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Preface

The International Conference on Two Cosmological Models was held at Universidad Iberoamer-
icana in Mexico City, Mexico, from November 17th to 19th, 2010, as a forum devoted to the study
and discussion of two important problems of modern cosmology. Of the more than 50 experts of
the traditional ΛCDM model that were invited by the University to assist at the Conference, five
accepted our invitation. Of the 11 representatives of alternative models that were invited, all
agreed to participate. Two participants gave an overview of historical and relativistic aspects of
the problem, without aligning with any model in particular. A total of 18 speakers from Brazil,
Canada, Chile, France, Germany, India, Mexico, the Netherlands, New Zealand, and the USA
gave a total of 20 lectures and participated in an open discussion on the following two topics:
1) The concept of dark matter as a possible explanation of the rotation velocity of galaxies and
galaxy clusters in the context of Newtonian dynamics; and the alternative explanation through
Einstein’s general relativity, without dark matter. 2) The concept of dark energy as a possible
explanation of the apparent acceleration of the expansion of the universe; and the alternative
explanation through Einstein’s gravitational theory, without dark energy.

The overall impact of the event was more than satisfactory. These Proceedings contain
the lectures on the topics covered in the International Conference on Two Cosmological Models,
except for two of them, who could not send us the written version of their lecture. One participant
did not send us the written version of his lecture, but gave us permission to transcribe its verbal
version. After the Conference, some participants made their lectures available in ArXiv, adding
some references to more recent essays, published after the Conference, so that these Proceedings
provide the reader with an update of the most current research on these very transcendental
topics.

We would like to thank everyone who contributed to the success of the International Con-
ference on Two Cosmological Models. Very special thanks are due to the invited speakers who
addressed a very interesting and high quality set of talks and shared their deep knowledge and
time with the participants.

We grately acknowledge Dr. John Auping-Birch and all the staff of Universidad Iberoamer-
icana for the warm hospitality, which was extended to all the participants. We specially thank
Dr. José Morales-Orozco, Rector of Universidad Iberoamericana, Mexico City for sponsoring
this international endeavor. We hope that these Proceedings will serve to foster the impressive
growth of high precision cosmology and the discussion on the different theoretical interpretations
of its findings and, additionally, reinforce the existing ties between the Mexican researchers and
scientists from all over the world.

Dr. Alfredo Sandoval Villalbazo Director of the Physics and Mathematics Department Uni-
versidad Iberoamericana Mexico, July 2012
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S P I R A L   G A L A X Y   R O T A T I O N A L   V E L O C I T Y 





GRAVITATION AND SPACETIME: EINSTEIN’S

CONTRIBUTION

Hans C. Ohanian
Department of Physics, University of Vermont, Burlington, VT 05405-0125, USA

hohanian@uvm.edu

Abstract

As I argued in Einstein’s Mistakes [1], most of Einstein’s great discoveries rest on con-
ceptual mistakes which he used as stepping stones toward a final, true, result. This lecture
is a summary of the various mistakes that paved Einstein’s progress toward his theories of
special and general relativity. It also includes a detailed discussion of an extra, previously
unrecognized, mistake in the application of the equivalence principle, namely, that the gravi-
tational redshift cannot be derived from this principle by Einstein’s 1911 argument, because
the equivalence principle contains a contradiction that renders it invalid when applied in
flat spacetime.

1 Introduction

I want to begin this lecture by making a wish: I earnestly and passionately wish that the
participants of this conference will make very many big mistakes. My wish is not malicious,
because I believe it is by making great mistakes that we make great discoveries. As James Joyce
said, “Errors are the portals of discovery.” And I am going to illustrate this maxim by showing
you how Einstein’s great and wonderful mistakes led him to his great and wonderful discoveries
in special and general relativity.

Although the modern view of space and time was not exclusively the work of Einstein, he
made the most fundamental and most profound contributions, and for many years he was the
dominant figure in relativistic physics, as well as the dominant figure in all of physics. Einstein
became a celebrity, adored by the public, and even today, fifty five years after his death, his
celebrity status survives. If you google Einstein you get 155 million hits, which is only slightly
below the number for Jesus.

Bernard Shaw compared Einstein to the great conquerors in history and called him a maker
of universes. He said “Ptolemy made a universe, which lasted 1400 years. Newton, also, made a
universe, which lasted 300 years. Einstein has made a universe, and I can’t tell you how long it
will last” [2] .We are now in the 105th year of Einstein’s spacetime universe, and so far all is well.
I don’t regard the theories that will be presented at this conference as an attempt to overthrow
Einstein’s view of spacetime—these theories merely adjust and refine Einstein’s work.

The only serious attempt at overthrowing Einstein’s spacetime is found in string theory, but
so far, this has been a chaotic endeavor, without any sharply defined target or any clearcut
success. String theorists claim they will someday be able to predict everything, but so far they
have predicted next to nothing. Last week, in Physics Today, I finally read a prediction made
by a string theorist who had investigated neutrinos, and who announced “We showed that in
no case could the theory generate light but not massless neutrinos. That work presents a clear
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example of a test of string theory” [3] . What this sentence means is a mystery to me; I have
read it forward and backward and sideways, and I still am not sure what it means. As best I can
tell, this string theorist seems to announce that his theory can generate only neutrinos of mass
zero, which, of course, disagrees with the observational fact that neutrinos have mass. And he
regards this as progress?

Because Einstein played such a preeminent role in relativity, every development in relativity
has tended to be credited to him. The physicist and historian Jagdish Mehra thought this was
a result of “the sociology of science, the question of the cat and the cream. Einstein was the big
cat of relativity, and the whole saucer of its cream belonged to him by right and by legend, or
so most people assume!” [4].

But legends are often wrong. Not all of the contributions to relativity came from Einstein,
and even those contributions that originated from Einstein were often in need of corrections,
improvements, and emendations. In this lecture, I will dissect the mistakes that Einstein made
in the seminal papers that led to the development of special relativity and general relativity in
1905 and 1911-1916, and I will show how his great and surprising mistakes led to his great and
surprising discoveries.

2 Special relativity

The groundwork for special relativity had already been laid by Einstein’s predecessors, especially
Hendrik Lorentz and Henri Poincare. Einstein did not admit to that in his first paper on relativity,
but he admitted it later, saying that by 1905 relativity “was in the air” [5] . Einstein’s 1905
paper contains several fundamental contributions. Not all of them were new; his statement of the
principle of relativity had been anticipated by Poincare and his coordinate transformations were
a rederivation of the Lorentz transformations obtained by Lorentz a year earlier, which Einstein
had not noticed. And some of the contributions in the 1905 paper involved serious mistakes.
Despite, and perhaps because of, these mistakes, this paper launched the theory of relativity by
laying down a general program for how to implement the principle of relativity for all laws of
physics by means of the Lorentz transformations.

Einstein begins his 1905 paper with a discussion of synchronization of clocks. This dis-
cussion is phrased in deceptively simple language, although it deals with a profound physical
and philosophical question. He asks, What does it mean to say “that a train arrives here at 7
o’clock?” And he answers that it means that “the pointing of the small hand of his watch to 7
and the arrival of the train are simultaneous events” [6] . That much is simple. But things get
more complicated when we want to synchronize clocks or events at different locations.To achieve
synchronization at distant locations, say, Ciudad de México and Mérida, we need some special
synchronization procedure, and Einstein decided to adopt a procedure of sending light signals
back and forth between the two locations. If the light signal leaves here at noon, and comes back
in 6 milliseconds, then it must have reached Mérida at noon plus 3 milliseconds, which tells our
colleagues at the Universidad de Yucatán how to synchronize their clock with ours.

Einstein became obsessed with this synchronization procedure, and he believed it was the
solution to the puzzle of the invariance of the speed of light, a problem he had wondered about
since his teenage years. Due to the emphasis he gave to this procedure in his 1905 paper, it became
known as the “Einstein procedure” for synchronization. But it did not originate with Einstein.
It actually was a procedure that had been adopted in the 1850s, when the first long-distance
telegraph lines were laid in the US, and astronomers decided to use back-and-forth telegraph
signals to synchronize distant clocks, for use in accurate determinations of geographical longitude.
Throughout the second half of the 19th century, this method was widely used for transcontinental
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geographical surveys, such as the surveys of India and of Russia; and, when the first transoceanic
telegraph lines were laid, it was also used for intercontinental longitude determinations. In the
first years of the 20th century, the method was used for a new longitude determination of the
Paris Observatory relative to Greenwich, and maybe that was where Einstein heard about this
method and decided to imitate it.

Einstein argues that if we adopt this synchronization procedure for the clocks at the starting
and ending points of a racetrack, it becomes meaningless to measure the separate one-way speeds
of light forward and backward along the racetrack, because such measurements would be logically
circular. Einstein therefore claims that the equality of one-way speeds of light is a stipulation,
beyond the reach of actual experiment.

His logic is impeccable, but his physics is atrocious. Einstein forgets that there might be
other ways to synchronize clocks, such as transport of clocks from one place to the other. Before
telegraphy became available, such clock transport was widely used by astronomers in the 19
century for determinations of geographical longitude. To synchronize clocks at different stations,
astronomers transported chronometers between the stations, often using several chronometers, to
improve the accuracy by averaging. For instance, to determine the longitude difference between
Greenwich and Valentia (on the west coast of Ireland), George Airy, then the Astronomer Royal,
transported 30 chronometers from Greenwich to Valentia, and then he repeated this times, for
an even better average [7].

And Einstein forgets that there might be other ways to measure the one-way speed of light
without synchronization of clocks. As far back as the17th and 18th centuries, the Danish as-
tronomer Olaf Roemer and the English astronomer James Bradley measured the one-way speed
of light without making use of any clock synchronization. Roemer (1676) exploited the time delay
in the observed eclipses of the satellites of Jupiter, and Bradley (1727) exploited the aberration
of starlight. Both methods hinge, in essence, on comparing the speed of light with the speed of
the Earth in its orbit.

Why or how Einstein overlooked these two well-known historical determinations of the speed
of light is a puzzle. Roemer’s and Bradley’s determinations of the speed of light were well known
in the 19th century, and they were even discussed in introductory physics textbooks [8]. Maybe
Einstein decided to dismiss these astronomical methods out of hand because, in practice, they
could not achieve the high precision attained by terrestrial methods, first by Armand Fizeau
in 1849 and then by Abraham Michelson in a series of measurements in the 1880s and 1890s.
Michelson continued to improve these measurements, and for his work he came to be called the
“master of light” (in Spanish, “el señor de la luz,” which rather sounds like a religious title).
But in his paper Einstein was discussing questions of principle, not questions of practice, and
the practical limits of the precision of synchronization were not an issue.

Maybe Einstein deleted Roemer and Bradley from his mind because they were an inconvenient
truth, awkward to fit into his own way of thinking about the speed of light and the synchronization
problem. During the months of intense, feverish thinking that preceded the writing of the
relativity paper Einstein was in the grip of a mystical, intuitive, and irrational inspiration. The
historian Peter Galison described how Einstein, during an afternoon walk in the hills around
Berne, suddenly arrived at the idea that the solution of the problem of a universal speed of
light rested in the synchronization [9]. And the biographer Abraham Pais thought that perhaps
this intense inspirational experience “was so overwhelming that it seared his mind and partially
blocked out reflections and information that had been with him earlier” [10].

In the absence of Roemer and Bradley, Einstein drew the mistaken conclusion that the one-
way speed of light must be established by stipulation, that is, by fiddling with the synchronization
of clocks in such a way as to produce equal one-way speeds in opposite directions. Instead of
promulgating the universal, constant value of the one-way speed of light as a stipulation, or a
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dogma, Einstein should have treated it as simple postulate, that is, a proposed law or principle
of physics to be tested and confirmed by experiment, which is what he did, quite correctly with
the round-trip speed of light.

Einstein’s stipulation was a mistake, but it was a fruitful mistake, because it permitted him
to rush forward with the development of relativity and bypass the troublesome question of how
to obtain conclusive experimental confirmation of the universal value of the one-way speed of
light.

Here we see a crucial difference between Newton’s and Einstein’s approach to physics. Newton
declared “I make no hypotheses.” Whether that is quite true of all his work is debatable, but
at least such was his announced intention. In contrast, Einstein made hypotheses whenever he
could get away with it, and sometimes he even made hypotheses that were preempted and or
even contradicted by known experimental and observational facts. He was a dogmatist, and
he had the arrogance and stubbornness that goes with that. We see an example of this in his
stipulation about the one-way speed of light and his cavalier rejection of Roemer’s and Bradley’s
methods. We see another example in Einstein’s hypothesis of quanta of light, which he based on
Wien’s law for the blackbody spectrum, in willful and deliberate defiance of Planck’s law. By
1905, Planck’s law was experimentally well established and known to be correct, and Einstein
must have been aware that his hypothesis of thermal radiation as a gas of quanta, treated by
classical statistics, was in conflict with Planck’s law. He never mentioned this inconvenient
truth, and he insisted on a hypothesis that—until the introduction of quantum statistics twenty
years later—was in contradiction with the experimental evidence. And we see the most glaring
example of Einstein’s dogmatism in his rejection of the probabilistic interpretation of quantum
mechanics and his famous declaration that “God does not play dice.”

Newton believed, or pretended to believe, in a “bottom-up” approach to physics, based on
experimental and observational facts from which, by a process of generalization, or induction,
the laws of physics could be extracted. Einstein believed in a “top-down” approach to physics,
by inspirational formulation of hypotheses from which consequences could be derived. As John
Auping points out [11], Einstein’s method is deductive, not inductive, and this is clearly revealed
in a newspaper article Einstein wrote in 1919:

The truly great advances in our understanding of nature originated in a way almost diamet-
rically opposed to induction. The intuitive grasp of the essentials of a large ensemble of facts
leads the researcher to the formulation of one or more hypothetical fundamental laws. From
the fundamental law (system of axioms) he draws his conclusions as completely as possible in a
purely logical-deductive manner [12].

Einstein believed he had the intuitive insight to perceive the truth, and he, and only he, knew
what hypotheses to make. He had the confidence of a visionary and of a fanatic, and he did not
hesitate to go against experimental and observational facts when these did not fit his theories.

In the second section of his paper, Einstein exploits the constant one-way speed of light as the
basis for a derivation of the transformation of space and time coordinates between two inertial
reference frames. His treatment of this derivation is correct, but astoundingly clumsy. Even in
abbreviated form presented in the printed publication, the calculations go on and on for five and
a half tedious pages; and, as shown in the recent book on Kinematics by Alberto Mart́ınez [13],
if he had spelled out all the details of his calculations, it would have taken him thirty pages
of print. The trouble was that Einstein failed to see that there is a simple physical argument
to establish that lengths transverse to the velocity will not expand or contract: if two meter
sticks in relative motion are oriented transversely, then, by symmetry of the physical situation,
a contraction of the second relative to the first requires an equal contraction of the first relative
to the second, which is contradictory, and rules out any contraction (or expansion) [14]. Today,
this argument is familiar to all students of relativity. If the transverse lengths are unchanged,
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Figure 1: Minkowsky’s derivation of the Lorentz transformation

they can be ignored, and it then suffices to examine the transformations of the time coordinate
and the longitudinal length coordinate, which makes the calculation much simpler.

How much simpler can be seen by taking a look at the derivation of the transformation
equations presented by Hermann Minkowski in a lecture to the Congress of German Natural
Scientists and Physicians in 1908. Minkowski had been one of Einstein’s math professors at the
Polytechnic in Zurich, and he had a rather poor opinion of Einstein—he called him a “lazy dog.”
When Einstein published his famous five papers in 1905, Minkowski was astounded; he said “I
really would not have believed him capable of it” [15]. Minkowski then took the invariance of
the speed of light from Einstein’s relativity paper and produced a new, graphical derivation of
the transformation equations. It consists of one simple diagram (Fig. 1), from which, in half a
minute, you can deduce the transformation equations. In fact the derivation from this diagram
is so simple that Minkowski did not even bother to spell it out in the published version of his
lecture. I imagine that at the Congress he merely drew this diagram on a blackboard and said
one or two dozen words about it. If you want to try to derive the transformation equations, here
are the two dozen words you need to know: First draw the line OA’ along the t’ axis, then the
line A’B’ tangent to the hyperbola t2 − x2 = 1 at A’. The rest of the diagram is self-evident.

The difference between Einstein’s five and a half messy pages of calculations and this simple
diagram reveals the difference between a master mathematician such as Minkowski and his pupil.
But, as Einsteins achievements show, you don’t need to be a brilliant mathematician to become
a great physicist. In fact, Einstein had little mathematical talent, and he had no real interest
in mathematics. He thought in images, not in words or formulas. In an interview with a
psychologist, he said: “I rarely think in words at all. A thought comes, and I may express it in
words afterwards” [16]. In his autobiography, he excused his mathematical deficiencies saying, “I
saw that mathematics was split up into many specialties, each of which could absorb the short
lifespan granted to us.Thus I saw myself in the position of Buridan’s ass, which was unable to
decide on a particular bundle of hay” [17]. What he does not mention in this autobiography is
that throughout his life he relied heavily on friends and on assistants to do his mathematics for
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him. At the Polytechnic and for his early investigations of general relativity, he relied on his
friend Marcel Grossman, who taught him the basics of Riemannian geometry. Later, when his
career blossomed with his appointment in Berlin, he hired a personal mathematical assistant,
and in later years he always had an assistant available; these came and went, a total of ten or so
altogether, and they did all the calculations that Einstein found too tedious.

Besides improving on Einstein’s mathematical presentation, Minkowski made a crucial con-
tribution to our understanding of spacetime by recognizing that Einstein’s theory of relativity
implies a complete unification of space and time. The Lorentz transformation equations show
that what is time and what is space depends on the reference frame, and that transformations
of reference frame mix space and time. As Minkowski expressed it, “space by itself, and time
by itself are doomed to fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality” [18] .

This unification of space and time also caught the attention of philosophers, and of the public,
and of poets and writers who delighted to insert esoteric references to unified space and time
in their writings. Carlos Fuentes included a well-tuned phrase of this kind in one of his books:
“Habrá solo la unidad total, olvidada, sin nombre y sin hombre que la nombre: fundidos espacio
y tiempo, materia y enerǵıa” [19] (I can try to translate this, but it doesn’t quite have the same
ring in English, and it loses the charming musicality that Fuentes gave it: “There will be only
total unity, forgotten, without a name and without anyone to give it a name: space and time are
merged, and so are matter and energy”) .

Minkowski deserves credit for his perception of the unification of space and time as well
as for the unification of electric and magnetic fields, for which he invented the 16-component
electromagnetic field tensor. But we must not forget that Einstein laid the groundwork for
that, and without Einstein’s 1905 paper, Minkowski would never have arrived at a unification
of space and time. Half in serious, half in jest, Minkowsky also contributed a zany formula
relating the units of space and time, 3 × 105 km =

√
−1 sec . This incorporates the speed of

light, 300000 km per sec, and it incorporates the notion that, in a purely formal way, time can
be treated as a mathematically imaginary fourth dimension of space. Minkowski called this his
mystic formula. He would undoubtedly have made many more valuable contributions to special
and to general relativity, but he died prematurely, in 1909.

Einstein was not pleased with Minkowski’s mathematical approach. He called Minkowski’s
tensor formalism “unnecessary erudition,” and said that “ever since the mathematicians have
thrown themselves on the theory of relativity I can’t understand it any more” [20]. At first he
remained stubbornly opposed to the use of tensor formalism in the treatment of relativity, and
he did not adopt the use of tensors until five or six years later, when he began to work on general
relativity.

From his transformation formulas for the coordinates of inertial reference frames, Einstein
deduced the time dilation and the length contraction: a moving clock runs slow, and a moving
body, such as a meter stick, is contracted. He suggested that this implies that a clock on the
equator of the Earth, moving with the Earth’s rotation, will tick slower than a clock at the pole.
This was an unfortunate choice of example, because the gravitational time dilation of the clock
at the pole, which Einstein was to discover a few years later, actually compensates for the time
dilation of the clock located at the equator. But Einstein must be given credit for taking the time
dilation of moving clocks seriously, whereas Lorentz, who had deduced the same transformation
laws a year earlier, attached no real physical significance to the change of clock rates implied by
his transformation equations.

In his deduction of time dilation and length contraction Einstein commits a serious sin of
omission: he never gives us any physical explanation of time dilation and length contraction. He
treats these as purely abstract, mathematical consequences of the Lorentz transformations. The
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latter, in turn, are consequences of the requirement of a constant, universal speed of light in all
reference frames. This creates the impression of a teleological approach to physics: Are we to
believe that clocks run slow and meter sticks contract because they want to keep the speed of
light constant?

For nonphysicists, these weird, counterintuitive effects of relativity proved an unsurmountable
obstacle, because Einstein asks us to believe these effects without giving us any mechanical, intu-
itive explanation. Even physicists supportive of relativity, such as Arnold Sommerfeld, found this
a bit much too much to swallow. After reading Einstein’s derivations, Sommerfeld complained
to Lorentz: “As ingenious as they are, it seems to me that there is something almost unhealthy
in their nonconstructive and unvisualizable dogmatics. An Englishman would hardly have put
forth such a theory. . . I hope you will be able to breathe some life into this ingenious conceptual
framework” [21].

The fact is that both time dilation and length contraction have simple physical explanations in
terms of the laws of mechanics and electrodynamics (although we really need quantum mechanics
for the analysis of the oscillations and sizes of atoms). It is not at all difficult to prove from
the laws of relativistic dynamics that clocks, such as atomic clocks, slow down, and solid bodies,
such as crystal lattices, contract when moving at high speed [22].

The other surprise in the Lorentz transformations is the relativity of synchronization—but
even that has a simple explanation in term of clock transport [23]. Clocks in a moving reference
frame are desynchronized relative to our, stationary, reference frame, because slow clock transport
in the moving reference frame is not slow in our reference frame, and the extra time dilation
accumulated by the transported clock leads to a breakdown of synchronization from the viewpoint
of our reference frame. A simple calculation confirms that the transport process accumulates the
correct time delay: Suppose that one clock remains at the origin of the moving reference frame
and therefore moves at constant speed V , and the other clock is slowly transported with speed
V + δV until it is separated from the origin by a displacement ∆x (measured in our reference
frame). If this process takes a time ∆t, the two clocks will display a time difference

τ2 − τ1 =
√

1− (V + δV )2/c2∆t−
√

1− V 2/c2∆t ' −V (δV∆t)/c2√
1− V 2/c2

=
−V∆x/c2√
1− V 2/c2

(1)

Thus, after the transport is completed, at any given instant of t time, the transported clock
displays a time shift ∆t′ = −(V∆x/c2)/

√
1− V 2/c2 relative to the clock at the origin, which

agrees exactly with the time shift calculated from the Lorentz transformation equation for t′ .
What these physical explanations of the length contraction and time dilation tell us is that

there is nothing magical or teleological about the Lorentz transformations. The Minkowski metric
indicates a new geometry for spacetime, but this geometry is not produced by magic, but by
the laws of physics. It is not some kind of abstract construct contrived to keep the speed of
light constant, as Einstein would have us believe. Poincare once confronted Einstein at one of
the Solvay Conferences and demanded to know what mechanics Einstein was using to reach his
conclusions about time dilation and length contraction. Einstein dismissed the question; he said
“no mechanics” [24]. Poincaré couldn’t believe that a physicist would say something like that,
and he didn’t bother to reply.

After dealing with the time dilation and the length contraction, Einstein’s 1905 paper deals
with the transformation formulas for electric and magnetic fields, transformation formulas for
energy in e.m. waves, aberration, and Doppler shift. The results for electric and magnetic fields
had already been obtained by Lorentz, a year earlier; the other results were new.

And then, in the final section of his paper, Einstein formulates new, relativistic equations
of motion for a moving charge—called an electron—being accelerated by electric and magnetic
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fields. He correctly calculates the so-called longitudinal mass which indicates the effective inertial
resistance for acceleration in a direction parallel to the velocity. But he makes a bad mistake in
the “transverse mass,” for acceleration in a direction perpendicular to the velocity, for which he
obtains the mistaken formula

Transverse mass =
m

1− v2/c2
(2)

Not all of Einstein’s mistakes were fruitful, and this was simply a silly mistake, of no redeeming
artistic value. In a footnote added years later to a reprint of his paper, Einstein sheepishly
admitted that this mistake was not “advantageous.” What makes this mistake all the more
surprising is that the expressions for transverse and longitudinal mass were well known in the
physics literature. Lorentz had used them in his paper on relativistic electrodynamics a year
earlier, where he expressed the mass of the electron in terms of its electrostatic self energy and
stated the correct velocity dependence for the transverse mass [25],

m2 =
e2

6πc2R

1√
1− v2/c2

(3)

But Einstein had failed to notice Lorentz’s paper.
Einstein’s mistake was immediately spotted by Max Planck, who read Einstein’s paper

soon after it was published (maybe even before it was published, because Planck was editor
of Annalen der Physik , where had Einstein sent his paper for publication). Planck thought Ein-
stein’s paper very impressive, and he sympathized with the top-down approach, perhaps because
in his own work on quantization of black-body radiation he had taken the same top-down ap-
proach—he had postulated the quantization of energy and deduced the radiation law, just as
Einstein had assumed a universal speed of light and deduced the Lorentz transformations and
their consequences. Einstein’s adoption of the speed of light as a universal constant also pleased
Planck, who was very interested in universal constants and their role in physics.

Planck then proceeded to remodel and correct Einstein’s treatment of dynamics. With an el-
egant Lagrangian formulation of relativistic mechanics, Planck recalculated Einstein’s transverse
mass, and he found and published the correct formula for the transverse mass [26]. Unfortu-
nately, today hardly anybody remembers this contribution of Planck to relativity—it was the
first of many papers on relativity by authors other than Einstein to appear after 1905.

3 EQUIVALENCE PRINCIPLE AND REDSHIFT

I now will turn to general relativity and dissect the main mistakes in Einstein’s development of
general relativity. Like the development of special relativity, Einstein’s development of general
relativity rests on several great mistakes. These mistakes served him as stepping stones to his
final wonderful discovery of curved spacetime.

For Einstein, the key to general relativity was the principle of equivalence of acceleration and
gravitation which he discovered in 1907. As he later described it in a lecture at Kyoto University:
“I was sitting in my chair at the patent office at Berne. Suddenly I had an idea: when a person is
in free fall, he does not feel his own weight. I was amazed. This simple thought experiment made
a deep impression on me. It led me to a theory of gravitation” [27]. His sister Maja claimed that
what triggered Einstein’s sudden idea was the fatal accident of a roofer who slipped from one
of the roofs near Einstein’s apartment. That story sounds too good to be true, but the roofs of
Berne are old and slippery, and unfortunate accidents are plausible.
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Einstein saw in this equivalence principle a relativity of acceleration. He thought that physi-
cists placed in an accelerated reference frame cannot be sure whether the effects they feel and
observe are due to the pseudoforces associated with the acceleration or to the presence of a
constant gravitational field. As he described it in one of his lectures, imagine that two physicists
wake up from a drugged sleep and find themselves in a closed box, in which they observe that
bodies released in midair fall to the floor with a universal acceleration g. What can the physicists
conclude from this? One of them concludes that the box sits on the surface of a planet, whose
gravitational attraction produces the acceleration g. The other concludes that the box is nowhere
near any planet, and is instead being accelerated by some external propulsion mechanism. And
Einstein asks, “Is there any criterion by which the two physicists can decide who is right?” and
he answers, “We know of no such criterion” [28].

With the wisdom of a hundred years of hindsight, I can give you several such criteria. One
obvious violation of the equivalence of acceleration and gravitation is found in the tidal forces
generated by gravitational fields, which are absent in a (linearly) accelerated reference frame.
These tidal forces arise from gradients in the gravitational field. In Newtonian gravitation these
gradients can be zero only under exceptional circumstances; in Einstein’s theory of general rel-
ativity, they can never be zero (they correspond to the components of the Riemann tensor,
some of which must be different from zero if the spacetime is curved). It might be argued that
such tidal forces become small and insignificant when the region accessible to the experimenter
is made extremely small, but even in very a small region, tidal effects remain observable with
sensitive equipment. For example, the GOCE satellite of the European Space Agency, in orbit
and in free fall, makes high-precision measurements of the tidal gravitational field of the Earth
with a differential-accelerometer only a few cm across. In fact, the GOCE satellite measures
components of the Riemann tensor (Rk00l) that is, it measures the curvature of spacetime.

Another example is provided by the Stanford Gravity Probe B experiment completed in 2004-
2006, which used gyroscopes in a satellite orbiting the Earth to detect the precession caused
by a general-relativistic coupling between the spins of the gyroscopes and the Earth. In this
experiment, Francis Everitt and his fellow experimenters had to go to extraordinary lengths to
avoid interference from tidal forces. They had to manufacture their gyroscopes as perfectly round
spheres, to within ±10−6cm . Even a small deviation from roundness would have permitted the
tidal forces to exert torques on the gyroscopes and generate a much larger precession than what
the experimenters were looking for, so this experiment would have detected tidal forces rather
than spin-spin coupling. Note that the tidal-torque precession is independent of the size of the
gyroscopes. We cannot eliminate the tidal-torque precession by using smaller gyroscopes—other
things being equal, the precession rate depends on the shape of the gyro, but not on the size.

Besides the obvious troubles with tidal effects, the equivalence principle has a fundamental
inability to deal correctly with the propagation of light—the principle works, more or less, for
slow-moving particles, but it mishandles fast-moving particles and light, unless we adopt curved
spacetime. For instance, we might try to calculate the deflection of light in a gravitational
field by beginning with the deflection that occurs in an accelerating elevator. Obviously, in
such an elevator, a ray of light moving from one side to the other will deflect downward by
some amount relative to the elevator. But, quantitatively, the calculated amount is wrong—the
deflection calculated in the elevator is only half as large as the actual result in a gravitational field
calculated from Einstein’s general relativity (this is the infamous factor of two by which Einstein’s
first deflection calculations differed from his final result). Thus, the equivalence principle fails
by a factor of two, and not because of any tidal effect.

The equivalence principle is capricious and unreliable. The equivalence principle works when
it works and doesn’t when it doesn’t—you have to apply it with caution. Some violations of
the principle of equivalence were already mentioned by Arthur Eddington in 1923 in his The
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Figure 2: An elevator accelerating upward with two clocks for testing the frequency shift of a
lightwave traveling a distance h from floor to ceiling.

Mathematical Theory of Relativity, the first textbook on general relativity. Eddington gave a
dismissive opinion about the equivalence principle:

”It is essentially a hypothesis to be tested by experiment as opportunity offers. Moreover, it is
to be regarded as a suggestion, rather than a dogma admitting no exceptions. Clearly there must
be some phenomena. . . which discriminate between a flat world and a curved world; otherwise
we could have no knowledge of world curvature. For these the Principle of Equivalence breaks
down. . . The Principle of Equivalence offers a suggestion for trial, which may be expected to
succeed sometimes, and fail sometimes” [29].

Unaware of these troubles, in 1911 Einstein applied the equivalence principle to a Gedanken-
experiment involving a perfectly uniform gravitational field, in which tidal effects are not an issue.
[30] He considered a light source located on the surface of the Earth or some other gravitating
body, and asked what happens to the frequency of a light wave emitted upward. To find out,
he replaced the gravitational field by a reference frame accelerating upward and examined the
propagation of light in this reference frame. This Gedankenexperiment is known to all students
of relativity, and the accelerating reference frame is usually visualized as an elevator (see Fig.
2). While the light wave travels from the floor to the ceiling, the upward acceleration of the
elevator increases the speed of the clock at the ceiling relative to the initial speed of the clock
at the floor by about gh/c where g the acceleration of the elevator (equal to the acceleration of
gravity the elevator is intended to mimic), h its height, and c the speed of the light wave. Upon
arrival at the ceiling, the light wave will then suffer a Doppler shift ∆ν = −(gh/c2)ν . Relying
on the equivalence principle, Einstein therefore concluded that a light wave propagating upward
in a gravitational field should suffer the same frequency shift. This is the gravitational redshift,
also called the gravitational time dilation, because we interpret it as a slowing of clocks in a
gravitational field. As a corollary of this gravitational time dilation, Einstein concluded that the
speed of light is lower in a gravitational field and that light rays suffer a deflection when passing
near a mass.
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There is something puzzling about this deduction of the gravitational redshift. The calcula-
tion relies on what seems to be no more than simple Newtonian physics, that is, the Doppler-shift
formula and the equivalence of gravitational and inertial effects, both of which seem innocuous
and trivial. In Newtonian physics, it is immediately evident that a constant gravitational field
can be replaced by an accelerated reference frame; the gravitational force in the former is iden-
tical to the acceleration pseudoforce in the latter. And yet something is fishy about Einstein’s
calculation, because, according to Newtonian physics, in a static gravitational field, a propagat-
ing light wave cannot acquire a frequency shift, not even if the speed of the wave is somehow
altered by the gravitational potential. An alteration of speed would mean that the gravitational
field behaves like an optical medium with a position-dependent index of refraction—in such a
medium the wavelength of a light wave changes, but the frequency remains constant. This is
why we have to interpret the gravitational redshift as a time dilation of the clocks, rather than
as an inherent frequency change of the propagating wave. But nowhere in his calculation does
Einstein seem to introduce anything about any time dilation, so why does a time dilation of
clocks emerge in the end, as if by a trick of magic? Where does Einstein trick us?

The answer to this puzzle is that Einstein actually introduced the special-relativistic time dila-
tion implicitly, by a sleight of hand. He used a mixture of Newtonian and relativistic physics—he
took the equivalence principle from Newtonian physics and he took the postulate of a constant,
universal speed of light from relativistic physics. He assumed that each wave pulse emitted
from the floor of the elevator has the same speed as the preceding pulse, whereas in Newtonian
physics we would have to assume that the wave is carried along by the medium in the elevator,
and that the wave speed is constant relative to the floor, but increases relative to the inertial
reference frame within which the elevator accelerates. The constant speed of light hinges on
the special-relativistic time dilation of clocks or, more precisely, it hinges on the relativity of
synchronization, which is a consequence of this time dilation (as shown by the clock-transport
argument in part I of this lecture).

We can understand the crucial role of relativistic physics in the derivation of the redshift
more clearly if we replace the light wave by a sound wave or by an evenly-spaced sequence of BB
pellets fired from a BB gun. Each pulse of sound or each BB pellet has the same speed relative
to the elevator, but between emission of one pulse and the next, the elevator increases its speed,
and therefore, relative to the inertial reference frame within which the elevator accelerates, each
pulse of sound or each BB has a slightly higher speed than the preceding one. By taking into
account the Newtonian addition law for velocities, we then readily find that the frequency shift
is reduced to zero—there is no frequency shift at all [31]. And, by the equivalence principle, we
would then conclude that there is no frequency shift for a sequence of sound or pellet signals in
a gravitational field.

This makes it clear that to obtain a redshift we need to consider relativistic corrections to
the Newtonian calculation (if we need more prompting, the factor 1/c2 of in Einstein’s redshift
formula actually gives us a strong clue that relativistic effects play a role). And, indeed, if instead
of the Newtonian addition law for velocity, we use the special-relativistic velocity-addition law,
then the Gedankenexperiment with sound pulses or BB pellets yields the expected redshift,
exactly as in Einstein’s calculation with light waves. For the sake of simplicity, let’s assume that
the speed u of the sound pulses or BB pellets is much larger than the increment of speed of the
elevator during the travel time of the signal. The first pulse is launched at time t = 0 and reaches
the ceiling at time t1 ' h/u [32]. The next pulse is launched at time t = ∆τ1 and reaches the
ceiling at time t2 = ∆τ1 + h/(u′ − g∆τ1) where is the speed of the elevator at launch and is the
pulse speed relative to our original reference frame, according to the relativistic combination law
for velocities, u′ = (u+ g∆τ1)/(1 + ug∆τ1/c

2) [33]. Ignoring terms of order g2, we then find
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t2 = ∆τ1 +
h

u
+
gh

c2
∆τ1 (4)

The time difference between the arrivals times of the two pulses is therefore

∆τ2 = t2 − t1 = (1 +
gh

c2
)∆τ1 (5)

This redshift formula for the pulse periods agrees with Einstein’s redshift formula for the fre-
quencies.

The preceding calculation establishes an important point about the derivation of the grav-
itational redshift: it arises from an inconsistent mix of Newtonian physics for the equivalence
principle and the relativistic addition law for velocity, applied either to light or to sound pulses
or pellets, or any other signaling method. The gravitational redshift cannot be derived from
purely Newtonian physics [34].

Nor can the gravitational redshift be derived from purely relativistic physics. Although
relativistic physics yields the desired expression for the redshift in the accelerating elevator,
this leaves a gap in the derivation—in relativistic physics the equivalence principle cannot be
deduced from the laws of mechanics, as it can in Newtonian physics. The trouble is that the
relativistic generalization of the gravitational force always includes a dependence on the particle
velocity, which leads to different accelerations for particles of different velocities. For instance,
Lev Okun found that the simplest relativistic generalization of the gravitational force has a
strong dependence on the direction of the velocity [35]. For an ultrarelativistic particle moving
in a tangential direction, the force has a component in the radial direction and also a component
in the tangential direction, whereas for a low-speed particle the force is, of course, purely radial.
This discrepancy indicates that the equivalence principle is not valid.

More generally, it is easy to prove that the equivalence principle can never be valid in a
relativistic theory of gravitation in flat spacetime. The proof is by contradiction. Suppose
the equivalence principle is valid, so all particles have the same gravitational acceleration at
any given point, and light propagates with its standard speed relative to these freely falling
particles. Then the redshift found in an accelerated reference frame requires a corresponding
redshift in a gravitational field, which tells us that clocks in a gravitational field run slow.
Furthermore, the equivalence principle tells us that the local speed of light has its standard value
c0 = 2.99... × 1010 cm/s when measured by the local, slow, clocks. Following Einstein, we can
then conclude that the speed of light must be lower than c0 when measured by “normal” clocks,
that is, the speed of light must decrease in a gravitational field. This leads to a contradiction
when we consider an ultrarelativistic particle, of initial speed almost equal to c0 falling radially
downward in the gravitational field of a mass, into regions of stronger and stronger fields. Since
this particle must obey the decreasing speed limit set by the speed of light, the particle must
decelerate, whereas the equivalence principle demands that the particle must accelerate, like a
slow-moving particle. This logical contradiction proves that the equivalence principle cannot be
valid.

And this raises a troublesome question: Did Einstein fail to notice the logical contradiction
between his equivalence principle and the decreased speed of light? Or did he notice, but preferred
to keep silent? If Einstein’s nondisclosure of the conflict between his picture of a gas of quanta
and Planck’s law provides a precedent, is would seem that sometimes he preferred to remain
silent.

General relativity sidesteps this contradiction in the equivalence principle by exploiting curved
spacetime. The distinction between locally measured distances and times in the curved space-
time vs. coordinate distances and times permits us to have a constant local speed of light and
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nevertheless a decreasing coordinate speed—we can have our cake and eat it too. Thus, the
equivalence principle (except for tidal forces) is consistent with general relativity and curved
spacetime, though not with special relativity and flat spacetime [36] .

Can anything be salvaged from the ruins of Einstein’s derivation of the gravitational redshift
via the equivalence principle? We cannot salvage a quantitative, exact result for the redshift,
but we can salvage a qualitative, order-of-magnitude result. Einstein was not entitled to assume
that the equivalence principle applies to light or to fast-moving particles—he had no evidence
for that, and, as shown above, any attempt to stipulate that the equivalence principle is valid
for fast-moving particles leads to a contradiction. He was entitled to assume that it applies ap-
proximately to slow-moving particles, but, because of the essential role of relativistic corrections
in the derivation of the redshift in an accelerating reference frame, he should have anticipated
the possible existence of similar small relativistic corrections in the equivalence principle, which
might increase or decrease the redshift. Thus, at most, Einstein could legitimately claim that
the gravitational redshift is of the order of magnitude ∆ν = −(gh/c2)ν . The sign of the redshift
wouldhave been left undetermined by such an order-of-magnitude estimate, so Einstein could
not have been sure whether light slows down or speeds up in a gravitational field.

The absence of a legitimate derivation of the redshift from the equivalence principle weakens
the physical motivation that Einstein sought to give his theory of gravitation. But this would still
have left him with enough clues to pursue the development of gravitational theory by the same
path he followed from 1911 onward, although he would have had to admit that his calculation of
the redshift and his subsequent calculation of the deflection of light were only order-of-magnitude
estimates. Since his first calculation of the deflection was actually in error by a factor of two, this
would not have made much difference to the historical developments that led to the first, failed,
German attempt at a measurement of the light deflection in 1912 and, later, to the successful
British attempt in 1919.

Of course, the defects in Einstein’s derivation of the redshift do not mean that his formula for
the gravitational redshift is wrong—these defects merely mean that the formula cannot be derived
by the seductively simple argument proposed by Einstein in 1911, an argument uncritically
imitated in just about every textbook on relativistic gravitation, introductory or advanced [38].

The inconsistent mix of Newtonian and relativistic physics that Einstein used in his deriva-
tions of the gravitational redshift was one of his great mistakes. Einstein was as obsessive and
dogmatic about the equivalence principle as he was about his stipulation for the one-way speed
of light, and he failed to see that the equivalence principle is self-evident only when it involves
no more than the equality of rates of free fall of small test masses with low speeds, that is, when
it reduces merely to the equality of gravitational and inertial masses.

Years ago, the Irish physicist J. L. Synge said “The Principle of Equivalence performed the
essential office of midwife at the birth of general relativity,” and he added, “ I suggest that the
midwife be now buried with appropriate honours and the facts of absolute space-time be faced”
[39], by which Synge really meant the facts of absolute curved spacetime. I think Synge was right,
and it would be best to forget about the equivalence principle, except in a historical context.
Late in his life Einstein said about Mach’s principle “Actually, one should no longer speak of
Mach’s principle at all” [40]. We can say the same about the equivalence principle.

4 GENERAL RELATIVITY

As used by Einstein in the derivation of the redshift, the equivalence principle was a mistake, but
it was his greatest and most wonderful mistake, and it led him to his greatest, most wonderful
discovery—curved spacetime. We now understand that the time dilation actually implies that
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spacetime is curved—the time part of space-time is “shorter” in a gravitational field than outside
of the field. We can have a redshift in a static gravitational field only if we have a curved
spacetime. But when Einstein published his paper on the equivalence principle in 1911, he did
not yet understand that. He was aware that his redshift result means that clocks at a deeper
gravitational potential run slower, but he vaguely speculated that that this arose, somehow, from
a reduced speed of light—he was not yet ready to imagine a curved spacetime. As Emilio Segré
liked to say, “When the mind is not prepared, the eye does not recognize” [41].

Einstein finally reached the conclusion that spacetime must be curved in 1912, by a different
path. In the spring of that year, while still at the University of Prague, he published a paper
[42] exploring his idea that the speed of light in a gravitational field is slower by an amount
depending on the gravitational potential, c = (1 + Φ/c20) × c0. He had deduced this expression
from the gravitational time dilation, by assuming that the speed has the standard value c0 =
2.99...×1010 cm/s when measured by the local, slow, clocks and is therefore lower when measured
by “normal” clocks (his expression for the speed is actually wrong; the actual dependence of the
speed of light on the potential is twice as strong, that is, a factor of 2 is missing). At the end of this
paper, in a short appendix added at the last moment in the proofs, he draws attention to a curious
fact about the equation of motion of a particle that he had derived from his relationship between
the speed of light and the gravitational potential: the equation of motion can be expressed by a
principle of extremum action, involving the variable speed of light,

δ

∫ √
(1 + Φ/c20)c20dt

2 − dx2 − dy2 − dz2 = 0 (6)

This equation coincides precisely with the equation for a geodesic in a curved spacetime, with
a metric tensor g00 = (1 + Φ/c20) [43]. The last sentence of the appendix Einstein says that he
suspects that his equation has a much deeper meaning and that it reveals how the equations of
motion are to be constructed in general.

Here Einstein fell just short of recognizing that his equation is a geodesic equation, but
this revelation came to him soon thereafter. He remembered that he had seen such equations
for the extremum length of geodesics in some lectures on curved spaces he had attended at
the Polytechnic. This gave him the missing link, and Einstein suddenly saw the real meaning
of gravitation: there are no gravitational forces; there is only a curved spacetime in which
particles move on the straightest possible wordlines. As he later reported in his Kyoto lecture:
“. . . I suddenly realized that Gauss’s theory of [curved] surfaces holds the key for unlocking this
mystery. I suddenly remembered that Gauss’s theory was contained in the geometry course
given by Geiser when I was a student. I realized the foundations of geometry have physical
significance” [44].

And from that time on he relentlessly pursued the goal of a geometrical theory of gravitation.
Years later, after his success with general relativity brought him worldwide fame, one of his
Zurich friends told him he had found the certainty of Einstein’s convictions about gravitation
almost frightening: “Your confidence , the confidence of your thinking, . . . , at the time you
when were with us, is for me a tremendous psychological experience. You were so certain, that
your certainty had for me an overwhelming effect” [45]. This absolute certainty in Einstein’s
convictions is also revealed by the famous comment he made to a student when he received the
first reports of the observational confirmation of his prediction for the deflection of light. He
said: “I always knew the theory was right.” The student asked him, What if the measurements
had contradicted your theory? And Einstein gave the grand reply: “Then I would have felt sorry
for the Dear Lord. My theory is right anyway” [46].

Einstein’s path from his introduction of curved spacetime in 1912 to his final theory of
general relativity in 1915 was a lengthy and arduous effort. Einstein had little knowledge of the
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mathematics of curved spaces; there were few books from which he could learn this material,
and those that were available were written in the usual impenetrable jargon of mathematicians,
and with awkward notation. He begged for help from his friend Marcel Grossmann: “Grossmann
you must help me or I’ll go crazy” [47]. But even Grossmann was not sufficiently familiar with
Riemannian geometry and did not understand the critical relationship between the differential
identities of the Riemann tensor and the conservation laws in the equations that he and Einstein
tried to construct. This led to a series of proposals for theories that all had to be quickly
abandoned. As Einstein himself admitted later: “The series of my publications on gravity is a
chain of wrong turns” [48]. Planck advised Einstein to give up the attempt, “As an older friend,”
he said, “I must advise against it. . . In the first place you won’t succeed; and even if you succeed,
nobody will believe you” [49].

In the end, in 1915, Einstein succeeded brilliantly. And in the next year, he published a
long and careful exposition of his theory in Annalen der Physik in 1916. The paper consists of
an introduction that tries to lay the physical foundation for the theory, followed by a careful
exposition of the essential aspects of Riemannian geometry, then the new field equations for the
gravitational field, and finally applications to light deflection and the perihelion precession of
Mercury.

Oddly, the discussion of the physical foundations of the theory does not mention the 1912
argument that initially led him to the idea of a curved spacetime. And, equally oddly, this
argument has been rarely used in later textbooks on general relativity. The exception is an
early book of by Tullio Levi-Civita (1923), an Italian mathematician and expert on Riemannian
geometry, who gave a simple argument based on that of Einstein, but leading directly from the
Newtonian potential to curved spacetime [50]. Levi-Civita simply wrote the extremum principle
for a particle moving in a Newtonian gravitational field as

δ

∫
c2(1− v2/2c2 + Φ/c2)dt = 0 (7)

where the integrand differs from the usual Lagrangian for motion in a gravitational field only by
an irrelevant minus sign and factor of c2. Taking advantage of the small magnitude of velocity
and Newtonian potential compared with c, he rewrote this approximately as

δ

∫
c2
√

(1− v2/2c2 + 2Φ/c2)dt = δ

∫
c2
√

(1− 2Φ/c2)dt2 − dl2/c2 = 0 (8)

which is essentially the same as Einstein’s extremum principle, and corresponds to motion in a
curved spacetime geometry, with a metric tensor whose 00 component depends on the Newtonian
potential, and therefore depends on space (this is always a curved spacetime geometry, except
when g00 α x

2 ).
In his 1916 paper, Einstein does not use the straightforward and conclusive argument of

1912. Instead, he tries to use the equivalence principle. He considers a rotating turntable,
like a Merry-go-round, and he claims that the geometry of this turntable is a curved space,
because meter sticks laid along the circumference contract by the usual length contraction of
special relativity, whereas meter sticks laid along the radius do not. This makes the ratio of the
measured circumference larger than the measured radius, that is, circumference > 2πr . But
this is simply a misconception: the meter sticks at different locations around the circumference
are instantaneously in different inertial reference frames, and it is evidently incorrect to add
lengths measured in such different reference frames. The apparent curved geometry is an artifact
resulting from a bad choice of measurement procedure. If we use meter sticks at rest, floating
just above the circumference of the turntable, we will of course find that the geometry is flat.
The transformation from coordinates at rest to coordinates in rotation is merely a coordinate
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transformation, which cannot change the geometry, that is, the curvature tensor is zero, no
matter what coordinate system we use to calculate it.

But Einstein, and quite a few of his followers, accepted this Merry-go-round argument and
concluded that the centripetal acceleration of the turntable produces a curved geometry, and if
so, by the equivalence principle, the gravitational field of a mass should also produce a curved
geometry. Einstein would have done better to motivate the curved spacetime geometry by the
extremum principle that first gave him the key to curved spacetime in 1912. Or he could have
used the gravitational time dilation that he had extracted from his elevator Gedankenexperiment.

Einstein called his theory “general relativity” for two reasons: he thought that the behavior
of physical systems in an accelerated reference frame is indistinguishable from their behavior in
an unaccelerated reference frame placed in a gravitational field; and he thought that by writing
the equations of physics in a form that was valid in all conceivable coordinate systems he was
giving them some kind of new relativity, more general than the relativity of the special theory.
He called this the covariance principle of the equations of physics. The first of these reasons was
an outright mistake—acceleration and gravity can be distinguished by suitable experiments, as
I have already pointed out. And the second of these reasons reflects a misconception about the
meaning of relativity. Validity of all laws of physics in all coordinate systems is not a principle
of relativity—it is a triviality. It’s like saying that an elephant remains an elephant when you
express its height in meters instead of centimeters. The mathematician Erich Kretschmann soon
pointed out to Einstein that, of course, all laws of physics can be expressed in all conceivable
coordinates, even Newton’s laws can be expressed in all coordinates, although they then look
very messy (for instance, in rotating coordinates, they acquire centrifugal and Coriolis terms).

The real meaning of Einstein’s covariance principle was hidden in a tacit assumption that
Einstein failed to state, but took for granted: not only can the laws of physics be expressed
in all conceivable coordinates, but when you express the laws in the special coordinates that
correspond to a local geodesic reference frame —that is, a freely falling reference frame [51]
—at and near one point, then the laws reduce to those of special relativity. The real content
of Einstein’s covariance principle lies in this added condition. Obviously, the added condition
imposes severe restrictions on how matter can and cannot couple to the gravitational field; in
fact, it completely determines the details of these couplings.

The added condition makes Einstein’s covariance principle into a principle of gauge invariance,
analogous to the gauge invariance of electrodynamics. I don’t want to burden you with the
mathematics of gauge invariance, but here is a simple physical explanation. Suppose we place
a small Faraday cage at some point in an electric field. Then in the interior of the cage, the
electric field will be reduced to zero, but the electric potential associated with the external
electric field will remain different from zero. However, any experiment we perform inside the
cage will be totally uncoupled from the external electric field, and will be totally unaffected by
the potential. The potential in the cage is different from zero, but it is merely a physically
irrelevant additive constant—this is the principle of gauge invariance for the potential. (It has
among its consequences the conservation of electric charge, as shown by a neat, elementary,
argument of Wigner’s [52].

In a completely analogous manner, suppose we consider a small laboratory in free fall in
a gravitational field. The laboratory plays the role of a Faraday cage for gravitation. Within
the laboratory, the gravitational field disappears (more or less), and there only remains the
gravitational potential—or, more precisely, the metric tensor that plays the role of potential in
Einstein’s theory. Einstein’s covariance principle, with the additional tacit assumption included,
tells us that the laws of physics in the freely falling laboratory are the same as those of special
relativity, and therefore any experiment we perform in the laboratory will be uncoupled from the
external gravitational field, and will be totally unaffected by the gravitational potential. Thus,
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the covariance principle is a principle of gauge invariance. In essence, this invariance principle
can be regarded as a general mathematical implementation of the equivalence principle, for all
particles (whether fast-moving or slow-moving), for light, and for all the laws of physics [53].

The modern view of covariance is somewhat broader and permits theories of gravitation that
go beyond Einstein’s. Instead of insisting that the laws of physics in a freely falling reference
frame are exactly those of special relativity, we are today willing to accept that they differ
by terms involving the Riemann tensor, that is, we regard nonminimal couplings as consistent
with covariance. Some of the theories to be presented at our conference rely on this broader
interpretation of covariance. Vladimir Fock, a Soviet expert on relativity, severely criticized
Einstein for calling his theory general relativity; he claimed that in general relativity there can
be no relativity, and said “However paradoxical it may seem, Einstein himself. . . showed such a
lack of understanding when he named his theory” [54]. John Wheeler proposed to replace the
name of the theory by “geometrodynamics,” in analogy with electrodynamics. But the name
general relativity has stuck, and nothing can now be done about that. It is probably best to
ignore this unfortunate choice of name and remember that many parents give totally silly names
to their offspring—and custom grants them the right to do so.

The gauge invariance arising from the principle of covariance has broad physical consequences:
it implies conservation laws for energy momentum and other “conservation” laws, and in Ein-
stein’s theory it implies the exact equality of inertial mass and gravitational mass, even for
systems that contain substantial amounts of gravitational self-energy [55] . The gauge invari-
ance of Einstein’s theory also compels gravitational waves to have spin 2, and only spin 2. I
regard this as the most fundamental physical consequence of covariance. And the argument can
be turned around: if we assume that the carrier of gravitational interactions is a spin-2 field,
without any spin 1 or spin 0 components, then it must be a tensor field with gauge invariance,
and from this we can conclude that the field equations must have covariance and must coincide
with the Einstein equations. If Einstein had not discovered his theory in 1915, it would have
been discovered sometime around 1930, when gauge transformations and their implications for
the spin content of fields came to be understood.

It is ironical that in his mathematical calculations with his field equations in the 1916 paper,
Einstein proceeded without general covariance. Although he repeatedly affirmed the general
covariance principle, he found it inconvenient to adhere to this principle, and he wrote his
equations in a form that is not generally covariant. Today we write these equations in the form
Rµν− 1

2Rgµν = −8πGTµν , and we call them the “Einstein’s equations,” but Einstein didn’t write
them that way. Instead, he adopted the condition

√
−g = 1 and wrote his equations in a more

convenient, simplified form ∂Γαµν/∂xα + ΓαµβΓβνα = −κ(Tµν − 1
2gµνT ) . But this form of the field

equations is not generally covariant, because it is not generally true that
√
−g = 1. It’s a case

of Do as I say but don’t do as I do.
Actually, the equations Rµν − 1

2Rgµν = −8πGTµν were first obtained by David Hilbert, the
well-known Göttingen mathematician. And what is more, he announced these equations in a
lecture at Göttingen a few days before Einstein. But he then made the mistake of setting R = 0,
because he was interested only in the gravitational fields associated with electric and magnetic
fields. By this mistake, Hilbert left the resurrection of this term to Einstein, a few days later.
John Auping has aptly called these alternating forward and backward steps in the approach to the
field equations the pas de deux of Einstein and Hilbert [56]. This erratic historical development
brings to mind the words that Kepler used about his own road to discovery, “the roads that lead
man to knowledge are as wondrous as that knowledge itself” [57].

From a broader perspective, we can see that Einstein’s 1916 paper on general relativity suffers
from much the same problems as his 1905 paper on special relativity. The physical foundations
are shaky and riddled with mistakes, but by his amazing intuition, Einstein arrives at correct,
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or almost correct, final results despite of that. He somehow managed to find his way through
the fog of his own confusion and reach his goal despite his mistakes.

The crucial mistakes in both papers were based on sudden, inspirational ideas, to which
Einstein took an obsessive liking, and which he elevated into dogmas. These were big mistakes,
but they also were wonderful mistakes that led Einstein to astounding discoveries. We can say of
Einstein what Arthur Koestler said of Kepler: “The measure of Kepler’s genius is the intensity
of his contradictions, and the use he made of them” [56]. To which I will add, To err is human,
and to err greatly is divine. . . at least sometimes.
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Abstract. The historical origin of the idea of the apparently missing matter, later labeled as dark 
matter, is shown to be the use of Newtonian mathematics in trying to explain the rotation velocity of 
stars in spiral galaxies and galaxies in galaxy clusters. Much attention is paid to Thieu and 
Cooperstock, who, in using relativistic dynamics, have shown that dark matter can be disposed of 
as a myth. Dark energy is shown to be an artifact originally hypothesized to explain the apparent 
recent acceleration of the expansion velocity of the Universe. This apparent acceleration is shown 
to be an optical illusion that can be disposed of as a myth, once Einstein’s gravitational theory is 
taken seriously. Much attention is paid to Buchert’s and Wiltshire’s work on explaining the apparent 
acceleration of the expansion velocity of the Universe without dark energy.     
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Part 1.- Origin of the speculation on non-baryonic dark matter  
 
1.1.- Dark matter in spiral galaxies 
    The amount of non-baryonic dark matter is established through the discrepancy between the 
observed visible mass –which is baryonic— and the total mass calculated from certain effects 
generated by gravitational fields. The first person alerting to the supposed missing mass in 
galaxies and galaxy clusters, in 1933, was Fritz Zwicky (1898-1974), a Swiss astronomer 
working in Pasadena, California. By comparing the redshift of individual galaxies that belong to 
a cluster with the redshift of the entire cluster, he was able to establish the proper velocity of a 
galaxy. Thus he could prove that the orbital velocity of galaxies in a cluster is higher than 
expected if one would only take into account the mass of visible matter (stars and ionized gas) 
from the point of view of Newtonian gravitational dynamics.1 Along this same line of reasoning, 
Rubin y Coyne speculated that the method of establishing the peculiar velocities of galaxies 
within a cluster through their redshift, serves to reveal “the relative distribution of dark and 
luminous matter” and “indicates the existence of large amounts of (dark) matter.”2  
 
    Zwicky also established that one can determine the total mass of a galaxy through the 
observation of the curvature of light coming from a star or galaxy that is located behind the Sun 
or a galaxy cluster. This method, derived from the theory of general relativity, served originally 
to corroborate this theory. Now that it has been corroborated, one proceeds in the opposite order 
and the curvature of light allows us to calculate the total mass of a galaxy that is located between 
a luminous object and the Earth.3 According to Zwicky, the observation of these effects of 
gravitational lensing provides us with the most simple and most exact determination of the 
masses of galaxies.4 
 

The arcs of galaxies curved by gravitational lensing: the Abell 2218 cluster  

 
 

                                                 
1 Fritz Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica Physica Acta, vol. 6 (1933): 110-
127;  “On the Masses of Nebulae and of Clusters of Nebulae”, in: The Astrophysical Journal, v. 86 (1937): 217 -46 
2 Vera Rubin & George Coyne, eds. Large Scale Motions in the Universe (1988): 262, 101-102 
3 The curvature is radiansclg 2/5.0  where l  is the distance travelled by light through a gravitational field 
and g  is the gravitational acceleration. The factor g  depends directly on the mass of the object that causes the 
bending of the light. See George Gamov, En el país de las maravillas. Relatividad y cuantos (1958): 96 
4 Fritz Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae”, in: The Astrophysical Journal, vol. 86 
(1937): 238. Zwicky denominates “nebulae” what we know today to be galaxies. 
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    Observations have been made of the orbital velocities of stars in spiral galaxies that seem to 
reveal the existence of a halo of non-baryonic dark matter which extends further than the visible 
disk of the galaxy, on the condition that we interpret these velocities from the point of view of 
Newtonian gravitational laws. These laws predict that the acceleration diminishes with the 
inverse square of the distance of the central mass and that the orbital velocity diminishes with the 
inverse root of the distance. In a series of 10 important publications, in The Astrophysical 
Journal from 1977 to 1985, Vera Rubin and her team observed about 60 spiral galaxies (20 of 
type Sa, 20 of type Sb and 20 of type Sc (note 5) and reported that the orbital velocity was almost 
constant, independent of the distance of the center of the galaxy.6 It is important to distinguish 
between the astrophysical observations of Vera Rubin and her team and the interpretations they 
made of these observations. Two cosmographic observations are beyond any doubt: 
 
1.- First observation.- In the solar system, the orbital velocity of the planets diminishes with the 
inverse root of the distance ( rv /1 ), so the velocity diminishes as the distance increases: 
 

Graph.- First observation: orbital velocity and distance from the Sun in the solar system7 

 
 
2.- Second observation: the rotational velocity of stars of a spiral galaxy, increases rapidly at 
short distance from the galaxy center, then stops diminishing with distance, and remains more or 
less constant (the curve flattens out). However, the visible mass diminishes rapidly as one moves 
away from the galaxy center. 

                                                 
5 Spiral galaxies type Sa have a big center, with the arms close to each other; galaxies type Sb, a smaller center with 
distinguishable arms; and the type Sc galaxies, an ever smaller center with arms quite separate from each other. 
6 Vera Rubin & Kent Ford et al. “Extended rotation curves of high-luminosity spiral galaxies. I The angle between 
the rotation axis of the nucleus and the outer disk of NGC 3672,” The Astrophysical Journal, vol. 217 (1977): L1-
L4; “II The anemic Sa galaxy NGC 4378,” ibidem, vol. 224 (1978): 782-795; “III. The spiral galaxy NGC 7217,” 
ibidem, vol. 226 (1978): 770-776; “IV. Systematic dynamical properties,” ibidem, vol. 225 (1978): L107-L111; “V. 
NGC 1961, The most massive spiral known,” ibidem, vol. 225 (1979): 35-39; “Rotational properties of 21 Sc 
galaxies with a large range of luminosities and radii,  from NGC 4605 (R=4 lpc) to UGC 2885 (R=122 kpc)” ibidem, 
vol. 238 (1980): 471-487; “Rotation and mass of the inner 5 kiloparsecs of the SO galaxy NGC 3115,” ibidem, vol. 
239 (1980): 50-53; “Rotational properties of 23 Sb galaxies,” ibidem, vol. 261 (1982): 439-456; “Rotation velocities 
of 16 Sa galaxies and a comparison of Sa, Sb, and Sc rotation properties,” ibidem, vol. 289 (1985): 81-104 
7 Original drawing by Vera Rubin in Scientific American (1983): 90 
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Image.- Photo of the spiral galaxy M31 in which Rubin drew the flat rotation curve 8 
 

 
     

Graph.- Second observation: orbital velocity and distance of the center in 9 type Sc galaxies 9 

 
 
    These two observations of real facts in spiral galaxies are interpreted by Vera Rubin and her 
team from the point of view of a cosmological model with Newtonian gravitational dynamics: 
 
                                                 
8 Malcolm Longair, Galaxy Formation (2008): 67 
9 Original graphs by Vera Rubin in Scientific American (1983): 93 
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1.- First part of the interpretation. Rubin and her team start from the assumption that in spiral 
galaxies the gravitational dynamics operating are Newtonian. According to Newton the 
gravitational acceleration diminishes with the inverse square of the distance, and orbital velocity 
diminishes with the inverse root of the distance, as is explained in the next mathematical box. 
 

MATHEMATICAL BOX 1, ORBITAL VELOCITY IN THE CONTEXT OF 
NEWTONIAN  GRAVITATIONAL DYNAMICS 
 
    The mathematical reasoning proper of a Newtonian model is the following. According 
to Newton’s second law of movement, the acceleration a  is: 

22 // rGMarGMmmaF       (1) 
     and the acceleration of a body in orbit around a big central mass is: 

rva /2      (2) 
    
    From (1) and (2) we deduce: 

rvrGM // 22       (3) 
 
  And from (3) we deduce the orbital or rotational velocity: 

r
GMv       (4) 

   which means that the orbital velocity is proportional to the root of the mass and 
inversely  proportional to the root of the distance: 

r
Mv       (5) 

 
   Since it is reasonable to assume that the mass of the galaxy is concentrated at its center 
and diminishes if one moves away from the center, one would expect, according to 
equation (5) that the rotational velocity v  would rapidly decrease if one moves away 
from the center, since in that assumption with the total mass M  (within the range r ) 
gradually stopping to inrease and r  increasing linearly, rM /  would diminish 
rapidly. The surprise is that one observes the contrary: the orbital velocity, at a certain 
distance from the center and beyond, remains constant even though we move away from 
the center. The only way to explain this strange phenomenon is the assumption that the 
mass, instead of gradually stopping to increase, actually increases linearly with radius, 
up to a certain, far away distance. For example, at twice the distance from the center, we 
would have twice the mass. That would explain why the rotational velocity remains 
constant with distance: 

0 vrMif      (6) 
    
    So, within the context of Newtonian gravitational dynamics there is no other option 
left, but to assume the existence of a supposed halo of non-baryonic dark matter. 

 
2.- Second part of the interpretation. The second part of the interpretation of Rubin and her team 
is the following: given Newtonian gravitational dynamics, an apparent incompatibility arises 
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between the visible galaxy mass (stars and gas), observed through the radiation in some 
frequency of the electromagnetic specter, and the observed constancy of the orbital velocity. This 
is interpreted as requiring enormous quantities of additional and invisible mass, that increase 
linearly with distance from the center, as can be seen in the next graph. Given the orbital velocity 
in these dynamics and given the fact the gravitational constant G  and the orbital velocity v  are 
constant, that is more or less independent from the distance from the galaxy center r , the only 
way, within the context of these Newtonian dynamics, to resolve this problem is the speculation 
that the total mass M  contained in the sphere with radius r  increases linearly with the radius. 
 
3.- Third part of the interpretation. Given this speculation of the total galaxy mass increasing 
linearly with the radius and given the fact that the visible mass decreases rapidly with the 
distance from the galaxy center, it follows logically that ‘dark matter’, which is supposed not to 
interact with light, and increases with distance from the galaxy center, which implies that this 
dark matter is not associated to the visible matter. As a consequence of that speculation, the mass 
luminosity rate of the galaxy ( LM / ) increases dramatically, when one moves away from the 
galaxy center. 
 
Graph.- Linear correlation between mass and distance to the galaxy center in Sa and Sc galaxies 10 

 

 
     
   It is important to point out that in this interpretation, NO observations corroborate the 
speculations. Dark matter is not observed, precisely because it is supposed not to interact with 
light, as Rubin points out in a Scientific American article of 1983: “All attempts to detect a halo 
by its visual, infrared, radio or X-ray radiation have failed. (..) In sum, the only requirement for 
the halo is the presence of matter in any cold, dark form that meets the LM /   constraint.”11 The 
whole conjecture about the dark matter halo depends on the truth of the theoretical assumption 
that orbital velocities in spiral galaxies can be explained by Newtonian gravitational dynamics. 
This assumption allows for the speculation that the total galaxy mass increases linearly with 
distance from the center, as seen in the graph above. 
       

                                                 
10 Original drawing by Vera Rubin in Scientific American (1983): 95 
11 Vera Rubin, “Dark Matter in Spiral Galaxies”, en: Scientific American vol. 248 (1983): 98 
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    Once the idea of a halo of exotic dark matter was published in the Scientific American in 1983, 
many cosmologists started making references to the speculation about a halo of exotic dark 
matter in spiral galaxies, dissociated from visible matter, as though it was a scientific fact.  For 
example, in 1994, Kolb & Turner reproduced some flat rotation curves and affirmed that: 
“Rotation curve measurements indicate that virtually all spiral galaxies have a dark, diffuse 
‘halo’ associated with them which contributes at least 3 to 10 times the mass of the ‘visible 
matter’ (stars and the like).”12 In 2002, Hawking attributed to a halo of exotic dark matter, the 
fact that the stars at the edge of spiral galaxies like the Milky Way, NGC 3198 or NGC 9646, are 
maintained in their orbits and not thrown into the outer space, and presented this fact as the 
“most convincing” proof until now in favor of the existence of exotic dark matter.13 Not all 
cosmologists reflected on the Newtonian assumptions of these speculations, but some did. For 
example, in his The Cosmic Century of 2006, Longair reproduced the original M31 spiral galaxy 
image with the flat rotation curve drawn by Rubin, and commented on the Newtonian dynamics 
underlying these speculations. 14 It is worthwhile quoting Longair at some length: 
  
     “Vera Rubin and her colleagues pioneered systematic studies of the rotation curves of 
galaxies (...). [I]n the outer regions of galaxies, the velocity curves are generally remarkably 
flat, rotv  constant (...). The significance of this result can be appreciated from a simple 
Newtonian calculation. If the galaxy is taken to be spherical and the mass within the radius r  is 
M , the circular rotational velocity at distance r  is found by equating the inward gravitational 
acceleration ( 2/ rGM ), to the centripetal acceleration ( rvrot /2 ), and so 2/1)/( rGMvrot  . 
Thus, if rotv  is constant, it follows that rM  , so that the total mass within radius r  increases 
linearly with the distance from the centre. This result contrasts strongly with the variation of the 
surface brightness of spiral galaxies, which decrease much more rapidly with distance from the 
centre than as 2r .”15 
 
   Peebles too noted that Newtonian gravitational dynamics may not be applicable in the cases of 
galaxy clusters and spiral galaxies: “[d]iscovering the nature of the dark matter, or explaining 
why the Newtonian mechanics used to infer its existence has been misapplied, has to be counted 
as one of the most exciting and immediate opportunities in cosmology today.”16 He did not 
follow up, however, on his own doubts:17 
 
1.2.- Dark matter in galaxy clusters 
    The speculation about the existence of non-baryonic dark matter extends to galaxy clusters. In 
the next mathematical box (number 5), I explain how total galaxy cluster mass is estimated in the 
standard CDM  model, following a procedure that is based on Newtonian gravitational 
dynamics.  
 
 

                                                 
12 Edward Kolb & Michael Turner, The Early Universe (1994): 17-18 
13 Stephen Hawking, El Universo en una Cáscara de Nuez (2005): 186 
14 Malcolm Longair, Galaxy Formation (2008): 66-69 y Malcolm Longair, The Cosmic Century (2006): 248-253 
15 Malcolm Longair, The Cosmic Century (2006): 248-249, bold characters are mine. 
16 James Peebles, “Dark Matter”, in. Principles of Physical Cosmology (1993): 417 
17 James Peebles, “Dark Matter”, in: Principles of Physical Cosmology (1993): 417-456 
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MATHEMATICAL BOX 2, ESTIMATING TOTAL GALAXY CLUSTER MASS 
IN THE CONTEXT OF NEWTONIAN GRAVITATIONAL DYNAMICS 
 
   The equation for kinetic energy is derived directly from Newton’s second law of 
movement:18 

2

2
1 mvK       (7) 

   and if we assume that the distribution of the velocity is isotropic, in the three 
directions of the system of coordinates and we assume also spherical symmetry in the 
galaxy cluster, we obtain: 

2

2
3

rvMK       (8) 

   where rv  is the average radial velocity. Let us assume also the validity of the virial 
theorem, that supposes Newtonian gravitational dynamics:19 

gUK
2
1

      (9) 

   and we obtain the equation for potential gravitational energy, derived from Newtonian 
physics:20 

(47) 
R

MGMU g
21      (10) 

  where R  is the weighed average of the distance between objects with mass M . From 
equations (9) and (10), we obtain: 

clRGMK /
2
1 2      (11) 

 
   From equations (8) and (11), we obtain (with Longair in, Galay Formation) 

G

Rv
M cl

23
 (note 21)     (12) 

    where M  is the galaxy cluster mass; v  the average rotational velocity of one 
galaxy; and clR  the average distance between galaxies. For that reason,  

(50) 
cl

rot R
GMv

3
1

      (13) 

 
  The important point to make here is that the estimate of the galaxy cluster mass22 is based on 
Newtonian gravitational dynamics and, for that reason, overestimates the total galaxy cluster 
mass in various orders of magnitude, just as is the case with spiral galaxies. In estimating the 
                                                 
18 See Appendix II, equations 81-91, in: John Auping, El  Origen y la Evolución del Universo (2009): 543-545 
19 Section C1 of Appendix VIII in: John Auping, El Origen y la Evolución del Universo (2009): 736 
20 See Appendix II, equation 101, in: John Auping, El Origen y la Evolución del Universo (2009): 547 
21 See Malcolm Longair, Galaxy Formation (2008): 66 
22 See mathematical box 2  
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baryonic mass of these clusters on the basis of their luminosity,23 and subtract this baryonic mass 
from the total mass,24 as obtained from Newtonian rotational velocity, modern cosmology 
obtains its estimate of the total non-baryonic galaxy cluster mass, which is various times the 
baryonic mass. In a recent survey of galaxy clusters, Hans Böhringer established that the 
proportions of non-baryonic dark matter and baryonic visible matter are 85% and 15%, 
respectively and that the 15% corresponding to baryonic visible matter is distributed between 
stars, 2%, and gas, 13%, in big clusters; and 5% and 10%, respectively in small clusters.25 
 
1.3.- The Press-Schechter theorem and dark matter 
   Some cosmologists have told me that they think that Press-Schechter theorem, dating from 
1974, proves the existence of dark matter.26 I donot agree. This theorem pretends to establish the 
number N  of objects with different masses ( )(),(),( 332211 MNMNMN , etc.), per volume of 
space (for example, 3Mpc ), produced by an original cloud of particles with certain initial mass 
(both baryonic and non-baryonic) starting to collapse because of its initial inhomogeneities or 
perturbations. These collapses repeat themselves at different scales, in a more or less hierarchical 
form, for example, on a bigger scale, the number of galaxies in a galaxy clusters and on a smaller 
scale, the number of stars in a galaxy. 
 

MATHEMATICAL BOX 3. THE PRESS-SCHECHTER FUNCTION 
 
   The Press-Schechter equation gives us the number of objects N with certain mass 
M  as a function of the critical mass M , related to the cause of the collapse, and of 
time:27 
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   where “all the time dependence of )(MN  has been absorbed into the variation of 
M  with cosmic epoch” and   is “the mean density of the background model”, 28 n  is 

the value of the spectral index, and the critical mass of reference  M  is defined as:29 

(52) 
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(as in Malcolm Longair’s, Galaxy Formation), where 

0M  is the value of M  at the 
present time 0t . 

 

                                                 
23 See mathematical box 2 
24 See mathematical boxes 4 & 5 
25 Hans Böhringer of the Max-Planck-Institute für extraterrestrische Physik, in “Galaxy clusters as cosmological 
probes”, lecture given at the Universidad Iberoamericana, April 16th, 2008 
26 See William Press & Paul Schechter, “Formation of galaxies and clusters of galaxies by self-similar gravitational 
condensation,” en: The Astrophysical Journal, vol. 187 (1974): 425-438 y la synthesis en Malcolm Longair, “The 
Press-Schechter Mass Function,” en Galaxy Formation, 2nd ed. (2008): 482-489 
27 Malcolm Longair, Galaxy Formation (2008):484, equation (16.25) 
28 Malcolm Longair, Galaxy Formation (2008):484 
29 Malcolm Longair, Galaxy Formation (2008):483-484, equation  (16.22) 
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   In the Press-Schechter function we find the term for the critical mass M , which the object 
must have in order to collapse, and this mass M  is a function of the observed mass of the object 
at the present moment 

0M , on the one hasnd, and the time that has passed since the original 
cloud started collapsing, on the other hand. The value of this critical mass at the present time 
( 

0M ) is determined with the laws of Newtonian gravitation analyzed before, which implies that 
this mass is overestimated in various orders of magnitude. The Press-Schechter function depends 
also of the estimate of the mean mass density   of the cosmological model that is used, and the 
validity of which is assumed. Originally, Press and Schechter used the Einstein-de Sitter model 
with 0;10   , but it is also possible to use the standard model CDM  with 

7.0;10    or any other model. Both the term for the critical mass that assumes the 
validity of the Newtonian gravitational dynamics, and the term for the mass density, are model-
dependent, and imply previous estimates of non-baryonic dark matter. For that reason, the Press-
Schechter formalism does not prove, but rather assumes that the largest part of galaxy cluster 
mass is non-baryonic and is therefore compatible with that assumption. 
 
   Besides, a critical analysis of the Press-Schechter theorem by Monaco,30 reveals that this 
formalism, from the point of view of astrophysics is quite wrong but yields apparently good 
results: “there is a simple, effective and wrong way to describe the cosmological mass function. 
Wrong of course does not refer to the results but to the whole procedure.”31  
  
1.4.- The location of dark matter 
    In order to investigate the location of dark matter in clusters, advantage has been taken of the 
special circumstances that occur when galaxies or galaxy clusters collide and cross each other.    
The fact that in the case of a collision of galaxies or galaxy clusters, the stars do not collide, but 
the gas does, implies that the heated gas is separated from the stars. In the case of the galaxy 
cluster 1E0657-558 also known as the Bullet Cluster, Clowe and his team corroborated the fact 
that there are two clusters in collision, seen from aside.32  
 
   The clouds of hot plasma of each cluster collide and get mixed up and reduce their relative 
velocity, but the stars of the galaxies do not collide physically, so that the visible plasma and the 
galaxies are spatially separated. The separation of galaxies and plasma permits estimating the 
proportions of visible baryonic matter of both on the basis of their respective luminosity. By 
observing the effect of weak gravitational lensing —a slight distortion of the elliptic form of the 
galaxies—, which is more accentuated where galaxies are (with relatively little visible matter), 
than the plasma regions (with more visible matter), the hypothesis is corroborated that the 
location of the dark matter is in and around the galaxies, generating the effect of the observed 
gravitational lensing.  The variations of gravitational lensing “are in agreement with the galaxy 

                                                 
30 Pierluigi Monaco, “Dynamics in the Cosmological Mass Function (or, why does the Press & Schechter Function 
work?”, in: Giuliano Giuricin & Marino Mezzetti eds., Observational Cosmology: The Development of Galaxy 
Systems (1999): 186-197 
31 Ibidem, pág. 187 
32 Douglas Clowe et al., “A direct empirical proof of the existence of dark matter”, arXiv:astro-ph/0608407, 
reproduced in: Astrophysical Journal Letters (2006). Also, idem, “Colliding clusters shed light on dark matter,” in:  
Scientific American (agosto 22, 2006) 
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positions and offset from the gas.”33, and the dark matter is associated to the visible matter of the 
galaxies. This is not a case, therefore, of ‘pure’ dark matter, dissociated from the visible matter. 
Clowe’s team does not speculate about the character of the dark matter the existence of which 
they believe to have corroborated.34   
 

Image.- Dark matter (blue) is associated to the galaxies and dissociated from the plasma (pink) 
 

 
     
       The conclusions of the analysis of the Bullet Cluster 1E0657-558, first realized by Clowe 
and his team, in 2006, then replicated by Bradac35 and her team in the case of another merger of 
clusters, catalogued as MACS J0025.4-1222, and indirectly corroborated by  Massey and his 
team, who used the observed distortion of the form of half a million galaxies to reconstruct, the 
distribution of the total intermediate mass that causes the distortion by lensing, are the following: 

1) “[T]he baryons follow the distribution of dark matter even on large scales.”36   
2) There are large amounts of dark matter in these galaxy clusters. Hans Böhringer estimates 

the proportions of non-baryonic dark matter and baryonic visible matter at 85% and 15% 
(stars, 2%, and gas, 13%, in big clusters), respectively.37 

3) The statistical methods to measure the amount of mass through weak gravitational 
lensing, which is at the basis of these investigations and its conclusions, is a mixture of 
relativistic –as far as the fact of gravitational lensing is concerned— and, in the words of 
Clowe, “Newtonian gravity”,38 or in the words of Massey, “Newtonian” 39 gravitational 
dynamics, so that this proof of the existence of dark matter rests on the validity of 
Newtonian gravitational dynamics in these cases. 

                                                 
33 Douglas Clowe et al., “Catching a bullet: direct evidence for the existence of dark matter,” arXiv:astro- 
ph/0611496, p. 4 
34 Dennis Zaritsky, a member of Clowe’s team, admits that one does not know what this dark matter is. Quoted in 
“Colliding Clusters Shed Light on Dark Matter”,  Scientific American (August 22, 2006) 
35 Marusa Bradac et al., “Revealing the properties of dark matter in the merging cluster MACS J0025.4-1222, en: 
arXiv:0806.2320 
36 Richard Massey et al., “Dark matter maps reveal cosmic scaffolding,” in:  Nature online, January 2008, p. 5. The 
dark matter is made visible by the grey contours in the first image and the grey spots in the three other ones. 
37 Hans Böhringer of the Max-Planck-Institute für extraterrestrische Physik, in “Galaxy clusters as cosmological 
probes”, lecture given at the Universidad Iberoamericana, April 16th, 2008 
38 Douglas Clowe et al., “Catching a bullet: direct evidence for the existence of dark matter,” arXiv:astro- 
ph/0611496, p. 3 
39 Richard Massey et al., “Probing Dark Matter and Dark Energy with Space-Based Weak Lensing”, arXiv: astro-
ph/0403229, p. 4, see also idem., “Dark matter maps reveal cosmic scaffolding, ” in:  Nature online 
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1.5.- Modified Newtonian Dynamics    
   Another possible hypothesis to explain the discrepancy between the observed and expected 
Newtonian dynamics of galaxy rotation velocity is the Modified Newtonian Dynamics (MOND) 
without dark matter as developed by Mordechai Milgrom, an astrophysicist from Israel, in 
different publications, beginning in 1983.40 Milgrom maintains Newton’s second law of 
movement, but modifies it for very slow accelerations, such as those that are common at great 
distances from galaxy centers.41 The problem of this solution is the arbitrary division between 
‘high’ and ‘low’ accelerations, on the one hand, and the arbitrary modification of the Newtonian 
dynamics, on the other hand, since it does not conform to known physical laws. Milgrom is very 
conscious of this fact, when formulating the following dilemma: “Dark matter is the only 
explanation that astronomers can conjure up for the various mass discrepancies, if we cleave to 
the accepted laws of physics. But if we accept a departure from these standard laws, we might do 
away with dark matter.”42  
 
   Mario Livio agrees with Milgrom that there are only two possible solutions to the problem, but 
prefers dark matter: “There are only two ways to explain the high speeds of these clouds. (...) 
[E]ither Newton’s law of gravitation breaks down in the circumstances prevailing in the 
outskirts of galaxies, or the high orbital speeds are caused by the gravitational attraction of 
invisible matter. (...) Astronomers have been forced to accept the second possibility: galaxies 
must contain large amounts of dark matter.”43 It is remarkable that Milgrom and Livio and many 
others assume that the accepted laws of physics applicable in these cases are necessarily 
Newtonian.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
40Mordechai Milgrom, ”Do Modified Newtonian Dynamics Follow from the Cold Dark Matter Paradigm?”, in:      
Astrophysical Journal  (may 2002) 
41 Milgrom suggests that slow accelerations produce a orbital velocity independent of distance: 0aa   &  

210
0 10*2.1  msa  & 0

2 / aaF    rGMaa /0   which, with  rva /2  yields 4/1
0 )( aGMv   

42 Mordechai Milgrom, “Does Dark Matter Really Exist?”, in: Scientific American (agosto de 2002), p. 44   
43 Mario Livio The Accelerating Universe (2000): 90 
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Part 2.- Cooperstock & Tieu’s relativistic approach to galaxy gravitational dynamics 
 
   To understand why the assumption of Newtonian gravitational dynamics is not necessary, we 
have to reformulate the essence of the problem:  
    

Graph.- The observed and expected Newtonian dynamics of galaxy rotation velocity 

 
 
   A few cosmologists grasped the opportunity referred to by Longair and Peebles, as to the 
Newtonian dynamics at the basis of the dark matter speculation, notably two teams from Canada, 
Brownstein and Moffat, on the one hand, and Cooperstock and Tieu, on the other hand, who 
offered, one team independently of the other, twelve years after Peeble’s proposal, an orthodox 
solution, along the lines of Einstein’s general relativity, that makes the speculations about dark 
matter superfluous. According to Cooperstock and Tieu, galactic dynamics present a non-linear, 
relativistic problem. Eddington had mentioned this non-linearity for a system that is variable in 
time, and the authors extend it to non-linear, but stationary (non-time dependent) problems, as in 
galactic dynamics: 
 
    “In dismissing general relativity in favor of Newtonian gravitational theory for the study of 
galactic dynamics, insufficient attention has been paid to the fact that the stars that compose the 
galaxies are essentially in motion under gravity alone (‘gravitationally bound’). It has been 
known since the time of Eddington that the gravitationally bound problem in general relativity is 
an intrinsically non-linear problem even when the conditions are such tat the field is weak and 
the motions are non-relativistic, at least in the time-dependent case. Most significantly, we found 
that under these conditions, the general relativistic analysis of the problem is also non-linear for 
the stationary (non-time-dependent) case at hand. Thus the intrinsically linear Newtonian-based 
approach used to this point has been inadequate for the description of galactic dynamics (...). 
We … demonstrate that via general relativity, the generating potentials producing the observed 
flattened galactic rotation curves are necessarily linked to the mass density distributions of the 
flattened disks [of ordinary baryonic matter], obviating any necessity for dark matter halos in 
the total galactic composition.”44  
 
    Cooperstock, colaborating first with Tieu and then with Carrick, has analyzed a total of 7 
spiral galaxies from the relativistic point of view: 

                                                 
44 Cooperstock & Tieu, General Relativity Resolves Galactic Rotation Without Exotic Dark Matter (2005): 
arXiv:astro-ph/0507619, ps. 2-3 



48 
 

1) In their first publication of 2005, the authors analyzed four spiral galaxies (the Via 
Lactea, and NGC 3031, NGC 3198, and NGC 7331)45  

2) In December 2010 they added another three spiral galaxies proving the same point (NGC 
2841, NGC 2903 and NGC 5033)46  

 
   Cooperstock, Tieu and Carrick conceive the sprial galaxies as systems that are analogous to 
“fluids rotating uniformly without pressure and symmetric around the axis of rotation,”47 and 
explained the rotational dynamics by the gravitational attraction exercised by baryonic matter, 
within the known form of the visible disk, in relativistic gravitational dynamics (see the next 
mathematical box). 
 

MATHEMATICAL BOX 4. SPIRAL GALAXY MASS IN RELATIVISTIC, NON-
LINEAR GRAVITATIONAL DYNAMICS ACCORDING TO COOPERSTOCK 
 
     Cooperstock & Tieu start from the line element of anobject in ‘free fall’ in general 
relativity,  adapted to the polar, cylindrical coordinates r  y z : 

22222 )()(  dNdtcederdrdzueds wwwv        (16) 
   where u , v , w , and N  are coefficients whose value is a function of the coordinates 
r  and z . For various reasons, explained by the authors48 one may simplify this equation 
equating 1u  and 0w : 

22222 )()(  dNdtcdrdrdzeds v       (17) 
  
   We obtain the relation between angular velocity  , and tangential velocity V  and the 
coefficient N  (using tzr ),(  ):49 

2r
cN

      (18)  

and  (14) rV       (19) 
 so that, by (18) and (19): 

r
cNV       (20) 

 
   The authors use Einstein’s field equations for N  and   in a weak field with a cloud 
of particles in rotational motion, not subject to pressure neither to  friction:50 

                                                 
45Fred Cooperstock & Steven Tieu, General Relativity Resolves Galactic Rotation Without Exotic Dark Matter 
(2005): arXiv:astro-ph/0507619 
46 J. D. Carrick and F. I. Cooperstock, General relativistic dynamics applied to the rotation curves of galaxias, 
arXiv:1101.3224, December 2010 
47 Fred Cooperstock & Steven Tieu, “General Relativity Resolves Galactic Rotation Without Exotic Dark Matter” 
(2005): arXiv:astro-ph/0507619, p. 4 
48 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, en: International Journal of 
Modern Physics vol. 22 (2007):  4-5 
49 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, in International Journal of 
Modern Physics vol. 22 (2007): 4 
50 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, in: International Journal of 
Modern Physics vol. 22 (2007): 5 

http://arxiv.org/abs/1101.3224
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   Equation (21) can be represented as a function of the gravitational potential   for 
rotating galaxies: 

02        (23) 
where the zero value is due to the absence of pressure and friction in a system of 
particles in rotational motion. If there were no rotational motion, the system would need 
pressure (a non-zero value) to be stable, as in the Poisson equation of Newtonian gravity 
for weak fields: 

 G42       (24) 
 
   In a way analogous to the derivation of the Newtonian gravitational field and 
potential,51 Cooperstock and Tieu obtain the gravitational potential of a system of 
particles in rotational motion not subject to pressure, neither to friction: 
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   From equations (20) and (25), we obtain the rotational or tangential velocity: 
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   In polar cylindrical coordinates, the solution to equation (23) is: 52 

)(0 krJCe zk
      (27) 

   where 0J  is the Bessel function )(krJ m  of cero order ( 0m ) and C  is an arbitrary 
constant. Given the fact that equation (18) is linear, we can rewrite equation (27) as a 
linear summary: 
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   From equations (26) and (27), we obtain: 
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   and from (26) and (29), we obtain: 
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51 For the derivation of the Newtonian gravitational field and potential, see Appendixes II & VI B of John Auping,  
Origen y Evolución del Universo (2009). The Poisson equation is number (239) on page 668 
52 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, in: International Journal of 
Modern Physics vol. 22 (2007):  9 
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    By solving 

n
nnkC  from 1n  to 10n , we obtain the theoretical rotational 

velocity curves, which are perfectly corroborated by observations, with the Bessel 
function of order one: 
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   and from (31) and (32), and taking into account that smc /10*3 8 , we obtain:53 
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   Each galaxy is different, and has its proper coefficients nC  and nk . Cooperstock and 
Tieu attached the respective values of these coefficients to their article for four galaxies, 
among them the Milky Way, for 1n  to 10n . 

 
   What many astrophysicists and cosmologists attribute to a halo of cold dark matter in the 
context of Newtonian gravitational dynamics is explained by Cooperstock and Tieu with 
ordinary baryonic matter in the context of relativistic gravitational dynamics. This method yields 
the following results: “Most significantly, our correlation of the flat velocity curve is achieved 
with disk mass of an order of magnitude smaller than the envisaged halo mass of exotic dark 
matter.”54  
 
   Their hypothesis is corroborated: “We have seen that the non-linearity for the computation of 
density inherent in the Einstein field equations for a stationary axially-symmetric pressure-free 
mass distribution, even in the case of weak fields, leads to correct galactic velocity curves as 
opposed to the incorrect curves that had been derived on the basis of Newtonian gravitational 
theory.”55 As a mater of fact, the observations corroborate the predictions of the theoretical 
model, as can be appreciated in the following graph by Cooperstock y Tieu: 56 
 

 
 
 
 
 
 
 

                                                 
53 Ibidem, Appendix, p. 30 
54 Fred Cooperstock & Steven Tieu, “General Relativity Resolves Galactic Rotation Without Exotic Dark Matter”, 
arXiv:astro-ph/0507619 (2005): 11 
55 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, in: International Journal of 
Modern Physics A vol. 22 (2007): 29 
56 Fred Cooperstock & Steven Tieu, “General Relativity Resolves Galactic Rotation Without Exotic Dark Matter”, 
arXiv:astro-ph/0507619 (2005) and “Galactic Dynamics via General Relativity”, in: International Journal of 
Modern Physics A vol. 22 (2007): 7. 
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Graph.- The rotational velocity curve for the Milky Way as predicted by the relativistic theory of 
Cooperstock y Tieu (the curve) is corroborated by the observations (the points) 

 
 

    It is essential in science that the experiments set up by the authors can be replicated by 
colleagues. Some cosmologists expressed doubts to me as to the replicability of the proofs 
offered by Cooperstock and Tieu. With Wolfram’s program Mathematica, version 6, Alfredo 
Sandoval and I were able to reproduce exactly the same flat rotational velocity curves. The 
values and the equations of Mathematical Box 4 allowed us to reproduce with Wolfram’s 
program Mathematica, the same rotational velocity curves as published by Cooperstock and Tieu 
We discovered, however, that variations in the fourth or fifth or sixth decimal figure of the value 
of the coefficients nC  and nk  may affect the results in a non-trivial way. This means we can not 
use figures that are rounded up to the third or fourth decimal. The following graph replicates the 
results by Cooperstock and Tieu, for the Milky Way, in the context of relativistic gravitational 
dynamics. The only difference with the previous graph by Cooperstock and Tieu is that these 
authors give the results up to a distance of 30 kilo parsecs, and Sandoval and I, up to a distance 
of 50 kilo parsecs. 
 
   Cooperstock and Tieu comment their findings: “The scientific method has been most successful 
when directed by ‘Ockham’s razor’, that new elements should not be introduced into a theory 
unless absolutely necessary. If it should turn out to be the case that the observations of 
astronomy can ultimately be explained without the addition of new exotic dark matter, this would 
be of considerable significance.”57 
 

 
 
 
 
 
 
 
 

                                                 
57 Fred Cooperstock & Steven Tieu, “Galactic Dynamics via General Relativity”, in International Journal of 
Modern Physics A vol. 22 (2007) y arXiv:astro-ph/0610370, p.30 
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Graph.- The rotational velocity curve for the Milky Way by Cooperstock y Tieu  
is replicated with Wolfram’s program Mathematica by Sandoval and the author 

 

 
 
   The work of Cooperstock and Tieu has generated much interest and also some public criticism, 
from Korzynski,58 Vogt and Letelier,59 and Garfinkle.60 Cooperstock and Tieu responded 
adequately to their critics.61  
 
   Other astropysicists have expressed the criticism that even with relativistic gravitational 
dynamics, the baryonic mass in the spiral galaxies is not enough to explain their rotational 
velocity. One of them wrote to me in an e-mail of December 2010, that “the masses of the 
galaxies Cooperstock and Tieu find are greatly in excess of any reasonable estimate of the 
baryonic mass.” What these astrophysicists sustain is that even in the case of relativistic 
gravitational dynamics only the sum of baryonic and dark matter in spiral galaxies explains the 
rotational velocity curves of stars belonging to the galaxy. They refer to Stephen Kent’s 
estimates of spiral galaxy mass, because Cooperstock & Tieu themselves make that comparison. 
Kent has three articles on this topic, published in The Astronomical Journal in 1986, 1987 and 
1988, titled Dark matter in spiral galaxies I; II; and III, respectively.62  
 
   I do not think that Kent’s estimates validate the missing mass hypothesis, as I will now show. 
First, there is no indication in Kent’s figures of a 1/6 baryon/total mass ratio as Cooperstock 
himself and his critics assert. Kent does not use the term ‘baryonic mass’, but refers to ‘stellar 
mass’, being the sum of the stellar ‘bulge’ mass BM  and stellar ‘disk’ mass DM  that he obtains 
by means of estimates of the mass/luminosity ratio LM /  (the luminosity being the surface 
brightness of stars) for bulges and disks. He derives the total mass estimate totM  by means of  
Newtonian equations that establish a causal relationship between mass and rotational velocity at 

                                                 
58 Nikolaj Korzynski, “Singular disk of mater in the Cooperstock-Tieu galaxy model,”  arXiv:astro-ph/0508377  
59 Daniel Vogt & Patricio Letelier, “Presence of exotic matter in the Cooperstock and Tieu galaxy model,” 
arXiv:astro-ph/0510750  
60 David Garfinkle, “The need for dark matter in galaxies”, arXiv:gr-qc/051182 
61 Fred Cooperstock  & Steven Tieu, “Perspectives on Galactic Dynamics via General Relativity,” arXiv:astro-ph/ 
0512048 y “Galactic Dynamics via General Relativity”, in: International Journal of Modern Physics A vol. 22 
(2007): ps. 17-28 
62 Stephen M. Kent, “Dark Matter in Spiral Galaxies. I. Galaxias with Optical Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (June 1986): 1301-1327; “Dark Matter in Spiral Galaxies. II. Galaxies with H1 Rotation Curves”, 
The Asytrophysical Journal, vol. 9 (April 1987): 816-832; “Dark Matter in Spiral Galaxies. III. The Sa Galaxies, 
The Asytrophysical Journal, vol. 9 (August 1988): 514-527 
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any chosen radius, where velocity is the observed part (derived from blue and redshifts), radius 
the chosen part, and mass the inferred part. The stellar/total mass ratio, for 7 of the 16 galaxies 
with complete data sets, is 32.0/  totDB MM , that is a ratio of 1/3, not 1/6.63  
 
   Of the three galaxies chosen by Cooperstock & Tieu for analysis in their first article (NGC 
3031; NGC 3198; and NGC 7331), Kent has complete data sets only for two of them, NGC 3031 
and NGC 7331, since he has no bulge mass estimate fort NGC 3198. In the case of NGC 3031 
and NGC 7331, the stellar/total mass ratios are 1/2 and 1/4, respectively. These ratios, however, 
have to be corrected, because Kent neither includes estimates of interstellar gas, nor of black 
holes, but “the contribution … from the stellar component alone”.64. In galaxy clusters the gas 
mass is 85% of the baryonic mass, and the stellar mass, 15%. In galaxies, it is 15% and 85%. The 
interstellar gas mass, for example in the Via Lactea, is 15% of the total baryonic mass.65. The 
additional gas mass changes the Kent estimate of baryon mass for NGC 3031 and NGC 7331 to 

1010*47.8  and 1010*24.14  solar masses, implying 1/1½ and 1/3 baryon/total mass ratios, 
respectively.  
 
   Now we have to add the black hole masses BHM , which is originally baryonic dark matter. The 
black hole mass is not included in Kent’s M/L ratios because in both galaxies, he has identical 
M/L ratios for bulges and disks -3.76 and 4.04, respectively—, as he explains: “for NGC 3031 … 
and NGC 7331, the bulge M/L ratio in the full solution was very poorly constrained and so it 
was kept fixed equal to the disk M/L ratio”.66 The M/L ratios would have been different for 
bulges and disks if the black hole had been included in the bulge M/L ratio. In NG 3031, the 
black hole at the center of the galaxy has a negligible mass of 810BHM  solar masses67, but the 
authors estimate the total stellar mass to be 1010*7.7DBM  solar masses, which increases the 
baryon mass estimate to 8.97*10^10.  The NGC 7331 black hole may be as much as 910  solar 
masses68 which increases the baryon mass from 14.24 to 14.34*10^10.  
 
   The following table gives the corrected Kent baryon mass estimates, compared to those found 
by Cooperstock, and shows the baryon masses in both cases are in fact almost identical.  
 

Galaxy Cooperstock Kent corrected Kent/Cooperstock 
NGC 3031 10.9 *10^10 8.97*10^10 0.82 
NGC 3198 10.1*10^10  / / 
NGC 7331 26.0*10^10 14.34*10^10 0.55 

                                                 
63 Stephen Kent, “Dark Matter in Spiral Galaxies. II. Galaxies with H1 Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (April 1987): 827 
64 Stephen Kent, ““Dark Matter in Spiral Galaxies. I. Galaxias with Optical Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (June 1986): 1301 
65 Katia Ferrière, “The interstellar environment of our galaxy”, arXiv:astro-ph/0106359 (June 2001): 1-56 
66 Stephen Kent, “Dark Matter in Spiral Galaxies. II. Galaxies with H1 Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (April 1987): 826 
67 Rohlfs & Kreitschmann, “A Two component mass model for M81/NGC3031”Astronomy & Astrophysicis, 
(1980):175-182 
68 Silchenko, “Chemically decoupled nuclei in the spiral galaxies NGC 4216 and 4501”, Astronomical Journal 
(1999):186-196 
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   The table reveals that in the case of NGC 7331 there is still is some apparent missing mass, but 
not much. The ‘missing mass’ may be due to many uncertainties, among other things:  
1) the uncertain estimates of the M/L ratio;  
2) “relationship between luminous and dark matter shows significant variation among galaxies”;  
3) “the relative amounts of dark and luminous matter in a galaxy are still not well known”69; and 
4) the “optical rotation curves usually do not place strong constraints on the amount of dark 
matter in these galaxies. Indeed, in agreement with Kalnajs, 1983, some rotation curves are fit 
well without the need to assume the existence of any dark halo”.70 
5) The mass of supermassive black holes at the galaxy center may have been underestimated.71 
There are other ways in which black hole dynamics falsify the dark matter hypothesis. Though I 
donot share the MOND theory, their adherents have convincingly falsified the dark matter 
hypothesis in galaxies,72 adding this proof to the one offered by Cooperstock ansd his 
colaborators. 
 
   In the case of NGC 2841, NGC 2903 and NGC 5033, Cooperstock again employed the solution 
of the Einstein field equations of general relativity, as in his earlier studies, and the fits to the 
data appeared again to be very precise. The known data from galactic rotation curves can be 
accommodated with “at most relatively little extra [baryonic] matter” when the analysis is 
performed with Einstein’s as opposed to Newton’s gravity. This ‘little extra baryonic matter’ 
may be “due to dead stars, planets, neutron stars [black holes] and other normal non-luminous 
baryonic matter debris.”73 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
69 Stephen Kent, “Dark Matter in Spiral Galaxies. II. Galaxies with H1 Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (April 1987): 816 
70 Stephen Kent, ““Dark Matter in Spiral Galaxies. I. Galaxias with Optical Rotation Curves”, The Asytrophysical 
Journal, vol. 9 (June 1986): 1301, 1326 
71 If the black hole at the center of NGC 3031 would have a mass equivalent to the heaviest one known today 
( 1010*8.1  solar masses), then Cooperstock’s and Kent’s NGC 3031 baryon estimates would be exactly equal. 
72 Karl Gebhardt et al., “A relationship between nuclear black hole mass and galaxy velocity dispersion”, 
Astrophysical Journal Letters 539 (2000): 75 ss.. See also several recent contributions by Pavel Kroupa. 
73 J. D. Carrick and F. I. Cooperstock, General relativistic dynamics applied to the rotation curves of galaxias, 
arXiv:1101.3224, December 2010, ps. 3,10 

http://arxiv.org/abs/1101.3224
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Part 3.- Brownstein & Moffat’s relativistic approach to gravitational galaxy dynamics  
 
   Independently of Cooperstock and Tieu, another Canadian team, consisting of Brownstein and 
Moffat, designed a relativistic gravitational model, called Modified Gravity (MOG), in which 
they modify the Newtonian laws of acceleration on the basis of the theory of general relativity.74 
They corroborated their theory with the data of more than 160 galaxies.75 The following 
mathematical box synthesizes the essence of this new relativistic theory. 
 

MATHEMATICAL BOX 5. THE MASS OF SPIRAL GALAXIES IN 
RELATIVISTIC GRAVITATIONAL DYNAMICS 
 
   By adding the relativistic acceleration to the Newtonian one, one finds tha 
relativistoc equation of gravitational force, as I explain in my book on cosmology:76 
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   Brownstein and Moffat start with an analogous, relativistic modification of the 
Newtonian acceleration law: 
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   and given the following effective gravitational constant: 
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     and by combining (35) y 36), they obtain: 
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      As Brownstein explained to me in an e-mail, a year ago, the terms 0M  and 0r  do 
NOT represent a variable mass and a variable radius, but are parameters the values of 
which are constant. In the case of high surface brightness galaxies (HSB), the values 
of these constants are: 

SOLMM 11
0 10*60.9       (38) 

 and    mkpcr 20
0 10*30.492.13        (39) 

 
   In the case of very low surface brightness (LSB) or dwarf galaxies, the mass and 
radius have the following values: 

SOLMM 11
0 10*40.2      (40) 

                                                 
74 Joel Brownstein & John Moffat, “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”, arXiv:astro-
ph/0506370 (2005) 
75 Joel Brownstein & John Moffat, “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”, arXiv:astro-
ph/0506370 (2005): 18-28 
76 Equation (170 B) of Appendix VI B, in: John Auping, The Origen and Evolution of the Universe (2009): 660 
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mkpcr 20
0 10*15.296.6       (41) 

 
    Given the fact that according to Newton:77 
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    we obtain, combining equations (37) and (42), the law of modified velocity: 
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    In the case of a symmetric galaxy, the mass density of which contains an interior  
core at a distance crr  , the acceleration of equation (37) is transformed in equation 
(44) for HSB galaxies and in (45) for LSB and dwarf galaxies LSB, respectively: 
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   In these cases, the rotational velocity for HSB galaxies is transformed  in equation 
(46) and for LSB and dwarf galaxies in (47), respectively: 

HSB: 2/1

0

/0

2/3

0 ])1(11[)( 0

























r
re

M
M

rr
r

r
MG

rv rr

c

     (46) 

LSB:  2/1

0

/0
3

0 ])1(11[)( 0

























r
re

M
M

rr
r

r
MG

rv rr

c

     (47) 

 
  These equations of the acceleration and rotational velocity differ from the classical, 
Newton rotational ones: 
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with 1  for HSB and 2  for LSB and dwarf galaxies. 
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   Even though Cooperstock & Tieu and Brownstein & Moffat, use different relativistic models, 
the results are identical, as can be appreciated comparing, for example, the rotational velocity 
                                                 
77 See mathematical box 1 
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curves of the Milky Way, produced by both teams. In the following graph, I reproduce the 
rotational velocity curve of the Milky Way, produced by Brownstein and Moffat,78 that can be 
compared with the one produced by Cooperstock y Tieu, reproduced above.. 
 

Graph.- The rotational velocity curve of the Milky Way according to the relativistic theory MOG 

 
       In synthesis, the gravitational dynamics of spiral galaxies are well explained by Einstein’s 
theory of general relativity, without any necessity to introduce speculations about a halo of non 
baryonic dark matter  

 
Image.- The dynamics of spiral galaxies is explained by Einstein’s general relativity 79 

 

 

                                                 
78 Joel Brownstein & John Moffat, “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”, arXiv:astro-
ph/0506370, p. 29 
79 The spiral galaxy NGC 6946. Photo by John Duncan, Astronomía (2007): 223 
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Part 4.- Relativistic dynamics of galaxy clusters without cold dark matter  
 
4.1.- Cooperstock & Tieu 
   ¿Can we extend this analysis of galaxy rotational velocity to galaxy clusters? Cooperstock & 
Tieu have shown that it is indeed possible80: “For the dynamics of clusters of galaxies, the virial 
theorem is used. This is based on Newtonian gravity theory. It would be of interest to introduce a 
general relativistic virial theorem for comparison. It is only after possible effects of general 
relativity are explored that we can be confident about the viability or non-viability of exotic dark 
matter in nature. ”81  
 
    As a matter of fact, in 2008, Cooperstock and Tieu applied general relativity to the 
gravitational dynamics of galaxy clusters, and corroborated their hypothesis,82 especially their 
hypothesis about total cluster mass and the rotational velocity of galaxies.83 The following 
mathematical box synthesizes their main argument, based on a relativistic model of a weak 
gravitational field constituted by many bodies that suffer mutual gravitational attraction but no 
friction or pressure. 
 

MATHEMATICAL BOX 6. TOTAL MASS ESTIMATE OF GALAXY 
CLUSTERS IN A RELATIVISTIC GRAVITATIONAL MODEL 
 
    Cooperstock and Tieu start with Schwarzschild’s solution to Einstein’s equations, 
that uses a metric of spherical coordinates for a spherical mass M ,84 the same that 
one uses to derive the  perihelion rotation of Mercury in a plane:85 
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   The four terms between parentheses constitute the metric coefficients, that together 
determine Schwarzschild’s metric tensor in fourdimensional space-time, where the 

                                                 
80 Fred Cooperstock  & Steven Tieu, “Perspectives on Galactic Dynamics via General Relativity,” arXiv:astro-ph/ 
0512048 (2005) and Fred Cooperstock, “Clusters of Galaxies”, in: General Relativistic Dynamics (2009): 135-159 
81 Fred Cooperstock & Steven Tieu, “Perspectives on Galactic Dynamics via General Relativity,” arXiv:astro-ph/ 
0512048,  p. 3. For the virial theorem, see Appendix VIII, Section C 1, in: John Auping, El Origen y la Evolución 
del Universo (2009), p. 736 
82 Fred Cooperstock & Steven Tieu, “General relativistic velocity”, in: Modern Physics Letters A vol. 23 (2008): 
1745-1755 and Fred Cooperstock, “Clusters of Galaxies”, in: General Relativistic Dynamics (2009): cap. 10 
83 John Moffat, “Scalar-Tensor-Vector Gravity Theory”, arXiv:gr-qc/0506021; “A Modified Gravity and Its 
Consequences for the Solar System, Astrophysics and Cosmology,” arXiv:gr-qc/0608074; y Joel Brownstein & John 
Moffat, “Galaxy Cluster Masses Without Non-Baryonic Dark Matter,” arXiv:astro-ph/0507222; and Monthly 
Notices of the Royal Astronomical Society (2005): 1-16 
84 See equations (381) and (382) of appendix VI B of John Auping, Origen y Evolución del Universo (2009): 692. 
Cooperstock and Tieu invert the signs and simplify the equation, omitting the constants  G  and c ,  see Fred 
Cooperstock & Steven Tieu, “General relativistic velocity: the alternative to dark matter”, in: Modern Physics 
Letters A vol. 23 (2008): 1746, equations (1) and (2) 
85 See equation (382) of Appendix VI B and equation (4) of Appendix VI C of John Auping, Origen y Evolución del 
Universo (2009): 692, 698 



59 
 

mass M  is not small. In the normalized version of Cooperstock and Tieu, the units 
are selected so as to make  1Gc  and the signs of the metric are inverted:86 
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    A big difference between this procedure and the perihelion analysis of Mercury is 
that we do not make the simplifying assumption, justifiable in the solar system, that 
the proper time d  of the observed mass and the time dt  of the observer are one 
and the same. Normally, in the case of strong gravitational fields, this difference is 
considered to be important. But, Cooperstock and Tieu show that also in the case of 
a weak gravitational field, the difference between the proper time d  of the 
observed mass and the time dt  of the observer is crucial. The transformation of the 
coordinates of the observer ( r  and t ) into the ‘co-moving’ coordinates of the 
observed object with its proper time ( R  and  ) is the following: 
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   which gives us the following transformed Schwarzschild metric, that Cooperstock 
took from Landau & Lifshitz’s The Classical Theory of Fields, and that depends on 
the proper time of the massive object:87 
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     In the case that the value of   comes close to the value of R , we are in a strong 
gravitational field and the singularity of a black hole arises where R . But 
Cooperstock and Tieu are interested in the case of a weak gravitational field, where 

R  for all R , implying that mr 2  for all r  and the coordinates ( tr, ). The 

                                                 
86 Fred Cooperstock & Steven Tieu, “General relativistic velocity: the alternative to dark matter”, in: Modern 
Physics Letters A vol. 23 (2008): 1746, equations (1) and (2) and note 6 ( 1Gc ). This is equation (100.2) of L. 
Landau & E. Lifshitz, The Classical Theory of Fields, 4ª ed. revisad (2002):321, if one takes into account that gr  
(the ‘gravitational radius’) in Landau y Lifshitz is the mass m  in Cooperstock and Tieu. 
87 This is equation (102.3) of L. Landau & E. Lifshitz, The Classical Theory of Fields, 4ª revised ed. (2002):332, if 
one takes into account that gr  (the gravitational radius) in Landau and Lifshitz is the mass m  in Cooperstock and 

Tieu, and that Landau and Lifshitz normalize only half way ( 1G , but 1c ). 
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radial velocity, measured by the external observer is: 
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   The radial velocity in the proper time of the observed moving object is: 
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   In a weak gravitational field, the radial velocity measured in the proper time of the 
co-moving object is equal to the radial velocity measured in the time of the terrestrial 
observer, because the mass m  of the field is so reduced that the factor 
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r
m , as Cooperstock and Tieu explain: “the local measures, both 

proper and external, of the radial velocity are approximately equal in the value of 
rm /2 .”89 However, this is only true in the case that almost all the mass of the 

systrem is concentrated in the centre of mass, as for example in the solar system. So 
far, the weak gravitational field is originated by one massive object. But things get 
complicated, when we focus on the collapse of a cloud of particles, where each 
particle contributes to the total mass and field. It is in this case, that the radial 
velocity as measured in the proper time of the co-moving object, even in the case of 
non-relativistic velocities, starts differing considerably from the time of the external, 
terrestrial observer. Parting from the geodesic equation in general relativity, for a 
cloud of dust particles, taken from the classic work of Landau and Lifshitz,90 
Cooperstock and Tieu obtain the following geodesic equation for dust particles or 
objects,  as measured by an external (terrestrial) observer: 

))(,( 22222),(22   dsendRrdRedds R       (58) 
 
   In this case, “a freely falling dust particle maintains constant space coordinates for 
all time,” and the exact solution of the four non-trivial Einstein field equations that 
apply in this case, “assumes a surprisingly simple form” in the form of the following 
two equations:91 

                                                 
88 The Schwarzschild metric in Cooperstock and Tieu is rmg /)21(00   and  )/21/(111 rmg  , the 
difference with the Schwarzschild metric in John Auping, Origen y Evolución del Universo (2009), Appendix VI B, 
equation 382, p. 692, is that 00g  in Cooperstock and Tieu is my 44g  (  rcGMg 2

44 /21 ), and 11g  in 

Cooperstock and Tieu is my 11g  (  rcGMg 2
11 /21/1  ), with C. & T. normalizing with 1G  and 1c  

89 Fred Cooperstock and Steven Tieu “General relativistic velocity: the alternative to dark matter”, in: Modern 
Physics Letters A vol. 23 (2008): 1748 
90 The equation (103.1) in L. Landau & E. Lifshitz, The Classical Theory of Fields, 4ª revised ed. (2002):339 is the 
equation (9) in Fred Cooperstock and Steven Tieu, “General relativistic velocity: the alternative to dark matter”, in: 
Modern Physics Letters A vol. 23 (2008): 1748 
91 Fred Cooperstock, General Relativistic Dynamics (2009): 142 
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  where )(RE and )(RF  are functions of integration. This leads to the following 
average radial velocity equation: 
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   which “stands in sharp contrast to the very simple Newtonian-like expression”92 
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   The factor F  is the “accumulated mass function”93 conceived as a function of the 
radius R  of the galaxy cluster (wherein the average radial velocity is supposed to be 
known) 

2
1)( kRkRF       and      2/)()( RFRM 

(note 94)      (65) 
   For example, in the case of the Coma cluster, Cooperstock has the following 
values of the mass function: 453.11610*641.6 RF     453.01610*649.9 RF     

547.01610*371.4  RF  
 
    These equations permit us to reconstruct the relation between radial velocity, galaxy cluster 
mass and galaxy mass density, in a relativistic model, without necessity of non-baryonic dark 
matter. For example, in the case of the Coma cluster, the radial velocity expressed as the ratio 

00 /)(2 rRM  is of the order of 410  “if we assume, as would a Newtonian, that there exists dark 
matter present to account for the observed velocities” and of the order of 510  “if we accept only 
the existence of the matter that we see.”95 Now the problem we face is whether we can reconcile 
the ‘observed velocities’ and the ‘baryonic matter that we see’, without resorting to dark matter. 
Cooperstock argues that we can, with the help of the relativistic radial velocity equation (61) and 
the accumulative mass function of BOX 6. In stead of boosting the mass of the galaxy by adding 
dark matter, we boost the velocity based on visible baryonic matter using relativistic 
gravitational dynamics. Assuming the baryonic, visible mass is 20% or 30% or 40% of the 
supposed total mass within a sphere of 3 Mpc of 1510*3.1  solar masses, we obtain a ‘boost 
factor’ n  of the supposed Newtonian radial velocity associated with only observed baryonic 
mass ( ndtdr / ) of 23.2n , 82.1n  and 58.1n , respectively, to obtain the relativistic 
                                                 
92 Fred Cooperstock, General Relativistic Dynamics (2009): 146 
93 Fred Cooperstock, GeneralRrelativistic Dynamics (2009): 149 
94 Equations  (10.26) and (10.19), respectively in Fred Cooperstock, General Relativistic Dynamics (2009): 149,143 
95 Fred Cooperstock, General Relativistic Dynamics (2009): 148 
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radial velocity. Since the observed average radial velocity and all the terms at the right hand side 
of the relativistic radial velocity equation (61) are known, we can obtain the value of the change 
of mass density over time ( t / ), that is smkg //10*13.2 341 ,  smkg //10*62.2 341  and 

smkg //10*02.3 341 , respectively. “Rates of density changes of the order of magnitude 
smkg //10 341  are quite reasonable as over a period of one billion years”,96 which is the time 

of the evolution of the Como galaxy cluster. Cooperstock concludes that, while this is only one 
example, “and a very rough one at that, ... we have been able to account for the observed 
velocities of galaxies within a cluster .... solely within the framework of general relativity and 
without any extraneous dark matter.”97 
 
   Cooperstock comments his findings: 
  
  “When the gravity was deduced to be weak within these clusters, astronomers naturally turned 
to Newtonian gravity to correlate the seemingly anomalously large galactic velocities that they 
measured with the masses that they believed to be present. In this manner they initially deduced 
that there must be unseen “dark matter” in the order of 100 times as much as the visible matter 
to make the mass totals accord with the veloicities. However, with the later discovery of very 
large quantities of gaseous matter, this figure was reduced dramatically but there still remained 
a large quantity of matter yet to be accounted for. This apparent need is still promoted 
vigorously by researchers throughout the world. It has spawned a plethora of paspers 
advocating new particles that would conceivable play the role of this exotic missing material. 
However, we have seen that, insofar as high rotational velocities of stars in galaxies as the basis 
for the need for dark matter is concerned, the replacement of Newtonian gravity by general 
relativity removes this requirement. An essential point is that the nonlinearities of general 
relativity play an important role in systems of freely falling gravitating masses, leading to 
expressly non-Newtomian behavior, even when the gravitational field is weak. (...) Had Zwicky 
done this calculation 70 years ago with general relativity in mind, he might have come to very 
different conclusions regarding the requirement for vast stores of exotic dark matter. ”98  
 
4.2.- Brownstein & Moffat 
    Brownstein and Moffat too presented a relativistic model of galaxy clusters explaining their 
radial velocity and total mass without the necessity of non-baryonic dark matter.99 They do not 
start with the geodesic equation, as Cooperstock and Tieu do, but with Newton’s laws of 
acceleration and gravitation, transformed by Einstein’s general relativity. In Mathematical Box 
(8), I present their physical-mathematical argument and thereafter, by way of illustration of the 
results, I reproduce the graph of the galaxy cluster Coma, which permits us to compare the total 
mass estimates in the Newtonian and relativistic gravitational models. 
 
 
 

                                                 
96 Fred Cooperstock, General Relativistic Dynamics (2009): 152 
97 Fred Cooperstock, General Relativistic Dynamics (2009): 152 
98 Fred Cooperstock, General Relativistic Dynamics (2009): 148, 153.  
99 Joel Brownstein and John Moffat, “Galaxy Cluster Masses Without Non-Baryonic Dark Matter”, in: Monthly 
Notices of the Royal Astronomical Society (2005): 1-16 
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MATHEMATICAL BOX 7.  RELATIVISTIC ESTIMATE OF THE MASS OF 
GALAXY CLUSTERS ACCORDING TO BROWNSTEIN AND MOFFAT 
 
   Brownstein and Moffat apply general relativity to the gravitational dynamics of 106   
galaxy clusters that emit X-ray radiation that had been previously analyzed by 
Reiprich and Böhringer with Newtonian gravitational parameters. Brownstein and 
Moffat part from a Riemannian pseudo metric tensor and a third rank skewed 
symmetric tensorial field, called metric-skew-tensor-gravity. The cluster mass derived 
from their relativistic model is MSTGM . On the other hand, the same cluster mass 
derived from Newtonian dynamics is NM . The mathematical argument permits 
comparing both mass estimates. The Newtonian acceleration is: 

2
0 )(

)(
r

rMG
raN       (66) 

   so that the total Newtonian mass estimate is: 
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   For a spherical, isotropic and isothermal gas cloud, the acceleration, in both 
Newtonian and relativistic models, is: 
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   From equations (67) y (68), we obtain the total cluster mass equation in the 
Newtonian model: 
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   and since the relativistic acceleration is: 
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   the total cluster mass in the relativistic model is: 
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    From equations (68) and (71), we obtain the total cluster mass in the relativistic 
model: 
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   Combining the equations (69) and (72), we obtain the relationship between the total 
mass estimates in the Newtonian and relativistic models: 
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   In other publications, Moffat and Brownstein obtained the equation for the 
gravitational constant in a very large galaxy cluster with radius r :100 
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   From equations (73) and (74), we obtain: 
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   The values of 0r  and 0M  are constant: 

10/0 outrr    for kpcr out 650       (76 A) 
kpcr 2.1390    for kpcr out 650      (76 B) 
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   From equation (75), the reader may appreciate that the relativistic total mass 
estimate is much less than the Newtonian estimate, which allows us to get rid of the 
speculations on ‘missing mass’ and non-baryonic dark matter’, according to 
Brownstein and Moffat: “we have used the simplest [relativistic] isotropic  -model 
based upon hydrostatic equilibrium to fit the X-ray galaxy cluster data without the 
need for exotic dark matter.”101 

 
   The following graph of Brownstein and Moffat allows us to appreciate the difference between 
the relativistic and Newtonian total mass estimates of the Coma galaxy cluster. The difference 
between the relativistic and Newtonian total mass estimates is equivalent to the Newtonian non-
baryonic dark matter estimate, so that, in the relativistic model, the non-baryonic dark matter 
speculation is not needed. The authors reproduce similar results for another 105, X-ray radiating, 
galaxy clusters from the Reiprich and Böhringer sample.102  
 

                                                 
100 Joel Brownstein & John Moffat, “Galaxy Rotation Curves Without Non-Baryonic Dark Matter”,  arXiv:astro-
ph/0506370 (2005); and John Moffat, “Gravitational Theory, Galaxy Rotation Curves and Cosmology without Dark 
Matter”, arXiv:astro-ph/0412195 (2005) and “Scalar-Tensor-Vector Gravity Theory”, arXiv:gr-qc/0506021 (2005) 
101 Joel Brownstein and John Moffat, “Galaxy Cluster Masses Without Non-Baryonic Dark Matter”, in: Monthly 
Notices of the Royal Astronomical Society (2005): 5 
 
102 Joel Brownstein y John Moffat, “Galaxy Cluster Masses Without Non-Baryonic Dark Matter”, in: Monthly 
Notices of the Royal Astronomical Society (2005): 8-16 
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Graph.- Relativistic and Newtonian total mass estimates of the galaxy cluster COMA 103 

 
  
   We saw above the case of the Bullet Cluster 1E0657-558, the mass of which could not be 
explained, within Newtonian gravitational dynamics, without the presence of non-baryonic dark 
matter, with a non-baryonic / baryonic mass rate of 17.3/ BNB MM , according to Clowe and 
his team.104 However, Brownstein and Moffat have proven that in relativistic gravitational 
dynamics, the dark matter hypothesis is not needed. The following table gives the results for the 
Bullet Cluster in the different models. 
      
TABLE.- NEWTONIAN AND RELATIVISTIC TOTAL MASS ESTIMATES OF THE  
                 BULLET CLUSTER  1E0657-558 

Type of matter Newtonian model 
Clowe et al.105 

Relativistic model 
Brownstein & Moffat106 

Baryonic 24 % 100 % 
-ICM gas No estimate given 83 % 
-visible stars (galaxies) No estimate given 17 % 
Non-baryonic 76 % 0 % 

 
 
 
                                                 
103 Joel Brownstein y John Moffat, “Galaxy Cluster Masses Without Non-Baryonic Dark Matter”, in: Monthly 
Notices of the Royal Astronomical Society (2005): 7 
104 See Section 1 
105 Douglas Clowe et al., “A direct empirical proof of the existence of dark matter”, arXiv:astro-ph/0608407, 
reproduced thereafter inn: Astrophysical Journal Letters (2006). For big galaxy clusters, Böhringer estimates that 
the baryonic mass, on average 15% of total mass, is distributed between the interstellar medium (13%) and stars 
(2%), and non-baryonic dark matter is 85% (See Section 1). 
106 Joel Brownstein & John Moffat, “The Bullet Cluster 1E0657-558 shows Modified Gravity in he Absence of Dark 
Matter”, arXiv:astro-ph/0702146. Moffat’s and Brownstein’s Modified Gravity model (MOG) is not to be confused 
with Milgrom’s MOND model, because the former is a relativistic model and the latter, Newtonian (See 
mathematical BOX 6). 
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Part 5.- Concluding remarks from the point of view of philosophy of science.-  
 
      It is time for a conclusion, in the words of Cooperstock: “For the most part, astronomers 
continue to ignore general relativity in making deductions from observations. Thus an industry 
has arisen of massive computer simulations with billions of conjectured dark matter particles. 
The claim has been made that these simulations confirm that the CDM (cold dark matter) model 
of structure formation is in accord with observed structures in galaxy surveys such as the Sloan 
Digital Sky Survey. However, the basis for these simulations is Newtonian gravity. The lesson 
from our work is that the best theory of gravity, general relativity, is capable of providing 
surprises,” in making the dark matter hypothesis superfluous.107 
 
   We can put this conclusiobn in terms of Popper’s philosophy of science. Popper defines 
refutability as the demarcation between scientific theories and not-scientific theories. Let us see 
the following example: 

a) Universal statement: “all  swans are white”. 
b) Basic statement that refutes the universal statement in a specific space-time region: “right 

here and now we observe this black swan”. 
c) Existential statement: “black swans exist.” 

 
   Logically, the verification of the basic statement (b) refutes the universal statement (a) and 
verifies the existential statement (c). However, the statement “no black swans to be seen here”, 
which refutes the basic statement (b), does not refute the existential statement (c), nor does it 
corroborate the universal statement (a), because there may be other space-time regions where 
black swans do exist. This is why we say that universal statements can be refuted, but cannot be 
corroborated, and existencial statements can be corroborated, but cannot be refuted.  
 
TABLE.-REFUTABILITY AND NON-REFUTABILITY OF 3 KINDS OF STATEMENTS 

 UNIVERSAL 
STATEMENT    

BASIC 
STATEMENT    

EXISTENTIAL 
STATEMENT 

Refutable by the 
facts 

Yes Yes No 

Verifiable by the 
facts 

No Yes Yes 

 
    Since both universal and basic statements are refutable, they are both scientifc. However, 
existential, or metaphysical, or theological statements or those of science fiction cannot be 
refuted by the facts of the physicsal world and are therefore not scientific, which does not mean 
that they cannot be useful. For example, philosophy of science is metaphysics, its statements 
cannot be refuted by the facts, but it is very useful. The frontier between scientific and not-

scientific statements, asccording to Kartl Popper, is the refutability principle.
108  

 
   I will now add a few points to Popper’s philosophy of science. He did not take into account the 
possibility that two theories, one scientific and one speculative, can both be corroborated by the 
facts. What would be the demarcation principle in such a case? Let me first explain the 
                                                 
107 Fred Cooperstock, General Relativistic Dynamics (2009): 159 
108 Karl Popper, Conjeturas y Refutaciones (1989):63-64 
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difference between scientific and speculative statements. A scientific hypothesis establishes a 
physical law that causally relates an observable cause and andIan observable effect. A 
speculative hypothesis establishes a physical law that explains an observable effect by an 
unobservable cause. For example, the hypothesis that explains galaxy rotational velocity curves 
by dark matter in a Newtonian gravitational theory is a speculative hypothesis. And the 
hypothesis that explains the flat rotational velocity curves of spiral galaxies in a relativistic 
gravitational theory is a scientific hypothesis.  
 
   Speculative hypotheses are necessary in the history of science. After some time, however, with 
the advance of scientific theories and/or scientific observations, a speculative hypothesis may 
end up competing with a scientific theory, where the originally unobservable cause can be 
substituted by an observable cause.  It is my view that when two explanations, derived from two 
different, but orthodox scientific theories, compete with each other, we have to give preference to 
the orthodox theory that postulates an observable cause over the orthodox theory that postulates 
an unobservable cause. 
 
   The following scheme explains these different possible developments of a speculative 
hypothesis 

Graph.- Scientific and speculative hypothesis 

 
 



68 
 

Part 6.- The origin of the speculation on dark energy 
 
    Modern cosmology supposes that, on a large scale, the Universe is flat, that is to say, 1tot  
and 0k . Furthermore, empirical observations seem to indicate that 3.0M .109 The 
difference between tot  and M  is usually explained by the speculation on dark energy and the 
dark energy density  . This interpretation is based on the CDM  model, that has been 
developed and refined during the last ten years,110 and that implies the assumptions of Newtonian 
gravitational dynamics and a homogeneous Universe. I evaluate the dark energy hypothesis in 
Part 6, and in Part 76, I analyze the alternative Buchert-Wiltshire model, which reached a certain 
degree of maturity only two years ago.111 The latter model makes the speculation on dark energy 
superfluous, and is based on the assumptions of relativistic gravitational dynamics and an 
inhomogeneous Universe. This new model is capable of explaining the same astrophysical 
observations as the CDM  model, that is to say the acceleration of the expansion of the 
Universe; the evolution of large structures over time; and the anisotropies of the Cosmic 
Microwave Background Radiation (CMBR ), though from a radically different theoretical 
perspective,.  
 
   Part 6 has the following sections: 
1) the evidence in support of the hypothesis on the acceleration of the expansion of the Universe  
2) Bayesian probability calculus 
3) the evolution of the gravitational dynamics of galaxy clusters  
4) the form of the anisotropies of the cosmic background radiation ( CMBR )  
5) the attempts at theoretical explanation of the nature of dark energy  
 
6.1.- Dark energy and the acceleration of the expansion of the Universe 
 
   Kirshner points out that the dark energy in Guth’s speculation about early inflation is not the 
same dark energy as the one driving the recent acceleration of the expansion of the Universe: ”a 
large dollop of dark energy whose negative pressure drove the inflation era and another, much 
longer-lived dark energy that drives cosmic acceleration now.”112 At the end of the 1990s 
evidence was presented in favor of the conjecture about the recent acceleration of the expansion 
of the Universe, in a local close by region (on the basis of the model with 7.0,3.0  M ). 
I am speaking of the observations of luminosity and redshift of supernovae type 1a, discovered in 
the Supernova Cosmology Project of Saul Perlmutter and his team113 and the High-z Supernova 
Search Team, of Robert Kirshner and Adam Riess and their team.114 According to Kirshner, the 

                                                 
109 See Section 13.5, in John Auping, El Origen y la Evolución del Universo (2009) 
110 Joshua Frieman, Michael Turner & Dragan Huterer, “Dark Energy and the Accelerating Universe”,       
arXiv:astro-ph/0803.0982 (2008) 
111 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages,” in: New Journal of Physics (2007) 
112 Robert Kirshner, The Extravagant Universe  (2002): 138, mis negrillas 
113 Saul Perlmutter, “Medidas de Omega y Lambda de 42 supernovas de gran corrimiento al rojo”, en:  Astrophysical      
Journal vol. 517 (1999): 565-586 
114 Adam Riess, “Prueba observacional de las supernovas para un Universo en aceleración y una constante 
cosmológica,” en: Astronomical Journal , vol. 116 (1998): 1009-1038; y Robert Kirshner, The Extravagant 
Universe (2002) 
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estimate of the distance of supernovae on the basis of their redshift, supposes a Hubble constant 
of Mpcs //70 , and implies a reduction of the error margin of 40 to 70%. 
 
    According to these data, type 1a supernovae that are relatively close by have a redshift that is 
larger than would be expected in the case of a decelerating expansion of the Universe, indicating 
that in the last thousands of millions of years the expansion is accelerating. Many cosmologists 
attribute this recent expansion acceleration to a modern edition of the ancient cosmological 
constant, first proposed by Einstein. 115  The sum of the mass density of 3.0M  and the dark 
energy density of 7.0  yields a total density of 1tot , as can be seen in the next graph. 
 

Graph.- Computer simulation of the Friedmann-Lemaître model with cosmological constant 

 
 

Graph.- The apparent acceleration of the expansion of the Universe 116 

    

                                                 
115 Robert Kirshner, The Extravagant Universe  (2002): 223 
116 Image reproduced in Robert Kirshner, The Extravagant Universe (2002): 223 
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   The same data presented by the Kirshner-Riess and Perlmutter teams led Karttunen and his 
colleagues, in 2003, to a more cautious interpretation: “a choice of model cannot be made on the 
basis of these observations.”117 In 2001, Robinson had made the same point, that is, that the 
original supernovae type 1a observations can be consistent with 7.0  and 1 tot , as well as 
with 0  and 3.0tot .118  
 
   However, years later both teams presented again observations of the same phenomenon, but 
this time more precise ones, made with the Hubble Space Telescope and reduced the error 
margin of the observed luminosity considerably. In 2003, Knop and Perlmutter and their team 
presented data of 11 supernovae of high redshift observed by the Hubble Space Telescope119 and 
in 2004, Riess and Kirshner and their team used the same telescope for more precise 
observations of 16 recent supernovae and revaluated the past evidence of 170 supernovae type 1a 
and affirmed having corroborated once again the hypothesis of the recent acceleration of the 
expansion of the Universe.120 They also affirmed that the historical transition from deceleration 
to acceleration occurs at a distance that corresponds to a redshift of 13.046.0 z . In 2005, 
Astier and his team published their estimates of the cosmological parameters on the basis of 
observations of 71 high redshift type 1a supernovae discovered during the first year of the 
Supernova Legacy Survey (SNLS) that will last a total of five years.121  
 
6.2.- Baysesian probability calculus. 
 
   Recently, in the cosmological literature, the concept has emerged of “model-independent 
cosmology” in recognition of the fact that the supposed corroboration of certain interpretations 
of observational data depend on certain values of the model’s parameters which in themselves 
are dependent on the truth of certain assumptions, for example, the validity of Newtonian 
gravitational dynamics, and the homogeneity of the Universe. The interpretations are “model 
dependent”. First, certain parameter values are programmed in the computer software and then 
the computer produces results that are compatible with these assumptions and validate the 
interpretations. From the point of view of logic, these model-dependent interpretations are not 
really corroborated by the data but rather shown to be compatible with them, and other 
interpretations, based on other models, might also be compatible with the same data.  
 
   In 2005, Moncy John, an astrophysicist from India, was among the first to propose “a model-
independent, cosmographic approach to cosmology,”122 using Bayesian probability calculus. 
                                                 
117 Hannu Karttunen and others, Fundamental Astronomy, Fourth Edition (2003): 374 
118 Michael Robinson, Los nueve números del Cosmos (2001): 172 
119 Rob Knop, et al., “New constraints on M ,  , and w from an Independent Set of Eleven High-Redshift 
Supernovae Observed with the HST ” (2003), arXiv:astro-ph/0309368 
120 Adam Riess et al.,  “Type Ia Supernova Discoveries at z<1 From the Hubble Space Telescope: Evidence for Past 
Deceleration and Constraints on Dark Energy Evolution”, arXiv:astro-ph/0402512 and Astrophysical Journal, vol. 
607 (2004): 665-738  
121 Pierre Astier et al., “The Supernova Legacy Survey: Measurement of M ,   and w  from the First Year 
Data Set”, arXiv:astro-phy/0510447 (2005) 
122 Moncy John, “Cosmography, Deceleration Past, and Cosmological Models: Learning the Bayesian Way”, in: The 
Astrophysical Journal vol. 630 (2005): 667 
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     This method permits calculating the probability that certain data, based on empirical 
observations are generated in a Universe that corresponds to a certain theoretical model. At the 
same time, one calculates the probability that the same data correspond to another theoretical 
model of the Universe. Then one compares these different probabilities, in order to decide which 
model has a greater probability of not being false. This decision does not impede two important 
facts, in the first place, the fact that various theoretical models are compatible with the same 
data, and in the second place, the fact that as a result of the variation of these empirical data in 
different samples, different samples (for example, of type 1a supernovae), can generate different 
levels of probability for the same theoretical model. 
 
   Using the data of the Knop-Perlmutter and Riess-Kirshner teams, Moncy John discovered that 
“the Bayesian analysis shows that ... there is no evidence from supernovae data to conclude that 
a changeover from deceleration to acceleration occurred anywhere in the past s1710*5 .”123 The 
past 1710*5 seconds are the last 15 thousand million years, that is, the total age of the Universe. 
A second important conclusion of Moncy John is “that the present analysis rules out neither the 
accelerating nor the decelerating models; instead we can safely conclude that the data cannot 
discriminate between these models.”124 
 

MATHEMATICAL BOX 8, BAYESIAN PROBABILITY CALCULUS125 
 
   “Bayesian evidence” )(ME  in favor of some cosmological model M  is defined as the 
probability P  that certain empirical data D  are observed in a sample, in the case that 
this model would be the one that corresponds to the physical reality of the Universe: 

)()( MDPME       (78) 
    and the Bayes factor is the rate of the Bayesian evidence for both models iM  y jM : 
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   If 1ijB , we prefer model iM  over model jM  and vice-versa, if 10  ijB , we  
prefer model jM  over iM . Then we draw the natural logarithm of the Bayes Factor, in 
order to compare the different models iM  and  jM  with a basic model 0M : 
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    so we prefer iM  over 0M ; 
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  both models, iM  and 0M  are plausible; 

                                                 
123 Moncy John, “Cosmography, Deceleration Past, and Cosmological Models: Learning the Bayesian Way”, in: The 
Astrophysical Journal vol. 630 (2005): 672 
124 Moncy John, “Cosmography, Deceleration Past, and Cosmological Models: Learning the Bayesian Way”, in: The 
Astrophysical Journal vol. 630 (2005): 672 
125 Harold Jeffreys, The Theory of Probability, 3rd edition (1998) 
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if 1
)(
)( 0

0 
i

i ME
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B      0ln 0 iB      (82)  

  we prefer 0M  over iM . 
   Of course, iB0ln  values close to zero make the model comparison inconclusive, as 
can be appreciated in the following table from Roberto Trotta.126 For example if the 
Bayes factor is )(15.1)((139762.0ln 00 ii MPMPB  : 

iB0ln  )(/)( 00 ii MPMPB   Probability Strength evidence 

<1.0 1:3  <0.750 Inconclusive 
1.0 1:3  0.750 Weak evidence 
2.5 1:12  0.923 Moderate evidence 
5.0 1:150  0.993 Strong evidence 

 
   This inductive method is analogous to the 2 , where the observed distribution is 
compared to the expected distribution under the null hypothesis, and a decision is made 
whether this difference is statistically significant.127  

 
   Following the road initiated by Moncy John, Elgaroy and Multamäki analyzed two type 1a 
supernovae samples, that is, the Riess-Kirshner —also called the ‘Gold’ sample by Elgaroy and 
Multamäky— and the Astier sample (SNLS).128 The base model 0M  with which both samples 
are compared is a flat Universe ( 0k ) with a constant slightly negative deceleration factor q  
and linear expansion,129 which differs from the CDM  model that has a transition from 
deceleration to acceleration. There are various surprising results of this Bayesian analysis: 
1.- In the Gold sample, the more probably true model, is a closed Universe ( 1k ), with a 
slight and constantly negative deceleration parameter ( 04.00 q ).130 The model that comes 
second is a flat Universe ( 0k ), also constantly accelerating ( 29.00 q ).131 
2.- In the SNLS sample, the model most probably true is a flat Universe ( 0k ), also with 
constant acceleration ( 42.00 q ).132 In the second place comes a model of a flat Universe 

                                                 
126 R. Trotta, “Bayes in the sky: Bayesian inference and model selection in cosmology,” en: arXiv:0803.4089, p. 14 
127 See Philip R. Bevington & D. Keith Robinson, Data reduction and error anslysis for the physical sciences (2003) 
128 Øystein Elgaroy & Tuomas Multamäki, “Bayesian analysis of Friedmannless cosmologies,” arXiv:astro-
ph/0603053 
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( 0k ), with a non-constant and non-linear deceleration parameter and a transition from 
deceleration 2q  to acceleration 0q  and 1q : ( 61.0;60.0;60.0 210  qqq ).133 
3.- However, in both samples the most probably true model has a constant linear expansion, and 
this fact implies there was never a transition from deceleration to acceleration in the expansion of 
the Universe, according to Elgaroy and Multamäki:  
 
   “[T]he best model in both cases has )(zq  constant. It therefore seems fair to conclude that 
there is no significant evidence in the present supernovae data for a transition from deceleration 
to acceleration, and claims to the contrary are most likely an artifact of the parameterization 
used in the fit of the data. (...) It is at the moment not possible to say anything about when, or 
indeed if the Universe went from deceleration to acceleration. ”134 
 
4.- Another important conclusion is “that the two samples do not enable us to draw conclusions 
about the underlying model, [since] there is no evidence that anything beyond a constant, 
negative deceleration parameter is required in order to describe the data.”135 
 
   Shapiro and Turner follows followed the same line of reasoning as Moncy John and Elgaroy 
and Multamäki.136 They showed that the interpretation of supernovae type 1a data by the Riess-
Kirshner, Knop-Perlmutter and Astier teams, start from certain assumptions that are not 
necessarily true. Shapiro and Turner show that other interpretations are possible, for example, “a 
long epoch of recent deceleration is consistent with the data at the 10% [confidence] level” y 
“the present SNe 1a data cannot rule out the possibility that the universe has actually been 
decelerating for the past 3 Gyr [=three thousand million years] (i.e., since 3.0z ).”137 If we 
abandon the assumption, that is part of the standard CDM  model, 138 that the Universe is flat, 
another interpretation is possible, that is, “a positively curved universe with constant negative 
acceleration [=a closed universe, with constant deceleration] fits the gold set surprisingly well, 
and allowing q  [=the deceleration parameter] to vary does not significantly improve the fit.”139  
 
   In synthesis, the Bayesian analysis realized by Moncy John, Elgaroy and Multamäki, and 
Shapiro and Turner, reveals that certain empirical data are compatible with the standard CDM  
model, but this compatibility does not corroborate this model, because other possible models 

                                                 
133 6.0)( 0 iBLn ;  61.0;60.0;60.0 210  qqq ;  5.1102  . These data do not imply that the 

iM   model (flat Universe, with a transition from deceleration to acceleration) is the more probably true one, but, on 

the contrary, the 0M  model with constant negative deceleration is almost twice as probably true as the iM  model. 
134 Øystein Elgaroy & Tuomas Multamäki, “Bayesian analysis of Friedmannless cosmologies,” arXiv:astro-
ph/0603053, p.5, 6 
135 Øystein Elgaroy & Tuomas Multamäki, “Bayesian analysis of Friedmannless cosmologies,” arXiv:astro-
ph/0603053, p.7 
136 Charles Shapiro & Michael Turner, “What do we really know about cosmic acceleration?”, in: Astrophysical 
Journal vol. 649 (2006): 563-569 
137 Charles Shapiro & Michael Turner, “What do we really know about cosmic acceleration?”, in: Astrophysical  
Journal vol. 649 (2006): 566, mis negrillas 
138 In this model, the parameter for the equation of state has a value of -1  ( 1/  VACPw  ). 
139 Charles Shapiro & Michael Turner, “What do we really know about cosmic acceleration?”, in: Astrophysical  
Journal vol. 649 (2006): 568 
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exist, which, with different degrees of probability of not being false, can explain the same 
observational data. 
 
6.3.- Dark energy and the gravitational dynamics of galaxy clusters 
 
   In 2006, Longair pointed out that the observation of large scale structures, as, for example, 
galaxy clusters in different stages of the evolution of the Universe, do no permit distinguishing 
between different cosmological models, at the present moment of the history of the Universe. On 
the basis of some super computer simulations, run by Guinevere Kauffmann and her team,140 he 
compared the evolution of large scale structures in four types of universes, among them: 141 
1.- The same large scale structures generated in a flat Universe with cosmological constant, in 
the CDM standard model, so that 10   , with 7.0 . 
2.- Large scale structures generated in an open Universe without a cosmological constant, 
OCDM (=open cold dark matter), with an overall density parameter of approximately 3.00  .  
3.- CDM  Large scale structures generated in an open Universe without a cosmological constant 
with cold dark matter and decaying neutrinos. 
 
    According to Longair, there is no difference in the results of the dynamics of the subjacent 
model, if we compare the CDM model (with 7.0 ) with the OCDM and CDM models 
(with 0 ). He argues that “this is because the dynamics only differ from 0  (...) in the 
late stages of evolution of the Universe when the effect of the cosmological constant is to stretch 
out the timescale of the model, allowing some further development of the perturbations.”142 The 
structures with a larger redshift are farther away from us in space and time. For that reason, if we 
go from the right to the left in the following images, from 0z  to 3z , the size of the same 
object is diminishing progressively,143 and the angle from which we observe the object is 
progressively smaller. The important fact is that the CDM , on the one hand, and the OCDM 
and CDM  series of images, on the other hand, the first one with and the second and third ones 
without the cosmological constant, are identical. There do not yet appear differences due to the 
cosmological constant, in none of the four stages of the evolution of the Universe that are 
contemplated. According to Longair, the differences would appear in later stages of its evolution 
that we have not yet reached.  
 
   The original authors of these images, Guinevere Kauffmann and her team, say exactly the same 
as Longair comparing CDM  ( 7.0;3.0  M ) and CDM  ( 1 ): “Although neither 
model is perfect both come close to reproducing most of the data. Given the uncertainties in 

                                                 
140 Guinevere Kauffmann et al., “Clusters of galaxies in a hierarchical Universe, in: Monthly Notices of the Royal 
Astronomical Society, vol. 303 (1999): 188-206 
141 Malcolm Longair, The Cosmic Century (2006): 414 
142 Malcolm Longair, The Cosmic Century (2006): 415, my underlining. 
143 If we take the age of the Universe as a function of the matter density and the redshift of light, we can calculate 
the different values of z . See Edward Kolb & Michael Turner, The Early Universe (1994): 504, whose equations 
yield szht 2/32/12

0
17 )1()(10*0571.2   , ( 28.00  ; 7.0h )  6.17t  thousand million years 

for 0z ; 1.11t  thousand million years for 1z ; 5.8t  thousand million years for 2z ; and 0.7t  
thousand  million years for 3z . 



75 
 

modeling some of the critical physical processes, we conclude that it is not yet possible to draw 
firm conclusions about the values of cosmological parameters from studies of this kind.” 144 

 
Graph.- Computer models of the Universe with and without cosmological constant 145 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                                 
144 Guinevere Kauffmann, Jörg Colberg, Antonaldo Diafero & Simon White, “Clustering of Galaxies in a 
Hierarchical Universe: I. Methods and Results at z=0”, in: Monthly Notices of the Royal Astronomical Society, vol. 
303 (1999): 188-206 (quote on p. 288; also arXiv:astro-ph/9805283, 21 May 1998) & “II. Evolution to High 
Redshift”, ibidem, vol. 307 (1999): 529-536 (also arXiv:astro-ph/9809168, 18 September 1998). My underlining. 
145 Malcolm Longair, The Cosmic Century (2006): 414 
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6.4- Dark energy and the cosmic microwave background radiation CMBR  
 
    Modern cosmology analyzes the CMBR  from different angles, in order to measure the small 
variations or anisotropies of that radiation, that were first discovered by George Smoot and his 
team.146 Supposedly, these anisotropies prove that the Universe has a flat geometry, which would 
imply that dark energy exists. By way of example, I reproduce a graph to be found in Longair. 
The curve is generated by the computer, with he help of a Legendre function, while the software 
has been programmed with the values of the parameters of some predetermined cosmological 
model. In the case of the graph reproduced below, the assumption is made that the CDM  
model, with non zero cosmological constant, is the valid one, with a matter density of 3.0M  
and a dark energy density of 7.0 . The black points in the graph represent the observations: 
in the horizontal axis we read the angle from which the observations are made, and in the vertical 
axis one reads the magnitude of the observed anisotropies. The maximum variation in the 
temperature is one in hundred thousand. 
 

Graph.- The CDM  model is compatible with the anisotropies of  
the cosmic background radiation CMBR 147 

 
     
   If one looks at this graph, one may think “well, there is no doubt here, the facts corroborate the 
theory”. Things are not as simple, however, as they appear to be at first sight. In the first place 
(A), these observations (the dots) are a kind of ‘average’ of many observations that yield wildly 
varying results among themselves. In the second place (B), the curve (the continuous line) is 
model-dependent.  
 
A.- Uncertainties.- The following graph of Tegmark, Zaldarriaga and Hamilton, published in the 
year 2000, presents the observations made by 27 different teams of cosmologists. The curve that 
best fits these discrepant observations is the solid red line, a kind of ‘average’ of the 27 different series 
of data. It represents a cosmological model with a closed Universe ( 3.1tot ),148 which is of 
course quite different from the standard CDM , where the Universe is flat ( 0.1 tot ). For this 

                                                 
146 George Smoot & Keay Davidson, Wrinkles in Time (1993) 
147 Malcolm Longair, The Cosmic Century (2006): 424 
148 Max Tegmark, Matías Zaldarriaga y Andrew Hamilton, “Towards a refined concordance model: joint 11-
parameter constraints from CMB and large scale structure”, arXiv:astro-ph/0008167 (2000): p. 1 
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reason, according to the authors, there is a need for complementing these observations of the 
CMBR  with other observations, to be able to arrive at the standard  CDM  model . 

 
Graph.- The discrepancy between 27 different observations of the anisotropies in the CMBR   

 
B.- Model dependency.-  In this graph of the year 2000, the cosmological model that lies at the 
basis of the interpretation of the observational data is defined by 11 parameters. However, Uros 
Seljak and Matías Zaldarriaga of Harvard perfected the model, and their 2009 version has 16 
cosmological parameters, assumed to be true, among them the densities of cold dark matter, and 
dark energy, and another 20 non-cosmological parameters, which makes a total of 36 
assumptions. In the table below, I reproduce the 16 cosmological parameters of the CMBFast 
model of Seljak and Zaldarriaga.149 
 
TABLE.- 16 COSMOLOGICAL PARAMETERS IN THE CMBFAST MODEL 

 

                                                 
149 Uros Seljak & Matías Zaldarriaga,  “List of CMBFAST parameters,” CMBFAST Website 
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   If we vary, by way of example, just one of these 16 cosmological parameters, that is, the 
assumption of homogeneity (the blue line), the maximum anisotropy varies considerably (red 
and green lines) when we assume a non-homogeneous Universe. 150  
 

Graph.- Variation of %20   in the observed maximum anisotropy (red and green line)  
when the assumed homogeneity of the Universe (blue curve) is abandoned 

 
Explanation: Edward Kolb & Michael Turner, The Early Universe (1990): 384, 386  
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   Let me explain the graph. The letter “l” in the horizontal axis represents the angle of 
observation (the order of the polynomial of Legendre) and “C” in the vertical axis represents the 
correlation between intensities and the anisotropy of the CMBR . The variation of the maximum 
peak of the curve is due to the variation of the constant “n” that represents the degree of 
homogeneity, the blue line representing perfect homogeneity. This is just an example of how the 
selection of the values of the parameters affects the curve and, for that reason, can be used to fit 
the observational data. 
 
   In other words, the assumptions of the model used to interpret the observational data, make 
these data compatible with the concordant cosmological model but do not corroborate it. 
Analogously, we may have 20 different economic models to explain a certain rate of inflation. 
They may all succeed in doing so, though they may be wildly different among themselves. Of 
course, if we demand that a model explain not one or two but, simultaneously two thousand 
different types of observational data, at many points in time, the restraints on the model become 
more severe. If such a model would succeed in doing so, we may say that the data corroborate 
the theoretical model.  
 
   This model dependency, added to the considerable discrepancy of the observations by different 
teams, makes it impossible to draw definite conclusions about the underlying cosmological 

                                                 
150 Computer simulation run by Alfredo Sandoval and John Auping with Wolfram’s Mathematica, using the 
equations 9.144 and 9.148 of Edward Kolb & Michael  Turner, The Early Universe (1990): 384, 386 
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model. The data do not refute one model and corroborate another, but only prove that different 
models, among them the standard CDM  are compatible wit the data. Given this model 
dependency and the error margins in each of the 27 observations that vary considerably,151 it 
comes as no surprise that different models may succeed, with different degrees of probability, in 
different samples, to predict the same observational data, as I explained in the foregoing section 
on Bayesian probability.152  
 
    From the point of view of the philosophy of science, we can formulate the same problem in 
yet another way. When the observational data fit a theoretical model with 36 parameters, which 
of these are really compatible with the data? We might increase the value of one parameter and 
decrease the value of another one and the same data may fit the ‘new’ model. Of course, not all 
parameters are that free. Some are not free at all, because they were corroborated independently 
as part of some other theory. For example, the value of the primordial and the present helium 
abundances —one of the 36 parameters of the model—, are known with a considerable degree of 
certainty.153 However, the values of other parameters are completely model-dependent. Among 
the latter ones we may count the assumed homogeneity of the Universe, the temperature T  of the 
CMBR , the value of the Hubble constant 0H , the matter density M  and the space curvature 

k . As we shall see below, in relativistic models some of these parameters may obtain very 
different values and others are completely dropped, among them the supposed dark energy 
density  .154  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
151 See above, the graph “The discrepancy between 27 different observations of the anisotropies in the CMBR ” 
152 See part 6.2 
153 See Section 13.5 of John Auping, El Origen y la Evolución del Universo (2009) 
154 See Part 7 
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Part 7.- General relativity refutes the speculation about dark energy 
 
    In some textbooks, the expansion of the Universe is compared with an inflating globe, while 
coins stuck on its surface move away from each other. The expansion of the globe is conceived 
to be homogeneous and symmetric, so that the same rate of expansion is observed in all 
directions. Most cosmologists too use the assumption of the homogeneity and isotropy of the 
Universe to construct their models of its expansion. This assumption does not appear to be true. 
Even though the Cosmic Microwave Background Radiation ( CMBR ) reveals that the Universe, 
some 300,000 years after the Big Bang,  was almost perfectly homogeneous and isotropic, it is a 
fact that the small inhomogeneities present at that time —as registered by the small anisotropies 
of that radiation—, have since been magnified on a very large scale and today the Universe is not 
homogeneous, but rather an ensemble of enormous voids surrounded by enormous walls of 
galaxy clusters, like an enormous sponge. 
 
    Peebles analyzed the problem of the small scale inhomogeneity of the Universe, but concluded 
that there is still evidence in favor of the assumption of large scale homogeneity and isotropy of 
the Universe,155 though he admitted certain biases do occur due to irregular mass distributions: 
 
   “The clumpy mass distribution in the real world can play quite different roles in different tests. 
(...) Irregular mass distribution can produce a systematic error in apparent magnitudes of 
galaxies, for the mass along the line of sight acts as a lens that determines the rate of change of 
the convergence of a bundle of light rays, and that fixes the angular size of the image. If the mass 
distribution is clumpy rather than smooth (...) observations could be biased to favor objects 
whose images have been magnified, because they appear brighter, or the bias could go the other 
way, for where there is mass there tends to be dust. Thus, if the line of sight to a distant object 
passes through a large amount of mass, so that gravitational lensing is magnifying the angular 
size of the object, the image tends to be obscured.” 156  
 
   Peebles thought these biases would cancel each other out, so that the overall “bias may not be 
large.”157 This may be true for the kind of inhomogeneities Peebles was contemplating, but there 
appear to be others, not considered by him, that produce important overall systematic biases, 
especially the so called backreaction, and the different rates at which clocks are running in voids 
and walls, which do affect the value of the parameters of the model, as we shall see below. 
     
   Our galaxy cluster is located in an enormous void of 200 to 300 Mpc that expands between 20 
and 30% more rapidly than could be expected according to the global (average) Hubble 
constant158;  there is a superstructure of  400 Mpc known as Sloan’s Great Wall, surrounding part 
of this void; more locally there are two other minor voids of 35 to 70 Mpc each and  Shapely’s 
super cluster with a diameter of 40 Mpc, at a distance of some 200 Mpc from our galaxy; and 

                                                 
155 James Peebles, “Fractal Universe and Large-Scale Departures from Homogeneity” and “Cosmology in an 
Inhomogeneous Universe”,  in: Principles of Physical Cosmology (1993): 209-224, 343-360  
156 James Peebles, Principles of Physical Cosmology (1993): 343 
157 Ibidem, p. 343 
158 Paul Hunt & Subir Sarkar, “Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation 
with recent observations”, arXiv:0807.4508, pág.1 
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according to the Hubble Space Telescope Key Project there exists a significant anisotropy in the 
local expansion, at distances of up to 100 Mpc (note 159). 
 
   In general, Wiltshire estimates that “some 40-50% of the volume of the universe at the present 
epoch is in voids of 130 h  Mpc [between 40 a 50 Mpc] in diameter (...) and there is much 
evidence for voids 3 to 5 times this size, as well as local voids on smaller scales.”160 Obviously, 
with the passing of time, due to the expansion of the Universe, the participation of the voids in 
the total volume increases, and that of the gravitationally collapsed regions decreases. 
 
    Today, the expansion of the Universe looks more like a river with rapids than a slowly 
inflating globe. Instead of a homogeneous flow of a slow river, the flow of the rapids makes the 
total flow inhomogeneous. Some parts flow more rapidly than others and between slow and 
faster flows friction occurs. Where there are obstacles the current surrounding them is slowed 
down and vortices are generated in the surface of the water. The expansion of the Universe 
resembles such a current that meets obstacles in the form of galaxy clusters and black holes that 
slow down the rate of expansion of some regions, and the friction between faster and slower 
expanding regions generates shear, while enormous vortices are generated by black holes. Walls 
of galaxy clusters with the size of hundreds of Megaparsecs surround voids where the expansion 
is more rapid, than in regions with higher matter density. The Universe is more like a expanding 
and deforming sponge than a smoothly and homogeneously expanding globe, something 
resembling the image produced in a recent article in the Scientific American. 161 

 
Image.- The deceleration of the expansion of the Universe is greater in the walls than in the voids  

 

 
 
 
                                                 
159 Nan Li & Dominic Schwarz, “Scale dependence of cosmological backreaction”, arXiv:astro-ph/0710.5073, p. 1 
160 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 4 
161 Timothy Clifton & Pedro Ferreira affirm in “Dark Energy: Does it really exist?”,  in: Scientific American, vol. 
300 (2009): 33, that we are in the centre of an enormous spherical void with the size of the observable Universe, 
diameter Mpch 1170850  .  See also their “Living in a void”, arXiv:0807.1443 (2008): 1-4.  
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7.1.- How averaging parameters in a non-homogeneous Universe produces the backreaction 
 
     The Universe is a collection of regions with high matter density (walls), where local clocks 
run slowly, and regions with low matter density (voids), where clocks run faster. We can 
disappear this inhomogeneity through a process of averaging also known as smoothing, but that 
does not take away the fact that the values of cosmological parameters in walls and voids differ 
among themselves and from the global-average. This real inhomogeneity invalidates one of the 
basic assumptions of the standard model and affects the curvature of space. Even though the 
Universe has a global-average curvature, that does not take away the differences between 
gravitationally collapsed regions, like galaxies and galaxy clusters, where space does not expand 
and the curvature is positive ( 0k ), especially close to the galaxy centers where black holes 
can be found, and the enormous voids in the Universe, where space expands faster, and the 
curvature is negative ( 0k ). The curvature of space is not homogeneous.  
 
   A numerical example helps to understand the process of smoothing. Let us choose 27 random 
numbers between 01 and 100,162 with a maximum difference between the biggest and the 
smallest number of 94. We then average every three numbers and obtain nine new numbers163 
that differ less among themselves than the original 27, with a maximum difference of 59 between 
the extreme values. We now repeat the process of averaging groups of three numbers, and obtain 
three new numbers, 164 with a maximum difference among themselves of 33.0. If we average 
these three numbers we obtain the global-average of 48.6.165 That last number is analogous to the 
global-average of the cosmological parameters and the initial differences between the 27 original 
numbers is analogous to the differences between the local values of the cosmological parameters. 
The process of getting from the global inhomogeneity to the final, global average is the process 
of smoothing. In that process, the inhomogeneity of the Universe totally disappears.  
    
   How can we obtain the global-average values of the cosmological parameters? Obviously, that 
could be done in theory by obtaining a weighed average of their values in different regions of the 
Universe, of its voids and walls. There is a complication, however, since the values of its 
parameters evolve and change with time, so that their magnitude is not constant, neither on the 
local scale, nor on the large scale. Consequently, we have two options, the first one of which 
would be to obtain the average of the original values of the parameter in different regions at the 
beginning of the Universe, and then see how this average evolves. The second option would be 
to let the parameter evolve with time in different regions of the Universe and obtain an average 
of these independent evolving values in the final stages of the evolution of the Universe. 
Normally, the operation of averaging and the operation of evolving in time are commutative, so 
that the same result is obtained, independently of the order in which these two operations are 
executed, as can be appreciated in the following mathematical box. 
 
 
 

                                                 
162  The random numbers are taken from Hubert Blalock, Social Statistics (1960): 437, the numbers are: 10, 09, 73, 
25, 33, 76, 52, 01, 35, 86, 34, 67, 35, 48, 76, 80, 95, 90, 91, 17, 39, 29, 27, 49, 45, 37 y 54. 
163 The averages are: 30.7, 44.7, 29.3, 62.3, 53, 88.3, 49, 35 y 45.3. 
164 The averages are: 34.9, 67.9 y 43.1. 
165 The mean is: 48.6. 
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MATHEMATICAL BOX 9. THE OPERATIONS OF AVERAGING 
AND DERIVING OVER TIME ARE COMMUTATIVE 
 
   Normally, the operations of obtaining the average or the derivative are 
commutative. In the first equation, we first obtain the average and then  the 
derivative over time: 

4
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4
1(632 22323  xxxxxxxx tt      (85) 

   and in the second one, we first obtain the derivative and then the average: 
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   but even so, in both cases, we obtain exactly the same result. This is what 
we mean when we say that even in the case of non-linear equations the 
operations of obtaining the average or the derivative are commutative. 

 
   The problem with many cosmological parameters is that they are determined by tensorial 
equations, where averaging and deriving over time are NOT commutative operations. It is not the 
same to let an average matter distribution and its corresponding spatial geometry evolve in time, 
or let the matter distributions of different regions and their corresponding spatial geometries 
evolve in time and then average the final results. Cosmologists tend to first average matter 
distributions and its corresponding geometries and then use Einstein’s equations to obtain the 
homogeneous geometry that results from the evolution in time of this average. Actually, the 
proper procedure would be to first resolve Einstein’s equations for the different geometries of the 
different regions of the Universe, then let these results evolve in time, and then average the final 
results. Since these operations are not commutative, not following the proper order of operations 
yields erroneous results, according to Wiltshire, referring to previous work of Buchert: “the 
geometry which arises from the time evolution of an initial average of the matter distribution 
does not generally coincide, at a later time, with the average geometry of the full inhomogeneous 
matter distribution evolved via Einstein’s equations.”166  
 
   The first one to draw attention to the fact that the operations of averaging and resolving 
Einstein’s equations are not commutative, was George Ellis, in 1984.167 He showed that the 
structure of the non-linear equations of general relativity is substantially modified by the process 
of large scale smoothing. Let us see this point first graphically (see next graph) and then 
algebraically (see mathematical BOX 10). The following graph taken from Ellis represents three 
scales in measuring phenomena in the Universe, that is, the scale of stars and solar systems, the 
scale of galaxies; and the scale of galaxy clusters and walls of galaxy clusters.168  
 
   Obviously, the evolution of the Universe in time has taken place in the opposite order, starting 
with a homogeneous cloud of hydrogen and helium, which existed some 300,000 years after the 

                                                 
166 David Wiltshire,  “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 
167 George Ellis, “Relativistic Cosmology: Its Nature, Aims and Problems”, in: B. Bertotti et al., eds., General 
Relativity and Gravitation, págs. 215-288. 
168 George Ellis, “Relativistic Cosmology: Its Nature, Aims and Problems”, in: B. Bertotti, et al., eds., General 
Relativity and Gravitation (1984): 230 
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Big Bang, up to the voids and walls of galaxies and galaxy clusters, and the stars and solar 
systems that we observe today, in our inhomogeneous Universe. 
 

Graph.- The operation of averaging cosmic phenomena on an ever bigger scale: 
scale 1 = details down to stars; scale 3 = galaxies; scale 5 =  large scale features 

 
    
    Ellis showed that the operation of averaging and resolving Einstein’s tensorial equations are 
not commutative: “Thus, a significant problem at the foundation of cosmology is to provide 
suitable definitions of averaged manifolds169 (..), of metric [ G ] and stress-tensor [ T ] 
averaging and smoothing procedures, and to show these have appropriate properties”170  
 
   We get from the local scale to the global scale by averaging or smoothing. The problem is, as 
we can see below, in mathematical BOX 10, that in order to get from scale 1 to scale 3, and from 
scale 3 to scale 5, the tensorial equation that is valid on scale 1, is no longer valid on scale 3, or 
scale 5. In order to correct the error that occurs when we first average the matter density and its 
corresponding geometry in different regions of the Universe, and then solve Einstein’s equation, 
we will have to introduce a term of correction, also known as the backreaction, in the tensorial 
equations used on scale 3 and on scale 5.  
 
 
 
 
                                                 
169 “Manifolds” are multiples of different space-time regions of the Universe 
170 George Ellis, “Relativistic Cosmology: Its Nature, Aims and Problems”, in: B. Bertotti, et al., eds., General 
Relativity and Gravitation, p. 231.  
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MATHEMATICAL BOX 10  THE BACKREACTION TERM IN EINSTEIN’S 
TENSORIAL EQUATION 
 
   Einstein’s tensor is:171 

 
 T

c
GTRgRG 4

8
2
1

   (87) 

   and on scale 1, this tensor look as follows: 

  11111 2
1 TRgRG       (88) 

   but on scale 3 and 5, the left hand term of the equation, representing the average of 
the metric, no longer is equal to the right hand term, representing the mass-energy 
average: 

  33 TG       (89) 

  55 TG       (90) 
 
   We therefore need, in equations (89) and (90) a term also known as the 
backreaction, 3P  y 5P , which leaves Einstein’s tensor as follows:172 

  333333 2
1 PTRgRG       (91) 

  555555 2
1 PTRgRG       (92) 

 
   The theoretical terms of the backreaction, 3P   y 5P , are analogous to the term 

DQ  of Buchert, Kolb, Matarrese and Riotto in BOX 11, 15 and 16, but Ellis did not 
define its empirical value.173 Zalaletdinov, an astrophysicist of Uzbekistan, has given 
us a precise mathematical definition of Einstein’s ‘average’ tensorial equation, 
improving, in his view, the previous work by Buchert.174 Einstein’s tensor, applicable 
on all scales, according to Zalaletdinov, is the following:175  
















  gQZTMgMg micro )
2
1(

2
1 )(       (93) 

where 
 Mg  is the average curvature tensor and MMg 

 , the average 
curvature scalar.  

 

                                                 
171 See equation (286) of Appendix VI B of John Aupíng, Origen y Evolución del Universo (2009) 
172 George Ellis, “Relativistic Cosmology: Its Nature, Aims and Problems”, in: B. Bertotti et al., eds., General 
Relativity and Gravitation, págs. 233 
173 William Stoeger, Amina Helmi & Diego Torres, in “Averaging Einstein’s Equations: The Linearized Case”, 
arXiv:gr-qc/9904020, have made an attempt at averaging Einstein’s non-linear equations in linear form. 
174 Roustam Zalaletdinov has found the exact way to average Einstein’s non-linear equations in non-linear form, in 
many publications, of which I mention only two: “Averaging out the Einstein’s Equations”, in: General Relativity 
and Gravitation, vol. 24 (1992): 1015-1031; and “Averaging problem in general relativity, macroscopic gravity and 
using Einstein’s equations in cosmology”, in: Bulletin of the Astronomical Society of India (1997): 401-416. 
175 Roustam Zalaletdinov, “Averaging out the Einstein’s Equations”, in: General Relativity and Gravitation, vol. 24 
(1992): 1025 equation (23) 
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    Regrettably, during fifteen years, Ellis’ warnings were not taken into account by cosmologists 
in the construction of their models. There was a general tendency to estimate the values of the 
global cosmological parameters at the present time, and then project them back to the origins of 
the Universe, in simplified models, where Newtonian gravitational dynamics were assumed to be 
valid at non-relativistic velocities, and the Universe was assumed to be homogeneous, from 
beginning to end. The assumptions and simplifications of these models did not alarm too many 
people, and often these assumptions were note even consciously made. However, the problems 
became more acute at the end of the 90’s, when the apparent acceleration of the expansion of the 
Universe was discovered by Kirshner, Perlmutter and Riess. Only in the case that the local 
expansion rates were equal to the global-average expansion rate, as would be the case in a 
homogeneous and isotropic Universe, the magnitude of this backreaction term would be zero,176 
but, as we shall see below, this assumption proves to be invalid. 
 
   Thomas Buchert, a German astrophysicist working in France, followed up on Ellis’s 
suggestions. I will first define some terms of Buchert’s model, and then present his comparison 
of homogeneous and inhomogeneous models, both Newtonian and relativistic.177  
1) D , a specific spatial-temporal dominion of the Universe; 
2) DH , the Hubble constant in this dominion; 
3)

D
R , the average curvature of the Universe, represented by Ricci’s scalar; 

4) D , the expansion of the volume of this dominion (of the expansion of elements of the fluid); 
5)  , the shear or distortion of elements of the fluid by interaction with surrounding matter; 
6) 

Dtd   or 
D

, the evolution in time of the initial average of the expanding volumes of 
local dominions (first the initial average is calculated, then this average evolves in time); 
7) 

Dtd  , the final average of the expanding volumes of local dominions after they have 
evolved in time (first different local dominions evolve in time and then an average is obtained; 
8) DQ , ‘the source’ of non-linear results, also known as the ‘backreaction term’ that measures 
the discrepancy between perfect homogeneity and the effect of existing inhomogeneities;178 
9) Da , the rate of expansion of a dominion of the Universe. 
 
   In the case of expanding, spherical, inhomogeneous volumes  , the operations of averaging 
and evolving in time are NOT commutative, as we saw above, and as a result, the backreaction 

DQ  is generated, that represents the difference between the average of the quantities that evolved 
separately in time, and the final result of the evolution of the average of the original quantities 
(see mathematical BOX 11).179 
 

                                                 
176 Because, in that case,  

DtDt dd  ,  so that 0DQ . See Mathematical BOX 11 
177 The model of Newtonian (virial) gravitation is not necessary homogeneous. It is possible to construct Newtonian, 
inhomogeneous models, see Thomas Buchert, On Average Properties of Inhomogeneous Cosmologies, arXiv:gr-
qc/00010556 (2000): 1-9 
178 Thomas Buchert, On Average Properties of Inhomogeneous Cosmologies, arXiv:gr-qc/00010556 (2000): 3 
179 Thomas Buchert, On Average Properties of Inhomogeneous Cosmologies, arXiv:gr-qc/00010556 (2000): 4; 
Edward Kolb, Sabino Matarrese & Antonio Riotto, “On cosmic acceleration without dark energy”, in: New Journal 
of Physics (2006): 6; and idem, “On Cosmic Acceleration from Backreaction,” on-line (2009): 13. 
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MATHEMATICAL BOX 11  HOW THE BACKREACTION IS DERIVED 
 
    The difference between 

Dtd   y 
Dtd   produces the quantity also known as the 

backreaction DQ : 

2222222

222

22

2)(

DDDDDDDDDD

DDDDDDtDt dd




(94) 
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
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


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    Combining equations (94) y (95), we obtain:  

 
DDDDQ 222 2

3
2

      (96) 

      
   The next mathematical box presents a synthesis of Buchert’s model that differs from the 
Newtonian model only by integrating the term of the backreaction.  
 

MATHEMATICAL BOX 12  SOME FRIEDMANN EQUATIONS IN BOTH 
HOMOGENEOUS AND INHOMOGENEOUS, RELATIVISTIC MODELS 
 
    I present some Friedmann equations, in both homogeneous and inhomogeneous, 
relativistic models developed by Buchert: 
 
RELATIVISTIC, HOMOGENEOUS   RELATIVISTIC,  INHOMOGENEOUS 
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   The solution to equation (103) is: 

3
00 / aa       (104) 

                                                 
180 See Sabino Matarrese, Rocky Kolb & Toni Riotto, “On Cosmic Acceleration from Backreaction,” on-line (2009) 

This means that, 
G

R
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QD
eff




1616
  and 

G
R

G
QP D

eff
 1616

 , where the terms with R  

indicate the average curvature and the terms with DQ , the cinematic backreaction. 
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as can be seen from combining equations (103) y (104): 
0)(3)( 3

00
13

00   aaaaaat        
    0)3()3( 4

00
4

00   aaaaaa            (105)  
    
   The equation of state of the backreaction, or ’integrability condition’, only exists in 
the relativistic model and not in the Newtonian model. Buchert proposes: 

026 
D

D

D
DtD

D

D
Dt R

a
aRQ

a
aQ    (note 181)     (106) 

   and Kolb, Matarrese y Riotto, and Wiltshire propose (which is exactly the same): 
0)()( 246


DDtDDDt RaaQa (nota 182)     (107) 

 
    The following mathematical box compares two inhomogeneous models one Newtonian and 
one relativistic, according to Buchert. 183 
 

MATHEMATICAL BOX 13, PARAMETERS IN TWO INHOMOGENEOUS 
MODELS, ONE NEWTONIAN AND ONE RELATIVISTIC 

 
    We represent the Hubble constant by aaH /  and the spatial curvature R  by the 
average  Ricci scalar. The density parameters, according to Buchert, are: 
 
NEWTONIAN, INHOMOGENEOUS RELATIVISTIC, INHOMOGENEOUS 
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181 Thomas Buchert, “On Average Properties of Inhomogeneous Cosmologies”, arXiv:gr-qc/00010556, p. 12, eq. 45 
182 See Edward Kolb, Sabino Matarrese & Antonio Riotto, “On cosmic acceleration without dark energy” in: New 
Journal of Physics, vol. 8 (2006): 7, eq. (25) & “On Cosmic Acceleration from Backreaction,” online, p.16 & David 
Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics, vol. 9 (2007): 5 
183 Thomas Buchert, “On Average Properties of Inhomogeneous Cosmologies”, arXiv:gr-qc/0001056 (2000): 4, 12. 
See also a synthesis of Buchert’s model in David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, 
in: New Journal of Physics, vol. 9 (2007): 9 
184 Some authors write 2

0
2 3/ Hc and Thomas Buchert, in “On Average Properties of Inhomogeneous 

Cosmologies”, arXiv:gr-qc/0001056 (2000):4, writes 2
03/ H . The two versions are compatible if one 

takes into account that some authors normalize the equations with 1c .  The same applies to equation (117). 
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   Buchert showed that in the Newtonian, inhomogeneous model, the sum of the first three of the 
four terms found in the definition-equation 1  QkM , is 0.99 (note 185) so the 
fourth term must be very small, that is 01.0Q  (nota 186): “This term, which brought the higher 
voltage of having mastered a generic inhomogeneous Newtonian cosmology, shows no global 
relevance and it seems that we are drawn back to the previous state of low visibility of the 
standard cosmological models”.187   
 
   Roberto Sussman run a series of simulations with the relativistic dust model of Lemaître-
Tolman-Bondi (LTB), in which he demonstrated that Buchert’s backreaction term can have 
positive values, in regions with hyperbolic curvature, as well in elliptic dominions —either in 
isolation or surrounded by a hyperbolic exterior—, that suffer gravitational collapse, and are 
capable of producing an acceleration of the expansion of a universe without the need for dark 
energy.188 He stresses, however, that we are dealing with a qualitative evaluation of the model, 
and that it is necessary, “as a complement to this work, (…) to test numerically how large the 
effective acceleration, that we have shown here to exist, can be.”189 Besides, according to 
Wiltshire, “approaches based on the exact LTB models or the exact Szekeres models”, though 
“immensely useful, both as exact models for isolated systems in an expanding universe or as toy 
models (...) could only be applied to the universe as a whole if one abandoned the Copernican 
Principle”, which is more than Wiltshire is willing to do.190 
 
    Some cosmologists, notably Edward Kolb, Sabino Matarrese and Antonio Riotto felt that in an 
inhomogeneous, relativistic model, the effects of the inhomogeneities appear to be sufficiently 
large to let the terms DQ  and D

Q  may be to replace   and D
  . In 2006, they elaborated 

Buchert’s model, attributing the apparent acceleration of the expansion of the Universe to the  
backreactions of its gravitational perturbations, making the dark energy hypothesis 
superfluous:191 “Another possibility [different from the standard CDM model] is that the 
Universe is matter-dominated and described by general relativity, and the departure of the 
expansion rate of the Einstein-De Sitter model is the result of backreactions of cosmological 

                                                 
185 Thomas Buchert, On Average Properties of Inhomogeneous Cosmologies, arXiv:gr-qc/00010556 (2000): 1-9 
186 However, even being so small, it has a strong influence on the evolution of the cosmological parameters in time. 
See Thomas Buchert, Martin Kerscher & Christian Sicka, “Backreaction of inhomogeneities on the expansion: the 
evolution of cosmological parameters”, arXiv:astro-ph/9912347, p. 17.   
187 Thomas Buchert, On Average Properties of Inhomogeneous Cosmologies, arXiv:gr-qc/00010556 (2000): 13  
188 Roberto Sussman, “Conditions for back reaction and ‘effective’ acceleration in Lemaître-Tolan-Bondi dust 
models”, arXiv:0807.1145 (2009) 
189 Ibidem, p.  33 
190 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 6 
191 Edward Kolb, Sabino Matarrese & Antonio Riotto, “On cosmic acceleration without dark energy” in: New 
Journal of Physics vol. 8 (2008): 322 



90 
 

perturbations. This explanation is the most conservative, since it assumes neither a cosmological 
constant nor a modification of general relativity.”192  
   
   Like Sussman, the authors admit that they have not yet been able to measure the quantitative 
influence of the backreactions generated by these gravitational perturbations: “The actual 
quantitative evaluation of their effect on the expansion rate of the Universe would, however, 
require a truly non-perturbative approach, which is clearly beyond the aim of this paper.”193     
 
   One year later, in 2007, David Wiltshire, an astrophysicist from New Zealand, commenting on 
this essay of Kolb, Matarrese and Riotto, pointed out exactly that: “While perturbative 
approaches have naturally led to realization of the significance of backreaction, to account for 
’74% [of the matter-energy density of the universe by ] dark energy’, the effect of backreaction 
on the background of the universe would [have to] be so great that a viable quantitative model is 
beyond the domain of applicability of perturbation theory.”194 The probable magnitude of the 
backreaction is not large enough to explain the recent, apparent expansion of the Universe and, 
as a consequence, the backreaction does not serve as a possible substitute of dark energy.  
 
   Aseem Paranjape, an astrophysicist from India, applied the mathematical structure developed 
by Roustam Zalaletdinov, an astrophysicist from Uzbekistan capable of averaging Einstein’s 
tensorial equations,195 to the problem of the expansion of the Universe196 and discussed his 
findings with Buchert and Wiltshire. He reached the same conclusion as Wiltshire in his 
criticism of Kolb, Matarrese and Riotto, that is to say, that the effects of the backreaction are 
real, but insufficient to explain the recent acceleration of the expansion of the Universe, which is 
normally attributed to the negative pressure of dark energy: 
“Although technically possible, in the real world backreaction does not significantly affect the 
expansion history of the universe. 
  Cosmological perturbation theory is stable against backreaction effects, well into the 
nonlinear regime. 
  Dark energy cannot therefore be an effect of the backreaction of inhomogeneities.”197 
 
 
 
 
 
 
 

                                                 
192 Ibidem, p. 2 
193 Ibidem, p. 15 
194 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 5-6. 
See also the same article, p. 22 
195 Roustam Zalaletdinov has found the exact way to average Einstein’s non-linear equations in non-linear form, in 
many publications, of which I mention only two: “Averaging out the Einstein’s Equations”, in: General Relativity 
and Gravitation, vol. 24 (1992): 1015-1031; and “Averaging problem in general relativity, macroscopic gravity and 
using Einstein’s equations in cosmology”, in: Bulletin of the Astronomical Society of India (1997): 401-416 
196Aseem Paranjape, “A Covariant Road to Spatial Averaging in Cosmology: Scalar Corrections to the 
Cosmological Equations”, arXiv:0705.2380 (2007) and his thesis, The Averaging Problem in Cosmology (2009) 
197 Aseem Paranjape, The Averaging Problem in Cosmology (2009): 6 
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7.2.- Clocks run at different rates in voids and walls 
 
   In 2005, David Wiltshire presented an alternative theory,198 which he called fractal bubble 
model = FBM ). The name is not that important. Actually, this fractal structure of the Universe 
does not exist at small scales, as Peebles pointed out in 1993.199 I prefer to think of the Universe 
as having the structure of a large, expanding sponge: large voids surrounded by large walls of 
filaments of galaxy clusters. We may drop the theory of the fractal structure of the Universe, 
without loosing the essence of Wiltshire’s contribution, which we may call the theory of the 
differential running of watches in voids and walls or, briefly, ‘the time-scape model’. Wiltshire 
pointed out that after the moment of recombination, some 300,000 years after the Big Bang, the 
imaginary watches, located in different regions of the Universe, started to differ increasingly, 
because in regions with high matter density, gravity makes watches run slower, and in voids, 
faster. Wiltshire revived one of the implications of general relativity, already explained by 
Einstein himself, who said: ”[L]et us examine the rate of a unit clock, which is arranged to be at 
rest in a static gravitational field. (..) [T]he clock goes more slowly if set up in the neighborhood 
of ponderable masses..”200  This lentification of clocks by gravity has three consequences: 

1) The wavelength of light coming from objects with high mass density will be redshifted;  
2) The velocity of objects that move away from observers located in a ponderable 

gravitational field, and the redshift of those objects’ light will be higher when measured 
by the observer’s wall clock than by its own co-moving clock or clocks in voids. 

3) There is a third consequence not mentioned by Einstein, but not less important. Light 
from a supernova thast passes through the large void that surrounds us is more redshifted 
than the global-average, because the void expands faster than ghe global-average 

 
   This theory of the watches might explain the apparent acceleration of the Universe in the large 
void surrounding our galaxy cluster, as compared with the global-average deceleration. When the 
velocity of a supernova at the other end of the void is measured with our watch, or with a global-
average watch, it might seem to move away from us at a faster rate then when it is measured with 
a watch mounted on the supernova itself, because our watch moves slower than its one. 
 
   However, a problem persisted with the solution offered by Wiltshire in 2005, as he himself 
observed. If we compare, with Bayesian probability, the ability of both models, that is the 
standard flat CDM , which includes dark energy, and Wiltshire’s FBM , without dark energy, 
to explain the same supernovae type 1a data, the CDM  model is more probably true than 
the FBM in the range of 5.02.0  M , which is the empirical range of our Universe.201  The 
FBM was in need of serious revision. 
 
 
 
                                                 
198 David Wiltshire, “Viable inhomogeneous model universe without dark energy from primordial inflation”, 
arXiv:gr-cq/0503099 (2005) 
199 See  James Peebles, “Fractal Universe and Large-Scale Departures from Homogeneity”  in: Principles of 
Physical Cosmology (1993): 209-224 
200 Albert Einstein, “The Foundation of the General Theory of Relativity”, in:  Annalen der Physik vol. 49 (1916), 
traducido al inglés en The Collected Works of Albert Einstein, vol. 6 (1989): 197-198 (my underlining) 
201 Benedict Carter, Ben Leith, Cindy Ng, Alex Nielsen & David Wiltshire et al., “Type IA supernovae tests of 
fractal bubble universe with no cosmic acceleration”, arXiv:astro-ph/0504192. 
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7.3.- The new relativistic Buchert-Wiltshire paradigm 
 
   The problem just mentioned was not resolved until 2007, when Wiltshire proposed his time-
scape model that integrated Buchert’s backreaction and his own theory on differential clock rates 
in an inhomogeneous universe.202 This new, integrated model is capable of explaining the 
apparent acceleration of the expansion of the Universes and other phenomena that have 
motivated many cosmologists to accept the speculative concept of dark energy to explain them. 
Wiltshire distinguishes three times or imaginary clocks, that is, slow clocks in gravitationally 
dense and collapsed regions that measure w  ( w  for walls), rapid clocks in the voids with time 

v  ( v  for voids) and a global-average clock with time t (note 203). These three times yield three 
differential clock rates, that is wddt / , vddt /  and wv dd  / . Only at the beginning of the 
Universe, at the moment of recombination, the Universe was an almost perfectly smooth and 
homogeneous cloud of hydrogen and helium and, as a consequence, at that time, 

wddt /  vddt /  1/ wv dd  . In order to define the passed and present-day parameters as a 
function of the global-average time t ,  Buchert’s formalism is used to average the values of 
parameters measured with clocks in walls, w  and voids, v . In the next mathematical box, I 
synthesize the Buchert-Wiltshire paradigm. 
 

MATHEMATICAL BOX 14, THE BACKREACTION IN THE NEW 
BUCHERT-WILTSHIRE PARADIGM 
 
   The Hubble constant is defined as the ratio of the expansion velocity exv and 

the distance r  to a particular object of the Universe ( r
vH ex ). With 

Wiltshire, I define the Hubble constant as a function of global-average time t , 
both for gravitationally collapsed regions )(tH w , for the large voids )(tH v  and 
for the entire Universe )(tH . The last one is also called the subjacent or bare 
Hubble constant and represents a ponderated average of the former two. 
Obviously, the three constants have different values ( vw HHH  ).  
 
   There are two ways to obtain the bare constant, taking into account that 

vvww aHaH //  , where a  is distance. The first equation is: 
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202 Ibidem, p. 22, equation (32) 
203 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007) 
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  From equation (119) we  obtain: 
)/(/1///)( wvvwwvvwr ddddHHth        (121) 

   where the wv dd  /  function is called the lapse function or the differential 
clock rate in walls and voids.  The second way to obtain the bare Hubble 
constant is by way of a ponderated average of wH  and vH : 

vvwwH
HfHftH 

3
1)( (nota 204)     (122) 

Where the factors wf   and vf  indicate the volumes of walls and voids as a 
proportion of the total volume of the Universe, respectively, so that:: 

1)()(  tftf vw      (123) 
    
   Since, with the passing of time, the volume of the walls does not increase, but 
the volume of the voids increases because of the expansion of the Universe, 
these two factors )(tf w  and )(tf v , are not constant in time. Given the Ellis-

Buchert formalism, the terms 2
H

  and 
H

2  have different magnitudes: 

vwvwvvwwH
HHffHfHf 1899 22222

       (124) 

(31)  222 99 vvwwH
HfHf       (125) 

 
    Let us remind now the backreaction term of Buchert, Kolb, Matarrese and 
Riotto and let us suppose, for the time being, a zero value for the shear  . The 
backreaction is defined by the difference between 

Dtd   and 
Dtd  , that is 

between 2
H

   and 
H

2 ,  so that: 

0
3
2

3
22)(

3
2 222 

DDDDtDtD ddQ       (126) 

     
   By combining equations (124), (125) and (126), we obtain: 

(33) vwvwvvwwvvww HHffHfHfHfHfQ 126666 222222
      (127) 

and since, by (123),  
vw ff 1      (128) 

it follows that equation (127) can be transformed in (129): 





vwvvwv

vvwvwvwvvwvw

HHfHHf

HfHfHfHHfHfHQ
2

222222222

1212

66126666
(129) 

vwvvwvvvwvvvwv HHfHHfHfHfHfHfQ 2222222 12126666  (130) 
  (37) 2))(1(6 wvvv HHffQ  (nota 205)    (131) 

                 

                                                 
204 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p.4 
205 This is the same result as obtained by David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, 
in New Journal of Physics (2007): 21, equation (31), first part of the equation 
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  We now rewrite equation (119), which is convenient because of the use we are 
making of it when we derive the global deceleration of the expansion of the 
Universe: 

dt
da

d
dt

a
tH w

ww 

1)(       (119)   


w

w

w

w
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      (132)  

    
   From equations (122) and (132), we obtain: 
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   from equations (119) and (133) we obtain: 
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   and from equatios (120) and (134): 
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   and from (119) and (133): 

)/1(/
)/)((

vwvvw

vw
w HHfHH

HHtHH
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      (136)  

   Since: 
)//( vwwv HHHH       (137) 

   it follows, from (136) and (137) that: 

)/1(/
)(

vwvvw
v HHfHH

tHH


      (138) 

 
   Combining (131), (136) and (138), we obtain the backreaction as a function 
of the Hubble constants that take into account the differential clock rates: 
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vv HHfHH

HHH
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    The interesting thing about equation (139) of mathematical box 14, is that there are two 
moments in the history of the Universe where the backreaction is zero, and the deceleration has a 
value of 0635.0q . At the moment of recombination, the inhomogeneities were almost zero 
( 1rh ), because the Universe was basically a homogeneous cloud of hydrogen and helium, so 
that the Hubble constants of regions with different degrees of mass density had an almost 
identical value, generating a zero backreaction.207 And vice-versa, when we approach the end of 

                                                 
206 This is the same result as obtained by David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, 
in New Journal of Physics (2007): 21, equation (31), second part of the equation 
207 01/  Qvw HH  
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the history of the Universe, the volume of the voids will be so much larger than the volume with 
galaxy clusters, that, once more, 1vf , and once more, the backreaction will be zero.208 At this 
particular moment of the history of the Universe, the deceleration is real, with 015348.0q  
and the apparent acceleration of the expansion velocity measured with clocks in walls, like our 
galaxy cluster, is 042785.0)( wq  . 
 
   The new Buchert-Wiltshire paradigm has important implications for the interpretation of 

empirical phenomena that have defied cosmology during the last decades. Below we will see 
how the Buchert-Wiltshire paradigm allows us to disregard dark energy in explaining the 
apparent acceleration of the expansion of the Universe, the evolution of its large scale structures, 
and the anisotropies of the Cosmic Microwave Background Radiation CMBR . 
 
The variation of the Hubble constant.- One of the most paradoxical implications of the new 
paradigm is the variation of the Hubble constant in walls, voids and global-average regions, and 
if measured with wall-clocks, void-clocks or global-average clocks.  
 
   At the beginning of 2007, Buchert pointed out that it was difficult to quantify the effects of the 
backreaction.209 However, that same year, Nan Li and Dominic Schwarz offered some 
approximate estimates.210 Below, I reproduce five important results of Li and Schwarz’s study, 
that take into account observations made by the Hubble Space Telescope in the Key Project. 

1) The effects of the backreaction on the variation of the Hubble constant are scale-
dependent, that is, its variation depends on the inverse square distance ( 2/1 rQD  ). 

2) At a scale of less than 200 Mpc, the influence of these inhomogeneities is much bigger in 
a relativistic model than in a Newtonian model. 

3) The values of the variation of the Hubble constant in the relativistic model coincide with 
the observations of the Key Project Hubble Space Telescope: “We see that the theoretical 
band matches the experimental data well, without any fit parameter in the panel.”211 

4) The Hubble constant has a comparatively larger value in our neighborhood, at a scale of 
about 100 Mpc, which constitutes a large void. 

5) “[C]osmological averaging (backreaction) gives rise to observable effects up to scales of 
  200 Mpc. However, it is not sufficient to explain the observed accelerated expansion at 
this point.”212 

 
    Other investigations go much further. Hunt and Sarkar observed that we are located in a huge 
void with a diameter of 200 to 300 Mpc that expands 20 to 30% faster than would be expected 
according to the global-average Hubble constant. The expansion acceleration observed by Hunt 
and Sarkar in this infra dense void is extremely improbable in the context of the standard 

                                                 
208 1vf  y 001  Qvf . See David Wiltshire, “Cosmic clocks, cosmic variance and cosmic 
averages”, en New Journal of Physics (2007): 28 
209 Thomas Buchert, “Backreaction Issues in Relativistic Cosmology and the Dark Energy Debate”, arXiv:gr-
qc/06112166 (enero 2007).15 
210 Nan Li & Dominic Schwarz, “Scale dependence of cosmological backreaction”, arXiv:astro-ph/0710.5073 
211 Nan Li & Dominic Schwarz, “Scale dependence of cosmological backreaction”, arXiv:astro-ph/0710.5073, p. 5 
212 Nan Li & Dominic Schwarz, “Scale dependence of cosmological backreaction”, arXiv:astro-ph/0710.5073, p. 5 
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CDM  model213 and, in general, several observations in “these real voids are in gross conflict 
with the concordance CDM model.”214 However, according to the authors, these same data are 
compatible with a model that correlates the positive variation of the expansion velocity with the 
differential effects of the backreaction of the inhomogeneities of the Universe.215 
 
     In addition to taking seriously the backreaction, calculated by Buchert, by Li and Schwarz 
and by Hunt and Sarkar, Wiltshire also takes into account the effects of the differential running 
of time as measured by clocks in voids and walls. In 2008, Wiltshire published his own 
approximate results of the Buchert-Wiltshire model.216 He showed that the deceleration of the 
expansion of the Universe is less in voids than in walls. The voids enhance the redshift of the 
light that passes through them, and since our galaxy is at the center of a huge void, we observe a 
nearby expansion deceleration that is less than the global-average. In general, the expansion 
deceleration in walls with time w  differs cm5.5  per 2s  ( 21010*5.5  sm ) from the deceleration 
in voids with time v . This seems little, but the accumulated effect through the entire history of 
the Universe, since the Big Bang, is large, that is, the lapse function is 46.1/42.1  wv dd   if 
we do not take into account the backreaction, and 06.0

03.038.1/ 

wv dd   if we do take it into 
account, which makes up for a difference of 38%.217 This unequal deceleration in voids and 
walls implies that the Hubble parameter is not equal in different regions of the Universe.  
 
  I will first present the mathematical equation of the Hubble constant and its variation, 
considered by Wiltshire himself to be one of the most important equations of his model,218 and 
then reproduce some of the estimates of its differential values. 
 

MATHEMATICAL BOX 15. HUBBLE CONSTANTS IN WILTSHIRE’S MODEL 
 
   In mathematical box 14, we already came to know the subjacent, global-average Hubble 
constant: 
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    where: 
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   and (26 B)  
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      (141) 

    
   Wiltshire defines the average and variation of the Hubble constant as a function of the 

                                                 
213 Paul Hunt & Subir Sarkar, “Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation 
with recent observations”, arXiv:0807.4508, Figure 5, p. 13 
214 Paul Hunt & Subir Sarkar, “Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation 
with recent observations”, arXiv:0807.4508, p. 1 
215 Nan Li & Dominic Schwarz, “Scale dependence of cosmological backreaction”, arXiv:astro-ph/0710.5073, p. 5 
216 David Wiltshire, “Cosmological equivalence principle and the weak field limit”, in. Physical Review D, vol. 78 
(2008)  y “Exact Solution to the Averaging Problem in Cosmology”, in: Physical Review Letters, vol.99 (2007) 
217 David Wiltshire, “Cosmological equivalence principle and the weak field limit”, in. Physical Review D, vol. 78 
(2008) y arXiv:0809.1183 (2008): 9 
218 Private communication of David Wiltshire to the author, April 1st, 2009 
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wall time w  and the global-average time t . 219 The first term of the right side of the 
equation represents the Hubble constant as a function of w   and the second term, the rate 
of change of the constant ( wddt / ).  
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   Since, by definition: 
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  we obtain, combining (142)and (143): 
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   Equation (144) gives us the Hubble constant and its variation over time, as well as the rate of 
decrease of the lapse function, and in order to establish its value, one must make measurements 
with two clocks, that is the one with the global-average-time t  and the other one, with the proper 
time of the observer in a galaxy cluster w . The value of the Hubble constant is different, when 
measured with the same global-average clock in different regions, that is, in walls, in voids, or in 
the Universe at large; the estimates of its values in this case are 9.34)( tH w ,  4.52)( tH v  y 

2.48)( tH , respectively. The present Hubble constant also varies, when measured in the same 
region, with different clocks, that is the wall-clock, that runs slower, and therefore yields a 
higher expansion velocity, or the global average clock, that runs faster, and therefore yields a 
lower velocity, resulting in 11

0 7.61)(  MpcskmH w  and 11
0 2.48)(  MpcskmtH , 

respectively, a difference of 28%  (note 221). 
 
The apparent acceleration of the expansion of the Universe.- Wiltshire also redefines the 
redshift, taking into account the difference between the observer’s clock and time located in a 
wall, w , and the global average time t  (see next mathematical box). 
 
 
 
                                                 
219 Wiltshire explained to me that he has omitted the suffix w  in his article from equation (38) onwards and stressed 
the importance of equation (48): “This equation relates the thing we interpret as the average Hubble parameter H  
to an underlying bare Hubble parameter H . Both of these are “measurable.” The point is that there is not only an 
average Hubble parameter, but a variance in the Hubble parameter, if referred to one set of clocks, such as ours. 
Equation (42) quantifies both the average and their variance.”  
220 David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 (2007): 2, equation 8 
and “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 25, equation 42 
221 David Wiltshire, “Cosmological equivalence principle and the weak-field limit”, in: Physical Review D, vol. 78 
(2008): 12.  
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MATHEMATICAL BOX 16.  THE REDSHIFT IN  WILTSHIRE’S MODEL 
  
   The redshift z  determined by observers in dense regions is defined as a function of the 
redshift z determined by observers whose watch measures  the global-average time: 
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     The redshift of supernovae cannot easily be established, because of the dust in the 
host galaxy of supernovae and colour variations, but observers in dense regions observe 
larger redshifts of the same supernova then observers in voids or global-average ones. 

 
     In the Riess sample of 182 supernovae type 1a, the Wiltshire model is a perfect fit of the 
relation between distance and redshift, as can be appreciated in the following graph.222 The same 
cannot be said for other supernovae samples. We will return to this point shortly. 
 

Graph.- The relationship between distance and redshift in the Buchert-Wiltshire paradigm 

 
       
   The Buchert-Wiltshire model results in a new age of the universe (remember that 

Hvrtage /1/  ), estimated to be a thousand million years older than is usually assumed in the 
standard CDM  model (see next graph).223 
 
 
 

                                                 
222 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 35 
223 Ibidem, p. 37 
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Graph.- The relationship between age of the Universe and redshift,  
according to CDM  and the new Buchert-Wiltshire paradigm 

 
 
   What is said until now prepares the way to resolve the question of the apparent acceleration of 
the expansion of the Universe, which is attributed by many cosmologists to the negative pressure 
of dark energy, and which Kolb, Matarrese and Riotto attribute to the sole influence of the 
backreaction. In Wiltshire’s view, the backreaction by itself is too small to explain this apparent 
acceleration of the expansion velocity.224  
 
   ¿Why do I speak of apparent acceleration? ¿Is the acceleration not real? Yes and no. The 
fundamental relativistic principle that guides us is the following one, formulated by Wiltshire: 
“Systematically different results will be obtained when averages are referred to different 
clocks.”225 If we observe a supernova, that moves away from us, and is located at the other end 
of the void that surrounds us, the velocity and redshift of its light, passing through this large 
void, and reaching an observer in a strong gravitational field, will be higher when measured by 
the observer’s clock than by the clock in the void. The clock in the more dense region runs more 
slowly than the one in the void. For that reason, the deceleration measured with the wall clock 
will be different from the one measured with the clock in the void. When measured with the 
clock in the void, the supernova will appear to move away from us at a slower rate, and its light 
will appear to have a smaller redshift, then when measured with the wall clock, because of the 
differential clock rates. A terrestrial observer, measuring with his own, slower running wall clock 
the redshift of the supernova’s light, might observe an acceleration, whereas an observer located 
in the void surrounding us, might measure, with his faster running clock, a deceleration “it is 
quite possible to obtain regimes in which the wall observers measure apparent acceleration, 

                                                 
224 Ibidem, p. 22  
225 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 27 
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0q , even though void observers do not [ 0q ].”226 Today, the parameter of the global 
deceleration has a value of 0428.0q  (an apparent acceleration), while this same parameter, in 
the proper time of the global-average observer has a value of 0153.0q  (a deceleration).227 
This is why Einstein’s theory is called general relativity: time and space are relative.  
 
   The history of the Universe has three periods: 1) a brief period that was dominated by energy; 
2) a long period that is now reaching its end, dominated by matter; 3) and a third epoch that is 
now beginning, dominated by voids. Actually, right now we live in a transition period between 
the matter dominated epochs and the following one dominated by ever larger volumes of voids. 
It is precisely in such a transition period that we may observe an apparent acceleration: 
 
  “Depending upon parameter values, it is possible for wall observers to register an apparent 
acceleration with the deceleration parameter (...) taking values of 0q . Backreaction and the 
rate of decrease of  wddt  /  are largest in an epoch during which the universe appears to 
undergo a void-dominance transition, or equivalently a transition in which spatial curvature k  
becomes significant. The reason for apparent acceleration at such an epoch (...): in the 
transition epoch the volume of the less rapidly decelerating regions increases dramatically, 
giving rise to apparent acceleration in the volume-average. We must be careful to note that these 
statements are true, when referred to one set of clocks, such as our own [with time w ] (…). 
[C]osmic ‘acceleration’ is an apparent effect, depending crucially on the position of the observer 
and local clocks. Both observers register a deceleration parameter close to zero, a general 
feature of a universe which undergoes a void-dominance transition. According to a wall 
observer in a galaxy, apparent acceleration begins at an epoch 909.0z  for the present 
parameters, when the universe is  7.07 Gyr old, a little under half its current age. The void 
fraction at this epoch is 587.0vf .”228 
 
  The following mathematical box summarizes the numerical values of the most important 
parameters in the new, relativistic Buchert-Wiltshire model. 
 

MATHEMATICAL BOX 17. THE VALUES OF SOME COSMOLOGICAL 
PARAMETERS IN WILTSHIRE’S RELATIVISTIC TIMESCAPE MODEL 
    
   Below, I reproduce estimates of the empirical values of different cosmological 
parameters in the relativistic Buchert-Wiltshire model.  
 
   The author (Wiltshire) has the following differential clock rates in voids and 
walls (the lapse function):229 

                                                 
226 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, en New Journal of Physics (2007): 29 
227 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, en New Journal of Physics (2007): 34 
228 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”,  New Journal of Physics (2007): 30,35 
229 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 21 
(equation 28) and David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 , 
(2007): 2 (equation 7) 
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, (note 230)     (146)   

   Let us remember from box 15 that: 
1)()(  tftf vw

(note 231)     (147)   
    and the present day fraction of voids in the Universe is:(note 232) 

12.0
09.0759.0 

vf      (148)   
    so that the fraction of walls is:  

241.0wf      (149)   
   
  From (121), (146) and (148), we obtain: 

666.0///)(  vwwvvwr ddHHth       (150)   
  and from  (121) and 146), we obtain: 

92.0
v

v d
dt


      (151)   

 
  Wiltshire also gives an estimate of the global-average Hubble constant, called the 
bare Hubble  constant, since it has a bar on top of the H :233 

110.2
4.22.48)( 

 MpcskmtH      (152)   
 
   Let us remember that (119) and (122) give us: 

vvwwvvww HfHfHHtH  )(      (153) 
   so that we obtain, from  (119), (122) and (152): 
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v
v      (155)   

 
   The author estimates the following value of the universal Hubble constant 
measured with the slower running clocks located in the walls, called the dressed 
Hubble constant. The fact that the wall clock runs more slowly, means that it 
registers the expansion velocity as higher than it would be if measured with the 

                                                 
230 See David Wiltshire, “Cosmological equivalence principle and weak-field limit”, in: Physical Review D, vol. 78 
(2008): 9; Ben Leith, Cindy Ng & David Wiltshire, “Gravitational energy as dark energy: Concordance of 
cosmological tests”, in: Astrophysical Journal vol. 672 (2007): 4 
231 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p.3 
232 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 36-
37 (figs. 4, 5) and Ben Leith, Cindy Ng & David Wiltshire, “Gravitational energy as dark energy: Concordance of 
cosmological tests”, in: Astrophysical Journal vol. 672 (2007): 4 
233 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 21;  
and in: “Cosmological equivalence principle and weak-field limit”, in: Physical review D, vol. 78 (2008): 12 and 
Ben Leith, Cindy Ng & David 0, “Gravitational energy as dark energy: Concordance of cosmological tests”, in: 
Astrophysical Journal vol. 672 (2007): 4 
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global-average clock, because it seems that the same distance is covered in less 
time.234 Let us remember equation (144) of mathematical box 15: 

112.1
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    Let us also remember that Wiltshire proposes:235 
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    From  (157), (148), (150) and (152), or from (157), (148), (154) and (155), we 
obtain: 

336Q      (158) 
 
   Wiltshire proposes:237 
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    From (148), (150) and (159), we obtain: 

0241.0Q      (160)   
 
  We can verify this result independently through another equation: 238 
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   From (148), (158) and (161), we obtain: 

1275.92
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   Since the author defines Q  also as: 

                                                 
234 Ben Leith, Cindy Ng & David Wiltshire, “Gravitational Energy as Dark Energy: Concordance of Cosmological 
Tests”, in: The Astrophysical Journal, vol. 672 (2008): Table I, p  L94 and David Wiltshire, “Cosmological 
equivalence principle and weak-field limit”, in: Physical Review D, vol. 78 (2008): 12 
235 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 21 
(equation 31) 
236 This is the same result as obtained by David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, 
in: New Journal of Physics (2007): 21, equation (31) 
237 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 9 
(equation 10) 
238 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 22 
(equation 33) 
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   it follows, from (148), (152), (162) and (163), that: 
0241.0Q      (164)   

 
   The results of equation (164) and equation (160) are identical, Q.E.D. Wiltshire 
stresses the point that this is the present value of Q . The evolution of the value of 

Q  in time (represented by redshift z ) can be appreciated in the following graph:240   
 

Gráfica.- The value of Q  as a function of the redshift z  

     
    
    In a way analogous to the three values of the Hubble constant in the equation of 
the backreaction Q , there are three constants of curvature, one for the voids ( vk ), 
one for the walls ( wk ) and one global-average ( k ). Since we do not know the values 
of vk  and wk , neither the values of va and wa , we cannot resolve directly the 
following equations for k  and R : 
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   But we can solve equation (113): 

23
8

H
G

M


         333765.0M      (167) 

 
   Since:241 

                                                 
239 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 25 
(equation 45); and Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: 
arXiv:1009.5855v1, p.4 
240 Courtesy of David Wiltshire in a private communication of May 5th, 2009 
241 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 27 
(equation 55) and David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 , 
(2007): 2 (between equations 6 and 7) 
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MwM 
3

      (168)   
   it follows, from (146) and (168), that the global-average matter density of the 
Universe has the following value:242 

125.0M      (169)   
 
   Since it is true that: 243 
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   so it follows from (164), (169) and (170) that:244 
899.0)024.0(125.01 k      (171) 

 
   The non-zero value of k  implies that the global-average Universe is open 
( 11  kk   11  kQM ). The author also obtains the negative 
value of the effective deceleration parameter, as measured with wall clocks (the 
dressed parameter), revealing an apparent acceleration of the Universe:245 
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   the empirical value of which, can be obtained from (148) and (172): 
012.0
0002.00428.0)( 

wq       (173) 
    However, the value of the deceleration parameter, as measured by global-average 
clocks is positive. That means that, in fact, the expansion of the Universe is 
decelerating:246 
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   And through (148),  (150), (169) and (174), we obtain: 
015348.0)( tq      (175) 

   And from equation (174) we can also conclude, that there were two moments in 

the history of the Universe when the deceleration parameter Mtq 
2
1)( , that is to 

say, when 0Q , in the early history of the Universe, when 1rh , and at the 

                                                 
242 David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 , (2007): 42 and Ben 
Leith, Cindy Ng & David Wiltshire, “Gravitational energy as dark energy: Concordance of cosmological tests”, in: 
Astrophysical Journal vol. 672 (2007): 4 
243 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 9 
(equation 10) 
244 Value confirmed by David Wiltshire in a private communication of May 5th, 2009 
245 David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732 (2007): 4 (equation 
26) 
246 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 28, 
equation (61) 
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final moments of the history of the Universe, when the entire Universe is an 
immense void 1vf .247 

 
    In February 2009, Kwan, Francis and Lewis compared the capacity of both the standard 

CDM  model of a flat universe and the relativistic time-scape model of an open universe 
(according to Wiltshire and Leich), to be compatible with assumptions about the matter density 
parameter of the universe M  and to explain observations of redshift of supernovae SNe 1a. 
They concluded, on the basis of Bayesian probability, that the CDM  model is a better fit for 
the Union and Constitution datasets than the TS (=timescape) model (initially known as the FB 
(=fractal bubble) model), as one can appreciate in the following graph. 
 

Graph.- Comparison of the estimates of M   
in the flat CDM  model and the relativistic time-scape model 248 

 
    
      Smale and Wiltshire answered to these criticisms in September 2010. They showed, among 
other things, that  

1) Kwan and his team fail to exclude data below the scale of statistical homogeneity, where 
things are really very inhomogeneous, using even at this scale the assumption of the flat 
global-average parameter values. Adjusting for this mistake, the 0m  values, however, 

                                                 
247 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 28 
248 Juliana Kwan, Matthew Francis & Geraint Lewis, “Fractal Bubble Cosmology: A concordant cosmological 
model?”, arXiv:0902.4249 (2009): 2 
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suffer only a slight correction, not enough to explain why the TS model seems to be such 
a bad fit for the Union and Constitution samples. 

2) Once the suitable cuts are made, one must also take into account the different data 
reduction methods used in different datasets. If the SALT/SALT II fitter is used, as is the 
case in four supernova samples (the Union sample, the Constitution sample, the Salt2 
sample, and the Union 2 sample), then the Bayesian evidence favors the flat CDM  
model over the TS model. But if the MLCS2k2 fitter is used, as is the case in four other 
samples (the Riess07 sample, the MCLS17 sample, the MLCS31 sample and the SDSS-II 
sample), then “Bayesian evidence favours the TS model over the spatially flat CDM  
model.”249 This means that the “primary question is the method of data reduction.”250 

3) Even in the case that the Bayesian evidence favours one model over the other, the 
difference is so slight that it is inconclusive according to Roberto Trotta’s version of 
Jeffreys’ scale of Bayesian probability.251  

   The following table gives some of the evidence produced by Smale and Wiltshire 
 

Sample 
(dataset) 

Data re- 
duction 
method 

Sample 
size N  

2  0m  ex- 
pectation 
value 

0vf  2  
correc- 
ted 

0m  
correc- 
ted 

Union 
TS 

S 307 320 0.12 0.91 351 0.13 

Union 
CDM  

S 307 311 0.29 / 344 0.28 

Const. 
TS 

S 397 471 0.10 0.93 320 0.13 

Const.  
CDM  

S 397 / 0.28 / 313 0.29 

SALT2 
TS 

S2 352 347 0.11 0.92   

Union2 
TS 

S2 557 551 0.08 0.95   

Union2 
CDM  

S2 557 / 0.274 /   

Riess07 
TS 

M 182 163 0.29 0.79   

MLCS17 
TS 

M 372 403 0.18 0.87   

MLCS31 
TS 

M 366 433 0.07 0.95   

SDSS-II 
TS 

M 288 241 0.38 0.72   

SDSS-II 
CDM  

M 288 238 0.31 /   

                                                 
249 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p. 18 
250 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p. 10 
251 See Mathematical BOX 8, above. 
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   Let us now compare the Bayesian evidence fore the CDM  and TS  models in the case of the 
Riess07, Union and Constitution samples, but taking into account only the 140 supernovae that 
these samples have in common. In all four cases, according to Smale and Wiltshire, “we replaced 
the spatially flat CDM  luminosity distance by one that computes the TS luminosity distance, 
leaving the rest of the simple_cosfitter code un changed.”252 The authors say that “the Bayes 
factors [are] representing the integrated likelihood of the TS model over the spatially flat 

CDM  model.” (note 253) In these three cases the natural logarithm is 14.0ln B , 14.0ln B  
and 17.0ln B , respectively, representing a 15% to 19% difference in the likelihood of not 
being false between the CDM  and TS  models. The authors conclude that “these results 
indicate that the models are statistically indistinguisable for the 140 SNe 1a regardless of the 
fitter used” and “both models are a very good fit.” 254 
 
   In 2007, Mustapha Ishak and Roberto Sussman demonstrated exactly the same thing for 
another relativistic model. The observational data of the supernovae 1a are concordant with both  
the flat CDM  model which is Newtonian and homogeneous, and has a component of dark 
energy, and the Szekeres model, which is relativistic and inhomogeneous, and has no dark 
energy component.255  
 

Graph.- The supernovae type 1a data interpreted in the CDM  and relativistic models  

 

                                                 
252 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p. 11 
253 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p. 12 
254 Peter Smale & David Witshire, “Supernova tests of the timescape cosmology,” en: arXiv:1009.5855v1, p. 12, 18, 
my underlining 
255 Mustapha Ishak, Roberto Sussman et al., “Dark Energy or Apparent Acceleration Due to a Relativistic 
Cosmological Model More Complex than FLRW?”.  arXiv:0708.2943 (2008) 
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   Two models explain the same observational data. Both explain the apparent acceleration of the 
expansion of the Universe. From the point of view of Bayesian probability calculus the same 
data corroborate both models,256 the CDM  model with 73.0  ( 1052  ) having a 
slightly higher probability than the relativistic Szekeres model with 0  ( 1122  ). 
However, “in view of the possible uncertainties involved in the supernova data, it is not clear 
that the difference between the two 2  is significant.”257   
 
     If two different theoretical models explain the same phenomena, we have to apply Ockham’s 
raisor and give preference to the more simple, and physically orthodox model, which is the 
relativistic one. 
 
The evolution of the large structures in the Universe.- We just saw that there exist 
considerable variations of the value of the Hubble constant, depending on the clock that is used 
for the measurement. If we do not take into account these variations, the models used to simulate 
the evolution of large structures in the Universe are mistaken and, as a consequence, “all steps in 
measuring masses of galaxy clusters would need to be carefully reconsidered.”258 In the 
beginning, when the Universe was almost perfectly homogeneous, and the perturbations were 
minimal, a critical density of uniform matter existed that determined whether the Universe would 
eventually collapse or not., and which regions would collapse gravitationally to form large 
structures, and which would not, eventually creating the large. To investigate the evolution of 
large structures, it is necessary to have an estimate of this background critical density. Wiltshire 
comments that in the standard model, a fundamental mistake may be made in the way this 
estimate is obtained: 
 
     “I will now make the following crucial physical observation. By the evidence of the CMBR , 
the universe at last scattering was very close to being truly homogeneous and isotropic. 
Therefore, and operational definition of critical density does exist, provided we assume the 
Copernican Principle and accept that the universe was globally  smooth at that epoch and not 
just in our present past horizon volume. (..) 
    At the epoch of last scattering, it , the Hubble expansion was uniform, as the local velocity 
perturbations were tiny. Given a uniform initial expansion rate there must have existed a 
uniform critical density of matter required for gravity to be able to eventually bring that 
expansion to zero. This critical density, )( icr t , therefore sets a universal scale which delineates 
the boundary between density perturbations which will become bound, as opposed to density 
perturbations which are unbound. 
   This may seem a trivial point. However, when one considers an inhomogeneous evolution, it is 
clear that the average Hubble parameter on a given domain does not correspond to the time 
evolved critical density, whether in a dressed or undressed form. The naive use of the Friedmann 
equation in cosmology to date means that we could well be making a gross error in the choice of 
background in structure formation studies. In particular, we estimate the critical density by 

                                                 
256 See mathematical BOX 8 of Section 15.2 of John Auping, El Origen y la Evolución del Universo (2009) 
257 Mustapha Ishak, Roberto Sussman et al., “Dark Energy or Apparent Acceleration Due to a Relativistic 
Cosmological Model More Complex than FLRW?”.  arXiv:0708.2943 (2008): 5 
258 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 31 
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extrapolating back in time using our present Hubble parameter, 0H , assuming the evolution of 

the universe is smooth and that )8/(3 2
0 GH   is the critical density at the present epoch, when it 

is not. If the total density of the Universe is very close to one, this has the effect that we can miss-
estimate the background density of the universe at early epochs where structure formation 
boundary conditions are set. We are in effect perturbing about the wrong background by 
implicitly assuming that the average density at the present epoch, as determined by the recent 
past in our past light cone, is identical to the universe as a whole. By cosmic variance there is no 
reason to expect this to be the case.”259  
 
   As a consequence, “neither the volume-average density parameter, M , nor the ‘true’ density 
parameter [in walls], WM , will take a numerical value close to those of the ‘concordance’ 
dark-energy cosmology.”260 The fact that in the relativistic Buchert-Wiltshire model, the 
Universe has an age that is a thousand million years larger than the 13.7 thousand million years 
normally estimated in the CDM  model, also gives more time to the formation of large 
structures. 
 
   Let us see this point with some detail.  To analyze the distribution of the baryonic mass density 
of galaxy clusters, cosmologists generally use the Navarro-Frenk-White (= NFW ) model.261 The 
density profile in this model contains, among other factors, the critical density cri , which is 
defined as a function of the global-average Hubble parameter value at late epochs of the 
evolution of the Universe, and this value is very model-dependent. In the Buchert-Wiltshire 
model, its value is 40 to 80% of the value obtained in the NFW  theorem.262 This error margin is 
not trivial and is a consequence of the fact that the NFW  model generates computer simulations 
in the context of Newtonian gravitational dynamics of N  bodies, which yield results that are 
different from those obtained in a relativistic inhomogeneous model, as Wiltshire points out: 
 
   “Physically, as long as cri  represents a closure density, then it must correspond to the true 
critical density, )8/(3 2 GH  , and as indicated earlier this may be typically 40-80% of the value 
of the critical density estimated from the global average Hubble constant at late epochs. 
Unfortunately, the NFW  model is essentially an empirical fit to the results of N-body CDM  
simulations in Newtonian gravity. Thus one cannot make any simple qualitative statement about 
how its use might change if the closure density is to be recalibrated. If similar empirical fits 
apply, then the only obvious deduction we can make is that if [the critical density] cri  is 
effectively overestimated at late epochs, then the density contrast C  is effectively 
underestimated. Consequently, (...) we would expect the density contrast in galaxy clusters to be 

                                                 
259 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 10 
(my underlining) 
260 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 27 
261 See Julio Navarro, Carlos Frenk & Simon White,  “The Structure of Cold Dark Matter Halos”, in: The 
Astrophysical Journal, vol. 462 (1996): 563-575 y “A Universal Density Profile from Hierarchical Clustering”, in: 
The Astrophysical  Journal, vol. 490 (1997): 493-508 
262 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 52 
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higher than is usually assumed.”263 The following mathematical box explains some aspects of 
the NFW  theorem. 
 

MATHEMATICAL BOX 18. THE MASS DENSITY OF GALAXY CLUSTERS 
 
   The total galaxy cluster mass is estimated by means of a Newtonian galaxy cluster mass 
function (see box 2 ). The mass density profile in the Navarro-Frenk-White theorem has 
its origin in the analysis of globular clusters and was later extended to galaxy clusters and 
shows us how baryonic mass is distributed in a certain spherical volume. The galaxy 
cluster density profile of Navarro-Frenk-White gives us the mass density in a spherical 
volume as a function of the critical density cri , the density contrast C  , and the radius r  
of the sphere: 

2)/1)(/(
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cri rrrr
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      (176) 

    
   The density contrast C   tells us how much more dense is the mass in the cluster center 
than in its outer regions: 
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 (nota  264)     (177)   

 
   There are two empirical parameters, that is to say, the scale radius Sr , that is defined as 

1)/( Srr  and the concentration parameter C , that is defined as the rate of radius 200r  
and the scale radius Sr  : 

SrrC /200 ( nota  265)     (178) 
   where the radius 200r  is the radius at which the mass density is 200 times the average 
background radius, which is fixed according to the model that lies at the basis of the 
simulations. The following graph visualizes the various factors that intervene in the mass 
density profile.  
 
   The problem is that in this Newtonian model the critical density cri  is defined as a 
function of the global-average Hubble parameter H  and its corresponding redshift z : 

)8(/)(3 2 GzHcri        (179) 
   whereas the ‘true’ critical density in the relativistic Buchert-Wiltshire model is: 

                                                 
263 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 52 
264 Wiltshire transcribes the NFW  equation with a mistake, that is: )]1/()1ln(3/[200 3 CCCCC  ., 
as can be seen from comparing David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New 
Journal of Physics (2007): 52 with Julio Navarro, Carlos Frenk & Simon White,  “The Structure of Cold Dark 
Matter Halos”, in: The Astrophysical Journal, vol. 462 (1996): equation (4), p. 566 
265 Wiltshire transcribes the NFW  equation with an annotation error, that is rrC /200 . Compare David 
Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 52 with Julio 
Navarro, Carlos Frenk & Simon White,  “The Structure of Cold Dark Matter Halos”, in: The Astrophysical Journal, 
vol. 462 (1996), p.  566 
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)8(/)(3 2 GzHcri        (180) 
   and the ‘true’ redshift, according to equation (145) in box 16 is: 

)1(
/
/

1 00 z
ddt
ddt

z
w

w





     (181) 

 
Graph.- The galaxy cluster density profile of Navarro-Frenk-White 

 
 

 
    This is not a trivial error, because cri  should correspond to the true critical density, 

)8/(3 2 GH   (equation 180 of box 18), which might be 40-80% of the value of the estimate 
derived from the Newtonian model density, )8(/)(3 2 GzH  . This big error margin in the 
critical density profile of galaxy clusters in the models that suppose Newtonian dynamics 
explains several phenomena that would require the dark energy hypothesis in Newtonian models, 
for example: 

1) From the supposed missing mass, Vikhlinin and his team, conclude that the dark energy 
hypothesis of thee CDM  model is necessary.266 They point out that if the 25.0M , 

0 , 72.0h , would be valid, there appears to be a deficit of about 50% of massive 
galaxies, in the nearby range of 90.055.0  z . If we abandon, however, the Newtonian 
assumptions of this computer model, the mass density in the sub sample of 11 nearby 
massive galaxy clusters might actually be sufficient. 

2) We analyzed above the bullet cluster, and its supposed missing mass, that seems to 
validate the hypothesis about cold dark matter. Wiltshire comments this case: “If there 
are any testable consequences that follow from such considerations [on the background 
mass density and the Hubble parameter], then they may possibly apply to highly 
dynamical non-equilibrium circumstances, such as that of the collision of the galaxy 
clusters observed in the bullet cluster 1E0657-558. The high velocity of the gas shock 
front trailing the smaller sub-cluster 1E0657-56 appears anomalously high as compared 
to expectations from the masses of sub-clusters inferred by using weak gravitational 

                                                 
266 See graph in Part 6.3  
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lensing and with the NFW or King profiles. Others267 have argued that such high 
velocities may not be all that rare statistically speaking. Since it is quite possible that the 
dynamics of such systems may change in the present [relativistic] model, without 
invoking new forces of nature, this issue deserves further investigation.”268 

 
The anisotropies of the Cosmic Microwave Background Radiation CMBR .- We may 
speculate that there is a direct relationship between the evolution of large structures in the 
Universe and the conduct of the Cosmic Microwave Background Radiation. The graph of the  
CMBR  anisotropies that I reproduced above269  has five peaks. Wiltshire formulates a hypothesis 
about the various structures of the Universe corresponding to these peaks.270 The enormous 

Mpch 1100  scale of statistical homogeneity would correspond to the first Doppler peak, which 
implies that there are no structures in the Universe in excess of this scale. The scale of the 

Mpch 130   dominant voids would correspond to the second Doppler peak, namely, the first 
rarefaction peak, which is well within the nonlinear regime of structure formation. The third 
Doppler peak, which is the first compression peak within the nonlinear regime, would give the 
scale of the largest bound structures that have broken from the Hubble flow, namely galaxy 
clusters, and the fourth Doppler peak, which represents the second rarefaction peak, may 
possibly give an independent scale corresponding to mini-voids. Wiltshire concludes that “these 
qualitative speculations about the correspondence of the Doppler peaks to the observed scales of 
present epoch structures should be verified from a numerical model of structure formation.”271 
 
   The most important point to be made here is not, however, the correspondence of various 
structures at different scales to the different Doppler peaks of the CMBR , but the fact that the 
wavelength and temperature of this radiation obtain different values when measured in different 
regions of the Universe. This is not a matter of putting in doubt the cosmographic observations 
of the CMBR , its temperature and its anisotropies, but rather a matter of interpreting these data 
from the point of view of different cosmological theories and models. We already encountered 
the recalibration of the redshift of electromagnetic waves,272 among them the CMBR . There are 
important implications of recalibrating the parameters of the theoretical models used to interpret 
the data. Wiltshire explains that modern cosmology is in a habit of using the CMBR  of 
gravitationally bound systems to obtain estimates of this radiation in early epochs of the 
Universe, and that this procedure might be wrong: 
  
    “[T]he redshift of the CMBR  as measured at a co-moving volume-average position is greater 
then in [gravitationally] bound systems. Since the volume-average CMBR  temperature is used 
to calibrate several parameters associated with the primordial plasma, we need to recalibrate all 
quantities associated with the early universe. (...) An important consequence of the variation in 

                                                 
267 Among them Simon White of the NFW  theorem 
268 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 52 
(my underlining) 
269 See graph Part 6.4 
270 David Wiltshire, “Cosmological equivalence principle and the weak field limit,” in: Physical Review D, vol. 78 
(2008): 11 
271 David Wiltshire, “Cosmological equivalence principle and the weak field limit,” en: Physical Review D, vol. 78 
(2008): 11  
272 See equation (50) of mathematical BOX 16 
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clock rates between ideal co-moving observers in galaxies and voids, is that the temperature of 
the CMBR  will be lower when measured at the volume-average in voids, taking a value 

TT 1  , at any epoch, where T  is the [apparently higher] temperature of the  CMBR  as seen 
by wall observers [like ourselves].”273  
   
    We can make an estimate of this difference in temperature of the CMBR  as measured from 
different locations and with different clocks. The temperature that we measure from our 
terrestrial position is KT 725.20  , but, when measured from a global-average position, it is 

KKT
dt

d
T w 975.1)725.2(

38.1
1

00 


. All this has also consequences for the measurement of 

the anisotropy scale of the CMBR : 
 
   “[T]he fact that we observe an almost isotropic CMBR  means that other observers should 
also measure an almost isotropic CMBR . However, it does not demand that such observers 
measure the same mean  CMBR  temperature as we, nor the same angular scale for the Doppler 
peaks in the anisotropy spectrum. Significant differences can arise due to gradients in the spatial 
curvature and associated gravitational energy. (...) [T]he locally defined or bare Hubble 
parameter H , can be uniform even though voids appear to expand faster than the bubble walls 
which surround them, since cosmic clocks within voids tick faster on account of gravitational 
energy differences. Since our cosmological observations involve photons exchanged with objects 
in bound systems, we do not observe clocks in freely expanding space directly. Nevertheless, an 
ideal observer within a void would measure a somewhat older age of the Universe, and an 
isotropic CMBR  with a lower mean temperature and an angular anisotropy scale shifted to 
smaller angles. ”274 
 
   Especially, we cannot assume a value of decz  presumed by the Wilkinson Microwave 
Anisotropy Probe, because these values imply uncertainties and calibrations dependent on the 
standard CDM  model. To get from the calibrations of the algorithms that explain the Doppler 
peaks of the CMBR  anisotropy specter, to the new algorithms implied by the relativistic 
Buchert-Wiltshire model, will require an enormous effort: 
 
   “Whereas the underlying physics at the epochs of primordial nucleo-synthesis and 
recombination, when 1 , is no different than usual, the fat that volume-average observers 
should measure a mean CMBR  temperature of 1

0725.2 
  at the present epoch will affect all the 

usual calibrations of radiation-dominated era parameters inferred relative to present epoch co-
moving observers. We are faced with the task of systematically re-deriving all the standard 

                                                 
273 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 32, 
40.  
274 David Wiltshire, “Exact solution to the averaging problem in cosmology”, arXiv:0709.0732, ps. 1-2 (my 
underlining). 
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textbook calculations275associated with the hot big bang, and making recalibrations where 
necessary.”276  
 
   Specifically, some anomalies in the measurement of the large angle CMBR  multipoles, might 
be explained by Wiltshire’s new model, and the recalibration of the standard parameters will 
require an enormous computational effort: 
 
   “”[A] staitstical study of several possible systematic errors in the WMAP  data by Freeman et 
al indicates that, of the several effects they studied, a 1-2% increase in the magnitude of the 
peculiar velocity attributed to the CMBR  dipole was the only one which may potentially resolve 
anomalies associated with large angle multipoles. This is precisely the order of magnitude of 
effect we would expect from a 510/  TT  contribution from a Rees-Sciama dipole. 
Effectively, our estimate of the magnitude of the peculiar velocity would imply a 1-2% systematic 
error [in the standard model] due to a small anomalous boost. Disentangling the small Rees-
Sciama dipole from the dominant contribution of our own peculiar velocity with respect to the 
cosmic rest frame would require an enormous computational effort, and the sky maps would 
have to be redrawn. However, in the interest of our fundamental understanding of the universe, 
these steps should be taken.”277 
 
   This recalibration of parameters of the cosmic rest frame would probably make the dark energy 
hypothesis superfluous, as Wiltshire points out: “It is these recalibrations, which account for 
quasi local energy variations, which will allow us to obtain a viable model of the universe 
without dark energy.”278 The same point is made by Hunt and Sarkar: “With the smaller global 
Hubble parameter, the 5WMAP  data on cosmic microwave background anisotropies can be 
fitted without requiring dark energy.”279 
 
7.4.- Conclusion 
 
    The conclusion of all this is that it may be possible to have a new, relativistic, inhomogeneous 
cosmological model, that can explain, among other things, the apparent acceleration of the 
expansion velocity of the Universe; the evolution of galaxy clusters; and the anisotropy scale of 
the CMBR , without any dark energy:  
 
   “As theoretical physicists, we are altogether too much inclined to add all sorts of terms to the 
gravitational action (...), rather than thinking deeply about the basic operational issues of our 
subject. I believe we should guard the principles that have worked until they can be proven to 
fail. It is my own view that Einstein was correct about general relativity, and what I have 
presented here follows logically from his theory when combined with initial conditions.”280   
                                                 
275 Wiltshire mentions specifically Jim Peebles, Principles of Physical Cosmology (1993) and Edward Kolb & 
Michael Turner, The Early Universe (1990) and we could add Malcolm Longair, The Cosmic Century (2006) and 
Steven Weinberg, Cosmology (2008), among other works 
276 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, en New Journal of Physics (2007): 40 
277 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, en New Journal of Physics (2007): 47 
278 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in: New Journal of Physics (2007): 32 
279 Paul Hunt & Subir Sarkar, “Constraints on large scale inhomogeneities from WMAP-5 and SDSS: confrontation 
with recent observations”, arXiv:0807.4508, pág.1 
280 David Wiltshire, “Cosmic clocks, cosmic variance and cosmic averages”, in New Journal of Physics (2007): 62 
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    Not all cosmologists, at present, agree. For example, in his new book on cosmology, Steven 
Weinberg sustains the standard CDM  model and does not enter into discussion with the new 
relativistic model.281 We do not find one single reference in his book to the work of Cooperstock 
and Tieu, Brownstein and Moffat, or Buchert and Wiltshire. In his book, The Structure of 
Scientific Revolutions, Kuhn explained that scientific revolutions take time in order to be 
accepted in the academic community.282 
 

                                                 
281 Steven Weinberg, Cosmology (2009).  
282 Thomas Kuhn, The Structure of Scientific Revolutions (1996) 
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Abstract. We demonstrate that general relativity, universally accepted as the best theory of gravity,
has important consequences for systems hitherto believed to be adequately treated with Newtonian
theory. As an important example, we apply general relativity to the description of the dynamics
of a galaxy. We show that the presently available data of the observed flattened galactic rotation
curves can be accounted for without the currently conjectured vast stores of dark matter in galactic
halos. The galaxy is modeled as a stationary axially symmetric pressure-free fluid. In spite of the
weak gravitational fields and the non-relativistic source velocities, the mathematical system is still
seen to be nonlinear. We determine that the mass density for the luminous threshold as tracked in
the radial direction is approximately 10−21.75 kg·m−3 already for six galaxies studied thus-far and
conjecture that this concordance will persist for galaxies yet to be analyzed. This threshold density
has potential value for the understanding of galactic evolution. We present a velocity dispersion
test to determine the extent, if of any significance, of matter that may lie beyond the visible/HI
region. This is determined by examining the rotation curves at different galactic latitudes, bringing
into consideration the global dynamical structure of the galaxy. The demand for global consistency
applies not only to our own but also to all proposed models and theories.

INTRODUCTION

It is the generally held belief that Einstein’s theory of gravity is primarily a theory for
very strong gravitational fields and that it invariably provides only very small corrections
to Newtonian predictions for weak fields. We have always resisted falling into this
mindset mold. After all, it is well-understood that even very non-relativistic sources
such as ordinary spinning rods or linear oscillators with their accompanying very weak
gravitational fields, will emit gravitational waves yet there are no such waves at all
within the context of Newtonian gravity. General relativity is much richer and much
more complex than Newtonian gravity and it behooves us to avoid hasty judgments.

A prime example of the richness of general relativity concerns the dynamics of
galaxies, vast expanses of billions of stars, for the most part moving in circles about a
central axis of rotation in their generally weak gravitational fields. The motivation for the
work which we will describe stems from the need to account for the observed essentially
flat velocity rotation curves for galaxies. By “rotation curves” we mean the plots of the
observed stellar velocities as a function of distance from the rotation axis. That these

1 cooperst@uvic.ca
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curves do not fall off with distance as would be expected on the basis of Newtonian
gravity has been a central issue in astrophysics. There has been much speculation over
the question of the nature of the “dark matter” that is generally believed to be required for
the consistency of the observations of higher-than-expected stellar velocities within the
context of Newtonian gravitational theory. While various researchers are now turning to
gravitational lensing in the search for evidence for dark matter, probably the majority of
researchers regard the flat galactic rotation curves as the key indicators. Clearly the issue
is of paramount importance given that the dark matter is said to comprise the dominant
constituent of an extended galactic mass [6]. The dark matter enigma has influenced
particle theorists to devise acceptable candidates for the constitution of dark matter.
At the present time, various researchers are hoping to discover dark matter particles in
the LHC (Large Hadron Collider) experiments at CERN in Geneva. While physicists
and astrophysicists have pondered the dark matter issue, other researchers have devised
new theories of gravity to account for the observations (see for example [7, 8, 9, 10]).
However the latter approaches, however imaginative, have met with understandable
skepticism, as they have been devised solely for the purpose of the task at hand. To our
knowledge, general relativity has never previously been proposed as a possible means
of accounting for the flat rotation curves without invoking large stores of dark matter.
However, general relativity remains the preferred theory of gravity with Newtonian
theory as its limit where appropriate. General relativity has been successful in every
test that it has encountered, going beyond Newtonian theory where required. Therefore,
should it actually transcend Newtonian gravity in resolving the problem at hand, it would
greatly alter the understanding of some basic aspects in physics. In what follows, we will
set out to show that this is the case. We now provide an overview of the issues.

It is understandable that the conventional gravity approach has focussed upon New-
tonian theory in the study of galactic dynamics since the galactic field is weak (apart
from the deep core regions where black holes are said to be harboured, at least in some
galaxies) and the stellar motions are non-relativistic (v� c). It was this approach that
led to the inconsistency between the theoretical Newtonian-based predictions and the
observations of the visible sources alone. To reconcile the theory with the observations,
researchers subsequently concluded that to realize the observed motions, much more
matter than that which was observed must be present to drive the high-velocity mo-
tions. Thus came the notion that a kind of dark matter must be present around galaxies
in various cases massive halos that constitute the bulk of the extended galactic masses.
While this might at first sight appear to be a relatively simple cure to the problem of
motion, these massive halos cannot be identified with any known form of matter, which
is why the adjective “exotic” is sometimes used to describe this presumed matter. How-
ever, in dismissing general relativity in favour of Newtonian gravitational theory for the
study of galactic dynamics, insufficient attention has been paid to the fact that the stars
that compose the galaxies are essentially in motion under gravity alone (“gravitation-
ally bound”). It had been known for many years, in fact since the time of Eddington,
that the gravitationally bound problem in general relativity is an intrinsically nonlinear
problem even when the conditions are such that the field is weak and the motions are
non-relativistic, at least in the time-dependent case.Most significantly, we have found
that under these conditions, the general relativistic analysis of the problem is also non-
linear for the stationary (non-time-dependent) case at hand.Thus the intrinsically linear
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Newtonian-based approach used to this point has been inadequate for the description of
the galactic dynamics and Einstein’s general relativity must be brought into the analysis
within the framework of established gravitational theory This is an essential departure
from conventional thinking on the subject and it leads to major consequences as we dis-
cuss in what follows. We will demonstrate that via general relativity, what we will refer
to as “generating” potentials producing the observed flattened rotation curves can be
linked to the mass density distributions of the essentially flattened disks, thus removing
any necessity for dominant massive exotic dark matter halos in the total extended galac-
tic composition. It should be stressed that this is insofar as accounting for the presently
available data on rotation curves over the galactic near-central plane. However, further
observations outside of this plane could possibly lead to different conclusions. We will
discuss this as well in what follows.

There is another intriguing result that has emerged from our investigations. In our
initial studies, we have found that in three galaxies, the threshold for luminosity, as
we probe in the radial direction, occurs at about the same density for each: 10−21.75

kg·m−3. Interestingly, we have now studied three additional galaxies and have found
that as before, the optical luminosity edges occur at approximately the same density as
prevailed in the first cases that we analyzed [11]. This concordance has the potential to
further our understanding of galactic evolution.

Since our initial posting [1], many colleagues have offered their comments and criti-
cisms. We address the most common areas of contention in Section 4. The totality of the
issues known to us have been discussed in [2], [3], [4] and [5]. In those papers, we devel-
oped the theory in more detail and applied it to three galaxies and the Milky Way and in
[11], to three additional galaxies. We also developed a new observational discriminator
for assessing the degree, if any, of external matter that may lie beyond the visible/HI
regions. This is determined by examining the rotation curves at different galactic lati-
tudes, bringing into consideration the global dynamical structure of the galaxy. It is well
to emphasize that the demand for global consistency applies not only to our own but also
to all proposed models and theories.

AXIALLY-SYMMETRIC MODEL GALAXY

Using Newtonian theory, Mestel [12] considered a special rotating disk with surface
density inversely proportional to radius. Using a disk potential with Bessel functions
that we will also use in what follows but in quite a different manner, he found that it
leads to an absolutely flat galactic rotation velocity curve. It also occurs for the MOND
[7, 8, 9] model. It is particularly noteworthy that the gradient of the potential in this, as
in all Newtonian treatments, relates to acceleration whereas in the general relativistic
treatment, we will show that the gradient of a generating potential gives the stellar
tangential velocity (14). This fact bears witness to the essentially different mathematical
structure relating to the physics between the general relativity and the Newtonian gravity
treatments of the free-fall problem.

When we consider the complexity of the detailed structure of a spiral galaxy with
its arms and irregular density variations, it becomes clear that the modeling within the

Relativistic gravitational dynamics and the rotation curves of galaxies February 6, 2011 3

PyV
Texto escrito a máquina
119



context of the complicated theory of general relativity demands some simplifications.
As long as the essence of the structure is captured, these simplifications are justified
and we can derive valuable information. Thus, in terms of its essential characteristics,
we consider a uniformly rotating fluid without pressure and symmetric about its axis of
rotation. We do so within the context of general relativity. In generality, the stationary
axially symmetric metric can be described in the form

ds2 =−eν−w(udz2 +dr2)− r2e−wdφ2 +ew(cdt−Ndφ)2 (1)

whereu, ν, w andN are functions of cylindrical polar coordinatesr, z. It is easy to show
that to the order required,u can be taken to be unity. Retaining terms of non-zero order
in G for u induces terms of orderGn with n > 1 in the field equations. It is simplest to
work in the frame that is comoving with the matter,

U i = δi
0 (2)

whereU i is the four-velocity This is reminiscent of the standard approach that is fol-
lowed for FRW cosmologies. However, the FRW spacetimes are homogeneous and they
are not stationary. The comoving approach was taken in the pioneering paper by van
Stockum [13] who setw= 0 from the outset. Interestingly, the geodesic equations imply
thatw = constant(which can be taken to be zero as in [13]) even for theexactEinstein
field equations as studied in [13]. In fact the requirement thatw = 0 can be seen directly
using (2) and the metric equationgikU iUk = 1 [2]. As in [14] [15], we perform a purely
local (r,z held fixed at each point when taking differentials) transformation. It is to be
noted that this local transformation is used only to deduce the connection betweenN
andω (and henceV). All subsequent work continues in the original unbarred comoving
frame. The localized transformation is

φ̄ = φ+ω(r,z)t (3)

which locally diagonalizes the metric. In this way, we are able to determine the local
angular velocityω and the tangential velocityV as

ω = Ncew

r2e−w−N2ew ≈ Nc
r2 (4)

V = ωr (5)

with the approximate value applicable for the weak fields under consideration. The
Einstein field equations to orderG1 with w kept for later comparison, are

2rνr +N2
r −N2

z = 0,

rνz+NrNz = 0,

N2
r +N2

z +2r2(νrr +νzz) = 0,

Nrr +Nzz−
Nr

r
= 0,

(6)
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(
wrr +wzz+

wr

r

)
+

3
4

r−2(N2
r +N2

z )

+
N
r2

(
Nrr +Nzz−

Nr

r

)
− 1

2
(νrr +νzz) = 8πGρ/c2 (7)

whereG is the gravitational constant andρ is the mass density. Subscripts indicate
partial differentiation with respect to the indicated variable. These equations are easily
combined to give

∇2w+
N2

r +N2
z

r2 =
8πGρ

c2 (8)

where the first term is the flat-space Laplacian in cylindrical polar coordinates

∇2w≡ wrr +wzz+
wr

r
(9)

andν would be determined by simple integration.
The application of the freely gravitating constraint (i.e. stress-free motion) and the

requirement thatw = 0 which arises from the choice of comoving coordinates, the field
equations forN andρ in this globally dust distribution are reduced to

Nrr +Nzz−
Nr

r
= 0 (10)

N2
r +N2

z

r2 =
8πGρ

c2 . (11)

Note that with the minus sign in (10),N doesnot satisfy the Laplace equation. Note
also that from both the field equation forρ and the expression forω thatN is of order
G1/2. This is a point that has been misunderstood by some of our critics, leading them
to erroneous conclusions.

The nonlinearity of the galactic dynamical problem is evident through the nonlinear
relation between the functionsρ andN.. While we have eliminatedw either by using
the geodesic equations to get (11) or by the metric equation and the choice of comoving
coordinates,N cannot be eliminated and hence nonlinearity is intrinsic to the study of
the galactic dynamics. Rotation under freely gravitating motion is the key factor at play
in the present problem. By contrast, for time-independence in the non-rotating problem,
there must be pressure present to maintain a static configuration (thereby altering the
right hand side of (6)),N vanishes for vanishingω and∇2w is non-zero yielding the
familiar Poisson equation of Newtonian gravity. In the present case, it is therotation as
encapsulated through the functionN that connects directly to the density. Thus the now
nonlinear equation is in sharp contrast to the linear Poisson equation.

Interestingly, (10) can be expressed as

∇2Φ = 0 (12)

where

Φ≡
Z

N
r

dr (13)
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FIGURE 1. Velocity curve-fit for the Milky Way in units of m/s vs Kpc.

and hence flat-space harmonic functionsΦ are the generators of the axially symmetric
stationary pressure-free weak fields that we seek. (In fact Winicour [29] has shown
that all such sources, even when the fields are strong, are generated by such flat-
space harmonic functions.) These are the generating potentials referred to earlier. It is
noteworthy that these generating potentials play a different role in general relativity
than do the potentials of Newtonian gravitational theory even though both functions are
harmonic. Using (5) and (13), we have the expression for the tangential velocity of the
distribution

V = c
N
r

= c
∂Φ
∂r

. (14)

We now have the necessary mathematical framework in place.

CONNECTING THE OBSERVED GALACTIC ROTATION
CURVES TO THE MODEL

We first consider the ideal strategy for galactic modelling, given the nature of the equa-
tions at hand. Since the field equation forρ is nonlinear, the simpler way to proceed
is to first find the required generating potentialΦ and from this, derive an appropriate
functionN for the galaxy that is being analyzed. WithN found, (11) yields the density
distribution. If this agrees with the observations, the efficacy of the approach is estab-
lished. This is in the reverse order of the standard approach to solving gravitational
problems but it is most efficient in this formalism because of the existence of one linear
field equation.

For any given galaxy, a suitable set of composing functions for the series that satisfies
the linear equation is required. Once found, this yields the generating potential. With
cylindrical polar coordinates, it is simplest to use separation of variables leading to the
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FIGURE 2. Derived density profiles in units of kg/m3 for the Milky Way at (a)z= 0 and (b)r = 0.001
Kpc.

following solution forΦ in (12):

Φ = Ce−k|z|J0(kr) (15)

whereJ0 is the Bessel functionm= 0 of BesselJm(kr) andC is an arbitrary constant
(see for example [31]). Using this form of solution, the absolute value ofzmust be used
to provide the proper reflection of the distribution for negativez. While this produces
a discontinuity inNz at z = 0, it is important to note that in the problem at hand,
this discontinuity is consistent with the general case of having a density z-gradient
discontinuity at the plane of reflection symmetry. This point has been the subject of
considerable attention in the literature. We will return to this issue later.

The beauty of a linear equation is that it allows for linear superposition of solutions.
From (12) we express the general solution of this form as the linear superposition

Φ = ∑
n

Cne−kn|z|J0(knr). (16)

We choosen as required to the level of accuracy that we wish to achieve. From (16) and
(14), the tangential velocity is

V =−c∑
n

knCne−kn|z|J1(knr). (17)

For this, we have used the Bessel relationdJ0(x)/dx = −J1(x) (see, e.g. [32]). From
(14), we see that ifN should exceedr, the velocity would exceedc. This does not
occur because with our choice of separable solutions, the velocity is given by (17). Asr
approaches 0, this function falls asr1 (i.e. N approachesr = 0 asr2) and soV falls to 0
as we see as well in the plots of the rotation curves. Thus the potential problem referred
to by Wiltshire [30] is not present in our case. As well, for large r, the Bessel functions
fall as 1/

√
r and hence the velocity goes to 0 for larger. In general, this would still lead

to a large amount of matter external to the galaxy. However, by our selecting the right
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multiplying coefficients in the Bessel solution sequence, we can achieve consistency
with a very limited amount of external matter, far less than that which is indicated on
the basis of Newtonian gravity. We have shown this by fitting fictitious faster-than-1/

√
r

fall-off data for the extension of the observed points in the velocity profile. We choose
thekn so that theJ0(knr) terms are orthogonal to each other. The Bessel functionsJ0(kr)
satisfy the orthogonality relation:

R 1
0 J0(knr)J0(kmr)rdr µ δmn wherekn are the zeros of

J0 at the limits of integration. With only 10 functions with parametersCn, n∈ {1. . .10},
we have been able to achieve an excellent fit to the velocity curve for the Milky Way
(see [4] for the curve-fitting coefficients).

A note should be added here regarding the set of constantsCn chosen for the rota-
tion curve matching. These arenot basic physical parameters as is thesinglephysical
parameter, the constant of universal gravitationG that links gravity with matter both in
Newton’s theory and Einstein’s theory of gravity. Rather, these parameters are simply
mathematical shaping numbers that adapt the solution of the Einstein equations to de-
scribe any given particular distribution of matter. Indeed the situation is analogous to the
choosing of coefficients in a multipole expansion in classical physics that is designed to
describe a distribution to any given level of accuracy.

The curve fit for the Milky Way is shown in Figure 1. It should be noted that theJ1(x)
Bessel functions are 0 atx = 0 and oscillate with decreasing amplitude, falling as 1/

√
x

asymptotically [32]. However, this alone does not assure a realistic fall-off of matter.
We deal with this issue in Section 4. Also, our curves drop asr approaches 0. This
is in contrast to the Mestel [12] and MOND [7, 8, 9] curves that are flat everywhere.
From (14) and (17), theN function is determined in detail and from (11), the density
distribution follows. This is shown in Figure 2 as a function ofr at z= 0 as well as a
function of z at r = 0.001 Kpc. We see that the distribution is an essentially flattened
disk with good correlation with the observed overall averaged density data for the Milky
Way (see Figure 3). The integrated mass is found to be 21× 1010M� which is at the
lower end of the estimated mass range of 20×1010M� to 60×1010M� as established
by various researchers. It is to be noted that the approximation scheme would break
down in the region of the galactic core should the core harbor a black hole or even a
naked singularity (see e.g. [16]).Most significantly, our correlation of the flat velocity
curve is achieved with the modeled disk mass up to an order of magnitude smaller than
the halo mass of exotic dark matter proposed by earlier studies.(See e.g.[33, 34].

It is to be emphasized that general relativity does not distinguish between the luminous
and non-luminous contributions. The deducedρ density distribution is derived from the
totality of the two. Any substantial amount of non-luminous matter (i.e.conventional
non-exotic dark matter) would necessarily lie in the flattened region relatively close to
z= 0 because this is the region of significantρ and would be due to dead stars, planets,
neutron stars and other normal non-luminous baryonic matter debris. Each term within
the series hasz-dependence of the forme−kn|z| which causes the steep density fall-off
profile as shown in Figure 2(b). This fortifies the picture of a standard galactic essentially
flattened disk-like shape as opposed to a halo sphere. From the evidence provided thus
far by rotation curves , there is no support for the widely accepted notion of the necessity
for massive halos of exotic dark matter surrounding visible galactic disks: the generally
accepted conventional gravitational theory, namely general relativity, can account for the
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FIGURE 3. Cross-sectional density contour plot for the Milky Way model.

FIGURE 4. Velocity curve-fit and derived density for NGC 3031

observed flat galactic rotation curves linked to essentially flattened disks with no evident
need for exotic dark matter, at least not with the velocity distribution data presently at
our disposal.

We have also performed curve fits for the galaxies NGC 3031, NGC 3198 and NGC
7331. The data are provided in [4] and the remarkably precise velocity curve fits are
shown in Figures 4 to 6 where the density profiles are presented forr atz= 0. Again the
picture is consistent with the observations and the mass is found to be 10.1×1010M�
for NGC 3198. This can be compared to the result from Milgrom’s [7, 8, 9] modified
Newtonian dynamics of 4.9×1010M� and the value given through observations (with
Newtonian dynamics) by Kent [17] of 15.1× 1010M�. While the visible light profile
terminates atr = 14 Kpc, the HI profile extends to 30 Kpc. If the density is integrated to
14 Kpc, it yields a mass-to-light ratio of 7ϒ�. However, integrating through the HI outer
region tor = 30 Kpc yields 14ϒ� using data from [18].

For NGC 7331, we calculate a mass of 26.0× 1010M�. Kent [17] finds a value of
43.3×1010M�. For NGC 3031, the mass is calculated to be 10.9×1010M� as compared
to Kent’s value of 13.3×1010M�. Our masses are consistently lower than the masses
projected by models invoking exotic dark matter halos and our distributions roughly
tend to follow the contours of the optical disks. Most recently, we [11] have studied
three additional galaxies and we have found the same trend of results.

In the course of our investigations, an interesting serendipitous discovery arose: From

FIGURE 5. Velocity curve-fit and derived density for NGC 3198
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FIGURE 6. Velocity curve-fit and derived density for NGC 7331
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FIGURE 7. Log graphs of density for (a) the Milky Way and (b) NGC 3031 showing the density fall-
off. The−21.75 dashed line provides a tool to predict the outer limits of visible matter. The fluctuations
at the end are the result of limited curve-fitting terms.

NGC 3198 log10(density)

–22

–21.5

–21

–20.5

log10(density)

0 10 20 30r

NGC 7331 log10(density)

–21.5

–21

–20.5

–20

log10(density)

0 10 20 30r

FIGURE 8. Log graphs of density for (a) the NGC 3198 and (b) NGC 7331 showing the density fall-
off. The−21.75 dashed line provides a tool to predict the limits of luminous matter. As before, there are
fluctuations near the border.
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FIGURE 9. Normal vectors used to calculate flux

the figures provided by Kent [17] for optical intensity curves and our log density profiles
for three galaxies NGC 3031, NGC 3198 and NGC 7331, we found that the threshold
density for the onset of visible galactic light as we probed in the radial direction was
the same for all, namely at approximately 10−21.75 kg·m−3 (Figure 7 and Figure 8). The
concordance from our recent investigation [11] with three additional galaxies is moving
in the direction of solidifying the indicated hypothesis that this density is the universal
optical luminosity threshold for galaxies as tracked in the radial direction. Alternatively,
should this hypothesis be further substantiated, the radius at which the optical luminosity
fall-off occurs can be predicted for other sources using this special density parameter.
The predicted optical luminosity fall-off for the Milky Way is at a radius of 19-21 Kpc
based upon the density threshold indicator that we have determined.

CRITICAL CHALLENGES AND OUR REPLIES

There has been an interesting variety of papers critical of our work as well as two papers
lending support to our work [19] [20]. Some of the issues arising from these papers have
been addressed in [2], in [3] and in [4]. In this paper, we will focus on the key areas of
criticism. The complete analysis is contained in our earlier papers and in the book [5].

An issue first raised privately to us by some colleagues and later in [21] [22] concerns
the nature of the matter distribution. They have noted that given the existence of the
discontinuity ofNz that we had pointed to in [1], a significant surface tensorSk

i can be
constructed with a surface density component given by

(8πG/c2)St
t =

N[Nz]
2r2 − [νz]

2
(18)

to orderG1. The notation[..] denotes the jump over a discontinuity of the given function,
here atz= 0. Using (6), this becomes

(8πG/c2)St
t =

N[Nz]
2r2 +

Nr [Nz]
2r

(19)

It was claimed that this necessarily implied the existence of a singularphysicalsurface
of mass in the galactic plane above and beyond the continuous mass distribution that we
had found, thus rendering our model unphysical.

This challenge prompted us to calculate the surface mass that was said to be present
in the first four galaxies that we had studied. This was done by integrating (19) over

Relativistic gravitational dynamics and the rotation curves of galaxies February 6, 2011 11

PyV
Texto escrito a máquina
127



the surface. We first did so without paying attention to the actual sign of the result.
Suspicions were aroused from the discovery that (19) in each case gave a numerical
value slightly less than the mass that we had derived from the volume integral of
our continuousmass density distribution using (17), (14) and (11). This pointed to a
plausible explanation: in our case,with our choice of model, there is nophysicalmass
layer present on thez= 0 plane. The surface integral of this singular layer is merely
a mathematical construct that indirectly describes most of the continuously distributed
mass by means of the Gauss divergence theorem. To see this, consider the vectorF
defined as

F≡ A(r,z)er +B(r,z)ez (20)

where

(8πG/c2)B≡ NNz

2r2 +
NrNz

2r
(21)

as a first option. We chooseA(r,z)so that
Z

∇ ·FdV ≡ (8πG/c2)M (22)

whereM is the total mass. As a more transparent second option, we choose

(8πG/c2)B≡ NNz

r2 (23)

where we define
∇ ·F≡ (8πG/c2)ρ (24)

From these definitions, we deduce the form ofA(r,z) in order to produce the density as
expressed throughN in (11). We calculate the mass over the cylindrical volume defined
by−∞ < z< ∞, 0< r < rgalaxy. By the Gauss divergence theorem, the volume integral
of ρ, via (24) is equal to the integral of the normal component ofF over the bounding
surfaces. However, for the application of the Gauss theorem, the integration must be
over a continuous domain and since theez component is discontinuous over thez= 0
plane, the volume integral must be split into an upper and a lower half. The two new
surface integrals together would constitute the jump integral of (19) in the first option
if one were to be cavalier about the directions of unitoutward normals, as we shall
discuss in what follows. The surfaces above and below the galaxy give zero because of
the exponential factors inzand the final small contribution comes from the cylinder wall
via theA function.

In our solution, the actualphysicaldistribution of mass is not in concentrated layers
over bounding surfaces: the Gauss theorem gives the value of thedistributedmass via
equivalent purely mathematical surface constructs as we are familiar from elementary
applications of this theorem. Physically, the density is well defined and continuous
throughout, except on thez = 0 plane. In fact the limits asz = 0 is approached give
the same finite values from above and below. While the field equations break down
at z = 0, the density for a physically viable model is logically defined by this limit at
z= 0. However, with the chosen form of solution, the densitygradientin thezdirection
is discontinuous on thez = 0 plane. This gradient undergoes a reversal for a galactic
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distribution with diminishing density in both directions away from the symmetry plane.
It is most convenient to achieve this with an abrupt reversal as we have done. There is
no indication that this choice alters the essential physics.

Thus we have shown via the Gauss divergence theorem, that the supposed surface
layer is merely a re-expression of the integrals that constitute thecontinuous volume
distributionof mass. Indeed if one were to reject this interpretation and insist that these
surface integrals reveal additional mass in the form of a layer, then the Gauss theorem
would indicate that this mass must be negative. Indeed various authors (e.g. [22] [24])
have referred to negative mass layers. However, as Bondi had emphasized in his writings,
negative mass repels rather than attracts. Therefore we had set out to test the viability
of the presence of such negative mass to see if repulsion rather than attraction was
in evidence. We considered a test particle in our model that was comoving with the
rotating dust apart from having a component of velocityUz normal to thez= 0 plane.
The geodesic equation in thez direction reduces to

dUz

ds
=

NrNz(Uz)2

2r
. (25)

We had computed the completeN series for the galaxy NGC7331 (see [1]). We then
focused upon points in the ranger = 0.1 to 30 and points above thez = 0 symmetry
planez = 0.001 to 1 for the right hand side of (25). All of the points gave a negative
value as expected for thez acceleration (i.e. attraction) of a particle in the region above
the symmetry plane. However, if thez= 0 surface actually harboured aphysicalnegative
mass surface layer, indeed one of numerical value comparable to the positive mass of the
normal galactic distribution, then at the very least, one would have expected to witness
a repulsionof the particle as the test particle approached the boundary, indeed given the
extent of the supposed negative mass, a violent repulsion. The absence of this occurrence
adds further support to our original model [1] as being free of surface layers of mass.

It is true that our choice of solution leads to a discontinuity in the z-derivative ofN
across thez= 0 plane. It is well to reiterate and emphasize the argument: it goes hand-
in-hand with the physically natural densitygradientdiscontinuity across the symmetry
plane. To see this in another way, consider the essential characteristics of our model
which consists of dust with reflection symmetry about thez = 0 plane. The density
naturally increases symmetrically as this plane is approached from above and from
below with the same absolute value but opposite sign from symmetry. In all generality,
the density z-gradient will be different from zero as this plane is approached and because
of reflection symmetry, this gradient will of necessity be discontinuous.

It is to be noted that the density gradient is governed by the behavior of odd derivatives
of N with respect toz. However, the density itself is governed byN2

z (11) which has the
same limit as z approaches 0 from above or below. Thus, we define the value ofρ atz= 0
by this common limit and hence the singularity is removable. It is only with delicate fine-
tuning that this discontinuity can be avoided and this will be the case only if the density
gradient is adjusted to be precisely zero as thez= 0 plane is approached from above and
below.

As an exercise in response to critical comments [2], we achieved this approximately
by choosing cosh(κnz) functions in place of exponential functions to span the region
in a sandwich encompassing the symmetry plane and employing the usual exponential
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FIGURE 10. Matching conditions forN and∂N/∂zatz= z0.

functions beyond this sandwich. This led to the issue of matching theN andNz functions
along the external/internal region joins and it was achieved by using many differentkn
parameters for the external exponential functions as opposed to the original 10 internal
parameters of the original model. In [22], it was claimed that a matching could not be
achieved but these authors had not realized that we used different and many parameters
for the outside regions. Since then, we have refined the fit further by employing hundreds
of external parameters and the improved fit is shown in Figure 10. However, it must
be stressed that the generic situation would be one in which the density gradient is
discontinuous atz= 0.

In a follow-up paper [23], the authors pasted a finite thickness layer of density and
stress as a sandwich about thez = 0 symmetry plane. This is of some interest in
building more general galactic models. However, there remains the assertion that when
the sandwich is reduced to zero thickness, a surface layer arises which, by the right
choice of parameter, results in having the layer consist of negative mass. Again, the fact
that test particles are attracted towards rather than repelled from this layer, regardless of
the assumed sign of the parameter, negates this interpretation. An essential point is this:
singularities can arise in many forms and must be interpreted properly with the physics
in mind.

In [25], the well-known expression of the field equations in the harmonic gauge in
Cartesian coordinates

∂k∂khab =
16πG

c4 τab (26)

(τab includes the energy-momentum tensor of the matter plus the nonlinear terms in the
Einstein equations) is invoked. (A related line of reasoning was followed in [21]). In
[25], the author presents the standard description of the post-Newtonian perturbation
scheme to conclude that the solution to the galactic problem must be the usual New-
tonian one and that all corrections must be of higher order. Firstly, we did not use this
scheme (as noted as well in [26]). Just as one would not logically choose Cartesian
coordinates in the harmonic gauge to describe FRW cosmologies, one would not nor-
mally choose these for our stationary axially symmetric galactic problem. Our problem
is greatly simplified with cylindrical polar coordinates comoving with the matter. Sec-
ondly, for the gravitationally bound system under study, the metric components are of
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differentorders inG. This is a key point that was overlooked by some of our critics. If
one were to take the approach suggested in [25], the equations (26) could be schemati-
cally expressed as

∇2h(1/2) = 0, ∇2h(1) = GT +h2
(1/2) (27)

where tensorial superscripts have been suppressed and the lower case numbers refer to
orders inG. In this manner, we would have incorporated the nonlinear structure of our
system within the framework of the scheme suggested by [25]. The novel aspect is that
the lowest order equation (of orderG1/2) in (27) has zero on the RHS and the second
equation that would normally be the Newtonian Poisson equation, differs in that it has
nonlinear terms. Thus, the structure of our solution does not proceed as in the standard
approach of (26). In the latter standard approach, the lowest order base solution is the
Newtonian solution whereas in the galactic problem, the lowest order equation is the
Laplace equation for which an orderG1/2 solution is necessary (see [27] where this
component is inappropriately chosen to be zero) and the next order (orderG1) equation
for the density (28),

N2
r +N2

z

r2 =
8πGρ

c2 (28)

has nonlinear terms in the metric in the form of the squares of the derivatives of an
orderG1/2 metric tensor componentN. Thus, our situation is unlike standard iterative
perturbation scheme applications as envisaged in [25]. Hence there is no basis to draw
the conclusions that are expressed therein.

Further in [25], the author refers to “extra matter” in the symmetry plane of the
galaxy and muses whether our model “could be somehow fixed”. However, in [2]
we presented the evidence that our solution embodies the physically natural density
gradient discontinuity at the plane of symmetry and that it does not contain extra matter.
Moreover, we showed that if there were to be a surface layer of mass, it would be
negative mass but this was negated by the attraction rather than repulsion of test particles
near the symmetry plane, as we discussed above.

With regard to the issue of gauge, it was argued in [21] that asymptotically flat
solutions are unattainable with a lead-offG1/2 order metric component. However, we
have shown that they are readily attainable in conjunction with the physically desirable
Nz discontinuity and are approximately attainable with the smoothed fine-tuned solution
discussed above. Moreover, they are precisely attainable when an essential singularity
is invoked. This was almost achieved in [19]. Their axis singularity prevented global
asymptotic flatness. However, exact solutions with compactified singularities of the
Weyl type are likely to rectify this deficiency.

A key point is that the equations have an inherent nonlinearity as a result of the
fact that the metric components are of different orders and the different orders are a
necessary consequence of the problem being a gravitationally bound one. The authors
of [19] arrive at our equations (6), (7) (withw set to zero) apart from the exponentialν
factor which they later note can be taken to be a constant scaling factor and find the same
order of magnitude reduction of galactic mass that we had found [1] starting from their
exact solution class. This provides some vindication for our analysis. It should be noted
that their scaling factor is actually incorporated in our solutions within the computed
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FIGURE 11. Beyond the HI region, the velocity can be modeled in many different manners: here
V µ 1/

√
r, V µ 1/r, V µ 1/r2 andV µ 1/r4 are illustrated.

amplitudes of our basis expansion functions. To be particularly noted in [19] is that
their solution class is fine-tuned as the density gradient is precisely zero atz= 0. The
price that is paid to achieve this degree of smoothness is the incorporation of an axial
singularity. These authors justify the singularity by identifying it as a jet. While jets are
observed in various galaxies in their formative stages, they are not known to be present
in the essentially stationary galaxies that are being modeled with this class.

We display the accumulated mass for the Milky Way in a highly extended cylindrical
volume of 300 Kpc in size in figure 12. It is to be noted that even assuming a Newtonian-
like fall-off of the form 1/

√
r, there is a far less amount of accumulated mass up to

a radius of ten times the visible radius than is envisaged by the use of Newtonian as
opposed to general relativistic galactic dynamics. An even slower accumulation of mass
is seen for the 1/rfall-off. For such a fall-off, the accumulated mass is approximately
35×1010M� at a radius of 300 Kpc and a linear extrapolation tor=900 Kpc yields a
value of 39.2×1010M�, a very modest increase in comparison to Newtonian modeling.
Moreover, the faster fall-offs of 1/r2 and 1/r4 yield very minor mass increases out to
very large radii as can be seen in figure 12. Note from this figure that the accumulated
mass at 30 Kpc is approximately the same for the various fall-off scenarios as well as
the value stated in Section 3 where we used only 10 parameters and where we did not
focus on the bahaviour of the model beyond the 30 Kpc edge of the HI region.

This fortifies our contention that general relativity obviates the need for overwhelm-
ingly dominant massive halos of exotic dark matter.

It is to be noted that our models areglobally dust. (We make this choice for the
composition and distribution of the matter for the purpose of mathematical simplicity.)
Therefore there is no basis for a matching with the vacuum Kerr metric asymptotically.
Our models are asymptotically flat with a well-defined mass. The Tolman integral
dictates the value of this mass and since there is no stress and the fields are weak, the
Tolman mass to lowest order is simply given by the coordinate volume integral of the
density.

In [28], the authors fault our models as extended constructs that indicate enormous
quantities of mass beyond the HI regions. This is a useful point of criticism in that we

Relativistic gravitational dynamics and the rotation curves of galaxies February 6, 2011 16

PyV
Texto escrito a máquina
132



FIGURE 12. The Milky Way’s accumulated mass as a consequence of velocity fall-off beyond the HI
region.

had not investigated earlier the asymptotic consequences of the particular parameter sets
that we had chosen to model the observed rotation curves. It is to be noted however that
their argument that mass accumulates linearly inr is faulty as a generalization. With the
correct combination of parameters, the term that would lead to such an accumulation
can be eliminated. Our examples in which we achieve minimal accumulation, provide
the direct proof that this is the case. However, as we first reported in [3], we assure
more realistic fall-off scenarios. It is to be noted that in so doing, while the expansion
parameters are no longer the same as in the earlier sets, we have determined that the net
physical effects are of insignificant difference within the observed matter distribution
in the two approaches. We find that the accumulated mass profiles indicate that most
of the mass of a galaxy is confined fairly close to the region of the visible disk with
modestaccumulations of mass beyond this region. General relativity achieves this with
a pressure-free fluid model, unlike Newtonian gravity. In an interesting approach from
a very different direction, Lusanna [20] has pointed to relativistic inertial effects that do
not have a Newtonian limit counterpart. He has suggested that in the weak field limit,
these effects could match our results.

A VELOCITY DISPERSION TEST AS A DISCRIMINANT FOR
EXTRA MATTER

Clearly it is important to approach the exotic dark matter issue in as many ways as
possible. After all, from a purely formal point of view, general relativity should be
able to model vastly extended distributions of pressure-free fluids in rotation. In this
vein, we have constructed a test in principle that relies upon data in thevisible/HI
regime, thus making it particularly useful. When we examine Figure 12, we see that
different constructed velocity fall-off profiles beyond the HI region imply different mass
accumulations in those external regions. Carrying these back with continuity into the
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FIGURE 13. Velocity dispersion atr = 20 kpc for the Milky Way.

visible/HI region, we find that the extent of the velocity dispersion as we track curves
at different non-zeroz values depends on the assumed external velocity profile fall-off.
(See, for example. Figure 13.)

With sufficient data, it should be possible, at least in principle, to provide limits on
the extent of extra matter that might lie outside of the visible/HI region. To this point,
we have only the data provided in [35] [36] [37] but far more data will be required to
provide an adequate discriminating test.

CONCLUDING COMMENTS

We are often challenged by interested readers to justify how our results could be so
different from Newtonian predictions. They note that the dynamic solar system analysis
proceeds very accurately on the basis that the planets move in almost the same manner as
deduced by general relativity as that deduced by Newtonian dynamics. The observations
of their motions confirm this. However there is an essential difference between the solar
system dynamics and the galactic dynamics. In the case of the solar system, the primary
source of gravity is the sun and the planets are treated astestparticles in this field apart
from contributing minor perturbations when the slight changes are being sought. The
planets respond to the field of the sun but their own gravitational contributions are not
retained since they are so small. By contrast, in the galaxy problem, the source of the
field is the combined rotating mass of all of the freely-gravitating elements themselves
that compose the galaxy. There is no one single dominant contributor in the galactic
problem.

We have seen that the nonlinearity for the computation of density distribution inherent
in the Einstein field equations for a stationary axially-symmetric pressure-free mass
distribution, even in the case of weak fields, leads to the correct galactic velocity curves
as opposed to the incorrect curves that had been derived on the basis of Newtonian
gravitational theory. Indeed the results were consistent with the observations of velocity
as a function of radius plotted as a rise followed by an essentially flat extended region
and no large massive halos were required to achieve them. The density distribution
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that is revealed thereby is one of an essentially flattened disk without an accompanying
massive vastly extended dark matter halo. With the “dark” matter being associated with
the disk which is itself visible, it is natural to regard the non-luminous material as normal
baryonic matter. In a very recent investigation, Auping [38] has tallied the baryonic mass
contributions from the galactic elements and has found consistency with our results.

To some extent we have had to assume extensions of matter distribution with assump-
tions regarding ultimate velocity fall-offs beyond that which is actually observed in order
to make comparisons. In the course of these investigations, we have seen that these can
readily yield a picture of galactic structure without huge extended massive halos of ex-
otic dark matter. It would be helpful if new data beyond those presently available would
be produced. This would help tie down the complete physical picture.

Of particular interest is that we have within our grasp a criterion for determining the
extent, if of any significance, of extra matter beyond the visible and HI regions of a
galaxy. It is possible in principle to determine this with data solelywithin the visible/HI
region by plotting the velocity dispersion of rotation curves for variousz values. This is
an attractive area for future research. In particular, it expands the demands upon not only
our galactic model but also upon any other proposed model by other researchers. It asks
for consistency between observation and theoretical prediction for the overall averaged
picture of stellar motions within the complete galaxy.

Nature is merciful in providing one linear equation that enables us by superposition
to model disks of variable density distributions. This opens the way to studies of other
sources and with further refinements. It is to be emphasized that what we have taken is a
first step, a general relativistic as opposed to a Newtonian analysis at the galactic scale.
It is noteworthy that others have now come to recognize that the galactic problem is a
nonlinear general relativistic problem even given the conditions of weak fields and non-
relativistic velocities. It will be of interest to extend this general relativistic approach,
with the hitherto neglected consideration of nonlinearities, to the other relevant areas of
astrophysics with the aim of determining whether there is any scope remaining for the
presence of any exotic dark matter in the universe. We have taken one further step in
this direction by analyzing anintrinsically dynamicfree-fall model, that of an idealized
Coma Cluster of galaxies [39] (see accompanying article). This work has the following
attractions: firstly it makes use of anexactsolution of the Einstein equations, hence
removing any issues arising from the application of approximations and secondly, being
free of any singularities of any kind, it eliminates any possibility of the kind of objections
that we have discussed in the present paper.

We share the belief of many that the scientific method has been most successful when
guided by Occam’s razor, that new elements should not be introduced into a theory
unless absolutely necessary. If dark matter should turn out to be another case similar to
the ether of the 19th Century, it is well for us to determine this sooner rather than later.
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Modified Gravity Or Dark Matter?
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Abstract. Modified Gravity (MOG) has been used successfully to explain the rotation curves of
galaxies, the motion of galaxy clusters, the Bullet Cluster, and cosmological observations without
the use of dark matter or Einstein’s cosmological constant. We review the main theoretical ideas and
applications of the theory to astrophysical and cosmological data.
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1. INTRODUCTION

The ingredients of the standard model of astrophysics and cosmology are:

1. General Relativity,
2. Large-scale homogeneity and isotropy,
3. 5% ordinary matter (baryons and electrons),
4. 25% dark matter,
5. 70% dark energy,
6. Uniform CMB radiation, T ∼ 2.73 degrees,
7. Scale-free adiabatic fluctuations ∆T/T ∼ 105.

Although the model fits available astrophysical and cosmological data [1], it opens up
the mystery that about 95% of all matter and energy are invisible. The dark matter (DM)
does not interact with ordinary baryonic matter and light. No current experiments have
succeeded in detecting DM . The SN1a supernovae data [2, 3] have created the need for
the expansion of the universe to accelerate, promoting the mechanism of dark energy.

In the event that DM is not detected, then to fit all available astrophysical and cosmo-
logical data, we are required to modify Newtonian and Einstein gravity without assum-
ing the undetected DM. A modified gravity (MOG) theory, also known as Scalar-Tensor-
Vector Gravity or STVG [4, 5, 6], is based on an action that incorporates, in addition to
the Einstein-Hilbert term and the matter action, a massive vector field, and three scalar
fields corresponding to running values of the gravitational constant, the vector field cou-
pling constant, and the vector field mass.

We begin in Section 2 by introducing the theory through the action principle, and
establish key assumptions that allow us to analyze physically relevant scenarios. In Sec-
tion 3, we derive the field equations using the variational principle. In Section 4 we solve
the field equations in the static, spherically symmetric case. In Section 5, we postulate
the action for a test particle, and obtain approximate solutions to the field equations for
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a spherically symmetric gravitational field. In Section 6 we demonstrate how the Fried-
mann equations of cosmology can be obtained from the theory. In Section 7, we utilize
the theory to obtain estimates for galaxy rotation curves, galaxy cluster dynamics and
show how the solutions we obtained for the field equations remain valid from cosmo-
logical to solar system scales. Lastly, we end in Section 8 with conclusions.

2. MODIFIED GRAVITY THEORY

The action of our theory is constructed as follows [4]. We start with the Einstein-Hilbert
Lagrangian density that describes the geometry of spacetime:

LG =− 1
16πG

(R+2Λ)
√−g, (1)

where G is the gravitational constant, g is the determinant of the metric tensor gµν (we
are using the metric signature (+,−,−,−)), and Λ is the cosmological constant. We set
the speed of light, c = 1. The Ricci-tensor is defined as

Rµν = ∂αΓα
µν −∂νΓα

µα +Γα
µνΓβ

αβ −Γα
µβ Γβ

αν , (2)

where Γα
µν is the Christoffel-symbol, while R = gµνRµν .

We introduce a “fifth force” vector field φµ via the Maxwell-Proca Lagrangian den-
sity:

Lφ =− 1
4π

ω
[

1
4

BµνBµν − 1
2

µ2φµφ µ +Vφ (φ)
]√−g, (3)

where Bµν = ∂µφν−∂νφµ , µ is the mass of the vector field, ω characterizes the strength
of the coupling between the “fifth force” and matter, and Vφ is a self-interaction potential.

Next, we promote the three constants of the theory, G, µ,ω , to scalar fields by
introducing associated kinetic and potential terms in the Lagrangian density:

LS = − 1
G

[
1
2

gµν
(

∇µG∇νG
G2 +

∇µ µ∇ν µ
µ2 −∇µω∇νω

)

+
VG(G)

G2 +
Vµ(µ)

µ2 +Vω(ω)
]√−g, (4)

where ∇µ denotes covariant differentiation with respect to the metric gµν , while VG, Vµ ,
and Vω are the self-interaction potentials associated with the scalar fields.

Our action integral takes the form

S =
∫

(LG +Lφ +LS +LM) d4x, (5)

where LM is the ordinary matter Lagrangian density, such that the energy-momentum
tensor of matter takes the form:

Tµν =− 2√−g
δSM

δgµν , (6)
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where SM =
∫

LM d4x. A “fifth force” matter current can be defined as:

Jν =− 1√−g
δSM

δφν
. (7)

We assume that the variation of the matter action with respect to the scalar fields
vanishes:

δSM

δX
= 0, (8)

where X = G,µ ,ω .

3. FIELD EQUATIONS

The field equations of the theory can be obtained in the form of the first and second-order
Euler-Lagrange equations [5]:

1
4π

[
ω∇µBµν +∇µωBµν +ωµ2φ ν −ω

∂Vφ (φ)
∂φν

]
= Jν , (9)

∇ν∇ν µ− ∇ν µ∇ν µ
µ

− ∇νG∇ν µ
G

+
1

4π
Gωµ3φµφ µ +

2
µ

Vµ(µ)−V ′
µ(µ) = 0, (10)

∇ν∇νω− ∇νG∇νω
G

− 1
8π

Gµ2φµφ µ +
G

16π
BµνBµν +

1
4π

GVφ (φ)

+V ′
ω(ω) = 0, (11)

∇ν∇νG− 3
2

∇νG∇νG
G

+
G
2

(
∇ν µ∇ν µ

µ2 −∇νω∇νω
)

+
3
G

VG(G)

−V ′
G(G)+G

[
Vµ(µ)

µ2 +Vω(ω)
]

+
G

16π
(R+2Λ) = 0, (12)

(
2∇αG∇β G

G2 − ∇α∇β G
G

)
(gαβ gµν −δ α

µ δ β
ν )

−8π
[(

1
4π

Gωµ2φαφβ −
∂αG∂β G

G2 − ∂α µ∂β µ
µ2 +∂αω∂β ω

)

×
(

δ α
µ δ β

ν −
1
2

gαβ gµν

)

+
1

4π
Gω

(
Bα

µBνα +
1
4

gµνBαβ Bαβ

)

+gµν

(
1

4π
GVφ (φ)+

VG(G)
G2 +

Vµ(µ)
µ2 +Vω(ω)

)]

+Rµν − 1
2

gµνR+gµνΛ =−8πGTµν . (13)
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4. STATIC, SPHERICALLY SYMMETRIC VACUUM SOLUTION

In the static, spherically symmetric case with line element

ds2 = Bdt2−Adr2− r2dΩ2, (14)

and with dΩ2 = dθ 2 + sin2 θdφ 2, the field equations are written as

1
A

µ2φr +
∂Vφ

∂φr
=

4π
Aω

Jr, (15)

φ ′′t +
2
r

φ ′t +
ω ′

ω
φ ′t +

1
2

(
3

A′

A
− B′

B

)
φ ′t −Aµ2φt +AB

∂Vφ

∂φt

=−4πA
ω

Jt , (16)

G′′+
2
r

G′− 3
2

G′2

G
+

1
2

(
µ ′2

µ2 −ω ′2
)

G+
1
2

(
B′

B
− A′

A

)
G′

+AV ′
G(G)−3A

VG(G)
G

−AG
[

Vµ(µ)
µ2 +Vω(ω)

]
− AG(R+2Λ)

16π
= 0, (17)

µ ′′+
2
r

µ ′− µ ′2

µ
− G′

G
µ ′+

1
4π

Gω
(

φ 2
r −

A
B

φ 2
t

)
µ3

+
1
2

(
B′

B
− A′

A

)
µ ′−2A

Vµ(µ)
µ

+AV ′
µ(µ) = 0, (18)

ω ′′+
2
r

ω ′− G′

G
ω ′+

1
8π

Gµ2
(

A
B

φ 2
t −φ 2

r

)
+

1
2

(
B′

B
− A′

A

)
ω ′

+
1

8πB
Gφ ′2t −

1
4π

AGVφ (φ)−AV ′
ω(ω) = 0, (19)

8πGT t
t =−Λ−V − 1

A
N +

A′

A2r
− 1

Ar2 +
1
r2 +

G′′

AG
+

2
r

G′

AG

−2
G′2

AG2 −
1
2

A′G′

A2G
−ωG

(
φ ′2t
AB

+
µ2φ 2

t
B

+
µ2φ 2

r
A

)
, (20)

8πGT r
r =−Λ−V +

1
A

N− B′

ABr
− 1

Ar2 +
1
r2 +

1
2

B′G′

ABG
+

2
r

G′

AG

−ωG
(

φ ′2t
AB

− µ2φ 2
t

B
− µ2φ 2

r
A

)
, (21)
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8πGT t
r =−2

Gωµ2φtφr

B
, 8πGT r

t = 2
Gωµ2φtφr

A
, (22)

8πGT θ
θ = 8πGT φ

φ =−Λ−V − 1
A

N +
1
2

A′

A2r
+

1
4

A′B′

A2B

−1
2

B′

ABr
+

1
4

B′2

AB2 −
1
2

B′′

AB
+

G′′

AG
+

1
r

G′

AG
−2

G′2

AG2 −
1
2

A′G′

A2G

+
1
2

B′G′

ABG
−ωG

(
−φ ′2t

AB
− µ2φ 2

t
B

+
µ2φ 2

r
A

)
, (23)

where

R =
B′′

AB
− B′2

2AB2 −
A′B′

2A2B
+

2B′

ABr
− 2A′

A2r
+

2
Ar2 −

2
r2 , (24)

N =−4π
(

µ ′2

µ2 +
G′2

G2 −ω ′2
)

, (25)

V = 2ωGVφ (φ)+8π
[

VG(G)
G2 +

Vµ(µ)
µ2 +Vω(ω)

]
. (26)

The prime denotes differentiation with respect to r, i.e., y′ = dy/dr.
These equations can be substantially simplified in the matter vacuum case (T µ

ν =
0), with no cosmological constant (Λ = 0), setting the potentials to zero (Vφ = VG =
Vµ ,Vω = 0) and also setting φr = 0. These choices leave us with six equations in the six
unknown functions A, B, φt , G, µ , and ω:

B′G′

2ABG
− G′

AGr
+2ωG

(
φ ′2t
AB

+
µ2φ 2

t
B

)
− B′′

2AB
+

B′2

4AB2

+
A′B′

4A2B
− B′

2ABr
− A′

2A2r
+

1
Ar2 −

1
r2 = 0, (27)

G′′

AG
− 2G′2

AG2 −
B′G′

2ABG
− A′G′

2A2G
+

B′

ABr
+

A′

A2r

+8π
(

G′2

AG2 +
µ ′2

Aµ2 −
ω ′2

A
− ωGµ2φ 2

t
4πB

)
= 0, (28)

ωG
(

φ ′2t
AB

− µ2φ 2
t

B

)
+4π

(
G′2

AG2 +
µ ′2

Aµ2 −
ω ′2

A

)

+
B′G′

2ABG
+

2G′

AGr
− B′

ABr
− 1

Ar2 +
1
r2 = 0, (29)

µ ′′+
2
r

µ ′− µ ′2

µ
− G′

G
µ ′+

1
2

(
B′

B
− A′

A

)
µ ′− AωGφ 2

t
4πB

µ3 = 0, (30)
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ω ′′+
2
r

ω ′− G′

G
ω ′+

1
2

(
B′

B
− A′

A

)
ω ′+

G
2B

φ ′2t +
AGµ2φ 2

t
8πB

= 0, (31)

G′′+
2
r

G′− 3
2

G′2

G
+

1
2

(
B′

B
− A′

A

)
G′+

1
2

(
µ ′2

µ2 −ω ′2
)

G

− 1
16π

AGR = 0, (32)

The values of A, B, and B′ are fixed by the requirement that at large distance from
a source, we must be able to mimic the Schwarzschild solution (albeit with a modified
gravitational constant), and that at spatial infinity, the metric must be asymptotically
Minkowskian. The vector field φ must also vanish at infinity, which provides another
boundary condition. Next, we assume that the values of G, µ , and ω are dependent on
the source mass only, i.e., G′ = µ ′ = ω ′ = 0. We seek the remaining initial conditions in
the form of the fifth force charge Q5, and initial values of G = G0, µ = µ0, and ω = ω0.
We note that the basic properties of the numerical solution and the solution’s stability
are not affected by the values chosen for these parameters. However, their values must
be chosen such that they correctly reflect specific physical situations. To determine these
values, we now turn to the case of the point test particle.

5. TEST PARTICLE EQUATION OF MOTION

We begin by defining a test particle via its Lagrangian:

LTP =−m+αωq5φµuµ , (33)

where m is the test particle mass, α is a factor representing the nonlinearity of the theory
(to be determined later), ω is present as it determines the interaction strength, q5 is the
test particle’s fifth-force charge, and uµ = dxµ/ds is its four-velocity.

We assume that the test particle charge is proportional to its mass:

q5 = κm, (34)

with κ constant and independent of m. This assumption implies that the fifth force charge
q5 is not conserved, as mass is not conserved. This is the case in Maxwell-Proca theory,
as ∇µJµ 6= 0. We also have that the fifth force source charge Q5 ∝ M.

From (33), the equation of motion is obtained

m
(

duµ

ds
+Γµ

αβ uαuβ
)

=−ακωmBµ
νuν . (35)

That m cancels out of this equation is nothing less than a manifestation of the equivalence
principle.

Our acceleration law can be written as [5]:

r̈ =−GNM
r2

[
1+α−α(1+ µr)e−µr] , (36)
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where GN is Newton’s gravitational constant and α is given by

α =
M

(
√

M +E)2

(
G∞
GN

−1
)

, (37)

where E is a constant of integration.
The acceleration law (36) can also be recast in the commonly used Yukawa form:

r̈ =−GY M
r2

[
1+αY

(
1+

r
λ

)
e−r/λ

]
, (38)

with the Yukawa parameters αY and λ given by

GY =
GN

1+αY
, (39)

αY = − (G∞−GN)M
(G∞−GN)M +GN(

√
M +E)2

, (40)

λ = 1/µ =
√

M
D

. (41)

Here, E and D are two universal constants of integration which can be determined from
fits to galaxy rotation curve data.

We can also express the acceleration law (36) as

r̈ =−GeffM
r2 , (42)

where the effective gravitational constant Geff is defined as

Geff = GN
[
1+α−α(1+ µr)e−µr] . (43)

The metric parameter B(r) is given by

B(r) = 1− 2GNM
r

+
(1+α)G2

NM2

r2 . (44)

The B(r) and A(r) solutions are shown in Figure 1.

6. COSMOLOGY

In the case of a homogeneous, isotropic cosmology, using the Friedmann-Lemaître-
Robertson-Walker (FLRW) line element,

ds2 = dt2−a2(t)[(1− kr2)−1dr2 + r2dΩ2], (45)

the field equations assume the following form:

µ̈ +3H µ̇− µ̇2

µ
− Ġ

G
µ̇ +

1
4π

Gωµ3φ 2
0 +

2
µ

Vµ −V ′
µ = 0, (46)
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FIGURE 1. Comparing MOG numerical solutions to the Reissner-Nordström solution, for a 1011 M¯
source mass. The MOG metric parameters A (solid red line) and B (dashed brown line) are plotted along
with the Reissner-Nordström values of A (dash-dot green line) and B (dotted blue line). Horizontal axis is
in pc. We observe that the A metric parameter reaches 0 at below the Schwarzschild radius of a 1011 M¯
mass, which is ∼ 0.01 pc.

ω̈ +3Hω̇− Ġ
G

ω̇− 1
8π

Gµ2φ 2
0 +

1
4π

GVφ +V ′
ω = 0, (47)

G̈+3HĠ− 3
2

Ġ2

G
+

G
2

(
µ̇2

µ2 − ω̇2
)

+
3
G

VG−V ′
G +G

[
Vµ

µ2 +Vω

]

+
G
8π

Λ− 3G
8π

(
ä
a

+H2
)

= 0, (48)

H2 +
k
a2 =

8πGρ
3

− 4π
3

(
Ġ2

G2 +
µ̇2

µ2 − ω̇2− 1
4π

Gωµ2φ 2
0

)

+
2
3

ωGVφ +
8π
3

(
VG

G2 +
Vµ

µ2 +Vω

)
+

Λ
3

+H
Ġ
G

, (49)

ä
a

=−4πG
3

(ρ +3p)+
8π
3

(
Ġ2

G2 +
µ̇2

µ2 − ω̇2− 1
4π

Gωµ2φ 2
0

)

+
2
3

ωGVφ +
8π
3

(
VG

G2 +
Vµ

µ2 +Vω

)
+

Λ
3

+H
Ġ

2G
+

G̈
2G

− Ġ2

G2 , (50)

ωµ2φ0−ω
∂Vφ

∂φ0
= 4πJ0, Ji = 0, (51)
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FIGURE 2. Photometric fits to galaxy rotation curves. There are 2 benchmark galaxies presented here.
Each is a best fit via the single parameter (M/L) based on the photometric data of the gaseous (HI plus
He) and luminous stellar disks. The radial coordinate (horizontal axis) is given in kpc and the rotational
velocity (vertical axis) in km/s. The red points with error bars are the observations, the solid black line is
the rotation curve determined from MOG, and the dash-dotted cyan line is the rotation curve determined
from MOND [7]. The other curves are the Newtonian rotation curves of the various separate components:
the long-dashed green line is the rotation curve of the gaseous disk (HI plus He) and the dotted magenta
curve is that of the luminous stellar disk (from [8, 9].

where H = ȧ/a is the Hubble expansion rate.
It is possible to obtain an exact numerical solution to this set of equations using

numerical methods [5, 6]. To carry out the solution, we assume a pressureless matter
equation of state w = p/ρ = 0. Detailed fits to cosmological data, including the CMB
angular power spectrum, the matter power spectrum and the SN1a supernovae data have
been obtained [6]. We find that the solutions can yield a “bouncing” cosmology. The
bounce can be fine-tuned by choosing an appropriate value for VG. This ensures that
the universe reaches sufficient density in order to form a surface of last scattering. We
emphasize that in our model only ordinary baryonic matter is present with a matter
density of ∼5% of the critical density. Nevertheless, the cosmology is flat, due in part
to the increased value of the gravitational constant G, and in part to the presence of the
non-zero energy density associated with VG.

7. FITTING GALAXY, CLUSTER DATA AND SOLAR SYSTEM
DATA

Unless one assumes that a massive dark matter halo is present, a typical spiral galaxy
is dominated in mass by the central bulge. The motion of stars in the outer reaches of
a galaxy can, therefore, be well approximated by the equations of motion in a static,
spherically symmetric vacuum field. Indeed, our experience shows that the flat rotation
curves of galaxies provide a sensitive test to determine the values of the constants D and
E. In particular, it is easy to see that our results so far are compatible with the Tully-
Fisher law [10].
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Kepler’s laws of orbital motion yield a relationship between circular orbital velocity
vc at radius r from a mass M in the form

v2
c
r

=
GM
r2 . (52)

Tully and Fisher [10] have determined that for galaxies, assuming that the brightness of
a galaxy and its mass are correlated, the flat part of the rotation curve obeys the empirical
relationship:

vn
c ∝ M, (53)

where 3 . n . 4. In our case, we obtain

v2
c ∝

√
M, (54)

corresponding to n = 4 in the Tully-Fisher relationship.
Taking the next step, we select a small sample of galaxies and obtain an approximate

fit to these galaxies yielding the values

D ' 6250 M1/2
¯ kpc−1, (55)

E ' 25000 M1/2
¯ . (56)

The galaxy rotation curves we obtain for galaxies of varying mass are in good agree-
ment with these values, treating D and E as universal constants without dark matter (Fig-
ure 2). The galaxy rotation curves were obtained modeling the galaxies as point masses,
benefiting from photometric data, as in the more extensive fit to galaxy rotation veloci-
ties [8, 9, 11]. This exercise demonstrates that our established relationships between M,
α , and µ not only satisfy the Tully-Fisher relationship, but also offer good agreement
with actual observations. N-body simulations of galaxy rotation curve dynamics using
MOG have been performed [12].

In [9, 13], the spherically symmetric, static vacuum solution was used successfully
to model galaxy clusters. We are able to produce a comparable result, while keeping
the parameters D and E constant, by introducing an additional assumption: that the
values of the MOG parameters G∞ and µ at some distance r from the center of a
spherically symmetric distribution of matter are determined not only by the amount of
matter contained within radius r, but by the amount of matter within radius r∗. Figure 3
shows the case of r∗ = 3r.

We have also succeeded in fitting the bullet cluster data [15], using MOG without dark
matter [16, 17].

We have applied MOG to predict dispersion velocity curves for globular clusters,
and found that the predictions follow those of Newtonian gravity [18]. By using Sloan
Digital Sky Survey (SDSS) data, we have investigated how modified gravity theories
including MOND and MOG affect satellite galaxies with the result that the data cannot
currently differentiate significantly between modified gravity theories and dark matter
models [19]. The MOG prediction for lensing caused by intermediate galaxies and
clusters of galaxies has been investigated [20].
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FIGURE 3. A small sample of galaxy clusters studied in [9, 13]. Thin (black) solid line is the mass
profile estimate from [14]. Thick (blue) solid line is the mass profile estimated using our STVG results.
Dashed (green) line is the result published in [13], while the dotted (red) line is the Newtonian mass profile
estimate. Radial distances are measured in kpc, masses in M¯.

The theory must also be consistent with experiments performed within the solar sys-
tem or in Earthbound laboratories. Several studies (see, e.g., [21]) have placed stringent
limits on Yukawa-like modifications of gravity based on planetary observations, radar
and laser ranging, and other gravity experiments. However, our prediction of the abso-
lute value of the αY parameter is very small when λY is small. The latter is estimated at
λY ' 0.16 pc (∼ 5×1015 m, or about 33,000 AU) for the Sun, and λY ' 2.8×10−4 pc
(∼ 8.7× 1012 m, or ∼ 58 AU) for the Earth. The corresponding values of |αY | are
|αY | ' 3× 10−8 and |αY | ' 9× 10−14, respectively, clearly not in contradiction with
even the most accurate experiments to date (Figure 4).

In the solar system the MOG field equations become essentially those of the Jordan-
Brans-Dicke model [22, 23], for the influence of the vector field φ is reduced to very
small values as shown in Figure 4. However, the standard JBD model coupling constant
ωJBD has to be fine-tuned ωJBD > 40,000 to fit the Cassini spacecraft measurement of the
Eddington-Robertson, parameterized post-Newtonian parameter γ − 1 = (2.1± 2.3)×
10−5; the other parameter β satisfies β = 1 in MOG. We have resolved this problem
in MOG by coupling the scalar field G directly to matter by means of a scalar matter
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FIGURE 4. Predictions of the Yukawa-parameters from the MOG field equations are not in violation of
solar system and laboratory constraints. Predicted values of λ (horizontal axis, in m) vs. |αY | are indicated
by the solid red line. Plot adapted from [21].

current:
J =−1

2
GT, (57)

where T = T µ
µ . This leads to obtaining an agreement with Earth based equivalence

principle experiments and γ = 1 [24].
We have plotted M vs. r0 = µ−1 in Figure 5. For the purposes of this plot, we

used previously published results, while noting that our new calculations place dwarf
galaxies, galaxies, and galaxy clusters by definition exactly on the line representing our
prediction. This plot demonstrates the validity of MOG from the scales of star clusters
to cosmological scales.

We have investigated the possibility that MOG can explain in a fundamental way
the origin of inertial mass. The static, spherically symmetric solution does not satisfy
Birkhoff’s theorem as in the case of the Schwarzschild solution in GR. This leads to a
Mach-type influence of distant matter that can determine the inertial mass of a body. A
possible spacecraft experiment has been proposed to test this prediction [25].

On the scale of Earth-based laboratory and solar system experiments with ever greater
precision, MOG may eventually be verified or falsified. Beyond the solar system, as
larger galaxy samples become available, the presence or absence of baryonic oscillations
in the matter power spectrum may unambiguously decide in favor of modified gravity
theories or dark matter [5, 6]. Confirmed detection of dark matter particles in deep space
or in the laboratory would also be a strong indication against modified gravity.
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FIGURE 5. The relationship µ2M = const. between mass M and the Yukawa-parameter r0 = µ−1 across
many orders of magnitude remains valid. The solid red line represents our theoretical prediction.

8. CONCLUSIONS

In this paper, we have demonstrated how results of our Modified Gravity (MOG) theory
can be derived directly from the action principle, without resorting to the use of fitted
parameters. After we fix the values of some integration constants from observations, no
free adjustable parameters remain, yet the theory remains consistent with observational
data in the two cases that we examined: the vacuum solution of a static, spherically sym-
metric gravitational field, and a cosmological solution. These solutions were explored
using numerical methods, avoiding the necessity to drop terms or make other simplify-
ing assumptions in order to obtain an analytic solution. Further, the constraints used to
compute the solutions are consistent to the extent that they overlap with one another.
The fact that at the level of the calculations presented here, our theory is not obviously
falsified is an indication that we should pursue MOG further, for instance by obtaining
interior solutions to the MOG field equations, and using these solutions to develop tools
to perform N-body simulations.
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Abstract. We review our contribution to infrared Renormalization Group (RG) effects to General
Relativity in the context of galaxies. Considering the effective action approach to Quantum Field
Theory in curved background, we argued that the proper RG energy scale, in the weak field limit,
should be related to the Newtonian potential. In the galaxy context, even without dark matter, this
led to a remarkably small gravitational coupling G variation (about or less than 10−12 of its value
per light-year), while also capable of generating galaxy rotation curves about as good as the best
phenomenological dark matter profiles (considering both the rotation curve shape and the expected
mass-to-light ratios). Here we also comment on related developments, open issues and perspectives.

INTRODUCTION

Currently there is a large body of data coming from cosmological and astrophysical ob-
servations that is mostly consistent with the existence of dark matter. Such observations
also suggest that the hypothesized particles that constitute dark matter have very small
cross section and travel at speeds much lower than light. These lead to the cold dark mat-
ter framework, which is one of the pillars of the current standard cosmological model
ΛCDM.

It is not only tempting, but mandatory to check if such dark matter particles exist
(by detecting them in laboratory based experiments, for instance) and also to check if
the gravitational effects that lead to the dark matter hypothesis could follow from a
more detailed and complete approach to gravity. The effects of pure classical General
Relativity at galaxies have been studied for a long time and, considering galaxy rotation
curves, the differences between General Relativity and Newtonian gravity are negligible,
since in a galaxy matter moves at speeds much lower than that of light and is typically
subject to weak gravitational fields (Φ� c2), which leads to the Newtonian limit of
General Relativity 1.

1 There are some proposals that consider General Relativity in the context of galaxies which do not lead
to Newtonian gravity, see e.g. [1, 2, 3, 4, 5]. It is not impossible that a reasonable explanation for galaxy
rotation curves may rely on similar approaches, nevertheless up to now none of such proposals have found
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There is however a newer approach that may change considerably the role of dark
matter, while following standard physical principles. Namely, the investigation of the
running of the gravitational coupling parameter G on large scales as induced by the
renormalization group framework.

The running of coupling constants is a well known phenomenon within Quantum
Field Theory. It is well-known that the renormalization group method can be extended to
quantum field theory on curved space time and to some models of quantum gravity (see,
e.g., [6]), such that the beta functions can be interpreted in this framework. Concerning
the high energy (UV) behavior, there is hope that the running of G in quantum gravity
may converge to a non-Gaussian fixed point (asymptotic safety) [7, 8]. Our present
concern is, however, not about the UV completeness, but with the behavior of G in
the far infrared regime (IR). In the electromagnetic case the IR behavior corresponds
to the Appelquist-Carazzone decoupling [9] (see e.g., [10] for a recent derivation of
this theorem). In the case of gravity the same effect of decoupling has been obtained in
[11, 12], but only for the higher derivative terms in the gravitational action. It remains
unclear whether such decoupling takes place for the other terms. This possibility was
studied on phenomenological grounds a number of times before, e.g. [13, 14].

In [15] we presented new results on the application of renormalization group (RG)
corrections to General Relativity (GR) in the astrophysical domain. Previous attempts
to apply this picture to galaxies have considered for simplicity point-like galaxies.
We extended previous considerations by identifying the proper renormalization group
energy scale µ and by evaluating the consequences considering the observational data
of disk galaxies. Also we propose a natural choice for the identification of µ, linking
it to the local value of the Newtonian gravitational potential. With this choice, the
renormalization group-based approach is capable to mimic dark matter effects with
great precision. This picture induces a very small variation on the gravitational coupling
parameter G, namely a variation of about 10−7 of its value across 105 light-years. We call
our model RGGR, in reference to renormalization group effects in General Relativity.

In order to evaluate the observational consequences of the RGGR model and to
compare it to other proposals, recent high quality observational data [16, 17] from
nine regular spiral galaxies were mass-modelled using the standard procedures for the
baryonic part, and four different models for the “dark” component: i) the RGGR model;
ii) one of the most phenomenological successful dark matter profiles, the Isothermal
profile [18]; and two alternative models which were built to avoid the need for the dark
matter: iii) the Modified Newtonian Dynamics (MOND) [19, 20] and iv) the Scalar-
Tensor-Vector Gravity (STVG) [21]. The latter is a recent relativistic proposal that is
capable of dealing with galaxy rotation curves and other phenomena usually attributed
to dark matter. For galaxy rotation curves phenomena, STVG becomes equivalent to a
similar proposal called MSTG [22, 23, 24]. The model parameters that we use to fit
galaxies in the STVG framework can be found in ref. [23]. While for MOND we use the
a0 value as given in [25].

The quality of the rotation curve fits and total stellar mass as inferred from the RGGR
model is perfectly satisfactory considering both the general behavior of the model and

a baryonic mass distribution that is in conformity with astrophysical expectations.
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its results when applied to nine particular galaxies, as analyzed in [15]. It is about the
same of the Isothermal profile quality, while it seems significantly better than the quality
of MOND and STVG. In the case of MOND, we did numerical experiences with a0 as
a free parameter and found that, albeit the concordance with the shape of the rotation
curve can considerably increase in this case, the concordance with the expected stellar
mass-to-light ratios remains unsatisfactory (similar conclusions have also appeared in
some recent papers, e.g. [17, 26, 27], and it seems that the concordance can only be
improved by adjusting the MOND’s µ(x) function in an ad-hoc way).

THE RUNNING OF G

The β-function for the gravitational coupling parameter G has been discussed in the
framework of different approaches to Quantum Gravity and Quantum Field Theory in
curved space-time. In [15] we followed the derivation used previously in [13]. If G does
not behave as a constant in the far IR limit, it was argued in [13] (and recently in more
details in [28]) that the logarithmic running of G is a direct consequence of covariance
and must hold in all loop orders. As far as direct derivation of the physical running of G
is not available, it is worthwhile to explore the possibility of a logarithmically running
G at the phenomenological level.

Consider the following infrared β-function for General Relativity,

βG−1 ≡ µ
dG−1

dµ
= 2ν

M2
Planck

c h̄
= 2νG−1

0 . (1)

Equation (1) leads to the logarithmically varying G(µ) function,

G(µ) =
G0

1+ν ln(µ2/µ2
0)
, (2)

where µ0 is a reference scale introduced such that G(µ0) = G0. The constant G0 is the
gravitational constant as measured in the Solar System (actually, there is no need to be
very precise on where G assumes the value of G0, due to the smallness of the variation
of G). The dimensionless constant ν is a phenomenological parameter which depends
on the details of the quantum theory leading to eq. (2). Since we have no means to
compute the latter from first principles, its value should be fixed from observations. It
will be shown that even a very small ν can lead to observational consequences at galactic
scales.

The action for this model is simply the Einstein-Hilbert one in which G appears inside
the integral, namely,

SRGGR[g] =
c3

16π

∫ R
G
√
−gd4x. (3)

In the above, G should be understood as an external scalar field that satisfies (2). Since
for the problem of galaxy rotation curves the cosmological constant effects are negligi-
ble, we have not written the Λ term above. Nevertheless, for a complete cosmological
picture, Λ is necessary and it also runs covariantly with the RG flow of G (see e.g.,[13]).
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There is a simple procedure to map solutions from the Einstein equations with the
gravitational constant G0 into RGGR solutions. One need not to follow this route, one
may find all the dynamics from the RGGR equations of motion, which can be found by a
direct variation of the action (3) in respect to the metric, leading to equations of motion
that have the same form of those of a scalar-tensor gravity2. In this review, we will
proceed to find RGGR solutions via a conformal transformation of the Einstein-Hilbert
action, and to this end first we write

G = G0 +δG, (4)

and we assume δG/G0� 1, which will be justified latter. Introducing the conformally
related metric

ḡµν ≡
G0

G
gµν, (5)

the RGGR action can be written as

SRGGR[g] = SEH[ḡ]+O(δG2), (6)

where SEH is the Einstein-Hilbert action with G0 as the gravitational constant. The above
suggest that the RGGR solutions can be generated from the Einstein equations solutions
via the conformal transformation (5). Indeed, within a good approximation, one can
check that this relation persists when comparing the RGGR equations of motion to the
Einstein equations even in the presence of matter [15].

In the context of rotation curves of galaxies, standard General Relativity gives essen-
tially the same predictions of Newtonian gravity. The Newtonian potential ΦNewt is related
to the metric by

ḡ00 =−
(

1+
2ΦNewt

c2

)
. (7)

Hence, using eq. (5), the effective RGGR potential Φ in the non-relativistic limit is given
by

Φ = ΦNewt +
c2

2
δG
G0

. (8)

An equivalent result can also be found from the evaluation of a test particle geodesics
[15]. In the context of weak gravitational fields ΦNewt/c2 � 1 (with ΦNewt = 0 at spatial
infinity) holds, and hence the term δG/G0 should not be neglected.

In order to derive a test particle acceleration, we have to specify the proper en-
ergy scale µ for the problem setting in question, which is a time-independent gravita-
tional phenomena in the weak field limit. This is a recent area of exploration of the
renormalization group application, where the usual procedures for high energy scat-
tering of particles cannot be applied straightforwardly. Previously to [15] the selection
of µ ∝ 1/r, where r is the distance from a massive point, was repeatedly used, e.g.
[29, 30, 31, 32, 13]. This identification adds a constant velocity proportional to ν to

2 We stress that it is only the from since RGGR is not a type of scalar-tensor gravity, and G is not a
fundamental field of the model.
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any rotation curve. Although it was pointed as an advantage due to the generation of
“flat rotation curves” for galaxies, it introduced difficulties with the Tully-Fisher law,
the Newtonian limit, and the behavior of the galaxy rotation curve close to the galactic
center, since there the behavior is closer to the expected one without dark matter. In [15]
we introduced a µ identification that seems better justified both from the theoretical and
observational points of view. The characteristic weak-field gravitational energy does not
comes from the geometric scaling 1/r, but from the Newtonian potential ΦNewt. However,
the straight relation µ ∝ ΦNewt leads to µ ∝ 1/r in the large r limit; which is unsatisfactory
on observational grounds (bad Newtonian limit and correspondence to the Tully-Fisher
law). One way to recover the Newtonian limit is to impose a suitable cut-off, but this
does not solves the Tully-Fisher issues [13]. Another one is to use [15]

µ
µ0

=

(
ΦNewt

Φ0

)α

, (9)

where Φ0 and α are constants. Apart from the condition 0 < Φ0 < c2 (i.e., essentially
Φ0 is a reference Newtonian potential), the precise value of Φ0 is largely irrelevant for
the problem of rotation curves. The relevant parameter is α. It is a phenomenological
parameter that depends on the mass of the system, and it must go to zero when the
mass of the system goes to zero. This is necessary to have a good Newtonian limit.
From the Tully-Fisher law, it is expected to increase monotonically with the increase
of the mass. Such behavior is indeed found from the galaxy fits done in [15]. In a
recent paper, an upper bound on να in the Solar System was derived [28]. In galaxy
systems, να|Galaxy ∼ 10−7, while for the Solar System, whose mass is about 10−10 of that
of a galaxy, να|Solar System . 10−17. It shows that a linear decrease on α with the mass is
sufficient to satisfy both the current upper bound from the Solar System and the results
from galaxies.

We also point that the above energy scale setting (9) was recently re-obtained from a
more theoretical perspective [33].

Once the µ identification is set, it is straightforward to find the rotation velocity for a
static gravitational system sustained by its centripetal acceleration,

V 2
RGGR ≈V 2

Newt

(
1− ναc2

ΦNewt

)
. (10)

Contrary to Newtonian gravity, the value of the Newtonian potential at a given point
does play a significant role in this approach. This sounds odd from the perspective of
Newtonian gravity, but this is not so from the General Relativity viewpoint, since the
latter has no free zero point of energy. In particular, the Schwarzschild solution is not
invariant under a constant shift of the potential.

In the following, we will comment on the effect of the relation (10) to galaxy rotation
curves. First from a more general perspective, and then to the modeling of individual
galaxies.
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GALAXY ROTATION CURVES

Before proceeding to specific galaxy rotation curves modeling, it is more instructive to
analyze general features of the relation (10), and to compare it to the standard approach.
In [15] we analyze some general aspects and scaling laws of the RGGR model, with
no dark matter, in comparison to the isothermal profile; both of them, at this step,
without gas and with an exponential stellar disk. In particular, it was pointed that the
RGGR rotation curves have a reasonable shape to fit galaxies (i.e., no clear problems
like increasing or decreasing too fast, oscillations...), and that they effectively behave
similarly to cored dark matter profiles at inner radii, whose effective core radius scales
with the galaxy disk scale length. Further details in our paper.

We have also extended the previous analysis by adding a gas-like contribution (a re-
scaled version of the NGC 3198 gaseous part). In particular, this numerically evaluates
how the model behaves on the presence of density perturbations at large radii. In the first
plot of fig. (1) it is displayed the result for RGGR, which is remarkably good (a similar
plot can be found in our original paper), while in the others plots in fig. (1) (presented at
the Conference, but not in [15]) one sees the results for the same mass distribution but
different choices for the energy scale3 µ.
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FIGURE 1. The additional circular velocity squared induced by different choices of µ. The first plot
refers to RGGR, the two others to different identifications of µ: one depends on the Newtonian acceleration
(a variation inspired on MOND) and the other on the (baryonic) matter density. All the plots above display
the additional squared velocity of each model divided by V 2

∞ ≡ ναc2 and as a function of R/RD, where
R is the the radial cylindrical coordinate and RD is the stellar disk scale length. Black lines depict the
additional velocity due to a pure exponential stellar disk, while the gray solid lines take into account the
gas mass Mgas for different values of f ≡Mgas/Mstars, with f = 0.2,0.7,1.2, ...,9.7 (i.e., the black lines
stand for f = 0). See [15] for further details.

From fig. (1), the two other proposals different from RGGR are seen to be unsuited
as replacements for dark matter. In particular, both are too sensitive to the gas presence,
and both eventually add negative contributions to the total circular velocity at large radii.

In [15] we used a sample of nine high quality and regular rotation curves of disk
galaxies from [16, 17]. In figs. (2, 3) we show one of ours results (see [15] for the
complete set and further details) in comparison to the results of three other models:
a cored dark matter profile (Isothermal profile), the Modified Newtonian Dynamics
(MOND) and the recently proposed Scalar-Tensor-Vector Gravity (STVG).

3 These other choices are also unsatisfactory from the theoretical perspective, since they have no direct
relation to the local energy of the gravitational field in the weak field regime (ΦNewt� c2).
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FIGURE 2. NGC 2403 rotation curve fits. The red dots and its error bars are the rotation curve
observational data, the gray ones close to the abscissa are the residues of the fit. The solid black line
for each model is its best fit rotation curve, the dashed yellow curves are the stellar rotation curves from
the bulge and disk components, the dotted purple curve is the gas rotation curve, and the dot-dashed green
curve is the resulting Newtonian, with no dark matter, rotation curve.
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inferred from the rotation curve fits for each model. The highlighted square and circle correspond to the
NGC 2403 galactic disk mass-to-light ratios. See [15] for further details.

Due to the considerably large uncertainty in the total stellar mass of each stellar
component (disk and bulge), we first use the total stellar mass as a free parameter for the
fittings (achieved from a χ2 minimization considering the errors). At a second stage, we
compare the resulting value with stellar population expectations, following the standard
approach.
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On the free parameters of each model, we remark that besides the total stellar mass,
the Isothermal profile has two additional free parameters, the RGGR model has a single
free parameter (α) while MOND and STVG have no free parameters that can vary from
galaxy to galaxy. On the other hand, both of the latter depend on constants whose values
are calibrated considering its best fit in a large sample of galaxies. We remark that the ν

parameter in RGGR cannot vary from galaxy to galaxy, but α can, and galaxy rotation
curves are sensible to the combination να, whose value is about the order of 10−7. The
best fit for NGC 2403 yields να = (1.66±0.01)×10−7.

CONCLUSIONS

We presented a model, motivated by renormalization group corrections to the Einstein-
Hilbert action, that introduces small inhomogeneities in the gravitational coupling across
a galaxy (of about 1 part in 107) and can generate galaxy rotation curves in agreement
with the observational data, without the introduction of dark matter as a new kind of
matter. Both High and Low Surface Brightness galaxies were tested [15] . Considering
the samples of galaxies evaluated in [15], the quality of the RGGR rotation curves, to-
gether with the corresponding mass-to-light ratios, is about the same than the Isothermal
profile quality, but with one less free parameter. We expect that similar results would
hold in regard to other cored dark matter profiles, while our results seem better than
those achieved by the NFW profile [15]. We also compared the results of our model
with MOND and STVG, and at face value our model yielded clearly better results.

Our results can be seen as a next step compared to the previous models motivated
by renormalization group effects in gravity, e.g. [13, 34]. Their original analyses could
only yield a rough estimate on the galaxy rotation curves, since they were restricted to
modeling a galaxy as a single point. Trying to extend this approach to real galaxies,
we have shown that the proper scale for the renormalization group phenomenology is
not of a geometric type, like the inverse of the distance, but is related to the Newtonian
potential with null boundary condition at infinity.

The essential feature for the RGGR rotation curves fits is the formula (10), which is
by itself a simple formula that provides a very efficient description of galaxy rotation
curves.

There are several tests and implications of this model yet to be evaluated. In particular
we are working on applying the RGGR framework to a larger sample of galaxies
(including elliptical galaxies) [35] and galaxy-galaxy strong lensing [36]. Related work
on CMB, BAO and LSS in search for a new cosmological concordance model is also a
work in progress [37].
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Hans Böhringer

1 Introduction

This talk will be quite observational and I’ll give you first of all a description of what galaxy
clusters are and how well we understand them. Then I will go on to talk about how we can
test cosmological models in several ways. We can test cosmological models finding out whether
their structure and the composition of the galaxy cluster is what we expect from theory. We can
find out whether the number count of galaxy clusters comes out right, whether the cosmological
models predict the right number of galaxy clusters for di�erent parts of the redshift and then
finally we can use galaxy clusters to trace their distribution on very large scales and look if that
makes sense with the cosmological model.

2 Galaxy clusters

Galaxy clusters are actually an integral part of the large scale structure of the Universe and they
form from density, positive density fluctuations with a large enough amplitude and a large enough
mass that is collected in the galaxy cluster. Density fluctuations that are larger than the mean
density of the Universe grow in the course of time. If they reach a threshold where the density
is roughly about twice the critical density, this object, this mass agglomeration stops expanding
with the Universe, collapses and forms objects. If you are interested in di�erent masses of objects
that have collapsed and have form, you can mathematically filter the fluctuation field. It’s a filter
that just contains the mass. The more you filter the field, the smoother it gets and the longer
you’ll have to wait until these filtered peaks reach a certain amplitude. If you look at the critical
amplitude for the formation of objects today, you will find that the objects with a larger filter
mass, that still reach this critical threshold to form objects, have masses of typically 1014 and
1015 solar masses and these are clusters of galaxies.

3 The Coma Cluster

Here we have a composite of two images of galaxy clusters. We have the optical image from the
All Sky Survey and we see a large collection of galaxies (which is what gives the galaxy clusters
their name); but they are much more than just a collection of galaxies. In X- ray images, for
example of the All Sky Survey, performed by the Rossat satellite, you’ll see a glowing of X-rays
that extends over the whole cluster. This is a picture of the Coma cluster of galaxies [see image
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below] at a distance of about 110 Mpcs from us and you see a hot gas that is shining in X-rays
outlining the whole cluster. This already gives you a feeling. First of all, we see galaxy clusters
as connected entities, as well defined objects. The big galaxies are typically in the cluster, but we
have stars in the foreground and we have lots of galaxies. This already gives you a feeling that
X-rays are probably a very nice tool to learn something about the structure and composition of
galaxy clusters. Astronomers use a lot of X-ray observations to do that.

4 Hierarchy of structure of the Universe as defined by gravitational
potential

To illustrate the significance of galaxy clusters in the hierarchy of the structure of the Universe,
you can think of them as large mass associations that create deep gravitational potentials [see
image below]. If you take a cross section through the potential of the Universe in this sketchy
way, as shown over here, we will find galaxies which account for a gravitational potential. The
depth of the potential is characterized by test particles that fill up this potential. The depth
of the potential can be calculated or estimated from the velocity dispersion of the stuff that is
in there or the gas that fills up the galaxy typically at high temperatures, for example, for our
galaxy up to a million degrees. If you go to groups, they have a deeper potential. You have
velocity dispersions up to 500 km per second for small galaxies running around the group and
you have an X-ray temperature of the gas that is about a kilo-electron volt and then we go to
really large galaxy clusters up to the most massive ones, which have temperatures in excess of 10
kilovolts and velocity dispersions of 1500 km/second. This really shows what well-defined objects
galaxy clusters are and that we go into the realm of large structures in the Universe that are still
determined by initial conditions. If we go to a super cluster, we don’t have a deep gravitational
potential, but lots of gravitational potentials of clusters and they have their signature at the
same sort of velocity dispersion or temperature as a single galaxy cluster in our neighborhood.

5 Dark matter halos and galaxy clusters

One of the interesting things is the difference between characterizing this gravitational potential
and characterizing the association of matter that some theoretical astrophysicists would call a
dark matter halo [see image below]. If I stay in the conservative picture of Cold Dark matter
(CDM), then a dark matter halo can directly be identified within a galaxy cluster. Looking at
the galaxy cluster in X-ray, we see the whole dark matter halo and can characterize it. If we
look at that dark matter halo associated to galaxies, it is very difficult to make the connection
between the galaxy and the dark matter halo because the galaxy forms after gas was cooling and
forming stars somewhere in the center of the halo. It doesn’t tell you how much this dark matter
halo extends and how much mass is contained, unless you do statistics like gravitational lensing,
or look at satellite motions. So we have a very direct connection between dark matter halos and
galaxy clusters. The only problem we have is that galaxy clusters are dynamically young and
their dynamic time scale is of a few gigayears, not much less than Hubble time and we have
constant growth of this dark matter halo by mergers, which disturbs the equilibrium structure
of these objects. This is our largest problem to characterize the galaxy clusters: measure their
mass when they are not in perfect equilibrium. Still we come from this theoretical side, what is
the expectation if you’re working with a CDM model and do numerical simulations? What do
you expect for the structure of this dark matter halo coming out of these purely gravitational
simulations? Here you have a nice picture [see image below] of how galaxy clusters form from
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the assembly of smaller dark matter halos to form a big dark matter halo and you end up with
something which at least in theory is described as a nice self-similar family of dark matter halos.

6 Distance and density scales

If you have an idea of how to scale different sizes of objects in relation to the same object, you
can get them to line up. We scale them by looking at the different density distributions of dark
matter halos, the small ones and the big ones. The amplitude, if they have just collapsed now,
should be the same, but they have a larger size. You have the fiducial radius to scale their size.
One way to do it is to find out whether the mean density of the cluster is just a certain multiple of
the critical density of the Universe or the mean density of the Universe and you take this density
radius as a scale radius for the cluster. If you then go back and scale these density profiles of
different clusters that are forming in the simulations, you divide them by the same fiducial radius.
These curves are falling nearly on top of each other, so we obtain a self-similar family of objects
where the self similarity parameters are mass, formation time, and concentration parameter. We
can scale the distance of different objects in the Universe as a function of redshift [see image
below]. This is model-dependent. The whole picture changes even if you go from Einstein’s
model to the concordance cosmology model. You have to do everything correctly in each model
and then test its consistency within the model. This was just a theoretical prelude to give you
an idea of what to expect. We can measure mass profiles using the hydrostatic equation and
at the end of this section I will come to how precisely we can actually apply that, but to some
extent at least if we have relaxed clusters and we can assume that the gas is in hydrostatic
equilibrium approximately in the galaxy clusters we form in this hydrostatic equation . . . We
get an equation that gives us the mass profile depending on several observables. The observables
are the temperature profile in the cluster and the density profile in the cluster. The temperature
profile absolutely, the density profile in a relative way. And apart from the assumption that
the cluster is in hydrostatic equilibrium, in this way we also assume that the cluster is roughly
symmetric. I will show this later.

7 X-ray observations

X-ray observations give us a possibility to deduce both the density and the temperature of the
gas. We get the density, if you for example measure the X-ray luminosity in a certain bend,
well a typical bend of an X-ray telescope. . . Luminosity is proportional to the emission that is
measured, so the luminosity that we see is an integral of the line of sight density square of the gas
roughly with a small temperature dependence that can be corrected. If you look at the spectrum,
the spectrum is mostly formed by radiations with lines of some of the ions that have still kept
some of the electrons . . . It’s a spectrum that comes from optical plasma with very simple
atomic physics involved in it. If you use nuclear physics, which is relatively well understood, we
can calculate what the spectrum is for some gas at the temperature of a few times 10 million
Kelvin and we can calculate the continuum mostly from free radiations, which is how we can
obtain the abundances of the elements as well as the temperature from the spectrum. One of
the complications is that if you have several temperatures on the line sight, it’s not always easy
to unravel them. But let’s assume that we get that done and then we obtain from the surface
brightness profile of the galaxy cluster to the density profile. You measure the temperature from
the spectra of several concentric rings of the X-ray emission in the cluster and we obtain this
temperature profile. You have to de-project them and then get this mass profile of the cluster.
These are clusters that have been selected because they look very regular.They are supposedly
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quite relaxed and not recently disturbed from a major merger. So we obtain a mass scale, and
the mass profile if you scale by the scaling rate, the fiducial radius, and if you scale by the total
mass, we obtain the mass profile that has a shape which very well matches the Navarro, Frank,
and White profile for these clusters. A similar result has been obtained by others from data that
come from the Hassle peak X-ray observatory. So in this way we recover the density profile that
can be predicted by numerical simulations. It’s very difficult to distinguish between a Navarro,
Frank and White and a Moore profile. In this way you can see all this relatively well, because
it’s difficult to get very good optical precision in the very center and at the outskirts.

8 Differences between the central parts of different galaxy clusters

In the central part of a regular cluster we have a central dominant galaxy. There is a lot of
difficult physics going on in the center and it’s very difficult to separate that from the details of
the modeling. However, we have a very good consistency between model predictions and what
we actually observe. We can extend that to clusters which are not regular. We have done a
large survey on galaxy clusters that we selected only by their X-ray luminosity and redshift ,in
a certain way, to optimally look at them with the XMM telescope. They go from small mass to
large mass and are characterized by temperatures between 2 to 10 kilo-electrovolts for the galaxy
clusters. We look at how much they can be explained as a self-similar family of objects. Again if
we look at the density distribution of the gas determined from the surface brightness profile and
you look at this scale radius and the scale density parameter over here, we see that we can get
them to look very self-similar for a large part of the radius. This is a logarithmic scale for a large
part of the radial range. But we have a problem in the inner part. If we look at the temperature
profiles, we can see something similar. We see decreasing temperature profiles over most of the
volume of the clusters and then we have this diversity in the inner part. This diversity comes
from what was formerly called a cooling flow problem and now it is called a cool core problem.
We have galaxy clusters with denser gas in the center and then usually they have a CD galaxy
and a big black hole that fights back and then it shows feedback. We have galaxy clusters with
less density and higher temperatures in the center which often have been recently disturbed by
merges and they have less cool cores. So we have a high diversity here in the hydrodynamics, as
far as what happens in the center of the clusters is concerned; but if we cut out this inner part,
we have a very good feeling of how to characterize the statistics of this dark matter halo and to
get a feeling of how well can determine mass, what scatter we have with different parameters.

9 Pressure profiles

One of the interesting parameters of course is the pressure because the derivative of the pressure
is where we get the mass from and the pressure shows regular profiles if we scale it in the right
way. And you can compare that also to model predictions of different types. Now, if we are going
to hydrodynamics, this is much more complicated and we are not at the point where simulations
know exactly what physical recipes they should put in because there are differences between
different models. But you can see that there are three different types of simulations shown here.
They are predicting these pressure profiles in these dark matter halos with differences of up to
20%. If you compare it to the observed pressure profiles, there is a relatively good equilibrium
between the two so we are recovering the properties of galaxy clusters and get a good feeling for
the statistics. They are a relatively nice self-similar family of course with certain variation that
we try to characterize as statistical scatter in the relation.
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10 Galaxy clusters and the mass of the dark matter halo

If you want to know how to use these galaxy clusters that we see for example in large surveys,
that’s one of the next steps I will be doing. We want to have a simple observable and then try to
make a prediction for their mass or the mass of the dark matter halo. This is what theoreticians
want to have to fit observations into their models. What we want to fit into the theoretical
models is the mass of a dark matter halo within a certain fiducial radius and then we have a
simple parameter that we can easily measure for a large number of clusters. For example, for
X-ray luminosity, we can take these samples where we have deep X-ray observations and have
measured the properties very well and,we can see that because of the self-similarity we get a very
good correlation between the X-ray luminosity and the mass of the galaxy clusters. But we still
have a scatter of more than 40% in predicting the mass, if you just take the X-ray luminosity.
It gets better if you excise the center, where we have this diversity, and we can collapse the
scatter of the relation by a good factor of two and get a much better prediction. X-ray measured
gas mass is an even better predictor because it has a lower scatter, as low as sometimes 10% in
predicting the mass.

11 Is it correct to apply hydrodynamic equilibrium to measure mass?

So we have now a very good understanding of the variety of galaxy cluster shapes and we have
a good idea of how to predict their masses. The next thing of course you can now ask is: “Is
it correct to apply hydrodynamic equilibrium to measure mass?” And you can also question
if the spherical symmetry of the galaxy clusters is the right way to go. People have done
hydrodynamic simulations to test how well these observational recipes work in determining the
mass on theoretical clusters. I have to say that I still don’t trust the hydrodynamics of simulations
well enough and we can show in certain cases that there are differences between what we observe
and what is modeled. But things come closer and closer together.

12 Gravitational lensing as another ways to measure mass

We also want to do it by observations. One of the ways, but still this is done with low statistics, is
that we try to compare masses that are determined from gravitational lensing for galaxy clusters
with the ones we get from X-rays, for example a sample of clusters of the Locus project. The
X-ray analysis was done by Zhang. This is another set of observations from the Canadian team.
Others too have published comparisons of the X-ray and lensing masses, for example Alexander
Vikhlinin. The lensing measurements are made by the group of Hoekstra.

13 Measuring errors and bias

A problem here is that lensing masses have a large scatter, that deviates from the true probable
scatter mass. One knows this from simulations, because you have a foreground structure and a
background structure that is added to your lensing signal you will not, even in the best cases
have a better estimate than 30% in measuring the mass. But for large samples it is believed that
the lensing masses are unbiased while the X-ray masses could be biased in a certain way. So we
need a lot of data to beat the scatter in this relation and to actually measure the bias between
the two measurements. I think at the moment, taking about all the measurements we know,
the best measurements, we see that probably the X-ray mass is too low an estimate, with a bias
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of about 10% to 12% low. One of the reasons why the X-ray mass estimate is low is probably
because what is not taken into account in the analysis that I have been showing is the motion
of the gas and the gas has turbulent motion and slotting around. Hydrodynamic simulations
show that this can be of the order of 10% to 20% of extra pressure that has not been taken
into account in the mass estimate. So this is where we stand. I would say we have an idea of
the galaxy cluster masses that we can determine from temperatures or luminosities in the best
case with an accuracy of about10%. This is good enough to make nice measurements, to test
cosmological models and to make a statement of Omega Matter, Omega Lambda, Sigma 8.

14 Components of galaxy cluster mass

Another interesting thing is that you can now look at how the galaxy clusters are, what are the
components that make the mass of a galaxy cluster. We have several components. One is stellar
mass in the galaxies, the next one is gas mass and there appears to be a large amount of missing
mass –whatever it is, some say dark matter—, if we stay within the conventional concordance
models using Newtonian gravity. One of the things we find is that the stellar mass fraction, the
percentage of mass that is in the stars and in the galaxies is actually a decreasing function of the
total mass of the system, but if you look at the gas mass, it is actually an increasing function
of the system. The larger the cluster, the better it contains all the baryons inside and the gas
against any feedback mechanism that is happening in the inside. The interesting thing is that
if you add the two up and you compare the sum with the total mass value, in the conventional
concordance model of baryonic mass, you need the dark matter mass. The distribution is [see
image below]:

This means that stars and gas account for about 16% of the total galaxy cluster mass. This
figure would approach 15%, when we take into account a little bit of loss of baryons for the
most massive systems, but we still have this larg deficit for the less massive systems. We are not
talking about dark energy, we’re talking about matter, dark matter and baryons. There’s a lot of
interesting things happening here: a lot of hydrodynamics and very interesting astrophysics lots
of baryons over here and in the stellar mass fractions, most of it still not perfectly understood.
But I acknowledge the fact that for massive clusters, when one recovers the baryon fraction, one
can even account for a little bit of the loss of baryons with the help of simulations.

15 Omega Baryonic and Dark Matter estimates

In a galaxy cluster we get 85% of dark matter and we get 15 percent of baryonic matter. If you
want to see the agreement with the baryonic matter density obtained from Big Bang nucelo-
synthesis, which is about 4 percent of the total density of the Universe (this is what we have for
a Hubble constant of 70), you can come up with Omega Matter, which is less than the critical
density of the Universe. That is the result that is about 15 years old, but could be derived from
galaxy clusters. We see about 10 percent for the error bars. So, if we take the galaxy cluster
composition as roughly representative for the Universe, we get a total matter density of something
like 30 percent and a baryon density of about 4 percent comparing the cluster composition with
nucleo-synthesis. Now you can do the next step and I’m a little bit skeptical on the application
of that and the people who do it. I think the accuracy with which this is done is OK. They say, if
we take the baryon fraction in clusters as an invariant, the measurement of this baryon fraction,
the number that we obtain, depends on your cosmology and depends on the diameter distance.
So doing the exercise and calculating baryon fractions for galaxy clusters at various redshifts
within the frame of different cosmological models, you can get an almost invariant gas density.
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This is the Einstein model, so you can use it to test your cosmology models. I used Steve Allen’s
results and tried to calculate the diameter distance from the X-gas. What they haven’t done is
that you can actually put these results in terms of a Hubble diagram and then you can see the
diameter distance as a function of redshift [see image below] and you can see in a conventional
way, as is the case with supernovae, which cosmological model best fits the Hubble diagram..
From a consistency check with different cosmological models they get an Omega Lambda within
a certain range, and Omega Matter within a certain range. We are now getting the first few
clusters at higher redshift. This is where reliable data are available. The scatter in the data and
the statistics of the data just give you very interesting results on the Hubble constant, close to
the value expected, but you would need more data and go to higher redshift here to distinguish
between different cosmological models. So the preliminary result of this chapter is that we do find
a good consistency in the shape of galaxy clusters, that we see roughly with what is predicted
from cold dark matter models and the shape of dark matter halos. Using the galaxy clusters as
cosmological yardsticks, assuming that the baryon fraction is an invariant, one gets the first set
of cosmological tests.

16 Cluster mass functions and cosmological models

One of the questions in astrophysics is how far we can push for more precision because it’s not
easy to prove that the gas mass fraction is an invariant and it does rely a lot on hydrodynamics.
But we can use galaxy cluster populations and not just galaxy clusters as cosmological probes.
We can put these data into cosmological models. If one knows the underlying mass density
distribution in the Universe, one can just predict which peaks in the mass distribution form
clusters and from that one can predict cluster mass functions. This mass function has been
tested with very large N-body simulations and has been modified. Such a function of mass starts
with a mass function that has fewer objects with a high mass and then with time more and
more massive objects are formed. If you do galaxy cluster counts as a function of redshift and
as a function of mass you can actually show how the mass is growing with time and you can test
cosmological models this way, because, how this mass function grows with time is very dependent
on the cosmological model we use. We have used the Rossat Aall Sky Survey very intensively and
I’m still working on that, still after 18 years. We have tried to identify as many galaxy clusters
down to a certain down flux limit trying to obtain completeness, which is well over about 90%
and then we obtain the most luminous clusters at different redshift shelves. At high redshifts, we
only get the very luminous ones. Again the closer we come, the more luminous objects we have;
but we have always had a complete sample above a limiting luminosity. Let me show you a lot of
results which are part of our own Reflex survey with a lot of observations about and just about
doubling the number for reflex 2. I’ll show you the first results, but we also pushed the northern
survey. So soon, in the next one or two years we’ll increase the statistics of what I’m showing by
a factor of 4. This shows a redshift distribution of the 400 galaxy clusters and if you have a good
statistical eye you may see that this is not a homogeneous distribution, but that this distribution
is clumped and we’ll come back to that. If we have a cosmological model as indicated, we can
predict how many clusters we see, but we can also predict how they are distributed in space. We
have to choose the right cosmology. We have to make an assumption on the seed fluctuations, so
we use the standard assumption of Harrison and double spectrum inflation, and we modify the
power spectrum in the transfer function according to the type of matter you have and you put
in baryonic acoustic oscillations, but they are so tiny for our purposes that they don’t change
the solutions very much. And then you can make these predictions and we have done that. We
have used our galaxy clusters and determined statistically the X-ray luminosity function from
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the known volume in which we count the clusters. The number count of clusters per unit volume
as a function of X-ray luminosity and then we try to make predictions. We get the structure,
we get the mass function of the galaxy cluster and then we use an empirical mass luminosity
relation. You can get from the X-ray luminosity to the mass or from the predicted mass to the
X-ray luminosity. Then, we plot on top of it the predicted X-ray luminosity function and the
concordance cosmological model fits very nicely here. It fails for the groups, but in the group
regime we don’t have a good calibration for the mass and there is some cosmic variance problem
in the sky which adds to that. This can probably be better done in one year from now. You see
how little we know here and it is really difficult to find very good group samples to establish the
mass calibration in this regime; but through trial and error we obtain two important cosmological
parameters, the constraints for Omega Matter and for Sigma A. The sigma A is the amplitude
scaling of the power spectrum. If we take the whole cluster survey we get something like Omega
Matter density close to about 30% and the sigma A is about0.8%. While people were working
on galaxy cluster cosmology, we defended the low sigma A for a long time when a lot of other
people, gravitational lensing people and the first WMAP people wanted a higher sigma A. But
we knew very well that we couldn’t change sigma A that easily. Going from here to here you
increase the number of galaxy clusters by more than a factor of two. We couldn’t do that. We
knew that and we were defending it until we were proven to be right. So we were quite proud
with the results we had at the time.

17 The work of Vikhlinin on Dark Energy

Taking this result just for the present time, we cannot say much about dark energy or the
cosmological constant. We just get a good constraint on Omega Matter, and you can combine
it with supernova tests and WMAP and you can see the cross in the same region. Again this
slide is several years old. Now you can go one step further and you can say I want to measure
the mass function for the proxy mass function not at one epoch, but at different epochs and
one of the nicest works that is available is the one of Alexei Vikhlinin of nearby galaxy clusters
and their mass function. He has derived the mass function by using either the temperature
or the gas mass, the total gas mass, as a proxy and from the calibration on what the mass
should be he calculated the mass function and then he has a sample of galaxy clusters identified
in Rossat pointed observations and at higher redshift and you can actually see how the mass
function is changing. Going to a wrong cosmology, you don’t reproduce these things but the
right cosmology reproduces it. These two slides are shown by Alexei Vikhlinin to show exactly
what you are always pointing out. You can only do a consistency test. You have to do all your
calculations from the beginning for the right cosmology and then ask yourself whether it fits or
not? You cannot start half way and then fit your results.

18 Error margins

Using this equation of a state parameter for dark energy which is somewhere with a large error
bar of at least 10% or more, we obtain an Omega Lambda which is between 60% and 80%.
So again, we have large error margins, but it fits very well with other cosmological constraints
and some similar work has been done by the group of Steve Allen with Mantz. They have found
similar constraints with large error margins scattering around Omega Matter between 0.1 and 0.4
and this is what you can get for small samples of galaxy clusters. If you want to do the next step
and I mean. . . This is what everybody is aiming for. If you want to see how the cluster number
density depends on the equation of the state parameter, even a variable stable equation of state
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parameter, things become very tough. For example, if we just look at how many galaxy clusters
we find as a function of redshift for a mass of about 1014 solar masses or 1013 solar masses you
can see that changing the W parameter by about 30% gives you more than 30% difference in
the number count. So it would be nice if we would have perfect masses for the galaxy clusters.
It would not be too difficult to devise such a survey. But if one looks in more detail we can see
that for example the number density changes with the mass calibration. . . . I mean a change
of one percent in the mass scale gives you a 3Most of the populations are galaxy groups and
they are much more difficult to handle than galaxy clusters. They are much more difficult to
observe. And then it gets even tougher, so hopefully we can follow galaxy clusters with this
future instrument from about a redshift of 2 to the present redshift, but that is one of the most
interesting epochs if we talk about dark energy. Because increasing the redshift leverage is so
important, we are doing a very elaborate program at the moment to try to find galaxy clusters
with the X-ray observations that have been done by XMM and now we have about 30 clusters
with nice X-ray emissions. They are very massive objects. It is the largest sample of distant
galaxy clusters with high redshift and it is led in my group by René Fastbender, who has been
mostly doing the work.

19 Far away massive galaxy clusters

Now one of the surprising things is that we started this in 2005 and we pretty much worked with
photometry and spectroscopy so it was hard work, for more than 5 years, to find these 30 clusters
with a redshift of about 0.8 and 17 clusters with a redshift of one. But we were rewarded very
early to find a very unusual cluster at a redshift of 1.4. It turned out that now we have ages,
the images that even the supernova people have followed up in several epochs. We have state
age images from which you can do lensing and we have done a lensing analysis with the XMM
and we have gathered data from which we have determined mass and it turns out to be a very
massive object. If we then calculate what is the chance to find this mass, we find that it is small.
Then again if you calculate how much volume you need to find these clusters at a redshift of 0.4,
it would fit in the conventional concordance cosmology model. There are papers appearing in
literature where people use modified gravity models and other things to explain these clusters,
but we decide to be conservative and wait for more evidence. As a matter of fact, it is just one
object, not enough to draw definite conclusions. We had a lot of internal discussion and we said
we didn’t want to draw conclusions from one object. We should continue and try to find more
evidence, more should be found either by us or by other people. There are lots of opportunities
to find them also in infrared surveys. So we have to wait, but I just wanted to say that there
can always be surprises . . . ..

20 Shücker’s work

You can also do large scale structure work and I will be very quick with that. For the reflex survey
we also measured the power spectrum. It was a paper done by Shuecker who unfortunately died
in 2006. He was really one of our brains in this cosmological work that we did. He determined the
power spectrum. He got three different boxes out of our survey and determined the conventional
power spectrum. So there are three dependent data sets plotted on top of each other, but you
can already see that this power spectrum doesn’t dive down early enough to be consistent with
the low omega model. So we have a power spectrum with more points in the low density realm
compared to this one. These are the constraints that we obtain.
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21 Conclusions

Galaxy clusters provide several independent and complementary means to measure or detect cos-
mological parameters. We can use the structures, number counts, and the large scale structure
distribution and as far as our error margins are concerned, which are still substantial, we show
that things are not perfect, but good enough to be compatible with the concordance cosmology
model: So we don’t really have any surprises yet. Maybe that one galaxy cluster we just men-
tioned, but we don’t put that too high. I think a new epoch has come and I want to show you
just one slide.

22 future research

And that is what we want to do. At our institute we’re building a new instrument which is called
e-ROSITA, an X-ray telescope that should be flying in a Russian satellite that is to be launched
officially in 2012. Hopefully in 2013, it will do a four year sky survey. The main goal is to do
cosmology with 50 thousand to 100 thousand clusters and increase the leverage we have now by
a factor of 30. If we also do a lot of work to accompany it, we will also have perfect optical and
gravitational lensing data and if we calibrate everything well, we will have some data to make a
very good step in dark energy cosmology.

23 The composition of galaxy clusters

•78–87%= Dark Matter
• 11–14% = hot gas
• 2− 6% = galaxies (in total)

forH0 = 70
H. Böhringer, Galaxien und Galaxienhaufen im Universum (§ 1) SS 2009

24 Galaxy Clusters Defined as Gravitational Potentials

X-ray emission originates from20− 100 Mill. K plasma
LX = 1043− 31045erg/skT = 2− 10keV
ne 10− 4− 10− 1cm− 3
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Figure 1: The Coma Galaxy Cluste ( H. Böhringer, Galaxien und Galaxienhaufen im Universum
(§ 1) SS 2009r)
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Figure 2: Graph.-The Network of Large-Scale Structure is Formed by Many Zeldovich Pancakes
The Coma cluster within the Great Wall, seen as a “finger of good” due to redshift space
distortion
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Figure 3: Sketch of the cosmic potential
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Figure 4: Optical and X-ray appearance of the Coma cluster of galaxies (From POSS and
ROSAT-All Sky Survey)
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Figure 5: Comparison of galaxies and clusters as Dark Matter Halos
The intracluster gas is heated when the cluster forms and does not cool – it still reflects the
potential depth (H. Böhringer, Galaxien und Galaxienhaufen im Universum (§ 1) SS 2009)
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Figure 6: Merging Galaxy Clusters, illustrating how clusters of galaxies grow
The merging of two galaxy clusters in the system Abell 3528 (H. Böhringer, Galaxien und
Galaxienhaufen im Universum (§ 1) SS 2009)
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Figure 7: Lookback Timescales
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Description and results of a robust approach to
f (R) gravity

Luisa G. Jaime1,2, Leonardo Patiño2 and Marcelo Salgado1

August 30, 2011

Abstract

This contribution is intended to describe a robust method to study the
gravitational equations coming from an f(R) theory and give some particular
examples by finding spherical gravitational configurations whose existence had
been the source of controversy in recent years. We argue that such controversy
is the result of an ill defined procedure to treat f(R) theories.

1 Introduction
All the dynamics of general relativity can be extracted from the action

SEH+matt[gab,ψ] =

∫
R

2κ

√−g d4x + Smatt[gab,ψ] , (1)

where the first term on the right is the Einstein-Hilbert action and the second is
the one coming from the matter content on the space-time with ψ representing
generically the matter fields, κ = 8πG and we use units where C=1.

Einstein’s equation Gab = κTab can be obtained by varying (1) with respect to
the metric gab.

In the same spirit, f(R) theories are gravitational theories that propose a general,
and in principle arbitrary, function f of the curvature scalar R as the gravitational
Lagrangian density, modifying (1) to be

S[gab,ψ] =

∫
f(R)

2κ

√−g d4x + Smatt[gab,ψ] , (2)

and from which, by varying it with respect to the metric, we get

fRRab − 1

2
fgab − (∇a∇b − gab¤) fR = κTab . (3)

where ¤ = gab∇a∇b, and fR ≡ df
dR

.
The hope behind postulating (2) is to find a gravitational theory that, without

introducing dark components of matter and energy, accommodates some of the
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Figure 1: Plot of the potentials in the scalar-tensor theory associated with the models: a) In

Blue, suggested by Starobinsky, f(R) = R+λR0

[(
1 + R2

R2
0

)−n

− 1
]
, with λ = 2, R0 = 1 and n = 2,

b) In Green, suggested by Miranda et al, f(R) = R − αR∗ ln(1 + R
R∗

), with α = 2 and R∗ = 1,

c) In Red, suggested by Hu and Sawicki, f(R) = −m2 c1( R
m2 )n

c2( R
m2 )n−1

, with m2 = 1, n = 2, c1 = 1 and
c2 = 2.

observations that are not in agreement with general relativity and its weak field
limit, such as the rotation curves of the galaxies or the accelerated expansion of the
universe.

It should be clarified that the intention of this particular contribution is neither
to criticize nor defend the general idea of introducing f(R) theories, but instead to
present a reliable method to treat these theories.

Equation (3) is in general a fourth order partial differential equation for the
metric coefficients which proves to be very difficult to solve, so it is encouraging no
to approach it directly but to consider a simpler way to treat it. In particular in
1983 Teyssandier and Tourrenc [1] suggested a method to rewrite (3) for a certain
class of f(R)’s by noticing that if fRR 6= 0, the action (2) could be rewritten as the
action for a scalar-tensor theory

S[gab,ψ] =

∫ √−g

2κ
[χ(ϕ)R− V (ϕ)] d4x + Smatt[gab, ψ] , (4)

where
χ = fR(ϕ) and V (ϕ) = ϕfR(ϕ)− f(ϕ).

as long as ϕ = R. For (4) to represent a scalar-tensor theory for the field χ, the
relation χ = fR(ϕ) has to be used to write the potential V (ϕ) as a function of χ.

This method was soon extended [2] to general cases of (2) and clearly simplified
matters, nonetheless the mapping from an f(R) theory to a scalar-tensor theory can
be ill defined, as it turns out to be the case for several f(R)’s commonly found in the
literature. This can be seen in figure (1) where we plot the potentials in the scalar-
tensor theories that would correspond to the respective f(R) indicated in the caption
of the plot. We see that to the f(R) suggested in [3] by Starobinsky corresponds
a multivalued potential in the scalar-tensor theory, and the same happens for the
f(R) put forward in [4] by Hu and Sawicki. As a consequence of this behavior, the
physics extracted from the models using their scalar-tensor counterpart cannot be
conclusive.

It is clear from the remarks on this section that a novel way to consistently solve
(3) is still necessary, so in the next section we outline one such method which was
already discussed in more detail in a previous paper [5].
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2 Robust approach to f (R) gravity
It is straightforward to write (3) in the following way

fRGab − fRR∇a∇bR− fRRR(∇aR)(∇bR)

+gab

[
1

2
(RfR − f) + fRR¤R + fRRR(∇R)2

]
= κTab , (5)

where (∇R)2 := gab(∇aR)(∇bR). Taking the trace of this equation yields

¤R =
1

3fRR

[
κT − 3fRRR(∇R)2 + 2f −RfR

]
, (6)

where T := T a
a. Finally, using Eq. (6) in (5) we find

Gab =
1

fR

{
fRR∇a∇bR + fRRR(∇aR)(∇bR)

−gab

3

[
1

2
(RfR + f) + κT

]
+ κTab

}
. (7)

From the manipulation just carried we see that without any ambiguity, equations
(6) and (7) are entirely equivalent to (3), so we propose to use them as the basic
equations for f(R) theories in every application.

The equations we intend to use provide second order equations for the metric
gab and the curvature scalar R considered as independent from each other. In the
next section we will have the chance to explicitly verify, for spherically symmetric
metrics, the advantage of working with (6) and (7) over working with (3) or the
equations derived from (4), since (6) and (7) provide a clean and free of pathologies
method.

3 Static and spherically symmetric solutions
Let’s consider a static and spherically symmetric (SSS) space-time so the metric is
given by

ds2 = −n(r)dt2 + m(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (8)

where the metric coefficients n and m are functions of the coordinate r solely.
In this case equation (6) yields,

R′′ =
1

3fRR

[
m(κT + 2f −RfR)− 3fRRRR′2

]
+

(
m′

2m
− n′

2n
− 2

r

)
R′ , (9)

where ′ denotes differentiation with respect to r.
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From the t − t, r − r and θ − θ components of equation (7) and using (9) to
abbreviate results, we find

m′ =
m

r(2fR + rR′fRR)

{
2fR(1−m)− 2mr2κT t

t

+
mr2

3
(RfR + f + 2κT ) +

rR′fRR

fR

[mr2

3
(2RfR − f + κT )

−κmr2(T t
t + T r

r) + 2(1−m)fR + 2rR′fRR

]}
, (10)

n′ =
n

r(2fR + rR′fRR)

[
mr2(f −RfR + 2κT r

r)

+2fR(m− 1)− 4rR′fRR

]
, (11)

n′′ =
2nm

fR

[
κT θ

θ −
1

6
(RfR + f + 2κT ) +

R′

rm
fRR

]

+
n

2r

[
2

(
m′

m
− n′

n

)
+

rn′

n

(
m′

m
+

n′

n

)]
. (12)

At this point we can define first order variables Qn = n′ and QR := R′ and
write equations (9)−(12) as dyi/dr = F i(r, yi) to solve them numerically, where
yi = (m,n, Qn, R,QR). It is important to notice that equations (11) and (12) are
not independent, so we can chose one to find the solution we are looking for and the
other to perform a consistency check for the numerical method.

We can notice two things about equations (9)−(12), one is that if we take f(R) =
R they reduce to the equations for SSS coming from general relativity, and the
other is that if we consider the expression for R computed directly from (8) in the
conventional way,

R =
1

2r2n2m2

[
4n2m(m− 1) + rnm′(4n + rn′)− 2rnm(2n′ + rn′′) + r2mn′2

]
, (13)

and substitute n′,m′ and m′′ from (10)-(12) we get the identity R ≡ R, confirming
the consistency of our equations.

To find a solution we still need information about the matter content, so it
is necessary to use the conservation equation ∇aTab = 0 satisfied by the matter
distribution and to specify an equation of state.

For a perfect fluid with Tab = (ρ+ p)uaub + gabp, the conservation equation leads
to p′ = −(ρ+p)n′/2n, which is the modified Tolman-Oppenheimer-Volkoff equation
of hydrostatic equilibrium.

In order to solve the differential equations we require some boundary conditions,
which in this case are given by the imposition of the desired asymptotic behavior
as r →∞ and regularity at r = 0, which will be addressed by expanding the fields
around r = 0 as

φ(r) = φ0 + φ2r
2 +O(r4), (14)
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where φ stands for m,n or R.
The odd powers in (14) are set to zero so that the solution is regular at r = 0,

and the value of φ0 and φ2 will be fixed to impose the desired asymptotic behavior
as r →∞. Without loss of generality, we can impose the local-flatness condition by
setting m0 = 1. The metric function n(r) can be normalize to behave as de Sitter,
n(r) ∼ 1− Λeffr2/3, as r →∞, where Λeff will be defined below.

We demand that as r →∞, R goes to a constant R1 that turns out to be a value
for which the function 2f−fRR vanishes, and consequently we decided to introduce
a "potential" defined as

V (R) = −Rf(R)/3 +

∫ R

f(x)dx (15)

to characterize the possible asymptotic values of R as the critical points of it.
Notice that a constant R1 satisfying V ′(R1) ≡ 1

3
(2f(R) − fR(R)R) |R=R1= 0

solves equation (9) exactly in the vacuum region, so that Λeff ≡ 1
4
R1 plays the role

of a cosmological constant.
From expression (15) we can see that our potential is as well defined as f(R) it

self, so we can use it confidently in our analysis. The introduction of (15) proves to
be useful when performing numerical explorations, as the case is regularly that R1

is not only a critical point of it, but actually a minimum.

3.1 Some examples

A particular topic of interest in any f(R) theory concerns the existence of solutions to
its gravitational equations that are SSS and represent compact objects. Some debate
around this point can be found in the literature, where for an instance regarding the
f(R) suggested by Starobinsky it was claimed in [7] that if an incompressible fluid
was considered, the solution could not exist because of the appearance of singularities
within the object. This assertion was contradicted in [8, 9]. Towards the end of this
section we will use our method to find and present finite solutions for incompressible
fluids.

For the moment, from the f(R)’s in the three boxes of figure (1) we will start
with the study of

f(R) = R− αR∗ln (1 + R/R∗) , (16)

where α and R∗ are positive constants, the latter setting a scale parameter. This
f(R) was introduced and studied in [6], where it was mapped to its scalar-tensor
counterpart, which as we saw in figure (1) had a well defined potential and we should
not expect to disagree with the results found by that method.

In our approach (16) leads to a potential

V (R̃) =
R2
∗

6

{
(1 + R̃)

[
R̃ + (6α− 1)

]
− 2α(3 + 2R̃)ln

[
1 + R̃

]}
, (17)

where R̃ = R/R∗.
A plot of (17) is given in figure (2) where we can see that it has several critical
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Figure 2: Effective potential associated with f(R) = R − αR∗ln (1 + R/R∗) with
α = 1.2

points. To solve the system of equations (9)−(11) we employed a fourth order Runge
Kutta algorithm and by a shooting method, varying the value of R̃ at r = 0, we
found a solution for which as r →∞, R̃ approaches the global minimum R̃1 of (17).

Giving the asymptotic behavior we demanded from n(r), R̃1 corresponds to the
de Sitter value and gives rise to an effective cosmological constant Λeff = R1/4.

The solutions for m,n and R are plotted in figures (3) and (4), where we can
see that, as claimed in [6], no singularities are found. We verified that our method
reproduced correctly the details of the results found in [6]. To confirm that the
numerical method was working properly, we corroborated that all the results we
found using the system of equations (9)−(11) were recovered when using (9),(10)
and (12) in a separate code.

Now we turn our attention to the f(R) put forward by Starobinsky [3]

f(R) = R− λR∗
{

1− [
1 + (R/R∗)2

]−β
}

(18)

with β = 1 which was analyzed in [7, 8, 9] using the transformation to a scalar
tensor theory. As we saw in figure (1) the potential for (18) is not single valued so
it would be expectable to find some discrepancies with the results found previously
for this f(R).

In contrast, following our method, the potential associated with (18) is

V (R̃) =
R2
∗

3

{R̃

2

[
R̃− 4λ− 2λ

(
1 + R̃2

)−1
]
− 3λ arctan

(
R̃

)}
, (19)
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Figure 3: Plot of n(r) = −gtt in red, m(r) = grr in pink and n(r)m(r) = −gttgrr in
blue for the f(R) suggested by Miranda et al. (16) with α = 1.2

Figure 4: Solution for the Ricci scalar R for the f(R) suggested by Miranda et al.
(16) with α = 1.2
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Figure 5: Effective potential associated with the f(R) = R −
λR∗

{
1− [1 + (R/R∗)2]

−β
}

with λ = 1.2, 1.6 and 2

which we plot in figure (5) for three values of λ to show that depending on it being
below or above λcrit ∼ 1.54, the potential has respectively one or three critical points.

By carrying the numerical integration in this case and using different values for
λ we found several types of solutions like the ones we show in figures 6 and 7. For
some values of λ we even found solutions that presented oscillations around R = 0 in
the limit r →∞, which we display in figure (8) and that will be analyzed thoroughly
elsewhere. The relevant fact for the present discussion is that no singularities were
found for R in any of them.

We hope this closes the debate around the existence, or lack thereof, of spherical
solution for this theory that was established, as we already mentioned, when in [7] it
was claimed that this objects unavoidably developed singularities in the Ricci scalar
while in [8, 9] it was assured they didn’t. Of course we blame this contradictory
results on the ill nature of the potential in the associated scalar-tensor theory that
was used to perform the previous studies.

4 Closing remarks
In this contribution we presented a simple way, free of pathologies, to study f(R)
theories and introduce the definition of a potential that proved to be a very useful
tool.
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Figure 6: Plot of n(r) = −gtt in red, m(r) = grr in blue and n(r)m(r) = −gttgrr in
gray for the Starobinsky’s model (18) with λ = 1.56.

Figure 7: Plot for the Ricci scalar R for the Starobinsky’s model (18) with λ = 1.56.
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Figure 8: Similar to Fig.7 with λ = 1.2.

Using some f(R) theories we constructed solutions that had been previously
studied in the literature using their mapping to a scalar tensor theory, and found
that our results coincide for the cases where the mapping is well defined while making
us skeptical about previous results when such a mapping is ill defined. Regarding
the existence of certain spherically symmetric solutions, we solved the debate that
had been held up to now based on methods that were inconclusive given the lack
of mathematical soundness of the correspondence established with scalar tensor
theories.

Something that is important to mention is that there is an inherent contrast
problem when numerically constructing solutions that should represent realistic as-
tronomical objects. This problem arises since this type of gravitational solutions
unavoidably carry two highly dissimilar scales, one corresponding to the density in-
side the object and the other to the density very far from it. The ratio of these two
scales can be of 40 orders of magnitude, hence developing a method that can handle
this contrast is still a challenge, and there is work in progress in that direction.

Another scenario that we are currently perusing is the analysis of cosmological
solutions, since clearly if there was to be an f(R) theory to describe gravity, it should
accommodate all the gravitational configurations that we do observe in nature.
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Abstract. To determine whether there is scope for general relativity to account for the motions
of galaxies in clusters without invoking dark matter, we analyze the gravitational collapse of a
spherically symmetric ball of dust in the general relativistic weak gravity regime. Using the well-
known result that distant external observers do not witness the same motion characteristics as do
local observers, we make the velocity comparison for this model. The velocity observed by external
observers on the basis of general relativity is derived for the critically open case and is seen to differ
markedly from the expectations based upon Newtonian gravity theory. Seen as an idealized model
for a cluster of galaxies, we find that with the general relativistic velocity expression, the higher-
than-expected constituent velocities observed can be readily correlated with the solely baryonic
measure of the mass, removing the need to introduce extraneous dark matter.

In our first paper at this conference, we showed that general relativity could account
for the flat galactic rotation curves, the observation of the essentially constant velocities
of the stars in the galaxies out to their extremities, without the requirement for the con-
ventionally demanded vast reservoirs of exotic dark matter. The central departure from
conventional thinking revolves around the fact that general relativistic nonlinearities can
play an important role even in the context of weak gravity. While there was some in-
dependent support for our work [3], there were several papers offering an interesting
variety of critical remarks. It should be stressed that we have responded toall of our
critics and we stand behind our work. It should also be stressed however, that while we
can account for the high velocity motions of the stars without invoking vast reservoirs
of dark matter in galactic halos, this is based on presently available data. We described a
velocity dispersion test using data of stellar motions above and below the galactic sym-
metry plane to determine the extent of extra matter that may exist beyond the visible
matter.

The single galaxy work that we had described was based on a stationary (i.e. no ex-
plicit time-dependence) solution of the Einstein field equations and it was an approxi-
mate solution. As well, it contained a benign singularity, a density gradient discontinu-
ity, which was incorrectly interpreted by our critics as a manifestation of a negative mass
surface layer equal in magnitude to the entire mass of the galaxy. We demonstrated that
this was an improper interpretation but as we know, critics are not, as a rule, readily won
over.

In searching for a new example to test the effects of general relativity on a collective
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of freely gravitating matter, we seized upon theexactsolution of spherical gravitational
collapse of a ball of dust [4] (Further details of the present work can be found in [4].) The
advantages in this are evident: a) with the solution being exact, approximation issues do
not arise b) the solution is dynamic, adding a new interesting aspect and c) the solution
is totally singularity-free in the phase of analysis under consideration. Specifically, the
analysis is for the phase in which the last dust elements have already reached the point of
forming a discernable ball of material (with purely vacuum beyond the outer surface) and
long before a concentration leading to singularity formation can occur. While the interest
in the collapse problem in the past has focused upon strong gravity leading to singularity
formation (see, e.g. [5] as well as the pioneering paper on gravitational collapse [6]), we
emphasize that we consider here theweakgravity regime, long before any singularity
could be formed. Even though highly idealized, this could be regarded as a special case
model of a cluster of galaxies in evolution where, in the normally unsymmetric case, the
component velocities have been observed to have unusually high velocities, that is to say
high compared to the expectation of Newtonian gravity but still very much smaller than
the speed of light. According to standard accounts, this phenomenon was the historic
origin of the dark matter hypothesis, advanced in the 1930’s by Zwicky, in an effort to
explain the high velocity observations within the context of Newtonian gravity theory.
In this paper, we show that in this idealized model, such relatively high velocities can
be accounted for in principle using general relativity in the absence of an additional
contribution from dark matter.

It is important to distinguish between the general relativistic effects of test particles
falling in vacuumtowards a concentrated central mass versus particles falling freelyas
a collectivein the case of dust with the elements gravitationally interacting with each
other. To do so, we first consider the treatment in the classic Landau-Lifshitz text [7]
(henceforth referred to as “LL”) of the familiar Schwarzschild solution, the spherically
symmetric vacuum gravitational field generated by a spherically symmetric central mass
m. A spherically symmetric metric can be expressed in generality in spherical polar
coordinates in the form

ds2 = eν(r,t)dt2−eΛ(r,t)dr2− r2(dθ2 +sin2θdϕ2) (1)

with units chosen withc = G = 1.
In the case of vacuum, the metric functions are readily found by solving the Einstein

field equations and reflecting the intrinsically static nature of the spherically symmetric
vacuum solution (Birkhoff’s theorem), can be expressed in the time-independent form

eν = 1− 2m
r

, eΛ =
(

1− 2m
r

)−1

. (2)

the well-known “Schwarzschild metric”. In [7], LL transform to comoving “synchro-
nous” coordinates (R,τ) as

τ = t +
Z

f (r)
1− 2m

r

dr

R= t +
Z

1

f (r)
(
1− 2m

r

) dr
(3)
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while leaving θ and φ unchanged. In these coordinates, an observer who is atR =
constantis physically in the state of free-fall.

With f (r) chosen as

f (r) =

√
2m
r

(4)

we find the simple relationship between the coordinates

r =
(

3
2
(R− τ)

)2/3

(2m)1/3. (5)

By so doing, the singularity issues encountered in (1),(2) atr = 2m are removed. The
metric in these new comoving(R,τ) coordinates is then expressed as

ds2 = dτ2− dR2(
3

2(2m)(R− τ)
)2/3

−
(

3
2
(R− τ)

)4/3

(2m)2/3(dθ2 +sin2θdϕ2) (6)

which is now seen to be time-dependent (naturally so, as a free-fall observer sees a
steadily changing picture of the central mass drawing ever closer with the elapse of
time). The standard analysis revolves around the strong gravity regime which evolves as
the proper timeτ approachesRand the singularity emerges atτ = R.

By contrast, our focus will be on the weak gravity regime whereτ�R for all R. This
translates tor � 2mfor all r in the(r, t) frame. Up to the time of our work, such a focus
would likely have never been contemplated: one would have tended to believe that one
might just as well use Newtonian gravity for such weak fields.

The time coordinatet measures time read by the asymptotic observer. The standard
general relativistic treatment concentrates upon the regime of strong gravity where the
difference in perception of the proper velocity of a freely falling test particle as measured
by the local observer in comparison to the measurement of the velocity by the asymptotic
observer becomes particularly significant (see [7]).

In generality the proper radial velocity of a freely falling test particle cannot be
evaluated in the(R,τ) coordinates. This is becauseR is constant for any given particle
in this frame and therefore the radial velocity is always zero in this comoving frame.
For the required ingredients, LL use the solution of the radial geodesic equation for
a freely falling test particle in the usual (non-comoving) Schwarzschild coordinates
(r, t) as employed in (1),(2) which are suitable for this purpose. Using the notation
(x0,x1,x2,x3) ≡ (t, r,θ,φ), the geodesic solution fordr/dt and the metric coefficients
g00 andg11 of (1) are used to evaluate the proper radial velocity

v =−
√
−g11

g00

dr
dt

. (7)

This equals
√

2m/r in magnitude for particles released from rest at infinity and is seen
to approach 1, the speed of light, asr approaches 2m. (The rest release pointr0 in LL
Eq.(102.7) is taken to be infinite here.) However, for asymptotic observers who reckon
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radial distance and time increments asdr anddt, the measured velocity is

dr
dt

=−
(

1− 2m
r

)√
2m
r

(8)

which approaches zero in the very strong gravity regime asr approaches 2m. This is in
stark contrast to the proper radial velocity. However, for weak gravity which is our focus
in this paper, the(1−2m/r) factor in (8) is approximately 1 and the local proper and
asymptotic measures of velocity are approximately equal in the value−

√
2m/r. This

justifies the neglect of general relativity in the context of weak gravity for the case of
test particle motion in spherically symmetric vacuum. From this, we can appreciate the
bias that investigators would have regarding motions of particles and their observations
for the case of weak fields. However motion of a single test particle is not the same as
the motion of a particle that is part of a collective, gravitationally interacting with all of
the particles. The collective has a life of its own in general relativity as we will witness
when we turn to the analysis of spherically symmetric dust collapse.

As with the vacuum case, LL choose comoving coordinates for dust collapse and
structurally as in (6), express the metric as

ds2 = dτ2−eλ(τ,R)dR2− r2(τ,R)(dθ2 +sin2θdϕ2). (9)

The four non-vanishing Einstein field equations are extremely non-linear:

−e−λ(r ′)2 +2rr̈ + ṙ2 +1 = 0, (10)

−e−λ

r

(
2r′′− r ′λ′

)
+

ṙλ̇
r

+ λ̈+
λ̇2

2
+

2r̈
r

= 0 (11)

−e−λ

r2

(
2rr ′′+(r ′)2− rr ′λ′

)
+

1
r2

(
r ṙλ̇+ ṙ2 +1

)
= 8πρ (12)

2(ṙ)′− λ̇r ′ = 0. (13)

In the above, a dot denotes the partial derivative with respect toτ and a prime denotes
the partial derivative with respect toR.

It is remarkable that for such a complicated non-linear set of partial differential
equations, the solution should be expressible in the simple form:

eλ =
(r ′)2

1+E(R)
(14)

ṙ2 = E(R)+
F(R)

r
(15)

r =
(

9F
4

)1/3

(R− τ)2/3 (16)

(E(R) andF(R) are functions of integration) where in (16), we have chosen the part
of the three-stage solution [7] for the case whereE(R) in (15) is taken to be zero, the
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particles being released from rest at infinity in the infinitely distant past (the critically
open case). The simplicity of appearance is deceptive however, since it is only with a
simultaneous use of both coordinate systems that the solution has a simple appearance.
In fact the appearance could lead one to believe that the solution is really the same as is
the case in Newtonian gravity. This would be a serious error as we shall witness in what
follows.

There are two other cases for non-zeroE, the bound and the unbound cases, which
are familiar in concept from classical mechanics. These solutions are expressed in
parametrized form in [7]. In the present study, we focus upon the simplest critically open
caseE = 0. For all three cases, positive, negative or zeroE, the densityρ is incorporated
into the solution as

8πρ =
F ′

r ′r2 . (17)

From (17), a simple integration (see [7]) shows that the massM(R) within the radial
coordinateR is

M(R) =F(R)/2 (18)

and thus the entire massM is given byM(R0) whereR0 is the outer comoving radial
coordinate of the dust ball.

Our focus here is upon the radial dust velocity measured by distant “rest” (i.e.non-
comoving) observers. As with the vacuum case, we must choose new coordinates for
the evaluation of the radial velocity because theR coordinate is constant for any given
dust particle. For the dust case, we continue to use the approach taken by LL for vacuum
and evaluate this radial velocitydr/dt in the Schwarzschild-like(r, t) coordinate frame.
However, unlike the case of vacuum, it is unnecessary to solve the geodesic equations at
this point because the (geodesic pressure-free) motion of the dust medium has already
been solved in the comoving frame. It is this motion that is of concern to us. What is
required is to re-express the solution in Schwarzschild-like(r, t) coordinates.

For consistency with the solution form of (16) and to maintain maximum available
generality, we choose the general form of transformation with arbitrary functionsp(r, t)
andq(r, t),

√
FR= p(r, t) (19)

√
Fτ = q(r, t) (20)

with the constraint

p(r, t)−q(r, t) = (2/3)r3/2. (21)

From (21), we see that

p′(r, t)−q′(r, t) = r1/2, ṗ(r, t) = q̇(r, t) (22)
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where an over-dot denotes∂/∂t and a prime denotes∂/∂r only when acting uponp and
q. Note that these derivative symbols elsewhere refer to partial derivatives with respect
to τ andR respectively.

We take differentials of (19), (20) and with (21),(22), solve fordR and dτ. These
differentials are substituted into (9) to derive the normal form of the metric in
Schwarzschild-like coordinates(r, t) with terms of the formg00dt2 and grr dr2, as
well as an undesired cross-term of the form 2g0rdrdt. This cross-term must vanish to
mesh with the exterior Schwarzschild metric at the vacuum interface and maintain the
useful Schwarzschild-like diagonal form within the ball. This metric form includes a
yet-to-be-determinedp′(r, t) which we set to diagonalize the metric by makingg0r = 0
yielding

p′ =
(3R

√
Fα

2r +
√

rβ)
(α+β)(1−β2)

(23)

where

α =
rF ′

3F
=

rM ′(R)
3M(R)

β =

√
F
r

=

√
2M(R)

r
.

(24)

Also required in the calculation forp′ is eλ which, from (14), is equal to(r ′)2 for E = 0.
In turn, this requiresr ′ which is computed from (16) yielding

r ′ = α+β. (25)

Since theR coordinate is comoving with the matter, we express the condition for
the radial motion of the particles by taking differentials of (19) and settingdR= 0 (for
motion with spherical symmetry,dθ=dφ=0):

p′(r, t)dr + ṗ(r, t)dt = 0 (26)

from which we find the form of the radial velocity of the particles as judged by external
observers

dr/dt =−ṗ(r, t)/p′(r, t). (27)

To solve forṗ(r, t), we first apply∂/∂t to (17):

8π
∂ρ
∂t

=
F ′2

(
α
F +β( F ′′

F ′2
− 1

2F )
)

ṗ

r2(α+β)2(3R
√

Fα
2r +

√
rβ)

. (28)

The derivation of (28) made use of (25)

∂(α+β)
∂t

=
[

F ′

2
√

Fr
+

r
3

(
F ′′

F
− F ′2

F2

)]
∂R
∂t

(29)
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(where (24) has been used) and the elimination of∂R
∂t using

ṗ =
[

F ′R

2
√

F
+
√

F

]
∂R
∂t

(30)

which follows from the partial differentiation with respect tot of (19). Finally, using (23)
and (28) in conjunction with (27) (and with a cancellation of the factor(3R

√
Fα

2r +
√

rβ)),
we find

dr
dt

=−(α+β)(1−β2)
8πr2ρ2

[
α
F

+β
(

F ′′

(F ′)2 −
1

2F

)]−1 ∂ρ
∂t

. (31)

This is the key equation. The complexity of this velocity expression as computed by
observers external to the distribution of matter is in very sharp contrast to the simplicity

of the proper velocity formβ =
√

F
r as witnessed by local observers. However,it is

dr
dt that is the required quantity for astronomical observers.The velocity is deduced
from the Doppler red shift of spectral lines. This shift arises from the relative velocity
of emitter to absorber which isdr/dt as judged by distant observers. Thus,dr/dt is
to be used in the Doppler formula. The local proper velocity would only be used if
the observers were within the vicinity of the emitting galaxies, immersed within the
collective swarm. There is also a gravitational red shift but this is generally of higher
order for weak fields and small velocities.

By contrast, for local observers, it is the massM(R) =F(R)/2 at radii within the point
of interest, that determines the velocity. This is the same as the situation in Newtonian
gravity where for spherical symmetry, no other factors such as local density can affect
the velocity. However, we see in (31) that in general relativity, the external observers
base their perceived velocity measurements on additional factors, the reciprocal of the
local density squared and its time rate of change (also expressible as the time rate of
change of reciprocal density), the gradient of the mass within the radius in question,
M′(R)as well as well as its gradient,M′′(R).

It is interesting to note that in the limit of very strong gravity, withβ approaching 1,
the situation is the same as we witnessed in vacuum: the local observers see the velocity
approach 1 whereas the external observers see the velocity approach 0.

It certainly comes as a surprise that for weak gravity, withβ� 1, the vacuum and dust
comparison is very different. While the measurements for local and asymptotic velocity
for observers plotting freely falling test particles in vacuum in the field of a concentrated
mass are approximately the same, namelyβ, the corresponding velocities for local and
asymptotic measurements for dust are very different in general: the velocity is simply
β for the local measurement whereas the asymptotic measurement is given by the rich
expression (31) with 1−β2 approximated by 1. Indeed, given that the form ofdr/dt in
(31) is so complicated, it would be a very special occurrence fordr/dt to have the value
β. Thus, when astronomers were surprised to witness velocities greater thanβ in galactic
clusters, with what we now know, it would have been more unusual had they witnessed
preciselyβ velocities as there are the various other factors that go into the net velocity
expression.
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Accumulated Mass vs Radius
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FIGURE 1. The upper, middle and lower limits of mass accumulation are described by the functions,
F = 6.641×10−16R1.453, F = 1.244×10−12R1.305 andF = 2.531×10−7R1.066 respectively.

It is of considerable interest to apply (31) to the astrophysical realm. At most locations
in the universe, the gravitational field is weak and Newtonian theory has been deemed
to be perfectly adequate. Thus, when galaxies in clusters, with gravity found to be
weak, were seen to have velocities exceedingβ, dark matter was introduced as the
necessary mass booster to align the observations with enlargedβ. Newtonian theory
formed the basis for the calculations. However, we have seen that general relativity,
which is essentially universally accepted as the preferred theory of gravity, actually
predicts velocities that have elements beyondβ even when the gravity is weak.An
essential point is that the nonlinearities of general relativity involving the interactions
between the elements under investigation, play an important role in this problem, leading
to expressly non-Newtonian behaviour, even though the gravity is weak.

For the Coma Cluster of galaxies, the ratio 2M(R0)/r0 is of order 10−4 assuming the
existence of dark matter and of the order 10−5 by not assuming any dark matter. The
gravity is indeed very weak in this source for the kind of applications to the various
galactic clusters under consideration. Thus as a test model, we consider an idealized
Coma Cluster of galaxies, one of spherical symmetry with the velocities as reported
in [8]. At a radius of 1 Mpc, the total cluster mass, including dark matter, is given as
6.2×1014M�, with the 13%-17% portion being normal baryonic matter. Within a radius
of 3 Mpc, the total mass is reported to be 1.3×1015M�, with the normal luminous matter
portion within the wide range of 20%-40%.

We easily fit these data with an accumulated mass function

F(R) =k1Rk2, (32)

(k1, k2 constants) as shown in Figure 1. WithF(0) = 0 from (32), we are assured that
there is no singularity at the origin [7]. Using (32) in (17), we derive the density profile
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Mass Density Profile
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FIGURE 2. From the three functions,F = 6.641× 10−16R1.453, F = 1.244× 10−12R1.305 and F =
2.531×10−7R1.066, we can derive the mass density as shown in the graph.

for the distribution. The graph of the densities for the two extremes of the uncertainty
range and the average is shown in Figure 2.

The velocity associated with eachF(R) is given by (31) where we can set the
“boosted” velocity as

dr/dt =−nβ (33)

whereβ, as throughout the paper, is composed from the baryonic mass alone andn is
the “booster” number to bringdr/dt to the observed higher level of velocity. Assuming
the baryonic mass is 20%, 30% and 40% of 1.3× 1015M�, we find that the boost
factorsn are 2.23, 1.82 and 1.58, respectively. Applying this to (31), we can solve for
∂ρ/∂t, which is the only unknown factor. The results are: 2.13×10−41kg/m3/sec, 2.62×
10−41kg/m3/sec and 3.02×10−41kg/m3/sec, respectively. Rates such as 10−41kg/m3/sec
are quite reasonable as over a period of one billion years, the density would grow by
10−25 kg/m3, thus roughly doubling the value of the present density.

In this example, we see adequate scope to explain the observed velocities within the
framework of general relativity without the requirement of any extraneous dark matter.
The new elements of local density, its time rate of change, the gradient of the mass inte-
rior to the observation point as well as its gradient are additional factors that ultimately
determine the net observed velocity of the matter by external observers. While this is an
idealized case of perfect spherical symmetry, it would seem reasonable to expect compa-
rable effects for non-spherical accumulations of freely-gravitating collections of bodies
as exist in clusters of galaxies.

It is interesting to consider how the evolution in astronomical thinking might have
differed had astronomers applied general relativity rather than Newtonian gravity to
galactic dynamics in the early years. It is also significant that astronomers continue to
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rely upon Newtonian gravity for their numerical analyses, deploying vast amounts of
computer power, time and effort. We feel that it is important to get the message relayed
to them that Einstein’s gravity is being ignored at their peril.

There is considerable further analysis ahead. To this point we have only dealt with the
simplest caseE(R) = 0. The positive and negative cases forE offer greater freedom
of expression. Ultimately, the ideal would be to formulate the equivalent effects of
general relativity as applied tochaoticweakly- gravitating systems. For this, the general
relativistic equivalent of the virial theorem is called for. This is particularly important
for the galaxies closer to the centers of clusters as these are more strongly virialized.
However, the spherically symmetric treatment in this paper would be more closely
connected with the galaxies at the outer regions of clusters. As well, there is the issue
of the interpretation of lensing as a mechanism for the deduction of mass. The subtleties
of general relativistic weak gravity that we have found in the present work must now
be directed to the consideration of lensing. In addition, the temperature of the baryonic
inter-galactic gas as seen in Xray emission will have to be taken into account properly.

It is important to note that as before ([1], [2]), we are seeing here the power of the
nonlinearities inherent in general relativity in the context ofweakgravity to produce very
significant changes relative to the results expected on the basis of Newtonian theory.

Noting that there are various new elements that come into play in weak field collapse
from the vantage point of the external observers, it would be particularly valuable if
a laboratory or space-based realization of a spherical collapse could be implemented.
If such a design could actually measure with some precision the realization of these
elements of dependency, it could serve as a new test of general relativity.
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A Good Fit to the Missing Mass Problem in
Galaxies and Clusters of Galaxies
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Abstract. Precise measurements of the distribution of matter in galaxies and clusters of galaxies
is essential to resolving the missing mass problem. A universal fitting formula for the distribution
of dark matter is revealed to fit galaxy rotation curves of a sample of 29 galaxies, including high
and low surface brightness and dwarf galaxies in the Ursa Major filament, without introducing the
cusp problem of singular halo profiles. The asymptotic density profile is well described by a steep
power-law, ρ(r) ∝ r−3, at large distances from the center of the galaxy, and an increasingly shallow
power-law toward the center of the galaxy approaching a rarified, constant density core, where
visible baryons dominate the Newtonian force law. The same universal fitting formula is revealed
to fit cluster mass profiles of a sample of 10 X-ray clusters of galaxies. The variation of the ratio of
the inferred Newtonian dynamic mass to the observed baryon mass is compared across the scales,
demonstrating the crucial role played by baryons, and defining what a good theory must achieve in
order to provide a good fit to the missing mass problem, and provide a test bed for the predictions
of general relativity, constraining modified theories of gravity.

Keywords: Masses and mass distribution, Dark Matter, Modified Theories of Gravity
PACS: 98.62.Ck,95.35.+d,04.50.Kd

1. INTRODUCTION

Enormous strides have been taken to understand the growth of the large scale structure
of the Universe from studying the anisotropy power spectrum of the cosmic microwave
background [1, 2], and cross-correlating these measurements with the baryon acoustic
oscillations imprinted on the spatial distribution of the clustering of galaxies [3, 4, 5],
and with the luminosity distances of Type Ia Supernovae [6]. Flat (or nearly-flat) cosmo-
logical models with a mixture of radiation, ordinary baryonic matter, cold collisionless
dark matter and cosmological constant (or quintessence) and a nearly scale-invariant
adiabatic spectrum of primordial density fluctuations provide remarkable fits to large
scale (� 1 Mpc) observations. While substantial progress has been made in constrain-
ing the flat-ΛCDM cosmological parameters to within a few percentages [7], there is
still a lack of understanding of the evolution of the baryonic component, which is deeply
connected with the formation and evolution of structure at various scales [8]. There re-
mains a large amount of data on galactic and sub-galactic scales (� 100 kpc) which
require universal explanation [9]. As computing power increases, and hydrodynamical
simulations improve, it is unclear whether the inner dark matter density converges to a
single power-law form, rather than becoming progressively shallower in slope at smaller
radii [10, 11]. Analysis of galaxy rotation curves for late-type spiral galaxies indicate
that they must have shallow, non-cusped dark matter profiles, most noticeable for dwarf
galaxies [12, 13, 14]. Analysis of X-ray clusters of galaxies indicate inner slopes for the
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total mass profiles ranging from steep to shallow, most shallow for the smallest concen-
tration of the gas mass fraction, [14, 15].

Our current knowledge of the baryon component comes from multiwavelength ob-
servations, including the 21 cm emission for neutral HI, infrared photometry of the in-
terstellar medium, X-ray spectral imaging for the > 107K intracluster medium, radio
synchrotron emission for high-energy plasma, and the velocity and turbulence fields of
galaxies and clusters of galaxies. Combined multiwavelength observations culminate in
high-resolution galaxy rotation curves and X-ray cluster images [14]. Outstanding sci-
entific questions include:

I How does the Universe evolve from large linear scales dominated by dark matter to
the non-linear scales of galaxies and clusters, where baryons and dark matter both
play important, interacting, roles?

I Do relaxed structures exhibit steep or increasingly shallow density profiles in the
central regions due to cores of dense baryons?

I What is the dark matter self-interaction coupling strength? Can the nature of dark
matter be sufficiently constrained to predict a candidate particle from the list of
standard model extensions?

I In the absence of dominant dark matter, is there a modification to the theory of
gravity which can solve the missing mass problem, at all scales, universally?

To address these questions, the technique of imaging dark matter halos is presented
in §2, and we present what is known about the global mass to light ratio in §3 by
considering a sample of 19 high surface brightness (HSB) spiral galaxies and 10 low
surface brightness (LSB) spiral galaxies from the Ursa Major filament in §3.1 and a
sample of 10 X-ray clusters of galaxies in §3.2. Conclusions are drawn in §4.

2. IMAGING DARK MATTER HALOS

Ostriker et al. [16] argued that the masses of ordinary galaxies – found by assuming a
constant mass-to-light ratio – may have been underestimated by a factor of 10; but that
the galaxy rotation curves in the inner regions provide almost no information about the
exterior halo masses. Upon application of a Newtonian force law,

a(r) =−GNM(r)
r2 , (1)

where GN is Newton’s constant measured experimentally1, one may obtain the Newto-
nian dynamic mass, M(r), which is the mass interior to the sphere of radius, r, needed
to support the galaxy rotation curve.

Ostriker et al. [16] observed that although the surface luminosity profiles, L(r), do
appear to be convergent, the Newtonian dynamic masses, M(r), diverge with r either

1 GN = 6.67428(67)×10−11m3kg−1s−2 [NIST 2006 CODATA value]

A Good Fit to the Missing Mass Problem in Galaxies and Clusters of Galaxies November 18, 2010 2

PyV
Texto escrito a máquina
204



weakly (logarithmic) or strongly (linear) depending on the method of measurement, and
concluded that within local giant spiral galaxies,

M(r) ∝ r for 20 kpc ≤ r ≤ 500 kpc. (2)

High-resolution galaxy rotation curves, for both HSB and LSB spiral galaxies, can be
fitted to the total mass density profile

ρ ∝ r−γ(r). (3)

The fits grossly reproduce the observed flat rotation curves with 〈γ〉= 2, corresponding
to mass profiles which diverge linearly with distance. The divergent mass-to-light ratio
necessitates the existence of giant halos surrounding ordinary galaxies of dark matter –
the implied density distribution similar to isothermal gas spheres in the outer parts, [17]

ρ(r) =
ρ0r2

c
r2 + r2

c
, (4)

where rc is the core radius and ρ0 is the central dark matter density. In the limit of small
r � rc, the isothermal sphere model approaches a constant density core. Spherically
integrating the constant density core model of Equation (4) one obtains a simple fitting
formula for the mass of dark matter,

M(r) = 4πρ0r3
c

{
r
rc
− tan−1(r/rc)

}
, (5)

which diverges with the behavior of Equation (2), for r� rc.
In search of a universal description of collisionless dark matter, Navarro et al. [18, 19]

provided power-law fits to halo density profiles using N-body simulations, showing that
halo profiles are shallower than r−2 near the center and steeper than r−2 near the virial
radius. The NFW profile is then a simple fitting formula to Equation (3), with a radially
varying power-law 1≤ γ(r)≤ 3, to describe spherically averaged density profiles:

ρ(r) =
ρ0r3

s
r(r+ rs)2 . (6)

Spherically integrating the NFW profile of Equation (6) one obtains a simple formula
for the mass of dark matter,

M(r) = 4πρ0r3
s

{
ln(r+ rs)− ln(rs)−

r
r+ rs

}
, (7)

which diverges logarithmically, for r� rs. In the limit of small r� rs, the NFW fitting
formula of Equation (6) approaches the power-law with γ → 1; and in the limit of large
r� rs approaches the power-law with γ → 3 – which does not approximate isothermal
spheres. Navarro et al. [18] reported that rotation curves from galaxies ranging in size
from giant to dwarf, satellites and gaseous atmospheres are compatible with the NFW
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halo structure of Equation (6) provided the mass-to-light ratio increases with luminosity.
Navarro et al. [18] determined that the central regions of the NFW distribution have
densities comparable to the luminous parts of galaxies. Because there is a great amount
of luminous stellar material in the cores of spiral galaxies and a deficit at large radii,
the general consensus is that the dark matter halo component is not described by an
isothermal sphere, but a model with a monotonically rising γ(r) such that γ(r)� 2
inside the baryon dominated core, and γ(r)� 2 outside several Einstein radii.

Burkert [20] fitted a sample of several dark matter dominated dwarf galaxies employ-
ing a phenomenologically modified universal fitting formula,

ρ(r) =
ρ0r3

s
(r+ rs)(r2 + r2

s )
. (8)

which, as in the case of the isothermal sphere of Equation (4), approximates a constant
density core, γ → 0 at r� rs – instead of a divergent γ = 1 core – but otherwise agrees
with the NFW profile, with γ → 3 at r >> rs. Spherically integrating the Burkert model
of Equation (8), one obtains an analytic fitting formula for the mass of dark matter,

M(r) = πρ0r3
s
{

ln(r2 + r2
s )+2ln(r+ rs)−4ln(rs)−2tan−1(r/rs)

}
, (9)

which diverges logarithmically, for r� rs.
Observationally, when including baryons, cores of galaxies and clusters of galaxies

are better fitted by a generalized fitting formula to account for more or less cuspy cores.
Zhao [21] hypothesized that the NFW fitting formula must be broadened to account for
the basic observed features of galactic dynamics, including less cuspy cores:

ρ(r) =
ρ0rm

s

rn(rα + rα
s )

(m−n)/α
, (10)

where (α,m,n) are free parameters. The NFW fitting formula of Equation (6) corre-
sponds to Equation (10) with an inner cusp with logarithmic slope n= 1, an outer corona
with logarithmic slope m = 3, and a “turnover” exponent of α = 1. Syer and White [22]
argued that the existence of a γ � 1 core is inconsistent with the hierarchical formation
scenario of dark halos, which are much more likely to result in cuspy central density
distributions. The least cuspy fitting formula, the isothermal spheres of Equations (4)
and (5) correspond to Equation (10) with a constant density inner core with logarithmic
slope n = 0, an outer corona with logarithmic slope m = 2, and a “turnover” exponent
of α = 2. Although Burkert’s fitting formula of Equation (8) cannot be expressed in the
form of Equation (10), it does bridge the constant density, γ → 0, core behavior of the
isothermal sphere with the γ → 3 large r behavior of the NFW profile.

Mechanisms involving angular momentum transfer and dynamical friction may work
to flatten the cusp in the cores of galaxies and clusters by dissipating the energy of
the baryonic component, possibly overwhelming the reciprocal effect of adiabatic com-
pression [23, 24, 25, 26, 27, 28]. Sand et al. [29, 30] used a spectroscopic survey of
gravitational arcs in a sample of clusters with stellar velocity dispersion data, and found
shallower dark matter profiles in the central regions. Newman et al. [31] used weak and
strong lensing data, coupled with resolved stellar velocity dispersion data, to provide a
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detailed analysis of the baryonic and dark matter distribution in the lensing cluster Abell
611 between 3 kpc to 3.25 Mpc, and found shallower dark matter profiles in the central
regions. Zitrin and Broadhurst [32], Zitrin et al. [33] used strong galaxy lensing around
the most massive X-ray luminous cluster systems, producing surface density maps with
shallow mass profiles due to relatively unconcentrated dark matter halos, with steeper
profiles in the center due to the contribution of central galaxies.

A simple choice for the dark matter halo, corresponding to Equation (10), which
allows for the observed baryon distributions, without adding to the cusp problem, and
fits both galaxy rotations curves and X-ray cluster mass profiles across all scales [14], is
the Brownstein profile:

ρ(r) =
ρ0r3

s
r3 + r3

s
, (11)

with a constant density inner core with logarithmic slope n = 0, an outer corona with
logarithmic slope m = 3, and a turnover exponent of α = 3. Without the core of baryons,
Equation (11) approximates a constant density core, γ → 0 at r � rs – instead of a
divergent γ = 1 core – but otherwise agrees with the NFW profile, with γ→ 3 at r >> rs.
Spherically integrating the density profile of Equation (11), one obtains the Brownstein
fitting formula for the mass of dark matter,

M(r) =
4
3

πρ0r3
s ln
(

1+
r3

r3
s

)
, (12)

which diverges logarithmically, for r� rs. The concentration parameter,

c≡ r200/rs, (13)

where r200 is the radius at which the dark matter density is 200 times the Λ-CDM critical
density, follows from

M(x)
M200

=
ln(1+ c3x3)

ln(1+ c3)
, (14)

where x = r/r200, M200 is the mass of dark matter enclosed by a sphere of radius r200,
and M(x) is the mass of dark matter enclosed by a sphere of radius x in units of r200.

The surface mass density for the profile of Equation (11) is calculated by projecting
the radial coordinate, r =

√
R2 + z2, and integrating the density along the line-of-sight,

z:

Σ(R) = 2ρ0r3
s

∫
∞

0

dz

(R2 + z2)
3
2 + r3

s

, (15)

where R is in the plane perpendicular to the line-of-sight, z. The surface mass density is
a maximum at R = 0:

Σ(0) =
4ρ0rs

√
3π

9
, (16)

and then drops off as
Σ(R) = 2ρ0r3

s
R2 R > rs. (17)
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Utilizing the form of the power-law of Equation (3), the power-law index of the profile
of Equation (11) is minus the logarithm slope

γ(r) =−d lnρ(r)
d lnr

=
3r3

r3 + r3
s
. (18)

The central density, ρ(0) = ρ0, is finite and may be written in terms of the Λ-CDM
critical density, ρc(z), and the dark matter central overdensity, δ0,

ρ0 = ρc(z)δ0, (19)

where z is the redshift. Moreover, the dark matter density at r = rs is one-half the central
density,

ρ(rs) =
1
2

ρ0, (20)

and the power-law index of Equation (18) is

γ(rs) = 3/2, (21)

which is the intermediate value between the inner core with logarithmic slope γ → 0,
and outer corona with logarithmic slope γ → 3. This means that the halo’s constant
density core is limited to the region r < rs, where baryons dominate the galaxy, which is
important for N-body simulations.

Although the baryons represent a small fraction of the total, including their distribu-
tion is dynamically important in the cores of galaxies and rich clusters, and the combi-
nation of visible baryons and the dark matter mass of Equation (12) produces a mass
function which correctly fits galaxy rotation curves, and X-ray cluster mass profiles, as
shown in §3.1 and §3.2, which is neither the case for the pseudo-isothermal sphere nor
the NFW profile. Using cosmological N-body simulations, Davé et al. [34] showed that
generalizations of the NFW profile, such as Equation (11), may alleviate the problems
arising from the singular NFW profile due to a shallower core, and Wyithe et al. [35]
showed that generalized gravitational lenses may resolve further observational discrep-
ancies.

3. THE GLOBAL MASS TO LIGHT RATIO

The missing mass problem in galaxies and clusters of galaxies is best quantified by
calculating the spherically averaged global mass to light ratio,

ϒ(r) = M(r)/L(r), (22)

where M(r) is the dynamically inferred mass inside a sphere of radius, r, and L(r) is the
observed luminosity integrated over the same region. We assume that the baryon mass
to light ratio,

ϒbaryon = Mbaryon(r)/L(r), (23)
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is constant for a particular object, and so we may write the global mass to light ratio,

ϒ(r) = ϒbaryonΓ(r), (24)

in terms of the dynamic mass ratio:

Γ(r)≡M(r)/Mbaryon(r). (25)

The dynamic mass is computed according to the Newtonian force law of Equation (1),
in which case a halo of dark matter is required to explain the missing mass:

M(r) = Mbaryon(r)+Mhalo(r), (26)

as demonstrated in §3.1.1, or the dynamic mass is computed according to a particular
modified theory of gravity according to Equation (25),

M(r) = Γ(r)Mbaryon(r), (27)

where the dynamic mass factor,

Γ(r) = G(r)/GN , (28)

depends on the particular modified gravity acceleration law:

a(r) =−G(r)Mbaryon(r)/r2. (29)

The form of Equation (29) can be applied to any modified theory of gravity which
deviates from the Newtonian inverse square law, including Milgrom’s MOND [36, 37]
as shown in §3.1.2, and Moffat’s MOG [38, 39, 40, 41, 42, 43] as shown in §3.1.3.

3.1. Galaxy Rotation Curves

3.1.1. Dark Matter

Every galaxy from the highest to lowest in surface brightness demonstrates a missing
mass problem which increases with orbital distance from the center of the galaxy, and
is greatest at the outermost extent of each galaxy, increasing monotonically with orbital
distance. In Brownstein [14, Chapter 4], 29 HSB and LSB galaxy rotation curves were
fitted with high-resolution Spitzer space telescope photometry using the dark matter
fitting formula of Equation (11), producing excellent best fits to all of the galaxies
including the dwarf galaxies, with consistent stellar mass to light ratios, showing a
statistically significant reduction of the χ2 per degree test of freedom in ∼ 90% of the
galaxies, over that of the NFW profile of Equation (6).

Figure 1a shows a comparison of galaxy rotation curves for the HSB galaxy
UGC 6973, with the Brownstein model of Equation (11), shown in blue, and the NFW
model of Equation (6) shown in yellow. All of the orphan features (kinks in the galaxy

A Good Fit to the Missing Mass Problem in Galaxies and Clusters of Galaxies November 18, 2010 7

PyV
Texto escrito a máquina
209



1

v(r) data red filled circles with error bars HI gas green dot-dotted line

M(r) data red crosses with error bars Stellar disk magenta dotted line

Baryons (no Dark Matter) black short-dash-dotted line

Brownstein with Baryons blue solid line Brownstein halo blue dashed line

NFW with Baryons yellow dash-dotted line NFW halo yellow dash-dot-dotted line

r [kpc]

v
(r

)
[k

m
s−

1
]

109876543210

200

175

150

125

100

75

50

25

0

(a) Galaxy Rotation Curve

r [kpc]

M
(r

)
[M

"
]

100101

1012

1011

1010

109

108

107

(b) Mass Profile

r [kpc]

γ
(r

)

20151050

4

3

2

1

0

(c) Powerlaw Index

R [kpc]

Σ
(R

)
[M

"
/p

c2
]

100101

104

103

102

101

100

(d) Surface Mass Density

FIGURE 1. High surface brightness (HSB) dwarf spiral galaxy UGC 6973 [14, Chapter 4].

rotation curve) were correctly repatriated to the luminous components. The integrated
mass profiles, M(r), demonstrate the transition between the baryon dominated core and
the dark matter dominated halo, as shown in Figure 1b. Both models models produce
logarithmically divergent mass functions. However, the Brownstein model requires a
much less massive halo and allows for a physically reasonable stellar mass to light
ratio, consistent across the entire sample. Every galaxy differed strongly from a single
power-law density profile, ρ ∝ r−γ . However, the NFW model requires a significantly
smaller stellar mass to light ratio, so that the variation in the logarithmic density slope,
γ(r) according to Equation (3), shown in Figure 1c, is approximately the same with or
without baryons. Conversely, including the HI (and He) gas and stellar disk photometry
led to a baryon corrected power-law index, γ(r) , varying between 1 (at small r, within
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FIGURE 2. Low surface brightness (LSB) dwarf spiral galaxy NGC 4010 [14, Chapter 4].

the baryon dominated core) and 3 (at large distances, within the dark matter halo).
Surface mass density maps, Σ(R), were produced for each galaxy as predictions for
gravitational lensing studies, as shown for UGC 6973 in Figure 1d. Predictions for
the Brownstein model differ from the NFW profile, which is everywhere dark matter
dominated. However, like the NFW profile, the Brownstein model including baryons is
nowhere flat.

Overall, the Brownstein model of Equation (11) provided very low χ2 fits for each of
the 19 HSB galaxies and each of the 10 LSB galaxies. This was not the case for the NFW
model of Equation (6), which either fit the galaxy rotation curves very well, or failed to
provide χ2 best-fits for any positive definite stellar mass to light ratio. Figure 2a shows
a comparison of galaxy rotation curves for the LSB dwarf galaxy NGC 4010, with the
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Brownstein model of Equation (11), shown in blue, and the NFW model of Equation
(6) shown in yellow. The Brownstein model repatriated all of the orphan features by
requiring a stellar mass to light ratio consistent across the sample, whereas the NFW
model required a nearly vanishing stellar mass to light ratio.

The integrated mass profiles, M(r), demonstrate the transition between the baryon
dominated core and the dark matter dominated halo, as shown in Figure 2b for the
Brownstein model, whereas the the mass budget in the NFW model is everywhere
dominated by dark matter. Remarkably, including the HI (and He) gas and stellar disk
photometry led to a baryon corrected power-law index, γ(r) , for the Brownstein
model, varying between 1 (at small r, within the baryon dominated core) and 3 (at large
distances, within the dark matter halo), nearly identical to the NFW model which has
completely suppressed the baryons by requiring a nearly vanishing stellar mass to light
ratio, as shown for NGC 4010 in Figure 2c. As in the case of UGC 6973, the predicted
surface density maps, Σ(R), for gravitational lensing studies, as shown for NGC 4010
in Figure 2d show a baryon enhanced core for the Brownstein model, whereas the NFW
model is everywhere dark matter dominated.

3.1.2. Milgrom’s Modified Newtonian Dynamics (MOND)

The strong equivalence principle may be violated by preferred space-time fields. Mil-
grom [36] challenged the hidden mass hypothesis and introduced a nonrelativistic modi-
fication of Newtonian dynamics (MOND) at small accelerations, a < a0, whereupon the
gravitational acceleration of a test particle is given by

aµ

(
a
a0

)
= aN, (30)

where µ(x) is a function that interpolates between the Newtonian regime, µ(x) = 1,
when x� 1 and the MOND regime, µ(x) = x, when x� 1. Milgrom [37] introduced
the interpolating function normally used for galaxy fitting,

µ(x) =
x√

1+ x2
, (31)

where

x≡ x(r) =
∣∣∣∣∇Φ(r)

a0

∣∣∣∣= ∣∣∣∣a(r)a0

∣∣∣∣ , (32)

and determined that a0 ≈ cH0/6, implying a cosmological connection to MOND:

a0 = 1.0×10−8 cm s−2. (33)

Substituting Equations (31) and (32) into Equation (30) gives,

a(r)2√
a(r)2 +a2

0

= aN(r), (34)
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which has the solution,

a(r) = a0

√√√√1
2

(
aN(r)

a0

)2

+

√
1
4

(
aN(r)

a0

)4

+

(
aN(r)

a0

)2

, (35)

written in terms of the Newtonian acceleration of a test particle at a separation, r,

aN(r) =
GM(r)

r2 , (36)

where M(r) is the baryonic mass integrated within a sphere of radius, r. Substituting
Equation (36) into Equation (30), the MOND acceleration law can be written,

a(r) =
1

µ(r)
GNM(r)

r2 , (37)

and therefore MOND can be interpreted as gravity theory with a varying gravitational
coupling according to Equation (29), with

G(r) =
GN

µ(r)
, (38)

and a dynamic mass factor, as defined by Equation (28), with

Γ(r) =
1

µ(r)
, (39)

where Γ(r) ∼ 1 in the Newtonian regime and Γ(r)� 1 in the MOND regime. It is
important to note that MOND has a classical instability in the deep MOND regime
corresponding to µ → 0 which leads to a divergent gravitational coupling, Γ(r)→ ∞,
and that MOND violates the strong equivalence principle for all µ 6= 1.

For gravity fields interior to galaxies and clusters of galaxies, the accelerations are
sufficiently small that the MOND interpolating function, µ(x)� 1, so that the Newto-
nian dynamic mass determined by MOND is much larger than the actual mass visible in
the system, so that MOND may be an alternative to dark matter in these systems.

3.1.3. Moffat’s Modified Gravity (MOG)

Clayton [44] showed that Moffat’s massive nonsymmetric gravity theory (NGT) be-
comes identical to a Kalb-Ramond-Proca field [45] with an additional curvature cou-
pling term when considered as a perturbation about a Ricci-flat background. Moffat
[46, 47], Moffat and Sokolov [48] determined that in the weak-field approximation of
the massive NGT relevant to galaxy dynamics, a range dependent Yukawa-type, fifth
force [49] emerges in addition to the Newtonian 1/r2 central force; and asserted that this
additional potential due to the interaction of the field structure with matter in the halos of
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galaxies can explain galaxy rotation curves. van Nieuwenhuizen [50] found that the only
massive antisymmetric tensor or vector fields free of ghosts, tachyons and higher-order
poles in the propagator for linearized gravitation are the Maxwell-Proca fields. Isenberg
and Nester [51] determined that only Maxwell fields, Proca fields, and purely longitu-
dinal vector fields are free of instability when minimally coupled to gravity. Damour
et al. [52] analyzed a class of physically consistent and ghost-free nonsymmetric grav-
ity models with finite range massive gauge bosons, such as Moffat’s massive NGT, and
showed that the Kalb-Ramond-Proca field leads to minuscule – as yet unmeasured –
deviations from Newtonian gravity at terrestrial scales consistent with stringent experi-
mental bounds on possible violations, and the field may acquire gravitational strength
at sufficiently large astrophysical scales.

Moffat [38] introduced Metric skew-tensor gravity (MSTG), where the modified
acceleration law results from coupling the Kalb-Ramond-Proca field of the massive NGT
to Einstein’s metric. At astrophysical scales, the emergent low energy Yukawa meson is
the only feature of the massive NGT left in MSTG to explain galaxy rotation curves.

Moffat [39] introduced the scalar-tensor-vector gravity (STVG) theory by adding a
simpler, massive and self-coupled Maxwell-Proca field coupled to matter and gravity.
The STVG effectively captures the fifth force due to a weak-field emergent Yukawa
meson, simulating the predictions of massive NGT and MSTG, to leading order.

Moffat’s modified gravity (MOG) theories have an acceleration law with a varying
gravitational coupling according to Equation (29), with

G(r) = GN

{
1+α

[
1− exp(−µr)(1+µr)

]}
, (40)

and a dynamic mass factor, as defined by Equation (28), with

Γ(r) =
{

1+α

[
1− exp(−µr)(1+µr)

]}
, (41)

In the absence of analytic solutions, MSTG requires phenomenological input from the
Tully-Fisher relation, leading to the parameters, M0 and r0,

α =

√
M0

M
, (42)

µ = 1/r0, (43)

used to fit galaxy rotation curves and X-ray cluster masses [40, 41, 42].
Moffat and Toth [43] showed that phenomenological input can be avoided in STVG

by integrating the equations of motion in the weak-field, spherically symmetric limit,
leading to solutions for α and µ as functions of the mass M,

α =
M(√

M+E
)2

(
G∞

GN
−1
)
, (44)

µ =
D√
M
, (45)

where the parameters, D, E and G∞, are constants of integration to be determined.
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FIGURE 3. Comparison of The Brownstein dark matter model to Milgrom’s MOND, and to Moffat’s
MSTG and STVG theories for the high surface brightness (HSB) dwarf spiral galaxy UGC 6973 [left
panels], and low surface brightness (LSB) dwarf spiral galaxy NGC 4010 [right panels] [14, Chapter 4].
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Brownstein [14, Chapter 4] fitted a sample of 19 HSB and 10 LSB galaxies, compar-
ing the Brownstein dark matter model to Milgrom’s MOND, and Moffat’s MOG.

To compute the MOND universal acceleration parameter, the MOND acceleration law
of Equation (35) was applied with a variable a0 yielding the subsample averages:

a0 =

{
(1.34±0.66)×10−8 cm s−2 HSB galaxy subsample,
(1.02±0.78)×10−8 cm s−2 LSB galaxy subsample.

(46)

Because of the gross uncertainty in the averaged results, all galaxy rotation curves were
refitted using Equation (33) universally.

The computation of the universal parameters in Moffat’s MOG was performed by
allowing M0 and r0 in MSTG, and D, E, and G∞ in STVG to vary across the sample of 29
HSB and LSB galaxies, with the overall best-fitting results for each theory, respectively:

D = (6.4±0.2)
√

M�pc−1, E = (28.4±7.9)×103M1/2
� , G∞ = (24±18)GN , (47)

M0 = (98.6±21.6)×1010M�, r0 = (16.4±6.1)kpc. (48)

The galaxy rotation curves were subsequently refitted as one parameter best-fits by
varying only the stellar mass-to-light ratio, ϒ, using Equations (47) and (48) universally.

Comparison of the best-fit galaxy rotation curves for UGC 6973, plotted in Figure
3a, shows that Moffat’s MOG theories with universal parameters across the subsample
perform as well as Milgrom’s MOND theory, but not as well as the Brownstein dark
matter model with variable dark matter halo parameters, ρ0 and rs. However, comparison
of the best-fit galaxy rotation curves for NGC 4010, plotted in Figure 3b, shows that
Milgrom’s MOND and Moffat’s MOG with universal parameters do as well as the
Brownstein dark matter model, whereas the NFW model plotted in Figure 2b does
not provide a comparable low χ2 fit. Perhaps most significantly, the total mass with
dark matter in the Brownstein model showed the least scatter of any of the Tully-Fisher
relations, even when compared to Milgrom’s MOND and Moffat’s MSTG, which receive
phenomenological input from the Tully-Fisher relation.

In order to better distinguish the models, it is necessary to perform precise strong
gravitational lensing measurements of the total surface mass density, Σ(r), plotted in
Figure 3c and Figure 3d for UGC 6973 and NGC 4010, respectively.

Nevertheless, it is remarkable that every model provides a similar picture in terms
of the dynamic mass factor of Equation (25), plotted in Figure 3d and Figure 3e for
UGC 6973 and NGC 4010, respectively. For the complete sample of 29 galaxies, the
dynamic mass factor varies as,

Γ(r)→ 1 as r→ 0, (49)

3 . Γmax(r). 7 as r→ rmax. (50)

Therefore, we may conclude that every galaxy has a central core of baryons, outside of
which there must be either a halo of dark matter, or a modified gravity region, which
dominates the gravitational potential. This trend common among galaxy rotation curves
is not seen in X-ray cluster masses, as detailed in §3.2, where the dynamic mass factor
varies according to Equation (51), in contrast to Equations (49) and (50).
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FIGURE 4. Comparison of The Brownstein dark matter model to Milgrom’s MOND, and to Moffat’s
MSTG and STVG theories for the Coma, Norma and Abell 400 X-ray clusters, showing mass profiles
[left panels], and dynamic mass factors [right panels] [14, Chapter 5].
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3.2. X-ray Cluster Imaging

Every X-ray emitting cluster of galaxies from 10 million degrees to 170 million
degrees demonstrates a missing mass problem which is greatest at the center, and
decreases with orbital distance from the center of the cluster, as seen by the variation
in the dynamic mass factor of Equation (25), which varies as,

7 . Γmax(r). 500 as r→ 0, (51)

and Γ(r) decreases monotonically with orbital distance. Therefore, every cluster of
galaxies is everywhere dominated by either dark matter, or modified gravity everywhere
dominates the gravitational potential, particularly towards the center. Moreover, the
missing mass problem is considerably stronger in clusters of galaxies, than galaxies.

Brownstein [14, Chapter 5] fitted a sample of 10 X-ray clusters of galaxies taken from
a sample of 106 X-ray clusters [53, 54] considered in [41], comparing the Brownstein
dark matter model of Equation (11) to Milgrom’s MOND, and Moffat’s MOG theories.
The Brownstein dark matter model provided excellent fits with low χ2 to every X-ray
mass profile in the sample, as shown in Figure 4 for Coma, Norma and Abell 400, for
example, whereas attempts to fit cluster mass distributions to NFW profiles led to large
uncertainties due to a parameter degeneracy between the central density parameter, ρ0,
and the scale radius, rs, which prevented the computation of the best-fit ρ0 and rs from
converging, regardless of the χ2. Without numerical convergence, the NFW results either
over-predict the density at the core or under-predict the total mass.

Although MOND predicts convergent mass profiles, none matched any of the ob-
served distributions to low χ2. Treating the MOND universal acceleration, a0, as a vari-
able parameter did little to improve the χ2 because the dynamic mass factor predicted by
MOND at the scale of clusters of galaxies does not correctly track the data, as shown in
the rightmost panels of Figure 4, whereas the Brownstein dark matter model follows the
data across the entire cluster within one standard deviation, for every cluster of galaxies,
tracking the data with a large, and nearly constant, Γ(r), which decreases monotonically
at large radii.

Moffat’s MSTG was not able to provide low χ2 fits to any of the clusters of galaxies
with the universal parameters of Equation (48), determined from fitting the galaxy
rotation curves. In order to better determine the scale dependence of the parameters,
it is reasonable to treat the MSTG mass and range parameters as variable and to perform
two-parameter best-fits to the X-ray gas masses of the sample of clusters of galaxies.
MSTG was able to provide moderate to low χ2 fits to all of the X-ray mass profiles by
allowing variable M0 and r0, as shown in the leftmost panels of Figure 4. The dynamic
mass factors in MSTG, plotted in the rightmost panels of Figure 4, are similar to the
Brownstein model at large distances from the cluster center, but do not track the data
with the observed constant Γ needed to fit the core. Whereas tabulation of the best-
fit MSTG parameters provided no statistical support for universal constants, there was
strong statistical support that the MSTG parameters are scale-dependent.

Moffat’s STVG was not able to provide low χ2 fits to any of the clusters of galax-
ies with the universal parameters of Equation (47), determined from fitting the galaxy
rotation curves. Whereas every weak fitting STVG one-parameter best-fit by a variable
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stellar mass-to-light ratio, ϒ, show dramatic improvement and reduction in the reduced
χ2/ν statistic using a four-parameter best-fit including variable parameters, the tabula-
tion of D, E, and G∞ provided no statistical support that the STVG integration constants
are universal. However, for values of D sufficiently large and values of E sufficiently
small, the STVG gravitational coupling and dynamic mass factor of Equations (40) and
(41), respectively, simplify to their asymptotic form,

G(r) = G∞, Γ(r) = G∞/GN , (52)

and are independent of r. Therefore, in order to determine the scale dependence of the
STVG asymptotic coupling, it is reasonable to treat G∞ as variable and to perform
one-parameter best-fits to the X-ray gas masses of the sample of clusters of galaxies,
shown in the leftmost panels of Figure 4. Because the STVG dynamic mass factor is
constant, whereas the data is only constant in the core and then monotonically decreasing
thereafter, the spherically symmetric STVG model does not correctly track the missing
mass problem in clusters of galaxies, as shown in the rightmost panels of Figure 4.

4. CONCLUSIONS

The Brownstein model of Equation (11) does provide a universal fitting formula from
which excellent fits, with low χ2, are obtained across the scales from dwarf galaxies
to the largest cluster of galaxies, provided the observed baryons are not neglected in the
mass budget. This is an important step in imaging dark matter halos, particularly because
the NFW model of Equation (6) fails at the low mass scale of dwarf galaxies, and at the
high mass scale of X-ray clusters of galaxies. Conversely, none of the alternatives to
dark matter considered in [14] fit the missing mass problem with common universal
parameters across the scales from dwarf galaxies to clusters of galaxies. This suggests
that if the equivalence principle is violated at astrophysical scales with sufficient strength
to explain the missing matter problem, then the process must be dynamical, allowing for
running coupling constants, explaining the success of Moffat’s MOG to fit the data at all
scales with variable parameters.
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J. E. Gunn, Ž. Ivezić, G. R. Knapp, R. G. Kron, J. Loveday, R. H. Lupton, T. A. McKay, A. Meiksin,
R. C. Nichol, A. C. Pope, D. J. Schlegel, D. P. Schneider, D. N. Spergel, C. Stoughton, M. A.
Strauss, A. S. Szalay, M. Tegmark, M. S. Vogeley, D. H. Weinberg, D. G. York, and I. Zehavi,
Mon. Not. Roy. Astron. Soc. 401, 2148–2168 (2010), arXiv:0907.1660.

4. N. Padmanabhan, and M. White, Phys. Rev. D 80, 063508 (2009), arXiv:0906.1198.
5. E. A. Kazin, M. R. Blanton, R. Scoccimarro, C. K. McBride, and A. A. Berlind, Astrophys. J. 719,

1032–1044 (2010), arXiv:1004.2244.
6. H. Lampeitl, R. C. Nichol, H. Seo, T. Giannantonio, C. Shapiro, B. Bassett, W. J. Percival, T. M.

Davis, B. Dilday, J. Frieman, P. Garnavich, M. Sako, M. Smith, J. Sollerman, A. C. Becker,
D. Cinabro, A. V. Filippenko, R. J. Foley, C. J. Hogan, J. A. Holtzman, S. W. Jha, K. Konishi,
J. Marriner, M. W. Richmond, A. G. Riess, D. P. Schneider, M. Stritzinger, K. J. van der Heyden,
J. T. Vanderplas, J. C. Wheeler, and C. Zheng, Mon. Not. Roy. Astron. Soc. 401, 2331–2342 (2010),
arXiv:0910.2193.

7. E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Lar-
son, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S.
Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Series 180, 330–376 (2009),
arXiv:0803.0547.

8. M. Arnaud, H. Bohringer, C. Jones, B. McNamara, T. Ohashi, D. Patnaude, K. Arnaud, M. Bautz,
A. Blanchard, J. Bregman, G. Chartas, J. Croston, L. David, M. Donahue, A. Fabian, A. Finoguenov,
A. Furuzawa, S. Gallagher, Y. Haba, A. Hornschemeier, S. Heinz, J. Kaastra, W. Kapferer, G. Lamer,
A. Mahdavi, K. Makishima, K. Matsushita, K. Nakazawa, P. Nulsen, P. Ogle, E. Perlman, T. Ponman,
D. Proga, G. Pratt, S. Randall, G. Richards, K. Romer, M. Ruszkowski, R. Schmidt, R. Smith,
H. Tananbaum, J. Vrtilek, and D. Worrall (2009), arXiv:0902.4890.

9. J. R. Primack, Lectures at XIII Special Courses at Observatorio Nacional, Rio de Janeiro, Brazil.
(2009), arXiv:0909.2021.

10. J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S. D. M. White, A. Jenkins, C. S.
Frenk, and A. Helmi, Mon. Not. Roy. Astron. Soc. 402, 21–34 (2010), arXiv:0810.1522.

11. J. Stadel, D. Potter, B. Moore, J. Diemand, P. Madau, M. Zemp, M. Kuhlen, and V. Quilis,
Mon. Not. Roy. Astron. Soc. 398, L21–L25 (2009), arXiv:0808.2981.

12. A. Burkert, Astrophys. J. Lett. 447, L25 (1995), arXiv:astro-ph/9504041.
13. E. Zackrisson, N. Bergvall, T. Marquart, and G. Östlin, Astron. & Astrophys. 452, 857–868 (2006),

arXiv:astro-ph/0603523.
14. J. R. Brownstein, Modified Gravity and the Phantom of Dark Matter, Ph.D. thesis, University of

Waterloo at Perimeter Institute for Theoretical Physics (2009), arXiv:0908.0040.
15. L. M. Voigt, and A. C. Fabian, Mon. Not. Roy. Astron. Soc. 368, 518–533 (2006), arXiv:astro-

ph/0602373.
16. J. P. Ostriker, P. J. E. Peebles, and A. Yahil, Astrophys. J. Lett. 193, L1–L4 (1974).
17. K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. Roy. Astron. Soc. 249, 523–537 (1991).
18. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563–575 (1996), arXiv:astro-

ph/9508025.

A Good Fit to the Missing Mass Problem in Galaxies and Clusters of GalaxiesNovember 18, 201018

PyV
Texto escrito a máquina
220



19. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493–508 (1997), arXiv:astro-
ph/9611107.

20. A. Burkert, Astrophys. J. Lett. 447, L25–L28 (1995), arXiv:astro-ph/9504041.
21. H. Zhao, Mon. Not. Roy. Astron. Soc. 278, 488–496 (1996), arXiv:astro-ph/9509122.
22. D. Syer, and S. D. M. White, Mon. Not. Roy. Astron. Soc. 293, 337–342 (1998).
23. C. Nipoti, T. Treu, L. Ciotti, and M. Stiavelli, Mon. Not. Roy. Astron. Soc. 355, 1119–1124 (2004),

arXiv:astro-ph/0404127.
24. A. El-Zant, I. Shlosman, and Y. Hoffman, Astrophys. J. 560, 636–643 (2001), arXiv:astro-

ph/0103386.
25. A. A. El-Zant, Y. Hoffman, J. Primack, F. Combes, and I. Shlosman, Astrophys. J. Lett. 607, L75–L78

(2004), arXiv:astro-ph/0309412.
26. E. Romano-Díaz, I. Shlosman, Y. Hoffman, and C. Heller, Astrophys. J. Lett. 685, L105–L108 (2008),

arXiv:0808.0195.
27. J. R. Jardel, and J. A. Sellwood, Astrophys. J. 691, 1300–1306 (2009), arXiv:0808.3449.
28. A. Del Popolo, and P. Kroupa, Astron. & Astrophys. 502, 733–747 (2009), arXiv:0906.1146.
29. D. J. Sand, T. Treu, G. P. Smith, and R. S. Ellis (2003), arXiv:astro-ph/0309465.
30. D. J. Sand, T. Treu, G. P. Smith, and R. S. Ellis, Astrophys. J. 604, 88–107 (2004), arXiv:astro-

ph/0310703.
31. A. B. Newman, T. Treu, R. S. Ellis, D. J. Sand, J. Richard, P. J. Marshall, P. Capak, and S. Miyazaki,

Astrophys. J. 706, 1078–1094 (2009), arXiv:0909.3527.
32. A. Zitrin, and T. Broadhurst, Astrophys. J. Lett. 703, L132–L136 (2009), arXiv:0906.5079.
33. A. Zitrin, T. Broadhurst, Y. Rephaeli, and S. Sadeh, Astrophys. J. Lett. 707, L102–L106 (2009),

arXiv:0907.4232.
34. R. Davé, D. N. Spergel, P. J. Steinhardt, and B. D. Wandelt, Astrophys. J. 547, 574–589 (2001),

arXiv:astro-ph/0006218.
35. J. S. B. Wyithe, E. L. Turner, and D. N. Spergel, Astrophys. J. 555, 504–523 (2001), arXiv:astro-

ph/0007354.
36. M. Milgrom, Astrophys. J. 270, 365–370 (1983a).
37. M. Milgrom, Astrophys. J. 270, 371–383 (1983b).
38. J. W. Moffat, JCAP05 003 (2005), arXiv:astro-ph/0412195.
39. J. W. Moffat, JCAP03 004 (2006), arXiv:gr-qc/0506021.
40. J. R. Brownstein, and J. W. Moffat, Astrophys. J. 636, 721–741 (2006), arXiv:astro-ph/0506370.
41. J. R. Brownstein, and J. W. Moffat, Mon. Not. Roy. Astron. Soc. 367, 527–540 (2006), arXiv:astro-

ph/0507222.
42. J. R. Brownstein, and J. W. Moffat, Mon. Not. Roy. Astron. Soc. 382, 29–47 (2007), arXiv:astro-

ph/0702146.
43. J. W. Moffat, and V. T. Toth, Classical and Quantum Gravity 26, 085002 (2009), arXiv:0712.1796.
44. M. A. Clayton, Journal of Mathematical Physics 37, 395–420 (1996), arXiv:gr-qc/9505005.
45. M. Kalb, and P. Ramond, Phys. Rev. D 9, 2273–2284 (1974).
46. J. W. Moffat, “Nonsymmetric Gravitational Theory as a String Theory” (1995), arXiv:hep-

th/9512018.
47. J. W. Moffat, Journal of Mathematical Physics 36, 3722–3732 (1995).
48. J. W. Moffat, and I. Y. Sokolov, Physics Letters B 378, 59–67 (1996), arXiv:astro-ph/9509143.
49. H. Yukawa, Proc. Phys. Math. Soc. Jap. 17, 48–57 (1935).
50. P. van Nieuwenhuizen, Nuclear Physics B 60, 478–492 (1973).
51. J. A. Isenberg, and J. M. Nester, Annals of Physics 107, 56–81 (1977).
52. T. Damour, S. Deser, and J. McCarthy, Phys. Rev. D 47, 1541–1556 (1993).
53. T. H. Reiprich, Cosmological Implications and Physical Properties of an X-Ray Flux-Limited Sample

of Galaxy Clusters, Ph.D. thesis, Ludwig-Maximilians-Univ. (2001).
54. T. H. Reiprich, and H. Böhringer, Astrophys. J. 567, 716–740 (2002), arXiv:astro-ph/0111285.

A Good Fit to the Missing Mass Problem in Galaxies and Clusters of GalaxiesNovember 18, 201019

PyV
Texto escrito a máquina
221





Making the Case for Conformal Gravity
Philip D. Mannheim

Department of Physics, University of Connecticut, Storrs, CT 06269, USA
philip.mannheim@uconn.edu

Abstract. We review some recent developments in the conformal gravity theory that has been
advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal
theory is both renormalizable and unitary, with unitarity being obtained because the theory is a
PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori
classical curvature, with all curvature having to result from quantization. In the conformal theory
gravity requires no independent quantization of its own, with it being quantized solely by virtue
of its being coupled to a quantized matter source. Moreover, because it is this very coupling that
fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density
and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated
with the matter sector. In addition, we show that when the conformal symmetry is spontaneously
broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological
constant term that dynamical mass generation induces. We show that the macroscopic classical
theory that results from the quantum conformal theory incorporates global physics effects that
provide for a detailed accounting of a comprehensive set of 110 galactic rotation curves with no
adjustable parameters other than the galactic mass to light ratios, and with the need for no dark
matter whatsoever. With these global effects eliminating the need for dark matter, we see that
invoking dark matter in galaxies could potentially be nothing more than an attempt to describe
global physics effects in purely local galactic terms. Finally, we review some recent work by ’t
Hooft in which a connection between conformal gravity and Einstein gravity has been found.

Keywords: conformal gravity, quantum gravity, cosmological constant problem
PACS: 04.60.-m, 04.50.Kd, 04.90.+e

1. EINSTEIN GRAVITY: WHAT MUST BE KEPT

Following his development of special relativity, Einstein was faced with two immediate
problems. The first was to make Newtonian gravity compatible with relativity, and the
second was to develop a formalism in which not only uniformly moving observers but
also accelerating ones would all be able agree on the same physics. While these two
issues are logically independent (even in the absence of gravity one has to able to write
Newton’s second law of motion in an observer-independent way), by imposing general
coordinate invariance and by identifying the spacetime metricgµν(x) as the gravitational
field, Einstein was able to provide a solution to both problems simultaneously. In this
formalism a central role is played by the Christoffel symbols

Γµ
νσ =

1
2

gµλ [∂νgλσ +∂σ gλν −∂λ gνσ ] , (1)

since in terms of them one can show that the path that minimizes the distance

ds2 = gµν(x)dxµdxν (2)
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between two points in any geometry (curved or flat) is the one that obeys the geodesic
equation

d2xµ

ds2 +Γµ
νσ

dxν

ds
dxσ

ds
= 0. (3)

The key feature of this equation is that even though neither of the two terms that appears
in (3) is itself a true coordinate vector, the linear combination of them is, with the
vanishing of their sum in any given coordinate system ensuring its vanishing in any
other.

Even though the Christoffel symbols are not themselves true coordinate tensors, from
them one can construct a quantity that is, viz. the Riemann tensor as defined by

Rλ
µνκ =

∂Γλ
µν

∂xκ +Γλ
κη Γη

µν −
∂Γλ

µκ

∂xν −Γλ
νη Γη

µκ . (4)

The utility of this tensor is that a given spacetime will be flat if and only if every com-
ponent ofRλ

µνκ is zero. When all components ofRλ
µνκ are zero, (3) describes New-

ton’s second law of motion for a free particle in the absence of gravity as viewed in an
accelerating coordinate system. And whenRλ

µνκ is non-zero, there is a choice of val-
ues for the Christoffel symbols (viz. the Schwarzschild metric ones that are associated
with the vanishing of the Ricci tensorRµκ = Rλ

µλκ ) that enables (3) to describe New-
ton’s law of gravity, again in an arbitrary accelerating coordinate system. Then, with
the Schwarzschild metric also giving relativistic corrections to Newtonian gravity, the
observation of the predicted gravitational bending of light by the Sun established the
validity of the above description of nature.

One can thus say with confidence that gravity is a covariant metric theory in which
the metric describes the gravitational field, and that the geometry in the vicinity of the
Sun is given by the Schwarzschild metric

ds2 =−B(r)dt2+A(r)dr2+ r2dθ2+ r2sin2θdφ2, (5)

where
B(r) = A−1(r) = 1−2β/r, β = MG/c2, (6)

up to the perturbative order to which the metric has so far actually been tested. Thus any
viable theory of gravity must embody all of the above, and we note that in the above we
have not specified the equation of motion that is to be obeyed by the gravitational field.
Rather, we have indicated only what its solution on solar system distance scales needs
to look like.

2. EINSTEIN GRAVITY: WHAT COULD BE CHANGED

To complete the theory one thus needs to specify the gravitational field equations them-
selves. To this end Einstein postulated that the needed equations are to be of the form

−
1

8πG

(

Rµν −
1
2

gµνRα
α

)

= Tµν
M , (7)
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a set of equations that can be obtained via functional variation with respect to the metric
of an action for the Universe of the form

IUNIV = IEH+ IM =−
1

16πG

∫

d4x(−g)1/2Rα
α + IM . (8)

In (7) and (8) M denotes the matter field sector andTµν
M is the matter field energy-

momentum tensor. Given (7), we immediately see that in the source-free region where
Tµν

M = 0 the Ricci tensor has to vanish, with the solution given in (5) and (6) then
following in the region exterior to a static, spherically symmetric source.

However, while (5) and (6) follow from (7), this is not the only way to secure the
Ricci-flat Schwarzschild solution. Consider for example an action for the Universe of
the conformal form

IUNIV = IW+ IM = −αg

∫

d4x(−g)1/2Cλ µνκCλ µνκ + IM

= −2αg

∫

d4x(−g)1/2
[

RµνRµν −
1
3
(Rα

α)
2
]

+ IM, (9)

where

Cλ µνκ = Rλ µνκ +
1
6

Rα
α
[

gλνgµκ −gλκgµν
]

−
1
2

[

gλνRµκ −gλκRµν −gµνRλκ +gµκRλν
]

(10)

is the Weyl conformal tensor. Functional variation of this action with respect to the
metric leads to the equation of motion (see e.g. [1])

−4αgW
µν +Tµν

M = 0, (11)

where

Wµν =
1
2

gµν(Rα
α)

;β
;β +Rµν;β

;β −Rµβ ;ν
;β −Rνβ ;µ

;β −2Rµβ Rν
β +

1
2

gµνRαβ Rαβ

−
2
3

gµν(Rα
α)

;β
;β +

2
3
(Rα

α)
;µ;ν +

2
3

Rα
αRµν −

1
6

gµν(Rα
α)

2, (12)

to thus yield a gravitational theory that also hasRµν = 0 as a vacuum solution. This
analysis thus shows that the Einstein equations given in (7) are only sufficient to give
the Schwarzschild solution and its non-relativistic Newtonian limit but not necessary.

The Einstein equations are thus not uniquely selected. Moreover, in and of itself,
the requirement that the gravitational action be a general coordinate scalar does not at
all restrict the gravitational sector of the action to be of the Einstein-Hilbert formIEH
form given in (8), with the number of possible general coordinate invariant gravitational
actions that one could write down actually being infinite, since one could use arbitrarily
high powers of the Riemann tensor and its contractions. This lack of uniqueness is
familiarly reflected in the fact that one is free to augment (8) with a term of the form
−
∫

d4x(−g)1/2Λ whereΛ is the cosmological constant.
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Beyond this we note that if one takes (7) as a given and extrapolates it beyond its
weak classical gravity solar system origins, one runs into difficulties in essentially every
type of extrapolation that one could consider. Thus if one extrapolates the classical
theory to galaxies and clusters of galaxies one runs into the dark matter problem,
if one extrapolates the classical theory to cosmology one runs into the cosmological
constant or dark energy problem, if one extrapolates to strong classical gravity one
runs into the singularity problem, and if one quantizes the theory and extrapolates far
off the mass shell one runs into the renormalizability problem. Now even though no
dark matter has yet been detected and dark energy is not yet at all understood, if one
nonetheless takes dark matter and dark energy as a given, one then encounters many
successes as well (such as big bang nucleosynthesis, anisotropy of the cosmic microwave
background, strong lensing). However, to achieve these successes one has to take the
energy budget of the Universe to be of order 70% dark energy and 25% dark matter,
with only 5% or so being regular luminous baryonic matter. Not only is there as yet no
detection of the needed dark matter particles, the required amount of dark energy is 60
orders of magnitude or so less than the amount expected from fundamental elementary
particle physics – and if one were to use the large particle physics value the fits would
be disastrous. Moreover, with all applications to date of gravity to astrophysics and
cosmology having been made with gravity itself being treated classically, there is no
guarantee that the current successes of standard Einstein gravity would not be modified
by its non-renormalizable quantum corrections. Given these concerns we shall thus look
for a completely different extrapolation of solar system wisdom, in a theory that is
unambiguously specified. As we shall see, via the imposition of a particular invariance
principle, namely local conformal invariance, none of the above extrapolation problems
or ambiguities will any longer be encountered.

3. CONFORMAL GRAVITY: AN AB INITIO APPROACH

If we start with the kinetic energy of a free massless fermion in flat spacetime, then in
order to obtain an action that is locally gauge invariant underψ(x) → eiβ (x)ψ(x) (we
suppress internal symmetry group indices), we introduce a gauge field that transforms
asAµ(x)→ Aµ(x)+∂µ β (x), and minimally couple according to

IM =−

∫

d4xψ̄(x)γµ [i∂µ +Aµ(x)]ψ(x). (13)

Similarly, if we start with the kinetic energy of a free massless fermion in flat spacetime,
in order to obtain an action that is locally coordinate invariant, we introduce the fermion
spin connectionΓµ(x), with the action taking the form

IM =−
∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x)]ψ(x), (14)

where γµ(x) = Vµ
a (x)γ̂a and Γµ(x) = [γν(x),∂µγν(x)]/8− [γν(x),γσ (x)]Γσ

µν/8, with
Vµ

a (x) being a vierbein and the four̂γa being the special-relativistic Dirac gamma
matrices.
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Having now obtained (14) this way, we find that without having required it explicitly,
this action actually has an additional symmetry, as it is locally conformal invariant under
ψ(x)→ e−3α(x)/2ψ(x), Va

µ (x)→ eα(x)Va
µ (x), gµν(x)→ e2α(x)gµν(x). Consequently, we

can regard the spin connectionΓµ(x) as being introduced not to maintain local coordi-
nate invariance but rather to maintain local conformal invariance instead, in exactly the
same minimally-coupled way thatAµ(x) maintains local gauge invariance. Thus if we
require that the kinetic energy of massless fermion be invariant under complex phase
transformations of the formψ(x)→ e−3α(x)/2+iβ (x)ψ(x), we will be led to an action

IM =−

∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x)+Aµ(x)]ψ(x) (15)

that is locally gauge invariant and locally conformal invariant combined. (Under a local
gauge transformation the metric transforms asgµν(x) → gµν(x), while under a local
conformal transformation the gauge field transforms asAµ(x)→ Aµ(x).)

The reason why such a local conformal structure emerges in (14) is that massless parti-
cles move on the light cone, and the light cone is not just Poincare invariant, it is invariant
under the full 15-parameter conformal groupO(4,2). (If the ds2 = gµν(x)dxµdxν line
element is zero, then so isds2 = e2α(x)gµν(x)dxµdxν .) Moreover, the covering group
of O(4,2) is SU(2,2). SinceSU(2,2) is generated by the 15 Dirac matrices (γ5, γµ ,
γµγ5, [γµ ,γν ]), its fundamental representation is a fermionic field, and the full conformal
structure of the light cone is thus built into a massless fermionic field.

As we see, it is thus natural to take fermions to be the most basic elements in physics,
with internal symmetry gauge fields and a gravitational spin connection being induced
when one gives the fermion kinetic energy a local complex phase invariance. However,
such a starting point does not generate any kinetic energy terms for the gauge and
gravitational fields. To actually generate them rather than just postulate them we take
note of a calculation by ’t Hooft [2]. Specifically, ’t Hooft evaluated the logarithmically
divergent part of the path integral

∫

Dψ̄Dψ exp(iIM) associated with (15), and found that
after dimensional regularization it took the form of an effective action:

IEFF=

∫

d4x(−g)1/2C

[

1
20

[RµνRµν −
1
3
(Rα

α)
2]+

1
3

FµνFµν
]

, (16)

whereC= 1/8π2(4−D) in spacetime dimensionD. Comparing with (9) we see that we
have generated none other than the conformal gravity action

∫

d4x(−g)1/2Cλ µνκCλ µνκ

(as then rewritten using the Gauss-Bonnet theorem) together with the Maxwell action.
With the Maxwell action being invariant underAµ(x) → Aµ(x)+ ∂µβ (x) and with the
conformal gravity action being invariant undergµν(x)→ e2α(x)gµν(x) (see e.g. [1]), the
conformal gravity action thus serves as the gravitational analog of the Maxwell action,
and in the following we shall thus use local conformal invariance as the principle with
which to fix the structure of the gravitational action. In so doing we see that gravity can
be generated by gauging the full conformal symmetry of the light cone.

Given the assumption of local conformal invariance, we find that the action
IW = −αg

∫

d4x(−g)1/2Cλ µνκCλ µνκ is the unique gravitational action that is in-
variant under the local transformationgµν(x) → e2α(x)gµν(x), with the gravitational
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coupling constantαg being dimensionless. Becauseαg is dimensionless the conformal
theory is power-counting renormalizable, and thus if we did not include an initial
∫

d4x(−g)1/2Cλ µνκCλ µνκ term in the action, we would anyway generate one as a
renormalization counter-term. Because the variation of the conformal action leads to
fourth-order equations of motion, it had long been thought that the theory would not be
unitary. However, as we describe in Sec. (5), Bender and Mannheim [3, 4] have recently
shown that one can find a realization of the theory that is unitary. Consequently, con-
formal gravity is to be regarded as a bona fide quantum gravitational theory. Moreover,
the similarity of the theory to Maxwell theory also carries over to the generation of a
macroscopic classical limit starting from a microscopic quantum field theory. Specifi-
cally, in just the same way as the classical Maxwell equations emerge from the quantum
Maxwell equations as matrix elements of the quantum fields in states containing an
indefinite number of photons, because of its renormalizability the same will happen for
conformal gravity in states containing an indefinite number of gravitational quanta, with
both the quantum theory and its macroscopic classical limit obeying the equation of
motion given in (11). Consequently, in the following we will be able to use (11) to study
both the microscopic zero-point fluctuation problem and the macroscopic behavior of
the theory on astrophysical distance scales.

The non-renormalizable Einstein-Hilbert action is expressly forbidden by the confor-
mal symmetry because Newton’s constant carries an intrinsic dimension. However, as
noted above, this does not prevent the theory from possessing the Schwarzschild solu-
tion and Newton’s law of gravity. In addition, the same conformal symmetry forbids the
presence of any intrinsic cosmological constant term as it carries an intrinsic dimension
too; with conformal invariance thus providing a very good starting point for tackling the
cosmological constant problem.

Now we recall that the fermion and gauge boson sector of the standardSU(3)×
SU(2)×U(1) model of strong, electromagnetic, and weak interactions is also locally
conformal invariant since all the associated coupling constants are dimensionless, and
gauge bosons and fermions get masses dynamically via spontaneous symmetry break-
ing. Other than the Higgs sector (which we shall shortly dispense with), the standard
model Lagrangian is devoid of any intrinsic mass or length scales. And with its associ-
ated energy-momentum tensor serving as the source of gravity, it is thus quite natural
that gravity should be devoid of any intrinsic mass or length scales too. Our use of con-
formal gravity thus nicely dovetails with the standardSU(3)×SU(2)×U(1) model. To
tighten the connection, we note that while the standardSU(3)×SU(2)×U(1) model
is based on second-order equations of motion, an electrodynamics Lagrangian of the
form Fµν∂α∂ αFµν would be just as gauge and Lorentz invariant as the Maxwell ac-
tion, and there is no immediate reason to leave any such type of term out. Now while
anFµν∂α∂ αFµν theory would not be renormalizable, in and of itself renormalizability
is not a law of nature (witness Einstein gravity). However, such a theory would not be
conformal invariant. Thus if we impose local conformal invariance as a principle, we
would then force the fundamental gauge theories to be second order, and thus be renor-
malizable after all. However, imposing the same symmetry on gravity expressly forces
it to be fourth order instead, with gravity then also being renormalizable. As we see,
renormalizability is thus a consequence of conformal invariance.
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Now if the underlying theory is to be locally conformal invariant, there would be no
place for a fundamental Higgs field with its tachyonic double-well potential. Instead,
mass scales would have to be generated dynamically in the vacuum via dynamical
fermion bilinear condensates. The elimination of a fundamental Higgs field has an
immediate benefit – one no longer has to deal with the uncontrollable cosmological
constant contribution it produces when it acquires a non-vanishing expectation value.
However, one still has to make contact with the standard model, and one would thus
want to obtain a standard model Lagrangian with some effective scalar field. Such
an effective scalar field would have to emerge as a Ginzburg-Landau c-number order
parameter, i.e. as the matrix element of a fermion bilinear operator in some possibly
spacetime-dependent coherent state. Such an effective c-number scalar field would not
be observable in an accelerator.

To see what such an effective theory might look like, we note that if the fermion
acquires a mass parameterM(x) by some dynamical symmetry breaking mechanism,
the associated Hartree-Fock mean-field action would take the same form as given in
(15), only with a mass term added, viz.

IM =−

∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x)+Aµ(x)+M(x)]ψ(x). (17)

Evaluating the divergent part of the same
∫

Dψ̄Dψ exp(iIM) path integral as before only
with (17) this time generates the sameIEFF as in (16), while adding on the mean-field
action [2] (as written here using the sign convention employed in this paper forRα

α):

IMF =
∫

d4x(−g)1/2C

[

−M4(x)+
1
6

M2(x)Rα
α −gµν ∂ µM(x)∂ νM(x)

]

. (18)

HereC is the same logarithmically divergent constant as before. Finally, if we giveM(x)
a group index, the same procedure would cause the∂ µM(x) terms to be replaced by
covariant gauge derivatives (see [5, 6]), and would yield

IMF =
∫

d4x(−g)1/2C

[

−M4(x)+
1
6

M2(x)Rα
α

− gµν(∂ µ + iAµ(x))M(x)(∂ ν − iAν(x))M(x)

]

. (19)

When (19) is taken in conjunction with (16), a conformally coupled standard model
emerges, but with a c-number scalar parameterM(x) that is not a fundamental field. In
Secs. (7) and (8) we will show how such a mass parameterM(x) could be generated
as a fermion bilinear condensate in a conformal invariant theory. And in [7] we explore
whether or not the existence of such a c-number order parameterM(x) necessitates the
existence of an accompanying dynamical bound state scalar particle.

4. QUANTIZATION OF GRAVITY THROUGH COUPLING

In trying to find solutions to the conformal theory, we note that given the lack of any
intrinsic mass or length scales in the conformal action, without dynamical generation
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of such scales there could be no non-trivial solutions to the theory. Thus if all mass and
length scales are to come from dynamics, and all such mass-generating dynamics is to be
quantum-mechanical (c.f. no fundamental Higgs fields), the only allowed geometry in
purely classical conformal gravity would be one with no curvature at all, viz. a geometry
that is Minkowski. (For there to be any curvature one needs some length scale to
characterize it.) Thus if one takesWµν to be a classical fourth-order derivative function,
then even though one could readily find an exterior vacuum solution toWµν = 0
such as the Ricci-flat one given in (5) and (6), there would be no basis for taking the
dimensionful parameterβ to be non-zero since the theory is as yet scale free. For the
solution to a differential equation to have lower symmetry than the equation itself it (i.e.
for a solution to contain symmetry-breaking integration constants that are not present
in the equation itself), there has to be a spontaneous breakdown of the symmetry. If
all symmetry breaking is to be quantum-mechanical, then in the absence of quantum
mechanics, geometry would have to be flat. Thus, if the mass that appears in the
Schwarzschild radius of a source is quantum-mechanically generated, then the curvature
produced by that mass is ipso facto due to quantum mechanics too.

The above remarks require some clarification since in classical electrodynamics one
can construct plane wave solutions withk0 = |k̄| even though the classical Maxwell
equations are conformal invariant. Specifically, if we have a free classical Maxwell ac-
tion

∫

d4xFµνFµν in flat spacetime, the associated homogeneous wave equation takes
the form(∂ 2

t −∇2)Aµ(x) = 0 (in the convenient Lorentz gauge). However, while this
equation hasAµ(x) = εµ(x)exp(−ik · x) as a solution, this solution involves a dimen-
sionful four-vector momentumkµ that is not present in the equation of motion itself.
Hence some mechanism is required to generate such a four-momentum. In classical
Maxwell theory the mechanism for doing this is not from theFµν sector of the the-
ory at all, but rather via the introduction of a localized sourceJµ(x). In the presence
of the source the solution to the inhomogeneous(∂ 2

t −∇2)Aµ(x) = Jµ(x) is given as
Aµ(x) =

∫

d4x′D(x−x′)Jµ(x′) whereD(x−x′) is the massless retarded propagator. Now
D(x) = δ (t − r)/4πr itself is written entirely in terms of the spacetime coordinates and
contains no fundamental scales. Rather, the scales reside in the localizedJµ(x), and if it
for instance oscillates with a specific frequency, then the resultingAµ(x) will oscillate
with that same frequency too. However, forJµ(x) to be localized and possess such an
oscillation frequency, it would not be scale invariant. Hence the classical Maxwell field
only possesses frequency scales because the sources to which it couples are taken to pos-
sess them, and the sources themselves can only possess such scales if they are not scale
invariant. However, if all the particles contained in electromagnetic sources are to ac-
quire length scales quantum-mechanically, then there could be no fundamental classical
electromagnetic sources that could possess such length scales in the first place. Classical
electromagnetism with localized oscillating sources is thus a macroscopic manifestation
of an underlying microscopic quantum Maxwell theory in which scales are generated dy-
namically. In a truly scale-free classical electrodynamics there would be no propagation
of electromagnetic waves. Thus just like gravity, the same conformal invariance will not
permit electromagnetic sources to have any nontrivial intrinsically classical component
either, with such sources being intrinsically quantum-mechanical.

If momentum modes are not to arise in classical physics, one needs to ask how

PyV
Texto escrito a máquina
230



it is that they then do arise. To this end we note that as well as generating mass
scales via dynamics, there is another way in which quantum mechanics produces
scales, namely via the quantization procedure itself. Specifically, scales are introduced
via canonical commutation relations, with the generic equal-time commutation rela-
tion [φ(x̄, t),π(x̄′, t)] = ih̄δ 3(x̄− x̄′) for instance being a non-linear relation that in-
troduces a scaleδ 3(x̄− x̄′) everywhere on a spacelike hypersurface. Since we can set
δ 3(x̄− x̄′) = (1/8π3)

∫

d3kexp(ik̄ · (x̄− x̄′)), this is equivalent to introducing a complete
basis of momentum modes, with momentum modes thus being intrinsically quantum
mechanical. And indeed it is the very existence of this set of modes that gives rise to the
zero-point energy density and pressure of a quantized field that we discuss in the fol-
lowing. Moreover, a quantized field will have a zero-point energy density and pressure
even when it is massless, i.e. even in the absence of mass generation. Then, when there
is mass generation, the momentum modes will obey thek2

0 = k̄2+m2/h̄2 mass condition
and cause the massless theory zero-point energy density and pressure to readjust. And
as we show in Secs. (7) and (8), this readjustment will cancel the cosmological constant
that is induced by the same mass generation mechanism.

Given the above remarks, we see that in conformal gravity we should expand the
metric as a power series in Planck’s constant rather than as a power series in the
gravitational coupling constant, with the zeroth-order term in the expansion being flat.
Consequently, in the theory there is no intrinsic classical gravity, with the equations
that are to be used for macroscopic systems being associated with matrix elements of
the quantum fields in states with an indefinite number of gravitational quanta, Since
there is to be no intrinsic classical gravity, there could not be any classical black holes.
While conformal gravity thus eliminates the classical gravity singularity problem, and
thus simultaneously eliminates the need to have to make such classical singularities
compatible with quantum mechanics, it remains to be seen whether the theory might still
generate geometric singularities through quantum-mechanical effects, though one might
anticipate that the uncertainty principle might spread sources out enough to prevent this
from happening.

Even with the requirement that the metric be expanded as a power series in Planck’s
constant, quantization of gravity can still not follow the standard canonical quantization
prescription that is used for other fields. Specifically, for a matter field one obtains its
equation of motion by varying the matter action with respect to the matter field, but
one obtains its energy-momentum tensorTµν

M by instead varying the matter action with
respect to the metric. SinceTµν

M involves products of matter fields at the same point, a
canonical quantization of the matter field then gives the matter energy-momentum tensor
a non-vanishing zero-point contribution. However, in a standard quantization procedure
for a given matter field, the non-vanishing ofTµν

M violates no constraint since one does
not simultaneously impose the equation of motion of any other field. Thus for a given
matter field one does not require stationarity with respect to the metric, withTµν

M thus
not being constrained to vanish.

In contrast however, for gravity the relevant field is the metric itself. If we define the
variation of the gravitational action with respect to the metric to be a quantityTµν

GRAV, the
gravitational equation of motion is then given byTµν

GRAV=0. Then, withTµν
GRAVcontaining

products of fields at the same point, a canonical quantization of the gravitational field
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would give a zero-point contribution toTµν
GRAV, and thus violate the stationarity condition

Tµν
GRAV= 0 thatTµν

GRAV has to obey. Hence, unlike the matter fields for which there is no
constraint onTµν

M in the absence of any coupling of matter to gravity, gravity itself is
always coupled to gravity, with its stationarity condition not permitting it to consistently
be quantized on its own.

Despite this, we note that if we impose a stationarity condition with respect to the
metric not on the gravity piece or the matter piece alone, but on their sum as given by
the totalIUNIV of the universe introduced in (9), we then obtain

Tµν
UNIV = Tµν

GRAV +Tµν
M = 0. (20)

In this case it now is possible to quantize gravity consistently, withTµν
GRAV now being

able to be non-zero provided gravity is coupled to some quantized matter field source for
which Tµν

M is non-zero. Thus gravity can only be quantized consistently if it is coupled
to a quantized matter field. However, in order for the cancellation required of the total
Tµν

UNIV to actually take place, the quantization condition imposed on the gravitational
sector commutation relations would have to be fixed by the quantization condition in
the matter sector in order to enforceTµν

GRAV =−Tµν
M , with each term being intrinsically

quantum-mechanical. Consequently, gravity is not only quantized though its coupling to
quantized matter, its commutation relations are explicitly determined by that coupling,
with gravity needing no independent quantization of its own. Finally, we note that not
only do the matter fields quantize gravity, the vanishing ofTµν

UNIV entails that the gravity
field and the matter field zero-point fluctuations must cancel each other identically. In
Secs. (6), (7) and (8) we explore this point in detail.

5. UNITARITY VIA PT SYMMETRY

When theWµν tensor given in (12) is linearized around a flat spacetime background
with metric ηµν according togµν = ηµν +hµν , it is found [7] to be a function of the
traceless quantityKµν = hµν − (1/4)ηµνηαβ hαβ . In the convenient transverse gauge
∂µKµν = 0, the first order term inWµν is found to take the simple form

Wµν(1) =
1
2
(∂α∂ α)2Kµν , (21)

while the second order term in the conformal actionIW given in (9) takes the form

IW(2) =−
αg

2

∫

d4x∂α∂ αKµν ∂β ∂ β Kµν . (22)

Since there is no mixing of components ofKµν in either (21) or (22), one can explore
the unitarity structure of the theory by working with an analog one-component scalar
field theory. As such, the conditionWµν(1) = 0 is one of a broad class of fourth-order
equations of motion that have been encountered in the literature, and all of them can be
associated with the generic scalar action

IS =−
1
2

∫

d4x
[

∂µ ∂νφ∂ µ ∂ ν φ +(M2
1 +M2

2)∂µφ∂ µ φ +M2
1M2

2φ2] . (23)
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Given this action one obtains an equation of motion

(−∂ 2
t + ∇̄2−M2

1)(−∂ 2
t + ∇̄2−M2

2)φ(x) = 0, (24)

a propagator

D(k,M1,M2) =
1

(M2
2 −M2

1)

(

1

k2+M2
1

−
1

k2+M2
2

)

, (25)

and an energy-momentum tensor with(0,0) component

T00(M1,M2) = π0φ̇ +
1
2

[

π2
00+(M2

1 +M2
2)(φ̇

2−∂iφ∂ iφ)−M2
1M2

2φ2−πi j π i j ] , (26)

where

πµ =
∂L

∂φ,µ
−∂λ

(

∂L

∂φ,µ,λ

)

=−(M2
1 +M2

2)∂ µφ +∂λ ∂ µ ∂ λ φ ,

πµλ =
∂L

∂φ,µ,λ
=−∂ µ ∂ λ φ . (27)

These equations immediately possess two well-known realizations that exhibit the
problems that higher-derivative theories are thought to possess. If one takes the contour
for the k0 integration in the propagator to be the standard Feynman one in which
all positive energy modes propagate forward in time and all negative energy modes
propagate backwards in time, because of the relative minus sign in (25), one finds
that some of the poles have negative residues, with the theory being quantized with an
indefinite metric. To avoid such negative residues, one can find [4] an alternate contour
in which the residues of all poles are positive but in which some of the negative energy
modes propagate forward in time. While one can quantize this realization with a standard
Dirac norm, as the presence of the−M2

1M2
2φ2 term inT00(M1,M2) indicates, in this case

the energy eigenvalue spectrum is unbounded from below.
With neither of these two possibilities being palatable, higher-derivative theories have

long been regarded as being unphysical. However, recently Bender and Mannheim revis-
ited the issue [3, 4] and found a third realization of the theory in which the energy spec-
trum is bounded from below and there are no negative Hilbert space norms at all. With
the appropriate scalar product for a Hilbert space being determined by boundary condi-
tions, to determine the relevant scalar product one needs some asymptotic information.
To this end Bender and Mannheim studied the eigenvalue problem for the Hamiltonian
H =

∫

d3xT00(M1,M2) in the sector of the theory where the energy eigenvalue spectrum
is bounded from below, and found that the associated wave functions were not normal-
izable on the real axis. In consequence of this, the Hamiltonian of the system could not
be Hermitian. However, the wave functions were found to be normalizable on the imag-
inary axis, and thus the fieldφ would have to be anti-Hermitian rather than Hermitian,
with the−M2

1M2
2φ2 term in T00(M1,M2) then being bounded from below. In addition

they noted that if they constructed a path integral for the system, it would not exist with
realφ but would be well-defined ifφ were pure imaginary. So again, one needs to take
φ to be an anti-Hermitian operator.
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Now if a Hamiltonian is not Hermitian, one is immediately concerned that its eigen-
values might not all be real. However, while Hermiticity implies reality of eigenvalues,
there is no converse theorem that says that a non-Hermitian Hamiltonian must have com-
plex eigenvalues. Consequently, Hermiticity is only sufficient for reality but not neces-
sary. Recently, as part of the generalPT symmetry program that has been developed by
Bender and collaborators [8] a necessary condition for reality has been found, namely
that a Hamiltonian have aPT symmetry whereP is a linear operator andT is an an-
tilinear one. Specifically, it was shown in [9] that if a Hamiltonian isPT invariant the
secular equation|H −λ I | = 0 that determines the eigenvalues is real. Then in [10] the
converse was shown, namely that if the secular equation is real, the Hamiltonian must
have aPT symmetry. Consequently, the energy eigenspectrum of a Hamiltonian that is
notPT symmetric must contain some complex eigenvalues.

Noting now that all the poles in the propagator (25) lie on the real axis, we see that
the Hamiltonian for the fourth-order theory while not Hermitian must instead bePT
symmetric. For such Hamiltonians one can construct a norm, the so-calledPT norm
[8], that obeys unitary time evolution. For our purposes here we note that for a non-
Hermitian HamiltonianH that has a completely real energy eigenspectrum,H andH†

must be related by a similarity transform of the form

VHV−1 = H†. (28)

Thus if H has a right-eigenvector according toH|R〉 = E|R〉 with realE, its conjugate
will obey 〈R|H† = 〈R|E and will not be a left-eigenvector ofH. Rather, the state〈L|
defined as〈L|= 〈R|V will be a left-eigenvector ofH since it obeys

〈L|H = 〈L|E. (29)

In this case it will be the norm〈L|R〉 = 〈R|V|R〉 that will obey unitary time evolution
since it evolves as

〈L(t)|R(t)〉= 〈L(t = 0)|eiHt e−iHt |R(t = 0)〉= 〈L(t = 0)|R(t = 0)〉. (30)

Thus we see that the needed scalar product is the overlap of a left-eigenvector with
a right-eigenvector and not the overlap of a right-eigenvector with its own conjugate.
Moreover, in [11] it was shown that the existence of aV that can connectH andH†

according toVHV−1 = H† is a necessary and sufficient condition for both the existence
of a PT symmetry and for the existence of a unitary scalar product, with the scalar
product then being of the form〈L|R〉= 〈R|V|R〉. The existence of aPT invariance for a
Hamiltonian is thus a necessary and sufficient condition for unitary time evolution.

When thesePT ideas are applied to the fourth-order propagator, it is found [4, 7] that
the relative minus in it is no longer associated with an indefinite metric at all. Rather, it is
associated withV operator, with the completeness relation being given byΣ|n〉〈n|V = I
and not byΣ|n〉〈n|−Σ|m〉〈m|= I . Finally, the propagator itself is found to be given by
the Green’s function〈ΩL|T(φφ)|ΩR〉 = 〈ΩR|VT(φφ)|ΩR〉 rather than by the familiar
〈ΩR|T(φφ)|ΩR〉. As we see, the unitarity problem for fourth-order propagators only
arose because one wanted to represent them as〈ΩR|T(φφ)|ΩR〉. Once one recognizes
that the left vacuum need not be the conjugate of the right vacuum unitarity can then
readily be achieved.
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Now while the above discussion was developed for the general second- plus fourth-
order action given in (23), for the conformal case given in (21) we are interested in
a pure fourth-order theory alone where the propagator is given byD(k) = 1/k4 (a
propagator whose poles again are all on the real axis). Since the reduction to a pure
fourth-order theory would require setting bothM2

1 andM2
2 equal to zero in (23), we see

that because of the 1/(M2
2 −M2

1) prefactor in (25), the limit is singular. In consequence,
the limit is a quite unusual one in which the Hamiltonian becomes a non-diagonalizable,
Jordan-block Hamiltonian [4, 7], with some of the states that had been eigenstates being
replaced by non-stationary ones. The very fact that the Hamiltonian is not diagonalizable
immediately confirms that it could not be Hermitian, just as we had noted above. In this
case even though the set of energy eigenstates is not complete, the set of stationary plus
non-stationary states combined is complete [4], with time evolution of packets built out
of the two classes of states combined being unitary [4]. The unitarity of the pure fourth-
order conformal gravity theory is thus established.

As we thus see, in order to establish unitarity for fourth-order theories we need the
field φ(x), and thusgµν(x) itself, to be anti-Hermitian rather than Hermitian. Now
this is not how one ordinarily thinks about the gravitational field, since one would
presuppose that it, above all fields, should have a real classical limit. Nonetheless,
having an anti-Hermitian gravitational field is is not in conflict with anything that is
actually known about gravity. Specifically, in [4] it was noted that if one replaces
gµν by igµν (and thusgµν by −igµν ) neither the Christoffel symbols that appear in
geodesics norRλ

µνσ would be affected at all. In four space-time dimensions det(gµν)

would not be affected either. Even though Riemann tensor contractions could generate
factors of i, all such factors could be absorbed by redefining the overall multiplicative
coefficients in the action (and likewise for theds2 = gµνdxµdxν line element). Hence,
current gravitational measurements cannot distinguish between a purely real or a purely
imaginary gravitational field. And as we have seen, once one takes the gravitational field
to be anti-Hermitian, one can construct a consistent, renormalizable and unitary theory
of quantum gravity. And perhaps the problems that beset quantum gravity have arisen
because one wanted the gravitational field to be Hermitian.

6. THE ZERO-POINT PROBLEM

In current applications of standard gravity to macroscopic astrophysical and cosmologi-
cal systems, one treats gravity itself as being purely classical. However, one cannot treat
its matter source that way too since there are some intrinsically quantum-mechanical
sources that are significant macroscopically. Thus, white dwarf stars are stabilized by
the Pauli degeneracy pressure of the electrons in the star, and black-body radiation
contributes to cosmic expansion. To couple these particular effects to classical grav-
ity, both of them are taken to be described as ensemble averages over an appropriate
set of positive-energy Fock space states. However, while the Fock space states would be
eigenstates of a Hamiltonian of the generic formΣh̄ω(a†a+1/2), the infiniteΣh̄ω/2
zero-point contribution is ignored, i.e. one takes the Hamiltonian to be of the truncated
form Σh̄ωa†a instead. Now in flat space one is free to discard the zero-point term (say by
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a normal ordering prescription) since in flat space one can onlymeasure energy differ-
ences. However the hallmark of gravity is that it couple to energy itself and not to energy
difference, and so discarding any contribution to the energy would require justification.

Since one would have to cancel infinities in the matter field energy-momentum tensor
Tµν

M if the gravitational effects that occur in standard gravity are to be finite, some mech-
anism needs to be identified that would effect the cancellation. An immediate mechanism
that might achieve this would be a cancellation between appropriately chosen matter
fields, since bosons and fermions contribute toTµν

M with opposite signs. In fact such a
cancellation will occur if there is an exact supersymmetry between fermions and bosons.
However, once the fermion-boson mass degeneracy is broken, the cancellation is lost.
With the non-observation to date of any of the requisite superpartners, we know that the
supersymmetry breaking scale must be at least in the TeV region, with the uncanceled
zero-point energy then being huge.

Nonetheless, the generic idea of a boson-fermion cancellation as enforced by some
symmetry still makes sense since fermions and bosons generate vacuum energies with
opposite signs no matter what the theory. To take advantage of this, we note that the
treatment of standard gravity described above is deficient in one rather serious regard,
namely it ignores the effect of quantum mechanics on gravity itself. And as soon as one
quantizes gravity, gravity itself will acquire a zero-point contribution. Since gravitational
quanta are bosonic, under certain circumstances they may then be able to provide
the needed cancellation. Specifically, for such a cancellation to occur one needs three
things: a quantum gravity theory that makes sense, a symmetry, and the presence of
fermions in the matter field sector. With conformal gravity meeting all of these criteria
(as noted above fermions are its building blocks), in the following we will explore
its implications for the vacuum energy problem. We will see that when the conformal
symmetry is unbroken the needed cancellation does in fact occur. And then, unlike the
supersymmetry situation, the cancellation will be maintained even after the conformal
symmetry is spontaneously broken and a cosmological constant term is induced.

One of the challenges that gravity theory faces is that zero-point and cosmological
constant contributions already occur for matter fields in flat spacetime, i.e. they occur
in the absence of gravity. Since gravity is not involved in flat space physics, it is very
difficult for gravity to then resolve any problem that it is not responsible for. To enable
gravity to resolve these problems we need to put the gravitational field an equal footing
with the matter fields. This we can do if there are no intrinsic classical contributions in
either the gravitational or the matter sectors and all physics is quantum mechanical, i.e.
precisely as conformal symmetry requires. Since the lowest order quantum-mechanical
contribution toTµν

M is a zero-point contribution of order̄h, to cancel it through the van-
ishing of the totalTµν

UNIV given in (20), we will need the lowest non-trivial gravitational
term to be of order̄h too. Since the zero-point contribution is due to products of fields
at the same point, the order̄h gravitational zero-point must involve a product of two
gravitational fields and thus be given by the second-order−4αgWµν(2) (≡ Tµν

GRAV) ten-
sor that is obtained by varying theIW(2) term in (22). To this order in̄h we only need
to evaluateTµν

M in a flat background. It will then generate an orderh̄ curvature, with
the orderh̄2 term in Tµν

M then being curvature dependent. Moreover, withTµν
UNIV van-

ishing not only in lowest order but in all orders if both the gravitational and matter
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field sectors are renormalizable (i.e. in a renormalizable theory (20) is an all-order iden-
tity), the zero-point cancellation will occur to all orders. Thus if we decomposeTµν

GRAV
andTµν

M into finite and divergent parts according toTµν
GRAV = (Tµν

GRAV)FIN+(Tµν
GRAV)DIV ,

Tµν
M = (Tµν

M )FIN+(Tµν
M )DIV , (20) will decompose into

(Tµν
GRAV)DIV +(Tµν

M )DIV = 0, (31)

and
(Tµν

GRAV)FIN+(Tµν
M )FIN = 0. (32)

With (31) we see that all gravitational and matter field infinities cancel each other identi-
cally, with (Tµν

GRAV)DIV and(Tµν
M )DIV regulating each other. Given this regulation, there

is no need to renormalize either of the two terms as their sum is finite, and thus no con-
formal anomaly is generated. (Alternatively, if one did first renormalize each term sep-
arately, the associated conformal anomalies would then cancel each other identically.)
And with all infinities having been removed, (32) provides us with a completely finite
framework for calculating gravitational effects. Thus in (31) we take care of theΣh̄ω/2
type terms, and in (32) we are free to use theΣh̄ωa†a type terms alone.

With Wµν(2) being of orderh̄, the gravitational fluctuationKµν must itself be of
order h̄1/2, and since the lowest non-trivial term inTµν

M is of orderh̄, it must be the
case thatWµν(1) in (21) vanish identically. While the vanishing ofWµν(1) provides us
with a wave equation, the situation is not quite the same as the one that occurs when
one expands in a power series in the gravitational coupling constant. Specifically, in
that case the first-order fluctuation term on the gravitational side is produced by a first-
order fluctuation term on the matter side, so that the gravitational fluctuation would
obey an inhomogeneous wave equation with a source. In contrast, in the conformal case
the first-order gravitational wave equation is strictly homogeneous on all scales. Then,
since this equation is homogeneous, in and of itself it does not forceKµν to be non-
zero. However, since the orderh̄ contribution toTµν

M is non-zero,−4αgWµν(2) cannot
vanish, and thusKµν cannot vanish either. It is thus quantization of the matter field that
forces the gravitational field to be quantized, with the condition−4αgWµν(2)+Tµν

M = 0
fixing the strength of the commutator terms present in the second orderWµν(2). With
the matter field fixing the strength of the gravitational sector, the cancelation of both
zero-point contributions and conformal anomalies is secured.

To see how things work in detail we consider conformal gravity coupled to a Dirac
fermion. To the order̄h of interest to us we can take the fermion to be a free massless
fermion in flat spacetime. In this case the matter field energy-momentum tensor is given
by Tµν

M = ih̄ψ̄γµ ∂ ν ψ, with its vacuum expectation value being given by

〈Ω|Tµν
M |Ω〉=−

2h̄
(2π)3

∫ ∞

−∞
d3k

kµkν

ωk
, (33)

where kµ is a lightlike 4-vectorkµ = (ωk, k̄) with ωk = |k̄|. In (33) we recognize
two separate infinite terms, one associated withρM = 〈Ω|T00

M |Ω〉 and the other with
pM = 〈Ω|T11

M |Ω〉 = 〈Ω|T22
M |Ω〉 = 〈Ω|T33

M |Ω〉. Since the fermion is massless,Tµν
M is

traceless and thus these two infinities obeyρM = 3pM. Such a form could not be

PyV
Texto escrito a máquina
237



associated with a cosmological constant term of the form−Ληµν since its trace is given
by the non-zero−4Λ. Rather, given itskµkν structure, the quantity〈Ω|Tµν

M |Ω〉 can be
written in the form of a perfect fluid with a timelike fluid velocity vectorU µ =(1,0,0,0),
viz.

〈Ω|Tµν
M |Ω〉= (ρM + pM)U µUν + pηµν , (34)

with the fluid thus possessing both a zero-point energy density and a zero-point pressure.
Since gravity couples to the fullTµν

M and not just to its(0,0) component, it is not
sufficient to only address the vacuum energy density problem, one has to deal with the
vacuum pressure as well. There are thus two vacuum problems that need to be addressed,
and not just one. The gravitational sector will thus need to cancel both the vacuum
energy density and the vacuum pressure of the matter field, and in a conformal theory
will readily be able to do so since−4αgWµν(2) has an identical traceless vacuum perfect
fluid structure. (In a conformal invariant theory the variation with respect to the metric
of the pure gravitational sector of the action is automatically traceless.)

For the explicit structure of the gravity sector we follow the discussion given in [7].
On using some residual gauge symmetry the general solution toWµν(1) = 0 is given as

Kµν(x) =
h̄1/2

2(−αg)1/2

2

∑
i=1

∫

d3k

(2π)3/2(ωk)3/2

[

A(i)(k̄)ε(i)µν(k̄)e
ik·x

+ iωkB
(i)(k̄)ε(i)µν(k̄)(n ·x)e

ik·x

+ Â(i)(k̄)ε(i)µν(k̄)e
−ik·x− iωkB̂

(i)(k̄)ε(i)µν(k̄)(n ·x)e
−ik·x

]

, (35)

as expressed in terms of quantum operatorsA(i)(k̄), Â(i)(k̄), B(i)(k̄) andB̂(i)(k̄) and two

transverse traceless polarization tensorsε(i)µν(k̄) (i = 1,2), both of which are normalized
to εαβ εαβ = 1. SinceKµν is to not be Hermitian, the creation operators are not the
Hermitian conjugates of the annihilation operators. However, in the following all that
will matter is thatA(i)(k̄) and B(i)(k̄) annihilate the right vacuum whilêA(i)(k̄) and
B̂(i)(k̄) annihilate the left vacuum. Withnµxµ being equal to−t, in (35) we recognize
the presence of non-stationary modes, which, as noted above, is characteristic of theories
with non-diagonalizable Hamiltonians.

As discussed in detail in [7], the quantization procedure is also characteristic of non-
diagonalizable Hamiltonians, with the commutators taking the form

[A(i)(k̄), B̂( j)(k̄′)] = [B(i)(k̄), Â( j)(k̄′)] = Z(k)δi, jδ 3(k̄− k̄′),

[A(i)(k̄), Â( j)(k̄′)] = 0, [B(i)(k̄), B̂( j)(k̄′)] = 0,

[A(i)(k̄),B( j)(k̄′)] = 0, [Â(i)(k̄), B̂( j)(k̄′)] = 0. (36)

In (36) everything except the possiblyk= |k̄| dependent renormalization constantZ(k)
is fixed by kinematics (the vanishing of the[B(i)(k̄), B̂( j)(k̄′)] commutator for instance is
needed to cancel allnµxµ terms in−4αg〈Ω|Wµν(2)|Ω〉). The constantZ(k), however,
will be fixed by the dynamics, with the dynamics preventingZ(k) from being zero and
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the above commutator algebra from being trivial. Specifically, given (36) we obtain

−4αg〈Ω|Wµν(2)|Ω〉=
2h̄

(2π)3

∫ ∞

−∞
d3k

Z(k)kµkν

ωk
, (37)

with the factor 2 appearing in (37) since we have to sum the standard bosonich̄ω/2
zero-point energy density per mode over two polarization states of two separate families
of massless spin 2 modes (theA(i)(k̄) andB(i)(k̄) sectors). Then with the fermion sector
generating a factor of−2 in (33) (the standard fermionic−h̄ω zero-point energy density
per mode as summed over negative energy states with spin up and spin down) the
cancellation of the fermionic and gravitational contributions in−4αg〈Ω|Wµν(2)|Ω〉+

〈Ω|Tµν
M |Ω〉= 0 will enforceZ(k) = 1.

Establishing thatZ is fixed by the coupling of gravity to the matter sector is our
key result as it shows that gravity requires no independent quantization of its own,
with its quantization strength being fixed by the consistency condition that all zero-
point infinities cancel identically. To appreciate the point, it is of interest to take a more
general matter source. Thus if we take the source to containM massless gauge bosons
andN massless two-component fermions (viz.N/2 four-component fermion modes),
together they will generateM −N units of h̄ωk for eachk̄. (For gauge bosons one gets
+h̄ωk/2 for each of two helicity states.) In this case consistency requires thatZ be given
by Z = (N−M)/2. This condition shows thatZ cannot be assigned in isolation. Rather
it is determined by the dynamics each time. Moreover sinceZ must be positive (c.f.
no negative norm states) it also provides an interesting constraint on model building,
namely thatN must be greater thanM. For the standardSU(3)×SU(2)×U(1) model
for instance, we haveM = 12 gauge bosons andN = 16 two-component spinors per
generation, withZ then being positive. Intriguingly, for the grand-unified gauge group
SO(10) one hasM = 45 and againN = 16 per generation, with three generations of
fermions thus being the minimum number that would makeZ be positive in this case.

A second example of a dynamically determined renormalization constant may be
found in two spacetime dimensions (D = 2). With it being the Einstein-Hilbert action
that is conformally invariant inD = 2, to the order̄h of interest to us we thus couple
D= 2 Einstein-Hilbert gravity (with 1/2κ2

2 in place of 1/16πG) to a freeD= 2 massless
flat spacetime fermion. Now inD = 2 the classical Einstein-Hilbert action is a total
divergence (theD = 2 Gauss-Bonnet theorem). Consequently, the associated Feynman
path integral is trivial and there is no quantum scattering. However, as noted in [7, 12],
the theory is not completely empty. Specifically, due to quantum ordering the quantum-
mechanical Einstein-Hilbert action is a not a total divergence. (Generically,A∂µB+
B∂µA= ∂µ(AB)+ [B,∂µA].) In consequence of this there are zero-point fluctuations in
the gravity sector, just as needed to cancel those in the fermion sector.

The specificD = 2 calculation parallels theD = 4 case with gravitational fluctuations
of the formgµν = ηµν +hµν being found to satisfy a massless wave equation and with
the components ofhµν being related by the vanishing of the traceηµνhµν . With the
momentum modes being given bykµ = (ωk,k) whereωk = |k|, the general solution to
the wave equation is given by [7, 12]

h00(x, t) = κ2h̄1/2
∫

dk

(2π)1/2(2ωk)1/2

[

A(k)ei(kx−ωkt)+C(k)e−i(kx−ωkt)
]

= h11(x, t),
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h01(x, t) = κ2h̄1/2
∫

dk

(2π)1/2(2ωk)1/2

[

B(k)ei(kx−ωkt)+D(k)e−i(kx−ωkt)
]

. (38)

On defining

〈Ω|[C(k),B(k′)]|Ω〉=−〈Ω|B(k)C(k)|Ω〉δ (k−k′) =− fBC(k)δ (k−k′),

〈Ω|[A(k),D(k′)]|Ω〉= 〈Ω|A(k)D(k)|Ω〉δ (k−k′) = fAD(k)δ (k−k′),

(39)

wherek is the spatial component ofkµ , which can be positive or negative, we find that
the order̄h vanishing ofTµν

GRAV+Tµν
M then leads to the condition

k[ fBC(k)− fAD(k)] = 4ωk = 4|k|, (40)

with fBC(k)− fAD(k) being an odd function ofk. As we see, the matter sector has again
fixed the commutation relations for the gravitational field.

7. THE COSMOLOGICAL CONSTANT PROBLEM IN D = 2

In dynamical generation of fermion masses one has to change the vacuum from the
normal one|N〉 in which 〈N|ψ̄ψ|N〉 is zero to a spontaneously broken one|S〉 in which
〈S|ψ̄ψ|S〉 is non-zero. Since (20) is an operator identity it will hold in any state, and
thus the cancellations required to enforce〈S|Tµν

GRAV|S〉+ 〈S|Tµν
M |S〉 = 0 must occur. To

see how this explicitly comes about, it is instructive to consider a four-Fermi interaction
in two spacetime dimensions, as that is the dimension in which the four-Fermi coupling
constantg is dimensionless and the theory is conformal invariant. We introduce a flat
spacetime four-Fermi action of the formIM =−

∫

d2x[ih̄ψ̄γµ∂µ ψ − (g/2)(ψ̄ψ)2], with
the energy-momentum tensorTµν

M = ih̄ψ̄γµ∂ ν ψ −ηµν(g/2)[ψ̄ψ]2 being traceless in
solutions to the equation of motion, just as must be the case for conformal matter.

In the Nambu-Jona-Lasinio mean-field, Hartree-Fock approximation one looks for
self-consistent states|S〉 in which 〈S|ψ̄ψ|S〉 = im/g and 〈S|(ψ̄ψ − im/g)2|S〉 = 0. In
such states the fermion equation of motion takes the formih̄γµ ∂µψ − imψ = 0 and the
mean-field energy-momentum tensorTµν

MF takes the form

〈S|Tµν
MF |S〉= 〈S|ih̄ψ̄γµ ∂ ν ψ|S〉+

m2

2g
ηµν , (41)

with the mean-field approximation preserving tracelessness. With the fermion momen-
tum modes being given bykµ = (ωk,k) where ωk = (k2 + m2/h̄2)1/2, the quantity
〈S|ih̄ψ̄γµ∂ ν ψ|S〉 evaluates to

〈S|ih̄ψ̄γµ ∂ ν ψ|S〉=−
h̄

2π

∫ ∞

−∞
dk

kµkν

ωk
. (42)

In (42) we recognize mean-field energy density and pressure terms of the form

ρMF = −
h̄

2π

[

K2+
m2

2h̄2 +
m2

2h̄2 ln

(

4h̄2K2

m2

)]

,

PyV
Texto escrito a máquina
240



pMF = −
h̄

2π

[

K2+
m2

2h̄2 −
m2

2h̄2 ln

(

4h̄2K2

m2

)]

, (43)

as conveniently cut-off at a momentumK that serves to characterize the infinities in-
volved. In the(m2/2g)ηµν term in (41) we recognize a mean-field cosmological con-
stant termΛMF =−m2/2g, and withΛMF evaluating to the logarithmically divergent

ΛMF =
m2

4πh̄
ln

(

4h̄2K2

m2

)

, (44)

we obtain the gap equationm= 2h̄Keπh̄/g. (In dynamical symmetry breaking the induced
cosmological constant is infinite rather than finite – it thus appears in(Tµν

M )DIV and not
in (Tµν

M )FIN.) In terms ofρMF, pMF and ΛMF we can write the complete mean-field
〈S|Tµν

MF |S〉 as

〈S|Tµν
MF |S〉= (ρMF + pMF)U

µUν + pMFηµν −ΛMFηµν . (45)

Since〈S|Tµν
MF |S〉 is traceless, the various terms in (45) must obeypMF−ρMF−2ΛMF =

0 (in D = 2), with all the various divergences canceling each other in the trace, just as
noted in [13, 7]. Given this cancellation, we can eliminateΛMF and rewrite (45) in the
manifestly traceless form

〈S|Tµν
MF |S〉 =

(ρMF+ pMF)

2
[2U µUν +ηµν ] ,

ρMF + pMF

2
= 〈S|T00

MF|S〉=−
h̄

2π

(

K2+
m2

2h̄2

)

, (46)

with the logarithmic divergences associated with the readjustment ofρMF and pMF in
(43) from the massless to the massive case having completely disappeared. Finally, in
order for gravity to now cancel〈S|Tµν

MF |S〉, we have to replace (40) by

k[ fBC(k)− fAD(k)] = 4

[

(k2+m2/h̄2)1/2−
m2

2h̄2(k2+m2/h̄2)1/2

]

. (47)

Thus in the presence of dynamical symmetry breaking, even though the gravitational
sector modes remain massless, the commutator renormalization constants in (39) read-
just and become dependent on the induced fermion mass, with the renormalization con-
stants thus being dependent on the choice of vacuum. The emergence of a behavior
such as this is completely foreign to the standard canonical commutation prescription
used for the matter fields, and shows how different quantization for gravity has to be.
Nonetheless, with this readjustment, the vacuum cosmological constant term is com-
pletely cancelled, with conformal gravity thus being able to control the cosmological
constant even after the conformal symmetry is broken.
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8. THE COSMOLOGICAL CONSTANT PROBLEM IN D = 4

To generalize theD = 2 results toD = 4 is not immediate since inD = 4 the four-Fermi
interaction is not conformal invariant. Rather one must work in a conformal invariant
theory, which inD=4 means a gauge theory. Since the renormalization procedure would
introduce scaling anomaIies, to restore scale symmetry to the gauge theory one needs
to be at a renormalization group fixed point. In such a case scaling would be restored
but with anomalous dimensions, something first noted by Johnson, Baker and Wiley
[14] in a study of quantum electrodynamics at a Gell-Mann-Low eigenvalue for the fine
structure constant. In a study of dynamical symmetry breaking in this same theory it was
found [15] if the dimensiondθ = 3+ γθ of the fermion composite bilinearθ = ψ̄ψ is
reduced by one whole unit from its canonical value ofd = 3 to an anomalous value of
d = 2, the vacuum would then undergo dynamical symmetry breaking and generate a
fermion mass. Specifically, with the insertion ofψ̄ψ into the inverse fermion propagator
behaving as̃Γθ (p, p,0) = (−p2/M2)−1/2 at γθ = −1, it was found that the four-Fermi
value ofε(m,4F) = (i/h̄)

∫

d4p/(2π)4TrLn(γµ pµ −m+ iε), viz.

ε(m,4F) =−
h̄

4π2

(

K4+
m2K2

h̄2 −
m4

4h̄4 ln

(

4h̄2K2

m2

)

+
m4

8h̄4

)

, (48)

would change to

ε(m) =
i
h̄

∫

d4p
(2π)4TrLn

[

γµ pµ −m

(

−p2

M2

)−1/2

+ iε

]

= −
h̄K4

4π2 +
m2M2

16π2h̄3

[

ln

(

m2M2

16h̄4K4

)

−1

]

. (49)

On settingε ′(m) = m/g and M4 = 16h̄4K4exp(8π2h̄3/M2g), the mean-field energy
densityε(m)−m2/2g thus evaluates to

ε(m)−
m2

2g
=−

h̄K4

4π2 +
m2M2

16π2h̄3

[

ln

(

m2

M2

)

−1

]

. (50)

Other than them-independent quartically divergent term (which also occurs in the
gravity sector) the mean-field energy density is completely finite, with a local maximum
at m= 0 and global minima atm= ±M. With the four-Fermiε(m,4F) given in (48)
having mass-dependent terms that are quadratically and logarithmically divergent, we
see that improving the short distance-behavior ofψ̄ψ by one whole unit, and thus that
of ψ̄ψψ̄ψ by two whole units (to thereby make it non-perturbatively renormalizable)
then brings the quadratic divergence down to logarithmic; with the−m2/2g term then
removing the logarithmic divergence, to produce the finite terms in (50).

At the minimum, (50) takes the form

ε(M)−
M2

2g
=−

h̄K4

4π2 −
M4

16π2h̄3 , (51)
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in complete analog to (46). As required by (20), gravity must thus cancel the whole of
(51) in D = 4 just as it cancels the whole of (46) inD = 2. To this end we note that the
propagatorS(p) = [γµ pµ −m(−p2/M2)−1/2+ iε]−1 contained in (49) has poles, and
they can be taken to be atp4−m2M2 = 0 if we define the multiple-valued square root
singularity appropriately. If we do thep0 contour integration in (49) we will obtain poles
at p2 = mM andp2 =−mM. Recalling that〈S|ψ̄ψ|S〉= ε ′(m), in analog to (33) we can
set

ε(m)−
m2

2g
=−

2h̄
(2π)3

∫ ∞

−∞
d3k

[

(k2+mM/h̄2)1/2−
mM

4h̄2(k2+mM/h̄2)1/2

+ (k2−mM/h̄2)1/2+
mM

4h̄2(k2−mMh̄2)1/2

]

. (52)

Thus at them= M minimum we obtain

ε(M)−
M2

2g
=−

2h̄
(2π)3

∫ ∞

−∞
d3k

[

(k2+M2/h̄2)1/2−
M2

4h̄2(k2+M2/h̄2)1/2

+ (k2−M2/h̄2)1/2+
M2

4h̄2(k2−M2/h̄2)1/2

]

.(53)

Comparing now with (37), we see that the cancellation of the fermionic and gravitational
contributions in−4αg〈S|Wµν(2)|S〉+ 〈S|Tµν

M |S〉 = 0 will force the gravitational sector
renormalization constantZ(k) in (36) to obey

kZ(k) = (k2+M2/h̄2)1/2−
M2

4h̄2(k2+M2/h̄2)1/2

+ (k2−M2/h̄2)1/2+
M2

4h̄2(k2−M2/h̄2)1/2
, (54)

in complete analog to (47), withZ(k) again being determined by the dynamics. (In
(47) and (54) the numerical factor of 2 or 4 factor in the denominator is the spacetime
dimension.) Additionally we note that if we were to setM = 0 in (54) we would obtain
Z(k) = 2 rather thanZ(k) = 1, since the pole structure of the propagatorS(p) is that of
two 4-component fermions rather than just one.

Having now obtained (53) and (54), we note that there is an alternate way to derive
the structure given in (53) and (54) that is instructive in its own right. Since we are
in a conformal theory we can treat the two sets of poles atp2 = M2 and p2 = −M2

as though they were independent degrees of freedom each with the traceless energy-
tensorTµν = iψ̄γµ∂νψ − (1/4)ηµνψ̄ψ required in the broken symmetry case [1]. Rec-
ognizing T00 = iψ̄γ0∂ 0ψ − (1/4)η00ψ̄ψ to be in the generic formT00 = ε(m)−
(m/4)dε(m)/dmfor a particle of massm, we recognizeε(M)− (M/4)dε(M)/d(M)+
ε(iM)− (iM/4)dε(iM)/d(iM) as being none other than the right-hand side of (53).
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9. THE DARK MATTER PROBLEM

Since conformal gravity is a well-defined, renormalizable quantum theory, we can take
matrix elements of (32) in states with an indefinite number of gravitational quanta and
obtain a completely finite macroscopic limit that will be described by a classical version
of (11). Classical conformal gravity has been studied by Mannheim and Kazanas [16]
who found that because of the underlying conformal symmetry, the exact metric in a
static, spherically symmetry geometry can be brought to the form

ds2 =−B(r)dt2+
dr2

B(r)
+ r2dΩ2, (55)

where the metric coefficientB(r) obeys the the fourth-order equation

3
B(r)

(W0
0−Wr

r) = ∇4B= B′′′′+
4B′′′

r
=

(rB)′′′

r
=

3
4αgB(r)

(T0
0−Tr

r)≡ f (r) (56)

without any approximation whatsoever. Exterior to a source of radiusr0 the solution to
(56) is of the form

B(r > r0) = 1−
2β
r

+ γr, (57)

with the matching of the interior and exterior solutions fixing the integration constants
in (57) according to

2β =
1
6

∫ r0

0
dr′r ′4 f (r ′), γ =−

1
2

∫ r0

0
dr′r ′2 f (r ′). (58)

Comparing with (5) and (6) we see that, as had been been noted above, we do indeed
recover the Schwarzschild solution, but in addition we see that we obtain a linear
potential, to thus give a departure from Newton-Einstein at large distances, i.e. in
precisely the region where the dark matter problem is encountered.

Given (57), we see that a star would put out a weak gravity potential

V∗(r) =−
β ∗c2

r
+

γ∗c2r
2

(59)

per unit solar mass. In spiral galaxies the luminous matter at a radial distanceR from the
galactic center is typically distributed with a surface brightnessΣ(R) = Σ0e−R/R0, with
the total luminosity being given byL = 2πΣ0R2

0. If we assume that the mass distribution
in a spiral galaxy is the same as that of its luminous distribution (i.e. no dark matter),
then for a galactic mass to light ratioM/L, one can define the total number of solar
mass unitsN∗ in the galaxy via(M/L)L = M = N∗M⊙. On integratingV∗(r) over this
visible matter distribution, one finds that the net centripetal acceleration due to the local
luminous matter in the galaxy is given by [1]

v2
LOC

R
=

N∗β ∗c2R

2R3
0

[

I0

(

R
2R0

)

K0

(

R
2R0

)

− I1

(

R
2R0

)

K1

(

R
2R0

)]

+
N∗γ∗c2R

2R0
I1

(

R
2R0

)

K1

(

R
2R0

)

. (60)
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Familiarity with Newtonian gravity would suggest that to fit galactic rotation curve
data in conformal gravity one should now apply (60) as is. However there is a crucial
difference between the two cases. For Newtonian gravity one uses the second-order
Poisson equation∇2φ(r) = g(r) and obtains a potential and force of the form

φ(r) =−
1
r

∫ r

0
dr′r ′2g(r ′)−

∫ ∞

r
dr ′r ′g(r ′),

dφ(r)
dr

=
1
r2

∫ r

0
dr′r ′2g(r ′). (61)

As such, the import of (61) is that even thoughg(r) could continue globally all the way
to infinity, the force at any radial pointr is determined solely by the material in the local
0< r ′ < r region. In this sense Newtonian gravity is local in character, since to explain
a gravitational effect in some local region one only needs to consider the material in
that region. Thus in Newtonian gravity, if one wishes to explain the behavior of galactic
rotation curves through the use of dark matter, one must locate the dark matter where
the problem is and not elsewhere, i.e. within the galaxies themselves.

However, this familiar property of Newtonian gravity is not generic to any theory
of gravity. In particular if we defineh(r) = c2 f (r)/2, the conformal gravity potential
associated with (56) will obey the fourth-order Poisson equation∇4φ(r) = h(r), with
general solution

φ(r) =−
r
2

∫ r

0
dr′r ′2h(r ′)−

1
6r

∫ r

0
dr′r ′4h(r ′)−

1
2

∫ ∞

r
dr′r ′3h(r ′)−

r2

6

∫ ∞

r
dr′r ′h(r ′)

dφ(r)
dr

=−
1
2

∫ r

0
dr′r ′2h(r ′)+

1
6r2

∫ r

0
dr′r ′4h(r ′)−

r
3

∫ ∞

r
dr′r ′h(r ′). (62)

As we see, this time we do find a global contribution to the force coming from material
in the r < r ′ < ∞ region that is beyond the radial point of interest. Hence in conformal
gravity one cannot ignore the rest of the universe, with a test particle in orbit in a
galaxy being able to sample both the local field due to the matter in the galaxy and
the global field due to the rest of the matter in the Universe. Unlike Newtonian gravity
then, conformal gravity is an intrinsically global theory.

The contribution that the rest of the Universe provides consists of two components,
the homogeneous cosmological background and the inhomogeneities in it. The homoge-
neous background can be described by a Roberston-Walker (RW) geometry, while large
scale inhomogeneities are typically in the form of large gravitationally bound systems
such as clusters and superclusters. Since the RW metric is conformal to flat, and since
the Weyl tensor vanishes identically in a such a geometry, the cosmological background
is characterized by a geometry in whichWµν of (11) (and thus the cosmologicalTµν

M )
vanish identically. However, since localized inhomogeneities have a non-vanishing Weyl
tensor, the inhomogeneities contribute to the integrals in (62) that extend out to infinity
beyond the galaxy of interest. The inhomogeneities contribute to the particular integral
solution to (11) given in (62) (both∇4B(r) and f (r) non-zero), while the homogeneous
background contributes to the complementary function (both∇4B(r) and f (r) zero).

In order for the background cosmology to contribute non-trivially, we note that even
though we need the backgroundTµν

M to vanish (since the RWWµν vanishes), we would
needTµν

M to vanish non-trivially if it is to have any content. As shown in [1], such a non-
trivial vanishing can be achieved by an interplay between the positive contribution of the
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matter sources (c.f.Σh̄ωa†a) and the negative contribution of the gravitational field that
occurs if the 3-curvatureK of the Universe is negative, with gravity providing negative
energy density. In [1] it was shown that with such a cosmology one could then fit the
accelerating universe Hubble plot data without the need for any fine-tuning of parameters
or for any of the cosmological dark matter required in the standard theory. (Unlike the
standardΩK = 0 cosmology, which is fine-tuned to only accelerate at late redshift, with
its negativeK the conformal cosmology naturally accelerates at all redshifts.)

Since cosmology is written in comoving Hubble flow coordinates while rotation
curves are measured in galactic rest frames, to ascertain the impact of cosmology on
rotation curves one needs to transform the RW metric to static coordinates. As noted in
[16], the transformation

ρ =
4r

2(1+ γ0r)1/2+2+ γ0r
, τ =

∫

dtR(t) (63)

effects the metric transformation

−(1+ γ0r)c2dt2+
dr2

(1+ γ0r)
+ r2dΩ2 =

1
R2(τ)

(

1+ γ0ρ/4
1− γ0ρ/4

)2[

−c2dτ2+
R2(τ)

[1− γ2
0ρ2/16]2

(

dρ2+ρ2dΩ2
)

]

. (64)

Recognizing (64) to be conformal to a topologically open RW metric with 3-curvature
K =−γ2

0/4, and recalling that in metrics conformal to RW the tensorWµν still vanishes,
we see that in the rest frame of a galaxy the negativeK global cosmology found in [1]
acts like a universal linear potential with cosmological strengthγ0/2= (−K)1/2.

In the weak gravity limit one can add this global potential on to (60), with the total
centripetal acceleration then being given by [17]

v2
TOT

R
=

v2
LOC

R
+

γ0c2

2
. (65)

In [17] (65) was used to fit the galactic rotation velocities of a sample of 11 spiral
galaxies, and good fits were found, with the two universal linear potential parameters
being fixed to the values

γ∗ = 5.42×10−41cm−1, γ0 = 3.06×10−30cm−1. (66)

The value obtained forγ∗ entails that the linear potential of the Sun is so small that there
are no modifications to standard solar system phenomenology, with the values obtained
for N∗γ∗ andγ0 being such that one has to go to galactic scales before their effects can
become as big as the Newtonian contribution.

However, as we had noted above, there is a contribution due to inhomogeneities in the
cosmic background that we need to include too. These inhomogeneities would typically
be clusters and superclusters and would be associated with distance scales between 1
Mpc and 100 Mpc or so. Without knowing anything other than that about them, we see
from (62) that for calculating potentials at galactic distance scales (viz. scales much less
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than cluster scales) the inhomogeneities would contribute constant and quadratic terms
multiplied by integrals that are evaluated between end points that do not depend on the
galaxy of interest, to thus be constants. Thus we augment (65) to

v2
TOT

R
=

v2
LOC

R
+

γ0c2

2
−κc2R, (67)

with asymptotic limit

v2
TOT

R
→

N∗β ∗c2

R2 +
N∗γ∗c2

2
+

γ0c2

2
−κc2R. (68)

Armed with (67) Mannheim and O’Brien [18, 19] set out to update the earlier fits
of [17] and apply the conformal theory to a sample of 110 galaxies that had become
available in the interim (a varied and broad sample that includes both high and low
surface brightness galaxies and dwarfs). In making such fits the only parameter that can
vary from one galaxy to the next is the galactic disk mass to light ratio as embodied
in N∗, with the parametersγ∗, γ0 and κ needing to be universal and not have any
dependence on a given galaxy at all. To model the contribution of the luminous matter
known photometric surface brightness data parameters were used. The fits are thus
highly constrained, one parameter per galaxy fits with all photometric input data being
known, with everything else being universal, and with no dark matter being assumed.

Now since theκ-dependent term had not been used in the fits given in [17], one would
immediately expect that it would be too small to be significant. However, because the
110 galaxy sample is so big, it contains galaxies whose rotation velocity data go out to
radial distances much larger than the ones that had previously been considered. These
data are thus sensitive to the distance-dependent−κc2R term present in (67), with the
fitting underscoring the value of working with a large data sample. The fitting to the
complete 110 galaxy sample is reported in [19], with the fitting to the 20 largest galaxies
(viz. those that are most sensitive to the−κc2R term) being reported here and in [18].
The fitting shows that without any galactic dark matter (67) captures the essence of the
data for the entire 110 galaxy sample, with the parametersγ∗ andγ0 continuing to take
the values given in (66), and withκ being found to take the value

κ = 9.54×10−54 cm−2. (69)

In the figures we present the actual fitting to the 20 galaxy sample with all details
being given in [18, 19]. In the figures the rotational velocities and errors (in km sec−1)
are plotted as a function of radial distance (in kpc). For each galaxy we exhibit the
contribution due to the luminous Newtonian term alone (dashed curve), the contribution
from the two linear terms alone (dot dashed curve), the contribution from the two linear
terms and the quadratic terms combined (dotted curve), with the full curve showing the
total contribution. Because the data go out to such large distances the data are sensitive
to the rise in velocity associated with the linear potential terms, and it is here that the
quadratic term acts to actually arrest the rise altogether (dotted curve) and cause all
rotation velocities to ultimately fall. Moreover, sincev2 cannot be negative, beyond a
distanceR of orderγ0/κ = 3.21× 1023 cm or so there could no longer be any bound

PyV
Texto escrito a máquina
247



galactic orbits, with galaxies thus having a natural way of terminating, and with global
physics thus imposing a natural limit on the size of galaxies. To illustrate this we plot
the rotation velocity curve for UGC 128 over an extended range.

It is important to appreciate that the fits provided by conformal gravity (and like-
wise those provided by other alternate theories such as Milgrom’s MOND theory and
Moffat’s MSTG theory [20]) are predictions. Specifically, for all these theories the only
input one needs is the photometric data, and the only free parameter is theM/L ra-
tio for each given galaxy, with rotation velocities then being determined. That these
highly constrained alternate theories all work is because not only do they each possess
an either derived or postulated underlying universal scale (a derivedγ0 = 2(−K)1/2 =
3.06×10−30 cm−1 for conformal gravity,a0/c2 = 1.33×10−29 cm−1 for MOND and
G0M0/r2

0c2 = 7.67×10−29 cm−1 for MSTG), all of the 110 galaxies in the sample pos-
sess it too. Specifically, despite the huge variation in luminosity and surface brightness
across the 110 galaxy sample, within one order of magnitude the measured values of the
centripetal accelerations(v2/c2R)last at the last data point in each galaxy are all found to
cluster around a value of 3×10−30 cm−1 or so. For the 20 large galaxy sample for in-
stance the values forv2/c2Rall lie within the narrow range(0.97−5.83)×10−30 cm−1.

It should also be noted that while the fits provided by conformal gravity are predic-
tions, in contrast, dark matter fitting to galactic data works quite differently. There one
first needs to know the velocities so that one can then ascertain the needed amount of
dark matter, i.e. in its current formulation dark matter is only a parametrization of the
velocity discrepancies that are observed and is not a prediction of them. Dark matter
theory has yet to develop to the point where it is able to predict rotation velocities given
a knowledge of the luminous distribution alone (or explain the near universality found
for (v2/c2R)last). Thus dark matter theories, and in particular those theories that produce
dark matter halos in the early universe, are currently unable to make an a priori deter-
mination as to which halo is to go with which particular luminous matter distribution,
and need to fine-tune halo parameters to luminous parameters galaxy by galaxy. In the
FNW CDM simulations [21] for instance, one finds generic spherical halo profiles close
in form to σ(r) = σ0/[r(r + r0)

2] (as then cut off atcr0), but with the halo parameters
σ0, r0 andc needing to be fixed galaxy by galaxy. In addition to the galactic mass to light
ratios, this requires 330 further parameters for the 110 galaxy sample (or a further 220
parameters for isothermal halo type models). No such fine-tuning shortcomings appear
in conformal gravity, and if standard gravity is to be the correct description of gravity,
then a universal formula akin to the one given in (67) and the existence of the universal
γ0 andκ parameters would need to be derived by dark matter theory.

The conformal gravity fits are also noteworthy in that conformal gravity was not at
all developed for the purpose of addressing the dark matter problem. Rather, it was first
advocated by the present author [22] solely because it has a symmetry that could address
the cosmological constant problem. However, once the starting action of (9) is assumed,
one can then proceed purely deductively and derive the rotation curve formula given in
(67), a thus purely theoretical first principles approach. Moreover, since our study of
(67) then establishes that global physics has an influence on local galactic motions, the
invoking of dark matter in galaxies could potentially be nothing more than an attempt to
describe global physics effects in purely local galactic terms.
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10. CONNECTING CONFORMAL AND EINSTEIN GRAVITY

In a recent paper ’t Hooft [2] has found an interesting connection between Einstein grav-
ity and conformal gravity. In standard treatments of quantum Einstein gravity one makes
a perturbative expansion in the metric and generates multi-loop Feynman diagrams. Each
perturbative order requires a new counter-term, with the nth-order one being a function
of the nth-power of the Riemann tensor and its contractions. With the series not termi-
nating, Einstein gravity is rendered non-renormalizable.

In his paper ’t Hooft proposes a very different approach, one that is highly nonlinear.
Specifically, instead of evaluating the path integral as a perturbative series in the metric
componentsgµν(x), he instead proposes to treat the conformal factor in the metric as an
independent degree of freedom. Specifically, he makes a conformal transformation on
the (non-conformal invariant) Einstein-Hilbert action of the formgµν(x)=ω2(x)ĝµν(x),
to obtain

IEH =−
1

16πG

∫

d4x(−ĝ)1/2(ω2R̂α
α −6ĝµν∂µ ω∂ν ω

)

, (70)

with everything inIEH now being evaluated in a geometry with metric ˆgµν(x) [23]. Then
instead of taking the path integral measure to be of the standardDgµν form, ’t Hooft
proposes that it be taken to be of the formDωD(gµν/ω2) = DωDĝµν instead.

The utility of this approach is that since theω dependence inIEH is quadratic, the
Dω path integral can be done analytically. However, in order for the path integral to be
bounded one needs to giveω an imaginary part. With this choice, theω path integral
will generate an effective actionIEFF of the form Tr ln[ĝµν∇̂µ∇̂ν +(1/6)R̂α

α ], and after
dimensional regularization is found not to generate an infinite set of divergent terms at
all, but rather to only generate just one divergent term, viz. the logarithmically divergent

IEFF=
C

120

∫

d4x(−ĝ)1/2[R̂µνR̂µν −
1
3
(R̂α

α)
2], (71)

with C being the very same logarithmically divergent constant that had appeared in (16).
In (71) we immediately recognize the conformal gravity action. Since the action in

(70) is the same action as that obeyed by a conformally coupled scalar field, and the
ω path integral measure is the same as that of a scalar field, everything is conformal,
and theω path integral can only generate a conformal invariant effective action – hence
(71). Through the unusual treatment of the conformal factor we thus find a connection
between Einstein gravity and conformal gravity.

From the perspective of Einstein gravity, the utility of (71) is that since confor-
mal gravity is renormalizable, the subsequentDĝµν integration of IEFF should not
generate any additional counter-terms, while the non-leading terms contained in
Tr ln[ĝµν∇̂µ ∇̂ν + (1/6)R̂α

α ] would generate contributions to the path integration that
could potentially be finite. One still has to deal with the divergentC term in (71), and
rather than have it renormalized (say by adding on an intrinsic conformalIW term),
’t Hooft explores the possibility thatC remain uncanceled, and we refer the reader to
his paper for details. (WithC appearing with the same overall sign in (16) and (71),
and with a gauge field path integration over its kinetic energy having the same sign too
[2], an interplay between fermionic and bosonic fields cannot cancelC – with massless
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superpartner fields not being able to effect the same cancellation in a curved background
that they can achieve in a flat one.)

While we thus generate a conformal action if we start with an Einstein action, from the
perspective of pure conformal gravity, conformal invariance prevents one from including
an Einstein term in the fundamental action at all. However, in a pure conformal theory
one still needs to use a measure that is conformal invariant. Now the metric itself is not
conformal invariant, and hence neither is theDgµν path integration measure. However,
the quantitygµν/(−g)1/4 is conformal invariant and thus so is an integration measure of
the formD(gµν/(−g)1/4) (and analogouslyD((−g)3/16ψ̄)D((−g)3/16ψ) for fermions).
In order to simplify the measure one would like to work in a conformal gauge in which
the determinant of the metric is fixed to a convenient value such as one. And while it
needs to be explored in detail, it is possible that adding an Einstein term to the conformal
action and taking the measure to be of the formD(−g)1/8D(gµν/(−g)1/4) might then
serve as an appropriate conformal gauge fixing procedure. The fact that there would
only be nine independentD(gµν/(−g)1/4) terms parallels the fact that the perturbative
IW of (22) only depends on the traceless 9-componentKµν = hµν − (1/4)ηµνηαβ hαβ .
Additionally, the fact that one needs to giveω an imaginary part in order to obtain
a well-defined path integral parallels the structure we found for the conformal theory,
with unitarity being achieved by having the gravitational field be anti-Hermitian.

11. SUMMARY

In this review we have presented the case that can be made for conformal gravity. In par-
ticular we have shown how it can quite naturally handle some of the most troublesome
problems in physics, the quantum gravity problem, the vacuum energy problem, and the
dark matter problem, being able to do so in the four spacetime dimensions for which
there is evidence. As detailed in [1] much more still needs to be done: anisotropy of the
cosmic microwave background, large scale structure, cluster dynamics and lensing by
clusters (especially in light of the global−κc2R term in (67)), orbit decays of binary
pulsars and gravity waves, solving the primordial deuterium problem that conformal
nucleosynthesis has. For all of these applications we only need to consider the parti-
cle contribution to the finite (32), with the contribution of the vacuum sector including
the cosmological constant having been taken care of by (31). All of these issues should
eventually prove definitive for the conformal theory, especially since it has none of the
freedom associated with the difficult to pin down and still highly elusive dark matter and
dark energy present in the standard theory. The highly constrained conformal gravity fits
to galactic rotation curves have as yet no parallel in dark matter theory where parame-
ters need to be fine-tuned galaxy by galaxy, and its natural solution to the cosmological
constant problem has as yet no parallel in standard cosmology whereΛ needs to be fine-
tuned to an unbelievable degree. To conclude, we note that at the beginning of the 20th
century studies of black-body radiation on microscopic scales led to a paradigm shift in
physics. Thus it could that at the beginning of the 21st century studies of black-body
radiation, this time on macroscopic cosmological scales, might be presaging a paradigm
shift all over again.
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α(ĝµν)+ 6ḡαβ ω∇̂α ∇̂β ω ] where the∇̂α derivatives are evaluated in a geometry with
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FIGURE 1. Fitting to the rotational velocities in km sec−1 as a function of radial distance in kpc
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Problems with Conformal Gravity

Hans C. Ohanian
Department of Physics, University of Vermont, Burlington, VT 05405-0125, USA

Mannheim’s theory of conformal gravity (see these Proceedings) is a geometric theory, which
relies on the usual assumption that ideal particles, of negligible size and mass, move along the
geodesics of a curved spacetime geometry generated by nearby mass distributions. However,
in such geometric theories, the assumed geodesic motion of ideal particles does not necessarily
imply the geodesic motion of real, extended bodies. Deviations from geodesic motion can arise
from the finite size of a body, which makes the body sensitive to gradients in the gravitational
fields (tidal forces). And deviations can also arise from the finite mass of the body, which gives
it a gravitational self-energy, which can alter the ratio of gravitational mass to inertial mass
and the rate of free fall (this does not happen in general relativity, but it does happen in all
other theories of gravitation I know of; for instance, deviation from geodesic motion because of
gravitational self-energy is a well-known feature of the Brans-Dicke theory). Conformal gravity
is especially susceptible to deviations from geodesic motion arising from the finite sizes of bodies
because of the mechanism by which it generates the 1/r gravitational potential. With the usual
correspondence between metric tensor and nonrelativistic potential, −g00 = B(r) ' 1 + 2Φ(r)
, the field equation in conformal gravity for a spherically symmetric gravitational field is the
fourth-order Poisson equation

∇4Φ(r) =
3

8αg

(T 0
0 − T rr )

B(r)
(1)

For an ideal pointlike source with (T 0
0 −T rr ) α δ3(~x) , the exterior solution of this equation is

Φ(r) α r (2)

Thus, the “natural” potential for a theory with this fourth-order Poisson equation is not a
1/r potential, but a linear r potential (that is, not an inverse-square force, but a constant radial
force). However, for a macroscopic spherical source of finite radius R—such as a bowling ball or
a planet—the exterior solution of the fourth-order Poisson equation is [1]

Φ(r) = − 3

4αg

r

16π

∫ r

0

(T 0
0 − T rr )

B(r′)
dV ′ − 1

4αg

1

16πr

∫ r

0

(T 0
0 − T rr )

B(r′)
r′2dV ′ (3)

This potential includes a linear r term, but also a 1/r term, which Mannheim proposes to
identify with the familiar 1/r Newtonian gravitational potential. In Eq. (3) this term 1/r is
really a kind of quasi-multipole term that arises when a point source with a linear r potential
[see Eq. (2)] is replaced by a sphere. In contrast to the multipoles in Newtonian potential theory
(e.g., quadrupoles), the quasi-multipole in Eq. (3) has no angular dependence [2].

If the source function (T 0
0 −T rr ) is reasonably smooth, then the second term on the right side

of Eq. (3) is smaller than the first term by a factor of about R2/r2 , which makes it negligible at
a distance r >> R from the source. Mannheim seeks to evade this conclusion by hypothesizing
that the source function (T 0

0 − T rr ) has violent microscopic singularities, or “discrete sources”,

1
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at unspecified locations within atoms or nuclei, and that at these singularities the integrand
(T 0

0 − T rr )r2/B(r) of the second term in Eq. (3) picks up contributions much larger than the
integrand (T 0

0 − T rr )/B(r) of the first term [3]. The 1/r potential then becomes much larger
than the linear r potential, in agreement with observations in our neighborhood; and the linear
r potential shows up only at large distances, in the outer reaches of galaxies, where it serves to
solve the dark-mass problem.

I have several objections to this roundabout way of generating a 1/r potential. My two main
objections are that i) the predicted motion of real test bodies deviates from the geodesics of
the metric tensor gµν a deviation that can be easily detected by comparing planetary motion
with the motion of light signals, and ii) the predicted accelerations of free fall of test bodies are
not equal, and the differences are much larger than the experimental limits set by the Eötvös
experiments. The following arguments explain these objections:

i) When a spherical mass m of finite size moves in the gravitational field of a spherical mass
M of finite size,there is a discrepancy between the actual potential energy of these two masses
and the potential energy calculated from the gravitational potential Φ(r) given by Eq. (3). For
an ideal pointlike particle of mass m, the potential energy is of course simply mΦ(r) that is,
Eq. (3) gives the correct potential energy. However, for a spherical test body, with a mass
distribution of finite size, the total potential energy includes not only the 1/r term generated by
the mass distribution M , but also an extra 1/r term generated by the mass distribution m .The
1/r terms in the total potential energy then become

U(r) = ”(r)terms”− 1

4αg

m

16πr

∫
M

(T 0
0 − T rr )

B(r′)
r′2dV ′ − 1

4αg

M

16πr

∫
m

(T 0
0 − T rr )

B(r′)
r′2dV ′ (4)

where the first integral on the right side is over the mass distribution m and the second over the
mass distribution. Under Mannheim’s hypothesis, the integrand of each of the two integrals on
the right side of Eq. (5) is a sum over discrete microscopic singularities, and the first integral gives
a result proportional to M whereas the second gives a result proportional to m. Accordingly,
the two 1/r term in Eq. (4) are then equal, and the effective 1/r potential energy is twice as
large as expected from näıve application of Eq. (3).

This means that although conformal gravity has a geometrical basis in that the motion of ideal
pointlike particles proceeds along the geodesics of the curved spacetime geometry, the motion
of test bodies of finite size includes a significant correction that makes the bodies deviate from
these geodesics (this deviation is somewhat analogous to the deviation from Keplerian motion
we encounter in Newtonian dynamics if our test body is endowed with a quadrupole moment).
Although the underlying theory is geometric, the effective, “emergent,” theory is nongeometric.

This deviation from geodesic motion is readily detectable by comparing the motion of test
bodies with the motion of light signals. The extra term in Eq. (4) does not exist for light signals,
because light waves do not contain singularities a la Mannheim, and a wavepacket does not
generate a 1/r potential. Hence the doubling of the 1/r term in Eq. (4) is absent, and light signals
simply follow the geodesics of the curved spacetime geometry with −g00 = B(r) ' 1 + 2Φ(r)
, grr = 1/B(r). The coupling of a light signal to the gravitational field is therefore effectively
half as large as that of a test body (such as a planet), and the deflection of light by the Sun is
predicted to be 0.85 arcseconds, instead of the observed 1.7 arcseconds. Likewise, the Shapiro
time retardation for light is predicted to be half its standard value. Both the light deflection and
the time retardation have been measured and confirmed with high precision ±2, parts in 104

for the former and parts in for the latter. This is clear observational evidence against conformal
gravity.

ii) My second argument relies on the Eötvös experiments. Given the evidence provided by
the above comparison of the motion of test bodies vs. light signals, any additional argument

2
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may seem gratuitous. However, this second argument highlights some important general points
that apply not only to conformal gravity, but also to other proposed theories of gravity, whose
inventors might benefit from a better understanding of the full implications of the Eötvös exper-
iments.

Although the Eötvös experiment is usually viewed as a test of geodesic motion (that is, equal
accelerations of free fall for all bodies, or what is called the weak equivalence principle), the exper-
iment also provides information about the source of the gravitational interaction. Traditionally,
the experimental results are described by expressing the equation of motion in a nonrelativistic
form, valid for small deviations from flat spacetime and low speeds,

mI
d2xk

dt2
= −mG

∂Φ

∂xk
(5)

This corresponds to geodesic motion if the inertial and gravitational masses are equal mI =
mG, Note that here the gravitational mass mG is the “passive” mass (the receptor of gravitational
force). Logically, this is distinct from the “active” mass m′G (the source of gravitational force).
However, in any theory that includes momentum conservation (that is, in all Lagrangian field
theories, such as conformal gravity), the active mass necessarily equals the passive mass. This
is immediately obvious from the equality of action and reaction forces between two masses m
and M , which requires mGM

′
G = m′GMG and therefore implies that the ratio mG

m′
G

is a universal

constant, which we can set equal to 1. Accordingly, measurements of the ratio mG

mI
obtained

from Eötvös experiments are equally valid for the ratio
m′

G

m′
I

. The Eotvos experiments therefore

determine the gravitational sourcestrengths of mass samples, even though the experiments do
not directly measure the gravitational force exerted by these mass samples. This has crucial
consequences for conformal gravity, because the source strengths assumed by conformal gravity
contradict the results of the Eötvös experiments. The available data from a wide range of
samples of materials tested in the experiments establish that to a precision of 3 parts in 1013 the
gravitational mass—or the source strength of the 1/r potential—is equal to the inertial mass.
For conformal gravity, this means that the coefficient of the 1/r potential in Eq. (3) should be
equal to GmI that is, it should be equal to G

∫
(−T 0

0 )dV ′:

1

4αG

1

16π

∫ R

0

(T 0
0 − T rr )

B(r′)
r′2dV ′ = G

∫ R

0

(−T 0
0 )dV ′ (6)

For a detailed examination of this relationship, we can separate the energy momentum tensor
into several contributions corresponding to the several constituents of the atom and its nucleus:
electrons, protons, neutrons, strong nuclear binding energy, atomic and nuclear electrostatic en-
ergy, etc. The ratio of the separate gravitational and inertial mass contributions for each separate
atomic and nuclear constituent is known from the analysis of the available Eötvös data. Thus,
Will [4] lists the results |∆mG −∆mI | /∆mI < 10−12, 5×10−10, 4×10−10, 6×10−10 respectively,
for the upper limits on gravitational and inertial mass differences associated with baryons, strong
nuclear binding energy (gluon field energy), nuclear electrostatic energy, and nuclear magneto-
static energy. To achieve agreement with these experimental results, the equality between the
integrals on the right and left sides of Eq. (6) must be satisfied to within these experimental
limits for each separate atomic and nuclear constituent. For the electron, proton, and neutron
constituents, the equality is simply a hypothesis about the fixed interior structure of these parti-
cles, which might be regarded as terra incognita about which Mannheim can hypothesize at will
(although it is a deplorable deficiency of conformal gravity that the equality of gravitational and
inertial masses must be inserted “by hand” for each of these particles). But for electrostatic,
magnetostatic, and nuclear binding energies, the integrals in Eq. (6) depend on the individual
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nucleus and its quantum-mechanical wavefunctions and the energy-momentum tensors of elec-
tromagnetic and gluon fields. The value of each integral is calculable from the known nuclear
and nucleon structure, and it cannot be stipulated by hypothesis.

For instance, the electrostatic contribution can be calculated fairly simply, by interpreting
the square of the proton wavefunction as a charge density. For a rough calculation, it actually
suffices to use the liquid-drop model, with a uniform charge density, which generates a radial
electric field (alternatively, it is possible to use the charge density determined by scattering
experiments; this confirms that the nuclear charge density is nearly uniform). For a radial
electric field T rr = −T 0

0 and since the energy density −T 0
0 in the electric field is strictly positive,

the integrands on the left and right sides of Eq. (6) have opposite signs, and they cannot be equal.
That is, in conformal gravity, nuclear electrostatic energy contributes negative gravitational mass
and produces a deviation |∆mG −∆mI | /∆mI > 1 between the gravitational and inertial mass
contributions attributable to the electrostatic energy of the nucleus. This deviation exceeds the
experimental limit listed above by many orders of magnitude [5]. Similar calculations, with
similar results, can be performed for nuclear magnetostatic energy and probably also for gluon
field energy.

I believe that these arguments against conformal gravity are quite solid. And as a theorist, I
feel this is somewhat regrettable, because I find the theoretical foundations, the added conformal
symmetry, and the quantum-field aspects of conformal gravity very appealing (and Mannheim’s
solution of the dark-matter problem is a nice bonus). But in its present form, conformal gravity
does not look viable to me.

Acknowldedgment I thank Philip Mannheim for his patient explanations of various details
of his theory. In discussions after this conference, Mannheim pointed out to me that the linear
approximation I used in an earlier draft of this paper is not applicable to elementary particles, in
which, he conjectures, the violent singularities in the energy-momentum tensor generate nonlinear
gravitational effects. The extent to which nonlinearities come into play depends on the unknown
internal structure of quarks, electrons, and whatever other elementary particles exist in atoms.
To sidestep any dispute about the presence or absence of nonlinearities, I have rewritten the
paper entirely in terms of Mannheim’s nonlinear equations. For the arguments i) and ii) given
here, my conclusions drawn from the linear and the nonlinear equations are the same. However,
I wish to inform readers that Mannheim has not given his approval to my conclusions.
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Abstract

It is generally assumed that on sufficiently large scales the Universe is well-described as a
homogeneous, isotropic FRW cosmology with a dark energy. Does the formation of nonlinear
cosmic inhomogeneities produce a significant effect on the average large-scale FLRW dynamics?
As an answer, we suggest that if the length scale at which homogeneity sets in is much smaller
than the Hubble length scale, the back-reaction due to averaging over inhomogeneities is
negligible. This result is supported by more than one approach to study of averaging in
cosmology. Even if no single approach is sufficiently rigorous and compelling, they are all in
agreement that the effect of averaging in the real Universe is small. On the other hand, it
is perhaps fair to say that there is no definitive observational evidence yet that there indeed
is a homogeneity scale which is much smaller than the Hubble scale, or for that matter, if
today’s Universe is indeed homogeneous on large scales. If the Copernican principle can be
observationally established to hold, or is theoretically assumed to be valid, this provides strong
evidence for homogeneity on large scales. However, even this by itself does not say what the
scale of homogeneity is. If that scale is today comparable to the Hubble radius, only a fully non-
perturbative analysis can establish or rule out the importance of cosmological back-reaction.
This brief elementary report summarizes some recent theoretical developments on which the
above inferences are based.

Based on a talk given at ‘International Conference on Two Cosmological Models’
17-19 November, 2010, Mexico City, To appear in the Conference Proceedings
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1 Introduction

The Universe that we see around us is lumpy - it has stars, galaxies, clusters of galaxies, superclus-
ters, sheets, filaments and voids. We do not precisely know from observations what the size of the
largest structures is; the size beyond which there are no larger structures. On the other hand the
early Universe is very well-described as a homogeneous, isotropic FRW cosmology [Big-Bang nu-
cleosynthesis and the relic CMB are evidence of success] and the present Universe is well-described
as an FRW cosmology with dark energy. How does one reconcile a universe which is observed to
be inhomogeneous and anisotropic on smaller scales, with a universe that is assumed to be ho-
mogeneous and isotropic on large scales? Clearly, some way of averaging the matter distribution
and the related Einstein equations has to be invoked. What is the right way? The true metric of
the universe is the one produced by the inhomogeneous matter distribution. On large scales, one
assumes the average of the true metric to be FLRW, constructs the Einstein tensor for it, and uses
it on the left hand side of the Friedmann equations wherein the matter content on the right hand
side is a perfect fluid. Because Einstein equations are nonlinear, the Einstein tensor constructed
from the average metric tensor will in general not be the same as the average of the Einstein tensor
of the true metric :

< Gµν(gµν) > = < Tµν > 6= Gµν(< gµν >) (1)

Here < ... > denotes the averaging operation [whose correct definition, for tensors on a curved
spacetime, is itself a major challenge]; and < gµν >= gµν |FLRW . The correct averaged Einstein
equations are of course given by the first pair (the equality) in the above set, whereas in cosmology
we assume the correct equations to be those given by the second pair (by assuming the inequality
to actually be an equality). This is obviously done because the latter option is infinitely simpler - it
is straightforward to write the Einstein tensor for the Robertson-Walker metric, but it is impossible
to find the true metric of the inhomogeneous universe and then average its corresponding Einstein
tensor. Since the first and the third terms in (1) could differ significantly, we might be working
with the wrong averaged Einstein equation on cosmological scales. This is the averaging problem:
how to correctly average Einstein equations, and to find out if the neglected terms (the so-called
back-reaction) can become important in the late stages of an evolving universe, when nonlinear
structures such as galaxies and clusters form. In particular, can the back-reaction mimic a dark
energy, and explain the observed cosmic acceleration?

The problem of averaging of Einstein equations has a long history, and has recently been reviewed
in an important article by Ellis [1]. Important contributions to the study of averaging have been
made in recent times, amongst others, by Buchert [2], Coley [3], Wald [4], Zalaletdinov [5] and
their collaborators. Specific applications have been developed by Kolb [6], Marra [7], Rasanen
[8], Sussman [9], Wiltshire [10] and others. Much of this work, as well as earlier developments, are
reviewed by Ellis, and we will not enter into details here, except in the context of specific arguments
developed here.

If we want to find out the back-reaction on an FLRW universe, it certainly means we are
taking an FLRW geometry as given on large scales. It is hence necessary to first know what the
observational evidence for large scale homogeneity and isotropy is, and what is the length scale at
which homogeneity sets in.
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2 Evidence for large scale homogeneity

Careful discussions of this issue have recently been given by Clarkson and Maartens [11], Maartens
[12] and Ellis [1]. What we have to say below is a summary from these earler works, and is reported
here because of its significance for the discussion on averaging in the next section.

It is well known that homogeneity on spatial surfaces can not be established by direct obser-
vations, because all our observations are on the past light-cone. Hence tests of homogeneity have
to exploit the following route : isotropy around us along with the Copernican Principle [CP] im-
plies homogeneity, and hence a FLRW Universe. So one needs to test for isotropy and for CP
independently.

The observational evidence for spacetime isotropy around our world-line can be investigated from
examining the isotropy of the CMB and the galaxy distribution. For a perfectly isotropic CMB,
all multipoles of the distribution function higher than the monopole, as well their time derivatives,
vanish. However without CP one cannot deduce the vanishing of the spatial derivatives of the higher
multipoles, and hence spacetime isotropy about our world-line cannot be deduced without CP. As
for baryonic matter (along with certain assumptions for the distribution of CDM and dark energy)
it can be shown that isotropic distribution of the following four matter observables on the light-cone
implies an isotropic spacetime geometry : angular diameter distances, galaxy number counts, bulk
velocities and lensing (details and references to original work can be found in [12]). As pointed out
by Maartens, it is not known whether almost-isotropy of observations leads to almost-isotropy of
spacetime geometry.

Next, one considers what can be inferred about spatial homogeneity, if one assumes CP, and
considers the following three cases : isotropic matter distribution, isotropic CMB, almost-isotropic
CMB. If all fundamental observers measure the same isotropic distribution of the four matter
observables mentioned above, this implies homogeneity, and the Universe is FLRW. It can be proved
that exact isotropy of the CMB for all observers also implies an FLRW universe. Almost-isotropy
of the CMB can be shown, via a non-perturbative analysis, to imply an almost-FLRW universe,
provided some of the time and spatial derivatives of the multipoles are sufficiently small.

Thus it is clear that the case for an almost-FLRW universe will be strong if observational
tests support the Copernican Principle. These tests can be carried out by testing the standard
consistency relations in FLRW geometry. The FLRW curvature parameter which can be inferred
from geometric measurements is independent of redshift, and a detection of redshift dependence
of this parameter will indicate departure from homogeneity. A second test is the time drift of
cosmological redshift, and a third test is a significant difference between the radial and transverse
BAO scales. None of these tests have yet been carried out, but their eventual execution will play a
crucial role in confirming large-scale homogeneity. The CP can also be tested by looking for a large
thermal or kinetic Sunyaev-Zeldovich effect temeperature distortion of the CMB. Also, a large SZ
effect induced CMB polarization could indicate a violation of CP and hence of homogeneity.

As of now, there is no evidence against CP, but neither is there clinching evidence for large-scale
homogeneity. Also, it is not quite clear at what scale homogeneity sets in. If we assume that there
is homogeneity, and that too at a scale much less than the Hubble scale, say at around 100 MPc,
then it can be shown (as discussed next) that the cosmological back-reaction is negligible. And the
ΛCDM model is then a good description of the present day Universe. On the other hand if there are
much larger nonlinear structures in the Universe - their formation can then no longer be described
perturbatively on an FLRW background, and the back-reaction problem will have to be examined
afresh.
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3 Averaging in Cosmology and Calculation of Back-Reaction

Assuming that the scale at which homogeneity sets in is much smaller than the Hubble scale, we
give three explanations as to why the back-reaction will be small : (i) a simple argument due
to Peebles [13]; (ii) our own work [14], [15], [16], [17] which builds on Zalaletdinov’s Macroscopic
Theory of Gravity [MG] [18], [19], [20], [21]; and (iii) the work of Wald and collaborators [22], [4].
Similar results obtained by a few other researchers, which support the present inference, are briefly
reviewed in Paranjape’s thesis [23].

3.1 An argument due to Peebles ([13] and references therein)

For nonlinear structures such as galaxies, the Newtonian gravitational potential is of the order
of the square of the velocity dispersion [about 300 km/sec], i.e. φ ∼ 10−6. Hence the galaxy
distribution can be described as a perturbation over an FLRW universe. The metric can be written
as a perturbed FLRW Universe and the Einstein equations can be split into an evolution equation
for the background scale-factor and the Poisson equation for the perturbed Newtonian potential
determined by the density contrast (assumed to be provided by non-interacting dark matter).

In order to find the effect of averaging on the FLRW equations, spatial averages of Einstein
equations need to be computed to order φ2, in particular for the dominant term which is proportional
to ∇φ.∇φ. When this is done, one finds corrections due to back-reaction in both the Friedmann
equations - corrections in the form of a kinetic energy coming from the mean square velocity
dispersion, and the averaged gravitational potential energy determined by the density contrast of
the formed nonlinear structures. Both these correction terms are of the order of a part in a million,
and hence much smaller than the magnitude of the observed dark energy.

The discussion by Peebles is patterned in part on the nice work of Siegel and Fry [24]. It seems
to us that there is room for improvement in this argument : one should not fix the background, but
allow for the possibility that as perturbations grow, the background around which back-reaction
should be calculated may itself be changing, because of feedback from the perturbations. One has to
ascertain that a runaway process leading to breakdown of perturbation theory does not take place.
This is the study we attempted by applying Zalaletdinov’s averaging theory [Macroscopic Gravity]
to cosmology. Before we summarize our work on applying MG, it will be useful to briefly review
Buchert’s averaging scheme. We do this because the Buchert approach provides simple averaged
equations, while being less ambitious than MG. Remarkably, the averaged equations that arise from
MG are very similar to Buchert’s averaging equations, enforcing a certain high degree of reliability
of both approaches, despite their conceptual differences.

3.2 Buchert’s averaging scheme for a dust spacetime

For a general spacetime containing irrotational dust, the metric can be written as

ds2 = −dt2 + hij(~x, t)dx
idxj . (2)

The expansion tensor Θi
j is given by Θi

j ≡ (1/2)hikḣkj where the dot refers to a derivative with
respect to time t. The traceless symmetric shear tensor is defined as σij ≡ Θi

j−(Θ/3)δij where Θ = Θi
i

is the expansion scalar. The Einstein equations can be split into a set of scalar equations and a set
of vector and traceless tensor equations. The scalar equations are the Hamiltonian constraint (3a)
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and the evolution equation for Θ (3b),

(3)R+
2

3
Θ2 − 2σ2 = 16πGρ (3a)

(3)R+ Θ̇ + Θ2 = 12πGρ (3b)

where the dot denotes derivative with respect to time t, (3)R is the Ricci scalar of the 3-dimensional
hypersurface of constant t and σ2 is the rate of shear defined by σ2 ≡ (1/2)σijσ

j
i . Eqns. (3a) and

(3b) can be combined to give Raychaudhuri’s equation

Θ̇ +
1

3
Θ2 + 2σ2 + 4πGρ = 0 . (4)

The continuity equation ρ̇ = −Θρ which gives the evolution of ρ, is consistent with Eqns. (3a), (3b).
We only consider the scalar equations, since the spatial average of a scalar quantity can be defined
in a gauge covariant manner within a given foliation of space-time. For the space-time described
by (2), the spatial average of a scalar Ψ(t, ~x) over a comoving domain D at time t is defined by

〈Ψ〉 =
1

VD

∫
D
d3x
√
hΨ (5)

where h is the determinant of the 3-metric hij and VD is the volume of the comoving domain given

by VD =
∫
D d

3x
√
h.

Spatial averaging is, by definition, not generally covariant. Thus the choice of foliation is relevant,
and should be motivated on physical grounds. In the context of cosmology, averaging over freely-
falling observers is a natural choice, especially when one intends to compare the results with standard
FRW cosmology. Following the definition (5) the following commutation relation then holds [2]

〈Ψ〉· − 〈Ψ̇〉 = 〈ΨΘ〉 − 〈Ψ〉〈Θ〉 (6)

which yields for the expansion scalar Θ

〈Θ〉· − 〈Θ̇〉 = 〈Θ2〉 − 〈Θ〉2 . (7)

Introducing the dimensionless scale factor aD ≡ (VD/VDin)1/3 normalized by the volume of the
domain D at some initial time tin, we can average the scalar Einstein equations (3a), (3b) and the
continuity equation to obtain

〈Θ〉 = 3
ȧD
aD

, (8a)

3

(
ȧD
aD

)2

− 8πG〈ρ〉+
1

2
〈R〉 = −QD

2
, (8b)

3

(
äD
aD

)
+ 4πG〈ρ〉 = QD , (8c)

〈ρ〉· = −〈Θ〉〈ρ〉 = −3
ȧD
aD
〈ρ〉 . (8d)
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Here 〈R〉, the average of the spatial Ricci scalar (3)R, is a domain dependent spatial constant. The
‘backreaction’ QD is given by

QD ≡
2

3

(
〈Θ2〉 − 〈Θ〉2

)
− 2〈σ2〉 (9)

and is also a spatial constant. The last equation (8d) simply reflects the fact that the mass contained
in a comoving domain is constant by construction : the local continuity equation ρ̇ = −Θρ can be
solved to give ρ

√
h = ρ0

√
h0 where the subscript 0 refers to some arbitrary reference time t0. The

mass MD contained in a comoving domain D is then MD =
∫
D ρ
√
hd3x =

∫
D ρ0

√
h0d

3x = constant.
Hence

〈ρ〉 =
MD

VDina3
D

(10)

which is precisely what is implied by Eqn. (8d).
This averaging procedure can only be applied for spatial scalars, and hence only a subset of

the Einstein equations can be smoothed out. As a result it may appear that the outcome of such
an approach is severely restricted, and essentially incomplete due to the impossibility to analyze
the full set of equations. However one should note that the cosmological parameters of interest are
scalars, and the averaging of the exact scalar part of Einstein equations provides the requisite needed
information. A more general strategy would be to consider the smoothing of tensors, which is beyond
the scalar approach that certainly provides useful information, albeit not the full information.

The dynamical equations above can be cast in a form which is immediately comparable with
the standard FRW equations [2]. Namely,

äD
aD

= −4πG

3
(ρeff + 3Peff) (11a)

(
ȧD
aD

)2

=
8πG

3
ρeff (11b)

with ρeff and Peff defined as

ρeff = 〈ρ〉 − QD
16πG

− 〈R〉
16πG

; Peff = − QD
16πG

+
〈R〉

48πG
. (12)

A necessary condition for (11a) to integrate to (11b) takes the form of the following differential
equation involving QD and 〈R〉

Q̇D + 6
ȧD
aD
QD + 〈R〉· + 2

ȧD
aD
〈R〉 = 0 (13)

and the criterion to be met in order for the effective scale factor aD to accelerate, is

QD > 4πG〈ρ〉 . (14)

The Buchert scheme has been applied extensively, and in particular can be used to show that
there indeed are toy cosmological models which when averaged over inhomogeneities can produce
an apparent acceleration. However, not all Einstein equations are averaged, and one does not have
an averaged metric here [which we would like to be the FLRW metric]. Macroscopic Gravity can
achieve that, while reproducing modified Friedmann equtions analogous to the Buchert equations,
when applied to cosmology.

6

PyV
Texto escrito a máquina
264



4 Macroscopic Gravity

This theory is developed comprehensively in the works of Zalaletdinov; briefly introduced in [14],
and reviewed in Paranjape’s thesis [23]. For detailed discussions and the primary interpretation of
MG, the reader is referred to Zalaletdinov’s original papers cited in this article.

For the purpose of averaging of tensors the key new element which is introduced is a bivector
Wa′

b (x′, x) which transforms as a vector at event x′ and as a co-vector at event x. The bivector is
used to define the “bilocal extension” of a general tensorial object

P̃ a(x′, x) =Wa
a′(x, x

′)P a′(x′) (15)

The “average” of P a(x) over a 4-dimensional spacetime region Σ with a supporting point x is

P̄ a(x) =
〈
P̃ a
〉
ST

=
1

VΣ

∫
Σ

d4x′
√
−g′P̃ a(x′, x) (16)

and this averaging operation preserves tensorial properties.
There is a certain degree of non-uniqueness in te choice of the coordination bi-vector - the freedom

coming from the presence of undetermined structure constants in the commutation relations for a
vector basis in terms of which one can solve for the cordination bivector. The simplest choice is to
set these structure constants to zero. When that is done, then in a volume preserving coordinate
system φm, [VPC], i.e. one with g(φm) = constant, the coordination bivector takes its most simple
form, namely

Wa′

j (x′, x) |proper= δa
′

j . (17)

The effect of this non-uniqueness on the physical results for averaging in cosmology remains to be
estimated. Nonetheless, it is noteworthy that the averaged Friedmann equations to be derived from
this approach are similar to Buchert’s and the physical results about the magnitude of the back-
reaction is identical to the one due to Peebles. This gives confidence in the robustness of the results
obtained, even though there is freedom in the choice of the coordination bivector. It is also useful
to note that this bi-vector is different from the Synge bi-tensor which leaves the metric invariant
upon avaeraging, and hence cannot really be used to average an inhomogeneous geometry.

Averaged Geometry : the key idea of Macroscopic Gravity is that the average connection Ω̄a
b(x)

Ω̄a
b ≡ 〈Ωa

b〉 , (18)

is defined as the connection 1-form on a new, averaged manifold M̄. Next one defines a correlation
2-form

Za i
b j =

〈
Ωa

b ∧Ωi
j

〉
ST
− Ω̄a

b ∧ Ω̄i
j . (19)

Denoting Ra
b ≡ 〈 r̃ab〉ST , where rab is the curvature 2-form of the inhomogeneous geometry, and the

curvature 2-form on the averaged manifold M̄ as Ma
b can be shown to give

Ma
b = Ra

b − Za c
c b . (20)

The inhomogeneous Einstein equations

gakrkb −
1

2
δabg

ijrij = −κta(mic)
b , (21)
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average out to
Ea
b = −κT ab + Ca

b , (22)

Ca
b =

(
Za

ijb −
1

2
δabZ

m
ijm

)
Gij. (23)

Gij is the metric on the averaged geometry. The correlation 2-form is assumed to satisfy cer-
tain differential conditions which amount to closure conditions for the above system of averaged
equations.

These averaged equations of Macroscopic Gravity carry, in a covariant and non-perturbative
manner, information about the effect of the underlying inhomogeneities on the averaged geometry.

5 Application of Macroscopic Gravity to Cosmology

In order to apply MG to cosmology we start with the assumption that Einstein’s equations are to
be imposed on length scales where stars are pointlike objects (we denote such a scale as Linhom).
The averaging we perform will be directly at a length scale LFLRW larger than about 100h−1Mpc
or so. This averaging scale is assumed to satisfy Linhom � LFLRW � LHubble where LHubble is the
length scale of the observable universe. The averaging will be assumed to yield a geometry which
has homogeneous and isotropic spatial sections. In other words, we will assume that the averaged
manifold M̄ admits a preferred, hypersurface-orthogonal unit timelike vector field v̄a, which defines
3-dimensional spacelike hypersurfaces of constant curvature, and that v̄a is tangent to the trajecto-
ries of observers who see an isotropic Cosmic Background Radiation. (These “observers” are defined
in the averaged manifold – we will clarify below what they correspond to in the inhomogeneous
manifold.) Throughout the rest of this article, for simplicity, we will work with the special case
where the spatial sections on M̄ defined by v̄a are flat. (In principle the entire calculation can be
repeated for non-flat spatial sections as well.) One can then choose coordinates (t, xA), A = 1, 2, 3,
on M̄ such that the spatial line element takes the form

(M̄)ds2
spatial = a2(t)δABdx

AdxB , (24)

where δAB = 1 for A = B, and 0 otherwise, and we have v̄a = (v̄t, 0, 0, 0) so that the spatial
coordinates are comoving with the preferred observers. The vector field v̄a also defines a proper
time (the cosmic time) τ such that ∂τ = v̄a∂a = v̄t∂t. We will further assume that the averaged
energy-momentum tensor T ab can be written in the form of a perfect fluid, as

T ab = ρv̄av̄b + pπab , (25)

where the projection operator πab is defined as

πab = δab + v̄av̄b , (26)

and ρ and p are the homogeneous energy density and pressure respectively, as measured by observers
moving on trajectories (in M̄) with the tangent vector field v̄a,

ρ ≡ T ab v̄
bv̄a ; p ≡ 1

3
πbaT

a
b . (27)
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ρ and p are observationally relevant quantities, since all measurements of the matter energy density,
especially those from studies of Large Scale Structure, interpret observations in the context of the
averaged geometry. An important consequence of the above assumptions is that the correlation
tensor Ca

b , when expressed in terms of the natural coordinates adapted to the spatial sections
defined by the vector field v̄a, is spatially homogeneous. This is clear when the modified Einstein
equations are written in these natural coordinates.

The existence of the vector field v̄a with the attendant assumptions described above, allows us
to separate out the nontrivial components of the (FLRW) Einstein tensor Ea

b on M̄ in a coordinate
independent fashion – the Einstein tensor can be written as

Ea
b = j1(x)v̄av̄b + j2(x)πab

j1(x) ≡ Ea
b v̄

bv̄a ; j2(x) ≡ 1

3

(
πbaE

a
b

)
, (28)

where j1(x) and j2(x) are scalar functions whose form depends upon the coordinates used. The
remaining components given by πbkE

a
b v̄a and the traceless part of πiaπ

b
kE

a
b , vanish identically. Since

the energy-momentum tensor T ab in Eqn. (25) also has an identical structure, this structure is
therefore also imposed on the correlation tensor Ca

b . Namely, πbkC
a
b v̄a and the traceless part of

πiaπ
b
kC

a
b must vanish. This is a condition on the underlying inhomogeneous geometry, irrespective

of the coordinates used on either M or M̄, and is clearly a consequence of demanding that the
averaged geometry have the symmetries of the FLRW spacetime.

This leads us to the crucial question of the choice of gauge for the underlying geometry : namely,
what choice of spatial sections for the inhomogeneous geometry, will lead to the spatial sections of
the FLRW metric in the comoving coordinates defined in Eqn. (24)? Since the matter distribution
at scale Linhom need not be pressure-free (or, indeed, even of the perfect fluid form), there is clearly
no natural choice of gauge available, although locally, a synchronous reference frame can always be
chosen. We note that there must be at least one choice of gauge in which the averaged metric has
spatial sections in the form (24) – this is simply a refinement of the Cosmological Principle, and of
the Weyl postulate, according to which the Universe is homogeneous and isotropic on large scales,
and individual galaxies are considered as the “observers” travelling on trajectories with tangent v̄a.
In the averaging approach, it makes more sense to replace “individual galaxies” with the averaging
domains considered as physically infinitesimal cells – the “points” of the averaged manifold M̄. This
is physically reasonable since we know after all, that individual galaxies exhibit peculiar motions,
undergo mergers and so on. This idea is also more in keeping with the notion that the Universe
is homogeneous and isotropic only on the largest scales, which are much larger than the scale of
individual galaxies.

Consider any 3 + 1 spacetime splitting in the form of a lapse function N(t, xJ), a shift vector
NA(t, xJ), and a metric for the 3-geometry hAB(t, xJ), so that the line element onM can be written
as

(M)ds2 = −
(
N2 −NANA

)
dt2 + 2NBdx

Bdt+ hABdx
AdxB , (29)

where NA = hABN
B. At first sight, it might seem reasonable to leave the choice of gauge arbitrary.

However the analysis is then complicated. On the other hand, if we make the assumption that the
spatial sections on M leading to the spatial metric (24) on M̄, are spatial sections in a volume
preserving gauge, then the correlation terms simplify greatly. This is not surprising since the MG
formalism is nicely adapted to the choice of volume preserving coordinates. The case when the
gauge is left unspecified is dealt with in our original papers.
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To begin our calculation, we perform a coordinate transformation and shift to the gauge wherein
the new lapse function N is given by N = 1/

√
h where h is the determinant of the new 3-metric hAB.

In general, one will now be left with a non-zero shift vector NA; however, the condition N
√
h = 1

ensures that the coordinates we are now using are volume preserving, since the metric determinant
is given by g = −N2h = −1 = constant. We denote these volume preserving coordinates (VPCs)
by (t̄,x) = (t̄, xA) = (t̄, x, y, z), and will assume that the spatial coordinates are non-compact. For
simplicity, we make the added assumption that NA = 0 in the inhomogenous geometry, so that
gt̄ t̄ = −N2 = −1/h and gt̄A = 0. The line element for the inhomogenous manifold M becomes

(M)ds2 = − dt̄2

h(t̄,x)
+ hAB(t̄,x)dxAdxB . (30)

Note that in this gauge, the average takes on a particularly simple form : for a tensor pij(x), with
a spacetime averaging domain given by the “cuboid” Σ defined by

Σ = {(t̄, x, y, z) | −T/2 < t̄ < T/2,−L/2 < x, y, z < L/2} , (31)

where T and L are averaging time and length scales respectively, the average is given by〈
p̃ ij
〉
ST

(t̄,x) =
〈
pij
〉
ST

(t̄,x)

=
1

TL3

∫ t̄+T/2

t̄−T/2
dt′
∫ +L/2

−L/2
dx′dy′dz′

[
pij(t

′, x′, y′, z′)

]
, (32)

where the limits on the spatial integral are understood to hold for all three spatial coordinates. We
define the “spatial averaging limit” as the limit T → 0 (or T � LHubble) which is interpreted as
providing a definition of the average on a spatial domain corresponding to a “thin” time slice, the
averaging operation now being given by

〈pij〉(t̄,x)

=
1

L3

∫ +L/2

−L/2
dx′dy′dz′

[
pij(t̄, x

′, y′, z′)

]
+O

(
TL−1

Hubble

)
. (33)

(Note the time dependence of the integrand.) Henceforth, averaging will refer to spatial averaging,
and will be denoted by 〈...〉, in contrast to the spacetime averaging considered thus far (denoted by
〈...〉ST ). The choice of a cube with sides of length L as the spatial averaging domain was arbitrary,
and is in fact not essential for any of the calculations to follow. In particular, all calculations can
be performed with a spatial domain of arbitrary shape. We will only use the cube for definiteness
and simplicity in displaying equations. The significance of introducing a spatial averaging in this
manner is that the construction of spatial averaging is not isolated from spacetime averaging, but
is a special limiting case of the latter and is, in fact, still a fully covariant operation.

For the volume preserving gauge, we have

Gt̄t̄ = 〈gt̄ t̄〉 = 〈−1

h
〉 = −f 2(t̄) ;

GAB = 〈hAB〉 = ā2(t̄)δAB , (34)

where ā and f are some functions of the time coordinate alone. A few remarks are in order on this
particular choice of assumptions. Apart from the fact that the spacetime averaging operation takes
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on its simplest possible form (32) in this gauge and allows a transparent definition of the spatial
averaging limit, it can also be shown that the assumptions in Eqn. (34) are sufficient to establish
the following relations :

f 2(t̄) = 〈1
h
〉 =

1

〈h〉
=

1

ā6
. (35)

Here the second equality arises from the condition ḡij = Gij which can be assumed whenever the
averaged metric is of the FLRW form. The last equality follows on considering the conditions
〈Γ̃abc〉 = (FLRW)Γabc in obvious notation, (the basic assumption of the MG averaging scheme). Eqn.
(35) reduces the line element on M̄ to the form

(M̄)ds2 = − dt̄2

ā6(t̄)
+ ā2(t̄)δABdx

AdxB . (36)

The line element in Eqn. (36) clearly corresponds to the FLRW metric in a volume preserving gauge.
In other words, the (spatial) average of the inhomogeneous geometry in the volume preserving gauge
leads to a geometry with homogeneous and isotropic spatial sections, also in a volume preserving
gauge. Note that the gauge in Eqn. (36) for the FLRW spacetime differs from the standard
synchronous and comoving gauge, only by a redefinition of the time coordinate. The vector field
v̄a introduced at the beginning of this section and which defines the FLRW spatial sections, is now
given by

v̄a =
(
ā3, 0, 0, 0

)
; v̄a = Gabv̄

b =

(
− 1

ā3
, 0, 0, 0,

)
. (37)

Before proceeding to the calculation of the correlation terms and the averaged Einstein equations,
we briefly describe why it is important to consider the spatial averaging limit of the MG averaging
operation. The key idea to emphasize is that an average of the homogeneous and isotropic FLRW
geometry, should give back the same geometry. Since the FLRW geometry has a preferred set of
spatial sections, it is important therefore to perform the averaging over these sections. Further,
since the FLRW metric adapted to its preferred spatial sections depends on the time coordinate, it
is also essential that the spacetime average should involve a time range that is short compared to
the scale over which say the scale factor changes significantly. Clearly then, averaging the FLRW
metric (denoted (FLRW )gab) given in Eqn. (36) (which is in volume preserving gauge) will strictly
yield the same metric only in the limit T → 0. Namely, for the cuboid Σ defined in Eqn. (31)

〈(FLRW )g̃ab〉 = lim
T→0

1

TL3

∫
Σ

dt′d3x′ (FLRW )gab(t
′,x′)

= (FLRW )gab , (38)

which should be clear from the definition of the metric. The result 〈(FLRW )g̃ab〉 = (FLRW )gab in the
spatial averaging limit can also be shown to hold for the FLRW metric in synchronous gauge, where
the coordination bivector Wa′

j can be easily computed using the transformation from the VPCs
(t̄, xA) to the synchronous coordinates (τ, yA) given by

τ =

∫ t̄ dt

ā3(t)
; yA = xA . (39)

The transformation (39) will also later allow us to write the averaged equations in the synchronous
gauge for the averaged geometry.

We now proceed to calculating the correlation 2-form Za i
b j and thereby the averaged Einstein

equations.
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6 The averaged cosmological field equations

We start by defining (in any gauge with NA = 0) the expansion tensor ΘA
B by

ΘA
B ≡

1

2N
hAC ḣCB , (40)

where the dot will always refer to a derivative with respect to the VPC time t̄, and hAB is the
inverse of the 3-metric hAB. (This also gives the symmetric tensor ΘAB = (1/2N)ḣAB, which is the
negative of the extrinsic curvature tensor.) The traceless symmetric shear tensor σAB and the shear
scalar σ2 are defined by

σAB ≡ ΘA
B − (Θ/3)δAB ; σ2 ≡ 1

2
σABσ

B
A , (41)

where Θ ≡ ΘA
A = (1/N)∂t̄ ln

√
h is the expansion scalar.

The connection 1-forms ωij = Γijkdx
k can be easily calculated in terms of the expansion tensor,

for an arbitrary lapse function N . Specializing to the volume preserving gauge (N = h−1/2), the
bilocal extensions Ωi

j of the connection 1-forms are trivial and are simply given by

Ωi
j(x
′, x) = Γijk(x

′)dxk . (42)

Since Gab = ḡab, the connection 1-forms Ω̄i
j for the averaged manifold M̄ are constructed using the

FLRW metric in volume preserving gauge given in Eqn. (36), and can also be easily evaluated.
We can now construct the correlation 2-form Za i

b j and from there the correlation tensor :

Ca
b =

(
Za

ijb −
1

2
δabZ

m
ijm

)
Gij. (43)

Now, the components of the Einstein tensor Ea
b for the averaged spacetime with metric (36) are

given by

E t̄
t̄ = 3ā6H2 ; E t̄

A = 0 = EB
t̄ ,

EA
B = ā6δAB

[
2

(
¨̄a

ā
+ 3H2

)
+H2

]
, (44)

where the peculiar splitting of terms in the last equation is for later convenience. Recall that the
overdot denotes a derivative with respect to the VPC time t̄, not synchronous time. In terms of the
coordinate independent objects introduced in Eqn. (28), we have

j1(x) = −3ā6H2 ; j2(x) = ā6

[
2

(
¨̄a

ā
+ 3H2

)
+H2

]
. (45)

From the averaged Einstein equations we next construct the scalar equations which in the stan-
dard case would correspond to the Friedmann equation and the Raychaudhuri equation. These
correspond to the Einstein tensor components,

Ea
b v̄

bv̄a = j1(x) ; πbaE
a
b + Ea

b v̄
bv̄a = 3j2(x) + j1(x) , (46)

12

PyV
Texto escrito a máquina
270



and are given by

3ā6H2 = (κT ab − Ca
b ) v̄av̄

b

= κρ̄− 1

2

[
Q(1) + S(1)

]
, (47a)

6ā6

(
¨̄a

ā
+ 3H2

)
= (−κT ab + Ca

b )
(
v̄av̄

b + πba
)

= −κ (ρ̄+ 3p̄) + 2
[
Q(1) +Q(2) + S(2)

]
. (47b)

Here Eqn. (47a) is the modified Friedmann equation and Eqn. (47b) the modified Raychaudhuri
equation (in the vol0ume preserving gauge on M̄). We have used Eqn. (27), with the overbar on
ρ and p reminding us that they are expressed in terms of the nonsynchronous time t̄, and we have
defined the correlation terms

Q(1) = ā6

[
2

3

(
〈1
h

Θ2〉 − 1

ā6
(FΘ2)

)
− 2〈1

h
σ2〉
]

;

1

ā6
(FΘ2) = (3H)2 , (48a)

S(1) =
1

ā2
δAB

[
〈 (3)ΓJAC

(3)ΓCBJ〉

−〈∂A(ln
√
h)∂B(ln

√
h)〉
]
, (48b)

Q(2) = ā6〈1
h

ΘA
BΘB

A〉 −
1

ā2
δAB〈ΘAJΘJ

B〉, (48c)

S(2) = ā6〈1
h
hAB∂A(ln

√
h)∂B(ln

√
h)〉

− 1

ā2
δAB〈∂A(ln

√
h)∂B(ln

√
h)〉 . (48d)

In definingQ(1) we have used the relation Θ2−ΘA
BΘB

A = (2/3)Θ2−2σ2. Q(1) andQ(2) are correlations
of the extrinsic curvature, whereas S(1) and S(2) are correlations restricted to the intrinsic 3-geometry
of the spatial slices of M. Since the components of Ca

b are not explicitly constrained we can treat
the combinations (1/2)(Q(1) + S(1)) = −C0

0 and 2(Q(1) +Q(2) + S(2)) = (CA
A −C0

0) as independent,
subject only to the differential constraints which we will come to below.

As discussed in the beginning of Section 5, the remaining components of Ca
b must be set to zero,

giving constraints on the underlying inhomogeneous geometry. In coordinate independent language,
these constraints read

πbkC
a
b v̄a = 0 = πkaC

a
b v̄

b ;

πiaπ
b
kC

a
b −

1

3
πik
(
πbaC

a
b

)
= 0 . (49)
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Eqns. (49) reduce to the following for our specific choice of volume preserving coordinates,

C0
A = 0 ; CA

0 = 0 ; CA
B −

1

3
δAB(CJ

J) = 0 , (50)

It can be shown that the VPC assumption N = h−1/2 reduces the correlations Q(2) and S(2) defined
in Eqns. (48c) and (48d), as well as several terms in the explicit expansion of Eqn. (50), to the
form

1

〈g00〉
〈g00g

ABΓa1b1c1Γ
i1
j1k1
〉 − 〈gAB〉〈Γa2b2c2Γ

i2
j2k2
〉 . (51)

It can be shown that

〈g00g
ABΓabcΓ

i
jk〉 = 〈g00g

AB〉〈ΓabcΓijk〉

= −〈h
AB

h
〉〈ΓabcΓijk〉 . (52)

An interesting point is that the VPC assumption N = h−1/2 further allows us to assume 〈hAB/h〉 =
〈hAB〉〈1/h〉 consistently with the formalism. Using Eqn. (35) this gives us

〈h
AB

h
〉 =

1

ā6
〈hAB〉 . (53)

This shows that the correlation terms Q(2) and S(2) in fact vanish,

Q(2) = 0 = S(2) , (54)

and leads to some remarkable cancellations in Eqns. (50), which simplify to give

δJK
[
〈
√
hΘJB

(3)ΓBAK〉 − −〈
√
hΘJK

(3)ΓBAB〉
]

= 0 , (55a)

δJK〈 1√
h

ΘB
K

(3)ΓAJB〉 − δAJ〈
1√
h

ΘK
K

(3)ΓBJB〉 = 0 , (55b)

δJK〈 (3)ΓAJC
(3)ΓCKB〉 − δAJ〈 (3)ΓCJC

(3)ΓKBK〉

=
1

3
δAB
(
ā2S(1)

)
. (55c)

These simplifications are solely a consequence of assuming that the inhomogeneous metric in the
volume preserving gauge averages out to give the FLRW metric in standard form. In general, these
simplifications will not occur when the standard FLRW metric arises from an arbitrary choice of
gauge for the inhomogeneous metric.

In order to come as close as possible to the standard approach in Cosmology, we will now
rewrite the scalar equations (47) (which are the cosmologically relevant ones) after performing the
transformation given in Eqn. (39) in order to get the FLRW metric to the form

(M̄)ds2 = −dτ 2 + a2(τ)δABdy
AdyB ; a(τ) = ā(t̄(τ)) . (56)

Since Eqns. (47) are scalar equations, this transformation only has the effect of reexpressing all
the terms as functions of the synchronous time τ . Although the transformation will change the
explicit form of the coordination bivector Wa′

j , this change involves only the time coordinate, and
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in the spatial averaging limit there is no difference between averages computed in the VPCs and
those computed after the time redefinition. This again emphasizes the importance of the spatial
averaging limit of spacetime averaging, if we are to succeed operationally in explicitly displaying the
correlations as corrections to the standard cosmological equations. The correlation terms in Eqns.
(48) are therefore still interpreted with respect to the volume preserving gauge, but are treated as
functions of τ . For the scale factor on the other hand, we have

ā3H =
1

a

da

dτ
≡ HFLRW ; ā6

(
¨̄a

ā
+ 3H2

)
=

1

a

d2a

dτ 2
. (57)

Further writing
ρ(τ) = ρ̄(t̄(τ)) ; p(τ) = p̄(t̄(τ)) , (58)

equations (47) become

H2
FLRW =

8πGN

3
ρ− 1

6

[
Q(1) + S(1)

]
, (59a)

1

a

d2a

dτ 2
= −4πGN

3
(ρ+ 3p) +

1

3
Q(1) . (59b)

We emphasize that the quantities Q(1) and S(1), defined in Eqns. (48a) and (48b) as correlations
in the volume preserving gauge, are to be thought of as functions of the synchronous time τ , where
the coordinate τ itself was defined after the spatial averaging. Such an identification is justified
since we are dealing with scalar combinations of these quantities. Note that Q(1) and S(1) can be
treated independently, apart from the constraints imposed by conservation conditions, which we
turn to next. These conservation conditions can be decomposed into a scalar part and a 3-vector
part, given respectively by

ā− rvbCa
b;a = 0 ; πbkC

a
b;a = 0 . (60)

In the synchronous gauge (56) for the FLRW metric, the scalar equation reads(
∂τQ(1) + 6HFLRWQ(1)

)
+
(
∂τS(1) + 2HFLRWS(1)

)
= 0 . (61)

We recall that this equation is a consequence of setting the correlation 3-form and the correlation
4-form to zero, and it relates the evolution of Q(1) and S(1). The 3-vector equation (on imposing
the first set of conditions in Eqn. (49)) simply gives ∂τC

τ
A = 0, so that Cτ

A = 0 = constant, which
also implies that CA

τ = 0 = constant and hence this equation gives nothing new. (We have used
the relations C0

0 = Cτ
τ , C

0
A = ā3Cτ

A and CA
0 = (1/ā3)CA

τ where 0 denotes the nonsynchronous time
coordinate t̄.)

The cosmological equations (59), along with the constraint equations (55) and (61) are the key
results of this section. Subject to the acceptance of the volume preserving gauge on the underlying
manifold M they can in principle be used to study the role of the correction terms resulting from
spatial averaging.

6.1 A comparison with the averaging formalism of Buchert

The averaging formalism developed by Buchert is based exclusively on the manifold M, and there
is no analog of the averaged manifold M̄ in this scheme. Given an inhomogeneous metric onM one
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takes the trace of the Einstein equations in the inhomogeneous geometry, and carries out a spatial
averaging of the inhomogeneous scalar equations.

For ease of comparison, we again recall in brief Buchert’s construction, by first writing down
the averaged equations for the simplest case of pressureless and irrotational inhomogeneous dust.
The metric can be written in synchronous and comoving gauge as

ds2 = −dt2 + bAB(x, t)dxAdxB . (62)

The Einstein equations can be split into a set of scalar equations and a set of vector and traceless
tensor equations. The scalar equations are the Hamiltonian constraint (63a) and the evolution
equation for Θ (63b),

R+
2

3
Θ2 − 2σ2 = 16πGρ , (63a)

R+ ∂tΘ + Θ2 = 12πGρ , (63b)

where R is the Ricci scalar of the 3-dimensional hypersurface of constant t, Θ and σ2 are the
expansion scalar and the shear scalar defined earlier and ρ is the inhomogeneous matter density of
the dust. Note that all quantities in Eqns. (63) generically depend on both position x and time t.
Eqns. (63a) and (63b) can be combined to give Raychaudhuri’s equation

∂tΘ +
1

3
Θ2 + 2σ2 + 4πGρ = 0 . (64)

The continuity equation ∂tρ = −Θρ which gives the evolution of ρ, is consistent with Eqns. (63a),
(63b). Only scalar Einstein equations are considered, since the spatial average of a scalar quantity
can be defined in a gauge covariant manner, within a given foliation of space-time. We return to
this point below. For the space-time described by (62), the spatial average of a scalar Ψ(x, t) over
a comoving domain D at time t is defined by

〈Ψ〉D =
1

VD

∫
D
d3x
√
bΨ , (65)

where b is the determinant of the 3-metric bAB and VD is the volume of the comoving domain given
by VD =

∫
D d

3x
√
b. Spatial averaging is, by definition, not generally covariant. Thus the choice of

foliation is relevant, and should be motivated on physical grounds. In the context of cosmology,
averaging over freely-falling observers is a natural choice, especially when one intends to compare the
results with standard FLRW cosmology. Following the definition (65) the following commutation
relation then holds

∂t 〈Ψ〉D − 〈∂tΨ〉D = 〈ΨΘ〉D − 〈Ψ〉D 〈Θ〉D , (66)

which yields for the expansion scalar Θ

∂t 〈Θ〉D − 〈∂tΘ〉D =
〈
Θ2
〉
D − 〈Θ〉

2
D . (67)

Introducing the dimensionless scale factor aD ≡ (VD/VDi)
1/3 normalized by the volume of the

domain D at some initial time ti, we can average the scalar Einstein equations (63a), (63b) and the
continuity equation to obtain

∂t 〈ρ〉D = −〈Θ〉D 〈ρ〉D ; 〈Θ〉D = 3
∂taD
aD

, (68a)
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(
∂taD
aD

)2

=
8πG

3
〈ρ〉D −

1

6
(QD + 〈R〉D) , (68b)(

∂2
t aD
aD

)
= −4πG

3
〈ρ〉D +

1

3
QD . (68c)

Here, the ‘kinematical backreaction’ QD is given by

QD ≡
2

3

(〈
Θ2
〉
D − 〈Θ〉

2
D
)
− 2

〈
σ2
〉
D (69)

and is a spatial constant over the domain D.
A necessary condition for (68c) to integrate to (68b) takes the form of the following differential

equation involving QD and 〈R〉D,

∂tQD + 6
∂taD
aD
QD + ∂t 〈R〉D + 2

∂taD
aD
〈R〉D = 0 . (70)

The equations above describe the essence of Buchert’s averaging formalism, for the dust case.
We note that the remaining eight Einstein equations for the inhomogeneous geometry, which are
not scalar equations, are not averaged. These are the five evolution equations for the trace-free part
of the shear,

∂t
(
σAB
)

= −ΘσAB −RA
B +

2

3
δAB

(
σ2 − 1

3
Θ2 + 8πGρ

)
. (71)

and the three equations relating the spatial variation of the shear and the expansion,

σAB||A =
2

3
Θ||B . (72)

Here, RA
B is the spatial Ricci tensor and, in Buchert’s notation, a || denotes covariant derivative

with respect to the 3-metric.
In analogy with the dust case, Buchert’s averaging formalism can be applied to the case of a

perfect fluid, by starting from the metric

ds2 = −N2dt2 + bABdx
AdxB . (73)

The averaged scalar Einstein equations for the scale factor aD are

3
∂2
t aD
aD

+ 4πG
〈
N2 (ρ+ 3p)

〉
D = Q̄D + P̄D , (74)

6H2
D − 16πG

〈
N2ρ

〉
D = −Q̄D −

〈
N2R

〉
D ; HD =

∂taD
aD

, (75)

where the kinematical backreaction Q̄D is given by

Q̄D =
2

3

(〈
(NΘ)2〉

D − 〈NΘ〉2D
)
− 2

〈
N2σ2

〉
D , (76)

and the dynamical backreaction P̄D is given by

P̄D =
〈
N2A

〉
D + 〈Θ∂tN〉D , (77)
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where A = ∇j(u
i∇iu

j) is the 4-divergence of the 4-acceleration of the fluid. Eqn. (75) follows as
an 0integral from Eqn. (74) if and only if the relation

∂tQD + 6HDQD + ∂t
〈
N2R

〉
D + 2HD

〈
N2R

〉
D + 4HDP̄D

− 16πG
[
∂t
〈
N2ρ

〉
D + 3HD

〈
N2 (ρ+ p)

〉
D

]
= 0 , (78)

is satisfied. There are also the unaveraged equations (which we do not display here) for the shear,
analogous to the shear equations (71) and (72) for dust.

Buchert’s approach is the only other approach, apart from Zalaletdinov’s MG, which is capable
of treating inhomogeneities in a nonperturbative manner, although it is limited to using only scalar
quantities within a chosen 3 + 1 splitting of spacetime. Buchert takes the trace of the Einstein
equations in the inhomogeneous geometry, and averages these inhomogeneous scalar equations. In
the context of Zalaletdinov’s MG however, we have used the existence of the vector field v̄a in the
FLRW spacetime to construct scalar equations after averaging the full Einstein equations. As far
as observations are concerned, it has been noted by Buchert and Carfora that the spatially averaged
matter density 〈ρ〉D defined by Buchert is not the appropriate observationally relevant quantity –
the “observed” matter density (and pressure) is actually defined in a homogeneous space. Since we
have done precisely this in Eqn. (27), we are directly dealing with the appropriate observationally
relevant quantity in the MG framework.

Another important difference between the two approaches is the averaging operation itself.
Buchert’s spatial average, defined for scalar quantities, is given (for some scalar Ψ(t, xA)) by (65)
above. On the other hand the averaging operation we have been using (given by Eqn. (33) using
the volume preserving gauge) is a limit of a spacetime averaging defined using the coordination
bivector Wa′

j , and is different from the one in Eqn. (65).
Most importantly though, Buchert’s averaging scheme by itself does not incorporate the concept

of an averaged manifold M̄ (although the work of Buchert and Carfora [2] does deal with 3-spaces
of constant curvature). In a recent paper we had argued that Buchert’s “effective scale factor”
aD(t) ≡ (VD(t)/VD(tin))1/3 must be the scale factor for the metric of the averaged manifold, upto
some corrections arising due to such effects as calculated by Buchert and Carfora. In the present
work however, it is clear that such a suggestion is necessarily incomplete due to the presence of Eqns.
(55) constraining the underlying geometry. These constraints are in general nontrivial and hence
indicate that it is not sufficient to assume that the metric of the inhomogeneous manifold averages
out to the FLRW form – there are additional conditions which the correlations must satisfy.

To our understanding, Buchert’s averaging formalism is a valid aproach, even though it is based
on a spatial averaging. A central difference from the MG approach is the issue of closure : not all
the Einstein equations have been averaged in Buchert’s approach, but only the scalar ones. This
puts a constraint on the allowed solutions considered for the averaged equations: (68) for the dust
case, and (74) and (75) for the fluid case. Solutions to these equations must necessarily be checked
for consistency with the unaveraged equations for the shear. Further, averaging over successively
larger scales can bring in additional corrections to the averaged equations, as discussed by Buchert
and Carfora. Also, if one does not wish to identify Buchert’s aD with the scale factor in FLRW
cosmology, one is compelled to develop a whole new set of ideas in order to try and compare theory
with observation. On the other hand, if one does identify aD with the scale factor, comparison
with standard cosmology becomes more convenient, but this brings in additional constraints on
the underlying inhomogeneous geometry. Thus our conclusion is that the Buchert formalism is a
correct and tractable averaging scheme, provided all the caveats pointed out in this paragraph are
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taken care of. Also, when these caveats have been taken care of correctly, the Buchert formalism
is expected to give the same physical results as the MG approach. We recall that in the covariant
MG approach also, once a spacetime geometry has been identified for the averaged manifold M̄, a
gauge must be selected for the geometry on the underlying manifold, in order to explicitly compute
the correction scalars for comparison with observation.

The advantage of the MG approach is that it accomplishes in a neat package what the Buchert
approach, with its attendant caveats, sets out to do. In the MG approach, there are no unaveraged
shear equations, because the trace of the Einstein equations has been taken after performing the
averaging on the underlying geometry. Since the averaged geometry is FLRW, the shear is zero by
definition. There is a natural metric on the averaged manifold by construction, the FLRW metric.
The correlations satisfy additional constraints, given by Eqns. (55). Thus, once a gauge has been
chosen and if one can overcome the computational complexity of the averaging operation, the
cosmological equations derived by us in the MG approach are complete and ready for application,
without any further caveats.

In spite of these differences, our equations (59) and (61) for the volume preserving gauge are
strikingly similar to Buchert’s effective FLRW equations and their integrability condition in the dust
case; and in the case of generalN , the role of Buchert’s dynamical backreaction P̄D in Eqns. (74) and
(78) is identical to that of our combination of (P̃(2) + S̃(2)). Concentrating on the volume preserving
case, the structure of the correlation Q(1) is identical to Buchert’s kinematical backreaction QD (or
Q̄D in the general case). The correlation S(1) appears in place of the averaged 3-Ricci scalar 〈R〉D
in Buchert’s dust equations. This is not unreasonable since Buchert’s 〈R〉D can be thought of as
〈R〉D = 6kD/a

2
D+ corrections, where 6kD/a

2
D represents the 3-Ricci scalar on the averaged manifold

which in our case is zero, and hence S(1) represents the corrections due to averaging. Further,
these similarities are in spite of the fact that our correlations were defined assuming that a volume
preserving gauge averages out to the FLRW 3-metric in standard form, whereas Buchert’s averaging
is most naturally adapted to beginning with a synchronous gauge. This remarkable feature, at least
to our understanding, does not seem to have any deeper meaning – it simply seems to arise from
the structure of the Einstein equations themselves, together with our assumption DΩ̄Za i

b j = 0.
In the absence of this latter condition, one would have to consider the correlation 3- and 4-forms
mentioned earlier, and the structure of the correlation terms and their “conservation” equations
would be far more complicated.

An entirely different outlook towards his approach has been emphasized to us by Buchert.
According to Buchert, the absence of an averaged manifold M̄ is not to be thought of as a ‘caveat’,
but as a feature deliberately retained ‘on purpose’. The actual inhomogeneous Universe is regarded
by Buchert as the only fundamental entity, and the introduction of an averaged Universe is in
fact regarded as an unphysical and unnecessary approximation. As we mentioned earlier, this is
probably the most important difference between MG and Buchert’s approach. In the latter, contact
with observations is to be made by constructing averaged quantities, such as the scalars defined
earlier in this section, and by introducing the expansion factor aD. The assertion here is that the
averaging of geometry, as discussed in MG or in the Renormalization Group approach of Buchert
and Carfora [2] is not an indispensable step in comparing the inhomogeneous Universe with actual
observations. The need for averaging of geometry is to be physically separated from simply looking
at effective properties (such as the constructed scalars) which can be defined for any inhomogeneous
metric. Averaging of geometry becomes relevant if (i) an observer insists on interpreting the data
in a FLRW template model, so that (s)he needs a mapping from the actual inhomogeneous slice
and its average properties to the corresponding properties in this template, or (ii) one desires a
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mock metric, to sort of have a thermodynamic effective metric to approximate the real one. In this
context it should perhaps also be mentioned that the importance of a thin time-slice approximation
of spacetime averaging (as opposed to a strict spatial averaging) has been stressed also by Buchert.

7 Perturbation theory, structure formation, and backreac-

tion

We have in hand the machinery to ask the following question : Is cosmological perturbation theory
stable against growth of backreaction? The answer must be found iteratively. Assume a background
with perturbations on it, calculate the back-reaction, feed it in the right hand of the modified
Friedmann equations to find the new background, and so on :

a(0) → φ(0) → C(0) → a(1) → φ(1) → . . . (79)

Let the perturbed FLRW metric be

ds2 = a2
[
−(1 + 2φ)dη2 + 2ωAdx

Adη + ((1− 2ψ)γAB + χAB) dxAdxB
]
. (80)

We work with a VPC which has no residual degrees of freedom. Further, this VPC is constructed by
starting from the conformal Newtonian gauge, and by making a steady coordinate transformation.
This ensures that all averaged quantities are gauge invariant. We evaluate the correlation scalars
for a given initial power spectrum - standard CDM.

For a constant nonevolving potential φ(~x), and with a power spectrum

k3Pφi(k)

2π2
= A(k/H0)ns−1 , (81)

the back reaction is
S(1)

H2
0

∼ − 1

a2
(10−4) . (82)

The smallness of backreaction holds also for the exact sCDM model thus demonstrating the stability
of perturbation theory against the growth of back-reaction.

This analysis ignores contribution of scales that have become fully nonlinear in matter density
at late times and it is important to ask if structure formation can significantly modify large sacle
dynamics.

We studied backreaction in a toy model of spherical collapse, using the LTB solution. The initial
density is chosen to be

ρ(ti, r) = ρbi


(1 + δ∗), r < r∗
(1− δv), r∗ < r < rv
1, r > rv ,

(83)

We match the initial velocity and coordinate scaling to the global background solution, by
requiring

R(ti, r) = air , (84)

Ṙ(ti, r) = aiHir , (85)
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For the FLRW background we consider an Einstein-deSitter (EdS) solution with scale factor
and Hubble parameter given by

a(t) = (t/t0)2/3 ; t0 = 2/(3H0) , (86)

H(t) ≡ ȧ/a = 2/(3t) , (87)

with t0 denoting the present epoch. ai fixes the initial time as

ti = 2/(3H0)a
3/2
i . (88)

We use ai = 10−3, so that the initial conditions are being set around the CMB last scattering epoch.
The mass function M(r) and curvature function k(r) in this LTB solution are given by

GM(r) =
1

2
H2

0r
3


1 + δ∗, 0 < r < r∗
1 + δv

(
(rc/r)

3 − 1
)
, r∗ < r < rv

1 + (δv/r
3) (r3

c − r3
v) , r > rv ,

(89)

where we have defined a “critical” radius rc by the equation(
rc
r∗

)3

= 1 +
δ∗
δv
. (90)

The significance of rc is brought out by k(r) :

k(r) =
H2

0

ai


δ∗, r < r∗
δv
(
(rc/r)

3 − 1
)
, r∗ < r < rv

(δv/r
3) (r3

c − r3
v) , r > rv .

(91)

Since δ∗, δv > 0, we have rc > r∗ by definition. The following possibilities arise :
If rc > rv, then k(r) > 0 for all r, and every shell will ultimately collapse, including the “void”

region r∗ < r < rv. If rc < rv, then k(r) > 0 for r < rc and changes sign at r = rc. Hence, the
region r∗ < r < rc will collapse even though it is underdense, while the region r > rc will expand
forever. If rc = rv, then the “void” exactly compensates for the overdensity, and the universe is
exactly EdS for r > rv.

Transforming to the perturbed FLRW form : We want a coordinate transformation (t, r)→ (τ, r̃)
such that the metric in the new coordinates is

ds2 = −(1 + 2φ)dτ 2 + a2(τ)(1− 2ψ)
(
dr̃2 + r̃2dΩ2

)
, (92)

with at least the conditions
| φ |� 1 ; | ψ |� 1 , (93)

being satisfied. Since t is the proper time of each matter shell, the quantity ∂tr̃ is simply the velocity
of matter in the (τ, r̃) frame (which is comoving with the Hubble flow) :

ṽ ≡ ∂r̃

∂t
, (94)

is the radial comoving peculiar velocity of the matter shells in the (τ, r̃) frame. We showed that the
required transformation exists, provided matter peculiar velocities remain small, which is consistent
with what has een shown by other authors, and is true for the observed Universe.
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In the cosmological equations derived from Macroscopic Gravity we already have in place the
formalism for calculating the backreaction when the metric is of the perturbed FLRW form. From
there it follows that the backreaction is very small, in the nonlinear structure formation regime,
provided matter peculiar velocities are small. It can be argued that this result is independent of the
assumption of spherical symmetry in the toy model. The situation could be very different though,
if there are dominant nonlinear structures in today’s Universe, comparable to the Hubble radius.

7.1 Perturbation theory around a background - the shortwave approx-
imation

Green and Wald [22] have recently given an analysis of the growth of metric perturbations, assum-
ing that the metric is always close to a given background, although matter perturbations can be
arbitrarily large. No averaging of an underlying spacetime geometry is done, and it is assumed that
there is a homogeneity length scale at around 100 Mpc, much smaller than the Hubble radius. It is
shown that if the small-scale motions of matter inhomogeneities are non-relativistic, the deviations
from the background metric are small, and well-described by Newtonian gravity. This result tallies
with what has een found by others before, including us. It is further shown that subject to the
matter satisfying weak energy condition, the effect of small scale inhomogeneities on large scale
dynamics is to produce an effective trace-free stress energy tensor. One might ask if this traceless
nature of the correction has to do with no averaging over finite volumes being carried out.

Thus the assumption of non-relativistic peculiar velocities along with the assumption of a homo-
geneity scale much smaller than the Hubble radius strongly suggest a negligible effect of small scale
inhomogeneities on the average large-scale dynamics. The first of these two assumptions is well
supported by observations. There is no observational evidence against the second assumption, but
nor is it firmly established by observations. If this assumption is correct, either a small cosmological
constant, or a modification of general relativity on large scales, is indicated by the observed cosmic
acceleration. If this assumption turns out to be not correct, the effect of inhomogeneities could be
significant, and remains an important question for further investigation.
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2006-2009 : our work on application of Macroscopic Gravity to cosmology would not have been
possible without his ingenuity in simplifying the original system of equations. I would like to thank
Friedrich Hehl for suggesting in the first place that we apply MG to cosmology. Correspondence
and interactions with Roustam Zalaletdinov are gratefully acknowledged. I am also thankful to
Thomas Buchert for correspondence in the early stages of this work. It is a pleasure to thank the
organizers of the conference for their kind hospitality, and the conference participants for stimulating
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The list of references below is far from exhaustive, and references to a large number of the
original papers on the subject can be found in the review articles cited here.

22

PyV
Texto escrito a máquina
280



References

[1] G. F. R. Ellis (2011) Inhomogeneity effects in cosmology arXiv:1103.2335 [astro-ph.CO]

[2] T. Buchert (2011) Towards physical cosmology : focus on inhomogeneous geometry and its
non-perturbative effects arXiv:1103.2016 [gr-qc]

[3] A. Coley, J. Brannlund and J. Latta (2011) Unimodular gravity and averaging arXiv:1102.3456
[gr-qc]

[4] A. Ishibashi and R. M. Wald, Can the acceleration of our universe be explained by the effects
of inhomogeneities?, Class. Quantum Grav. 23, 235 (2006)

[5] R. Zalaletdinov (1993) Towards a macroscopic theory of gravity Gen. Rel. Grav. 25, 673

[6] E. W. Kolb, S. Matarrese and A. Riotto (2006) On cosmic acceleration without dark energy
New J. Phys. 8, 322

[7] V. Marra and A. Notari Observational constraints on inhomogeneous cosmological models with-
out dark energy arXiv:1102.1015 [astro-ph.CO]

[8] S. Rasanen (2011) Back-eaction : directions of progress arXiv:1102.0405

[9] R. A. Sussman (2011) A comprehensive study of back-reaction and effective acceleration in
generic LTB dust models arXiv:1102.2663 [gr-qc]

[10] D. Wiltshire (2011) Gravitational energy as dark energy : cosmic stucture and apparent accel-
eration arXiv:1102.2045

[11] Chris Clarkson and Roy Maartens (2010) Inhomogeneity and the foundations of concordance
cosmology Class. Quantum Grav. 27, 124008

[12] Roy Maartens (2011) Is the universe homogeneous arXiv:1104.1300 [astro-ph.CO]

[13] P. J. E. Peebles (2009) Phenomenology of the invisible universe arXiv:0910.5142

[14] Aseem Paranjape and T. P. Singh (2007) The spatial averaging limit of covariant macroscopic
gravity : scalar corrections to the cosmological equations Phys. Rev. D76:044006

[15] Aseem Paranjape and T. P. Singh (2008) Structure formation, back-reaction and weak gravita-
tional fields JCAP 0803:023

[16] Aseem Paranjape (2008) Backreaction of cosmological perturbations in covariant macroscopic
gravity Phys. Rev. D78:063522

[17] Aseem Paranjape and T. P. Singh (2008) Cosmic inhomogeneities and the average cosmological
dynamics Phys. Rev. Lett. 101:181101

[18] R. Zalaletdinov (1992) Averaging out the Einstein equations and macroscopic spacetime geom-
etry Gen. Rel. Grav. 24, 1015

23

PyV
Texto escrito a máquina
281



[19] R. Zalaletdinov (1997) Averaging problem in general relativity, macroscopic gravity, and using
Einstein’s equations in cosmology Bull. Astron. Soc. India 25, 401

[20] Marc Mars and R. Zalaletdinov (1997) Spacetime averages in macroscopic gravity and volume
preserving coordinates J. Math. Phys. 38, 4741

[21] A. A. Coley, N. Pelavas and R. Zalaletdinov (2005) Cosmological solutions in macroscopic
gravity Phys. Rev. Lett. 95:151102

[22] S. R. Green and R. M. Wald (2010) A new framework for analyzing the effects of small scale
inhomogeneities in cosmology arXiv:1011.4920 [gr-qc]

[23] Aseem Paranjape (2009) The averaging problem in cosmology Ph. D. Thesis, arXiv:0906.3165

[24] E. R. Siegel and J. N. Fry The effect of inhomogeneities on cosmic expansion Ap. J. 628 :
L1-L4 (2005).

24

PyV
Texto escrito a máquina
282



 

 

 

 

 

 
P A R T   I I I 

 

 

 

 

T H E   A P P A R E N T   A C C E L E R A T I O N 

 

  O F   T H E   E X P A N S I O N   O F   T H E   U N I V E R S E 





Cosmic Acceleration: what do data actually tell us?

BLANCHARD Alain
IRAP, 14 Av. E.Belin, 31400 Toulouse, FRANCE

April 1, 2011

Abstract

Evidence for an accelerated expansion of the universe as it has been revealed ten years ago
by the Hubble diagram of distant type Ia supernovae represents the lattest revolution of modern
cosmology with profound impact for fundamental physics. The construction of a scientfic model
of the universe is probably one of the most fascinating success of XXth century science. During
its construction, there has been regular debates regarding whether the whole construction being
scientific. Indeed, existing evidence for the big bang picture, including its modern version the
Λ CDM picture, comes from astrophysical observations. It is therefore interesting and essantial
to critically examine the present situation of the astrophysical observations and the possible
limitation in their interpretation. In this paper, the main various observational probes at the
fundation of the standard view are presented as well as the standard framework to interpret
them with special attention to the complex astrophysics and theoretical hypotheses that may
limit robust interpretation. It is concluded that, even when scrutinized with sceptical eyes,
the evidence for a homogenous accelerated universe, governed by standard Friedman-Lemaître
equations, is robust. Therefore the standard Λ CDM picture has to be regarded as the most
successful scientific representation of the universe by now, possibly being the only one clearly
consistent with the whole family of observations relevant to cosmology. The fact that this
model could in principle be easily falsified makes it a very good scientific theory. The history
of the cosmological constant is cosmology would deserve a long discussion, but in order to
make a long story short, we can summarize it by saying that the discovery of the expansion
of the universe has convinced most of researchers in this field until 1998, including Einstein
himself, to consider the addition of this term unnecessary, while nowadays, no alternative to the
accelerated Universe had achieved the same amount of scientific successes. Understanding the
origin of acceleration is probably one of the most challenging problem of fundamental physics.

1 Introduction
Cosmology as a science has grown after the discovery of the cosmic background radiation, less
than fifty years ago. Since that time impressive amount of progresses was achieved, leading to
remarkable consequences for fundamental physics, including constraints on physics at energy well
above to what is reacheable in accelerators, the evidence for dark matter and recently the evidence
for dark energy. The general picture, the "Big Bang", including the inflation Λ CDM model is now
recognized as the successful scientific representation of the world at the large scales (in space and
in time) we can measure.
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2 Basics of Friedmann-Lemaître Models
The fundamental idea of the geometrical theory of gravity starts from the fact that we can assign four
coordinates to any event observed in our vicinity, for instance in Cartesian coordinates : (x, y, z, t).
Locally, space appears to be flat, or nearly so. However this does not prejudge of the geometry of
space at larger scales : local observations put us in the same situation that led people to think the
earth was flat : the fact that we can describe our vicinity by a flat map does not prejudge of the
actual geometry on larger scales. Let us take the line element of a homogeneous 3D space which
can be shown1 to be :

dl2 = r̃2(dθ2 + sin2 θdφ2) +
dr̃2

1− k
(

r̃
R

)2 (1)

where k is −1, 0, 1 according to whether space is hyperbolic, flat or spherical. R is a characteristic
size (in the spherical case, that is the radius of the 3D-sphere embedded in a 4D space).

We then add the time as the fourth coordinate to build the equivalent of the Minkowski space-
time element of special relativity and get the Robertson-Walker (RW) line element after the change
of variables r̃

R → r:

ds2 = −c2dt2 + R(t)2[r2(dθ2 + sin2 θdφ2) +
dr2

1− kr2
] (2)

2.1 Homogeneity
The starting hypothesis of modern standard cosmological model is the asumption that the universe
is homegenous on large scale. This is the fundamental hypothesis, which I personnally would trace
back to Giordano Bruno, even if not phrased in modern words. This is now called the Einstein
cosmologcial principle and justifies the use the RW metric to describe our universe. It is of course
vital to check this asumption from observations. There is a long tradition to contest this asump-
tion. For instance Carl Charlier proposed a “fractal” picture at the beginning of XXth century.
More recently, G.F.R. Ellis has since several years developped a point of view that observations
do not prove that the universe is actually homognenous on large scale and therefore the starting
hypothesis of the standard picture might be wrong. Therefore it might be that the actual universe
is inhomogenous and that we describe it incorrectly by a homogenous picture. All this is right but
is the very common situation in physics: any theory is based on a number of asumptions which
cannot be directly proven by the observations to be right. In fact the purpose of physics is not to
tell what is right or not... What is wanted in physics is to have a description which is simple and
making as many predictions as possible that can be tested. In this respect the RW metric has been
successive and there is almost no competitor on the market!

A further misconception about this question lies in the way it is phrased in order to use the
RW metric. The homogneity condition is generally formulated on the matter fluctuations, i.e. that
matter fluctuations become small on large scale :

lim
R→+∞

δρx(R) = ρ (3)

1It is an instructive exercise to start from an Euclidean 4D space x, y, z, u and derive the line elements dl2 on the
3D sphere (x2 + y2 + z2 + u2 = R2) in internal spherical coordinates (r̃ =

√
x2 + y2 + z2, θ, φ).

2

PyV
Texto escrito a máquina
286



for any location x in the universe (ρ being independent of the location x). This is not correct. What
is actually wanted is that the fluctuations in the metric δh associated to the density fluctuations
are decreasing to zero on large scale:

lim
R→+∞

δh(R) = 0 (4)

that is:
lim

R→+∞
Gδρ(R)R2 = 0 (5)

which is a condition much more demanding than homogeneity of the matter, whith little hope that
observations will prove this condition to be satisfied, because even if one proves the homogeneity of
matter distribution condition (Eq. 4), the second condition (Eq. 5) will obviously not automatically
be satisfied. This means that we may very probably never prove directly that condition (5) is
actually satisfied! However, it does not mean that the theory will not be satisfying: as long as the
model is predictive and these predictions are verified by observations, the scientific attitude is to
consider that the model meets no trouble. Of course alternative views should be encouraged and
tested, but it is their duty to prove that they can offer an alternative as viable as the standard
picture! Even in this case, their scientific merit does not reach that of the standard picture as
long as they did not capitalize as many verification of their predictions. By present days, only
inhomogeneous Lemaître-Tolman-Bondi models offer an alternative to the standard picture within
general relativity, without having achieved the same amount of success in predictions/validations.

2.2 Topology
The Robertson-Walker line element describes the local shape of space : the curvature (i.e. the value
of k/R2) is only a local property of space, but does not tell us about the global shape of space. For
instance, the Euclidean plane is an infinite flat surface while the surface of a cylinder is a 2D-space
which is flat everywhere but is finite in one direction. GR in principle allows us to derive the local
geometry of space and its dynamics, but does not specify the global topology of space. Only direct
observations would allow to test what the topology actually is. Of course this will not be possible
on scales much larger than what can be observed (the horizon). We can therefore hope to prove
that the Universe is finite, if it is small enough, but we could not know whether we are in a finite
Universe of which the scale is larger than the horizon, or whether we are in an infinite Universe.
The interest in the topic of the cosmic topology, with possible observational signature, has been
recently revived [14, 19]

2.3 Important quantities needed for observations
In this section we only need to work in the framework of a geometrical theory of space-time, in
which the trajectories of light rays are assumed to be the null geodesics. Let us have a comoving
spherical coordinate system (r, θ, φ, t) the observer being at the origin of the spatial coordinates
(r = 0, θ = 0, φ = 0, t0), let assume that the observed source is emitting light at the coordinates
(rS, θ = 0, φ = 0, tS), and let r(t) be the trajectory of the emitted photons. As this trajectory is a
null geodesic, we have:

c2dt2 −R2(t)
dr2

1− kr2
= 0 (6)
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so the variables can be separated and the integration over r is analytical:
∫ t0

tS

cdt

R(t)
=

∫ rS

0

dr

(1− kr2)1/2
= S−1

k (rS) (7)

with:
Sk(rS) = sin(rS)ifk = +1rSifk = 0 sinh(rS)ifk = −1 (8)

When the distance is small with respect to R0 we just have S−1
k (r) ∼ r.

2.4 The Redshift
In order to derive the observed frequency ν0 of the light from a source emitted at the frequency
ν, we consider the trajectory of a second light ray emitted at the time tS + 1

ν . As the source is
comoving its coordinate is unchanged and we have:

S−1
k (rS) =

∫ t0

tS

cdt

R(t)
=

∫ t0+1/ν0

tS+1/ν

cdt

R(t)
(9)

which implies:
ν0

ν
=

λS

λ0
=

RS

R0
=

1
1 + z

(10)

where z is the redshift. This is the standard formula for the cosmological shift of the frequencies.
This result shows that the redshift z is a natural consequence of the expansion.

2.5 The proper distance
In GR, space changes with time, and there is no proper time, so that the “intuitive” notion of
distance between two points is not a well defined quantity. Therefore the various methods to
measure the distance between an observer and a given source give different answers. The proper
distance – between the source and the observer – can be seen as a distance measured by a set of
rulers at time t. The distance element is given by :

dl2 = ds2 = R(t)2
dr2

1− kr2
(11)

so that the proper distance is :
Dp = R(t)S−1

k (rS) (12)

The fact that this distance changes with time is the direct consequence of the expansion of the
Universe. We can now examine how this length changes with time :

Ḋp = ṘS−1
k (r) (13)

so that the source is actually receding from the observer with a speed:

V = Ḋp =
Ṙ

R
Dp = HDp (14)
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The fact that this speed could be larger than the speed of light should not be considered as a
problem: this speed can be measured but cannot transport information faster than light. When
the distance is small, the Doppler frequency shift is :

δν

ν
=

Ṙ

R
δt = H

D

c
=

V

c
(15)

so that the shift is the one corresponding to the Doppler shift associated with the above velocity.
For large distances, the total shift results from the product of small Doppler shifts and the redshift
is therefore purely kinematic. The physical nature of the expansion has been recently the subject
of interesting discussions [1, 21, 8].

Comoving distances It is sometimes useful to refer to comoving distances2. The comoving
distance Dc(z) associated to the distance D(z) is :

Dc(z) =
R0

R
D(z) = (1 + z)D(z) (16)

In the case of the proper distance, this becomes:

Dc
p(z) = R0S

−1
k (r) =

∫ t0

tS

cdt

R(t)/R0
= c

∫ z

0

dz

H(z)
(17)

2.6 The angular distance
Let us suppose that we observe a ruler orthogonal to the line of sight. The extremities of the ruler
have the coordinates (r, 0, 0, tS) and (r, θ, 0, tS). The proper length l between the extremities is:

l2 = ds2 = R(tS)2r2θ2 (18)

which provides the relation between the angle θ and the length l and thereby the angular distance
defined by:

Dang =
l

θ
= R(tS)r (19)

2.7 The luminosity distance
Let us assume that we observe a source with an absolute luminosity L through a telescope with
a diameter d and let us choose a coordinates system which is centered on the source. Let θ be
the angle between two rays reaching two points diametrically opposite on the telescope. We have
d = R(t0)rθ. The energy emitted by the source that reaches the telescope is :

s =
L

4π
× πθ2

4
(20)

When observed, the energy of photons has been shifted by 1/(1 + z) but also the frequency at
which they arrive is reduced by the same factor. Therefore the flux (energy per unit time and unit
surface) one gets is:

f =
s

πl2/4
1

(1 + z)2
=

L

4πR(t0)2r2(1 + z)2
=

L

4πD2
lum

(21)

2This could also be confusing!
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This relation provides the luminosity distance:

Dlum = R(t0)r(1 + z) = R(tS)r(1 + z)2 = Dang(1 + z)2 (22)

2.8 Dynamics
The function R(t) which appears in the RW line element, is totally independent of any further
geometrical consideration. It can be specified only within a theory of gravity. The basic equation
of GR relates the geometrical tensor Gij to the energy-momentum tensor Tij

Gij = Rij − 1
2
gijR = 8πGTij (23)

where gij is the metric tensor, Rij is the Ricci tensor, R the Ricci scalar. For a perfect fluid, there
exists a coordinates system, called the comoving coordinates, in which the matter is at rest and the
tensor Tij is diagonal with T00 = ρ and T11 = T22 = T33 = p, ρ being the density and p the pressure.
A fundamental aspect of GR is that the source of gravity includes explicitly a term coming from
the pressure : ρ + 3p/c2. Finally, there is an analog of the Gauss theorem, that is the Birkhoff’s
theorem [6]3: if the matter distribution is spherical then the evolution of the radius of a given shell
of matter depends only on its content.

From the above rules, we can easily derive the equation for R(t). Let us consider a spherical
region of radius a in a homogeneous distribution of matter. The equivalent Newtonian acceleration
is :

d2a

dt2
= g (24)

with the acceleration being generated by the “mass” M(a) of the above spherical region :

ä = g = −GM(a)
a2

= −4
3
πG(ρ + 3p/c2)a (25)

The density term includes the effect of kinetic energy (E = mc2!). Writing total energy (Et)
conservation inside the volume of the sphere from elementary thermodynamics gives :

d(Et) = d(ρV c2) = −pdV (26)

leading to :

ρ̇ = −3(
p

c2
+ ρ)

ȧ

a
(27)

From these two equations, the pressure can be eliminated, and, after having multiply both terms
by ȧ, the differential equation can be easily integrated. This leads to the following equation :

(
ȧ

a

)2

=
8πGρ

3
− Kc2

a2(t)
(28)

The last term corresponds to the constant of integration. Its value cannot be specified, depending
on the initial conditions. The form of the above equation is independent of the radius a of the sphere

3Apparently, this theorem should be named Birkhoff-Jebsen, as it has been published two years earlier by an
Norwegian physicist, J.T. Jebsen[13].
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and the solution a(t) should be proportional to the quantity R(t). R(t) should also be solution of
an equation of the same form, the constant K, which depends on the radius a0, being related to
the constant k which is involved in the Robertson-Walker metric element, something which can be
established only within GR : (

Ṙ

R

)2

=
8πGρ

3
− kc2

R2(t)
(29)

This relation, the Friedamnn-Lemaître equation, expresses the link within the framework of GR
between the geometry and the material content of the Universe. In order to specify completely the
function R(t), one needs an equation of state for the content of the Universe. The three cases often
seen in cosmology are the dust case (p = 0), the radiation dominated regime (p = 1

3ρc2) and the
cosmological constant equivalent to a vacuum contribution: pv = 1

3ρvc2. The cosmological constant
Λ being 8πGρv. So the above Friedamnn-Lemaître (FL) equation can be written:

H2 =

(
Ṙ

R

)2

=
8πGρ

3
− kc2

R2(t)
+

Λ
3

(30)

The cosmological parameters are introduced from this expression. The cosmological matter density
parameter:

Ωm =
8πGρm

3H2
(31)

the reduced cosmological constant

ΩΛ =
8πGΛ
3H2

(32)

and the cosmological curvature parameter:

Ωc = − kc2

R2(t)H2
(33)

I find personaly unfurtunate this convention, as Ωc < 0 for a positively curved space. The FL
equation now reads:

Ωm + ΩΛ + Ωc = 1 (34)
Quantities estimated at present epoch are labelled by 0. For instance the Hubble constant is H0.
This could leads to some ambiguity (Ω0 refers generally to the matter density).

3 Cosmological tests
The determination of cosmologcial parameters has been one of the most important objectives of
cosmologists after the discovery of the expansion of the universe by Hubble. It is importan to
provide a precise framework but also in the perspective to test the model. This problematic has
become specially important after the theory of inflation which predicted the universe to be flat,
something which was firt interpret as a prediction for Ωm = 1. Although Peebles noticed that the
actual prediction of inflation was Ωm+ΩΛ = 1, little attention was paid to the cosmologcial constant
until the detection of small scale fluctuation in the microwave sky. Indeed these measurements were
in agreement with a flat universe and inconsistent with open cosmologcial models with Ωm ∼ 0.3.
However the evidence for acceleration as obtained from the Hubble diagram of distant supernovae
has been the observational evidence that has lead to a rapid change of paradigm. Since that time
the improvment in the accuracy on the estimations of cosmologcial parmeters has been dramatic.
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3.1 Geometrical tests
Most cosmological tests in Cosmology, at least those on which present day constraints are based
on are geometrical in nature. Therefore they are essentially based on the relation between the
coordinate r and the redshift, the general mattig’s relation:

r = Sk

(∫ z

0

cdt

R(t)

)
= Sk

(
c

R0

∫ z

0

dz

H(z)

)
(35)

while the dependence of R(t) or H(z) on the cosmological parmeters is given by the FL equation.

The Hubble diagram of distant Supernovae The Hubble diagram was the first geometrical
test of relativistic cosmology. Extension of the Hubble diagram to high redshift has been made
possible thanks to the use of type Ia Supernovae (SNIa). SNIa at their maximum luminosity
(M ∼ −19.5) reach a luminosity comparable to that of an entire galaxy. This means tha these
bright objects can be detected extremely far away. Their are therefore observed as there were in
an epoch substantially younger than the present universe. Furthermore there is a relation between
the decline rate and the intrinsic luminosity making them suitable for distance measurements at
cosmological scale. Because SNIa are rare, large sky area have to be surveyed on a regular basis
to collect samples of SNIa. At the end of last century, two groups have independently investigated
the distant SNIa Hubble diagram and concluded that supernovae at redshift ∼ 0.5 were dimmer by
∼ 0.2 mag compared to what was expected in a unaccelerated universe. This was interpreted as
an evidence for an accelerated expansion. Indeed as supernova are observed in the universe when
younger they allowed to measure the history of the expansion. The consequence is very dramatic:
gravity is repulsive on the scale of the universe is accordingly to this observation!

What if Supernovae evolved Given the importance of the consequence not only for cosmology
but also for fundamental physics, the above observatin should be scrutinized. The use of geometrical
tests is based most of time on the assumption of no-evolution of the parent population. This is
also the case for type Ia supernovae. Although strong efforts have been done by observers to track
for any sign of evolution by close inspection of the spectra [2], the absence of evidence cannot be
considered as an evidence of absence. One possible way to deal with this problem is to assume some
evolution and see whether the data still provide evidence for the claim. For instance, an evolution
term like:

∆me ∝ z (36)

can not mimic the observed Hubble diagram without a cosmological constant. However an other
form of the evolution term has been suggested, being proportional to the look back time :

∆me ∝ ∆t (37)

[29]. It happens that such term leads to large degeneracy between cosmology and possible evolution
[11] that present day data do not allow to disentangle .
Undoubtfully, despite its possible limitation, the determination of the Hubble diagram from SNIa
has led to a major and rapid change of paradigm in modern cosmology. However, this change
has been possible because the previous situation was problematic. Although some observational
indications were favoring a low density universe, the first detections of fluctuations on degree scales
were in conflict with open low density universe [17].
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Figure 1: Fitting the SNIa Hubble diagram with two free parameters, one being the cosmological
constant in a flat cosmological model and the second being a parameter describing a possible time
evolution of the luminosity of distant supernovae (∆m(z) = K(t0 − t(z))/(t0 − t(1))) leads to the
following constraints [11]. Contours are 1, 2 and 3 sigma regions. This is a strong degeneracy
between the two parameters which prevents an unambiguous evidence for a cosmological constant
from the sole Hubble diagram of SNIa.
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Figure 2: The amplitude of angular fluctuations of the CMB is expressed through their angular
power spectrum. Data are WMAP, Boomerang, ACBAR [24]. A simple minimal six parameters
model including a cosmological constant provides an excellent fit to the data. This is one of the
most important successes of modern cosmology.
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Fluctuations Since the discovery of the CMB fluctuations by COBE [26] the idea that early
universe physics has left imprints revealed by these fluctuations has gained an enormous attention.
In this respect, DMR results have played a fundamental role in modern cosmology comparable to
the discovery of the expansion of the universe or the discovery of the microwave background by
Penzias and Wilson, and indeed this has motivated the delivering of the Nobel prize to G. Smoot
and J. Mather for this discovery. One of the fundamental reasons for this is that fluctuations on
scales larger than one degree in the microwave background radiation correspond to scales greater
than the horizon at last scatering epoch and cannot therefore been altered by any physical process
and should therefore reflect primodrial fluctuations [28]. This also means that the very existence
of these fluctuations could be explained only from yet undiscovered physics, probably relevant
to the very early universe [18], for which the expansion law is strongly modified compared to
the standard picture. The DMR results were providing some constraints on cosmological models
[30] but it has been realized that the measure of fluctuations on smaller scales will provide much
stringent information. Early detection of fluctuations on degree scales allowed to set interesting
constraints and provide the first evidence for a flat geometry of space [16, 17]. If estimations
of low matter density were to be regarded as robust, this was inevitabily leading to a non-zero
cosmologcial constant. Even before the availability of the WMAP data, considerable progresses
have been achieved on the measurement of fluctuations on all angular scales. Archeops [3] and
Boomerang [5], as well as many other small scale measurements, already provided data allowing
tight constraints on cosmological parameters [4]. It should also be noticed that fast codes to compute
the fluctuatiosn spectrum has been made available to the scientific community. The first one was
CMBFAST [25] followed by an avatar, CAMB[15]. The authors deserve the warm aknowledgments
of the community as these tools have been really critical in the full scientific exploitation of the
various CMB experiments.

Although the observed fluctuations were consistent with a Λ dominated universe, a cosmological
constant was not explicitly requested by the CMB data alone. Indeed even the WMAP data were
consistent with a vanishing cosmological constant, provided the Hubble constant was left as an
entirely free parameter. A positive detection of a cosmological constant could be obtained only by
using some additional data in conjunction with CMB, like the measurement of the Hubble con-
stant. A further restriction came from the fact that the constraints on cosmological parameters
were obtained within the standard CDM picture, and that many ingredients were specified without
being necessarily confirmed by observations : for instance initial fluctuations are supposed to be
adiabatic and to follow some power law. Therefore the “concordance” [20] cosmology was an ap-
propriate terminology: the model was consistent with most existing data, but the introduction of a
cosmological constant was not requested by any single data, and it was far from being clear whether
relaxing some of the input hypotheses would not allow for solutions without the introduction of a
cosmological constant.

What do actually fluctuations tell ? The first point to notice is that for a random function
on the sphere, even with gaussian statistics, each al is a random quantity. Therefore fitting the Cl

with an acceptable goodness of fit figure means that several thousands of random numbers could be
fitted with a 6-parameter theory. A remarkable level of achievement! In addition fitting the Cl curve
provide very tight constraints on the six parameters, due to the quality of the measurements. These
constraints are generally formulated in term of cosmological parameters and it is often quoted that
they provide a direct evidence for an accelerating universe independent of the Hubble diagram of
supernovae. It should be realized however, that these constraints are established within a specific
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Figure 3: The TT spectrum of the first year WMAP data compared to three different models: one
is the concordance, the two others are Einstein de Sitter models, one of which comprises neutrino
contribution of ∼ 10% corresponding to three degenerate families with mν ∼ 0.7eV. From Blanchard
et al. [7].
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model that is the adiabatic cold Dark matter picture with power law initial conditions. Therefore
these constraints are model dependent. Modifying the starting hypothesis may change these con-
straints (and the model may then be rejected, like the standard topological defects scenario has
been). An early illustration of this has been obtained soon after the publication of the WMAP
data. Relaxing the powerlaw hypothesis, i.e. assuming a non power law power spectrum, it is
possible to produce Cl curves within an Einstein de Sitter cosmological model which provided a fit
as good as the concordance model. This is illustrated in figure 3 on which 3 models are compared
to the WMAP data, two being Einstein de Sitter models. Such models not only reproduce the TT
(temperature-temperature) spectrum, but are also extremely close in terms of ET (polarization-
temperature) and EE (polarization-polarization) spectra. An un-clustered component of matter
like a neutrino contribution or a quintessence field with w ∼ 0 is necessary to obtain an acceptable
amplitude of matter fluctuations on clusters scales [7]. Such models require a low Hubble constant
∼ 46 km/s/Mpc at odd with canonical HST key program value ( ∼ 72 km/s/Mpc) but is actually
only ∼ 3σ away from this value, this can certainly not be considered as a fatal problem for an
Einstein-de Sitter universe. The introduction of a non-power law power spectrum might appear as
unnatural. However, such a feature can be produced by some models of inflation in order to match
the Cl curve [12]. Therefore the amplitude and shape of the CMB fluctuations as measured by
WMAP is certainly a success for the Λ CDM model but cannot be regarded as a direct indication
of the presence of dark energy.

Large scale structure Within a specific model like Cold Dark Matter, not only it is possible
to derive the Cl curves, that is the angular power of the fluctuations of the cosmic microwave
background, but it is also possible to obtain the power spectrum of the fluctuation in the matter
density, or equivalently the correlation function. The galaxy distribution should reflect essentially
this matter power spectrum (galaxies may be a “biased” representation and this bias is subject to
some modeling, but this represent small perturbations). The measure of the power spectrum can
therefore be used to disentangle models which produce Cl curves that could not be distinguished.
Recently, a critical advance resulted from the availability of very large galaxy surveys, the 2Df
redshift survey and the SDSS survey, allowing to measure the amplitude of galaxy fluctuations on
scales as large as 100h−1 Mpc [22, 27, 10, 23]. This has provided a remarkable success to the ΛCDM
picture because the shape of the correlation function could be predicted for models that already
match the CMB fluctuations measured by WMAP: not only ΛCDM model reproduces the shape of
the correlation function, but the specific presence of a bump in the correlation function at scale of
the order of 100h−1Mpc due to the detailled dynamics of fluctuations when the baryons are taken
into account, the so called accoustic peak, corresponding to the “peak” in the Cl of the CMB.

Once an Einstein de Sitter model is built in order to reproduce the CMB Cl, the amplitude of
the matter fluctuations on large scales is set up and the measurement of the matter fluctuations on
large scales in the present day universe is a critical way to distinguish models which are otherwise
degenerated in their Cl. The comparison of the power spectrum from the SDSS LRG with the
predicted spectra for Einstein de Sitter models is clearly in favor of the concordance model, see
Fig. 4. One should add some caution here: it might be possible that the biasing mechanism leads
to a power spectrum at small k (large scales) which is not proportional to the actual matter power
spectrum [9], in which case the above comparison might not be a fatal failure of the Einstein de
Sitter models. However, biasing mechanisms systematically lead to a correlation function on large
scales which is still proportional to the matter correlation function on large scales. Comparison
of the correlation function on large scales is therefore less ambiguous and its measurement should
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Figure 4: Data from the SDSS have allowed to measure the amplitude of galaxy fluctuations on
large scales. In this respect, Luminous Red Galaxies (LRG) provided measurement of the power
spectrum on the largest scales. Green crosses correspond to Tegmark et al. [27] and black crosses
correspond to the measurements of the power spectrum of LRG from the SDSS Data Release 5 by
Percival et al. [23]. The red continuous curve is the predicted spectrum for a typical concordance
model, while the dotted and dashed lines correspond to the power spectrum for Einstein de Sitter
models consistent with the WMAP fluctuation angular power spectrum Cl [7, 12].
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be unambiguously discriminant. Hunt and Sarkar [12] have provided a comprehensive MCMC
investigation of the Einstein de Sitter parameter space, finding models which acceptably fit the
correlation function on scales below 70 h−1Mpc, but were nevertheless systematically negative on
scales of the BAO peak. This is a strong evidence that there is no way in an Einstein de Sitter
universe to fit simultaneously the Cl and the observed distribution of galaxies on large scales. This
should be regarded as a remarkable success of the concordance cosmological model: although there
were little doubts that this model could fit accurately most of the major existing observational facts
in cosmology, the ability to produce predictions that are verified a posteriori is the signature of a
satisfying scientific theory.

Parameter Vanilla Vanilla + Ωk Vanilla + w Vanilla + Ωk + w
Ωbh

2 0.0227± 0.0005 0.0227± 0.0006 0.0228± 0.0006 0.0227± 0.0005
Ωch

2 0.112± 0.003 0.109± 0.005 0.109± 0.005 0.109± 0.005
θ 1.042± 0.003 1.042± 0.003 1.042± 0.003 1.042± 0.003
τ 0.085± 0.017 0.088± 0.017 0.087± 0.017 0.088± 0.017
ns 0.963± 0.012 0.964± 0.013 0.967± 0.014 0.964± 0.014
Ωk 0 −0.005± 0.007 0 −0.005± 0.0121
w −1 −1 −0.965± 0.056 −1.003± 0.102
Ωλ 0.738± 0.015 0.735± 0.016 0.739± 0.014 0.733± 0.020
Age 13.7± 0.1 13.9± 0.4 13.7± 0.1 13.9± 0.6
ΩM 0.262± 0.015 0.270± 0.019 0.261± 0.020 0.272± 0.029
σ8 0.806± 0.023 0.791± 0.030 0.816± 0.014 0.788± 0.042
zre 10.9± 1.4 11.0± 1.5 11.0± 1.5 11.0± 1.4
h 0.716± 0.014 0.699± 0.028 0.713± 0.015 0.698± 0.037

Table 1: Summary of the mean values and 68% confidence intervals for the cosmological parameters
of the ΛCDM model constrained from CMB, SNIa and BAO for different models (θ is the ratio
of sound horizon to angular diameter distance). These constraints are quite tight, most of them
are below 5%, and are stable when additional degrees of freedom are added to the model (w, Ωk),
adapted from [11].

3.2 Tests based on the growing rate
As we have seen the Cold Dark Matter should be regarded as a successful theory that has lead to
predictions which were verified a posteriori and which is able to reproduce most of the data relevant
to cosmology. The precision on cosmological parameters for the ΛCDM picture is of the order of
5% at most, with accuracy close to 1% in some case. Of course this doesn’t mean it is the “right”
theory; science does not provide “right” theories but only theories that reproduce all existing data
and which are able to lead to predictions that can lead to its invalidation. This is the principle that
to be scientific a statement has to be falsifiable accordingly to Kark Popper.

It is therefore the only possible path to continue to increase the accuracy of existing measure-
ments and to develop new ways to test the theory. There is a way to test cosmological models which
is fundamentally different from geometrical tests: it is based on the growing rate of fluctuations
under their own gravity. In principle the abundance of clusters and weak lensing measurements are
both sensitive to this growing rate. I do not think that they have by now reach a level of precision
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that makes them useful, but it is certainly a way on which efforts will concentrated in the future,
in particular thanks to space mission like EUCLID or WFIRST. Measurements of this growing rate
would allow to test whether predictions of general relativity at the scale of the universe are verified
or if we have to turn to alteratives.

4 Conclusions
The Copernician model of the world was the first revolution of a series in the construction of
modern cosmology, and the discovery of the accelerated expansion being the latest in date. The-
oretical considerations have always been a source of remarkable observational investigations and
Cosmology has always benefited from the confrontation of models with observations. Since the
thirties, the big bang picture, the modern version of Lemaître’s primeval atom has been remarkably
successful, based on simple assumptions and physical laws that have been validated by accurate
experimental results. Although alternative theories have been developed, these alternative were
based on hypothetical unknown physics advocated to interpret cosmological observations. None of
these alternative theories has produced significant predictions differing from the standard view that
would have been comforted a posteriori. Rather new observations in agreement with predictions of
the big bang picture necessitated deep revision of the unorthodox views, at the cost of rather ad
hoc assumptions added to fit the new observations. The situation has evolved when the standard
picture has necessitated the introduction of new ingredients, first dark matter and more recently
dark energy. The very nature of these new ingredients, which are supposed to dominate the mean
density of the universe has not been established by direct laboratory experiments, nor by astro-
nomical observations, and this situation may some time lead to the question whether cosmologists
have not introduced new aethers. We had the opportunity to see that the situation is not so bad.
The introduction of -cold- non-baryonic dark matter has led to specific predictions, the amplitude
and shape of the fluctuations of the cosmological background on various angular scales, which were
verified with high accuracy. The presence of dark energy has lead to a specific prediction, the
shape of the matter power spectrum on large scales, which has been verified a posteriori. Although
the inclusion of a cosmological constant was concomitant to general relativity, the actual origin of
dark energy remains totally unknown and the presence of dark energy in the present day universe
represents probably the most fundamental and unexpected new element in modern physics.
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Type Ia Supernovae and the dis
overy of the Cosmi
A

elerationAlejandro Clo

hiattiDepartamento de Astronomía y Astrofísi
aFa
ultad de Físi
aPonti�
ia Universidad Católi
a de Chile
&High Z Supernova Sear
h TeamO
tober 11, 2011Abstra
tI present a review of the resear
h and analysis paths that 
onverged to make Type Ia SNethe most mature 
osmologi
al distan
e estimator of the present time. The narrative startswith the �rst works in the early de
ades of the 20th 
entury and �nishes with the more re
entresults, 
overing the surprising dis
overy of Cosmi
 A

eleration in 1998.The review was written thinking of physi
ists with a strong interest in Cosmology, whomight have pondered why was that, after de
ades of not being able to agree upon the rate of
osmi
 expansion, astronomers were so qui
k to 
on
ur on 
osmi
 a

eleration.1 Introdu
tionSupernovae (SNe) have been with us from the beginning, sin
e before we were �us�. O

asionallysuperimposed on the ba
kground of a familiar, regular and repetitive sky, they were among thevariable phenomena that puzzled, marveled and s
ared our human an
estors. The modern viewasso
iates them with the �nal stages of stellar evolution in s
enarios where the shifting balan
ebetween pressure sour
es and gravitation rea
hes unstable regimes. When the instabilities lead toan explosion powerful enough to disrupt the star we have SNe.The 
urrent paradigms purport SNe as 
riti
al ingredients in the mi
ro-physi
s of Cosmology.They 
reate the 
hemi
al history of the Universe, stir the interstellar medium of galaxies enri
hingprimordial matter with novel 
hemi
al elements, and, if exploding in dense environments, generatesho
k waves that promote the birth of newer generations of stars. In addition, from the pra
ti
alpoint of view of today′s astronomers, they provide outstanding estimators for 
osmologi
ally relevantdistan
es.This paper is a review of the resear
h paths that 
onverged to make Type Ia SNe, at the time,the most mature distan
e estimator for use in Cosmology, the surprising dis
overy of Cosmi
 A

el-eration in 1998, and tou
hes the 
urrent work trying to use SNe to obtain even �ner 
osmologi
alinferen
es. Opposite to what the organizers of the meeting expe
ted, the paper was written not1
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before, but after the presentation at the workshop. The positive side of having done it this way, isthat I 
ould tune it to answer the questions I re
eived after the talk. It was the �rst time I presentedthe subje
t to an audien
e made up, primarily, of physi
ists, and the questions were di�erent towhat I was typi
ally used to answer. Hen
e, I prepared this work thinking mainly of 
olleagues whoare physi
ist that work in Cosmology. I will tou
h some topi
s 
onsidered �basi
� in SNe studies,whi
h are available in other reviews or papers, but are s
attered around mainly in astronomi
aljournals. My hope is to present basi
 
on
epts, give an overview of the advan
es as they pro
eededin time, and organize some relevant bibliographi
 sour
es to fa
ilitate further study from s
holarswho are not spe
ialist in the �eld.I must warn the reader that the text, as a review of SNe, is not 
omplete. It 
annot be.It is biased towards the developments that lead Type Ia SNe to be
ome the outstanding distan
eestimators that they are today. The rest of the SNe appear and are mentioned just as the ba
kgroundout of whi
h Type Ia SNe appeared and were re
ognized.I shall also warn the reader that I have made an attempt to merge in this manus
ript thedi�erent styles of referen
ing literature used by physi
ists, like in Phillips [69℄, and astrophysi
ists,like in Phillips (1993). Being myself an astrophysi
ist I have 
ome to appre
iate the importan
e ofhaving the date of the papers inserted in the text, to �gure out the pa
e of developments and/orpossible histori
al relation between di�erent pie
es of work. The result, Phillips (1993 [69℄) isslightly 
umbersome, but I hope that will suite the prejudi
es and slants of both 
ommunities.The 
hart of this paper is as follows. Se
tion 2 is a histori
al narrative. In it I des
ribe theevolution of the area that I loosely 
all �SN Studies,� from the times of the pioneers, in the earlyde
ades of the 20th Century until all the major advan
es in instrumentation, observation, analysis,and theoreti
al interpretation had taken pla
e, leaving the �eld poised for a major breakthroughby 1993. In Se
tion 3, I des
ribe the fast developments between 1994 and 1998, when the Cosmi
A

eleration was dis
overed. In Se
tion 4, I present the results of 1998, using as an illustrationthe 
omplete set of Type Ia SNe published by the High Z SN Sear
h Team, augmented by sele
tedlater dis
overies. In Se
tion 5, I des
ribe what 
ould be 
alled the �Se
ond Generation� SN surveysstarted soon after the turn of the 
entury, with the goal of 
onstraining the nature of the now 
alled�Dark Energy�.2 Supernova Studies2.1 The pioneersThe serious study of SNe started with two very in�uential papers by astronomers from the CarnegieInstitution and California Institute of Te
hnology. Baade and Zwi
ky (1934a [8℄ & 1934b [9℄), proved
learly that the nova stars known from antiquity were 
omposed by two very di�erent 
lasses. Oneof them, whi
h they named for the �rst time super-novae, was mu
h more powerful than the other.They showed that the energy involved in these outbursts was equivalent to a 
onsiderable fra
tionof the rest mass of a star and they proposed that the neutronization of matter 
ould be the sour
eof energy for the pro
ess. They issued the suggestion as a general possibility based on energy
onsiderations as they did not present any spe
i�
 s
enario where neutronization 
ould o

ur.Spe
i�
ally they did not fo
us on the, now preferred, gravitational 
ollapse in the 
ore of massivestars. They also suggested that SNe 
ould be one of the sour
es of Cosmi
 Rays, a possibility thathas been explored and 
on�rmed sin
e.Having asso
iated supernovae with the �nal stages of the still largely unknown stellar evolution2

PyV
Texto escrito a máquina
304



it was natural to devi
e a SN sear
h program. If a survey is done, imaging nearby galaxies withhundreds to thousands of millions of stars ea
h, giving enough time, 
han
es are that a few of thosestars will be 
aught in the a
t of be
oming SNe. On
e they are dis
overed, a systemati
 programfor studying the outbursts 
ould be done just by following the evolution in time of the emitted �uxand spe
trum. Using the re
ently 
ommissioned wide angle 18-in
h S
hmidt teles
ope at Palomarobservatory, Zwi
ky, together with J. Johnson, started the �rst systemati
 sear
h for SNe in 1936.The teles
ope would be used to image hundreds of galaxies in multiple epo
hs during the observingseason and 
ompare the new images with the old ones using blinking mi
ros
opes. Any new star
ould be easily spotted. Zwi
ky teamed up with another astronomer of the Carnegie Institution tofollow up the spe
tros
opi
 evolution. After a few years of work, Minkowski (1941 [51℄) was ableto start the disse
tion of the SN events 
lassifying them into �types� a

ording with their spe
tra,a tenden
y that has only partially helped to 
larify the �eld, but, in any 
ase, has been impossibleto 
hange.Minkowski proposed that SNe 
ome in two di�erent spe
tros
opi
 types, I and II. The earlytime spe
tra of Type I SNe were not understood. They showed wide absorption/emission bandsthat shifted in position and strength with the passage of time. But it was not possible to identifythe 
hemi
al elements that 
aused them. It was 
lear, though, that they were a homogeneous
lass be
ause the unknown spe
tra would repeat from one event to the next. A few spe
tra takenhundreds of days after outburst provided broad features that 
ould be reasonably asso
iated withemission lines, out of whi
h only one forbidden transition of O I was identi�ed. The evolution intime was also remarkable similar for di�erent SNe within this type. Type II SNe, on the other hand,displayed the well known lines of the hydrogen Balmer series and the He I line at 5678 angstroms.It was easy to re
ognize the 
hara
teristi
 shape of P Cygni pro�les and, hen
e, measure expansionvelo
ities. These turned out to be in the order of several thousand kilometers per se
ond. Thus,the hypothesis of an explosion with massive eje
tion of matter was 
on�rmed for Type II SNe and,by extension, adopted as a reasonably working hypothesis for Type I as well.Zwi
ky also 
ontributed to the initial proliferation of SN types by using the 
hara
teristi
s ofthe photographi
 light 
urves (the light 
urve is the evolution of brightness in a given photometri
band with time) as a tool to aggregate SNe into 
lasses. This idea also stu
k, although the groupsthat he proposed have been abandoned (see for example a later re
olle
tion in Zwi
ky, 1965 [101℄).Classi�
ation of events aside, the photometri
 follow up provided a puzzling result. The SNesustain the emission of energy for hundreds of days. Type I, in parti
ular, after they go throughthe maximum emission of light during the initial weeks, settle on a linear de
ay of brightness withtime if plotted as magnitude (i.e. logarithm of the emitted energy). This exponential de
ay phasewas followed for hundreds of days in some events.As the database of observations in
reased, the spe
tra of Type I SNe 
ontinued to be a sour
eof perplexity. It was not even known how to interpret them in the most basi
 terms. Were theyemission line spe
tra of atoms in di�erent ionization states whose lines were enormously broadenedby large expansion velo
ities? Were they 
ombined spe
tra, where a 
ontinuum and broadenedabsorption and emission lines are present, like an extreme 
ase of some pe
uliar stars or normalnovae? The �rst serious attempt to make sense of Type Ia spe
tra was by Payne-Gapos
hkinand Whipple (1940 [60℄) and Whipple and Payne-Gapos
hkin (1941 [97℄). They attempted tore
onstru
t the SN spe
tra by summation of the emission lines of the more 
ommon 
hemi
alelements in astrophysi
s, allowing for several stages of ionization. They produ
ed syntheti
 spe
trathat were a very rough mat
h to the observations and left open the possibility that many of thetroughs in the spe
tra were real absorption minima that they had not tried to model.3
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The pioneering work des
ribed above 
reated the �eld of SN studies and set the lands
ape andmain inroads for its subsequent evolution. The early dis
overies were puzzling, and left broad andimportant questions to be answered. The neutronization of matter was an fas
inating possibilityfor the produ
tion of the energy required to disrupt the stars, but there were no s
enarios identi�edfor su
h a pro
ess to o

ur. In addition, the fa
t that there were two SN types suggested that there
ould be two di�erent explosion me
hanisms. The early attempts at theoreti
al interpretation ofSNe spe
tra explored for the �rst time what, in the end, would be the key approa
h to de
ipherthem: the 
onstru
tion of syntheti
 spe
tra.2.2 Getting the pi
ture: The 40s and 50sThe 40s and 50s were a period of slow a

umulation of observations and evolution of the 
on
eptualtools to understand, in general, astrophysi
s. Basi
 knowledge on atoms, atomi
 nu
lei, nu
learrea
tions, and improvements in the measurements of the 
osmi
 abundan
es, helped to establishthe 
osmologi
al role of stars and stellar nu
leosynthesis.The data of Zwi
ky′s �rst survey 
ontinued to be studied, until they started to reveal its full
ontent. An important event, whi
h will play its role later on, was the dis
overy and observationof a bright SN in NGC 4214. This SN was observed from Europe and the US and Wellmann (1955[93℄) remarked that it was of Type I, but the spe
trum was somehow pe
uliar (we know now thatit was the �rst Type Ib SN with spe
tra re
orded).Another relevant pie
e of observational information that �nally 
ame to be re
ognized was theoutstanding light 
urve of SN 1938C observed by Zwi
ky, and presented by Baade (1945 [6℄). Thepart of the light 
urve that 
omes after maximum, the exponential de
ay, had a half-life of ∼55days. This slope was essentially the same for all Type I SNe and be
ame a strong argument infavor of a 
ommon energy sour
e for all Type Ia SN. For SN 1938C, the brightest Type Ia SN sin
ethe invention of the teles
ope and the better observed event at the time, the exponential de
aylasted as long as the observations, more than 10 times the half-life. Borst (1950 [11℄) squarely setthe fo
us on this fa
t and 
on
luded that it was the natural result a radioa
tive de
ay. Conne
tingdire
tly the half-life of the SN light 
urve with the half-life of the unstable nu
lei, he suggested that
7Be was the energy sour
e and proposed a me
hanism to form this unstable nu
leus following the
ollapse of the stellar 
ore after hydrogen exhaustion. Baade et al. (1956 [7℄) and Burbidge et al(1956 [15℄) pi
ked up the idea, emphasizing that in addition to 7Be, both 89Sr, and the re
entlydis
overed 254Cf, were also good mat
hes for the half-life time, and they justi�ed their preferen
efor the latter as the energy sour
e for SNe.Observations of abundan
e of elements in meteorites, Earth, the Sun, stars and nebulae, alsostarted to 
onverge and it was possible to interpret them in terms of the re
ently 
reated nu
learshell model. Suess and Urey (1956 [85℄) published a paper that set the standard of the time, withthe �rst modern looking plots of the relative abundan
es of 
hemi
al elements.Most of the ideas and advan
es of the last de
ades that were slowly 
onverging to the big pi
tureof astrophysi
s were organized in one of the more in�uential papers of the 20th 
entury astrophysi
sby Burbidge, Burbidge, Fowler and Hoyle (1956 [15℄, hereinafter named B2FH). In this paper, theypresented a 
oherent pi
ture for the origin of the 
hemi
al elements in thermonu
lear rea
tions ofin
reasingly heavier nu
lei in the 
ore of evolving stars. They also emphasized the need for additionalneutronization of 
omplex nu
lei, and developed the 
on
ept of slow and rapid neutron 
apturepro
esses. The slow pro
esses would take pla
e sometime during normal stellar nu
leosynthesis andthe rapid ones in the explosions of SNe. It was, essentially, the modern view, with a few notable4
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short
omings that are easy to pinpoint now, 55 years after. Many of those were related with stellarastrophysi
s and SNe. In the e�ort to provide the synthesis authors disregarded the fa
t that thetwo spe
tros
opi
 SN types 
ould point out to the existen
e of two di�erent progenitors and/orexplosion me
hanism. B2FH 
orre
tly lo
ated the terminal instability of 
ore-
ollapse SNe in the
56Fe 
ore of massive stars that had followed all the nu
leosynthesis sequen
e, but did not have a
lear understanding of the pro
esses that triggers the 
ollapse. They did not have, either, a 
learunderstanding of how the 
ore 
ollapse would result in the eje
tion of the rest of the star and theexplosive nu
leosynthesis. Their 
on
ept was that the 
ore 
ollapse will start a rapid 
ompressioninwards of the whole star, in
luding the mantle. This would sharply raise the temperature of gas ofthe mantle, ri
h in nu
lear fuels, and trigger a runaway thermonu
lear rea
tion whi
h will disruptthe star. B2FH also insisted on 254Cf as the radioa
tive produ
t that would power the light 
urves,at times as if the presen
e of 254Cf in SNe were an observational fa
t.2.3 Getting the pi
ture right: The 60s and 70sThe 60s started well for SN s
ien
e. Hoyle and Fowler (1960 [43℄), re
ognized the importan
e oflight nu
lei (12C, 16O, 24Mg, et
.) as thermonu
lear fuel when they were in highly degenerate
onditions. They identi�ed degenerate low mass stars near the Chandrasekhar limit as an optimals
enario for explosions sustained by these fuels, and asso
iated these explosions with Type I SNe.They estimated the mass of terminally unstable stars and found it to be 
onstrained to a verynarrow range. Out of this fa
t they explained the relatively s
ar
ity of the explosions, but failedto re
ognize the, even more remarkable, relevan
e for the homogeneity of the 
lass. This is the�rst paper where 
ollapse of evolved 
ores and thermonu
lear explosions are 
learly asso
iated withType II and Type I SNe, respe
tively. Hoyle and Fowler revisit as well the 254Cf hypothesis andfound it not as 
ompelling as in previous papers, be
ause other radioa
tive heavy nu
lei had beendis
overed with similar half-lives. Also, for the �rst time 
learly, they stressed that the half-life ofthe powering nu
leus need not be dire
tly mat
hed by the half-life of the SN light 
urve.Colgate (see for example Colgate et al. 1961 [21℄), Arnett (1966 [3℄), and Truran (1966 [90℄)started a long series of quantitative studies of spheri
al sho
ks running in stellar envelopes, theasso
iated nu
leosynthesis, and how their energy output 
ould mat
h the observed SN mass eje
tionand light 
urves. An important advan
e 
ame after Colgate and White (1966) realized that theB2FH paradigm of thermonu
lear explosion indu
ed by 
ollapse of the 
ore in massive stars doesnot work, be
ause the 
ollapse a
tually starts a rarefa
tion wave at the inner part of the mantle thatquen
hes thermonu
lear rea
tions. What they found, in turn, was that the dynami
al implosionof the evolved 
ore was so violent that a vast amount of energy, many times greater than thethermonu
lear one, was available just from the deepening of the gravitational potential well. Thisenergy was transferred to the mantle via the emission and deposition of neutrinos. This was thebirth of the �prompt sho
k� model for 
ore-
ollapse SN explosions.Truran, Arnett and Cameron (1967 [91℄) studied the pro
ess of Si burning. Afterward, Truranhimself suggested Colgate to 
onsider the 
onsequen
es of Si burning in his model light 
urve
al
ulations. Colgate and M
Kee (1969 [23℄) presented the �rst numeri
al results where theoreti
allight 
urves are a reasonable mat
h to observations. The importan
e of the α-parti
le isotope 56Ni,whi
h de
ays into 56Co with a half-life of 6.1 d, and then into 56Fe, with a half-life of 77.12 d, hadbeen found. This was 
on
eptually very important to make astronomers realize that essentially thefull display of Type I SNe was due to radioa
tive de
ay, and not just the exponential tail.Finzi and Wolf (1967 [28℄), pi
ked up the thermonu
lear runaway in degenerate matter proposed5
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by Hoyle and Fowler (1960 [43℄). They fo
used on massive white dwarfs as likely 
andidates for a
atastrophi
 
hange that would trigger the explosion, thought of those SNe that have been observedin ellipti
al galaxies, where star formation ended more than 1010 years ago, and asked the rightquestion: How 
an a star that rea
hed the white dwarf stage so long ago suddenly be
ome a TypeI SN? They went on trying to answer it assuming that very slow ele
tron 
aptures dynami
ally
hange the dwarf star and trigger 
ollapse, heating, and thermonu
lear runaway. For the pro
ess towork, they had to build white dwarfs of fairly exoti
 
omposition. Hansen and Wheeler (1969 [39℄)took the idea a step further and numeri
ally 
omputed the explosion of a white dwarf of 12C. Theyshowed that the 
ollapse and nu
lear detonation was su�
iently 
atastrophi
 so as to explode thewhole star providing energies and eje
tion velo
ities that mat
hed the observations. Wheeler andHansen (1971 [94℄) expanded the 
al
ulation to 12C and/or 16O and 
omputed the nu
leosynthesisprodu
ts. They found that the whole nu
lear fuels were burnt all the way to nu
lear statisti
sequilibrium (i.e. all iron group elements). They also proposed the model of a white dwarf 
lose tothe Chandrasekhar mass a

reting matter from a 
lose binary 
ompanion as a possible s
enario forType I SNe. Truran and Cameron (1971 [92℄) seem to have rea
hed the idea independently, and theywent on to postulate that 4He ignition in the a

reted matter will trigger the 12C runaway inwards,and then the explosion (this is still 
onsidered a possible explosion me
hanism for some Type IaSNe). Arnett (1969 [4℄) also explored numeri
ally the detonation of a 12C white dwarf, or whitedwarf-like 
ore in an intermediate mass star. A well as Hansen and Wheeler in the previous papers,he found that it 
reated too mu
h iron group elements, a fa
t that was probably in
onsistent withthe 
hemi
al history of the Galaxy. He 
on
luded that not many SNe 
ould be of this type. Arnettrealized, however, that the nu
leosynthesis produ
ts were very sensitive to the 
riti
al density atwhi
h 12C ignites, and stressed that a lower value of this density would help to produ
e elementsbetween 12C and 56Ni, instead of just iron peak ones. Nomoto, Sugimoto and Neo (1976) askedthe 
riti
al question: Who knows that the detonation is a
tually initiated [in a C-O white dwarf℄?They proposed that the thermonu
lear 
ombustion 
ould take the form of a subsoni
 de�agration,develop 
onve
tive instabilities, evolve violently outwards and anyway disrupt the star, withoutever entering the detonation regime. They found that, if the de�agration is slow, the 
ombustionpro
eeds in two phases, the se
ond of whi
h starts when the star has expanded. This se
ond phasetakes pla
e at a lower density and avoids overprodu
tion of the iron peak elements.Regarding the understanding of SN spe
tra, M
Laughlin (1963 [49℄), an expert on Novae, re-visited the spe
tros
opi
 plates of SN 1954A that had been taken at Li
k Observatory and mostlynegle
ted afterward. He was interested by the remark from Wellmann (1955 [93℄) that the SNwas �pe
uliar�, and de
ided to make his own line identi�
ations. After 
arefully looking at all there
orded spe
tra he 
on
luded that they were 
ombined emission and absorption spe
tra. After
oming up with the 
on
ept of absorption-like and emission-like features, he thought that somespe
tra looked similar to those of B stars, with little or no hydrogen. He re
ognized that a 
oupleof absorption-like minima in the blue region, if identi�ed with He I lines, gave 
onsistent velo
ities,and went on to identify many other features all shifted by velo
ities of ∼5000 km s−1, and broad-ened by velo
ities of order 103 km s−1. Minkowski (1963 [52℄), fo
using mostly in the identi�
ationof emission-like features, 
riti
ized the approa
h. Pskovskii (1969 [73℄) re
ognized the value of boththe realization of the dual (absorption and emission) 
hara
ter of the spe
trum by M
Laughlin,and the stress of Minkowski on how un
ertain was the identi�
ation of emission-like features. Herealized that the important issue was that, �nally, absorption lines had a
tually been identi�ed upona 
ontinuum, and applied the idea to the still unknown spe
tra of the normal Type I SNe. He stru
kgold. His paper reveals for the �rst time that Type I SNe display low ex
itation lines of low ionized6
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spe
ies, with no tra
e of light elements. He �rst 
orre
tly identi�ed the, now, 
hara
teristi
 lines ofSi II, and then went on to �nd Fe II, Mg II, Ca II, and S II. This pattern of lines has hold sin
ethen. His, more doubtful, identi�
ation of He I, has been superseded. Mustel (1971a [53℄, 1971b[54℄, 1972 [55℄), provided some 
omplementary identi�
ations, and some di�ering interpretation.Bran
h and Pat
hett (1973 [14℄) settled the issue in a very elegant way, developing the �rst modernsyntheti
 spe
tra and 
omparing them with the better observed ones.It was in this period, as well, that SNe were �rst identi�ed as valuable light sour
es for 
os-mologi
al estimation of luminosity distan
es. Kowal (1968 [48℄) 
olle
ted the �rst sample of 22well observed Type I SNe with light 
urves in photographi
 magnitudes, found that they had as
atter of ∼0.6 mag at maximum, and proposed a program to �nd SNe in 
lusters of galaxies withthe goal of redu
ing the un
ertainty up to 0.1 or 0.2 magnitudes by averaging many of them. Hepointed out an important fa
t. Type Ia SNe were powerful sour
es of light but of stellar origin.As su
h, they were very probable not subje
t to the strong evolutionary e�e
ts that systemati
allybiases the luminosity distan
es 
omputed using obje
ts that are aggregates of stars. Both galaxiesand 
lusters of galaxies are evolving very fast with time in the region of the Universe available forobservation. But stars have been fairly similar to themselves for thousands of millions of years.He was visionary enough to suggest that when light 
urves for very distant Type I SNe be
ameavailable, they 
ould be used to know not only H0, the Hubble 
onstant, but also �the se
ond-orderterm in the redshift-magnitude relation� (i.e. the de
eleration parameter).By the end of the 70s, the s
enarios to produ
e Type I SN progenitors and explosions werefairly sophisti
ated. The mat
h between theory of spe
tra and observation started to make senseand provided a tension whi
h would not be solved for a few years: Theoreti
al explosions produ
edmainly iron group elements, but the observed spe
tra displayed 56Fe but also appre
iable amounts ofintermediate mass elements, whi
h were not produ
ed by the theoreti
al models. On the other hand,Type I SNe had been identi�ed as remarkable 
andidates for measuring 
osmologi
ally relevantdistan
es, providing a strong in
entive to programs for their sear
h and study. By the end of thede
ade both Colgate (1979 [20℄) and Tammann (1979 [88℄) proposed 
osmology with Type I SN asone of the major s
ien
e drivers for the future Spa
e Teles
ope.2.4 Getting the pi
ture in fo
us: 1980-1993The early eighties witnessed very fast developments in SN s
ien
e. Some were triggered by obser-vations. In 1981 a SN was dis
overed in NGC 4536, it was a Type I event that was followed fromM
Donald Observatory with good wavelength and time sampling up to more than a hundred daysafter maximum light. Large teles
opes and modern ele
troni
 dete
tors were used, whi
h resultedin the best SN spe
tra ever obtained. The data was analyzed by Bran
h et al. (1983 [13℄) who pro-du
ed a paper that set the standard for theorists to 
ompare with. Both spe
tros
opi
 observationsand syntheti
 spe
tra 
on�rmed the pi
ture that the 56Ni →56Co→56Fe was required, and that, inaddition to the radioa
tive Ni, a sizable fra
tion of Si, Ca, Na, S, Mg and O were also eje
ted.The improvements in dete
tor te
hnology 
ontinued to play a role. Elias and 
ollaboratorsstarted a program to follow up SNe in the infrared from Cerro Tololo Inter-Ameri
an Observatory(hereinafter CTIO; Elias et al. 1981 [26℄). By 1985 they had found that the infrared eye saw twodi�erent types of light 
urves among SNe of the type I, where the opti
al view had seen just one.Elias et al (1985 [27℄) 
oined the names �Type Ia� for the more frequent, bluer, and typi
ally brighterSNe and �Type Ib� for the other. Spe
tros
opy at M
Donald Observatory indi
ated that the two
lasses had di�erent spe
tra (Wheeler and Levreault, 1985 [96℄). It took few years to identify strong7
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He I lines in the spe
trum of Type Ib SNe (Harkness et al. 1987 [41℄), and a few more to realizethat there were some pe
uliar Ia spe
tra with neither Si II nor He I lines, making it natural to
reate the Type I
 bin for them. The advan
es in the �eld by the end of the de
ade are reviewedby Wheeler and Harkness (1990 [95℄).The eighties also saw the start of the �rst SN surveys based on automati
 teles
opes with digitaldete
tors. Some of them targeted lo
al SNe and some of them were spe
i�
ally designed to 
ropdistant SN for using as 
osmologi
al proves. Some, in addition, planned an automati
 pipeline ofdata redu
tion and image 
omparison to dete
t SNe 
andidates with minimal human intervention.One of these �rst initiatives was the Berkeley Automated SN Sear
h (BASS, Kare et al. 1981 [45℄).The BASS took many years to �y. Perlmutter (1989 [62℄) reports the status after (almost) the �rstyear of real time automati
 operation. At about the same time the BASS also started to plan anddesign a sear
h for more distant SN to use in 
osmology (Cou
h et al. 1991 [25℄).The �rst group to take the leap, and really go after distant SNe to set 
onstraints on 
osmologywas a Danish group (Hansen et al. 1987 [40℄). The sear
h was based on the 1.5m Danish teles
opeat ESO La Silla, in Chile. It was already a modern sear
h with CCD 
y
li
 imaging, and realtime data analysis in
luding image mat
hing and subtra
tion. Due, mainly, to the small size of thedete
tor, the impossibility of using the R photometri
 passband band due to strong fringing (this
aused by standard interferen
e in the thin sili
on layers of the dete
tors, and was usual in the olderCCDs but greatly improved along the nineties), they dis
overed only one useful SN in two yearsand then dropped the program (Noorgard-Nielsen et al. 1989 [59℄).Looking ba
k at their e�ort is 
lear that they were way ahead of the proper time. But the�nding of SN 1988U at z=0.31 proved that the strategy of multi epo
h imaging and digital image
omparison did lead to dis
over distant SNe. By the early nineties the Berkeley SN team made anagreement to put a large CCD 
amera on the 2.5m Isaa
 Newton Teles
ope in the Canary Islandsin ex
hange for observing time to sear
h for distant SNe. It was this 
ombination that allowedthem to dis
over SN 1992bi at z=0.46, the more distant SN up to that time (Perlmutter et al. 1995[64℄). After that su

ess the group started to 
ompete for time at the run of the mill 4.0m 
lassteles
opes of the world, and �nding distant SN be
ame more usual.Another 
riti
al development of the time was the spread of large CCD dete
tors around tele-s
opes at di�erent observatories. This made it possible to follow up SN even in non photometri

onditions. Sin
e it was typi
al that the parent galaxy and the SN would appear in a �eld togetherwith some Gala
ti
 foreground stars, relative photometry 
ould be done with respe
t to a lo
alstandard sequen
e. By the early nineties, good quality, well sampled, multi
olor light 
urves ofSNe in nearby galaxies started to a

umulate. A 
ompilation by Sandage and Tamman (1993 [83℄)found that the s
attering of the B maximum brightness of SN Ia, treated as if they were standard
andles, around the linear relation implied by the Hubble �ow was 0.51 mag. This was a modestimprovement from the 0.6 mag found by Kowal in 1968, but typi
al of using heterogeneous samplesof Type Ia SN as plain standard 
andles.At about the same time, Mark Phillips, at CTIO was working in a di�erent dire
tion. Pskovskii(1977 [74℄, 1984 [75℄) had proposed to use the rate of de
line after maximum as an additionalelement to 
lassify SNe, of all types, and suggested that there were 
orrelations between the de
linerate and other SN properties. Phillips (1993 [69℄) attempted the same kind of study but now withmodern data and a mu
h 
leaner sample of real Type Ia SNe. He found a strong 
orrelation betweenthe rate of de
ay after maximum light and both the absolute magnitude of SN Ia at maximum, andthe B − V 
olor (an index of the SN temperature). The 
orrelation was strongest in the B band,moderate in V , and minor in R. 8
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This was a very important dis
overy: Type Ia SN were only approximate standard 
andles. Yes,there was a sizable intrinsi
 s
attering of the luminosity at maximum light, but it was possible tore
ognize how far away from the mean value an individual SN was, just from the rate of de
ayafter maximum. As important as this, the same rate of de
line was an indi
ator of the intrinsi

olor of the SN. This made it possible to 
orre
t for the extin
tion of light 
aused by foregroundinterstellar matter in the parent galaxy. Both 
orre
tions have a dire
t impa
t in improving the
hara
ter of Type Ia SNe as 
osmologi
ally relevant distan
e estimators. Phillips (1993 [69℄) was amajor breakthrough.There were also some hits on the theoreti
al side, but the advan
es were limited by 
omputerpower. Nomoto, Thielemann & Yokoi (1984 [57℄) following up the idea of Nomoto, Sugimoto &Neo (1976 [56℄), 
omputed models of 
arbon de�agration supernovae. One of the main problemsthey fa
ed was that the de�agration gives raise to Rayleigh-Taylor instabilities and is, hen
e, amultidimensional pro
ess. For
ed to treat it in one dimension, they simulated the propagationof the 
onve
tive 
arbon de�agration front using a time dependent mixing length theory. Theyhad to assume several numeri
al parameters to a

ommodate the hydrodynami
s, but followedthe nu
leosynthesis in detail. One of the models they 
omputed, W7, was a very good mat
h tothe observations. W7 was a 
omplete su

ess in terms of explosion energeti
, both in the timedependent luminosity output and kineti
 energy transferred to the eje
ta, but also, for the �rsttime in produ
ing the right amounts of intermediate mass elements at the velo
ities seen in theearly time SN spe
tra. In parti
ular, syntheti
 spe
tra 
omputed using the output produ
ed by themodel gave a good �t to the observations, if the outer layers of the SN were mixed during the latestages of the explosion (Bran
h et al. 1985 [12℄, Nomoto en al. 1986 [58℄). The latter was needed,be
ause the intermediate mass elements in the theoreti
al model appeared in a very narrow rangeof velo
ities, smaller than those observed in real SNe. In spite of this problem, W7 set the standardof 
omparison for Type Ia SN models for many years to 
ome. Woosley and Weaver (1986 [99℄)produ
ed a very in�uential review paper on SNe in general, 
entered espe
ially on the physi
s ofexplosion and nu
leosynthesis, whi
h remains a relevant referen
e even today.In addition to the lo
ation of the intermediate mass elements, the de�agration models had otherimportant short
oming: They tended to overprodu
e 54Fe and other neutron ri
h Fe peak isotopes,be
ause the burning matter remains at very high temperatures and densities for too long. Also,upon further study, the need to mix the outer layers to take intermediate mass elements to highervelo
ities be
ame in
reasingly more di�
ult to justify (Sutherland and Wheeler 1984). A plainde�agration explosion model, in addition, seemed too 
onstrained to explain the heterogeneity ofType Ia SNe that was starting to appear with improved observations. Khokhlov (1991a [46℄, 1991b[47℄) fo
used on these problems, and de
ided to test whether reality 
ould be more 
omplex. Herealized that the subsoni
 nature and related time s
ales of the de�agration were long enough to
hange the ba
kground where thermonu
lear burning was taking pla
e, and, hen
e, a detonation waslikely after a period of de�agration. He named the me
hanism delayed detonation and showed thata white dwarfs exploding like that 
ould mat
h the observations better than the plain de�agrationof W7. Later study proved that the 
ombination of pro
esses had another virtue: varying the
riti
al density at whi
h the de�agration turned into a detonation (an unknown external parameterin Khokhlov approa
h), di�erent kinds of Type Ia SNe 
ould be produ
ed mat
hing the diversityof normal, sub-luminous, and luminous events, giving rise to a theoreti
al interpretation of thePhillips (1993) relation (Hö�i
h, Khokhlov & Wheeler, 1993 [42℄).Looking with hindsight, by the end of 1993 the �eld was poised for a breakthrough. Type I SNehad been 
leaned so as to 
learly isolate the Type Ia events. Theory had advan
ed enough to solidify9
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the hypothesis that Ia SNe originate on the thermonu
lear 
ombustion of a Chandrasekhar masswhite dwarf. This gave strong support to the 
on
ept that Ia SNe ought to be very uniform. Realityshowed that, nevertheless, there were sour
es of heterogeneity, but empiri
al study prompted to afeasible path at 
alibrating the di�eren
es. In addition, theory parametrization of the unknown
riti
al density for a de�agration to turn into a detonation, allowed for a qualitative understandingof these di�eren
es, bringing some pie
e of mind to observational 
osmologists who were using theempiri
al relations without fully grasping its meaning. Solid state dete
tors were large enough toallow astronomers do relative photometry between extragala
ti
 SN and foreground gala
ti
 starsin the �eld. This made it possible to do extensive follow up even in non photometri
 
onditions.Finally, the in
ipient and fast improving internet was a development, not fully re
ognized at thetime, whi
h resulted 
riti
al. It allowed astronomers at di�erent observatories and resear
h 
entersin the world to share results, images and information in real time, making it possible to pool humanresour
es, and observational and 
omputing fa
ilities. This was possible with modest budgets andwidespread and heterogeneous funding sour
es. Hen
e, advan
ing a large program of observationand analysis of distant SNe was no longer restri
ted to large and ri
h resear
h groups or labs, whi
h
ould 
ount with all the fa
ilities needed under a 
entralized management, but be
ame within rea
hof more horizontal arrays of resear
hers who 
ould 
oordinate fa
ilities s
attered around the worldto work on the same proje
t.3 A magi
 SN Cosmology lustrum: 1994-1998Some groups of SN studies re
ognized the breakthrough implied by the Phillips (1993 [69℄) result.Important as it was, it was based on a small and heterogeneous sample of SN observed with di�erentteles
opes and instrumental sets. It was 
riti
al then to in
rease the SN sample and, ideally, observethem under more uniform 
onditions. Some surveys were started with the spe
i�
 goal of 
alibratingthe relations of rate of de
line versus magnitude, and 
olor, at maximum light. Among the �rstwere the Calán/Tololo Survey (Hamuy et al. 1993 [35℄), where M. Phillips himself was a key player,and the long standing SN study program by B. Kirshner, students and post-do
s at the Harvard-Smithsonian Center for Astrophysi
s (CFA). Also, several methods to a

omplish the 
alibrationwere developed. Among them, the ∆m15 (Phillips 1993 [69℄, Hamuy et al. 1996 [37℄, Phillips et al.1999 [71℄), and the Multi
olor Light Curve Shape method, by Riess, Press and Kirshner (1995 [81℄,1996 [82℄) at Harvard-CFA.As mentioned earlier, the SCP had started to be e�e
tive at �nding distant SNe. By 1994they reported six SNe dis
overed in approximately six nights of a program 
ombining the 2.5mIsaa
 Newton and the 4.0m KPNO teles
opes (Perlmutter et al. 1994 [63℄). In 1995 (Goobar &Perlmutter, 1995 [33℄), the group presented a detailed a

ount of an elegant method to use theluminosity distan
es measured towards SNe to 
onstrain the 
osmologi
al parameters ΩM and ΩΛ.The method builds 
ontour probability levels 
omparing 
osmologi
al model predi
tions with anobserved Hubble diagram of nearby and distant Type Ia SNe. The paper be
ame a model for themethodology, and most subsequent analysis built up from this study. It showed, however, thatthe group was still not giving serious quantitative 
onsideration to the �Phillips e�e
t,� and to thereddening 
orre
tion of individual SNe.It is my personal view, that it was in part the per
eption of these weaknesses in the analysisplanned by the SCP that motivated, by the end of 1994, Brian S
hmidt, a postdo
toral fellow at theat Harvard-Smithsonian CFA, and Ni
k Suntze�, a senior sta� astronomer at Cerro Tololo Inter-Ameri
an Observatory, to laun
h an independent enterprise to build a sizable sample of distant10
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SNe. The group was 
alled �High Z SN Sear
h Team�, to emphasize a horizontal 
onstituen
y.The main goal of this new group was to observe the SNe in a way that allowed a sine qua nonspe
tros
opi
 
lassi�
ation, a 
areful understanding of the interstellar extin
tion in front of ea
hindividual SN, a pre
ise measurement of the light 
urve shape, and a minimization of the systemati
e�e
ts asso
iated with K-
orre
tions. The �rst teles
ope runs of this team were in Mar
h 1995,when they dis
overed SN 1995K at z=0.478, the re
ord holder of the time (Phillips et al. 1995[68℄). I joined the group in September 1995, when moved to CTIO as a postdo
toral fellow.The years 1996-1997 were thrilling. The SCP and the HZ Team routinely presented proposalsto dis
over and follow up SNe from di�erent teles
opes around the globe, in
luding the HubbleSpa
e Teles
ope. The SCP managed to build what they thought was a small but trustable sampleby mid 1997, when they published the paper Measurement of the Cosmologi
al Parameters Omegaand Lambda from the First Seven Supernovae at z & 0.35 (Perlmutter et al. 1997 [65℄). In thispaper they present the elegant Stret
h Fa
tor Parametrization, and independent way of 
alibratingthe light 
urve width versus luminosity e�e
t found by Phillips in 1993. They, however, 
ould not
orre
t for extin
tion the individual events and some of the SN did not have a 
lear spe
tros
opi

lassi�
ation as �Type Ia�. The results pointed towards a high density universe, where a 
osmologi
al
onstant was ex
luded with high statisti
al signi�
an
e (ΩΛ < 0.51 at the 95% 
on�den
e level fora spatially �at universe).By 1998 the results of the HZ Team started to appear (Garnavi
h et al. 1998a [30℄; Riess etal. 1998 [78℄; S
hmidt et al. 1998 [84℄; Garnavi
h et al. 1998b [31℄) and the times went fromthrilling to he
ti
. The �rst paper was based on a set of four SNe, three of them observed withHST, and was also presented at the January, 1998, meeting of the Ameri
an Astronomi
al So
iety(Garnavi
h et al. 1997 [29℄). It arrived squarely at the opposite 
on
lusion that Perlmutter etal. (1997 [65℄) did: The SN distan
es were more 
onsistent with a low density Universe that willexpand forever. Also by the end of 1997, the SCP was starting to 
hange its view regarding thehigh density Universe. A single SN well observed with HST and added to the sample of seven SNepublished earlier had 
hanged the 
on�den
e levels enough to turn their 
laim into �results [that℄are preliminary eviden
e for a relatively low-mass-density universe� (Perlmutter et al. 1998 [66℄).S
hmidt et al. (1998 [84℄) des
ribes the strategy and analysis method of the HZ Team, and appliesthem, as a test, to SN 1995K. Riess et al. (1998 [78℄) brought the �eld to a 
limax presenting theanalysis of the �rst 16 HZ Team distant SNe, with the unavoidable 
on
lusion that the expansionof the Universe is a

elerating. A paper submitted in September 1998 by the SCP presented theresults based on 42 SNe, and rea
hed essentially the same 
on
lusion (Perlmutter et al. 1999 [67℄),
on�rming �nding of an a

eleration. The �nal work of the year by the HZ Team (Garnavi
h etal. 1998b [31℄) set the �rst 
onstraints on the parameter w in the equation of state of the Universe,based on SN luminosity distan
es.The dis
overy of the Cosmi
 A

eleration made a big impa
t. It was sele
ted as the �S
ien
eBreakthrough of the Year� for 1998 by S
ien
e Magazine (Glanz 1998 [32℄). It later meant animpressive sequen
e of prizes for Perlmutter, Riess and S
hmidt, and, in the 
ase of the 2007Gruber Cosmology Prize, also an expli
it a
knowledgement for the teams. The string of re
ognitions
ulminated in O
tober 2011, with the award of the Nobel Prize in Physi
s to Perlmutter, Riess andS
hmidt.
11
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4 Cosmi
 A

eleration: The SN result4.1 �Theory�Given in the 
ontext of a meeting that dealt mostly with modi�
ations of General Relativity that
ould help to explain perplexing observational results, the following paragraphs seem 
hildren'splay. However, General Relativity is the framework against whi
h the observations of distant SNehave been 
ompared and the parameters that 
ame out of that 
omparison have been the sour
e ofour puzzlement. So, let us be
ome 
hildren again, go ba
k to run-of-the-mill General Relativity andassume, in addition, that the Universe is isotropi
 and homogeneous. With these hypothesis, theluminosity distan
e between us and an obje
t lo
ated at redshift z 
an be written (Carroll, Pressand Turner, 1992 [18℄)
DL =

c(1 + z)

H0

√
|Ωk|

sinn

{√
|Ωk|

∫ z

0

[
(1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ

]−1/2
dz′

}
, (1)where H0 is the Hubble 
onstant, ΩM , ΩΛ, and Ωk are the 
osmologi
al density parameters forgravitating matter (in
luding baryoni
 and dark matter), Cosmologi
al Constant, and 
urvature,respe
tively, measured in terms of the 
riti
al density, and

sinn(x) =




sinhx for Ωk > 0
x for Ωk = 0

sinx for Ωk < 0
(2)It is standard usage in astrophysi
s to express the distan
es as Distan
e Modulus. This is thedi�eren
e between the apparent and absolute magnitudes of a sour
e, related with distan
e by

m − M = 5 log
DL

10
, (3)where DL should be given in parse
s. An advantage of the distan
e modulus is that it is measureddire
tly in magnitudes, so di�eren
es in m − M 
an be dire
tly 
ompared with un
ertainties inastrophysi
al observations and 
alibrations.A rapid analysis of how DL varies with redshift helps to explain the opportunity that the HZTeam founders per
eived after the Phillips (1993 [69℄) result. Figure 1 shows DL for some ofthe di�erent values of the 
osmologi
al parameters Ω that were seriously 
onsidered in the earlynineties, and, in addition, the values of the now 
alled Con
ordan
e Universe. As be
ame usualin the �eld, the upper panel displays the run of DL for di�erent models of the universe, and thelower panel the di�eren
e between a given universe and a referen
e one. Typi
ally the referen
euniverse is the empty, or 
oasting, universe. It is easy to see in the lower panel of the �gure thatthe di�eren
e between models at redshifts of z ∼ 0.5 is several tens of magnitude. So, with adispersion of a ∼ 0.15 mag per SN, a few tens of SNe at this 
riti
al redshift would provide anobservation pre
ise to a few hundredth of a magnitude. This point will permit to dis
riminatebetween di�erent 
osmologi
al models. On the other hand, te
hnology had improved enough by

∼1994 that dis
overing and observing Type Ia SNe at z ∼ 0.5 was no longer the heroi
 enterprisethat Nørgaard-Nielsen et al. (1988 [59℄) had undertaken. The CCDs were larger, more sensitive and,espe
ially, did no have fringing in the red. The latter allowed for a 
lean image subtra
tion at therest-frame blue pass-band at z ∼ 0.5. This allowed for pre
ise photometry at the pass-band wherethe light 
urve shape versus luminosity relation was most sensitive. Finally, the National Opti
al12
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Figure 1: Hubble Diagram of Luminosity distan
es for various models of the Universe, parametrizedby the values of the 
osmologi
al density parameters ΩM , ΩΛ, under the assumption that the
urvature is zero. The upper panel displays the run of DL and the lower the di�eren
e between agiven universe and the empty one. In the upper panel the regions 
onsidered throughout this paperas low and high redshift are indi
ated. The verti
al arrows in the lower panel mark the position ofthe 
riti
al z = 0.5 redshift.
13
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Astronomi
al Observatory IRAF group had started to develop image mat
hing and subtra
tionsoftware by the late eighties, and by the early to mid-nineties working moduli be
ame available asprototype IRAF tasks (Phillips and Davies 1995 [68℄).On the other hand, although there is room to dis
riminate, it is also 
lear from the �gurethat systemati
 e�e
ts that 
hange the individual SN results by tenths of a magnitude shouldnot be missed, espe
ially if those e�e
ts make you prone to Malmquist bias. Phillips (1993 [69℄),Hamuy (1994 [36℄, 1996 [37℄), and Riess, Press and Kirshner (1995 [81℄) had shown that TypeIa SN 
onsidered normal by any standard had di�eren
es in maximum brightness of that order.A magnitude limited sear
h for distant SNe would preferentially dis
over bright events at largedistan
es and more average SNe nearby. The same would happen if 
orre
tions by foregroundreddening, whi
h amounts typi
ally to few tens of a magnitude, were not 
onsidered. Sear
heswill tend to dis
over less extin
ted SNe at large distan
es and more average extin
ted SNe nearby.So, if SNe were treated as standard 
andles and 
orre
tions by light 
urve shape and foregroundextin
tion were not applied, the �nal 
omparison would be made between populations of di�erentintrinsi
 brightness at di�erent redshifts, and the resulting 
osmology would be biased.Finally, equation 1, 3 and Figure 1 allow us to see the key di�eren
e between the experiment ofmeasuring the rate of expansion, H0, and estimating ΩM and ΩΛ. Measuring H0 requires 
alibratingvery pre
isely the absolute magnitude of, in this 
ase, Type Ia. This is, requires pre
ise knowledgeof M . In turn, this 
alls for a

urate measurement of the distan
e, in physi
al units, to manygalaxies that have hosted Type Ia SNe. Estimating the Ω parameters, on the other hand, requiresjust a relative measurement. Variations of M and H0, 
onstants that 
ould be pa
ked together inequation 3, will 
hange the verti
al s
ale of Figure 1, but will not 
hange the relative shape of thedi�erent 
urves. This means that, given the appropriate 
ombinations of teles
opes, dete
tors and
omputers, estimating H0 is a more di�
ult experiment than estimating the Ω parameters.4.2 Observations: High pre
ision, high redshift Hubble DiagramsBy the end of 1997, the group had dis
overed more than 20 transients and 14 of them had beenpositively identi�ed as Type Ia SNe with spe
tra taken from the Ke
k Teles
ope, the MultipleMirror Teles
ope, or the European Southern Observatory 3.6m. This set, whi
h in
luded the fourSNe that were the basis for Garnavi
h et al. (1998a [30℄), was augmented with SNe from the lowredshift sample gathered earlier at the Harvard-CFA (Riess 1996 [77℄; Riess et al. 1999 [79℄), andby some from the Calán�Tololo Survey (Hamuy et al. 1966 [37℄). Between 27 and 34 SNe fromthese samples were used, depending on the 
riteria de�ned to 
onstrain the quality of the light
urves. This small high redshift SN set was enough to 
learly dete
t the Cosmi
 A

eleration (Riesset al. 1998 [78℄). The result was soon 
on�rmed by the long awaited SCP full sample paper in 1999(Perlmutter et al. 1999 [67℄), and by many subsequent papers from both teams.What I will show here are the inferen
es based on the 
ombined sample of distant SNe that theHZ Team 
olle
ted throughout its existen
e (presented in the previously mentioned papers and inTonry et al. 2003 [89℄, Barris et al. 2004 [10℄, and Clo

hiatti et al. 2006 [19℄), and an expandedsample, in
luding very distant SNe, built by Riess et al. 2004 [80℄. Figures 2 and 3 show, 75 nearbyand 45 distant Type Ia SNe, and 78 nearby and 109 distant SNe, respe
tively. The SNe are 
olor
oded a

ording to distan
e and quality of the light 
urves de�ned as in Riess et al ([80℄. Theobserved distan
e moduli are 
ompared with the theoreti
al predi
tions for the same models of theuniverse shown in Figure 1.The simplest way to interpret the observed SN luminosity distan
es in empiri
al terms is to14
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note that, at a redshift of z ∼ 0.5 the points tend to be above the theoreti
al line 
orrespondingto the empty universe. The distan
e moduli m − M observed, in average, tend to be larger thanthose predi
ted, even for a universe that will never de
elerate due to its self gravitational attra
tion.So, SN are further away than expe
ted a

ording with the redshift of their parent galaxies. Thisobserved ex
ess distan
e is interpreted by the models as the e�e
t of an a

eleration that has pushedthe SNe farther away between the time of their explosions at z ∼ 0.5 and the present time at z = 0.Also, it is important to note that, even with the spread of the points, the tenden
y of the SNeis to appear s
attered around the empty universe at low redshift (blue points), then preferentiallyabove the empty universe (red points at z ∼ 0.45 and then preferentially below the empty universe atredshifts z ∼ 1. This behavior reinfor
es the strong signal of a

eleration, and nulli�es explanationsbased on systemati
 e�e
ts that will make distant SNe to appear progressively more distant. Thisapplies to the �gray� dust hypothesis (Aguirre 1999a [1℄, 1999b [2℄), but also to most systemati
e�e
ts, sin
e they will typi
ally show a monotonous trend with redshift.4.3 The best �tting 
osmologyIn the spirit of Gobbar et al. (1995 [33℄) it has be
ome usual to asses the signi�
an
e of the datafor 
osmology by using the Hubble Diagrams to 
ompute probability 
ontours for arbitrary setsof 
osmologi
al parameters. The parti
ular pro
ess I will use is des
ribed in Riess et al. (1998).Basi
ally, a set of Ω parameters, and an H0 are assumed and a, �observed minus expe
ted fromtheory� χ2 value is 
omputed using equation 1. The probability of the resulting χ2 is obtained fromthe χ2 distribution and hipper-volume of χ2 density 
omputed. The volume is then dimensionallyredu
ed by integrating over the �nuisan
e� parameters, of whi
h H0 is an example in this 
ase.Eventually, the volume 
an be proje
ted in two dimensions like in the 
ontour plots shown inFigures 4 and 5.At �rst sight, either 
ontour plot shows that the Hubble Diagrams alone do not impose a severe
onstraints on ΩΛ or ΩM individually, but they 
onstrain the di�eren
e ΩM−ΩΛ rather tightly. Eventhough, either 
ontour level indi
ates with very high 
on�den
e that the Universe has ΩΛ > 0. The�ex
ess distan
e� des
ribed in graphi
al terms by the Hubble Diagrams is quantitatively interpreted,in terms of simple General Relativity, by �tting a signi�
ant ΩΛ.The observational result is more 
ompelling if the 
on�den
e 
ontours from the Hubble Diagramsare 
ombined with those of an independent experiment to 
onstrain either ΩΛ or ΩM . In Figure6, I show the out
ome of this exer
ise assuming as a prior ΩMH0/100 = 0.20 ± 0.02 as found bythe Two Degree Field (2dF) Redshift Survey (Per
ival et al. 2001 [61℄). Just this two experimentspoint strongly to the parameters ΩM ∼ 0.3 and ΩΛ ∼ 0.7 whi
h, together with ΩK = 0 and yourfavorite pres
ription for the baryoni
 matter density, have been lately known as the �Con
ordan
eUniverse.�5 Is it ΩΛ or a more general Dark Energy?5.1 The �Se
ond Generation� SurveysThe su

ess at dete
ting and measuring the Cosmologi
al Constant using high pre
ision HubbleDiagrams of distant Type Ia SNe prompted astrophysi
ists to go a step further. SNe appear now tobe so pre
ise as distan
e indi
ators that the goal of testing whether ΩΛ is 
onstant, or not, in timeappears to be possible. On the theoreti
al side, many pressing questions are risen by a 
onstant15
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Figure 2: Hubble Diagram of the 45 distant SNe 
olle
ted by the High Z Supernova Sear
h Teambetween 1995 and 2002 (red points), together with 58 SNe from the lo
al sample (blue points).Distan
es for this plot were 
omputed a

ording with the PRES method (Prieto, Rest and Suntze�2003 [72℄), an elegant generalization of the ∆m15 method. The theoreti
al luminosity distan
es foruniverses with di�erent density parameters ΩM , ΩΛ, are also shown, as in Figure 1.
16
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Figure 3: Same as Figure 2, but for the 78 nearby and 109 distant SNe of the sample of Riess at al.2004 [80℄ In this 
ase the distan
e were 
omputed by the method MLCS2k2 (Jha et al. 2007 [44℄).Bla
k symbols indi
ate SNe whi
h do not qualify as "gold" a

ording with the 
riteria of Riess etal. 2004 [80℄.
17
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Figure 4: Joint probability 
ontours for the parameters ΩΛ and ΩM that best �t the Hubblediagram of Figure 2 (distan
es 
alibrated using the PRES method). From larger to smaller, thedrawn 
ontours 
orrespond to 99.5%, 97%, and 68% 
on�den
e, respe
tively.
18
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Figure 5: Joint probability 
ontours for the parameters ΩΛ and ΩM that best �t the Hubblediagram of Figure 3 (distan
es 
alibrated using the MLCS2k2 method). The 
ontours drawn withsolid line in
lude only those SNe that qualify as "gold" a

ording with Riess et al. (2004 [80℄).The dashed 
ontours in
lude "gold" and "silver" SNe. Again, from larger to smaller, the 
ontoursdrawn 
orrespond to 99.5%, 97%, and 68% 
on�den
e, respe
tively.
19
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Figure 6: Joint probability 
ontours for the parameters ΩΛ and ΩM of the �gold� sample of Riesset al. (2004 [80℄) (see previous �gure), but now 
omputed assuming the 2dF prior in ΩM . Asbefore, from larger to smaller, the 
ontours drawn 
orrespond to 99.5%, 97%, and 68% 
on�den
e,respe
tively.
20
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va
uum energy. The more 
ompelling appear to be the problems of s
ale and timing. Carroll(2001 [17℄) presents a detailed review. One of the possible solutions to the problems posed by aCosmologi
al Constant is that the �Dark Energy� is not just a 
onstant, but some other kind of�eld.From the point of view of an observational astrophysi
ist, the experiment starts by parametrizingthe luminosity distan
es in terms of this unknown energy density. It is natural to write the relationbetween pressure and density using the fairly general form of the equation of state that applies to�uids
P = wρ, (4)where P is the pressure, ρ the density, and w a 
onstant. From this form and the energy-momentumequation it is found that ρ evolves with the s
ale fa
tor a of the Universe as
ρ ∝ a−n, (5)where

n = 3(1 + w). (6)In this parametrization, gravitational matter (n = 3) requires w = 0, radiation (n = 4) implies
w = 1/3, and a Cosmologi
al Constant (n = 0), will mean w = −1.Introdu
ing as before the 
osmologi
al density parameters by dividing the density of the di�erent
omponents into the 
riti
al density, the equation 1 
an be expressed as

DL =
c(1 + z)

H0

√
|Ωk|

sinn




√
|Ωk|

∫ z

0

[∑
i

Ωi(1 + z′)ni + Ωk(1 + z′)2

]
−1/2

dz′


 , (7)where the sub index i denotes the di�erent density 
omponents and the sub index k, as before, isreserved for the 
urvature.Equation 7 
an be used in the same way as equation 1 to set up a minimization problem andsimultaneously 
onstrain ΩM and w, instead of ΩM and ΩΛ. I will use the sample of SNe presentedbefore to illustrate the nature of the problem. Figure 7 show the 
on�den
e 
ontours 
omputedwith the �gold� sample of Riess et al. (2004 [80℄) with and without the additional 
onstrain of anindependent measurement of ΩM . A qui
k inspe
tion of the �gure reveals that measuring w is hard.When applied to the problem of ΩΛ, the sample produ
es the results of Figures 5 and 6, whi
happear as a strong signal for the Cosmologi
al Constant with ΩΛ ∼ 0.7. It is tough, however, torea
h any meaningful 
on
lusion about w from the 
ontours of Figure 7: the one sigma un
ertaintyis ∼60%. This kind of 
onstrain is 
onsistent with a very wide range of Dark Energy models.The brute for
e approa
h to improve upon this result is to in
rease the number of good quality SNin the sample, from many tens to a few hundred. By the early 21st Century, two new 
ollaborationsappeared, with ex-members of both the SCP and the High Z SN Sear
h Team rearranged amongthem, and organized new proje
ts to try to answer the more 
omplex question: Is the Cosmi
A

eleration 
aused by a Cosmologi
al Constant or not? The newer proje
ts were named SN Lega
yProje
t (Astier et al. 2006 [5℄) and ESSENCE (Miknaitis et al. 2007 [50℄). Both 
ollaborations havebeen working hard to understand the systemati
 biases, whi
h, with the mu
h in
reased numberof SNe, will be the dominant sour
e of un
ertainty. Interestingly, as the distant SN sample rea
hesthe many hundreds to the thousands, the nearby sample of around a hundred SNe be
omes one ofthe sour
es of systemati
 un
ertainty. Fortunately, too, some 
ollaborations have also appeared toenlarge it (Hamuy et al. 2006 [38℄, Rau et al. 2009 [76℄).21
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Figure 7: Joint probability 
ontours for the parameters w and ΩM for the �gold� sample of Riesset al. (2004). The blue 
ontours whi
h extend below w = −2.5 are 
omputed only with the SNsample. The red ones were 
omputed assuming the 2dF prior in ΩM . As in all 
ases before, fromlarger to smaller, the 
ontours drawn 
orrespond to 99.5%, 97%, and 68% 
on�den
e, respe
tively.
22
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The early results, presented in several additional papers (Wood-Vasey et al. 2007 [98℄, Guy etal. 2010 [34℄, Sullivan et al. 2011 [86℄) have taken the one sigma un
ertainty down to ∼7% andhave been persintetly 
on
luding that w is fully 
onsistent with −1, this is, the plain Cosmologi
alConstant.5.2 Con
lusionShall we 
all the problem solved and 
onvin
e ourselves that the Cosmi
 A

eleration is, really,
aused by a Cosmologi
al Constant? My personal view is that the 
ase for it is strong, but still not
ertain. As shown by the analysis of Miknaitis et al. (2007 [50℄), we have not 
ontrolled yet all thepossible systemati
 un
ertainties down to the very demanding limits required by this experiment.A few years ago we 
onfronted a similar situation when pondering just the existen
e of ΩΛ. Thetheoreti
al expe
tations for it was so enormous that the very low observational limits existing before1998 were taken as a strong indi
ation that ΩΛ = 0. It was mu
h easier to 
ontrive me
hanismsthat will 
ompletely 
an
el it, than imagine ways to make it mu
h smaller than expe
ted, but notzero. Many of us were 
onvin
ed that ΩΛ = 0. Now, the observations indi
ate that w ≃ −1, makingit di�
ult for us to resist the urge to jump at the 
on
lusion that, then, w = −1. We need to payattention to the fa
t that the 
osmi
 a

eleration has fooled us more than on
e in the past, andthat there is still observational room for her to do it again. The task for the observers during thenext �ve to ten years is to develop better instruments, better experiments, and to keep a paranoideye on the sour
es of systemati
 e�e
ts.6 A
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Intrinsically Quantum-Mechanical Gravity and
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Abstract. We propose that gravity be intrinsically quantum-mechanical, so that in the absence of
quantum mechanics the geometry of the universe would be Minkowski. We show that in such a
situation gravity does not require any independent quantization of its own, with it being quantized
simply by virtue of its being coupled to the quantized matter fields that serve as its source. We
show that when the gravitational and matter fields possess an underlying conformal symmetry, the
gravitational field and fermionic matter-field zero-point fluctuations cancel each other identically.
Then, when the fermions acquire mass by a dynamical symmetry breaking procedure that induces
a cosmological constant in such conformal theories, the zero-point fluctuations readjust so as to
cancel the induced cosmological constant identically. The zero-point vacuum problem and the
cosmological constant vacuum problems thus mutually solve each other. We illustrate our ideas in a
completely solvable conformal-invariant model, namely two-dimensional quantum Einstein gravity
coupled to a Nambu-Jona-Lasinio self-consistent fermion.

Keywords: conformal gravity, quantum gravity, cosmological constant problem
PACS: 04.60.-m, 04.50.Kd, 04.90.+e

1. STATEMENT OF THE PROBLEM

Included in the gravitational sources that are commonly used in astrophysics and cos-
mology are some intrinsically quantum-mechanical ones such as the electron Pauli de-
generacy pressure that stabilizes white dwarf stars and the black-body radiation energy
density and pressure that contribute to cosmic expansion. As such, these sources con-
tribute to the matter energy-momentum tensor T µν

M , and thus if the Einstein equations
(1/κ2

4 )G
µν +T µν

M = 0 are to be treated as operator identities, they would require Gµν to
be quantum-mechanical too. But since radiative corrections to quantum Einstein grav-
ity are not renormalizable, by hand one instead posits that the Einstein equations are to
be understood as being of the semi-classical form (1/κ2

4 )G
µν

CL + 〈Q|T
µν

M |Q〉= 0, with a
classical Gµν

CL coupling to a c-number matrix element of T µν

M in the quantum state |Q〉
of interest. However, since the quantum-mechanical T µν

M involves products of fields at
the same point, its matrix elements are not finite, and thus even though gravity couples
to energy and not energy difference, in addition one equally by hand subtracts off the
divergent zero-point vacuum part, to yield

1
κ2

4
Gµν

CL + 〈Q|T
µν

M |Q〉−〈Ω|T
µν

M |Ω〉DIV = 0 (1)
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where |Ω〉 is the matter field vacuum. It is in the generic form (1) (as augmented
by any classical T µν

CL that might also be present) that applications of standard gravity
are conventionally made. Thus, for a generic set of oscillators with Hamiltonian H =
∑(a†a+1/2)h̄ω , in taking one-particle matrix elements in states of the form a†|Ω〉 one
keeps the contribution of the a†ah̄ω term and ignores the h̄ω/2 term. However, even if
one does render the vacuum quantity 〈Ω|T µν

M |Ω〉− 〈Ω|T
µν

M |Ω〉DIV finite this way, the
Lorentz invariance of the vacuum state still permits this quantity be of the form −Λgµν ,
with the theory thus having to possess a cosmological constant Λ associated with the
essentially uncontrollable finite part of 〈Ω|T µν

M |Ω〉. Moreover, as a cooling universe goes
through a cosmological phase transition, not only is an additional, potentially enormous,
contribution to Λ then induced, in addition new zero-point infinities are induced in
〈Q|T µν

M |Q〉 due to mass generation (ω = |k̄| being replaced by ω = (k2 +m2/h̄2)1/2),
with a one-time subtraction term 〈Ω|T µν

M |Ω〉DIV not being able to cancel all infinities
or readily control the finite part of 〈Q|T µν

M |Q〉 − 〈Ω|T
µν

M |Ω〉DIV at temperatures both
above and below the transition temperature. The challenge to standard gravity then is
to naturally recover (1) starting from a fundamental quantum gravitational theory in a
way that would both clarify the nature of the subtraction procedure and naturally lead to
the small value for Λ that the theory phenomenologically requires. Since this challenge
has yet to be met, in this paper we shall propose an alternate approach, one in which
the difficulties associated with (1) are by-passed by not having an equation such as (1)
appear at all.

To achieve this specific objective we will need to be able to construct a quantum
gravitational theory that is consistent and renormalizable, so that we will then be able
to use gravity itself to cancel the matter field zero-point fluctuations. Thus once one
has a consistent quantum gravity theory, one then has controllable gravitational zero-
point fluctuations that are available to effect the needed cancellations. Generically, if we
define the action of the universe to be of the form IUNIV = IGRAV + IM, then on defining
the functional variation of each one of these terms with respect to the metric to be its
associated energy-momentum tensor, stationarity with respect to the metric then yields
the condition

T µν

UNIV = T µν

GRAV +T µν

M = 0. (2)

In theories in which the full gravitational plus matter action is renormalizable, the van-
ishing of the total T µν

UNIV of the universe would survive radiative corrections and serve as
an operator identity. It would thus hold in any state, and immediately lead to vacuum can-
cellation in the form 〈Ω|T µν

GRAV|Ω〉+ 〈Ω|T
µν

M |Ω〉 = 0, with the zero-point contributions
of the gravitational and matter fields identically canceling each other, and with each field
serving to regulate the other’s divergences. Moreover, in the event of a change in vacuum
to some spontaneously broken vacuum |S〉, the stationarity condition would continue to
hold in the form 〈S|T µν

GRAV|S〉+ 〈S|T
µν

M |S〉= 0, and thus while there would now be both
mass generation and cosmological constant generation, all the various zero-point con-
tributions would have to readjust in precisely the manner needed in order to continue
to maintain the overall cancellation. The solution to the cosmological constant problem
then is to treat the cosmological constant term in conjunction with the zero-point fluc-
tuations, and in this paper we will show how this explicitly happens in a very simple
solvable model. To contrast this approach with one based on (1), we see that in (1) the
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zero-point fluctuations are discarded before one even begins to tackle the cosmological
constant problem, while in (2) the zero-point fluctuations play the central role. Finally, if
(2) does hold as an operator identity, then its matrix elements in states with an indefinite
number of gravitational quanta will lead to a macroscopic c-number gravitational theory
that will serve as the associated classical gravity theory, in complete accord with the
way one is able to transit from quantum to classical electrodynamics by taking matrix
elements in states with an indefinite number of photons.

In analyses based on (1), we note that already in flat spacetime the quantity
〈Ω|T µν

M |Ω〉 will possess zero-point contributions while the quantity 〈Ω|T µν

M |Ω〉 −
〈Ω|T µν

M |Ω〉DIV will possess a −Ληµν term where ηµν is the Minkowski metric. With
such vacuum terms occurring even in the absence of gravity, on expanding Gµν

CL as a
power series in Newton’s constant κ2

4 , we see that gravity can only respond to these
vacuum contributions but not control them. Indeed, it is precisely because of issues like
this that the cosmological constant problem has proven to be so hard to solve, with it
being very difficult for gravity to solve a problem that it is not responsible for. Moreover,
if fundamental scalar Higgs fields exist, then T µν

M will even contain a classical piece as
well, to provide yet another term over which gravity would have no control. In order to
give gravity control of the problems that afflict it, we thus propose to put gravity on an
equal footing with matter by expanding the metric not as a power series in the gravita-
tional coupling constant but as a power series in Planck’s constant instead. Additionally,
we propose that in the absence of quantum mechanics there would be no curvature at
all with all the mass and length scales needed to characterize spacetime curvature being
intrinsically quantum-mechanical, so that in the absence of quantum mechanics the
geometry would be Minkowski. Then, with curvature only occuring in the presence of
h̄ there can be no classical contributions to T µν

M , with any mass-generating symmetry
breaking (viz. the mechanism that generates mass and length scales in the first place)
needing to be effected via dynamical fermion condensates rather than by fundamental
Higgs fields. Thus we propose that T µν

M and T µν

GRAV both be intrinsically quantum-
mechanical with neither containing any intrinsic classical contributions whatsoever. As
we will see, this will lead us to a natural resolution of the vacuum energy problem, and
as a bonus we will find that we do not need to quantize gravity independently. Rather,
once T µν

M is quantized, T µν

GRAV will be quantized simply by virtue of its being coupled to
T µν

M in (2). Moreover, with there being no intrinsic classical gravity, one no longer needs
to address the issue of how quantization might affect some given classical gravitational
configuration.

As regards possible theories of quantum gravity that we could consider, we note
that apart from string theory (which we do not consider here), there are three other
known theories with controllable radiative corrections, namely four-dimensional con-
formal gravity with Weyl action IW = −αg

∫
d4x(−g)1/2Cλ µνκCλ µνκ (see e.g. [1]),

its conformal supergravity extension, and Einstein-Hilbert gravity with action IGRAV =
−(1/2κ2

2 )
∫

d2x(−g)1/2Rα
α in two dimensions. Unlike string theory, all of these other

three theories are conventional local field theories, and each one of them is locally con-
formal invariant. Moreover, it will be this very conformal symmetry that will play a
central role in the following, with the vanishing of the trace of the matter field energy-
momentum tensor obliging its various vacuum contributions to have to mutually cancel
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each other identically. Moreover, this same underlying conformal invariance forbids the
presence of any possible fundamental cosmological constant term at the level of the in-
put action or the presence in it of any fundamental double-well Higgs potential with its
tachyonic mass, making conformal invariance at the level of the action an ideal start-
ing point to attack the cosmological constant problem. Now as regards four-dimensional
conformal gravity, it had been thought that because its equations of motion are fourth
order, a quantum gravity theory based on it would not be unitary. However, on explic-
itly constructing the relevant Hilbert space, the theory was found [2, 3, 4, 5] to be free
of both negative norm and negative energy states, and it can thus be recognized as a
viable quantum gravity theory. However, for the purposes of this paper we will only
study the much simpler two-dimensional theory as it is serves to illustrate all of the key
ideas presented here, and report the analog discussion of the fourth-order theory itself in
[4, 5, 6].

2. ZERO-POINT ENERGY DENSITY AND ZERO-POINT
PRESSURE

To illustrate the nature and tensor structure of the vacuum issues that are involved, it is
convenient to first look at the vacuum expectation value of the energy-momentum tensor
T µν

M = ih̄ψ̄γµ∂ νψ of a free fermion of mass m in flat, four-dimensional spacetime. With
kµ = ((k2 +m2/h̄2)1/2, k̄) it evaluates to

〈Ω|T µν

M |Ω〉=−
2h̄

(2π)3

∫
∞

−∞

d3k
kµkν

k0 . (3)

In (3) we recognize a matter-field zero-point energy density ρM = 〈Ω|T 00
M |Ω〉 and a

matter-field zero-point pressure pM = 〈Ω|T 11
M |Ω〉= 〈Ω|T 22

M |Ω〉= 〈Ω|T 33
M |Ω〉, with each

of these quantities being divergent. With its kµkν structure, 〈Ω|T µν

M |Ω〉 has the generic
form of a perfect fluid with a timelike fluid velocity vector U µ = (1,0,0,0), viz.

〈Ω|T µν

M |Ω〉= (ρM + pM)U µUν + pη
µν , ηµν〈Ω|T µν

M |Ω〉= 3pM−ρM. (4)

The presence of the timelike fluid 4-vector in (4) is due to the fact that the integration
in (3) is over on-shell fermion modes, to thus be a three-dimensional integration and
not a four-dimensional one, with the time and space components of kµ being treated
differently.

Even though (3) involves terms that are infinite and thus not well-defined, we note the
generic perfect fluid form given in (4) can be established by integrating over the direction
of the 3-momentum vector k̄ alone, an integration that is completely finite. The perfect
fluid form for (3) can thus be established prior to the subsequent divergent integration
over the magnitude of the momentum, with this latter integration itself not then reducing
the two infinities contained in 〈Ω|T µν

M |Ω〉 to the single one that would be contained in
the pure −Ληµν form associated with a cosmological constant. Even though (3) is not
well-defined, for the purposes of this paper the perfect fluid form given in (4) is a very
convenient way of summarizing the infinities in (3) that need to be cancelled.
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As such, the vacuum value given in (3) does not have the form of a cosmological
constant term, and indeed it could not since when the fermion is massless the trace of
〈Ω|T µν

M |Ω〉 would be zero while the trace of −Ληµν is given by −4Λ. Moreover, since
gravity couples to the full T µν

M and not just to its (0,0) component, it is not sufficient
to only address the vacuum energy density problem, one has to deal with the vacuum
pressure as well. There are thus two vacuum problems that need to be addressed, and not
just one, with the vacuum zero-point fluctuation problem being quite distinct from the
cosmological constant problem itself. Moreover, since it is the hallmark of gravity that
gravity couple to energy density itself and not to energy density difference, one cannot
ignore zero-point infinities or normal-order them away. Rather, one has to explicitly take
them into consideration, and as we shall show below, we will ultimately be able to cancel
them via an analogous zero-point structure that exists in the gravity sector itself.

For the purposes of parameterizing the divergences in (3) so that we can explicitly
identify what it is that we will need to cancel, it is convenient to introduce a non-
covariant momentum cut-off, with ρM and pM then being given by

ρM = − h̄
4π2

(
K4 +

m2K2

h̄2 − m4

4h̄4 ln
(

4h̄2K2

m2

)
+

m4

8h̄4

)
,

pM = − h̄
12π2

(
K4− m2K2

h̄2 +
3m4

4h̄4 ln
(

4h̄2K2

m2

)
− 7m4

8h̄4

)
. (5)

We thus encounter a mass-independent quartic divergence and mass-dependent
quadratic and logarithmic divergences. Hence, mass generation will not merely change
the vacuum energy density and pressure, it will change them by infinite amounts, an
effect that we will take care of below by having the mass generation be associated with
an induced cosmological constant that will equally be divergent.

If one wishes to define the integral in (3) via the use of a set of covariant Pauli-Villars
regulator masses Mi with parameters ηi, the choice 1 + ∑ηi = 0, m2 + ∑ηiM2

i = 0,
m4 +∑ηiM4

i = 0 will not only then lead to finite regulated ρREG and pREG, it will give
them the values

ρREG =−pREG =− h̄
16π2

(
m4lnm2 +∑ηiM4

i lnM2
i
)
. (6)

The regulation procedure will thus make ρREG + pREG be equal to zero, just as re-
quired of a cosmological constant term, with a regulated 〈Ω|T µν

M |Ω〉 then behaving as
−ρREGηµν . Thus we see that it is only the finite part of 〈Ω|T µν

M |Ω〉 that will behave like
a cosmological constant term (though it would be a huge one if (6) is any indicator),
while its infinite part could have a more complicated tensor structure even if the vac-
uum is Lorentz invariant. In general then we have to deal not just with a vacuum energy
density problem, but with a vacuum pressure problem as well. Moreover, while different
choices of energy-momentum tensor can be made that all lead to the same total energy
(such as the canonical one or the Belinfante one for instance), these various choices lead
to differing expressions for the pressure. Thus to correctly define the pressure, one must
define the energy-momentum tensor as the functional variation with respect to the metric
of a general-coordinate invariant action, just as in (2).
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As we see from the structure of (5), in a massless theory there will only be a quar-
tically divergent term. We can cancel this term by having some additional quartic di-
vergence with the opposite sign. Moreover, this is precisely how supersymmetry does
the cancellation because the vacuum energy densities of fermionic and bosonic fields
have opposite signs. However, for this cancellation mechanism to be maintained follow-
ing mass generation, the fermions and their bosonic superpartners would need to acquire
degenerate masses (which experimentally we know not to be the case), since there would
otherwise be uncanceled quadratic and logarithmic divergences. And even if these un-
canceled terms are to be associated with the cut-off scale of some low energy effective
theory, they would still make a huge contribution in (1). Thus using either supersymme-
try or regulators as in (6), one can anticipate an eventual huge effective cosmological
constant term, and it has yet to be shown that this is not in fact the case in theories based
on (1).

One remaining option is to cancel the quartic divergences of the massless fermionic
theory by conformal symmetry instead, and here the needed bosonic contribution would
come from the gravitational sector as per (2) rather than (1). Moreover, as we show
below, this particular cancellation mechanism will not be destroyed by mass generation.
However, if we try to regulate the fermion vacuum energy as in (6), while such regulators
would not violate Lorentz invariance, their masses would violate conformal invariance
and lead to conformal anomalies. To avoid any such anomalies we must not introduce
any regulators. Rather, we must have gravity itself do the cancellation just as in (2).
Thus we need to cancel 〈Ω|T µν

M |Ω〉 mode by mode so as to eliminate the need to do any
integration over modes. As we will see, this is precisely what quantizing gravity will
guarantee us, with (2) fixing the normalization of the gravity sector commutators so as
to ensure that the needed cancellations explicitly occur mode by mode. Moreover, in the
absence of anomalies, in the following we will be able to maintain the tracelessness of
both the matter and the gravitational energy-momentum tensors that is required by their
underlying conformal structure.

3. TWO-DIMENSIONAL QUANTUM EINSTEIN GRAVITY

In analog to (5), for a free massless fermion in a two-dimensional flat spacetime, a
canonical quantization of the form {ψα(x, t),ψ

†
β
(x′, t)}= δ (x−x′)δα,β leads to a perfect

fluid form for 〈Ω|T µν

M |Ω〉 with

ρM = pM =− h̄K2

2π
, (7)

and a two-dimensional trace pM−ρM that vanishes. The task for two-dimensional grav-
ity is thus to cancel this quadratic divergence. Now while the two-dimensional Einstein-
Hilbert action IGRAV = −(1/2κ2

2 )
∫

d2x(−g)1/2Rα
α is conformal invariant (Newton’s

constant κ2
2 being dimensionless in two dimensions), this action has the property that as

a classical action, it is a total divergence in any gravitational path (the two-dimensional
Gauss-Bonnet theorem). Consequently the classical Einstein tensor will vanish identi-
cally for any choice of classical metric gµν(x) whatsoever. Moreover, with the quantum
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theory being given as a path integral over classical gravitational metrics, the path inte-
gral is trivial, and quantum-mechanically there is no gravitational scattering. Thus the
classical theory does not exist, and quantum radiative corrections do not exist either.

Despite these concerns, they do not mean that the quantum theory is completely
empty, since while the path integral gives correlation functions, it does not give the
vacuum energy. Rather, it only gives the normal-ordered finite piece of the vacuum
energy, since the path integral would otherwise not exist. Thus in two-dimensional
quantum Einstein gravity there could still be, and there in fact is, a non-vanishing
vacuum energy. To see how it can arise, we note that in generic relations such as
A∂µB+B∂µA = ∂µ(AB)+ [B,∂µA], because of ordering a function that would be a to-
tal divergence classically need not be one quantum-mechanically. Hence in the pres-
ence of quantum ordering the theory need no longer be completely trivial. To take
ordering into account, we need to specify a choice of ordering, and in order to en-
force symmetry of the Ricci tensor, we once and for all define geometric tensors ac-
cording to the ordering sequencing Rλ µνκ = (1/2)[∂κ∂µgλν − ∂κ∂λ gµν − ∂ν∂µgλκ +

∂ν∂λ gµκ)+gησ (Γ
η

νλ
Γσ

µκ−Γ
η

κλ
Γσ

µν ], Γα
µκ =(1/2)gαβ (∂µgβκ +∂κgβ µ−∂β gµκ), Rµκ =

(1/2)[gνλ Rλ µνκ +gνλ Rλκνµ ], Rα
α = gµκRµκ , and Gµκ = Rµκ − (1/2)gµκRα

α .
If we perturb to second order around flat spacetime according to gµν = ηµν + hµν ,

gµν = ηµν−hµν +hµ

σ hσν , then we find that the first order Gµν(1) vanishes identically
(as it of course must since there is no ordering issue in first order and Gµν already
vanishes classically). However, for our choice of ordering, in second order we obtain

G00(2) =
1
8
[∂0h00,2∂1h01−∂0h11]+

1
8
[∂1h11,2∂0h01−∂1h00] = G11(2),

G01(2) =
1
8
[∂1h00,2∂1h01−∂0h00]+

1
8
[∂0h11,2∂0h01−∂1h11], (8)

with the two-dimensional Gµν(2) automatically being traceless, just as it should be in a
conformal theory. As we thus see, the quantum Gµν(2) is given by a set of commutator
terms, terms that would vanish classically but not quantum-mechanically, to thus make
the quantum theory non-trivial despite the triviality of the classical theory. Given (8) we
can evaluate the various components of the covariant derivative of Gµν(2), to obtain

∂µGµ

0(2) =
1
4
[∇2h00,∂1h01]−

1
4
[∇2h01,∂1h11]−

1
8
[∂0∂1(h00 +h11),∂1h]

− 1
4
[∂0∂1h01,∂0h]+

1
4
[∂ 2

1 h01,∂1h]+
1
8
[∇2h,∂0h00]+

1
8
[∂ 2

0 h00 +∂
2
1 h11,∂0h],

∂µGµ

1(2) =
1
4
[∇2h11,∂0h01]−

1
4
[∇2h01,∂0h00]−

1
8
[∂0∂1(h00 +h11),∂0h]

− 1
4
[∂0∂1h01,∂1h]+

1
4
[∂ 2

0 h01,∂0h]− 1
8
[∇2h,∂1h11]+

1
8
[∂ 2

0 h00 +∂
2
1 h11,∂1h], (9)

where ∇2 =−∂ 2
0 +∂ 2

1 , h = ηµνhµν =−h00+h11. Since Gµν(1) vanishes trivially, there
is no first-order equation of motion that would force ∂µGµν(2) to vanish identically.
Consequently, the Bianchi identity of classical gravity does not automatically have to
hold quantum-mechanically. Nonetheless, because of the matter field wave equation, the
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matter field energy-momentum tensor is covariantly conserved. Thus from the quantum-
mechanical field equation

1
κ2

2
Gµν +T µν

M = 0, (10)

it follows that ∂µGµν(2) does vanish after all. As we thus see, unlike the standard
classical situation, in the quantum theory Gµν(2) is only covariantly conserved on the
stationary path and not on the arbitrary one.

Since T µν

M is of order h̄ in (7), to satisfy (10) to this order we must take hµν to be
of order h1/2, with (10) then fixing the gravitational commutators in Gµν(2) to be of
order h̄. It is thus the quantization of the matter field that forces the quantization of
the gravitational field with Gµν not being able to vanish once T µν

M does not. Through
order h̄ we can take T µν

M to have the value it would have in flat space, with curvature
corrections to it only appearing in higher order in h̄. However, the quantum Gµν is non-
trivial already in order h̄. Finally, with the vanishing of ∂µGµν(2) as now enforced by
the vanishing of ∂µT µν

M (2), from (10) we see that the components of hµν can be taken
to obey

∇
2h00 = 0, ∇

2h01 = 0, ∇
2h11 = 0, h =−h00 +h11 = 0, (11)

to thus obey a massless wave equation after all, with the trace of hµν vanishing just as is
to be expected in a conformal theory.

Given (11), we can expand the quantum fields in a complete basis of plane waves with
kµ = (ωk,k) where ωk = |k|. We thus introduce creation and annihilation operators and
set

h00(x, t) = κ2h̄1/2
∫ dk

(2π)1/2(2ωk)1/2

[
A(k)ei(kx−ωkt)+C(k)e−i(kx−ωkt)

]
= h11(x, t),

h01(x, t) = κ2h̄1/2
∫ dk

(2π)1/2(2ωk)1/2

[
B(k)ei(kx−ωkt)+D(k)e−i(kx−ωkt)

]
. (12)

We now introduce a vacuum for the Hilbert space, and as usual take the two positive
frequency operators A(k) and B(k) to annihilate the right vacuum |Ω〉, and the two
negative frequency operators C(k) and D(k) to annihilate the left vacuum 〈Ω|. In addition
we require that the vacuum expectation values of the commutators [C(k),B(k′)] and
[A(k),D(k′)] be given as

〈Ω|[C(k),B(k′)]|Ω〉=−〈Ω|B(k)C(k)|Ω〉δ (k− k′) =− fBC(k)δ (k− k′),
〈Ω|[A(k),D(k′)]|Ω〉= 〈Ω|A(k)D(k)|Ω〉δ (k− k′) = fAD(k)δ (k− k′). (13)

Finally, with (10) taking the form 〈Ω|G00(2)|Ω〉/κ2
2 = (h̄/8π)

∫
∞

−∞
dkk[ fBC(k) −

fAD(k)] = −ρM, 〈Ω|G01(2)|Ω〉/κ2
2 = (h̄/8π)

∫
∞

−∞
dkωk[ fBC(k)− fAD(k)] = 0, we find

that the c-number functions fBC(k) and fAD(k) have to obey just the one relation

k[ fBC(k)− fAD(k)] = 4ωk = 4|k|. (14)

With this one quantization condition, we achieve our primary purpose of showing how
the quadratically divergent zero-point fluctuations of the gravitational and matter fields
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mutually cancel each other identically, just as desired. Moreover, through its coupling
to the quantized fermionic field the gravitational field commutators are forced to obey
(14), with gravity not needing any independent quantization of its own.

4. MASS GENERATION AND THE COSMOLOGICAL
CONSTANT

For our purposes here we can take the fermionic action to be of the flat spacetime
form IM = −

∫
d2x[ih̄ψ̄γµ∂µψ − (g/2)(ψ̄ψ)2]. With the four-Fermi coupling constant

g being dimensionless in two dimensions, IM is conformal invariant. Consequently, as
well as being covariantly conserved, its energy-momentum tensor T µν

M = ih̄ψ̄γµ∂ νψ−
ηµν(g/2)[ψ̄ψ]2 is traceless in solutions to the equation of motion. In the Nambu-Jona-
Lasinio mean-field, Hartree-Fock approximation one looks for self-consistent, trans-
lation invariant states |S〉 in which 〈S|ψ̄ψ|S〉 = 〈S|ψ†γ0ψ|S〉 = im/g and 〈S|(ψ̄ψ −
im/g)2|S〉 = 0. (With our choice of η00 = −1, γ0 is pure imaginary.) In such states
the fermion equation of motion takes the form ih̄γµ∂µψ − imψ = 0 and the mean-field
fermion energy-momentum tensor T µν

MF takes the form

〈S|T µν

MF |S〉= 〈S|ih̄ψ̄γ
µ

∂
ν
ψ|S〉+ m2

2g
η

µν , (15)

with the mean-field approximation preserving tracelessness. In conformal invariant the-
ories then, we see that, just as noted in [1], one can have mass generation without the
trace needing to be non-zero. With the emergence of the (m2/2g)ηµν term in (15), we
see that dynamical mass generation induces a mean-field cosmological constant term
ΛMF =−m2/2g, and that with this ΛMF we can write 〈S|T µν

MF |S〉 as

〈S|T µν

MF |S〉= (ρMF + pMF)U µUν + pMFη
µν −ΛMFη

µν , (16)

where

ρMF = − h̄
2π

[
K2 +

m2

2h̄2 +
m2

2h̄2 ln
(

4h̄2K2

m2

)]
,

pMF = − h̄
2π

[
K2 +

m2

2h̄2 −
m2

2h̄2 ln
(

4h̄2K2

m2

)]
, ΛMF =

m2

4π h̄
ln
(

4h̄2K2

m2

)
, (17)

and where the expression for ΛMF = −m2/2g is recognized as the gap equation m =

2h̄Keπ h̄/g.
In (17) we see that the mass-independent quadratic divergences in ρMF and pMF

have been augmented by mass-dependent logarithmic ones, while the induced ΛMF is
logarithmically divergent (i.e. not finite). However, since 〈S|T µν

MF |S〉 is traceless, the
various terms in (17) obey pMF− ρMF− 2ΛMF = 0, with all the various divergences
canceling each other in the trace, just as noted in [1, 6]. Given this cancellation, we can
now use the trace condition to eliminate ΛMF and rewrite (16) as

〈S|T µν

MF |S〉= (ρMF + pMF)

[
U µUν +

1
2

η
µν

]
, ρMF + pMF =− h̄

π

(
K2 +

m2

2h̄2

)
, (18)
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with the logarithmic divergences associated with the mass-induced readjustment of ρMF
and pMF having disappeared completely. Finally, to cancel the remaining quadratic
divergence and finite part in (18), we proceed just as in the massless fermion case, only
with (14) having to be replaced by

k[ fBC(k)− fAD(k)] = 4
[
(k2 +m2/h̄2)1/2− m2

2h̄2(k2 +m2/h̄2)1/2

]
. (19)

In (19) we note that even though the gravitational field is massless and still obeys (11),
its quantization condition depends on the mass of the fermion, a reflection of the fact
that it is only through the quantization of the fermionic field that the gravitational field
is quantized in the first place.

As such, the above analysis shows how the vacuum contribution to the cosmological
constant is completely taken care of by the zero-point contributions. However, there is
one further concern that still needs to be addressed, as there is a further contribution
to the cosmological constant term matrix element, namely that associated with occupy-
ing not just the vacuum |S〉 but the one-particle excitations as well. In such states |C〉
the quantity im(x)/g = 〈C|ψ̄(x)ψ(x)|C〉 can typically acquire a spacetime dependence.
However, as noted in [4], the spatial dependence will asymptote to the constant vacuum
value while the time dependence will redshift. The cosmological term needed for cos-
mology is thus given not by the vacuum contribution itself but by the spatial departure
from it, i.e. by m2(x)/2g−m2/2g, as redshifted to the current era. Such an effective
cosmological term would not at all be constrained to be as large as the vacuum value,
but its actual value still needs to be determined.
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Towards physical cosmology:
Geometrical interpretation of Dark Energy, Dark Matter and Inflation

without Fundamental Sources
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Abstract. We outline the key–steps towards the construction of a physical, fully relativistic cos-
mology, in which we aim to trace Dark Energy and Dark Matter back to physical properties of
space. The influence of inhomogeneities on the effective evolution history of the Universe is en-
coded in backreaction terms and expressed through spatially averaged geometrical invariants. These
are absent and interpreted as missing dark fundamental sources in the standard model. In the in-
homogeneous case they can be interpreted as energies of an emerging scalar field (the morphon).
These averaged invariants vanish for a homogeneous geometry, where the morphon is in an unstable
equilibrium state. If this state is perturbed, the morphon can act as a classical inflaton in the Early
Universe and its de–balanced energies can mimic the dark sources in the Late Universe, depending
on spatial scale as Dark Energy or as Dark Matter, respectively. We lay down a line of arguments
that is qualitatively conclusive, and we outline open problems of quantitative nature, related to the
interpretation of observations.

Keywords: Inhomogeneous Cosmology, Dark Energy, Dark Matter, Inflation
PACS: 98.80.-k, 98.80.Cq, 95.35.+d, 95.36.+x, 98.80.Es, 98.80.Jk,04.20.-q

GENERAL RELATIVITY AND COSMOLOGY

The foliation issue and the notion of an effective cosmology

The homogeneous–isotropic standard model of cosmology, being itself a particular
solution of Einstein’s general theory of relativity, does by far not exploit the degrees
of freedom inherent in the geometry as a dynamical variable. It is this richer tone of
general relativity – as compared to the Newtonian theory – that opens the possibility
to generalize cosmological models, notably by including inhomogeneous structure also
in the geometrical variables. There are several guidelines to be emphasized in such a
generalization: firstly, a cosmology is thought of as an evolving space section that im-
plies the need to speak of a foliated space time, introducing four degrees of freedom
(the lapse and shift functions in an ADM setting). This necessarily implies, on general
grounds, a breaking of four–dimensional covariance. This fact should not be confused
with coordinate– or gauge–dependence of the resulting cosmological equations and vari-
ables, however. Secondly, a cosmology purports an effective point of view in the sense
that the evolving spatially inhomogeneous variables are thought of as being “averaged

PyV
Texto escrito a máquina
341



over” in a way that has to be specified. We aim at a description that only implicitly refers
to a metric. However, if a metric is to be specified, a cosmological metric is then to be
considered as an effective, “smoothed out” ortemplate metric, being not necessarily
a solution of the equations of general relativity. Finally, aphysicalcosmology should
be characterized by such an effective evolution model, an effective metric to provide
the distance scale for the interpretation of observations, or alternatively an evolution
model for average characteristics on the light cone, together with a set of initial data.
These latter are to be related to physical properties of fundamental sources, but also to
the geometrical data at some initial time (effective, i.e “averaged” quantities of known
energy sources, intrinsic and extrinsic curvature). This latter clearly emphasizes the ab-
sence of any phenomenological parameters. Those would just parametrize our physical
ignorance. All these points will be made explicit in what follows.

The dark side of the standard model:
postulated sources and proposed solutions

The high level of idealization of the geometrical properties of space in the standard
model leads to the need of postulating sources that would generate “on average” a
strictly, i.e. globally and locally, homogeneous geometry. It is here where a considerable
price has to be paid for a model geometry that obviously is not enough to meet physical
reality, unless we really believe that we can find the missing sources: 96 percent of
the energy content is missing in the form of a) a postulated source acting attractive like
matter, so–called Dark Matter (∼= 23 percent) and b) a postulated source acting repulsive,
so–called Dark Energy (∼= 73 percent). Evidence for the former does indeed come from
various scales (galaxy halos, clusters and cosmological, see e.g. [63]), while evidence
for the latter only comes from the apparent magnitude of distant supernovae (see [42,
35, 30] for the latest data) that, if interpreted within standard model distances, would
need an accelerating model. In the simplest case this volume acceration is achieved
by a homogeneous–isotropic cosmology with a cosmological constant. It should be
emphasized that when we speak of evidence, we already approach this evidence with
model priors [36, 68, 70]. Keeping this idealization for the geometry of the cosmological
model for example, one has to conjecture fundamental fields in proportion to the missing
dark components on cosmological scales. The search for these fields is one major
research direction in modern cosmology.

Another huge effort is directed towards a generalization of the underlying theory of
gravitation. While this would generalize the geometry of the model, it is not clear why all
these efforts go into a generalization of general relativity and not into the generalization
of the cosmological model within general relativity. There are certainly good lines of
arguments and various motivations in particle physics and quantum gravity to go beyond
the theory of Einstein (for reviews see [25], [66]), but the “dark problem” may be first a
classical one.

Looking at generalizations of the standard modelwithin general relativity can be
identified as a third research direction to which we dedicate our attention here. In light
of current efforts it is to be considered conservative, since it does not postulate new
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fundamental fields and it does not abandon a well–tested theoryof gravitation [13],
[56], [39] (for reviews on the physical basis of this third approach see [8, 18] and
[57]). Among the works in this latter field, research that analyzes spherically symmetric
exact solutions has been meanwhile developed to some depth, and has determined the
constraints, necessary to explain Dark Energy, on a postulated observer’s position within
a large–scale void (see [29, 4, 22, 3] and references therein).

Fictitious and physical backgrounds

Perhaps a reason for not questioning the standard model geometry within general
relativity and to go for the search for fundamental fields or for generalizations of the
laws of gravitation is the following belief: effectively, i.e. “on average”, the model
geometry has to behomogeneous, since structures should be “averaged over”. Then,
due to observational facts on large scales (the high degree of isotropy of the Cosmic
Microwave Background, if the dipole is completely eliminated due to our proper motion
with respect to an idealized exactly isotropic light sphere), and first principle priors (the
strong cosmological principlethat requires the universe model to look the same in all
directions), the model geometry is taken to belocally isotropic.

Taking this reasoning at face value we must note two points: the notions of homo-
geneity and isotropy in the standard model are both too strong to be realistic: firstly,
local isotropy implies a model that is locally and globally homogeneous, i.e. despite
the conjecture that the homogeneous model describes the inhomogeneous Universe “on
average”, thisstrict homogeneitydoes not account for the fact that any averaging pro-
cedure, in one way or another, would introduce ascale–dependenceof the averaged
(homogeneous) variables [28]. This scale–dependence, inherent in any physical aver-
ages, is suppressed. Even if a largescale of homogeneityexists (we may call thisweak
homogeneity principle), the model is in general scale–dependent on scales below this
homogeneity scale [69]. The same is true for isotropy: while the averaged model may
be highly isotropic on large scales, a realistic distribution on smaller scales is certainly
not (we may call thisweak isotropy principle). Correspondingly, aweak cosmological
principle would be enough to cover the reality needs while still facing observational
evidence on large scales.

We may summarize the above thoughts by noting that, on large scales,
a homogeneous–(almost)isotropicstate does not necessarily correspond to a
homogeneous–(almost)isotropicsolution of Einstein’s equations. These former states
are the averages over fluctuating fields and it is only to be expected that the state
coincides with a strictly homogeneous solution in the case of absence of fluctuations. In
other words, looking at fluctuations first requires to establish the average distribution.
Only then the notion of abackgroundmakes physical sense [41]. Current cosmological
structure formation models, perturbation theories or N–body simulations, are con-
structed such that the average vanishes on the background of a homogeneous–isotropic
solution[7]. A such chosen reference background may be afictitious background, since
it arises by construction rather than derivation. On the contrary, aphysical background
is one that corresponds to the average (whose technical implementation has to be
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specified, and which is nontrivial if tensorial quantities like the geometry have to be
“averaged”). A sound implementation of a physical background will be a statistical
background where not only solutions but ensembles of solutions are averaged. Having
specified such an averaging procedure, a physical cosmological model may then be
defined as an evolution model for the average distribution. Despite these remarks it is
of course possible that the homogeneous solution forms at the same time the average. A
well–known example is Newtonian cosmology [7]. It is also conceivable that the homo-
geneous solution provides, in some spatial and temporal regimes, a good approximation
for the average. Still, it is important to consider perturbations on the correct background
solution [40].

SCALAR FIELD MODELS AND THE MORPHON

Effective evolution of inhomogeneous universe models

Taking the point of view of generalizing the cosmological model within general rela-
tivity by abandoning the strong cosmological principle (strict homogeneity and isotropy
on all scales) and replacing it by the weak cosmological principle (existence of a homo-
geneity scale and restriction to effective states that are almost isotropic on the scale of
homogeneity) leads us to a “rewriting of the rules” to build the cosmological model. We
shall consider the rules that led to the standard model of cosmology and replace them by
their more general counterparts. It follows a basically similar framework that displays,
however, a signature of inhomogeneity through the occurence of so–called backreaction
terms and through a manifest scale–dependency. We shall not introduce new principles
or assumptions, apart from the above outlined relaxation of the cosmological principle.
We shall restrict ourselves to the simplest case of an irrotational dust model (for gen-
eralizations of the dust model [9] with non–constant lapse function see [10], and for
additionally non–vanishing shift see [6, 5, 44, 33]).

• As in the standard model we introduce a foliation of space time into flow–orthogonal
hypersurfaces. We generalize the notion ofFundamental Observersto those that are in
free fall also in the general space time. Although, as in the standard model, this setup
depends on the chosen foliation, we presume that this choice is unique as it prefers
the fundamental observers against observers that may be accelerated with respect to the
hypersurfaces. A general inhomogeneous hypersurface – contrary to the homogeneous
case – will, in this setting, unavoidably run into singularities in the course of evolution.
This is to be expected in a given range of spatial and temporal scales, since we are
treating the matter model asdust. This is not a problem of the chosen foliation, but
a problem of the matter model that has to be generalized, if small–scale structure
formation has to remain regular, and this can be achieved by the inclusion of velocity
dispersion and vorticity.

• As in the standard model we confine ourselves to scalar quantities. We replace, how-
ever, the homogeneous quantities by their spatial averages, e.g. the homogeneous density
ρH(t) is replaced by〈ρ〉

D
(t) for the inhomogeneous densityρ that is volume–averaged

over some compact domainD . We realize the averaging operation by a mass–preserving
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Riemannian volume average. In some mathematical disciplinesand in statistical aver-
ages at one instant of time, it may be more convenient to introduce a volume–preserving
averager, but thinking of an averaging domain that is as large as the homogeneity scale
we have to preserve mass rather than volume. Furthermore, the average is performed
with respect to the above–definedFundamental Observers. Spatially averaging a scalar
Ψ(t,Xi), as a function of Gaussian coordinatesXi and a synchronizing timet, is defined
as:

〈Ψ(t,Xi)〉D :=
1

VD

∫
D

Ψ(t,Xi) dµg , (1)

with the Riemannian volume elementdµg :=
√

gd3X, g := det(gi j ), and the volume of
an arbitrary compact domain,VD(t) :=

∫
D

√
gd3X. Note that within a more general setup

that includes lapse and shift functions, we would have to consider the question whether
the locally lapsed time is replaced by a global “averaged time” that would involve an
average over the lapse function. Here, the dust cosmology is already synchronous, so that
this question does not arise. Note furthermore, that the building of averages is done in
the inhomogeneous geometry. The averages functionally depend on the inhomogeneous
metric, but this latter needs not to be specified. We may talk of a kinematical averaging
that does not deform the geometry, i.e. that does not change the physical properties of
the inhomogeneous space time. For other strategies, see [28], and references therein, as
well as Section IV.

• We generalize the kinematical laws of the standard model a) for the volume expansion
(the Hamiltonian constraint in the ADM formulation of general relativity) and b) for the
volume acceleration (Raychaudhuri’s equation in the ADM formulation of general rela-
tivity) by dropping the symmetry assumption of local isotropy. The general equations are
then volume–averaged, leading to the following general volume expansion and volume
acceleration laws (for a volume scale factor, defined byaD (t) := (VD(t)/VD(ti))

1/3; the
overdot denotes partial time–derivative, which is the covariant time–derivative here) [9]:

3
äD

aD

=−4πG〈ρ〉
D

+QD +Λ ; 3H2
D +

3kD

a2
D

= 8πG〈ρ〉
D
−

1
2
WD −

1
2

QD +Λ , (2)

whereHD denotes the domain dependent Hubble rateHD = ȧD/aD = −1/3〈K〉
D

,
K is the trace of the extrinsic curvature of the embedding of the hypersurfaces into
the space time,Ki j , and Λ the cosmological constant. Thekinematical backreaction
QD is composed of averaged extrinsic curvature invariants, whileWD is an averaged
intrinsic curvature invariant that describes the deviation of the average of the full (three–
dimensional) Ricci scalar curvatureR from a constant–curvature model,

QD :=
〈

K2−K i
jK

j
i

〉
D
−

2
3
〈K〉2

D
; WD := 〈R〉

D
−

6kD

a2
D

. (3)

The kinematical backreactionQD can also be expressed in terms of kinematical in-
variants, where the extrinsic curvature is interpreted actively in terms of (minus) the
expansion tensor:

QD :=
2
3

(〈
θ2〉

D
−〈θ〉2

D

)
−2

〈
σ2〉

D
, (4)
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whereθ is the local expansion rate andσ2 := 1/2σi j σ i j is the squared rate of shear. Note
thatHD is now defined asHD = 1/3〈θ〉

D
. QD appears as a competition term between

the averaged variance of the local expansion rates,
〈
θ2

〉
D
− 〈θ〉2

D
, and the averaged

square of the shear scalar
〈
σ2

〉
D

on the domain under consideration.
For a homogeneous domain the above backreaction termsQD andWD , being co-

variantly defined and gauge invariants in a perturbation theory on a homogeneous back-
ground solution, are zero. They encode the departure from homogeneity in a coordinate–
independent way [46, 33].

The integrability conditions connecting the two Eqs. (2), assuring that the expansion
law is the integral of the acceleration law, read:

〈ρ 〉̇+3HD 〈ρ〉
D

= 0 ; a−2
D

(a2
DWD )̇ + a−6

D
(a6

D
QD )̇ = 0 . (5)

While the mass conservation law for the dust is sufficient in the homogeneous case, there
is a further equation connecting averaged intrinsic and extrinsic curvature invariants
in the inhomogeneous case. The expressions in brackets are conformal invariants (for
further details see [18].

The interpretation of these average equations asgeneralized or evolving backgrounds
[18], [41] implies that the second conservation law describes an interaction between
structure formation and background curvature. In the standard model this latter is absent
and structures evolve independently of the background. This constant–curvature back-
ground furnishes the only solution of (5), in which structure formation decouples from
the background (the expressions in brackets in the second conservation law are sepa-
rately constant). Backreaction on such a fixed background decays in proportion to the
square of the density and is unimportant in the Late Universe [9, 14, 18]. This degenerate
case of a decoupled evolution explains the fact that in Newtonian and quasi–Newtonian
models backreaction has no or little relevance [18]; in the Newtonian case [7], as well as
in Newtonian [11, 38] and spatially flat, relativistic spherically symmetric dust solutions
[52], QD vanishes. In models with homogeneous geometry and with periodic bound-
ary conditions imposed on the inhomogeneities on some scale, the backreaction term is
globally zero and describes cosmic variance of the kinematical properties.

Note here that, in general, a physical background “talks” with the fluctuations, and it
is this coupling that gives rise to an instability of the constant–curvature backgrounds as
we discuss below. The essential effect of backreaction models is not a large magnitude
of QD , but a dynamical coupling of a nonvanishingQD to the averaged scalar curvature
deviationWD . This implies that the temporal behavior of the averaged curvature deviates
from the behavior of a constant–curvature model. In concrete studies, as discussed
further below, this turns out to be the major effect of backreaction, since it does not only
change the kinematical properties of the cosmological model, but also the interpretation
of observational data as we explain in Section IV.
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Scalar field emerging from geometrical inhomogeneities

We rewrite the above set of spatially averaged equations together with their integra-
bility conditions by appealing to the kinematical equations of the standard model, which
will now be sourced by an effective perfect fluid energy–momentum tensor [10]:

3äD

aD
= −4πG(ρD

eff +3pD
eff) + Λ ; (6)

3H2
D
− 3kD

a2
D

= 8πGρD
eff + Λ ; (7)

ρ̇D
eff +3HD

(
ρD

eff + pD
eff

)
= 0 , (8)

where the effective densities are defined as

ρD
eff := 〈ρ〉

D
+ρΦ ; ρΦ := −

1
16πG

QD −
1

16πG
WD ;

pD
eff := pΦ ; pΦ := −

1
16πG

QD +
1

48πG
WD . (9)

In this form the effective equations suggest themselves to interpret the extra fluctuat-
ing sources in terms of a scalar field [15, 16], which refer to the inhomogeneities in
geometrical variables. Thus, we choose to consider the averaged model as a (scale–
dependent) “standard model” with matter source evolving in amean fieldof backreaction
terms. This scalar field we call themorphon field, since it captures the morphological
(integral–geometrical [18]) signature of structure. (Note that in more general cases, in-
volving lapse and shift functions, the structure of the scalar field theory suggested by the
equations may no longer be a minimally coupled one.) We rewrite [16]:

ρD
Φ = ε

1
2

Φ̇2
D +UD ; pD

Φ = ε
1
2

Φ̇2
D −UD , (10)

whereε = +1 for a standard scalar field (with positive kinetic energy), andε = −1
for a phantom scalar field (with negative kinetic energy; ifε is negative, a “ghost” can
formally arise on the level of an effective scalar field, although the underlying theory
does not contain one; note also that there is no violation of energy conditions, since
we have only dust matter). Thus, from the above equations, we obtain the following
correspondence:

−
1

8πG
QD = εΦ̇2

D −UD ; −
1

8πG
WD = 3UD . (11)

The correspondence (11) recasts the integrability conditions (5) into a (scale–dependent)
Klein–Gordon equation forΦD , andΦ̇D 6= 0:

Φ̈D +3HDΦ̇D + ε
∂

∂ΦD

U(ΦD ,〈ρ〉
D

) = 0 . (12)

We appreciate that the deviation of the averaged scalar curvature from a constant–
curvature model is directly proportional to the potential energy density of the scalar

PyV
Texto escrito a máquina
347



field. Averaged universe models obeying this set of equations follow, thus, a Friedman-
nian kinematics with a fundamental matter source, and an effective scalar field source
that reflects the shape of spatial hypersurfaces and the shape of their embedding into
spacetime. Given the potential in terms of variables of the averaged system, the evolu-
tion of these models is fixed (the governing equations are closed). This also potentially
fixes coupling parameters, since all involved fields can be traced back to the initial value
problem of general relativity.

The morphon formulation of the backreaction problem opens a nice interpretation in
terms of energies: a homogeneous model,QD = 0 (a necessary and sufficient condition
to also drop the scale–dependence, if required on every scale), is characterized by the
virial equilibrium condition:

2ED
kin + ED

pot = −
QDVD

8πG
, QD = 0 ; ED

kin = εΦ̇2
DVD , ED

pot = −UDVD . (13)

Deviations from homogeneity,QD 6= 0, thus invoke a non–equilibrium dynamics of the
morphon in its potential that is dictated by the effective intrinsic curvature of the space in
which the fluctuations evolve. Morphon energies are redistributed and can be assigned to
thedark energies. Dependent on the signs of the backreaction terms (and a sign change
may occur by looking at different spatial scales) the morphon can act as a scalar field
model for Dark Matter, a quintessence model forDark Energy, or it can even play
the role of aclassical inflaton, as we exemplify in the following subsection. (For the
different interpretations of scalar fields see the review [25], and for unified views the
selection of papers [1, 55, 67, 64], and for scalar Dark Matter e.g. [49, 2, 50].

Example: morphonic inflation

Consider a tube of space time characterized by a gravitational field with no fundamen-
tal sources. The 4−Ricci curvature tensor vanishes everywhere, but not necessarily the
4−Weyl curvature tensor. Even if this classical vacuum space time is initially foliated
into 3−Ricci flat hypersurfaces, this does not remain so in the dynamical evolution: such
an initially prepared homogeneous state is unstable (a fact that we shall explain in the
next section), and these hypersurfaces, if perturbed, will necessarily develop into inho-
mogeneous hypersurfaces featuring non–vanishing averaged curvature invariants, i.e. an
intrinsic, on average negative curvature, and a compensating extrinsic curvature due to
the embedding of the hypersurfaces into the Ricci–flat space time. Thus, in this picture,
the space section will develop a morphonic scalar field that is driven by a Klein–Gordon
dynamics and specified by the initial value of its self–interaction potential. While this
instability is dynamical, the picture reminds us of the behavior of a fundamental inflaton,
where the instability is created by an externally added potential.

We specify initial data according to the analogy of the backreaction variables to the
morphon field (Qi

D
≡ QD(ti);Wi

D
≡WD(ti)):

U i
D ≡−

1
24πG

Wi
D ; Φ̇i

D ≡

√
−Qi

D

8πGε
+U i

D
; Φi

D ≡ ΦD(ti) . (14)
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Homog. + Curv.

Expansion + Curv.

L type

FD

UD
GL

FIGURE 1. The Ginzburg–Landau potential in arbitrary units and the possible initial conditions as
well as their physical meaning. All conditions possess some curvatureWi

D
< 0. The arrows schematically

indicate the amplitude of the morphon’s initial speedΦ̇i
D

. In the order of the points (from left to right):
the first two points dominated by shear fluctuations (red, green) are obtained forQi

D
< 0 ⇔ Φ̇i 2

D
>

2(H i 2
D

+ ki
D

); the next points dominated by expansion fluctuations (blue, pink) forΦ̇i 2
D

< 2(H i 2
D

+ ki
D

),
where the de Sitter–Λ equivalent case has a stiff morphonΦ̇i

D
= 0; the homogeneous case (last point,

orange) is obtained foṙΦi 2
D

= 2(H i 2
D

+ki
D

). Figure from [20].

Interestingly, for a homogeneous initial state,QD(ti) = 0, the kinetic energy density of
the morphon field is initially non–vanishing, and the Klein–Gordon dynamics drives
the morphon into a stable fix point, an (assumed) existing minimum of the potential.
However, the outcome does not depend much on the initial data forQD : we could also
start with inhomogeneous initial data, e.g. a cosmological constant that is mimicked by
a particular morphon, in which case the initial kinetic energy density is zero. Curvature
energy is thus converted into kinetic energy, driving the system into an accelerated
expansion phase. The value of the potential is necessarily always positive, since the
vacuum 3−space has negative intrinsic curvature. The inflationary mechanism is thus
the same as the mechanism to create an accelerated expansion in a Quintessence phase.

We realize the inflationary scenario [20] by closing the set of averaged equations with
a potential of the generic Ginzburg–Landau form:

UGL
D

= U0
(
Φ2

D −Φ2
0

)2
/Φ4

0 . (15)

The position of the minimumΦ0 and the amplitudeU0 play different roles: the first one
fixes the duration of inflation, while the second sets the size of the Hubble radius at
which it happens. This potential has been extensively studied in the context of chaotic
inflation [48]. The various initial conditions together with their interpretation in terms
of geometrical properties of space are shown in Figure 1.

Combining this purely morphonic picture of inflation created from the Einstein vac-
uum with a fundamental scalar field, we can establish hybrid inflationary models with
two scalar fields, one of them being the morphon that is always present in the case of
inhomogeneous universe models.
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GLOBAL GRAVITATIONAL INSTABILITY OF THE STANDARD
MODEL BACKGROUND

The phase space of exact background states

The space of possible states of an averaged cosmological model, or the space
of “generalized backgrounds” has one dimension more than the space of possible
homogeneous–isotropic solutions in the standard model framework. This can be seen by
introducing adimensional “cosmological parameters”. We divide the volume–averaged
expansion law by the squaredvolume Hubble functional HD := ȧD/aD introduced
before. Then, the expansion law can be expressed as a sum of adimensional average
characteristics:

ΩD
m + ΩD

Λ + ΩD
k + ΩD

W + ΩD
Q = 1 , (16)

with:

ΩD
m := 8πG

3H2
D

〈ρ〉D ; ΩD
Λ := Λ

3H2
D

; ΩD
k := −

kDi
a2
D

H2
D

;

ΩD
W := − WD

6H2
D

; ΩD
Q := − QD

6H2
D

. (17)

Taking for simplicity the constant–curvature parameter and the curvature deviation into a
single full curvature parameter,ΩD

k +ΩD
W =: ΩD

R , the generalized model offers acosmic
quartetof parameters. Furthermore, if we putΛ = 0, the expansion law defines, for each
scale, a two–dimensional phase space of states. A one–dimensional subset of this phase
space is formed by “backgrounds” with Friedmannian kinematics (see Figure 2).

We can analyze the fix points and their stability properties in the general dynamical
system [16], [65]. The principal outcome of this study is that the standard zero–curvature
model forms asaddle point; of particular interest are two instability sectors for the
standard model, regarded as averaged state: firstly, perturbed homogeneous states are
driven into a sector of highly isotropic, negative curvature and accelerated expanding
“backgrounds” where backreaction thus mimics Dark Energy behavior over the domain
D ; secondly, perturbed homogeneous states are driven into a sector of highly anisotropic,
positive curvature, collapsing and decelerated “backgrounds” where backreaction thus
mimics Dark Matter behavior over the domainD . Concrete models show that the former
happens on large scales, and the latter on the scales of galaxy surveys, and also on
smaller scales. Thus, qualitatively, the instability sectors identified comply with the aim
to trace the dark components back to physical properties, but they also agree with the
expected properties of the structure: isotropic, accelerating states on large scales, and
highly anisotropic structures on the filamentary distribution of superclusters. Moreover,
the curvature properties also meet the expectations: on large scales the Universe is void–
dominated and, hence, dominated by negative curvature, while on intermediate scales
over–densities are abundant and are characterized by positive curvature.
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FIGURE 2. Left: “Cosmic phase space” of the solutions of the averaged equations (“generalized
backgrounds”) in a plane spanned by the volume deceleration parameterqD :=−äD/(aDH2

D
) = 1/2ΩD

m +

2ΩD
Q −ΩD

Λ and the matter density parameter [16]. It represents a two–dimensional subspace{ Λ = 0 }
of the full solution space that would include a cosmological constant. The segments are separated by
particular exact scaling solutions of the full problem. We identify the following scaling solutions: all
the scaling solutions are represented by straight lines passing through the Einstein–de Sitter model in the
center of the diagram (1/2;1). Models with “Friedmannian” kinematics, but with renormalized parameters
form the liner = 1/3 (for details see [16], Appendix A). The liner = 0 are models with no backreaction
on which the parameterΩD

k varies (scale–dependent “Friedmannian models”). Below the liner = 0 in
the “quintessence phase” we find effective models with subdominant shear fluctuations (QD positive,
ΩD

Q negative). The liner = −1/3 mimics a “Friedmannian model” with cosmological constant. The line
belowr =−1/3 in the “phantom quintessence phase” represents the solution inferred from SNLS data (cf.
[16]), and the point at (qD ;ΩD

m) = (−1.03;0) locates the late–time attractor associated with this solution.
Since we have no cosmological constant here, all expanding solutions in the subplaneqD < 0 drive the
averaged variables away from the standard model featuring a backreaction–driven volume acceleration of
effectively isotropic cosmologies that are curvature–dominated at late times.
Right: we show the evolution of phase space orbits (running away from the standard model) for a
multiscale model that is explained further below; this model is partitioned into over–denseM (dotted)
and under–denseE (dashed) regions, their volume fraction being derived fromN–body simulations [71].
They are shown here in the same plot for economic reasons and actually live in two different phase spaces
corresponding to large scales for theE –regions and small scales for theM –regions.F denotes one of
the regionsM or E .

Dark Energy and Dark Matter hidden in the geometry of space

The fact that the standard model is globally unstable in the phase space of averaged
states, and the fact that the instability sectors lie in the right corners to explain Dark
Energy and Dark Matter behavior, are both strong qualitative arguments to expect that
the conservative explanation of the dark energies through morphon energies is valuable.
The underlying mechanism is indeed based on the fundamental existence of the relation
between geometrical curvatures and sources dictated by Einstein’s equations.

Whether this mechanism is sufficient in a quantitative sense is to date still an open
issue. The difficulty to construct quantitative models is to be seen in the need for
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non–standard tools, for example perturbation theory on a fixedreference background
should be replaced by a fluctuation theory on evolving backgrounds that captures the
average over the fluctuations. The question whether perturbations are small can only
be answered if we know with respect to which background they are small. Furthermore,
since backreaction affects the geometry, it will change the interpretation of observational
data, a problem that is intimately related to the generalization of the cosmological model,
and to which we shall come below.

Before, we shall in the next section explain the identified mechanism by discussing
some physical properties of structure formation and its relation to the interpretation of
geometrical curvature invariants and how they mimic the dark sources. We here touch on
a deeper problem: backreaction effects account for both, Dark Energy and Dark Matter,
simultaneously. Whether, on a given domain, or on an ensemble of domains on a given
scale, the morphon mimics Dark Energy or Dark Matter behavior, changes as a function
of time and as a function of scale. Moreover, the small–scale contribution to e.g. a Dark
Matter behavior requires more sophisticated relativistic models than the dust model
used throughout here (e.g. [24], [54]). Considering rotation curves of galaxy halos,
missing gravitational sources in clusters or missing sources on cosmological scales
always needs different modeling strategies. We try in the following to provide a first
step of disentangeling Dark Energy and Dark Matter behavior by explicitly constructing
an effective multiscale cosmological model.

Multiscale cosmology and structure–emerging volume acceleration

Contrary to the standard model, where a homogeneous background is used as a stan-
dard of reference for the expansion history of the Universe, a background constructed
as the average over fluctuating fields introduces a subtle element: while a homogeneous
geometry can be characterized locally, an average is nonlocal, since it is determined by
the inhomogeneities inside, but also outside the averaging domain, reflecting the nonlo-
cal nature of gravitation. Furthermore, an average incorporates correlations of the local
fields. It is this latter which is the key–driver of a repulsiv “effective pressure” that arises
in the averaged models.

This “effective pressure” provides the reason why backreaction can produce a
volume–accelerating component despite the decelerating nature of the general local ac-
celeration law. This can be seen easily by comparing the local and the volume–averaged
Raychaudhuri equation (for vanishing vorticity and pressure that both would also act
accelerating on the local level, but only on small scales):

θ̇ = Λ−4πGρ +2II− I2 ; 〈θ 〉̇ = Λ−4πG〈ρ〉
D

+2〈II 〉
D
−〈I〉2

D
, (18)

where we defined the principal scalar invariants of the expansion tensorΘi j , 2II :=
2/3θ2−2σ2 and I := θ .
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Clearly, by shrinking the domain to a point, both equations agree. However, evaluating
the local and averaged invariants,

2II− I2 = −1
3θ2−2σ2 ;

2〈II〉
D
−〈I〉2

D
= 2

3

〈
(θ −〈θ〉

D
)2

〉
D
−2

〈
(σ −〈σ〉

D
)2

〉
D
− 1

3 〈θ〉
2
D
−2〈σ〉2

D
, (19)

gives rise to two additional, positive–definite fluctuation terms, where that for the aver-
aged expansion variance enters with a positive sign. Thus, the time–derivative of a (on
some spatial domainD) averaged expansion may be positive despite the fact that the
time–derivative of the expansionat all pointsin D is negative.

In concrete models this variance is the source of a possible large–scale volume–
acceleration that would be assigned to Dark Energy in the standard model, while the
averaged shear fluctuations mimic an attractive source that would be missing as Dark
Matter in the standard model on cosmological scales. Both terms are competing in the
kinematical backreactionQD . Since backreaction depends on scale, it may act in both
ways.

We can go one step further and make the scale–dependence explicit by introducing a
union of disjoint over–dense regionsM and a union of disjoint under–dense regionsE ,
which both make up the total (homogeneity–scale) regionD . The averaged equations
can be split accordingly yielding for the kinematical backreaction [17], [71]:

QD = λM QM +(1−λM )QE +6λM (1−λM )(HM −HE )2 , (20)

whereλM := |M |/ |D | denotes the volume–fraction of the over–dense regions com-
pared to the volume of the regionD . In a Gaussian random field this fraction would
be 0,5 and would gradually drop in a typical structure formation scenario that clumps
matter into small volumes and that features voids that gradually dominate the volume in
the course of structure formation.

Ignoring for simplicity the individual backreaction terms on the partitioned domains,
the total backreaction features a positive–definite term that describes the variance be-
tween the different expansion histories of over– and under–dense regions. It is this term
that generates a Dark Energy behavior over the domainD (see also [59] for a model by
Räsänen, and [72, 73, 74, 45] for Wiltshire’s model that is based on this term only, but
includes a phenomenlogical lapse function to account for different histories inM andE

regions that, this latter, we cannot implement in the synchronous foliation of a multiscale
dust model). If we model non–zero individual backreaction terms by an extrapolation of
the leading perturbative mode in second–order perturbation theory [46, 47] that also cor-
responds to the leading order in a Newtonian non–perturbative model [11], then we even
produce a cosmological constant behavior overD , see Figure 3. In other words, the fact
that, physically, over–dense regions tend to be gravitationally bound, i.e. do not partake
significantly in the global expansion, already produces a large–scale “kinematical pres-
sure” as a source of volume acceleration. A homogeneous background simply cannot
account for this difference.
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FIGURE 3. Plot of the evolution ofQD and〈R〉
D

in terms of the global scale factoraD . For compar-
ison a line with a simplea−1

D
–scaling is added, that corresponds to the leading mode in second–order

perturbation theory, and one that is constant.QD and〈R〉
D

are normalized by−6H2
Di

so that the values at

the initial time representΩDi
Q andΩDi

R . We appreciate that the backreaction terms feature an approximate

cosmological constant behavior on the homogeneity scale despite the assumption ofa−1
F

–scaling on the
partitioned domainsF = M ,E . Physically, this result can be attributed to the expansion variance between
the subdomains and, hence, this latter is identified as the key effect to produce a global Dark Energy–like
behavior of the backreaction terms. Figure from [71].

INHOMOGENEOUS AND EFFECTIVE METRICS

Some notes on relativistic perturbation theories

Consider a spatial metric formg with coefficientsgi j in an exact (co–tangential) basis
dXi ⊗ dX j . We can write any metric as a quadratic form of deformation one–forms,
g = δabηa⊗ηb, i.e. in terms of coefficients,gi j = δabηa

iηb
j . Now, such a metric form is

homogeneous, i.e. its Ricci tensor vanishes everywhere, if there exist functionsf a, such
that the one–forms can be written as exact forms,ηa ≡ d f a. In other words, if we can
find a coordinate transformationxi = f a≡i(X j , t) that transforms the Euclidean metric
coefficients in a new basis,dxi ⊗ dx j , δi j dxidxj = δab f a

|i f b
| jdXidX j , with a vertical

slash denoting partial spatial derivative, into the metric coefficientsgi j , then these latter
are just a rewriting of the homogeneous space. Given this remark, any perturbation
theory that features metric forms of the integrable form, does not describe relativistic
inhomogeneities; metric coefficients of the formgi j = δab f a

|i f
b
| j describe Newtonian

(Lagrangian) perturbations on a flat background space. A truely relativistic perturbation
theory deforms the background geometry, in other words, the perturbations live in a
perturbed space, not on a reference background. This remark also shows that relativistic
perturbation terms can never contain full divergences, since this latter needs integrable
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one–form fields.
In light of these introductory remarks, an inhomogeneous relativistic metric produces

curvature that, if volume–averaged on some domain, does not obey a conservation law
(as can be explicitly seen in the coupling equation to the fluctuations (5)) in the sense that
it would always average out to zero; for details on curvature estimates see [17]). This fact
in itself shows the existence of a dynamical evolution of an averaged curvature, as soon
as structures form. On the contrary, standard perturbation theory formulated on a fixed
flat background is constructed such that the averages always vanish on the background,
demonstrating the limited nature of results obtained by standard perturbative arguments.

Another perturbative argument aims to justify the validity of the homogeneous ge-
ometry, even down to the scales of neutron stars [37], since perturbations of the metric
remain small with respect to the flat background. This argument does not contradict the
existence of a large backreaction effect, since these latter depend on first and second
derivatives of the metric [19], [40], [62]. Also, the perturbations are considered on a flat
background that does not interact with structure. As we explained in detail, the pertur-
bations may be small on a different (physical) background, in which case a perturbation
may already live in a background with strong curvature (a zero–order effect). It is there-
fore not fruitful to argue against the relevance of backreaction within standard limited
schemes, but rather an effort to generalize perturbation theory is needed.

Template metrics and effective distances

For the construction of an effective cosmological evolution model, as outlined above,
a metric needs not be specified. The need for the construction of an effective metric in
these models arises, since measured redshifts have to be interpreted in terms of distances
along the light cone. Given an explicit, generic and realistic, inhomogeneous metric, the
need for the construction of effective metrics does not arise. Also, if we succeed to
understand the evolution of light cone averages in relation to distances, then also here
an explicit metric will not be needed [60, 61], [21].

The idea of an effective cosmological metric comes from the “fitting problem”,
that has been particularly emphasized by George Ellis already in the 70’s [26]. The
observation was that an inhomogeneous metric does not average out to a homogeneous
metric that forms a solution of general relativity. Not only the nonlinearity of the theory,
but also simple arguments of a non–commutativity [28] between evolution equations
and the averaging operation, give rise to the need to find a “best–fit”, we may call
it “template” geometry, that inherits homogeneity and (almost–)isotropy on the large
scales and, at the same time, incorporates the inhomogeneous structure “on average”
(see also the early practical implementations of this problem [31, 32], [27], [34]).

For the solution of thefitting problemvarious strategies have been proposed (see [28]
and references therein). One strategy, that allows to explicitly perform a “smoothing”
of an inhomogeneous metric into a constant–curvature metric at one instant of time,
is based on Ricci–flow theory: one notices that a smoothing operation of metrical
properties can be put into practice by arescaling of the metric in the direction of
its Ricci curvature. The scaling equations for realizing this are well–studied, and the
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rescaling flow results in a constant–curvature metric that carries “dressed” cosmological
variables [12], [13]. These incorporate intrinsic curvature backreaction terms describing
the difference to the “bare” cosmological parameters as they are obtained through
kinematical averaging.

Reinterpretation of observational data

The standard method of interpreting observations is to construct the light coneds2 = 0
from the line–elementds2 = −dt2+ghom

i j dXidX j , where the coefficientsghom
i j are given

in the form of a constant–curvature (FLRW) metric, and then to calculate the luminosity
distancedL(z) in this metric for a given observed redshiftz. Assuming this metric for
the inhomogeneous Universe implies the conjecture that the FLRW metric is the correct
“template” of an effective cosmological metric. However, the integrated exact equations
(the integral properties of a general inhomogeneous model) are not compatible with this
metric, simply because the averaged curvature is assumed to be of the form〈R〉

D
=

6ka−2 on all scales. Improving the metric template slightly, by replacing the global
scale factora(t) through the volume–scale factoraD(t) and the integration constant
k through the domain–dependent integration constantkD , renders this metric implicitly
scale–dependent [53]. As we explained, this is not enough since the averaged curvature
couples to the inhomogeneities and in general deviates from thea−2

D
–behavior. What we

can do as a first approximation, and this would render the metric compatible with the
kinematical average properties, is to introduce the exact averaged curvature in place of
the constant curvature in this metric form [43].

The resulting effective space time metric consists of a synchronous foliation of
constant–curvature metrics that are, however, parametrized by the exact integral proper-
ties of the inhomogeneous curvature, thus they “repair” the standard template metric as
for the evolution properties of spatial variables. Such a construction can be motivated by
Ricci–flow smoothing, that guarantees the existence of smoothed–out constant curvature
sections at one instant of time, and by assuming that the intrinsic backreaction terms are
subdominant, so that we can parametrize the metric by “bare” kinematical averages. To
stack these hypersurfaces together introduces, however, an inhomogeneous light cone
structure [51], [58]. Ideally, one would wish to smooth the light cone too, which is also
possible by employing Ricci flow techniques. Improving this first approach to a template
metric is needed and this is work in progress.

The result of employing the improved template metric described above is a change
in the luminosity distance that would alter the interpretation of all observational data
formerly based on FLRW distances. Examples for the multiscale models investigated in
[71] are presented in Figure 4. Although this investigation certainly needs refinement,
we already appreciate a signature of the different curvature evolution that furnishes a
clearcut prediction for future observations (see [43] for details).
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FIGURE 4. Left: Comparison of the luminosity distances of the multiscale models investigated in [71]
and based on the template metric of [43], with the one of a flatΛCDM model withh= 0.7 andΩm = 0.27.
On top a model where we force the volume scale factoraD to follow theΛCDM evolution. Despite this
assumption, the changing curvature affects the luminosity distance. The luminosity distances in these
models show a significant feature at a redshift of around 1, when compared with the best fitΛCDM model,
which may be looked for in the SN data. The curve below is a model witha−1

D
–scaling. For comparison

we also included the luminosity distance of the best fit model of [43]. Because of a different Hubble rate
of h = 0.7854 it lies below the others from the beginning. This model does not significantly show the
distinct feature of the other two models around a redshift of 1, due to the assumption of a single–scale
cosmology.
Right: Values of Clarkson’sC–function [23] for the best fit model of [43] (top), the model where the
scale–factor is forced to follow theΛCDM evolution (middle), and the model witha−1

D
–scaling (bottom).

Recall that, for every Friedmann model,C(z) vanishes exactly on all scales and for all redshifts. For the
inhomogeneous models shown in the plot, this function has a minimum which may serve as observational
evidence for the effective cosmologies, as proposed in [43]. As both multiscale models show, it is not even
necessary to measure derivatives of distance, since the feature is already present in the distance.
Figure from [71].
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Gravitational energy as dark energy:
cosmic structure and apparent acceleration1

David L. Wiltshire

Department of Physics & Astronomy, University of Canterbury, Private Bag 4800,
Christchurch 8140, New Zealand

Abstract. Below scales of about 100h−1Mpc our universe displays a complex inhomogeneous
structure dominated by voids, with clusters of galaxies in sheets and filaments. The coincidence
that cosmic expansion appears to start accelerating at the epoch when such structures form has
prompted a number of researchers to question whether dark energy is a signature of a failure of the
standard cosmology to properly account, on average, for the distribution of matter we observe. Here
I discuss the timescape scenario, in which cosmic acceleration is understood as an apparent effect,
due to gravitational energy gradients that grow when spatial curvature gradients become significant
with the nonlinear growth of cosmic structure. I discuss conceptual issues related to the averaging
problem, and their impact on the calibration of local geometry to the solutions of the volume–
average evolution equations corrected by backreaction, and the question of nonbaryonic dark matter
in the timescape framework. I further discuss recent work on defining observational tests for average
geometric quantities which can distinguish the timescape model from a cosmological constant or
other models of dark energy.

Keywords: dark energy, theoretical cosmology, observational cosmology
PACS: 98.80.-k 98.80.Es 95.36.+x 98.80.Jk

INTRODUCTION

This conference is titled a “Conference on Two Cosmological Models” but I think that
what have been presented are certainly more than two cosmological models. From the
point of view of proponents of the standard cosmology, the conference might seem
to be dealing with too many cosmological models. The fact that there are a lot of
ideas on the table is natural at any point in the history of science when observations
present a fundamental crisis. We have reached such a point, given that our current
standard cosmology only works by invoking unknown sources of “dark energy” and
“dark matter”, which supposedly make up most of the stuff in the universe.

All of the models presented, including the standardΛCDM cosmology, could be said
to be relativistic in the sense that they obey either Einstein’s equations or some extension
of Einstein gravity with a geometric diffeomorphism invariant action. What is at issue,
however, is the manner in which different models seek to explain the observed large scale
structure and motion of objects in the universe. Do we add new fields or modifications to
the gravitational action, whose only influence is on cosmological scales, or do we seek
to find deeper answers in the principles of general relativity?

1 Based on a presentation at theInternational Conference on Two Cosmological Models, Universidad
Iberoamericana, Mexico City, 17-19 November, 2010; to appear in the Proceedings, ed. J. Auping.
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These are questions that Einstein struggled with when he first applied general rel-
ativity to cosmology [1]. He thought of spacetime as being a relational structure, and
therefore the introduction of a cosmological constant – a vacuum energy in the fabric
of space which made no direct connection to inertial properties of matter – was not a
step he took lightly. I will take the viewpoint that rather than adding further epicycles
to the gravitational action, the cosmological observations which we currently interpret
in terms of dark energy are inviting us to think more deeply about the foundations of
general relativity. There are questions in general relativity – relating to coarse–graining,
averaging and the definition of energy in such contexts – which have never been fully
resolved. These are the questions which I believe are of relevance to cosmology.

In this paper I will review the conceptual basis [2, 3, 4] and observational tests
[5] of a cosmology model [2, 6], which represents a new approach to understanding
the phenomenology of dark energy as a consequence of the effect of the growth of
inhomogeneous structures. The basic idea, outlined in a nontechnical manner in ref. [7],
is that as inhomogeneities grow one must consider not only their backreaction on average
cosmic evolution, but also the variance in the geometry as it affects the calibration
of clocks and rulers of ideal observers. Dark energy is then effectively realised as a
misidentification of gravitational energy gradients.

Although the standard Lambda Cold Dark Matter (ΛCDM) model provides a good
fit to many tests, there are tensions between some tests, and also a number of puz-
zles and anomalies. Furthermore, at the present epoch the observed universe is only
statistically homogeneous once one samples on scales of 150–300 Mpc. Below such
scales it displays a web–like structure, dominated in volume by voids. Some 40%–50%
of the volume of the present epoch universe is in voids withδρ/ρ ∼−1 on scales of
30h−1 Mpc [8], whereh is the dimensionless parameter related to the Hubble constant
by H0 = 100hkm sec−1Mpc−1. Once one also accounts for numerous minivoids, and
perhaps also a few larger voids, then it appears that the present epoch universe is void-
dominated. Clusters of galaxies are spread in sheets that surround these voids, and in
thin filaments that thread them.

A number of different approaches have been taken to study inhomogeneous cosmolo-
gies. One large area of research is that of exact solutions of Einstein’s equations (see,
e.g., ref. [9]), and of the Lemaître–Tolman–Bondi [10] (LTB) dust solution in particu-
lar. While one may mimic any luminosity distance relation with LTB models, generally
the inhomogeneities required to match type Ia supernovae (SneIa) data are much larger
than the typical scales of voids described above. Furthermore, one must assume the un-
likely symmetry of a spherically symmetric universe about our point, which violates
the Copernican principle. It is my view that while the LTB solutions are interesting toy
models, one should retain the Copernican principle in a statistical sense, and one should
seriously try to model the universe with those scales of inhomogeneity that we actually
observe.

One particular consequence of a matter distribution that is only statistically homoge-
neous, rather than exactly homogeneous, is that when the Einstein equations are aver-
aged they do not evolve as a smooth Friedmann–Lemaître–Robertson–Walker (FLRW)
geometry. Instead the Friedmann equations are supplemented by additional backreaction
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terms2 [12]. Whether or not one can fully explain the expansion history of the universe as
a consequence of the growth of inhomogeneities and backreaction, without a fluid–like
dark energy, is the subject of ongoing debate [13].

A typical line of reasoning against backreaction is that of a plausibility argument [14]:
if we assumea FLRW geometry with small perturbations, and estimate the magnitude
of the perturbations from the typical rotational and peculiar velocities of galaxies, then
the corrections of inhomogeneities are consistently small. This would be a powerful ar-
gument, were it not for the fact that at the present epoch galaxies are not homogeneously
distributed. The Hubble Deep Field reveals that galaxy clusters were close to being ho-
mogeneous distributed at early epochs, but following the growth voids at redshiftsz<∼ 1
that is no longer the case today. Therefore galaxies cannot be consistently treated as
randomly distributed gas particles on the 30h−1 Mpc scales [8] that dominate present
cosmic structure below the scale of statistical homogeneity.

Over the past few years I have developed a new physical interpretation of cosmolog-
ical solutions within the Buchert averaging scheme [2, 3, 6]. I start by noting that in
the presence of strong spatial curvature gradients, not only should the average evolution
equations be replaced by equations with terms involving backreaction, but the physical
interpretation of average quantities must also account for the differences between the
local geometry and the average geometry. In other words, geometric variance can be just
as important as geometric averaging when it comes to the physical interpretation of the
expansion history of the universe.

I proceed from the fact that structure formation provides a natural division of scales
in the observed universe. As observers in galaxies, we and the objects we observe in
other galaxies are necessarily in bound structures, which formed from density perturba-
tions that were greater than critical density. If we consider the evidence of the large scale
structure surveys on the other hand, then the average location by volume in the present
epoch universe is in a void, which is negatively curved. We can expect systematic differ-
ences in spatial curvature between the average mass environment, in bound structures,
and the volume-average environment, in voids.

Spatial curvature gradients will in general give rise to gravitational energy gradients,
and herein lie the issues which I believe are key to understanding the phenomenon of
dark energy. The definition of gravitational energy in general relativity is notoriously
subtle. This is due to the equivalence principle, which means that we can always get
rid of gravity near a point. As a consequence, the energy, momentum and angular
momentum associated with the gravitational field, which have macroscopic effects on
the relative calibrations of the clocks and rulers of observers, cannot be described by
local quantities encoded in a fluid-like energy-momentum tensor. Instead they are at
bestquasi-local[15]. There is no general agreement on how to deal with quasi-local
gravitational energy. It is my view that since the issue has its origin in the equivalence
principle, we must return to first principles and reconsider the equivalence principle in
the context of cosmological averages.

2 For a general review of averaging and backreaction see, e.g., ref. [11].
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THE COSMOLOGICAL EQUIVALENCE PRINCIPLE

In laying the foundations of general relativity, Einstein sought to refine our physical
understanding of that most central physical concept:inertia. As he stated: “In a con-
sistent theory of relativity there can be be no inertia relatively to ‘space’, but only an
inertia of masses relatively to one another” [1]. This is the general philosophy that un-
derlies Mach’s principle, which strongly guided Einstein. However, the refinement of
the understanding of inertia that Einstein left us with in relation to gravity, the Strong
Equivalence Principle (SEP), only goes part-way in addressing Mach’s principle.

Mach’s principle may be stated [16, 17]:“Local inertial frames (LIFs) are determined
through the distributions of energy and momentum in the universe by some weighted
average of the apparent motions”. The SEP says nothing about the average effect of
gravity, and therefore nothing about the suitable “weighted average of the apparent mo-
tions” of the matter in the universe. Since gravity for ordinary matter fields obeying the
strong energy condition is universally attractive, the spacetime geometry of a universe
containing matter is not stable, but is necessarily dynamically evolving. Therefore, ac-
counting for the average effect of matter to address Mach’s principle means that any
relevant frame in cosmological averages is one in which time symmetries of the Lorentz
group in LIFs are removed.

My proposal for applying the equivalence principle on cosmological scales is to deal
with the average effects of the evolving density by extending the SEP to larger regional
frames while removing the time translation and boost symmetries of the LIF to define a
Cosmological Equivalence Principleas follows [3]:

At any event, always and everywhere, it is possible to choose a suitably defined space-
time neighbourhood, the cosmological inertial frame (CIF), in which average motions
(timelike and null) can be described by geodesics in a geometry that is Minkowski up to
some time-dependent conformal transformation,

ds2
CIF

= a2(η)
[

−dη2+dr2+ r2(dθ2+sin2θ dφ2)
]

. (1)

Since the average geometry is a time–dependent conformal scaling of Minkowski
space, the CEP reduces to the standard SEP ifa(η) is constant, or alternatively over
very short time intervals during which the time variation ofa(η) can be neglected. The
relation to cosmological averages is understood by the fact that (1) is the spatially flat
FLRW metric. In the standard cosmology this is taken to be the geometry of the whole
universe. Here, however, the whole universe is inhomogeneous while its geometry is re-
stricted by the requirement that it is possible to always choose (1) as a regional average.
This would rule out geometries with global anisotropies, such as Bianchi models, while
hopefully leaving enough room to describe an inhomogeneous but statistically homoge-
neous universe like the one we observe.

To understand why an average geometry (1) is a relevant average reference geometry
for the relative calibration of rulers and clocks in the absence of global Killing vectors,
let us construct what I will call thesemi-tethered latticeby the following means. Take a
lattice of observers in Minkowski space, initially moving isotropically away from each
nearest neighbour at uniform initial velocities. The lattice of observers are chosen to be
equidistant along mutual oriented ˆx, ŷ and ẑ axes. Now suppose that the observers are
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each connected to six others by tethers of negligible mass and identical tension along
the mutually oriented spatial axes. The tethers are not fixed but unwind freely from
spools on which an arbitrarily long supply of tether is wound. The tethers initially unreel
at the same uniform rate, representing a “recession velocity”. Each observer carries
synchronised clocks, and at a prearranged local proper time all observers apply brakes
to each spool, the braking mechanisms having been pre-programmed to deliver the same
impulse as a function of local time.

The semi-tethered lattice experiment is directly analogous to the decelerating volume
expansion of (1) due to some average homogeneous matter density, because it maintains
the homogeneity and isotropy of space over a region as large as the lattice. Work is done
in applying the brakes, and energy can be extracted from this – just as kinetic energy
of expansion of the universe is converted to other forms by gravitational collapse. Since
brakes are applied in unison, however, there isno net force on any observer in the lattice,
justifying theinertial frameinterpretation, even though each observer has a nonzero 4-
acceleration with respect to the global Minkowski frame. The braking function may have
an arbitrary time profile; provided it is applied uniformly at every lattice site the clocks
will remain synchronous in the comoving sense, as all observers have undergone the
same relative deceleration.

Whereas the Strong Equivalence Principle leads us to define local inertial frames,
related to each other by local Lorentz transformations acting at a point, the Cosmological
Equivalence Principle refers to acollectivesymmetry of the background. In defining the
averaging region of the CIF we are isolating just that part of the volume expansion which
is regionally homogeneous and isotropic, and which is determined by the regionally
homogeneous part of the background density.

Let us now consider two sets of disjoint semi-tethered lattices, with identical initial
local expansion velocities, in a background static Minkowski space. (See Fig. 1(a).)
Observers in the first congruence apply brakes in unison to decelerate homogeneously
and isotropically at one rate. Observers in the second congruence do so similarly, but at
a different rate. Suppose that when transformed to a global Minkowski frame, with time
t, that at each time step the magnitudes of the 4–decelerations satisfyα1(t)> α2(t) for
the respective congruences. By special relativity, since members of the first congruence
decelerate more than those of the second congruence, at any timet their proper times
satisfyτ1 < τ2. The members of the first congruence age less quickly than members of
the second congruence.

By the CEP, the case of volume expansion of two disjoint regions of different average
density in the actual universe is entirely analogous. The equivalence of the circumstance
rests on the fact that the expansion of the universe was extremely uniform at the time
of last scattering, by the evidence of the CMB. At that epoch all regions had almost
the samedensity – with tiny fluctuations – and the same uniform Hubble flow. At
late epochs, suppose that in the frame of any average cosmological observer there are
expanding regions ofdifferentdensity which have decelerated by different amounts by
a given time,t, according to that observer. Then by the CEP the local proper time of the
comoving observers in the denser region, which has decelerated more, will be less than
that of the equivalent observers in the less dense region which has decelerated less. (See
Fig. 1(b).) Consequently theproper time of the observers in the more dense CIF will be
less than that of those in the less dense CIF, by equivalence of the two situations.
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FIGURE 1. Two equivalent situations:(a) in Minkowski space observers in separate semi–tethered
lattices, initially expanding at the same rate, apply brakes homogeneously and isotropically within their
respective regions but at different rates;(b) in the universe which is close to homogeneous and isotropic at
last-scattering comoving observers in separated regions initially move away from each other isotropically,
but experience different locally homogeneous isotropic decelerations as local density contrasts grow. In
both cases there is a relative deceleration of the observer congruences and those in the region which has
decelerated more will age less.

The fact that a global Minkowski observer does not exist in the second case does not
invalidate the argument. The global Minkowski time is just a coordinate label. In the
cosmological case the only restriction is thatthe expansion of both average congruences
must remain homogeneous and isotropic in local regions of different average densityin
the global averaget =const slice. Provided we can patch the regional frames together
suitably, then if regions in such a sliceare still expandingand have a significant density
contrast we can expect a significant clock rate variance.

This equivalence directly establishes the idea of agravitational energy cost for a
spatial curvature gradient, since the existence of expanding regions of different density
within an averaget =const slice implies a gradient in the average Ricci scalar curvature,
〈R〉, on one hand, while the fact that the local proper time varies on account of the
relative deceleration implies a gradient in gravitational energy on the other.

In the actual universe, the question is: can the effect described above be significant
enough to give a significant variation in the clocks of ideal isotropic observers (those
who see an isotropic mean CMB) in regions of different density, who experience a
relative deceleration of their regional volume expansions? Since we are dealing with
weak fields the relative deceleration of the background is small. Nonetheless even if the
relative deceleration is typically of order 10−10ms−2, cumulatively over the age of the
universe it leads to significant clock rate variances [3], of the order of 38%. Such a large
effect is counterintuitive, as we are used to only considering time dilations due to relative
accelerations within the static potentials of isolated systems. Essentially, we are dealing
with a different physical effect concerning the relative synchronization of clocks in the
absence of global Killing vectors. A small instantaneous relative deceleration can lead to
cumulatively large differences, given one has the lifetime of the universe to play with. As
a consequence the age of the universe itself becomes position–dependent. Since we and
all the objects we observe are necessarily in regions of greater than critical density, on
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account of structure formation we have a mass–biased view of the universe and cannot
directly observe such variations.

In the standard ADM formalism one assumes the existence of a global rest frame
comoving with the dust, and one makes a (3+1)–split of the Einstein equations from
the point of view of fundamental observers who may be either comoving or tilted
with respect to the dust. If the only symmetries that are allowed are diffeomorphisms
of the global metric on one hand, and local Lorentz transformations corresponding to
rotations and boosts on the other, then realistically there is no room within such an
ADM formalism for clock rate variations of the order of magnitude dealt with in the
timescape scenario [18]. However, such criticism overlooks the very real possibility
the rest frame of dust is not globally defined, and furthermore it overlooks the crucial
idea of regional averages introduced by the CEP. In proposing to separate the collective
degree of freedom of the quasi-local regional volume expansion from other gravitational
degrees of freedom, I am suggesting that we must consider average regional symmetries
as a completely new ingredient in addition to the global diffeomorphisms and local
Lorentz transformations with which we are familiar. This is a potential route to dealing
with the unsolved problems of coarse-graining in general relativity.

At the epoch of last scattering dust may certainly be assumed to be atomic. However,
once structures form geodesics cross and at the present epoch dust must be coarse-
grained on at least the scale of galaxies in cosmological modelling. Thus the issue of
the coarse-graining of dust is not merely a matter of choice, but of physical necessity if
one is to consistently think about the interpretation of the Buchert formalism3. Of course,
a detailed mathematical framework4 for this still remains to be given in the timescape
scenario. However, it is my view that mathematics is best guided by physical intuition
rather than the reverse, and consequently my work to date has proceeded from making
a phenomenological ansatz consistent with the CEP, to see whether the idea stands a
chance of working.

THE TIMESCAPE MODEL

I proceed from an ansatz that the variance in gravitational energy is correlated with
the average spatial curvature in such a way as to implicitly solve the Sandage–de Vau-
couleurs paradox that a statistically quiet, broadly isotropic, Hubble flow is observed
deep below the scale of statistical homogeneity. In particular, galaxy peculiar velocities
have a small magnitude with respect to a local regional volume expansion. Expanding
regions of different densities are patched together so that the regionally measured ex-
pansion remains uniform. Such regional expansion refers to the variation of the regional

3 One can apply the Buchert formalism in a different manner – for example, to the problem of prescribed
dust in exact solutions such as the LTB model [19]–[21] on globally well-defined spacelike hypersurfaces,
where one specifically avoids solutions which develop vorticity or singularities. However, it is my view
that to deal with the actual inhomogeneities of the observed universe then the average evolution of the
Einstein equations should be regarded as a statistical description, and I approach the Buchert formalism
in this sense.
4 For one approach to coarse-graining, as opposed to averaging, see ref. [22].
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proper length,ℓr = V 1/3, with respect to proper time of isotropic observers. Although
voids open up faster, so that their proper volume increases more quickly, on account of
gravitational energy gradients the local clocks will also tick faster in a compensating
manner.

In order to deal with dust evolution from the surface of last scattering up to the present
epoch, I assume that dust can be coarse–grained at the 100h−1Mpc scale of statistical
homogeneity over which mass flows can be neglected. The manner in which I interpret
the Buchert formalism is therefore different to that adopted by Buchert [12], who does
not define the scale of coarse-graining of the dust explicitly. Details of the fitting of local
observables to average quantities for solutions to the Buchert equations5 are described in
detail in refs. [2, 6]. Negatively curved voids, and spatially flat expanding wall regions
within which galaxy clusters are located, are combined in a Buchert average

fv(t)+ fw(t) = 1, (2)

where fw(t) = fwiaw
3/ā3 is thewall volume fractionand fv(t) = fviav

3/ā3 is thevoid
volume fraction, V = Viā3 being the present horizon volume, andfwi, fvi andVi initial
values at last scattering. The time parameter,t, is the volume–average time parameter
of the Buchert formalism, but does not coincide with that of local measurements in
galaxies. In trying to fit a FLRW solution to the universe we attempt to match our local
spatially flat wall geometry

ds2
fi =−dτ2+aw

2(τ)
[

dη2
w+η2

wdΩ2] . (3)

to the whole universe, when in reality the calibration of rulers and clocks of ideal
isotropic observers vary with gradients in spatial curvature and gravitational energy. By
conformally matching radial null geodesics with those of the Buchert average solutions,
the geometry (3) may be extended to cosmological scales as the dressed geometry

ds2 =−dτ2+a2(τ)
[

dη̄2+ r2
w(η̄,τ)dΩ2] (4)

wherea= γ̄−1ā, γ̄ = dt
dτ is the relative lapse function6 between wall clocks and volume–

average ones, d̄η = dt/ā = dτ/a, andrw = γ̄ (1− fv)
1/3 fwi

−1/3ηw(η̄,τ), whereηw is
given by integrating dηw = fwi

1/3dη̄/[γ̄ (1− fv)
1/3] along null geodesics.

In addition to the bare cosmological parameters which describe the Buchert equations,
one obtains dressed parameters relative to the geometry (4). For example, the dressed
matter density parameter isΩM = γ̄3Ω̄M, whereΩ̄M = 8πGρ̄

M0
ā3

0/(3H̄2ā3) is the bare

5 The model of Wiegand and Buchert [23], briefly described by Buchert in the present volume [24],
has similarities to the present model but also differs from it in certain key aspects. In particular, (i) the
observational interpretation of the Buchert averages is different; (ii) the walls and voids are taken to have
internal backreaction in the case or refs. [23, 24] but not here; and (iii) the interpretation of the initial wall
and void fractions at last scattering is different. In respect of the last point, since walls and voids do not
exist at the surface of last scattering, I take the view that the vast bulk of the present horizon volume that
averages to critical density givesfwi ≃ 1, while fvi = 1− fwi is the small positive fraction of the present
horizon volume that consists of uncompensated underdense regions at last scattering surface.
6 This is a phenomenological function rather than the lapse function prescribed by the ADM formalism.
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matter density parameter. The dressed parameters take numerical values close to the
ones inferred in standard FLRW models.

Apparent acceleration and Hubble flow variance

The gradient in gravitational energy and cumulative differences of clock rates between
wall observers and volume average ones has important physical consequences. Using
the exact solution obtained in ref. [6], one finds that a volume average observer would
infer an effective deceleration parameter ¯q=− ¨̄a/(H̄2ā) = 2(1− fv)

2/(2+ fv)2, which
is always positive since there is no global acceleration. However, a wall observer infers
a dressed deceleration parameter

q=
−1
H2a

d2a
dτ2 =

−(1− fv)(8 fv3+39fv2−12fv−8)
(

4+ fv+4 fv2
)2 , (5)

where the dressed Hubble parameter is given by

H = a−1 d
dτ a= γ̄H̄ − ˙̄γ = γ̄H̄ − γ̄−1 d

dτ γ̄ . (6)

At early times whenfv → 0 the dressed and bare deceleration parameter both take
the Einstein–de Sitter valueq ≃ q̄ ≃ 1

2. However, unlike the bare parameter which
monotonically decreases to zero, the dressed parameter becomes negative whenfv ≃
0.59 and ¯q → 0− at late times. For the best-fit parameters7 the apparent acceleration
begins at a redshiftz≃ 0.9.

Cosmic acceleration is thus revealed as an apparent effect which arises due to the
cumulative clock rate variance of wall observers relative to volume–average observers.
It becomes significant only when the voids begin to dominate the universe by volume.
Since the epoch of onset of apparent acceleration is directly related to the void fraction,
fv, this solves one cosmic coincidence problem.

In addition to apparent cosmic acceleration, a second important apparent effect will
arise if one considers scales below that of statistical homogeneity. By any one set of
clocks it will appear that voids expand faster than wall regions. Thus a wall observer
will see galaxies on the far side of a dominant void of diameter 30h−1 Mpc recede at a
rate greater than the dressed global averageH0, while galaxies within an ideal wall will
recede at a rate less thanH0. Since the bare Hubble parameterH̄ provides a measure
of the uniform quasi-local flow, it must also be the “local value” within an ideal wall at
any epoch; i.e., eq. (6) gives a measure of the variance in the apparent Hubble flow. The
best-fit parameters [25] give a dressed Hubble constantH0 = 61.7+1.2

−1.1km sec−1Mpc−1,
and a bare Hubble constant̄H0 = 48.2+2.0

−2.4km sec−1Mpc−1. The present epoch variance
is 17–22%.

7 Here I will simply adopt the parameters found in ref. [25] from a fit to the Riess07 gold dataset [26]. A
more recent analysis [27] shows that the best-fit parameters are sensitive to the method of supernova data
reduction, and unknown systematic issues remain to be resolved. The parameters determined from the
Riess07 dataset are in the mid–range of those determined by MLCS methods from larger datasets [27].
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Since voids dominate the universe by volume at the present epoch, any observer in a
galaxy in a typical wall region will measure locally higher values of the Hubble constant,
with peak values of order 72km sec−1Mpc−1 at the 30h−1 Mpc scale of the dominant
voids. Over larger distances, as the line of sight intersects more walls as well as voids, a
radial spherically symmetric average will give an average Hubble constant whose value
decreases from the maximum at the 30h−1 Mpc scale to the dressed global average value,
as the scale of homogeneity is approached at roughly the baryon acoustic oscillation
(BAO) scale of 110h−1Mpc. This predicted effect could account for the Hubble bubble
[28] and more detailed studies of the scale dependence of the local Hubble flow [29].

In fact, the variance of the local Hubble flow below the scale of homogeneity should
correlate strongly to observed structures in a manner which has no equivalent prediction
in FLRW models.

There is already evidence from the study of large–scale bulk flows that apparent
peculiar velocities determined in the FLRW framework have a magnitude in excess of
the expectations of the standardΛCDM model [30, 31]. In the present framework, rather
than having a uniform expansion (with respect to one set of clocks), with respect to
which peculiar velocities are defined, we have variations in the expansion rate in regions
of different density which are expanding but decelerating at different rates. Nonetheless,
given that our location is on the edge of a dominant void and a wall [32] the equivalent
maximum peculiar velocity can be estimated as

vpec = (3
2H̄0−H0)

30
h

Mpc= 510+210
−260km/s (7)

assuming a diameter of 30h−1Mpc for the local dominant void. This rough estimate is
of a magnitude consistent with observation.

FUTURE OBSERVATIONAL TESTS

There are two types of potential cosmological tests that can be developed; those relating
to scales below that of statistical homogeneity as discussed above, and those that relate
to averages on our past light cone on scales much greater than the scale of statistical
homogeneity. The second class of tests includes equivalents to all the standard cosmo-
logical tests of the standard FLRW model with Newtonian perturbations. This second
class of tests can be further divided into tests which just deal with the bulk cosmological
averages (luminosity and angular diameter distances etc), and those that deal with the
variance from the growth of structures (late epoch integrated Sachs–Wolfe effect, cos-
mic shear, redshift space distortions etc). Here I will concentrate solely on the simplest
tests which are directly related to luminosity and angular diameter distance measures.

In the timescape cosmology we have an effective dressed luminosity distance

dL = a0(1+z)rw, (8)

wherea0 = γ̄−1
0

ā0, and

rw = γ̄ (1− fv)
1/3

∫ t0

t

dt ′

γ̄(t ′)(1− fv(t ′))1/3ā(t ′)
. (9)
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FIGURE 2. The effective comoving distanceH0D(z) is plotted for the best-fit timescape (TS) model,
with fv0 = 0.762, (solid line); and for various spatially flatΛCDM models (dashed lines). The parameters
for the dashed lines are (i)ΩM0 = 0.249 (best-fit to WMAP5 only [33]); (ii)ΩM0 = 0.279 (joint best-fit
to SneIa, BAO and WMAP5); (iii)ΩM0 = 0.34 (best-fit to Riess07 SneIa only [26]). Panel(a) shows the
redshift rangez< 6, with an inset forz< 1.5, which is the range tested by current SneIa data. Panel(b)
shows the rangez< 1100 up to the surface of last scattering, tested by WMAP.

We can also define aneffective angular diameter distance, dA, and aneffective comoving
distance, D, to a redshiftz in the standard fashion

dA =
D

1+z
=

dL

(1+z)2 . (10)

A direct method of comparing the distance measures with those of homogeneous
models with dark energy, is to observe that for a standard spatially flat cosmology with
dark energy obeying an equation of statePD = w(z)ρD, the quantity

H0D =

∫ z

0

dz′
√

ΩM0(1+z′)3+ΩD0exp
[

3
∫ z′

0
(1+w(z′′))dz′′

1+z′′

]

, (11)

does not depend on the value of the Hubble constant,H0, but only directly onΩM0 = 1−
ΩD0. Since the best-fit values ofH0 are potentially different for the different scenarios,
a comparison ofH0D curves as a function of redshift for the timescape model versus the
ΛCDM model gives a good indication of where the largest differences can be expected,
independently of the value ofH0. Such a comparison is made in Fig. 2.

We see that as redshift increases the timescape model interpolates betweenΛCDM
models with different values ofΩM0. For redshiftsz<∼ 1.5D

TS
is very close toDΛCDM

for
the parameter values(ΩM0,ΩΛ0) = (0.34,0.66) (model (iii)) which best-fit the Riess07
supernovae (SneIa) data [26] only, by our own analysis. For very large redshifts that
approach the surface of last scattering,z<∼ 1100, on the other hand,D

TS
very closely

matchesDΛCDM
for the parameter values(ΩM0,ΩΛ0)= (0.249,0.751) (model (i)) which

best-fit WMAP5 only [33]. Over redshifts 2<∼ z<∼ 10, at which scales independent tests
are conceivable,D

TS
makes a transition over corresponding curves ofDΛCDM

with
intermediate values of(ΩM0,ΩΛ0). The DΛCDM

curve for joint best-fit parameters to
SneIa, BAO measurements and WMAP5 [33],(ΩM0,ΩΛ0) = (0.279,0.721) is best–
matched over the range 5<∼ z<∼ 6, for example.
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The difference ofD
TS

from any singleDΛCDM
curve is perhaps most pronounced

in the range 2<∼ z<∼ 6, which may be an optimal regime to probe in future experiments.
Gamma–ray bursters (GRBs) now probe distances to redshiftsz<∼ 8.3, and could be very
useful if their properties could be understood to the extent that they might be reliably
used as standard candles. A considerable amount work of work has already been done
on Hubble diagrams for GRBs. (See, e.g., [34].) Much more work is needed to nail
down systematic uncertainties, but GRBs may eventually provide a definitive test in
future. An analysis of the timescape model Hubble diagram using 69 GRBs has just
been performed by Schaefer [35], who finds that the timescape model fits the data better
than the concordanceΛCDM model, but not yet by a huge margin8. As more data is
accumulated, it should become possible to distinguish the models if the issues with the
standardization of GRBs can be ironed out.

The effective “equation of state”

The shape of theH0D curves depicted in Fig. 2 represents the observable quantity
one is actually measuring in tests some researchers loosely refer to as “measuring the
equation of state”. For spatially flat dark energy models, withH0D given by (11), one
finds that the functionw(z) appearing in the fluid equation of statePD =w(z)ρD is related
to the first and second derivatives of (11) by

w(z) =
2
3(1+z)D′−1D′′+1

ΩM0(1+z)3H2
0D′2−1

(12)

where prime denotes a derivative with respect toz. Such a relation can be applied
to observed distance measurements, regardless of whether the underlying cosmology
has dark energy or not. Since it involves first and second derivatives of the observed
quantities, it is actually much more difficult to determine observationally than directly
fitting H0D(z).

The equivalent of the “equation of state”,w(z), for the timescape model is plotted in
Fig. 3. The fact thatw(z) is undefined at a particular redshift and changes sign through
±∞ simply reflects the fact that in (12) we are dividing by a quantity which goes to
zero for the timescape model, even though the underlying curve of Fig. 2 is smooth.
Since one is not dealing with a dark energy fluid in the present case,w(z) simply has no
physical meaning. Nonetheless, phenomenologically the results do agree with the usual
inferences aboutw(z) for fits of standard dark energy cosmologies to SneIa data. For
the canonical model of Fig. 3(a) one finds that the average value ofw(z) ≃ −1 on the
rangez<∼ 0.7, while the average value ofw(z)<−1 if the range of redshifts is extended
to higher values. Thew = −1 “phantom divide” is crossed atz≃ 0.46 for fv0 ≃ 0.76.
One recent study [37] finds mild 95% evidence for an equation of state that crosses the
phantom divide fromw>−1 tow<−1 in the range 0.25< z< 0.75 in accord with the

8 By contrast the conformal gravity model of Mannheim [36] produced a worse fit, while the Chaplyagin
gas fit best only in the limit that its parameters reduce to those of theΛCDM model [35].
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FIGURE 3. The artificial equivalent of an equation of state constructed using the effective comoving
distance (12), plotted for the timescape tracker solution with best-fit valuefv0 = 0.762, and two different
values ofΩM0: (a) the canonical dressed valueΩM0 =

1
2(1− fv0)(2+ fv0) = 0.33; (b) ΩM0 = 0.279.

timescape expectation. By contrast, another study [38] at redshiftsz< 1 draws different
conclusions about dynamical dark energy, but for the given uncertainties inw(z) the data
is consistent with Fig. 2(a) as well as with a cosmological constant [5].

The fact thatw(z) is a different sign to the dark energy case forz> 2 is another way
of viewing our statement above that the redshift range 2<

∼ z<∼ 6 may be optimal for
discriminating model differences.

The H(z) measure

Further observational diagnostics can be devised if the expansion rateH(z) can be
observationally determined as a function of redshift. Recently such a determination of
H(z) at z= 0.24 andz= 0.43 has been made using redshift space distortions of the
BAO scale in theΛCDM model [39]. This technique is of course model dependent, and
the Kaiser effect would have to be re-examined in the timescape model before a direct
comparison of observational results could be made. A model–independent measure of
H(z), the redshift time drift test, is discussed below.

In Fig. 4 we compareH(z)/H0 for the timescape model to spatially flatΛCDM models
with the same parameters chosen in Fig. 2. The most notable feature is that the slope of
H(z)/H0 is less than in theΛCDM case, as is to be expected for a model whose (dressed)
deceleration parameter varies more slowly than forΛCDM.

The Om(z) measure

Recently a number of authors [40, 41, 42] have discussed various roughly equivalent
diagnostics of dark energy. For example, Sahni, Shafieloo and Starobinsky [41], have
proposed a diagnostic function

Om(z) =
[H2(z)

H2
0

−1
]

[

(1+z)3−1
]−1

, (13)
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FIGURE 4. The functionH−1
0

H(z) for the timescape model withfv0 = 0.762 (solid line) is compared

to H−1
0

H(z) for three spatially flatΛCDM models with the same values of(ΩM0,ΩΛ0) as in Fig. 2 (dashed
lines).

on account of the fact that it is equal to the constant present epoch matter den-
sity parameter,ΩM0, at all redshifts for a spatially flat FLRW model with pressure-
less dust and a cosmological constant. However, it is not constant if the cosmolog-
ical constant is replaced by other forms of dark energy. For general FLRW models,

H(z) = [D′(z)]−1
√

1+Ωk0H2
0D2(z), which only involves a single derivatives ofD(z).

Thus the diagnostic (13) is easier to reconstruct observationally than the equation of
state parameter,w(z).
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FIGURE 5. The dark energy diagnosticOm(z) of Sahni, Shafieloo and Starobinsky [41] plotted for the
timescape tracker solution with best-fit valuefv0 = 0.762 (solid line), and 1σ limits (dashed lines) from
ref. [25]: (a) for the redshift range 0< z< 1.6 as shown in ref. [43];(b) for the redshift range 0< z< 6.

The quantityOm(z) is readily calculated for the timescape model, and the result
is displayed in Fig. 5. What is striking about Fig. 5, as compared to the curves for
quintessence and phantom dark energy models as plotted in ref. [41], is that the initial
value

Om(0) = 2
3 H ′

∣

∣

0 =
2(8 f 3

v0−3 f 2
v0+4)(2+ fv0)

(4 f 2
v0+ fv0+4)2 (14)

is substantially larger than in the spatially flat dark energy models. Furthermore, for the
timescape modelOm(z) does not asymptote to the dressed density parameterΩM0 in
any redshift range. For quintessence modelsOm(z) > ΩM0, while for phantom models
Om(z) < ΩM0, and in both casesOm(z) → ΩM0 as z→ ∞. In the timescape model,
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FIGURE 6. (a) The Alcock–Paczýnski test functionf
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= HD/z; and(b) the BAO radial test function

H0DV = H0D f−1/3
AP . In each case the timescape model withfv0 = 0.762 (solid line) is compared to three

spatially flatΛCDM models with the same values of(ΩM0,ΩΛ0) as in Fig. 2 (dashed lines).

Om(z)> ΩM0 ≃ 0.33 forz<∼ 1.7, whileOm(z)< ΩM0 for z>∼ 1.7. It thus behaves more
like a quintessence model for lowz, in accordance with Fig. 3. However, the steeper
slope and the different largez behaviour mean the diagnostic is generally very different
to that of typical dark energy models. For largez, Ω̄M0 < Om(∞)< ΩM0, if fv0 > 0.25.

Interestingly enough, a recent analysis of SneIa, BAO and CMB data [43] for dark
energy models with two different empirical fitting functions forw(z) gives an intercept
Om(0)which is larger than expected for typical quintessence or phantom energy models,
and in the better fit of the two models the intercept (see Fig. 3 of ref. [43])] is close to
the value expected for the timescape model, which is tightly constrained to the range
0.638< Om(0)< 0.646 if fv0 = 0.76+0.12

−0.09.

The Alcock–Paczýnski test and baryon acoustic oscillations

Some time ago Alcock and Paczyński devised a test [44] which relies on comparing
the radial and transverse proper length scales of spherical standard volumes comoving
with the Hubble flow. This test, which determines the function

f
AP

=
1
z

∣

∣

∣

∣

δθ
δz

∣

∣

∣

∣

=
HD

z
, (15)

was originally conceived to distinguish FLRW models with a cosmological constant
from those without aΛ term. The test is free from many evolutionary effects, but relies
on one being able to remove systematic distortions due to peculiar velocities.

Current detections of the BAO scale in galaxy clustering statistics [45, 46] can in
fact be viewed as a variant of the Alcock–Paczyński test, as they make use of both the
transverse and radial dilations of the fiducial comoving BAO scale to present a measure

DV =

[

zD2

H(z)

]1/3

= D f−1/3
AP

. (16)
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In Fig. 6 the Alcock–Paczýnski test function (15) and BAO scale measure (16) of the
timescape model are compared to those of the spatially flatΛCDM model with different
values of (ΩΛ0,ΩΛ0). Over the range of redshiftsz< 1 studied currently with galaxy
clustering statistics, thef

AP
curve distinguishes the timescape model from theΛCDM

models much more strongly than theDV test function. In particular, the timescapef
AP

has a distinctly different shape to that of theΛCDM model, being convex. The primary
reason for use of the integral measure (16) has been a lack of data. Future measurements
with enough data to separate the radial and angular BAO scales are a potentially powerful
way of distinguishing the timescape model fromΛCDM.

Recently Gaztañaga, Cabré and Hui [39] have made the first efforts to separate the
radial and angular BAO scales in different redshift slices. Although they have not yet
published separate values for the radial and angular scales, their results are interesting
when compared to the expectations of the timescape model. Their study yields best-fit
values of the present total matter and baryonic matter density parameters,ΩM0 andΩB0,
which are in tension with WMAP5 parameters fit to theΛCDM model. In particular, the
ratio of nonbaryonic cold dark matter to baryonic matter has a best-fit valueΩC0/ΩB0 =
(ΩM0−ΩB0)/ΩB0 of 3.7 in the 0.15< z< 0.3 sample, 2.6 in the 0.4< z< 0.47 sample,
and 3.6 in the whole sample, as compared to the expected value of 6.1 from WMAP5.
The analysis of the 3–point correlation function yields similar conclusions, with a
best fit [47]ΩM0 = 0.28±0.05, ΩB0 = 0.079±0.025. By comparison, the parameter
fit to the timescape model of ref. [25] yields dressed parametersΩM0 = 0.33+0.11

−0.16,

ΩB0 = 0.080+0.021
−0.013, and a ratioΩC0/ΩB0 = 3.1+2.5

−2.4. Since homogeneous dark energy
models are not generally expected to give rise to a renormalization of the ratio of
nonbaryonic to baryonic matter, this is encouraging for the timescape model.

Test of (in)homogeneity

Recently Clarkson, Bassett and Lu [48] have constructed what they call a “test of the
Copernican principle” based on the observation that for homogeneous, isotropic models
which obey the Friedmann equation, the present epoch curvature parameter, a constant,
may be written as

Ωk0 =
[H(z)D′(z)]2−1

[H0D(z)]2
(17)

for all z, irrespective of the dark energy model or any other model parameters. Conse-
quently, taking a further derivative, the quantity

C (z)≡ 1+H2(DD′′−D′2)+HH ′DD′ (18)

must be zero for all redshifts for any FLRW geometry.
A deviation ofC (z) from zero, or of (17) from a constant value, would therefore mean

that the assumption of homogeneity is violated. Although this only constitutes a test of
the assumption of the Friedmann equation, i.e., of the Cosmological Principle rather
than the broader Copernican Principle adopted in ref. [2], the average inhomogeneity
will give a clear and distinct prediction of a nonzeroC (z) for the timescape model.
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FIGURE 7. Left panel: The (in)homogeneity test functionB(z) = [HD′]2 − 1 is plotted for
the timescape tracker solution with best-fit valuefv0 = 0.762 (solid line), and compared to
the equivalent curvesB = Ωk0(H0D)2 for two different ΛCDM models with small curvature:
(a) ΩM0 = 0.28,ΩΛ0 = 0.71,Ωk0 = 0.01; (b) ΩM0 = 0.28,ΩΛ0 = 0.73,Ωk0 =−0.01.
Right panel: The (in)homogeneity test functionC (z) is plotted for thefv0 = 0.762 tracker solution.

The functions (17) and (18) are computed in ref. [5]. Observationally it is more
feasible to fit (17) which involves one derivative less of redshift. In Fig. 7 we exhibit
bothC (z), and also the functionB(z) = [HD′]2−1 from the numerator of (17) for the
timescape model, as compared to twoΛCDM models with a small amount of spatial
curvature. A spatially flat FLRW model would haveB(z) ≡ 0. In other FLRW cases
B(z) is always a monotonic function whose sign is determined by that ofΩk0. An open
Λ = 0 universe with the sameΩM0 would have a monotonic functionB(z) very much
greater than that of the timescape model.

Time drift of cosmological redshifts

For the purpose of theOm(z) and (in)homogeneity tests considered in the last section,
H(z) must be observationally determined, and this is difficult to achieve in a model-
independent way. There is one way of achieving this, however, namely by measuring the
time variation of the redshifts of different sources over a sufficiently long time interval
[49], as has been discussed recently by Uzan, Clarkson and Ellis [50]. Although the
measurement is extremely challenging, it may be feasible over a 20 year period by
precision measurements of the Lyman-α forest in the redshift range 2< z< 5 with
the next generation of Extremely Large Telescopes [51].

In ref. [5] an analytic expression forH−1
0

dz
dτ is determined, the derivative being with

respect to wall time for observers in galaxies. The resulting function is displayed in Fig. 8
for the best-fit timescape model withfv0 = 0.762, where it is compared to the equivalent
function for three different spatially flatΛCDM models. What is notable is that the curve
for the timescape model is considerably flatter than those of theΛCDM models. This
may be understood to arise from the fact that the magnitude of the apparent acceleration
is considerably smaller in the timescape model, as compared to the magnitude of the
acceleration inΛCDM models. For models in which there is no apparent acceleration
whatsoever, one finds thatH−1

0
dz
dτ is always negative. If there is cosmic acceleration at
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late epochs, real or apparent, thenH−1
0

dz
dτ will become positive at low redshifts, though

at a somewhat larger redshift than that at which acceleration is deemed to have begun.
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z

FIGURE 8. The functionH−1
0

dz
dτ for the timescape model withfv0 = 0.762 (solid line) is compared to

H−1
0

dz
dτ for three spatially flatΛCDM models with the same values of(ΩM0,ΩΛ0) as in Fig. 2 (dashed

lines).

Fig. 8 demonstrates that a very clear signal of differences in the redshift time drift
between the timescape model andΛCDM models might be determined at low redshifts
whenH−1

0
dz
dτ should be positive. In particular, the magnitude ofH−1

0
dz
dτ is considerably

smaller for the timescape model as compared toΛCDM models. Observationally, how-
ever, it is expected that measurements will be best determined for sources in the Lyman
α forest in the range, 2< z< 5. At such redshifts the magnitude of the drift is some-
what more pronounced in the case of theΛCDM models. For a source atz= 4, over
a period ofδτ = 10 years we would haveδz= −3.3×10−10 for the timescape model
with fv0 = 0.762 andH0 = 61.7km sec−1Mpc−1. By comparison, for a spatially flat
ΛCDM model withH0 = 70.5km sec−1Mpc−1 a source atz= 4 would over ten years
give δz= −4.7×10−10 for (ΩM0,ΩΛ0) = (0.249,0.751), andδz= −7.0×10−10 for
(ΩM0,ΩΛ0) = (0.279,0.721).

DARK MATTER AND THE TIMESCAPE SCENARIO

Since much of this conference has been about alternatives to standard nonbaryonic dark
matter, I will briefly comment on the issue of dark matter vis–à–vis the timescape
scenario. The timescape model only addresses large scale cosmological averages, and
does not make specific predictions about dark matter typically inferred from direct
observations of bound systems, such as rotation curves of galaxies, gravitational lensing
or motions of galaxies within clusters. However, as has been discussed in ref. [2], in a
re-examination of the post-Newtonian approximation within the averaging problem in
cosmology, departures from the naïve Newtonian limit in an asymptotically flat space
are to be expected. Consequently, any approach to treat galactic dynamics as a fully
nonlinear problem within general relativity, such as the work discussed by Cooperstock
at this conference [56, 57], is to be expected as potentially viable and compatible with
the timescape scenario.

As discussed above, in the timescape scenario fits to supernova data, the BAO scale
and the angular diameter distance of the sound horizon in CMB anisotropy data allow
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one to estimate the dressed matter density parameter,ΩM0, while primordial nucleosyn-
thesis bounds allow us to independently estimate the corresponding baryonic matter
density parameter,ΩB0, and consequently of the nonbaryonic matter density parame-
ter ΩC0 ≡ ΩM0−ΩB0. As a result we find a mass ratio of nonbaryonic dark matter to
baryonic matter ofΩC0/ΩB0 = 3.1+2.5

−2.4, with uncertainties from supernova data alone, or
tighter bounds if constraints based on the angular diameter distance to the sound hori-
zon are imposed. This potentially reduces the relative amount of nonbaryonic matter by
a factor of two or more as compared to the standard concordance cosmology.

The Cooperstock–Tieu model [56, 57] demonstrates that the rotation curves of spi-
ral galaxies can be reproduced9 by a stationary axisymmetric rotating dust solution,
obviating the need for spherical halos of dark matter as a required by the naïve use
of Newtonian dynamics10. However, the Cooperstock–Tieu model does not specify the
particle content of the dust. For the Milky Way the Cooperstock–Tieu mass estimate11

of 2.1×1011M⊙ [57] is a factor of 3–5 timeslarger than direct estimates of the com-
bined baryonic mass of the galactic disk, bulge, bar and nucleus which are in the range12

(4.2 – 7.2)× 1010M⊙ [61]. The ratio of the Cooperstock–Tieu mass to the observed
baryonic mass of the Milky Way is thus in agreement with the global timescape estimate
ΩM0/ΩB0 = 4.1+2.5

−2.4. Consequently, it is certainly possible for a significant amount of
nonbaryonic dark matter to exist within the universe, reduced relative to the Newtonian
dynamics estimate, if the Cooperstock–Tieu model, or something close to it13, operates
at the galactic level.

The fact that several modified gravity approaches, including MOND [63], MOG [64],
and conformal gravity [36], are able to phenomenologically reproduce various aspects
of galactic and galaxy cluster dynamics to varying degrees of success, suggests that
some simplifying principle remains to be found despite the amazing variety of structures
described, which are far too complex to be modelled by simple exact dust solutions of
general relativity such as those of refs. [56, 57]. Given a number of models which fit
the same data [65], what is needed is that other falsifiable predictions of all the models

9 See ref. [58] for recent work which increases the number of galaxies whose rotation curves have been
successfully fit by this model.
10 A number of details of the Cooperstock–Tieu model have been disputed; see, e.g., ref. [59] for a
summary. While the details are open to debate [57, 59], any deficiencies of the model might easily
be an artefact of the simplifications of not including gas pressure, or other realistic features such as
differentially rotating spiral arms and central bars. The basic premise of the Cooperstock–Tieu model,
namely that nonlinearities in the Einstein equations can be important even in the weak field regime, stands
as a consequence of general relativity that must be seriously considered at the galactic level.
11 A recent Newtonian estimate of the mass of the Milky Way [60], including its dark halo, gives a mass
in the range (5.7 – 10)×1011M⊙ within a radius 80kpc, or a total virial mass of(1.6±0.3)×1012M⊙ at
the virial radiusRvir = 300kpc. A direct numerical comparison with the Cooperstock–Tieu mass estimate
is difficult, as the latter is confined to the mass within 30kpc of the galaxy centre for which rotation curve
data was available, and different density profiles can be assumed in the dark outer regions. However,
by any measure the Cooperstock–Tieu mass estimate is certainly considerably reduced relative to the
Newtonian estimate based on a dark matter halo.
12 The central supermassive black hole, of mass∼4×109M⊙ is not included in this estimate of the Milky
Way baryonic mass, as it is omitted in the Cooperstock–Tieu model.
13 Another variant of the Cooperstock–Tieu model has been explored by Balasin and Grumiller [62].
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are developed, which might rule some out. The standard Newtonian CDM hypothesis
is at least so well developed that it leads to several testable predictions about structure
formation; to the extent that it is arguablyalready ruled outby detailed observational
studies of Local Group galaxies [66].

Although naïvely the timescape model appears to predict of order three times as much
nonbaryonic matter as baryonic matter by mass, we should be careful to note that the ra-
tio ΩM0/ΩB0 measures the density of clumped matter at the present epoch relative to that
of baryonic matter inferred from primordial nucleosynthesis, only when using solutions
averaged on cosmological scales. Given the problems of defining gravitational energy
in the absence of a timelike Killing vector or other exact symmetries, we should remain
open to the possibility that the nature of clumped gravitational mass in cosmological
averages is more than simply the sum of its particle constituents. Thus the difference,
ΩM0−ΩB0, might not simply be nonbaryonic dark matter particles, but could include
some component of gravitational energy that enters on some relevant scale of coarse-
graining of bound systems, such as the transition from individual galaxies to galaxy
clusters. Even for individual galaxies, such the Milky Way, the difference between the
Cooperstock–Tieu mass estimate and the observed baryonic mass estimate could either
simply be unaccounted dark matter (baryonic or nonbaryonic), or else include at least
a partial contribution from gravitational energy that enters in the coarse–graining of the
dust. Thus we should keep an open mind about the existence or nonexistence of non-
baryonic dark matter as long as these questions are not understood.

It is worth mentioning, however, that in the standard cosmology nonbaryonic dark
matter is required to start structure formation going. At the surface of last scattering,
dark matter density contrastsδρC/ρC are expected to be an order of magnitude stronger
than the baryonic density contrastsδρB/ρB∼10−5. The nonbaryonic dark matter over-
density contrasts provide the seed gravitational wells into which baryons fall. Although
the relative amounts of nonbaryonic dark matter are reduced in the straightforward in-
terpretation of the timescape scenario, there would be likely to be few changes to the
basic qualitative scenario of the initiation of standard structure formation. If one wishes
to completely eliminate nonbaryonic dark matter on the other hand, then one faces the
formidable challenge of explaining how realistic structures can form from density con-
trasts which are only of order 10−5 at last scattering. Thus the timescape scenario with
the difference,ΩM0−ΩB0, interpreted as a nonbaryonic dark matter component remains
the simplest scenario from the viewpoint of present understanding.

DISCUSSION

Any serious physical theory should not only be founded on sound principles, but also
provide predictions that can potentially rule it out. Much of the present review has there-
fore concentrated on several tests which might distinguish the timescape model from
models of homogeneous dark energy. The (in)homogeneity test of Clarkson, Bassett and
Lu is a definitive test independent of the timescape model with the potential to falsify
the standard cosmology on large scales, since it tests the validity of the Friedmann equa-
tion directly. It would similarly rule out any modified gravity model which relied on a
homogeneous geometry with a Friedmann–type equation at the largest scales.
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In performing any tests, however, one must be very careful to ensure that data has not
been reduced with built–in assumptions that use the Friedmann equation. For example,
current estimates of the BAO scale, such as that of Percivalet al. [46], do not determine
DV directly from redshift and angular diameter measures, but first perform a Fourier
space transformation to a power spectrum, assuming a FLRW cosmology. Redoing such
an analysis for the timescape model may involve a recalibration of relevant transfer
functions.

In the case of supernovae, one must also take care since compilations such as the
Union [52], Constitution [53] and Union2 [54] datasets use the SALT or SALT-II
methods to calibrate light curves. In this approach empirical light curve parameters and
cosmological parameters –assuming the Friedmann equation– are simultaneously fit by
analytic marginalisation before the raw apparent magnitudes are recalibrated. As Hicken
et al. discuss [53], a number of systematic discrepancies exist between data reduced by
the different methods even within theΛCDM model. In the case of the timescape model,
we find considerable differences between the different approaches [27], which appear
to be largely due to systematic issues in distinguishing reddening by host galaxy dust
from an intrinsic colour variation in the supernovae. It is also crucial for the timescape
scenario that data is cut at the scale of statistical homogeneity (z∼0.033), below which a
simple average Hubble law is not expected. For datasets reduced by the SALT or SALT-II
methods there is generally Bayesian evidence that favours theΛCDM model over the TS
model. By contrast for datasets reduced by MLCS2k2 the Bayesian evidence favours the
TS model over theΛCDM model [27]. In principle, with perfect standard candles there
are already enough supernovae to decide between theΛCDM and timescape models on
Bayesian evidence, but in practice one is led to different conclusions depending on how
the data is reduced. It is therefore important that the systematic issues are unravelled.

The value of the dressed Hubble constant is also an observable quantity of consider-
able interest. A recent determination ofH0 by Riesset al. [55] poses a challenge for the
timescape model. However, it is a feature of the timescape model that a 17–22% vari-
ance in the apparent Hubble flow will exist on local scales below the scale of statistical
homogeneity, and this may potentially complicate calibration of the cosmic distance lad-
der. Further quantification of the variance in the apparent Hubble flow in relationship to
local cosmic structures would provide an interesting possibility for tests of the timescape
cosmology for which there are no counterparts in the standard cosmology.

A huge amount of work remains to be done to develop the timescape scenario to
the level of detail of the standard cosmology. At the mathematical level, we need to
refine the notion of coarse–graining of dust in relation to the various scales of averaging,
slicings by hypersurfaces in the evolution equations, and null cone averages. Whatever
the outcome of such investigations, I find it exciting that much remains still to be
explored in general relativity.

As long as the number of alternative theories is comparable to the number of “alter-
native” theorists, the detailed development of any alternative paradigm to the standard
cosmology may take several years or decades, a timescale which also applies to the big
science projects needed to perform precision observations such as redshift-time drift test
[49]. Since one can always achieve better fits by adding new terms to relevant equations,
every theorist is inevitably guided by intuition and aesthetic judgements about physical
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principles as much as by existing observations and experiments.
My own theoretical prejudices are rooted in the knowledge that general relativity

is on one hand an extremely successful theory of nature, in complete agreement with
observations on the scale of stellar systems, and yet on the other hand, although it is
based on deep physical principles, it is still also a theory which has not been completely
understood in terms of the coarse-graining of dust, averaging, fitting, the statistical
nature of gravitational energy and entropy, and the nature of Mach’s principle. Although
the nonlinearities of the Einstein equations may play a role in unravelling the mystery
of dark matter [56, 57], my own opinion is that what is at stake is more than simply
nonlinear mathematics, but also deep and subtle questions of physical principle.

Even if the retro-fit of a density distribution to observed galaxy rotation velocities via
Einstein’s equations [56, 57] could be independently shown to closely match the ob-
served density distribution, there may be more subtle issues relating to coarse–graining
and averaging which underlie the formation of the observed dust distributions, which
may also be phenomenologically applicable to galaxies or galaxy clusters with less
symmetry. It is worth noting that MOG [64] operates by an effective phenomenolog-
ical variation of Newton’s constant. Since direct observations never directly involveG
but ratherGM, my suspicion is that the phenomenology is pointing to the thorny issue
of the definition of gravitational energy when averaging on different scales. This is the
question we need to think more deeply about. The difficult problem of quasi-local grav-
itational energy in Einstein’s theory may turn out not to simply be an arcane curiosity in
mathematical relativity, but to be of direct importance for understanding the large scale
structure of the universe.
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44. C. Alcock and B. Paczyński,Nature281, 358 (1979).
45. D. J. Eisensteinet al., Astrophys. J.633, 560 (2005); S. Coleet al., Mon. Not. R. Astr. Soc.362, 505

(2005).
46. W. J. Percivalet al., Mon. Not. R. Astr. Soc.381, 1053 (2007); W. J. Percivalet al., Mon. Not. R. Astr.

Soc.401, 2148 (2010).
47. E. Gaztañaga, A. Cabré, F. Castander, M. Crocce and P. Fosalba,Mon. Not. R. Astr. Soc.399, 801

(2009).
48. C. Clarkson, B. Bassett and T. C. Lu,Phys. Rev. Lett.101, 011301 (2008).
49. A. Sandage,Astrophys. J.136, 319 (1962); G. C. McVittie,Astrophys. J.136, 334 (1962); A. Loeb,

Astrophys. J.499, L111 (1998).

PyV
Texto escrito a máquina
383



50. J. P. Uzan, C. Clarkson and G. F. R. Ellis,Phys. Rev. Lett.100, 191303 (2008).
51. P. S. Corasaniti, D. Huterer and A. Melchiorri,Phys. Rev.D 75, 062001 (2007); J. Liskeet al., Mon.

Not. R. Astr. Soc.386, 1192 (2008).
52. M. Kowalskiet al., Astrophys. J.686, 749 (2008).
53. M. Hickenet al., Astrophys. J.700, 1097 (2009).
54. R. Amanullahet al., Astrophys. J.716, 712 (2010).
55. A. G. Riesset al., Astrophys. J.699, 539 (2009).
56. F. I. Cooperstock and S. Tieu,Mod. Phys. Lett.A 21, 2133 (2006).
57. F. I. Cooperstock and S. Tieu,Int. J. Mod. Phys.A 22, 2293 (2007).
58. J. D. Carrick and F. I. Cooperstock, arXiv:1101.3224.
59. A. Rakíc and D. J. Schwarz,PoSIDM2008, 096 (2008) [arXiv:0811.1478].
60. O. Y. Gnedin, W. R. Brown, M. J. Geller and S. J. Kenyon,Astrophys. J.720, L108 (2010).
61. A. Klypin, H. Zhao and R. S. Somerville,Astrophys. J.573, 597 (2002).
62. H. Balasin and D. Grumiller,Int. J. Mod. Phys.D 17, 475 (2008).
63. M. Milgrom,Astrophys. J.270, 365 (1983).
64. J. W. Moffat,JCAP03, 004 (2006).
65. J. R. Brownstein, Ph.D. thesis (University of Waterloo, 2009) [arXiv:0908.0040].
66. P. Kroupaet al., Astron. Astrophys.523, A32 (2010).

PyV
Texto escrito a máquina
384



Cosmological consequences of Modified Gravity
(MOG)

Viktor T. Toth

Ottawa, ON K1N 9H5, Canada

Abstract. As an alternative to the ΛCDM concordance model, Scalar-Tensor-Vector Modified
Gravity (MOG) theory reproduces key cosmological observations without postulating the presence
of an exotic dark matter component. MOG is a field theory based on an action principle, with
a variable gravitational constant and a repulsive vector field with variable range. MOG yields a
phenomenological acceleration law that includes strong tensorial gravity partially canceled by a
repulsive massive vector force. This acceleration law can be used to model the CMB acoustic spec-
trum and the matter power spectrum yielding good agreement with observation. A key prediction
of MOG is the presence of strong baryonic oscillations, which will be detectable by future surveys.
MOG is also consistent with Type Ia supernova data. We also describe on-going research of the
coupling between MOG and continuous matter, consistent with the weak equivalence principle and
solar system observations.

Keywords: Cosmology, modified gravity, CMB acoustic spectrum, matter power spectrum, cosmic
acceleration
PACS: 04.20.Cv,04.50.Kd,04.80.Cc,45.20.D-,45.50.-j,98.80.-k

1. INTRODUCTION

Why is there a need for a modified gravity theory? There is a perfectly serviceable
model of cosmology, the so-called ΛCDM “concordance” model, that is not only in good
agreement with a large body of observational evidence, it also yielded some impressive
predictions. Nonetheless, we feel motivated to seek alternatives, in part for the following
reasons:

• The ΛCDM model requires 96% of the universe to consist of black “stuff”: cold
dark matter and dark energy, both of which may never be detectable except through
their gravitational influence;

• The cold dark matter paradigm runs into difficulties even closer to home, notably
its inability to explain convincingly why the rotation curves of spiral galaxies so
closely follow their luminosity profiles.

The modified gravity theory we discuss here, Scalar-Tensor-Vector Gravity [1, 2]
(STVG), has also been referred to by the acronym MOG more recently. MOG is a
particularly interesting candidate for gravity modification in part because:

• In the solar system or the laboratory, MOG predicts Newtonian (or Einsteinian)
physics;

• The MOG acceleration law is consistent with star clusters [3], galaxies [4], and
galaxy clusters [5, 6].
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In the rest of this presentation, we show that MOG also appears to be consistent with
cosmological data [7, 8]. If these results hold, MOG may prove to be a more economical
theory (in the sense of Occam’s razor) than ΛCDM.

We begin with introducing MOG as a Lagrangian field theory in Section 2, also dis-
cussing the subject of coupling between the MOG fields and matter. Next, we briefly
introduce the phenomenology of MOG, concentrating mostly on the spherically sym-
metric, static vacuum solution in Section 3. We then move on to cosmology: we discuss
the MOG prediction of the acoustic spectrum of the Cosmic Microwave Background
(CMB) in Section 4 and the galaxy-galaxy matter power spectrum in Section 5. Finally,
we move on to the topic that is the most active area of our current research, the study of
MOG in the presence of continuous matter such as a perfect fluid, in Section 6. We con-
clude with a brief discussion of the most significant challenges and outlook in Section 7.

2. MOG AS A FIELD THEORY

MOG is a theory of gravity that augments Einstein’s gravitational theory with a vari-
able gravitational constant and a massive vector field with variable mass and coupling
strength, producing a repulsive force. The theory’s building blocks are:

• The tensor field gµν of metric gravity;
• A scalar field G representing a variable gravitational constant;
• A massive vector field φµ responsible for a repulsive force;
• Another scalar field µ representing the variable mass of the vector field;
• A further scalar field ω representing the variable coupling strength of the vector

field.1

MOG is a theory based on a Lagrangian action principle. The MOG Lagrangian has
three parts: the Einstein-Hilbert Lagrangian of tensor gravity, the Lagrangian of the
massive vector field, and the Lagrangian of the three scalar fields, complete with self-
interaction potentials:

L =− 1
16πG

(R+2Λ)
√−g (1)

− 1
4π

ω
[

1
4

BµνBµν − 1
2

µ2φµφ µ +Vφ (φ)
]√−g

− 1
G

[
1
2

gµν
(

∇µG∇νG
G2 +

∇µ µ∇ν µ
µ2 −∇µω∇νω

)
+

VG(G)
G2 +

Vµ(µ)
µ2 −Vω(ω)

]√−g.

Here, Bµν = ∂µφν − ∂νφµ , and Vφ (φ), VG(G), Vω(ω), and Vµ(µ) denote the self-
interaction potentials associated with the vector field and the three scalar fields. The
symbol ∇µ is used to denote covariant differentiation with respect to the metric gµν ,
while the symbols R, Λ, and g represent the Ricci-scalar, the cosmological constant,

1 Although ω is included for generality, in the solutions that we studied it turns out to be a constant.
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and the determinant of the metric tensor, respectively. We define the Ricci tensor as
Rµν = ∂αΓα

µν −∂νΓα
µα +Γα

µνΓβ
αβ −Γα

µβ Γβ
αν . Our units are such that the speed of light,

c = 1; we use the metric signature (+,−,−,−).
The vector field is expected to produce a repulsive force. This is not possible unless

matter carries a vector charge. Furthermore, the vector charge must have the right
strength to cancel out excess gravity exactly such that the effective gravitational constant
that remains is that of Newton. This means that the coupling term must also include a
dependence on the scalar field G. This is important for another reason as well: a scalar
charge is required in order to ensure that the theory survives precision solar system tests
[9].

We specify this coupling in the case of a massive test particle by explicitly incorpo-
rating it into the test particle Lagrangian:

LTP =−m+αωq5φµuµ , (2)

where α is a function of G and q5 is the vector charge of a test particle with mass m and
four-velocity uµ .

This Lagrangian has been used in conjunction with the spherically symmetric, static
vacuum solution of the MOG field equations to derive the phenomenology that we
discuss in the next section.

3. MOG PHENOMENOLOGY

In MOG, the metric tensor is responsible for Einstein-like gravity, but G is generally
greater than Newton’s constant, GN .

The vector field is responsible for a repulsive force, canceling out part of the gravi-
tational force; the effective gravitational constant at short range is GN . The vector field
is massive and has limited range; beyond its range, gravity is stronger than Newton pre-
dicts.

The strength of G and the range µ−1 of the vector field are determined by the source
mass.

In the weak field, low velocity limit, the acceleration due to a spherically symmetric
source of mass M is

r̈ =−GNM
r2

[
1+α−α(1+ µr)e−µr] , (3)

where the overdot denotes differentiation with respect to time. The values of α and µ
are determined by the source mass M with formulas fitted using galaxy rotation and
cosmology data:

α =
M

(
√

M +E)2

(
G∞
GN

−1
)

, µ =
D√
M

, (4)

D' 6250 M1/2
¯ kpc−1, E ' 25000 M1/2

¯ , G∞ = (1+α)GN ' 20GN .
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FIGURE 1. The acoustic spectrum of the cosmic microwave background (5-year WMAP data points
[10] with error bars in light blue, with a moving window average also shown in purple) and the ΛCDM
prediction (thick blue line).

This acceleration law is consistent with laboratory and solar system experiments, star
clusters, galaxies, and galaxy clusters across (at least) 15 orders of magnitude. At short
range, µr ¿ 1, (3) becomes Newton’s gravitational acceleration law,

r̈ '−GNM
r2 , (5)

whereas at great distances, µrÀ 1, we get Newtonian gravity with an “enhanced” value
of the gravitational constant,

r̈ '−(1+α)
GNM

r2 . (6)

We also used this acceleration law to investigate the MOG predictions for the cosmic
microwave background and the galaxy-galaxy matter power spectrum, which we discuss
below.

4. MOG AND THE CMB

One of the key successes of the standard model of cosmology, ΛCDM, is its ability
to predict the position and size of peaks in the acoustic power spectrum of the cosmic
microwave background (Figure 1).

The question naturally arises: can MOG reproduce this result, especially in view of
the fact that there exists no exotic dark matter in the MOG cosmology?

As we were attempting to address this question, colleagues often advised us to use
the “industry standard” cosmological code CMBFAST [11] or one of its derivatives such
as CMBEASY [12]. When we initiated a detailed study of these programs, however, we
found that adapting them to a variable-G cosmology is a highly nontrivial undertaking.
A key reason is that CMBFAST uses variants of the cosmological quantity Ω (e.g., the
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FIGURE 2. Code fragment from the CMBFAST [11] source distribution, demonstrating the difficulty
of applying the program to a variable-G cosmology, due to the fact that Ω ∝ Gρ is used to represent
constituent densities in both gravitational and non-gravitational contexts.

baryon density Ωb) to represent matter in both gravitational (e.g., structure growth) and
nongravitational (e.g., speed-of-sound calculations) contexts. In a variable-G cosmol-
ogy, Ω = 8πGρ/3H2 may change even as the corresponding density ρ remains constant,
due to changes in the value of G. Whereas gravitational relations involve the quantity
Gρ , which Ω properly represents, nongravitational relations involve ρ .

This difficulty is by no means insurmountable, but it turns the adaptation of CMBFAST
into an arduous and error-prone task.

Other codes, such as CMBEASY, often use a version of CMBFAST as the underly-
ing computational engine. Worse yet, the engine is often machine-translated from the
original FORTRAN into another programming language, such as C or C++.

It was in part for this reason that we elected to take a closer look at a promising alterna-
tive: a semi-analytical approximation2 developed by Mukhanov [14] that is nonetheless
more than just a collection of fitting formulae. Mukhanov’s formulation does not hide
the underlying physics, and it becomes a relatively straightforward substitution to re-
place, e.g., all occurrences of Ω with (Geff/GN)Ω in gravitational contexts, where Geff
is the effective gravitational constant at the horizon. The result (Figure 3) is encouraging
but not altogether surprising: The enhanced gravitational constant plays the same role
as collisionless dark matter in structure growth, but dissipation is due to the baryonic
matter density, which is the same as in ΛCDM.

5. MOG AND THE MATTER POWER SPECTRUM

Another key prediction of ΛCDM cosmology, confirmed by observation, is the matter
power spectrum: the statistic of density fluctuations in the large-scale distribution of
galaxies.

2 It should be noted that the CMBFAST code base also relies on semi-analytic formulations, e.g., those
developed by Eisenstein and Hu [13].
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FIGURE 3. The acoustic spectrum of the cosmic microwave background (WMAP data points with error
bars in light blue) and the MOG prediction (thick blue line). Binned WMAP data (red) and Boomerang
data (green) are also shown.

This statistic can be understood using the Newtonian theory of small fluctuations in a
self-gravitating medium. These fluctuations are governed by the equation

δ̈k +
ȧ
a

δ̇k +
(

C2
s k2

a2 −4πGρ
)

δk = 0 (7)

for each Fourier mode δ = δk(t)eik·q (such that ∇2δ = −k2δ ; Cs is the speed of sound
in the medium). In the case of the standard model cosmology, ∇2 can be obtained from
the Poisson equation of Newtonian gravity. In MOG, the acceleration law can be used to
derive the corresponding inhomogeneous Helmholtz equation:

∇2Φ = 4πGNρ(r)+αµ2GN

∫ e−µ |r−r̃|ρ(r̃)
|r− r̃| d3r̃. (8)

The Helmholtz equation leads a shifting of the wave number in the solution to (7):

k′2 = k2 +4πa2
(

Geff−GN

GN

)
λ−2

J . (9)

Changes to the sound horizon scale are unaffected by the varying strength of gravity.
However, Silk damping introduces a G3/4 dependence [15]:

k′Silk = kSilk

(
Geff

GN

)3/4

. (10)

These results can be substituted in the analytical approximations of Eisenstein and Hu
[13], leading to the the plot shown in Figure 4.
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FIGURE 4. The matter power spectrum. Three models are compared against five data sets: ΛCDM
(dashed blue line, Ωb = 0.035, Ωc = 0.245, ΩΛ = 0.72, H = 71 km/s/Mpc), a baryon-only model (dotted
green line, Ωb = 0.035, H = 71 km/s/Mpc), and MOG (solid red line, α = 19, µ = 5h Mpc−1, Ωb = 0.035,
H = 71 km/s/Mpc.) Data points are colored light blue (SDSS 2006 [16]), gold (SDSS 2004 [17]), pink
(2dF [18]), light green (UKST [19]), and dark blue (CfA [20]).

Comparing the result visually against the data, we can tell that the solution appears
to have the right slope; however, unlike the ΛCDM prediction, MOG predicts unit
oscillations in the power spectrum. These unit oscillations are dampened in the case
of ΛCDM by the presence of matter; in the case of MOG, no such matter is present and
oscillations are not dampened.

Are these unit oscillations present in the data? As it turns out, it is not yet possible
to answer this question as the resolution of the data set is not sufficient. The data are
effectively binned using a window function. When we apply that window function to the
MOG prediction, the unit oscillations are smoothed out, and the result shows very good
agreement indeed with the data points (Figure 5).

In summary, two key features of the matter power spectrum are its slope and the
presence or absence of baryonic oscillations. MOG reproduces the right slope; however,
unlike ΛCDM, MOG has unit oscillations that are not dampened by the presence of colli-
sionless dark matter. Future galaxy surveys will unambiguously show if unit oscillations
are present in the data. Therefore, the matter power spectrum can be key to distinguish
modified gravity without exotic dark matter from cold dark matter theories.

6. MOG AND CONTINUOUS MATTER

In the preceding sections, we discussed how MOG can be used to reproduce the observed
characteristics of the CMB acoustic spectrum and the matter power spectrum. These re-
sults, however, were based on the MOG point particle solution (the point particle equa-
tion of motion in the presence of a spherically symmetric, static, vacuum gravitational
field.)
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FIGURE 5. The effect of window functions on the power spectrum is demonstrated by applying the
SDSS luminous red galaxy survey window functions to the MOG prediction. Baryonic oscillations are
greatly dampened in the resulting curve (solid red line). A normalized linear ΛCDM estimate is also
shown (thin blue line) for comparison.

The question naturally arises: Is it really appropriate to use the point particle solution
for continuous distributions of matter? To answer this question, we have to consider an
essential feature of MOG: namely that the strength of the (Newtonian) gravitational field
and the range of the MOG repulsive vector force both vary as functions of the source
mass. In other words, if we combine two masses together, the resulting field will not be
a simple sum of the individual fields, not even in a crude approximation: the theory has
an essential nonlinearity.

This means that we cannot blindly rely on the point particle solution to do MOG
cosmology: it is necessary to solve the MOG field equations in the presence of contin-
uous matter, such as a (perfect) fluid model. We have taken some tentative steps in this
direction (see also [8]).

How does MOG couple to continuous matter? The coupling must be consistent with
two constraints:

• MOG must obey the weak equivalence principle (WEP) in order to not run afoul of
many observations, e.g., Eötvös-style experiments;

• MOG must be compatible with precision solar system observations, expressed in
the form of the parameters of the Parameterized Post-Newtonian (PPN) formalism,
notably the Eddington-parameters β and γ .
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The two Eddington parameters β and γ determine deviations from the Newtonian
potential in post-Newtonian models:

g00 =1− 2M
r

+2β
(

M
r

)2

, (11)

g0 j =0, (12)

g jk =−
(

1+2
2γM

r

)
δ jk (13)

The Eddington-parameter β is identically 1 for MOG. The Eddington-parameter γ has
the same value as in Jordan-Brans-Dicke theory [21], which can be “cured” by introduc-
ing a scalar charge that makes it conformally equivalent to the minimally coupled scalar
theory [9].

The WEP is often interpreted as a requirement for a metric theory of gravity. This
criteria is obviously not satisfied by MOG, as material particles are assumed to carry a
vector charge and not move along geodesics determined by the metric. However, it is
possible to consider a more relaxed interpretation of the WEP: a theory that satisfies the
WEP observationally must be conformally equivalent to a metric theory of gravity. That
is to say that there must exist a conformal transformation under which any non-minimal
couplings between matter and non-metric gravity fields would vanish. The justification
for this relaxed interpretation is that an observer, equipped with a classical instrument,
would not be able to choose between conformally equivalent frames of reference: non-
gravitational laws of physics, notably electromagnetism, are unaffected by a conformal
transformation.

Conformal transformations add a vector degree of freedom (the special confor-
mal transformation, a translation preceded and followed by an inversion, x′µ = (xµ −
bµx2)/(2− 2b · x + b2x2)) and a scalar degree of freedom (dilation, x′µ = αxµ ); this
agrees with the degrees of freedom to which the matter Lagrangian is expected to cou-
ple in the MOG theory. The metric tensor is conformally invariant up to a rescaling:
g′µν = α−2(1−2b · x+b2x2)2gµν .

These considerations about the WEP and γ can lead to a tentative general prescrip-
tion for the coupling between the MOG fields and matter. We anticipate that the field
equations for a perfect fluid will contain a vector charge in the form

φ νuνJµ = ω
G−GN

G
Tµνuν , (14)

and a scalar charge in the form

GJ =−1
2

T. (15)

Given an equation of state, we can now write down the MOG field equations in the
case of the FLRW metric,

ds2 = dt2−a2(t)
[
(1− kr2)−1dr2 + r2dΩ2] . (16)

The equations are, after setting ω = const.,
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FIGURE 6. The MOG “classical bounce”. Black (solid) line is a/a0 ; red (dotted) line is G/G0 ; green
(dashed) line is µ/µ0 ; brown (dash-dot) line is (a3ρ)/(a3

0ρ0). Horizontal axis is in units of 13.7 billion
years.

(
ȧ
a

)2

+
k
a2 =

8πGρ
3

− 4π
3

(
Ġ2

G2 +
µ̇2

µ2 −
1

4π
Gωµ2φ 2

0

)

+
2
3

ωGVφ +
8π
3

(
VG

G2 +
Vµ

µ2

)
+

Λ
3

+
ȧ
a

Ġ
G

, (17)

ä
a

=−4πG
3

(ρ +3p)+
8π
3

(
Ġ2

G2 +
µ̇2

µ2 −
1

4π
Gωµ2φ 2

0

)

+
2
3

ωGVφ +
8π
3

(
VG

G2 +
Vµ

µ2

)
+

Λ
3

+H
Ġ

2G
+

G̈
2G

− Ġ2

G2 , (18)

G̈+3
ȧ
a

Ġ− 3
2

Ġ2

G
+

G
2

(
µ̇2

µ2

)
+

3
G

VG−V ′
G +G

[
Vµ

µ2

]
+

G
8π

Λ− 3G
8π

(
ä
a

+H2
)

=−1
2

G2(ρ +3p), (19)

µ̈ +3
ȧ
a

µ̇− µ̇2

µ
− Ġ

G
µ̇ +

1
4π

Gωµ3φ 2
0 +

2
µ

Vµ −V ′
µ = 0, (20)

ωµ2φ0−ω
∂Vφ

∂ φ0
= 4πJ0. (21)

These FLRW field equations can be solved numerically, given suitable initial condi-
tions and some assumptions. We generally ignore the self-interaction potentials:

Vφ = VG = Vµ = 0. (22)
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FIGURE 7. The MOG “cyclical bounce” cosmology with negative VG = const. (For legend, see Fig-
ure 6.)

We set the cosmological constant and the curvature constant to zero:

Λ = 0, (23)
k = 0. (24)

We assume a simple equation of state, p = wρ , and we are mainly interested in the late
“dust” universe, w = 0.

We use the present epoch to establish initial conditions: e.g., ȧ/a|t=t0 '
2.3× 10−18 s−1, and ρ|t=t0 ' 10−26 kg/m3. The solution yields a “classical bounce”,
albeit with an age problem (Figure 6).

To address the age problem, we can consider using a non-zero value of VG. We find
that a negative value produces a cyclical universe, with repeated classical bounces (Fig-
ure 7). The conditions at the present epoch (notably, the expansion rate and approximate
density of the universe) are repeated at later times during subsequent cycles. This allows
for the possibility of a much older universe, one that has been through several cycles of
shrinking and expansion since its densest state.

What about the deceleration parameter? This parameter, defined as q =−äa/ȧ2, char-
acterizes the rate at which the expansion rate slows. As it is well known, observations
of the luminosity-distance relationship of distant Type Ia supernovae are inconsistent
with a flat q = 0.5 Einstein-de Sitter universe. The data may be consistent with an empty
universe (q = 0). It is also consistent with the ΛCDM universe that is dominated by dark
energy (ΩΛ ' 0.7) at the present epoch.

MOG can also produce good agreement with the Type Ia supernova data if we assume
the existence of a small positive value of VG. This universe has a shallow bounce, and
at the present epoch, its evolution is such that ȧ/a is nearly constant. The actual age of
the universe is, therefore, not fixed by the observed expansion rate alone; fitting to the
supernova data yields a universe that is significantly older than the “canonical” value
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FIGURE 8. Type Ia supernova luminosity-redshift data [22] and the MOG/ΛCDM predictions. The
horizontal axis corresponds to the q = 0 empty universe. The MOG result is represented by a thick (blue)
line. Dashed (red) line is a matter-dominated Einstein de-Sitter universe with ΩM = 1, q = 0.5. Thin
(black) line is the ΛCDM prediction.

of 13.7 billion years. This model offers excellent agreement with the Type Ia supernova
observations (Figure 8).

All of these models have shortcomings, but their existence shows that MOG is capable
of producing physically plausible models of expansion, and that a classical bounce
occurs naturally within the theory.

7. CONCLUSIONS AND OUTLOOK

The research of the cosmological consequences of MOG that is presented here is on-
going. Important cosmological results, such as the matter power spectrum and the CMB
acoustic spectrum, have been reproduced using the MOG equations of motion in the
gravitational field of a point source. A general prescription that describes how MOG
couples to matter (while remaining consistent with the WEP and precision observations)
will allow us to solve the MOG field equations in the presence of matter [23], allowing
us to re-derive the matter power spectrum and CMB acoustic spectrum results using a
more solid foundation.

What can MOG tell us about the early universe? A bouncing cosmology may naturally
avoid the horizon problem, which is a major motivation for inflationary cosmologies. It
is unclear how MOG would address the flatness problem, other than postulating k = 0 a
priori.

What about Big Bang nucleosynthesis? At short range, the MOG acceleration law is
consistent with Newton’s. However, primordial isotope ratios are sensitive to the rate of
cosmic expansion, which is governed by long-range gravity. We do not presently know
if MOG can be consistent with observed isotope abundances.

Some of our results were obtained by assuming a constant value for VG, the self-
interaction potential for the G scalar field. This assumption is ad hoc, not justified by
theory. Perhaps improved solutions can lead us to eliminate the need to postulate a non-
zero VG, or alternatively, a theoretical justification for a (near) constant self-interaction
potential can be found.

Notwithstanding these problems and open issues, MOG appears to be consistent with
a range of astrophysical and cosmological phenomena. The theory yields a phenomeno-
logical acceleration law that works well across some 15 orders of magnitude in scale.
Furthermore, there exists an unambiguous cosmological test through which MOG can
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be falsified: the absence of baryonic oscillations in the matter power spectrum cannot be
explained by a MOG cosmology that lacks a cold dark matter component.
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Abstract

If our cosmic location lies within a large-scale under–dense region or “void”, then current
cosmological observations can be explained without resorting to a cosmological constant or to
an exotic and elusive source like “dark energy”. If we further assume this void region to be spher-
ical (as almost all current void models do), then fitting observational data severely constrains
our position to be very near the void center, which is a very special and unlikely observation
point. We argue in this article that existing spherical void models must be regarded as gross
approximations that arise by smoothing out more realistic non–spherical configurations that
may fit observations without the limitations imposed by spherical symmetry. In particular,
the class of quasi–spherical Szekeres models provides sufficient degrees of freedom to describe
the evolution of non–spherical inhomogeneities, including a configuration consisting of several
elongated supercluster–like overdense filaments with large underdense regions between them.
We summarize a recently published example of such configuration, showing that it yields a
reasonable coarse-grained description of realistic observed structures. While the density distri-
bution is not spherically symmetric, its proper volume average yields a spherical density void
profile of 250 Mpc that roughly agrees with observations. Also, once we consider our location
to lie within a non-spherical void, the definition of a “center” location becomes more nuanced,
and thus the constraints placed by the fitting of observations on our position with respect to
this location become less restrictive.

1 Introduction.
Inhomogeneous cosmological models have become a valuable tool to analyze cosmological observa-
tions without introducing an elusive dark energy source (a comprehensive review on this is found in
[1]). The currently preferred inhomogeneous configurations are Gpc-scale under–densities (“voids”)
based on the spherically symmetric Lemaître-Tolman (LT) models [2, 3], under the assumption
that we live close to a center of a cosmic density depression of radius around 1 − 3 Gpc [4, 5, 6].
Criticism has been voiced on these void models on the grounds that they violate the Copernican
principle, since compliance with the cosmic microwave background (CMB) constraints allows for
only one such Gpc structure and the observer location cannot be further away from the origin than
∼ 50 Mpc [7] (see also [6]). However, as suggested by more recent work [8, 9], a void of radius 250
Mpc may be sufficient to explain the supernova observations, the power spectrum of the CMB and
is also consistent with Big Bang Nucleosynthesis, or Baryon Acoustic Oscillations. By considering
void structures of this size the Copernican Principle is not violated, as our Universe may consist of
many such structures (the upper size to violate CMB constrains is 300 Mpc [10, 11]). Evidently,
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restricting our position to be within 50 Mpc from the center origin of a 250 Mpc void is a less
stringent limitation. Notice that these voids are not the smaller voids (30-50 Mpc) seen in the
filamentary structure of our Local Universe that roughly correspond to numerical simulations, but
would form a structure a larger voids containing the smaller ones yet to be detected by observations.

In a recent article [12] we examined the possibility of using non–spherical void models to de-
scribe cosmic inhomogeneities. For this purpose, we considered the class of non–spherical Szekeres
solutions of Einstein’s equations [13, 14, 15, 16]. By fixing the free parameters of these solutions
by means of a thin-shell approximation [10, 11, 17, 18], we obtained a specific model that yields a
reasonable coarse-grained description of realistic cosmic structures. Since we define initial condi-
tions at the last scattering surfaces, this model evolves from small early universe initial fluctuations
and is consistent with current structure formation scenarios. The model presented in [12] yields an
averaged spherically symmetric density distribution with a radial void profile qualitatively analo-
gous to the spherical void models (as those of [8]), hence suggesting that the latter models may
be approximate configurations that should emerge after coarse-graining and averaging of under–
dense regions of a realistic lumpy non–spherical Universe. Also, the lack of spherical symmetry
in the Szekeres model removes the unique invariant nature of the center location of models with
this symmetry. Since our being sufficiently near this center is a strong constraint that the fitting
of observations place on spherical LT models, this constraint becomes much less restrictive in a
non-spherical Szekeres model.

2 Setting up the Szekeres model.
The metric of Szekeres models takes the following form [13]

ds2 = dt2 − (Φ′ − ΦE ′/E)2

ε− k
dr2 − Φ2

E
(dx2 + dy2), (1)

where Φ = Φ(t, r) and Φ′ = ∂Φ/∂r, with:

E =
S

2

[(
x− P
S

)2

+
(
y −Q
S

)2

+ ε

]
, (2)

while k(r), S(r), P (r), Q(r) are arbitrary functions; ε is a constant: the values ε = 1, 0,−1 are
respectively known as the quasi–spherical, quasi–plane and quasi-hyperbolic Szekeres models (for
a detailed discussion on these models see [14, 15, 16]). We consider only the quasispherical case,
in which the surfaces marked by r and t constant can be mapped to 2–spheres by a stereographic
projection.

Einstein’s equations for a dust source associated with (1)–(2) reduce to

Φ̇2 = −k(r) +
2M(r)

Φ
, (3)

8πGρ =
2M ′ − 6ME ′/E
Φ2(Φ′ − ΦE ′/E)

, (4)

whereM(r) is an arbitrary function and we assume that Φ′ 6= ΦE ′/E holds wheneverM ′ 6= 3ME ′/E ,
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in order to avoid a shell crossing singularity[16, 26]. The solution of (3) is given by the quadrature

Φ∫
0

dΦ̃√
−k + 2M/Φ̃

= t− tB(r). (5)

where tB(r) marks the locus of the big bang (which is, in general, non–simultaneous). We remark
that this model has no isometries (it does not admit Killing vectors), but by specializing the free
functions we obtain axially and spherically symmetric models as particular cases.

By choosing the r coordinate such that r̄ = Φ(ti, r), where t = ti marks the last scattering surface
(and dropping the bar to simplify notation), we can eliminates one of the six independent functions
of r appearing above. Thus, in order to achieve with a Szekeres model the most realistic possible
description of cosmic structures and structure formation, we must prescribe five free functions as
initial conditions to specify a unique model. In particular, we will specify the functions S, P,Q, tB
and M . The algorithm that we use in the calculations can be defined as follows:

1. The chosen asymptotic cosmic background is an open Friedman model1, i.e. Ωm = 0.3 and
Λ = 0. The background density is then given by

ρb = Ωm × ρcr = 0.3× 3H2
0

8πG
(1 + z)3, (6)

where the Hubble constant is H0 = 70 km s−1 Mpc−1.

2. We choose tB = 0, hence the age of the Universe (given by (5)) is everywhere the same (as
in the homogeneous background Friedmann model) and is equal to ti = 471, 509.5 years (see
[20] for details).

3. The function M(r) is given by

M(r) = 4π
G

c2

∫ r

0

ρb(1 + δρ̄) r̄2 dr̄,

where δρ̄ = −0.005e−(`/100)2+0.0008e−[(`−50)/35]2+0.0005e−[(`−115)/60]2+0.0002e−[(`−140)/55]2 ,
and ` ≡ r/ 1 kpc.

4. The function k(r) can be calculated from (5).

5. The functions Q,P, and S are prescribed in order to provide the best possible coarse–grained
description of the density distribution of our observed local Cosmography by means of a thin
shell approximation (see [12]).

6. Once the model is specified, its evolution is calculated from eq. (3) and the density distribution
at the current instant is evaluated from (4).

1Asymptotic spatial flatness is no longer required if homogeneity is relaxed [6, 19].
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Figure 1: The present-day color-coded density distribution ρ/ρ0 (where ρ0 is density of the ho-
mogeneous background model). Brighter colors indicate a high-density region, darker low-density
region3.

3 How realistic this model can be?
The density distribution for our model (depicted in Fig. 1 in intuitive Cartesian coordinates [21,
22]) follows from our choice of the functions {M, tB , Q, P, S}. If new data would arise showing a
different density pattern, we can always adjust it appropriately by selecting different functions that
would change the position, size, and the amplitude of the overdensities (see [21, 22] for a detailed
discussion).

As shown in Fig. 1, the model under consideration contains structures such as voids and
elongated supercluster–like overdensities. It has large overdensities around ∼ 200 Mpc (towards
the left of the figure) that compensate the underdense regions and allow the model to be practically
homogeneous at r > 300 Mpc. Actual observations reveal very massive matter concentrations – the
Shapley Concentration roughly at the distance of 200 Mpc, or the Great Sloan Wall at the distance
of 250-300 Mpc. In the opposite direction on the sky we find the Pisces–Cetus and Horologium–
Reticulum, which are massive matter concentrations located at a similar distance. We refer the
reader to Fig. 44 of Ref. [24], which provides a density map of the Local Universe reconstructed
from the 2dF Galaxy Redshift Survey Survey using Delaunay Tessellation Field Estimator2. Also,
the inner void seen in Fig. 1 is consistent with what is observed in the Local Universe – it appears
that our Local Group is not located in a very dense region of the Universe, rather it is located in
a less dense region surrounded by large overdensities like the Great Attractor on one side and the
Perseus–Piscis supercluster on the other side. Both are located at around 50 Mpc — see Fig. 19 of
[25] that provides the density reconstruction of the Local Universe using the POTENT analysis.

While still far from a perfect “realistic” description, the density pattern displayed in Fig. 1
exhibits the main features of our local Universe. It should be therefore treated as a “coarse-grained”
approximation to study local cosmic dynamics by means of a suitable exact solution of Einstein’s
equations. Such approximation is, evidently, far less idealized than the gross one that follows from

2This figure is also available at http://en.wikipedia.org/wiki/File:2dfdtfe.gif
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Figure 2: Schematic representation of locations that can be considered “centers” in a quasi–spherical
Szekeres model: the local isotropic observer at the origin r = 0 (denoted by a black dot) where
shear vanishes and the geometric center of the larger sphere depicted by a cross. The distance
between these locations is denoted by ∆.

spherically symmetric LT models.

4 Position of the “center”
As a consequence of the lack of spherical symmetry, the model under consideration lacks an invari-
ant and unique characterization of a center worldline. Instead, for every 2–sphere corresponding to
a fixed value of r at an instant t = constant, we have (at least) two locations that can be consid-
ered appropriate generalizations of the spherically symmetric center: the worldline marked by the
coordinate “origin” r = 0 where the shear tensor vanishes, which defines a locally isotropic observer
(cf. eq (16.29) of Ref. [26]), and the “geometric” center of the 2–sphere whose surface area is 4πΦ2.

As shown in Fig. 2, the fact that the 2–spheres of constant r in a quasi-spherical Szekeres model
are non-concentric implies that the geometric center of these spheres and r = 0 do not coincide. As
a consequence, the distance from this origin to the surface of the sphere depends on the direction
marked by the angles (θ, φ) of the stereographic projection (see equation (3) of Ref. [12]):

δ(r, θ, φ) =
∫ r

0

dr̃
Φ′ − ΦE ′/E√

1− k
. (7)

Hence, the displacement ∆ between the origin and the geometric center of a sphere of radius r is

∆ =
δmax − δmin

2
,

where δmax = max(δ), δmin = min(δ). As can be seen from equation (3) of [12], the maximal and
minimal value of E ′/E for our model (where S′ = 0) corresponds to θ = π/2. The distance, δ, as a
function of φ for voids of various radii is depicted by figure 3 of [12], showing that a sphere whose
present-day area radius is Φ = 100 Mpc the model under consideration yields a displacement of
∆ = 36 Mpc towards φ ≈ 80◦ direction. While for Φ = 250 Mpc we have ∆ = 62 Mpc towards
ϕ ≈ 120◦. Fitting observations in spherically symmetric models restricts our cosmic location to be
within a given maximal separation from a location that is both, the geometric center of the void and
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the locally isotropic observer (∆ = 0). It is reasonable to expect that similar distance restrictions
with respect to the local isotropic observer should emerge in fitting observations with a Szekeres
model, but in the latter models this observer is not the only center and may be far away from the
geometric center of the void, and thus our location would be less special and improbable than in
spherically symmetric models where both locations coincide.

5 Averaging
As shown in Ref. [23], the proper 3–dimensional volume in space slices orthogonal to the 4–velocity
(t = constant) in a Szekeres model is

VD =

rD∫
0

dr

∞∫
−∞

dx

∞∫
−∞

dy
√
−g = 4π

rD∫
0

dr
Φ2Φ′√
1− k

≡ 4πRD, (8)

and thus, the proper volume averaged density is spherically symmetric (i.e. independent of x and
y), even if the density itself is far from a spherical distribution:

〈ρ〉(rD) =
1
VD

rD∫
0

dr

∞∫
−∞

dx

∞∫
−∞

ρdy
√
−g =

1
8πGRD

rD∫
0

dr
2M ′√
1− k

. (9)

The radial profile of this spherical volume–averaged density distribution evaluated as a function of
rD, is displayed by Fig. 3. The spherical symmetry of the averaged density distribution implies
that the the averaging process has smoothed out the “angular” (i.e. x, y) dependence of a highly
non–spherical coarse grained density distribution. Since the resulting averaged distribution 〈ρ〉(rD)
is equivalent to a spherical cosmic void whose radius is approximately 250 Mpc (as in Ref. [8]),
the latter type of void models can be thought of as rough averages of more realistic non–spherical
configurations. As a consequence, the use of a Szekeres model seems to suggest that results obtained
by means of spherical LT models may be robust: while local non–spherical information could still
provide important refinements, and is needed for computations involving null geodesics (specially
when fitting CMB constraints), it is likely that basic bottom line information is already contained
in the spherical voids constructed with LT models.

6 Conclusions
The model we have presented is one among the first attempts in using the Szekeres solution as
a theoretical and empiric tool to study and interpret cosmological observations [28, 29, 9, 30].
This opens new possibilities for inhomogeneous cosmologies, as this is the most general available
cosmological exact inhomogeneous and anisotropic solution of Einstein’s equations. The model
provides a more nuanced and much less restrictive description of the need to constrain our location
with respect to a center location. It is also a concrete example that illustrates the possibility
that a mildly increasing void profile (required by observations) can emerge if local structures are
coarse-grained and then averaged. Of course, notwithstanding these appealing features, the model
and its assumptions must be subjected to hard testing by data from the galaxy redshift surveys,
and evidently the more comprehensive this data can be the better it can be used for this purpose.
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Figure 3: Radial profile of the spherically symmetric averaged distribution (normalized by the
background density ρ0)

Unfortunately current surveys like 2dF of SDSS do not cover the whole sky and only focus on small
angular regions of it. However in the near future this limitation may be overcome – for example, Sky
Mapper3 aims to cover the whole southern sky which will provide sufficient data to test possibilities
suggested and elaborated in this work. A more comprehensive and detailed article on the model
proposed here is currently under elaboration and will be submitted soon for publication.
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