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On the Dynamics of Moving Systems.

By MAX PLANCK.

Introduction.

Recent researches in the field of thermal radiation lead to the conclusion (from the
experimental as well as from the theoretical side), that a system devoid of ponderable
matter and consisting only of electromagnetic radiation, obeys the basic laws of
mechanics as well as the two laws of thermodynamics in such a complete way, that for
all consequences drawn from it one has nothing left to wish for. Thus it has become
necessary, that a number of ideas and laws which are usually considered as fixed and
self evident conditions of all theoretical speculations in that field, are subject to a
principle revision, and further consideration shows that some of the simplest and most
important of them can in future only be characterized as approximations (though far
reaching and practically very important), but in no way can be considered as exactly
valid. Some examples will substantiate this in detail.

We are accustomed to regard the whole energy of a moving ponderable body as
additively composed of a part, which varies only (regardless of the internal state of the
body) with its speed: the energy of the kinetic motion, and a second part which
(regardless of the speed) only depends on the internal state, namely on the density,
temperature and chemical composition: the internal energy of the body. This
decomposition is from now on, even principally, not allowed in any single case. For
every ponderable body contains in its interior a specifiable finite amount of energy in
the form of radiant heat, and if the body is imparted a certain velocity, then the heat
radiation is also set into motion. As regards moving heat radiation, a separation of
energy into internal and progressive energy is quite impossible, although its energy
notably depends on the speed of motion; therefore such a separation of the total energy
is not feasible. Although the internal radiation energy might have superiority in most
cases over other energy forms, the latter will be nevertheless always present in
detectable quantities and under well realizable circumstances even of the same order.
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For gaseous bodies its amount is most notable. Take for example an ideal one-atomic
gas at rest under the pressure p at temperature 7, then the radiation energy within the

RNT
gas is aVT%, that is in absolute C.G.S. system, a = 7,061-10 and V = 5 (N is the

number of moles, R = 8.31-107). In contrast, the internal energy of the gas, so far as it
arises from the kinetic energy of molecular motions, is: Nc, T+ const., where the molar

heat ¢, at constant volume in the same system of units is equal to 3 - 4.19-107 =

1.257-108. So if we supply heat to the gas from the outside at constant volume, then heat
is distributed over the two mentioned energy forms in the ratio:

4qVT? _ 4aRT*
Ne, Cp

For 0.001mm of pressure at the temperature of melting platinum, in absolute measure p
= 1,33 and T = 1790 + 273 = 2063, this proportion will be equal to 0.25 by using the
given numbers; that is to say, in a heated one-atomic gas (by using the assumed values
of pressure and temperature) the heat which causes an increase of radiation energy is
already the fourth part of the heat due to molecular motions.

Another example concerns the inertial mass of a body. The concept of mass as an
absolutely immutable quantum, neither modifiable by any physical nor by chemical
influences, belongs to the foundations of mechanics since Newton. It appears that we
can attribute constancy to it before all other quantities: it is what until very recently,
even in HERTZ's mechanics, was considered to be the fundamental property of matter
and therefore is used in almost every physical world system as the first building stone.
However, it can now be proven that the mass of each body depends on temperature.
Because inertial mass is defined most directly by the kinetic energy. But since it is, as
shown earlier, impossible to separate the energy of the kinetic motion of a body from its
internal state, it follows immediately that a constant with the properties of inertial mass
may not exist. The reason for this lies again in the internal energy of thermal radiation
which contributes to the inertia of a body in a small but determinable way, i.e., by a term
which depends on the radiation density or temperature. If, however, we want to define
mass rather by momentum than by kinetic energy, namely as the ratio of momentum by
velocity, we obtain no different result. For according to the investigations of H.A.
LORENTZ, H. POINCARE and M. ABRAHAM, the internal heat radiation of a moving body,
as well as in general any electromagnetic radiation, has a certain finite momentum
included in the whole momentum of the body. However, it depends (as the radiation
energy) on temperature, and consequently also on the mass defined by it.

The alternative, which is to distinguish between "real" and "apparent" mass and to
attribute constancy only to the former, represents the same facts only in a modified
formulation. While the "real" mass would now remain constant, it loses on the other
side its previous significance for kinetic energy and momentum.

After this consideration a third example immediately follows, namely the question of the
identity of inertial and ponderable mass. The thermal radiation in a fully evacuated
space, bounded by reflecting walls, surely has inertial mass; but has it also ponderable
mass? If this question is to be denied, which surely should be the obvious choice, then it
seems that the identity of inertial and ponderable mass, which was confirmed by all
previous experiences and was generally accepted, must be abolished. We must not
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object that the inertia of black cavity radiation is imperceptibly small compared to that
of the limiting material walls. On the contrary: by a sufficiently large cavity volume, the
inertia of radiation can be made arbitrarily great against that of the walls. Such a freely
moving cavity radiation, separated form outer space by thin rigid reflective walls,
provides a good example of a rigid body, whose laws of motion completely differ from
those of ordinary mechanics. Although it differs, considered superficially, in no way
from other rigid bodies and also possesses a certain inertial mass and obeys the law of
inertia, its mass changes significantly with temperature and it also depends in a certain
specifiable way from the magnitude of the velocity as well as from the direction of the
moving force in respect to the velocity. However, there is absolutely nothing
hypothetical about those properties, as they can be quantitatively derived from known
laws in all details.

Given the situation described, by which some views and theorems are stripped of its
general nature, hitherto considered to be the strongest support for the usual theoretical
considerations of any kind, it must appear as a task of particular importance to single
out and especially put into the foreground, those theorems that previously formed the
bases of general dynamics, and which also proved absolutely accurate in the light of the
results of recent research; for they alone will henceforth be entitled to find use as the
foundations of dynamics. But it should of course not be said that the above theorems,
noticeably marked as inexact, were to put out of use in future; for in the vast majority of
cases, the enormous practical importance of the decomposition of energy in internal and
kinetic, or the adoption of the absolute invariance of mass, or the condition of identity of
inertial and ponderable mass, is indeed not affected at all by the considerations
advanced, and we will never come in a position to dispense with those considerable
simplifying assumptions. But from the standpoint of the general theory we must
unconditionally and principally distinguish between such theorems, which can be
regarded only as approximations, and those which claim exact validity, because today it
is unknown to which consequences the further development of the exact theory will lead
us: far reaching revolutions, also in practice, have often enough started with discoveries
of almost imperceptibly small inaccuracies within a theory that was previously
considered as generally exact.

If we therefore ask about the really exact basis of general dynamics, of all known
theorems only the principle of least action remains at first, which includes, as it was
proved by H. von HermuorrzY, mechanics, electrodynamics and the two laws of
thermodynamics in its application on reversible processes. The fact that the same
principle is also contained in the laws of moving cavity radiation, I have especially
shown in the following (see below (II (12)). But the principle of least action is not
sufficient for a complete foundation of the dynamics of ponderable bodies; because by
itself it provides no replacement - which has proven above to be untenable and which
should not be introduced here - for splitting the energy of a body in kinetic and internal
energy. On the other hand, such a replacement is in prospect in a complete way for the
introduction of another theorem: the "principle of relativity as expressed by H. A.
Lorentz[2! and in the most general form by A. EINsTEINDS], Although only a single direct
confirmation of the validity of this principle, yet very important, is to be mentioned: the
result of the experiments of Michelson and Morley!4], yet on the other hand no fact is
known so far, directly preventing us to ascribe general and absolute accuracy to that
principle. On the other hand, the principle proves to be so pervasive and fertile that a
possible in depth investigation appears desirable, and this can obviously only be done by
examining the consequences which it contains.
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Following this consideration, I felt it a worthwhile task to develop the conclusions,
leading to a combination of the principle of relativity with the principle of least action
for any ponderable body. On that occasion some other views have been obtained, as well
as some conclusions that may be accessible for direct experimental confirmation.

First Section. Dynamics of a moving black cavity
radiation.

g1.

The black-body radiation in pure vacuum is of all physical systems the only one, in
which thermodynamic, electrodynamic and mechanical properties can be specified with
absolute precision, independent of the opposition of special theories. Its treatment is
therefore placed in front of the other systems. Imagine a radiation surrounded by
vacuum and enclosed in absolutely reflecting moving walls, whose volume V may be
chosen so great that the influence of the mass of the walls is too small to be considered.
All changes happening in that system we consider as reversible, that is, they happen so
slowly that there is in every moment a stationary state. Then the state of the system is
completely determined by the speed g, which can be an arbitrarily large fraction of the
speed of light c, the volume V and the temperature 7. For an infinitesimal change of
state, the change in energy E of the radiation is according to the first law of
thermodynamics:

dE=A + Q.

where A is the mechanical work applied from the outside to the radiation, Q is the heat
supplied from the outside: and after the second law, S is the change in entropy of the
radiation:

Q dE-A
ds =7 = ——=.

By aid of the last equation we want to calculate the properties of the radiation in their
dependence on the independent variables g, V and T. The energy of the radiation is:

E=¢-V,

where ¢ is the spatial energy density, which depends only on q and T. Moreover, the
external work A shall be additively composed of the translation work and the
compression work. The former is equal to the product of velocity g and the increase of
momentum G, the latter is equal to the product of pressure p and the decrease of volume
V, thus:

A =qdG - pdV.
Now the pressure isl5]

& — ¢
= —F— €
P 3¢ + ¢2

https://en.wikisource.org/wiki/Translation:On_the Dynamics of Moving Systems 4/28



11/5/23, 1:47 AM On the Dynamics of Moving Systems - Wikisource, the free online library

Furthermore, the momentum!®]

_ AqeV
32+

Substituting these values into the expression of A, and the values of A and E into the
equation for dS, the latter is as follows:

d(eV) — qd( 2V ) 4+ 2T gy

3c? +q2 3c? —|-q2

dS = T

The condition that this expression forms a complete differential of the three
independent variables g, V and T (bearing in mind that € only depends on q and T, not
on V) gives as a necessary consequence the relations:

act 3¢% + q2

— . T4
€ 3 (c2—q2)3 (1)
and
dact T3V
§= 3 (c? — q?)?2 (2)

where the constant a is determined by the fact that £ goes over to aT* for q = 0, which is
in accordance with the STEFAN-BOLTZMANN radiation law.

With these values we obtain for the energy E, the pressure p and the momentum G of
the moving cavity radiation as functions of the independent variables g, V and T, the
following expressions:

act 3+ ¢

E= : T* 3

3 (2 —q?)3 |4 (3)

_ act T4 1

pP=—3 @ — @) (4)
4actq T4V

G = 3 (2-g)? ()

So, for example, if we impart some acceleration to the cavity radiation, while its volume
V is kept constant and no heat is supplied from outside so that also the entropy S
remains constant, the temperature T of the radiation is decreased by (2) in the ratio
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2\ 3
(1 — q_2> : 1. This result as well as various other related theorems are in line with
c

the conclusions to which we are led by the study of K. MosenGEIL,7). Below (in § 15), an
even simpler and more direct derivation will be given.

Second Section. Principle of least action and
principle of relativity.

g 2.

In the following, we consider an arbitrary body in a steady state (consisting of a given
numbert8! of similar or different types of molecules), determined by the independent
variables[9] V, T and the velocity components &, ¢, 2 of the body along the three axes x,
Y, z of a linear orthogonal reference frame at rest. The magnitude of the velocity q is
then given by:

¢ =2 +79° + 2%

If the state of the body is changed in a reversible manner, then according to H. voN
HermHoLTz[10 the differential equations derived from the principle of least action are

given:
d OH d OH d OH
a%—&m %a—g—&p aa—z—& (6)
and
OH OH
- = —_— =g. 7
v P ar =% ")

There, H is the kinetic potential of the body as a function of the above-mentioned five
independent variables, where the velocity components &, g/, 2 only occur in combination
with g, and § is the external moving force acting on the body.

We can use these five differential equations in the definition of the kinetic potential as
well; but as we see, the function H is still not completely defined by them, because with
certain § and p and S, there remains in H an additive constant having no physical
meaning and which can be arbitrarily determined. Further below (in § 9) we will give a
proper disposal of these constant, and hence we will make the necessary complement as
to the completion of H.

The momentum of the body is then given by the components:
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0H o0H O0H
Bp=—,6,=—,6,=— 8
Tex’ Y ey’ 7 8z ©)
or by the resulting momentum:
O0H
G=— 9
aq (9)
and the total energy of the body by:
0H 0H . . .
whence the equation for the energy principle is given:
dE = §ydz + §ydy + §,dz — pdV + TdS, (11)

which on its right side contains the translation work, the compression work, and the
heat supplied from the outside.

All these relations are also valid, of course, for the special case of pure cavity radiation as
discussed in the previous section, as one can easily convince himself if one substitutes in
the above equations the value for the kinetic potential:

_ actT*V (12)
3(c2 — g2)2

So far, in the application to ponderable bodies it was always proceeded (also by H. von

Helmbholtz) in such a way that the kinetic potential H was split into two parts:

H:%Mf—ﬂ

and it was assumed that the mass of the body M is constant, while the free energy of the
body F was assumed to be independent of q. Then equations (6) goes over into the
equations of ordinary mechanics, and equations (7) into those of ordinary
thermodynamics.

However, as shown by the example of cavity radiation, which has been elaborated above
in the introduction, such a decomposition, strictly speaking, cannot be allowed in any
single case: for every ponderable body contains in its interior radiant energy in
specifiable amount. We therefore don't wish to make here such a decomposition, but
instead we want to rely on the principle of relativity and develop its consequences for
the considered case.

§ 3.
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The principle of relativity says that instead of the previously used reference frame (x, y,
z, t) we can use with exactly the same justification also the following reference frame:

,  c(z—t) , ) , it — vz
=, Y=y =z t=——
c2 — 2 cy\/c? — v?

for the basic equations of mechanics, electrodynamics and thermodynamics, and
therefore describe them as "at rest". We want to denote in the following all quantities
measured in the new reference frame by a prime, and denote accordingly the two
reference systems as "primed" and "unprimed". Then the content of the principle of
relativity can also be expressed in this way: All the equations between primed, unprimed
or both quantities remain true, if we replace the primed quantities by the unprimed
quantities of the same name, and simultaneously replace the unprimed by the primed
quantities. And we have to set ¢'=cand v’ = -v.

This general theorem, which is of course valid for the defining equations (from above) of
the primed coordinates, provides for any relation derived, a reciprocal relation that is
often useful for verification.

§ 4.

Now, our next task is to establish the relation between each of the previously used
quantities and the primed quantities of the same name. It will be shown that this may be
done in a completely unambiguous way, so that we finally, for example, can calculate
from the energy of a body at rest in one reference frame, the energy of the same body in
the other reference frame, for which it possesses a certain finite speed.

/

dx
First, for the primed velocity components (&' = R etc.) it is found in a purely

mathematical way:

A(z—v) | eveE—-viy | ce\eE—v22
_ : j=—— ‘t=——". (13)

(14)

We want to prove now that the entropy of the considered body has with respect to the
primed system the same value as with respect to the unprimed system. We could found
this prove, more generally, on the close connection of entropy with probability, whose
quantity can impossibly depend on the choice of the reference frame; however, here we
prefer a more direct way, completely independent of the introduction of the concept of
probability.

We think of a body brought from a state at rest in the unprimed reference frame, into a
second state by any reversible adiabatic process, so that it is at rest in the primed
reference frame. If we denote the entropy of the body for the unprimed frame in the
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initial state by S,, in the final state by S,, then because of reversibility and adiabasy S; =

S,. But also for the primed reference frame the process is reversible and adiabatic, so we
also have: §7 = §}.

If S'; would not be equal to S, but §] > S}, then this would mean: the entropy of the

body for that reference frame for which it is in motion, is greater than for that reference
frame for which it is at rest. Then according to this proposition it should be S2 > S}, as

well; for in the second condition the body rests in the primed reference frame, while it is
in motion for the unprimed reference frame. However, these two inequalities contradict
the equations stated above. Nor can S} < Sy; hence S| = S;, and in general:

S =8, (15)

that is, the entropy of the body does not depend on the choice of the reference frame.

§5.

Hence it follows the important conclusion: If a body (which in the initial state is at rest
in the unprimed system) is brought in any way (reversible and adiabatic) at the speed of
£ =wv, y =0, 2 =0, so that the final volume V,, is in relation to the initial volume V,

by the relation:

(16)

then the final state 2 for the primed system is identical in all respects to the initial state 1
for the unprimed system.

The correctness of this proposition follows from the consideration that the condition of
the body is defined by five independent variables, for which we can choose the volume
and entropy in addition to the three velocity components. Now, under those conditions

&h,7s and 25 = 0 are the 3 velocity components of the body in the final state for the
primed system, furthermore by (15) the entropy S', = S, = S, finally the volume by (14):

¢ + v
Vi =Vh——— =Vh—— =V,

c\/c? — v? c2 — 2

so every 5 condition-variables in the final state 2 for the primed system have the same
value as in the initial state 1 for the unprimed system, thus the above theorem is proved.

§6.
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Now we think of any number of different bodies separated from each other, which
initially are at rest for the unprimed system and which all have the same temperature T,
and are subjected to the same pressure p,. Each of these bodies will somehow be
brought to the speed v in a reversible and adiabatic way, and its final volume will be
regulated according to relation (16). Then finally, all bodies have in turn a common
temperature 7, and a common pressure p,. Because for the primed system every body is
finally in the same condition as initially for the unprimed frame, thus for the primed
system the final temperatures and the final pressure are all equal. However, the same is
true for the unprimed frame; for two bodies, having the same temperature and same
pressure for one reference system, i.e., they are in thermal and mechanical equilibrium
with each other, have the same property also in every other frame of reference.

Thus we can state the following theorem: Different types of bodies of same temperature
and same pressure, which are somehow brought from velocity o to velocity v (separately
and in a reversible and adiabatic way) so that the volume is diminished by the ratio

: 1 for any body, will adopt the same temperature and pressure. Therefore, if

we know for a single body the change of temperature set forth by such a process, then
we know the change for any arbitrary body in nature.

Now, especially for a black cavity radiation we have for q,=0, q,=v according to (2)

g 4a,T13V1 4ac4T32V2
1 — 3 b 2_3(02_1)2)23

consequently, since under the condition S, =S,and Vo = V; -

and by (4):

P; =Do

that is, the common final pressure is equal to the common initial pressure. The last two
relations are thus generally valid for any arbitrary body subjected to that process.

It also follows that we can replace the volume condition (16) of § 5 by the simpler
condition, in which the final pressure p, is equal to the initial pressure p,. Then we can
say: By a reversible adiabatic isobaric (i.e. p = const.) acceleration (in an arbitrary way)
of any body from velocity 0 up to velocity v, both the volume and the temperature of the

2

v i .
1— — 1. In this theorem, of course, the direction of
C

body is diminished in the ratio

the velocity v is negligible. Therefore, the same theorem is valid even if we substitute the
arbitrarily oriented velocity g instead of velocity v directed into the x-axis.
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§7.

The last theorem makes it possible to express in a very general way the relation between
the values of the temperature and the pressure of an arbitrarily moving body for the two
reference frames used by us. We imagine that a moving body with arbitrarily directed
velocity is given. The magnitude of velocity for the unprimed frame is g, and q' for the
primed frame. If, from the given condition, the body is brought in a reversible, adiabatic
and isobaric way to rest for the unprimed reference frame, then its volume has grown

, V : , : :
from V'to ———, its temperature from 7'to ———. However, if from the given
2

1— L [1 - L

c2 c2

condition the body is brought in a reversible, adiabatic and isobaric way to rest for the

primed reference frame, then its volume has grown from V to ———, its
ql2
2
!
temperature from Tto ————. However, the state of rest achieved in this way in the
q12
2

unprimed system is in all respects identical to the previously obtained state of rest in the
primed system. For the conditions, under which the theorem of § 5 is valid, are all
satisfied here when we think that the body (at rest for the unprimed system) is brought
from the initially given state in a reversible, adiabatic and isobaric way to rest for the
primed system. Consequently:

= (17)

as a generally valid relation between the primed and unprimed the variables.
§ 8.

Now we are mainly concerned with the comparison of the values of the kinetic potential
in both reference frames. For this purpose we first write the differential equations (7) in
accordance with the principle of relativity for the primed system:

8H' , OH
av: P T

S’ (18)
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These two equations give with respect to the equations (77) and the relations (17):

0 2 — ¢ O0H 0 2 —¢q? O0H
9 (g g )z Y A S e (19)

ov c2 — q” ov' oT 2 — q* orT
Before we perform the integration, we derive the relevant equations for the velocity
components ¢ and 2. In addition to the differential equations (6) with respect to the

primed system we have to use:

4 oH _ o
dt' ai' U

d OH d 8H'

—_— = / —_— = )
dt' 8y’ Sy dt 93 z (20)

the relations between the primed and unprimed components of the moving force §. To
find them, we consider a special case, namely, an infinitely small diathermanous solid
body charged with electricity e, in an arbitrary, evacuated electromagnetic field. Then,
for the unprimed system:

§y = e€y + %(éﬁm — &9y)

where € denotes the electric, $) the magnetic field intensity. The same equations apply
according to the relativity principle, when all the variables, except e and c, were

provided with primes. This leads with respect to the relations (13) and the relations: 12!

¥ = € Ty = Ha
&= o (Gmi9) = g5 OGtie)
@lz’ = \/cchvz (ez + %ﬁy) ﬁlz’ — czc_v2 (ﬁz _ %ey)

the following equations between the primed and unprimed force components:

vy vz

8o =8 - c? —'v:izsy e —v:i:%’z, 1)
cy/ ¢ — v? c\/c2 —v?

Sy = —5 B 8o = —5 = (22)
c — vt c — vt

The last two relations (22) we accept as generally valid; this give in combination with (6)
and (20):
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d 6H' cy/c®—v* d 6H

dt 8y ¢ —wi dt 8y

Now, by (13) and (14) we have:

OH' OH' 8y OH' ¢/t —v* D e 2 — g2 23)
o By 8y 0y Etwil 0y ¢ — ¢
and:
' i
dt e/ — o2
It follows:
a2 (m c-¢ ) _ oH
Oy c — ¢ Oy
and by integration:

2 _ 2 2 _ 42
i ) N A ) B_H ebenso: i ; (S B_I-I (24)
0y c? — q” 0y 0z c? — q” 0z

The constant of integration, an absolute constant, vanishes because only q' = q H' goes
over into H.

§9.

Now, the four equations (19) and (24) give by integration:

2 — a2
H' 2—q,2=H+const.
\/c —q

The constant does not depend on V, T, 3, Z; but it can still depend on &, or by (14),

2 — qz
—— . We therefore write:
62 _ ql2

2 _ 2 2 _ 2
H cz q/2:H+f<cz ‘1’2)
¢’ —q ¢t —q

and determine the most general expression of the function f.

At first, we have:
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H' H 1 ? — ¢

[ — 42 B JE—F - Nz T\ 2 72

Since the function H only depends on g, V and T, and since V' and 7" are only connected
to V and T by the relations (17), then the right-hand side of the equation as well as the
left-hand side, are of the form:[3!

1 ¢ — ¢ !
W=l e R
where Q depends only on q. It necessarily follows:

1 s ( A — ¢ ) _ C C

/& — @ e — ¢ /& — ¢ /& — g

if Cis an absolute constant.

This substituted into (25) gives the desired relation between H' and H:

H -C H-C

2 _ g2 /& — ¢ '

Since the function H-C satisfies exactly the same differential equations (6) and (7) as the
function H, we may easily imagine to set in all previous equations the function H-C
instead of H, and we want from now on denote H-C simply by H. Then it is found:

H' H
= (26)

2 _ g2 /2 _ e '

In other words: If we set the constant C = 0, then this represents no physical limitation,
but a useful supplement to the definition of the kinetic potential, which is not
completely determined by the differential equations (6) and (7), as it was pointed out
there already.

§ 10.

Having found the general relation between H' and H now, the relation of those values of
any physical quantity of the two reference frames is directly given from the differential
equations of the principle of least action. Consider first the momentum, whose
components in the primed frame are:

oH' ., OH' ., OH

&, =22 -2 s .
YT YV 'Y

(27)

While the connection of the y and z-components of momentum is directly given from
the comparison with (8) and (13):
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&, =6, ©&,=6, (28)

while the connection between the x-components &, and &, is of a much more
complicated nature.

From (27) we obtain for this connection in an easily understandable description:

, OH 0t OH 8y A OH 0z ,  OH 0V A OH' oT

* = 5% o | 0y o 0%z o OV or | oT 0%
This is by (26), (14) and (13):

OH' 0 (H’ c? —q’2> ey —? 9H N vey/ e — v?

o 0% 2 — @2 2 —vt Ot (2 — vz)?

H

OH'  cy/c2—v* 0H OH'  cy/c2—v? §H

0y 2 —vk Oy 0% 2 —vi 0%

OH' c\/c2—v* 0H OH'  cy/c®—v? §H

v c—ve OV’ 8T  2—wi OT

8z  (F—wvz)® 8y  wvy(?—wvE) 8r  vi(c? —vi)

8 (2 —?) i (2 —?) o c2(c? —v?)’
v v(c? — vi) v or v(c? — vi) T
8z (2 —-?)  8F (2 —v?)

This is given by substitution with respect to (8) and (7):
1
6, = ———{( — v2)B, +vH — vyB, — v:&, — vpV — vT'S}
cy/c? —v?

or from the introduction of the energy E (10):

, c (®w_v(E+pV))_

o = > (29)

c2 — 2

If we introduce instead of the energy E the "thermal function at constant pressure" R by
Gibbs:

R=E+pV, (30)

whose variation in isobaric processes describes the supplied heat, then the last relation
is simply given by:
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= __° (Qﬁz — 1R). (31)

2
§ 11.

By differentiating the equation (29) by time t:

d@;/ d@;/ dt d®, dE vV d
_ B c { (15 v ( D LV P)}’

& @ @& gz al\& e\a@ Pat'a

the relation between the x-components of the force § follows with consideration of (27),
(20), (14) and (11), namely:

C

v

— vz
Comparing this relation with the one found above (21), it follows that those have no
general meaning, but only apply if p = 0 and S = 0, that is, when the process runs
isobaric and adiabatic. In fact, this property is characteristically for the process under

consideration at that time: the motion of an electrically charged, diathermanous solid
body in an evacuated electromagnetic field.

Finally, there may be still room for general relations between the values for the energy of
the body, as well as the performed external work, and the supplied heat for both
reference systems.

For the energy E' we have, by (10):
E=i&,+96,+6,+TS - H,
consequently, by substituting the previously derived relations:

@y

c

E = —pV

33
c2 — vz (33)

{E—v@z —
2 _ 2

As to the thermal function R defined in (30), we have in the primed reference frame the
simple relationship:

c

R = ———(R~v8,)) (34)

Ve —wv

The performed translation work from outside (at an infinitesimal reversible change of
state of the body) is for the primed frame of reference:

Fyda' +F,dy +F,dd = (53)
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=—° {Sxdw + 8, dy + T.dz — vdt (3 + zﬁ?’;”(vp + Ts) }

Furthermore, the compression work:

c? —v? vey/ e — 02

c
—pdV' = - pdV — Vdi (36)
P 2 —vi (c? — v)? P
finally, the added heat:
cy/ ¢ — v?
¢t — v
§ 12.

The relations derived above between the primed and unprimed quantities can be partly

represented in a more simple way, if we examine those expressions that are invariant for

the transformation from one reference frame to another. Such invariants are y, z, p, s, \
H 2 — ¢

6,6, 7o ,G . , furthermore the differential expressions Q/c2 — g*dt

, Hdt, Vdt, Tdt, §,dt, §.dt, Edt — &,dz, Rdt — & dz, etc. All these quantities do not

change their value, if they were replaced by the corresponding primed quantities.

It also follows that the value for the time integral, which is characteristic for the
principle of least action, and which is taken from a certain initial state 1 to a certain final

state 2, is:
2
W = / Hdt,
1

which may be described as the (corresponding to the process in question) "influence
quantity", having the same value for the primed reference frame as for the unprimed. If
we add the theorem that for the influence quantity there exists a certain elementary
quantum[14]: h=6.55 - 10727 erg. sec., we can also say: Every change in nature
corresponds to a certain number of influence elements which are independent of the
reference frame. It is understood that this theorem extends the importance of the
principle of least action in a new direction. But at this point, these and related issues will
not be further discussed.

Third Section. Applications.

§ 13.
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The most important implication of the general relations established in the previous
section concerns the dependence of the physical state of a body on its velocity. It can in
fact be shown quite generally, that the kinetic potential H and thus all state variables,
are directly specify as functions of velocity, volume and temperature, as soon as they are
known for the velocity zero as functions of volume and temperature.

We want for this purpose denote by H, p,, Sp, Eo» ... those functions of two variables V
and T, in which the functions H, p, S, E, ... of the three variables g, V, T go over, if we set
q = o within them. We also want denote by H'y, p'y, S'y, E'y, ... those functions of the

three variables g, V, T, in which the functions H,, p,, Sy, Ey, ... the two variables V and

¢ V instead of V and T' = ;T

Ve —q? /@ — ¢

T go over, if we substitute V' =

instead of T'.

Now we start from relation (26) and set therein g’ = 0. Then it follows with respect to
(17) in the recently introduced term:

2 _ 42
Ve T g, (38)

and thus H is represented as a function of the three variables g, V, and T, if H, as a

function of two variables V and T is known. By H all other physical state variables are
determined according to (6) and (7). We at first obtain for the pressure:

P="pp- (39)
If the pressure of the body at rest is known by the usual state equation as a function of
volume and temperature, the state equation of the moving body follows immediately.
Similarly, the entropy is given by:

S=8. (40)

Furthermore, the components of the momentum are given by:

®w=G—, ®y=G_, ®z=Gi’
q q

where G, the resulting momentum, is according to (38):

62 — 2 ! V !
GZB_H:_ q H6+\/ q (8H) cq +<6H) cqT :
0q cy/c —v? ¢ W /o (2 —g2)2 0 (c2 — q2)2
G= gV + 55 T5 - a

= ———Ho. (41)
- ¢ c\/ ¢ —q

Furthermore, the energy according to (10) is given by:
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2 c? C
E = Vph + ——TS!, — H!. (42)
g2 0 2_ g2 Z_g
Considering that Ey = T'So Hy and
cT
¢t —q
thus we can write:
E-—C° i T vy
IRCEr AT M 43
Finally, the thermal function R is by (30):
2 2
c c C
R=——Vp)+ ——TS5, — ——H] (44)
e — g2 c? — g2 /2 —
or because:
vV T
Ry= ———p\)+ ———8) — Hj
2 — ¢ 2 — g2
C
R=———~ (45)

By introduction of thermal function R, the momentum Gsimply writes by (41):

q q
G=c—2R=—c - Ry (46)
§ 14.

The special relations which are contained in the above equations can all be summarized
in a single differential equation, which is completely general for the function H of the
three variables g, V, T. Namely, if we substitute in equation (46) for G the expression

6_ , and for R the value E + pV, it follows with respect to (10) the equation:
q

OH O0H 2 —q¢* 6H
T— +V — —
oT + 1% q Og

H=0. (47)

This differential equation represents the general expression for the application of the
principle of relativity on the kinetic potential. Its general integral is expressed by (38),
of which one can easily convince himself. Thereafter, the kinetic potential H is a
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homogeneous function of first degree of the three variables 7, V, and 4 [ — ¢

§15.

Let us now at first give a special application to the black cavity radiation. Hereafter, all
laws of motion of cavity radiation are resulting directly from the simple known
thermodynamic formulas for static cavity radiation. Namely, for which the STEFAN-
BoLTZMANN law is given:

Ey = aT*V.
Furthermore, Maxwell's radiation pressure is given by:

1
Po = §CLT4 ’

and the entropy of stationary radiation:

So = /M = %aT3V.
For those values applying to g = 0, by definition (§ 13) the expressions follow:
B - ac‘r’T‘*V5 o= ac'T* . s — 4ac*T3V ’
(2 —¢?)2 3(c® — ) 3(c? — )

and with their aid by (39), (40), (43) and (46) the values valid for any velocity g follow:

_ ac*T* _ 4ac*T3V
o 3(c2 — ¢2)? R 3(c2 — ¢2)? ’
act(3c® + ¢?) q dactq
= TV, G= —(E+pV)= ————T*V
3(c? — g2)3 c2 ( pY) 3(c? — g2)3

in accordance with the equations of § 1

§16.
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By momentum G, also its inertial mass is determined. This quantity, which plays in
pure mechanics such a fundamental role, is degraded to a secondary expression within
the general dynamics. For, once the momentum is no longer proportional to the velocity,
the mass of a body is no longer constant; also we are led to completely different
dependencies of mass on velocity, depending on whether we divide momentum G by
velocity g, or if we differentiate velocity g, where in this case it is necessary to specify
particularly the manner in which the differentiation took place: whether isothermal,

adiabatic, etc. Again, a different value for the mass is found in general, if we start from
2

the energy E and differentiate it to % How to designate these different expressions, is

of course a matter of definition.

Here, by "mass" M of a body we want to understand that quantity of a body independent
of velocity, which is obtained if the momentum G is divided by velocity ¢ and where we
set the ratio g = 0, thus in our notation by (46):

G Ry Ey+pW

This quantity in general depends on the temperature 7" and volume V of the body.

If we set in the expression — the velocity g not to zero, then we call the ratio, as

usual,[15] the "transverse" mass of the body, while on the other hand, the derivative ccil_q
is the "longitudinal" mass. In the longitudinal mass is, however, the "isothermal-
isochoric" mass to be distinguished from the "adiabatic-isobaric" mass, etc.; because the
derivative has only one definite value when the path of differentiation is given. For the
special speed g = 0, transverse and longitudinal masses of all forms become the same,
i.e. they become (48).

The mass of a stationary cavity radiation is, therefore, given by (5):

4aT4V
3c?

the transverse mass of a moving cavity radiation:

E _ dac*T*V

q o 3(c2 —q2)3’

the longitudinal isothermal isochoric mass of that!16]
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0G  4dac*(c? +5¢°)

= TV,
3q 3(62 _ q2)4

the longitudinal adiabatic isochoric mass: 16

(B_G) _ 4ac*(3c® — q2)T4V’
0q ) sy 9(c? — ¢?)*

the longitudinal adiabatic-isobaric mass, on the contrary:

(G_G) 4acT*V
aq S,p 3(62 - q2)4 .

(%) 4acST4V
6q S.p 3(62 - q2)4 .

§17.

Especially notable in relation (48) is the close connection of the mass of a body with the
thermal function R,. Since mass M can easily be measured in grams, then the quantity
of R, immediately can be given by the absolute CGS system. But this value can not be
tested directly by thermodynamic means; because an additive constant of the thermal
function, as well as of energy, remains unspecified by pure thermodynamics. In this
respect, relation (48) is essentially a complement to the thermodynamic definition of
energy.

In contrast, there arises a possibility of an experimental test of the theory by taking into
account the variability of the thermal function R, with temperature, volume and
chemical composition. For according to equation (48), the inertial mass of a body
changes due to thermal input and release, and the increase of mass is always equal to
the amount of heat absorbed in an isobar change of the body from the outside, divided
by the square of the velocity of light in vacuum.B7] Tt is particularly noteworthy, that the
theorem not only applies to reversible processes, but in general also applies to any
irreversible change of state; for the relation between the thermal function R and the heat
supplied from the outside is based directly upon the first law of thermodynamics.
Because the quantity is of the order of c2, the mass variation caused by the simple
heating or cooling of a body is so minimal, of course, that it is likely to escape forever
any direct measurement. A stronger influence would be expected by consideration of
chemical enthalpy changes, although even here the effect is unlikely to be measured.

Let us calculate, for example, the decrease in mass of 1%/2 moles oxygen-hydrogen (H, +
/20, = 18 gr), condensed at atmospheric pressure and room temperature to 1 mol of
liquid water. This is equivalent to the heat in CGS units:

https://en.wikisource.org/wiki/Translation:On_the Dynamics of Moving Systems 22/28



11/5/23, 1:47 AM On the Dynamics of Moving Systems - Wikisource, the free online library

r = 68400 - 419 - 10°= 2.87 - 10'?

r
Consequently, the decrease in mass: —gr = 3.2 - 107® mgr, is still a vanishingly small
c

quantity.
8 18.

According to the theory developed here, we therefore have to imagine an energy store in
the interior of each body, whose amount is so enormous that the usually observed
heating and cooling processes, and even quite deep invasive chemical transformations
associated with considerable heat effects, changes it by only an imperceptible fraction.
This is valid down to the lowest attainable temperatures: for both the specific heat of a
body as well as the reaction enthalpy of chemical processes keep up their magnitude
close to absolute zero. If the temperature of a body at rest is infinitely diminished (at
constant external pressure), then its internal energy does not converge against zero,
which is incidentally also excluded, because the reaction enthalpy of two bodies acting
chemically on each other remains finite even at the lowest temperatures, but on the
contrary it retains the same value at any finite temperature except for comparatively
very minor terms. This energy store, which absolutely remains within the body at zero
degrees, and against which all the usual physical and chemical processes within
enthalpy changes are minimal, we want to denote as the "latent energy" of the body. The
latent energy is quite independent of the temperature and the motion of chemical
atoms,[ls] its location is therefore to be found within the chemical atom; by its nature it
could be of potential nature but just as well be of kinetic nature. For nothing hinders us
to accept, which would even be considered very probably especially by the
electrodynamic point of view, that within the chemical atoms certain stationary motion
processes in the form of standing oscillations take place, associated with none or only
small radiation. The energy of these oscillations, which can be very substantial, would
(as long as the atoms remain unchanged) emerge in no other way than through inertia,
by which it opposes to a translational acceleration of the oscillating system, and by the
gravitational effect which is apparently in close connection to it. However, the views
based on the kinetic theory of gases, which assume the inertial mass as something
primarily given and the chemical atoms as rigid bodies or as simple material points, are
insufficient for a further development of those ideas; namely, especially BOLTZMANN's
law of even energy distribution in statistical equilibrium would also lose its meaning
here. That in the field of intra-atomic processes the simple assumptions of the kinetic
theory are in the need of profound additions, is indeed already suggested in view of the
mercury spectrum, and is well recognized from all sides.

Although, after the foregoing, the existence and magnitude of the latent energy normally
can only be inferred indirectly from theoretical considerations there is still a condition
under which it comes into direct thermodynamic efficiency: that is the occurrence of a
change or destruction of the chemical atoms; for in this case some latent energy has to
be released in accordance with the energy principle. Although the prospect of the
realization of such a radical operation appeared to be very low a decennium ago, now
due to the discovery of radioactive elements and their transformations it is in close
proximity, and in fact the observation of the strong persistence of heat production by
radio-active substances gives almost a direct support for the assumption, that the source
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of that heat is just nothing else than the latent energy of the atoms. In accordance to
(48), a large latent energy is connected with a large mass as well. This is well in line with
the fact that the radio-active elements have a particularly high atomic weight, and that
their bindings belong to those with the highest specific weights.

According to J. PrecHTH] 1 gr of radium, when surrounded by a sufficiently thick layer
of lead, gives 134.4 - 225 gr = 30240 gr cal per hour. This gives according to (48) a
reduction of mass in an hour by

30240 - 419 - 10°

gr=1.41-10"%mgr
9.10%

or in a year a reduction of mass around 0.012 mgr. This amount, however, particularly
with regard to the high atomic weight of radium, is still so small that it is at first out of
the realm of possible experience.

Incidentally, it might appear doubtful from the outset whether a weighing scale is the
right instrument for this measurement. Because the relation (48) does not apply to
ponderable, but to the inertial mass, and it has already been stressed in the introduction
that these two factors are by no means identical, at least not if we attribute no
gravitational effect to black cavity radiation in a vacuum, although it surely has inertia.
However, inertia and gravitation are in every respect and by all our experience, for the
most varied materials and from the lightest to the heaviest, so closely connected with
each other that we may seek without concern the origin of these two effects at the same
place, namely in the latent energy of the chemical atoms. Assuming that gravity is
directly proportional to the latent energy, then the mass depending on temperature is
only very slightly larger than the ponderable mass which is quite independent of
temperature. In any case, however, a notable reduction in the latent energy would also
result in a notable reduction of the ponderable mass. The future will teach us whether
such an influence will ever be directly detected.

Fourth Section. Introduction of new independent
variables.

§19.

The expression (38) for the kinetic potential H found in the previous section has the
same form as that for the kinetic potential of a single material point moving with
constant mass M, which was found by me in a previous study[zo]:

[ 2
M, /1 — q_2 + const (49)
c
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Hy
However, the agreement is not complete: for that it would be necessary that M = — =2
, which according to equation (48) is not at all the case. The reason for this apparent
contradiction is that the quantity H which was denoted as the kinetic potential, means
something different than there, as can be seen most easily by considering the equations
of motion (6). These equations can be found in my earlier paper in exactly the same

form as here, but there the differential quotients BI:I, BI:I, BI:I have a different
ot 0Oy 0z

meaning, because in that place the differentiation was not to be given in a isothermal

but in a adiabatically-isobar way. As the material point moves without external heat

supply under the constant external pressure zero, then according to § 6 it has variable

volume and variable temperature. To make that difference clear, I will at this place refer

by K to the former size H, so that we have the equations:

o J,s \0%)yr (50)

2
K=—-Mc,/1- q_2 + const (91)
\/ c

The full compatibility of these relations with the formulas of the previous section is most
evident, when in equations (6) and (7) of the principle of least action the independent
variables V and T are replaced by p and S. Thus they are:

where, by (49):

4 (6—K) = 8z, USW (52)
dt \ 0z .S T
0K oK
—_— =-V,|— ) =-T,
(ap )S (as ) (59)
where
K=H-pV-TS. (54)

That these relationships, in fact, are quite equivalent with (6) and (7), can be directly
and most easily seen by substituting the value (54) of K in equations (52) and (53), and
the differentiation of H by the independent variables p and S is replaced by the
differentiation of the independent variables V and T.

When we consider that by (10) and (30):

H
K=q%——pV—E=qG’—R,
q

it follows by substitution in (46):
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c2 _q2
K=-Y" "R,
C

In order to compare this relation with that previously derived by me (51), we must
restrict ourselves to adiabatic isobaric processes, because only for such (51) was derived.

However, according to § 6 for an adiabatic-isobaric process V! = ———— is constant,
q2
1-=
, r . . ,
as well as T" = ——— is constant, so R, is independent of q. Therefore we write R,
q2
-2

instead of R',, and then we obtain by (48):

/2 — o2
K = ——qRo = —Mc\/c2 — ¢

c

in full accordance with (51).
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47 q2 3
=—K(0)(1- =
p= g kO(1- %)

and as equation (44):

Combined, both equations give the above relation, which is by the way generally
valid, not only for adiabatic processes.

6. According to K. VON MOSENGEIL, |.c. equation (24*) it is namely:
16mq K (%a Q)

G —
3c3 e 3
(1-%)

where according to equation (25%):
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H' H H" H

V- JE-@ JF-q7 P

sum up the three expressions

H HII
and —

/2 — ¢ /2 — "2 '
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