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IS V I S U A L  S P A C E  E U C L I D E A N ?  

Philosophers of past times have claimed that the answer to the question, 
Is visual space Euclidean?, can be answered by a priori or purely 
philosophical methods. Today such a view is presumably held only in 
remote philosophical backwaters. It would be generally agreed that one 
way or another the answer is surely empirical, but the answer might be 
empirical for indirect reasons. It could be decided by physical arguments 
that physical space is Euclidean and then by conceptual arguments about 
perception that necessarily the visual space must be Euclidean. To some 
extent this must be the view of many laymen who accept that to a high 
degree of approximation physical space is Euclidean, and therefore 
automatically hold the view that visual space is Euclidean. 

I begin with the question, How do we test the proposition that visual 
space is Euclidean? The first section is devoted to this problem of 
methodology. The second section provides a brief overview of the 
hierarchy of geometries relevant to visual phenomena. The third section 
reviews a number of answers that have been given to the question of the 
Euclidean character of visual space. I examine both philosophical and 
psychological claims. The final section is devoted to central issues raised 
by the variety of answers that have been given. 

I. HOW TO APPROACH THE QUESTION 

What would seem to be, in many ways, the most natural mathematical 
approach to the question has also been the method most used experimen- 
tally. It consists of considering a finite set of points. Experimentally, the 
points are approximated by small point sources of light of low illumina- 
tion intensity, displayed in a darkened room. The intuitive idea of the 
setting is to make only a finite number of point-light sources visible and to 
make these light sources of sufficiently low intensity to exclude illumina- 
tion of the surroundings. The second step is to ask the person making 
visual judgments to state whether certain geometrical relations hold 
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between the points. For example, are points a and b the same distance 
from each other as points c and d?  (Hereafter in this discussion I shall 
refer to points but it should be understood that I have in mind the physical 
realization in terms of point-light sources.) Another  kind of question 
might be, Is the angle formed by points abc congruent or equal in 

measure to the angle formed by points def? 
Another  approach to such judgments is not to ask whether given points 

have a certain relation but rather to permit the individual making the 
judgments to manipulate some of the points. For example, first fix 
points a, b and c and then ask him to adjust d so that the distance 
between c and d is the same as the distance between a and b. Although 
the formulation I am giving of these questions sounds as if they might be 
metric in character, they are ordinarily of a qualitative nature - for 
example, that of congruence of segments, which I formulated as same 
distance. No metric requirements are imposed upon the individuals 
making such judgments. For instance, no one would naturally ask sub- 
jects in the experiments relevant to our question to set the distance 
between two points to be approximately 1.3 meters or to determine an 
angle of, say, 21 degrees. 

Once such judgments are obtained, whether on the basis of fixed 
relations or by adjusting the position of points, the formal or mathemati- 
cal question to ask is whether the finite relational structure can be 
embedded in a two- or three-dimensional Euclidean space. The dimen- 
sionality depends upon the character of the experiment. In many cases 
the points will be restricted to a plane and therefore embedding in two 
dimensions is required; in other cases embedding in three dimensions is 
appropriate. By a finite relational structure I mean a relational structure 
whose domain is finite. To give a simple example, suppose that A is the 

finite set of points and the judgments we have asked for are judgments of 
equidistance of points. Let  E be the quaternary relation of equidistance. 
Then to say that the finite relational structure 9~ = (A, E )  can be embed- 
ded in three-dimensional Euclidean space is to say that there exists a 
function ~0 defined on A such that q~ maps A into the set of triples of real 
numbers and such that for every a, b, c, and d in A the following relation 

holds: 
3 3 

a b E c d  iff Y'. (~oi(a)-~oi(b)) 2= Y'. (~pi(c)-~oi(d)) 2, 
i = l  i = l  
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where ~0i (a) is the ith coordinate of q~ (a). 

Note that the mapping into triples of real numbers is just mapping visual 
points into a Cartesian representation of three-dimensional Euclidean 
space. 

In principle, it is straightforward to answer the question raised by this 
embedding procedure. So that, given a set of data from an individual's 
visual judgments of equidistance between points, we can determine in a 
definite and constructive mathematical manner whether such embedding 
is possible. 

Immediately, however, a problem arises. This problem can be grasped 
by considering the analogous physical situation. Suppose we are making 
observations of the stars and want to test a similar proposition, or some 
more complex proposition of celestial mechanics. We are faced with the 
problem recognized early in the history of astronomy, and also in the 
history of geodetic surveys, that the data are bound not to fit the 
theoretical model exactly. The classical way of putting this is that errors of 
measurement arise, and our problem is to determine if the model fits the 
data within the limits of the error of measurement. In examining data on 
the advancement of the perihelion of Mercury, which is one of the 
important tests of Einstein's general theory of relativity, the most tedious 
and difficult aspect of the data analysis is to determine whether the theory 
and the observations are in agreement within the estimated error of 
measurement. 

Laplace, for example, used such methods with unparalleled success. He 
would examine data from some particular aspect of the solar system, for 
example, irregularities in the motion of Jupiter and Saturn, and would 
then raise the question of whether these observed irregularities were due 
to errors of measurement or to the existence of 'constant' causes. When 
the irregularities were too great to be accounted for by errors of measure- 
ment, he then searched for a constant cause to explain the deviations from 
the simpler model of the phenomena. In the case mentioned, the 
irregularities in the motion of Jupiter and Saturn, he was able to explain 
them as being due to the mutual gravitational attraction of the two 
planets, which had been ignored in the simple theory of their motion. But 
Laplace's situation is different from the present one in the following 
important respect. The data he was examining were already rendered in 
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quantitative form and there was no question of having a numerical 
representation. Our problem is that we start from qualitative judgments 
and we are faced with the problem of simultaneously assigning a meas- 
urement and determining the error of that measurement. Because of the 
complexity and sublety of the statistical questions concerning errors of 
measurement in the present setting, for purposes of simplification I shall 
ignore them, but it is absolutely essential to recognize that they must be 
dealt with in any detailed analysis of experimental data. 

Returning to the formal problem of embedding qualitative relations 
among a finite set of points into a given space, it is surprising to find that 
the results of the kinds that are needed in the present context are not 
really present in the enormous mathematical literature on geometry. 
There is a very large literature on finite geometries; for example, 
Dembowski (1968) contains over 1200 references. Moreover, the tradi- 
tion of considering finite geometries goes back at least to the beginning of 
this century. Construction of such geometries by Veblen and others was a 
fruitful source of models for proving independence of axioms, etc. On the 
other hand, the literature that culminates in Dembowski's magisterial 
survey consists almost entirely of projective and affine geometries that 
have a relatively weak structure. From a mathematical standpoint, such 
structures have been of considerable interest in connection with a variety 
of problems in abstract algebra. The corresponding theory of finite 
geometries of a stronger type, for example, finite Euclidean, finite elliptic, 
or finite hyperbolic geometries, is scarcely developed at all. As a result, 
the experimental literature does not deal directly with such finite geome- 
tries, although they are a natural extension of the weaker finite geometries 
on the one hand and finite measurement structures on the other. 

A second basic methodological approach to the geometrical character 
of visual space is to assume that a standard metric representation already 
exists and then to examine which kind of space best fits the data. An 
excellent example of this methodology is to be found in various publica- 
tions of Foley (1965, 1972). Foley shows experimentally that the size- 
distance invariance hypothesis, which asserts that the perceived size- 
distance ratio is equal to the physical size-distance ratio, is grossly 
incorrect. At the same time he also shows that perceived visual angles are 
about ten percent greater than physical angles. These studies are con- 
ducted on the assumption that a variety of more primitive and elementary 
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axioms are satisfied. In contrast, Luneburg (1948) assumes that the 
perceived visual angle equals the physical angle, that is, that the transfor- 
mation between the two is conformal, but what is back of the use of this 
assumption is a whole variety of assumptions that both physical space and 
visual space are homogeneous spaces of constant curvature, that is, are 
Riemannian spaces, and essentially Luneburg does not propose to test in 
any serious way the many consequences implied by this very rich assump- 
tion of having a homogeneous space with constant curvature. In other 
words, in this second approach there is no serious attempt to provide tests 
that will show if all of the axioms that hold for a given type of space are 
satisfied. 

A third approach is to go back to the well-known Helmholtz-Lie 
problem of the nature of space and to replace finiteness by questions of 
continuity and motion. In a famous lecture of 1854, Riemann 
(1854/1892) discussed the hypotheses on which the foundations of 
geometry lie. More than a decade later, Helmholtz (1868)responded in a 
paper entitled '~Jber die Tatsachen, die der Geometrie zugrunde liegen'. 
The basic argument of Helmholtz's paper was that, although arbitrary 
Riemannian spaces are conceivable, actual physical space has as an 
essential feature the free mobility of rigid bodies. From a mathematical 
standpoint, such motions are characterized in metric geometry as trans- 
formations of a space onto itself that preserve distances. Such transfor- 
mations are called isometries. Because of the extensivemathematical  
development of the topic (for modern review, see Busemann, 1955, 
Section 48, or Freudenthal, 1965), an excellent body of formal results is 
available as tools to be used in the investigation of the character of visual 
space. Under various axiomatizations of the Helmholtz-Lie approach it 
can be proved that the only spaces satisfying the axioms are the following 
three kinds of elementary spaces: Euclidean, hyperbolic, and spherical. 

From a philosophical standpoint, it is important to recognize that 
considerations of continuity and motion are probably more fundamental 
in the analysis of the nature of visual space than the mathematically more 
elementary properties of finite spaces. Unfortunately, I am not able to 
report any experimental literature that uses the Helmholtz-Lie approach 
as a way of investigating the nature of visual space, although it is implicit 
in some of the results reported below that it would be difficult to interpret 
the experimental results as satisfying an axiom of free mobility. Let me be 
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clear on this point. Some of the experimental investigations lead to the 
result that visual space cannot be elementary in the sense just defined, but 
these investigations do not explicitly use the kind of approach to motion 
suggested by the rich mathematical developments that have followed in 
response to the Helmholtz-Lie problem. 

A fourth approach that lies outside the main body of the literature to be 
considered in this paper is the recent al~proach through picture grammars 
and the analysis of perceptual scenes. Its growing literature has been in 
response especially to problems of pattern recognition that center on 
construction of computer programs and peripheral devices that have 
rudimentary perceptual capacities. Although this approach has a formal 
character quite different from the others considered and it has not been 
used to address directly the question about the Euclidean character of 
space, it should be mentioned because it does provide an approach that in 
many respects is very natural psychologically and that is in certain aspects 
more closely connected to the psychology of perception than most of the 
classical geometric approaches that have been used thus far in the analysis 
of visual space. (An elementary introduction and references to the 
literature are to be found in Suppes and Rottmayer, 1974; an ency- 
clopedic review is given by Fu, 1974.) 

A typical picture grammar has the following character. Finite line 
segments or finite curves of a given length and with a given orientation are 
concatenated together as basic elements to form geometrical figures of 
greater complexity. A typical problem in the literature of pattern recogni- 
tion is to provide such a concatenation (not necessarily one dimensional) 
so as to construct handwritten characters, or, as a specialized example 
that has received a fair amount of attention, to recognize handwritten 
mathematical symbols. These approaches are often labeled picture gram- 
mars because they adopt the approach used i.n mathematical linguistics 
for writing phrase-structure grammars to generate linguistic utterances. 
Picture grammars can in fact be characterized as context free, context 
sensitive, etc., depending upon the exact character of the rules of produc- 
tion. What is missing is the question, Can the set of figures generated by 
the picture grammars be embedded in Euclidean space or other metric 
spaces of an elementary character? This question would seem to have 
some conceptual interest from the standpoint of the theory of perception. 
It is clearly not of the same importance for the theory of pattern 
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recognition. Picture grammars base perception on a set of primitive 
concepts that seem much more natural than the more abstract concepts 
familiar in classical geometry. They would seem to represent an excellent 
approach for exploration of the character of visual space but I am unable 
to cite references that test these ideas experimentally. 

I I .  T H E  H I E R A R C H Y  O F  G E O M E T R I E S  

Those who have declared that visual space is not Euclidean have usually 
had a well-defined alternative in mind. The most popular candidates have 
been claims that visual space is either elliptic or hyperbolic, although 
some more radical theses are implicit in some of the experimental work. 

How the various geometries are to be related hierarchically is not 
entirely a simple matter, for by different methods of specialization one 
may be obtained from another. A reasonably natural hierarchy for 
purposes of talking about visual space is shown in Fig. 1. In the figure, I 

Projective Ordered 

Elliptic Absolute 

E u c I i d e a n  H y p e r b o l i c  

Fig. 1. Hierarchy of geometries. 

have also referred to geometries rather than to spaces, although from a 
certain conceptual standpoint the latter is preferable. I have held to the 
language of geometries in deference to tradition in the literature on visual 
space. The weakest geometry considered here is either projective 

geometry on the left-hand side at the top of the figure or ordered 
geometry at the right. There are various natural primitive concepts for 
projective geometry. Fundamental  in any case is the concept of incidence 
and, once order is introduced, the concept of separation. In contrast, 
ordered geometry is based upon the single ternary relation of between- 
ness holding for three points in the fashion standard for Euclidean 
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geometry, but of course axioms based only upon betweenness are weaker 
than those required for Euclidean geometry. Without entering into 
technical details, elliptic geometry of the plane is obtained from projec- 
tive geometry by defining it as the geometry corresponding to the group 
of projective collineations that leave an imaginary ellipse invariant in the 
projective plane. Although elliptic geometry has been important in the 
consideration of visual space, as we shall see later, the details of elliptic 
geometry are complicated and subtle, and as far as I know have not 
actually been adequately studied in detail in relation to any serious body 
of experimental data. 

Turning now to the right-hand side of Figure 1, affine geometry is 
obtained from ordered geometry by adding Euclid's axiom that, given 
a line and a point external to the line, there is at most one line (i) 
through the point, (ii) in the plane formed by the point and the line, and 
(iii) that does not meet the line. Going in the other direction from ordered 
geometry in Figure 1, we obtain absolute geometry by adding the concept 
of congruence of segments, which is just the notion of equidistance 
mentioned earlier. We add Euclid's axiom to absolute geometry to obtain 
Euclidean geometry, and we add the negation of Euclid's axiom to 
absolute geometry to obtain hyperbolic geometry. These are the only two 
extensions of absolute geometry. Given the fundamental character of 
absolute geometry in relation to the claims often made that visual space is 
either Euclidean or hyperbolic, it is somewhat surprising that there has 
been no more detailed investigation experimentally of whether the 
axioms of absolute geometry hold for visual space. 

There is another way of organizing the hierarchy of geometries in terms 
of metric spaces. Recall that a metric space is a pair (A, d) such that A is a 
nonempty set, d is a real-valued function defined on the Cartesian 
product A x A, and for all a, b, c in A, 

Axioml .  d(a,a)=O andif a#b,d(a,b)>O; 
Axiom 2. d(a, b) = d(b, a); 

Axiom 3. d(a, b)+d(b, c)>~d(a, c). 

The elements of the set A are called points. The first axiom asserts that 
distances are positive, except for the distance between identical points, 
which is zero. The second axiom asserts that distance is symmetric; that is, 
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it is a function only of the unordered pair of points, not a function of their 

order. The third axiom is the triangle inequality. Most of the metric 
spaces important for the theory of perception have the property that any 
two points can be joined by a segment. Such spaces are called metric 
spaces with additive segments. These spaces are naturally divided into 
two broad subclasses, affine metrics and coordinate-free metrics. By 
further specialization of each of these subclasses we are led naturally to 
the Euclidean, hyperbolic, and spherical spaces, as well as to generaliza- 
tions of the Euclidean metric in terms of what are called Minkowski 
metrics. An important subclass of the coordinate-free metrics is the 
Riemannian metrics. It may be shown that the only spaces that are 
Riemannian and affine metric are either Euclidean or hyperbolic. We 
shall not use these concepts in detail, but it is important to mention that 
this alternative hierarchy of metric spaces is as natural to use as the more 
classical hierarchy exhibited in Figure 1. 

All of the concepts I have introduced in this brief survey of the 
hierarchy of geometries are familiar in the mathematical literature of 
geometry. 

I I I .  E X P E R I M E N T A L  A N D  P H I L O S O P H I C A L  A N S W E R S  

My main purpose in this section is to provide a survey of the answers that 
have been given. A summary is provided in Table 1. 

The natural place to begin is with Euclid's Optics, the oldest extant 
treatise on mathematical optics. It is important to emphasize that Euclid's 
Optics is really a theory of vision and not a treatise on physical optics. A 
large number of the propositions are concerned with vision from the 
standpoint of perspective in monocular vision. Indeed, Euclid's Optics 
could be characterized as a treatise on perspective within Euclidean 
geometry. The tone of Euclid's treatise can be seen from quoting the 
initial part, which consists of seven 'definitions'. 

1. Let it be assumed that lines drawn directly from the eye pass through a space of great 
extent; 

2. and that the form of the space included within our vision is a cone, with its apex in the 
eye and its base at the limits of our vision; 

3. and that those things upon which the vision falls are seen, and that those things upon 
which the vision does not fall are not seen; 



4 0 6  P A T R I C K  S U P P E S  

TABLE I 
Is visual space Euclidean? 

Name Claim Answer 

Euclid (300 B.C.) 
Reid (1764), Daniels (1972), 

Angell (1974) 
Blumenfeld (1913) 

Luneburg (1947, 1948, 
1950) 

Blank (1953, 1957, 1958a, 
1958b, 1961) 

Hardy et al. (1953) 
Zajaczkowska (1956) 

Schelling (1956) 

Gogel (1956a, 1956b, 1963, 
1964a, 1964b, 1965) 

Foley (1964, 1965, 1966, 
1969, 1972) 

Indow (1967, 1968, 1974a, 
1974b, 1975) 

Indow et al. (1962a, 1962b, 
1963) 

Nishikawa (1967) 
Matsushima and Noguchi (1967) 
Griinbaum (1963) 
Strawson (1966) 

Theory of perspective 
Geometry of visibles spherical 

Parallel alleys not equal 
to equidistance alleys 

Visual space is hyperbolic 

Essentially same as Luneburg 

Essentially same as Luneburg 
Positive results on experimental 

test of Luneburg theory 
Hyperbolic relative to given 

fixation point 
Equidistance tendency evidence 

for contextual geometry 
Visual space is nonhomogeneous 

MDS methods yield good 
Euclidean fit 

Close to Indow 

Close to Indow 
Close to Indow 
Questions Luneburg theory 
Phenomenal geometry is 

Euclidean 

Yes 
No 

No 

No 

No 

No 
No 

No 

No 

No but 

Not sure 

Not sure 

Not sure 
Not sure 
Yes 
Yes 

4. and that those things seen within a larger angle appear larger, and those seen within a 
smaller angle appear smaller, and those seen within equal angles appear to be of the same 
size; 

5. and that those things seen within the higher visual range appear higher, while those 
within the lower range appear lower; 

6. and, similarly, that those seen within the visual range on the right appear on the right, 
while those within that on the left appear on the left; 

7. but that things seen within several angles appear to be more clear. 

( T h e  t r a n s l a t i o n  is t a k e n  f r o m  tha t  g i v e n  by B u r t o n  in 1945 . )  

T h e  d e v e l o p m e n t  of  E u c l i d ' s  Optics  is m a t h e m a t i c a l  in c h a r a c t e r ,  b u t  it is 

n o t  a x i o m a t i c  in t h e  s a m e  w a y  tha t  t he  E l e m e n t s  are .  F o r  e x a m p l e ,  l a t e r  
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Euclid proves two propositions, 'to know how great is a given elevation 
when the sun is shining' and 'to know how great is a given elevation when 
the sun is not shining'. As would be expected, there is no serious 
introduction of the concept of the sun or of shining but they are treated in 
an informal, commonsense, physical way with the essential thing for the 
proof being rays from the sun falling upon the end of a line. Visual space is 
of course treated by Euclid as Euclidean in character. 

The restriction to monocular vision is one that we shall meet repeatedly 
in this survey. However, it should be noted that Euclid proves several 
propositions involving more than one eye; for example, 'If the distance 
between the eyes is greater than the diameter of the sphere, more than the 
hemispheres will be seen'. Euclid is not restricted to some simple geomet- 
ric optics but is indeed concerned with the theory of vision, as is evident 
from the proposition that 'if an arc of a circle is placed on the same plane 
as the eye, the arc appears to be a straight line'. This kind of proposition is 
a precursor of later theories - for example, that of Thomas Reid - which 
emphasize the non-Euclidean character of visual space. 

I skip rapidly through the period after Euclid to the eighteenth century, 
not because there are not matters of interest in this long intervening 
period but because there do not seem to be salient changes of opinion 
about the character of visual space, or at least if there are they are not 
known to me. I looked, for example, at the recent translation by David C. 
Lindberg (1970) of the thirteenth-century treatise Perspectiva Communis 
of John Pecham and found nothing to report in the present context, 
although the treatise itself and Lindberg's comments on it are full of 
interesting matter of great importance concerning other questions in 
optics, as, for example, theories about the causes of light. 

Newton's Optieks (1704/1931) is in marked contrast to Euclid's. The 
initial definitions do not make any mention of the eye until Axiom VIII, 
and then in very restrained fashion. Almost without exception, the 
propositions of Newton's optics are concerned with geometrical and 
especially physical properties of light. Only really in several of the 
Queries at the end are there any conjectures about the mechanisms of the 
eye, and these conjectures do not bear on the topic at hand. 

Five years after the publication of the first edition of Newton's Opticks, 
Berkeley's An Essay Towards a New Theory of Vision (1709/1901) 
appeared in 1709. Berkeley does not really have much of interest to say 
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about the geometry of visual space, except in a negative way. He makes 
the point that distance cannot be seen directly and, in fact, seems to 
categorize the perception of distance as a matter of tactile rather than 
visual sensation because the muscular convergence of the eyes is tactile in 
character. He emphatically makes the point that we are not able geomet- 
rically to observe or compute the optical angle generated by a remote 
point as a vertex with sides pointing toward the centers of the two eyes. 
Here is what he says about the perception of optical angles. "Since 
therefore those angles and lines are not themselves perceived by sight, it 
follows . . . .  that the mind does not by them judge the distance of objects" 
(4~ 13). What he says about distance he also says about magnitude not 
being directly perceived visually. In this passage (paragraph 53), he is 
especially negative about trying to use the geometry of the visual world as 
a basis for visual perception. 

It is clear from these and other passages that for Berkeley visual space 
is not Euclidean because there is no proper  perception of distance or 
magnitude; at least, visual space is not a three-dimensional Euclidean 
space. What he seems to say is sufficiently ambiguous as to whether one 
should argue that it is at least a two-dimensional Euclidean space. My 
own inclination is to judge that his views on this are more negative than 
positive. Perhaps a sound negative argument can be made up from his 
insistence on there being a minimum visible. As he puts it, "I t  is certain 
sensible extension is not infinitely divisible. There is a minimum tangible, 
and a minimum visible, beyond which sense cannot perceive. This 
everyone's experience will inform him" ( #  54). 

In fact, toward the end of the essay, Berkeley makes it clear that even 
two-dimensional geometry is not a proper  part of visual space or, as we 
might say, the visual field. As he says in the final paragraph of the essay, 
"By this time, I suppose, it is clear that neither abstract nor visible 
extension makes the object of geometry."  

Of much greater interest here is Thomas Reid's Inquiry into the Human 
Mind, first published in 1764 (1764/1967). Chapter 6 deals with seeing, 
and Section 9 is the celebrated one entitled 'Of the geometry of visibles'. 
It is sometimes said that this section is a proper  precursor of non- 
Euclidean geometry, but if so, it must be regarded as an implicit precursor 
because the geometry explicitly discussed by Reid as the geometry of 
visibles is wholly formulated in terms of spherical geometry, which had of 
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course been recognized as a proper part of geometry since ancient times. 
The viewpoint of Reid's development is clearly set forth at the beginning 
of the section: "Supposing the eye placed in the centre of a sphere, every 
great circle of the sphere will have the same appearance to the eye as if it 
was a straight line; for the curvature of the circle being turned directly 
toward the eye, is not perceived by it. And, for the same reason, any line 
which is drawn in the plane of a great circle of the sphere, whether it be in 
reality straight or curve, will appear to the eye." It is important to 
note that Reid's geometry of visibles is a geometry of monocular vision. 
He mentions in other places binocular vision, but the detailed geometri- 
cal development is restricted to the geometry of a single eye. The 
important contrast between Berkeley and Reid is that Reid develops in 
some detail the geometry in a straightforward, informal, mathematical 
fashion. No such comparable development occurs in Berkeley. 

Daniels (1972) has argued vigorously that Reid's geometry of visibles is 
not simply a use of spherical geometry but is an introduction by Reid of a 
double elliptic space. A similar argument is made by Angell (1974). I am 
sympathetic with these arguments, but it seems to me that they go too far 
and for a fairly straightforward reason not discussed by either Daniels or 
Angell. Let us recall how elliptic geometry was created by Felix Klein at 
the end of the nineteenth century. He recognized that a natural geometry 
very similar to Euclidean geometry or hyperbolic geometry could be 
obtained from spherical geometry by identifying antipodal points as a 
single point. The difficulty with spherical geometry as a geometry having a 
development closely parallel to that of Euclidean geometry is that two 
great circles, which correspond to lines, have two points, not one point, of 
intersection. However, by identifying the two antipodal points as a single 
point, a fair number of standard Euclidean postulates remain valid. It is 
quite clear that no such identification of antipodal points was made by 
Reid, for he says quite clearly in the fifth of his propositions, 'Any two 
right lines being produced will meet in two points, and mutually bisect 
each other'. This property of meeting in two points rather than one is 
what keeps his geometry of visibles from being a proper elliptic geometry 
and forces us to continue to think of it in terms of the spherical model used 
directly by Reid himself. 

In spite of the extensive empirical and theoretical work of Helmholtz 
on vision, he does not have a great deal to say that directly bears on this 
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question, and I move along to experiments and relevant psychological 
theory in the twentieth century. The first stopping point is Blumenfeld 
(1913). 

Blumenfeld was among the first to perform a specific experiment to 
show that, in one sense, phenomenological visual judgments do not 
satisfy all Euclidean properties. Blumenfeld performed experiments with 
so-called parallel and equidistance alleys. In a darkened room the subject 
sits at a table, looking straight ahead, and he is asked to adjust two rows of 
point sources of light placed on either side of the normal plane, i.e., the 
vertical plane that bisects the horizontal segment joining the centers of 
the two eyes. The two furthest lights are fixed and are placed symmetri- 
cally and equidistant from the normal plane. The subject is then asked to 
arrange the other lights so that they form a parallel alley extending 
toward him from the fixed lights. His task is to arrange the lights so that he 
perceives them as being straight and parallel to each other in his visual 
space. This is the task for construction of a parallel alley. The second task 
is to construct a distance alley. In this case, all the lights except the two 
fixed lights are turned off and a pair of lights is presented, which are 
adjusted as being at the same physical distance apart as the fixed lights - 
the kind of equidistance judgments discussed earlier. That pair of lights is 
then turned off and another pair of lights closer to him is presented for 
adjustment, and so forth. The physical configurations do not coincide, but 
in Euclidean geometry straight lines are parallel if and only if they are 
equidistant from each other along any mutual perpendiculars. The dis- 
crepancies observed in Blumenfeld's experiment are taken to be evidence 
that visual space is not Euclidean. In both the parallel-alley and 
equidistance-alley judgments the lines diverge as you move away from 
the subject, but the angle of divergence tends to be greater in the case of 
parallel than in the case of equidistance alleys. The divergence of the 
alleys as one moves away from the subject has been taken by Luneburg to 
support his hypothesis that visual space is hyperbolic. 

In fact, Luneburg, in several publications in the late forties, has been by 
far the strongest supporter of the view that visual space is hyperbolic. He, 
in conjunction with his collaborators, has set forth a detailed mathemati- 
cal theory of binocular vision and at the same time has generated a series 
of experimental investigations to test the basic tenets of the theory. 
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In many respects, Luneburg's article (1947) remains the best detailed 
mathematical treatment of the theory of binocular vision. Without exten- 
sive discussion, Luneburg restricts himself to Riemannian geometries of 
constant curvature in order to preserve rigid motions, that is, free 
mobility of rigid bodies. Luneburg develops in a coordinate system 
natural for binocular vision the theory of Riemannian spaces of constant 
curvature in a quite satisfactory form, although an explicit axiomatic 
treatment is missing. On the other hand, he nowhere examines with any 
care or explicitness the more general and primitive assumptions that lead 
to assuming that visual space is a Riemannian space of constant curva- 
ture. After these general developments he turns to the detailed argu- 
ments for the view that the appropriate space of constant curvature for 
visual space is hyperbolic. It is not possible to enter into the details of 
Luneburg's argument here, but he bases it on three main lines of 
considerations, all of which have had a great deal of attention in the 
theory of vision: first, the data arising from the frontal-plane horopter 
where curves which appear as straight are physically curved (data on 
these phenomena go back to the time before Helmholtz); second, the 
kind of alley phenomena concerning judgments of parallelness men- 
tioned earlier; and, third, accounting for judgments of distorted rooms in 
which appropriate perspective lines are drawn and which consequently 
appear as rectangular or regular (here, Luneburg draws on some classic 
and spectacular demonstrations by A. Ames, Jr.). One of the difficulties 
of this field is that the kind of detailed mathematical and quantitative 
arguments presented by Luneburg in connection with these three typical 
kinds of problems are not satisfactorily analyzed in the later literature. 
Rather, new data of a different sort are presented to show that different 
phenomena argue against Luneburg's hypothesis that visual space is 
hyperbolic. 

Luneburg died in 1949, but a number of his former students and 
collaborators have continued his work and provided additional experi- 
mental support as well as additional mathematically based arguments in 
favor of his views. I refer especially to Blank (1953, 1957, 1958a, 1958b, 
1961) and Hardy, Rand, Rittler, Blank, and Boeder (1953), although this 
is by no means an exhaustive list. Another positive experimental test was 
provided by Zajaczkowska (1956). 
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Schelling (1956) basically agrees with Luneburg but makes an impor- 
tant point of modification, namely, the metrics of negative curvature - 
that is, of the hyperbolic spaces that Luneburg argues for - are essentially 
momentary metrics. At a given instant the eye has a certain fixation point, 
and relative to this fixation point Luneburg's theory is, according to 
Schelling, probably approximately correct, but the applicability of the 
theory is severely restricted because the eyes are normally moving about 
continuously and the points of fixation are continually changing. This 
fundamental fact of change must be taken account of in any fully 
adequate theory, 

Gogel (1956a, 1956b, 1963, 1964a, 1964b, 1965) has studied what is 
called the equidistance tendency, or what in the context of this paper we 
might term the Berkeley tendency. Remember that Berkeley held that 
distance was not a visual idea at all but derived from the tactile sense. 
Without entering into a precise analysis of Berkeley's views, Gogel has 
provided an important body of evidence that when other cues are missing 
there is a strong tendency to view objects as being at the same distance 
from the observer. These careful and meticulous studies of Gogel are 
important for establishing not only the equidistance tendency but also its 
sensitivity to individual variation, on the one hand, and to the presence of 
additional visual cues, on the other. The equidistance tendency is cer- 
tainly present as a central effect, but any detailed theory of visual space 
has a bewildering complexity of contextual and individual differences to 
account for, and it seems to me that Gogel's experiments are essentially 
decisive on this point. In the papers referred to, Gogel does not really give 
a sharp answer to the question about the character of visual space, but I 
have listed him in Table I because it seems to me that the impact of his 
studies is to argue strongly for skepticism about fixing the geometry of 
visual space very far up in the standard hierarchy and, rather, to insist on 
the point that the full geometry is strongly contextual in character and 
therefore quite deviant from the classical hierarchy. 

A number of interesting experimental studies of the geometry of visual 
space have been conducted by John Foley. In Foley (1964) an experiment 
using finite configurations of small point sources of light was conducted to 
test the Desarguesian property of visual space. (Of course, the property 
was tested on the assumption that a number of other axioms were valid 
for visual space.) The results confirmed the Desarguesian property for 
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most observers but not for all. In Foley (1966), perceived equidistance 
was studied as a function of viewing distance. Like most of Foley's 
experiments, this was conducted in the horizontal eye-level plane. The 
locus of perceived equidistance was determined at distances of 1.2, 2.2, 
3.2, and 4.2 meters from the observer. As in other Foley experiments, the 
stimuli were small, point-like light sources viewed in complete darkness. 
The observer's head was held fixed but his eyes were permitted to move 
freely. There were five lights, one in the normal plane, which was fixed, 
and two variable lights on each side of the normal plane at angles of 12 
degrees and 24 degrees with respect to the normal plane. The locus of 
perceived equidistance was found to be concave toward the observer at 
all distances. Perhaps most importantly, the locus was found to vary with 
viewing distance, which indicates that the visual space does not depend on 
the spatial distribution of retinal stimulation alone. Again, there is here a 
direct argument for a contextual geometry and results are not consistent 
with Luneburg's theory. The equidistance judgments were of the follow- 
ing sort: A subject was instructed to set each of the lights, except the fixed 
light, in the normal plane to be at the same distance from himself as the 
fixed light. Thus, it should appear to him that the lights lie on a circle, with 
himself as observer at the center. The important point is that for none of 
the ten subjects in the experiment did the judgments of the locus for 
equidistance lie on the Vieth-Mueller horopter or circle mentioned 
earlier as one of the supporting arguments for Luneburg's theory. Also 
important for the fundamental geometry of visual space is the fact that the 
loci determined by the observers were not symmetric about the normal 
plane. 

Foley's (1972) study shows experimentally that, on the one hand, the 
size-distance invariance hypothesis is incorrect, and that in fact the ratio 
of perceived frontal extent to perceived egocentric distance greatly 
exceeds the physical ratio, while, on the other hand, perceived visual 
angles are quite close to physical ones. These results, together with other 
standard assumptions, are inconsistent with the Luneburg theory that 
visual space is hyperbolic. Foley describes the third experiment in this 
paper in the following way: 

How can it be that in the primary visual space reports of perceived size-distance ratio are not 
related to reports of perceived visual angle in a Euclidean way? One possibility is that the 
two kinds of judgments are in part the product of different and independent perceptual 
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processes . . . .  The results are consistent with the hypothesis that the two kinds of judgments  
are the product  of independent  processes. They also show that no one geometrical model 
can be appropriate to all s t imulus situations, and they suggest that the geometry may 
approach Euclidean geometry with the introduction of cues to distance. 

Again, there is in Foley's detailed analysis a strong case for a contextual 
geometry. A number of other detailed experimental studies of Foley that 
have not been referenced here build a case for the same general contex- 
tual view, which I discuss in more detail below. 

A number of detailed investigations on the geometry of visual space 
have been conducted by Tarow Indow (1967, 1968, 1974a, 1974b, 
1975) and other Japanese investigators closely associated with him 
(Indow et al., 1962a, 1962b, 1963; Matsushima and Noguchi, 1967; 
Nishikawa, 1967). They have found, for example, that multidimensional 
scaling methods (MDS), which have been intensively developed in 
psychology over the past decade and a half, in many cases yield extremely 
good fits to Euclidean space. Indow has experimentally tested the 
Luneburg theory based upon the kind of alley experiments that go back to 
Blumenfeld (1913). As might be expected, he duplicates the result that 
the equidistance alleys always lie outside the parallel alleys, which under 
the other assumptions that are standard implies that the curvature of the 
space is negative and therefore it must be hyperbolic. But Indow (1974) 
properly challenges the simplicity of the Luneburg assumptions, espe- 
cially the constancy of curvature. It is in this context that he has also tried 
the alternative approach of determining how well multidimensional 
scaling will work to fit a Euclidean metric. As he emphasizes also, the 
Luneburg approach is fundamentally based upon differential geometry as 
a method of characterizing Riemannian spaces with constant curvature, 
but for visual judgments it is probably more appropriate to depend upon 
the judgments in the large and therefore upon a different conceptual basis 
for visual geometry. Throughout his writings, Indow recognizes the 
complexity and difficulty of reaching for any simple answer to give the 
proper characterization of visual space. The wealth of detail in his articles 
and those of his collaborators is commended to the reader who wants to 
pursue these matters in greater depth. 

In his important book on the philosophy of space and time, Grfinbaum 
(1963) rejects the Luneburg theory and affirms that, in order to yield the 
right kinds of perceptual judgments, visual space must be Euclidean. His 
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argument is rather brief and I shall not examine it in any detail. It would 
be my own view that he has not given proper weight to the detailed 
experimental studies or to the details of the various theoretical proposals 
that have been made. 

I close this survey by returning to a philosophical response to the 
question, that of Strawson (1966) in his book on Kant's Critique of Pure 
Reason. From the standpoint of the large psychological literature I have 
surveyed, it is astounding to find Strawson asserting as a necessary 
proposition that phenomenal geometry is Euclidean. The following 
quotation states the matter bluntly: 

With certain reservations and qualifications, to be considered later, it seems that Euclidean 
geometry may also be interpreted as a body of unfalsifiable propositions about phenomenal 
straight lines, triangles, circles, etc.; as a body of a priori propositions about spatial 
appearances of these kinds and hence, of course, as a theory whose application is restricted 
to such appearances. (p. 286) 

The astounding feature of Strawson's view is the absence of any consider- 
ation that phenomenal geometry could be other than Euclidean and that 
it surely must be a matter, one way or another, of empirical investigation 
to determine what is the case. The qualifications he gives later do not bear 
on this matter but pertain rather to questions of idealization and of the 
nature of constructions, etc. The absence of any attempt to deal in any 
fashion whatsoever with the large theoretical and experimental literature 
on the nature of visual space is hard to understand. 

IV. S O M E  R E M A R K S  ON T H E  I S S U E S  

In this final section, I center my remarks around three clusters of issues. 
The first is concerned with the contextual character of visual geometry, 
the second with problems of distance perception and motion, and the 
third with the problem of characterizing the nature of the objects of visual 
space. 

A. Contextual Geometry 

A wide variety of experiments and ordinary experience as well testify to 
the highly contextual character of visual space. The presence or absence 
of 'extraneous' points can sharply affect perceptual judgments. The 
whole range of visual illusions, which I have not discussed here, provides 
a broad body of evidence for the surprising strength of these contextual 
effects. 
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As far as I can tell, no one has tried seriously to take account of these 
contextual effects from the standpoint of the axiomatic foundations of 
visual geometry. In a way it is not surprising, for the implications for the 
axiomatic foundations are, from the ordinary standpoint, horrendous. 
Let  us take a simple example to illustrate the point. 

In ordinary Euclidean geometry, three points form an isosceles triangle 
just when two sides of the triangle are of the same length. Suppose now 
that Euclidean geometry had the much more complicated aspect that 
whether a triangle were isosceles or not depended not simply on the 

configuration of the three points but also on whether there was a 
distinguished point lying just outside the triangle alongside one of the 
equal sides. This asymmetry may well make the visual triangle no longer 
isosceles. This is but one simple instance of a combinatorial nightmare of 
contextual effects that can easily be imagined and, without much imagina- 
tion or experimental skill, verified as being real effects. 

What are we to say about such effects? It seems to me the most 
important thing is to recognize that perceptual geometry is not really the 
same as classical geometry at all, but in terms of the kinds of judgments 
we are making it is much closer to physics. Consider, for example, the 
corresponding situation with bodies that attract each other by gravitation. 
The introduction of a third body makes all the difference to the motions of 
the two original bodies and it would be considered bizarre for the 
situation to be otherwise. This also applies to electromagnetic forces, 
mechanical forces of impact, etc. Contextual effects are the order of the 
day in physics, and the relevant physical theories are built to take account 
of such effects. 

Note that physical theories depend upon distinguished objects located 
in particular places in space and time. Space-time itself is a continuum of 
undistinguished points, and it is characteristic of the axiomatic founda- 
tions of classical geometry that there are no distinguished points in the 
space. But it is just a feature of perception that we are always dealing with 
distinguished points which are analogous to physical objects, not geomet- 
rical points. Given this viewpoint, we are as free to say that we have 
contextual effects in visual geometry as we are to make a similar claim in 
general relativity due to the presence of large masses in a given region. 

Interestingly enough, there is some evidence that as we increase the 
visual cues, that is, we fill up the visual field with an increasingly complex 
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context of visual imagery, the visual space becomes more and more 
Euclidean. It is possible that we have here the exact opposite of the 
situation that exists in general relativity. In the case of perception it may 
be that spaces consisting of a very small number of visible points may be 
easily made to deviate from any standard geometry. 

The geometric viewpoint can be brought into close alignment with the 
physical one, when the embedding of finite sets of points in some standard 
geometry is taken as the ~ppropriate analysis of the nature of visual space. 
This approach was mentioned earlier and is implicit in some of the 
experimental literature discussed. It has not sufficiently been brought to 
the surface, and the full range of qualitative axioms that must be satisfied 
for the embedding of a finite collection of points in a unique way in a given 
space, whether Euclidean, hyperbolic, elliptic, or what not, needs more 
explicit and detailed attention. 

It also seems satisfactory to avoid the problems of contextual effects in 
initial study of this kind by deliberately introducing symmetries and also 
certain special additional assumptions such as quite special relations of a 
fixed kind to the observer. The many different experimental studies and 
the kind of mathematical analysis that has arisen out of the Luneburg 
tradition suggest that a good many positive and almost definitive results 
could be achieved under special restrictive assumptions. It seems to me 
that making these results as definitive as possible, admitting at the same 
time their specialized character and accepting the fact that the general 
situation is contextual in character, is an appropriate research strategy. 
It also seems to me likely that for these special situations one can give a 
definitely negative answer to the question, Is visual space Euclidean?, and 
respond that, to high approximations, in many special situations it is 
hyperbolic and possibly in certain others elliptic in character. This 
restricted answer is certainly negative. A general answer at the present 
time does not seem available as to how to characterize the geometry in a 
l!ully satisfactory way that takes account of the contextual effects that are 
characteristic of visual illusions, equidistance tendencies, etc. 

B. Distance Perception and Motion 

As indicated earlier in the brief discussion of the Helmholtz-Lie problem, 
most of the work surveyed in the preceding section has not taken 
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sufficient account of problems of motion. There is an excellent survey 
article of Foley (in press) on distance perception which indicates that eye 
motion during the initial stage of focusing on an object is especially 
critical in obtaining information about perceptual distance. In spite of the 
views of Berkeley, philosophical traditions in perception have tended to 
ignore the complicated problems of motion of the eyes or head as an 
integral part of visual perception, but the most elementary considerations 
are sufficient to demonstrate their fundamental importance. It was a 
fundamental insight of Luneburg to recognize that it is important to 
characterize invariance properties of motions of the eyes and head that 
compensate each other. The deeper aspects of scanning as determining 
the character of the visual field have not really been studied in a 
thoroughly mathematical and quantitative fashion, and there is little 
doubt in my mind that this is the area most important for future 
developments in the theory of visual perception. We should, I would 
assume, end up with a kinematics of visual perception replacing the 
geometry of visual perception. For example, Lamb (1919) proves that 
under Donders' law, which asserts that the position of the eyeball is 
completely determined by the primary position and the visual axis aligned 
to the fixation point, it is not possible for every physically straight line 
segment to be seen as straight. This kinematical theorem of Lamb's, 
which is set forth in detail in Roberts and Suppes (1967), provides a 
strong kinematical argument against the Euclidean character of visual 
space. I cite it here simply as an example of the kind of results that one 
should expect to obtain in a more thoroughly developed kinematics of 
visual perception. 

C. Objects of Visual Space 

Throughout the analysis given in this paper the exact characterization of 
What are to be considered as the objects of visual space has not been 
settled in any precise or definitive way. This ambiguity has been deliber- 
ate because the wide range of literature to which I have referred does not 
have any settled account of what are to be regarded as the objects of 
visual space. The range of views is extreme - from Berkeley, who scarcely 
even wants to admit a geometry of pure visual space, to those who hold 
that visual space is simply a standard Euclidean space and there is little 
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real distinction between visual objects and physical objects. In building 

up the subject axiomatically and systematically, clearly some commit- 

ments are needed, and yet it seems that one can have an intelligible 

discussion of the range of literature considered here without having to fix 

upon a precise characterization, because there is broad agreement on the 

look of things in the field of vision. From the standpoint of the geometry 

of visual space, we can even permit such wide disagreement as to whether 

the objects are two dimensional or three dimensional in order to discuss 

the character of the geometry. Thomas Reid would lean strongly toward 

the two-dimensional character of visual space. Foley would hold that 

visual space is three dimensional; note, however, that most of his experi- 

ments have been restricted to two dimensions. At  the very least, under 

several different natural characterizations of the objects of visual space it 

is apparent that strong claims can be made that visual space is not 

Euclidean, and this is a conclusion of some philosophical interest. 

Stanford University 

REFERENCES 

Angell, R. B.: 'The Geometry of Visibles', Nogts 8 (1974), 87-117. 
Berkeley, G.: 'An Essay towards a New Theory of Vision', in A. C. Fraser (ed.), Berkeley's 

Complete Works (Vol. 1), Oxford University Press, Oxford, 1901. (Originally published, 
1709). 

Blank, A. A.: 'The Luneburg Theory of Binocular Visual Space', Journal of the Optical 
Society of America 43 (1953), 717-727. 

Blank, A. A.: 'The Geometry of Vision', British Journal of Physiological Optics 14 (1957), 
154-169. 

Blank, A. A.: 'Analysis of Experiments in Binocular Space Perception', Journal of the 
Optical Society of America 48 (1958a), 911-925. 

Blank, A. A.: 'Axiomatics of Binocular Vision: The Foundations of Metric Geometry in 
Relation to Space Perception', Journal of the Optical Society of America 48 (1958b), 
328-334. 

Blank, A, A.: 'Curvature of Binocular Visual Space: An Experiment', Journalofthe Optical 
Society of America 51 (1961), 335-339. 

Blumenfeld, W.: 'Untersuchungen fiber die scheinbare Gr6sse in Sehraume', Zeitschnftfiir 
Psychologie und Physiologie der Sinnesorgane 65 (1913), 241--404. 

Busemann, H.: The Geometry of Geodesics, Academic Press, New York, 1955. 
Daniels, N.: 'Thomas Reid's Discovery of a Non-Euclidean Geometry', Philosophy of 

Science 39 (1972), 219-234. 
Dembowski, P.: Finite Geometries, Springer-Verlag, New York, 1968. 



420 P A T R I C K  S U P P E S  

Euclid: Optics (H. E. Burton, trans.), Journal of the Optical SocietyofAmerica 35 (1945), 
357-372. 

Foley, J. M.: 'Desarguesian Property in Visual Space', Journal of the Optical Society of 
America 54 (1964), 684-692. 

Foley, J. M.: 'Visual Space: A Scale of Perceived Relative Direction', Proceedings of the 
73rd Annual Convention of the American Psychological Association 1 (1965), 49-50. 

Foley, J. M.: 'Locus of Perceived Equidistance as a Function of Viewing Distance', Journal 
of the Optical Society of America 56 (1966), 822-827. 

Foley, J. M.: 'Distance in Stereoscopic Vision: The Three-Point Problem', Vision Research 
9 (1969), 1505-1521. 

Foley, J. M.: 'The Size-Distance Relation and Intrinsic Geometry of Visual Space: 
Implications for Processing', Vision Research 12 (1972), 323-332. 

Foley, J. M.: 'Distance Perception', in R. Held, H. Leibowitz, and H.-L. Teuber (eds.), 
Handbook of Physiology (Vol. 8: Perception), in press. 

Freudenthal, H.: 'Lie Groups in the Foundations of Geometry', Advances in Mathematics 1 
(1965), 145-190. 

Fu, K. S.: Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974. 
Gogel, W. C.: 'Relative Visual Direction as a Factor in Relative Distance Perceptions', 

Psychological Monographs 70 (1956a), (11, Whole No. 418). 
Gogel, W. C.: 'The Tendency to See Objects as Equidistant and Its Inverse Relation to 

Lateral Separation', Psychological Monographs 70 (1956b), (4, Whole No. 411). 
Gogel, W. C.: 'The Visual Perception of Size and Distance', Vision Research 3 (1963), 

101-120. 
Gogel, W. C.: 'The Perception of Depth from Binocular Disparity', Journal of Experimental 

Psychology 67 (1964a), 379-386. 
Gogel, W. C.: 'Size Cue to Visually Perceived Distance', Psychological Bulletin 62 (1964b), 

217-235. 
Gogel, W. C.: 'Equidistance Tendency and Its Consequences', Psychological Bulletin 64 

(1965), 153-163. 
Griinbaum, A.: Philosophical Problems of Space and Time, Knopf, New York, 1963. 
Hardy, L. H., Rand, G., Rittler, M. C., Blank, A. A., and B~Seder, P.: The Geometry of 

Binocular Space Perception, Schiller, Elizabeth, N. J., 1953. 
Helmholtz, H.: Uber die Tatsachen, die der Geometrie zugrunde liegen', Wissenschaftliche 

Abhandlungen 2 (1868), 618-637. 
Indow, T.: Two Interpretations of Binocular Visual Space: Hyperbolic and Euclidean', 

Annals of the Japan Association for Philosophy of Science 3 (1967), 51-64. 
Indow, T.: 'Multidimensional Mapping of Visual Space with Real and Simulated Stars', 

Perception and Psychophysics 3 (1B) (1968), 45-53. 
Indow, T.: 'Applications of Multidimensional Scaling in Perception', in E. C. Carterette and 

M. P. Friedman (eds.), Handbook of Perception (Vol. 2: Psychophysical Judgment and 
Measurement), Academic Press, New York, 1974a. 

Indow, T.: 'On Geometry of Frameless Binocular Perceptual Space', Psychologia 17 
(1974b), 50-63. 

Indow, T.: 'An Application of MDS to Study of Binocular Visual Space', in Theory, Methods 
and Applications of Multidimensional Scaling and Related Techniques, U.S.-Japan 
Seminar (sponsored by the National Science Foundation and Japan Society for the 
Promotion of Science), University of California, San Diego, 1975. 



IS V I S U A L  SPACE E U C L I D E A N ?  421 

Indow, I., Inoue, E., and Matsushima, K.: 'An Experimental Study of the Luneburg Theory 
of Binocular Space Perception (1): The 3- and 4-point Experiments', Japanese 
Psychological Research 4 (1)(1962a), 6-16. 

Indow, I., Inoue, E., and Matsushima, K.: 'An Experimental Study of the Luneburg Theory 
of Binocular Space Perception (2): The Alley Experiments', Japanese Psychological 
Research 4 (1) (1962b), 17-24. 

Indow, 1., Inoue, E., and Matsushima, K.: 'An Experimental Study of the Luneburg Theory 
of Binocular Space Perception (3): The Experiments in a Spacious Field', Japanese 
Psychological Research 5 (1) (1963), 10-27. 

Lamb, H.: 'The Kinematics of the Eye', Philosophical Magazine 38 (1919), 685-695. 
Lindberg, D. C.: John Pecham and the Science of Optics: Perspectiva Communis, University 

of Wisconsin Press, Madison, 1970. 
Luneberg, R. K. Mathematical Analysis of Binocular Vision, Princeton University Press, 

Princeton, N.J., 1947. 
Luneberg, R. K.: 'Metric Methods in Binocular Visual Perception', in Studies and Essays 

(Courant Anniversary Volume), Interscience, New York, 1948. 
Luneberg, R. K.: 'The Metric of Binocular Visual Space', Journal of the Optical Society of 

America 40 (1950), 627-642. 
Matsushima, K. and Noguchi, H.: Multidimensional Representation of Binocular Visual 

Space', Japanese Psychological Research 9 (1967), 85-94. 
Newton, I.: Opticks (Reprinted from the 4th ed.), Bell, London, 1931. (Originally pub- 

lished, 1704). 
Nishikawa, Y.: 'Euclidean Interpretation of Binocular Visual Space', Japanese Psychologi- 

cal Research 9 (1967), 191-198. 
Reid, T.: 'Inquiry into the Human Mind', in Philosophical Works of Thomas Reid (Vol. 1), 

George Olms, Verlag's Buchhandlung, Hildesheim, Germany, 1967. (Originally pub- 
lished, 1764). 

Riemann, B.: 'Uber die Hypothesen, welche der Geometrie zugrunde liegen', reprinted in 
Mathematische Werke, Leipzig, 1892, pp. 272-287. 

Roberts, F. S. and Suppes, P.: 'Some Problems in the Geometry of Visual Perception', 
Synthese 17 (1967), 173-201. 

Schelling, H.: 'Concept of Distance in Affine Geometry and Its Applications in Theories of 
Vision', Journal of the Optical Society of America 46 "(1956), 309-315. 

Strawson, P. F.: The Bounds of Sense: An Essay on Kent's Critique of Pure Reason, 
Methuen, London, 1966. 

Suppes, P. and Rottmayer, W.: 'Automata', in E. C. Carterette and M. P. Friedman (eds.), 
Handbook of Perception (Vol. 1: Historical and Philosophical Roots of Perception), 
Academic Press, New York, 1974. 

Zajaczkowska, A. ~Experimental Test of Luneburg's Theory: Horopter and Alley Experi- 
ments', Journal of the Optical Society of America 46 (1956), 514-527. 


