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Today, the original Michelson-Morley experiment and its early repetitions at the be-

ginning of the 20th century are considered as a venerable historical chapter for which,

at least from a physical point of view, there is nothing more to refine or clarify. The

emphasis is now on the modern versions of these experiments, with lasers stabilized by

optical cavities, that, apparently, have improved by many orders of magnitude on the

limits placed by those original measurements. Though, in those old experiments light

was propagating in gaseous systems (air or helium at atmospheric pressure) while now,

in modern experiments, light propagates in a high vacuum or inside solid dielectrics.

Therefore, in principle, the difference might not depend on the technological progress

only but also on the different media that are tested by preventing a straightforward

comparison. Starting from this observation, one can formulate a new theoretical scheme

where the tiny, irregular residuals observed so far, from Michelson-Morley to the present

experiments with optical resonators, point consistently toward the long sought preferred

reference frame tight to the CMB. The existence of this scheme, while challenging the

traditional ‘null interpretation’, presented in all textbooks and specialized reviews as a

self-evident scientific truth, further emphasizes the central role of these experiments for

Relativity, Cosmology and Quantum Physics.
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1. Introduction

From the very beginning there are two interpretations of Relativity: Einstein’s Spe-

cial Relativity1 and the ‘Lorentzian’ formulation.2 Apart from all historical aspects,

the difference could simply be phrased as follows. In a Lorentzian approach, the rel-

ativistic effects originate from the individual motion of each observer S’, S”...with

respect to some preferred reference frame Σ, a convenient redefinition of Lorentz’

ether. Instead, according to Einstein, eliminating the concept of the ether leads to

interpret the same effects as consequences of the relative motion of each pair of ob-

servers S’ and S”. This is possible because the basic quantitative ingredients, namely

Lorentz Transformations, have a crucial group structure and are the same in both

formulations. In the case of one-dimensional motion a, an intuitive representation

is given in Fig.1.

Fig. 1. An intuitive representation of the two interpretations of Relativity.

For this reason, it has been generally assumed that there is a substantial phe-

nomenological equivalence of the two formulations. This point of view was, for

instance, already clearly expressed by Ehrenfest in his lecture ‘On the crisis of the

light ether hypothesis’ (Leyden, December 1912) as follows: “So, we see that the

ether-less theory of Einstein demands exactly the same here as the ether theory

of Lorentz. It is, in fact, because of this circumstance, that according to Einstein’s

theory an observer must observe exactly the same contractions, changes of rate, etc.

aWe ignore here the subtleties related to the Thomas-Wigner spatial rotation which is introduced

when considering two Lorentz transformations along different directions, see e.g.3–5
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in the measuring rods, clocks, etc. moving with respect to him as in the Lorentzian

theory. And let it be said here right away and in all generality. As a matter of

principle, there is no experimentum crucis between the two theories”. Therefore,

by assuming that, in a Lorentzian perspective, the motion with respect to Σ could

not be detected, the usual attitude was to consider the difference between the two

interpretations as a philosophical problem.

However, it was emphasized by Bell6 that adopting the Lorentzian point of view

could be crucial to reconcile hypothetical faster-than-light signals with causality, as

with the apparent non-local aspects of the Quantum Theory. Indeed, if all reference

frames are placed on the same footing, as in Special Relativity, how to decide of

the time ordering of two events A and B along the world line of a hypothetical ef-

fect propagating with speed > c? This ordering can be different in different frames,

because in some frame S′ one could find t′A > t′B and in some other frame S′′ the

opposite t′′B > t′′A. This causal paradox, which is the main reason why superlumi-

nal signals are not believed to exist, disappears in a Lorentzian formulation where

the different views of the two observers become a sort of optical illusion, like an

aberrationb.

But the mere logical possibility of Σ is not enough. For a full resolution of the

paradox, the Σ− frame should show up through a determination of the kinematic

parameters β′, β′′... Thus, we arrive to the main point of this article: the prejudice

that, even in a Lorentzian formulation of relativity, the individual β′, β′′... cannot

be experimentally determined. This belief derives from the assumption that the

Michelson-Morley type of experiments, from the original 1887 trial to the modern

versions with lasers stabilized by optical cavities, give ‘null results’, namely that the

small residuals found in these measurements are just typical instrumental artifacts.

We recall that in these precise interferometric experiments, one attempts to detect

in laboratory an ‘ether-wind’, i.e. a small angular dependence of the velocity of

light that might indicate the Earth motion with respect to the hypothetical Σ, e.g.

the system where the Cosmic Microwave Background (CMB) is isotropic. While

in Special Relativity, no ether wind can be observed by definition, in a Lorentzian

perspective it is only a ‘conspiracy’ of relativistic effects which makes undetectable

the individual velocity parameters β′, β′′... But the conspiracy works exactly only

when the velocity of light cγ propagating in the various interferometers coincides

with the basic parameter c entering Lorentz transformations. Therefore, one may

bIf S′ is connected to Σ by a Lorentz transformation with parameter β′ = v′/c, by the inverse

transformation we can find the time coordinates in Σ starting from x′
A, ct′A, x′

B and ct′B , namely

cTA = γ′(β′x′
A + ct′A) and cTB = γ′(β′x′

B + ct′B), with 1/γ′ =
√

1− (β′)2. Analogously, for

S′′ and parameter β′′ = v′′/c, we will find the same values, i.e. cTA = γ′′(β′′x′′
A + ct′′A) and

cTB = γ′′(β′′x′′
B + ct′′B), with now 1/γ′′ =

√
1− (β′′)2. Thus no ambiguity is possible, either

TA > TB or viceversa so that the view in the preferred Σ−frame becomes the relevant one to

decide on causal effects.

alan
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ask, what happens if cγ ̸= c, for instance when light propagates in air or in gaseous

helium as in the old experiments? Starting from this observation, we have formu-

lated a new theoretical scheme7–10 where the small residuals observed so far, from

Michelson-Morley to the present experiments with optical resonators, point con-

sistently toward the long sought preferred reference frame tight to the CMB. In

this sense, our scheme is seriously questioning the standard null interpretation of

these experiments which is presented in all textbooks and specialized reviews as a

self-evident scientific truth. In this article we will review the main results of our

extensive work and also propose further experimental tests.

We emphasize that, besides Relativity, our reinterpretation of the data inter-

twines with and influences other areas of contemporary physics, such as the non-

locality of the Quantum Theory, the current vision of the Vacuum State and Cos-

mology. These implications are so important to deserve a preliminary discussion in

this Introduction.

1.1. Relativity and Quantum Non-Locality

The existence of intrinsically non-local aspects in the Quantum Theory and the

relationship with relativity has been the subject of a countless number of books

and articles, growing more and more rapidly in recent times, see e.g.11–13 for a list

of references. The problem dates back to the very early days of Quantum Mechanics,

even before the seminal work of Einstein-Podolski-Rosen (EPR).14 Indeed, the basic

issue is already found in Heisenberg’s 1929 Chicago Lectures: “ We imagine a photon

represented by a wave packet... By reflection at a semi-transparent mirror, it is

possible to decompose into a reflected and a transmitted packet...After a sufficient

time the two parts will be separated by any distance desired; now if by experiment

the photon is found, say, in the reflected part of the packet, then the probability

of finding the photon in the other part of the packet immediately becomes zero.

The experiment at the position of the reflected packet thus exerts a kind of action

(reduction of the wave packet) at the distant point and one sees that this action

is propagated with a velocity greater than that of light”. After that, Heisenberg,

almost frightened by his same words, feels the need to add the following remark:

“However, it is also obvious that this kind of action can never be utilized for the

transmission of signals so that it is not in conflict with the postulates of relativity”.

Heisenberg’s final observation is one of the first formulations of the so called

‘peaceful coexistence’. Actually, presenting as an ‘obvious’ fact that this type of ef-

fects can never be used to communicate between observers at a space-like separation

sounds more as a way to avoid the causal paradox, which is present in Special Rel-

ativity, when dealing with faster than light signals. But, independently of that, this

observation expresses a position that can hardly be considered satisfactory. In fact,

if there were really some ‘Quantum Information’ which propagates with a speed

vQI ≫ c, could such extraordinary thing be so easily dismissed? Namely, could we

ignore this ‘something’ just because, apparently, it cannot be efficiently controlled
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to send ‘messages’c? After all, this explains why Dirac, more than forty years later,

was still concluding that “The only theory which we can formulate at the present

is a non-local one, and of course one is not satisfied with such a theory. I think one

ought to say that the problem of reconciling quantum theory and relativity is not

solved”.17

But only with Bell’s contribution6 the real terms of the problem were fully under-

stood. He clearly spelled out the local, realistic point of view. If physical influences

must propagate continuously through space, it becomes unavoidable to complete the

quantum formalism by introducing additional ‘hidden’ variables associated with the

space-time regions in question d. But, then, it is possible to derive a bound on the

degree of correlation of physical systems that are no longer interacting but have in-

teracted in their past. This bound has been used to rule out experimentally18–20 the

class of local, hidden-variable theories which are based on causal influences propa-

gating at subluminal speed. Experimentally excluding this class of theories means

rejecting a familiar vision of reality. Thanks to Bell, “A seemingly philosophical de-

bate about the nature of physical reality could be settled by an experiment! ...The

conclusion is now clear: Einstein’s view of physical reality cannot be upheld”.21

Thus, the importance of Bell’s work cannot be underestimated: “Bell’s result

combined with the EPR argument was not a ‘no hidden variables theorem’ but a

non-locality theorem, the impossibility of hidden variables being only one step in a

two-step argument...It means that some action at a distance exists in Nature, even

though it does not say what this action consists of”.13 It was this awareness to

give him the perception that “... we have an apparent incompatibility, at the deep-

est level, between the two fundamental pillars of contemporary theory”,6 namely

Quantum Theory and Special Relativity. This inspired his view where the existence

of the preferred Σ−frame would free ourselves from the no-signalling argument to

dispose of the causality paradox.

cExperimental correlations between spacelike separated measurements can in principle be ex-

plained through hidden influences propagating at a finite speed vQI ≫ c provided vQI is large

enough.15 But in ref.16 it is also shown that for any finite vQI, with c < vQI < ∞, one can

construct combined correlations to be used for faster-than-light communication.
d“In particular, Jordan had been wrong in supposing that nothing was real or fixed in the mi-

croscopic world before observation. For after observing only one of the two particles the result

of subsequently observing the other (possibly at very remote place) is immediately predictable.

Could it be that the first measurement somehow fixes what was unfixed or makes real what was

unreal, not only for the near particle but also for the remote one? For EPR that would be an

unthinkable ‘spooky action at distance’. To avoid such action at distance one has to attribute, to

the space-time regions in question, real correlated properties in advance of the observation which

predetermine the outcome of these particular observations. Since these real properties, fixed in

advance of the observation, are not contained in the quantum formalism, that formalism for EPR

is incomplete”.6
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1.2. Relativity and the Vacuum State

A frequent objection to the idea of relativity with a preferred frame is that, af-

ter all, Quantum Mechanics is not a fundamental description of the world. What

about, if we started from a more fundamental Quantum Field Theory (QFT)? In

this perspective, the issue of the preferred frame can be reduced to find a particular,

logical step that prevents to deduce that Einstein Special Relativity, with no pre-

ferred frame, is the physically realized version of relativity. This is the version which

is always assumed when computing S-matrix elements for microscopic processes.

However, what one is actually using is the machinery of Lorentz transformations

whose first, complete derivation dates back, ironically, to Larmor and Lorentz who

were assuming the existence of a fundamental state of rest (the ether).

Our point, discussed in,22–25 is that there is indeed a particular element which

has been missed so far and which concerns the assumed Lorentz invariance of the

vacuum state. Even though one is still using the Latin word ‘vacuum’, which means

empty, here we are dealing with the lowest energy state. According to the present

view, this is not trivially empty but is determined by the condensation process of

some elementary quanta e. Namely the energy is minimized when these quanta,

such as Higgs particles, quark-antiquark pairs, gluons... macroscopically occupy the

same quantum state, i.e. the zero-3-momentum state f . Thus, if the condensation

process singles out a certain reference frame Σ, the fundamental question is how to

reconcile this picture with the basic postulate of axiomatic QFT: the exact Lorentz

invariance of the vacuum.28 This postulate, meaning that the vacuum state must

remain unchanged under Lorentz boost, should not be confused with the condition

that only local scalars (as the Higgs field, or the gluon condensate, or the chiral

condensate...) acquire a non-zero vacuum expectation value.

To make this evident, let us introduce the reference vacuum state |Ψ(0)⟩, ap-
propriate to the observer at rest in the Σ−frame singled out by the condensation

process, and the corresponding vacuum states |Ψ′⟩, |Ψ′′⟩,.. appropriate to mov-

ing observers S′, S′′,... By assuming that these different vacua are generated by

eBefore our work, the idea that the phenomenon of vacuum condensation could produce ‘concep-

tual tensions’ with both Special and General Relativity, was discussed by Chiao:26 “The physical

vacuum, an intrinsically nonlocal ground state of a relativistic quantum field theory, which pos-

sesses certain similarities to the ground state of a superconductor... This would produce an unusual

‘quantum rigidity’ of the system, associated with what London called the ‘rigidity of the macro-

scopic wave function’... The Meissner effect is closely analog to the Higgs mechanism in which the

physical vacuum also spontaneously breaks local gauge invariance ”.26

f In the physically relevant case of the Standard Model, the phenomenon of vacuum condensation

can be summarized by saying that “What we experience as empty space is nothing but the con-

figuration of the Higgs field that has the lowest possible energy. If we move from field jargon to

particle jargon, this means that empty space is actually filled with Higgs particles. They have Bose

condensed”.27

alan
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Lorentz boost unitary operators U ′, U ′′...acting on |Ψ(0)⟩, say |Ψ′⟩ = U ′|Ψ(0)⟩,
|Ψ′′⟩ = U ′′|Ψ(0)⟩... For any Lorentz-scalar operator G, such that G = (U ′)†GU ′ =

(U ′′)†GU ′′..., it follows trivially

⟨G⟩Ψ(0) = ⟨G⟩Ψ′ = ⟨G⟩Ψ′′ = .. (1)

However, this by no means implies |Ψ(0)⟩ = |Ψ′⟩ = |Ψ′′⟩... To this end, one should

construct explicitly the three boost generators L0i (with i=1,2,3) and show that

L0i|Ψ(0)⟩ = 0. But, in four space-time dimensions, the explicit construction of these

operators, and of the corresponding Poincaré algebra g is only known for the free-

field case through the simple Wick-ordering prescription relatively to the free-field

vacuum |0⟩. In an interacting theory, the construction is implemented order by

order in perturbation theory. Therefore, in the presence of non-perturbative phe-

nomena (such as Spontaneous Symmetry Breaking, chiral symmetry breaking, gluon

condensation...) where the physical vacuum |Ψ(0)⟩ cannot be constructed from the

free-field vacuum |0⟩ order by order in perturbation theory, proving the Lorentz

invariance of the vacuum represents an insurmountable problem. In this situation,

with a Lorentz-invariant interaction, the resulting theory will still be Lorentz covari-

ant but, with a non-Lorentz-invariant vacuum, there would be a preferred reference

frame h.

1.3. Relativity and the CMB

Finally, some remarks about the physical nature of the hypothetical Σ−frame. A

natural candidate is the reference system where the temperature of the CMB looks

exactly isotropic or, more precisely, where the CMB kinematic dipole30 vanishes.

This dipole is in fact a direct consequence of the motion of the Earth (β = V/c)

T (θ) =
To

√
1− β2

1− β cos θ
(2)

gThis means an operatorial representation of the 10 generators Pµ and Lµν (µ, ν= 0, 1, 2, 3),

where Pµ describe the space-time translations and Lµν = −Lνµ the space rotations and Lorentz

boosts, with commutation relations [Pµ, Pν ] = 0, [Lµν , Pρ] = iηνρPµ − iηµρPν and [Lµν , Lρσ ] =

−iηµρLνσ + iηµσLνρ − iηνσLµρ + iηνρLµσ where ηµν = diag(1,−1,−1,−1) is the Minkowski

tensor. A Lorentz-invariant vacuum has to be annihilated by all 10 generators.
hTo our knowledge,in four space-time dimensions, a non-perturbative analysis of a Lorentz-

invariant vacuum has been attempted by very few authors. In the case of non-linear field theories

with P (Φ(x)) interactions, such as Φ4(x), this was discussed by Segal.29 He considered a suitable

generalization of the standard Wick ordering : P (Φ) : relative to |0⟩, say :: P (Φ) ::, such that

⟨Ψ(0)| :: P (Φ) :: |Ψ(0)⟩ = 0 in the true vacuum state. His conclusion was that :: P (Φ) :: is not

well-defined until the physical vacuum is known, but, at the same time, the physical vacuum also

depends on the definition given for :: P (Φ) ::. From this type of circularity Segal concluded that, in

general, in such a nonlinear QFT, the physical vacuum will not be invariant under the full Lorentz

symmetry of the underlying Lagrangian density.
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Accurate observations with satellites in space31 have shown that the measured tem-

perature variations correspond to a motion of the solar system described by an

average velocity V ∼ 370 km/s, a right ascension α ∼ 168o and a declination

γ ∼ −7o, pointing approximately in the direction of the Leo constellation. This

means that, if one sets To ∼ 2.7 K and β ∼ 0.00123, there are angular variations of

a few millikelvin

∆TCMB(θ) ∼ Toβ cos θ = ±3.3 mK (3)

which represent by far the dominant contribution to the CMB anisotropy.

Could the reference system with vanishing CMB dipole represent the funda-

mental preferred frame for relativity as in the original Lorentzian formulation? The

standard answer is that one should not confuse these two concepts. The CMB is

a definite medium and, as such, sets a rest frame where the dipole anisotropy is

zero. Our motion with respect to this system has been detected but, by itself, this

is not in contradiction with Special Relativity. Though, to good approximation, this

kinematic dipole arises by combining the various forms of peculiar motion which

are involved (rotation of the solar system around the center of the Milky Way, mo-

tion of the Milky Way toward the center of the Local Group, motion of the Local

Group of galaxies in the direction of the Great Attractor...)31 . Thus, if one could

switch-off the local inhomogeneities that produce these peculiar forms of motion, it

is natural to imagine a global frame of rest associated with the Universe as a whole.

A vanishing CMB dipole could then just indicate the existence of this fundamental

system Σ that we may conventionally decide to call ‘ether’ but the cosmic radiation

itself would not coincide with this form of ether.

This is why, to discriminate between the two concepts, Michelson-Morley type of

experiments become crucial. Detecting a small angular dependence of the velocity

of light in the Earth laboratory, and correlating this angular dependence with the

Earth cosmic motion, would provide the missing link with the logical arguments

from Quantum Non-Locality i and with the idea of a condensed vacuum which

selects a particular reference frame through the macroscopic occupation of the same

zero 3-momentum state. More generally a non-null interpretation of the Michelson-

Morley experiments would resolve the puzzle of a world endowed with a fundamental

space and a fundamental time whose existence, otherwise, would remain forever

hidden to us.

After this general Introduction, we will start by reviewing in Sect.2 the basic

ingredients for a modern analysis of the Michelson-Morley experiments. Then we

will summarize in Sects.3 and 4 our re-analysis7–10 of the classical experiments

i“Non-Locality is most naturally incorporated into a theory in which there is a special frame of

reference. One possible candidate for this special frame of reference is the one in which the CMB

is isotropic. However, other than the fact that a realistic interpretation of quantum mechanics

requires a preferred frame and the CMB provides us with one, there is no readily apparent reason

why the two should be linked”.32
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and in Sect.5 the corresponding treatment of the present experiments with optical

resonators. As a matter of fact, once the small residuals are analyzed in our scheme,

the long sought Σ−frame tight to the CMB is naturally emerging. Sect.6 will finally

contain a summary and our conclusions.

2. A modern view of the ‘ether-drift’ experiments

The Michelson-Morley experiments are also called ‘ether-drift’ experiments because

they were designed to detect the drift of the Earth in the ether by observing a

dragging of light associated with the Earth cosmic motion. Today, experimental

evidence for both the undulatory and corpuscular aspects of radiation has substan-

tially modified the consideration of an underlying ethereal medium, as support of the

electromagnetic waves, and its logical need for the physical theory. Besides, Lorentz

Transformations forbid dragging and the irregular behavior of the small observed

residuals is inconsistent with the smooth time modulations that one would expect

from the Earth rotation. Therefore, at first sight, the idea of detecting a non-null

effect seems hopeless.

However, as anticipated, dragging is only forbidden if the velocity of light in

the interferometers is the same parameter c of Lorentz transformations. For in-

stance, when light propagates in a gas, the sought effect of a preferred system Σ

could be due to the small fraction of refracted light. Obviously, this would be much

smaller than classically expected but, in view of the extraordinary precision of the

interferometers, it could still be measurable. In addition, the idea of smooth time

modulations of the signal reflects the traditional identification of the local velocity

field, which describes the drift, with the projection of the global Earth motion at

the experimental site. This identification is equivalent to a form of regular, laminar

flow where global and local velocity fields coincide. Instead, depending on the na-

ture of the physical vacuum, the two velocity fields could only be related indirectly,

as it happens in turbulent flows, so that numerical simulations would be needed for

a consistent statistical description of the data.

In the following, we will summarize the scheme of refs.7–10 starting with the case

of light propagating in gaseous media, as for the classical experiments.

2.1. Basics of the ether-drift experiments

In the classical measurements in gases (Michelson-Morley, Miller, Tomaschek,

Kennedy, Illingworth, Piccard-Stahel, Michelson-Pease-Pearson, Joos)33-,43 one was

measuring the fringe shifts produced by a rotation of the interferometer. Instead,

in modern experiments, with lasers stabilized by optical cavities, see e.g.44 for a

review, one measures frequency shifts. The modern experiments adopt a different

technology but, in the end, have exactly the same scope: searching for an anisotropy

of the two-way velocity of light c̄γ(θ) which is the only one that can be measured
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Fig. 2. A schematic illustration of the Michelson interferometer. Note that, by computing the

transit times as in Eq.(6), we are assuming the validity of Lorentz transformations so that the

length of a rod does not depend on its orientation in the frame S where it is at rest.

unambiguously

c̄γ(θ) =
2cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
(4)

By introducing its anisotropy

∆c̄θ = c̄γ(π/2 + θ)− c̄γ(θ) (5)

there is a simple relation with the time difference ∆t(θ) for light propagation back

and forth along perpendicular rods of length D. In fact, by assuming the validity of

Lorentz transformations, the length of a rod does not depend on its orientation, in

the S frame where it is at rest, see Fig.2, and one finds,

∆t(θ) =
2D

c̄γ(θ)
− 2D

c̄γ(π/2 + θ)
∼ 2D

c

∆c̄θ
c

(6)

(where, in the last relation, we have assumed that light propagates in a medium of

refractive index N = 1 + ϵ, with ϵ ≪ 1). This gives directly the fringe patterns (λ

is the light wavelength)

∆λ(θ)

λ
∼ 2D

λ

∆c̄θ
c

(7)

which were measured in the classical experiments.

In modern experiments, on the other hand, a possible anisotropy of c̄γ(θ) would

show up through the relative frequency shift, i.e. the beat signal, ∆ν(θ) of two

orthogonal optical resonators, see Fig.3. Their frequency

ν(θ) =
c̄γ(θ)m

2L
(8)

is proportional to the two-way velocity of light within the resonator through an

integer number m, which fixes the cavity mode, and the length of the cavity L as
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Fig. 3. The scheme of a modern ether-drift experiment. The light frequencies are first stabilized by

coupling the lasers to Fabry-Perot optical resonators. The frequencies ν1 and ν2 of the resonators

are then compared in the beat note detector which provides the frequency shift ∆ν(θ) = ν1(π/2 +

θ)− ν2(θ). For a review, see e.g.44

measured in the laboratory S′ frame. Therefore, once the length of a cavity in its

rest frame does not depend on its orientation, one finds

∆ν(θ)

ν0
∼ ∆c̄θ

c
(9)

where ν0 is the reference frequency of the two resonators.

2.2. The limit of refractive index N = 1 + ϵ

Let us consider light propagating in a medium which is close to the ideal vacuum

limit, i.e. whose refractive index is N = 1 + ϵ with ϵ ≪ 1. The medium (e.g. a gas)

fills an optical cavity at rest in a frame S which moves with velocity v with respect

to the hypothetical Σ. Now, by assuming i) that the velocity of light is exactly

isotropic when S ≡ Σ and ii) the validity of Lorentz transformations, then any

anisotropy in S should vanish identically either for v = 0 or for the ideal vacuum case

N = 1 when the velocity of light cγ coincides with the basic parameter c of Lorentz

transformations. Thus, one can expand in powers of the two small parameters ϵ and

β = v/c. By taking into account that, by its very definition, the two-way velocity

c̄γ(θ) is invariant under the replacement β → −β and that, for any fixed β, is also

invariant under the replacement θ → π + θ, to lowest non-trivial level O(ϵβ2), one

finds the general expression7,24

c̄γ(θ) ∼
c

N

[
1− ϵ β2

∞∑
n=0

ζ2nP2n(cos θ)

]
(10)

Here, to take into account invariance under θ → π + θ, the angular dependence

has been given as an infinite expansion of even-order Legendre polynomials with

arbitrary coefficients ζ2n = O(1). In Einstein’s Special Relativity, where there is
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no preferred reference frame, these ζ2n coefficients should vanish identically. In a

Lorentzian approach, on the other hand, there is no reason why they should vanish

a priori j.

By leaving out the first few ζ’s as free parameters in the fits, Eq.(10) could

already represent a viable form to compare with experiments. Still, one can further

sharpen the predictions by exploiting one more derivation of the ϵ → 0 limit with

a preferred frame. This other argument is based on the effective space-time metric

gµν = gµν(N ) which, through the relation gµνpµpν = 0, describes light propagation

in a medium of refractive index N . For the quantum theory, a derivation of this

metric from first principles was given by Jauch and Watson46 who worked out

the quantization of the electromagnetic field in a dielectric. They noticed that the

procedure introduces unavoidably a preferred reference frame, the one where the

photon energy spectrum does not depend on the direction of propagation, and which

is “usually taken as the system for which the medium is at rest”. However, such an

identification reflects the point of view of Special Relativity with no preferred frame.

Instead, one can adapt their results to the case where the angle-independence of

the photon energy is only valid when both medium and observer are at rest in some

particular frame Σ.

In this perspective, let us consider two identical optical cavities, namely cavity

1, at rest in Σ, and cavity 2, at rest in S, and denote by πµ ≡ (Eπ

c , π) the light

4-momentum for Σ in his cavity 1 and by pµ ≡ (
Ep

c ,p) the corresponding light

4-momentum for S in his cavity 2. Let us also denote by gµν the space-time metric

that S uses in the relation gµνpµpν = 0 and by

γµν = diag(N 2,−1,−1,−1) (11)

the metric used by Σ in the relation γµνπµπν = 0 and which gives an isotropic

velocity cγ = Eπ/|π| = c
N .

Now, Special Relativity was formulated, more than a century ago, by assuming

the perfect equivalence of two reference systems in uniform translational motion.

Instead, with a preferred frame Σ, as far as light propagation is concerned, this

physical equivalence is only assumed in the ideal N = 1 limit. As anticipated, for

N ̸= 1, where light gets absorbed and then re-emitted, the fraction of refracted light

could keep track of the particular motion of matter with respect to Σ and produce,

in the frame S where matter is at rest, an angular dependence of the velocity of

light. Equivalently, assuming that the solid parts of cavity 2 are at rest in a frame

S, which is in uniform translational motion with respect to Σ, no longer implies

that the medium which stays inside, e.g. the gas, is in a state of thermodynamic

jAs anticipated, for Lorentz, only a conspiracy of effects prevents to detect the motion with respect

to the ether, which, however different might be from ordinary matter, is nevertheless endowed with

a certain degree of substantiality. For this reason, in his view, “it seems natural not to assume at

starting that it can never make any difference whether a body moves through the ether or not”.45
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equilibriumk. Thus, one should keep an open mind and exploit the implications of

the basic condition

gµν(N = 1) = γµν(N = 1) = ηµν (12)

where ηµν is the Minkowski tensor. This standard equality amounts to introduce a

transformation matrix, say Aµ
ν , such that

gµν = Aµ
ρA

ν
ση

ρσ = ηµν (13)

This relation is strictly valid for N = 1. However, by continuity, one is driven to

conclude that an analogous relation between gµν and γµν should also hold in the

ϵ → 0 limit. The only subtlety is that relation (13) does not fix uniquely Aµ
ν . In fact,

one can either choose the identity matrix, i.e. Aµ
ν = δµν , or a Lorentz transformation,

i.e. Aµ
ν = Λµ

ν . Since for any finite v these two matrices cannot be related by an

infinitesimal transformation, it follows that Aµ
ν is a two-valued function in the ϵ → 0

limit. Therefore, in principle, there are two solutions. If Aµ
ν is the identity matrix,

we find a first solution

[gµν(N )]1 = γµν ∼ ηµν + 2ϵδµ0 δ
ν
0 (14)

while, if Aµ
ν is a Lorentz transformation, we find the other solution

[gµν(N )]2 = Λµ
ρΛ

ν
σγ

ρσ ∼ ηµν + 2ϵvµvν (15)

vµ being the dimensionless S 4-velocity, vµ ≡ (v0,v/c) with vµv
µ = 1.

Notice that with the former choice, implicitly adopted in Special Relativity

to preserve isotropy in all reference systems also for N ̸= 1, one is introducing

a discontinuity in the transformation matrix for any ϵ ̸= 0. Indeed, the whole

emphasis on Lorentz transformations depends on enforcing Eq.(13) for Aµ
ν = Λµ

ν so

that ΛµσΛν
σ = ηµν and the Minkowski metric applies to all equivalent frames.

On the other hand, with the latter solution, by replacing in the relation

pµpνg
µν = 0, the photon energy now depends on the direction of propagation.

Then, by defining the light velocity cγ(θ) from the ratio Ep/|p|, one finds7,24

cγ(θ) ∼
c

N
[
1− 2ϵβ cos θ − ϵβ2(1 + cos2 θ)

]
(16)

and a two-way velocity

c̄γ(θ) =
2cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
∼ c

N
[
1− ϵβ2

(
1 + cos2 θ

)]
≡ c

N̄ (θ)
(17)

kThink for instance of the collective interaction of a gaseous medium with the CMB radiation

or with hypothetical dark matter in the Galaxy. However weak this interaction may be, it would

mimic a non-local thermal gradient that could bring the gas out of equilibrium. The advantage of

the following analysis is that it only uses symmetry properties without requiring a knowledge of

the underlying dynamical processes.
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here θ is the angle between v and p (as defined in the S frame) and

N̄ (θ) ∼ N [1 + ϵβ2(1 + cos2 θ)] (18)

Eq.(17) corresponds to setting in Eq.(10) ζ0 = 4/3, ζ2 = 2/3 and all ζ2n = 0 for

n > 1 and can be considered a modern version of Maxwell’s original calculation.48

It represents a definite, alternative model for the interpretation of experiments per-

formed close to the ideal vacuum limit ϵ = 0, such as in gaseous systems, and will

be adopted in the following l.

3. A first look at the classical experiments

From Eq.(17) we find a fractional anisotropy

∆c̄θ
c

=
c̄γ(π/2 + θ)− c̄γ(θ)

c
∼ ϵ (v2/c2) cos 2θ (19)

which produces a fringe pattern

∆λ(θ)

λ
=

2D

λ

∆c̄θ
c

∼ D

λ
2ϵ

v2

c2
cos 2θ (20)

The dragging of light in the Earth frame is then described as a pure 2nd-harmonic

effect, which is periodic in the range [0, π], as in the classical theory (see e.g.47).

However, its amplitude

A2 =
D

λ
2ϵ

v2

c2
(21)

is now much smaller being suppressed by the factor 2ϵ relatively to the classical

value. This was traditionally reported for the orbital velocity of 30 km/s as

Aclass
2 =

D

λ
(
30 km/s

c
)2 (22)

This difference could then be re-absorbed into an observable velocity which is related

to the kinematical velocity v through the gas refractive index

v2obs ∼ 2ϵv2 (23)

so that

A2 =
D

λ

v2obs
c2

(24)

lA conceptual detail concerns the relation of the gas refractive index N , as defined in the Σ−frame

through Eq.(11), to the experimental quantity Nexp which is extracted from measurements of the

two-way velocity in the Earth laboratory. By assuming a θ−dependent refractive index as in Eq.(18)

one should thus define Nexp by an angular average, i.e. Nexp ≡ ⟨N̄ (θ)⟩θ = N
[
1 + 3

2
(N − 1)β2

]
.

One can then determine the unknown value N ≡ N (Σ) (as if the container of the gas were at rest

in Σ), in terms of the experimentally known quantity Nexp ≡ N (Earth) and of v. As discussed

in refs.7-,10 for v ∼ 370 km/s, the resulting difference |Nexp − N| ≲ 10−9 is well below the

experimental accuracy on Nexp and, for all practical purposes, can be ignored.
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Fig. 4. The observable velocity reported by Miller35 for various experiments.

Thus, this vobs is the small velocity traditionally extracted from the measured am-

plitude AEXP
2 in the classical analysis of the experiments

vobs ∼ 30 km/s

√
AEXP

2

Aclass
2

(25)

see e.g. Fig.4.

We can now understand the pattern observed in the classical experiments. For

instance, in the original Michelson-Morley experiment, where D
λ ∼ 2 · 107, the

classically expected amplitude was Aclass
2 ∼ 0.2. But the experimental amplitude

measured in the six sessions was AEXP
2 = 0.01 ÷ 0.02. This corresponds to an

average anisotropy
|∆c̄θ|exp

c ∼ 4 · 10−10 and was originally interpreted in terms of

a velocity vobs ∼ 8 km/s. However, for an experiment in air at room temperature

and atmospheric pressure where ϵ ∼ 2.8 · 10−4, this observable velocity would now

correspond to a true kinematic value v ∼ 340 km/s which would fit well with the

cosmic motion indicated by the CMB dipole anistropy. Therefore, the importance

of the issue requires to sharpen the analysis of the old experiments, starting from

the early 1887 trials.

3.1. The 1887 Michelson-Morley experiment in Cleveland

The precision of the Michelson-Morley apparatus33 was extraordinary, about ±0.004

of a fringe. For all details, we address the reader to our book.9 Here, we just limit

ourselves to quote from Born.49 When discussing the classically expected fringe

shift upon rotation of the apparatus by 90 degrees, namely 2Aclass
2 ∼ 0.4, he says

explicitly: “Michelson was certain that the one-hundredth part of this displacement

would still be observable” (i.e. 0.004). As a check, the Michelson-Morley fringe shifts

were recomputed in refs.7,9, 50 from the original article,33 see Table 1. These data
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were then analyzed in a Fourier expansion, see e.g. Fig.5 (note that a 1st-harmonic

has to be present in the data due to the arrangement of the mirrors needed to have

fringes of finite width, see35,51). One can thus extract amplitude and phase of the

2nd-harmonic component by fitting the even combination of fringe shifts

B(θ) =
∆λ(θ) + ∆λ(π + θ)

2λ
(26)

see Fig.6.

Table 1. The fringe shifts
∆λ(i)

λ
for all noon (n.) and evening (e.) sessions of the Michel-

son-Morley experiment. The angle of rotation is defined as θ = i−1
16

2π. The Table is taken

from ref.7

i July 8 (n.) July 9 (n.) July 11 (n.) July 8 (e.) July 9 (e.) July 12 (e.)

1 −0.001 +0.018 +0.016 −0.016 +0.007 +0.036

2 +0.024 −0.004 −0.034 +0.008 −0.015 +0.044

3 +0.053 −0.004 −0.038 −0.010 +0.006 +0.047

4 +0.015 −0.003 −0.066 +0.070 +0.004 +0.027

5 −0.036 −0.031 −0.042 +0.041 +0.027 −0.002

6 −0.007 −0.020 −0.014 +0.055 +0.015 −0.012

7 +0.024 −0.025 +0.000 +0.057 −0.022 +0.007

8 +0.026 −0.021 +0.028 +0.029 −0.036 −0.011

9 −0.021 −0.049 +0.002 −0.005 −0.033 −0.028

10 −0.022 −0.032 −0.010 +0.023 +0.001 −0.064

11 −0.031 +0.001 −0.004 +0.005 −0.008 −0.091

12 −0.005 +0.012 +0.012 −0.030 −0.014 −0.057

13 −0.024 +0.041 +0.048 −0.034 −0.007 −0.038

14 −0.017 +0.042 +0.054 −0.052 +0.015 +0.040

15 −0.002 +0.070 +0.038 −0.084 +0.026 +0.059

16 +0.022 −0.005 +0.006 −0.062 +0.024 +0.043

The 2nd-harmonic amplitudes for the six experimental sessions are reported in

Table 2. Due to their statistical consistency, one can compute the mean and variance

and obtainAEXP
2 ∼ 0.016±0.006. This value is consistent with an observable velocity

vobs ∼ 8.5 +1.7
−2.2 km/s (27)

in complete agreement with Miller, ses Fig.4. In this sense, our re-analysis supports

the claims of Hicks and Miller. The fringe shifts were much smaller than expected

but in two experimental sessions (11 July noon and 12 July evening), the second-

harmonic amplitude is non-zero at the 5σ level and in other two sessions (July 9

noon and July 8 evening) is non-zero at the 3σ level. As such, the average measured

amplitude AEXP
2 ∼ 0.016, although much smaller than the classical expectation

Aclass
2 ∼ 0.2, was not completely negligible. Thus it is natural to ask: should this
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Fig. 5. The fringe shifts for the session of July 9 evening. The fit is performed by including

terms up to fourth harmonics. The figure is taken from ref.50

Fig. 6. A fit to the even combination B(θ) Eq.(26). The second harmonic amplitude is AEXP
2 =

0.025± 0.005 and the fourth harmonic is AEXP
4 = 0.004± 0.005. The figure is taken from ref.50

value be interpreted as a typical instrumental artifact (a “null result”) or could also

indicate a genuine ether-drift effect? Of course, this question is not new and, in the

past, greatest experts have raised objections to the standard null interpretation of

the data. This point of view was well summarized by Miller in 193335 as follows:

“The brief series of observations (by Michelson and Morley) was sufficient to show

clearly that the effect did not have the anticipated magnitude. However, and this

fact must be emphasized, the indicated effect was not zero”. The same conclusion

had already been obtained by Hicks in 1902:51 “The data published by Michelson

and Morley, instead of giving a null result, show distinct evidence for an effect of the

kind to be expected”. There was a 2nd-harmonic effect whose amplitude, however,

was substantially smaller than the classical expectation (see Fig.7).

Thus the real point about the Michelson-Morley data does not concern the small
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Table 2. The 2nd-harmonic am-

plitudes for the six experimental

sessions of the Michelson-Morley

experiment. The table is taken

from ref.7

SESSION AEXP
2

July 8 (noon) 0.010± 0.005

July 9 (noon) 0.015± 0.005

July 11 (noon) 0.025± 0.005

July 8 (evening) 0.014± 0.005

July 9 (evening) 0.011± 0.005

July 12 (evening) 0.024± 0.005

Fig. 7. The even combination of fringe shifts B(θ) for the Michelson-Morley data as reported by

Hicks.51 Solid and dashed lines refer respectively to noon and evening observations. Compare the

solid curve of July 11th with the analogous curve in Fig.6.

magnitude of the amplitude but the sizeable changes in the ‘azimuth’, i.e in the

phase θ2 of the 2nd-harmonic which gives the direction of the drift in the plane

of the interferometer. By performing observations at the same hour on consecutive

days (so that variations in the orbital motion are negligible) one expects that this

angle should remain the same within the statistical errors. Now, by taking into
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account that, in a 2nd-harmonic effect, the angle is always defined up to ±180o,

one choice for the experimental θ2−values is 357o ± 14o, 285o ± 10o and 317o ± 8o

respectively for the noon sessions of July 8th, 9th and 11th. For this assignment, the

individual velocity vectors vobs(cos θ2,− sin θ2) and their mean are shown in Fig. 8.

As a consequence, directly averaging the amplitudes of the individual sessions is

considerably different from first performing the vector average of the data and then

computing the resulting amplitude. In the latter case, the average amplitude is

reduced from 0.016 to about 0.011, with a central value of the observable velocity

which decreases from 8.5 km/s to 7 km/s.

This irregular character of the observations has always represented a strong ar-

gument to interpret the small observed residuals as typical instrumental effects.

Fig. 8. The observable velocities for the three noon sessions of the Michelson-Morley experiment

and their mean. The x-axis corresponds to θ2 = 0o ≡ 360o and the y-axis to θ2 = 270o. Statistical

uncertainties of the various determinations are not reported. All individual directions could also

be reversed by 180o. The figure is taken from.7

3.2. Further insights: Miller vs. Piccard-Stahel

To get further insights we have compared two other sets of measurements, namely

Miller’s observations35 and those performed by Piccard and Stahel.39 Miller’s large

interferometer had an optical path of about 32 metres and was installed on top

of Mount Wilson. His most extensive observations were made in blocks of ten days

around April 1, August 1, September 15, 1925, and later on around February 8, 1926,

with a total number of 6402 turns of the interferometer.35 The result of his 1925

measurements, presented at the APS meeting in Kansas City on December 1925,

was confirming his original claim of 1921, namely “there is a positive, systematic

ether-drift effect, corresponding to a relative motion of the Earth and the ether,

which at Mt. Wilson has an apparent velocity of 10 km/s”.
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Being aware that Miller’s previous 1921 announcement of a non-zero ether-drift

of about 9 km/s, if taken seriously, could undermine the basis of Einstein’s relativity

(Miller’s results “carried a mortal blow to the theory of relativity”), Piccard and

Stahel realized a precise apparatus with a small optical path of 280 cm that could

be carried on board of a free atmospheric balloon (at heights of 2500 and 4500 m)

to check the dependence on altitude. In this first series of measurements thermal

disturbances were so strong that they could only set an upper limit of about 9

km/s to the magnitude of any ether-drift. However, after this first series of trials,

precise observations were performed on dry land in Brussels and on top of Mt.Rigi

in Switzerland (at an height of 1800 m).

Despite the optical path was much shorter than the size of the instruments

used at that times in the United States, Piccard and Stahel were convinced that

the precision of their measurements was higher because spurious disturbances were

less important. In particular, with respect to the traditional direct observation, the

fringe shifts were registered by photographic recording. Also, for thermal insulation,

the interferometer was surrounded either by a thermostat filled with ice or by an

iron enclosure where it could be possible to create a vacuum. This last solution was

considered after having understood that the main instability in the fringe system

was due to thermal disturbances in the air of the optical arms (rather than to

temperature differences in the solid parts of the apparatus). However, very often

the interference fringes were put out of order after few minutes by the presence of

residual bubbles of air in the vacuum chamber. For this reason, they finally decided

to run the experiment at atmospheric pressure with the ice thermostat which, by

its great heat capacity, was found to stabilize the temperature in a satisfactory way.

We have thus considered the compatibility of these two experiments. Miller was

always reporting his observations by quoting separately the amplitude and the phase

of the individual sessions. In this way, as shown in Fig.4, the average observable

velocity, obtained from a classical interpretation of his data, was vobs ∼ 8.4 ± 2.2

km/s. Piccard and Stahel were instead first performing a vector average of the data

and, since the phase was found to vary in a completely arbitrary way, were quoting

the much smaller value vobs ∼ (1.5÷1.7) km/s. For this reason, their measurements

are traditionally considered a definite refutation of Miller.

But suppose that the ether-drift phenomenon has an intrinsic non-deterministic

nature, which induces random fluctuations in the direction of the local drift. In this

case, a vector average of the data from various sessions would completely obscure

the physical information contained in the individual observations. For this reason,

a meaningful comparison with Miller requires to apply his same procedure to the

Piccard-Stahel data. Namely, first summarizing each measurement into a definite

pair (AEXP
2 , θEXP

2 ) for amplitude and azimuth, and then computing the magnitude

of the observable velocity from the measured amplitudes. With this different pro-

cedure, the Piccard and Stahel observable velocity, at the 75% CL, becomes now
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Fig. 9. We report in panel (a) the probability histogram W for the observable velocity obtained

from the 24 individual amplitudes reported by Piccard and Stahel in.39 In panel (c) we report the

analogous histogram obtained from Miller’s Figure 22d in.35 In both cases, the vertical normal-

ization is to a unit area. Finally, in panel (b) we report the overlap of the two histograms. The

area of the overlap is 0.645. This gives a consistency between the two experiments of about 64%.

The figure is taken from.9

much larger, namely

vobs = 6.3+1.5
−2.0 km/s (Piccard− Stahel) (28)

and is now compatible with Miller’s results. For a more refined test, we constructed

probability histograms by considering the large set of measurements reported by

Miller in Figure 22d of35 and the 24 individual amplitudes reported by Piccard

and Stahel in,39 see Fig.9. From the area of the overlap, the consistency of the two

experiments can be estimated to be about 64% which is a quite high level. At the

same time, since the agreement is restricted to the region vobs < 9 km/s, Miller’s

higher values are likely affected by systematic disturbances. This would confirm

Piccard and Stahel’s claim that their apparatus, although of a smaller size, was

more precise.

Therefore, summarizing, there is a range of observable velocity, say vobs ∼
6.0 ± 2.0 km/s, where the results of the three experiments we have considered,

namely Michelson-Morley, Miller and Piccard and Stahel, overlap consistently. This

common range is obtained from the 2nd-harmonic amplitudes measured in a plenty

of experimental sessions performed at different sidereal times and in different lab-

oratories. As such, to a large extent, it should also be independent of spurious

systematic effects. On the basis of Eq.(23), this range corresponds to a true kine-

matic velocity v ∼ 250± 80 km/s which could reasonably fit with the projection of

the Earth velocity within the CMB at the various laboratories. Truly enough, this

is only a first, partial view which must be supplemented by a deeper understanding

of the observed random variability of the phase.
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Fig. 10. The propagation of light in an optical cavity. It is emphasized that, independently of its

particular name (physical vacuum, ether...) and differently from the solid parts of the apparatus,

the underlying substrate is not completely entrained with the Earth motion. Thus, in general, its

state of motion vµ(t) is different from ṽµ(t).

4. Going deeper into the ether-drift phenomenon

The traditional expectation that an ether drift should precisely follow the smooth

modulations induced by the Earth rotation, derives from the identification of the

local velocity field which describes the drift in the plane of the interferometer, say

vµ(t), with the corresponding projection of the global Earth motion, say ṽµ(t). By

comparing with the motion of a macroscopic body in a fluid, this identification

is equivalent to assume a form of regular, laminar flow, where global and local

velocity fields coincide. Depending on the nature of the fluid, this assumption may

be incorrect.

To formulate an alternative model of ether drift, in refs.,7–10 we started from

Maxwell’s original view48 of light as a wave process which takes place in some sub-

strate: “We are therefore obliged to suppose that the medium through which light

is propagated is something distinct from the transparent media known to us”. He

was calling the underlying substrate ‘ether’ while, today, we prefer to call it ‘phys-

ical vacuum’. However, this is irrelevant. The essential point for the propagation

of light, e.g. inside an optical cavity, is that, differently from the solid parts of the

apparatus, this physical vacuum is not completely entrained with the Earth motion

see Fig.10.

Thus, to explain the irregular character of the data, one could try to model

the state of motion of the vacuum substrate as in a turbulent fluid52,53 or, more

precisely, as in a fluid in the limit of zero viscosity. Then, the simple picture of a

laminar flow is no more obvious due to the subtlety of the infinite-Reynolds-number

limit, see e.g. Sect. 41.5 in Vol.II of Feynman’s lectures.54 In fact, beside the laminar

regime where vµ(t) = ṽµ(t), there is also another solution where vµ(t) becomes a

continuous but nowhere differentiable velocity field55,56 m.

mThe idea of the physical vacuum as an underlying stochastic medium, similar to a turbulent

fluid, is deeply rooted in basic foundational aspects of both quantum physics and relativity. For



February 21, 2024 2:5 WSPC/INSTRUCTION FILE Consoli˙review˙arxiv

Instructions for typing manuscripts (paper’s title) 23

Fig. 11. We compare two different signals. Panel a) reports the turbulent velocity field measured

in a wind tunnel.67 Panel b) reports the instantaneous frequency shift measured with vacuum

optical resonators in ref.68 For the adopted laser frequency ν0 = 2.8 · 1014 Hz a ∆ν = ±1 Hz

corresponds to a fractional value ∆ν/ν0 of about ±3.5 · 10−15.

Together with these theoretical arguments, the analogy with a turbulent flow

finds support in modern ether drift experiments where one measures the frequency

shifts of two optical resonators. To this end, consider Fig.11. Panel a) reports the

turbulent velocity field measured in a wind tunnel.67 No doubt, this is a genuine

signal, not noise. Panel b) reports instead the instantaneous frequency shift mea-

sured with vacuum optical cavities in ref.68 So far, this other signal is interpreted

as spurious noise.

Consider now Fig.12. Panel a) shows the power spectrum S(ω) ∼ ω−1.5 of the

instance, at the end of XIX century, the last model of the ether was a fluid full of very small

whirlpools (a ‘vortex-sponge’).57 The hydrodynamics of this medium was accounting for Maxwell

equations and thus providing a model of Lorentz symmetry as emerging from a system whose

elementary constituents are governed by Newtonian dynamics. In a different perspective, the idea

of a quantum ether, as a medium subject to the fluctuations of the uncertainty relations, was

considered by Dirac.58 More recently, the model of turbulent ether has been re-formulated by

Troshkin59 (see also60 and61) within the Navier-Stokes equation, by Saul62 within Boltzmann’s

transport equation and in63 within Landau’s hydrodynamics. The same picture of the vacuum (or

ether) as a turbulent fluid was Nelson’s64 starting point. In particular, the zero-viscosity limit gave

him the motivation to expect that “the Brownian motion in the ether will not be smooth” and,

therefore, to conceive the particular form of kinematics at the base of his stochastic derivation of

the Schrödinger equation. A qualitatively similar picture is also obtained by representing relativis-

tic particle propagation from the superposition, at short time scales, of non-relativistic particle

paths with different Newtonian mass.65 In this formulation, particles randomly propagate (as in a

Brownian motion) in an underlying granular medium which replaces the trivial empty vacuum.66

alan
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Fig. 12. We compare two different signals. Panel a) reports the power spectrum S(ω) ∼ ω−1.5

of the wind turbulence measured at the Florence Airport.69 Panel b) shows the spectral amplitude√
S(ω) ∼ ω−0.7 of the frequency shift measured by Nagel et al.70 Above some minimal frequency

the two curves reach a flat plateau. This corresponds to the maximum integration time beyond

which the signal ceases to behave as a pure white-noise.

wind turbulence measured at the Florence Airport.69 No doubt, this is a physical

signal. Panel b) shows the spectral amplitude
√
S(ω) ∼ ω−0.7 of the frequency shift

measured by Nagel et al.70 Again, this latter signal is interpreted as spurious noise.

Clearly these are just analogies but, very often, physical understanding proceeds

by analogies. We have thus exploited the idea that the irregular signal observed in

ether-drift experiments has a fundamental stochastic nature as when turbulence, at

small scales, becomes statistically homogeneous and isotropic. With such an irregu-

lar signal numerical simulations are needed for a consistent description of the data.

Therefore, for a check, one should first extract from the data the (2nd-harmonic)

phase and amplitude and concentrate on the latter which is positive definite and re-

mains non-zero under any averaging procedure. When measured at different times,

this amplitude will anyhow exhibit modulations that, though indirectly, can provide

information on the underlying cosmic motion.

To put things on a quantitative basis, let us assume the set of kinematic param-

eters (V, α, γ)CMB for the Earth motion in the CMB, a latitude ϕ of the laboratory

and a given sidereal time τ = ωsidt of the observations (with ωsid ∼ 2π
23h56′

). Then,

for short-time observations of a few days, where the only time dependence is due

to the Earth rotation, a simple application of spherical trigonometry71 gives the

projections in the (x, y) plane of the interferometer

ṽx(t) = ṽ(t) cos θ̃2(t) = V [sin γ cosϕ− cos γ sinϕ cos(τ − α)] (29)

ṽy(t) = ṽ(t) sin θ̃2(t) = V cos γ sin(τ − α) (30)
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with a magnitude

ṽ(t) = V | sin z(t)| (31)

and

cos z(t) = sin γ sinϕ+ cos γ cosϕ cos(τ − α) (32)

As for the signal, let us also re-write Eq.(19) as

∆c̄θ(t)

c
∼ ϵ

v2(t)

c2
cos 2(θ − θ2(t)) (33)

where v(t) and θ2(t) now indicate respectively the magnitude and direction of the

local drift in the same (x, y) plane of the interferometer. This can also be re-written

as

∆c̄θ(t)

c
∼ 2S(t) sin 2θ + 2C(t) cos 2θ (34)

with

2C(t) = ϵ
v2x(t)− v2y(t)

c2
2S(t) = ϵ

2vx(t)vy(t)

c2
(35)

and vx(t) = v(t) cos θ2(t), vy(t) = v(t) sin θ2(t).

In an analogy with a turbulent flow, the requirement of statistical isotropy means

that the local quantities vx(t) and vy(t), which determine the observable properties

of the drift, are very irregular functions that differ non trivially from their smooth,

global counterparts ṽx(t) and ṽy(t), and can only be simulated numerically. To

this end, a representation in terms of random Fourier series55,72,73 was adopted in

refs.7–10 in a simplest uniform-probability model, where the kinematic parameters

of the global ṽµ(t) are just used to fix the boundaries for the local random vµ(t).

The basic ingredients are summarized in the Appendix.

In this model, the functions S(t) and C(t) have the characteristic behaviour of a

white-noise signal with vanishing statistical averages ⟨C(t)⟩stat = 0 and ⟨S(t)⟩stat =
0 at any time t and whatever the global cosmic motion of the Earth. One can then

understand the observed irregular behaviour of the fringe shifts

∆λ(θ; t)

λ
=

2D

λ
[2S(t) sin 2θ + 2C(t) cos 2θ] (36)

In fact, their averages would be non vanishing just because the statistics is finite.

Otherwise with more and more observations one would find

⟨∆λ(θ; t)

λ
⟩stat =

2D

λ
[2 sin 2θ ⟨S(t)⟩stat + 2 cos 2θ ⟨C(t)⟩stat] → 0 (37)

In particular, the direction θ2(t) of the local drift, defined by the relation

tan 2θ2(t) = S(t)/C(t), would vary randomly with no definite limit.

We have then checked the model by comparing with the amplitudes. Here we

have first to consider the theoretical amplitude Ã2(t) associated with the global

motion

Ã2(t) ∼
D

λ
· 2ϵ · V

2 sin2 z(t)

c2
(38)
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and then the amplitude A2(t) associated with the local non differentiable velocity

components vx(t) and vy(t), Eqs.(83) and (84) of the Appendix

A2(t) ∼
D

λ
· 2ϵ ·

v2x(t) + v2y(t)

c2
(39)

Clearly, the latter will exhibit sizeable fluctuations and be very different from the

smooth Ã2(t). However, as shown in the Appendix, the relation between Ã2(t) and

the statistical average ⟨A2(t)⟩stat is extremely simple

⟨A2(t)⟩stat =
D

λ
· 2ϵ ·

⟨v2x(t) + v2y(t)⟩stat
c2

∼ π2

18
· Ã2(t) (40)

so that, by averaging the amplitude at different sidereal times, one can obtain the

crucial information on the angular parameters α and γ.

Altogether, the amplitudes of those old measurements can thus be interpreted

in terms of three different velocities: a) as 6 ± 2 km/s in a classical picture b) as

250 ± 80 km/s, in a modern scheme and in a smooth picture of the drift c) as

340± 110 km/s, in a modern scheme but now allowing for irregular fluctuations of

the signal. In fact, by replacing Eq.(38) with Eq.(40), from the same data, one would

now obtain kinematical velocities which are larger by a factor
√

18/π2 ∼ 1.35. In

this third interpretation, the range of velocity agrees much better with the CMB

value of 370 km/s.

To illustrate the agreement of our scheme with all classical measurements, we

address to our book9 where a detailed description is given of the experiments

by Morley-Miller,34 Miller,35 Kennedy,36 Illingworth,37 Tomaschek38 and Piccard-

Stahel.39 Instead, here, we will only consider the two most precise experiments

that, traditionally, have been considered as definitely ruling out Miller’s claims for

a non-zero ether drift. Namely the Michelson-Pease-Pearson (MPP) observations

at Mt. Wilson and the experiment performed in 1930 by Joos in Jena.43 In par-

ticular, the latter remains incomparable among the classical experiments. To have

an idea, Sommerfeld, being aware that the residuals in the Michelson-Morley data

were not entirely negligible, concluded that only “After its repetition at Jena by

Joos, the negative result of Michelson’s experiment can be considered as definitely

established” (A. Sommerfeld, Optics). However, there is again a subtlety because,

as we shall see, Joos’ experiment was not performed in the same conditions as the

other experiments we have previously considered.

4.1. Reanalysis of the MPP experiment

To re-analyze the Michelson-Pease-Pearson (MPP) experiment, we first observe that

no numerical results are reported in the original articles.40,41 Instead, for more

precise indications, one should look at Pease’s paper.42 There, one learns that they

concentrated on a purely differential type of measurements. Namely, they were first

statistically averaging the fringe shifts at those sidereal times that, according to
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Fig. 13. The histogram W of a numerical simulation of 10,000 instantaneous amplitudes for

the single session of January 13, 1928, reported by Pease42 . The vertical normalization is to a

unit area. We show the median and the 70% CL. The limits on the random Fourier components

Eqs.(83) and (84) of the Appendix were fixed by inserting the CMB kinematical parameters in

Eq.(87).

Miller, were corresponding to maxima and minima of the ether-drift effect. Then,

they were forming the difference

δ(θ) = ⟨∆λ(θ; tmax)

λ
⟩stat − ⟨∆λ(θ; tmin)

λ
⟩stat (41)

which are the only numbers reported by Pease. These δ−values have a maximal

magnitude of ±0.004 and this is also the order of magnitude of the experimen-

tal amplitude AEXP
2 ∼ 0.005 that is usually reported74 for the MPP experiment

when comparing with the much larger expected classical amplitudes Aclass
2 ∼ 0.45

or Aclass
2 ∼ 0.29 for optical paths of eighty-five or fifty-five feet respectively. Now,

our stochastic, isotropic model predicts exactly zero statistical averages for vector

quantities such as the fringe shifts, see Eq(37). Therefore, it would be trivial to

reproduce the small δ-values in Eq.(41) in a numerical simulation with sufficiently

high statistics. We have thus decided to compare instead with the only basic ex-

perimental session reported by Pease42 (for optical path of fifty-five feet) which

indicates a 2nd-harmonic amplitude AEXP
2 ∼ 0.006. By comparing with the clas-

sical prediction for 30 km/s, namely Aclass
2 ∼ 0.29, this amplitude corresponds to

an observable velocity vobs ∼ 4.3 km/s but to a much larger value on the basis of

Eq.(39).

Since we are dealing with a single measurement, to obtain a better understand-

ing of its probability content, we have performed a direct numerical simulation by

generating 10,000 values of the amplitude at the same sidereal time 5:30 of the MPP

Mt. Wilson observation. The CMB kinematical parameters were used to bound the
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random Fourier components of the stochastic velocity field Eqs.(83) and (84) of the

Appendix. The resulting histogram is reported in Fig.13. From this histogram one

obtains a mean simulated amplitude ⟨Asimul
2 ⟩ ∼ 0.014. This corresponds to replace

the value of the scalar velocity ṽ(t) ∼ 370 km/s Eq.(77), at the sidereal time of

Pease’s observation, in the relation for the statistical average of the amplitude

⟨A2(t)⟩stat =
2ϵD

λ

⟨v2x(t) + v2y(t)⟩stat
c2

∼ (1.6 ·104) · π
2

18
· ṽ

2(t)

c2
∼ 0.009 · ṽ2(t)

(300 km/s)2

(42)

In the above relation we have replaced D/λ ∼ 2.9 · 107 (for optical path of fifty-five

feet) and ϵ ∼ 2.8 · 10−4.

Note that the median of the amplitude distribution is about 0.007. As a conse-

quence, the value AEXP
2 ∼ 0.006 lies well within the 70% Confidence Limit. Also,

the probability content becomes large at very small amplitudes n and there is a long

tail extending up to about A2 ∼ 0.030.

The wide interval of amplitudes corresponding to the 70% C. L. indicates that,

in our stochastic model, one could account for single observations that differ by an

order of magnitude, say from 0.003 to 0.030. Thus, beside the statistical vanishing of

vector quantities, this is another crucial difference with a purely deterministic model

of the ether-drift. In this traditional view, in fact, within the errors, the amplitude

can vary at most by a factor r = (ṽmax/ṽmin)
2 where ṽmax and ṽmin are respectively

the maximum and minimum of the projection of the Earth velocity Eq.(31). Since,

for the known types of cosmic motion, one finds r ∼ 2, the observation of such large

fluctuations in the data would induce to conclude, in a deterministic model, that

there is some systematic effect which affects the measurements in an uncontrolled

way. With an ether drift of such irregular nature, it then becomes understandable

the MPP reluctance to quote the individual results and instead report those partic-

ularly small combinations in Eq.(41) obtained by averaging and further subtracting

large samples of data. This general picture of a highly irregular phenomenon is also

confirmed by our reanalysis of Joos’ experiment in the following subsection.

4.2. Joos’ experiment

We will only give a brief description of Joos’ 1930 experiment43 and address to our

book9 for more details. Its sensitivity was about 1/3000 of a fringe, the fringes were

recorded photographically with an automatic procedure and the optical system was

enclosed in a hermetic housing. As reported by Miller,35,75 it has been traditionally

nStrictly speaking, for a more precise description of the data, one should fold the histogram with a

smearing function which takes into account the finite resolution ∆ of the apparatus. This smearing

would force the curve to bend for A2 → 0 and tend to some limit which depends on ∆. Nevertheless,

this refinement should not modify substantially the probability content around the median which

is very close to A2 = 0.007.
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Fig. 14. The fringe shifts reported by Joos.43 The yardstick corresponds to 1/1000 of a wave-

length.

believed that the measurements were performed in vacuum. In his article, however,

Joos is not clear on this particular aspect. Only when describing his device for

electromagnetic fine movements of the mirrors, he refers to the condition of an

evacuated apparatus.43 Instead, Swenson76,77 declares that Joos’ fringe shifts were

finally recorded with optical paths placed in a helium bath. Therefore, we have

decided to follow Swenson’s explicit statements and assumed the presence of gaseous

helium at atmospheric pressure.

From Eq.(40), by replacing D/λ = 3.75 · 107 and the refractive index Nhelium ∼
1.000033 for gaseous helium, an average daily projection of the cosmic Earth velocity

ṽ(t) = V | sin z(t)| ∼ 330 km/s (appropriate for a Central-Europe laboratory) would

provide the same amplitude as classically expected for the much smaller observable

velocity of 2 km/s. We can thus understand the substantial reduction of the fringe

shifts observed by Joos, with respect to the other experiments in air.

The data were taken at steps of one hour during the sidereal day and two

observations (1 and 5) were finally deleted by Joos with the motivations that there

were spurious disturbances, see Fig.14. From this picture, Joos adopted 1/1000 of

a wavelength as upper limit and deduced the bound vobs ≲ 1.5 km/s. To this end,

he was comparing with the classical expectation that, for his apparatus, a velocity

of 30 km/s should have produced a 2nd-harmonic amplitude of 0.375 wavelengths.

Though, since it is apparent that some fringe displacements were certainly larger

than 1/1000 of a wavelength, we have performed 2nd-harmonic fits to Joos’ data,

see Fig.15. The resulting amplitudes are reported in Fig.16.

We note that a 2nd-harmonic fit to the large fringe shifts in picture 11 has a
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Fig. 15. Some 2nd-harmonic fits to Joos’ data. The figure is taken from ref.9

Fig. 16. Joos’ 2nd-harmonic amplitudes, in units 10−3. The vertical band between the two lines

corresponds to the range (1.4± 0.8) · 10−3. The uncertainty of each value is about ±3 · 10−4. The

figure is taken from ref.7

very good chi-square, comparable and often better than other observations with

smaller values, see Fig.15. Therefore, there is no reason to delete the observation

n.11. Its amplitude, however, (4.1 ± 0.3) · 10−3 is abot ten times larger than the

average amplitude (0.4±0.3) ·10−3 from the observations 20 and 21. This difference

cannot be understood in a smooth model of the drift where, as anticipated, the

projected velocity squared at the observation site can at most differ by a factor of

two, as for the CMB motion at typical Central-Europe latitude where (ṽ)min ∼ 250

km/s and (ṽ)max ∼ 370 km/s. To understand these characteristic fluctuations, we

have thus performed various numerical simulations of these amplitudes7,9 in the
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stochastic model described in the Appendix and using the kinematical parameters

(V, α, γ)CMB to place the limits on the random velocity component Eqs.(83) and

(84).

Two simulations are shown in Figs.17 and 18 (the corresponding numerical val-

ues are reported in7,9).

Fig. 17. Joos’ 2nd-harmonic amplitudes, in units 10−3 (black dots), are compared with a sin-

gle simulation (red diamonds) at the same sidereal times of Joos’ observations. Two 5th-order

polynomial fits to the two sets of values are also shown. The figure is taken from ref.7 .

We want to emphasize two aspects. First, Joos’ average amplitude ⟨AEXP
2 ⟩ =

(1.4± 0.8) · 10−3 when compared with the classical prediction for his interferometer

Aclass
2 = D

λ
(30km/s)2

c2 ∼ 0.375 gives indeed an observable velocity vobs ∼ (1.8 ±
0.5) km/s very close to the 1.5 km/s value quoted by Joos. But, when comparing

with our prediction in the stochastic model Eq.(40) one would now find a true

kinematical velocity ṽ = 305+85
−100 km/s. Second, when fitting with Eqs.(76) and

(77) the smooth black curve of the Joos data in Fig.17 one finds7 a right ascension

α(fit− Joos) = (168±30) degrees and an angular declination γ(fit− Joos) = (−13±
14) degrees which are consistent with the present values α(CMB) ∼ 168 degrees

and γ(CMB) ∼ −7 degrees. This confirms that, when studied at different sidereal

times, the measured amplitude can provide precious information on the angular

parameters.

4.3. Summary of all classical experiments

A comparison with all classical experiments is finally shown in Table 3.
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Fig. 18. Joos’ 2nd-harmonic amplitudes in units 10−3 (black dots) are now compared with a

simulation where one averages ten measurements, performed on 10 consecutive days, at the same

sidereal times of Joos’ observations (red diamonds). The change of the averages observed by

varying the parameters of the simulation was summarized into a central value and a symmetric

error. The figure is taken from ref.7

Note the substantial difference with the analogous summary Table I of ref.74

where those authors were comparing with the classical amplitudes Eq.(22) and

emphasizing the much smaller magnitude of the experimental fringes. Here, is just

the opposite. In fact, our theoretical statistical averages are often smaller than the

experimental results indicating, most likely, the presence of systematic effects in the

measurements.

At the same time, by adopting Eq.(40), we find ṽexp ∼ 418 ± 62 km/s from

all experiments in air and ṽexp ∼ 323 ± 70 km/s from the two experiments in

gaseous helium, with a global average ⟨ṽexp⟩ ∼ 376±46 km/s which agrees well with

the 370 km/s from the CMB observations. Even more, from the two most precise

experiments of Piccard-Stahel (Brussels and Mt.Rigi) and Joos (Jena), we find two

determinations, ṽexp = 360+85
−110 km/s and ṽexp = 305+85

−100 km/s respectively, whose

average ⟨ṽ⟩ ∼ 332+60
−80 km/s reproduces to high accuracy the projection of the CMB

velocity at a typical Central-Europe latitude.

4.4. The intriguing role of temperature

As anticipated in Sect.2 (see footnote k), symmetry arguments can successfully

describe a phenomenon regardless of the physical mechanisms behind it. The same

is true here with our relation |∆c̄θ|
c ∼ ϵ(v2/c2) in Eq.(19). It works but does not

explain the ultimate origin of the small effects observed in the gaseous systems. For

instance, as a first mechanism, we considered the possibility of different polarizations

in different directions in the dielectric, depending on its state of motion. But, if this

works in weakly bound gaseous matter, the same mechanism should also work in
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Table 3. The average 2nd-harmonic amplitudes of classical ether-drift experiments. These

were extracted from the original papers by averaging the amplitudes of the individual obser-

vations and assuming the direction of the local drift to be completely random (i.e. no vector

averaging of different sessions). These experimental values are then compared with the full

statistical average Eq.(40) for a projection 250 km/s ≲ ṽ ≲ 370 km/s of the Earth motion

in the CMB and refractivities ϵ = 2.8 · 10−4 for air and ϵ = 3.3 · 10−5 for gaseous helium.

The experimental value for the Morley-Miller experiment is taken from the observed velocities

reported in Miller’s Figure 4, here our Fig.4. The experimental value for the Michelson-Pease–

Pearson experiment refers to the only known session for which the fringe shifts are reported

explicitly42 and where the optical path was still fifty-five feet. The symbol ±.... means that

the experimental uncertainty cannot be determined from the available informations. The

table is taken from ref.10

Experiment gas AEXP
2

2D
λ

⟨A2(t)⟩stat
Michelson(1881) air (7.8± ....) · 10−3 4 · 106 (0.7± 0.2) · 10−3

Michelson-Morley(1887) air (1.6± 0.6) · 10−2 4 · 107 (0.7± 0.2) · 10−2

Morley-Miller(1902-1905) air (4.0± 2.0) · 10−2 1.12 · 108 (2.0± 0.7) · 10−2

Miller(1921-1926) air (4.4± 2.2) · 10−2 1.12 · 108 (2.0± 0.7) · 10−2

Tomaschek (1924) air (1.0± 0.6) · 10−2 3 · 107 (0.5± 0.2) · 10−2

Kennedy(1926) helium < 0.002 7 · 106 (1.4± 0.5) · 10−4

Illingworth(1927) helium (2.2± 1.7) · 10−4 7 · 106 (1.4± 0.5) · 10−4

Piccard-Stahel(1928) air (2.8± 1.5) · 10−3 1.28 · 107 (2.2± 0.8) · 10−3

Mich.-Pease-Pearson(1929) air (0.6± ...) · 10−2 5.8 · 107 (1.0± 0.4) · 10−2

Joos(1930) helium (1.4± 0.8) · 10−3 7.5 · 107 (1.5± 0.6) · 10−3

a strongly bound solid dielectric, where the refractivity is (Nsolid − 1) = O(1), and

thus produce a much larger |∆c̄θ|
c ∼ (Nsolid − 1)(v2/c2) ∼ 10−6. This is in contrast

with the Shamir-Fox78 experiment in perspex where the observed value was smaller

by orders of magnitude.

We have thus re-considered8,9, 79 the traditional thermal interpretation74,80 of

the observed residuals. The idea was that, in a weakly bound system as a gas, a

small temperature difference ∆T gas(θ) in the air of the two optical arms produces

a difference in the refractive index and a (∆c̄θ/c) ∼ ϵgas∆T gas(θ)/T , where T ∼
300 K is the absolute temperature of the laboratory o. Miller was aware35,75 that

his results could be due to a ∆T gas(θ) ≲ 1 mK but objected that casual changes

of the ambiance temperature would largely cancel when averaging over many mea-

surements. Only temperature effects with a definite periodicity would survive. For

a quantitative estimate, by averaging over all experiments in Table 3 we found

⟨ṽexp⟩ ∼ 376 ± 46 km/s. Therefore, by comparing Eq.(40) with the corresponding

oThe starting point is the Lorentz-Lorenz equation for the molecular polarizability in the ideal-gas

approximation (as for air or gaseous helium at atmospheric pressure), see8,9 for the details.
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form for a thermal light anisotropy, we find

|∆c̄θ|
c

∼ ϵgas
π2

18

⟨ṽexp⟩2

c2
∼ ϵgas

|∆T gas(θ)|
T

(43)

and a value8,9 |∆T gas(θ)| ∼ (0.26± 0.07) mK p.

This motivates the following two observations. First, after a century from those

old measurements, in a typical room-temperature laboratory environment, a sta-

bility at the level of a fraction of millikelvin is still state of the art, see.81–83 This

would support the idea that we are dealing with a non-local effect that places a

fundamental limit.

Second, as for possible dynamical explanations, we mentioned in footnote k a

collective interaction of the gaseous system with hypothetical dark matter in the

Galaxy or with the CMB radiation. For the consistency with the velocity of 370

km/s, the latter hypothesis seems now more plausible. In this interpretation, these

interactions would be so weak that, on average, the induced temperature differences

in the optical paths are only 1/10 of the whole ∆TCMB(θ) in Eq.(3).

Nevertheless, whatever its precise origin, this thermal explanation can help in-

tuition. In fact, it can explain the quantitative reduction of the effect in the vacuum

limit where ϵgas → 0 and the qualitative difference with solid dielectric media where

temperature differences of a fraction of millikelvin cannot produce any appreciable

deviation from isotropy in the rest frame of the medium.

Admittedly, the idea that small modifications of gaseous matter, produced by the

tiny CMB temperature variations, can be detected by precise optical measurements

in a laboratory, while certainly unconventional, has not the same implications of

a genuine preferred-frame effect due to the vacuum structure. Still, this thermal

explanation of the small residuals in gases, very recently reconsidered by Manley,84

has a crucial importance. In fact, it implies that if a tiny, but non-zero, fundamental

signal could definitely be detected in vacuum then, with very precise measurements,

the same universal signal should also show up in a solid dielectric where a disturbing

∆T of a fraction of millikelvin becomes irrelevant. Detecting such ‘non-thermal’ light

anisotropy, for the same cosmic motion indicated by the CMB observations, is thus

necessary to confirm the idea of a fundamental preferred frame.

5. The modern ether-drift experiments

Searching for a ‘non-thermal’ light anisotropy, which could be detected with light

propagating in vacuum and/or in solid dielectrics, we will now compare with the

modern experiments44 where ∆c̄θ
c ∼ ∆ν(θ)

ν0
is now extracted from the frequency shift

of two optical resonators, see Fig.3. The particular type of laser-cavity coupling used

in the experiments is known in the literature as the Pound-Drever-Hall system,85,86

pNote that in Eq.(43) the gas refractivity drops out. The old estimates74,80 of about 1 mK, based

on the relation ϵgas∆T gas(θ)/T ∼ (v2Miller/2c
2), with vMiller ∼ 10 km/s, were slightly too large.
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see Black’s tutorial article87 for a beautiful introduction. A laser beam is sent into

a Fabry-Perot cavity which acts as a filter. Then, a part of the output of the cavity

is fed back to the laser to suppress its frequency fluctuations. This method provides

a very narrow bandwidth and has been crucial for the precision measurements we

are going to describe.

The first application to the ether-drift experiments was realized by Brillet and

Hall in 1979.88 They were comparing the frequency of a CH4 reference laser (fixed in

the laboratory) with the frequency of a cavity-stabilized He-Ne laser (ν0 ∼ 8.8 ·1013
Hz) placed on a rotating table. Since the stabilizing optical cavity was placed inside

a vacuum envelope, the measured shift ∆ν(θ) was giving a measure of the anisotropy

of the velocity of light in vacuum. The short-term stability of the cavity-laser system

was found to be about ± 20 Hz for a 1-second measurement, and comparable to the

stability of the reference CH4 laser. It was also necessary to correct the data for a

substantial linear drift of about 50 Hz/s.

By grouping the data in blocks of 10-20 rotations they found a signal with a

typical amplitude |∆ν| ∼ 17 Hz (or a relative level 10−13) and with a phase θ2(t)

which was randomly varying. Therefore, by increasing the statistics and projecting

along the axis corresponding to the Earth cosmic velocity obtained from the first

CMB observations,89 the surviving average effect was substantially reduced down

to about ±1 Hz. Finally, by further averaging over a period of about 200 days, the

residual ether-drift effect was an average frequency shift ⟨∆ν⟩ =0.13 ± 0.22 Hz, i.e.

about 100 times smaller than the instantaneous |∆ν|.
Since the 1979 Brillet-Hall article, substantial improvements have been intro-

duced in the experiments. Just to have an idea, in present-day measurements68,90

with vacuum cavities the typical magnitude of the instantaneous fractional signal

|∆ν|/ν0 has been lowered from 10−13 to 10−15, the linear drift from 50 Hz/s to

about 0.05 Hz/s and, after averaging over many observations, the best limit which

is reported is a residual ⟨∆ν
ν0

⟩ ≲ 10−18,68 i.e. about 1000 times smaller than the

instantaneous 10−15 signal.

The assumptions behind the analysis of the data, however, are basically un-

changed. In fact, a genuine ether drift is always assumed to be a regular phenomenon

depending deterministically on the Earth cosmic motion and averaging more and

more observations is considered a way of improving the accuracy. But, as empha-

sized in Sect.4, the classical experiments indicate genuine physical fluctuations that

are not spurious noise but, instead, express how the cosmic motion of the Earth is

actually seen in a detector. For this reason, we will first consider the instantaneous

signal and try to understand if it can admit a physical interpretation.

5.1. A 10−9 refractivity for the vacuum (on the Earth surface)

As anticipated, after averaging many observations, the best limit which is reported

for measurements with vacuum resonators is a residual ⟨∆ν/ν0⟩ ≲ 10−18.68 This

just reflects the very irregular nature of the signal because its typical magnitude
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|∆ν|/ν0 ∼ 10−15 is about 1000 times larger, see Fig.19 or panel b) of Fig.11.

Fig. 19. The experimental frequency shift reported in Fig.9(a) of ref.90 (courtesy Optics Com-

munications). The black dots give the instantaneous signal, the red dots give the signal averaged

over 1640 sequences. For a laser frequency ν0 = 2.8 · 1014 Hz a ∆ν = ±1 Hz corresponds to a

fractional value ∆ν/ν0 of about ±3.5 · 10−15.

The most interesting aspect however is that this 10−15 instantaneous signal,

found in the room-temperature experiments of refs.90 and,68 was also found in ref.91

where the solid parts of the vacuum resonators were made of different material and

even in ref.92 were the apparatus was operating in the cryogenic regime. Since

it is very unlike that spurious effects (e.g. thermal noise93) remain the same for

experiments operating in so different conditions, one can meaningfully explore the

possibility that such an irregular 10−15 signal admits a physical interpretation.

In the same model discussed for the classical experiments, we are then lead to

the concept of a refractive index Nv = 1 + ϵv for the vacuum or, more precisely,

for the physical vacuum established in an optical cavity, as in Fig.10, when this

is placed on the Earth surface. The refractivity ϵv should be at the 10−9 level, in

order to give |∆c̄θ|
c ∼ ϵv (v2/c2) ∼ 10−15 and thus would fit with the original idea

of94 where, for an apparatus placed on the Earth’s surface, a vacuum refractivity

ϵv ∼ (2GNM/c2R) ∼ 1.39·10−9 was considered, GN being the Newton constant and

M and R the mass and radius of the Earth. Since this idea will sound unconventional

to many readers, we have first to recall the main motivations.

An effective refractivity for the physical vacuum becomes a natural idea when

adopting a different view of the curvature effects observed in a gravitational field. In

General Relativity these curvature effects are viewed as a fundamental modification

of Minkowski space-time. However, it is an experimental fact that many physical

systems for which, at a fundamental level, space-time is exactly flat are nevertheless

described by an effective curved metric in their hydrodynamic limit, i.e. at length
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scales much larger than the size of their elementary constituents. For this reason,

several authors, see e.g.,95–97 have explored the idea that Einstein gravity might

represent an emergent phenomenon and started to considered those gravity-analogs

(moving fluids, condensed matter systems with a refractive index, Bose-Einstein

condensates,...) which are known in flat space.

The main ingredient of this approach consists in the introduction of some back-

ground fields sk(x) in flat space expressing the deviations of the effective metric

gµν(x) from the Minkowski tensor ηµν , i.e.

gµν(x)− ηµν = δgµν [sk(x)] (44)

with δgµν [sk = 0] = 0. In this type of approach, to (partially) fill the conceptual

gap with classical General Relativity, as in the original Yilmaz derivation,98 one

could impose that Einstein’s equations for the metric become algebraic identities

which follow directly from the equations of motion for the sk’s in flat space, after

introducing a suitable stress tensor tµν (sk)
q.

As an immediate consequence, suppose that the sk’s represent excitations of the

physical vacuum which therefore vanish identically in the equilibrium state. Then, if

curvature effects are only due to departures from the lowest-energy state, one could

immediately understand97 why the huge condensation energy of the unperturbed

vacuum plays no role and thus obtain an intuitive solution of the cosmological-

constant problem found in connection with the vacuum energy r.

Here, in our context of the ether-drift experiments, we will limit ourselves to

explore some phenomenological consequence of this picture. To this end, let us

assume a zeroth-order model of gravity with a scalar field s0(x) which behaves as

the Newtonian potential (at least on some coarse-grained scale and consistently with

the experimental verifications of the 1/r law at the sub-millimeter level100). How

could the effects of s0(x) be effectively re-absorbed into a curved metric structure?

At a pure geometrical level and regardless of the detailed dynamical mechanisms,

the standard basic ingredients would be: 1) space-time dependent modifications

of the physical clocks and rods and 2) space-time dependent modifications of the

velocity of light s.

qIn the simplest, original Yilmaz approach98 there is only one inducing-gravity field s0(x) which

plays the role of the Newtonian potential. Introducing its stress tensor tµν (s0) = −∂µs0∂νs0 +

1/2δµν ∂αs0∂αs0, to match the Einstein tensor, produces differences from the Schwarzschild metric

which are beyond the present experimental accuracy.
rThis is probably the simplest way to follow Feynman’s indication: “The first thing we should

understand is how to formulate gravity so that it doesn’t interact with the vacuum energy”.99
sThis point of view can be well represented by some citations. For instance, “It is possible, on

the one hand, to postulate that the velocity of light is a universal constant, to define natural

clocks and measuring rods as the standards by which space and time are to be judged and then

to discover from measurement that space-time is really non-Euclidean. Alternatively, one can

define space as Euclidean and time as the same everywhere, and discover (from exactly the same
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Within this interpretation, one could thus try to check the fundamental assump-

tion of General Relativity that, even in the presence of gravity, the velocity of light

in vacuum cγ is a universal constant, namely it remains the same, basic parame-

ter c entering Lorentz transformations. Notice that, here, we are not considering

the so called coordinate-dependent speed of light. Rather, our interest is focused

on the value of the true, physical cγ as, for instance, obtained from experimental

measurements in vacuum optical cavities placed on the Earth surface.

To spell out the various aspects, a good reference is Cook’s article “Physical

time and physical space in general relativity”.103 This article makes extremely clear

which definitions of time and length, respectively dT and dL, are needed if all

observers have to measure the same, universal speed of light (“Einstein postulate”).

For a static metric, these definitions are dT 2 = g00dt
2 and dL2 = gijdx

idxj . Thus,

in General Relativity, the condition ds2 = 0, which governs the propagation of light,

can be expressed formally as

ds2 = c2dT 2 − dL2 = 0 (45)

and, by construction, yields the same universal speed c = dL/dT .

For the same reason, however, if the physical units of time and space were instead

defined to be dT̂ and dL̂ with, say, dT = q dT̂ and dL = p dL̂, the same condition

ds2 = c2q2dT̂ 2 − p2dL̂2 = 0 (46)

would now be interpreted in terms of the different speed

cγ =
dL̂

dT̂
= c

q

p
≡ c

Nv
(47)

The possibility of different standards for space-time measurements is thus a simple

motivation for an effective vacuum refractive index Nv ̸= 1.

With these premises, the unambiguous point of view of Special Relativity is that

the right space-time units are those for which the speed of light in the vacuum cγ ,

when measured in an inertial frame, coincides with the basic parameter c entering

Lorentz transformations. However, inertial frames are just an idealization. Therefore

the appropriate realization is to assume local standards of distance and time such

that the identification cγ = c holds as an asymptotic relation in the physical condi-

tions which are as close as possible to an inertial frame, i.e. in a freely falling frame

(at least by restricting light propagation to a space-time region small enough that

measurements) how the velocity of light and natural clocks, rods and particle inertias really behave

in the neighborhood of large masses”.101 Or “Is space-time really curved? Isn’t it conceivable that

space-time is actually flat, but clocks and rulers with which we measure it, and which we regard

as perfect, are actually rubbery? Might not even the most perfect of clocks slow down or speed

up and the most perfect of rulers shrink or expand, as we move them from point to point and

change their orientations? Would not such distortions of our clocks and rulers make a truly flat

space-time appear to be curved? Yes.”102
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Fig. 20. A pictorial representation of the effect of a heavy mass M carried on board of a freely-

falling system, case (b). With respect to the ideal case (a), the mass M modifies the local space-time

units and could introduce a vacuum refractivity so that now cγ ̸= c.

tidal effects of the external gravitational potential Uext(x) can be ignored). Note

that this is essential to obtain an operational definition of the otherwise unknown

parameter c.

As already discussed in ref.,94 light propagation for an observer S sitting on the

Earth’s surface can then be described with increasing degrees of accuracy starting

from step i), through ii) and finally arriving to iii):

i) S is considered a freely falling frame. This amounts to assume cγ = c so

that, given two events which, in terms of the local space-time units of S, differ by

(dx, dy, dz, dt), light propagation is described by the condition (ff=’free-fall’)

(ds2)ff = c2dt2 − (dx2 + dy2 + dz2) = 0 (48)

ii) To a closer look, however, an observer S placed on the Earth surface can only

be considered a freely-falling frame up to the presence of the Earth gravitational

field. Its inclusion can be estimated by considering S as a freely-falling frame, in

the same external gravitational field described by Uext(x), that however is also

carrying on board a heavy object of mass M (the Earth mass itself) which affects

the local space-time structure, see Fig.20. To derive the required correction, let us

denote by δU the extra Newtonian potential produced by the heavy mass M at the

experimental set up where one wants to describe light propagation. According to

General Relativity, and to first order in δU , light propagation for the S observer is
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now described by

ds2 = c2dt2(1− 2
|δU |
c2

)− (dx2 + dy2 + dz2)(1 + 2
|δU |
c2

) ≡ c2dT 2 − dL2 = 0 (49)

where dT 2 = (1 − 2 |δU |
c2 )dt2 and dL2 = (1 + 2 |δU |

c2 )(dx2 + dy2 + dz2) are the phys-

ical units of General Relativity in terms of which one obtains the universal value

dL/dT = cγ = c.

Though, to check experimentally the assumed identity cγ = c one should compare

with a theoretical prediction for (c − cγ) and thus necessarily modify some formal

ingredient of General Relativity. As a definite possibility, let us maintain the same

definition of the unit of length dL̂ = dL but change the unit of time from dT to dT̂ .

The reason derives from the observation that physical units of time scale as inverse

frequencies and that the measured frequencies ω̂ for δU ̸= 0, when compared to the

corresponding value ω for δU = 0, are red-shifted according to

ω̂ = (1− |δU |
c2

) ω (50)

Therefore, rather than the natural unit of time dT = (1− |δU |
c2 )dt of General Rela-

tivity, one could consider the alternative, but natural (see our footnote s), unit of

time

dT̂ = (1 +
|δU |
c2

) dt (51)

Then, to reproduce ds2 = 0, we can introduce a vacuum refractive index

Nv ∼ 1 + 2
|δU |
c2

(52)

so that the same Eq.(49) takes now the form

ds2 =
c2dT̂ 2

N 2
v

− dL̂2 = 0 (53)

This gives dL̂/dT̂ = cγ = c
Nv

and, for an observer placed on the Earth’s surface, a

refractivity

ϵv = Nv − 1 ∼ 2GNM

c2R
∼ 1.39 · 10−9 (54)

M and R being respectively the Earth mass and radius.

Notice that, with this natural definition dT̂ , the vacuum refractive index asso-

ciated with a Newtonian potential is the same usually reported in the literature, at

least since Eddington’s 1920 book,104 to explain in flat space the observed deflec-

tion of light in a gravitational field. The same expression is also suggested by the

formal analogy of Maxwell equations in General Relativity with the electrodynam-

ics of a macroscopic medium with dielectric function and magnetic permeability105
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ϵik = µik =
√
−g (−gik)

g00
. Indeed, in our case, from the relations gilglk = δik ,

(−gik) ∼ δik g00 , ϵik = µik = δikNv , we obtain

Nv ∼
√
−g ∼

√
(1− 2

|δU |
c2

)(1 + 2
|δU |
c2

)3 ∼ 1 + 2
|δU |
c2

(55)

A difference is found with Landau’s and Lifshitz’ textbook107 where the vacuum

refractive index entering the constitutive relations is instead defined asNv ∼ 1√
g00

∼
1 + |δU |

c2 . Concerning, these two possible definitions of Nv, we address the reader

to Broekaert’s article,106 see his footnote 3, where a very complete set of references

for the vacuum refractive index in gravitational field is reported. However, this

difference of a factor of 2 is not really essential and can be taken into account as a

theoretical uncertainty. The main point is that cγ , as measured in a vacuum cavity

on the Earth’s surface (panel (b) in our Fig.20), could differ at a fractional level

10−9 from the ideal value c, as operationally defined with the same apparatus in a

true freely-falling frame (panel (a) in our Fig.20). In conclusion, this cγ−c difference

can be conveniently expressed through a vacuum refractivity of the form

ϵv = Nv − 1 ∼ χ

2
1.39 · 10−9 (56)

where the factor χ/2 (with χ= 1 or 2) takes into account the mentioned theoretical

uncertainty.

iii) Could one check experimentally if Nv ̸= 1? Today, the speed of light in

vacuum is assumed to be a fixed number with no error, namely 299 792 458 m/s.

Thus if, for instance, this estimate were taken to represent the value measured on the

Earth surface, in an ideal freely-falling frame there could be a slight increase, namely

+χ
2 (0.42) m/s with χ = 1 or 2. It seems hopeless to measure unambiguously such

a difference because the uncertainty of the last precision measurements performed

before the ‘exactness’ assumption had precisely this order of magnitude, namely

±4 · 10−9 at the 3-sigma level or, equivalently, ±1.2 m/s.108

Therefore, as pointed out in ref.,94 an experimental test cannot be obtained from

the value of the isotropic speed in vacuum but, rather, from its possible anisotropy.

In fact, with a preferred frame and for Nv ̸= 1, an isotropic propagation as in

Eq.(53) would only be valid for a special state of motion of the Earth laboratory.

This provides the definition of Σ while for a non-zero relative velocity there would

be off diagonal elements g0i ̸= 0 in the effective metric.105 If Σ exists, we would then

expect a light anisotropy |∆c̄θ|
c ∼ ϵv(v/c)

2 ∼ 10−15, consistently with the presently

measured value.

5.2. Some important technical aspects

Before considering the experiments, however, a rather technical discussion is neces-

sary for an in-depth comparison with the data. In the mentioned cryogenic experi-
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Fig. 21. The stability of the fractional frequency shift of ref.92 at different integration times.

The upper solid curve, denoted as ‘newCORE’, reports the actual measurements with the cryo-

genic apparatus in 2013. The lower solid, dashed and dot-dashed curves, denoted as ‘predicted

newCORE’, indicate future stability limits (2÷ 4) · 10−17 that could be foreseen at that time.

ment of ref.,92 the instantaneous signal is not shown explicitly. However, its magni-

tude can be deduced from its typical variation observed over a characteristic time

of 1÷2 seconds, see Fig.21. For a very irregular signal, in fact, this typical variation,

of about 10−15, gives the magnitude of the instantaneous signal itself and, indeed,

it is in good agreement with the mentioned room-temperature measurements.

Fig. 22. The typical trend of the RAV for a signal in various regimes. The minimum of the

white-noise trend τ−0.5 defines the value τ = τ̄ indicated by the arrow.

The quantity which is reported in Fig.21 is the Root Square of the Allan Variance

(RAV) of the fractional frequency shift. In general, the RAV describes the variation
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obtained by sampling a function f = f(t) at steps of time τ . By defining

f(ti; τ) =
1

τ

∫ ti+τ

ti

dt f(t) ≡ f i (57)

one generates a τ−dependent distribution of f i values. In a large time interval

Λ = Mτ , the RAV is then defined as

RAV (f, τ) =
√
RAV 2(f, τ) (58)

where

RAV 2(f, τ) =
1

2(M − 1)

M−1∑
i=1

(
f i − f i+1

)2
(59)

and the factor of 2 is introduced to obtain the standard variance σ(f) for uncorre-

lated data with zero mean, as for a pure white-noise signal.

Note that the actual measurements in Fig.21 are indicated by the upper solid

curve denoted as ‘newCORE’. These were obtained with the cryogenic apparatus

in 2013 (CORE=Cryogenic Optical REsonators) and were giving a stability at the

level of about 1.2 · 10−15. The lower solid, dashed and dot-dashed curves, denoted

as ‘predicted newCORE’, indicate instead possible improved limits (2 ÷ 4) · 10−17

that could be foreseen at that time. As a matter of fact, these limits have not yet

been achieved because the highest stability limits are still larger by an order of

magnitude. This persistent signal, which is crucial for our work, does not depend

on the absolute temperature and/or the characteristics of the optical cavities.109

After this preliminaries, we then arrive at our main point. As anticipated, nu-

merical simulations in our stochastic model indicate that our basic signal has the

same characteristics as a universal white noise. This means that it should be com-

pared with the frequency shift of two optical resonators at the largest integration

time τ̄ where the pure white-noise component is as small as possible but other dis-

turbances, that can affect the measurements, are not yet important, see Fig.22. In

the experiments we are presently considering this τ̄ is typically 1 ÷ 2 seconds so

that one gets the relation with the average magnitude of the instantaneous signal

RAV (∆ν, τ̄) ∼ σ(∆ν) ∼ ⟨|∆ν|⟩stat (60)

5.3. Comparing our model with experiments in vacuum

We will now compare with the type of signal observed in68,90 in vacuum at room

temperature. To this end, we will use the relation which connects the frequency

shift between two orthogonal resonators ∆ν(θ; t) = ν1(θ; t)− ν2(θ + π/2; t) to the

angular dependence of the velocity of light, namely see (33)

∆ν(θ; t)

ν0
=

∆c̄θ(t)

c
= 2S(t) sin 2θ + 2C(t) cos 2θ (61)
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where S(t) and C(t) are given in Eqs.(34). As in the case of the classical experiments,

the velocity components vx(t) and vy(t) will be expressed as random Fourier series

through the Eqs.(83) and (84) of the Appendix. A simulation of two short-time

sequences of 2C(t) and 2S(t) is shown in Fig.23.

Fig. 23. For ϵv as in Eq.(56) and χ = 2, we report a simulation of two sequence of 45 seconds

for the functions 2C(t) and 2S(t) Eqs.(34). Units are 10−15 and the two sets belong to the same

random sequence for two sidereal times that differ by 6 hours. The boundaries of the stochastic

velocity components, Eqs.(83) and (84) of the Appendix, are controlled by (V, α, γ)CMB through

Eqs.(77) and (87). For a laser frequency of 2.8 · 1014 Hz, the range ±3.5 · 10−15 corresponds to a

typical frequency shift ∆ν in the range ±1 Hz, as in our Fig.19.

For a quantitative test, we concentrated on the observed value of the RAV of

the frequency shift at the end point τ̄ = 1÷ 2 seconds of the white-noise branch of

the spectrum, see Fig.3, bottom part of68 . This has a value

[RAV (∆ν, τ̄)]exp = (0.20÷ 0.24) Hz (62)

or, in units of the reference frequency ν0 = 2.8 · 1014 Hz 68[
RAV (

∆ν

ν0
, τ̄)

]
exp

= (7.8± 0.7) · 10−16 Vacuum− room temperature (63)

As anticipated, our instantaneous, stochastic signal for ∆ν(t) is, to very good

approximation, a pure white noise for which the RAV coincides with the standard

variance. At the same time, for a very irregular signal with zero mean of the type

shown in Fig. 23, but whose magnitude can have a long-term time dependence, one

should replace in Eq. (60) ⟨|∆ν|⟩stat → ⟨|∆ν(t)|⟩stat and evaluate the RAV in the

corresponding temporal range. Therefore, from ∆ν
ν0

= ∆c̄θ
c ∼ ϵv · v2

c2 , we arrive at
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our prediction[
RAV (

∆ν(t)

ν0
, τ̄)

]
theor

∼ ϵv
⟨v2x(t) + v2y(t)⟩stat

c2
∼ π2

18
· ϵv ·

V 2

c2
sin2 z(t) (64)

Then, by using Eq.(56), for the projection ṽ(t) = V | sin z(t)| = 250 ÷ 370 Km/s

used for the classical experiments, our prediction for the RAV can be expressed as[
RAV (

∆ν

ν0
, τ̄)

]
theor

∼ χ

2
· (8.5± 3.5) · 10−16 (65)

with χ = 1 or 2. By comparing with the experimental Eq.(63), the data favour

χ = 2, which is the only free parameter of our scheme. Also, the good agreement

with our theoretical value indicates that, at the end point of the white-noise part

of the signal, the corrections to our simplest model should be small.

Notice, however, that the range in Eq.(65) is not a theoretical uncertainty but

reflects the daily variations of V 2 sin2 z(t) in Eq.(64). This means that, depending

on the sidereal time, the measurements of the RAV at the white-noise end point

τ = τ̄ should exhibit definite daily variations in the range (for χ = 2)

5 · 10−16 ≲

[
RAV (

∆ν

ν0
, τ̄)

]
theor

≲ 12 · 10−16 (66)

Thus it becomes crucial to understand whether these variations can be observed.

5.4. Comparing our model with experiments in solids

To consider modern experiments in solid dielectrics, we will compare with the very

precise work of ref.70 This is a cryogenic experiment, with microwaves of 12.97 GHz,

where almost all electromagnetic energy propagates in a medium, sapphire, with re-

fractive index of about 3 (at microwave frequencies). As anticipated, with a thermal

interpretation of the residuals in gaseous media, we expect that the fundamental

10−15 vacuum signal considered above, with very precise measurements, should also

become visible here. In particular, the large refractivity of the solid Nsolid − 1 =

O(1) should play no role.

Following refs.,8–10 we first observe that for Nv = 1 + ϵv there is a very tiny

difference between the refractive index defined relatively to the ideal vacuum value

c and the refractive index relatively to the physical isotropic vacuum value c/Nv

measured on the Earth surface. The relative difference between these two definitions

is proportional to ϵv ≲ 10−9 and, for all practical purposes, can be ignored. All

materials would now exhibit, however, the same background vacuum anisotropy. To

this end, let us replace the average isotropic value

c

Nsolid
→ c

NvNsolid
(67)

and then use Eq.(18) to replace Nv in the denominator with its θ−dependent value

N̄v(θ) ∼ 1 + ϵvβ
2(1 + cos2 θ) (68)
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This is equivalent to define a θ−dependent refractive index for the solid dielectric

N̄solid(θ)

Nsolid
∼ 1 + ϵvβ

2(1 + cos2 θ) (69)

so that

[c̄γ(θ)]solid =
c

N̄solid(θ)
∼ c

Nsolid

[
1− ϵvβ

2(1 + cos2 θ)
]

(70)

with an anisotropy

[∆c̄θ]solid
[c/Nsolid]

∼ ϵvβ
2 cos 2θ ∼ 10−15 (71)

In this way, a genuine 10−15 vacuum effect, if there, could also be detected in a solid

dielectric thus implying the same prediction Eq.(65).

Fig. 24. We report two typical sets of 2000 seconds for our basic white-noise (WN) signal and its

colored version obtained by Fourier transforming the spectral amplitude of ref.70 The boundaries

of the random velocity components Eqs.(83) and (84) were defined by Eq.(87) by plugging in

Eq.(77) the CMB kinematical parameters, for a sidereal time t = 4000− 6000 seconds and for the

latitude of Berlin-Duesseldorf, see the Appendix. The figure is taken from ref.10

In ref.,10 a detailed comparison with70 was performed. First, from Figure 3(c)

of,70 see also panel b) of our Fig.12, it is seen that the spectral amplitude of this

particular apparatus becomes flat at frequencies ω ≥ 0.5 Hz indicating that the

end-point of the white-noise branch of the signal is at an integration time τ̄ ∼ 1÷ 2

seconds. The data for the spectral amplitude were then fitted to an analytic, power-

law form to describe the lower-frequency part 0.001 Hz ≤ ω ≤ 0.5 Hz which reflects

apparatus-dependent disturbances. This fitted spectrum was then used to generate

a signal by Fourier transform. Finally, very long sequences of this signal were stored

to produce “colored” version of our basic white-noise signal.
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To get a qualitative impression of the effect, we report in Fig.24 a sequence of

our basic simulated white-noise signal and a sequence of its colored version. By

averaging over many 2000-second sequences of this type, the corresponding RAV’s

for the two simulated signals are then reported in Fig.25. The experimental RAV

extracted from Figure 3(b) of ref.70 is also reported (for the non-rotating setup).

At this stage, the agreement of our simulated, colored signal with the experimental

data remains satisfactory only up τ = 50 seconds. Reproducing the signal at larger

τ ’s would have required further efforts but this is not relevant, our scope being just

to understand the modifications of our stochastic signal near the endpoint of the

white-noise spectrum.

Fig. 25. We report the RAV for the fractional frequency shift obtained from many simulations of

sequences of 2000 seconds for our basic white-noise (WN) signal (decreasing as τ−0.5) and for its

colored version, see Fig.24. The direct experimental results of ref.,70 for the non-rotating setup,

are also shown as red dots. The figure is taken from ref.10

As one can check from Fig.3(b) of ref.,70 see also the red dots in our Fig.25, the

experimental RAV for the fractional frequency shift, at the white-noise end point

τ̄ ∼ 1÷ 2 second, is in the range (6.8÷ 8.6) · 10−16, say 70[
RAV (

∆ν

ν0
, τ̄)

]
exp

= (7.7± 0.9) · 10−16 Solid− cryogenic (72)

As such, it coincides with Eq.(63) that we extracted from ref.68 after normalizing

their experimental result RAV (∆ν, τ̄)exp = 0.20÷ 0.24 Hz to their laser frequency

ν0 = 2.8 · 1014 Hz. At the same time, it is well consistent with our theoretical

prediction Eq.(65) for χ = 2. Therefore this beautiful agreement, between ref.68
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(a vacuum experiment at room temperature) and ref.70 (a cryogenic experiment in

a solid dielectric), on the one hand, and with our theoretical prediction Eq.(65),

on the other hand, confirms our interpretation of the data in terms of a stochastic

signal associated with the Earth cosmic motion within the CMB and determined

by the vacuum refractivity ϵv Eq.(56), for χ = 2.

Two ultimate experimental checks still remain. First, as anticipated, one should

try to detect our predicted, daily variations Eq.(66). Due to the excellent systemat-

ics, these variations should remain visible with both experimental setups. Second,

one more complementary test should be performed by placing the vacuum (or solid

dielectric) optical cavities on board of a satellite, as in the OPTIS proposal.110 In

this ideal free-fall environment, as in panel (a) of our Fig.20, the typical instanta-

neous frequency shift should be much smaller (by orders of magnitude) than the

corresponding 10−15 value measured with the same interferometers on the Earth

surface.

6. Summary and outlook

In this paper, we started from the present, basic ambiguity concerning the version of

relativity which is physically realized in nature, namely Einstein Special Relativity

vs. a Lorentzian formulation with a preferred reference frame Σ. This ambiguity is

usually presented by a two-step argument. First, the basic quantitative ingredients,

namely Lorentz transformations, are the same in both formulations. Second, even

in a Lorentzian formulation, Michelson-Morley experiments can only produce null

results. Therefore, rather than introducing an experimentally unobservable and log-

ically superfluous entity, it seemed more satisfactory to adopt the point of view of

Special Relativity where those effects (length contraction and time dilation), that

were at the base of the original Lorentzian formulation, so to speak, become part

of the kinematics. In this way, relativity becomes axiomatic and extendable beyond

the original domain of the electromagnetic phenomena. This wider perspective has

been the main reason for the traditional supremacy given to Einstein’s view.

However, discarding all historical aspects, it was emphasized by Bell that a

change of perspective, from Special Relativity to a Lorentzian formulation, could be

crucial to reconcile hypothetical faster-than-light signals with causality, as with the

apparent non-local aspects of the Quantum Theory. In addition, the present view of

the lowest-energy state as a Bose condensate of elementary quanta (Higgs particles,

quark-antiquark pairs, gluons...), indicates a vacuum structure with some degree of

substantiality which could characterize non trivially the form of relativity which is

physically realized in nature. So, there may be good reasons for a preferred reference

frame but, without the possibility of detecting experimentally an ‘ether wind’ in

laboratory, the difference between the two formulations remains a philosophical

problem.

This impossibility-in-principle, however, is somewhat mysterious. While it is cer-

tainly true that evidence for both the undulatory and corpuscular aspects of radia-
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tion has substantially modified the consideration of an underlying ethereal medium,

yet, if Σ exists, only a ‘conspiracy’ of relativistic effects would make undetectable

our motion with respect to it. But this conspiracy works exactly if the velocity of

light cγ propagating in the various interferometers, or more precisely its two-way

combination c̄γ , coincides with the basic parameter c entering Lorentz transforma-

tions. Therefore if c̄γ ̸= c, as for instance in the presence of matter, where light gets

absorbed and then re-emitted, nothing would really prevent an angular dependence

∆c̄θ = c̄γ(π/2+ θ)− c̄γ(θ) ̸= 0. If an angular dependence can be detected, and cor-

related with the cosmic motion of the Earth, the long sought Σ tight to the CMB

could finally emerge.

We have thus recalled the two key points of our extensive work. First, one

should impose that all measurable effects vanish exactly in the c̄γ → c limit, i.e.

in the ideal vacuum limit of a refractive index N = 1. Instead, in the infinitesimal

region N = 1+ ϵ simple symmetry arguments lead to the relation |∆c̄θ|
c ∼ ϵ(v2/c2).

For a typical cosmic v ∼ 300 km/s and ϵ = 2.8 · 10−4 , for air, or ϵ = 3.3 · 10−5, for

gaseous helium, this reproduces the order of magnitude of the effects observed in

the classical experiments.

The other peculiar aspect of our analysis concerns the observed, irregular charac-

ter of the data that, giving often substantially different directions of the drift at the

same hour on consecutive days, were contradicting the traditional expectation of a

regular phenomenon completely determined by the cosmic motion of the Earth. As

we have emphasized, here again, there may be a logical gap. The relation between

the macroscopic motion of the Earth and the microscopic propagation of light in a

laboratory depends on a complicated chain of effects and, ultimately, on the physi-

cal nature of the vacuum. By comparing with the motion of a body in a fluid, the

standard view corresponds to a form of regular, laminar flow where the projection

ṽµ(t) of the global, cosmic velocity, at the site of the experiment, coincides with the

local vµ(t) that determines the signal in the plane of the interferometer. Instead,

some general arguments and some experimental analogies suggest that the physical

vacuum might rather resemble a turbulent fluid where large-scale and small-scale

flows are only related indirectly. In this different perspective, with forms of tur-

bulence that, as in most models, become statistically isotropic at small scales, the

local vµ(t) would fluctuate randomly within boundaries fixed by the global ṽµ(t)

(see the Appendix). Therefore, one should analyze the data in phase and amplitude

(giving respectively the instantaneous direction and magnitude of the drift) and

concentrate on the latter which is positive definite and remains non-zero under any

averaging procedure. In this way, by restricting to the amplitudes, experiments al-

ways believed in contradiction with each other, as Miller vs. Piccard-Stahel, become

consistent, see Fig.9. Most notably, by adopting the parameters (V, α, γ)CMB to fix

the boundaries of the local random vµ(t) in our stochastic model, one finds a good

description of the irregular behaviour of the amplitudes extracted from Joos’ very

precise observations (see Figs.17 and 18). Viceversa, by fitting Joos’ amplitudes

with Eqs.(76) and (77), one finds a right ascension α(fit− Joos) = (168 ± 30) de-
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grees and an angular declination γ(fit− Joos) = (−13± 14) degrees which are well

consistent with the present values α(CMB) ∼ 168 degrees and γ(CMB) ∼ −7 de-

grees. The summary of all classical experiments given in Table 3 shows the complete

consistency with our theoretical predictions.

To conclude our analysis of the classical experiments in gaseous systems, we

have emphasized that our basic relation |∆c̄θ|
c ∼ ϵgas(v

2/c2) derives from general,

symmetry arguments and does not explain the ultimate origin of the tiny observed

residuals. Due to the consistency with the velocity of 370 km/s, a plausible explana-

tion consists in a collective interaction of gaseous matter with the CMB radiation.

This could bring the gas out of equilibrium as if there were an effective temperature

difference, |∆T gas(θ)| = 0.2÷ 0.3 mK, in the gas along the two optical paths. This

magnitude is slightly smaller than the value of about 1 mK considered by Joos

and Shankland and, being just a small fraction of the whole ∆TCMB(θ) = ±3.3

mK in Eq.(3), indicates the weakness of the collective gas-CMB interactions. Most

notably, the thermal interpretation leads to an important prediction. In fact, it

implies that if a physical signal could definitely be detected in vacuum then, with

very precise measurements, the same signal should also show up in a solid dielectric

where disturbing temperature differences of a fraction of millikelvin become irrele-

vant. Detecting such ‘non-thermal’ light anisotropy, through the combined analysis

of the modern experiments in vacuum and in solid dielectrics, for the same cosmic

motion indicated by the classical experiments, is thus necessary to confirm the idea

of a fundamental preferred frame.

Despite the much higher precision of modern experiments, the assumptions be-

hind the analysis of the data are basically the same as in the classical experiments.

A genuine signal is assumed to be a regular phenomenon, depending deterministi-

cally on the Earth cosmic motion, so that averaging more and more observations is

considered a way of improving the accuracy. But the classical experiments indicate

genuine physical fluctuations which are not spurious noise and, instead, express how

the cosmic motion of the Earth is actually seen in a detector. Therefore, the present

quoted average, namely ⟨∆c̄θ⟩
c ≲ 10−18, could just reflect the very irregular nature

of the signal. Indeed, its typical instantaneous magnitude in vacuum |∆c̄θ|
c ∼ 10−15

is about 1000 times larger, see Fig.19 or panel b) of Fig.11.

To understand if this vacuum signal can admit a physical interpretation, a crucial

observation is that the same 10−15 magnitude is found in measurements where the

resonators are made of different materials, in measurements at room-temperature

and also in the cryogenic regime. Since it is very unlike that spurious effects remain

the same in so different conditions, in the same model used for the classical experi-

ments we are driven to the idea of a refractive index Nv = 1+ ϵv for the vacuum or,

more precisely, for the physical vacuum established in an optical cavity placed on

the Earth surface. The refractivity ϵv should be at the 10−9 level, in order to give
|∆c̄θ|

c ∼ ϵv (v2/c2) ∼ 10−15 and thus would fit with the original idea of ref.94 The

motivation was that, if Einstein’s gravity is a phenomenon which emerges, at some
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small length scale, from a fundamentally flat space, for an apparatus placed on the

Earth surface (which is in free fall with respect to all masses in the Universe but not

with respect to the Earth, see Fig.20) there should be a tiny vacuum refractivity

ϵv ∼ (2GNM/c2R) ∼ 1.39 · 10−9, where GN is the Newton constant and M and R

are the mass and radius of the Earth. This is the same type of refractivity consid-

ered by Eddington, or much more recently by Broekaert, to explain in flat space the

deflection of light in a gravitational field. Therefore Michelson-Morley experiments,

by detecting a light anisotropy |∆c̄θ|
c ∼ ϵv (v2/c2) ∼ 10−15, can also resolve this

other ambiguity.

With this identification of ϵv, we first compared qualitatively the observed signal,

in Fig.19 or in panel b) of Fig.11, with simulations in our stochastic model, see

Figs.23 and 24. For a more quantitative analysis, we then considered the value of a

particular statistical indicator which is used nowadays, namely the Allan Variance

of the fractional frequency shift RAV (∆ν
ν0

, τ) as function of the integration time

τ . Since the irregular signal of our stochastic model has the characteristics of a

universal white noise and should represent an irreducible component, we have thus

compared with the RAV measured at the end point of the white-noise branch of

the spectrum. This is defined as the largest integration time τ̄ where the white-

noise component is as small as possible but other spurious disturbances, that can

affect the measurements, are not yet important, see Fig.22. In this way, for the same

velocity range ṽ = 250÷370 km/s used for the classical experiments, our theoretical

prediction Eq.(65) (for χ = 2) is in very good agreement with the results of the most

precise experiment in vacuum Eq.(63).

But, then, the second crucial test. As anticipated, if this 10−15 signal observed

in vacuum has a real physical meaning, the same effect should also be detected with

a very precise experiment in a solid dielectric, see Eq.(71). This expectation is con-

firmed by the extraordinary agreement between Eq.(72) and Eq.(63). Note that the

two experiments are completely different because in ref.70 light propagates in a solid

in the cryogenic regime and in ref.68 light propagates in vacuum at room tempera-

ture. As such, there is a plenty of systematic differences. Yet, the two experiments

give exactly the same signal at the white-noise end point. Therefore, there must be

an ubiquitous form of white noise that admits a definite physical interpretation. Our

theoretical prediction Eq.(65) is, at present, the only existing explanation. Together

with the classical experiments, we thus conclude that there is now an alternative

scheme challenging the traditional ‘null interpretation’ of Michelson-Morley exper-

iments, always presented as a self-evident scientific truth.

We have also discussed two further experimental tests. First, one should try to

detect our predicted, daily variations Eq.(66). Second, one should also try to place

the optical cavities on a satellite, as in the OPTIS proposal.110 In this ideal free-fall

environment, as in panel (a) of our Fig.20, the typical instantaneous frequency shift

should be much smaller (by orders of magnitude) than the corresponding 10−15

value measured with the same interferometers on the Earth’s surface.
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Appendix

In this appendix, we will summarize the stochastic model used in refs.7–10 to

compare with experiments. To make explicit the time dependence of the signal let

us first re-write Eq.(19) as

∆c̄θ(t)

c
∼ ϵ

v2(t)

c2
cos 2(θ − θ2(t)) (73)

where v(t) and θ2(t) indicate respectively the instantaneous magnitude and direction

of the drift in the (x, y) plane of the interferometer. This can also be re-written as

∆c̄θ(t)

c
∼ 2S(t) sin 2θ + 2C(t) cos 2θ (74)

with

2C(t) = ϵ
v2x(t)− v2y(t)

c2
2S(t) = ϵ

2vx(t)vy(t)

c2
(75)

and vx(t) = v(t) cos θ2(t), vy(t) = v(t) sin θ2(t)

As anticipated in Sect.3, the standard assumption to analyze the data has always

been based on the idea of regular modulations of the signal associated with a cosmic

Earth velocity. In general, this is characterized by a magnitude V , a right ascension

α and an angular declination γ. These parameters can be considered constant for

short-time observations of a few days where there are no appreciable changes due

to the Earth orbital velocity around the sun. In this framework, where the only

time dependence is due to the Earth rotation, the traditional identifications are

v(t) ≡ ṽ(t) and θ2(t) ≡ θ̃2(t) where ṽ(t) and θ̃2(t) derive from the simple application

of spherical trigonometry71

cos z(t) = sin γ sinϕ+ cos γ cosϕ cos(τ − α) (76)

ṽ(t) = V sin z(t) (77)

ṽx(t) = ṽ(t) cos θ̃2(t) = V [sin γ cosϕ− cos γ sinϕ cos(τ − α)] (78)

ṽy(t) = ṽ(t) sin θ̃2(t) = V cos γ sin(τ − α) (79)

Here z = z(t) is the zenithal distance of V, ϕ is the latitude of the laboratory,

τ = ωsidt is the sidereal time of the observation in degrees (ωsid ∼ 2π
23h56′

) and the

angle θ2 is counted conventionally from North through East so that North is θ2 = 0

and East is θ2 = 90o. With the identifications v(t) ≡ ṽ(t) and θ2(t) ≡ θ̃2(t), one

thus arrives to the simple Fourier decomposition

S(t) ≡ S̃(t) = S0 + Ss1 sin τ + Sc1 cos τ + Ss2 sin(2τ) + Sc2 cos(2τ) (80)

C(t) ≡ C̃(t) = C0 + Cs1 sin τ + Cc1 cos τ + Cs2 sin(2τ) + Cc2 cos(2τ) (81)

where the Ck and Sk Fourier coefficients depend on the three parameters (V, α, γ)

and are given explicitly in refs.7,9
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Though, the identification of the instantaneous quantities vx(t) and vy(t) with

their counterparts ṽx(t) and ṽy(t) is not necessarily true. As anticipated in Sect.3,

one could consider the alternative situation where the velocity field is a non-

differentiable function and adopt some other description, for instance a formulation

in terms of random Fourier series.55,72,73 In this other approach, the parameters

of the macroscopic motion are used to fix the typical boundaries for a microscopic

velocity field which has an intrinsic non-deterministic nature.

The model adopted in refs.7–10 corresponds to the simplest case of a turbulence

which, at small scales, appears homogeneous and isotropic. The analysis can then

be embodied in an effective space-time metric for light propagation

gµν(t) ∼ ηµν + 2ϵvµ(t)vν(t) (82)

where vµ(t) is a random 4-velocity field which describes the drift and whose bound-

aries depend on a smooth field ṽµ(t) determined by the average Earth motion.

For homogeneous turbulence a series representation, suitable for numerical sim-

ulations of a discrete signal, can be expressed in the form

vx(tk) =

∞∑
n=1

[xn(1) cosωntk + xn(2) sinωntk] (83)

vy(tk) =

∞∑
n=1

[yn(1) cosωntk + yn(2) sinωntk] (84)

Here ωn = 2nπ/T and T is the common period of all Fourier components. Fur-

thermore, tk = (k − 1)∆t, with k = 1, 2..., and ∆t is the sampling time. Finally,

xn(i = 1, 2) and yn(i = 1, 2) are random variables with the dimension of a veloc-

ity and vanishing mean. In our simulations, the value T = Tday= 24 hours and

a sampling step ∆t = 1 second were adopted. However, the results would remain

unchanged by any rescaling T → sT and ∆t → s∆t.

In general, we can denote by [−dx(t), dx(t)] the range for xn(i = 1, 2) and by

[−dy(t), dy(t)] the corresponding range for yn(i = 1, 2). Statistical isotropy would

require to impose dx(t) = dy(t). However, to illustrate the more general case, we

will first consider dx(t) ̸= dy(t).

If we assume that the random values of xn(i = 1, 2) and yn(i = 1, 2) are chosen

with uniform probability, the only non-vanishing (quadratic) statistical averages are

⟨x2
n(i = 1, 2)⟩stat =

d2x(t)

3 n2η
⟨y2n(i = 1, 2)⟩stat =

d2y(t)

3 n2η
(85)

Here, the exponent η ensures finite statistical averages ⟨v2x(t)⟩stat and ⟨v2y(t)⟩stat for
an arbitrarily large number of Fourier components. In our simulations, between the

two possible alternatives η = 5/6 and η = 1 of ref.,73 we have chosen η = 1 that

corresponds to the Lagrangian picture in which the point where the fluid velocity

is measured is a wandering material point in the fluid.
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Finally, the connection with the Earth cosmic motion is obtained by identifying

dx(t) = ṽx(t) and dy(t) = ṽy(t) as given in Eqs. (76)−(79). If, however, we require

statistical isotropy, the relation

ṽ2x(t) + ṽ2y(t) = ṽ2(t) (86)

requires the identification

dx(t) = dy(t) =
ṽ(t)√
2

(87)

For such isotropic model, by combining Eqs.(83)−(87) and in the limit of an infinite

statistics, one gets

⟨v2x(t)⟩stat = ⟨v2y(t)⟩stat =
ṽ2(t)

2

1

3

∞∑
n=1

1

n2
=

ṽ2(t)

2

π2

18

⟨vx(t)vy(t)⟩stat = 0 (88)

and vanishing statistical averages

⟨C(t)⟩stat = 0 ⟨S(t)⟩stat = 0 (89)

at any time t, see Eqs.(75). Therefore, by construction, this model gives a definite

non-zero signal but, if the same signal were fitted with Eqs.(80) and (81), it would

also give average values (Ck)
avg = 0, (Sk)

avg = 0 for the Fourier coefficients.

To understand how radical is the modification produced by Eqs.(89), we recall

the traditional procedure adopted in the classical experiments. One was measuring

the fringe shifts at some given sidereal time on consecutive days so that changes

of the orbital velocity were negligible. Then, see Eqs.(20) and (74), the measured

shifts at the various angle θ were averaged

⟨∆λ(θ; t)

λ
⟩stat =

2D

λ
[2 sin 2θ ⟨S(t)⟩stat + 2 cos 2θ ⟨C(t)⟩stat] (90)

and finally these average values were compared with models for the Earth cosmic

motion.

However if the signal is so irregular that, by increasing the number of mea-

surements, ⟨C(t)⟩stat → 0 and ⟨S(t)⟩stat → 0 the averages Eq.(90) would have no

meaning. In fact, these averages would be non vanishing just because the statis-

tics is finite. In particular, the direction θ2(t) of the drift (defined by the relation

tan 2θ2(t) = S(t)/C(t)) would vary randomly with no definite limit.

This is why one should concentrate the analysis on the 2nd-harmonic amplitudes

A2(t) =
2D

λ
2
√
S2(t) + C2(t) ∼ 2D

λ
ϵ
v2x(t) + v2y(t)

c2
(91)

which are positive-definite and remain non-zero under the averaging procedure.

Moreover, these are rotational-invariant quantities and their statistical average

⟨A2(t)⟩stat ∼
2D

λ
· π

2

18
· ϵ · V

2 sin2 z(t)

c2
(92)
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would remain unchanged in the isotropic model Eq.(87) or with the alternative

choice dx(t) ≡ ṽx(t) and dy(t) ≡ ṽy(t). Analogous considerations hold for the mod-

ern experiments where ∆c̄θ(t)
c is extracted from the frequency shift of two optical

resonators. Again, the C(t) and S(t) obtained, through Eq.(74), from the very ir-

regular, measured signal (see e.g. Fig.19), are compared with the slowly varying

parameterizations Eqs.(80) and (81) to extract the Ck and Sk Fourier coefficients.

Then, by comparing with our simulation of the C(t) and S(t) in Fig.23, it is no

surprise if the average values (Ck)
avg → 0, (Sk)

avg → 0 by simply increasing the

number of observations.
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92. M. Nagel, K. Möhle, K. Döringshoff, S. Schikora, E.V. Kovalchuk, A. Peters,

Ultra-stable Cryogenic Optical Resonators For Tests Of Fundamental Physics,



February 21, 2024 2:5 WSPC/INSTRUCTION FILE Consoli˙review˙arxiv

60 Authors’ Names

arXiv:1308.5582[physics.optics].

93. K. Numata, A, Kemery and J. Camp, Thermal-Noise Limit in the Frequency Stabi-

lization of Lasers with Rigid Cavities, Phys. Rev. Lett. 93, 250602 (2004).

94. M. Consoli and L. Pappalardo, Emergent gravity and ether-drift experiments, Gen.

Rel. and Grav. 42, 2585 (2010).

95. C. Barcelo, S. Liberati and M. Visser, Analog gravity from Bose-Einstein condensates,

Class. Quantum Grav. 18, 3595 (2001).

96. M. Visser, C. Barcelo and S. Liberati, Analogue models of and for gravity, Gen. Rel.

Grav. 34, 1719 (2002).

97. G. E. Volovik, Superfluid analogies of cosmological phenomena, Phys. Rep. 351, 195

(2001).

98. H. Yilmaz, New Approach to General Relativity, Phys. Rev. 111, 1417 (1958).

99. R. P. Feynman, in Superstrings: A Theory of Everything? , P. C. W. Davies and J.

Brown Eds., Cambridge University Press, 1997, pag. 201.

100. E. G. Adelberger, New tests of Einstein’s equivalence principle and Newton’s inverse-

square law, Class. Quantum Grav. 18, 2397 (2001).

101. R. D’E. Atkinson,General relativity in Euclidean terms Proc. R. Soc. 272, 60 (1963).

102. K. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy, W. W.

Norton and Co. Inc, New York and London, 1994, see Chapt. 11 “What is Reality?”.

103. R. J. Cook, Physical time and physical space in general relativity, Am. J. Phys. 72,

214 (2004).

104. A. S. Eddington,Space, Time and Gravitation, Cambridge University Press, 1920.

105. A. M. Volkov, A. A. Izmest’ev, and G. V. Skrotski, The propagation of electromag-

netic waves in a riemannian space, Sov. Phys. JETP 32, 686 (1971).

106. J. Broekaert, A Spatially-VSL Gravity Model with 1-PN limit of GRT, Found. of

Phys. 38, 409 (2008).

107. L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, Pergamon Press,

1971, p.257.

108. D. A. Jennings, R. E. Drullinger, K. M. Evenson, C. R. Pollock, J. S. Wells, The

Continuity of the Meter: The Redefinition of the Meter and the Speed of Visible Light,

Journ. of Res. Nat. Bur. Stand. 92, 11 (1987).

109. M. Nagel, Design of a next-generation modern Michelson-Morley experiment, PhD

Thesis, (Humboldt U., Berlin), March 2022.

110. C. Lämmerzahl et al., OPTIS: a satellite-based test of special and general relativity,

Class. Quantum Gravity 18, 2499 (2001).

http://arxiv.org/abs/1308.5582

	Introduction
	Relativity and Quantum Non-Locality
	Relativity and the Vacuum State
	Relativity and the CMB

	A modern view of the `ether-drift' experiments
	Basics of the ether-drift experiments
	The limit of refractive index N= 1 + 

	A first look at the classical experiments
	The 1887 Michelson-Morley experiment in Cleveland
	Further insights: Miller vs. Piccard-Stahel

	Going deeper into the ether-drift phenomenon
	Reanalysis of the MPP experiment
	Joos' experiment
	Summary of all classical experiments
	The intriguing role of temperature

	The modern ether-drift experiments
	A 10-9 refractivity for the vacuum (on the Earth surface)
	Some important technical aspects
	Comparing our model with experiments in vacuum
	Comparing our model with experiments in solids

	Summary and outlook

