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wellian beam, From this data it is possible to compute
the response to a self luminous disk centered on the
axis of the receptor and to determine how much the
response is amplified by the foam cone.

It turns out that a model cone placed at the center
of a Fraunhofer image and pointed at the center of the
exit pupil yields about % as much amplification as if it
were exposed to an extended source having the same
size, shape, and position as the exit pupil. It may be
demonstrated in the case of an extended source in the
plane of the pupil, that the amplification of the model
cone increases as the size of the source decreases and
this parallels what has been found in human vision in
connection with the Stiles-Crawford effect.

It would be interesting to know in the case of a
focused beam what would be the effect of varying the
size of the exit pupil. This possibility could have been
checked by varying the size of the mirror or the object
and image distances, but these things have yet to be
done.

It is possible that the directional sensitivity of cones
might result in an improvement in resolving power
when the eye is out of focus or is subject to spherical
aberration. This possibility has not been tested.

The model receptor has a greater amplification for
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an extended Maxwellian source than for an extended
Fraunhofer source, but no measurement was made of
the relative radiance values of the two sources required
to produce equal responses.

In the study of the response of the model cone to a
focused beam the foam cone was placed at several posi-
tions in the diffraction pattern and directional sensi-
tivity data were obtained. The direction of maximum
amplification shifts as a function of the position of the
receptor in the diffraction pattern.

The results obtained in this study using two wave-
lengths for both types of irradiation of the detector
indicate that the amplification produced by the ellipsoid
is more pronounced with the shorter wavelength. The
results indicate that the curves used to represent the
Stiles-Crawford effect must vary from wavelength to
wavelength and that the amplification that takes place
in a cone ought to affect its relative luminosity for the
different wavelengths.

It was shown that one may treat the individual cone
cell as an independent unit if its axis and the axes of
neighboring cone cells are parallel. However, when the
sides of two adjacent cones are nearly parallel and al-
most touching each other marked interaction effects
occur.
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Experiments connected with Luneburg theory as developed by the author are analyzed with the purpose

of making explicit their underlying assumptions. In particular, the role of ad koc assumptions is explored in

detail and minimized wherever possible. It is shown that the special assumptions under which much of
the experimental work was executed may be considerably broadened thereby indicating how the theory
may be more directly founded upon experiment. The principal problem is the determination of the sensory
visual transformation between the geometry of the binocular perception and that of the stimulus, and, in
particular, the determination of the visual radial distance function. Three principal techniques, the double
circumhoropters, the Blumenfeld alleys, and the equipartitioned geodesics are discussed from this generalized
point of view. The specific experimental material treated here consists of results obtained by Zajaczkowska,
Shipley, and the Knapp Laboratory group at Columbia University. Some of these results appear for the first
time. Theoretical material presented for the first time consists most notably of the analysis of the equiparti-
tioned geodesics, the two-point experiments for the determination of Gaussian curvature, and the meta-

theoretical discussions of the several experiments.

1. INTRODUCTION

HEN the predictions of a formal mathematical
theory are to be compared with factual experi-
mental results, as in this analysis, one may treat the

theory as closed and not subject to modification in
which case the entire deductive structure stands or falls
as a whole in the face of any significant experiment.
We shall view the theory of binocular space perception

as open in the sense that the fundamental assumptions
of the theory are not sufficient to specify the system
categorically but only up to a point where the comple-
tion of the system may be left to properly conducted
experiments. For present purposes, we take as funda-
mental the axiom frame developed by the author.! In

‘particular, we assume that binocular visual perception

1A. A. Blank, J. Opt. Soc. Am. 48, 328 (1958). (a) Sec. 5. (b) Sec.4.
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may be described in a compact convex metric space of
three dimensions for which there exists a unique
geodesic (visually straight) segment connecting each
arbitrary pair of points. This postulation is strongly
founded upon qualitative empirical observations con-
cerned only with length orderings and alignments.
Such a postulation is probably the indispensable
minimum for the class of observers who can be said to
have a well-defined space sense.

There are an infinity of conceivable geometries which
satisfy the stated basic assumptions. The principal
problems are to specify categorically for each observer
the intrinsic binocular visual geometry, and to discover
the relation or visual transformation between the
geometry of the physical stimulus and that of the visual
perception. Ultimately, it would be desirable to relate
the visual geometry to anatomical and physiological
parameters and the theory has already been useful and
suggestive in that respect.?

On the basis of simple qualitative tests on a number of
observers it is postulated that the binocular visual space
is adequately described as a Riemannian space of
constant Gaussian curvature.! In order to categorize the
intrinsic visual geometry it is then only necessary to
determine the sign of the curvature, whether positive
(spherical geometry), negative (hyperbolic), or zero
(Euclidean). This problem and the problem of deter-
mining the visual transformation from physical space
into sensory space are left to experiment.

The greatest benefit of the systematic postulational
development is that it permits analysis of experimental
methods in a very general framework of weak assump-
tions. This is a notable advance over the initial form of
the theory which was fettered by special e priors
hypotheses. It has become easier to understand the
assumptions underlying each empirical technique and
to appreciate the character of the ambiguities and
certainties in the inferences framed upon the resultant
data. Moreover, in designing each experiment, we are
freed in large measure from the obligation of deciding
beforehand what are the relevant physical parameters
in binocular space perception. As yet, no experimental
program has made full use of this great freedom, but
there can be little question of its eventual value.

For the purpose of formal simplicity only we shall
here further restrict application of the theory to ob-
servers with clinically normal binocular vision. No new
difficulties are introduced in principle by the study of
observers with anisometropia (binocular asymmetry)
and, in particular the formal analysis of aniseikonia
(asymmetry due to unequal magnification) appears to
be especially simple.?® However, for the purpose of
determining the visual transformation, each asymmetric
observer is a law unto himself, and in order to obtain

2 A. A. Blank, Brit. J. Physiol. Optics 14, 154-169,222-235(1957).
(a) Sec. 4, Horopters of Fixed Radial Distance, et seq. (b) Sec. 5, The
Mapping of Physical into Visual Space.
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some generality and simplicity in this discussion we
confine our attention to the putative normal observer.
As our principal sources of empirical information we
shall utilize the published researches of the Knapp
Laboratory of Physiological Optics,® A. Zajaczkowska,*
and T. Shipley.® We shall also utilize some hitherto
unpublished information from the same sources.

2. SUMMARY OF THE THEORY

For the purposes of this analysis we shall touch
briefly upon the central points of the theory. More
detailed presentations exist elsewhere.?:6

It may be well to emphasize since Luneburg does not
make it clear and usage differs,* that the subject matter
of the theory is binocular vision in a stationary stimulus
environment with freedom of fixation, but immobile
erect head. Once motions of any kind are allowed, time
automatically enters as a significant variable. Pre-
sumably, a completely adequate description of visual
phenomena would require a space-time metric. To
describe even what an observer with immovable head
sees in a given stimulus configuration, it would be
necessary to supply a record of his eye movements as
well as the specification of the stimulus. Yet, as one
might expect, if the question were not raised in such
generality, the observer arrives in time at a perception
which is principally dependent upon the stimulus, and
not the exact history of his mode of observation. Time,
in a manner of speaking, has been removed as a factor
in the situation.t

Observation under the condition of a time-stabilized
response is perforce the subject matter of the theory
because of the obvious demand for experimental
practicability. It takes time to fully develop the sense
of depth in a given stimulus configuration, and the
many references in Luneburg to “immediate” sensations
are inappropriate from this point of view. The properties
of time-stabilized binocular perception with immobile

3L. H. Hardy et al. and A. A, Blank et al., The Geomeiry of
Binocular Space Perception (Knapp Memorial Laboratories,
Institute of Ophthalmology, Columbia University College of
Physicians and Surgeons, New York, 1953). (a) Fig. 25, p. 56.
(b) Sec.I1, 2b (i), p. 43. Also similar unpublished data of the Four-
Point Experiment. (c) Calculated from Table VI, p. 54 and Table
VII, p. 59. d. Sec. II, 2b (ii), p. 45.

4 A, Zajaczkowska, J. Opt. Soc. Am. 46, 514 (1956). (a) Table IV,
g. 7523. (b) Fig. 11, p. 521. (c) Fig. 12 (left), p. 522. (d) Table II, p.

17.

5T. Shipley, J. Opt. Soc. Am. 47, 795 (1957). (a) Figs. 10~12,
pp. 810 fi. (b{ Fig. 3, p. 807, ELC-OWR and BLC-OWR.

6 A. A. Blank, J. Opt. Soc. Am. 43, 717 (1953).

* For example, the comments of H. von Schelling [J. Opt. Soc.
Am. 46, 309 (1956)] in connection with one of Luneburg’s discus-
sions do not apply to the fully formulated theory.

T It is natural to wonder about the possibility of framing a
theory of time-stabilized observations with moving head. The
principal difficulty would be to determine the relevant physical
parameters, A space-time theory which permitted motion of the
stimulus viewed with immobile head would appear to be the
simpler undertaking at this time. A second difficulty is that ob-
servations with moving head permit the observer to make judg-
ments on the basis of motion parallax, which is primarily a
monocular factor.
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head can easily be described in terms of the elemental
geometric relations which serve as a basis for the entire
development of the theory.!

Since the experiments considered here have been
conducted primarily in the eye level horizontal plane,
some few in a plane of elevation through the interocular
axis, it will be sufficient for the sequel to remain within
a plane geometry.

The categorical specification of the intrinsic visual
geometry may be accomplished at one stroke by observ-
ing the qualitative outcome of a trial of the Blumenfeld
Alleys experiment.” However, this experiment involves
new assumptions and, therefore, we shall proceed to
this end in an epistemologically independent fashion by
first examining some of the properties of the visual
transformation and then decide the issue between the
euclidean, spherical, and hyperbolic geometries by a
simple experiment of an entirely different kind.

An observer acts as though his perceptions originate
from a single point of regard or egocenter and he usually
takes no conscious note of the double ocular source of
his visual information. The perceptual egocenter
naturally suggests itself as the origin of a polar coordi-
nate system for visual space.® In the sensory horizontal
plane through the egocenter, we may choose polar
coordinates r, ¢, where 7 describes sensed radial
distance in a properly chosen system of units, and ¢
denotes sensory azimuth angle, the value ¢=0 being

Fic. 1. Bipolar coordinates, v, ¢.

7 W. Blumenfeld, Z. Psychol. 65, 241 (1913).

$A. A. Blank, “The Luneburg theory of binocular space
perception,” in Psyckology, a Study of a Science, edited by S. Koch,
Study I, Vol. 1, (McGraw-Hill Book Company, Inc., New York,
1958); cf. Part III, Sec. A.2.
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assigned to the sagittally forward direction. The
metric describing the visual distance between two
points P1= (r1,¢1) and Po= (rs,¢2) may then be written
explicitly for each of the three possible geometries.

If the visual transformation from the physical
coordinates of the stimulus to the visual coordinates
(r,¢) is known, the visual metric gives a complete
characterization of the geometry of the resultant im-
pression. For the purpose of describing the visual
transformation, Luneburg introduced bipolar coordi-
nates v, ¢ defined for any point P in the eye level
horizontal plane. Consider the circle passing through P
and the ocular centers L, R (Fig. 1). Such a circle is
known as a Vieth-Mueller circle. The coordinate v is the
angle at which the ocular axes meet when they cross
at P. The Vieth-Mueller circle, itself, satisfies the
equation y=const; it is the locus of constant con-
vergence passing through P. If 4 denotes the forward
intersection of the circle with the median, the angle ¢,
the bipolar azimuth, is the angle subtended by the arc
PA at either eye. The equation ¢=const describes a
rectangular hyperbola (Hillebrand) passing through P
and the homolateral eye with center at the point O
midway between the ocular centers. We shall be some-
what inconsistent in specifying values of ¢ and ¥ and
utilize degree measure for ¢ and radian measure for .
The use of radian measure for v is convenient since
physical radial distance from the observer is then
roughly equal to the reciprocal of vy multiplied by the
distance between the ocular centers. The fundamental
visual role of these coordinates in normal balanced.
vision (definitely not in aniseikonia*®) follows from the
observation that the hyperbolas ¢=const correspond
very nearly to sensory loci of fixed direction from the
egocenter, the so-called radial horopters, and that the
circles y=const approximate the loci of fixed distance
from the egocenter, the so-called circumhoropters. In
other terms, binocular vision transforms a hyperbola
¢=const into a polar ray ¢= const, and a circley= const
into an egocentered circle r=const. It may be inferred
therefore, that in a fixed stimulus situation there are
two numerical functions;

¢=f(¢): r:g(,y)’

which describe the sensory geometry corresponding to
any given stimulus. We expressly avoid the hypothesis
that the functions f and g have an invariant form
independent of the particular stimulus. The basic
assumptions do not guarantee the possibility of arbi-
trary prolongation of segments beyond the convex hull
of a given visual configuration.’»?® It may well happen
that the extension of a stimulus configuration may
change the geometric relations among the points
already present and hence, the form of the transforma-
tion (2.1). Luneburg assumed explicitly that these
relations remain constant and are independent of the
particular stimulus configuration. It is important to

2.1)
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realize that no assumption of this kind is necessary. It
is possible to determine the relations in various con-
figurations by direct experiment.

A number of considerations indicate that it is possible
to define f(¢), independently of the stimulus, by

= ¢+¢0) (22)

where ¢ is an arbitrary constant.?¢ An over-all additive
constant ¢ has no effect on the metric relations and it
may as well be assumed that ¢o=0.] If the relation
(2.2) is accepted as a special hypothesis, it is un-
necessary to assume anything about the functional
dependence of 7; in particular, we need not even assume
r=g(v). There exist techniques for the determination
of » which depend only on (2.2). However, experiments
do indicate that the circumhoropters, the physical loci
which correspond to the perception of constant distance
from the egocenter, are reasonably closely described in
the central and paracentral binocular field by the
equation y=const. More peripherally, the true circum-
horopters appear to be somewhat flatter than the
Vieth-Mueller circles. This effect is most marked in the
proximal region. However, with this reservation in
mind, it is convenient to adopt the hypothesis r=g(y).

2a. Sign of the Gaussian Curvature

On the basis of (2.2) alone it is possible to determine
the sign of the Gaussian curvature by means of ex-
tremely simple techniques which involve the use of
stimuli consisting of two points. Here we discuss two
such techniques.§

In one technique, the equilateral triangle experiment,
the observer is instructed to set two variable lights
Pi=(y1,01), P2= (v2,¢2) so that the visual distances
from the two points to himself are equal to each other
and to the visual distance between the two points. In
effect, the observer is asked to place the egocenter and
the two perceived points at the vertices of an equilateral
triangle. The instruction is given in the more com-
plicated way in order to assure that the observer care-
fully compares the lengths involved and is not preju-
diced by any conceptions with regard to the vertex
angles of an equilateral triangle. The datum measured
is the angle ®=|¢o—¢1|. If the angle is 60°, the
geometry is euclidean; greater than 60°, spherical ; less
than 60°, hyperbolic.

In a trial of this experiment by C. J. Campbell and
the author, one observer yielded a mean angular setting
of 39.5° another, 37.8°. While the observers find the
subjective comparison of distances from the egocenter
to other distances a difficult one, and settings are more
scattered than in other experiments, the simplicity of
the method has much to commend it.

1 According to Shipley (see reference 5), Balasz and Walker
give analytical indications of the reasonableness of the relation
¢=¢ (in a paper to be published).

§ Unpublished results at the Knapp Laboratory (1952).
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Another simple experiment with two points is the
isosceles right triangle experiment. Let a light be fixed
at P1= (y1,61). The observer is instructed to set a light
Ps= (v3,¢2) on a perpendicular at Py to the ray OP,,
from the egocenter to P; (Fig. 2) in such a way that the
visual separation between P; and P, is equal to that
between P; and the egocenter 0. The geometry is
euclidean if the angle &= |¢o— ¢y | is 45°; if the angle is
greater, the geometry is elliptic; if less, hyperbolic. No
experimental determinations have been made by this
technique.

The interpretation of an angle defect in these two
experiments as a hyperbolic effect is intuitively clear if
it is recalled that in a Lobachevskian geometry the sum
of the angles of a triangle is less than 180°, but in
spherical geometry the sum is in excess.

The limited experimental findings above are cited
only to show with what simple empirical means it is
possible to categorize the visual geometry among the
three Riemannian geometries of constant curvature.
The finding here is that the Gaussian curvature is
negative and this is in agreement with the great pre-
ponderance of hyperbolic results by every method.

2b. Visual Metric

Let us assume in this discussion that the visual
geometry is hyperbolic.| In that case the metric
D(Py,P;) describing the visual distance between two

Po

0

F1G. 2. Isosceles right-triangle experiment to determine
the curvature of visual space.

|| Although this assumption has a restrictive appearance it
actually is in no way delimiting. If it is in error, the experimental
results will yield either vanishing (Euclidean) or imaginary
(spherical) visual lengths.
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points Py=(ri,¢1), Pa= (r3,¢2) is given explicitly in
certain units by

coshD(P,,P3)=coshr; coshrs

— sinhry sinhr, COS(qoz— gol). (2.3)

This formula is cognate to the Euclidean law of cosines.
Luneburg used a different polar coordinate frame p,¢
where

2 r
p= tanh—;

24
o (2.4)
K is a constant which is interpreted as Gaussian
curvature. Luneburg’s representation has the advantage
that when p and ¢ are plotted on a euclidean polar
frame, the resultant map is a conformal representation
of the Lobachevskian plane; that is, angles are the same
in the map as in the visual plane. The advantages of the
coordinates 7, ¢ lie in much greater simplicity of compu-
tation and intuitive understanding, Mathematically,
the two systems are completely equivalent, the differ-
ences are purely formal. In the following, all relations
will be written in the », ¢ system.

It is interesting to note for the hyperbolic geometry
in contrast to the Euclidean that there is an absolute
unit of length and hence that it is possible to calculate
the lengths of the sides in the triangle experiments of
Sec. 2a from the measured angles. In the equilateral
triangle experiment the side length s is given by

(2.5)

In the isosceles right triangle experiment the length r;
of a leg is given by

coshis=1% coseci®.

coshr;= cotd (2.63)
and the length r, of the hypotenuse by
coshys=cosh?r;. (2.6b)

2c. Radial Distance Function

Under the preceding assumptions the complete
geometric characterization of binocular perception for
a normal individual is given by specifying the visual
radial coordinate 7 in terms of the physical parameters.
In particular, it is convenient for present purposes to
accept as a good approximation the special assumption
of (2.1) that the radial distance function  in a given
stimulus depends only upon the convergence angle v.
Most of the experimental efforts have been devoted to
the empirical determination of the function r=g(¥), the
principal methods being the Blumenfeld alleys, the
Luneburg double circumhoropters, and our equiparti-
tioned geodesics. The discussion is devoted primarily to
these experiments; other experimental trials in visual
mensuration such as the triangles of Sec. 2a or the
Helmholtz geodesics yield some limited information
concerning the radial distance function.
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The possibility that the form of the function r=g(y)
may depend upon the stimulus is an interesting one.
Luneburg? originally considered the possibility that
there exist certain transformations of the physical
stimulus which do not result in changes in the visual
perception, but he discarded the idea and it does not
recur in his later work.®!! The existence of these
transformations would imply that g(y) does change
with the stimulus. Since the empirical determination of
the radial distance function must automatically shed
light on this question we need not assume more con-
cerning the function g(y) than can be ascertained by
direct experiment and this possibility may be left open.

The work at the Knapp Laboratory?® concluded with a
direct attack upon the problem of characterizing the
dependency of the function g(y) upon the parameters of
the stimulus. Zajaczkowska® and Shipley® have not
yet reached that stage in their investigations but some
of Zajaczkowska’s results bear directly upon the
problem.

3. METHODS AND RESULTS

We shall take up, in turn, each of the three principal
techniques for the determination of 7(y). In each case
we shall examine the underlying assumptions as well
as the experimental indications.

3a. Luneburg Double CircumhoroptersY

This experiment is performed in two independent
stages, the three-point and four-point experiments. In
the three-point experiment two points, Po= (vo,$0) and
Py= (y0,¢1) are fixed on the circle y=+,. A third point,
Py== (y1,¢2) is variable on an inner Vieth-Mueller circle
y=+; and is set by the observer so that the distance
from P; to P, is visually equated to the distance from
P; to Py (Fig. 3). The observer’s task is repeated for a
number of different settings of ¢1—¢o. If it is assumed
that the Vieth-Mueller circles are circumhoropters in a
homogeneous geometry, then the cosines

y=cos(p1—¢o), %= cos(p2—do) (3.1a)
must satisfy a linear relation
y=mx+b. (3.1b)

Luneburg" has demonstrated the converse: among the
Riemannian geometries, the homogeneous geometries

9R. K. Luneburg, Mathematical Analysis of Binocular Vision
(Princeton University Press, Princeton, 1947). (a) Formula
(6.892), p. 72. (b) Sec. 4.6, p. 44f.

R, K. Luneburg, “Metric Methods in Binocular Visual
Perception,” in Studies and Essays, Courant Anniversary Volume
(Interscience Publishers, Inc., New York, 1948).

nR. K. Luneburg, J. Opt. Soc. Am. 40, 627 (1950).

q The author prefers this name to that of double Vieth-
Mueller circles since the theorerical design of the experiment is
valid in principle for true circumhoropters only and these are not
Vieth-Mueller circles for asymmetric observers and possibly not
for balanced observers in the proximal and lateral fields.
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Fi6. 3. Three-point double circumhoropters experiment.

are the only ones for which the general outcome of the
three-point experiment is a linear relation. The experi-
mental results do generally follow a linear pattern up to
the limits of measurement (the Knapp Laboratory®
reports angles ¢1—¢o out to about 24°, Zajaczkowskat
to 21°). The values ro=g(vo) and r1=g(r1) are deter-
mined by

b2

_— 1
(1—0)2—m? (31

cosh?ry= sinh7; =m sinhr,.

Analogous relations hold for the other two homogeneous
geometries.®

The physical limitations of the three-point experi-
ment do not permit a size match if y;—v, is made too
large. It is generally true in these investigations that
when the physical parameters are small the experiment
is insensitive.!® For that reason the determination by
the three-point experiments of the constants » and b is
not sufficiently accurate3®

In order to overcome the insensitivity of the three-
point experiment, Luneburg devised the four-point
experiment for the determination of . Let Po= (v0o',¢0)
and Py*= (y¢,¢0*) be fixed points on the circle y=1'.
On a smaller circle y=+," with y,/>~, there are two
variable lightS, Pi= (71',(]31) and P *= (’Yl',(fn*). The
observer’s task is to equate the visual distance between
P, and Py* with that between Py and P¢* for several
different settings of ¢o*—¢o. Again, a linear relation is
expected, namely,

sing (¢o*— o) =m’ sing (¢1*—¢1), (3.2a)
where, setting 1'=g(v1"), ro’=g(v¢’), we have
sinhry’=m’ sinhry’. (3.2b)

In the Knapp Laboratory experiments, limited de-
partures from exact linearity were found in the extremes
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of the range 0<¢*—¢,<50° (Zajaczkowska uses a
more limited range and probably does not encounter
this difficulty.)

The value of »’ in (3.2b) depends on the choice of
the values of v1’ and v,’ and may also depend upon
changes in the form of the function g(y) due to differ-
ences in the stimulus configuration. In order to couple
the two experiments it is necessary to develop some
additional hypothesis about the radial distance func-
tion. From the epistemological considerations it almost
seems better to deal with the insensitive three-point
experiment alone and contend with variability in the
results.**

It is of interest to consider the current hypotheses
concerning g(vy) in relation to the problem of coupling
the two experiments. For certain reasons (discussed
below in Sec. 3d) Luneburg® assumed that the coordi-
nate p of formula (2.4) is given in the form

(3.3)

where o is a personal constant of the observer. In that
case the radial distance function will be determined for
each observer by the two parameters ¢ and K. It then
becomes possible to calculate the value of ¢ from the
three-point experiment and then, without any restric-
tion on ¢/, v/, to calculate K from the data of the
four-point experiment.!! We are not compelled, however,
to make a categorical assumption of this type. We may
entertain the more general hypothesis that r=g(y),
where g is independent of the stimulus without postulat-
ing any special functional form. In that case, the two
experiments may be matched by setting vo'=1,,
v'=v1 and it would follow that r¢'=ro, #,/=7;, the
slopes m and m’ are equal, and hence that the Egs.
(3.1c) may be used to determine the values of r. The
author’s hypothesis'-® that visual radial distance de-
pends upon differences in convergence rather than con-
vergence itself would require only that v1’ —vo'=v1—70.

Trials of the double circumhoropters were made
independently by Zajaczkowska'? and by the Knapp
Laboratory.? The experiments at the Knapp Labo-
ratory cover the more extensive conditions, those
of Zajaczkowska utilize only one condition (excluding
pilot experiments), but for a considerable variety of
observers.

The Knapp Laboratory trials were executed in two
series. The earlier series was based on Luneburg’s
design using the assumptions of (3.3). The results have
received only partial publication? At the time the
data were obtained no attention was paid in calculation
to the matching of conditions from the two stages of
the experiment. While the data almost uniformly

p=2¢"7,

**Tt is even possible that the three-point experiment can be
made adequately sensitive by using the method of “doubling
back,” that is, by taking P, and P, on the same side of P, This
would increase the sensitivity by effectively doubling the range of
available angles.

12 A, Zajaczkowska, Quart. J. Exptl. Psychol. VIII(2), 66 (1956).
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indicated negative Gaussian curvature they did not
yield consistent values of ¢ and K under differing
conditions.ft The results exhibited a significant measure
of conformity with the idea that convergence disparity
is the significant factor, rather than convergence (see
Sec. 3d).3® In the second series of experiments, the
restriction yo=10o', y1=71 was imposed on each trial
and the value of v¢ was fixed throughout. As an in-
dicator of the validity of the assumption that the
function r=g(y) is the same in each experimental
configuration we may observe whether g(vo) is constant.
Values of g(vo) are given in Table I as calculated from
the published settings of Knapp Laboratory observers.
Despite the variability in the results, the difference
between the two observers is evident and it is probably
fair to say that g(ve) is sufficiently constant for each
observer to encourage the belief that the experiments
are mutually consistent under the stated conditions.
Zajaczkowska treats the double circumhoropter experi-
ment by the same methods as the first Knapp Labora-
tory series and therefore also did not consider the
problem of mutual consistency. In Zajaczkowska’s
work each of the DVMC experiments is performed
under the following condition: the values of v are given
in the three-point experiment by v¢=0.05, v1=0.06,
approximately; in the four-point experiment by
¥0'=0.02, v//=0.06. From the data of these experi-
ments, values of ¢ and K are calculated by Luneburg’s
formulas. Under Luneburg’s hypothesis (3.3) concern-
ing the visual radial coordinate p, the quantities ¢ and
K ought to be constants independent of the choice
of e, 71, v0, v1, but since the experiments are based on
only one selection of values of these experimental
variables, it is clear that the results obtained cannot
verify or disprove Luneburg’s hypothesis. The results of
certain pilot experiments are cited as indicating that
Luneburg’s computation of o rests on a satisfactory
assumption.!? In particular, Zajaczkowska reports linear
plots of logpi/po against (y1—<o). This alone is not
sufficiently specific since it includes many other possi-
bilities such as p=F(yo)e~** where F(v¢) is completely
arbitrary. Perhaps it is also worth remarking that the
exponential form is not essential since, as Shipley also
notes, many other functional forms fit the data equally
well. None of this is meant to preclude the possibility
»

TaBLE I. Values of ry=g(vo), v0~0.025, obtained from Knapp
Laboratory settings of the double circumhoropters.»

yr~
Observer 0.030 0.035 0.045 0.065
G.R. 1.53 1.45 1.69 1.35
M. C.R. 0.87 1.14 0.82 0.97

» See reference 3c.

1t Unpublished results (1950). The data are suitable for
matching, but it has not been done.
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that other aspects of the pilot data may be more
strongly indicative one way or the other.

One other aspect of the matching problem may
deserve mention. Some of the values of K obtained in
the first series of Knapp Laboratory experiments were
more negative than —1. This result is anomalous in the
sense of implying the possibility of perception of sizes
and distances greater than infinity. Such results are
probably due to the improper matching of conditions in
the two stages of the experiment and were not obtained
in the matched experiments of the second series. An
observer E. K. with K=—1.06 is also reported!? by
Zajaczkowska.i}

An alternative method of testing the hypothesis
p=2¢"771is to use the calculated values of ¢ and K from
the double circumhoropters to predict and compare with
the outcomes of other experiments. For the purpose of
this comparison, we shall consider in the following, the
results of Zajaczkowska’s experiments on the Helmholtz
geodesics and the Blumenfeld alleys.

3b. Blumenfeld Alleys

The Blumenfeld alleys experiment suffers from the
same fundamental weakness as the double circum-
horopters in consisting of two independent stages which
require the assumption that r=g(y) is the same
function in both. Nonetheless, within the frame of this
assumption, the Blumenfeld alleys present the most
striking demonstration of the curvature of visual space.

The Blumenfeld alleys compare the visual perceptions
of equidistance and parallelism. In the most commonly
executed version of the experiment two lights are fixed on
the horizon at points (yo,¢0) and (yo, —¢o) symmetric to
the median. On each of a sequence of smaller Vieth-
Mueller circles y=+v;, (i=1, 2, 3, ---, #n) with
Yo<y1< - - <7va, a pair of lights is placed and con-
strained to move on the circle.§§ To construct the
distance alley, the observer is asked to set the lights of
each adjustable pair symmetrically and so that their
visual separation is equal to that between the fixed
lights. In setting the parallel alley, the observer’s task
is to arrange the two rows of lights terminating at the
fixed lights so that they form visually straight lines
symmetric to the median and perpendicular to the
sensory line running from left to right through the
egocenter. This sensory line will be referred to as the
iransverse axis. If the visual geometry were Euclidean
the two alley settings would be identical, but generally
they are not. In fact, most settings of the alleys place

1} Another observer I.M. is reported as having ¢=0.0 and
K= —1.00, but vanishing o theoretically implies complete lack of
depth perception and K becomes indeterminate. This reported
value of K may have been obtained through an overlooked
division by zero.

§§ The experimental practice has actually been to constrain
each pair of adjustable lights to move along a line transverse to
the median, rather than a Vieth-Mueller circle. This practice is
more awkward theoretically, but more convenient experimentally.
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the lights of the parallel alley closer to the median than
the corresponding lights of the distance alley in accord
with a geometry of hyperbolic character.

Another assumption implicit in the mathematical
computations, aside from the hypothesis that r=g(y) is
the same function in both stages, is connected with the
meaning of parallelism. In a non-Euclidean geometry
parallelism is not definable in the ordinary way by lines
which do not meet no matter how far prolonged. In
hyperbolic geometry there exist infinitely many such
parallels to a given line through a given point; in
spherical geometry there are none. The instruction for
setting a parallel alley given above is unequivocal, but
the use of the word, “parallel,” is not the euclidean one.
The Blumenfeld alleys experiment as performed
hitherto has included the word, ‘“parallel,” without
explanation except that the observer is asked to make
sure that the parallel alley appears neither to
“converge” or ‘‘diverge.” Excepting a few trials of
Blumenfeld’s, only at the Knapp Laboratory, ap-
parently, have the instructions been formulated to
include the categorical requirement of perpendicularity
to the transverse axis, and then in a different context.3@
For their observers, there appeared to be no notable
difference in the responses to the two different kinds of
instruction.||| It is worthwhile to emphasize in this
respect the importance of framing perceptual criteria
precisely according to the mathematical uses to which
they are to be put.

Two methods have been given for determining the
function r=g(y) from the alley settings, one by Lune-
burg! on the assumption that o and K are constants and
one by the author.® Either method can be used to cal-
culate 7o=g(vo) simply. The distance and parallel alley
settings may be fitted by curves described by equations
¢=g¢aly) and ¢=¢,(7), respectively. The equation of
the distance alleys is given by

sinhr singq= sinhrg sin ¢y, (3.4)
the parallel alley, by
tanhr sing,= tanhr, sin g, (3.5)

Luneburg’s method consists of calculating values of
o and K from the slopes of the tangents at the fixed far
points (vo,¢0), (vo, —¢p0). This method has the dis-
advantage of failing to utilize the settings of the more
proximal points of the alleys. Luneburg uses certain
mathematical approximations which are avoided by the
following. Taking ¢,=¢,, va=d¢4, and

2
(—K)*

r
p=2¢"7= tanhE, (3.6)

we differentiate in both equations with respect to .

. Il Blumenfeld,” on the other hand, usually employed the
criterion of perpendicularity only after the observer made atypical
settings of the parallel alley.
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Since the derivatives
ap= (d¢p/d7)7=701 ag= (d¢d/d’Y)‘Y=‘Y°

are given by the experimental slopes of the alleys, we
then may calculate o and K. From the relation (3.6) we
obtain on differentiation,

(dr/dvy)y=v,= — o sinhro 3.7
and hence,
o tango coshro=ay 3.9)
o tange= a, coshro.
Upon eliminating coshr, from (3.8) we obtain
a,a4 ]}
Lol (3.9)
tango

Upon eliminating o from the equations we obtain 7o by
(3.10)

From the value of ry, the other values of r may be
calculated using (3.4) and (3.5). Equation (3.10) can
be used to obtain K by employing the identity

coshro="[as/a, %

1-4-tanh?%/2
coshrg=————
1—tanh?/2
to yield .
aqg/a —1
K='—ezmﬂ. (3.11)
Laa/a,1H+1

The author’s method consists of eliminating » in
Egs. (3.4) and (3.5) to obtain 7, by

sin?pz— sin®ey

=C(y). (3.12)

cosh?o=———
sin?p,— sin’py
The values of 7 for other values of ¥ may then be found
from (3.4) and (3.5). If all the other assumptions of the
experiment are correct, the result (3.12) constitutes a
check on the constancy of curvature. The right-hand
side of the equation is given by a function of ¥ which
can be a constant, in general, if and only if the geometry
has constant Gaussian curvature.

In practice, of course, C(y) will never be exactly
constant. At best, there will be small random variations
about some mean value. The question arises as to the
kind of average to be taken as the mean of the empirical
function. Shipley does not agree with the author’s use
of an average weighted preferentially for larger values of
v. The choice of average can make little difference if the
values of C(y) stay within a sufficiently small interval.
The author’s choice was suggested by the fact that the
alleys were automatically fitted at the distal end, and
by the observation that stress factors have more
influence at the distal end. However, Shipley is probably
right in suggesting that, in the absence of any overriding
consideration, it is best to use the arithmetic mean.
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After Blumenfeld,” trials of the Blumenfeld alleys
were made independently by the Knapp Laboratory,’#
Zajaczkowska,* and Shipley.® The Knapp Laboratory
reports results under only one condition. Zajaczkowska
uses three different settings of the fixed lights. Shipley,
reporting on two observers only, has tried also alleys set
obliquely, although the results of the oblique settings
are not yet reported. Shipley also reports results in
planes of elevation and depression.

In the Knapp Laboratory experiments with yo~0.013
it was noted that values of g(vo) were found which were
comparable with the double circumhoropter results of
Table I, although the values of v differ appreciably
(corresponding to sagittal distances of roughly 2.5 and
5.0 meters).? For observer G. R. the alleys yield
g(v0)=1.47, for M. C. R. g(y0)=0.93.

Zajaczkowska executes experiments under the condi-
tions

v0~0.015, ¢o=4.1°,
v0~0.021, ¢0=5.75°,
'Yo~0.044:, ¢>o= 11.40.

1. “classic alleys”:
2. “intermediate alleys”:
3. “broad alleys”:

The results indicate that ¢ decreases in going from the
classic alleys to the broad alleys, and the absolute value
of K increases. The alley experiments therefore do not
support the constancy of ¢ or K. From Zajaczkowska’s
given values of ¢ and K the value of o may be calculated
by means of Eq. (3.10) to yield

ro=2 arctanh[ (— K)¥¢°7o]. (3.13)

Zajaczkowska calculates 7o in this way, and also by
formula (3.12). However, for the purposes of comparison
Zajaczkowska in (3.13) uses ¢ and K from the double
circumhoropters rather than from the alley data. The
author has computed 7, directly from the alley informa-
tion*® and the values are compared in Table IT with
values obtained from her raw data by Shipley®® using
the method of (3.12).

The values of 7o in Table II obtained by any single
method seem to be broadly comparable in the first two
columns, but generally of a different magnitude in the
third. If the results are taken at face value they give
conflicting testimony as to the merits of the various
hypotheses concerning g(v) cited in Sec. 3a. The author

TaBLE II. Values of 7o calculated by the methods of Blank (3.12)
and Luneburg (3.13) for observers of Zajaczkowska.

Classic Intermediate Broad

) alleys alleys alleys
Observer By @ (B) @) (B) @)
B. A. ceeeee 0.93 1.06 082 0.71
S.V.S. 0.64 0.46 0.33 0.37 0.89 0.71
H.S. 2.00 1.61 211 1.53 1.30 1.27
K. G. 1.12 0.83 1.52 1.14 092 0.75
W. K. 0.93 0.79 0.89 0.87 0.74 0.78

13 Hardy, Rand, and Rittler, A. M. A. Arch. Ophthalmol. 45, 53
(1951). (a) Chart 2A. (b) Chart 3.
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believes that this difficulty will be resolved when more
is known about the empirical visual transformation in
the lateral periphery and proximal regions of the
binocular field. In particular, the hypothesis r=g(y)
may not be sufficiently precise in those areas.

A new contribution to the literature on the alleys
consists of Shipley’s experiments on two observers who
construct the Blumenfeld alleys in the planes of eleva-
tion and depression as well as at eye level. In addition,
other experiments concerned with oblique alleys are
mentioned but not reported in detail. For one observer,
Shipley reports typical settings with the distance
alleys broader than the parallel alleys. For the other
observer, the two kinds of alleys are superimposed at
eye level and below, but the setting above eye level is
typical.

Shipley calculates the radial distance function by the
author’s method for observers of Zajczkowska and other
experimenters in addition to his own. The principal
datum computed is the ratio C(y) of (3.12). The
theoretical prediction is that C(y) is constant and
Shipley justifiably devotes considerable attention to
how well this prediction is met.

On the assumption that the mapping of physical into
visual space is factually of the form ¢=4¢, r=g(y), the
constancy of C(y) is itself a demonstration of the con-
stant curvature of visual space. It is therefore significant
if the function C(v) exhibits a continuing trend rather
than a more or less random variation about some mean
value. In the majority of cases Shipley reports essential
constancy or only moderate departures from constancy.
However, a substantial fraction of observers do exhibit
significant continuing variation in one direction. A fact
of importance is that the strongest deviations are
uniformly of the same kind; they show an increase of
C(v) with v. Such an effect may be caused in a number
of ways and several of these causes may be simul-
taneously operative in any given setting of the alleys.
There seems to be no systematic discussion of the
matter in the literature and therefore we now enumerate
and discuss what seem to be the most important
causes.

1. Direction of the Parallel Alleys

It will be recalled that for the purposes of Luneburg’s
mathematical analysis, the parallel alley is assumed to
be perpendicular to the sensory transverse axis through
the egocenter. However, in almost all performances of
the Blumenfeld alleys experiment reported to date, this
definition is conspicuously absent in the instructions to:
the observers. It is natural therefore to ask whether the
parallel alley is actually orthogonal to the transverse
axis. By use of the partitioning technique, it is, of
course, possible to check the question of perpen-
dicularity directly (see Sec. 3c).

Shipley® has put primary emphasis on this question.
He suggested that the parallel alleys are actually
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perpendiculars to the transverse line joining the two
distant fixed points. This would imply positive gaussian
curvature in the typical mode of setting the Blumenfeld
alleys. At the time of publication he had not yet com-
puted the angle made by a side of the parallel alley with
the transverse axis, but now has obtained an interior
angle of about 87° in at least one case (communicated
January 31, 1958). This deviation is not large but, if
significant, it would mean that the parallel alleys would
have to be set farther inwards to meet the criterion of
perpendicularity. This would reinforce the presumption
of negative curvature. It is worth remarking that if the
parallel alley were perpendicular to the transversal
between the fixed points (spherical geometry) then there
would have to be an angle excess instead of the angle
defect observed.

2. Visual Transformation

The mapping of physical into visual space may not be .

governed exactly by relations of the form o=¢,
r=g(v). For example, it has been noted that the
empirical circumhoropters r=const are not precisely
Vieth-Mueller circles, but tend to flatten at the sides of
the binocular field. The effect is most pronounced in the
proximal region. For observers who wear glasses there
will be refractive effects at oblique angles of gaze, but
these are computable. Observers with uncorrected
asymmetries also cannot be expected to have the stated
form of visual transformation.® This consideration may
be important for certain observers of Zajaczkowska
who were reported to have uncorrected asymmetries.

3. Curvature of the Visual Space

If C(y) is not constant, it is conceivable that the
curvature of the observer’s space is not constant. If true,
this may lead to severe mathematical difficulties. It is
therefore worthwhile to check this point directly by
testing the desarguesian hypothesis!® for any problem
observer. For example, Shipley’s observer OWR appears
to have negative curvature in some parts of his space
and zero curvature in others. In order to obviate such
causes as inaptitude or misinterpretation on the part of
the observer, it is desirable to perform this simple check.

4. Semantic Factors

There frequently appear to be difficulties connected
with the distinction in meaning between visual and
physical mensuration. The problem is more serious with
adults. Children, evidently, have fewer difficulties in
acting directly upon the basis of their perceptions
rather than upon any educated geometrical conceptions.
Both Luneburg and Zajaczkowska remark upon the
quality of children as observers.

The criterion for setting the distance alleys generally
seems to be well understood. The primary semantic
difficulties lie in the parallel alleys. Observers have been
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known to assert that physical parallel lines such as
railroad tracks appear parallel to them. One observer
reported of a picture of railroad tracks meeting at a
vanishing point, that the tracks appeared parallel; yet
two intersecting lines drawn in the same manner did not
appear so. It is clear that the difficulty in this case is
semantic. It seems probable that most of the reported
strongly elliptic settings®®® are due to this difficulty.
Strangely enough, this difficulty does not carry over to
the distance alleys. Most of the observers who do not
distinguish between physical and sensory parallelism,
do distinguish between the criteria for the parallel and
distance alleys and set the two kinds of alley differently.

Another kind of observer sets the two types of alley
in almost exactly the same way #®4®).6(0) Tn some of
these cases there have been verbal indications that the
observer does not find any distinction in meaning be-
tween the two criteria.

For a third class of observers, each side of the
parallel alley is set very nearly as a physically straight
line through the homolateral eye.13®).4@ The possibility
that these settings are made by a monocular criterion
must be kept in mind. An observer whose performance
falls in the latter categories may, of course, have weak
binocular function and should be tested for this by
standard clinical procedures.

Fi6. 4. Equiparti-
tioned visual geo-
desic.
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5. Stress

Whenever the azimuth angle between any two points
is very small, for example, when one light is visually
almost directly in front of another, there are definite
indications of stress. Observers frequently complain
about the effort of concentration necessary to properly
appreciate the spatial relations among such points.
This situation is marked at the distal end of the alleys
and very clearly so in the parallel alley. Zajaczkowska
puts considerable emphasis on this matter. She points
out that the observer may tend to bend the more
distal regions of the parallel alley away from the
median line in automatic avoidance of stress.

6. Training

The Blumenfeld alleys require a painstaking and
time consuming effort on the part of the observer.
Observers become easily fatigued and rarely set alleys
to their own satisfaction at the first try. The usual
trend of events for those observers in which training has
an effect is that successive paralle]l alleys tend to be
brought closer and closer together until a stable
situation is reached. It is probably best to postpone the
taking of alley data until an observer has a measure of
confidence in his skill.

3c. Equipartitioned Geodesics

This technique is in a sense the purest of the three.
The assumption made is that of (2.2) alone, namely that
visual azimuth differs from bipolar azimuth in an
additive constant only. In practice the experiment has
been performed by the Knapp Laboratory and by
Shipley only in connection with settings of parallel
alleys, but this is by no means requisite. The general
mathematical analysis of this technique has been in
existence for some timeY but prior descriptions have
been incomplete and therefore the analysis is given here
in detail.

There are several variations of the method of equipar-
titioned geodesics. Of these the simplest is the following:

Two points Po= (youp0) and P,= (yn,pn) are fixed.
The point P, is the more distal, (vo<va). Some 7—1
points Pr= (vi,¢x), (k=1,2, -+, n—1), are set by the
observer in alignment with Py and P; and in the order
of the indices. The visual lengths between the successive
points are made equal so that the segment PoP, is
divided into # visually equal parts.

The most convenient form of the equation of a visual
geodesic in polar coordinates is the so-called #ormal form
in which the defining parameters are the length p of the
perpendicular from the egocenter to geodesic, and the
angle ¥ made by this perpendicular with the sensory
sagittal axis, Fig. 4. The method cannot be applied if
$=0, that is, if the line is directed through the ego-

9 Unpublished work at the Knapp Laboratory (1951).
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center. If %0, we then have, for each point P; of the
geodesic,

tanhry cos(pr—y)=tanhp, (3.14)

where (75, 1) are visual coordinates for P;.

If  and one value of 7 are both known it is possible
to determine all other values of » by (3.14). If two values
r; and r; are known as from the double circumhoropters,
the angle ¥ may be determined by

tanhr; cosg;— tanhr; cosg;
tany=— .

(3.15)

tanhr; sinp;—tanhr; sine;

If the equipartitioned geogesic is to be used for an
independent determination of #, the angle ¥ must be
determined, either empirically or from the given data.
The simpler procedure is empirical, to construct the
geodesic normal to a known ray from the egocenter.
The method will be insensitive unless a large range of
values of 7 is covered. Equipartitioned Helmholtz
geodesics will generally not provide adequate informa-
tion, for example. However, geodesics turned far from a
transverse orientation will not have normals directed
within the range of values of ¢ limited by the binocular
field, and therefore ¢ will have to be determined by
calculation with the sole exception of parallel alleys
where it is assumed ¥=90°.

Let us assume thaty is known. Every unknown in the
problem may then be considered to be determined by
three quantities; p, the distance QP from the foot Q of
the normal to any other point P; on the geodesic, and
the distance 7 of Py from 0. Every other quantity is
determined by the hyperbolic law of sines. It follows
that only three conditions or three points on the
geodesic are needed for the solution of the problem. Let
Pj, Py, P3 denote any three points which appear in that
order on the geodesic with P, visually midway between
P; and P;. If D; denotes the distance QP;, (=1, 2, 3)
we have

The values D; may be eliminated from (3.16) and the
equation

tanhD,;=sinhp tan(¢:—¢), (¢=1,2,3), (3.17)
to yield
1 2— (ST
sinh?p= [ (+)], (3.18)
tan?(¢a— )L (S-+T)— 25T
where
tan(p1— tan (¢s—
S an (¢ IP), T an(¢s 'P)’ (3.182)
tan(¢2—y) tan(¢s—v)

From the value of p obtained through (3.18) and the
known value of ¢, the other values of 7 are given by
Eq. (3.14).

If ¢ is not known an additional defining condition is
required and we must employ a minimum of four
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equally spaced points, P1, Ps, P3, Py We may then
determine y and proceed by the method above to obtain
the values of r. For notational simplicity we set

B= 2(¢4—¢))

ar=d2— 4,

az=¢1~d4. (3.19)

The visual length of the three equal segments is denoted
by d, and the distance from Q to P4 by ¢ (Fig. 4).
For computational convenience we introduce the
auxiliary point P, on the other side of Q from P4 and
at the same distance ¢. By employing the hyperbolic
law of sines successively to the triangles Py’OP3, Py'OPs,
P,/OP,, we obtain three relations in the three unknowns

B: 2 da

a1=¢3—py,

sinh(2c+kd) sinhkd
sin(8-+ax)

The value of 8 and hence of ¢ may be determined by
eliminating ¢ and d from these equations. For this
purpose the equations are more conveniently written
in the form

sinh2¢ cothkd-+cosh2¢c=sing cota-t+cosg,
(k=1, 2, 3).

These equations are easily solved for d to yield

- , (k=1,2,3).
sinag

(3.20)

sina, sin(az—ay1)
4cosh’d=——
sina; sin(az—as)

sina; sin(a:— a;)
= Y 321)

sinoq sin (az—as)
From the first two equations in (3.20) we then obtain
sinh2¢= (cota;— cotas) sinh2d sing. (3.22)

Taking the value of sinh2¢ from (3.22) and using
cosh2¢= (1+sinh?2¢)? in the first equation of (3.20),
we obtain 8 explicitly in the form,

4\ cosh?d—2p

anf= X (3.23)
14-p2H-4A(A\—p) cosh’d

where

A= cota;— cotas, (3.23a)

and 4 cosh?d is given by (3.21). ‘

The principal empirical caution in the use of these
methods is that the partition points must be well
separated. If too small a segment is partitioned the
curvature of the space will not be made strongly
manifest and the experiment will be rendered insensi-
tive.l® That this is not an empty caution is made clear
by certain remarks of Shipley.5 He observes that an
equipartition of o purallel alley with five points may
yield negative values on the right side of Eq. (3.18).
Observations at the Knapp Laboratory (unpublished)
have shown that this occurs with considerable frequency

u= cota,
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only if the three most distal points are used in the
calculation. For a given observer the sign in (3.18) is
extremely critical with respect to the setting of the
second most distal light. In the parallel alley the three
most distal lights are separated by small azimuth
angles and the two farthest lights are quite close in
azimuth. The situation, therefore, is one in which the
stress factors discussed in Sec. 3b above may easily
affect the setting. Since the region of visual space
involved is not extensive, formula (3.18) will be insensi-
tive and slight changes in the setting will easily affect
the sign of the apparent curvature.

Tt was found above that four conditions are sufficient
to determine the mapping of a visual geodesic. If more
conditions are employed it is possible to eliminate the
four unknowns and obtain nontrivial relations among
the azimuth angles. Let Py= (ri,91), (#=0, 1, 2, 3,4),
denote five visually collinear, equally spaced points.
From the law of sines it is easily demonstrated that

sin(¢s— ¢2) sin(ps—o2) Sin(¢1"¢0)_
sin(go—¢2) sin(p1—2) sin(ps—¢s)

This relation is equivalent to that obtained by Shipley.}*

In Shipley’s paper,falthough the partition technique
was used, the data had not yet been analyzed by the
above method or an equivalent except for an attempt
to apply (3.24). At that time the analysis of the Blumen-
feld alleys was employed.

At the Knapp Laboratory, trials of the equiparti-
tioned parallel alleys were run with three points on a
side. The most distal point Po= (yo,0) was kept at
fixed azimuth ¢, but v, was given a sequence of differ-
ent values. The most proximal point Pa= (ys,¢2) was
constrained so that the difference y;—+o was kept very
nearly constant throughout the series. The values of
ro=g(vo) obtained for each observer was quite constant
throughout the series independently of v, (see Fig. 6).
The mean values obtained for observers G. R., 7o=1.39,
and M. C. R., r¢=1.03, are comparable to the values
cited previously obtained by the other techniques. (Only
these observers are utilized for these comparisons
because they were the only ones to complete the full
course of experiments by the three methods.)

1. (3.24)

3d. Iseikonic Transformations

It will have been appreciated from the foregoing
that generalized treatment of the visual transformation
and, in particular, the radial distance function is
compelled by the experimental results. If it is assumed
that r=g(v) is an adequate hypothesis over much of
the binocular field, then the above indications that
ro=g(vo) (where v, is the minimum value of v in each
configuration) is insensitive to changes in the value
of 7o virtually force consideration of the possibility that

" See reference 5, page 819.
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the form of g(y) changes from -configuration to
configuration.

Ames was the first to suggest the existence of entire
classes of stimulus configurations which are binocularly
indistinguishable. Further, he was able to construct
empirically a sequence of distorted rooms which yield
the same binocular impression as a commonplace
rectangular room.’s Luneburg assumed that the binocu-
larly equivalent rooms were related to one another by
rigid translatory motions in the visual space. This
hypothesis does not seem to be sustained by the
empirical evidence; one direct indication being the
fact that the sensed relative position of the observer and
the room remains constant in the Ames demonstrations.

The Ames rooms lead to the supposition of a regular
transformation law which connects any pair of binocu-
larly equivalent stimuli. In particular, much of the
experimental evidence in the horizontal plane indicates
that an iseikonic transformation of the form

y—v+A, (3.25)
i.e., the addition of an over-all constant A to the
coordinate v, does not affect visual relations. In other
words, if the entire physical stimulus is transformed by
adding a fixed constant to the v coordinate of each of its
points, the visual impression given by the new stimulus
is metrically identical with that given by the old. This
mapping explains certain experimental observations
such as the Helmholtz geodesics and the Ames binocu-
larly distorted rooms without any explicit knowledge of
metric properties.

The experimental material cited by the Knapp
Laboratory workers in connection with (3.25) consists
of trials of the three-point double circumhoropters and
equipartitioned parallel alleys? Similar results (un-
published) were also obtained from the four-point
double circumhoropters. These results were generally
quite favorable to the hypothesis (as in Fig. 6).

Zajaczkowska did not attempt to test (3.25) directly
but some of her data for the Helmholtz geodesics are
relevant®*** and will be treated here.

The Helmholtz geodesics'® are simply the visual
geodesics perpendicular to the median line of the
horizontal plane. These geodesics form a one-parameter
set of curves satisfying the equation

tanhr cosep= const. (3.26)

In the present variant of the experiment, two lights

at the points (yo,$0), (Yo—¢o) are placed symmetrically

15W. H. Ittelson, “Binocular distorted rooms,” The Ames
Demonstrations in Perception (Princeton University Press,
Princeton, New Jersey, 1952), p. 50-52.

*** Zajaczkowska has kindly supplied her complete data from
these experiments for this analysis.

16V, Kries Helmholtz and Southall (translator,) Physiological
Optics (Optical Society of America, Rochester, New York, 1925),
Vol. 3, p. 318.
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F16. 5. Helmholtz geodesics.

with respect to the median. The observer’s task is to
set a light (v4,0), variable on the median, in visual
alignment with the two fixed points. Characteristically,
the observer’s settings are not in physical alignment,
but, at near the setting arches away from the observer,
while at far it arches toward him (Fig. 5). At some
intermediate distance the three lights will also be in
physical alignment. This distance is computed by
Zajaczkowska using Luneburg’s method®® which is
applicable for small angles ¢o. The agreement between
the experimental values and the calculated values for
the distance of the flat geodesic is remarkably good in
six of the nine cases reported.? The Helmholtz settings
are also given with the fixed lights placed three meters
forward from the eyes at ¢==5.71°. Here the calcu-
lated values generally predict much greater curvature
in the geodesics than is found experimentally. For these
observers, settings were obtained for eight forward
positions of the fixed lights varying from 350 cm to
300 cm frontally. In five of these settings, varying from
50 cm to 139 cm frontally, the angle ¢ is kept the same
(o= 10°) so that the fixed conditions in these settings
are connected by iseikonic transformations. The re-
maining settings can also be compared if we: entertain
an additional hypothesis; that the form of g(v) depends
only on the parameter yo=miny and that g(yo) is a
constant of the observer; hence from (3.25) that the
functional dependence of the visual radial coordinate is
in the form r=7(y—~o).

The method of analysis of the data is simple. Setting
ro=_g(v0), r1=g(v1), we have from (3.26),

tanhry cosgo= tanhr;.
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Fic. 6. Visual radial
coordinate 7 as obtained
equipartitioned
parallel alleys. (a) r vs
convergence v. (b) » vs
convergence disparity,
T. (Negative values of v
indicate divergence.)

with the suggested alternate only if the proximal region

A clear showing in favor of the iseikonic transforma-
tions was first obtained at the Knapp Laboratory as the
surprising consequence of a routine series of pre-
liminary trials of a new experiment and a new piece of
apparatus. These were trials of the equipartitioned

' ' l ' | ' I ' 17 T | T |
A [ 8
1%
a
i from
o I | I | 1 1 1 11 i | ] |
-02 .00 .02 04 y .00 .02 r
To first order, it follows that
is omitted.
Y1—Yof dr
tanhr;~ tanhre-4- ( ——) ,  (3.27)
cosh?o \dy/ v =y,
and we obtain
dr
Y1— Yo~ —7% sinh2ro(1 — cosgo) / (—) . (3.28a)
d’)’ Y=Y

If ¢o is kept fixed then the hypothesis of (3.25) implies
that y1—vo remains constant. If p=2¢=97, then the
derivative in (3.27) may be obtained from (3.7). From
(3.26) it then follows that the convergence disparity is
given by

1—cosgy

Y1— Yo~ coshrg. (3.28b)

o

Since under the Luneburg hypothesis 7o increases with
distance from the observer, ¢ is assumed constant, then
v1—0 should increase with distance when ¢, is fixed.

In order to compare all eight settings we may
examine the datum (y1—+0)/(1—cosgo). This quantity
should increase distally if p=2¢=?* and should remain
constant if #=r(y—r,). The results given in Table III
show that as distance from the observer is increased the
values first decrease in the proximal region and then
maintain a fairly constant level. This performance runs
directly counter to the hypothesis p=2¢77 and agrees

TasLE III. Values of (y1—0)/(1—cosgo) obtained from settings
of Helmholtz geodesics by nine observers of Zajaczkowska.

#0=10° 9.46° 7.37° 5.70°

xcm 50 65 83 108 139 180 232 300
AT 024 0.1 0.16 014 0.09 0.09 0.13 0.18
T. K. 024 0.19 0.14 014 0.11 0.09 0.09 0.08
M.K. 020 018 0.14 012 010 0.09 0.10 0.12
M.V.S. 0.21 014 0.13 0.11 0.09 0.09 0.09 0.09
B. A, 021 015 0.16 009 0.11 0.08 0.08 0.07
S.V.S. 029 023 019 022 016 0.4 0.4 0.15
H. S 024 0.18 0.14 014 0.13 0.12 015 0.17
K. G 023 015 0.18 0.4 011 0.11 0.12 0.11
W. K 0.07 0.07 0.10 0.09 0.07 0.07 0.10 0.09

parallel alleys conducted by C. J. Campbell and the
author. In this experiment, parallel alleys consisting of
three lights on a side are constructed. The middle light
on each side is not constrained to move on a Vieth-
Mueller circle but is set by the observer so that it
appears to divide the segment between the near and far
point into two equal parts. The trials were performed
with approximately fixed convergence disparity between
the near and far lights but with varying choices of the
far point. The values of r=g(y) can be calculated by
the same method as for the equipartitioned geodesics.
The results are plotted in Fig. 6(a). Note that the data
of the several experiments, with one exception, are
fitted by curves of roughly the same length and shape
which look very much like the same curve translated
laterally. In fact by plotting each curve in terms of
convergence disparity I'=y—+o [Fig. 6(b)], a remark-
able degree of correspondence is revealed. This initial
observation remains a striking exhibition of the point
in question.

It is of some interest to observe that Luneburg did
not completely disregard the iseikonic transformation
(3.25). His interpretation® of certain experiments®*® was
that the transformation (3.25) is conformal, that is,
leaves visual angles unchanged. If this is coupled with
the assumption that visual radial distance 7 is a function
of convergence angle alone then Luneburg’s conclusion
of (3.3) is inescapable. If on the other hand, one accepts
the principle that these transformations leave all visual
relations unchanged, then all we may conclude is that
convergence disparities are effective in depth perception
rather than convergence itself and we are left with the
empirical problem of determining the exact character
of the radial distance function.

111 From a letter to Paul Boeder (December 20, 1951).
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4. CONCLUSION

We have attempted here to present the problem of
determining the visual transformation in such a way
that the assumptions underlying the experimental
techniques were made explicit. In examining various
hypotheses concerning the visual transformation the
experimental results themselves compel us to retain a
generalized approach toward the problem of determin-
ing the visual transformation rather than to adopt, too
early, some overly special formulation. In fact, the
evidence we have examined here cannot be made to
conform to the most commonly held hypothesis that
visual radius is a function of convergence alone. On the
other hand, none of the other specific hypotheses
considered can quite account for all observations.
However, it would be disappointing not to have some
synthesis and the author, having shown that the
mathematics leaves one free not to do so, will now make
bold to iterate his own.

On the whole, the body of the evidence supports the
belief that convergence disparity rather than con-
vergence is the more significant parameter in the percep-
tion of depth. This is to be coupled with the observation
for certain observers that the maximal visual radial
distance in each visual configuration appears to have
approximately the same value in a number of different
experiments. These statements suggest that we may
be able to utilize the functional form r=7(I") where
T'=+—1, is the convergence disparity with respect to
the minimum value, o, of convergence angle among the
points of the configuration.

Let us see how well this hypothesis is supported by
the known results and what the discrepancies are.

The bulk of the empirical support for the hypothesis
comes from the work of the Knapp Laboratory® which
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represents the most detailed investigation of the subject
to date. (It is to be regretted that much of that work is
unpublished.) We also find some further support in
Zajaczkowska’s work, and some discrepancies. We have
seen that the “classic” and “intermediate” alleys yield
approximately the same maximum value of 7, that the
Helmholtz geodesics experiments conform to the hy-
pothesis over a considerable region. In the same work,
however, we note that the “broad” alleys do not
conform, that the results of the Helmholtz experiment
do not follow the same pattern in the proxzimal region.
It is no doubt significant that the discrepancies men-
tioned in this context and elsewhere seem to originate
primarily in the proximal region and the lateral
periphery of the binocular field. Furthermore all three,
Zajaczkowska, Shipley, and the Knapp Laboratory
have indicated their impressions of unresolved diffi-
culties in these regions. The author believes that the
proposed general form of the visual transformation
(2.1) isnot valid in those regions and, in particular, that
v may not be the appropriate parameter in those parts
of the visual field. There is little question but that
further exploratory work in the lateral periphery and
the proximal region is needed for the complete study of
the relevant factors. Aside from modifications involving
“distortions” in those regions, however, we believe that
the hypothesis r=7(I") will bear the weight of the
experimental evidence.
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