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Preface

(December, 1916)

The present book is intended, as far as possible, to give an exact insight into
the theory of Relativity to those readers who, from a general scientific and
philosophical point of view, are interested in the theory, but who are not
conversant with the mathematical apparatus of theoretical physics. The
work presumes a standard of education corresponding to that of a university
matriculation examination, and, despite the shortness of the book, a fair
amount of patience and force of will on the part of the reader. The author
has spared himself no pains in his endeavour to present the main ideas in
the simplest and most intelligible form, and on the whole, in the sequence
and connection in which they actually originated. In the interest of
clearness, it appeared to me inevitable that I should repeat myself
frequently, without paying the slightest attention to the elegance of the
presentation. I adhered scrupulously to the precept of that brilliant
theoretical physicist L. Boltzmann, according to whom matters of elegance
ought to be left to the tailor and to the cobbler. I make no pretence of having
withheld from the reader difficulties which are inherent to the subject. On
the other hand, I have purposely treated the empirical physical foundations
of the theory in a "stepmotherly" fashion, so that readers unfamiliar with
physics may not feel like the wanderer who was unable to see the forest for
the trees. May the book bring some one a few happy hours of suggestive
thought!

December, 1916

A. EINSTEIN

Introduction by Nigel Calder



INTRODUCTION
“What really interests me is whether God had any choice in the creation of
the world.” At the centenary of Albert Einstein’s birth, in 1979, I scripted
that comment of his into a TV documentary about relativity. Some
broadcasters expunged it from the soundtrack because they thought it was
blasphemous. In truth it was a reverential remark, and the question remains
a shrewd one. 
The relativity theories explained by Einstein in this book supply some of
the basic rules that any properly functioning universe must obey. They
make sure that atoms and natural forces will behave in the same way
anywhere, across the great oceans of space and time. A supplementary rule
helps to explain how stars and life can go on running for billions of years. 
When all the rules are known, will it turn out that only one possible kind of
universe can be both self-consistent and con-genial for life? For any young
would-be Einstein of today, the question is still on the table. And as the
maestro commented on another occasion, to persevere with such difficult
trains of thought requires feelings like those of “a religious person or
a lover.” 
For you, the inquisitive reader, a sense of trying to read the mind of God—
or to chat up Mother Nature, if you prefer—is an encouragement to
accompany Einstein through the forest of tricky ideas contained in this slim
volume. You will bear with him even when, from time to time, he uses a
little high school mathematics to consolidate the reasoning. The payoff is
worth the mental effort. 
Addressing you person-to-person, Einstein certainly wants viii
introduction you to join him in his intellectual adventure. Gratuitous
mystification and hero worship, which sometimes contaminate
other people’s accounts of relativity, are absent here. As a writer, Einstein
takes great pains to find examples and analogies to explain his points, but
he pursues no prizes for his prose. He shares the opinion of the physicist
Ludwig Boltzmann who said that, “Matters of elegance ought to be left to
the tailor and to the cobbler.” 
When he wrote this book in German in 1916, Einstein’s name was scarcely
known outside the physics institutes. He had just completed his
masterpiece, the general theory of relativity. It provided a brand-new theory
of gravity and it promised a new per-spective on the cosmos as a whole. He
set out at once to share his excitement with as wide a public as possible. But



World War I was raging at the time and English-speaking countries scorned
all things German. 
After the war, two British expeditions to the South Atlantic observed the
total eclipse of the sun in May 1919. The astronomers photographed stars
shifting in the sky, in a way that was said to support the Berlin professor’s
outlandish ideas. 
Newton’s law of gravity was apparently out of date. Announced in London
on November 6, 1919, the news made Einstein a celebrity overnight. 
“The typhoon of publicity crossed the Atlantic,” Ernest Rutherford noted.
As the discoverer of the atomic nucleus, he was a rival for fame. Robert W.
Lawson, a British physicist who had polished his knowledge of German
while a prisoner of war in Austria, translated this book into English. He
secured Einstein’s blessing for the book’s publication in 1920, and the
eclipse results were included in an appendix. 
So why not engage in a little time travel? Imagine that it’s the aftermath of
World War I. The usual method of longrange travel is still by railroad train.
The U.S. government has prohibited alcohol, and bootleggers are admiring
the newly developed Thompson submachine gun. Al Jolson and his
song “Swanee” are all the rage. And that German chap’s account of how he
upstaged the great Isaac Newton is here in your hands. 

 
EINSTEIN’S FIRST THIRTY-SEVEN YEARS 
The transition from relative obscurity to a prominence unmatched by movie
stars, signaled by the translation of this book, is also a moment to reflect on
Einstein’s life till then. Born in Ulm in Germany in 1879, Albert was the
son of an entrepreneurial electrician (seldom successful) and a musically-
minded mother. In the following year the family moved to Munich. Albert’s
budding brain was enthused by a magnet given to him at 
the age of five, and by a book on Euclid’s “holy geometry” as he called it,
when he was twelve. 
From sixteen onward, Einstein studied in Switzerland. He was brilliant and
negligent by turns and often preoccupied with his own thoughts. In 1900,
aged twentyone, he obtained a diploma as a science teacher from the
Federal Institute of Technology in Zurich, but then had great difficulty
securing a job. His private life was in a mess. Fellow student Mileva Maric



was pregnant with his child, Einstein’s parents opposed a marriage, and
anyway he was broke. 
Not until the summer of 1902 did Einstein secure a permanent job, as a
technical officer at the Swiss Patent Office. He married Mileva, and they
settled in Bern. Their first child disappeared mysteriously—she was
presumably adopted and/or died—but in 1904 the first of two sons was
born. 
After a solid day’s work at the office, evaluating all sorts of inventions,
Einstein would spend his spare time on fundamental physics, working at the
table in the family apartment. The resulting papers went to the Annalen der
Physik, which tolerantly published his ideas. He also wrote many review
articles for that journal, on other people’s physics. 
Einstein was neither a competent experimenter nor a high-powered
mathematician. His intuition about scientific concepts was unequaled, and
when logic was on his side he would stick his neck far out, even when his
conclusions ran counter to the received wisdom. A reinterpretation of the
photoelectric effect was his first spectacular contribution, proving that light
can behave as if it consists of particles, not waves. 
That was the subject of a paper written in March 1905, shortly before his
twenty-sixth birthday. During the next few weeks Einstein completed two
groundbreaking papers on molecular physics. In May he solved a puzzle
about the speed of light that had taunted him for years, and before the end
of June he had sent his first paper on relativity to Annalen der Physik. 
Three months later he followed it with a related paper on the equivalence of
energy and mass. No wonder 1905 is called, in retrospect, Einstein’s
miracle year. Yet the academic world was extremely slow to react. Not until
1909 was he able to give up his job at the Patent Office, on becoming an
assistant professor at Zurich University. Thereafter his career took off, with
a quick succession of posts in other universities culminating in a very
prestigious appointment in Berlin, where he settled in 1914. All the while
he was struggling to generalize his ideas about 
relativity. The special theory of 1905 dealt with conflicting views of the
world that result from relative movements at a steady speed. If he could
extend it to accelerated motions, a new theory of gravity would be in his
grasp. He had the right ideas from 1907 onward, but the mathematics was
so tricky that the general theory of relativity was not perfected until 1915. 



Just as he was beginning to apply it to the overall nature of the universe, he
spared the time needed to write the present book. He was then age
thirtyseven. 

SPACE, TIME, AND LIGHT ALONG A RAILROAD 
Einstein starts his book by asking whether Euclid’s geometry is true. The
Greek compendium about how lines and shapes relate to one another, on a
flat surface, has been the bedrock of practical mathematics for two thousand
years. Yet it is definitely correct only in abstract logic. In the real world, so
Einstein warns us, its truth may turn out to be limited. This is a distant,
ranging shot, and Section 1 may puzzle some readers, because Einstein does
not return to Euclid’s vulnerability until halfway through the book. Its early
appearance means that the author wants to shock us into thinking about
things in his way. Euclid not necessarily correct? That was fighting talk
in 1920. 
Nowadays scientists can directly test geometry across the solar system,
because radar echoes from planets, and signals to and from spacecraft, can
measure relative distances. The old rules about triangles, for example, don’t
work exactly. Rather than complain that Euclid was wrong, the scientists
now prefer to say that the empty space in the solar system is not
perfectly “flat” in Euclid’s sense. The way gravity deforms space and time
is what general relativity is all about. 
But first Einstein leads us into special relativity and the effects of motion—
special because it excludes accelerated move-ment. In Sections 2 to 4 he
erects the traditional scaffolding of the physical world, which his theories
are going to shake, namely the system of coordinates used for pinpointing
events and tracing movements. There are three dimensions of space x, y,
and z (meaning left-right, forward-back, and up-down) 
and one dimension of time t. Events can look very different to onlookers in
different situa-tions, especially if they are moving relative to one another.
In Section 3, Einstein introduces the railroad (the “railway” to the British
translator) that sets the scene for his reasoning for many 
pages that follow. The first example of different viewpoints comes when I
drop a stone from the window of a moving train. 
I see the stone go straight down from my hand to the ground. If you watch
from the side of the track, you’ll see it following a curved (parabolic) path,
because the stone inherits some sideways motion from the train. 



In Section 4, Einstein equips the observers in the train and by the track with
clocks, so that each has a complete coordinate system—a personal frame of
reference in space and time. So far so obvious, but in Section 5 Einstein
gives a preliminary hint that the world will get out of joint when light
comes into the story. That is the meaning of his reference to developments
in “electrodynamics and optics.” 
Approaching the tricky bit gradually, Einstein reasons that the laws of
nature ought not to depend on who is watching. A raven flying in a straight
line will appear to be going straight to an observer in a moving train, even
though he’ll reckon the bird’s course and speed differently from a trackside
observer. 
Similarly the laws of nature observed on the earth don’t change between
winter and summer, even though our planet reverses its direction of travel
around the sun as it hurries along in its orbit at 30 kilometers per second. A
century after Einstein formulated these ideas, the absence of any seasonal
variation in physical laws has been checked to the highest precision for
which you could ever wish. 
Next, Einstein turns to the way speeds can be combined. In Section 6 a man
walks forward along a moving train. An onlooker beside the track may
reckon how fast the man is advancing by simply adding his speed of
walking to the train’s velocity, but that will turn out to be an
oversimplification. The first clue comes in Section 7, when Einstein
imagines a beam of light being sent along a railroad embankment in the
same direction as a train is traveling. He asks how fast the light goes in
relation to the train. 
“Classical” ideas tempt you to think that the light must be going more
slowly as judged from the train, because you should subtract the train’s
speed. Not so, says Einstein. If a traveler on the train could measure the
speed of the beam of light for himself, the result would be exactly the same
as the speed of the same beam measured by someone stationary on the
ground. 

THE CONSTANT SPEED OF LIGHT 
How does Einstein know that the movement of a source of light, or of the
detector that registers its arrival, has no effect on the speed of light as
measured by any observer? When he developed the special theory of
relativity in 1905, his convic-tion about this crucial point depended on his



intuition and on the theories of a Dutch physicist, Hendrik Lorentz. But
in 1913, before he wrote this book, Einstein was rewarded  with strong
supporting evidence when a Dutch astronomer, Willem de Sitter, considered
pairs of stars that orbit around each other. 
Sometimes a star swings towards the earth, as it circles its partner, and
sometimes it’s receding on the other side of its partner. These phases of its
orbit are distinguishable by shifts in frequency of the starlight, and they
follow at regular intervals. If the light traveled faster when emitted by the
star approaching the earth, it would overtake the light from the previous
retreating phase and smear out the alternations. As astronomers can easily
distinguish the comings and goings, de Sitter reasoned that the constancy of
the speed of light was confirmed. 
Astronomy at invisible frequencies, which travel at the same speed as
visible light, has refined de Sitter’s test. An X-ray star in another galaxy, the
Small Magellanic Cloud, is orbiting around an unseen companion. It lies so
far away that the slightest discrepancy in the light speed, due to the star’s
own speed, would be detectable. 
Gamma ray bursts come from stupendous explosions that occur almost out
to the limits of the observable universe. Even after taking billions of years
to reach us, some bursts last for only a split second. That means there can
be no difference at all in the speeds of emission from rapidly moving parts
of the violently erupting source. The brevity of gamma-ray bursts
now makes the constancy of light speed in empty space one of the surest
facts in the whole of science. With this hindsight, Einstein’s conviction is
correct. But the puzzle illustrated by the railroad train and the relative speed
of the light beam “has plunged the conscientiously thoughtful physicist into
the greatest intellectual difficulties.” The special theory of relativity is
promised as the solution. 

TIME BECOMES SLIPPERY 
Two lightning flashes are said to strike the railroad embankment at the same
moment at different places, and Einstein spends several pages fretting about
the meaning of “simultaneous” (Sections 8 and 9). After a mock dialogue
with the reader, who supposedly defends old-fashioned thinking about the
idea of time in physics, Einstein offers an exact definition. The lightning
strokes are simultaneous if their light rays meet at the midpoint on
the embankment between the places where they strike. But from the point



of view of a rider on a moving train, who happens to be midway between
the points of impact when the lightning strikes, the flashes cannot be
simultaneous. This observer will see the flash up ahead slightly before the
one behind, because the train has moved him forward to meet its
approaching rays. 
Once simultaneity becomes only a relative concept, time itself goes
haywire. What the observer on the embankment considers to be one second
is not one second for the person on the train. As a result (in Section 10) the
speed of a person walking forward along the train, as judged from the
embankment, turns out to be different from the speed of walking judged on
the train itself. And the length of the train itself will appear different too. To
make these crazyseeming propositions precise, Einstein brings in a
mathematical device called the Lorentz transformation, named after the
Dutch physicist mentioned earlier. Don’t worry if you can’t follow it all.
Section 11 (reinforced by Ap-pendix 1) explains why the same beam of
light has the same speed whether judged by a stationary or a moving
observer. 
Time runs more slowly for the moving observer, to exactly the extent
needed to secure the constancy of light speed. Similar mathematics in
Section 12 tells you why no ordinary object could ever travel faster than
light. It also shows that a measuring rod moving past you will appear
shorter than when it is at rest; hence, the remark about the length of the
train. Einstein’s way of putting it suggests a squeezing. In a more
modern gloss, the rod, or the train, appears to be slightly rotated away from
you as it passes, and so you see it foreshortened to the extent predicted by
the formula. 
Einstein then returns to the question of how velocities are to be added
together (Section 13). When this situation cropped up earlier, with a person
walking forward along a moving train, the simpleminded answer was to add
the man’s speed to the train’s speed. But in relativity the combined speed as
gauged by a stationary watcher has to be reduced a little. With some
satisfaction, Einstein revisits an experiment first 
devised by a French physicist, Armand Fizeau, in 1851. By measuring the
speed of light in water flowing down a tube, it unwittingly tested Einstein’s
formula for adding velocities. Repeated by Pieter Zeeman (yet another
Dutchman, and a colleague of Lorentz), the experiment confirmed the
formula’s accuracy to within 1 percent. 



MASS AND ENERGY 
When this book was written, practicable speeds of motion were too slow,
and clocks and rulers too imprecise, to test many predictions of special
relativity directly. Undismayed, Einstein went on to make some sweeping
inferences from his theory. His assertion, in Section 14, that any general law
of nature must be consistent with special relativity, reconfirms his early
requirement that the laws of nature cannot depend on who is looking. 
Einstein’s own most famous law is that mass and energy are equivalent. In
Section 15 he introduces the idea by way of another remarkable prediction
of special relativity, namely that the mass of a body increases when it
travels at high speed. In classical physics it gains in energy of motion. In
relativity that kinetic energy makes itself felt as additional mass. Radiant
energy absorbed by a body also increases its mass. Indeed the total mass
becomes a measure of its total energy. But in this reckoning the body starts
with inherent energy even when at rest. It is a huge amount, given by the
body’s rest mass rest mass multiplied by the square of the speed of light, or
E=mc2.
Concentrations of energy available in 1916 were too small in relation to
experimental masses for this equivalence of mass and energy to be tested.
And in Section 16, when Einstein trawls for evidence in support of special
relativity as a whole, the haul is meager—just small deviations from
classical expectations in experiments with electrons, and a favorable gloss
that he can put on the failure to detect any difference in the speed of light in
two directions at right angles, in a nineteenth-century experiment. 
Modern particle accelerators confirm Einstein’s predictions more directly.
They prolong the life of unstable subatomic particles by achieving speeds
that stretch time for them. The masses of accelerated particles increase to
the point where new matter can be created from them. 
E= mc2 accounts for the long-lasting power of the sun and the stars, and
appears as the nuclear energy that power engineers and bombmakers have
learned how to tap. To trace all the consequences of special relativity now
verified by scientists would be to recapitulate much of the physics
and astronomy of the past one hundred years. Perhaps the crowning glory is
antimatter, predicted by Paul Dirac in England when he applied special
relativity to the theory of subatomic particles. 



Antimatter is now known to shower down from the sky above us, and when
a particle meets its antiparticle, both of them disappear in a burst of radiant
energy, exactly in accordance with E=mc2.

ONWARD TO GENERAL RELATIVITY 
“The non-mathematician is seized by a mysterious shuddering when he
hears of ‘four-dimensional’ things, by a feeling not unlike that awakened by
thoughts of the occult. And yet there is no more commonplace statement
than that the world in which we live is a four-dimensional space-time
continuum.” Einstein makes this remark at the start of Section 17, which is
a preamble about geometry for the transition from special relativity to
general relativity. Figuring prominently is the mathematician Hermann
Minkowski, who had called Einstein “a lazy dog” when teaching him in
Zurich. Minkowski invented a mathematical trick that treats time as if it
were just an extra dimension of space. Appendix 2 has a little more on this
subject. Without this method, the juggling with space-time
whereby Einstein revolutionized the theory of gravity would have
been much more difficult. 
The different meanings of special and general relativity appear in Section
18. The democratic principle that Einstein is pursuing requires the laws of
nature to remain the same regardless of how the observer is moving. While
the special theory compares different views of the world due to uniform
motion, as in the railroad train moving steadily along the track, the general
theory removes that restriction and allows for all kinds of movement,
including acceleration and rotation. 
Some puzzles about gravity are set out in Section 19. Whatever the
“intermediary medium” is, which pulls a stone down when we drop it, it
acts equally on any other object. Everything falls with the same
acceleration, if there’s no air resistance. And isn’t it odd that the force of
gravity acting on a body is propor-tional to its mass—exactly the same
quality that crops up when you gauge the body’s resistance to acceleration,
its inertia? These features find an explanation in Section 20, when gravity is
seen to be very like any other accelerating system. 
Einstein invites us to visualize a man living in a big chest that’s drifting in
empty space. He must tie himself to the floor if he is not to float about. The
modern reader has seen videos of astronauts drifting weightlessly in their
spaceships, but Einstein has to picture it for himself. 



Unable to invoke a space rocket to propel the box, he imagines a “being”
pulling on a rope attached to the lid of the chest and imparting a steady
acceleration. The man in the chest can then think himself at home on the
earth. He no longer tends to float, and any object he releases will fall to the
floor. The steady acceleration through empty space will feel to him just like
gravity. What’s more, the simulation fully accounts for the equal effect of
gravity on all objects, and for the equality of inertial and gravitational
mass. 
A similar situation prevails for a person on a train when the brakes are
applied hard. He can say, if he wishes, that he is jerked forward by a
shortlived gravitational field. It also slows down the embankment (and the
planet in general) that were rushing past him while he sat stationary in his
own frame of reference. By this time the reader may think that the
reasoning is quaint, but in Section 21 it’s clear that Einstein is in earnest. 
He is simply stressing that, in general relativity, no point of view can take
preference over any other. 

GRAVITY BENDS LIGHT 
The similarity between gravity and any other acceleration means that light
must be affected by gravity like any other substance. This crucial ingredient
of Einstein’s theory first appears in Section 22. There he predicts that the
light from a star grazing the sun will be deflected, so that it will change its
apparent position in the sky by 1.7 seconds of arc (roughly one two-
thousandths of a degree). At the time of an eclipse, he says, stars seen
beyond the sun ought to appear shifted outwards from the sun to that sort of
extent, compared with their normal positions in the sky. This was the
prediction that made Einstein famous. 
He was doubly lucky. When wrestling with his early ideas about general
relativity, in 1911, he published a wrong answer for the deflection of
starlight—half the correct result. The outbreak of World War I prevented
astronomers from testing Einstein’s prediction at the total eclipse of 1914,
before he came up with the right number in 1915. 
The second stroke of luck was that the British astronomer Arthur
Eddington, who led the effort to test it at the eclipse of 1919, was
predisposed to believe Einstein’s theory. Looking for starshifts of less than
a millimeter on the photographic plates, Eddington’s team put aside several
plates that gave “wrong” results, and picked ’n’ mixed the rest until the



average was about right (see Appendix 3b). It was pretty sloppy science, yet
Eddington let the message ring out around the world: “Newton’s theory of
gravity is dead—long live Einstein’s!” 
Fortunately, light bending to the extent required by general relativity has
been amply verified since then. Radio waves are invisible light, and
astronomers used widely spaced radio telescopes in accurate observations
of Quasar 3C279, which regularly passes behind the sun. A European star-
mapping satellite called Hipparcos (1989–93) detected the deflection of
starlight even from stars lying far from the sun’s direction in the sky.
Hipparcos scientists were able to verify Einstein’s theory to an accuracy
of 1/10 of 1 percent. 
Gravitational lenses lying far away in the universe give an up-to-date
demonstration of light bending in the Einsteinian fash-ion. The gravity of a
cluster of galaxies, and of invisible dark matter associated with it, acts as an
untidy magnifier. It en-hances the view of even more distant galaxies by
magnifying them, albeit with distortion and multiple images. 

COMING CLEAN ABOUT THE SPEED OF LIGHT 
An ordinary lens works by delaying the light passing through it, because
light travels more slowly through glass than through air. The same is true of
gravitational lenses. Einstein comments in Section 22 that, against all
expectations from special relativity, the deflection of light by gravity
implies a change in the speed of light in the sun’s vicinity. “A curvature of
rays of light can only take place when the velocity of propagation of light
varies with position.” 
What a pity that remark was not printed in italics in Einstein’s book, or
painted on balloons for all to see! Researchers and teachers ignored it for
half a century, until radar echoes from Venus and Mercury in the late 1960s
turned changes in the speed of light into an observed fact. Radar pulses sent
out from the Haystack observatory in Massachusetts were clearly
delayed whenever the planets were on the far side of the sun, as seen from
the earth. The radio waves (a variety of light) slowed down as they passed
the sun on their outward and return journey. Even in the 1970s it was hard
to get more than the most grudging admission from experts on relativity
that gravity slows down light, although Einstein himself was
unabashed about it sixty years earlier. Undue emphasis on the constancy of
light speed made general relativity unnecessarily opaque to students and the



general public for several decades. Just come clean, and admit that light
dawdles a little near a massive object  like the sun, and Einstein’s theory of
gravity is far easier to understand. 
The experts were not being entirely perverse. One of the glories of general
relativity is that the speed of light does indeed remain the same, provided
you measure it on the spot. If you could station a heat-resistant spacecraft
beside the sun to gauge Haystack’s radar pulses whizzing past, they would
seem to be traveling at just the usual speed of light. The reason is that
time, too, runs more slowly in the spacecraft, under the influence of
the sun’s strong gravity. It’s only the distant observer, with a faster clock,
who notices the slowdown.
In special relativity, you’ll remember, different rates of time on the train and
on the embankment enabled the observers to get the same answer for the
speed of light. In general relativity, too, changes in clockrates always keep
the speed the same, as measured locally. That’s how Einstein ensures that
natural laws hold good everywhere. Despite the effects of stronger
gravity, atoms, particles, and radiant energy on the sun interact according to
exactly the same laws as on the earth. To say so is to run ahead of the chain
of explanation in this book. These retrospective hints may nevertheless give
you a sense of destination, as Einstein approaches “a serious difficulty”
that “lies at the heart of things” and “lays no small claims on the patience
and on the power of abstraction of the reader.” Also helpful, perhaps, is to
note that the next step in the argument matches an idea illustrated in the
science fiction movie 2001: A Space Odyssey, where a large space station
simulates normal gravity by centrifugal force. The station rotates at an
appropriate speed and the astronauts walk around a floor at the rim, with
their feet pointing outwards, away from the center. 

SLITHERING IN SPACE-TIME 
The usual picture of gravity is turned inside out in Section 23, by putting an
observer on a disc that is rotating. He feels a force pushing him outward,
and like the man in the accelerated box he is authorized by general relativity
to call it gravity—a peculiar kind of gravity that becomes stronger the
farther you are from the center. 
The man is also moving relative to the center of the disc. Recalling the
effects of relative motion between a train and the track, Einstein notes that
the man’s clock will run more slowly than a clock at the center of the disc.



What’s more, if he puts a measuring rod along the edge of the disc in the
direction of movement, to start measuring the circumference, the rod will be
shorter than it would be at the center. On the other hand, the rod is not
shortened when pointing toward the center of the disc, to measure the
diameter. As a result, the circumference of the disc will seem to be greater
than the diameter multiplied by (pi, 3.14 . . . ) which would be the case if
the disc were at rest.
When the effective length of a measuring rod can change, Euclid’s
geometry for flat surfaces no longer works. General relativity needs a
suppler frame of reference, which Einstein sets up in Sections 24 to 28.
First he imagines a rectangular grid of rods laid out on a marble slab, which
goes askew if you heat part of the slab and some of the rods expand in
length. The squares of the grid are no longer square. 
Not to worry. Carl Friedrich Gauss, a German mathemati-cian and physicist
who flourished in the early nineteenth century, devised a system of
coordinates in which the grid can be crooked and the lines curved. And just
as Minkowski added time to the three dimensions of space in a rectangular
system, Einstein adds supple time to Gauss’s supple system for describing
space. Then, like a child in a floppy climbing-frame, he has a framework of
space-time in which to play with his general theory of relativity. 
Einstein imagines his four-dimensional world to be inhabited by slithery
creatures—he calls them molluscs—that can move about and change shape
ad lib. General relativity requires that all molluscs should have “equal right
and equal success” in formulating the laws of nature. This invertebrate
democracy might seem like a recipe for total confusion. Instead it imposes
such strict legislation on the universe that the distortions of space-time due
to the influences of massive bodies provide a precise and novel theory of
gravity. 

IMPROVING ON NEWTON 
The mathematics that Einstein used to tame his supple space-time is too
abstruse for the wide readership he aims for in this book. He contents
himself with summarizing some key results, in Section 29. First, Newton’s
law of gravity, in which the gravitational force between two bodies is
inversely proportional to the square of the distance between them, springs
ready-made from the molluscs’ weird world. Unlike Newton, Einstein
can explain what is happening. Masses deform space, with the result that



other masses follow curved tracks—as when the sun forces the planets to
orbit around it. 
Moreover, Newton’s law of gravity is only approximately correct.
Deviations become evident where gravity is strong, and they show how
Einstein’s theory improves on Newton’s. One, already mentioned, is the
extent of the bending of starlight when it passes near the sun. Another
improvement concerns the misbehavior of the planet Mercury, first noticed
by the French astronomer Urbain Leverrier in 1865, which finds a ready ex-
planation in Einstein’s theory of gravity. 
The planet’s elliptical orbit around the sun gradually swivels because of
interactions with other planets, but this “precession” is greater than
predicted by Newton’s theory. Searches for an unknown planet that might
explain the discrepancy were unavailing. The explanation is slightly
stronger gravity near the sun, provided by Einstein’s theory. All planetary
orbits are affected but Mercury’s the most because it is closest to the
sun (see also Appendix 3a). 
Radar observations of Mercury later confirmed that the swiveling matches
Einstein’s theory to a high degree of accuracy. More spectacular in this
regard is a pulsating radio star, or pulsar, discovered in 1974. It goes very
closely around and around a silent companion, on an orbit that swivels far
more rapidly than Mercury’s. In a double pulsar reported in 2004, the
effect  is even greater. These systems are also seen to be shedding energy,
supposedly by radiating gravitational waves that Einstein predicted in
1916. 
The third innovation from general relativity described in this book is
nowadays known to scientists as the gravitational red-shift. Einstein
mentions it only briefly in Section 29 but gives more detail in Appendix 3c,
where he writes: “An atom absorbs or emits light of a frequency which is
dependent on the potential of the gravitational field in which it is situated.”
As a symptom of gravity’s amazing power to slow down time,
the characteristic light emitted by atoms and molecules—their spectral lines
—will appear to distant observers to have lower frequencies in strong
gravity than on the earth or in empty space. They will be shifted towards the
red end of the spectrum. Verification of the gravitational red-shift came in
1924. Walter Adams in California discovered that Sirius B is a very
dense star, the first white dwarf ever identified. He reported that
some emissions from hydrogen atoms showed marked reductions in



frequency as required by Einstein’s theory. Much as with the 1919 eclipse
story, historians of science question the reliability of Adams’s result. The
light from Sirius B was contaminated by light from the much brighter Sirius
A. Never mind. The gravitational red-shift is now observed routinely in
many astronomical objects including the sun. Even more convincingly for
non astronomers, the effect of gravity in slowing time is demonstrated
directly with atomic clocks. They run faster in high-flying aircraft than they
do on the ground. 

A COSMOLOGICAL SKETCH 
Part III of the book is entitled “Considerations on the Universe as a Whole.”
It is very brief, and lest it should disappoint any-one familiar with Einstein’s
contributions to cosmology, be aware that when he wrote this book for the
general public in 1916, his ideas were still maturing. A key scientific paper,
“Cosmological Considerations on the General Theory of Relativity,” did not
appear until the following year. 
Astronomical knowledge of the time, primitive by contemporary standards,
misleads Einstein badly. Like Newton, he imagines stars scattered through
the immensity of space and moving about only slowly. He is troubled, as
Newton was, by the problem that gravity will tend to drag all the stars
together. This outcome might be avoided if the stars were very evenly
scattered, which was Newton’s own suggestion. By Einstein’s young days,
astronomers knew very well that the stars of the Milky Way are not at all
uniform in their distribution. 
To avoid having all the stars fall together in a heap, the German astronomer
Hugo von Seeliger suggested that gravity must weaken at long ranges, more
rapidly than prescribed by Newton’s inverse square law. This is the main
theme of Section 30. Einstein indicates that he might welcome such an idea
if only there were a logical reason for it. 
Another approach to the problem of the collapsing starfield appears in
Section 31. Einstein proposes that cosmic space may be folded back upon
itself. He invites us to share the worldview of flat beings living on what
they perceive as a flat, two-dimensional surface, but which is in fact a
sphere of large but finite size. 
There is no boundary to the flat creatures’ universe. If they traveled far
enough they would come back to their starting point, on a great circle.
Without having to make a world tour, the flat beings can figure out what



kind of universe they are living in, and even measure its diameter, by
discovering subtle discrepancies between the predictions of Euclid for truly
flat surfaces, and what they find in practice. Similarly, you can imagine a
super-geometry in which our own three-dimensional space is so folded that
it is “finite” yet “unbounded.” Such a universe is congenial for general
relativity and promises a way of preventing the stars falling together. This is
Einstein’s assertion in the very brief Section 32 that, except for the
appendices, brings his book to a close. The story ends abruptly with a
cursory description of one possible form for the universe, which Einstein
happens to like. The reader is left with a strong sense of unfinished
business. 
To pursue in any detail here the dramatic cosmology that unfolded in the
twentieth century would be too lengthy a departure from the main subjects
of this book. Yet not to mention akin to Seeliger’s idea of gravity
weakening at long ranges. To stop the stars falling together, adjusted the
strength of gravity as required. Without , a universe is unstable and it must
be either imploding or expanding, which was contrary to the myopic
impressions of early twentieth-century astronomy. The discovery in the
1920s of the great cosmic expansion, in which the Milky Way is just one of
many galaxies and the spaces between clusters of galaxies grow rapidly,
made Einstein think which it apparently began. Yet at the end of the
twentieth century the expansion of the universe turned out to be
accelerating and Einstein’s has come back in triumph in the driving seat
of the cosmos. 
And what about Euclid, with whom this book starts and finishes? Einstein
wanted astronomers to emulate the flat beings of his folded two-
dimensional universe and discover the overall geometry of the real world. If
the universe were not “flat” in Euclid’s ideal sense, it should act as a lens,
and very distant objects should appear magnified or shrunk. The most
distant observable objects—clumps of hot gas that existed soon after the
Big Bang—are now mapped by radio microwaves and they look neither
bigger nor smaller than expected. In the geometers’ heaven, 
it’s a draw. Einstein trumps Euclid in the distorted space-time surrounding
planets, stars, and galaxies, but the geometry of the universe at large still
conforms very well to what that old Greek taught his students in Alexandria
2,300 years ago. 



GENERAL RELATIVITY STILL THRIVES 
To say much about the rest of Einstein’s life story in this introduction might
break the mental link that I have tried to fashion with the relatively young
Einstein who wrote the book. He would divorce Mileva and marry his
cousin Elsa. The 1921 No-bel Prize would come his way—not for relativity
but for his interpretation of the photoelectric effect. Later he would fall
out with his fellow physicists over the interpretation of the quantum theory.
In 1932, as a Jewish refugee from the Nazis, he would find sanctuary in
Princeton, New Jersey, and live there until his death in 1955. 
Much more relevant to the reader is the subsequent career of Einstein’s
cleverest brainchild, general relativity. Despite many decades of efforts by
experimenters and theorists to prove it imperfect, it still holds sway. Oft-
repeated promises of a superior quantum theory of gravity remain only a
speculation. 
A great theory should make surprising predictions that can be verified by
observation, and go on to take unexpected discoveries in its stride. General
relativity has performed supremely well on both counts. In addition to
several successful tests already described, a huge effort is now going into
the direct detection of gravitational waves, which should squeeze and
stretch space as they pass by. Failure to find them would be
surprising because, as mentioned, the behavior of orbiting pulsars
makes sense only if they are radiating gravitational waves.
Another prediction currently under test with a satellite is that the
earth should drag space-time around it as it rotates. 
The finest example of explaining the unexpected came with the discovery
of quasars in 1963. These compact sources of radiation in the hearts of
some galaxies were far too powerful to rely on the nuclear energy that lights
the stars. Ready to hand was an awful possibility implicit in general
relativity. A massive object might collapse into a black hole, which would
then be capable of squeezing huge amounts of energy out of any stars or gas
falling into it. 
The idea of black holes won acceptance only gradually. Observations
established the compactness of the quasars and the presence of material
feeding their hearty appetites. Not until 1994 did direct confirmation of the
reality of black holes come in results from the Japanese satellite ASCA.
Variations in the wavelength of X-ray emissions from iron atoms in a
stormy galaxy made a pattern predicted for material orbiting closely around



a black hole. And a loss of energy by individual X-ray particles showed
time slowing down in the intense gravity near 
the black hole, just as general relativity requires. 

Suggestions for Further Reading 

The bibliography concerning Einstein is huge. Here are a few well-regarded
books, written or edited from a modern perspective. 
Calder, Nigel. Einstein’s Universe: The Layperson’s Guide. New York:
Penguin, 2005. This is an updated edition of a book first published in 1979.
It covers much of the same ground as the present classic by Einstein
himself, but with all the bonuses of scientific hindsight. 
Overbye, Dennis. Einstein in Love. New York: Viking
Penguin, 2000. Drawing on many unpublished letters, this book tells of
Einstein’s romances with his first wife, Mileva, and with his second, Elsa,
which took place during his most creative years. 
Schilpp, Paul Arthur (editor and translator). Albert Einstein: Philosopher-
Scientist. La Salle, Ill.: Open Court, 1982. Of special interest here are
Einstein’s own “Autobiographical Notes” written in 1946, where he told
how his ideas developed but avoided saying much about his “merely
personal” life. 
White, Michael, and Gribbin, John. Einstein: A Life in Science. New York:
Plume Books, 2005. First published in 1993, this book skillfully
interweaves the personal, public, and scientific strands of Einstein’s whole
life, including his persistent misgivings about the quantum theory. 



Part I. The Special Theory of
Relativity



01- Physical Meaning of
Geometrical Propositions
K = co-ordinate system

x, y = two-dimensional co-ordinates

x, y, z = three-dimensional co-ordinates

x, y, z, t = four-dimensional co-ordinates

t = time

I = distance

v = velocity
F = force

G = gravitational field

Part I: The Special Theory of Relativity
In your schooldays most of you who read this book made acquaintance with
the noble building of Euclid's geometry, and you remember — perhaps with
more respect than love — the magnificent structure, on the lofty staircase of
which you were chased about for uncounted hours by conscientious
teachers. By reason of our past experience, you would certainly regard
everyone with disdain who should pronounce even the most out-of-the-way
proposition of this science to be untrue. But perhaps this feeling of proud
certainty would leave you immediately if some one were to ask you: "What,
then, do you mean by the assertion that these propositions are true?" Let us
proceed to give this question a little consideration.
Geometry sets out form certain conceptions such as "plane," "point," and
"straight line," with which we are able to associate more or less definite
ideas, and from certain simple propositions (axioms) which, in virtue of



these ideas, we are inclined to accept as "true." Then, on the basis of a
logical process, the justification of which we feel ourselves compelled to
admit, all remaining propositions are shown to follow from those axioms,
i.e. they are proven. A proposition is then correct ("true") when it has been
derived in the recognised manner from the axioms. The question of "truth"
of the individual geometrical propositions is thus reduced to one of the
"truth" of the axioms. Now it has long been known that the last question is
not only unanswerable by the methods of geometry, but that it is in itself
entirely without meaning. We cannot ask whether it is true that only one
straight line goes through two points. We can only say that Euclidean
geometry deals with things called "straight lines," to each of which is
ascribed the property of being uniquely determined by two points situated
on it. The concept "true" does not tally with the assertions of pure geometry,
because by the word "true" we are eventually in the habit of designating
always the correspondence with a "real" object; geometry, however, is not
concerned with the relation of the ideas involved in it to objects of
experience, but only with the logical connection of these ideas among
themselves.
It is not difficult to understand why, in spite of this, we feel constrained to
call the propositions of geometry "true." Geometrical ideas correspond to
more or less exact objects in nature, and these last are undoubtedly the
exclusive cause of the genesis of those ideas. Geometry ought to refrain
from such a course, in order to give to its structure the largest possible
logical unity. The practice, for example, of seeing in a "distance" two
marked positions on a practically rigid body is something which is lodged
deeply in our habit of thought. We are accustomed further to regard three
points as being situated on a straight line, if their apparent positions can be
made to coincide for observation with one eye, under suitable choice of our
place of observation.
If, in pursuance of our habit of thought, we now supplement the
propositions of Euclidean geometry by the single proposition that two
points on a practically rigid body always correspond to the same distance
(line-interval), independently of any changes in position to which we may
subject the body, the propositions of Euclidean geometry then resolve
themselves into propositions on the possible relative position of practically
rigid bodies.1) Geometry which has been supplemented in this way is then
to be treated as a branch of physics. We can now legitimately ask as to the



"truth" of geometrical propositions interpreted in this way, since we are
justified in asking whether these propositions are satisfied for those real
things we have associated with the geometrical ideas. In less exact terms we
can express this by saying that by the "truth" of a geometrical proposition in
this sense we understand its validity for a construction with rule and
compasses.
Of course the conviction of the "truth" of geometrical propositions in this
sense is founded exclusively on rather incomplete experience. For the
present we shall assume the "truth" of the geometrical propositions, then at
a later stage (in the general theory of relativity) we shall see that this "truth"
is limited, and we shall consider the extent of its limitation.
 

Footnotes 01

1) It follows that a natural object is associated also with a straight line.
Three points A, B and C on a rigid body thus lie in a straight line when the
points A and C being given, B is chosen such that the sum of the
distances AB and BC is as short as possible. This incomplete suggestion will
suffice for the present purpose.





02-The System of Co-ordinates



On the basis of the physical interpretation of distance which has been
indicated, we are also in a position to establish the distance between two
points on a rigid body by means of measurements. For this purpose we
require a " distance " (rod S) which is to be used once and for all, and which
we employ as a standard measure. If, now, A and B are two points on a rigid
body, we can construct the line joining them according to the rules of
geometry ; then, starting from A, we can mark off the distance S time after
time until we reach B. The number of these operations required is the
numerical measure of the distance AB. This is the basis of all measurement
of length. 1)

Every description of the scene of an event or of the position of an object in
space is based on the specification of the point on a rigid body (body of
reference) with which that event or object coincides. This applies not only
to scientific description, but also to everyday life. If I analyse the place
specification " Times Square, New York," [A] I arrive at the following result.
The earth is the rigid body to which the specification of place refers; "
Times Square, New York," is a well-defined point, to which a name has
been assigned, and with which the event coincides in space.2)

This primitive method of place specification deals only with places on the
surface of rigid bodies, and is dependent on the existence of points on this
surface which are distinguishable from each other. But we can free
ourselves from both of these limitations without altering the nature of our
specification of position. If, for instance, a cloud is hovering over Times
Square, then we can determine its position relative to the surface of the
earth by erecting a pole perpendicularly on the Square, so that it reaches the
cloud. The length of the pole measured with the standard measuring-rod,
combined with the specification of the position of the foot of the pole,
supplies us with a complete place specification. On the basis of this
illustration, we are able to see the manner in which a refinement of the
conception of position has been developed.
(a) We imagine the rigid body, to which the place specification is referred,
supplemented in such a manner that the object whose position we require is
reached by. the completed rigid body.
(b) In locating the position of the object, we make use of a number (here the
length of the pole measured with the measuring-rod) instead of designated
points of reference.



(c) We speak of the height of the cloud even when the pole which reaches
the cloud has not been erected. By means of optical observations of the
cloud from different positions on the ground, and taking into account the
properties of the propagation of light, we determine the length of the pole
we should have required in order to reach the cloud.
From this consideration we see that it will be advantageous if, in the
description of position, it should be possible by means of numerical
measures to make ourselves independent of the existence of marked
positions (possessing names) on the rigid body of reference. In the physics
of measurement this is attained by the application of the Cartesian system
of co-ordinates.
This consists of three plane surfaces perpendicular to each other and rigidly
attached to a rigid body. Referred to a system of co-ordinates, the scene of
any event will be determined (for the main part) by the specification of the
lengths of the three perpendiculars or co-ordinates (x, y, z) which can be
dropped from the scene of the event to those three plane surfaces. The
lengths of these three perpendiculars can be determined by a series of
manipulations with rigid measuring-rods performed according to the rules
and methods laid down by Euclidean geometry.
In practice, the rigid surfaces which constitute the system of co-ordinates
are generally not available ; furthermore, the magnitudes of the co-ordinates
are not actually determined by constructions with rigid rods, but by indirect
means. If the results of physics and astronomy are to maintain their
clearness, the physical meaning of specifications of position must always be
sought in accordance with the above considerations. 3)

We thus obtain the following result: Every description of events in space
involves the use of a rigid body to which such events have to be referred.
The resulting relationship takes for granted that the laws of Euclidean
geometry hold for "distances;" the "distance" being represented physically
by means of the convention of two marks on a rigid body.
 

Footnotes 02



1) Here we have assumed that there is nothing left over i.e. that the
measurement gives a whole number. This difficulty is got over by the use of
divided measuring-rods, the introduction of which does not demand any
fundamentally new method.
[A] Einstein used "Potsdamer Platz, Berlin" in the original text. In the
authorised translation this was supplemented with "Tranfalgar Square,
London". We have changed this to "Times Square, New York", as this is the
most well known/identifiable location to English speakers in the present
day. [Note by the janitor.]
2) It is not necessary here to investigate further the significance of the
expression "coincidence in space." This conception is sufficiently obvious
to ensure that differences of opinion are scarcely likely to arise as to its
applicability in practice.
3) A refinement and modification of these views does not become necessary
until we come to deal with the general theory of relativity, treated in the
second part of this book.
 



03-Space and Time in Classical
Mechanics



 
The purpose of mechanics is to describe how bodies change their position
in space with "time." I should load my conscience with grave sins against
the sacred spirit of lucidity were I to formulate the aims of mechanics in
this way, without serious reflection and detailed explanations. Let us
proceed to disclose these sins.
It is not clear what is to be understood here by "position" and "space." I
stand at the window of a railway carriage which is travelling uniformly, and
drop a stone on the embankment, without throwing it. Then, disregarding
the influence of the air resistance, I see the stone descend in a straight line.
A pedestrian who observes the misdeed from the footpath notices that the
stone falls to earth in a parabolic curve. I now ask: Do the "positions"
traversed by the stone lie "in reality" on a straight line or on a parabola?
Moreover, what is meant here by motion "in space" ? From the
considerations of the previous section the answer is self-evident. In the first
place we entirely shun the vague word "space," of which, we must honestly
acknowledge, we cannot form the slightest conception, and we replace it by
"motion relative to a practically rigid body of reference." The positions
relative to the body of reference (railway carriage or embankment) have
already been defined in detail in the preceding section. If instead of " body
of reference " we insert " system of co-ordinates," which is a useful idea for
mathematical description, we are in a position to say : The stone traverses a
straight line relative to a system of co-ordinates rigidly attached to the
carriage, but relative to a system of co-ordinates rigidly attached to the
ground (embankment) it describes a parabola. With the aid of this example
it is clearly seen that there is no such thing as an independently existing
trajectory (lit. "path-curve" 1)), but only a trajectory relative to a particular
body of reference.
In order to have a complete description of the motion, we must specify how
the body alters its position with time ; i.e. for every point on the trajectory it
must be stated at what time the body is situated there. These data must be
supplemented by such a definition of time that, in virtue of this definition,
these time-values can be regarded essentially as magnitudes (results of
measurements) capable of observation. If we take our stand on the ground
of classical mechanics, we can satisfy this requirement for our illustration in
the following manner. We imagine two clocks of identical construction ; the
man at the railway-carriage window is holding one of them, and the man on



the footpath the other. Each of the observers determines the position on his
own reference-body occupied by the stone at each tick of the clock he is
holding in his hand. In this connection we have not taken account of the
inaccuracy involved by the finiteness of the velocity of propagation of light.
With this and with a second difficulty prevailing here we shall have to deal
in detail later.
 

 



Footnotes 03

1) That is, a curve along which the body moves.
 



04-The Galileian System of Co-
ordinates



 
As is well known, the fundamental law of the mechanics of Galilei-Newton,
which is known as the law of inertia, can be stated thus: A body removed
sufficiently far from other bodies continues in a state of rest or of uniform
motion in a straight line. This law not only says something about the motion
of the bodies, but it also indicates the reference-bodies or systems of
coordinates, permissible in mechanics, which can be used in mechanical
description. The visible fixed stars are bodies for which the law of inertia
certainly holds to a high degree of approximation. Now if we use a system
of co-ordinates which is rigidly attached to the earth, then, relative to this
system, every fixed star describes a circle of immense radius in the course
of an astronomical day, a result which is opposed to the statement of the law
of inertia. So that if we adhere to this law we must refer these motions only
to systems of coordinates relative to which the fixed stars do not move in a
circle. A system of co-ordinates of which the state of motion is such that the
law of inertia holds relative to it is called a " Galileian system of co-
ordinates." The laws of the mechanics of Galflei-Newton can be regarded as
valid only for a Galileian system of co-ordinates.
 

 



05-The Principle of Relativity (in
the restricted sense)
In order to attain the greatest possible clearness, let us return to our example
of the railway carriage supposed to be travelling uniformly. We call its
motion a uniform translation ("uniform" because it is of constant velocity
and direction, " translation " because although the carriage changes its
position relative to the embankment yet it does not rotate in so doing). Let
us imagine a raven flying through the air in such a manner that its motion,
as observed from the embankment, is uniform and in a straight line. If we
were to observe the flying raven from the moving railway carriage. we
should find that the motion of the raven would be one of different velocity
and direction, but that it would still be uniform and in a straight line.
Expressed in an abstract manner we may say : If a mass m is moving
uniformly in a straight line with respect to a co-ordinate system K, then it
will also be moving uniformly and in a straight line relative to a second co-
ordinate system K1 provided that the latter is executing a uniform
translatory motion with respect to K. In accordance with the discussion
contained in the preceding section, it follows that:

If K is a Galileian co-ordinate system. then every other co-ordinate system
K' is a Galileian one, when, in relation to K, it is in a condition of uniform
motion of translation. Relative to K1 the mechanical laws of Galilei-Newton
hold good exactly as they do with respect to K.

We advance a step farther in our generalisation when we express the tenet
thus: If, relative to K, K1 is a uniformly moving co-ordinate system devoid
of rotation, then natural phenomena run their course with respect to K1

according to exactly the same general laws as with respect to K. This
statement is called the principle of relativity (in the restricted sense).
As long as one was convinced that all natural phenomena were capable of
representation with the help of classical mechanics, there was no need to
doubt the validity of this principle of relativity. But in view of the more



recent development of electrodynamics and optics it became more and more
evident that classical mechanics affords an insufficient foundation for the
physical description of all natural phenomena. At this juncture the question
of the validity of the principle of relativity became ripe for discussion, and
it did not appear impossible that the answer to this question might be in the
negative.
Nevertheless, there are two general facts which at the outset speak very
much in favour of the validity of the principle of relativity. Even though
classical mechanics does not supply us with a sufficiently broad basis for
the theoretical presentation of all physical phenomena, still we must grant it
a considerable measure of " truth," since it supplies us with the actual
motions of the heavenly bodies with a delicacy of detail little short of
wonderful. The principle of relativity must therefore apply with great
accuracy in the domain of mechanics. But that a principle of such broad
generality should hold with such exactness in one domain of phenomena,
and yet should be invalid for another, is a priori not very probable.
We now proceed to the second argument, to which, moreover, we shall
return later. If the principle of relativity (in the restricted sense) does not
hold, then the Galileian co-ordinate systems K, K1, K2, etc., which are
moving uniformly relative to each other, will not be equivalent for the
description of natural phenomena. In this case we should be constrained to
believe that natural laws are capable of being formulated in a particularly
simple manner, and of course only on condition that, from amongst all
possible Galileian co-ordinate systems, we should have chosen one (K0) of
a particular state of motion as our body of reference. We should then be
justified (because of its merits for the description of natural phenomena) in
calling this system " absolutely at rest," and all other Galileian systems K "
in motion." If, for instance, our embankment were the system K0 then our
railway carriage would be a system K, relative to which less simple laws
would hold than with respect to K0. This diminished simplicity would be
due to the fact that the carriage K would be in motion (i.e."really")with
respect to K0. In the general laws of nature which have been formulated
with reference to K, the magnitude and direction of the velocity of the
carriage would necessarily play a part. We should expect, for instance, that
the note emitted by an organpipe placed with its axis parallel to the



direction of travel would be different from that emitted if the axis of the
pipe were placed perpendicular to this direction.
Now in virtue of its motion in an orbit round the sun, our earth is
comparable with a railway carriage travelling with a velocity of about 30
kilometres per second. If the principle of relativity were not valid we should
therefore expect that the direction of motion of the earth at any moment
would enter into the laws of nature, and also that physical systems in their
behaviour would be dependent on the orientation in space with respect to
the earth. For owing to the alteration in direction of the velocity of
revolution of the earth in the course of a year, the earth cannot be at rest
relative to the hypothetical system K0 throughout the whole year. However,
the most careful observations have never revealed such anisotropic
properties in terrestrial physical space, i.e. a physical non-equivalence of
different directions. This is very powerful argument in favour of the
principle of relativity.
 

 



06-The Theorem of the Addition of
Velocities Employed in Classical
Mechanics



 
Let us suppose our old friend the railway carriage to be travelling along the
rails with a constant velocity v, and that a man traverses the length of the
carriage in the direction of travel with a velocity w. How quickly or, in
other words, with what velocity W does the man advance relative to the
embankment during the process ? The only possible answer seems to result
from the following consideration: If the man were to stand still for a
second, he would advance relative to the embankment through a distance v
equal numerically to the velocity of the carriage. As a consequence of his
walking, however, he traverses an additional distance w relative to the
carriage, and hence also relative to the embankment, in this second, the
distance w being numerically equal to the velocity with which he is
walking. Thus in total be covers the distance W=v+w relative to the
embankment in the second considered. We shall see later that this result,
which expresses the theorem of the addition of velocities employed in
classical mechanics, cannot be maintained ; in other words, the law that we
have just written down does not hold in reality. For the time being,
however, we shall assume its correctness.
 

 



07-The Apparent Incompatibility of
the Law of Propagation of Light
with the Principle of Relativity

There is hardly a simpler law in physics than that according to which light
is propagated in empty space. Every child at school knows, or believes he
knows, that this propagation takes place in straight lines with a velocity c=
300,000 km./sec. At all events we know with great exactness that this
velocity is the same for all colours, because if this were not the case, the
minimum of emission would not be observed simultaneously for different
colours during the eclipse of a fixed star by its dark neighbour. By means of
similar considerations based on observa- tions of double stars, the Dutch
astronomer De Sitter was also able to show that the velocity of propagation
of light cannot depend on the velocity of motion of the body emitting the
light. The assumption that this velocity of propagation is dependent on the
direction "in space" is in itself improbable.
In short, let us assume that the simple law of the constancy of the velocity
of light c (in vacuum) is justifiably believed by the child at school. Who
would imagine that this simple law has plunged the conscientiously
thoughtful physicist into the greatest intellectual difficulties? Let us
consider how these difficulties arise.
Of course we must refer the process of the propagation of light (and indeed
every other process) to a rigid reference-body (co-ordinate system). As such
a system let us again choose our embankment. We shall imagine the air
above it to have been removed. If a ray of light be sent along the
embankment, we see from the above that the tip of the ray will be
transmitted with the velocity c relative to the embankment. Now let us
suppose that our railway carriage is again travelling along the railway lines
with the velocity v, and that its direction is the same as that of the ray of
light, but its velocity of course much less. Let us inquire about the velocity
of propagation of the ray of light relative to the carriage. It is obvious that



we can here apply the consideration of the previous section, since the ray of
light plays the part of the man walking along relatively to the carriage. The
velocity w of the man relative to the embankment is here replaced by the
velocity of light relative to the embankment. w is the required velocity of
light with respect to the carriage, and we have
w = c-v.
The velocity of propagation ot a ray of light relative to the carriage thus
comes cut smaller than c.
But this result comes into conflict with the principle of relativity set forth in
Section V. For, like every other general law of nature, the law of the
transmission of light in vacuo [in vacuum] must, according to the principle
of relativity, be the same for the railway carriage as reference-body as when
the rails are the body of reference. But, from our above consideration, this
would appear to be impossible. If every ray of light is propagated relative to
the embankment with the velocity c, then for this reason it would appear
that another law of propagation of light must necessarily hold with respect
to the carriage — a result contradictory to the principle of relativity.
In view of this dilemma there appears to be nothing else for it than to
abandon either the principle of relativity or the simple law of the
propagation of light in vacuo. Those of you who have carefully followed
the preceding discussion are almost sure to expect that we should retain the
principle of relativity, which appeals so convincingly to the intellect
because it is so natural and simple. The law of the propagation of light in
vacuo would then have to be replaced by a more complicated law
conformable to the principle of relativity. The development of theoretical
physics shows, however, that we cannot pursue this course. The epoch-
making theoretical investigations of H. A. Lorentz on the electrodynamical
and optical phenomena connected with moving bodies show that experience
in this domain leads conclusively to a theory of electromagnetic
phenomena, of which the law of the constancy of the velocity of light in
vacuo is a necessary consequence. Prominent theoretical physicists were
theref ore more inclined to reject the principle of relativity, in spite of the
fact that no empirical data had been found which were contradictory to this
principle.
At this juncture the theory of relativity entered the arena. As a result of an
analysis of the physical conceptions of time and space, it became evident
that in realily there is not the least incompatibilitiy between the principle of
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relativity and the law of propagation of light, and that by systematically
holding fast to both these laws a logically rigid theory could be arrived at.
This theory has been called the special theory of relativity to distinguish it
from the extended theory, with which we shall deal later. In the following
pages we shall present the fundamental ideas of the special theory of
relativity.
 

 



08-On the Idea of Time in Physics



 
Lightning has struck the rails on our railway embankment at two places A
and B far distant from each other. I make the additional assertion that these
two lightning flashes occurred simultaneously. If I ask you whether there is
sense in this statement, you will answer my question with a decided "Yes."
But if I now approach you with the request to explain to me the sense of the
statement more precisely, you find after some consideration that the answer
to this question is not so easy as it appears at first sight.
After some time perhaps the following answer would occur to you: "The
significance of the statement is clear in itself and needs no further
explanation; of course it would require some consideration if I were to be
commissioned to determine by observations whether in the actual case the
two events took place simultaneously or not." I cannot be satisfied with this
answer for the following reason. Supposing that as a result of ingenious
considerations an able meteorologist were to discover that the lightning
must always strike the places A and B simultaneously, then we should be
faced with the task of testing whether or not this theoretical result is in
accordance with the reality. We encounter the same difficulty with all
physical statements in which the conception " simultaneous " plays a part.
The concept does not exist for the physicist until he has the possibility of
discovering whether or not it is fulfilled in an actual case. We thus require a
definition of simultaneity such that this definition supplies us with the
method by means of which, in the present case, he can decide by
experiment whether or not both the lightning strokes occurred
simultaneously. As long as this requirement is not satisfied, I allow myself
to be deceived as a physicist (and of course the same applies if I am not a
physicist), when I imagine that I am able to attach a meaning to the
statement of simultaneity. (I would ask the reader not to proceed farther
until he is fully convinced on this point.)
After thinking the matter over for some time you then offer the following
suggestion with which to test simultaneity. By measuring along the rails, the
connecting line AB should be measured up and an observer placed at the
mid-point M of the distance AB. This observer should be supplied with an
arrangement (e.g. two mirrors inclined at 900) which allows him visually to
observe both places A and B at the same time. If the observer perceives the
two flashes of lightning at the same time, then they are simultaneous.



I am very pleased with this suggestion, but for all that I cannot regard the
matter as quite settled, because I feel constrained to raise the following
objection:
"Your definition would certainly be right, if only I knew that the light by
means of which the observer at M perceives the lightning flashes travels
along the length A M with the same velocity as along the length B M.
But an examination of this supposition would only be possible if we already
had at our disposal the means of measuring time. It would thus appear as
though we were moving here in a logical circle."
After further consideration you cast a somewhat disdainful glance at me —
and rightly so — and you declare:
"I maintain my previous definition nevertheless, because in reality it
assumes absolutely nothing about light. There is only one demand to be
made of the definition of simultaneity, namely, that in every real case it
must supply us with an empirical decision as to whether or not the
conception that has to be defined is fulfilled. That my definition satisfies
this demand is indisputable. That light requires the same time to traverse the
path A M as for the path B M is in reality neither a supposition nor a
hypothesis about the physical nature of light, but a stipulation which I can
make of my own freewill in order to arrive at a definition of simultaneity."
It is clear that this definition can be used to give an exact meaning not only
to two events, but to as many events as we care to choose, and
independently of the positions of the scenes of the events with respect to the
body of reference 1) (here the railway embankment). We are thus led also to
a definition of " time " in physics. For this purpose we suppose that clocks
of identical construction are placed at the points A, B and C of the railway
line (co-ordinate system) and that they are set in such a manner that the
positions of their pointers are simultaneously (in the above sense) the same.
Under these conditions we understand by the " time " of an event the
reading (position of the hands) of that one of these clocks which is in the
immediate vicinity (in space) of the event. In this manner a time-value is
associated with every event which is essentially capable of observation.
This stipulation contains a further physical hypothesis, the validity of which
will hardly be doubted without empirical evidence to the contrary. It has
been assumed that all these clocks go at the same rate if they are of
identical construction. Stated more exactly: When two clocks arranged at
rest in different places of a reference-body are set in such a manner that a



particular position of the pointers of the one clock is simultaneous (in the
above sense) with the same position, of the pointers of the other clock, then
identical " settings " are always simultaneous (in the sense of the above
definition).
 



Footnotes

1) We suppose further, that, when three events A, B and C occur in different
places in such a manner that A is simultaneous with B and B is
simultaneous with C (simultaneous in the sense of the above definition),
then the criterion for the simultaneity of the pair of events A, C is also
satisfied. This assumption is a physical hypothesis about the the of
propagation of light: it must certainly be fulfilled if we are to maintain the
law of the constancy of the velocity of light in vacuo.





09-The Relativity of Simulatneity



 
Up to now our considerations have been referred to a particular body of
reference, which we have styled a " railway embankment." We suppose a
very long train travelling along the rails with the constant velocity v and in
the direction indicated in Fig 1. People travelling in this train will with a
vantage view the train as a rigid reference-body (co-ordinate system); they
regard all events in

 
reference to the train. Then every event which takes place along the line
also takes place at a particular point of the train. Also the definition of
simultaneity can be given relative to the train in exactly the same way as
with respect to the embankment. As a natural consequence, however, the
following question arises :
Are two events (e.g. the two strokes of lightning A and B) which are
simultaneous with reference to the railway embankment also simultaneous
relatively to the train? We shall show directly that the answer must be in the
negative.
When we say that the lightning strokes A and B are simultaneous with
respect to be embankment, we mean: the rays of light emitted at the places
A and B, where the lightning occurs, meet each other at the mid-point M of
the length A B of the embankment. But the events A and B also
correspond to positions A and B on the train. Let M1 be the mid-point of the
distance A B on the travelling train. Just when the flashes (as judged
from the embankment) of lightning occur, this point M1 naturally coincides
with the point M but it moves towards the right in the diagram with the
velocity v of the train. If an observer sitting in the position M1 in the train
did not possess this velocity, then he would remain permanently at M, and
the light rays emitted by the flashes of lightning A and B would reach him
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simultaneously, i.e. they would meet just where he is situated. Now in
reality (considered with reference to the railway embankment) he is
hastening towards the beam of light coming from B, whilst he is riding on
ahead of the beam of light coming from A. Hence the observer will see the
beam of light emitted from B earlier than he will see that emitted from A.
Observers who take the railway train as their reference-body must therefore
come to the conclusion that the lightning flash B took place earlier than the
lightning flash A. We thus arrive at the important result:
Events which are simultaneous with reference to the embankment are not
simultaneous with respect to the train, and vice versa (relativity of
simultaneity). Every reference-body (co-ordinate system) has its own
particular time ; unless we are told the reference-body to which the
statement of time refers, there is no meaning in a statement of the time of an
event.
Now before the advent of the theory of relativity it had always tacitly been
assumed in physics that the statement of time had an absolute significance,
i.e. that it is independent of the state of motion of the body of reference. But
we have just seen that this assumption is incompatible with the most natural
definition of simultaneity; if we discard this assumption, then the conflict
between the law of the propagation of light in vacuo and the principle of
relativity (developed in Section 7) disappears.
We were led to that conflict by the considerations of Section 6, which are
now no longer tenable. In that section we concluded that the man in the
carriage, who traverses the distance w per second relative to the carriage,
traverses the same distance also with respect to the embankment in each
second of time. But, according to the foregoing considerations, the time
required by a particular occurrence with respect to the carriage must not be
considered equal to the duration of the same occurrence as judged from the
embankment (as reference-body). Hence it cannot be contended that the
man in walking travels the distance w relative to the railway line in a time
which is equal to one second as judged from the embankment.
Moreover, the considerations of Section 6 are based on yet a second
assumption, which, in the light of a strict consideration, appears to be
arbitrary, although it was always tacitly made even before the introduction
of the theory of relativity.
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10-On the Relativity of the
Conception of Distance



 
Let us consider two particular points on the train 1) travelling along the
embankment with the velocity v, and inquire as to their distance apart. We
already know that it is necessary to have a body of reference for the
measurement of a distance, with respect to which body the distance can be
measured up. It is the simplest plan to use the train itself as reference-body
(co-ordinate system). An observer in the train measures the interval by
marking off his measuring-rod in a straight line (e.g. along the floor of the
carriage) as many times as is necessary to take him from the one marked
point to the other. Then the number which tells us how often the rod has to
be laid down is the required distance.
It is a different matter when the distance has to be judged from the railway
line. Here the following method suggests itself. If we call A1 and B1 the two
points on the train whose distance apart is required, then both of these
points are moving with the velocity v along the embankment. In the first
place we require to determine the points A and B of the embankment which
are just being passed by the two points A1 and B1 at a particular time t —
judged from the embankment. These points A and B of the embankment can
be determined by applying the definition of time given in Section 8. The
distance between these points A and B is then measured by repeated
application of thee measuring-rod along the embankment.
A priori it is by no means certain that this last measurement will supply us
with the same result as the first. Thus the length of the train as measured
from the embankment may be different from that obtained by measuring in
the train itself. This circumstance leads us to a second objection which must
be raised against the apparently obvious consideration of Section 6.
Namely, if the man in the carriage covers the distance w in a unit of time —
measured from the train, — then this distance — as measured from the
embankment — is not necessarily also equal to w.
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Footnotes

1)e.g. the middle of the first and of the hundredth carriage.





11-The Lorentz Transformation



 
The results of the last three sections show that the apparent incompatibility
of the law of propagation of light with the principle of relativity (Section 7)
has been derived by means of a consideration which borrowed two
unjustifiable hypotheses from classical mechanics; these are as follows:
(1) The time-interval (time) between two events is independent of the
condition of motion of the body of reference.
(2) The space-interval (distance) between two points of a rigid body is
independent of the condition of motion of the body of reference.
If we drop these hypotheses, then the dilemma of Section 7 disappears,
because the theorem of the addition of velocities derived in Section 6
becomes invalid. The possibility presents itself that the law of the
propagation of light in vacuo may be compatible with the principle of
relativity, and the question arises: How have we to modify the
considerations of Section 6 in order to remove the apparent disagreement
between these two fundamental results of experience? This question leads
to a general one. In the discussion of Section 6 we have to do with places
and times relative both to the train and to the embankment. How are we to
find the place and time of an event in relation to the train, when we know
the place and time of the event with respect to the railway embankment ? Is
there a thinkable answer to this question of such a nature that the law of
transmission of light in vacuo does not contradict the principle of relativity
? In other words : Can we conceive of a relation between place and time of
the individual events relative to both reference-bodies, such that every ray
of light possesses the velocity of transmission c relative to the embankment
and relative to the train ? This question leads to a quite definite positive
answer, and to a perfectly definite transformation law for the space-time
magnitudes of an event when changing over from one body of reference to
another.
Before we deal with this, we shall introduce the following incidental
consideration. Up to the present we have only considered events taking
place along the embankment, which had mathematically to assume the
function of a straight line. In the manner indicated in Section 2 we can
imagine this reference-body supplemented laterally and in a vertical
direction by means of a framework of rods, so that an event which takes
place anywhere can be localised with reference to this framework.Fig.2

https://calibre-pdf-anchor.n/#OEBPS/Text/The%20Apparent%20Incompatibility%20of%20the%20Law%20of%20Propagation%20of%20Light%20with%20the%20Principle%20of%20Relativity.xhtml
https://calibre-pdf-anchor.n/#OEBPS/Text/The%20Apparent%20Incompatibility%20of%20the%20Law%20of%20Propagation%20of%20Light%20with%20the%20Principle%20of%20Relativity.xhtml
https://calibre-pdf-anchor.n/#OEBPS/Text/The%20Theorem%20of%20the%20Addition%20of%20Velocities%20Employed%20in%20Classical%20Mechanics.xhtml
https://calibre-pdf-anchor.n/#OEBPS/Text/The%20Theorem%20of%20the%20Addition%20of%20Velocities%20Employed%20in%20Classical%20Mechanics.xhtml
https://calibre-pdf-anchor.n/#OEBPS/Text/The%20Theorem%20of%20the%20Addition%20of%20Velocities%20Employed%20in%20Classical%20Mechanics.xhtml


  

Similarly, we can imagine the train travelling with the velocity v to be
continued across the whole of space, so that every event, no matter how far
off it may be, could also be localised with respect to the second framework.
Without committing any fundamental error, we can disregard the fact that in
reality these frameworks would continually interfere with each other, owing
to the impenetrability of solid bodies. In every such framework we imagine
three surfaces perpendicular to each other marked out, and designated as "
co-ordinate planes " (" co-ordinate system "). A co-ordinate system K then
corresponds to the embankment, and a co-ordinate system K' to the train.
An event, wherever it may have taken place, would be fixed in space with
respect to K by the three perpendiculars x, y, z on the co-ordinate planes,
and with regard to time by a time value t. Relative to K1, the same event
would be fixed in respect of space and time by corresponding values x1, y1,
z1, t1, which of course are not identical with x, y, z, t. It has already been set
forth in detail how these magnitudes are to be regarded as results of
physical measurements.

Obviously our problem can be exactly formulated in the following manner.
What are the values x1, y1, z1, t1, of an event with respect to K1, when the
magnitudes x, y, z, t, of the same event with respect to K are given ? The
relations must be so chosen that the law of the transmission of light in
vacuo is satisfied for one and the same ray of light (and of course for every
ray) with respect to K and K1. For the relative orientation in space of the co-



ordinate systems indicated in the diagram (Fig. 2), this problem is solved by
means of the equations :

y1 = y   y   z1 = z

This system of equations is known as the " Lorentz transformation." 1)
If in place of the law of transmission of light we had taken as our basis the
tacit assumptions of the older mechanics as to the absolute character of
times and lengths, then instead of the above we should have obtained the
following equations:

x1 = x - vt ; y1 = y ; z1 = z ; t1 = t

This system of equations is often termed the " Galilei transformation." The
Galilei transformation can be obtained from the Lorentz transformation by
substituting an infinitely large value for the velocity of light c in the latter
transformation.
Aided by the following illustration, we can readily see that, in accordance
with the Lorentz transformation, the law of the transmission of light in
vacuo is satisfied both for the reference-body K and for the reference-body
K1. A light-signal is sent along the positive x-axis, and this light-stimulus
advances in accordance with the equation

x = ct, 

i.e. with the velocity c. According to the equations of the Lorentz
transformation, this simple relation between x and t involves a relation
between x1 and t1. In point of fact, if we substitute for x the value ct in the
first and fourth equations of the Lorentz transformation, we obtain:



 

from which, by division, the expression
x1 = ct1

immediately follows. If referred to the system K1, the propagation of light
takes place according to this equation. We thus see that the velocity of
transmission relative to the reference-body K1 is also equal to c. The same
result is obtained for rays of light advancing in any other direction
whatsoever. Of cause this is not surprising, since the equations of the
Lorentz transformation were derived conformably to this point of view.
 

 



Footnotes

1) A simple derivation of the Lorentz transformation is given in Appendix I.
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12-The Behaviour of Measuring-
Rods and Clocks in Motion



 
Place a metre-rod in the x1-axis of K1 in such a manner that one end (the
beginning) coincides with the point x1=0 whilst the other end (the end of
the rod) coincides with the point x1=I. What is the length of the metre-rod
relatively to the system K? In order to learn this, we need only ask where
the beginning of the rod and the end of the rod lie with respect to K at a
particular time t of the system K. By means of the first equation of the
Lorentz transformation the values of these two points at the time t = 0 can
be shown to be

 

 
the distance between the points being .
But the metre-rod is moving with the velocity v relative to K. It therefore
follows that the length of a rigid metre-rod moving in the direction of its
length with a velocity v is  of a metre.
The rigid rod is thus shorter when in motion than when at rest, and the more
quickly it is moving, the shorter is the rod. For the velocity v=c we should
have ,
and for stiII greater velocities the square-root becomes imaginary. From this
we conclude that in the theory of relativity the velocity c plays the part of a
limiting velocity, which can neither be reached nor exceeded by any real
body.
Of course this feature of the velocity c as a limiting velocity also clearly
follows from the equations of the Lorentz transformation, for these became
meaningless if we choose values of v greater than c.
If, on the contrary, we had considered a metre-rod at rest in the x-axis with
respect to K, then we should have found that the length of the rod as judged
from K1 would have been ;
this is quite in accordance with the principle of relativity which forms the
basis of our considerations.



A Priori it is quite clear that we must be able to learn something about the
physical behaviour of measuring-rods and clocks from the equations of
transformation, for the magnitudes z, y, x, t, are nothing more nor less than
the results of measurements obtainable by means of measuring-rods and
clocks. If we had based our considerations on the Galileian transformation
we should not have obtained a contraction of the rod as a consequence of its
motion.
Let us now consider a seconds-clock which is permanently situated at the
origin (x1=0) of K1. t1=0 and t1=I are two successive ticks of this clock. The
first and fourth equations of the Lorentz transformation give for these two
ticks :
t = 0
and

As judged from K, the clock is moving with the velocity v; as judged from
this reference-body, the time which elapses between two strokes of the
clock is not one second, but

seconds, i.e. a somewhat larger time. As a consequence of its motion the
clock goes more slowly than when at rest. Here also the velocity c plays the
part of an unattainable limiting velocity.
 

 



13-Theorem of the Addition of
Velocities. The Experiment of
Fizeau



 
Now in practice we can move clocks and measuring-rods only with
velocities that are small compared with the velocity of light; hence we shall
hardly be able to compare the results of the previous section directly with
the reality. But, on the other hand, these results must strike you as being
very singular, and for that reason I shall now draw another conclusion from
the theory, one which can easily be derived from the foregoing
considerations, and which has been most elegantly confirmed by
experiment.
In Section 6 we derived the theorem of the addition of velocities in one
direction in the form which also results from the hypotheses of classical
mechanics- This theorem can also be deduced readily from the Galilei
transformation (Section 11). In place of the man walking inside the
carriage, we introduce a point moving relatively to the co-ordinate system
K1 in accordance with the equation
x1 = wt1
By means of the first and fourth equations of the Galilei transformation we
can express x1 and t1 in terms of x and t, and we then obtain
x = (v + w)t
This equation expresses nothing else than the law of motion of the point
with reference to the system K (of the man with reference to the
embankment). We denote this velocity by the symbol W, and we then
obtain, as in Section 6,
W=v+w         A)
But we can carry out this consideration just as well on the basis of the
theory of relativity. In the equation
x1 = wt1         B)
we must then express x1and t1 in terms of x and t, making use of the first
and fourth equations of the Lorentz transformation. Instead of the equation
(A) we then obtain the equation

 
which corresponds to the theorem of addition for velocities in one direction
according to the theory of relativity. The question now arises as to which of
these two theorems is the better in accord with experience. On this point we
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are enlightened by a most important experiment which the brilliant
physicist Fizeau performed more than half a century ago, and which has
been repeated since then by some of the best experimental physicists, so
that there can be no doubt about its result. The experiment is concerned
with the following question. Light travels in a motionless liquid with a
particular velocity w. How quickly does it travel in the direction of the
arrow in the tube T (see the accompanying diagram, Fig. 3) when the liquid
above mentioned is flowing through the tube with a velocity v ?
In accordance with the principle of relativity we shall certainly have to take
for granted that the propagation of light always takes place with the same
velocity w with respect to the liquid, whether the latter is in motion with
reference to other bodies or not. The velocity of light relative to the liquid
and the velocity of the latter relative to the tube are thus known, and we
require the velocity of light relative to the tube.
It is clear that we have the problem of Section 6 again before us. The tube
plays the part of the railway embankment or of the co-ordinate system K,
the liquid plays the part of the carriage or of the co-ordinate system K1, and
finally, the light plays the part of the

Fig. 3

 
man walking along the carriage, or of the moving point in the present
section. If we denote the velocity of the light relative to the tube by W, then
this is given by the equation (A) or (B), according as the Galilei
transformation or the Lorentz transformation corresponds to the facts.
Experiment1) decides in favour of equation (B) derived from the theory of
relativity, and the agreement is, indeed, very exact. According to recent and
most excellent measurements by Zeeman, the influence of the velocity of



flow v on the propagation of light is represented by formula (B) to within
one per cent.
Nevertheless we must now draw attention to the fact that a theory of this
phenomenon was given by H. A. Lorentz long before the statement of the
theory of relativity. This theory was of a purely electrodynamical nature,
and was obtained by the use of particular hypotheses as to the
electromagnetic structure of matter. This circumstance, however, does not
in the least diminish the conclusiveness of the experiment as a crucial test in
favour of the theory of relativity, for the electrodynamics of Maxwell-
Lorentz, on which the original theory was based, in no way opposes the
theory of relativity. Rather has the latter been developed from
electrodynamics as an astoundingly simple combination and generalisation
of the hypotheses, formerly independent of each other, on which
electrodynamics was built.

 



Footnotes

1) Fizeau found , where 
is the index of refraction of the liquid. On the other hand, owing to the

smallness of  as compared with I,

we can replace (B) in the first place by , or to the same
order of approximation by

, which agrees with Fizeau's result.
 



14-The Heuristic Value of the
Theory of Relativity



 
Our train of thought in the foregoing pages can be epitomised in the
following manner. Experience has led to the conviction that, on the one
hand, the principle of relativity holds true and that on the other hand the
velocity of transmission of light in vacuo has to be considered equal to a
constant c. By uniting these two postulates we obtained the law of
transformation for the rectangular co-ordinates x, y, z and the time t of the
events which constitute the processes of nature. In this connection we did
not obtain the Galilei transformation, but, differing from classical
mechanics, the Lorentz transformation.
The law of transmission of light, the acceptance of which is justified by our
actual knowledge, played an important part in this process of thought. Once
in possession of the Lorentz transformation, however, we can combine this
with the principle of relativity, and sum up the theory thus:
Every general law of nature must be so constituted that it is transformed
into a law of exactly the same form when, instead of the space-time
variables x, y, z, t of the original coordinate system K, we introduce new
space-time variables x1, y1, z1, t1 of a co-ordinate system K1. In this
connection the relation between the ordinary and the accented magnitudes
is given by the Lorentz transformation. Or in brief : General laws of nature
are co-variant with respect to Lorentz transformations.
This is a definite mathematical condition that the theory of relativity
demands of a natural law, and in virtue of this, the theory becomes a
valuable heuristic aid in the search for general laws of nature. If a general
law of nature were to be found which did not satisfy this condition, then at
least one of the two fundamental assumptions of the theory would have
been disproved. Let us now examine what general results the latter theory
has hitherto evinced.
 

 



15-General Results of the Theory



 
It is clear from our previous considerations that the (special) theory of
relativity has grown out of electrodynamics and optics. In these fields it has
not appreciably altered the predictions of theory, but it has considerably
simplified the theoretical structure, i.e. the derivation of laws, and — what
is incomparably more important — it has considerably reduced the number
of independent hypothese forming the basis of theory. The special theory of
relativity has rendered the Maxwell-Lorentz theory so plausible, that the
latter would have been generally accepted by physicists even if experiment
had decided less unequivocally in its favour.
Classical mechanics required to be modified before it could come into line
with the demands of the special theory of relativity. For the main part,
however, this modification affects only the laws for rapid motions, in which
the velocities of matter v are not very small as compared with the velocity
of light. We have experience of such rapid motions only in the case of
electrons and ions; for other motions the variations from the laws of
classical mechanics are too small to make themselves evident in practice.
We shall not consider the motion of stars until we come to speak of the
general theory of relativity. In accordance with the theory of relativity the
kinetic energy of a material point of mass m is no longer given by the well-
known expression

but by the expression

 
This expression approaches infinity as the velocity v approaches the
velocity of light c. The velocity must therefore always remain less than c,
however great may be the energies used to produce the acceleration. If we
develop the expression for the kinetic energy in the form of a series, we
obtain

 



When  is small compared with unity, the third of these terms is always
small in comparison with the second,
which last is alone considered in classical mechanics. The first term mc2

does not contain the velocity, and requires no consideration if we are only
dealing with the question as to how the energy of a point-mass; depends on
the velocity. We shall speak of its essential significance later.
The most important result of a general character to which the special theory
of relativity has led is concerned with the conception of mass. Before the
advent of relativity, physics recognised two conservation laws of
fundamental importance, namely, the law of the canservation of energy and
the law of the conservation of mass these two fundamental laws appeared to
be quite independent of each other. By means of the theory of relativity they
have been united into one law. We shall now briefly consider how this
unification came about, and what meaning is to be attached to it.
The principle of relativity requires that the law of the concervation of
energy should hold not only with reference to a co-ordinate system K, but
also with respect to every co-ordinate system K1 which is in a state of
uniform motion of translation relative to K, or, briefly, relative to every "
Galileian " system of co-ordinates. In contrast to classical mechanics; the
Lorentz transformation is the deciding factor in the transition from one such
system to another.
By means of comparatively simple considerations we are led to draw the
following conclusion from these premises, in conjunction with the
fundamental equations of the electrodynamics of Maxwell: A body moving
with the velocity v, which absorbs 1) an amount of energy E0 in the form of
radiation without suffering an alteration in velocity in the process, has, as a
consequence, its energy increased by an amount

In consideration of the expression given above for the kinetic energy of the
body, the required energy of the body comes out to be



 
Thus the body has the same energy as a body of mass

moving with the velocity v. Hence we can say: If a body takes up an
amount of energy E0, then its inertial mass increases by an amount

 
the inertial mass of a body is not a constant but varies according to the
change in the energy of the body. The inertial mass of a system of bodies
can even be regarded as a measure of its energy. The law of the
conservation of the mass of a system becomes identical with the law of the
conservation of energy, and is only valid provided that the system neither
takes up nor sends out energy. Writing the expression for the energy in the
form

we see that the term mc2, which has hitherto attracted our attention, is
nothing else than the energy possessed by the body 2) before it absorbed the
energy E0.
A direct comparison of this relation with experiment is not possible at the
present time (1920; see Note, p. 48), owing to the fact that the changes in
energy E0 to which we can Subject a system are not large enough to make
themselves perceptible as a change in the inertial mass of the system.

 
is too small in comparison with the mass m, which was present before the
alteration of the energy. It is owing to this circumstance that classical
mechanics was able to establish successfully the conservation of mass as a
law of independent validity.
Let me add a final remark of a fundamental nature. The success of the
Faraday-Maxwell interpretation of electromagnetic action at a distance
resulted in physicists becoming convinced that there are no such things as
instantaneous actions at a distance (not involving an intermediary medium)



of the type of Newton's law of gravitation. According to the theory of
relativity, action at a distance with the velocity of light always takes the
place of instantaneous action at a distance or of action at a distance with an
infinite velocity of transmission. This is connected with the fact that the
velocity c plays a fundamental role in this theory. In Part II we shall see in
what way this result becomes modified in the general theory of relativity.
 

 



Footnotes

1)E0 is the energy taken up, as judged from a co-ordinate system moving
with the body.
2) As judged from a co-ordinate system moving with the body.
[Note] The equation E = mc2 has been thoroughly proved time and again
since this time.
 



16-Experience and the Special
Theory of Relativity



 
To what extent is the special theory of relativity supported by experience ?
This question is not easily answered for the reason already mentioned in
connection with the fundamental experiment of Fizeau. The special theory
of relativity has crystallised out from the Maxwell-Lorentz theory of
electromagnetic phenomena. Thus all facts of experience which support the
electromagnetic theory also support the theory of relativity. As being of
particular importance, I mention here the fact that the theory of relativity
enables us to predict the effects produced on the light reaching us from the
fixed stars. These results are obtained in an exceedingly simple manner, and
the effects indicated, which are due to the relative motion of the earth with
reference to those fixed stars are found to be in accord with experience. We
refer to the yearly movement of the apparent position of the fixed stars
resulting from the motion of the earth round the sun (aberration), and to the
influence of the radial components of the relative motions of the fixed stars
with respect to the earth on the colour of the light reaching us from them.
The latter effect manifests itself in a slight displacement of the spectral lines
of the light transmitted to us from a fixed star, as compared with the
position of the same spectral lines when they are produced by a terrestrial
source of light (Doppler principle). The experimental arguments in favour
of the Maxwell-Lorentz theory, which are at the same time arguments in
favour of the theory of relativity, are too numerous to be set forth here. In
reality they limit the theoretical possibilities to such an extent, that no other
theory than that of Maxwell and Lorentz has been able to hold its own when
tested by experience.
But there are two classes of experimental facts hitherto obtained which can
be represented in the Maxwell-Lorentz theory only by the introduction of an
auxiliary hypothesis, which in itself — i.e. without making use of the theory
of relativity — appears extraneous.
It is known that cathode rays and the so-called ß-rays emitted by radioactive
substances consist of negatively electrified particles (electrons) of very
small inertia and large velocity. By examining the deflection of these rays
under the influence of electric and magnetic fields, we can study the law of
motion of these particles very exactly.
In the theoretical treatment of these electrons, we are faced with the
difficulty that electrodynamic theory of itself is unable to give an account of
their nature. For since electrical masses of one sign repel each other, the



negative electrical masses constituting the electron would necessarily be
scattered under the influence of their mutual repulsions, unless there are
forces of another kind operating between them, the nature of which has
hitherto remained obscure to us.1) If we now assume that the relative
distances between the electrical masses constituting the electron remain
unchanged during the motion of the electron (rigid connection in the sense
of classical mechanics), we arrive at a law of motion of the electron which
does not agree with experience. Guided by purely formal points of view, H.
A. Lorentz was the first to introduce the hypothesis that the form of the
electron experiences a contraction in the direction of motion in consequence
of that motion. the contracted length being proportional to the expression

This, hypothesis, which is not justifiable by any electrodynamical facts,
supplies us then with that particular law of motion which has been
confirmed with great precision in recent years.
The theory of relativity leads to the same law of motion, without requiring
any special hypothesis whatsoever as to the structure and the behaviour of
the electron. We arrived at a similar conclusion in Section 13 in connection
with the experiment of Fizeau, the result of which is foretold by the theory
of relativity without the necessity of drawing on hypotheses as to the
physical nature of the liquid.
The second class of facts to which we have alluded has reference to the
question whether or not the motion of the earth in space can be made
perceptible in terrestrial experiments. We have already remarked in Section
5 that all attempts of this nature led to a negative result. Before the theory
of relativity was put forward, it was difficult to become reconciled to this
negative result, for reasons now to be discussed. The inherited prejudices
about time and space did not allow any doubt to arise as to the prime
importance of the Galileian transformation for changing over from one
body of reference to another. Now assuming that the Maxwell-Lorentz
equations hold for a reference-body K, we then find that they do not hold
for a reference-body K1 moving uniformly with respect to K, if we assume
that the relations of the Galileian transformation exist between the co-
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ordinates of K and K1. It thus appears that, of all Galileian co-ordinate
systems, one (K) corresponding to a particular state of motion is physically
unique. This result was interpreted physically by regarding K as at rest with
respect to a hypothetical æther of space. On the other hand, all coordinate
systems K1 moving relatively to K were to be regarded as in motion with
respect to the æther. To this motion of K1 against the æther ("æther-drift "
relative to K1) were attributed the more complicated laws which were
supposed to hold relative to K1. Strictly speaking, such an æther-drift ought
also to be assumed relative to the earth, and for a long time the efforts of
physicists were devoted to attempts to detect the existence of an æther-drift
at the earth's surface.
In one of the most notable of these attempts Michelson devised a method
which appears as though it must be decisive. Imagine two mirrors so
arranged on a rigid body that the reflecting surfaces face each other. A ray
of light requires a perfectly definite time T to pass from one mirror to the
other and back again, if the whole system be at rest with respect to the
æther. It is found by calculation, however, that a slightly different time T1 is
required for this process, if the body, together with the mirrors, be moving
relatively to the æther. And yet another point: it is shown by calculation that
for a given velocity v with reference to the æther, this time T1 is different
when the body is moving perpendicularly to the planes of the mirrors from
that resulting when the motion is parallel to these planes. Although the
estimated difference between these two times is exceedingly small,
Michelson and Morley performed an experiment involving interference in
which this difference should have been clearly detectable. But the
experiment gave a negative result — a fact very perplexing to physicists.
Lorentz and FitzGerald rescued the theory from this difficulty by assuming
that the motion of the body relative to the æther produces a contraction of
the body in the direction of motion, the amount of contraction being just
sufficient to compensate for the differeace in time mentioned above.
Comparison with the discussion in Section 11 shows that also from the
standpoint of the theory of relativity this solution of the difficulty was the
right one. But on the basis of the theory of relativity the method of
interpretation is incomparably more satisfactory. According to this theory
there is no such thing as a " specially favoured " (unique) co-ordinate
system to occasion the introduction of the æther-idea, and hence there can
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be no æther-drift, nor any experiment with which to demonstrate it. Here
the contraction of moving bodies follows from the two fundamental
principles of the theory, without the introduction of particular hypotheses ;
and as the prime factor involved in this contraction we find, not the motion
in itself, to which we cannot attach any meaning, but the motion with
respect to the body of reference chosen in the particular case in point. Thus
for a co-ordinate system moving with the earth the mirror system of
Michelson and Morley is not shortened, but it is shortened for a co-ordinate
system which is at rest relatively to the sun.
 

 



Footnotes

1) The general theory of relativity renders it likely that the electrical masses
of an electron are held together by gravitational forces.
 



17-Minkowski's Four-Dimensional
Space



 
The non-mathematician is seized by a mysterious shuddering when he hears
of "four-dimensional" things, by a feeling not unlike that awakened by
thoughts of the occult. And yet there is no more common-place statement
than that the world in which we live is a four-dimensional space-time
continuum.
Space is a three-dimensional continuum. By this we mean that it is possible
to describe the position of a point (at rest) by means of three numbers (co-
ordinales) x, y, z, and that there is an indefinite number of points in the
neighbourhood of this one, the position of which can be described by co-
ordinates such as x1, y1, z1, which may be as near as we choose to the
respective values of the co-ordinates x, y, z, of the first point. In virtue of
the latter property we speak of a " continuum," and owing to the fact that
there are three co-ordinates we speak of it as being " three-dimensional."
Similarly, the world of physical phenomena which was briefly called "
world " by Minkowski is naturally four dimensional in the space-time
sense. For it is composed of individual events, each of which is described
by four numbers, namely, three space co-ordinates x, y, z, and a time co-
ordinate, the time value t. The" world" is in this sense also a continuum; for
to every event there are as many "neighbouring" events (realised or at least
thinkable) as we care to choose, the co-ordinates x1, y1, z1, t1 of which
differ by an indefinitely small amount from those of the event x, y, z, t
originally considered. That we have not been accustomed to regard the
world in this sense as a four-dimensional continuum is due to the fact that in
physics, before the advent of the theory of relativity, time played a different
and more independent role, as compared with the space coordinates. It is for
this reason that we have been in the habit of treating time as an independent
continuum. As a matter of fact, according to classical mechanics, time is
absolute, i.e. it is independent of the position and the condition of motion of
the system of co-ordinates. We see this expressed in the last equation of the
Galileian transformation (t1 = t)
The four-dimensional mode of consideration of the "world" is natural on the
theory of relativity, since according to this theory time is robbed of its
independence. This is shown by the fourth equation of the Lorentz
transformation:



Moreover, according to this equation the time difference Δt1 of two events
with respect to K1 does not in general vanish, even when the time
difference Δt1 of the same events with reference to K vanishes. Pure "
space-distance " of two events with respect to K results in " time-distance "
of the same events with respect to K. But the discovery of Minkowski,
which was of importance for the formal development of the theory of
relativity, does not lie here. It is to be found rather in the fact of his
recognition that the four-dimensional space-time continuum of the theory of
relativity, in its most essential formal properties, shows a pronounced
relationship to the three-dimensional continuum of Euclidean geometrical
space.1) In order to give due prominence to this relationship, however, we
must replace the usual time co-ordinate t by an imaginary magnitude 
proportional to it. Under these conditions, the natural laws satisfying the
demands of the (special) theory of relativity assume mathematical forms, in
which the time co-ordinate plays exactly the same role as the three space
co-ordinates. Formally, these four co-ordinates correspond exactly to the
three space co-ordinates in Euclidean geometry. It must be clear even to the
non-mathematician that, as a consequence of this purely formal addition to
our knowledge, the theory perforce gained clearness in no mean measure.
These inadequate remarks can give the reader only a vague notion of the
important idea contributed by Minkowski. Without it the general theory of
relativity, of which the fundamental ideas are developed in the following
pages, would perhaps have got no farther than its long clothes. Minkowski's
work is doubtless difficult of access to anyone inexperienced in
mathematics, but since it is not necessary to have a very exact grasp of this
work in order to understand the fundamental ideas of either the special or
the general theory of relativity, I shall leave it here at present, and revert to
it only towards the end of Part 2.
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Footnotes

1) Cf. the somewhat more detailed discussion in Appendix II.
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Part II. The general theory of
relativity



18-Special and General Principle of
Relativity



 
The basal principle, which was the pivot of all our previous considerations,
was the special principle of relativity, i.e. the principle of the physical
relativity of all uniform motion. Let as once more analyse its meaning
carefully.
It was at all times clear that, from the point of view of the idea it conveys to
us, every motion must be considered only as a relative motion. Returning to
the illustration we have frequently used of the embankment and the railway
carriage, we can express the fact of the motion here taking place in the
following two forms, both of which are equally justifiable :
(a) The carriage is in motion relative to the embankment,

(b) The embankment is in motion relative to the carriage.
In (a) the embankment, in (b) the carriage, serves as the body of reference
in our statement of the motion taking place. If it is simply a question of
detecting or of describing the motion involved, it is in principle immaterial
to what reference-body we refer the motion. As already mentioned, this is
self-evident, but it must not be confused with the much more
comprehensive statement called "the principle of relativity," which we have
taken as the basis of our investigations.
The principle we have made use of not only maintains that we may equally
well choose the carriage or the embankment as our reference-body for the
description of any event (for this, too, is self-evident). Our principle rather
asserts what follows : If we formulate the general laws of nature as they are
obtained from experience, by making use of
(a) the embankment as reference-body,

(b) the railway carriage as reference-body,
then these general laws of nature (e.g. the laws of mechanics or the law of
the propagation of light in vacuo) have exactly the same form in both cases.
This can also be expressed as follows : For the physical description of
natural processes, neither of the reference bodies K, K1 is unique (lit. "
specially marked out ") as compared with the other. Unlike the first, this
latter statement need not of necessity hold a priori; it is not contained in the
conceptions of " motion" and " reference-body " and derivable from them;
only experience can decide as to its correctness or incorrectness.



Up to the present, however, we have by no means maintained the
equivalence of all bodies of reference K in connection with the formulation
of natural laws. Our course was more on the following Iines. In the first
place, we started out from the assumption that there exists a reference-body
K, whose condition of motion is such that the Galileian law holds with
respect to it : A particle left to itself and sufficiently far removed from all
other particles moves uniformly in a straight line. With reference to K
(Galileian reference-body) the laws of nature were to be as simple as
possible. But in addition to K, all bodies of reference K1 should be given
preference in this sense, and they should be exactly equivalent to K for the
formulation of natural laws, provided that they are in a state of uniform
rectilinear and non-rotary motion with respect to K ; all these bodies of
reference are to be regarded as Galileian reference-bodies. The validity of
the principle of relativity was assumed only for these reference-bodies, but
not for others (e.g. those possessing motion of a different kind). In this
sense we speak of the special principle of relativity, or special theory of
relativity.
In contrast to this we wish to understand by the "general principle of
relativity" the following statement : All bodies of reference K, K1, etc., are
equivalent for the description of natural phenomena (formulation of the
general laws of nature), whatever may be their state of motion. But before
proceeding farther, it ought to be pointed out that this formulation must be
replaced later by a more abstract one, for reasons which will become
evident at a later stage.
Since the introduction of the special principle of relativity has been
justified, every intellect which strives after generalisation must feel the
temptation to venture the step towards the general principle of relativity.
But a simple and apparently quite reliable consideration seems to suggest
that, for the present at any rate, there is little hope of success in such an
attempt; Let us imagine ourselves transferred to our old friend the railway
carriage, which is travelling at a uniform rate. As long as it is moving
uniformly, the occupant of the carriage is not sensible of its motion, and it is
for this reason that he can without reluctance interpret the facts of the case
as indicating that the carriage is at rest, but the embankment in motion.
Moreover, according to the special principle of relativity, this interpretation
is quite justified also from a physical point of view.



If the motion of the carriage is now changed into a non-uniform motion, as
for instance by a powerful application of the brakes, then the occupant of
the carriage experiences a correspondingly powerful jerk forwards. The
retarded motion is manifested in the mechanical behaviour of bodies
relative to the person in the railway carriage. The mechanical behaviour is
different from that of the case previously considered, and for this reason it
would appear to be impossible that the same mechanical laws hold
relatively to the non-uniformly moving carriage, as hold with reference to
the carriage when at rest or in uniform motion. At all events it is clear that
the Galileian law does not hold with respect to the non-uniformly moving
carriage. Because of this, we feel compelled at the present juncture to grant
a kind of absolute physical reality to non-uniform motion, in opposition to
the general principle of relatvity. But in what follows we shall soon see that
this conclusion cannot be maintained.
 

 



19-The Gravitational Field



 
"If we pick up a stone and then let it go, why does it fall to the ground ?"
The usual answer to this question is: "Because it is attracted by the earth."
Modern physics formulates the answer rather differently for the following
reason. As a result of the more careful study of electromagnetic phenomena,
we have come to regard action at a distance as a process impossible without
the intervention of some intermediary medium. If, for instance, a magnet
attracts a piece of iron, we cannot be content to regard this as meaning that
the magnet acts directly on the iron through the intermediate empty space,
but we are constrained to imagine — after the manner of Faraday — that
the magnet always calls into being something physically real in the space
around it, that something being what we call a "magnetic field." In its turn
this magnetic field operates on the piece of iron, so that the latter strives to
move towards the magnet. We shall not discuss here the justification for this
incidental conception, which is indeed a somewhat arbitrary one. We shall
only mention that with its aid electromagnetic phenomena can be
theoretically represented much more satisfactorily than without it, and this
applies particularly to the transmission of electromagnetic waves. The
effects of gravitation also are regarded in an analogous manner.
The action of the earth on the stone takes place indirectly. The earth
produces in its surrounding a gravitational field, which acts on the stone and
produces its motion of fall. As we know from experience, the intensity of
the action on a body dimishes according to a quite definite law, as we
proceed farther and farther away from the earth. From our point of view this
means : The law governing the properties of the gravitational field in space
must be a perfectly definite one, in order correctly to represent the
diminution of gravitational action with the distance from operative bodies.
It is something like this: The body (e.g. the earth) produces a field in its
immediate neighbourhood directly; the intensity and direction of the field at
points farther removed from the body are thence determined by the law
which governs the properties in space of the gravitational fields themselves.
In contrast to electric and magnetic fields, the gravitational field exhibits a
most remarkable property, which is of fundamental importance for what
follows. Bodies which are moving under the sole influence of a
gravitational field receive an acceleration, which does not in the least
depend either on the material or on the physical state of the body. For
instance, a piece of lead and a piece of wood fall in exactly the same



manner in a gravitational field (in vacuo), when they start off from rest or
with the same initial velocity. This law, which holds most accurately, can be
expressed in a different form in the light of the following consideration.
According to Newton's law of motion, we have

(Force) = (inertial mass) x (acceleration),

where the "inertial mass" is a characteristic constant of the accelerated
body. If now gravitation is the cause of the acceleration, we then have

(Force) = (gravitational mass) x (intensity of the gravitational field),

where the "gravitational mass" is likewise a characteristic constant for the
body. From these two relations follows:

If now, as we find from experience, the acceleration is to be independent of
the nature and the condition of the body and always the same for a given
gravitational field, then the ratio of the gravitational to the inertial mass
must likewise be the same for all bodies. By a suitable choice of units we
can thus make this ratio equal to unity. We then have the following law: The
gravitational mass of a body is equal to its inertial law.
It is true that this important law had hitherto been recorded in mechanics,
but it had not been interpreted. A satisfactory interpretation can be obtained
only if we recognise the following fact : The same quality of a body
manifests itself according to circumstances as " inertia " or as " weight "
(lit. " heaviness '). In the following section we shall show to what extent this
is actually the case, and how this question is connected with the general
postulate of relativity.
 

 



20-The Equality of Inertial and
Gravitational Mass as an argument
for the General Postule of
Relativity



 
We imagine a large portion of empty space, so far removed from stars and
other appreciable masses, that we have before us approximately the
conditions required by the fundamental law of Galilei. It is then possible to
choose a Galileian reference-body for this part of space (world), relative to
which points at rest remain at rest and points in motion continue
permanently in uniform rectilinear motion. As reference-body let us
imagine a spacious chest resembling a room with an observer inside who is
equipped with apparatus. Gravitation naturally does not exist for this
observer. He must fasten himself with strings to the floor, otherwise the
slightest impact against the floor will cause him to rise slowly towards the
ceiling of the room.
To the middle of the lid of the chest is fixed externally a hook with rope
attached, and now a " being " (what kind of a being is immaterial to us)
begins pulling at this with a constant force. The chest together with the
observer then begin to move "upwards" with a uniformly accelerated
motion. In course of time their velocity will reach unheard-of values —
provided that we are viewing all this from another reference-body which is
not being pulled with a rope.
But how does the man in the chest regard the Process ? The acceleration of
the chest will be transmitted to him by the reaction of the floor of the chest.
He must therefore take up this pressure by means of his legs if he does not
wish to be laid out full length on the floor. He is then standing in the chest
in exactly the same way as anyone stands in a room of a home on our earth.
If he releases a body which he previously had in his land, the accelertion of
the chest will no longer be transmitted to this body, and for this reason the
body will approach the floor of the chest with an accelerated relative
motion. The observer will further convince himself that the acceleration of
the body towards the floor of the chest is always of the same magnitude,
whatever kind of body he may happen to use for the experiment.
Relying on his knowledge of the gravitational field (as it was discussed in
the preceding section), the man in the chest will thus come to the
conclusion that he and the chest are in a gravitational field which is constant
with regard to time. Of course he will be puzzled for a moment as to why
the chest does not fall in this gravitational field. just then, however, he
discovers the hook in the middle of the lid of the chest and the rope which



is attached to it, and he consequently comes to the conclusion that the chest
is suspended at rest in the gravitational field.
Ought we to smile at the man and say that he errs in his conclusion ? I do
not believe we ought to if we wish to remain consistent ; we must rather
admit that his mode of grasping the situation violates neither reason nor
known mechanical laws. Even though it is being accelerated with respect to
the "Galileian space" first considered, we can nevertheless regard the chest
as being at rest. We have thus good grounds for extending the principle of
relativity to include bodies of reference which are accelerated with respect
to each other, and as a result we have gained a powerful argument for a
generalised postulate of relativity.
We must note carefully that the possibility of this mode of interpretation
rests on the fundamental property of the gravitational field of giving all
bodies the same acceleration, or, what comes to the same thing, on the law
of the equality of inertial and gravitational mass. If this natural law did not
exist, the man in the accelerated chest would not be able to interpret the
behaviour of the bodies around him on the supposition of a gravitational
field, and he would not be justified on the grounds of experience in
supposing his reference-body to be " at rest."
Suppose that the man in the chest fixes a rope to the inner side of the lid,
and that he attaches a body to the free end of the rope. The result of this will
be to strech the rope so that it will hang " vertically " downwards. If we ask
for an opinion of the cause of tension in the rope, the man in the chest will
say: "The suspended body experiences a downward force in the
gravitational field, and this is neutralised by the tension of the rope ; what
determines the magnitude of the tension of the rope is the gravitational
mass of the suspended body." On the other hand, an observer who is poised
freely in space will interpret the condition of things thus : " The rope must
perforce take part in the accelerated motion of the chest, and it transmits
this motion to the body attached to it. The tension of the rope is just large
enough to effect the acceleration of the body. That which determines the
magnitude of the tension of the rope is the inertial mass of the body."
Guided by this example, we see that our extension of the principle of
relativity implies the necessity of the law of the equality of inertial and
gravitational mass. Thus we have obtained a physical interpretation of this
law.



From our consideration of the accelerated chest we see that a general theory
of relativity must yield important results on the laws of gravitation. In point
of fact, the systematic pursuit of the general idea of relativity has supplied
the laws satisfied by the gravitational field. Before proceeding farther,
however, I must warn the reader against a misconception suggested by these
considerations. A gravitational field exists for the man in the chest, despite
the fact that there was no such field for the co-ordinate system first chosen.
Now we might easily suppose that the existence of a gravitational field is
always only an apparent one. We might also think that, regardless of the
kind of gravitational field which may be present, we could always choose
another reference-body such that no gravitational field exists with reference
to it. This is by no means true for all gravitational fields, but only for those
of quite special form. It is, for instance, impossible to choose a body of
reference such that, as judged from it, the gravitational field of the earth (in
its entirety) vanishes.
We can now appreciate why that argument is not convincing, which we
brought forward against the general principle of relativity at theend of
Section 18. It is certainly true that the observer in the railway carriage
experiences a jerk forwards as a result of the application of the brake, and
that he recognises, in this the non-uniformity of motion (retardation) of the
carriage. But he is compelled by nobody to refer this jerk to a " real "
acceleration (retardation) of the carriage. He might also interpret his
experience thus: " My body of reference (the carriage) remains permanently
at rest. With reference to it, however, there exists (during the period of
application of the brakes) a gravitational field which is directed forwards
and which is variable with respect to time. Under the influence of this field,
the embankment together with the earth moves non-uniformly in such a
manner that their original velocity in the backwards direction is
continuously reduced."
 

 



21-In What Respects are the
Foundations of Classical Mechanics
and of the Special Theory of
Relativity Unsatisfactory?



 
We have already stated several times that classical mechanics starts out
from the following law: Material particles sufficiently far removed from
other material particles continue to move uniformly in a straight line or
continue in a state of rest. We have also repeatedly emphasised that this
fundamental law can only be valid for bodies of reference K which possess
certain unique states of motion, and which are in uniform translational
motion relative to each other. Relative to other reference-bodies K the law
is not valid. Both in classical mechanics and in the special theory of
relativity we therefore differentiate between reference-bodies K relative to
which the recognised " laws of nature " can be said to hold, and reference-
bodies K relative to which these laws do not hold.
But no person whose mode of thought is logical can rest satisfied with this
condition of things. He asks : " How does it come that certain reference-
bodies (or their states of motion) are given priority over other reference-
bodies (or their states of motion) ? What is the reason for this Preference?
In order to show clearly what I mean by this question, I shall make use of a
comparison.
I am standing in front of a gas range. Standing alongside of each other on
the range are two pans so much alike that one may be mistaken for the
other. Both are half full of water. I notice that steam is being emitted
continuously from the one pan, but not from the other. I am surprised at
this, even if I have never seen either a gas range or a pan before. But if I
now notice a luminous something of bluish colour under the first pan but
not under the other, I cease to be astonished, even if I have never before
seen a gas flame. For I can only say that this bluish something will cause
the emission of the steam, or at least possibly it may do so. If, however, I
notice the bluish something in neither case, and if I observe that the one
continuously emits steam whilst the other does not, then I shall remain
astonished and dissatisfied until I have discovered some circumstance to
which I can attribute the different behaviour of the two pans.
Analogously, I seek in vain for a real something in classical mechanics (or
in the special theory of relativity) to which I can attribute the different
behaviour of bodies considered with respect to the reference systems K and
K1.1) Newton saw this objection and attempted to invalidate it, but without
success. But E. Mach recognsed it most clearly of all, and because of this
objection he claimed that mechanics must be placed on a new basis. It can



only be got rid of by means of a physics which is conformable to the
general principle of relativity, since the equations of such a theory hold for
every body of reference, whatever may be its state of motion.
 



Footnotes

1) The objection is of importance more especially when the state of motion
of the reference-body is of such a nature that it does not require any
external agency for its maintenance, e.g. in the case when the reference-
body is rotating uniformly.





22-A Few Inferences from the
General Principle of Relativity



 
The considerations of Section 20 show that the general principle of
relativity puts us in a position to derive properties of the gravitational field
in a purely theoretical manner. Let us suppose, for instance, that we know
the space-time " course " for any natural process whatsoever, as regards the
manner in which it takes place in the Galileian domain relative to a
Galileian body of reference K. By means of purely theoretical operations
(i.e. simply by calculation) we are then able to find how this known natural
process appears, as seen from a reference-body K1 which is accelerated
relatively to K. But since a gravitational field exists with respect to this new
body of reference K1, our consideration also teaches us how the
gravitational field influences the process studied.
For example, we learn that a body which is in a state of uniform rectilinear
motion with respect to K (in accordance with the law of Galilei) is
executing an accelerated and in general curvilinear motion with respect to
the accelerated reference-body K1 (chest). This acceleration or curvature
corresponds to the influence on the moving body of the gravitational field
prevailing relatively to K. It is known that a gravitational field influences
the movement of bodies in this way, so that our consideration supplies us
with nothing essentially new.
However, we obtain a new result of fundamental importance when we carry
out the analogous consideration for a ray of light. With respect to the
Galileian reference-body K, such a ray of light is transmitted rectilinearly
with the velocity c. It can easily be shown that the path of the same ray of
light is no longer a straight line when we consider it with reference to the
accelerated chest (reference-body K1). From this we conclude, that, in
general, rays of light are propagated curvilinearly in gravitational fields. In
two respects this result is of great importance.
In the first place, it can be compared with the reality. Although a detailed
examination of the question shows that the curvature of light rays required
by the general theory of relativity is only exceedingly small for the
gravitational fields at our disposal in practice, its estimated magnitude for
light rays passing the sun at grazing incidence is nevertheless 1.7 seconds of
arc. This ought to manifest itself in the following way. As seen from the
earth, certain fixed stars appear to be in the neighbourhood of the sun, and
are thus capable of observation during a total eclipse of the sun. At such
times, these stars ought to appear to be displaced outwards from the sun by
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an amount indicated above, as compared with their apparent position in the
sky when the sun is situated at another part of the heavens. The examination
of the correctness or otherwise of this deduction is a problem of the greatest
importance, the early solution of which is to be expected of astronomers.1)

In the second place our result shows that, according to the general theory of
relativity, the law of the constancy of the velocity of light in vacuo, which
constitutes one of the two fundamental assumptions in the special theory of
relativity and to which we have already frequently referred, cannot claim
any unlimited validity. A curvature of rays of light can only take place when
the velocity of propagation of light varies with position. Now we might
think that as a consequence of this, the special theory of relativity and with
it the whole theory of relativity would be laid in the dust. But in reality this
is not the case. We can only conclude that the special theory of relativity
cannot claim an unlinlited domain of validity ; its results hold only so long
as we are able to disregard the influences of gravitational fields on the
phenomena (e.g. of light).
Since it has often been contended by opponents of the theory of relativity
that the special theory of relativity is overthrown by the general theory of
relativity, it is perhaps advisable to make the facts of the case clearer by
means of an appropriate comparison. Before the development of
electrodynamics the laws of electrostatics were looked upon as the laws of
electricity. At the present time we know that electric fields can be derived
correctly from electrostatic considerations only for the case, which is never
strictly realised, in which the electrical masses are quite at rest relatively to
each other, and to the co-ordinate system. Should we be justified in saying
that for this reason electrostatics is overthrown by the field-equations of
Maxwell in electrodynamics ? Not in the least. Electrostatics is contained in
electrodynamics as a limiting case ; the laws of the latter lead directly to
those of the former for the case in which the fields are invariable with
regard to time. No fairer destiny could be allotted to any physical theory,
than that it should of itself point out the way to the introduction of a more
comprehensive theory, in which it lives on as a limiting case.
In the example of the transmission of light just dealt with, we have seen that
the general theory of relativity enables us to derive theoretically the
influence of a gravitational field on the course of natural processes, the Iaws
of which are already known when a gravitational field is absent. But the
most attractive problem, to the solution of which the general theory of



relativity supplies the key, concerns the investigation of the laws satisfied
by the gravitational field itself. Let us consider this for a moment.
We are acquainted with space-time domains which behave (approximately)
in a " Galileian " fashion under suitable choice of reference-body, i.e.
domains in which gravitational fields are absent. If we now refer such a
domain to a reference-body K1 possessing any kind of motion, then relative
to K1 there exists a gravitational field which is variable with respect to
space and time.2) The character of this field will of course depend on the
motion chosen for K1. According to the general theory of relativity, the
general law of the gravitational field must be satisfied for all gravitational
fields obtainable in this way. Even though by no means all gravitationial
fields can be produced in this way, yet we may entertain the hope that the
general law of gravitation will be derivable from such gravitational fields of
a special kind. This hope has been realised in the most beautiful manner.
But between the clear vision of this goal and its actual realisation it was
necessary to surmount a serious difficulty, and as this lies deep at the root of
things, I dare not withhold it from the reader. We require to extend our ideas
of the space-time continuum still farther.
 
 



Footnotes

1) By means of the star photographs of two expeditions equipped by a Joint
Committee of the Royal and Royal Astronomical Societies, the existence of
the deflection of light demanded by theory was first confirmed during the
solar eclipse of 29th May, 1919. (Cf. Appendix III.)
2) This follows from a generalisation of the discussion in Section 20
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23-Behaviour of Clocks and
Measuring-Rods on a Rotating
Body of Reference



 
Hitherto I have purposely refrained from speaking about the physical
interpretation of space- and time-data in the case of the general theory of
relativity. As a consequence, I am guilty of a certain slovenliness of
treatment, which, as we know from the special theory of relativity, is far
from being unimportant and pardonable. It is now high time that we remedy
this defect; but I would mention at the outset, that this matter lays no small
claims on the patience and on the power of abstraction of the reader.
We start off again from quite special cases, which we have frequently used
before. Let us consider a space time domain in which no gravitational field
exists relative to a reference-body K whose state of motion has been
suitably chosen. K is then a Galileian reference-body as regards the domain
considered, and the results of the special theory of relativity hold relative to
K. Let us supposse the same domain referred to a second body of reference
K1, which is rotating uniformly with respect to K. In order to fix our ideas,
we shall imagine K1 to be in the form of a plane circular disc, which rotates
uniformly in its own plane about its centre. An observer who is sitting
eccentrically on the disc K1 is sensible of a force which acts outwards in a
radial direction, and which would be interpreted as an effect of inertia
(centrifugal force) by an observer who was at rest with respect to the
original reference-body K. But the observer on the disc may regard his disc
as a reference-body which is " at rest " ; on the basis of the general principle
of relativity he is justified in doing this. The force acting on himself, and in
fact on all other bodies which are at rest relative to the disc, he regards as
the effect of a gravitational field. Nevertheless, the space-distribution of this
gravitational field is of a kind that would not be possible on Newton's
theory of gravitation.1) But since the observer believes in the general theory
of relativity, this does not disturb him; he is quite in the right when he
believes that a general law of gravitation can be formulated- a law which
not only explains the motion of the stars correctly, but also the field of force
experienced by himself.
The observer performs experiments on his circular disc with clocks and
measuring-rods. In doing so, it is his intention to arrive at exact definitions
for the signification of time- and space-data with reference to the circular
disc K1, these definitions being based on his observations. What will be his
experience in this enterprise ?



To start with, he places one of two identically constructed clocks at the
centre of the circular disc, and the other on the edge of the disc, so that they
are at rest relative to it. We now ask ourselves whether both clocks go at the
same rate from the standpoint of the non-rotating Galileian reference-body
K. As judged from this body, the clock at the centre of the disc has no
velocity, whereas the clock at the edge of the disc is in motion relative to K
in consequence of the rotation. According to a result obtained in Section 12,
it follows that the latter clock goes at a rate permanently slower than that of
the clock at the centre of the circular disc, i.e. as observed from K. It is
obvious that the same effect would be noted by an observer whom we will
imagine sitting alongside his clock at the centre of the circular disc. Thus on
our circular disc, or, to make the case more general, in every gravitational
field, a clock will go more quickly or less quickly, according to the position
in which the clock is situated (at rest). For this reason it is not possible to
obtain a reasonable definition of time with the aid of clocks which are
arranged at rest with respect to the body of reference. A similar difficulty
presents itself when we attempt to apply our earlier definition of
simultaneity in such a case, but I do not wish to go any farther into this
question.
Moreover, at this stage the definition of the space co-ordinates also presents
insurmountable difficulties. If the observer applies his standard measuring-
rod (a rod which is short as compared with the radius of the disc)
tangentially to the edge of the disc, then, as judged from the Galileian
system, the length of this rod will be less than I, since, according to Section
12, moving bodies suffer a shortening in the direction of the motion. On the
other hand, the measaring-rod will not experience a shortening in length, as
judged from K, if it is applied to the disc in the direction of the radius. If,
then, the observer first measures the circumference of the disc with his
measuring-rod and then the diameter of the disc, on dividing the one by the
other, he will not obtain as quotient the familiar number p = 3.14 . . ., but a
larger number,2) whereas of course, for a disc which is at rest with respect
to K, this operation would yield p exactly. This proves that the propositions
of Euclidean geometry cannot hold exactly on the rotating disc, nor in
general in a gravitational field, at least if we attribute the length I to the rod
in all positions and in every orientation. Hence the idea of a straight line
also loses its meaning. We are therefore not in a position to define exactly
the co-ordinates x, y, z relative to the disc by means of the method used in
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discussing the special theory, and as long as the co- ordinates and times of
events have not been defined, we cannot assign an exact meaning to the
natural laws in which these occur.
Thus all our previous conclusions based on general relativity would appear
to be called in question. In reality we must make a subtle detour in order to
be able to apply the postulate of general relativity exactly. I shall prepare
the reader for this in the following paragraphs.
 
 



Footnotes

1) The field disappears at the centre of the disc and increases proportionally
to the distance from the centre as we proceed outwards.
2) Throughout this consideration we have to use the Galileian (non-rotating)
system K as reference-body, since we may only assume the validity of the
results of the special theory of relativity relative to K (relative to K1 a
gravitational field prevails).





24-Euclidean and Non-Euclidean
Continuum



 
The surface of a marble table is spread out in front of me. I can get from
any one point on this table to any other point by passing continuously from
one point to a " neighbouring " one, and repeating this process a (large)
number of times, or, in other words, by going from point to point without
executing "jumps." I am sure the reader will appreciate with sufficient
clearness what I mean here by " neighbouring " and by " jumps " (if he is
not too pedantic). We express this property of the surface by describing the
latter as a continuum.
Let us now imagine that a large number of little rods of equal length have
been made, their lengths being small compared with the dimensions of the
marble slab. When I say they are of equal length, I mean that one can be
laid on any other without the ends overlapping. We next lay four of these
little rods on the marble slab so that they constitute a quadrilateral figure (a
square), the diagonals of which are equally long. To ensure the equality of
the diagonals, we make use of a little testing-rod. To this square we add
similar ones, each of which has one rod in common with the first. We
proceed in like manner with each of these squares until finally the whole
marble slab is laid out with squares. The arrangement is such, that each side
of a square belongs to two squares and each corner to four squares.
It is a veritable wonder that we can carry out this business without getting
into the greatest difficulties. We only need to think of the following. If at
any moment three squares meet at a corner, then two sides of the fourth
square are already laid, and, as a consequence, the arrangement of the
remaining two sides of the square is already completely determined. But I
am now no longer able to adjust the quadrilateral so that its diagonals may
be equal. If they are equal of their own accord, then this is an especial
favour of the marble slab and of the little rods, about which I can only be
thankfully surprised. We must experience many such surprises if the
construction is to be successful.
If everything has really gone smoothly, then I say that the points of the
marble slab constitute a Euclidean continuum with respect to the little rod,
which has been used as a " distance " (line-interval). By choosing one
corner of a square as " origin" I can characterise every other corner of a
square with reference to this origin by means of two numbers. I only need
state how many rods I must pass over when, starting from the origin, I
proceed towards the " right " and then " upwards," in order to arrive at the



corner of the square under consideration. These two numbers are then the "
Cartesian co-ordinates " of this corner with reference to the " Cartesian co-
ordinate system" which is determined by the arrangement of little rods.
By making use of the following modification of this abstract experiment,
we recognise that there must also be cases in which the experiment would
be unsuccessful. We shall suppose that the rods " expand " by in amount
proportional to the increase of temperature. We heat the central part of the
marble slab, but not the periphery, in which case two of our little rods can
still be brought into coincidence at every position on the table. But our
construction of squares must necessarily come into disorder during the
heating, because the little rods on the central region of the table expand,
whereas those on the outer part do not.
With reference to our little rods — defined as unit lengths — the marble
slab is no longer a Euclidean continuum, and we are also no longer in the
position of defining Cartesian co-ordinates directly with their aid, since the
above construction can no longer be carried out. But since there are other
things which are not influenced in a similar manner to the little rods (or
perhaps not at all) by the temperature of the table, it is possible quite
naturally to maintain the point of view that the marble slab is a " Euclidean
continuum." This can be done in a satisfactory manner by making a more
subtle stipulation about the measurement or the comparison of lengths.
But if rods of every kind (i.e. of every material) were to behave in the same
way as regards the influence of temperature when they are on the variably
heated marble slab, and if we had no other means of detecting the effect of
temperature than the geometrical behaviour of our rods in experiments
analogous to the one described above, then our best plan would be to assign
the distance one to two points on the slab, provided that the ends of one of
our rods could be made to coincide with these two points ; for how else
should we define the distance without our proceeding being in the highest
measure grossly arbitrary ? The method of Cartesian coordinates must then
be discarded, and replaced by another which does not assume the validity of
Euclidean geometry for rigid bodies. 1) The reader will notice that the
situation depicted here corresponds to the one brought about by the general
postulate of relativity (Section 23).
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Footnotes

1) Mathematicians have been confronted with our problem in the following
form. If we are given a surface (e.g. an ellipsoid) in Euclidean three-
dimensional space, then there exists for this surface a two-dimensional
geometry, just as much as for a plane surface. Gauss undertook the task of
treating this two-dimensional geometry from first principles, without
making use of the fact that the surface belongs to a Euclidean continuum of
three dimensions. If we imagine constructions to be made with rigid rods in
the surface (similar to that above with the marble slab), we should find that
different laws hold for these from those resulting on the basis of Euclidean
plane geometry. The surface is not a Euclidean continuum with respect to
the rods, and we cannot define Cartesian co-ordinates in the surface. Gauss
indicated the principles according to which we can treat the geometrical
relationships in the surface, and thus pointed out the way to the method of
Riemman of treating multi-dimensional, non-Euclidean continuum. Thus it
is that mathematicians long ago solved the formal problems to which we are
led by the general postulate of relativity.





25-Gaussian Co-ordinates



 
According to Gauss, this combined analytical and geometrical mode of
handling the problem can be arrived at in the following way. We imagine a
system of arbitrary curves (see Fig. 4) drawn on the surface of the table.
These we designate as u-curves, and we indicate each of them by means of
a number. The Curves u= 1, u= 2 and u= 3 are drawn in the diagram.
Between the curves u= 1 and u= 2 we must imagine an infinitely large
number to be drawn, all of which correspond to real numbers lying between
1 and 2.

  
We have then a system of u-curves, and this "infinitely dense" system
covers the whole surface of the table. These u-curves must not intersect
each other, and through each point of the surface one and only one curve
must pass. Thus a perfectly definite value of u belongs to every point on the
surface of the marble slab. In like manner we imagine a system of v-curves
drawn on the surface. These satisfy the same conditions as the u-curves,
they are provided with numbers in a corresponding manner, and they may
likewise be of arbitrary shape. It follows that a value of u and a value of v
belong to every point on the surface of the table. We call these two numbers
the co-ordinates of the surface of the table (Gaussian co-ordinates). For
example, the point P in the diagram has the Gaussian co-ordinates u= 3, v=
1. Two neighbouring points P and P1 on the surface then correspond to the
co-ordinates
P:       u,v          
P1:     u + du, v + dv,
where du and dv signify very small numbers. In a similar manner we may
indicate the distance (line-interval) between P and P1, as measured with a



little rod, by means of the very small number ds. Then according to Gauss
we have
ds2 = g11du2 + 2g12dudv + g22dv2

where g11, g12, g22, are magnitudes which depend in a perfectly definite
way on u and v. The magnitudes g11, g12 and g22, determine the behaviour
of the rods relative to the u-curves and v-curves, and thus also relative to
the surface of the table. For the case in which the points of the surface
considered form a Euclidean continuum with reference to the measuring-
rods, but only in this case, it is possible to draw the u-curves and v-curves
and to attach numbers to them, in such a manner, that we simply have :
ds2 = du2 + dv2

Under these conditions, the u-curves and v-curves are straight lines in the
sense of Euclidean geometry, and they are perpendicular to each other. Here
the Gaussian coordinates are simply Cartesian ones. It is clear that Gauss
co-ordinates are nothing more than an association of two sets of numbers
with the points of the surface considered, of such a nature that numerical
values differing very slightly from each other are associated with
neighbouring points " in space."
So far, these considerations hold for a continuum of two dimensions. But
the Gaussian method can be applied also to a continuum of three, four or
more dimensions. If, for instance, a continuum of four dimensions be
supposed available, we may represent it in the following way. With every
point of the continuum, we associate arbitrarily four numbers, x1, x2, x3, x4,
which are known as " co-ordinates." Adjacent points correspond to adjacent
values of the coordinates. If a distance ds is associated with the adjacent
points P and P1, this distance being measurable and well defined from a
physical point of view, then the following formula holds:
ds2 = g11dx1

2 + 2g12dx1dx2 . . . .+ g44dx4
2,

where the magnitudes g11, etc., have values which vary with the position in
the continuum. Only when the continuum is a Euclidean one is it possible to
associate the co-ordinates x1 . . x4. with the points of the continuum so that
we have simply
ds2 = dx1

2 + dx2
2 + dx3

2 + dx4
2.

In this case relations hold in the four-dimensional continuum which are
analogous to those holding in our three-dimensional measurements.



However, the Gauss treatment for ds2 which we have given above is not
always possible. It is only possible when sufficiently small regions of the
continuum under consideration may be regarded as Euclidean continua. For
example, this obviously holds in the case of the marble slab of the table and
local variation of temperature. The temperature is practically constant for a
small part of the slab, and thus the geometrical behaviour of the rods is
almost as it ought to be according to the rules of Euclidean geometry.
Hence the imperfections of the construction of squares in the previous
section do not show themselves clearly until this construction is extended
over a considerable portion of the surface of the table.
We can sum this up as follows: Gauss invented a method for the
mathematical treatment of continua in general, in which " size-relations " ("
distances " between neighbouring points) are defined. To every point of a
continuum are assigned as many numbers (Gaussian coordinates) as the
continuum has dimensions. This is done in such a way, that only one
meaning can be attached to the assignment, and that numbers (Gaussian
coordinates) which differ by an indefinitely small amount are assigned to
adjacent points. The Gaussian coordinate system is a logical generalisation
of the Cartesian co-ordinate system. It is also applicable to non-Euclidean
continua, but only when, with respect to the defined "size" or "distance,"
small parts of the continuum under consideration behave more nearly like a
Euclidean system, the smaller the part of the continuum under our notice.
 

 



26-The Space-Time Continuum of
the Special Theory of Relativity
Considered as a Euclidean
Continuum



 
We are now in a position to formulate more exactly the idea of Minkowski,
which was only vaguely indicated in Section 17. In accordance with the
special theory of relativity, certain co-ordinate systems are given preference
for the description of the four-dimensional, space-time continuum. We
called these " Galileian co-ordinate systems." For these systems, the four
co-ordinates x, y, z, t, which determine an event or — in other words, a
point of the four-dimensional continuum — are defined physically in a
simple manner, as set forth in detail in the first part of this book. For the
transition from one Galileian system to another, which is moving uniformly
with reference to the first, the equations of the Lorentz transformation are
valid. These last form the basis for the derivation of deductions from the
special theory of relativity, and in themselves they are nothing more than
the expression of the universal validity of the law of transmission of light
for all Galileian systems of reference.
Minkowski found that the Lorentz transformations satisfy the following
simple conditions. Let us consider two neighbouring events, the relative
position of which in the four-dimensional continuum is given with respect
to a Galileian reference-body K by the space co-ordinate differences dx, dy,
dz and the time-difference dt. With reference to a second Galileian system
we shall suppose that the corresponding differences for these two events are
dx1, dy1, dz1, dt1. Then these magnitudes always fulfil the condition 1)

dx2 + dy2 + dz2 - c2dt2 = dx1 2 + dy1 2 + dz1 2 - c2dt1 2.
The validity of the Lorentz transformation follows from this condition. We
can express this as follows: The magnitude
ds2 = dx2 + dy2 + dz2 - c2dt2,
which belongs to two adjacent points of the four-dimensional space-time
continuum, has the same value for all selected (Galileian) reference-bodies.
If we replace x, y, z, , by x1, x2, x3, x4, we also obtain the result that
ds2 = dx1

2 + dx2
2 + dx3

2 + dx4
2.

is independent of the choice of the body of reference. We call the magnitude
ds the " distance " apart of the two events or four-dimensional points.
Thus, if we choose as time-variable the imaginary variable  instead of
the real quantity t, we can regard the space-time contintium — accordance
with the special theory of relativity — as a ", Euclidean " four-dimensional
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continuum, a result which follows from the considerations of the preceding
section.
 



Footnotes

1) Cf. Appendixes I and II. The relations which are derived there for the co-
ordlnates themselves are valid also for co-ordinate differences, and thus also
for co-ordinate differentials (indefinitely small differences).
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27-The Space-Time Continuum of
the General Theory of Realtivity is
Not a Euclidean Continuum



 
In the first part of this book we were able to make use of space-time co-
ordinates which allowed of a simple and direct physical interpretation, and
which, according to Section 26, can be regarded as four-dimensional
Cartesian co-ordinates. This was possible on the basis of the law of the
constancy of the velocity of light. But according to Section 21 the general
theory of relativity cannot retain this law. On the contrary, we arrived at the
result that according to this latter theory the velocity of light must always
depend on the co-ordinates when a gravitational field is present. In
connection with a specific illustration in Section 23, we found that the
presence of a gravitational field invalidates the definition of the coordinates
and the time, which led us to our objective in the special theory of relativity.
In view of the resuIts of these considerations we are led to the conviction
that, according to the general principle of relativity, the space-time
continuum cannot be regarded as a Euclidean one, but that here we have the
general case, corresponding to the marble slab with local variations of
temperature, and with which we made acquaintance as an example of a two-
dimensional continuum. Just as it was there impossible to construct a
Cartesian co-ordinate system from equal rods, so here it is impossible to
build up a system (reference-body) from rigid bodies and clocks, which
shall be of such a nature that measuring-rods and clocks, arranged rigidly
with respect to one another, shaIll indicate position and time directly. Such
was the essence of the difficulty with which we were confronted in Section
23.
But the considerations of Sections 25 and 26 show us the way to surmount
this difficulty. We refer the fourdimensional space-time continuum in an
arbitrary manner to Gauss co-ordinates. We assign to every point of the
continuum (event) four numbers, x1, x2, x3, x4 (co-ordinates), which have
not the least direct physical significance, but only serve the purpose of
numbering the points of the continuum in a definite but arbitrary manner.
This arrangement does not even need to be of such a kind that we must
regard x1, x2, x3, as "space" co-ordinates and x4, as a " time " co-ordinate.
The reader may think that such a description of the world would be quite
inadequate. What does it mean to assign to an event the particular co-
ordinates x1, x2, x3, x4, if in themselves these co-ordinates have no
significance ? More careful consideration shows, however, that this anxiety
is unfounded. Let us consider, for instance, a material point with any kind
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of motion. If this point had only a momentary existence without duration,
then it would to described in space-time by a single system of values x1, x2,
x3, x4. Thus its permanent existence must be characterised by an infinitely
large number of such systems of values, the co-ordinate values of which are
so close together as to give continuity; corresponding to the material point,
we thus have a (uni-dimensional) line in the four-dimensional continuum.
In the same way, any such lines in our continuum correspond to many
points in motion. The only statements having regard to these points which
can claim a physical existence are in reality the statements about their
encounters. In our mathematical treatment, such an encounter is expressed
in the fact that the two lines which represent the motions of the points in
question have a particular system of co-ordinate values, x1, x2, x3, x4, in
common. After mature consideration the reader will doubtless admit that in
reality such encounters constitute the only actual evidence of a time-space
nature with which we meet in physical statements.
When we were describing the motion of a material point relative to a body
of reference, we stated nothing more than the encounters of this point with
particular points of the reference-body. We can also determine the
corresponding values of the time by the observation of encounters of the
body with clocks, in conjunction with the observation of the encounter of
the hands of clocks with particular points on the dials. It is just the same in
the case of space-measurements by means of measuring-rods, as a litttle
consideration will show.
The following statements hold generally : Every physical description
resolves itself into a number of statements, each of which refers to the
space-time coincidence of two events A and B. In terms of Gaussian co-
ordinates, every such statement is expressed by the agreement of their four
co-ordinates x1, x2, x3, x4. Thus in reality, the description of the time-space
continuum by means of Gauss co-ordinates completely replaces the
description with the aid of a body of reference, without suffering from the
defects of the latter mode of description; it is not tied down to the Euclidean
character of the continuum which has to be represented.
 

 



28-Exact Formulation of the
General Principle of Relativity



 
We are now in a position to replace the provisional formulation of the
general principle of relativity given in Section 18 by an exact formulation.
The form there used, "All bodies of reference K, K1, etc., are equivalent for
the description of natural phenomena (formulation of the general laws of
nature), whatever may be their state of motion," cannot be maintained,
because the use of rigid reference-bodies, in the sense of the method
followed in the special theory of relativity, is in general not possible in
space-time description. The Gauss co-ordinate system has to take the place
of the body of reference. The following statement corresponds to the
fundamental idea of the general principle of relativity: "All Gaussian co-
ordinate systems are essentially equivalent for the formulation of the
general laws of nature."
We can state this general principle of relativity in still another form, which
renders it yet more clearly intelligible than it is when in the form of the
natural extension of the special principle of relativity. According to the
special theory of relativity, the equations which express the general laws of
nature pass over into equations of the same form when, by making use of
the Lorentz transformation, we replace the space-time variables x, y, z, t, of
a (Galileian) reference-body K by the space-time variables x1, y1, z1, t1, of a
new reference-body K1. According to the general theory of relativity, on the
other hand, by application of arbitrary substitutions of the Gauss variables
x1, x2, x3, x4, the equations must pass over into equations of the same form;
for every transformation (not only the Lorentz transformation) corresponds
to the transition of one Gauss co-ordinate system into another.
If we desire to adhere to our "old-time" three-dimensional view of things,
then we can characterise the development which is being undergone by the
fundamental idea of the general theory of relativity as follows : The special
theory of relativity has reference to Galileian domains, i.e. to those in which
no gravitational field exists. In this connection a Galileian reference-body
serves as body of reference, i.e. a rigid body the state of motion of which is
so chosen that the Galileian law of the uniform rectilinear motion of
"isolated" material points holds relatively to it.
Certain considerations suggest that we should refer the same Galileian
domains to non-Galileian reference-bodies also. A gravitational field of a
special kind is then present with respect to these bodies (cf. Sections 20 and
23).
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In gravitational fields there are no such things as rigid bodies with
Euclidean properties; thus the fictitious rigid body of reference is of no
avail in the general theory of relativity. The motion of clocks is also
influenced by gravitational fields, and in such a way that a physical
definition of time which is made directly with the aid of clocks has by no
means the same degree of plausibility as in the special theory of relativity.

For this reason non-rigid reference-bodies are used, which are as a whole
not only moving in any way whatsoever, but which also suffer alterations in
form ad lib. during their motion. Clocks, for which the law of motion is of
any kind, however irregular, serve for the definition of time. We have to
imagine each of these clocks fixed at a point on the non-rigid reference-
body. These clocks satisfy only the one condition, that the "readings" which
are observed simultaneously on adjacent clocks (in space) differ from each
other by an indefinitely small amount. This non-rigid reference-body, which
might appropriately be termed a "reference-mollusc", is in the main
equivalent to a Gaussian four-dimensional co-ordinate system chosen
arbitrarily. That which gives the "mollusc" a certain comprehensibility as
compared with the Gauss co-ordinate system is the (really unjustified)
formal retention of the separate existence of the space co-ordinates as
opposed to the time co-ordinate. Every point on the mollusc is treated as a
space-point, and every material point which is at rest relatively to it as at
rest, so long as the mollusc is considered as reference-body. The general
principle of relativity requires that all these molluscs can be used as
reference-bodies with equal right and equal success in the formulation of
the general laws of nature; the laws themselves must be quite independent
of the choice of mollusc.
The great power possessed by the general principle of relativity lies in the
comprehensive limitation which is imposed on the laws of nature in
consequence of what we have seen above.
 

 



29-The Solution of the Problem of
Gravitation on the Basis of the
General Principle of Relativity



 
If the reader has followed all our previous considerations, he will have no
further difficulty in understanding the methods leading to the solution of the
problem of gravitation.
We start off on a consideration of a Galileian domain, i.e. a domain in
which there is no gravitational field relative to the Galileian reference-body
K. The behaviour of measuring-rods and clocks with reference to K is
known from the special theory of relativity, likewise the behaviour of
"isolated" material points; the latter move uniformly and in straight lines.
Now let us refer this domain to a random Gauss coordinate system or to a
"mollusc" as reference-body K1. Then with respect to K1 there is a
gravitational field G (of a particular kind). We learn the behaviour of
measuring-rods and clocks and also of freely-moving material points with
reference to K1 simply by mathematical transformation. We interpret this
behaviour as the behaviour of measuring-rods, clocks and material points
under the influence of the gravitational field G. Hereupon we introduce a
hypothesis: that the influence of the gravitational field on measuringrods,
clocks and freely-moving material points continues to take place according
to the same laws, even in the case where the prevailing gravitational field is
not derivable from the Galfleian special care, simply by means of a
transformation of co-ordinates.
The next step is to investigate the space-time behaviour of the gravitational
field G, which was derived from the Galileian special case simply by
transformation of the coordinates. This behaviour is formulated in a law,
which is always valid, no matter how the reference-body (mollusc) used in
the description may be chosen.
This law is not yet the general law of the gravitational field, since the
gravitational field under consideration is of a special kind. In order to find
out the general law-of-field of gravitation we still require to obtain a
generalisation of the law as found above. This can be obtained without
caprice, however, by taking into consideration the following demands:
(a) The required generalisation must likewise satisfy the general postulate
of relativity.
(b) If there is any matter in the domain under consideration, only its inertial
mass, and thus according to Section 15 only its energy is of importance for
its etfect in exciting a field.
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(c) Gravitational field and matter together must satisfy the law of the
conservation of energy (and of impulse).
Finally, the general principle of relativity permits us to determine the
influence of the gravitational field on the course of all those processes
which take place according to known laws when a gravitational field is
absent i.e. which have already been fitted into the frame of the special
theory of relativity. In this connection we proceed in principle according to
the method which has already been explained for measuring-rods, clocks
and freely moving material points.
The theory of gravitation derived in this way from the general postulate of
relativity excels not only in its beauty ; nor in removing the defect attaching
to classical mechanics which was brought to light in Section 21; nor in
interpreting the empirical law of the equality of inertial and gravitational
mass ; but it has also already explained a result of observation in astronomy,
against which classical mechanics is powerless.
If we confine the application of the theory to the case where the
gravitational fields can be regarded as being weak, and in which all masses
move with respect to the coordinate system with velocities which are small
compared with the velocity of light, we then obtain as a first approximation
the Newtonian theory. Thus the latter theory is obtained here without any
particular assumption, whereas Newton had to introduce the hypothesis that
the force of attraction between mutually attracting material points is
inversely proportional to the square of the distance between them. If we
increase the accuracy of the calculation, deviations from the theory of
Newton make their appearance, practically all of which must nevertheless
escape the test of observation owing to their smallness.
We must draw attention here to one of these deviations. According to
Newton's theory, a planet moves round the sun in an ellipse, which would
permanently maintain its position with respect to the fixed stars, if we could
disregard the motion of the fixed stars themselves and the action of the
other planets under consideration. Thus, if we correct the observed motion
of the planets for these two influences, and if Newton's theory be strictly
correct, we ought to obtain for the orbit of the planet an ellipse, which is
fixed with reference to the fixed stars. This deduction, which can be tested
with great accuracy, has been confirmed for all the planets save one, with
the precision that is capable of being obtained by the delicacy of
observation attainable at the present time. The sole exception is Mercury,
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the planet which lies nearest the sun. Since the time of Leverrier, it has been
known that the ellipse corresponding to the orbit of Mercury, after it has
been corrected for the influences mentioned above, is not stationary with
respect to the fixed stars, but that it rotates exceedingly slowly in the plane
of the orbit and in the sense of the orbital motion. The value obtained for
this rotary movement of the orbital ellipse was 43 seconds of arc per
century, an amount ensured to be correct to within a few seconds of arc.
This effect can be explained by means of classical mechanics only on the
assumption of hypotheses which have little probability, and which were
devised solely for this purponse.
On the basis of the general theory of relativity, it is found that the ellipse of
every planet round the sun must necessarily rotate in the manner indicated
above ; that for all the planets, with the exception of Mercury, this rotation
is too small to be detected with the delicacy of observation possible at the
present time ; but that in the case of Mercury it must amount to 43 seconds
of arc per century, a result which is strictly in agreement with observation.
Apart from this one, it has hitherto been possible to make only two
deductions from the theory which admit of being tested by observation, to
wit, the curvature of light rays by the gravitational field of the sun,1) and a
displacement of the spectral lines of light reaching us from large stars, as
compared with the corresponding lines for light produced in an analogous
manner terrestrially (i.e. by the same kind of atom). 2) These two deductions
from the theory have both been confirmed.
 
 



Footnotes

1) First observed by Eddington and others in 1919. (Cf. Appendix III, pp.
126-129).
2) Established by Adams in 1924. (Cf. p. 132)
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Part III: Considerations on the
Universe as a Whole



30-Cosmological Difficulties of
Newton's Theory



 
Part from the difficulty discussed in Section 21, there is a second
fundamental difficulty attending classical celestial mechanics, which, to the
best of my knowledge, was first discussed in detail by the astronomer
Seeliger. If we ponder over the question as to how the universe, considered
as a whole, is to be regarded, the first answer that suggests itself to us is
surely this: As regards space (and time) the universe is infinite. There are
stars everywhere, so that the density of matter, although very variable in
detail, is nevertheless on the average everywhere the same. In other words:
However far we might travel through space, we should find everywhere an
attenuated swarm of fixed stars of approrimately the same kind and density.
This view is not in harmony with the theory of Newton. The latter theory
rather requires that the universe should have a kind of centre in which the
density of the stars is a maximum, and that as we proceed outwards from
this centre the group-density of the stars should diminish, until finally, at
great distances, it is succeeded by an infinite region of emptiness. The
stellar universe ought to be a finite island in the infinite ocean of space. 1)

This conception is in itself not very satisfactory. It is still less satisfactory
because it leads to the result that the light emitted by the stars and also
individual stars of the stellar system are perpetually passing out into infinite
space, never to return, and without ever again coming into interaction with
other objects of nature. Such a finite material universe would be destined to
become gradually but systematically impoverished.
In order to escape this dilemma, Seeliger suggested a modification of
Newton's law, in which he assumes that for great distances the force of
attraction between two masses diminishes more rapidly than would result
from the inverse square law. In this way it is possible for the mean density
of matter to be constant everywhere, even to infinity, without infinitely
large gravitational fields being produced. We thus free ourselves from the
distasteful conception that the material universe ought to possess something
of the nature of a centre. Of course we purchase our emancipation from the
fundamental difficulties mentioned, at the cost of a modification and
complication of Newton's law which has neither empirical nor theoretical
foundation. We can imagine innumerable laws which would serve the same
purpose, without our being able to state a reason why one of them is to be
preferred to the others ; for any one of these laws would be founded just as
little on more general theoretical principles as is the law of Newton.
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Footnotes

1)Proof — According to the theory of Newton, the number of "lines of
force" which come from infinity and terminate in a mass m is proportional
to the mass m. If, on the average, the Mass density p0 is constant throughout
the universe, then a sphere of volume V will enclose the average mass p0V.
Thus the number of lines of force passing through the surface F of the
sphere into its interior is proportional to p0V. For unit area of the surface of
the sphere the number of lines of force which enters the sphere is thus
proportional to p0V/F or to p0R. Hence the intensity of the field at the
surface would ultimately become infinite with increasing radius R of the
sphere, which is impossible.





31-The Possibility of a "Finite" and
yet "Unbounded" Universe



 
But speculations on the structure of the universe also move in quite another
direction. The development of non-Euclidean geometry led to the
recognition of the fact, that we can cast doubt on the infiniteness of our
space without coming into conflict with the laws of thought or with
experience (Riemann, Helmholtz). These questions have already been
treated in detail and with unsurpassable lucidity by Helmholtz and Poincaré,
whereas I can only touch on them briefly here.
In the first place, we imagine an existence in two dimensional space. Flat
beings with flat implements, and in particular flat rigid measuring-rods, are
free to move in a plane. For them nothing exists outside of this plane: that
which they observe to happen to themselves and to their flat " things " is the
all-inclusive reality of their plane. In particular, the constructions of plane
Euclidean geometry can be carried out by means of the rods e.g. the lattice
construction, considered in Section 24. In contrast to ours, the universe of
these beings is two-dimensional; but, like ours, it extends to infinity. In their
universe there is room for an infinite number of identical squares made up
of rods, i.e. its volume (surface) is infinite. If these beings say their universe
is " plane," there is sense in the statement, because they mean that they can
perform the constructions of plane Euclidean geometry with their rods. In
this connection the individual rods always represent the same distance,
independently of their position.
Let us consider now a second two-dimensional existence, but this time on a
spherical surface instead of on a plane. The flat beings with their
measuring-rods and other objects fit exactly on this surface and they are
unable to leave it. Their whole universe of observation extends exclusively
over the surface of the sphere. Are these beings able to regard the geometry
of their universe as being plane geometry and their rods withal as the
realisation of " distance " ? They cannot do this. For if they attempt to
realise a straight line, they will obtain a curve, which we " three-
dimensional beings " designate as a great circle, i.e. a self-contained line of
definite finite length, which can be measured up by means of a measuring-
rod. Similarly, this universe has a finite area that can be compared with the
area, of a square constructed with rods. The great charm resulting from this
consideration lies in the recognition of the fact that the universe of these
beings is finite and yet has no limits.
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But the spherical-surface beings do not need to go on a world-tour in order
to perceive that they are not living in a Euclidean universe. They can
convince themselves of this on every part of their " world," provided they
do not use too small a piece of it. Starting from a point, they draw " straight
lines " (arcs of circles as judged in three dimensional space) of equal length
in all directions. They will call the line joining the free ends of these lines a
" circle." For a plane surface, the ratio of the circumference of a circle to its
diameter, both lengths being measured with the same rod, is, according to
Euclidean geometry of the plane, equal to a constant value π, which is
independent of the diameter of the circle. On their spherical surface our flat
beings would find for this ratio the value

i.e. a smaller value than π the difference being the more considerable, the
greater is the radius of the circle in comparison with the radius R of the "
world-sphere." By means of this relation the spherical beings can determine
the radius of their universe (" world "), even when only a relatively small
part of their worldsphere is available for their measurements. But if this part
is very small indeed, they will no longer be able to demonstrate that they
are on a spherical " world " and not on a Euclidean plane, for a small part of
a spherical surface differs only slightly from a piece of a plane of the same
size.
Thus if the spherical surface beings are living on a planet of which the solar
system occupies only a negligibly small part of the spherical universe, they
have no means of determining whether they are living in a finite or in an
infinite universe, because the " piece of universe " to which they have
access is in both cases practically plane, or Euclidean. It follows directly
from this discussion, that for our sphere-beings the circumference of a
circle first increases with the radius until the " circumference of the
universe " is reached, and that it thenceforward gradually decreases to zero
for still further increasing values of the radius. During this process the area
of the circle continues to increase more and more, until finally it becomes
equal to the total area of the whole " world-sphere."
Perhaps the reader will wonder why we have placed our " beings " on a
sphere rather than on another closed surface. But this choice has its



justification in the fact that, of all closed surfaces, the sphere is unique in
possessing the property that all points on it are equivalent. I admit that the
ratio of the circumference c of a circle to its radius r depends on r, but for a
given value of r it is the same for all points of the " worldsphere "; in other
words, the " world-sphere " is a " surface of constant curvature."
To this two-dimensional sphere-universe there is a three-dimensional
analogy, namely, the three-dimensional spherical space which was
discovered by Riemann. its points are likewise all equivalent. It possesses a
finite volume, which is determined by its "radius" (2π2R3). Is it possible to
imagine a spherical space? To imagine a space means nothing else than that
we imagine an epitome of our " space " experience, i.e. of experience that
we can have in the movement of " rigid " bodies. In this sense we can
imagine a spherical space.
Suppose we draw lines or stretch strings in all directions from a point, and
mark off from each of these the distance r with a measuring-rod. All the free
end-points of these lengths lie on a spherical surface. We can specially
measure up the area (F) of this surface by means of a square made up of
measuring-rods. If the universe is Euclidean, then F = 4πγ2 ; if it is
spherical, then F is always less than 4πγ2. With increasing values of γ, F
increases from zero up to a maximum value which is determined by the "
world-radius," but for still further increasing values of γ, the area gradually
diminishes to zero. At first, the straight lines which radiate from the starting
point diverge farther and farther from one another, but later they approach
each other, and finally they run together again at a "counter-point" to the
starting point. Under such conditions they have traversed the whole
spherical space. It is easily seen that the three-dimensional spherical space
is quite analogous to the two-dimensional spherical surface. It is finite (i.e.
of finite volume), and has no bounds.
It may be mentioned that there is yet another kind of curved space: "
elliptical space." It can be regarded as a curved space in which the two "
counter-points " are identical (indistinguishable from each other). An
elliptical universe can thus be considered to some extent as a curved
universe possessing central symmetry.
It follows from what has been said, that closed spaces without limits are
conceivable. From amongst these, the spherical space (and the elliptical)
excels in its simplicity, since all points on it are equivalent. As a result of
this discussion, a most interesting question arises for astronomers and



physicists, and that is whether the universe in which we live is infinite, or
whether it is finite in the manner of the spherical universe. Our experience
is far from being sufficient to enable us to answer this question. But the
general theory of relativity permits of our answering it with a moduate
degree of certainty, and in this connection the difficulty mentioned in
Section 30 finds its solution.
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32-The Structure of Space
According to the General Theory of
Relativity



 
According to the general theory of relativity, the geometrical properties of
space are not independent, but they are determined by matter. Thus we can
draw conclusions about the geometrical structure of the universe only if we
base our considerations on the state of the matter as being something that is
known. We know from experience that, for a suitably chosen co-ordinate
system, the velocities of the stars are small as compared with the velocity of
transmission of light. We can thus as a rough approximation arrive at a
conclusion as to the nature of the universe as a whole, if we treat the matter
as being at rest.
We already know from our previous discussion that the behaviour of
measuring-rods and clocks is influenced by gravitational fields, i.e. by the
distribution of matter. This in itself is sufficient to exclude the possibility of
the exact validity of Euclidean geometry in our universe. But it is
conceivable that our universe differs only slightly from a Euclidean one,
and this notion seems all the more probable, since calculations show that
the metrics of surrounding space is influenced only to an exceedingly small
extent by masses even of the magnitude of our sun. We might imagine that,
as regards geometry, our universe behaves analogously to a surface which is
irregularly curved in its individual parts, but which nowhere departs
appreciably from a plane: something like the rippled surface of a lake. Such
a universe might fittingly be called a quasi-Euclidean universe. As regards
its space it would be infinite. But calculation shows that in a quasi-
Euclidean universe the average density of matter would necessarily be null.
Thus such a universe could not be inhabited by matter everywhere ; it
would present to us that unsatisfactory picture which we portrayed in
Section 30.
If we are to have in the universe an average density of matter which differs
from zero, however small may be that difference, then the universe cannot
be quasi-Euclidean. On the contrary, the results of calculation indicate that
if matter be distributed uniformly, the universe would necessarily be
spherical (or elliptical). Since in reality the detailed distribution of matter is
not uniform, the real universe will deviate in individual parts from the
spherical, i.e. the universe will be quasi-spherical. But it will be necessarily
finite. In fact, the theory supplies us with a simple connection 1) between
the space-expanse of the universe and the average density of matter in it.
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Footnotes

1) For the radius R of the universe we obtain the equation

The use of the C.G.S. system in this equation gives 2/k = 1.08.1037; p is the
average density of the matter and k is a constant connected with the
Newtonian constant of gravitation.
 





APPENDIX 01-Simple Derivation
of the Lorentz Transformation

(Supplementary to Section 11)



 
For the relative orientation of the co-ordinate systems indicated in Fig. 2,
the x-axes of both systems pernumently coincide. In the present case we can
divide the problem into parts by considering first only events which are
localised on the x-axis. Any such event is represented with respect to the
co-ordinate system K by the abscissa x and the time t, and with respect to
the system K1 by the abscissa x' and the time t'. We require to find x' and t'
when x and t are given.
A light-signal, which is proceeding along the positive axis of x, is
transmitted according to the equation
x = ct
or
x - ct = 0     .     .     .    (1).
Since the same light-signal has to be transmitted relative to K1 with the
velocity c, the propagation relative to the system K1 will be represented by
the analogous formula
x' - ct' = O     .     .     .    (2)
Those space-time points (events) which satisfy (x) must also satisfy (2).
Obviously this will be the case when the relation
(x' - ct') = λ (x - ct)     .     .     .    (3).
is fulfilled in general, where λ indicates a constant ; for, according to (3),
the disappearance of (x - ct) involves the disappearance of (x' - ct').
If we apply quite similar considerations to light rays which are being
transmitted along the negative x-axis, we obtain the condition
(x' + ct') = µ(x + ct)    .     .     .    (4).
By adding (or subtracting) equations (3) and (4), and introducing for
convenience the constants a and b in place of the constants λ and µ, where

and

we obtain the equations
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We should thus have the solution of our problem, if the constants a and b
were known. These result from the following discussion.
For the origin of K1 we have permanently x' = 0, and hence according to the
first of the equations (5)

If we call v the velocity with which the origin of K1 is moving relative to K,
we then have

The same value v can be obtained from equations (5), if we calculate the
velocity of another point of K1 relative to K, or the velocity (directed
towards the negative x-axis) of a point of K with respect to K'. In short, we
can designate v as the relative velocity of the two systems.
Furthermore, the principle of relativity teaches us that, as judged from K,
the length of a unit measuring-rod which is at rest with reference to K1 must
be exactly the same as the length, as judged from K', of a unit measuring-
rod which is at rest relative to K. In order to see how the points of the x-axis
appear as viewed from K, we only require to take a " snapshot " of K1 from
K; this means that we have to insert a particular value of t (time of K), e.g. t
= 0. For this value of t we then obtain from the first of the equations (5)
x' = ax
Two points of the x'-axis which are separated by the distance Δx' = I when
measured in the K1 system are thus separated in our instantaneous
photograph by the distance

But if the snapshot be taken from K'(t' = 0), and if we eliminate t from the
equations (5), taking into account the expression (6), we obtain

From this we conclude that two points on the x-axis separated by the
distance I (relative to K) will be represented on our snapshot by the distance



But from what has been said, the two snapshots must be identical; hence Δx
in (7) must be equal to Δx' in (7a), so that we obtain

The equations (6) and (7b) determine the constants a and b. By inserting the
values of these constants in (5), we obtain the first and the fourth of the
equations given in Section 11.

Thus we have obtained the Lorentz transformation for events on the x-axis.
It satisfies the condition
x'2 - c2t'2 = x2 - c2t2    .     .     .    (8a).
The extension of this result, to include events which take place outside the
x-axis, is obtained by retaining equations (8) and supplementing them by
the relations

In this way we satisfy the postulate of the constancy of the velocity of light
in vacuo for rays of light of arbitrary direction, both for the system K and
for the system K'. This may be shown in the following manner.
We suppose a light-signal sent out from the origin of K at the time t = 0. It
will be propagated according to the equation

or, if we square this equation, according to the equation
x2 + y2 + z2 = c2t2 = 0    .     .     .    (10).
It is required by the law of propagation of light, in conjunction with the
postulate of relativity, that the transmission of the signal in question should
take place — as judged from K1 — in accordance with the corresponding
formula
r' = ct'
or,
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x'2 + y'2 + z'2 - c2t'2 = 0    .     .     .    (10a).
In order that equation (10a) may be a consequence of equation (10), we
must have
x'2 + y'2 + z'2 - c2t'2 = s (x2 + y2 + z2 - c2t2)       (11).
Since equation (8a) must hold for points on the x-axis, we thus have s = I. It
is easily seen that the Lorentz transformation really satisfies equation (11)
for s = I; for (11) is a consequence of (8a) and (9), and hence also of (8) and
(9). We have thus derived the Lorentz transformation.
The Lorentz transformation represented by (8) and (9) still requires to be
generalised. Obviously it is immaterial whether the axes of K1 be chosen so
that they are spatially parallel to those of K. It is also not essential that the
velocity of translation of K1 with respect to K should be in the direction of
the x-axis. A simple consideration shows that we are able to construct the
Lorentz transformation in this general sense from two kinds of
transformations, viz. from Lorentz transformations in the special sense and
from purely spatial transformations. which corresponds to the replacement
of the rectangular co-ordinate system by a new system with its axes
pointing in other directions.

Mathematically, we can characterise the generalised Lorentz transformation
thus :
It expresses x', y', x', t', in terms of linear homogeneous functions of x, y, x,
t, of such a kind that the relation
x'2 + y'2 + z'2 - c2t'2 = x2 + y2 + z2 - c2t2       (11a).
is satisficd identically. That is to say: If we substitute their expressions in x,
y, x, t, in place of x', y', x', t', on the left-hand side, then the left-hand side of
(11a) agrees with the right-hand side.
 

 



APPENDIX 02-Minkowski's Four-
Dimensional Space ("World")

(supplementary to section 17)



 
We can characterise the Lorentz transformation still more simply if we
introduce the imaginary  in place of t, as time-variable. If, in
accordance with this, we insert

x1 = x   x2 = y    x3 = z    x4 = 
and similarly for the accented system K1, then the condition which is
identically satisfied by the transformation can be expressed thus :

x1'2 + x2'2 + x3'2 + x4'2 = x1
2 + x2

2 + x3
2 + x4

2     (12).
That is, by the afore-mentioned choice of " coordinates," (11a) [see the end
of Appendix I] is transformed into this equation.
We see from (12) that the imaginary time co-ordinate x4, enters into the
condition of transformation in exactly the same way as the space co-
ordinates x1, x2, x3. It is due to this fact that, according to the theory of
relativity, the " time "x4, enters into natural laws in the same form as the
space co ordinates x1, x2, x3.
A four-dimensional continuum described by the "co-ordinates" x1, x2, x3,
x4, was called "world" by Minkowski, who also termed a point-event a "
world-point." From a "happening" in three-dimensional space, physics
becomes, as it were, an " existence " in the four-dimensional " world."
This four-dimensional " world " bears a close similarity to the three-
dimensional " space " of (Euclidean) analytical geometry. If we introduce
into the latter a new Cartesian co-ordinate system (x'1, x'2, x'3) with the
same origin, then x'1, x'2, x'3, are linear homogeneous functions of x1, x2, x3
which identically satisfy the equation
x'12 + x'22 + x'32 = x1

2 + x2
2 + x3

2

The analogy with (12) is a complete one. We can regard Minkowski's "
world " in a formal manner as a four-dimensional Euclidean space (with an
imaginary time coordinate) ; the Lorentz transformation corresponds to a "
rotation " of the co-ordinate system in the fourdimensional " world."
 

 



APPENDIX 03-The Experimental
Confirmation of the General
Theory of Relativity



 
From a systematic theoretical point of view, we may imagine the process of
evolution of an empirical science to be a continuous process of induction.
Theories are evolved and are expressed in short compass as statements of a
large number of individual observations in the form of empirical laws, from
which the general laws can be ascertained by comparison. Regarded in this
way, the development of a science bears some resemblance to the
compilation of a classified catalogue. It is, as it were, a purely empirical
enterprise.
But this point of view by no means embraces the whole of the actual
process ; for it slurs over the important part played by intuition and
deductive thought in the development of an exact science. As soon as a
science has emerged from its initial stages, theoretical advances are no
longer achieved merely by a process of arrangement. Guided by empirical
data, the investigator rather develops a system of thought which, in general,
is built up logically from a small number of fundamental assumptions, the
so-called axioms. We call such a system of thought a theory. The theory
finds the justification for its existence in the fact that it correlates a large
number of single observations, and it is just here that the " truth " of the
theory lies.
Corresponding to the same complex of empirical data, there may be several
theories, which differ from one another to a considerable extent. But as
regards the deductions from the theories which are capable of being tested,
the agreement between the theories may be so complete that it becomes
difficult to find any deductions in which the two theories differ from each
other. As an example, a case of general interest is available in the province
of biology, in the Darwinian theory of the development of species by
selection in the struggle for existence, and in the theory of development
which is based on the hypothesis of the hereditary transmission of acquired
characters.
We have another instance of far-reaching agreement between the deductions
from two theories in Newtonian mechanics on the one hand, and the general
theory of relativity on the other. This agreement goes so far, that up to the
preseat we have been able to find only a few deductions from the general
theory of relativity which are capable of investigation, and to which the
physics of pre-relativity days does not also lead, and this despite the
profound difference in the fundamental assumptions of the two theories. In



what follows, we shall again consider these important deductions, and we
shall also discuss the empirical evidence appertaining to them which has
hitherto been obtained.

(a) Motion of the Perihelion of Mercury

According to Newtonian mechanics and Newton's law of gravitation, a
planet which is revolving round the sun would describe an ellipse round the
latter, or, more correctly, round the common centre of gravity of the sun and
the planet. In such a system, the sun, or the common centre of gravity, lies
in one of the foci of the orbital ellipse in such a manner that, in the course
of a planet-year, the distance sun-planet grows from a minimum to a
maximum, and then decreases again to a minimum. If instead of Newton's
law we insert a somewhat different law of attraction into the calculation, we
find that, according to this new law, the motion would still take place in
such a manner that the distance sun-planet exhibits periodic variations; but
in this case the angle described by the line joining sun and planet during
such a period (from perihelion—closest proximity to the sun—to
perihelion) would differ from 3600. The line of the orbit would not then be a
closed one but in the course of time it would fill up an annular part of the
orbital plane, viz. between the circle of least and the circle of greatest
distance of the planet from the sun.
According also to the general theory of relativity, which differs of course
from the theory of Newton, a small variation from the Newton-Kepler
motion of a planet in its orbit should take place, and in such away, that the
angle described by the radius sun-planet between one perhelion and the next
should exceed that corresponding to one complete revolution by an amount
given by

(N.B. — One complete revolution corresponds to the angle 2π in the
absolute angular measure customary in physics, and the above expression
giver the amount by which the radius sun-planet exceeds this angle during
the interval between one perihelion and the next.) In this expression a
represents the major semi-axis of the ellipse, e its eccentricity, c the velocity
of light, and T the period of revolution of the planet. Our result may also be
stated as follows : According to the general theory of relativity, the major



axis of the ellipse rotates round the sun in the same sense as the orbital
motion of the planet. Theory requires that this rotation should amount to 43
seconds of arc per century for the planet Mercury, but for the other Planets
of our solar system its magnitude should be so small that it would
necessarily escape detection. 1)

In point of fact, astronomers have found that the theory of Newton does not
suffice to calculate the observed motion of Mercury with an exactness
corresponding to that of the delicacy of observation attainable at the present
time. After taking account of all the disturbing influences exerted on
Mercury by the remaining planets, it was found (Leverrier: 1859; and
Newcomb: 1895) that an unexplained perihelial movement of the orbit of
Mercury remained over, the amount of which does not differ sensibly from
the above mentioned +43 seconds of arc per century. The uncertainty of the
empirical result amounts to a few seconds only.

(b) Deflection of Light by a Gravitational Field

In Section 22 it has been already mentioned that according to the general
theory of relativity, a ray of light will experience a curvature of its path
when passing through a gravitational field, this curvature being similar to
that experienced by the path of a body which is projected through a
gravitational field. As a result of this theory, we should expect that a ray of
light which is passing close to a heavenly body would be deviated towards
the latter. For a ray of light which passes the sun at a distance of Δ sun-radii
from its centre, the angle of deflection (a) should amount to

It may be added that, according to the theory, half of
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this deflection is produced by the Newtonian field of attraction of the sun,
and the other half by the geometrical modification (" curvature ") of space
caused by the sun.
This result admits of an experimental test by means of the photographic
registration of stars during a total eclipse of the sun. The only reason why
we must wait for a total eclipse is because at every other time the
atmosphere is so strongly illuminated by the light from the sun that the stars
situated near the sun's disc are invisible. The predicted effect can be seen
clearly from the accompanying diagram. If the sun (S) were not present, a
star which is practically infinitely distant would be seen in the direction D1,
as observed front the earth. But as a consequence of the deflection of light
from the star by the sun, the star will be seen in the direction D2, i.e. at a
somewhat greater distance from the centre of the sun than corresponds to its
real position.
In practice, the question is tested in the following way. The stars in the
neighbourhood of the sun are photographed during a solar eclipse. In
addition, a second photograph of the same stars is taken when the sun is
situated at another position in the sky, i.e. a few months earlier or later. As
compared whh the standard photograph, the positions of the stars on the
eclipse-photograph ought to appear displaced radially outwards (away from
the centre of the sun) by an amount corresponding to the angle a.
We are indebted to the [British] Royal Society and to the Royal
Astronomical Society for the investigation of this important deduction.
Undaunted by the [first world] war and by difficulties of both a material and
a psychological nature aroused by the war, these societies equipped two
expeditions — to Sobral (Brazil), and to the island of Principe (West Africa)
— and sent several of Britain's most celebrated astronomers (Eddington,
Cottingham, Crommelin, Davidson), in order to obtain photographs of the
solar eclipse of 29th May, 1919. The relative discrepancies to be expected
between the stellar photographs obtained during the eclipse and the
comparison photographs amounted to a few hundredths of a millimetre
only. Thus great accuracy was necessary in making the adjustments
required for the taking of the photographs, and in their subsequent
measurement.
The results of the measurements confirmed the theory in a thoroughly
satisfactory manner. The rectangular components of the observed and of the



calculated deviations of the stars (in seconds of arc) are set forth in the
following table of results :

(c) Displacement of Spectral Lines Towards the Red

In Section 23 it has been shown that in a system K1 which is in rotation
with regard to a Galileian system K, clocks of identical construction, and
which are considered at rest with respect to the rotating reference-body, go
at rates which are dependent on the positions of the clocks. We shall now
examine this dependence quantitatively. A clock, which is situated at a
distance r from the centre of the disc, has a velocity relative to K which is
given by
V = wr
where w represents the angular velocity of rotation of the disc K1 with
respect to K. If v0, represents the number of ticks of the clock per unit time
(" rate " of the clock) relative to K when the clock is at rest, then the " rate "
of the clock (v) when it is moving relative to K with a velocity V, but at rest
with respect to the disc, will, in accordance with Section 12, be given by

or with sufficient accuracy by

This expression may also be stated in the following form:

If we represent the difference of potential of the centrifugal force between
the position of the clock and the centre of the disc by f, i.e. the work,
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considered negatively, which must be performed on the unit of mass against
the centrifugal force in order to transport it from the position of the clock on
the rotating disc to the centre of the disc, then we have

From this it follows that

In the first place, we see from this expression that two clocks of identical
construction will go at different rates when situated at different distances
from the centre of the disc. This result is aiso valid from the standpoint of
an observer who is rotating with the disc.
Now, as judged from the disc, the latter is in a gravititional field of potential
f, hence the result we have obtained will hold quite generally for
gravitational fields. Furthermore, we can regard an atom which is emitting
spectral lines as a clock, so that the following statement will hold:
An atom absorbs or emits light of a frequency which is dependent on the
potential of the gravitational field in which it is situated.
The frequency of an atom situated on the surface of a heavenly body will be
somewhat less than the frequency of an atom of the same element which is
situated in free space (or on the surface of a smaller celestial body).
Now f = - K (M/r), where K is Newton's constant of gravitation, and M is
the mass of the heavenly body. Thus a displacement towards the red ought
to take place for spectral lines produced at the surface of stars as compared
with the spectral lines of the same element produced at the surface of the
earth, the amount of this displacement being

For the sun, the displacement towards the red predicted by theory amounts
to about two millionths of the wave-length. A trustworthy calculation is not
possible in the case of the stars, because in general neither the mass M nor
the radius r are known.
It is an open question whether or not this effect exists, and at the present
time (1920) astronomers are working with great zeal towards the solution.
Owing to the smallness of the effect in the case of the sun, it is difficult to
form an opinion as to its existence. Whereas Grebe and Bachem (Bonn), as
a result of their own measurements and those of Evershed and



Schwarzschild on the cyanogen bands, have placed the existence of the
effect almost beyond doubt, while other investigators, particularly St. John,
have been led to the opposite opinion in consequence of their
measurements.
Mean displacements of lines towards the less refrangible end of the
spectrum are certainly revealed by statistical investigations of the fixed
stars ; but up to the present the examination of the available data does not
allow of any definite decision being arrived at, as to whether or not these
displacements are to be referred in reality to the effect of gravitation. The
results of observation have been collected together, and discussed in detail
from the standpoint of the question which has been engaging our attention
here, in a paper by E. Freundlich entitled "Zur Prüfung der allgemeinen
Relativitäts-Theorie" (Die Naturwissenschaften, 1919, No. 35, p. 520:
Julius Springer, Berlin).
At all events, a definite decision will be reached during the next few years.
If the displacement of spectral lines towards the red by the gravitational
potential does not exist, then the general theory of relativity will be
untenable. On the other hand, if the cause of the displacement of spectral
lines be definitely traced to the gravitational potential, then the study of this
displacement will furnish us with important information as to the mass of
the heavenly bodies. [A]

 

 



Footnotes

1) Especially since the next planet Venus has an orbit that is almost an exact
circle, which makes it more difficult to locate the perihelion with precision.
[A] The displacentent of spectral lines towards the red end of the spectrum
was definitely established by Adams in 1924, by observations on the dense
companion of Sirius, for which the effect is about thirty times greater than
for the Sun. R.W.L. — translator





APPENDIX 04-The Structure of
Space According to the General
Theory of Relativity

(Supplementary to Section 32)



 
Since the publication of the first edition of this little book, our knowledge
about the structure of space in the large (" cosmological problem ") has had
an important development, which ought to be mentioned even in a popular
presentation of the subject.
My original considerations on the subject were based on two hypotheses:
(1) There exists an average density of matter in the whole of space which is
everywhere the same and different from zero.
(2) The magnitude (" radius ") of space is independent of time.
Both these hypotheses proved to be consistent, according to the general
theory of relativity, but only after a hypothetical term was added to the field
equations, a term which was not required by the theory as such nor did it
seem natural from a theoretical point of view (" cosmological term of the
field equations ").
Hypothesis (2) appeared unavoidable to me at the time, since I thought that
one would get into bottomless speculations if one departed from it.
However, already in the 'twenties, the Russian mathematician Friedman
showed that a different hypothesis was natural from a purely theoretical
point of view. He realized that it was possible to preserve hypothesis (1)
without introducing the less natural cosmological term into the field
equations of gravitation, if one was ready to drop hypothesis (2). Namely,
the original field equations admit a solution in which the " world radius "
depends on time (expanding space). In that sense one can say, according to
Friedman, that the theory demands an expansion of space.
A few years later Hubble showed, by a special investigation of the extra-
galactic nebulae (" milky ways "), that the spectral lines emitted showed a
red shift which increased regularly with the distance of the nebulae. This
can be interpreted in regard to our present knowledge only in the sense of
Doppler's principle, as an expansive motion of the system of stars in the
large — as required, according to Friedman, by the field equations of
gravitation. Hubble's discovery can, therefore, be considered to some extent
as a confirmation of the theory.
There does arise, however, a strange difficulty. The interpretation of the
galactic line-shift discovered by Hubble as an expansion (which can hardly
be doubted from a theoretical point of view), leads to an origin of this
expansion which lies " only " about 109 years ago, while physical
astronomy makes it appear likely that the development of individual stars



and systems of stars takes considerably longer. It is in no way known how
this incongruity is to be overcome.
I further want to rernark that the theory of expanding space, together with
the empirical data of astronomy, permit no decision to be reached about the
finite or infinite character of (three-dimensional) space, while the original "
static " hypothesis of space yielded the closure (finiteness) of space.
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