding quantities at the boundary of the first and second surface be

ty% and &,, and so on. Then by equations (G) and (H),
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e, /»

e*=fi-f»

de
x

~dt

a\
dt

"JP 13

-Pl-P»
r

. . (51)

&c.

But by equations (E) and (F),

x 2 x 3

&C.

&C.

•a
lkfl

=—r
lp l9

&C. &C.

(52)

After the electromotive force has been kept up for a sufficient time the current

becomes the same in each layer, and
\p

where ^ is the total difference of potentials between the extreme layers. We have then

and

"''
r ajc^

/.

&,=:— ( —

f

. ), &C.

• (
53

)

These are the quantities of electricity on the different surfaces.

(87) Now let the condenser be discharged by connecting the extreme surfaces

through a perfect conductor so that their potentials are instantly rendered equal, then

the electricity on the extreme surfaces will be altered, but that on the internal surfaces

will not have time to escape. The total difference of potentials is now

f=4^1+42(4+^+43(^+^2+4 &c «
=

'
..... (54)

whence if d
x
is what ex

becomes at the instant of discharge,

e\
>Jr \jr

r a
x
k

t
ak 1 ak

(55)

yfr

The instantaneous discharge is therefore —-, or the quantity which would be dis-
dK

charged by a condenser of air of the equivalent thickness #, and it is unaffected by the

want of perfect insulation.

(88) Now let us suppose the connexion between the extreme surfaces broken, and the

condenser left to itself, and let us consider the gradual dissipation of the internal charges.

Let *¥"' be the difference of potential of the extreme surfaces at any time t ; then

^=ajc
lfl

+ajc2f2 +&cc.; ........ (56)

but a i
Jcifi"=z

~r
^~i:

^2^2/2

—

~~ r* dt
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Hence f1
=A

1
e"~

:^
, f2=A2e~

r* , &c. ; and by referring to the values of dl9 e2 , &c..

we find

1

r a
x
k

x
ak

r a2kq ak

M* r ^p • • (^ '

)

Sec.

;

so that we find for the difference of extreme potentials at any time,

*=»{(5-^)«-*'+(?-*)^ ,

+ *-} (58)

(89) It appears from this result that if all the layers are made of the same sub-,

stance, H1
will be zero always. If they are of different substances, the order in which

the} are placed is indifferent, and the effect will be the same whether each substance

consists of one layer, or is divided into any number of thin layers and arranged in any

order among thin layers of the other substances. Any substance, therefore, the parts

of which are not mathematically homogeneous, though they may be apparently so, may
exhibit phenomena of absorption. Also, since the order of magnitude of the coefficients

is the same as that of the indices, the value ofV can never change sign, but must start

from zero, become positive, and finally disappear.

(90) Let us next consider the total amount of electricity which would pass from the

first surface to the second, if the condenser, after being thoroughly saturated by the

current and then discharged, has its extreme surfaces connected by a conductor of

resistance R. Letp be the current in this conductor ; then, during the discharge,

yl==p l
r

1+p2r2+&c.=p'R. ........ (59)

Integrating with respect to the time, and calling ql , q2 , q the quantities of electricity

which traverse the different conductors,

q i
r

l +q2rt+&c.=giR (60)

The quantities of electricity on the several surfaces will be

^S+ ft— ft,

&c.

;

and since at last all these quantities vanish, we find

q, =ef

1 ~q,

q2 =£+61—4;

whence ?R=_(^+^+ &c/)-^,

or ?=^{«A^(^-^)
2

+«A^8(-^-^r)V&c.}, . . . (61)
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a quantity essentially positive; so that, when the primary electrification is in one direc-

tion, the secondary discharge is always in the same direction as the primary discharge*.

PAET VL—ELECTROMAGNETIC THEORY OF LIGHT.

(91) At the commencement of this paper we made use of the optical hypothesis df

an elastic medium through which the vibrations of light are propagated, in order to^

show that we have warrantable grounds for seeking, in the same medium, the cause of

other phenomena as well as those of light. We then examined electromagnetic pheno-

mena, seeking for their explanation in the properties of the field which surrounds the

electrified or magnetic bodies. In this way we arrived at certain equations expressing

certain properties of the electromagnetic field. We now proceed to investigate whether

these properties of that which constitutes the electromagnetic field, deduced from electro-

magnetic phenomena alone, are sufficient to explain the propagation of light through

the same substance.

(92) Let us suppose that a plane wave whose direction cosines are Z, m, n is propa-

gated through the field with a velocity V. Then all the electromagnetic functions will

be functions of
7

. , v .

The equations of Magnetic Force (B), p. 482, will become

dR dG

dF
7
dn

7 dQ dF
ri duo aw

If we multiply these equations respectively by l,m, n, and add, ,we find

Zfi»a+wiffcjS+W|Bi»y==0, ......... (§2)

which shows that the direction of the magnetization must be in the plane of the wave.

(93) If we combine the equations of Magnetic Force (B) with those of Electric

Currents (C), and put for brevity

d* + dj+lF~J > md a^dy*+d^--V >
..... [bd)

dJ
(64)

* Since this paper was communicated to the Eoyal Society, I have seen a paper by M. Gatoain in the Annales

de Chimie for 1864, in which he has deduced the phenomena of electric absorption and secondary discharge

from the theory of compound condensers.
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If the medium in the field is a perfect dielectric there is no true conduction, and the

currents p\ q\ r
f are only variations in the electric displacement, or, by the equations of

Total Currents (A),

r>'- df 2
dff

dt

m dh

dt'
••••••• I vU

I

But these electric displacements are caused by electromotive forces, and by the equations

of Electric Elasticity (E),

P=Af, Q=%, TH=kh. (66)

These electromotive forces are due to the variations either of the electromagnetic or

the electrostatic functions, as there is no motion of conductors in the field; so that the

equations of electromotive force (D) are

at ax

dG dWQ=—
dt dy

, y • ' •
: • • • • » • • • l^'y

dt dz

(94) Combining these equations, we obtain the following :-

dJ d*F d*¥
dt3 ~r' dxdt

d^G d*P
dt % ~^dydt

dm . d*v

)=o,

)=o,

dt% ^~dzdt
=0.

. . . . (68)

If we differentiate the third of these equations with respect to y, and the second with

respect to z, and subtract, J and "V disappear, and by remembering the equations (B) of

magnetic force, the results may be written

d*
kV (*u= 45Tj& -jp (Ace,

AV»3= 4*^6^j/^3,

W>y=4^^^y.

. . . (69)

(95) If we assume that a, /3^ y are functions of lw-}-my-{-nZ'—Yt=w, the first equa-

tion becomes

flfw
2

or
V=±\/4*tjx

• •' (71)

The other equations give the same value for V, so that the wave is propagated in either

direction with a velocity V.
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This wave consists entirely of magnetic disturbances, the direction of magnetization

being in the plane of the wave. No magnetic disturbance whose direction of magneti-

zation is not in the plane of the wave can be propagated as a plane wave at all.

Hence magnetic disturbances propagated through the electromagnetic field agree with

light in this, that the disturbance at any point is transverse to the direction of propaga-

tion, and such waves may have all the properties of polarized light,

(96) The only medium in which experiments have been made to determine the value

of k is air, in which ^=1, and therefore, by equation (46),

V=v. (72)

By the electromagnetic experiments of MM. Webee and Kohlrausch *,

v= 310,740,000 metres per second

is the number of electrostatic units in one electromagnetic unit of electricity, and this,

according to our result, should be equal to the velocity of light in air or vacuum.

The velocity of light in air, by M. FiZEAu'sf experiments, is

V=314,858,000;

according to the more accurate experiments of M. Foucault J,

V=298,000
?
000.

The velocity of light in the space surrounding the earth, deduced from the coefficient

of aberration and the received value of the radius of the earth's orbit, is

V= 308,000,000.

(97) Hence the velocity of light deduced from experiment agrees sufficiently well

with the value of v deduced from the only set of experiments we as yet possess. The

value of v was determined by measuring the electromotive force with which a condenser

of known capacity was charged, and then discharging the condenser through a galvano-

meter, so as to measure the quantity of electricity in it in electromagnetic measure.

The only use made of light in the experiment was to see the instruments. The value

of V found by M. Foucault was obtained by determining the angle through which a

revolving mirror turned, while the light reflected from it went and returned along a

measured course. No use whatever was made of electricity or magnetism.

The agreement of the results seems to show that light and magnetism are affections

of the same substance, and that light is an electromagnetic disturbance propagated

through the field according to electromagnetic laws.

(98) Let us now go back upon the equations in (94), in which the quantities J and
*¥" occur, to see whether any other kind of disturbance can be propagated through

the medium depending on these quantities which disappeared from the final equations.

* Leipzig Transactions, vol. v. (1857), p. 260, or Poggendobff's c Annalen/ Aug. 1856, p. 10.

t Comptes Eendus, vol. xxix. (1849), p. 90. % Ibid. vol. lv. (1862), pp. 501, 792.

MDCCCLXY. 3 Y
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If we determine % from the equation

VV-^4-^4-^-J (73)v ^~ due
2 + %2 ^ ^2 "^ ^ '

and F, G', H' from the equations

F'=F-^, cy=G—$£, H'=H-^, .... (74)

then
<flF' d& dlV _ r5)
dx ' dy ' /fe

' '

^ '

and the equations in (94) become of the form

a2F'
, d /,TJ.

, ^

Differentiating the three equations with respect to #, y, and z, and adding, we find that

*=-f +#*.**). (77)

*V^==W^+^(¥+g)) (76)

and that £V2
F' = 4t^^

,

dm 1

jfcV*H'=4*7*

(78)

r2df
j

Hence the disturbances indicated by F, G', H' are propagated with the velocity

V= \ /— through the field ; and since
V 47Tju,

doc * dy ~*
doc ~ '

the resultant of these disturbances is in the plane of the wave.

(99) The remaining part of the total disturbances F, G, H being the part depending

on %, is subject to no condition except that expressed in the equation

dt ^ df
"" u *

If we perform the operation V 2 on this equation, it becomes

dJ
ke=-T7—#V2

p(#, y, z) (79)

Since the medium is a perfect insulator, #, the free electricity, is immoveable, and

dJ .

therefore -j, is a function of x, y, 2, and the value of J is either constant or zero, or

uniformly increasing or diminishing with the time ; so that no disturbance depending

on J can be propagated as a wave.

(100) The equations of the electromagnetic field, deduced from purely experimental

evidence, show that transversal vibrations only can be propagated. If we were to go

beyond our experimental knowledge and to assign a definite density to a substance which
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we should call the electric fluid, and select either vitreous or resinous electricity as the

representative of that fluid, then we might have normal vibrations propagated with a

velocity depending on this density. We have, however, no evidence as to the density of

electricity, as we do not even know whether to consider vitreous electricity as a sub-

stance or as the absence of a substance.

Hence electromagnetic science leads to exactly the same conclusions as optical science

with respect to the direction of the disturbances which can be propagated through the

field; both affirm the propagation of transverse vibrations, and both give the same velocity

of propagation. On the other hand, both sciences are at a loss when called on to affirm

or deny the existence of normal vibrations.

Relation between the Index of Refraction and the Electromagnetic Character of the

substance,

(101) The velocity of light in a medium, according to the Undulatory Theory, is

-V
i

v °'

where i is the index of refraction and V is the velocity in vacuum. The velocity,

according to the Electromagnetic Theory, is

/z
V 47TU

k

47rp

I
where, by equations (49) and (71), k=^k , and & =:4:7rY2

.

Hence D=-, ........... (80)

or the Specific Inductive Capacity is equal to the square of the index of refraction

divided by the coefficient of magnetic induction.

Propagation of Electromagnetic Disturbances in a Crystallized Medium.

(102,) Let us now calculate the conditions of propagation of a plane wave in a

medium for which the values of h and ^ are different in different directions. As we
do not propose to give a complete investigation of the question in the present imperfect

state of the theory as extended to disturbances of short period, we shall assume that the

axes of magnetic induction coincide in direction with those of electric elasticity.

(103) Let the values of the magnetic coefficient for the three axes be X, ^, v, then

the equations of magnetic force (B) become

dR dG
Ace =~7~— ~j—

3

ay dz

~ dF drL
^P dz dx

'

_dG_dF
' dx dy \

3 y2

... . . . (81)
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The equations of electric currents (C) remain as before.

The equations of electric elasticity (E) will be

P=w/;
Q=4?r%

?
I . . . . .

K=WA,

where 47m2
, farb

2
, and Awe* are the values of k for the axes of x, y, z.

Combining these equations with (A) and (D), we get equations of the form

dW

(82)

(iv \ da? 'P dy* ' dz2 ) pv dx\ dx '> dy
~*~

dz

1 /d*F d*V
d'X dp ~T~dxdt (83)

(104) If £, m, n are the direction-cosines of the wave, and V its velocity, and if

lx-\-my-\-nz—Vt=w 9 (84)

then F, G, H, and Y will be functions of w ; and if we put F, G', H', "¥' for the second

differentials of these quantities with respect to w, the equations will be

V2-^(^+?))G'+^H'+^F-mV^=0,

V

If we now put

e+3)
c
qnl cqnmH'+^F+^fff-nV^O.
P

v. . . (85)

Z*Ji(J*/»

+

&v)+m>(^»+

«

2
A)

+

n*v(a\+£»

+
cfib^c

2 /P . m2 m

we shall find

Aftv V«2 '635+ « + 3 (a+m>+^)=u
>

(86)

FV2U-Z^'VU=0, . .

with two similar equations for G' and H'. Hence either

V=0, .......
u=o

(87)

or

VF=W, VG'=m^' and YU.'=nV.

(88)

(89)

(90)

The third supposition indicates that the resultant of F, G', H' is in the direction

normal to the plane of the wave ; but the equations do not indicate that such a disturb-

ance, if possible, could be propagated, as we have no other relation between ty
! and

F', G', H'.

The solution V= refers to a case in which there is no propagation.

The solution U=0 gives two values for V2 corresponding to values of F', G', H', which
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are given by the equations

at -f- , % (j -J- oM U, (91)

c%v

(105) The velocities along the axes are as follows:-

Direction of propagation .

, . (92)

» •

Direction of the electric displacements <

# y 2

a2 «2

# •— —
V f*

62 62

y V A

c2 c2

s — —
f*

A

Now we know that in each principal plane of a crystal the ray polarized in that

plane obeys the ordinary law of refraction, and therefore its velocity is the same in

whatever direction in that plane it is propagated.

If polarized light consists of electromagnetic disturbances in which the electric dis-

placement is in the plane of polarization, then

If, on the contrary, the electric displacements are perpendicular to the plane of pola-

rization,

•k=p=v. , # . (94)

We know, from the magnetic experiments of Faraday, Plucker, &c, that in many

crystals X, ^, v are unequal.

The experiments of Knoblauch * on electric induction through crystals seem to show

that a, b and e, may be different.

The inequality, however, of X, ^, v is so small that great magnetic forces are required

to indicate their difference, and the differences do not seem of sufficient magnitude to

account for the double refraction of the crystals.

On the other hand, experiments on electric induction are liable to error on account

of minute flaws, or portions of conducting matter in the crystal.

Further experiments on the magnetic and dielectric properties of crystals are required

before we can decide whether the relation of these bodies to magnetic and electric

forces is the same, when these forces are permanent as when they are alternating with

the rapidity of the vibrations of light.

* Philosophical Magazine, 1852,
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Relation between Electric Resistance and Transparency.

(106) If the medium, instead of being a perfect insulator, is a conductor whose resist-

ance per unit of volume is g>, then there will bid not only electric displacements, but true

currents of conduction in which electrical energy is transformed into heat, and the undu-

lation is thereby weakened. To determine the coefficient of absorption, let us investi-

gate the propagation along the axis of x of the transverse disturbance G.

By the former equations

= - 4*?6(f+2) by(A )>

rf2Cr /I fl^Cr 1 flCr\

^=+M^4^) by(E)and(F)
'

• •
<95)

If G is of the form

0=6'^ cos (qx+nt), (96)
we find that

«=^2=?^V (97)
g q g i

K J

where V is the velocity of light in air, and i is the index of refraction. The proportion

of incident light transmitted through the thickness x is

e~^x
. . . . (98)

Let R be the resistance in electromagnetic measure of a plate of the substance whose

thickness is x, breadth #, and length 7, then

OX

2px=^l±.- (99)

(107) Most transparent solid bodies are good insulators, whereas all good conductors

are very opaque.

Electrolytes allow a current to pass easily and yet are often very transparent. We
may suppose, however, that in the rapidly alternating vibrations of light, the electro-

motive forces act for so short a time that they are unable to effect a complete separation

between the particles in combination, so that when the force is reversed the particles

oscillate into their former position without loss of energy.

Gold, silver, and platinum are good conductors, and yet when reduced to sufficiently

thin plates they allow light to pass through them. If the resistance of gold is the same

for electromotive forces of short period as for those with which we make experiments,

the amount of light which passes through a piece of gold-leaf, of which the resistance

was determined by Mr. C. Hockin, would be only 10~~ 50 of the incident light, a totally

imperceptible quantity. I find that between ^^ and y<f-o of green light gets through
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such gold-leaf. Much of this is transmitted through holes and cracks;. there is enough,

however, transmitted through the gold itself to give a strong green hue to the

transmitted light. This result cannot be reconciled with the electromagnetic theory

of light, unless we suppose that there is less loss of energy when the electromotive forces

are reversed with the rapidity of the vibrations of light than when they act for sensible

times, as in our experiments.

Absolute Values of the Electromotive and Magnetic Forces called into play in the

Propagation of Light.

(108) If the equation of propagation of light is

F=Acos~(s—W),
the electromotive force will be

P=—Ay Vsin~(2:— Vt);

and the energy per unit of volume will be

P2

8^V2 '

where P represents the greatest value of the electromotive force. Half of this consists

of magnetic and half of electric energy.

The energy passing through a unit of area is

8?raV
so that

P =X/8^VW,
where V is the velocity of light, and W is the energy communicated to unit of area by

the light in a second.

According to Pouillet's data, as calculated by Professor W. Thomson*, the mecha-

nical value of direct sunlight at the Earth is

83*4 foot-pounds per second per square foot.

This gives the maximum value of P in direct sunlight at the Earth's distance from the Sun,

P=60,000,000,

or about 600 Daniell's cells per metre.

At the Sun's surface the value of P would be about

13,000 Daniell's cells per metre.

At the Earth the maximum magnetic force would be *193f.

At the Sun it would be 4*13.

These electromotive and magnetic forces must be conceived to be reversed twice in

every vibration of light; that is, more than a thousand million million times in a second.

* Transactions of the Eoyal Society of Edinburgh, 1854 (" Mechanical Energies of the Solar System"),

f The horizontal magnetic force at Kew is about 1-76 in metrical units.
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PAET VIL—CALCULATION OP THE COEFFICIENTS OP ELECTEOMAGNETIC INDUCTION.

General Methods.

(109) The electromagnetic relations between two conducting circuits, A and B,

depend upon a function M of their form and relative position, as has been already

shown.

M may be calculated in several different ways, which must of course all lead to the

same result.

First Method. M is the electromagnetic momentum of the circuit B when A carries

a unit current, or n, , , ,
v

m=J(f5+gJ+hS)^

where F, G, H are the components of electromagnetic momentnm due to a unit current

in A, and ds 1

is an element of length of B, and the integration is performed round the

circuit of B.

To find F, G, H, we observe that by (B) and (C)

d*F
,
d*F . dqF

,

with corresponding equations for G and H, p
!

, g
;

, and ^ being the components of the

current in A.

Now if we consider only a single element ds of A, we shall have

p'=
Js

ds, d=js ds, r'=
Js

ds,

and the solution of the equation gives

g as g ds '

g ds '

where g is the distance of any point from ds. Hence

CCfifdx dx dy dy dz dz\

JJ 9 \ds ds'+ dsds'+ds dsl

)
asaS

= l i - cos 6dsds\

where 6 is the angle between the directions of the two elements ds, ds!

, and g is the

distance between them, and the integration is performed round both circuits.

In this method we confine our attention during integration to the two linear circuits

alone.

(110) Second Method. M is the number of lines of magnetic force which pass

through the circuit B when A carries a unit current, or

where pec, p(3, py are the components of magnetic induction due to unit current in A,
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S' is a surface bounded by the current B, and Z, m, n are the direction-cosines of the

normal to the surface, the integration being extended over the surface.

We may express this in the form

1
M=^2~2 sin 6 sin (I sin <pdS

f

ds,

where dS f

is an element of the surface bounded by B, ds is an element of the circuit A,

q is the distance between them, 6 and 8 are the angles between g and ds and between

g and the normal to dS1

respectively, and <p is the angle between the planes in which

6 and & are measured. The integration is performed round the circuit A and over the

surface bounded by B.

This method is most convenient in the case of circuits lying in one plane, in which

case sin 0=1, and sin<p=l.

111. Third Method. M is that part of the intrinsic magnetic energy of the whole

field which depends on the product of the currents in the two circuits, each current

being unity.

Let a, /3, y be the components of magnetic intensity at any point due to the first

circuit, af

, /3', y' the same for the second circuit; then the intrinsic energy of the

element of volume dV of the field is

The part which depends on the product of the currents is

Hence if we know the magnetic intensities I and I' due to unit current in each circuit,

we may obtain M by integrating

•t2u.IV cos 4dV
4tt

r

over all space, where 6 is the angle between the directions of I and I'.

Application to a Coil.

(112) To find the coefficient (M) of mutual induction between two circular linear

conductors in parallel planes, the distance between the curves being everywhere the same,

and small compared with the radius of either.

If r be the distance between the curves, and a the radius of either, then when r is

very small compared with «, we find by the second method, as a first approximation,

M=4^Aog
e^-2V

To approximate more closely to the value of M, let a and a
x
be the radii of the circles,

and b the distance between their planes ; then

r2=(a—a^+b2
.

mdccclxv. 3 z
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We obtain M by considering the following conditions :

—

1st. M must fulfil the differential equation

(PM d*M IdM__
da 2,

* db2 * a da

This equation being true for any magnetic field symmetrical with respect to the common

axis of the circles, cannot of itself lead to the determination of M as a function of a, a„

and b. We therefore make use of other conditions.

2ndly. The value of M must remain the same when a and a
Y
are exchanged.

3rdly. The first two terms of M must be the same as those given above.

M may thus be expanded in the following series :

—

M: b r
\

' 2 a
l

16 dl 32 as j

_4ffg/2+ lg- fli+ 1 b*-3(a-a*)__ 1 (6&M«-*i)
a
)(«-«i)+&c l

( 2 a ' 16 a2 48 as j

(113) We may apply this result to find the coefficient of self-induction (L) of a circular

coil of wire whose section is small compared with the radius of the circle.

Let the section of the coil be a rectangle, the breadth in the plane of the circle being

c, and the depth perpendicular to the plane of the circle being b.

Let the mean radius of the coil be a, and the number of windings n; then we find,

by integrating, ^ „„„„

L=to| I j i M(#y x'y
!)dx dy dx dy\

where M(xyx!

y') means the value of M for the two windings whose coordinates are xy

and #y respectively ; and the integration is performed first with respect to x and y over

the rectangular section, and then with respect to x! and y' over the same space.

L==47mVJloge
™+

, 13 sin4 , . .)
,

Here a~ mean radius of the coil.

„ ft=z diagonal of the rectangular section ~sfl?Ar &.

„ 0= angle between r and the plane of the circle.

„ n= number of windings.

The logarithms are Napierian, and the angles are in circular measure.

In the experiments made by the Committee of the British Association for deter-

mining a standard of Electrical Resistance, a double coil was used, consisting of two

nearly equal coils of rectangular section, placed parallel to each other, with a small

interval between them.
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The value of L for this coil was found in the following way.

The value of L was calculated by the preceding formula for six different cases, in

which the rectangular section considered has always the same breadth, while the depth

was
A, B, C, A+B

5 B+C, A+B+C,
and n=l in each case.

Calling the results

L(A), ' L(B), L(C), &c,

we calculate the coefficient of mutual induction M(AC) of the two coils thus,

2ACM(AC)=(A+B+C)2L(A+

Then if n
Y
is the number of windings in the coil A and n2 in the coil B, the coefficient

of self-induction of the two coils together is

L

=

nfL(A)

+

2n
l
n2L(AC)+wJL(B)

.

(114) These values of L are calculated on the supposition that the windings of the

wire are evenly distributed so as to fill up exactly the whole section. This, however, is

not the case, as the wire is generally circular and, covered with insulating material.

Hence the current in the wire is more concentrated than it would have been if it had

been distributed uniformly over the section, and the currents in the neighbouring wires

do not act on it exactly as such a uniform current would do.

The corrections arising from these considerations may be expressed as numerical

quantities, by which we must multiply the length of the wire, and they are the same

whatever be the form of the coil.

Let the distance between each wire and the next, on the supposition that they are

arranged in square order, be D, and let the diameter of the wire be d, then the correc-

tion for diameter of wire is

log7+ 3log 2+ 3--g-j.

The correction for the eight nearest wires is

+0-0236.
For the sixteen in the next row

+0-00083.

These corrections being multiplied by the length of wire and added to the former

result, give the true value of L, considered as the measure of the potential of the coil

on itself for unit current in the wire when that current has been established for some

time, and is uniformly distributed through the section of the wire.

(115) But at the commencement of a current and during its variation the current is

not uniform throughout the section of the wire, because the inductive action between

different portions of the current tends to make the current stronger at one part of the

section than at another. When a uniform electromotive force P arising from any cause

3z2
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acts on a cylindrical wire of specific resistance g9
we have

-r. d¥

where F is got from the equation

d2F 1 d¥_
l^ +^W— ixW>

r being the distance from the axis of the cylinder.

Let one term of the value of F be of the form IV", where T is a function of the time,

then the term ofp which produced it is of the form

Hence if we write

PZ-\l+ dt) e dt*
r

dl2

l
2 22

dfi ^
'

2 1 d8T
/ —— ^£,\_,#

1
2 .22 dt3

The total counter current of self-induction at any point is

J
{" -PJ *t- -

1+j -#1 + y~ f222 W2/ + &c *

from £=0 to £=oo .

When £=0, ^=0, .\ l-^-j =P, (^l ^O* &c.

When t=co 9J?=j> ... (f)^= 9 (^=0. &c *

nr /P \ 1 1 jU/TT
2 ^T |A3 1 rf

2T
2*(j-p)«Z«Ztf= -T*r2+ 2 ^^+ -pr 1^73 T^°+ &c'

from t=0 to =oc*

When £=0, J9=0 throughout the section, .*. (-^A =P? ( *^i" ) ^O? &c*

/dT\ /dqT\
When t=oo

, p=0 throughout . . * . .% [-$) =0, (-^2) =0, &c.
\ / 00 \ / 00

Also if I be the length of the wire, and R its resistance,

R=-%

P/
and if C be the current when established in the wire, C= -g«

The total counter current may be written

i(T„-T.)-!4c=-^by§(86).
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Now if the current instead of being variable from the centre to the circumference of

the section of the wire had been the same throughout, the value of F would have been

F=T+^y(l~-2 ),

where y is the current in the wire at any instant, and the total countercurrent would

have been

n'ldF , Z /rp ^ 3 l n L'C
^^2«-rfr== s (Tw-T )--

if
6 gC==- s-,say.

Hence
1j= 1j —•4^6,

or the value of L which must be used in calculating the self-induction of a wire for

variable currents is less than that which is deduced from the supposition of the current

being constant throughout the section of the wire by ^pl, where I is the length of the

wire, and p is the coefficient of magnetic induction for the substance of the wire.

(116) The dimensions of the coil used by the Committee of the British Association

in their experiments at King's College in 1864 were as follows :

—

metre.

Mean radius ....... =#='158194

Depth of each coil =#= '01608

Breadth of each coil .... =c= *01841

Distance between the coils . . . =-02010

Number of windings . . . .
%z=313

Diameter of wire ..... =-00126

The value of L derived from the first term of the expression is 437440 metres.

The correction depending on the radius not being infinitely great compared with the

section of the coil as found from the second term is —7345 metres.

The correction depending on the diameter of the wire is "] .44007
per unit of length J

Correction of eight neighbouring wires +*0236

For sixteen wires next to these +-0008

Correction for variation of current in different parts of section — -2500

Total correction per unit of length -22437

Length 311*236 metres.

Sum of corrections of this land . 70

Final value of L by calculation . 430165

This value of L was employed in reducing the observations, according to the method

explained in the Eeport of the Committee*. The correction depending on L varies

as the square of the velocity. The results of sixteen experiments to which this correc-

tion had been applied, and in which the velocity varied from 100 revolutions in

seventeen seconds to 100 in seventy-seven seconds, were compared by the method of

* British Association Beports, 1863, p. 169.
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least squares to determine what further correction depending on the square of the

velocity should be applied to make the outstanding errors a minimum.

The result of this examination showed that the calculated value of L should be

multiplied by 1*0618 to obtain the value of L, which would give the most consistent

results.

We have therefore L by calculation .......... 430165 metres.

Probable value of L by method of least squares ...... 456748 „

Eesult of rough experiment with the Electric Balance (see § 46) 410000 „

The value of L calculated from the dimensions of the coil is probably much more

accurate than either of the other determinations.


