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Prologue

The present book derives from a study of the Principia, off and on for some years, that
became earnest only latterly. And the opportunity I had to give two series of ten lectures
each in Chicago (in 1990) and in Oxford (in 1991) strengthened the base of my
understanding.

The manner of my study of the Principia was to read the enunciations of the different
propositions, construct proofs for them independently ab initio, and then carefully follow
Newton’s own demonstrations. In the presentation of the propositions, the proofs that I
constructed (which cannot substantially differ from what any other serious student can
construct) often precede Newton’s proofs arranged in a linear sequence of equations and
arguments, avoiding the need to unravel the necessarily convoluted style that Newton had
to adopt in writing his geometrical relations and mathematical equations in connected
prose. With the‘ximpediments of language and of syntax thus eliminated, the physical insight
and mathematical craftsmanship that invariably illuminate Newton’s proofs come sharply
into focus. On occasions, I provide supplementary comments and explanations, sometimes
quoting from the masters of earlier centuries.

In the course of my study, I made no serious attempt to enlarge my knowledge derived
from the Principia by any significant collateral reading. The book must, therefore, be
assessed—for what it may be worth—as an undertaking by a practising scientist to read
and comprehend the intellectual achievement that the Principia is.

I should add that on account of diverse constraints, I have not been able to study the
entire Principia in the manner that I had adopted. I had to content myself, instead, to
only those parts of the Principia that seemed to me in the direct line leading to Newton’s
formulation of his universal law of gravitation. However, in the last four Chapters, I
consider a few additional matters that may give the reader a flavour of what the Principia
contains besides.






2 ®,
% 1 %

The beginnings and the writing
of the Principia

1. Introduction

ome acquaintance, with the antecedents of the less than two years—from the late
S autumn of 1684 to the early summer of 1686—in which Newton composed the entire
Principia, is essential to a proper appreciation of the range and variety of the topics that
are treated in it in depth and with rare perception. The literature on this ‘pre-Principia’
period is vast; but it is mostly not relevant to the purposes of this book as stated in the
Prologue. And consistent with those purposes, the account that follows is a bare record
of events that are not disputed.
In describing the origins of the Principia one distinguishes three epochs: the plague
years 1665-66, 1679, and 1684.

2. The plague years

There is sufficient interlocking evidence that Newton did attempt a test of the inverse-
square law of gravitational attraction during the plague years when he was mostly
sojourning in Woolsthorpe. References to the test occur in the following accounts by
Newton, Whiston, Pemberton, and Stukeley. (The underlining is by the author.)

Newton (in a memorandum in the Portsmouth collection, written in 17147?):

And the same year [1666] I began to think of gravity extending to the orb of
the Moon, and having found out how to estimate the force with which [a] globe
revolving within a sphere presses the surface of the sphere, from Kepler’s Rule
of the periodical times of the Planets being in a sesquialternate proportion of
their distances from the centers of their Orbs I deduced that the forces which
keep the Planets in their Orbs must [be] reciprocally as the squares of their
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distances from the centers about which they revolve: and thereby compared the
force requisite to keep the Moon in her Orb with the force of gravity at the
surface of the earth, and found them answer pretty nearly. All this was in the
two plague years of 1665 and 1666, for in those days I was in the prime of my
age for invention, and minded Mathematicks and Philosophy more than at any
time since.

(There is an alternative version in a letter Newton addressed to Pierre Des Maizeaux in
1718; but it is not substantially enough different from the foregoing to concern us here.)

W. Wiston (in his Memoirs published in 1749):

Upon Sir Isaac’s First Trial, when he took a Degree of a great Circle on the
Earth’s Surface, whence a Degree at the Distance of the Moon was to be
determined also, to be 60 measured Miles only, according to the gross Measures
then in Use. He was, in some Degree, disappointed, and the Power that
restrained the Moon in her Orbit, measured by the versed Sines of that Orbit,
appeared not to be quite the same that was to be expected, had it been the
Power of Gravity alone, by which the Moon was there influenc’d. Upon this
Disappointment, which made Sir Isaac suspect that this Power was partly that
of Gravity, and partly that of Cartesius’s Vortices, he threw aside the Paper of
his Calculation and went to other Studies.

H. Pemberton (in his preface to the third edition of the Principia):

Supposing therefore the power of gravity, when extended to the moon, to
decrease in the same manner, he computed whether that force would be sufficient
to keep the moon in her orbit. In this computation, being absent from books,
he took the common estimate in use among geographers and our seamen, before
Norwood had measured the earth, that 60 English miles were contained in one
degree of latitude on the surface of the earth. But as this is a very faulty
supposition, each degree containing about 69 of our miles, his computation did
not answer expectation; whence he concluded, that some other cause must at
least join with the action of the power of gravity on the moon. On this account
he laid aside for that time any farther thoughts upon this matter.

W. Stukeley (in his Memoirs of Sir Isaac Newton’s Life):

After dinner, [on 15th April 1726] the weather being warm, we went into the
garden and drank thea, under the shade of some appletrees, only he and myself.
Amidst other discourse, he told me, he was just in the same situation, as when
formerly, the notion of gravitation came into his mind. It was occasion’d by the
fall of an apple, as he sat in a contemplative mood. Why should that apple
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always descend perpendicularly to the ground, thought he to himself. Why
should it not go sideways or upwards, but constantly to the earths centre?
Assuredly, the reason is, that the earth draws it. There must be a drawing power
in the matter: and the sum of the drawing power in the matter of the earth must
be in the earths center, not in any side of the earth. Therefore dos this apple
fall perpendicularly, or towards the center. If matter thus draws matter, it must
be in proportion of its quantity. Therefore the apple draws the earth, as well as
the earth draws the apple. That there is a power, like that we here call gravity,
which extends its self thro’ the universe.

The apparent discrepancy between Newton’s ‘pretty nearly’ as opposed to Whiston’s
‘in some degree disappointed’ and Pemberton’s ‘his computations did not answer
expectations’ has been discussed at great length in the literature. But the discussion would
seem to have become moot in view of the identification of the manuscript described by
David Gregory in his account relating to his visit to Newton in Cambridge in 1694:

I saw a manuscript [written] before the year 1669 (the year when its author
Mr Newton was made Lucasian Professor of Mathematics) where all the
foundations of his philosophy are laid: namely the gravity of the Moon to the
Earth, and of the planets to the Sun. And in fact all these even then are subjected
to calculation. I also saw in that manuscript the principle of equal times of a
pendulum suspended between cycloids, before the publication of Huygens’s
Horologium Oscillatorium.

A translation of the manuscript in Gregory’s account (identified as M.S. Add 3958 (5)
folios, 87; 89 (left half)) has been provided by J. Herivel in his book The background of
Newton’s Principia (pp. 195-198). The analysis of this manuscript is presented below
without the encumbrances of style and language of the original.

B

D A
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Let DAED represent the assumed circular orbit of a radius R described by the Moon,
with a uniform velocity v about the centre of the Earth at C. And let A be the instantaneous
position of the Moon displaced by an infinitesimal amount from D and AB the direction
of its motion; and finally let B be the point, on the prolongation of CD that the Moon
would have arrived at after an interval of time dt if the radial attraction of the Earth
had not acted. If a., denotes the gravitational attraction to which the Moon is subjected,
then it follows from Galileo’s law,

$a.(dt)*> = BD. (1)
If T denotes the period of revolution,
L @
T 2nR
whence
la,. = (27;15)2 fDDZ 3)
But, by elementary geometry, AB> = BD . BE or, neglecting quantities of the second order,
AD? ~ BD.BE ~ BD.DE = BD .2R; @)
and it follows from (3):
,_(@mR)* 1 5)

a T A~ A
2%cc 2R T2
that is, ‘the required line (namely the third proportional of the circumference to the
diameter) through which its [the Moon’s] endeavour of receding from the centre would
impel the body in the time of a complete revolution when applied constantly in a straight
line’ as Newton stated the result. Rewriting equation (5) in the form,

47’R
“= T
and applying it to the Earth—Moon system, with R and T having their current values,
we find

a

; (6)

39-48 x 384 x 10'°
a4.(C) = ahale ~ 0:272. (7)
(27:32 x 24 x 3600)*
The acceleration of gravity, g, on the surface of the Earth is

g = 980 = 3602 x a,(C). (8)

Newton found for this ratio,

g
ae(C)

~ ‘4000 and more’. )
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It is this discrepancy between ~ 3600 and ~4000+ that ‘did not answer expectation’ and
‘disappointed” Newton. Pemberton and others have explained the discrepancy as a
consequence of Newton having assumed the value (‘absent from books’):

number of miles per degree of latitude on Earth = 60, (10)
instead of the true value,
number of miles per degree of latitude on Earth = 693, an

and Newton’s customary usage of 5000 ft (instead of 5280 ft) for a mile. With these two
assumptions Newton should have found

. 2
I~ 3600 x <M> ~ 4332, (12)
a,.(C) 60 x 5280
which he apparently ‘rounded’ to 4000 +.
It should be noted that writing
dt = A—D, (13)
v

instead of (2), Newton doubtless obtained for a.. the value,

BD v?

v?=—  [by (4)], (14)

ae. = 2 —
AD? R

a relation which, as he later explained in his Scholium to Proposition IV, could also be
derived by considering a sequence of ‘reflections from the circle at the several angular
points’ [of an inscribed polygon] and summing the ‘force with which at every reflection
it strikes the circle’. This method may have been his original derivation (as recorded in
the ‘Waste book’); but it is hardly to be doubted that Newton did not notice the simpler
alternative derivation (14) at the time he wrote the manuscript that is presently being
considered. In any event it is with the aid of the formula (14) that Newton deduced, as
he stated, ‘from Kepler’s rule of the periodical times of the planets being in sesquialternate
proportion of their distances from the centers of the Orbs that the forces which keep the
planets in their Orbs must [be] reciprocally as the squares of their distances from the
centers about which they revolve’. More explicitly, from the equation

= an’ (15)
v
and ‘Kepler’s rule’,
T o< R3?, (16)
we deduce
v? = 4n°R? oc —1—; (17)



6 Newton’s Principia for the common reader

or, by equation (14),

a,,oc R™2. (18)

In concluding this section, we may address ourselves to the further question that has

often been asked and discussed in the literature: namely, why Newton did not pursue the

matter further since after his return to Cambridge from Woolsthorpe he must have become

aware of his erroneous assumption (10) and corrected for it. For my part, I accept the
view of J. C. Adams quoted by Rouse Ball:

On the other hand, the late Prof. Adams told me that he believed that Pemberton
and Whiston were mistaken as to the insufficiency of the verification. Newton
knew that the orbit was not actually circular, and that his numerical data were
only approximate; hence he could have expected only a rough verification of
the hypothesis, and as he asserted that he found his results agree or “answer
pretty nearly,” Prof. Adams considered that these calculations were sufficient
to convince Newton that it was gravity alone that retained the moon in its orbit,
and further he strongly suspected that Newton already believed that gravity
was due to the fact that every particle of matter attracts every other particle,
and that this attraction varied as the product of the masses and inversely as
the square of the distance between them. Any opinion that Prof. Adams
expressed on the subject must carry great weight, and the matter is one which
may be fairly left to the judgment of the reader. Fortunately, the question
whether Newton in 1666 came to the conclusion that gravity is only the chief
cause (as Pemberton and Whiston imply), or whether he then came to the
conclusion that it was the sole cause by which the moon is retained in its orbit,
is comparatively unimportant, because there is no doubt as to what his
conclusions ultimately were, and the question of the date when he convinced
himself that gravity was sufficient by itself, and that the Cartesian vortices did
not exist, is mainly a matter of antiquarian interest.

Besides, it is difficult for me to imagine that Newton with all his insight and perception
did not realize that the assumption,

a,(C) ( radius of the Earth )2
g radius of the Moon’s orbit/ ’

implies that the Earth attracts objects on its surface as if its entire mass is concentrated
at the centre—an assumption most emphatically against ‘common sense’ (unless one had
known of its truth already). Newton was to prove the theorem in question in 1685 which
he had not ‘suspected’ before the demonstration. It appears to me most likely that the
untenability of the basic assumption underlying equation (19)—so Newton must have
thought—discouraged him sufficiently to lay the entire matter aside. I shall return to this
question in §5.

(19)
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3. The year 1679

There appears to be little doubt that Newton did not pursue (after the plague years) the
subject of gravitational attraction and planetary motions until the year 1679 though his
interest was probably revived—albeit very briefly—in 1673 when he received his presenta-
tion copy of De Horologio Oscillatorio from Huygens and again in 1677, when, as Newton
wrote to Halley on 27 May 1686, he had ‘discoursed’ with Sir Christopher Wren and Dr.
Donne on ‘this problem of determining the planetary motions upon philosophical
principles’.

In 1679 Hooke initiated a correspondence with Newton and the two pairs of letters
they exchanged at the time and their aftermath have been the subject of a vast literature.
We shall desist from entering that thorny realm. It will suffice for our purposes to note
only that, as a result of the correspondence, Newton’s interest in dynamics was revived
sufficiently for him to realize for the first time the real meaning of Kepler’s law of areas.
And as he wrote, ‘I found now that whatsoever was the law of the force which kept the
Planets in their Orbs, the area described by a radius drawn from them to the Sun would
be proportional to the times in which they were described’; and he proved the two
propositions that

‘all bodies circulating about a centre sweep out areas proportional to the time’
and that

‘a body revolving in an ellipse ... the law of attraction directed to a focus of
the ellipse . .. is inversely as the square of the distance’,

as he was to state them in his De Motu Corporum in Gyrum written five years later (as
Proposition 1 and Problem 3, Proposition 3, respectively). That Newton proved these
propositions at this time is confirmed by his statement that he composed ‘in December
1679, the 1% and the 11'® Propositions’ of Book I of the Principia (see §5 below).

The resurrection of Kepler’s law of areas in 1679 was a triumphant breakthrough from
which the Principia was later to flow. But meantime, Newton’s interest lapsed again.

4. The year 1684

This was to be a fateful year. The salient facts are these: Halley visited Newton in
Cambridge in August 1684 (or May 1684 as Herivel believes) to inquire what locus a body
would describe under an inverse-square law of attraction. He was clearly unprepared for
Newton’s ready response that he had proved it to be an ellipse some years earlier. When
asked for his demonstration, Newton was unable to find it among his papers; and he
promised Halley to rework his proof and send it to him. Newton kept his promise and
in November he sent through Dr. Edward Paget his reworked proposition and some
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additional propositions. Halley seems to have been so struck with the novelty and the
originality of the propositions that he visited Newton once again in November and
succeeded in persuading him to publish his results. For, as recorded in the minutes of the
meeting of the Royal Society on 10 December 1684:

Mr. Halley gave an account that he had lately seen Mr. Newton at Cambridge
who had shewed him a curious treatise de Motu; which upon Mr. Halley’s desire,
was, he said, promised to be sent to the Society to be entered upon their
register. Mr. Halley was desired to put Mr. Newton in mind of his promise
for the securing of his invention to himself till such time as he could at leisure
publish it.

The same story is told in more dramatic terms by Abraham De Moivre recalling, as he
said, what Newton had related to him:

In 1684 D" Halley came to visit him at Cambridge, after they had been some
time together, the D" asked him what he thought the curve would be that would
be described by the planets supposing the force of attraction towards the sun
to be reciprocal to the square of their distance from it. S* Isaac replied
immediately that it would be an Ellipsis, the Doctor struck with joy &
amazement asked him how he knew it, why saith he I have calculated it,
whereupon D' Halley asked him for his calculation without any farther delay,
S* Isaac looked among his papers but could not find it, but he promised him
to renew it, & send it.

S* Isaac in order to make good his promise fell to work again but he could
not come to that conclusion w* he thought he had before examined with care,
however he attempted a new way which tho" longer than the first, brought him
again to his former conclusion, then he examined carefully what might be the
reason why the calculation he had undertaken before did not prove right, & . ..
he made both his calculations agree together.

The same story, in nearly identical terms, has been recorded by Conduit (see Plate 1 on
p. 15).

What seems to have happened, between the two visits of Halley, is that Newton’s
interest in dynamics was set afire—a description by no means exaggerated as will presently
appear—that he not only reworked the demonstrations of the two propositions that he
had proved in 1679 but wrote an entire tract De Motu Corporum in Gyrum (the motion
of revolving bodies) which went far beyond. There seems to be some doubt whether or
not De Motu represents the substance of the lectures he gave during the Michelmas term
of 1684. But there is considerable evidence that a slightly recast ‘Version II” of the De
Motu Corporum was what Paget took to London for transmission to Halley. (Translations
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of Version I and those parts of Versions II and III that differ from it are now available:
J. Herivel, The background of Newton’s Principia.)

Let us pause to look at the contents of De Motu Corporum in Gyrum. It consists of
eleven propositions prefaced by three definitions, four hypotheses, and two lemmas. The
eleven propositions are listed below; and the corresponding propositions in the Principia
to which they correspond are noted in parentheses

(i) Kepler’s law of areas (Book I, Proposition I).

(it) The basic relations governing circular orbits described uniformly about the centre
(Book I, Proposition IV; the relations in question are those given in equations (6)
and (14) in §2).

(iii) The centripetal attraction under which a given locus can be described (Book I,
Proposition VI).

(iv) Application to a body revolving in the circumference of a circle under attraction
from a point on the circumference (Book I, Proposition VII of the first edition; the
crucial Corollaries 1-3 appear for the first time in the second edition).

(v) An ellipse about its centre will be described under a centripetal attraction proportional
to the distance (Book I, Proposition X).

(vi) An ellipse about a focus will be described under a centripetal attraction inversely as
the square of the distance; and a Scholium on the application of the result to
planetary motions (Book I, Proposition XI).

(vii) Kepler’s third law and a Scholium on the application of the result of planetary
motions (Book I, Proposition XV).

(viii) Given that the centripetal force is inversely as the square of the distance and given
also its magnitude, to determine the ellipse which a body will describe when pro-
jected from a given point with a given velocity in an assigned direction (Book I,
Proposition XVII).

(ix) The motion of a body falling radially towards the centre under a law of attraction
inversely as the square of the distance (Book I, Proposition XXXII).

(x) The motion of a particle in a resisting medium, the resistance being proportional to
the velocity, under no external force (Book II, Proposition II).

(xi) Same as (x) above but under a constant centripetal force (Book II, Propositions I1I
and IV).

It is staggering—if not bewildering—to realize that all of the foregoing propositions
were worked out—almost in the forms that they were later to be included in the
Principia—in the interval between Halley’s first visit in August (or May) and Paget’s taking
the manuscript to London in November not allowing for the time it must have taken to
make the two versions in longhand. (Autograph photographic facsimile copies of these
manuscripts are now available: The preliminary manuscripts of Sir Isaac Newton’s 1687
Principia, 1684—1686: with an introduction by T. Whiteside, Cambridge, 1989.)
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No wonder that Halley scurried back to Cambridge on seeing what Paget had
brought him!

One additional comment: Newton seems to have corrected his 1666 ‘Moon test’ (§2)
before the summer of 1685 at the latest, for, as he writes in Version III of De Motu (see
Herivel, p. 302),

My calculations reveal that the centripetal force by which our Moon is held in
her monthly motion about the Earth is to the force of gravity at the surface of
the Earth very nearly as the reciprocal of the square of the distance [of the
Moon] from the centre of the Earth.

To summarize: after Halley’s first visit, Newton reconstructed the demonstrations of
the two propositions (that he had mislaid) and added several more. The result was Version I
of De Motu Corporum in Gyrum, composed in the ‘Autumn’ of 1684. Version II, a fair
copy of Version I, was sent to Halley, through Paget, in November. During his second
visit in November, Halley was able to persuade Newton to publish his discoveries; and
his report to the Royal Society at its meeting on 10 December followed. Finally, as
Newton’s letter of 23 February 1685 to Aston (one of the then Secretaries of the Royal
Society) attests, the Propositions de Motu was entered in the Register Book of the Royal
Society:

I thank you for entering in your Register my notions about motion. I designed
them for you before now, but the examining several things has taken a greater
part of my time than I expected, and a great deal of it to no purpose. And now
I am to go into Lincolnshire for a month or six weeks. Afterwards I intend to
finish it as soon as I can conveniently.

Newton was, at long last, earnestly embarked on writing his Principia.

5. The years 1685—-1686: the writing of the Principia

The end of the Michelmas term of 1684 found Newton in the grip of what was to become
his Philosophiae Naturalis Principia Mathematica.

Newton had originally thought of his projected book as no more than an expanded
version of De Motu Corporum in Gyrum. The extant autograph copy of De Motu Corporum
Liber Primus (deposited as his ‘Lucasian Lectures’ for the years beginning October 1684
and October 1685) suggests as much. But by early spring of 1685, the prospect had changed
radically. This is confirmed by what Newton wrote to Aston on February 1685 (see §4),
and also in his Preface to the first edition of the Principia:

But after I had begun to consider the inequalities of the lunar motions, and had
entered upon some other things relating to the laws and measures of gravity



The beginnings and the writing of the Principia 11

and other forces; and the figures that would be described by bodies attracted
according to given laws; and the motion of several bodies moving among
themselves; the motion of bodies in resisting mediums; the forces, densities, and
motions, of mediums; the orbits of the comets, and such like, I deferred that
publication till I had made a search into those matters, and could put forth the
whole together.

The book, however, was finished and ready for press in less than two years. As
stated by Brewster, quoting from a memorandum in ‘Sir Isaac Newton’s own hand-
writing’:

In the tenth proposition of the second book, there was a mistake in the first
edition, by drawing the tangent of the arch GH from the wrong end of the arch,
which caused an error in the conclusion; but in the second edition I rectified
the mistake. And there may have been some other mistakes occasioned by the
shortness of the time in which the book was written, and by its being copied
by an amanuensis [Humphrey Newton] who understood not what he copied;
besides the press faults, for I wrote it in seventeen or eighteen months, beginning
in the end of December 1684, and sending it to the Royal Society in May
1686, excepting that about ten or twelve of the propositions were composed
before, viz., the 1st and 11th in December 1679, the 6th, 7th, 8th, 9th, 10th,
12th, 13th, and 17th, Lib. L., and the 1st, 2d, 3d, and 4th, Lib. II., in June and
July 1684.

And this is in agreement with what Pemberton wrote in his Preface to the third edition
of the Principia:

This treatise full of such a variety of profound inventions, was composed by
him from scarce any other materials than the few propositions before mentioned,
in the space of one year and an half.

It will be noted that the propositions, listed in the memorandum quoted by Brewster
as having been composed in June and July 1684 are, with the exception of the relatively
minor Propositions VIII, IX, XII, and XIII, the same as those we have noted in §4 as
included in De Motu Corporum in Gyrum.,

The significant event in the early spring of 1685, whose impact J. C. Adams and
J. W. L. Glaisher fully recognized, is Newton’s determination of the attraction of a spherical
body (‘everywhere similar, at every given distance from the centre, on all sides round
about’, as he was to describe later in the Principia) on any external point. What Glaisher
said in his address on the occasion of the bicentenary of the publication of the Principia
is worth quoting:
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No sooner had Newton proved this superb theorem—and we know from his
own words that he had no expectation of so beautiful a result till it emerged
from his mathematical investigation—than all the mechanism of the universe
at once lay spread before him. When he discovered the theorems that form the
first three sections of the Book I., when he gave them in his lectures of 1684, he
was unaware that the sun and earth exerted their attractions as if they were but
points. How different must these propositions have seemed to Newton’s eyes
when he realised that these results, which he had believed to be only approxi-
mately true when applied to the solar system, were really exact! Hitherto they
had been true only in so far as he could regard the sun as a point compared to
the distance of the planets or the earth as a point compared to the distance of
the moon—a distance amounting to only about sixty times the earth’s radius—
but now they were mathematically true, excepting only for the slight deviation
from a perfectly spherical form of the sun, earth, and planets. We can imagine
the effect of this sudden transition from approximation to exactitude in
stimulating Newton’s mind to still greater efforts. It was now in his power to
apply mathematical analysis with absolute precision to the actual problem of
astronomy.

That Newton attached the greatest significance to the result that he had established is
evident from what he says in Book III, Proposition VIII:

After I had found that the force of gravity towards a whole planet did arise
from and was compounded of the forces of gravity towards all its parts, and
towards every one part was in the inverse proportion of the squares of the
distances from the part, I was yet in doubt whether that proportion inversely
as the square of the distance did accurately hold, or but nearly so, in the total
force compounded of so many partial ones; for it might be that the proportion
which accurately enough took place in greater distances should be wide of the
truth near the surface of the planet, where the distances of the particles are
unequal, and their situation dissimilar. But by the help of Prop. Lxxv and LxXVI,
Book 1, and their Corollaries, I was at last satisfied of the truth of the
Proposition, as it now lies before us.

Equally significant is what Newton wrote to Halley on 20 June 1686:

I never extended the duplicate proportion lower than to the superficies of the
earth, and before a certain demonstration I found last year, have suspected it
did not reach accurately enough down so low; and therefore in the doctrines
of projectiles never used it nor considered the motions of heavens.
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Contrary to what has been commonly asserted, I share a view attributed to Adams and
Glaisher that Newton’s reluctance (even after 1679) to pursue his dynamical investigations
arose from his dissatisfaction in not being able to prove or disprove—he probably did
not try hard enough—a proposition on which the exactitude of the entire theory rests. It
is scarcely to be thought of that a person of Newton’s intellectual perception and standards
did not realize the principal lacuna in his ‘Moon test’. It is equally likely, in my view,
that he was persuaded to write De Motu Corporum in Gyrum in 1684, after Halley’s visit,
by the furor that the questions were causing in London.

It is perhaps significant in this context that De Motu Corporum, Liber Primus (commonly
considered as an early draft of Book I of the Principia) ends abruptly after his
demonstration of Propositions XXXIX, XL, XLI, and XLIII (which are the key Prop-
ositions LXX, LXXI, LXXII, and LXIII of Book I). And equally significant, perhaps, is that
no work sheets of the Principia beyond this point have been found. Is it so implausible
that Newton destroyed them anticipating the cry of latter day historians, ‘Whatever
happened to the work sheets of the Principia?’

To resume the story: the manuscript of Book I went to press before 7 June 1686; for
in the records of the meetings of the Royal Society for 2 June and 7 June we read,
respectively:

. it was ordered, that Mr. Newton’s book be printed, and that Mr. Halley
undertake the business of looking after it, and printing it as his own charge;
which he engaged to do.

and

Ordered ... that the president be desired to license Mr. Newton’s book intitled
Philosophia Naturalis Mathematica and dedicated to the Society.

The rough manuscript of the second book was finished in the summer of 1685; but was,
apparently, not written as a final copy for the press before 20 June 1686.

The preparation of the third book required knowledge of basic astronomical data with
which Newton was not previously acquainted. He was fortunate that he could consult
John Flamsteed on these matters. The rough manuscript was finished by June 1686. Except
for the parts dealing with cometary motions, the manuscript for the third book was ready
for press in March 1687.

The Principia containing all three books was published in July 1687. As Halley wrote
to Newton on 5 July 1687,

I have at length brought your book to an end and hope that it will please you.

It is fitting that we conclude this historical introduction with Newton’s acknowledgment
to Halley in his Preface to the first edition of the Principia:
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In the publication of this work the most acute and universally learned Mr.
Edmund Halley not only assisted me in correcting the errors of the press and
preparing the geometrical figures, but it was through his solicitations that it
came to be published; for when he had obtained of me my demonstrations of
the figure of the celestial orbits, he continually pressed me to communicate the
same to the Royal Society.

To quote Conduit of Halley as
The Ulysses who produced this Achilles.
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Plate 1 Copy of the original De Moivre memorandum, in the Joseph Halle Schaffner
Collection of Scientific Manuscripts, Department of Special Collections of the University
of Chicago Library; and published here with the permission of the Library.






0 ! RS
0‘0 0‘0

Basic concepts:
Definitions and Axioms

6. Introduction

wo lessons on Definitions and Axioms (or Laws of Motion) precede the formal opening
of Book I: The motion of bodies of the Principia. In these two lessons, Newton
formulates and elaborates the basic concepts and laws that are the underpinnings of his
Natural Philosophy. The concepts are complex and are interrelated. And Newton’s Defini-
tions and Axioms should be read in their totality and in their context keeping in mind that
they ‘Shall be explained at large in the following treatise’ (for which end it was composed!).
We shall quote rather more extensively than may be considered necessary; but they
draw attention to issues that are commonly ignored; and Newton states his ideas with
such clarity that it is a joy to learn them anew.

7. Basic concepts: Definitions

Definition I

The quantity of matter is the measure of the same arising from its density and
bulk conjointly.

Thus air of a double density, in a double space, is quadruple in quantity; in
a triple space, sextuple in quantity. The same thing is to be understood of snow,
and fine dust or powders, that are condensed by compression or liquefaction,
and of all bodies that are by any causes whatever differently condensed. I have
no regard in this place to a medium, if any such there is, that freely pervades
the interstices between the parts of bodies. It is this quantity that I mean
hereafter everywhere under the name of body or mass. And the same is known
by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown
hereafter.
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It will be noticed that while Newton is careful in defining the notion of mass (as a
quantitative measure of quantity of matter), he leaves the notion of weight unspecified
except to say that ‘by experiments on pendulums, very accurately made’, he has shown
that mass is proportional to weight. The reason for this partial explanation is that the
precise distinction between ‘mass’ and ‘weight’ cannot be made without reference to the
Second Law of Motion (yet to be formulated in terms of concepts yet to be introduced).
This fact is made clear in Newton’s account of ‘his experiments made with the greatest
accuracy’ in Proposition XXIV of Book II (with explicit reference to the Second Law of
Motion). We shall presently consider (out of context! in §10) this proposition to emphasize
that the Definitions and Laws must be read in their totality and not singly.*

Definition 11

The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and
therefore in a body double in quantity, with equal velocity, the motion is double;
with twice the velocity, it is quadruple.

Quantity of motion (or motion for short) is momentum in our present terminology:
quantity of motion = mass x velocity. @)

(Quantities in bold face indicate that they are vectors.)

Definition 111

The vis insita, or innate force of matter, is a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or
of moving uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs
nothing from the inactivity of the mass, but in our manner of conceiving it.
A body, from the inert nature of matter, is not without difficulty put out of its
state of rest or motion. Upon which account, this vis insita may, by a most
significant name, be called inertia (vis inertiae) or force of inactivity. But a body
only exerts this force when another force, impressed upon it, endeavours to
change its condition; and the exercise of this force may be considered as both
resistance and impulse; it is resistance so far as the body, for maintaining its
present state, opposes the force impressed; it is impulse so far as the body, by
not easily giving way to the impressed force of another, endeavours to change the

* To avoid ambiguity it may be noted explicitly that the distinction that is made here is between inertial mass
(m;) and gravitational mass (m,). By mass Newton means the inertial mass m; and by weight he means g x m,
where m, denotes the gravitational mass and g the value of gravity at the location of the mass. For example,
at the surface of the Earth, we should write g = G x (mass of Earth)/(radius of Earth)?, where G denotes the
constant of gravitation, that is, Newton’s constant!
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state of that other. Resistance is usually ascribed to bodies at rest, and impulse
to those in motion; but motion and rest, as commonly conceived, are only
relatively distinguished; nor are those bodies always truly at rest, which
commonly are taken to be so.

There is hardly anything that one can usefully add to Newton’s careful explanation of
the concept of inertia. But note particularly the statements that are are underlined.

Definition IV

An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

This force consists in the action only, and remains no longer in the body
when the action is over. For a body maintains every new state it acquires, by
its inertia only. But impressed forces are of different origins, as from percussion,
from pressure, from centripetal force.

Definition V
A centripetal force is that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the centre of the Earth;
magnetism, by which iron tends to the loadstone; and that force, whatever it
is, by which the planets are continually drawn aside from the rectilinear motions,
which otherwise they would pursue, and made to revolve in curvilinear orbits.
A stone, whirled about in a sling, endeavours to recede from the hand that turns
it; and by that endeavour, distends the sling, and that with so much the greater
force, as it is revolved with the greater velocity, and as soon as it is let go, flies
away. That force which opposes itself to this endeavour, and by which the sling
continually draws back the stone towards the hand, and retains it in its orbit,
because it is directed to the hand as the centre of the orbit, I call the centripetal
force. And the same thing is to be understood of all bodies, revolved in any
orbits. They all endeavour to recede from the centres of their orbits; and were
it not for the opposition of a contrary force which restrains them to, and detains
them in their orbits, which I therefore call centripetal, would fly off in right
lines, with a uniform motion.

And after the same manner that a projectile, by the force of gravity, may be
made to revolve in an orbit, and go round the whole Earth, the Moon also,
either by the force of gravity, if it is endued with gravity, or by any other force,
that impels it towards the Earth, may be continually drawn aside towards the
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Earth, out of the rectilinear way which by its innate force it would pursue; and
would be made to revolve in the orbit which it now describes; nor could the
Moon without some such force be retained in its orbit. If this force was too
small, it would not sufficiently turn the Moon out of a rectilinear course; if it
was too great, it would turn it too much, and draw down the Moon from its
orbit towards the Earth. It is necessary that the force be of a just quantity, and
it belongs to the mathematicians to find the force that may serve exactly to
retain a body in a given orbit with a given velocity; and vice versa, to determine
the curvilinear way into which a body projected from a given place, with a given
velocity, may be made to deviate from its natural rectilinear way, by means of
a given force.

In the first of the two extracts quoted, Newton makes the distinction between his
definition of centripetal force and Huygens’s definition of centrifugal force (without so
explicitly stating).

The second extract recalls the raison d’étre of his 1666 Moon test. And the problem
formulated in the last sentence is solved in Proposition XVII of Book I (see §30).

Definition VI

The absolute quantity of a centripetal force is the measure of the same, proportional
to the efficacy of the cause that propagates it from the centre, through the spaces
round about.

Thus the magnetic force is greater in one loadstone and less in another,
according to their sizes and strength of intensity.

Definition VII

The accelerative quantity of a centripetal force is the measure of the same,
proportional to the velocity which it generates in a given time.

Thus the force of the same loadstone is greater at a less distance, and less at
a greater: also the force of gravity is greater in valleys, less on tops of exceeding
high mountains; and yet less (as shall hereafter be shown), at greater distances
from the body of the Earth; but at equal distances, it is the same everywhere;
because (taking away, or allowing for, the resistance of the air), it equally
accelerates all falling bodies, whether heavy or light, great or small.

Definition VIII

The motive quantity of a centripetal force is the measure of the same, proportional
to the motion which it generates in a given time.

Thus the weight is greater in a greater body, less in a less body; and, in the
same body, it is greater near to the Earth, and less at remoter distances. This
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sort of quantity is the centripetency, or propension of the whole body towards
the centre, or, as I may say, its weight; and it is always known by the quantity
of an equal and contrary force just sufficient to hinder the descent of the body.

These quantities of forces, we may, for the sake of brevity, call by the names
of motive, accelerative, and absolute forces; and, for the sake of distinction,
consider them with respect to the bodies that tend to the centre, to the places
of those bodies, and to the centre of force towards which they tend; that is to
say, I refer the motive force to the body as an endeavour and propensity of the
whole towards a centre, arising from the propensities of the several parts taken
together; the accelerative force to the place of the body, as a certain power
diffused from the centre to all places around to move the bodies that are in
them; and the absolute force to the centre, as endued with some cause, without
which those motive forces would not be propagated through the spaces round
about; whether that cause be some central body (such as is the magnet
in the centre of the magnetic force, or the Earth in the centre of the gravitating
force), or anything else that does not yet appear. For I here design only to give
a mathematical notion of those forces, without considering their physical causes
and seats.

Wherefore the accelerative force will stand in the same relation to the motive,
as celerity does to motion. For the quantity of motion arises from the celerity
multiplied by the quantity of matter; and the motive force arises from the
accelerative force multiplied by the same quantity of matter.* For the sum of
the actions of the accelerative force, upon the several particles of the body, is
the motive force of the whole. Hence it is, that near the surface of the Earth,
where the accelerative gravity, or force productive of gravity, in all bodies is the
same, the motive gravity or the weight is as the body; but if we should ascend
to higher regions, where the accelerative gravity is less, the weight would be
equally diminished, and would always be as the product of the body, by the
accelerative gravity. So in those regions, where the accelerative gravity is
diminished into one-half, the weight of a body two or three times less, will be
four or six times less.

I likewise call attractions and impulses, in the same sense, accelerative, and
motive; and use the words attraction, impulse, or propensity of any sort towards
a centre, promiscuously, and indifferently, one for another; considering those
forces not physically, but mathematically: wherefore the reader is not to imagine
that by those words I anywhere take upon me to define the kind, or the manner
of any action, the causes or the physical reason thereof, or that I attribute forces,

These sentences state in words that the ratios of acceleration to motive force and of velocity to motion are
the same, being the mass in each case.

21
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in a true and physical sense, to certain centres (which are only mathematical
points); when at any time I happen to speak of centres as attracting, or as
endued with attractive powers.

Newton’s comments on this Definition are quoted in extenso. The parts underlined state,
already at this early stage, his view of natural philosophy. His comments in particular: ‘I
here design only to give a mathematical notion of those forces, without considering their
physical causes and seats’ and ‘the reader is not to imagine that . .. I anywhere take upon
me to define the kind, or the manner of any action, the causes of the physical reason
thereof” are evocative of the climactic statement at the conclusion of the Principia ‘1 feign
no hypothesis’,

The long Scholium which concludes this lesson on ‘Definitions’ is perhaps the part of the
Principia most commented upon by historians and philosophers. But most of these
commentaries (if not all of them) do not heed Newton’s concluding statement that further
elucidation must be sought in the consistency of their usage in the ‘treatise’ that is to
follow.

Nevertheless concerning the notions of ‘absolute time’ and ‘absolute space’ on which
Newton bases his dynamics, it will suffice to say that, in current terminology, the space-time
manifold that is assumed is the Cartesian product,

t ® Euclidean 3-space, (2)

where t is Newton’s ‘equable time’.

8. Basic concepts: the Laws of Motion

After the introductory lesson on fundamental notions (§7), Newton proceeds to his second
lesson to formulate the basis for his entire dynamics in the form of three Laws of Motion
and five corollaries (which are an essential part of the Laws). Again, the Laws and their
corollaries must be considered in their totality and not singly. This need was, for example,
fully recognized by Maxwell who reformulated Newton’s first two Laws of Motion to
‘render more precise [their] ennunciation’ (see §10 below).

Law I

Every body continues in its state of rest, or of uniform motion in a right line, unless
it is compelled to change that state by forces impressed upon it.

Projectiles continue in their motions, so far as they are not retarded by the
resistance of the air, or impelled downwards by the force of gravity. A top,
whose parts by their cohesion are continually drawn aside from rectilinear
motions, does not cease its rotation, otherwise than as it is retarded by the air.
The greater bodies of the planets and comets, meeting with less resistance in
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freer spaces, preserve their motions both progressive and circular for a much
longer time.

The statement of this Law is not ‘precise’ (to quote Maxwell), since what we are to
understand by ‘body’ is not made clear. The statement as it stands is valid if a point
particle or a ‘rigid body’ is intended (as the qualification ‘cohesion’ in the second
illustrative example suggests). But the content of the Law is far wider, when considered
in the contexts of Laws II and III and Corollaries IV and V, as Maxwell’s reformulation
of these Laws makes it explicit (Maxwell’s version is given in §10).

It will be noticed that in the example with the top, the implied arguments are the same
as in Chapter 1, §2 (cf. equation (1)).

Law 11

The change of motion is proportional to the motive force impressed; and is made
in the direction of the right line in which that force is impressed.

The statement of the Law is self-explanatory. In current terminology it states:
‘ force = change in motion
= change in [mass x velocity]
= mass x change in velocity

= mass x acceleration. (1)

Law I11

To every action there is always opposed an equal reaction: or, the mutual actions
of two bodies upon each other are always equal, and directed to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that other.
If you press a stone with your finger, the finger is also pressed by the stone.

If a body impinge upon another, and by its force change the motion of the
other, that body also (because of the equality of the mutual pressure) will
undergo an equal change, in its own motion, towards the contrary part. The
changes made by these actions are equal, not in the velocities but in the motions
of bodies; that is to say, if the bodies are not hindered by any other impediments.
For, because the motions are equaily changed, the changes of the velocities
made towards contrary parts are inversely proportional to the bodies. This Law
takes place also in attractions.

This Law is central to proving the important Corollaries IV and V; and its importance
is further emphasized in the Scholium (see §9 where Maxwell and Thomson and Tait are
quoted).
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Corollary 1

A body, acted on by two forces simultaneously, will describe the diagonal of a
parallelogram in the same time as it would describe the sides by those forces
separately.

If a body in a given time, by the force M impressed apart in the place A4,
should with a uniform motion be carried from A to B, and by the force N
impressed apart in the same place, should be carried from A4 to C, let the
parallelogram ABCD be completed, and, by both forces acting together, it will
in the same time be carried in the diagonal from A4 to D. But it will move in a
right line from A4 to D, by Law L.

From the manner in which this ‘parallelogram law of forces’ is proved, it is clear that the
law applies equally to velocities, motions, and accelerations; and Newton does use the law
in these other contexts.

Corollary 11

And hence is explained the composition of any one direct force AD, out of any
two oblique forces AC and CD, and, on the contrary, the resolution of any one
direct force AD into two oblique forces AC and CD: which composition and
resolution are abundantly confirmed from mechanics.

As if the unequal radii OM and ON drawn from the centre O of any wheel,
should sustain the weights 4 and P by the cords M4 and NP; and the forces
of those weights to move the wheel were required. Through the centre O draw
the right line KOL, meeting the cords perpendicularly in K and L; and from
the centre O, with OL the greater of the distances OK and OL, describe a circle,
meeting the cord MA in D; and drawing OD, make AC parallel and DC
perpendicular thereto. Now, it being indifferent whether the points K, L, D, of
the cords be fixed to the plane of the wheel or not, the weights will have the
same effect whether they are suspended from the points K and L, or from D
and L. Let the whole force of the weight 4 be represented by the line AD.

With the foregoing construction, it follows from Corollary I that the force,
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But 51’, bei_ng parallel to W)’, will be ineffective in turning the wheel. Ar& DC ‘drawing
the radius OD perpendicularly will have the same effect’ as P acting on OL. Hence
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which is the law of the lever. And Newton concludes:

the use of this Corollary spreads far and wide, and by that diffusive extent the
truth thereof is further confirmed. For on what has been said depends the whole
doctrine of mechanics variously demonstrated by different authors. For from
hence are easily deduced the forces of machines, which are compounded of
wheels, pulleys, levers, cords, and weights, ascending directly or obliquely, and
other mechanical powers; as also the force of the tendons to move the bones
of animals. - o -
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Corollary 111

The quantity of motion, which is obtained by taking the sum of the motions directed
towards the same parts, and the difference of those that are directed to contrary
parts, suffers no change from the action of bodies among themselves.

For action and its opposite reaction are equal, by Law III, and therefore, by
Law II, they produce in the motions equal changes towards opposite parts.
Therefore if the motions are directed towards the same parts, whatever is added
to the motion of the preceding body will be subtracted from the motion of that
which follows; so that the sum will be the same as before. If the bodies meet,
with contrary motions, there will be an equal deduction from the motions of
both; and therefore the difference of the motions directed towards opposite parts
will remain the same.

It is important to notice that the proof of this corollary (used in the demonstration of
Corollaries V and VI) depends explicitly on both Laws II and III.

Corollary IV

The common centre of gravity of two or more bodies does not alter its state of
motion or rest by the actions of the bodies among themselves; and therefore the
common centre of gravity of all bodies acting upon each other (excluding external
actions and impediments) is either at rest, or moves uniformly in a right line.

This and the following two corollaries are central to Newtonian dynamics (as we shall
further elaborate in §10).

In establishing Corollary IV, Newton first considers the case when the ‘bodies’ in
question are mass points, m; (i = 1,..., n) moving uniformly with velocities #;, that is,

fl:l;lt_'_di (izla"'7n)7 (6)

where 7; denotes the position vector of m;. The corollary states that the centre of mass of
the particles,
1

R=—=73 mf, where M = ) m;, (7)
M = i=1

moves uniformly in a straight line. This follows directly from equations (6) and (7); thus,
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It is instructive to follow Newton’s proof. He makes use of Lemma XXIII established
later in Book I:

Lemma XXIII
If two given right lines, as AC, BD, terminating in given points A, B, are in a given
ratio one to the other, and the right line CD, by which the indetermined points C,
D are joined is cut in K in a given ratio: I say, that the point K will be placed in
a given right line.

We are required to find the locus of K, given the fixed points E, A, and B and varying
points C, D, and K satisfying the requirements

BD CK
— =0 an — = p, 10
AC KD 4 (19)
where o and f are assigned constants.
Let F be a point on ED such that
EF
— = 11
EC (11)
Draw KL parallel to DF; then
L
¢L = CK _ _ (12)
LF KD

Since the triangles ECL, ELF, and ECF remain similar to themselves as C, L, and F vary
in the manner prescribed (by equations (11) and (12)), EL will remain a constant straight
line as L varies along with C and F. In other words the locus of L is the constant straight
line EL prolonged.
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Now draw KH parallel to EL. Then

EH=LK=FD % (by the similarity of As CLK and CFD)

CL

—(ED—EF)———~
CL + LF

= (EB + BD — «EC) E% (by equations (11) and (12))

p

=[(EB + aAC — «(EA + AC)] ﬁ (by equation (10))
— (EB — B
= (EB — «EA) AR (13)

that is, EH is determined by the initially given quantities, and therefore, remains constant
as C, D, and K vary as prescribed. Hence the locus of K is the straight line HK prolonged
parallel to EL.

Newton’s proof (using Lemma XXIII) proceeds as follows:

For if two points proceed with a uniform motion in right lines, and their
distance be divided in a given ratio, the dividing point will be either at rest, or
proceed uniformly in a right line. This is demonstrated hereafter in Lem. XXIII
and Corollary, when the points are moved in the same plane; and by a like way
of arguing, it may be demonstrated when the points are not moved in the same
plane. Therefore if any number of bodies move uniformly in right lines, the
common centre of gravity of two of them is either at rest, or proceeds uniformly
in a right line; because the line which connects the centres of those two bodies
so moving is divided at that common centre in a given ratio. In like manner
the common centre of those two and that of a third body will be either at rest
or moving uniformly in a right line; because at that centre the distance between
the common centre of the two bodies, and the centre of this last, is divided in a
given ratio.

The proof is now completed by induction (a favourite device of Newton’s). The remaining
part of the proof, when ‘bodies’ more general than mass points are considered, is worth
quoting in extenso to see how Newton skirts ambiguities.

Moreover, in a system of two bodies acting upon each other, since the
distances between their centres and the common centre of gravity of both are
reciprocally as the bodies, the relative motions of those bodies, whether of
approaching to or of receding from that centre, will be equal among themselves.
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Therefore since the changes which happen to motions are equal and directed
to contrary parts, the common centre of those bodies, by their mutual action
between themselves, is neither accelerated nor retarded, nor suffers any change
as to its state of motion or rest. But in a system of several bodies, because the
common centre of gravity of any two acting upon each other suffers no change
in its state by that action; and much less the common centre of gravity of the
others with which that action does not intervene; but the distance between those
two centres is divided by the common centre of gravity of all the bodies into
parts inversely proportional to the total sums of those bodies whose centres
they are; and therefore while those two centres retain their state of motion or
rest, the common centre of all does also retain its state: it is manifest that the
common centre of all never suffers any change in the state of its motion or rest
from the actions of any two bodies between themselves. But in such a system
all the actions of the bodies among themselves either happen between two
bodies, or are composed of actions interchanged between some two bodies; and
therefore they do never produce any alteration in the common centre of all as
to its state of motion or rest. Wherefore since that centre, when the bodies do
not act one upon another, either is at rest or moves uniformly forwards in some
right line, it will, notwithstanding the mutual actions of the bodies among
themselves, always continue in its state, either of rest, or of proceeding uniformly
in a right line, unless it is forced out of this state by the action of some power
impressed from without upon the whole system. And therefore the same law
takes place in a system consisting of many bodies as in one single body, with
regard to their persevering in their state of motion or of rest. For the progressive
motion, whether of one single body, or of a whole system of bodies, is always
to be estimated from the motion of the centre of gravity.

I cannot desist from observing that the essential parts of the argument in the three
sentences (of ten, four, and six lines, respectively) with many semicolons and a colon is
reminiscent of the style of Henry James. (Newton’s style is in fact Jamesian throughout.)

Corollary V

The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without
any circular motion.

For the differences of the motions tending towards the same parts, and the
sums of those that tend towards contrary parts, are, at first (by supposition), in
both cases the same; and it is from those sums and differences that the collisions
and impulses do arise with which the bodies impinge one upon another.
Wherefore (by Law II), the effects of those collisions will be equal in both cases;
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and therefore the mutual motions of the bodies among themselves in the one
case will remain equal to the motions of the bodies among themselves in the
other. A clear proof of this we have from the experiment of a ship; where all
motions happen after the same manner, whether the ship is at rest, or is carried
uniformly forwards in a right line.

Newton returns to this corollary in Section XI of the Principia (see §59) where he repeats
the same argument more concisely in the context of the ‘motions of bodies tending to
each other with centripetal forces’.

This corollary is used later in Proposition LXV (case 2) of Book I in his preliminary
considerations towards the problem of many bodies under their mutual gravitational
attractions where the argument is repeated in almost identical terms (see §68).

Corollary VI

If bodies, moved in any manner among themselves, are urged in the direction of
parallel lines by equal accelerative forces, they will all continue to move among
themselves, after the same manner as if they had not been urged by those forces.

For these forces acting equally (with respect to the quantities of the bodies
to be moved), and in the direction of parallel lines, will (by Law II) move all
the bodies equally (as to velocity), and therefore will never produce any change
in the positions or motions of the bodies among themselves.

Notice that this corollary shows that Newton’s laws hold even in some accelerated frames.

The proofs of Corollaries V and VI are based on Law II (explicitly quoted) and on
Corollary III (which is based on Law III as well). It is important to emphasize the roles
of Laws II and III in the context of these corollaries.

9. The Scholium to the Laws of Motion

In a long Scholium (somewhat longer in fact than the Scholium for the first lesson), Newton
discusses a variety of matters, historical, analytical, and amplificatory.
The Scholium begins with some historical remarks relating to Galileo’s discoveries:

Scholium

Hitherto I have laid down such principles as have been received by mathe-
maticians, and are confirmed by abundance of experiments. By the first two
Laws and the first two Corollaries, Galileo discovered that the descent of bodies
varied as the square of the time (in duplicata ratione temporis) and that the
motion of projectiles was in the curve of a parabola; experience agreeing with
both, unless so far as these motions are a little retarded by the resistance of the
air. When a body is falling, the uniform force of its gravity acting equally,
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impresses, in equal intervals of time, equal forces upon that body, and therefore
generates equal velocities; and in the whole time impresses a whole force, and
generates a whole velocity proportional to the time. And the spaces described
in proportional times are as the product of the velocities and the times; that is,
as the squares of the times. And when a body is thrown upwards, its uniform
gravity impresses forces and reduces velocities proportional to the times; and
the times of ascending to the greatest heights are as the velocities to be taken
away, and those heights are as the product of the velocities and the times, or
as the squares of the velocities. And if a body be projected in any direction, the
motion arising from its projection is compounded with the motion arising from
its gravity. Thus, if the body 4 by its motion of projection alone could describe
in a given time the right line AB, and with its motion of falling alone could
describe in the same time the altitude AC; complete the parallelogram ABCD,
and the body by that compounded motion will at the end of the time be found
in the place D; and the curved line AED, which that body describes, will be a
parabola, to which the right line 4B will be a tangent at A; and whose ordinate
BD will be as the square of the line AB. On the same Laws and Corollaries
depend those things which have been demonstrated concerning the times of the
vibration of pendulums, and are confirmed by the daily experiments of
pendulum clocks.

E
/D
C
The following remarks by Herivel (The background to Newton’s Principia, pp. 35-37),
quoting the statement underlined, are apposite in this context:

It is equally certain that Galileo never enunciated the principle of inertia, and
indeed could not have done so correctly, since ‘horizontal’ motion was for him
always at the surface of the earth, equidistant from its centre, and therefore in
reality circular and not rectilinear.
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Nevertheless, although Galileo’s principle of inertia was thus restricted to a very
special terrestrial case, this restriction did not obtrude itself in his vivid physical
discussion of inertial motion on a horizontal plane, especially in his discussion
of the motion of a projectile. And Newton would have been powerfully im-
pressed and influenced by this discussion.

It is not at all clear how far, if at all, Galileo’s understanding of force had
progressed along the road leading to the second law of motion. Newton himself,
as we have seen, seems to imply that this law was known to Galileo

In certain respects this statement is entirely clear and unexceptionable. Galileo
did discover both the law of falling bodies and the parabolic path of a projectile,
basing his derivations of them on an inertial principle and a method of
compounding motions identical with that found in the first corollary to
Newton’s laws of motion. To what extent, however, did Galileo’s inertial
principle agree with Newton’s principle of inertia, and how far if at all did
Galileo either recognize or use the second law of motion?

We shall not pursue further Herivel’s discussion of Newton’s indebtedness (limited or
otherwise) to Galileo. But it is relevant to note that neither Herivel, nor anyone else, to
the extent I can judge, suggests Newton’s indebtedness to Galileo (or to anyone else) for
his formulation of the important Corollaries IV and V.

The experiment and theory that Newton refers to in the last underlined sentences in
the part of the Scholium quoted are considered in §10.

After a long discussion of how resistance by air affects his experiments in the pendulums,
he returns to a further elaboration of his Third Law of Motion.

And thus the third Law, so far as it regards percussions and reflections, is proved
by a theory exactly agreeing with experience.

In attractions, I briefly demonstrate the thing after this manner. Suppose an
obstacle is interposed to hinder the meeting of any two bodies 4, B, attracting
one the other: then if either body, as A, is more attracted towards the other
body B, than that other body B is towards the first body A, the obstacle will
be more strongly urged by the pressure of the body 4 than by the pressure of
the body B, and therefore will not remain in equilibrium: but the stronger
pressure will prevail, and will make the system of the two bodies, together with
the obstacle, to move directly towards the parts on which B lies; and in free
spaces, to go forwards in infinitum with a motion continually accelerated; which
is absurd and contrary to the first Law. For, by the first Law, the system ought
to continue in its state of rest, or of moving uniformly forwards in a right line;
and therefore the bodies must equally press the obstacle, and be equally attracted
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one by the other. I made the experiment on the loadstone and iron. If these,
placed apart in proper vessels, are made to float by one another in standing
water, neither of them will propel the other; but, by being equally attracted,
they will sustain each other’s pressure, and rest at last in an equilibrium.

So the gravitation between the Earth and its parts is mutual. Let the Earth
FI be cut by any plane EG into two parts EGF and EGI, and their weights one
towards the other will be mutually equal. For if by another plane HK, parallel
to the former EG, the greater part EGI is cut into two parts EGKH and HKI
whereof HKI is equal to the part EFG, first cut off, it is evident that the middle
part EGKH will have no propension by its proper weight towards either side,
but will hang as it were, and rest in an equilibrium between both. But the one
extreme part HKI will with its whole weight bear upon and press the middle
part towards the other extreme part EGF; and therefore the force with which
EGI, the sum of the parts HKI and EGKH, tends towards the third part EGF,
is equal to the weight of the part HKI, that is, to the weight of the
third part EGF. And therefore the weights of the two parts EGI and EGF, one
towards the other, are equal, as I was to prove. And indeed if those weights
were not equal, the whole Earth floating in the non-resisting ether would give
way to the greater weight, and, retiring from it, would be carried off in infinitum.

Newton’s concluding remarks, again bearing on the Third Law of Motion, are pregnant
with meaning as has been noticed by Maxwell and by Thomson and Tait:

The power and use of machines consist only in this, that by diminishing the
velocity we may augment the force, and the contrary; from whence, in all sorts
of proper machines, we have the solution of this problem: To move a given
weight with a given power, or with a given force to overcome any other given
resistance. For if machines are so contrived that the velocities of the agent and
resistant are inversely as their forces, the agent will just sustain the resistant,
but with a greater disparity of velocity will overcome it. So that if the disparity
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of velocities is so great as to overcome all that resistance which commonly arises
either from the friction of contiguous bodies as they slide by one another, or
from the cohesion of continuous bodies that are to be separated, or from the
weights of bodies to be raised, the excess of the force remaining, after all those
resistances are overcome, will produce an acceleration of motion proportional
thereto, as well in the parts of the machine as in the resisting body. But to treat
of mechanics is not my present business. I was aiming only to show by those
examples the great extent and certainty of the Third Law of Motion. For if we
estimate the action of the agent from the product of its force and velocity, and
likewise the reaction of the impediment from the product of the velocities of its
several parts, and the forces of resistance arising from the friction, cohesion,
weight, and acceleration of those parts, the action and reaction in the use of all
sorts of machines will be found always equal to one another.* And so far as the
action is propagated by the intervening instruments, and at last impressed upon
the resisting body, the ultimate action will be always contrary to the reaction.

Quoting the statement underlined in the foregoing extract, Maxwell writes in his Theory
of heat (Chapter IV, p. 91):

Newton, in a Scholium to his Third Law of Motion, has stated the relation
between work and kinetic energy in a manner so perfect that it cannot be
improved, but at the same time with so little apparent effort or desire to attract
attention that no one seems to have been struck with the great importance of
the passage till it was pointed out recently (1867) by Thomson and Tait.

and the relevant passage in Thomson and Tait’s Natural philosophy is:

In the scholium appended, he makes the following remarkable statement,
introducing another description of actions and reactions subject to his third
law, the full meaning of which seems to have escaped the notice of commentators.

we may read the above statement as follows:—

If the Activity of an agent be measured by its amount and its velocity conjointly;
and if, similarly, the Counter-activity of the resistance be measured by the velocities
of its several parts and their several amounts conjointly, whether these arise from
friction, cohesion, weight, or acceleration,—Activity and Counter-activity, in all
combinations of machines, will be equal and opposite.

* Or, in other words: the change in the kinetic energy is equal to the work done by the forces during the motion. This is
D’Alembert’s principle as Kelvin points out in the quotation that follows.



Basic concepts: Definitions and Axioms 35

Farther on we shall give an account of the splendid dynamical theory founded
by D’Alembert and Lagrange on this most important remark.

Newton, in the passage just quoted, points out that forces of resistance against
acceleration are to be reckoned as reactions equal and opposite to the actions
by which the acceleration is produced. Thus, if we consider any one material
point of a system, its reaction against acceleration must be equal and opposite
to the resultant of the forces which that point experiences, whether by the actions
of other parts of the system upon it, or by the influence of matter not
belonging to the system. In other words, it must be in equilibrium with these
forces. Hence Newton’s view amounts to this, that all the forces of the system,
with the reactions against acceleration of the material points composing it, form
groups of equilibrating systems for these points considered individually. Hence,
by the principle of superposition of forces in equilibrium, all the forces acting
on points of the system form, with the reactions against acceleration, an
equilibrating set of forces on the whole system. This is the celebrated principle
first explicitly stated, and very usefully applied, by D’Alembert in 1742,
and still known by his name. We have seen, however, that it is very distinctly
implied in Newton’s own interpretation of his third law of motion.

I have quoted from Maxwell and Thomson and Tait so extensively, since I have
found nowhere else comments on the Scholia with the same degree of perception and
understanding.

10. Additional amplifications

In this section we shall amplify the account of Newton’s Definitions and Axioms
given in §§7-9.

(a) The proportionality of mass and weight and the
experiments on the pendulums

As we have remarked in the context of Definition I in §7, the distinction between
mass and weight cannot be made without reference to the Second Law of Motion.
Newton makes this abundantly clear in Proposition XXIV of Book II. In view of the key
importance of this proposition for an understanding of the basic concepts, we shall here
give an account of it. The proposition in question is:

Proposition XX1V. Theorem XIX

The quantities of matter in pendulous bodies, whose centres of oscillation
are equally distant from the centre of suspension, are in a ratio compounded of the
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ratio of the weights and the squared ratio of the times of the oscillations in a
vacuum.

Newton’s proof (paraphrased) is along the following lines.
If a motive force acts on a Mass, M, for a time At, then by the Second Law of Motion,
the velocity v it will generate is given by

M x Av = motive force x At. (1)

On the other hand the force acting vertically downward on the pendulum of length I,
displaced by a distance a from the vertical, is given by

downward force = Wy 2

where W denotes the gravitational mass and g the value of gravity. The motive force
acting horizontally is therefore,

motive force = Wy(a/l). 3)
By considering two pendulums of equal length, [, displaced by the same amount, a, Newton
argues: ‘If two [such] bodies by oscillating describe equal arcs [e.g., A] and those arcs
[A] are divided into equal parts [Aa], the times [At] in which each of the corresponding
parts [Aa are described] are as the times of the oscillation [77]’; and he concludes

At:Av=T:a/T. 4

By equations (1) and (4),

motive force x T motive force x T2

M o 5
a/T a ©)

Combining equations (3) and (5) we obtain,
M oc WgT?/l, (6)

which is Newton’s result (Q.E.D.!)
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The seven corollaries which Newton appends to this result are a marvel of clarity:

Cor. 1. Therefore if the times are equal, the quantities of matter in each of the
bodies are as the weights.

Cor. 11. If the weights are equal, the quantities of matter will be as the squares
of the times.

Cor. 1. If the quantities of matter are equal, the weights will be inversely as
the squares of the times.

Cor. 1v. Since the squares of the times, other things being equal, are as the
lengths of the pendulums, therefore if both the times and the quantities of matter
are equal, the weights will be as the lengths of the pendulums.

Cor. v. And, in general, the quantity of matter in the pendulous body is
directly as the weight and the square of the time, and inversely as the length of
the pendulum.

Cor. vI. But in a non-resisting medium, the quantity of matter in the
pendulous body is directly as the comparative weight and the square of the
time, and inversely as the length of the pendulum. For the comparative weight
is the motive force of the body in any heavy medium, as was shown above; and
therefore does the same thing in such a non-resisting medium as the absolute
weight does in a vacuum.

Cor. vir. And hence appears a method both of comparing bodies one with
another, as to the quantity of matter in each; and of comparing the weights of
the same body in different places, to know the variation of its gravity. And by
experiments made with the greatest accuracy, I have always found the quantity
of matter in bodies to be proportional to their weight.

The experiments themselves are described in greater detail in the Scholium to Section VI,
Book II and more briefly in Proposition VI, Book III. This continued and repeated
reference to his experiments on the pendulums shows the importance that Newton (justly)
attached to them.

(b) Maxwell’s reformulation of Newton’s Laws of Motion

James Clerk Maxwell’s Matter and motion of some 120 pages, first published in
1877 (of which the Dover reprint of Larmor’s edition is still available), is a rarely sensitive
presentation of the basic concepts of Newtonian dynamics. In particular, Maxwell’s
reformulation of Newton’s Laws of Motion in Chapter IV is so completely in the spirit
of the Principia and illuminating by itself, that I reproduce the relevant sections (59—-65,
inclusive) of the chapter, in their entirety.
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ON THE PROPERTIES OF THE CENTRE OF MASS OF A MATERIAL SYSTEM
59. Definition of a mass-vector

We have seen that a vector represents the operation of carrying a tracing point
from a given origin to a given point.

Let us define a mass-vector as the operation of carrying a given mass from
the origin to the given point. The direction of the mass-vector is the same as
that of the vector of the mass, but its magnitude is the product of the mass into
the vector of the mass.

Thus if OA is the vector of the mass A, the mass-vector is OA . A.

60. Centre of mass of two particles

If A and B are two masses, and if a point C be taken in the straight line 4B,
so that BC is to CA as A to B, then the mass-vector of a mass 4 + B placed
at C is equal to the sum of the mass-vectors of A and B. For

OA.A+ OB.B=(0C + CA)A + (0C + CB)B
=0C(A+B)+CA.A+ CB.B.
Now the mass-vectors CA. A and CB. B are equal and opposite, and so destroy
each other, so that
OA.A+ OB.B=0C(A4+ B)

or, C is a point such that if the masses of A and B were concentrated at C, their
mass-vector from any origin O would be the same as when A and B are in their
actual positions. The point C is called the Centre of Mass of A and B.

0

61. Centre of mass of a system

If the system consists of any number of particles, we may begin by finding the
centre of mass of any two particles, and substituting for the two particles a
particle equal to the sum placed at their centre of mass. We may then find the
centre of mass of this particle, together with the third particle of the system,
and place the sum of the three particles at this point, and so on till we have
found the centre of mass of the whole system.



Basic concepts: Definitions and Axioms

The mass-vector drawn from any origin to a mass equal to that of the whole
system placed at the centre of mass of the system is equal to the sum of the
mass-vectors drawn from the same origin to all the particles of the system.

It follows, from the proof in Article 60, that the point found by the
construction here given satisfies this condition. It is plain from the condition
itself that only one point can satisfy it. Hence the construction must lead to the
same result, as to the position of the centre of mass, in whatever order we take
the particles of the system.

The centre of mass is therefore a definite point in the diagram of the
configuration of the system. By assigning to the different points in the diagrams
of displacement, velocity, total acceleration, and rate of acceleration, the masses
of the bodies to which they correspond, we may find in each of these diagrams
a point which corresponds to the centre of mass, and indicates the displacement,
velocity, total acceleration, or rate of acceleration of the centre of mass.

62. Momentum represented as the rate of change of a mass-vector

In the diagram of velocities, if the points o, a, b, ¢, correspond to the velocities
of the origin O and the bodies A4, B, C, and if p be the centre of mass of 4 and
B placed at a and b respectively, and if g is the centre of mass of A + B placed
at p and C at ¢, then g will be the centre of mass of the system of bodies A4, B,
C, at a, b, c, respectively.
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