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Abstract. The frequencies of a cryogenic sapphire oscillator and a hydrogen maser
are compared to set new constraints on a possible violation of Lorentz invariance.
We give a detailed description of microwave resonators operating in Whispering
Gallery modes and then apply it to derive explicit models for Lorentz violating
effects in our experiment. Models are calculated in the theoretical framework of
Robertson, Mansouri and Sexl and in the standard model extension (SME) of Kost-
elecky and co-workers. We constrain the parameters of the Mansouri and Sexl test
theory to 1/2−βMS+δMS = (1.2±2.2)×10−9 and βMS−αMS−1 = (1.6±3.0)×10−7

which is of the same order as the best results from other experiments for the former
and represents a 70 fold improvement for the latter. These results correspond to
an improvement of our previously published limits [Wolf P. et al., Phys. Rev. Lett.
90, 6, 060402, (2003)] by about a factor 2.

1 Introduction

The Einstein equivalence principle (EEP) is at the heart of special and general
relativity [1] and a cornerstone of modern physics. One of the constituent
elements of EEP is Local Lorentz invariance (LLI) which, loosely stated,
postulates that the outcome of any local test experiment is independent of
the velocity of the freely falling apparatus (the fundamental hypothesis of
special relativity). The central importance of this postulate in modern physics
has motivated tremendous work to experimentally test LLI [1]. Additionally,
nearly all unification theories (in particular string theory) violate the EEP
at some level [2,3] which further motivates experimental searches for such
violations of the universality of free fall [4] and of Lorentz invariance [5,6].

Numerous test theories that allow the modeling and interpretation of ex-
periments that test LLI have been developed. Kinematical frameworks [7,8]
postulate a simple parametrisation of the Lorentz transformations with ex-
periments setting limits on the deviation of those parameters from their spe-
cial relativistic values. A more fundamental approach is offered by theories
that parametrise the coupling between gravitational and non-gravitational
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fields (THǫµ [9,1,10] or χg [11] formalisms) which allow the comparison of
experiments that test different aspects of the EEP. Formalisms based on
string theory [2–4] have the advantage of being well motivated by theo-
ries of physics that are at present the only candidates for a unification of
gravity and the other fundamental forces of nature. Fairly recently a gen-
eral Lorentz violating extension of the standard model of particle physics
(Standard Model Extension, SME) has been developed [5] whose Lagrangian
includes all parametrised Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are included as special
cases of the SME [12].

We report here on experimental tests of LLI using a cryogenic sapphire
oscillator and a hydrogen maser. After a detailed description of microwave
resonators operating in Whispering Gallery modes (Sect. 2) we explicitly cal-
culate models for Lorentz violating effects in our experiment in the theoretical
frameworks of [8] (Sect. 3.1) and the SME (Sect. 3.2). In both cases the rel-
ative frequency of the two clocks is modulated with, typically, sidereal and
semi-sidereal periods due to the movement of the lab with the rotation of the
Earth. The experimental results searching for those variations are presented
and compared to previously published ones in Sect. 4. We set limits on pa-
rameters that describe such Lorentz violating effects, improving our previous
results [13] by a factor 2 and the best other results [14,15] by up to a factor
70. We conclude and discuss future developements of the experiment in Sect.
5.

2 Whispering Gallery mode resonators

2.1 Basic principle

Whispering Gallery (WG) modes in spherical and cylindrical dielectric and
cavity resonators have been long studied, and have many applications rang-
ing from novel filter designs to high-Q resonators for oscillator applications
[19–24]. The boundary conditions ensure the mode propagates around the
azimuth in the equatorial plane, as shown in Fig. 1 (in both directions in the
case of a standing wave). Thus, for the ’pure’ WG mode, the Poynting vec-
tor has only an Sφ component. This means the dominant components of the
electric and magnetic field are necessarily in the radial and axial directions.
Modes with dominant Er and Hz are quasi-Transverse Electric (TE) and are
usually denoted as WGE or Hz modes. Conversely, modes with dominant
Hr and Ez are quasi-Transverse Magnetic (TM) and are usually denoted as
WGH or Ez modes.

For a dielectric WG mode resonator electromagnetic energy propagates
just inside the dielectric-free space interface, due to total internal reflections.
Boundary conditions dictate that only certain frequencies of resonance oc-
cur when an integral number of wavelengths fit within the resonator. This
happens when
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Fig. 1. Schematic of the propagation of a ’pure WG’ mode in a cylindrical sym-
metric structure of radius rWG.

νwg =
mc

2πrwg

√
ǫ
=

km
tc

(1)

where m is an integer, which represents the number of wavelengths that
fit along the circumference of the resonator, c is the speed of light in vacuum,
ǫ the relative permittivity of the dielectric, km a constant, and tc the travel
time (in vacuum) of a light signal around the circumference of the resonator.

In reality, this relation is only true for ’pure’ WG modes, which only occur
as m → ∞. At lower values of m the path length is extended by reflections
from an internal caustic surface (see Fig. 2), and in fact the wave propagates
like a guided wave around the azimuth. In this case Maxwell’s equations must
be solved, and to calculate the mode frequencies accurately, the roots of the
corresponding transcendental equation must be found [19]. Typically, modes
are represented with two additional numbers n and p, which describe the
number of zero crossings (nodes) of the dominate field in the radial and axial
directions (WGm,n,p). Thus, the fundamental quasi-TE and quasi-TM mode
families are written as WGEm,0,0 and WGHm,0,0 respectively as n = p = 0.

2.2 Fields in the sapphire resonator

This subsection describes the techniques to calculate the fields in the sapphire
resonator. A schematic of the sapphire resonator is shown in Fig. 3. Two
techniques were used. The first was a Separation of Variables (SV) technique.
The advantage was the ability to derive simple analytical expressions for
all the field components, Ez, Hz , Eφ, Hφ, Er, Hr. However, the technique is
approximate, as it is impossible to calculate consistent analytical expressions
for the six field components for an anisotropic right cylinder, with correct
boundary conditions that satisfy Maxwell’s equations. Furthermore, we have
to make another approximation due to the sloped sides of our resonator (see
Fig. 3). No doubt the most accurate technique is a numeric method, such
as Finite Element (FE) analysis. However, for WG modes, field components
calculated by FE and SV analysis are compared and shown to be close. Also,
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i n n e r c a u s t i c s u r f a c e

Fig. 2. Magnitude of the Hz field calculated for the WGE14,0,0 mode in a sapphire
disk resonator using the separation of variables technique. The r-φ and r-z planes
are represented. The inner caustic is shown, and the mode can be approximated as
two guided waves propagating in opposite directions around the azimuth.

in Sect. 3.2, it is shown that calculations of the sensitivity to Lorentz violation
in the Standard Model Extension, does not change significantly, whether
we use the SV or FE results (≈ 1%). Even if we use the pure WG mode
approximation, sensitivity calculations are only over estimated by ≈ 5%.
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Fig. 3. Calculated dimensions of the sapphire cavity after contraction from room
temperature to 4 K.

Separation of variables The separation of variables technique assumes the
resonator is a perfect cylinder suspended in free space as shown in Fig. 4 [19].
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Fig. 4. Solution regions for separation of variables in cylindrical coordinates.

TheHz magnetic field is symmetric along the z-axis (around z = 0). Given
these conditions one can show that the solutions to Maxwell’s equations yield:

Ez1 = A1Jm(kEr)cos(mφ)sin(βz)

Ez2 = A2Km(koutr)cos(mφ)sin(βz)

Ez3 = A3Jm(kEr)cos(mφ)e−αz (2)

Hz1 = B1Jm(kHr)sin(mφ)cos(βz)

Hz2 = B2Km(koutr)sin(mφ)cos(βz)

Hz3 = B3Jm(kHr)sin(mφ)e−αz

where the constants are given in tables 1 and 2 below. One could also con-
sider a region 4 in the corners where the field has Km(koutr) and e−αz de-
pendence. However it is small, and in this work we ignore any field there.
Also the azimuthal dependence is arbitrary, as long as we keep the E and H
fields orthogonal either a cos(mφ) or sin(mφ) dependence could be assumed.
In actual fact WG modes experimentally exhibit a doublet structure due to
this degeneracy. In practice the degeneracy is split by a small fraction due
to imperfections in cylindrical symmetry. Once the z components of the field
are calculated, all the other components may be calculated from Maxwell’s
relationships in cylindrical co-ordinates (as shown in reference [19]). For ex-
ample, the fields inside the sapphire (region 1 in Fig. 4) which concentrate
over 98% of the total energy (c.f. Tab. 4) take the form

Hz = Hz0Jm(kHr)sin(mφ)cos(βz)

Ez = iEz0Jm(kEr)cos(mφ)sin(βz) (3)

Hr = Hr01

1

r
Jm(kEr)sin(mφ)sin(βz) +Hr02 (Jm−1(kHr)− Jm+1(kHr)) sin(mφ)sin(βz)

Er = iEr01

1

r
Jm(kHr)cos(mφ)cos(βz) + iEr02 (Jm−1(kEr)− Jm+1(kEr)) cos(mφ)cos(βz)
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Hφ = Hφ01

1

r
Jm(kHr)cos(mφ)sin(βz) +Hφ02 (Jm−1(kEr)− Jm+1(kEr)) cos(mφ)sin(βz)

Eφ = iEφ01

1

r
Jm(kEr)sin(mφ)cos(βz) + iEφ02 (Jm−1(kHr) − Jm+1(kHr)) sin(mφ)cos(βz)

where the amplitudes of the individual terms can be expressed as functions
of the constants in Tab. 1 and one of the amplitudes (e.g. Hz0). They are
given in Tab. 3 for our resonator.

An important point must be raised about matching boundary conditions
to calculate the resonance frequency. The matching at the radial boundary
generates hybrid solutions where both Hz and Ez field can co-exist. However,
it is impossible to simultaneously match all field components on the axial
boundary, so in some cases approximations must be made. However, this is a
small effect as only some of the non-dominant components remain unmatched.

Comparison of separation of variables with finite element analysis

Due to the sloped sides the SV analysis was checked using FE analysis [25].
The calculated frequency was only out by 3 MHz compared to the measured
frequency of 11.932 GHz. Typically up to 10 MHz discrepancy is normal for
these types of calculations. The electric field density plot is shown in Fig. 5.
It is apparent that we should be able to approximate the crystal as a right
cylinder because the mode is mainly at the perimeter.

Fig. 5. Electric field density plot inside of the WGE14,0,0 mode in the r-z plane.

Given that the permittivity at 4 K is approximately ǫ‖ = 11.349 and
ǫ⊥ = 9.272, to obtain a frequency close to the measured value and finite
element calculation, an equivalent height of 21.45 mm is necessary, which
gives a frequency of, f = 11.931 GHz close to the measured value of 11.932
GHz. The solution may be used to calculate the necessary parameters in (2),
which are summarized in Table 1.

The amplitude of the fields may also be calculated. Because the WG mode
is dominated by the Hz component, we chose to relate the amplitude of all
other components with respect to B1. Results are given in Table 2. To obtain
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Table 1. Calculated parameters for the WGE14,0,0 mode using the SV technique.

m α β kH kE kout
14 707.420 129.571 750.314 830.109 j213.868

A3 uniquely, the component of the tangential E field (Er and Eφ ) generated
by Ez, must be assumed to be equal to zero to generate a consistent solution
(i.e. only assume the Hz component exists).

Table 2. Calculated amplitudes of the field components in (2) with respect to B1.

A1 A2 A3 B1 B2 B3

j19.4538B1 j6.60905×10−4B1 j428375B1 B1 -4.01697×10−6B1 355.373B1

All other fields are then obtained from Mawxell relations. For example,
inside the resonator (region 1 in Fig. 4) they are given by (3) with the am-
plitudes given in Tab. 3.

Table 3. Calculated amplitudes of the field components in (3) with respect to Hz0.

Ez0 Hr01 Hr02 Er01 Er02

19.4538 Hz0 0.002978 Hz0 -0.08634 Hz0 -2.344 Hz0 1.858 Hz0

Hφ01 Hφ02 Eφ01 Eφ02

-0.003222 Hz0 0.08828 Hz0 -0.06268 Hz0 62.80 Hz0

Once the amplitude relationships are calculated the percentage of electric
(Pei) and magnetic field (Pmi) inside and outside the resonator may be
calculated from:

Pei =

∫

V
ǫ|Ei|2d3x

∫

V
ǫ(E∗ · E)d3x

Pmi =

∫

V
µ|Hi|2d3x

∫

V
µ(H∗ ·H)d3x

(4)

where the subscript i refers to the component of the field (r, φ or z). The
calculated filling factors using SV and FE are compared in Table 4.

In general the mode is hybrid, and the sloped sides changes slightly the
amplitude of the non dominant field components (all field components exist,
although for this mode it is dominantly TE). This was verified by comparing
the right cylinder to the one with sloped sides using FE analysis. To have
an analytic solution that is consistent with the FE analysis, the amplitudes
of some of the fields have been adjusted without changing the form of the
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Table 4. Calculated electric and magnetic filling factors in r, φ, z directions.

Method Pez Per Peφ Pmz Pmr Pmφ

FE (in sapphire) 0.007283 0.8088 0.1651 0.9608 0.005316 0.02383
SV (in sapphire) 0.006813 0.8088 0.1548 0.9608 0.005336 0.02388
FE (in free space) 0.0001642 0.01061 0.008057 0.005594 0.0007796 0.003710
SV (in free space) 0.01139 0.0106 0.007682 0.00555 0.0007885 0.003616

solutions. This was achieved by leaving the amplitude of the dominant com-
ponents (Hz and Er) the same, and changing all other components (Hφ, Hr,
Ez , Eφ) by a unique amount to make the FE and SV solution of Per and
Pmz the same within the sapphire. After this adjustment, it is clear that the
solutions are similar. The normalizations factors used are shown in table 5
and are close to unity.

Table 5. Amplitude normalization factors of the field components.

Field comp. Hφ Hr Ez Eφ

Norm. fact. 0.82432 0.73801 0.569366 1.00069

The biggest discrepancy is with the Pez component in free space. This
is not surprising as it was the A3 amplitude in (2), which was compromised
with the SV technique. However, the technique allows us to obtain simple
analytic solutions of the form (3) to the field for a WG mode resonator that
can be useful when calculating the sensitivity to Lorentz violations within
the framework of the Standard Model Extension [12] (see Sect. 3.2).

3 Theoretical analysis

Owing to their simplicity the kinematical frameworks of [7,8] have been
widely used to model and interpret many previous experiments testing LLI
[13,14,16,18,26,27] and we will follow that route in Sect. 3.1. An analysis
based on the more fundamental ”Standard Model Extension” (SME) [5,12]
is then presented in Sect. 3.2.

By construction, kinematical frameworks do not allow for any dynamical
effects on the measurement apparatus. This implies that in all inertial frames
two clocks of different nature (e.g. based on different atomic species) run at
the same relative rate, and two length standards made of different materials
keep their relative lengths. Coordinates are defined by the clocks and length
standards, and only the transformations between those coordinate systems
are modified. In general this leads to observable effects on light propagation
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in moving frames but, by definition, to no observable effects on clocks and
length standards. In particular, no attempt is made at explaining the un-
derlying physics (e.g. modified Maxwell and/or Dirac equations) that could
lead to Lorentz violating light propagation but leave e.g. atomic energy levels
unchanged. On the other hand dynamical frameworks (e.g. the THǫµ formal-
ism or the SME) in general use a modified general Lagrangian that leads to
modified Maxwell and Dirac equations and hence to Lorentz violating light
propagation and atomic properties, which is why they are considered more
fundamental and more complete than the kinematical frameworks. Further-
more, as shown in [12], the SME is kept sufficiently general to, in fact, en-
compass the kinematical frameworks and some other dynamical frameworks
(in particular the THǫµ formalism) as special cases, although there are no
simple and direct relationships between the respective parameters.

3.1 The Robertson, Mansouri & Sexl framework

Kinematical frameworks for the description of Lorentz violation have been
pioneered by Robertson [7] and further refined by Mansouri and Sexl [8]
and others. Fundamentally the different versions of these frameworks are
equivalent, and relations between their parameters are readily obtained. As
mentioned above these frameworks postulate generalized transformations be-
tween a preferred frame candidate Σ(T,X) and a moving frame S(t,x) where
it is assumed that in both frames coordinates are realized by identical stan-
dards. We start from the transformations of [8] (in differential form) for the
case where the velocity of S as measured in Σ is along the positive X-axis,
and assuming Einstein synchronization in S (we will be concerned with signal
travel times around closed loops so the choice of synchronization convention
can play no role):

dT =
1

a

(

dt+
vdx

c2

)

; dX =
dx

b
+

v

a

(

dt+
vdx

c2

)

; dY =
dy

d
; dZ =

dz

d
(5)

with c the velocity of light in vacuum in Σ. Using the usual expansion of the
three parameters (a ≈ 1 + αMSv

2/c2 + O(4); b ≈ 1 + βMSv
2/c2 + O(4); d ≈

1+δMSv
2/c2+O(4)), setting c2dT 2 = dX2+dY 2+dZ2 in Σ, and transforming

according to (5) we find the coordinate travel time of a light signal in S:

dt =
dl

c

(

1− (βMS − αMS − 1)
v2

c2
−
(

1

2
− βMS + δMS

)

sin2θ
v2

c2

)

+O(4)

(6)

where dl =
√

dx2 + dy2 + dz2 and θ is the angle between the direction of
light propagation and the velocity v of S in Σ. In special relativity αMS =
−1/2;βMS = 1/2; δMS = 0 and (5) reduces to the usual Lorentz transforma-
tions. Generally, the best candidate for Σ is taken to be the frame of the
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cosmic microwave background (CMB) [28,29] with the velocity of the solar
system in that frame taken as v⊙ ≈ 377 km/s, decl. ≈ −6.4◦, RA ≈ 11.2h.

Michelson-Morley type experiments [30,16] determine the coefficient PMM =
(1/2−βMS+ δMS) of the direction dependent term. For many years the most
stringent limit on that parameter was |PMM | ≤ 5 × 10−9 determined over
23 years ago in an outstanding experiment [16]. Our experiment confirms
that result with roughly equivalent uncertainty (2.2×10−9). Recently an im-
provement to |PMM | ≤ 1.5×10−9 has been reported [15]. Kennedy-Thorndike
experiments [17,18,14] measure the coefficient PKT = (βMS−αMS− 1) of the
velocity dependent term. The most stringent limit [14] on |PKT | has been
recently improved from [18] by a factor 3 to |PKT | ≤ 2.1× 10−5. We improve
this result by a factor of 70 to |PKT | ≤ 3.0 × 10−7. Finally clock compar-
ison and Doppler experiments [26,31,27] measure αMS, currently limiting it
to |αMS + 1/2| ≤ 8 × 10−7. The three types of experiments taken together
then completely characterize any deviation from Lorentz invariance in this
particular test theory, with present limits summarized in Table 6.

Table 6. Present limits on Lorentz violating parameters in the framework of [8]

Reference αMS + 1/2 1/2− βMS + δMS βMS − αMS − 1

[26,31,27] ≤ 8× 10−7 - -

[16] - ≤ 5× 10−9 -

[15] - (2.2± 1.5) × 10−9 -

[14] - - (1.9± 2.1) × 10−5

our previous results [13] - (1.5± 4.2) × 10−9 (−3.1± 6.9) × 10−7

this work - (1.2± 2.2) × 10−9 (1.6± 3.0) × 10−7

As described in Sect. 2 our cryogenic oscillator consists of a sapphire
crystal of cylindrical shape operating in a whispering gallery mode, and its
coordinate frequency can be expressed by equation (1) where tc is the coor-
dinate travel time of a light signal around the circumference of the cylinder.
Calculating tc from (6) the relative frequency difference between the sapphire
oscillator and the hydrogen maser (which, by definition, realizes coordinate
time in S [32]) is

∆ν(t)

ν0
= PKT

v(t)2

c2
+ PMM

v(t)2

c2
1

2π

∫ 2π

0

sin2θ(t, ϕ)dϕ +O(3) (7)
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where ν0 is the unperturbed frequency, v(t) is the (time dependent) speed of
the lab in Σ, and ϕ is the azimuthal angle of the light signal in the plane of
the cylinder. The periodic time dependence of v and θ due to the rotation
and orbital motion of the Earth with respect to the CMB frame allow us to
set limits on the two parameters in (7) by adjusting the periodic terms of
appropriate frequency and phase (see [34] for calculations of similar effects
for several types of oscillator modes). Given the limited durations of our data
sets (≤ 15 days) the dominant periodic terms arise from the Earth’s rotation,
so retaining only those we have v(t) = u+ ω ×R with u the velocity of the
solar system with respect to the CMB, ω the angular velocity of the Earth,
and R the geocentric position of the lab. We then find after some calculation.

∆ν/ν0 = PKT (Hsinλ)
+PMM (Acosλ+Bcos(2λ) + Csinλ+Dsinλcosλ+ Esinλcos(2λ))

(8)
where λ = ωt + φ, and A-E and φ are constants depending on the latitude
and longitude of the lab (≈ 48.7◦N and 2.33◦E for Paris). Numerically H ≈
−2.6 × 10−9, A ≈ −8.8 × 10−8, B ≈ 1.8 × 10−7, C-E of order 10−9. We
note that in (8) the dominant time variations of the two combinations of
parameters are in quadrature and at twice the frequency which indicates
that they should decorelate well in the data analysis allowing a simultaneous
determination of the two (as confirmed by the correlation coefficients given
in Sect. 4). Adjusting this simplified model to our data we obtain results
that differ by less than 10% from the results presented in Sect. 4 that were
obtained using the complete model ((7) including the orbital motion of the
Earth).

3.2 The Standard Model Extension

The fundamental theory of the Standard Model Extension (SME) as applied
to electrodynamics is laid out in [12]. Here we summarise the main points
relating to e-m cavity tests, and apply them to model our experiment.

The photon sector of the SME is described by a Lagrangian that takes
the form

L = −1

4
FµνF

µν +
1

2
(kAF )

κǫκλµνA
λFµν − 1

4
(kF )κλµνF

κλFµν (9)

where Fµν ≡ ∂µAν−∂νAµ. The first term is the usual Maxwell part while the
second and third represent Lorentz violating contributions that depend on the
parameters kAF and kF . For most analysis the kAF parameter is set to 0 for
theoretical reasons (c.f. [12]) but which is also well supported experimentally.
The remaining dimensionless tensor (kF )κλµν has a total of 19 independent
components that need to be determined by experiment. Retaining only this
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term leads to Maxwell equations that take the familiar form but with D and
H fields in vacuum defined by a six dimensional matrix equation

(

D

H

)

=

(

ǫ0(1 + κDE)
√

ǫ0
µ0

κHE

√

ǫ0
µ0

κDB

µ−1
0 (1 + κHB)

)

(

E

B

)

(10)

where the κ are 3×3 matrices whose components are particular combinations
of the kF tensor (c.f. equation (5) of [12]). Equation (10) indicates a useful
analogy between the SME in vacuum and standard Maxwell equations in
homogeneous anisotropic media. For the analysis of different experiments it
turns out to be useful to introduce further combinations of the κ matrices
defined by:

(κ̃e+)
jk =

1

2
(κDE + κHB)

jk,

(κ̃e−)
jk =

1

2
(κDE − κHB)

jk − 1

3
δjk(κDE)

ll,

(κ̃o+)
jk =

1

2
(κDB + κHE)

jk,

(κ̃o−)
jk =

1

2
(κDB − κHE)

jk,

(κ̃tr)
jk =

1

3
δjk(κDE)

ll. (11)

The first four of these equations define traceless 3 × 3 matrices, while
the last defines a single coefficient. All κ̃ matrices are symmetric except κ̃o+

which is antisymmetric. These characteristics leave a total of 19 independent
coefficients of the κ̃. In general experimental results are quoted and compared
using the κ̃ parameters rather than the original kF tensor components and
this is the route we will follow in the present analysis.

The kF tensor in (9), and consequently the κ tensors in (10) and (11), are
frame dependent and consequently vary as a function of the coordinate system
chosen to analyse a given experiment. In principle they may be constant and
non-zero in any frame (e.g. the cavity frame or the lab frame). However,
any non-zero values are expected to arise from Planck-scale effects in the
early Universe. Therefore the components of kF should be constant in a
cosmological frame (e.g. the one defined by the CMB radiation) or any frame
that moves with a constant velocity and shows no rotation with respect to the
cosmological one. Consequently the conventionally chosen frame to analyse
and compare experiments in the SME is a sun-centred, non-rotating frame
as defined in [12]. The general proceedure is to calculate the perturbation of
the resonator frequency as a function of the unperturbed E0 and B0 fields
and κ tensors in the lab frame and then to transform the κ tensors to the
conventional sun-centred frame. This transformation will introduce a time
variation of the frequency related to the movement of the lab with respect to
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the sun-centred frame (typically introducing time variations of sidereal and
semi-sidereal periods for an Earth fixed experiment).

In [12] the authors derive an expression for the perturbed frequency of a
resonator of the form

∆ν

ν0
= − 1

〈U〉

∫

V

d3x
(

ǫ0E0
∗ · κDE ·E0 − µ−1

0 B0
∗ · κHB ·B0 (12)

+ 2Re(

√

ǫ0
µ0

E0

∗ · κDB ·B0)

)

with 〈U〉 =
∫

V
d3x(E0 · D0

∗ + B0 · H0
∗). This expression can be applied

directly to our resonator using the fields calculated in Sect. 2.2.
The resonator is placed in the lab with its symmetry axis along the verti-

cal. So applying (13) in the lab frame (z-axis vertical upwards, x-axis pointing
south), with the fields calculated as described in Sect. 2.2, we obtain an ex-
pression for the frequency variation of the resonator

∆ν

ν0
= (MDE)

xx
lab ((κDE)

xx
lab + (κDE)

yy
lab) + (MDE)

zz
lab(κDE)

zz
lab

+ (MHB)
xx
lab ((κHB)

xx
lab + (κHB)

yy
lab) + (MHB)

zz
lab(κHB)

zz
lab (13)

with the Mlab components given in Tab. 7. To obtain the values in Tab. 7
we take into account the fields inside the resonator (e.g. (3)) and outside
(≤ 2% of the energy). We note that when using coordinates in which the
κij
lab components are constants over the volume of the cylinder (e.g. cartesian

coordinates), the integrals in (13) are equivalent to filling factor integrals
(c.f. (4)) for the diagonal terms. This simplifies the calculation of the Mll

lab

components when using numerical techniques, as simple algorithims exist to
calculate filling factors without explicitly calculating the field [35].

Table 7. Mlab components calculated using the different techniques for the deter-
mination of the fields inside the resonator described in Sect. 2.2.

M
ij
lab FE SV Pure WG

(MDE)
xx
lab -0.03093 -0.0355 -0.02696

(MDE)
zz
lab -0.0004030 -0.005996 0.00

(MHB)
xx
lab 0.008408 0.008405 0.00

(MHB)
zz
lab 0.4832 0.4832 0.50

The last step is to transform the κ tensors in (13) to the conventional
sun-centred frame using the explicit transformations provided in [12], and to
express the result in terms of the κ̃ tensors of (11). We obtain
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∆ν

ν
= K + CAcos(ΩT ) + SAsin(ΩT )

+ Cωcos(ωT⊕) + Sωsin(ωT⊕)

+ C2ωcos(2ωT⊕) + S2ωsin(2ωT⊕) (14)

+ Cω+Ωcos((ω +Ω)T⊕ + ϕ) + Sω+Ωsin((ω +Ω)T⊕ + ϕ)

+ Cω−Ωcos((ω −Ω)T⊕ − ϕ) + Sω−Ωsin(((ω −Ω)T⊕ − ϕ)

+ C2ω+Ωcos((2ω +Ω)T⊕ + ϕ) + S2ω+Ωsin((2ω +Ω)T⊕ + ϕ)

+ C2ω−Ωcos((2ω −Ω)T⊕ − ϕ) + S2ω−Ωsin((2ω −Ω)T⊕ − ϕ)

where ω andΩ are the sidereal and anual angular frequencies (ω = 7.292115×
10−5 rad/s, Ω = 1.991× 10−7 rad/s), T⊕ is the time since a coincidence of
the lab y axis with the sun-centred Y axis (as defined in [12]), T is the time
since a spring equinox and ϕ is a constant given by ϕ = Ω(T − T⊕).

The κ̃e+ and κ̃o− tensors have been determined to ≤ 2× 10−32 by astro-
physical tests [12], orders of magnitude below what we can hope to achieve
in resonator experiments. Consequently we set those parameters to zero, ob-
taining the C and S coefficients of (14) given in Tab. 8. They involve 4 com-
binations of the 5 independent components of κ̃e− and all three independent
components of κ̃o+, but do not involve κ̃tr. So our experiment is sensitive to
7 of the 9 parameters not determined by astrophysical tests. The numerical
values in Tab. 8 were obtained using the FE results in Tab. 7. Similar values
are obtained when using the SV or ’pure WG’ results, with the differences
not exceeding 1% and 5% respectively.

Present limits on the 7 parameters are summarised in Tab. 9. At least
one year of regular data is required to be able to decorrelate the ω and 2ω
frequencies from the ω ± Ω and 2ω ± Ω ones. The data of our experiment
that we present here (see next section) are not yet sufficient for that purpose
(correlation coefficients are still ≈ 0.4), so the next section only presents the
results in the kinematical framework of Sect. 3.1. However, the experiment is
still running, and we expect to publish our results on the SME test by early
2004.

We conclude this section by a short discussion of the effects of non-zero
values of the SME parameters on our frequency reference (the hydrogen
maser) and the crystal structure of the sapphire (and hence the resonator
shape). Such effects would add to the direct effect on the electromagnetic
fields and may therefore lead to overall cancellation or enhancement of the
sensitivities calculated above. However, it was shown in [36] that the effect
on the sapphire crystal amounts to only a few percent of the direct effect
on the fields, and [37] show that the hydrogen mF = 0 → m′

F = 0 clock
transition is not affected to first order. Hence the total effect is dominated
by the Lorentz violating properties of the electromagnetic fields inside the
resonator and well described (to a few percent) by the model derived above.
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Table 8. Coefficients in (14). The constant K and the annual coefficients (CA and
SA) are not given as our experiment is insensitive to those terms.

frequency C S

ω −0.4402 κ̃13
e− + (1.066 × 10−6) κ̃13

o+ −0.4402 κ̃23
e− + (1.066 × 10−6) κ̃23

o+

2ω −0.09625 (κ̃11
e− − κ̃22

e−) −0.1925 κ̃12
e−

ω +Ω −(8.6405 × 10−6) κ̃23
o+ (8.6405 × 10−6) κ̃13

o+ + (1.779 × 10−6) κ̃12
o+

ω −Ω −(8.6405 × 10−6) κ̃23
o+ (8.6405 × 10−6) κ̃13

o+ − (4.196 × 10−5) κ̃12
o+

2ω +Ω (7.780 × 10−7) κ̃13
o+ (7.780 × 10−7) κ̃23

o+

2ω −Ω −(1.834 × 10−5) κ̃13
o+ −(1.834× 10−5) κ̃23

o+

Table 9. Present limits (1σ uncertainties) on the 7 SME parameters our experiment
is sensitive to, as determined in [15]. Values are given in 10−15 for κ̃e− and 10−11

for κ̃o+.

κ̃12
e− κ̃13

e− κ̃23
e− κ̃11

e− − κ̃22
e− κ̃12

o+ κ̃13
o+ κ̃23

o+

1.7± 2.6 −6.3± 12.4 3.6± 9.0 8.9 ± 4.9 −14± 14 1.2 ± 2.6 −0.1± 2.7

4 Experimental results

As mentioned in the previous section, the experimental data presented here
does not yet allow a complete decorrelation of the different parameters in the
SME model, so we concentrate in this section on the experimental results in
the kinematic (RMS) framework presented in section 3.1.

The cryogenic sapphire oscillator (CSO) is compared to a commercial
(Datum Inc.) active hydrogen maser whose frequency is also regularly com-
pared to caesium and rubidium atomic fountain clocks in the laboratory [38].
The CSO resonant frequency at 11.932 GHz is compared to the 100 MHz
output of the hydrogen maser. The maser signal is multiplied up to 12 GHz
of which the CSO signal is subtracted. The remaining ≈ 67 MHz signal is
mixed to a synthesizer signal at the same frequency and the low frequency
beat at ≈ 64 Hz is counted, giving access to the frequency difference between
the maser and the CSO. The instability of the comparison chain has been
measured and does not exceed a few parts in 1016. Since September 2002 we
are taking continuous temperature measurements on top of the CSO dewar
and behind the electronics rack. Starting January 2003 we have implemented
an active temperature control of the CSO room and changed some of the
electronics. As a result the diurnal and semi-diurnal temperature variations
during measurement runs (≈ 2 weeks) were greatly reduced to less than 0.025◦

C in amplitude (best case), and longer and more reliable data sets became
available.

Our previously published results [13] are based on data sets taken be-
tween Nov. 2001 and Sep. 2002. Here we use only data that was permanently
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temperature controlled, 13 data sets in total spanning Sept. 2002 to Aug.
2003, of differing lengths (5 to 16 days, 140 days in total). The sampling time
for all data sets was 100 s except two data sets with τ0 = 12 s. To make the
data more manageable we first average all points to τ0 = 2500 s. For the data
analysis we simultaneously adjust an offset and a rate (natural frequency
drift, typically ≈ 1.7×10−18 s−1) per data set and the two parameters of the
model (7). In the model (7) we take into account the rotation of the Earth
and the Earth’s orbital motion, the latter contributing little as any constant
or linear terms over the durations of the individual data sets are absorbed
by the adjusted offsets and rates.

When carrying out an ordinary least squares (OLS) adjustment we note
that the residuals have a significantly non-white behavior. The power spectral
density (PSD) of the residuals when fitted with a power law model of the form
Sy(f) = kfµ yields typically µ ≈ −1.5 to −2. In the presence of non-white
noise OLS is not the optimal regression method [39,40] as it can lead to
significant underestimation of the parameter uncertainties [39].

An alternative method is weighted least squares (WLS) [40] which al-
lows one to account for non-random noise processes in the original data by
pre-multiplying both sides of the design equation (our equation (7) plus the
offsets and rates) by a weighting matrix containing off diagonal elements. To
determine these off diagonal terms we first carry out OLS and adjust the
Sy(f) = kfµ power law model to the PSD of the post-fit residuals determin-
ing a value of µ for each data set. We then use these µ values to construct
a weighting matrix following the method of fractional differencing described,
for example, in [39]. Figure 6 shows the resulting values of the two parameters
(PKT and PMM ) for each individual data set. A global WLS fit of the two
parameters and the 13 offsets and drifts yields PMM = (1.2±1.9)×10−9 and
PKT = (1.6± 2.3)× 10−7 (1σ uncertainties), with the correlation coefficient
between the two parameters less than 0.01 and all other correlation coeffi-
cients < 0.06. The distribution of the 13 individual values around the ones
obtained from the global fit is well compatible with a normal distribution (χ2

= 10.7 and χ2 = 14.6 for PMM and PKT respectively).

Systematic effects at diurnal or semi-diurnal frequencies with the appro-
priate phase could mask a putative sidereal signal. The statistical uncertain-
ties of PMM and PKT obtained from the WLS fit above correspond to sidereal
and semi-sidereal terms (from (8)) of ≈ 7 × 10−16 and ≈ 4 × 10−16 respec-
tively so any systematic effects exceeding these limits need to be taken into
account in the final uncertainty. We expect the main contributions to such
effects to arise from temperature, pressure and magnetic field variations that
would affect the hydrogen maser, the CSO and the associated electronics,
and from tilt variations of the CSO which are known to affect its frequency.
Measurements of the tilt variations of the CSO show amplitudes of 4.6 µrad
and 1.6 µrad at diurnal and semi-diurnal frequencies.
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To estimate the tilt sensitivity we have intentionally tilted the oscillator by
≈ 5 mrad off its average position which led to relative frequency variations of
≈ 3×10−13 from which we deduce a tilt sensitivity of ≈ 6×10−17µrad−1. This
value corresponds to a worst case scenario as we expect a quadratic rather
than linear frequency variation for small tilts around the vertical. Even with
this pessimistic estimate diurnal and semi-diurnal frequency variations due
to tilt do not exceed 3 × 10−16 and 1× 10−16 respectively and are therefore
negligible with respect to the statistical uncertainties.

In December 2002 we implemented an active temperature stabilization
inside an isolated volume (≈ 15m3) that included the CSO and all the asso-
ciated electronics. The temperature was measured continously in two fixed
locations (behind the electronics rack and on top of the dewar). For the best
data sets the measured temperature variations did not exceed 0.02/0.01 ◦C
in amplitude for the diurnal and semi-diurnal components. In the worst cases
(the two 2002 data sets and some data sets taken during a partial air con-
ditioning failure) the measured temperature variations could reach 0.26/0.08
◦C. When intentionally heating and cooling the CSO lab by ≈ 3◦C we see
frequency variations of ≈ 5 × 10−15 per ◦C. This is also confirmed when we
induce a large sinusoidal temperature variation (≈ 1.5◦C amplitude). Using
this we can calculate a value for temperature induced frequency variations at
diurnal and semi-diurnal frequencies for each data set, obtaining values that
range from ≈ 5× 10−17 to ≈ 1.3× 10−15.
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Fig. 6. Values of the two parameters (PKT and PMM ) from a fit to each individual
data set (blue diamonds) and a global fit to all the data (red squares). For compari-
son our previously published results [13] are also shown (green triangles). The error
bars indicate the combined uncertainties from statistics and systematic effects.
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The hydrogen maser is kept in a dedicated, environmentally controlled
clock room. Measurements of magnetic field, temperature and atmospheric
pressure in that room and the maser sensitivities as specified by the manu-
facturer allow us to exclude any systematic effects on the maser frequency
that would exceed the statistical uncertainties above and the systematic un-
certainties from temperature variations in the CSO lab.

Our final uncertainties (the error bars in Fig. 6) are the quadratic sums of
the statistical uncertainties from the WLS adjustment for each data set and
the systematic uncertainties calculated for each data set from (8) and the
measured temperature variations. For the global adjustment we average the
systematic uncertainties from the individual data sets obtaining ±1.2× 10−9

on PMM and ±1.9× 10−7 on PKT . Adding these quadratically to the WLS
statistical uncertainties of the global adjustment we obtain as our final result
PMM = (1.2± 2.2)× 10−9 and PKT = (1.6± 3.0)× 10−7 (1σ uncertainties).

5 Conclusion

We have presented a detailed description of whispering gallery modes in
cylindrical resonators. This includes analytical and numerical calculations
of electro-magnetic fields and energy filling factors for the sapphire resonator
used in our experiment. It was shown that the different calculations gave
similar results (differences at the % level). We then applied those results
to model Lorentz violating frequency shifts of the resonator in two different
theoretical frameworks: the kinematical framework of Robertson, Mansouri
& Sexl (RMS), and the standard model extension (SME) developed by Kost-
elecky and co-workers. In both cases we obtain explicit expressions ((7) and
(14)) for the fractional frequency variation of our resonator as a function of
the Earth’s rotational and orbital angular velocities and of the parameters
describing Lorentz violation in RMS or the SME. We show that the exper-
imental sensitivity to the SME parameters is not affected by more than 1
% when using the analytical or numerical method to calculate the resonator
fields.

Experimental results were given for the RMS test, showing that our ex-
periment simultaneously constrains two combinations of the three param-
eters of the Mansouri and Sexl test theory (previously measured individu-
ally by Michelson-Morley and Kennedy-Thorndike experiments). We obtain
δMS − βMS + 1/2 = 1.2(1.9)(1.2) × 10−9 which is of the same order as the
best previous results [15,16], and βMS−αMS−1 = 1.6(2.3)(1.9)×10−7 which
improves the best previous limit [14] by a factor of 70 (the first bracket indi-
cates the 1σ uncertainty from statistics the second from systematic effects).
We improve our own previous results [13] by about a factor 2 due to more
and longer data sets and to improved temperature control of the experiment
(see Tab. 6 for a summary of present limits). We note that our value on
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δMS − βMS + 1/2 is compatible with the slightly significant recent result of
[15] who obtained δMS − βMS + 1/2 = (2.2± 1.5)× 10−9.

As a result of our experiment the Lorentz transformations are confirmed in
the RMS framework with an overall uncertainty of ≤ 8×10−7 limited now by
the determination of αMS from Doppler and clock comparison experiments
[26,27]. This is likely to be improved in the coming years by experiments
such as ACES (Atomic Clock Ensemble in Space [41]) that will compare
ground clocks to clocks on the international space station aiming at a 10 fold
improvement on the determination of αMS.

Concerning the SME we do not present experimental results as our data
is not yet sufficient to decorrelate all SME parameters. However, the exper-
iment is still running and we expect to have enough data by early 2004 to
obtain unambiguous valus of all SME parameters. Nonetheless, we can al-
ready note that our experiment is complementary with respect to the best
previous determination of those parameters [15] by looking at tables 8 and
9. From Tab. 9 we see that the most accurate values are those for κ̃12

e− and
κ̃11
e−− κ̃22

e−, the two parameters our experiment is less sensitive to (c.f. second
line of Tab. 8) whereas our best sensitivity is to κ̃13

e− and κ̃23
e− (first line of Tab.

8) which are less well determined in [15]. Given our uncertainties at sidereal
and semi-sidereal periods of ≈ 1 × 10−15 and ≈ 5 × 10−16 respectively (c.f.
Sect. 4) we expect to obtain uncertainties of about 2 × 10−15 on κ̃13

e−, κ̃
23
e−

and about 3 − 5 × 10−15 on κ̃12
e−, κ̃

11
e− − κ̃22

e−. Those results, if achieved, will
compare favourably to the present limits of Tab. 9.

For the future we do not expect significant improvements using our present
experimental setup, due to the already relatively long total data span and
to expected systematic limits from both, the hydrogen maser and the sap-
phire resonator in the low 10−16 region. Significant improvements in the near
future are more likely to come from new proposals, for exalmple, using two
orthogonal resonators or two orthogonal modes in the same sapphire res-
onator placed on a rotating platform [34]. Such a set-up is likely to improve
the tests of LLI by several orders of magnitude as the relevant time variations
will now be at the rotation frequency (≈ 0.01 − 0.1 Hz) which is the range
in which such resonators are the most stable (≈ 100 fold better stability).
Additionally many systematic effects are likely to cancel between the two
orthogonal oscillators or modes and the remaining ones are likely to be less
coupled to the rotation frequency than to the sidereal frequencies used in
our experiment. Ultimately, it has been proposed [42] to conduct these tests
on board an Earth orbiting satellite, again with a potential gain of several
orders of magnitudes over current limits.
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