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Preface

Classical electromagnetic theory, together with classical and quan-
tum mechanics, forms the core of present-day theoretical training for
undergraduate and graduate physicists. A thorough grounding in these
subjects is a requirement for more advanced or specialized training.

Typically the undergraduate program in electricity and magnetism
involves two or perhaps three semesters beyond elementary physics, with
the emphasis on the fundamental laws, laboratory verification and elabora-
tion of their consequences, circuit analysis, simple wave phenomena, and
radiation. The mathematical tools utilized include vector calculus,
ordinary differential equations with constant coefficients, Fourier series,
and perhaps Fourier or Laplace transforms, partial differential equations,
Legendre polynomials, and Bessel functions.

As a general rule a two-semester course in electromagnetic theory is
given to beginning graduate students. It is for such a course that my book
is designed. My aim in teaching a graduate course in electromagnetism is
at least threefold. The first aim is to present the basic subject matter as a
coherent whole, with emphasis on the unity of electric and magnetic
phenomena, both in their physical basis and in the mode of mathematical
description. The second, concurrent aim is to develop and utilize a number
of topics in mathematical physics which are useful in both electromagnetic
theory and wave mechanics. These include Green’s theorems and Green’s
functions, orthonormal expansions, spherical harmonics, cylindrical and
spherical Bessel functions. A third and perhaps most important pur-
pose is the presentation of new material, especially on the interaction of
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viii Preface

relativistic charged particles with electromagnetic fields. In this last area
personal preferences and prejudices enter strongly. My choice of topics is
governed by what I feel is important and useful for students interested in
theoretical physics, experimental nuclear and high-energy physics, and that
as yet ill-defined field of plasma physics.

The book begins in the traditional manner with electrostatics. The first
six chapters are devoted to the development of Maxwell’s theory of
electromagnetism. Much of the necessary mathematical apparatus is con-
structed along the way, especially in Chapters 2 and 3, where boundary-
value problems are discussed thoroughly. The treatment is initially in
terms of the electric field £ and the magnetic induction B, with the derived
macroscopic quantities, D and H, introduced by suitable averaging over
ensembles of atoms or molecules. In the discussion of dielectrics, simple
classical models for atomic polarizability are described, but for magnetic
materials no such attempt is made. Partly this omission was a question of
space, but truly classical models of magnetic susceptibility are not possible.
Furthermore, elucidation of the interesting phenomenon of ferromagnetism
needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic pheno-
mena, mostly of a macroscopic sort. Plane waves in different media,
including plasmas, as well as dispersion and the propagation of pulses, are
treated in Chapter 7. The discussion of wave guides and cavities in Chapter
8 is developed for systems of arbitrary cross section, and the problems of
attenuation in guides and the Q of a cavity are handled in a very general
way which emphasizes the physical processes involved. The elementary
theory of multipole radiation from a localized source and diffraction
occupy Chapter 9. Since the simple scalar theory of diffraction is covered
in many optics textbooks, as well as undergraduate books on electricity and
magnetism, I have presented an improved, although still approximate,
theory of diffraction based on vector rather than scalar Green’s theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly
more attention from physicists and astrophysicists. Chapter 10 represents
a survey of this complex field with an introduction to the main physical
ideas involved.

The first nine or ten chapters constitute the basic material of classical
electricity and magnetism. A graduate student in physics may be expected
to have been exposed to much of this material, perhaps at a somewhat
lower level, as an undergraduate. But he obtains a more mature view of it,
understands it more deeply, and gains a considerable technical ability in
analytic methods of solution when he studies the subject at the level of this
book. He is then prepared to go on to more advanced topics. The
advanced topics presented here are predominantly those involving the
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interaction of charged particles with each other and with electromagnetic
fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamics still impresses
and delights as a beautiful example of the covariance of physical laws under
Lorentz transformations. The special theory of relativity is discussed in
Chapter 11, where all the necessary formal apparatus is developed, various
kinematic consequences are explored, and the covariance of electrodynamics
is established. The next chapter is devoted to relativistic particle kine-
matics and dynamics. Although the dynamics of charged particles in
electromagnetic fields can properly be considered electrodynamics, the
reader may wonder whether such things as kinematic transformations of
collision problems can. My reply is that these examples occur naturally
once one has established the four-vector character of a particle’s momentum
and energy, that they serve as useful practice in manipulating Lorentz
transformations, and that the end results are valuable and often hard to
find elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy
loss and scattering and develops concepts of use in later chapters. Here
for the first time in the book I use semiclassical arguments based on the
uncertainty principle to obtain approximate quantum-mechanical ex-
pressions for energy loss, etc., from the classical results. This approach, so
fruitful in the hands of Niels Bohr and E. J. Williams, allows one to see
clearly how and when quantum-mechanical effects enter to modify classical
considerations.

The important subject of emission of radiation by accelerated point
charges is discussed in detail in Chapters 14 and 15. Relativistic effects
are stressed, and expressions for the frequency and angular dependence of
the emitted radiation are developed in sufficient generality for ail appli-
cations. The examples treated range from synchrotron radiation to
bremsstrahlung and radiative beta processes. Cherenkov radiation and the
Weizsicker-Williams method of virtual quanta are also discussed. In the
atomic and nuclear collision processes semiclassical arguments are again
employed to obtain approximate quantum-mechanical results. I lay con-
siderable stress on this point because I feel that it is important for the
student to see that radiative effects such as bremsstrahlung are almost
entirely classical in nature, even though involving small-scale collisions.
A student who meets bremsstrahlung for the first time as an example of a
calculation in quantum field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion
of scalar and vector fields in spherical waves is developed from first
principles with no restrictions as to the relative dimensions of source and
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wavelength. Then the properties of electric and magnetic multipole radia-
tion fields are considered. Once the connection to the multipole moments
of the source has been made, examples of atomic and nuclear multipole
radiation are discussed, as well as a macroscopic source whose dimensions
are comparable to a wavelength. The scattering of a plane electromagnetic
wave by a spherical object is treated in some detail in order to illustrate a
boundary-value problem with vector spherical waves.

In the last chapter the difficult problem of radiative reaction is discussed.
The treatment is physical, rather than mathematical, with the emphasis on
delimiting the areas where approximate radiative corrections are adequate
and on finding where and why existing theories fail. The original Abraham-
Lorentz theory of the self-force is presented, as well as more recent classical
considerations.

The book ends with an appendix on units and dimensions and a biblio-
graphy. In the appendix I have attempted to show the logical steps
involved in setting up a system of units, without haranguing the reader as
to the obvious virtues of my choice of units. I have provided two tables
which 1 hope will be useful, one for converting equations and symbols and
the other for converting a given quantity of something from so many
Gaussian units to so many mks units, and vice versa. The bibliography
lists books which 1 think the reader may find pertinent and useful for
reference or additional study. These books are referred to by author’s
name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electro-
dynamics which I have taught off and on over the past eleven years, at both
the University of Illinois and McGill University. I wish to thank my
colleagues and students at both institutions for countless helpful remarks
and discussions. Special mention must be made of Professor P. R. Wallace
of McGill, who gave me the opportunity and encouragement to teach what
was then a rather unorthodox course in electromagnetism, and Professors
H. W. Wyld and G. Ascoli of Illinois, who have been particularly free with
many helpful suggestions on the treatment of various topics. My thanks
are also extended to Dr. A. N. Kaufman for reading and commenting on a
preliminary version of the manuscript, and to Mr. G. L. Kane for his
zealous help in preparing the index.

J. D. JACksON

Urbana, Illinois
January, 1962
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Introduction to
Electrostatics

Although amber and lodestone were known by the ancient Greeks,
electrodynamics developed as & quantitative subject in about 80 years.
Coulomb’s observations on the forces between charged bodies were made
around 1785. About 50 years later, Faraday was studying the effects of
currents and magnetic fields. By 1864, Maxwell had published his famous
paper on a dynamical theory of the electromagnetic field.

We will begin our discussion with the subject of electrostatics—problems
involving time-independent electric fields. Much of the material will be
covered rather rapidly because it is in the nature of a review. We will use
¢lectrostatics as a testing ground to develop and use mathematical tech-
niques of general applicability.

1.1 Coulomb’s Law

All of electrostatics stems from the quantitative statement of Coulomb’s
law concerning the force acting between charged bodies at rest with respect
to each other. Coulomb (and, even earlier, Cavendish) showed experi-
mentally that the force between two small charged bodies separated a
distance large compared to their dimensions

(1) varied directly as the magnitude of each charge,

(2) varied inversely as the square of the distance between them,

(3) was directed along the line joining the charges,

(4) was attractive if the bodies were oppositely charged and repulsive

if the bodies had the same type of charge.
Furthermore it was shown experimentally that the total force produced
1
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on one small charged body by a number of the other small charged bodies
placed around it was the vector sum of the individual two-body forces of
Coulomb.

1.2 Electric Field

Although the thing that eventually gets measured is a force, it is useful
to introduce a concept one step removed from the forces, the concept of
an electric field due to some array of charged bodies. At the moment, the
electric field can be defined as the force per unit charge acting at a given
point. It is a vector function of position, denoted by E. One must be
careful in its definition, however. It is not necessarily the force that one
would observe by placing one unit of charge on a pith ball and placing it
in position. The reason is that one unit of charge (e.g., 100 strokes of cat’s
fur on an amber rod) may be so large that its presence alters appreciably
the field configuration of the array. Consequently one must use a limiting
process whereby the ratio of the force on the small test body to the charge
on it is measured for smaller and smaller amounts of charge. Experi-
mentally, this ratio and the direction of the force will become constant as
the amount of test charge is made smaller and smaller. These limiting
values of magnitude and direction define the magnitude and direction of the
electric field E at the point in question. In symbols we may write

F=gE (1.1)

where F is the force, E the electric field, and g the charge. In this equation
it is assumed that the charge ¢ is located at a point, and the force and the
electric field are evaluated at that point.

Coulomb’s law can be written down similarly. If F is the force on a
point charge g, located at x,, due to another point charge ¢,, located at
X,, then Coulomb’s law is
(Xl — Xz) (12)

F = kq,q,
%, — ”‘2|3

Note that ¢, and ¢, are algebraic quantities which can be positive or
negative. The constant of proportionality k depends on the system of units
used.

The electric field at the point x due to a point charge ¢; at the point x;
can be obtained directly:

E(x) = kg, X=X (1.3)

X
x —x

as indicated in Fig. 1.1. The constant k is determined by the unit of charge
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Fig. 1.1

chosen. In electrostatic units (esu), unit charge is chosen as that charge
which exerts a force of one dyne on an equal charge located one centimeter
away. Thus, with cgs units, kK = 1 and the unit of charge is called the
“stat-conlomb.” Tn the mks system, k = (4m¢,) 3, where ¢, (= 8.854 X
10-12 farad/meter) is the permittivity of free space. We will use esu.*
The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of

point charges g, located at x,, i = 1,2, . . ., n, as the vector sum:
"i'l
X it Xi
Ex) = > g, E=X) (1.4)
i=1 IX - zI

If the charges are so small and so numerous that they can be described by
a charge density p(x} [if Ag is the charge in a small volume Az Ay Az at
the point x’, then Ag = p(x') Ar Ay Az], the sum is replaced by an
integral:

E(x) =fp(x') X = X) jay (1.5)
x —x'f?

where d®x' = dx’ dy’ d2’ is a three-dimensional volume element at x'.

At this point it is worth while to introduce the Dirac delta function. In one
dimension, the delta function, written d(z — @), is a mathematically improper
function having the properties:

(1) 8(x —a) =0 forx # a, and
(2) f &(x —a)dx =1 if the region of integration includes # = a, and is zero

otherwise.

The delta function can be given rigorous meaning as the limit of a peaked curve
such as a Gaussian which becomes narrower and narrower, but higher and
higher, in such a way that the area under the curve is always constant. L.
Schwartz’s theory of “distributions is a comprehensive rigorous mathematical
approach to delta functions and their manipulations.t

* The question of units is discussed in detail in the Appendix.

T A useful. rigorous account of the Dirac delta function is given by Lighthill. (Full
references for items cited in the text or footnotes by author only will be found in the
Bibliography.)
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From the definitions above it is evident that, for an arbitrary function f(=),

3) ff(.;c) Hx — a) dx =f(a), and
@ f 1@ 5@ — a)dv = —f1a),

where a prime denotes differentiation with respect to the argument.
If the delta function has as argument a function f(x) of the independent
variable z, it can be transformed according to the rule,

®) Hf@) = D e — =,
d_'x(xz)

1

where f(z) is assumed to have only simple zeros, located at z = z,.
In more than one dimension, we merely take products of delta functions in
each dimension. In three dimensions, for example,

(6) o(x — X) = 6y — Xy) 6z, — Xp) d(z5 — Xy)
is a function which vanishes everywhere except at x = X, and is such that

1 if AV contains x = X,
(7 ox — X) ¥z = . .
AV 0 if AV does not contain x = X.

Note that a delta function has the dimensions of an inverse volume in whatever
number of dimensions the space has.

A discrete set of point charges can be described with a charge density by
means of delta functions. For example,

o) =3 g, 8x — x)) (1.6)
=1

represents a distribution of » point charges g;, Iocated at the points x;. Substitu-
tion of this charge density (1.6) into (1.5) and integration, using the properties of
the delta function, yields the discrete sum (1.4).

1.3 Gauss’s Law

The integral (1.5) is not the most suitable form for the evaluation of
electric fields. There is another integral result, called Gauss’s law, which
is often more useful and which furthermore leads to a differential equation
for E(x). To obtain Gauss’s Jaw we first consider a point charge ¢ and a
closed surface S, as shown in Fig. 1.2. Let r be the distance from the
charge to a point on the surface, n be the outwardly directed unit normal
to the surface at that point, da be an element of surfacc area. If the electric
field E at the point on the surface due to the charge ¢ makes an angle 6
with the unit normal, then the normal component of E times the area

element is: cos 0

— da (1.7

E-nda=gq
,

Since E is directed along the line from the surface element to the charge g,
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q inside §

q outside S n

Fig. 1.2 Gauss’s law. The normal component of electric field is integrated over the
closed surface S. If the charge is inside (outside) .S, the total solid angle subtended at
the charge by the inner side of the surface is 4n (zero).

cos 0 da = r? d(), where d() is the element of solid angle subtended by da
at the position of the charge. Therefore

E.nda=qdQ (1.8)

If we now integrate the normal component of E over the whole surface, it
1s easy to see that

__|4mq if q lies inside S
i« E-nda = {0 if g lies outside S (1.9)
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This result is Gauss’s law for a single point charge. For a discrete set of
charges, it is immediately apparent that

fﬁ E-nda =47 g, (1.10)
5 7

where the sum is over only those charges inside the surface S. For a
continuous charge density p(x), Gauss’s law becomes:

4; E-nda = 4fnf p(x) d3x (1.11)
s v

where V is the volume enclosed by S.

Equation (1.11) is one of the basic equations of electrostatics. Note that
it depends upon

(1) the inverse square law for the force between charges,

(2) the central nature of the force,

(3) the linear superposition of the effects of different charges.

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields,
with matter density replacing charge density.

It is interesting to observe that before Coulomb’s observations
Cavendish, by what amounted to a direct application of Gauss’s law, did
an experiment with two concentric conducting spheres and deduced that
the power law of the force was inverse nth power, where n = 2.00 4 0.02.
By a refinement of the technique, Maxwell showed that n = 2.0 4 0.00005.
(See Jeans, p. 37, or Maxwell, Vol. 1, p. 80.)

1.4 Differential Form of Gauss’s Law

Gauss’s law can be thought of as being an integral formulation of the
law of electrostatics. We can obtain a differential form (i.e., a differential
equation) by using the divergence theorem. The divergence theorem states
that for any vector field A(x) defined within a volume V surrounded by
the closed surface S the relation

§ A-nda= |V-Adx

] 14

holds between the volume integral of the divergence of A and the surface

integral of the outwardly directed normal component of A. The equation

in fact can be used as the definition of the divergence (see Stratton, p. 4).
To apply the divergence theorem we consider the integral relation

expressed in Gauss’s theorem:

45 E-nda=4qrf p(x) 3z
s v
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Now the divergence theorem allows us to write this as:

f (V.E — dnp) d®x = 0 (1.12)
V

for an arbitrary volume V. We can, in the usual way, put the integrand
equal to zero to obtain
V.E=4np (1.13)

which is the differential form of Gauss’s law of electrostatics. This
equation can itself be used to solve problems in electrostatics. However,
itisoftensimpler to deal with scalar rather than vector functions of position,
and then to derive the vector quantities at the end if necessary (see below).

1.5 Another Equation of Electrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three
components of the electric field E(x). Perhaps some readers know that a
vector field can be specified completely if its divergence and curl are given
everywhere in space. Thus we look for an equation specifying curl E as a
function of position. Such an equation, namely,

VXE=0 (1.14)
follows directly from our generalized Coulomb’s law (1.5):
B0 = [ px) S0 g
, x — x'°
The vector factor in the integrand, viewed as a function of x, is the negative
gradient of the scalar 1/jx — x| :

m - _v(]x —]: x’l)

Since the gradient operation involves x, but not the integration variable x’,
it can be taken outside the integral sign. Then the field can be written

E(x) = —Vf—-&)— & (1.15)
Ix — x|
Since the curl of the gradient of any scalar function of position vanishes
(V x Vy =0, for all ), (1.14) follows immediately from (1.15).
Note that V x E =0 depends on the central nature of the force
between charges, and on the fact that the force is a function of relative
distances only, but does not depend on the inverse square nature.
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B

Fig. 1.3

In (1.15) the electric field (a vector) is derived from a scalar by the
gradient operation. Since one function of position is easier to deal with
than three, it is worth while concentrating on the scalar function and giving
it a name. Consequently we define the “‘scalar potential” ®(x) by the

equation: E— _Vo (1.16)
Then (1.15) shows that the scalar potential is given in terms of the charge
density by ,
B(x) =Jﬂ d (1.17)
X — x|

where the integration is over all charges in the universe, and @ is arbitrary
to the extent that a constant can be added to the right side of (1.17).

The scalar potential has a physical interpretation when we consider the
work done on a test charge ¢ in transporting it from one point (4) to
another point (B) in the presence of an electric field E(x), as shown in Fig.
1.3. The force acting on the charge at any point is

F =gE
so that the work done in moving the charge from 4 to B is
B B
W:-fF-dl:-ng.dl (1.18)
4 /1

The minus sign appears because we are calculating the work done on the
charge against the action of the field. With definition (1.16) the work can
be written

which shows that ¢@ can be interpreted as the potential energy of the test
charge in the electrostatic field.

From (1.18) and (1.19) it can be seen that the line integral of the electric
field between two points is independent of the path and is the negative of
the potential difference between the points:

B

1
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This follows directly, of course, from definition (1.16). If the path is closed,
the line integral is zero,

§;E-d1=0 (1.21)

a result that can also be obtained directly from Coulomb’s law. Then
application of Stokes’s theorem [if A(x) is a vector field, S is an open
surface, and C is the closed curve bounding S,

§>Aodl=J‘ (V x A)y-nda
c s

where dlis a line element of C, n is the normal to S, and the path C is
traversed in a right-hand screw sense relative to n] leads immediately back
toV x E=0.

1.6 Surface Distributions of Charges and Dipoles and Discontinuities
in the FElectric Field and Potential

One of the common problems in electrostatics is the determination of
electric field or potential due to a given surface distribution of charges.
Gauss’s law (1.11) allows us to write down a partial result directly. If a
surface S, with a unit normal n, has a surface-charge density of o(x)
(measured in statcoulombs per square centimeter) and electric fields E;
and E, on either side of the surface, as shown in Fig. 1.4, then Gauss’s law
tells us immediately that

(Ey; — E) +n = 4a0 (1.22)

This does not determine E, and E, unless there are no other sources of
field and the geometry and form o are especially simple. All that (1.22)
says is that there is a discontinuity of 4z¢ in the normal component of
electric field in crossing a surface with a surface-charge density o, the
crossing being made from the ““inner’” to the “outer” side of the surface.

Fig. 1.4 Discontinuity in the normal com-
ponent of electric field across a surface layer
of charge.
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The tangential component of electric field can be shown to be continuous
across a boundary surface by using (1.21) for the line integral of E around
a closed path. Itis only necessary to take a rectangular path with negligible
ends and one side on either side of the boundary.

A general result for the potential (and hence the field, by differentiation)
at any point in space (not just at the surface) can be obtained from (1.17)
by replacing p d°x by o da:

ox) = | 25 4 (1.23)
s |x = x|

Another problem of interest is the potential due to a dipole-layer
distribution on a surface S. A dipole layer can be imagined as being formed
by letting the surface S have a surface-charge density o(x) on it, and
another surface S’, lying close to S, have an equal and opposite surface-
charge density on it at neighboring points, as shown in Fig. 1.5. The
dipole-layer distribution of strength D(x) is formed by letting S” approach
infinitesimally close to § while the surface-charge density o(x) becomes
infinite in such a manner that the product of o(x) and the local separation
d(x) of S and S” approaches the limit D(x):

lim o(x) d(x) = D(x) (1.24)
d(x)—0

The direction of the dipole moment of the layer is normal to the surface S
and in the direction going from negative to positive charge.

To find the potential due to a dipole layer we can consider a single dipole
and then superpose a surface density of them, or we can obtain the same
result by performing mathematically the limiting process describedin words
above on the surface-density expression (1.23). The first way is perhaps
simpler, but the second gives useful practice in vector calculus. Con-
sequently we proceed with the limiting process. With n, the unit normal to

o(x)

d(x)

s Fig. 1.5 Limiting process involved in
S’ creating a dipole layer.
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‘: - nd(x’)

Fig. 1.6 Dipole-layer geometry.

the surface S, directed away from S’, as shown in Fig. 1.6, the potential
due to the two close surfaces is

o(x") , f o(x") "
=| —=22 da’ — d
o) s |x — x| “ s |x — x’ + ndj “

For small d we can expand |x — x" + nd|™'. Consider the general
expression |x + a|~!, where |a|] < [x|. Then we write

1 1
[x + a] \/x2+a2+2a-x

=1(1_a.2x+...)
x X

=1+a.V(_l.)+.
x

Z

This is, of course, just a Taylor’s series expansion in three dimensions. In
this way we find that the potential becomes [upon taking the limit (1.24)]:

D(x) =LD(x’)n . V’( ) da’ (1.25)

x — x’|
Equation (1.25) has a simple geometrical interpretation. We note that

n~V’( 1 )da,z_cosﬁda’=__dQ

Ix — x|

where df2 is the element of solid angle subtended at the observation point
by the area clement da’, as indicated in Fig. 1.7. Note that 4Q has a positive
sign if 0 is an acute angle, i.e., when the observation point views the *‘inner”
side of the dipole layer. The potential can be written:

O(x) = — LD(x’) dQ (1.26)
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Fig. 1.7 The potential at P due to the

dipole layer D on the area element da’ is

just the negative product of D and the

solid angle element d(Q2 subtend“ed by da’
at P.

For a constant surface-dipole-moment density D, the potential is just the
product of the moment and the solid angle subicnded at the observation
point by the surface, regardless of its shape. !

There is a discontinuity in potential in crossing a double layer. This
can be seen by letting the observation point come infinitesimally close to
the double layer. The double layer is now imagined to consist of two
parts, one being a small disc directly under the observation point. The
disc is sufficiently small that it is sensibly flat and has constant surface-
dipole-moment density D. Evidently the total potential can be obtained
by linear superposition of the potential of the disc and that of the remain-
der. From (1.26) it is clear that the potential of the“disc alone has a
discontinuity of 47D in crossing from the inner to the outer side, being
—27D on the inner side and +2#D on the outer. The potential of the
remainder alone, with its hole where the disc fits in, is continuous across
the plane of the hole. Consequently the total potential jump in crossing

the surface is: O, — O, = 47D (1.27)

This result is analogous to (1.22) for the discontinuity of electric field in
crossing a surface-charge density. Equation (1.27) can be interpreted
“physically” as a potential drop occurring “inside’ the dipole layer, and
can be calculated as the product of the field between the two layers of
surface charge times the separation before the limit is taken.

1.7 Poisson’s and Laplace’s Equations

In Sections 1.4 and 1.5 it was shown that the behavior of an electro-
static field can be described by the two differential equations:

V. .E = 4np (1.13)
VXE=0 (1.14)

the latter equation being equivalent to the statement that E is the gradient
of a scalar function, the scalar potential @:

E=—V (1.16)

and
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Equations (1.13) and (1.16) can be combined into one partial differential
equation for the single function ®(x):

V2D = —4dmp (1.28)

This equation is called Poisson’s equation. In regions of space where there
is no charge density, the scalar potential satisfies Laplace’s equation:

Vip =0 (1.29)
We already have a solution for the scalar potential in expression (1.17):
O(x) = f P gy (1.17)

Ix — x|

To verify that this does indeed satisfy Poisson’s equation (1.28) we operate
with the Laplacian on both sides:

VI = V? f XD g p(X')Vz( ) #x (1.30)

Ix — x'| Ix — x|

We must now calculate the value of V3(1/|x — x’|). It is convenient (and

allowable) to translate the origin to x” and so consider V3(1/r), where r is
the magnitude of x. By direct calculation we find that V3(1/r) = 0 for

r=+0:
2 ' 2
v(l) <L) S L gy

r r dr? r r dr?

At r = 0, however, the expression is undefined. Hence we must use a
limiting process. Since we anticipate something like a Dirac delta function,
we integrate V2(1/r) over a small volume ¥ containing the origin. Then we
use the divergence theorem to obtain a surface integral:

R R I O

=f ﬁ(}—)rz dQ = —4r
S Or\r

™

It has now been established that V(1/r) = 0 for r 5+ 0, and that its volume
integral is —4x. Consequently we can write the improper (but mathe-
matically justifiable) equation, V2(1/r) = —4=wd(x), or, more generally,

V-‘*(‘x _1 x’I) = —4md(x — X)) (1.31)

Having established the singular nature of the Laplacian of 1/r, we can
now complete our check on (1.17) as a solution of Poisson’s equation.
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Equation (1.30) becomes
VD =J‘p(X,)[—:47T(5(X — x)] &' = —4np(x)

verifying the correctness of our solution (1.17).

1.8 Green’s Theorem

If electrostatic problems always involved localized discrete or continuous
distributions of charge with no boundary surfaces, the general solution
(1.17) would be the most convenient and straightforward solution to any
problem. There would be no need of Poisson’s or Laplace’s equation. In
actual fact, of course, many, if not most, of the problems of electrostatics
involve finite regions of space, with or without charge inside, and with
prescribed boundary conditions on the bounding surfaces. These boundary
conditions may be simulated by an appropriate distribution of charges
outside the region of interest (perhaps at infinity), but (1.17) becomes
inconvenient as a means of calculating the potential, except in simple cases
(e.g., method of images).

To handle the boundary conditions it is necessary to develop some new
mathematical tools, namely, the identities or theorems due to George
Green (1824). These follow as simple applications of the divergence
theorem. The divergence theorem:

f V-Adzx = § A-nda
v s

applies to any vector field A defined in the volume ¥ bounded by the closed
surface S. Let A = ¢Vy, where ¢ and y are arbitrary scalar fields. Now

V. (¢Vy) = ¢Viy + V. Vy (1.32)
and
dn

where 0/0n is the normal derivative at the surface S (directed outwards
from inside the volume V). When (1.32) and (1.33) are substituted into
the divergence theorem, there results Green’s first identity:

f ($V2y + Vg - Vy) P = 35 2% da (1.34)
v s On

If we write down (1.34) again with ¢ and y interchanged, and then subtract
it from (1.34), the V¢ - Vy terms cancel, and we obtain Green’s second
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identity or Green’s theorem:

-
f (Vi — pVP¢) d°x = fﬁ Lan—w — wa—ﬂ da (1.35)
v sL” 0dn on

Poisson’s differential equation for the potential can be converted into an
integral equation if we choose a particular , namely 1/R = 1/|x — x/|,
where X is the observation point and x' is the integration variable. Further,
we put ¢ = @, the scalar potential, and make use of V2@ = —4rp. From

(1.31) we know that V3(1/R) = —4#d(x — x'), so that (1.35) becomes

[ [t -1+ ] = o2 (1) 122

If the point x lies within the volume V, we obtain:

_ [ 2%) o ifﬂ}j@_ i(L)] ,

) fr R @ 47 JsLR dn’ ? on’' \R da (1.36)
If x lies outside the surface S, the left-hand side of (1.36) is zero. [Note
that this is consistent with the interpretation of the surface integral as being
the potential due to a surface-charge density ¢ = (1/47)(0®/on’) and a
dipole layer D = —(1/47)®. The discontinuities in electric field and
potential (1.22) and (1.27) across the surface then lead to zero field and
zero potential outside the volume V']

Two remarks are in order about result (1.36). First, if the surface S goes
to infinity and the electric field on § falls off faster than R™1, then the
surface integral vanishes and (1.36) reduces to the familiar result (1.17).
Second, for a charge-free volume the potential anywhere inside the volume
(a solution of Laplace’s equation) is expressed in (1.36) in terms of the
potential and its normal derivative only on the surface of the volume. This
rather surprising result is not a solution to a boundary-value problem, but
only an integral equation, since the specification of both ® and J®/dn
(Cauchy boundary conditions) is an overspecification of the problem. This
will be discussed in detail in the next sections, where techniques yielding
solutions for appropriate boundary conditions will be developed using
Green’s theorem (1.35).

1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary
Conditions

The question arises as to what are the boundary conditions appropriate
for Poisson’s (or Laplace’s) equation in order that a unique and well-
behaved (i.e., physically reasonable) solution exist inside the bounded
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region. Physical experience leads us to believe that specification of the
potential on a closed surface (e.g., a system of conductors held at different
potentials) defines a unique potential problem. This is called a Dirichlet
problem, or Dirichlet boundary conditions. Similarly it is plausible that
specification of the electric field (normal derivative of the potential) every-
where on the surface (corresponding to a given surface-charge density)
also defines a unique problem. Specification of the normal derivative
is known as the Neumann boundary condition. We now proceed to prove
these expectations by means of Green’s first identity (1.34).

We want to show the uniqueness of the solution of Poisson’s equation,
V2@ = —47p, inside a volume I subject to either Dirichlet or Neumann
boundary conditions on the closed bounding surface S. We suppose, to
the contrary, that there exist two solutions ®; and ®, satisfying the same
boundary conditions. Let

U=, — d, (1.37)

Then V2U = 0 inside ¥V, and U = 0 or dU/én = 0 on S for Dirichlet and
Neumann boundary conditions, respectively. From Green’s first identity
(1.34), with ¢ = » = U, we find

aNﬂU4-VU.VU)ﬁx==§ v Y da (1.38)
v Js  on
With the specified properties of U, this reduces (for both types of boundary

conditions) to:

VU] d%> = 0
‘F?‘

which implies VU = 0. Consequently, inside V¥, U is constant. For
Dirichlet boundary conditions, {/ = 0 on S so that, inside V, ®, = @, and
the solution is unique. Similarly, for Neumann boundary conditions, the
solution is unique, apart from an unimportant arbitrary additive constant.

From the right-hand side of (1.38) it is clear that there is also a unique
solution to a problem with mixed boundary conditions (i.e., Dirichlet over
part of the surface §, and Neumann over the remaining part).

It should be clear that a solution to Poisson’s equation with both ® and
0®/on specified on a closed boundary (Cauchy boundary conditions) does
not exist, since there are unique solutions for Dirichlet and Neumann
conditions separately and these will in general not be consistent. The
question of whether Cauchy boundary conditions on an open surface define
a unique clectrostatic problem requires more discussion than is warranted
here. The reader may refer to Morse and Feshbach, Section 6.2, pp. 692-
706, or to Sommerfeld, Partial Differential Equations in Physics, Chapter
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11, for a detailed discussion of these questions. Morse and Feshbach base
their treatment on the replacement of the partial differential equation by
appropriate difference equations which they then solve by an iterative
procedure. On the other hand, Sommerfeld bases his discussion on the
method of characteristics where possible. The result of these investigations
on which boundary conditions are appropriate is summarized in the table
below (based on one given in Morse and Feshbach), where different types

Type of Equation

Type of .. . Parabolic
Boz’llsldary ,E]hpflc Hyperbolic (heat-con-
Condition (Poisson’s eq.) (wave eq.) duction eq.)

Dirichlet
Open surface Not enough Not enough Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution
Neumann
Open surface Not enough Not enocugh Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution in
general
Cauchy
Open surface Unphysical Unique, stable}| Too much
results solution
Closed surface Too much Too much Too much

A stable solution is one for which small changes in the boundary conditions
cause appreciable changes in the solution only in the neighborhood of the
boundary.

of partial differential equations and different kinds of boundary conditions
are listed,

Study of the table shows that electrostatic problems are specified only
by Dirichlet or Neumann boundary conditions on a closed surface (part
or all of which may be at infinity, of course).
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1.10 Formal Solution of Electrostatic Boundary-Value Problem with
Green’s Function

The solution of Poisson’s or Laplace’s equation in a finite volume ¥ with
either Dirichlet or Neumann boundary conditions on the bounding surface
S can be obtained by means of Green’s theorem (1.35) and se-called
“Green’s functions,”

In obtaining result (1.36)—not a solution—we chose the function y to
be 1/|x — x'|, it being the potential of a unit point charge, satisfying the
equation:

2 ( L ) = —dmd(x — X)) (1.31)

Ix — x|

The function 1/]x — x| is only one of a class of functions depending on the
variables x and x’, and called Green’s functions, which satisfy (1.31). In

general, V2G(x, x') = —4md(x — X') (1.39)

1
X — X'|

where

G(x, x') = | + F(x, x') (1.40)

with the function F satisfying Laplace’s equation inside the volume V'
V2F(x,x) = 0 (1.41)

In facing the problem of satisfying the prescribed boundary conditions
on O or 0®/dn, we can find the key by considering result (1.36). As has
been pointed out already, this is not a solution satisfying the correct type
of boundary conditions because both @ and d®/dn appear in the surface
integral. It is at best an integral equation for ®. With the generalized
concept of a Green’s function and its additional freedom [via the function
F(x, x)), there arises the possibility that we can use Green’s theorem with
p = G(x, x') and choose F(x, x') to eliminate one or the other of the two
surface integrals, obtaining a result which involves only Dirichlet or
Neumann boundary conditions. Of course, if the necessary G(x, x')
depended in detail on the exact form of the boundary conditions, the
method would have little generality. As will be seen immediately, this is
not required, and G(x, x') satisfies rather simple boundary conditions on S.

With Green’s theorem (1.35), ¢ = @, » = G(x, x’), and the specified
properties of G (1.39), it is simple to obtain the generalization of (1.36):

oo 0G(x, x )] da’

iy gy o L NI
O(x) = Lp(x)cxx,x)d +1L ﬁ 660 22— ) 2.

(1.42)
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The freedom available in the definition of G (1.40) means that we can make
the surface integral depend only on the chosen type of boundary con-
ditions. Thus, for Dirichlet boundary conditions we demand:

G,(x,x)=0 forx'onS (1.43)

Then the first term in the surface integral in (1.42) vanishes and the
solution is

B(x) =f p(X')Gp(x, X') 2’ — ifﬁ ox) %2 (148)
v 4rr Jg on’

For Neumann boundary conditions we must be more careful. The
obvious choice of boundary condition on G(x, X') seems to be

M(x, x)=0 forx'on$S
on’

since that makes the second term in the surface integral in (1.42) vanish,
as desired. But an application of Gauss’s theorem to (1.39) shows that

~

§> ?ﬁ da’ = —4n

s on’

Consequently the simplest allowable boundary condition on Gy is
Gy x,x') = — 4 forx’on S (1.45)
on' S

where S is the total area of the boundary surface. Then the solution is

4 r S .7 1 a(D 1
D(x) = (D)g + | p(XIGN(X, X) d°" + — —— Gyda' (1.46)
Jy 4n Js On

where (@) is the average value of the potential over the whole surface.
The customary Neumann problem is the so-called ‘“‘exterior problem” in
which the volume V'is bounded by two surfaces, one closed and finite, the
other at infinity. Then the surface area S is infinite; the boundary
condition (1.45) becomes homogeneous; the average value (®)g vanishes.

We note that the Green’s functions satisfy simple boundary conditions
(1.43) or (1.45) which do not depend on the detailed form of the Dirichlet
(or Neumann) boundary values. Even so, it is often rather involved (if
not impossible) to determine G(x, x") because of its dependence on the
shape of the surface S. We will encounter such problems in Chapter 2
and 3.

The mathematical symmetry property G(x, X)) = G(x’, x) can be proved
for the Green’s functions satisfying the Dirichlet boundary condition
(1.43) by means of Green’s theorem with ¢ = G(x, y) and » = G(x', y),
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where y is the integration variable. Since the Green’s function, as a function
of one of its variables, is a potential due to a unit point charge, this sym-
metry merely represents the physical interchangeability of the source and
the observation points. For Neumann boundary conditions the symmetry
is not automatic, but can be imposed as a separate requirement.

As a final, important remark we note the physical meaning of F(x, x’).
It is a solution of Laplace’s equation inside ¥ and so represents the
potential of a system of charges external to the volume V. It can be
thought of as the potential due to an external distribution of charges so
chosen as to satisfy the homogeneous boundary conditions of zero
potential (or zero normal derivative) on the surface S when combined with
the potential of a point charge at the source point x". Since the potential
at a point x on the surface due to the point charge depends on the positicn
of the source point, the external distribution of charge F(x, x") must also
depend on the “‘parameter’” x’. From this point of view, we see that the
method of images (to be discussed in Chapter 2) is a physical equivalent
of the determination of the appropriate F(x, x’) to satisfy the boundary
conditions (1.43) or (1.45). For the Dirichlet problem with conductors,
F(x, x’) can also be interpreted as the potential due to the surface-charge
distribution induced on the conductors by the presence of a point charge
at the source point x’.

1.11 Flectrostatic Potential Fnergy and Energy Density

In Section 1.5 it was shown that the product of the scalar potential and
the charge of a point object could be interpreted as potential energy. More
precisely, if a point charge ¢, is brought from infinity to a point x; in a
region of localized electric fields described by the scalar potential @ (which
vanishes at infinity), the work done on the charge (and hence its potential
energy) is given by

W, = q,0(x,) (1.47)
The potential @ can be viewed as produced by an array of (n — 1) charges
g;(j=1,2,...,n — 1) at positions x;. Then

n—1

ox) = > —di— (1.48