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There is little doubt that Einstein’s theory of relativity captures
the imagination. Not only has it radically altered the way we
view the universe, but the theory has a considerable number
of surprises in store. This is especially so in the three main
topics of current interest that this book reaches, namely: black
holes, gravitational waves, and cosmology.

The main aim of this textbook is to provide students with a
sound mathematical introduction coupled to an understanding
of the physical insights needed to explore the subject. Indeed,
the book follows Einstein in that it introduces the theory very
much from a physical point of view. After introducing the
special theory of relativity, the basic field equations of
| gravitation are derived and discussed carefully as a prelude
| to first solving them in simple cases and then exploring the
three main areas of application.

Einstein’s theory of relativity is undoubtedly one of the
greatest achievements of the human mind. Yet, in this book,
the author makes it possible for students with a wide range
of abilities to deal confidently with the subject. Based on the
author’s fifteen years experience of teaching this subject, this
is mainly achieved by breaking down the main arguments
into simple logical steps. The book includes numerous
illustrative diagrams and exercises (of varying degrees of
difficulty), and as a result this book makes an excellent course
for any student coming to the subject for the first time.
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1.1 Notes for the student

There is little doubt that relativity theory captures the imagination. Nor is it
surprising: the anti-intuitive properties of special relativity, the bizarre
characteristics of black holes, the exciting prospect of gravitational wave
detection and with it the advent of gravitational wave astronomy, and the
sheer scope and nature of cosmology and its posing of ultimate questions;
these and other issues combine to excite the minds of the inquisitive. Yet, if we
are to look at these issues meaningfully, then we really require both physical
insight and a sound mathematical foundation. The aim of this book is to help
provide these.

The book grew out of some notes I wrote in the mid-1970s to accompany a
UK course on general relativity. Originally, the course was a third-year
undergraduate option aimed at mathematicians and physicists. It sub-
sequently grew to include M.Sc. students and some first-year Ph.D. students.
Consequently, the notes, and with it the book, are pitched principally at the
undergraduate level, but they contain sufficient depth and coverage to
interest many students at the first-year graduate level. To help fulfil this dual
purpose, I have indicated the more advanced sections (level-two material) by
a grey shaded bar alongside the appropriate section. Level-one material is
essential to the understanding of the book, whereas level two is enrichment
material included for the more advanced student. To help put a bit more light
and shade into the book, the more important equations and results are given
in tint panels.

In designing the course, I set myself two main objectives. First of all, I
wanted the student to gain insight into, and confidence in handling, the basic
equations of the theory. From the mathematical viewpoint, this requires good
manipulative ability with tensors. Part B is devoted to developing the
necessary expertise in tensors for the rest of the book. It is essentially written
as a self-study unit. Students are urged to attempt all the exercises which
accompany the various sections. Experience has shown that this is the only
real way to be in a position to deal confidently with the ensuing material.
From the physical viewpoint, I think the best route to understanding
relativity theory is to follow the one taken by Einstein. Thus the second
chapter of Part C is devoted to discussing the principles which guided
Einstein in his search for a relativistic theory of gravitation. The field
equations are approached first from a largely physical viewpoint using these
principles and subsequently from a purely mathematical viewpoint using the
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variational principle approach. After a chapter devoted to investigating the
quantity which goes on the ‘right-hand side’ of the equations, the structure of
the equations is discussed as a prelude to solving them in the simplest case.
This part of the course ends by considering the experimental status of general
relativity. The course originally assumed that the student had some reason-
able knowledge of special relativity. In fact, over the years, a growing number
of students have taken the course without this background, and so, for
completeness, I eventually added Part A. This is designed to provide an
introduction to special relativity sufficient for the needs of the rest of the
book.

The second main objective of the course was to develop it in such a way
that it would be possible to reach three major topics of current interest,
namely, black holes, gravitational waves, and cosmology. These topics form
the subject matter of Parts D, E, and F respectively.

Each of the chapters is supported by exercises, numbering some 300 in
total. The bulk of these are straightforward calculations used to fill in parts
omitted in the text. The numbers in parentheses indicate the sections to which
the exercises refer. Although the exercises in general are important in aiding
understanding, their status is different from those in Part B. I see the exercises
in Part B as being absolutely essential for understanding the rest of the book
and they should not be omitted. The remaining exercises are desirable. The
book is neither exhaustive nor complete, since there are topics in the theory
which we do not cover or only meet briefly. However, it is hoped that it
provides the student with a sound understanding of the basics of the theory.

A few words of advice if you find studying from a book hard going.
Remember that understanding is not an all or nothing process. One under-
stands things at deeper and deeper levels, as various connections are made or
ideas are seen in different contexts or from a different perspective. So do not
simply attempt to study a section by going through it line by line and expect it
all to make sense at the first go. It is better to begin by reading through a few
sections quickly — skimming — thereby trying to get a general feel for the
scope, level, and coverage of the subject matter. A second reading should be
more thorough, but should not stop if ideas are met which are not clear
straightaway. In a final pass, the sections should be studied in depth with the
exercises attempted at the end of each section. ‘However, if you get stuck, do
not stop there, press on. You will often find that the penny will drop later,
sometimes on its own, or that subsequent work will produce the necessary
understanding. Many exercises (and exam questions) are hierarchical in
nature. They require you to establish a result at one stage which is then used
at a subsequent stage. If you cannot establish the result, then do not give up.
Try and use it in the subsequent section. You will often find that this will give
you the necessary insight to allow you to go back and establish the earlier
result. For most students, frequent study sessions of not too long a duration
are more productive than occasional long drawn out sessions. The best study
environment varies greatly from one individual to another. Try experimen-
ting with different environments to find out what is the most effective for you.

As far as initial conditions are concerned, that is assumptions about your
background, it is difficult to be precise, because you can probably get by with
much less than the book might seem to indicate (see §1.5). Added to which,
there is a big difference between understanding a topic fully and only having
some vague acquaintance with it. On the mathematical side, you certainly



need to know calculus, up to and including partial differentiation, and
solution of simple ordinary differential equations. Basic algebra is assumed
and some matrix theory, although you can probably take eigenvalues and
diagonalisation on trust. Familiarity with vectors and some exposure to
vector fields is assumed. It would also be good to have met the ideas of a
vector space and bases. We use Taylor’s theorem a lot, but probably
knowledge of Maclaurin’s will be sufficient. On the Physics side, you obvi-
ously need to know Newton’s laws and Newtonian gravitation. It would be
helpful also to know a little about the potential formulation of gravitation
(though, again, just the basics will do). The book assumes familiarity with
electromagnetism (Maxwell’s equations, in particular) and fluid dynamics
(the Navier-Stokes equation, in particular), but neither of these are abso-
lutely essential. It would be very helpful to have met some ideas about waves
(such as the fundamental relationship ¢ = Av) and the wave equation in
particular. In cosmology, it is assumed that you know something about basic
astronomy.

Having listed all these topics, then, if you are still unsure about your
background, my approach would be to say: try the book and see how you get
on, if it gets beyond you (and it is not a level two section) press on for a bit
and, if things do not get any better, then cut out. Hopefully, you may still have
learnt a lot, and you can always come back to it when your background is
stronger. In fact, it should not require much background to get started, for
part A on special relativity assumes very little. After that you hit part B, and
this is where your motivation will be seriously tested. I hope you make it
through because the pickings on the other side are very rich indeed. So,
finally, good luck!

1.2 Acknowledgements

Very little of this book is wholly original. When I drew up the notes, I decided
from the outset that I would collect together the best approaches to the
material which were known to me. Thus, to take an example right from
the beginning of the book, I believe that the k-calculus provides the best
introduction to special relativity, because it offers insight from the outset
through the simple diagrams that can be drawn. Indeed one of the themes of
this book is the provision of a large number of illustrative diagrams (over 200
in fact). The visual sense is the most immediate we possess and helps lead
directly to a better comprehension. A good subtitle for the book would be,
An approach to relativity theory via space-time pictures. The k-calculus is an
approach developed by H. Bondi from the earlier ideas of A. Milne. My use of
it is not surprising since I spent my years as a research student at King’s
College, London, in the era of Hermann Bondi and Felix Pirani, and many
colleagues will detect their influences throughout the book. So the fact is that
many of the approaches in the book have been borrowed from one author or
another; there is little that I have written completely afresh. My intention has
been to organize the material in such a way that it is the more readily
accessible to the majority of students.

General relativity has the reputation of being intellectually very de-
manding. There is the apocryphal story, I think attributed to Sir Arthur
Eddington, who, when asked whether he believed it true that only three
people in the world understood general relativity, replied, “‘Who is the third?’

1.2 Acknowledgements | 5
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Indeed, the intellectual leap required by Einstein to move from the special
theory to the general theory is, there can be little doubt, one of the greatest in
the history of human thought. So it is not surprising that the theory has the
reputation it does. However, general relativity has been with us for some
three-quarters of a century and our understanding is such that we can now
build it up in a series of simple logical steps. This brings the theory within the
grasp of most undergraduates equipped with the right ba.kground.

Quite clearly, I owe a huge debt to all the authors who have provided the
source material for and inspiration of this book, However, I cannot make the
proper detailed acknowledgements to all these authors, because some of them
are not known even to me, and I would othcrwise run the risk of leaving
somebody out. Most of the sources can be found in the bibliography given at
the end of the book, and some specific references can be found in the section
on further reading. I sincerely hope I have not offended anyone (authors or
publishers) in adopting this approach. I have written this book in the spirit
that any explanation that aids understanding should ultimately reside in the
pool of human knowledge and thence in the public domain. None the less, I
would like to thank all those who, wittingly or unwittingly, have made this
book possible. In particular, I would like to thank my old Oxford tutor, Alan
Tayler, since it was largely his backing that led finally to the book being
produced. In the process of converting the notes to a book, I have made a
number of changes, and have added sections, further exercises, and answers.
Consequently this new material, unlike the earlier, has not been vetted by the
student body and it seems more than likely that it may contain errors of one
sort or another. If this is the case, I hope that it does not detract too much
from the book and, of course, I would be delighted to receive corrections from
readers. However, I have sought some help and, in this respect, I would
particularly like to thank my colleague James Vickers for a critical reading of
much of the book.

Having said I do not wish to cite my sources, I now wish to make one
important exception. I think it would generally be accepted in the relativity
community that the most authoritative text in existence in the field is
The large scale structure of space-time by Stephen Hawking and George
Ellis (published by Cambridge University Press). Indeed, this has taken on
something akin to the status of the Bible in the field. However, it is written at
a level which is perhaps too sophisticated for most undergraduates (in parts
too sophisticated for most specialists!). When I compiled the notes, I had in
mind the aspiration that they might provide a small stepping stone to
Hawking and Ellis. In particular, I hoped it might become the next port of
call for anyone wishing to pursue their interest further. To that end, and
because I cannot improve on it, I have in places included extracts from that
source virtually verbatim. I felt that, if students were to consult this text, then
the familiarity of some of the material might instil confidence and encourage
them to delve deeper. I am hugely indebted to the authors for allowing me to
borrow from their superb book.

1.3 A brief survey of relativity theory

It might be useful, before embarking on the course proper, to attempt to give
some impression of the areas which come under the umbrella of relativity
theory. I have attempted this schematically in Fig. 1.1. This is a rather partial
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Fig. 1.1 Anindividual survey of relativity.

and incomplete view, but should help to convey some idea of our planned

route. Most of the topics mentioned are being actively researched today. Of
course, they are interrelated in a much more complex way than the diagram

suggests.

Every few years since 1955 (in fact every three since 1959), the relativity
community comes together in an international conference of general relat-
ivity and gravitation. The first such conference held in Berne in 1955 is now
referred to as GRO, with the subsequent ones numbered accordingly. The list,
to date, of the GR conferences is given in Table 1.1. At these conferences,
there are specialist discussion groups which are held covering the whole area
of interest. Prior to GRS, a list was published giving some detailed idea of
what each discussion group would cover. This is presented below and may be
used as an alternative to Fig. 1.1 to give an idea of the topics which comprise

the subject.

Table 1.1

GRO
GR1
GR2
GR3
GR4
GR5
GR6
GR7
GR8
GR9

1955 Bern, Switzerland
1957 Chapel Hill, North Carolina, USA
1959 Royaumont, France
1962 Jablonna, Poland
1965 London, England

1968 Thilisi, USSR

1971 Copenhagen, Denmark
1974 Tel-Aviv, israel

1977 Waterloo, Canada
1980 Jena, DDR

GR10 1983 Padua, italy

GR11 1986 Stockholm, Sweden

GR12 1989 Boulder, Colorado, USA
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I. Relativity and astrophysics

Relativistic stars and binaries; pulsars and quasars; gravitational waves and
gravitational collapse; black holes; X-ray sources and accretion models.

II. Relativity and classical physics

Equations of motion; conservation laws; kinetic theory; asymptotic flatness
and the positivity of energy; Hamiltonian theory, Lagrangians, and field
theory; relativistic continuum mechanics, electrodynamics, and thermo-
dynamics.

III. Mathematical relativity

Differential geometry and fibre bundles; the topology of manifolds; ap-
plications of complex manifolds; twistors; causal and conformal structures;
partial differential equations and exact solutions; stability; geometric singu-
larities and catastrophe theory; spin and torsion: Einstein—Cartan theory.

IV. Relativity and quantum physics

Quantum theory on curved backgrounds; quantum gravity; gravitation and
elementary particles; black hole evaporation; quantum cosmology.

V. Cosmology

Galaxy formation; super-clustering; cosmological consequences of spontan-
eous symmetry breakdown: domain structures; current estimates of cosmo-
logical parameters; radio source counts; microwave background; the isotropy
of the universe; singularities.

VI. Observational and experimental relativity

Theoretical frameworks and viable theories; tests of relativity; gravitational
wave detection; solar oblateness.

VII. Computers in relativity

Numerical methods; solution of field equations; symbolic manipulation
systems in general relativity. ’

1.4 Notes for the teacher

In my twenty years as a university lecturer, I have undergone two major
conversions which have profoundly affected the way I teach. These have, in
their way, contributed to the existence of this book. The first conversion was
to the efficacy of the printed word. I began teaching, probably like most of my
colleagues, by giving lectures using the medium of chalk and talk. I soon
discovered that this led to something of a conflict in that the main thing that
students want from a course (apart from success in the exam) is a good set of
lecture notes, whereas what I really wanted was that they should understand
the course. The process of trying to give students a good set of lecture notes
meant that there was, to me, a lot of time wasted in the process of note taking.
I am sure colleagues know the caricature of the conventional lecture: notes
are copied from the lecturer’s notebook to the student’s notebook without
their going through the heads of-either —a definition which is perhaps too



close for comfort. I was converted at an early stage to the desirability of
providing students with printed notes. The main advantage is that it frees up
the lecture period from the time-consuming process of note copying, and the
time released can be used more effectively for developing and explaining the
course at a rate which the students are able to cope with. I still find that there
is something rather final and definitive about the printed word. This has the
effect on me of making me think more carefully about what goes into a course
and how best to organize it. Thus, printed notes have the added advantage of
making me put more into the preparation of a course than I would have done
otherwise. It must be admitted that there are some disadvantages with using
printed notes, but this is not the place to elaborate on them.

My second conversion was to the efficacy of self-study. This is a rather
elaborate title for the concept of students studying and learning on their own
from books or prepared materials. It is still a surprise to me just how little of
this actually goes on in certain disciplines. And yet you would think that one
of the main objectives of a university education is to teach students how to
use books. My experience is that, in mathematics particularly, students find
this hard to do. This is not so surprising since it requires high-level skills
which many do not come to university equipped with. So one needs a
mechanism which encourages students to use books. My first experience was
in designing a Keller-type (self-paced) self-study course, where the students
study from specially prepared units and are required to pass periodic tests
before they move on to new topics. This eventually led me in other courses to
use a coursework component counting towards a final assessment as a
mechanism for helping to get students to study on their own. I have been
involved in a good deal of research into this approach and the most frequent
remark students make about coursework is that ‘it gets me to work’. The
coursework approach was particularly important in the design of the general
relativity course for reasons which I believe are worth exploring.

In the mid-1970s, there were very few undergraduate courses in general
relativity in existence in the UK. Those that there were usually only got as far
as the Schwarzschild solution and then stopped. This was because the bulk of
the course was devoted to developing the necessary expertise in tensors and
there did'not seem to be any short cut. This meant, from the viewpoint of
both the student and the teacher, that the course ended just as things were
beginning to get really interesting. It was clear to me that what students really
wanted to know about most were the topics of black holes, gravitational
waves, and cosmology. So, from the outset, the object was to design a course
which made this possible. It was achieved by separating out what is Part B of
this book as a self-study unit on tensors. The notes were distributed at the
beginning of the course and the students were instructed to begin immedi-
ately working through the self-study part and attempting all the exercises.
The fact that most students put in the bulk of their efforts in their other
courses towards the end of these courses helped in this respect, since they
were less heavily loaded at the outset. The students were offered some
optional tutorials in case they got stuck (as some undertaking individual
study for the first time invariably did). The inducement for doing the exercises
was that they counted towards the final assessment (by some 35 per cent
currently). The deadline for completing the exercises was set for about a third
of the way through the course. While the students were busy in their own time
working on the tensors, the lecture course began by revising the key ideas in
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special relativity. The special theory was then formulated in a tensorial way,
making use of the new language and so providing some initial motivation.
This was followed by a detailed and deliberate development of the principles
underlying general relativity. Tensors are then used in earnest for the first
time in deriving the equation of geodesic deviation of Chapter 10. It is by
about this time that the students have gained considerable expertise in
manipulating tensors and the lectures help to provide further motivation and
consolidation. This device means that the Schwarzschild solution can be
reached by not much more than half-way through the course. Another
important advantage of printed lecture notes is that one has much more
control over the speed at which the course is delivered, and one can to some
extent tune the speed to fit the capabilities of the class.

The Southampton course is some thirty-six lectures in length. In the early
years, when the students had a good background in special relativity, I was
able to cover all three end topics. Indeed, in the first year of operation, I
ended up in the final week by organizing five seminars given by outside
speakers which all the students attended and which attempted to show how
the work we had covered related to some topics of current research interest.
In more recent years, the preparation of the students in special relativity has
been more patchy, and so I have taken this more on board and have been
somewhat less ambitious. This has usually meant leaving out a topic such as
rotating black holes or gravitational radiation. Of course, since these are
contained in the notes, the students are able to fill in these gaps if they so
choose.

‘Thave been encouraged to write up the notes in book form for a number of
reasons. The course has been running for some fifteen years and several
hundred students have been through it, so that I have a good deal of
consumer experience to draw upon. Not only has the course proved popular,
but it seems to have coped surprisingly successfully with students of a wide
ability range. This may in part be because I have included many of the more
detailed steps in the text itself (and where these have been left out they have
often been relegated to straightforward exercises). In fact, the notes are sold to
the students to cover the cost of production. It has been gratifying that each
year a number of students who are not on the course, sometimes not even in a
related discipline, but who have by chance come across the notes, purchase a
copy for themselves. Finally, a number of my relativity colleagues both in the.
UK and abroad have asked for copies and used them in varying degrees in
their own courses. So, despite the fact that there are a number of fine texts
around in the area, I have agreed to present the notes in book form. I hope
you, the teacher, find them a valuable resource in your teaching.

1.5 A final note for the less able student

I was far from being a child prodigy, and yet I learnt relativity at the age of 15!
Let me elaborate. As testimony to my intellectual ordinariness, I had left my
junior school at the age of 11 having achieved the unremarkable feat of
coming 22nd in the class in my final set of examinations. Yet I really did know
some relativity four years on—and I don’t just mean the special theory, but
the general theory (up to and including the Schwarzschild solution and the
classical tests). I remember detecting a hint of disbelief when I recounted this
to the same Alan Tayler, who was later to become my tutor, in an Oxford



entrance interview. He followed up by asking me to define a tensor, and when
I rattled off a definition, he seemed somewhat surprised. Indeed, as it turned
out, we did not cover very much more than I first knew in the Oxford third
year specialist course on general relativity. So how was this possible?

L, too, had heard the story about how only a few people in the world really
understood relativity, and it had aroused my curiosity. I went to the local
library and, as luck would have it, I pulled out a book entitled Einstein’s
Theory of Relativity by Lillian Lieber (1949). This is a very bizarre
book in appearance. The book is not set out in the usual way but rather as
though it were concrete poetry. Moreover, it is interspersed by surrealist
drawings by Hugh Lieber involving the symbols from the text (Fig. 1.2).
I must confess that at first sight the book looks rather cranky; but it is not.
I worked through it, filling in all the details missing from the calculations as
I went. What was amazing was that the book did not make too many
assumptions about what mathematics the reader needed to know. For
example, I had not then met partial differentiation in my school mathematics,
and yet there was sufficient coverage in the book for me to cope. It felt almost
as if the book had been written just for me. The combination of the intrinsic
interest of the material and the success I had in doing the intervening
calculations provided sufficient motivation for me to see the enterprise
through to the end.

Perhaps, if you consider yourself a less able student, you are a bit daunted
by the intellectual challenge that lies ahead. I will not deny that the book
includes some very demanding ideas (indeed, I do not understand every facet
of all of these ideas myself). But I hope the two facts that the arguments are
broken down into small steps and that the calculations are doable, will help
you on your way. Even if you decide to cut out after part C, you will have
come a long way. Take heart from my little story —I am certain that if you
persevere you will consider it worth the effort in the end.

Exercises | 11

Fig. 1.2. ‘The product of two tensors
is equal to another’ according to Hugh
Lieber.

Exercises

1.1 §1.3) Go to the library and see if you can locate current
copies of the following journals:

(i) General Relativity and Gravitation;
(ii) Classical and Quantum Gravity;
(iii) Journal of Mathematical Physics;
(iv) Physical Review D.

See if you can relate any of the articles in them to any of the
topics contained in Fig. 1.1.

1.2 Look back through copies of Scientific American for
future reference, to see what articles there have been in
recent years on relativity theory, especially black holes,
gravitational waves, and cosmology.

1.3 Read a biography of Einstein (see Part A of the Selected
Bibliography at the end of this book).







2.1 Model building

Before we start, we should be clear what we are about. The essential activity
of mathematical physics, or theoretical physics, is that of modelling or model
building. The activity consists of constructing a mathematical model which
we hope in some way captures the essentials of the phenomena we are
investigating. I think we should never fail to be surprised that this turns out to
be such a productive activity. After all, the first thing you notice about the
world we inhabit is that it is an extremely complex place. The fact that so
much of this rich structure can be captured by what are, in essence, a set of
simple formulae is to-me quite astonishing. Just think how simple Newton’s
universal law of gravitation is; and yet it encompasses a whole spectrum of
phenomena from a falling apple to the shape of a globular cluster of stars. As
Einstein said, ‘The most incomprehensible thing about the world is that it is
comprehensible.’

The very success of the activity of modelling has, throughout the history of
science, turned out to be counterproductive. Time and again, the successful
model has been confused with the ultimate reality, and this in turn has
stultified progress. Newtonian theory provides an outstanding example of
this. So successful had it been in explaining a wide range of phenomena, that,
after more than two centuries of success, the laws had taken on an absolute
character. Thus it was that, when at the end of the nineteenth century it was
becoming increasingly clear that something was fundamentally wrong with
the current theories, there was considerable reluctance to make any funda-
mental changes to them. Instead, a number of artificial assumptions were
made in an attempt to explain the unexpected phenomena. It eventually
required the genius of Einstein to overthrow the prejudices of centuries and
demonstrate in a number of simple thought experiments that some of the
most cherished assumptions of Newtonian theory were untenable. This he
did in a number of brilliant papers written in 1905 proposing a theory which
has become known today as the special theory of relativity.

We should perhaps be discouraged from using words like right or wrong
when discussing a physical theory. Remembering that the essential activity is
model building, a model should then rather be described as good or bad,
depending on how well it describes the phenomena it encompasses. Thus,
Newtonian theory is an excellent theory for describing a whole range of
phenomena. For example, if one is concerned with describing the motion of a
car, then the Newtonian framework is likely to be the appropriate one.
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However, it fails to be appropriate if we are interested in very high speeds
(comparable with the speed of light) or very intense gravitational fields (such
as in the nucleus of a galaxy). To put it another way: together with every
theory, there should go its range of validity. Thus, to be more precise, we
should say that Newtonian theory is an excellent theory within its range of
validity. From this point of view, developing our models of the physical world
does not involve us in constantly throwing theories out, since they are
perceived to be wrong, or unlearning them, but rather it consists more of a
process of refinement in order to increase their range of validity. So the moral
of this section is that, for all their remarkable success, one must not confuse
theoretical models with the ultimate reality they seek to describe.

2.2 Historical background

In 1865, James Clerk Maxwell put forward the theory of electromagnetism.
One of the triumphs of the theory was the discovery that light waves are
electromagnetic in character. Since all other known wave phenomena re-
quired a material medium in which the oscillations were carried, it was
postulated that there existed an all-pervading medium, called the ‘lumini-
ferous ether’, which carried the oscillations of electromagnetism. It was then
anticipated that experiments with light would allow the absolute motion of a
body through the ether to be detected. Such hopes were upset by the null
result of the famous Michelson-Morley experiment (1881) which attempted
to measure the velocity of the earth relative to the ether and found it to be
undetectably small. In order to explain this null result, two ad hoc hypotheses
were put forward by Lorentz, Fitzgerald, and Poincaré (1895), namely, the
contraction of rigid bodies and the slowing down of clocks when moving
through the ether. These effects were contained is some simple formulae
called the ‘Lorentz transformations’. This would affect every apparatus
designed to measure the motion relative to the ether so as to neutralize
exactly all expected results. Although this theory was consistent with the
observations, it had the philosophical defect that its fundamental assump-
tions were unverifiable.

In fact, the essence of the special theory of relativity is contained in the
Lorentz transformations. However, Einstein was able to derive them from
two postulates, the first being called the ‘principle of special relativity’ —a
principle which Poincaré had also suggested independently in 1904 —and
the second concerning the constancy of the velocity of light. In so doing, he
was forced to re-evaluate our ideas of space and time and he demonstrated
through a number of simple thought experiments that the source of the
limitations of the classical theory lay in the concept of simultaneity. Thus,
although in a sense Einstein found nothing new in that he rederived the
Lorentz transformations, his derivation was physically meaningful and in the
process revealed the inadequacy of some of the fundamental assumptions of
classical thought. Herein lies his chief contribution.

2.3 Newtonian framework

We start by outlining the Newtonian framework. An event intuitively means
something happening in a fairly limited region of space and for a short
duration in time. Mathematically, we idealize this concept to become a point
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in space and an instant in time. Everything that happens in the universe is an
event or collection of events. Consider a train travelling from one station P to
another R, leaving at 10 a.m. and arriving at 11 a.m. We can illustrate this in
the following way: for simplicity, let us assume that the motion takes place in
a straight line (say along the x-axis (Fig. 2.1); then we can represent the
motion by a space-time diagram (Fig. 2.2) in which we plot the position of
some fixed point on the train, which we represent by a pointer, against time.
The curve in the diagram is called the history or world-line of the pointer.
Notice that at Q the train was stationary for a period.

We shall call individuals equipped with a clock and a measuring rod or
ruler observers. Had we looked out of the train window on our journey at a
clock in a passing station then we would have expected it to agree with our
watch. One of the central assumptions of the Newtonian framework is that
two observers will, once they have synchronized their clocks, always agree
about the time of an event, irrespective of their relative motion. This implies
that for all observers time is an absolute concept. In particular, all observers
can agree on an origin of time. In order to fix an event in space, an observer
may choose a convenient origin in space together with a set of three Cartesian
coordinate axes. We shall refer to an observer’s clock, ruler, and coordinate
axes as a frame of reference (Fig. 2.3). Then an observer is able to coordina-
tize events, that is, determine the time ¢ an event occurs and its relative
position (x, y, z).

We have set the stage with space and time; they provide the backcloth, but
what is the story about? The stuff which provides the events of the universe is
matter. For the moment, we shall idealize lumps of matter into objects called
bodies. If the body has no physical extent, we refer to it as a particle or point
mass. Thus, the role of observers in Newtonian theory is to chart the history
of bodies.

2.4 Galilean transformations

Now, relativity theory is concerned with the way different observers see the
same phenomena. One can ask: are the laws of physics the same for all
observers or are there preferred states of motion, preferred reference systems,
and so on? Newtonian theory postulates the existence of preferred frames of
reference. This is contained essentially in the first law, which we shall call N1
and state in the following form:

Thus, there exists a privileged set of bddies, namely those not acted on by
forces. The frame of reference of a co-moving observer is called an inertial
frame (Fig. 2.4). It follows that, once we have found one inertial frame, then all
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Fig. 2.1 Train travels in straight line.

10 L - >
P Q R X

Fig. 2.2 Space-time diagram of pointer.

Fig. 2.3 Observer’s frame of reference.
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Fig. 2.4 Two observed bodies and their
inertial frames.

Fig. 2.5 Two frames in standard
configuration at time &

others are at rest or travel with constant velocity relative to it (for otherwise
Newton’s first law would no longer be true). The transformation which
connects one inertial frame with another is called a Galilean transformation.
To fix ideas, let us consider two inertial frames called S and S’ in standard
configuration, that is, with axes parallel and S’ moving along S’s positive x-
axis with constant velocity (Fig. 2.5). We also assume that the observers
synchronize their clocks so that the origins of time are set when the origins of
the frames coincide. It follows from Fig. 2.5 that the Galilean transformation
connecting the two frames is given by

The last equation provides a manifestation of the assumption of absolute
time in Newtonian theory. Now, Newton’s laws hold only in inertial frames.
From a mathematical viewpoint, this means that Newton’s laws must be
invariant under a Galilean transformation.

2.5 The principle of special relativity

We begin by stating the relativity principle which underpins Newtonian
theory
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This means that, if one inertial observer carries out some dynamical ex-
periments and discovers a physical law, then any other inertial observer
performing the same experiments must discover the same law. Put another
way, these laws must be invariant under a Galilean transformation. That is to
say, if the law involves the coordinates x, y, z, ¢ of an inertial observer S, then
the law relative to another observer S’ will be the same with x, y, z, t replaced
by x', ¥, 2, t, respectively. Many fundamental principles of physics are
statements of impossibility, and the above statement of the relativity princi-
ple is equivalent to the statement of the impossibility of deciding, by per-
forming dynamical experiments, whether a body is absolutely at rest or in
uniform motion. In Newtonian theory, we cannot determine the absolute
position in space of an event, but only its position relative to some other
event. In exactly the same way, uniform velocity has only a relative signifi-
cance; we can only talk about the velocity of a body relative to some other.
Thus, both position and velocity are relative concepts.

Einstein realized that the principle as stated above is empty because there
is no such thing as a purely dynamical experiment. Even on a very elementary
level, any dynamical experiment we think of performing involves observation,
ie. looking, and looking is a part of optics, not dynamics. In fact, the more
one analyses any one experiment, the more it becomes apparent that practic-
ally all the branches of physics are involved in the experiment. Thus, Einstein
took the logical step of removing the restriction of dynamics in the principle
and took the following as his first postulate.

Hence we see that this principle is in no way a contradiction of Newtonian
thought, but rather constitutes its logical completion.

2.6 The constancy of the velocity of light

We previously defined an observer in Newtonian theory as someone equip-
ped with a clock and ruler with which to map the events of the universe.
However, the approach of the k-calculus is to dispense with the rigid ruler
and use radar methods for measuring distances. (What is rigidity anyway? If a
moving frame appears non-rigid in another frame, which, if either, is the rigid
one?) Thus, an observer measures the distance of an object by sending out a
light signal which is reflected off the object and received back by the observer.
The distance is then simply defined as half the time difference between
emission and reception. Note that by this method distances are measured in
intervals of time, like the light year or the light second (~ 10° cm).

Why use light? The reason is that we know that the velocity of light is
independent of many things. Observations from double stars tell us that the
velocity of light in vacuo is independent of the motion of the sources as well as
independent of colour, intensity, etc. For, if we suppose that the velocity of
light were dependent on the motion of the source relative to an observer (so
that if the source was coming towards us the light would be travelling faster
and vice versa) then we would no longer see double stars moving in Keplerian
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orbits (circles, ellipses) about each other: their orbits would appear distorted;
yet no such distortion is observed. There are many experiments which
confirm this assumption. However, these were not known to Einstein in 1905,
who adopted the second postulate purely on heuristic grounds. We state the
second postulate in the following form.

Or stated another way: there is no overtaking of light by light in empty space.
The speed of light is conventionally denoted by ¢ and has the exact numerical
value 2.997 924 580 x 108 ms ™1, but in this chapter we shall adopt relativistic
units in which c is taken to be unity (i.e. ¢ = 1). Note, in passing, that another
reason for using radar methods is that other methods are totally impractic-
able for large distances. In fact, these days, distances from the Earth to the
Moon and Venus can be measured very accurately by bouncing radar signals
off them.

2.7 The k-factor

For simplicity, we shall begin by working in two dimensions, one spatial
dimension and one time dimension. Thus, we consider a system of observers
distributed along a straight line, each equipped with a clock and a flashlight.
We plot the events they map in a two-dimensional space-time diagram. Let us
assume we have two observers, A at rest and B moving away from A with
uniform (constant) speed. Then, in a space-time diagram, the world-line of 4
will be represented by a vertical straight line and the world-line of B by a
straight line at an angle to A’s, as shown in Fig. 2.6.

A light signal in the diagram will be denoted by a straight line making an
angle 4 with the axes, because we are taking the speed of light to be 1. Now,
suppose A sends out a series of flashes of light to B, where the interval
between the flashes is denoted by T according to A’s clock. Then it is
plausible to assume that the intervals of reception by B’s clock are propor-
tional to T, say kT. Moreover, the quantity k, which we call the k-factor, is

Time

—> Space

Fig. 2.6 The world-lines of observers A Fig. 2.7 The reciprocal nature of the
and B. k-factor.
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clearly a characteristic of the motion of B relative to A. We now assume that if
A and B are inertial observers, then k is a constant in time. (In fact, there is a
hidden assumption here, since how do we know that B’s world-line will be a
straight line as indicated in the diagram? Strictly speaking, we are assuming
that there is a linear relationship between the space and time coordinates of 4
and B.) Then the principle of special relativity requires that the relationship
between A and B must be reciprocal, so that, if B emits two signals with a time
lapse of T according to B’s clock, then A receives them after a time lapse of kT
according to A’s clock (Fig. 2.7). Note that, from B’s point of view, A4 is
moving away from B with the same relative speed.

Observer A assigns coordinates to an event P by bouncing a light signal off
it. So that if a light signal is sent out at a time ¢ = ¢,, and received back at a
time t = ¢, (Fig. 2.8), then, according to our radar definition of distances, the
coordinates of P are given by

(t, %) = (3(t; + 1), 3(t2 — t1)), 22

remembering that the velocity of light is 1.
We now use the k-factor to develop the k-calculus.

2.8 Relative speed of two inertial observers

Consider the configuration shown in Fig. 2.9 and assume that A4 and B
synchronize their clocks to zero when they cross at event O. After a time T, A
sends a signal to B, which is reflected back at event P. From B’s point of view,
a light signal is sent to A after a time lapse of kT by B’s clock. It follows from
the definition of the k-factor that A receives this signal after a time lapse of
k(kT). Then, using (2.2) with t, = T'and t, = k*T, we find the coordinates of
P according to A’s clock are given by

tx) = (GE + DT, 3%* — )T). 23)
Thus, as T varies, this gives the coordinates of the events which constitute B’s
world-line. Hence, if v is the velocity of B relative to A4, we find
_x k-1
Tt kK41
Solving for k in terms of v, and noting from the diagram that k must be
greater than 1 if the observers are separating, we find

We shall see in the next chapter that this is the usual relativistic formula for
the radial Doppler shift. If B is moving away from A4 then k > 1 which
represents a ‘red’ shift, whereas if B is approaching 4 then k <1 which
represents a ‘blue’ shift. Note that the transformation v - —v corresponds to
k - 1/k. Moreover,

v=0 < k=1,

as we should expect for observers relatively at rest: once they have syn-
chronized their clocks, the synchronization remains (Fig. 2.10).

t
4

t

(]

4

X

Fig. 2.8 Coordinatizing events.

0

Fig. 2.9 Relating the k-factor to the rela-
tive speed of separation.

Fig. 2.10 Observers relatively at rest
(k=1).
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Fig. 2.11 Composition of k-factors.

2.9 Composition law for velocities

Consider the situation in Fig. 2.11, where k5 denotes the k-factor between 4
and B, with kg and k, defined similarly. It follows immediately that

kAC = kpkpc- 23)

Using (2.4), we find the corresponding composition law for velocities:

This formula has been confirmed by Fizeau’s experiment in which the speed
of light in a moving fluid is measured and turns out not to be simply the sum
of the speed of light and the moving fluid but rather obeys the more
complicated law (2.6) to higher order. Note that, if v,; and vgc are small
compared with the speed of light, i.e.

v <1, vgc < 1,

then we obtain the classical Newtonian formula

Vgc = Vqp + Upc

to lowest order. Although the composition law for velocities is not simple, the
one for k-factors is, and in special relativity it is the k-factors which are the
directly measurable quantities. Note also that, formally, if we substitute
vpe = 1, representing the speed of a light signal relative to B, in (2.6), then the
resulting speed of the light signal relative to A is

v+l

Ve =
T 1 Y v,

in agreement with the constancy of the velocity of light postulate.

From the composition law, we can show that, if we add two speeds less
than the speed of light, then we again obtain a speed less than the speed of
light. This does not mean, as is sometimes stated, that nothing can move
faster than the speed of light in special relativity, but rather that the speed of
light is a border which can not be crossed or even reached. More precisely,
special relativity allows for the existence of three classes of particles.

1. Particles that move slower than the speed of light are called subluminal
particles. They include material particles and elementary particles such as
electrons and neutrons.

2. Particles that move with the speed of light are called luminal particles.
They include the carrier of the electromagnetic field interaction, the
photon, and theoretically the carrier of the gravitational field interaction,
called the graviton. These are both particles with zero rest mass (see §4.5).
It was thought that neutrinos also had zero rest mass, but more recent
evidence suggests they may have a tiny mass.

3. Particles that move faster than the speed of light are called superluminal
particles or tachyons. There was some excitement in the 1970s surround-
ing the possible existence of tachyons, but all attempts to detect them to
date have failed. This suggests two likely possibilities: either tachyons do
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not exist or, if they do, they do not interact with ordinary matter. This
would seem to be just as well, for otherwise they could be used to signal
back into the past and so would appear to violate causality. For example,
it would be possible theoretically to construct a device which sent out a
tachyon at a given time and which would trigger a mechanism in the
device to blow it up before the tachyon was sent out!

2.10 The relativity of simultaneity

Consider two events P and Q which take place at the same time, according to
A, and also at points equal but opposite distances away. A could establish
this by sending out and receiving the light rays as shown in Fig. 2.12
(continuous lines). Suppose now that another inertial observer B meets 4 at
the time these events occur according to A. B also sends out light rays RQU
and SPV to illuminate the events, as shown (dashed lines). By symmetry
RU = SV and so these events are equidistant according to B. However, the
signal RQ was sent before the signal SP and so B concludes that the event Q
took place well before P. Hence, events that 4 judges to be simultaneous, B
judges not to be simultaneous. Similarly, 4 maintains that P, O, and Q
occurred simultaneously, whereas B maintains that they occurred in the
order Q, then O, and then P.

This relativity of simultaneity lies at the very heart of special relativity and
resolves many of the paradoxes that the classical theory gives rise to, such as
the Michelson-Morley experiment. Einstein realized the crucial role that
simultaneity plays in the theory and gave the following simple thought
experiment to illustrate its dependence on the observer. Imagine a train
travelling along a straight track with velocity v relative to an observer 4 on
the bank of the track. In the train, B is an observer situated at the centre of
one of the carriages. We assume that there are two electrical devices on the
track which are the length of the carriage apart and equidistant from A.
When the carriage containing B goes over these devices, they fire and activate
two light sources situated at each end of the carriage (Fig. 2.13). From the
configuration, it is clear that 4 will judge that the two events, when the light
sources first switch on, occur simultaneously. However, B is travelling
towards the light emanating from light source 2 and away from the light
emanating from light source 1. Since the speed of light is a constant, B will see
the light from source 2 before seeing the light from source 1, and so will
conclude that one light source comes on before the other.

Fig. 2.12 Relativity of simultaneity.

s \ v

) B 4 .
Light source 1 f:/ﬁi——> ﬂ 47%:— Light source 2
Firing device 1_y ()X () () ¥()  Firing device 2

X \\ // X
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\\ A //
ﬂ Fig. 2.13 Light signals emanating from
the two sources.
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Fig. 2.14 Event relationships in special

relativity.

Fig. 2.15 The clock paradox.

Fig. 2.16 Spatial analogue of clock

paradox.

We can now classify event relationships in space and time in the following
manner. Consider any event O on A’s world-line and the four regions, as
shown in Fig. 2.14, given by the light rays ending and commencing at 0. Then
the event E is on the light ray leaving O and so occurs after O.-Any other
inertial observer agrees on this; that is, no observer sees E illuminated before
A sends out the signal from O. The fact that E is illuminated (because 4
originally sends out a signal at O) subsequent to O is a manifestation of
causality —the event O ultimately causes the event E. Similarly, the event F
can be reached by an inertial observer travelling from O with finite speed.
Again, all inertial observers agree that F occurs after 0. Hence all the events
in this region are called the absolute future of 0. In the same way, any event
occurring in the region vertically below takes place in O’s absolute past.
However, the temporal relationship to O of events in the other two regions,
called elsewhere (or sometimes the relative past and relative future) will not
be something all observers will agree upon. For example, one class of
observers will say that G took place after O, another class before, and a third
class will say they took place simuitaneously. The light rays entering and
leaving O constitute what is called the light cone or null cone at O (the fact
that it is a cone will become clearer later when we take all the spatial
dimensions into account). Note that the world-line of any inertial observer or
material particle passing through O must lie within the light cone at O.

2.11 The clock paradox

Consider three inertial observers as shown in Fig. 2.15, with the relative
velocity v, = —v,p5. Assume that 4 and B synchronize their clocks at O and
that C’s clock is synchronized with B’s at P. Let B and C meet after a time T
according to B, whereupon they emit a light signal to A. According to the
k-calculus, A receives the signal at R after a time kT ‘since meeting B.
Remembering that C is moving with the opposite velocity to B (so that
k — k1), then A will meet C at Q after a subsequent time lapse of k' T. The
total time that 4 records between events O and Q is therefore (k + k~*)T. For
k # 1, this is greater than the combined time intervals 2T recorded between
events OP and PQ by B and C. But should not the time lapse between the two
events agree? This is one form of the so-called clock paradox.

However, it is not really a paradox, but rather what it shows is that in
relativity time, like distance, is a route-dependent quantity. The point is that
the 27 measurement is made by two inertial observers, not one. Some people
have tried to reverse the argument by setting B and C to rest, but this is not
possible since they are in relative motion to each other. Another argument
says that, when B and C meet, C should take B’s clock and use it. But, in this
case, the clock would have to be accelerated when being transferred to C and
so it is no longer inertial. Again, some opponents of special relativity (e.g.
H. Dingle) have argued that the short period of acceleration should not make
such a difference, but this is analogous to saying that a journey between two
points which is straight nearly all the time is about the same length as one
which is wholly straight (as shown), which is absurd (Fig. 2.16). The moral is
that in special relativity time is a more difficult concept to work with than the
absolute time of Newton.

A more subtle point revolves around the implicit assumption that the
clocks of 4 and B are ‘good’ clocks, i.e. that the seconds of A’s clock are the
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same as those of B’s clock. One suggestion is that 4 has two clocks and
adjusts the tick rate until they are the same and then sends one of them to B at
a very slow rate of acceleration. The assumption here is that the very slow
rate of acceleration will not affect the tick rate of the clock. However, what is
there to say that a clock may not be able to somehow add up the small bits of
acceleration and so affect its performance. A more satisfactory approach
would be for 4 and B to use identically constructed atomic clocks (which is
after all what physicists use today to measure time). The objection then arises
that their construction is based on ideas in quantum physics which is, a priori,
outside the scope of special relativity. However, this is a manifestation of a
point raised earlier, that virtually any real experiment which one can imagine
carrying out involves more than one branch of physics. The whole structure is
intertwined in a way which cannot easily be separated.

2.12 The Lorentz transformations

We have derived a number of important results in special relativity, which
only involve one spatial dimension, by use of the k-calculus. Other results
follow essentially from the transformations connecting inertial observers, the
famous Lorentz transformations. We shall finally use the k-calculus to derive
these transformations.

Let event P have coordinates (t, x) relative to 4 and (¢, x) relative to B
(Fig. 2.17). Observer A must send out a light ray at time t — x to illuminate P
at time ¢ and also receive the reflected ray back at ¢ + x (check this from
(2.2)). The world-line of A is given by x =0, and the origin of A’s time
coordinate ¢ is arbitrary. Similar remarks apply to B, where we use primed
quantities for B’s coordinates (¢, x'). Assuming 4 and B synchronize their
clocks when they meet, then the k-calculus immediately gives

t—x =k(t—x), t+x=k{t'+x). @.7)

After some rearrangement, and using equation (2.4), we obtain the so-called
special Lorentz transformation

This is also referred to as a boost in the x-direction with speed v, since it takes
one from A’s coordinates to B’s coordinates and B is moving away from A4
with speed v. Some simple algebra reveals the result (exercise)

12— x'2 =2 _ x2,

showing that the quantity ¢ — x? is an invariant under a special Lorentz
transformation or boost.

To obtain the corresponding formulae in the case of three spatial dimen-
sions we consider Fig. 2.5 with two inertial frames in standard configuration.
Now, since by assumption the xz-plane (y = 0) of A must coincide with the
x'z-plane (y' = 0) of B, then the y and y’ coordinates must be connected by a
transformation of the form

y=ny, 2.9

t+x

Fig. 2.17 Coordinatization of events by
inertial observers.
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Fig. 2.18 The x- and y-axes reversed in
Fig. 2.5.

Fig. 2.19 Figure 2.18 from B’s point of
view.

because

y=0 <« y =0

We now make the assumption that space is isotropic, that is, it is the same in
any direction. We then reverse the direction of the x- and y-axes of 4 and B
and consider the motion from B’s point of view (see Figs. 2.18 and 2.19).
Clearly, from B’s point of view, the roles of A and B have interchanged.
Hence, by symmetry, we must have

y =ny. (2.10)
Combining (2.9) and (2.10), we find
=1 = n=+1.

The negative sign can be dismissed since, as v — 0, we must have y’ -y, in
which case n= 1. Hence, we find y' =y, and a similar argument for z
produces 2’ = z.

2.13 The four-dimensional wor_ld view

We now compare the special Lorentz transformation of the last section in
relativistic units with the Galilean transformation connecting inertial ob-
servers in standard configuration (see Table 2.1). In a Galilean trans-
formation, the absolute time coordinate remains invariant. However, in a

Table 2.1
Galilean transformation Lorentz transformation
- t—wx
- -
. X — vt
X =X—vV X = —
Q-2
Y=y Y=y

2=z =z
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Lorentz transformation, the time and space coordinates get mixed up (note
the symmetry in x and ¢). In the words of Minkowski, ‘Henceforth space by
itself, and time by itself are doomed to fade away into mere shadows, and only
a kind of union of the two will preserve an independent reality.’

In the old Newtonian picture, time is split off from three-dimensional
Euclidean space. Moreover, since we have an absolute concept of simu-
ltaneity, we can consider two simultaneous events with coordinates
(t, x4, y1,2,) and (t, x5, ¥,, 2,), and then the square of the Euclidean distance
between them,

0% = (X; — %)% + (y1 — ¥2)* + (21 — 2,)%, (2.11)

is invariant under a Galilean transformation. In the new special relativity
picture, time and space merge together into a four-dimensional continuum
called space-time. In this picture, the square of the interval between any two
events (t,, X;, ¥1, 2;) and (¢,, X5, ¥,, 2,) is defined by

S =(t — 1) — (% — %)% — (y1 — ¥2)* — (21 — 2,)%, (2.12)

and it is this quantity which is invariant under a Lorentz transformation.
Note that we always denote the square of the interval by s2, but the quantity s
is only defined if the right-hand side of (2.12) is non-negative. If we consider
two events separated infinitesimally, (¢, x, y, z) and (t + dt, x + dx, y + dy,
z + dz), then this equation becomes

where all the infinitesimals are squared in (2.13). A four-dimensional space-
time continuum in which the above form is invariant is called Minkowski
space-time and it provides the background geometry for special relativity.

So far, we have only met a special Lorentz transformation which connects
two inertial frames in standard configuration. A full Lorentz transformation
connects two frames in general position (Fig. 2.20). It can be shown that a full
Lorentz transformation can be decomposed into an ordinary spatial rotation,
followed by a boost, followed by a further ordinary rotation. Physically, the
first rotation lines up the x-axis of § with the velocity v of S’. Then a boost in

Fig. 2.20 Two frames in general position.
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this direction with speed v transforms S to a frame which is at rest relative to
§’. A final rotation lines up the coordinate frame with that of S’. The spatial
rotations introduce no new physics. The only new physical information arises
from the boost and that is why we can, without loss of generality, restrict our
attention to a special Lorentz transformation.

Exercises

2.1 (§2.4) Write down the Galilean transformation from
observer S to observer S’, where S’ has velocity v, relative to
S. Find the transformation from S’ to S and state in simple
terms how the transformations are related. Write down the
Galilean transformation from S’ to S”, where S” has velocity
v, relative to S'. Find the transformation from S to S”. Prove
that the Galilean transformations form an Abelian (com-
mutative) group.

2.2 (§2.7) Draw the four fundamental k-factor diagrams
(see Fig. 2.7) for the cases of two inertial observers 4 and B
approaching and receding with uniform velocity v:

(i) as seen by A;
(ii) as seen by B.
2.3 (§2.8) Show that v — —v corresponds to k— k™! If

k > 1 corresponds physically to a red shift of recession, what
does k < 1 correspond to?

2.4 (§2.9) Show that (2.6) follows from (2.5). Use the com-
position law for velocities to prove that if 0 < v,5 < 1 and
0<vge<1l,then0 <oy, <1

2.5 (§2.9) Establish the fact that if v,; and vge are small
compared with the velocity of light, then the composition
law for velocities reduces to the standard additive law of
Newtonian theory.

2.6 (§2.10) In the event diagram of Fig. 2.14, find a geomet-
rical construction for the world-line of an inertial observer
passing through O who considers event G as occurring

simultaneously with 0. Hence describe the world-lines of
inertial observers passing through O who consider G as
occurring before or after O.

2.7 (§2.11) Draw Fig. 2.15 from B’s point of view. Co-
ordinatize the events O, R, and Q with respect to B and find
the times between O and R, and R and @, and compare them
with A’s timings.

2.8 (§2.12) Deduce (2.8) from (2.7). Use (2.7) to deduce

directly that
2 —x? =12 - x2

Confirm the equality under the transformation formula (2.8).

2.9 (§2.12) In S, two events occur at the origin and a
distance X along the x-axis simultaneously at ¢ = 0. The
time interval between the events in S’ is 7. Show that the
spatial distance between the events in §' is (X2 + T?)?
and determine the relative velocity v of the frames in terms of
X and T.

2.10 (§2.13) Show that the interval between two events
(ty, X1, ¥1,2y) and (t,, X5, ¥, 2,) defined by

s2=(t; — )2 — 6y — %) — (y1 — y2)* — (2, — 2,)°
is invariant under a special Lorentz transformation.
Deduce the Minkowski line element (2.13) for infinitesimally
separated events. What does s? become if t, = ¢,, and how is

it related to the Euclidean distance o between the two
events?



3.1 Standard derivation of the Lorentz
transformations

We start this chapter by deriving again the Lorentz transformations, but
this time by using a more standard approach. We shall' work in non-
relativistic units in which the speed of light is denoted by c. We restrict
attention to two inertial observers S and S’ in standard configuration. As
before, we shall show that the Lorentz transformations follow from the two
postulates, namely, the principle of special relativity and the constancy of the
velocity of light.

Now, by the first postulate, if the observer S sees a free particle, that is, a
particle with no forces acting on it, travelling in a straight line with constant
velocity, then so will §’. Thus, using vector notation, it follows that under a
transformation connecting the two frames

r=ro+ut < r=ry+ut.

Since straight lines get mapped into straight lines, it suggests that the
transformation between the frames is linear and so we shall assume that the
transformation from S to S’ can be written in matrix form

’

t t
x' X
, =L , 3.1
y » (3.1

z z
where Lis a4 x 4 matrix of quantities which can only depend on the speed of
separation v. Using exactly the same argument as we used at the end of
§2.12, the assumption that space is isotropic leads to the transformations of y
and z being

y=y and z' =z (3.2)

We next use the second postulate. Let us assume that, when the origins of S
and S’ are coincident, they zero their clocks, i.e. t = t' = 0, and emit a flash of
light. Then, according to S, the light flash moves out radially from the origin
with speed c¢. The wave front of light will constitute a sphere. If we
define the quantity I by

I(t, x,y,2) = x> + y? + 22 — c%t?,
y

then the events comprising this sphere must satisfy I = 0. By the second
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T 7

0 6 S

Fig. 3.1 A rotation in (x, T)-space.

postulate, S’ must also see the light move out in a spherical wave front with
speed ¢ and satisfy

I'=sx?+y2 477 2=,
Thus it follows that, under a transformation connecting S and §’,
I=0 <« I'=0, ‘ (3.3
and since the transformation is linear by (3.1), we may conclude
=nl’, (34)

where n is a quantity which can only depend on v. Using the same argument
as we did in §2.12, we can reverse the role of S and S’ and so by the relativity
principle we must also have

I' =nl. (3.5
Combining the last two equations we find
=1 = n=+1.

In the limit as v — 0, the two frames coincide and I’ — I, from which we
conclude that we must take n = 1.
Substituting 7 = 1 in (3.4), this becomes

X2+ +22 -2 =x24y? 4 2% —ct?,
and, using (3.2), this reduces to
x2— ettt =x'2 — ' (3.6)

We next introduce imaginary time coordinates T and T” defined by

T =ict, (3.7

T =ict!, (3.8)
in which case equation (3.6) becomes

x2+T?=x?+T72

In a two-dimensional (x, T)-space, the quantity x2 + T2 represents the
distance of a point P from the origin. This will only remain invariant under a
rotation in (x, T')-space (Fig. 3.1). If we denote the angle of rotation by 6, then
a rotation is given by

x' = xcosf + Tsiné, 39)

T'= —xsinf + Tcosb. (3.10)

Now, the origin of S’ (x’ = 0), as seen by S, moves along the positive x-axis of
S with speed v and so must satisfy x = vt. Thus, we require

X=0 < x=uvt <« x=0vT/ic
using (3.7). Substituting this into (3.9) gives
tan 6 = iv/c, : (3.11)

from which we see that the angle 6 is imaginary as well. We can obtain an
expression for cos 6, using

1 1 1

C0s0 = 8~ U+ tanZ0)F ~ (= v¥ed)F




3.2 Mathematical properties of Lorentz transformations | 31

If we use the conventional symbol § for this last expression, i.e.

where the symbol = here means ‘is defined to be’, then (3.9) gives
x" = cosB(x + Ttan8) = B[x + ict(iv/c)] = B(x — vt).
Similarly, (3.10) gives
T =ict' =cosf(—xtanf + T) = B[ —x(iv/c) + ict],

from which we find

t' = B(t — vx/c?).

Thus, collecting the results together, we have rederived the special Lorentz
transformation or boost (in non-relativistic units):

If we put ¢ = 1, this takes the same form as we found in §2.13.

3.2 Mathematical properties of
Lorentz transformations

From the results of the last section, we find the following properties of a
special Lorentz transformation or boost.

1. Using the imaginary time coordinate 7, a boost along the x-axis of
speed v is equivalent to an imaginary rotation in (x, T')-space through an
angle 6 given by tan 8 = iv/c.

2. If we consider v to be very small compared with c, for which we use the .
notation v < ¢, and neglect terms of order v?/c?, then we regain a Galilean
transformation

’

t'=t, x'=x —vt, y =y Z' =z
We can obtain this result formally by taking the limit ¢ - oo in (3.12).
3. If we solve (3.12) for the unprimed coordinates, we get
t=B{ +uvx'/c?), x=p +vt'), y=y, z=12.

This can be obtained formally from (3.12) by interchanging primed and
unprimed coordinates and replacing v by —v. This we should expect from
physical reasons, since, if S’ moves along the positive x-axis of S with speed v,
then S moves along the negative x’-axis of §’ with speed v, or, equivalently, S
moves along the positive x'-axis of S’ with speed —uv.

4. Special Lorentz transformations form a group:
(@) The identity element is given by v = 0.
(b) The inverse element is given by —v (as in 3 above).
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(c) The product of two boosts with velocities v and v’ is another boost with
velocity v”. Since v and v’ correspond to rotations in (x, T')-space of 6 and
@', where
tanf =iv/c and tan€’ =iv'/c,

then their resultant is a rotation of 8” = 6 + 6’, where

tan @ + tan @’
iv’/c=tanf” =tan(@ + 0') = —————;
) 1 0 +06) 1 —tanftanf’’
from which we find
,_ v+ v
14 o/c?
Compare this with equation (2.6) in relativistic units.
(d) Associativity is left as an exercise.

5. The square of the infinitesimal interval between infinitesimally separ-
ated events (see (2.13)),

is invariant under a Lorentz transformation.

We now turn to the key physical attributes of Lorentz transformations.
Throughout the remaining sections, we shall assume that S and S’ are in
standard configuration with non-zero relative velocity v.

3.3 Length contraction

Consider a rod fixed in S’ with endpoints x’, and X}, as shown in Fig. 3.2. In
S, the ends have coordinates x, and xj (which, of course, vary in time) given
by the Lorentz transformations

Xy =PBlxy—vty),  xp=Plxp— vig) (3.14)

In order to measure the lengths of the rod acéording to S, we have to find the
x-coordinates of the end points at the same time according to S. If we denote
the rest length, namely, the length in S, by

lo=x4y — X3
and the length in § at time ¢ = ¢, = t5 by

I=xp5—xy,

v

Fig. 3.2 A rod moving with velocity v / X g
relative to S.



then, subtracting the formulaé in (3.14), we find the result

Since
joj<e = B>1 = I<l,,

the result shows that the length of a body in the direction of its motion with
uniform velocity v is reduced by a factor (1 — v2/¢?)%. This phenomenon is
called length contraction. Clearly, the body will have greatest length in its
rest frame, in which case it is called the rest length or proper length. Note also
that the length approaches zero as the velocity approaches the velocity of
light.

In an attempt to explain the null result of the Michelson-Morley experi-
ment, Fitzgerald had suggested the apparent shortening of a body in motion
relative to the ether. This is rather different from the length contraction of
special relativity, which is not to be regarded as illusory but is a very real
effect. It is closely connected with the relativity of simultaneity and indeed can
be deduced as a direct consequence of it. Unlike the Fitzgerald contraction,
the effect is relative, i.. a rod fixed in S appears contracted in S’. Note also
that there are no contraction effects in directions transverse to the direction of
motion.

3.4 Time dilation

Let a clock fixed at x” = x/, in §’ record two successive events separated by an
interval of time T, (Fig. 3.3). The successive events in S’ are (x/, t}) and
(x'y, t7 + Ty), say. Using the Lorentz transformation, we have in

ty = Bty +vxy/c?), =Bty + To + vxiy/c?).
On subtracting, we find the time interval in S defined by

T=t2_t1

is given by

Thus, moving clocks go slow by a factor (1 — v?/¢?)~%. This phenomenon is
called time dilation. The fastest rate of a clock is in its rest frame and is called
its proper rate. Again, the effect has a reciprocal nature.

Let us now consider an accelerated clock. We define an ideal clock to be
one unaffected by its acceleration; in other words, its instantaneous rate
depends only on its instantaneous speed v, in accordance with the above
phenomenon of time dilation. This is often referred to as the clock hypoth-
esis. The time recorded by an ideal clock is called the proper time z (Fig. 3.4).
Thus, the proper time of an ideal clock between ¢, and ¢, is given by
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World-line
of clock

I

Fig. 3.3 Successive events recorded by a
clock fixed in S

World-line
of clock

Fig. 3.4 Proper time recorded by an
accelerated clock.
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Fig. 3.5 Particle in motion relative to S
and S’

The general question of what constitutes a clock or an ideal clock is a non-
trivial one. However, an experiment has been performed where an atomic
clock was flown round the world and then compared with an identical clock
left back on the ground. The travelling clock was found on return to be
running slow by precisely the amount predicted by time dilation. Another
instance occurs in the study of cosmic rays. Certain mesons reaching us from
the top of the Earth’s atmosphere are so short-lived that, even had they been
travelling at the speed of light, their travel time in the absence of time dilation
would exceed their known proper lifetimes by factors of the order of 10.
However, these particles are in fact detected at the Earth’s surface because
their very high velocities keep them young, as it were. Of course, whether or
not time dilation affects the human clock, that is, biological ageing, is still an
open question. But the fact that we are ultimately made up of atoms, which
do appear to suffer time dilation, would suggest that there is no reason by
which we should be an exception.

3.5 Transformation of velocities

Consider a particle in motion (Fig. 3.5) with its Cartesian components of

velocity being
dx dy dz\ .

(uy, uy, u3) = (E,—(—E,a) inS

and
v oy (9% Ay d2'y L

(ula Uj, u3)— (dt,, dt,,dt,) in §.

Taking differentials of a Lorentz transformation
t' = Bt — vx/c?), x' = f(x — vt), y =y, Z =1z,
we get
dt’ = B(dt — vdx/c?), dx’ = B(dx — vdi), dy =dy, dz' =dz

and hence

it
L& Bdx—ody & u—v -
174y Bt — vdx/c?) 1_ 1/ dx 1 —uyvfc?’ )
2\ dt
dy
. dy di - % 319

C2

dr ~ B(dt — vdx/c?) B[l 1 ( dx>:l B(1 — u,v/c?)

dt

u
u"

v

Path of particle
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d_z
,_dz dz _ dt _ Uy
BT B(dt — vdx/c?) ~ 1/ dx\1 BA —uv/c?) (3.20)
All-a\va

Notice that the velocity components u, and u; transverse to the direction of
motion of the frame S’ are affected by the transformation. This is due to the
time difference in the two frames. To obtain the inverse transformations,
simply interchange primes and unprimes and replace v by —v.

3.6 Relationship between space-time
diagrams of inertial observers

We now show how to relate the space-time diagrams of S and S’ (see Fig. 3.6). ¢t ct'
We start by taking ct and x as the coordinate axes of S, so that a light ray has
slope 4= (as in relativistic units). Then, to draw the ct’- and x’-axes of §’, we
note from the Lorentz transformation equations (3.12) P

ct'=0 <« ct=(/o)x,

that is, the x'-axis, ct’ = 0, is the straight line ct = (v/c)x with slope v/c < 1.
Similarly,

x'=0 < ct=(cv)x,

[} X

that is, the ct’-axis, x" = 0, is the straight line ct = (c¢/v)x with slope c¢/v > 1. . v 0

The lines parallel to O(ct’) are the world-lines of fixed points in §’. The lines  fig, 3.6 The worid-lines in S of the fixed
parallel to Ox’ are the lines connecting points at a fixed time according to S’ points and simultaneity lines of s'.

and are called lines of simultaneity in §’. The coordinates of a general event

P are (ct, x) = (OR, 0Q) relative to S and (ct’, x") = (OV, OU) relative to S'.

However, the diagram is somewhat misleading because the length scales

along the axes are not the same. To relate them, we draw in the hyperbolae

X2 _ thZ = x12 _ czt;z = i 1,

as shown in Fig. 3.7. Then, if we first consider the positive sign, setting ct’ = 0,
we get x' = + 1. It follows that O A is a unit distance on Ox’. Similarly, taking
the negative sign and setting x’ = 0 we get'ct’ = +1 and so OB is the unit
measure on Oct’. Then the coordinates of P in the frame S’ are given by

ey - (20U OV
*)=\oa’ 0B/
t '
Note the following properties from Fig. 3.7. A &t
B,

1. A boost can be thought of as a rotation through an imaginary angle in the
(x, T)-plane, where T is imaginary time. We have seen that this is equival- ‘ Light ray
ent, in the real (x, ct)-plane, to a skewing of the coordinate axes inwards
through the same angle. (This was not appreciated by some past oppo- ct=1

nents of special relativity, who gave some erroneous counter- i A .

arguments based on the mistaken idea that a boost could be represented v

by a real rotation in the (x, ct)-plane.) U o~
2. The hyperbolae are the same for all frames and so we can draw in any g —X:l—*

number of frames in the same diagram and use the hyperbolae to calibrate
them. Fig. 3.7 Length scales in Sand S.



36 | The key attributes of special relativity

3. The length contraction and time dilation effects can be read off directly
from the diagram. For example, the world-lines of the endpoints of a unit
rod OA in §’, namely x’ = 0 and x’ = 1, cut Ox in less than unit distance.
Similarly world-lines x = 0 and x = 1 in S cut Ox’ inside OE, from which
the reciprocal nature of length contraction is evident.

4. Even A has coordinates (ct’, x') = (0, 1) relative to S’, and hence by a
Lorentz transformation coordinates (ct, x) = (Bv/c, p) relative to S. The
quantity OA defined by

0A = (c2t? + x*)* = (1 + v¥/c?)*
is a measure of the calibration factor
(1 + v?/c? )*
1—v%c?)"
3.7 Acceleration in special relativity
We start with the inverse transformation of (3.18), namely,
Ui+
T T uefe®
from which we find the differential
du uy +v v
dus =77 u’llv/cz - ((1 ¥ 14’:)/02)2 ) o7&
_L
C B (L+ ety
Similarly, from the inverse Lorentz transformation

t =Bt + x'v/c?),

we find the differential
dt = p(dr’ + dx'v/c?) = B(1 + ujv/c?)dr.

Combining these results, we find that the x-component of the acceleration
transforms according to

du, ‘1 du/

o Pt aodF dr (3.21)
Similarly, we find
du 1w wpdi
dt P21 + uyv/c?)? dt'  c2BA(1 + uyv/c?)? dr' '
du, 1 duj vy du) (3.23)

dt ~ B2+ uyv/c?)P At c2B2(1 + ujv/c?)® dt'
The inverse transformations can be found in the usual way.

It follows from the transformation formulae that acceleration is not an
invariant in special relativity. However, it is clear from the formulae that
acceleration is an absolute quantity, that is, all observers agree whether a
body is accelerating or not. Put another way, if the acceleration is zero in one
frame, then it is necessarily zero in any other frame. We shall see that this is



Table 3.1
Theory Position Velocity Time Acceleration
Newtonian Relative Relative Absolute Absolute
Special . . .
relativity Relative Relative Relative Absolute
Ge”e“’!' . Relative Relative Relative Relative
relativity

no longer the case in general relativity. We summarize the situation in
Table 3.1, which indicates why the subject matter of the book is ‘relativity’
theory.

3.8 Uniform acceleration

The Newtonian definition of a particle moving under uniform acceleration is

du

— = constant.

dt
This turns out to be inappropriate in special relativity since it would imply
that u — o0 as t - 00, which we know is impossible. We therefore adopt a
different definition. Acceleration is said to be uniform in special relativity if it
has the same value in any co-moving frame, that is, at each instant, the
acceleration in an inertial frame travelling with the same velocity as the
particle has the same value. This is analogous to the idea in Newtonian
theory of motion under a constant force. For example, a spaceship whose
motor is set at a constant emission rate would be uniformly accelerated in this
sense. Taking the velocity of the particle to be u = u(t) relative to an inertial
frame S, then at any instant in a co-moving frame S’, it follows that v = u, the
velocity relative to S’ is zero, i.e. ¥’ = 0, and the acceleration is a constant, a
say, i.e. du’/dt’ = a. Using (3.21), we find

du 1 u?\z
a=ﬂ_3a=<1_c_2> a.
We can solve this differential equation by separating the variables
du
(1 - u¥/e?)s

and integrating both sides. Assuming that the particle starts from rest at
t=t,, we find

=adt

u
T —urjery ~ 4
Solving for u, we get

dx _ a(t — tg)

dt 1+ a2 —to)/c?TH

Next, integrating with respect to ¢, and setting x = x, at t = t,, produces

u=

Cr2 2 2% c
(x—x0)=a[c + a*(t — ty)°] -

3.8 Uniform acceleration | 37
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horizons

Fig. 3.8 Hyperbolic motions.

Uniform deceleration

A

of direction

Uniform velocity

the Earth

X

Fig. 3.9 The twin paradox.

— X

Fig. 3.10 Simultaneity lines of A on the

outward and return journeys.

Uniform reversal

Uniform acceleration away from

This can be rewritten in the form

(x — xo + c*/a)®  (ct — cto)?
(c*/a)? (c*/a)?

which is a hyperbola in (x, ct)-space. If, in particular, we take x, — ¢*/a =t =0,
then we obtain a family of hyperbolae for different values of a (Fig. 3.8). These
world-lines are known as hyperbolic motions and, as we shall see in
Chapter 23, they have significance in cosmology. It can be shown that the
radar distance between the world-lines is a constant. Moreover, consider the
regions I and IT bounded by the light rays passing through O, and a system of
particles undergoing hyperbolic motions as shown in Fig. 3.8 (in some
cosmological models, the particles would be galaxies). Then, remembering
that light rays emanating from any point in the diagram do so at 45°, no
particle in region I can communicate with another particle in region II, and
vice versa. The light rays are called event horizons and act as barriers beyond
which no knowledge can ever be gained. We shall see that event horizons will
play an important role later in this book.

=1, (324

3.9 The twin paradox

This is a form of the clock paradox which has caused the most controversy —
a controversy which raged on and off for over 50 years. The paradox concerns
two twins whom we shall call 4 and A. The twin 4 takes off in a spaceship for
a return trip to some distant star. The assumption is that 4 is uniformly
accelerated to some given velocity which is retained until the star is reached,
whereupon the motion is uniformly reversed, as shown in Fig. 3.9. According
to 4, A’s clock records slowly on the outward and return journeys and so, on
return, 4 will be younger than A. If the periods of acceleration are negligible
compared with the periods of uniform velocity, then could not 4 reverse the
argument and conclude that it is A who should appear to be the younger?
This is the basis of the paradox.

The resolution rests on the fact that the accelerations, however brief, have
immediate and finite effects on 4 but not on 4 who remains inertial
throughout. One striking way of seeing this effect is to draw in the simul-
taneity lines of 4 for the periods of uniform velocity, as in Fig. 3.10. Clearly,
the period of uniform reversal has a marked effect on the simultaneity lines.
Another way of looking at it is to see the effect that the periods of acceleration
have on shortening the length of the journey as viewed by A. Let us be
specific: we assume that the periods of acceleration are T, T, and T, and
that, after the period T;, A has attained a speed v = \/3¢/2. Then, from A’s
viewpoint, during the period T,, 4 finds that more than half the outward
journey has been accomplished, in that A has transferred to a frame in which
the distance between the Earth and the star is more than halved by length
contraction. Thus, 4 accomplishes the outward trip in about half the time
which A ascribes to it, and the same applies to the return trip. In fact, we
could use the machinery of previous sections to calculate the time elapsed in
both the periods of uniform acceleration and uniform velocity, and we would
again reach the conclusion that on return 4 will be younger than 4. As we
have said before, this points out the fact that in special relativity time is a
route-dependent quantity. The fact that in Fig. 3.9 A’s world-line is longer



than A’s, and yet takes less time to travel, is connected with the Minkow-
skian metric
ds? = c2dt? — dx? — dy? — dz?

and the negative signs which appear in it compared with the positive signs
occurring in the usual three-dimensional Euclidean metric.

3.10 The Doppler effect

All kinds of waves appear lengthened when the source recedes from the
observer: sounds are deepened, light is reddened. Exactly the opposite occurs
when the source, instead, approaches the observer. We first of all calculate the
classical Doppler effect.

Consider a source of light emitting radiation whose wavelength in its rest
frame is 4,. Consider an observer S relative to whose frame the source is in
motion with radial velocity u,. Then, if two successive pulses are emitted at
time differing by dt’ as measured by S, the distance these pulses have to travel
will differ by an amount u,d¢#’ (see Fig. 3.11). Since the pulses travel with speed
¢, it follows that they arrive at S with a time difference

At = dt' + u,dt'/c,
giving ;
At/dt’ =1+ u,/c.
Now, using the fundamental relationship between wavelength and velocity,

set
A=cAt and A, =cdt.

We then obtain the classical Doppler formula

Let us now consider the special relativistic formula. Because of time
dilation (see Fig. 3.3), the time interval between successive pulses according
to S is pdt’ (Fig. 3.12). Hence, by the same argument, the pulses arrive at S
with a time difference

At = fdt’ + u fdt'/c

@ — %————»

\ 5
—u,

T
L O — PN N
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Fig. 3.11 The Doppler effect:
(a) first pulse; (b) second pulse.
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S S

At v

Bdt’ dt’

Fig. 3.12 The special relativistic Doppler
shift.

kT

Fig. 3.13 The radial Doppler shift .

and so this time we find that the special relativistic Doppler formula is

A 1+u/c

Ip T Ao ©29

If the velocity of the source is purely radial, then u, = v and (3.26) reduces to

This is the radial Doppler shift, and, if we set ¢ = 1, we obtain (2.4), which is
the formula for the k-factor. Combining Figs. 2.7 and 3.12, the radial Doppler
shift is illustrated in Fig. 3.13, where dt’ is replaced by 7. From equa-
tion (3.26), we see that there is also a change in wavelength, even when the
radial velocity of the source is zero. For example, if the source is moving in a
circle about the origin of S with speed v (as measured by an instantaneous co-
moving frame), then the transverse Doppler shift is given by

This is a purely relativistic effect due to the time dilation of the moving
source. Experiments with revolving apparatus using the so-called ‘Mdssbauer
effect’ have directly confirmed the transverse Doppler shift in full agreement
with the relativistic formula, thus providing another striking verification of
the phenomenon of time dilation.

Exercises

3.1(§3.1) S and S’ are in standard configuration with v = ac
(0 <a < 1).Ifarod at rest in S" makes an angle of 45° with
Ox in S and 30° with O’x in S’, then find a.

3.2(§3.1) Note from the previous question that perpendicu-
lar lines in one frame need not be perpendicular in another
frame. This shows that there is no obvious meaning to the
phrase ‘two inertial frames are parallel’, unless their relative
velocity is along a common axis, because the axes of either
frame need not appear rectangular in the other. Verify that
the Lorentz transformation between frames in standard
configuration with relative velocity » =(v,0,0) may be
written in vector form

, AR , vr
r=r+(v—2(ﬁ—1)——ﬂt v, t=ﬂ t—?-,

where r = (x, y, z). The formulae are said to comprise the
‘Lorentz transformation without relative rotation’. Justify

this name by showing that the formulae remain valid when
the frames are not in standard configuration, but are parallel
in the sense that the same rotation must be applied to each
frame to bring the two into standard configuration (in which
case v is the velocity of S’ relative to S, but v = (v, 0, 0) no
longer applies).
3.3 (§3.1) Prove that the first two equations of the special
Lorentz transformation can be written in the form
ct' = —xsinh ¢ + ctcosh ¢, x' = xcosh ¢ — ctsinh ¢,

where the rapidity ¢ is defined by ¢ = tanh™!(v/c).
Establish also the following version of these equations:

ct' +x' =e *ct + x),

ct' —x' = e*(ct — x),

e2* = (1 + v/c)/(1 — v/c).

What relation does ¢ have to 6 in equation (3.11)?



3.4 (§3.1) Aberration refers to the fact that the direction of
travel of a light ray depends on the motion of the observer.
Hence, if a telescope observes a star at an inclination 6’ to
the horizontal, then show that classically the ‘true’ inclina-
tion @ of the star is related to 8’ by

sin 6

’

tanf) = —,
cosf + v/c

where v is the velocity of the telescope relative to the star.

Show that the corresponding relativistic formula is

sin@
B(cos 8 + vjc)

3.5 (§3.2) Show that special Lorentz transformations are
associative, that is, if O(v,) represents the transformation
from observer S to S’, then show that

(0(0,)0(2,))0(v3) = O(v,) (0(v2)O(v3)).

3.6 (§3.3) An athlete carrying a horizontal 20-ft-long pole
runs at a speed v such that (1 — v%/c?)~* =2 into a 10-ft-
long room and closes the door. Explain, in the athlete’s
frame, in which the room is only 5ft long, how this is
possible. [ Hint: no effect travels faster than light.] Show that
the minimum length of the room for the performance of this
trick is 20/(y/3 + 2) ft. Draw a space-time diagram to indic-
ate what is going on in the rest frame of the athlete.

tanf' =

3.7 (§3.5) A particle has velocity # = (uy, u,, u;) in S and
u = (), uy, uy) in S'. Prove from the velocity trans-
formation formulae that

02(02 _ uIZ)(CZ — UZ)

(c? + u,v)?

2—yt=

Deduce that, if the speed of a particle is less than ¢ in any one
inertial frame, then it is less than ¢ in every inertial frame.

3.8 (§3.7) Check the transformation formulae for the com-
ponents of acceleration (3.21)-(3.23). Deduce that acceler-
ation is an absolute quantity in special relativity.

3.9(§3.8) A particle moves from rest at the origin of a frame
S along the x-axis, with constant acceleration « (as measured
in an instantaneous rest frame). Show that the equation of
motion is

ax? + 2¢2x — ac?t? =0,

Exercises | 41

and prove that the light signals emitted after time t = c/a at
the origin will never reach the receding particle. A standard
clock carried along with the particle is set to read zero at the
beginning of the motion and reads 7 at time ¢ in S. Using the
clock hypothesis, prove the following relationships:

u\* ot
(1 - ——;) = cosh—,
c c

at . . arT c? ot
— = sinh —, x=—|cosh— —1}.
c c o c

u ot
- =tanh —,
c c

Show that, if T2 < c?/a2, then, during an elapsed time 7T in
the inertial system, the particle clock will record approxim-
ately the time T(1 — a2 T?/6c2).

If « = 3g, find the difference in recorded times by the
spaceship clock and those of the inertial system

(a) after 1 hour;
(b) after 10 days.

3.10 (§3.9) A space traveller A travels through space with
uniform acceleration g (to ensure maximum comfort). Find
the distance covered in 22 years of A’s time. [Hint: using
years and light years as time and distance units, respectively,
then g = 1.03]. If on the other hand, 4 describes a straight
double path X YZYX, with acceleration g on XY and ZY,
and deceleration on YZ and YX, for 6 years each, then draw
a space-time diagram as seen from the Earth and find by
how much the Earth would have aged in 24 years of A’s
time.

3.11 (§3.10) Let the relative velocity between a source of

light and an observer be u, and establish the classical

Doppler formulae for the frequency shift:

. Vo

source moving, observer at rest: v = s
1+ u/c

observer moving, source at rest: v = (1 — u/c)v,,

where v, is the frequency in the rest frame of the source.
What are the corresponding relativistic results?

3.12 (§3.10) How fast would you need to drive towards a
red traffic light for the light to appear green? [Hint: 1,4 = 7
x 1073 cm, Ageea & 5 x 107% cm.]




4.1 Newtonian theory

Before discussing relativistic mechanics, we shall review some basic ideas of
Newtonian theory. We have met Newton’s first law in § 2.4, and it states that
a body not acted upon by a force moves in a straight line with uniform
velocity. The second law describes what happens if an object changes its
velocity. In this case, something is causing it to change its velocity and this
something is called a force. For the moment, let us think of a force as
something tangible like a push or a pull. Now, we know from experience that
it is more difficult to push a more massive body and get it moving than it is to
push a less massive body. This resistance of a body to motion, or rather
change in motion, is called its inertia. To every body, we can ascribe, at least
at one particular time, a number measuring its inertia, which (again for the
moment) we shall call its mass m. If a body is moving with velocity v, we
define its linear momentum p to be the product of its mass and velocity. Then
Newton’s second law (N2) states that the force acting on a body is equal to
the rate of change of linear momentum. The third law (N3) is less general and
talks about a restricted class of forces called internal forces, namely, forces
acting on a body due to the influence of other bodies in a system. The third
law states that the force acting on a body due to the influence of the other
bodies, the so-called action, is equal and opposite to the force acting on these
other bodies due to the influence of the first body, the so-called reaction. We
state the two laws below.

Then, for a body of mass m with a force F acting on it, Newton’s second law
states
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If, in particular, the mass is a constant, then

do
F=m ar = ma 4.2)
where a is the acceleration.

Now, strictly speaking, in Newtonian theory, all observable quantities
should be defined in terms of their measurement. We have seen how an
observer equipped with a frame of reference, ruler, and clock can map the
events of the universe, and hence measure such quantities as position,
velocity, and acceleration. However, Newton’s laws introduce the new con-
cepts of force and mass, and so we should give a prescription for their
measurement. Unfortunately, any experiment designed to measure these
quantities involves Newton’s laws themselves in its interpretation. Thus,

Newtonian mechanics has the rather unexpected property that the opera-
tional definitions of force and mass which are required to make the laws
physically significant are actually contained in the laws themselves.

To make this more precise, let us discuss how we might use the laws to F F,
measure the mass of a body. We consider two bodies isolated from all other o—> )
influences other than the force acting on one due to the influence of the other m‘ :
and vice versa (Fig. 4.1). Since the masses are assumed to be constant, we Fig. 4.1 Measuring mass by mutually
have, by Newton’s second law in the form (4.2), induced accelerations.

F,=mya, and F,=m,a,.

In addition, by Newton’s third law, F; = —F,. Hence, we have

B

Therefore, if we take one standard body and define it to have unit mass, then
we can find the mass of the other body, by using (4.3). We can keep doing this
with any other body and in this way we can calibrate masses. In fact, this
method is commonly used for comparing the masses of elementary particles.
Of course, in practice, we cannot remove all other influences, but it may be
possible to keep them almost constant and so neglect them.

We have described how to use Newton’s laws to measure mass. How do we
measure force? One approach is simply to use Newton’s second law, work
out ma for a body and then read off from the law the force acting on m. This is
consistent, although rather circular, especially since a force has independent
properties of its own. For example, Newton has provided us with a way for
working out the force in the case of gravitation in his universal law of
gravitation (UG).

R i - RRARE Ry AR

If we denote the constant of proportionality by G (with value 6.67 x 10™*! in
m.k.s. units), the so-called Newtonian constant, then the law is (see Fig. 4.2)

m r m,

Fig. 4.2 Newton’s universal law of
gravitation.
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where a hat denotes a unit vector. There are other force laws which can be
stated separately. Again, another independent property which holds for
certain forces is contained in Newton’s third law. The standard approach to
defining force is to consider it as being fundamental, in which case force laws
can be stated separately or they can be worked out from other considerations.
We postpone a more detailed critique of Newton’s laws until Part C of the
book.

Special relativity is concerned with the behaviour of material bodies and
light rays in the absence of gravitation. So we shall also postpone a detailed
consideration of gravitation until we discuss general relativity in Part C of the
book. However, since we have stated Newton’s universal laws of gravitation
in (4.4), we should, for completeness, include a statement of Newtonjan
gravitation for a distribution of matter. A distribution of matter of mass
density p = p(x, y, 2, t) gives rise to a gravitational potential ¢ which satisfies
Poisson’s equation !

at points inside the distribution, where the Laplacian operator V?2 is given in
Cartesian coordinates by
02 8? d?

2 . 7 — —_—
Vi toz tar

At points external to the distribution, this reduces to Laplace’s equation

We assume that the reader is familiar with this background to Newtonian
theory.

4.2 Isolated systems of particles in
Newtonian mechanics

In this section, we shall, for completeness, derive the conservation of linear
momentum in Newtonian mechanics for a system of n particles. Let the ith
particle have constant mass m; and position vector r; relative to some
arbitrary origin. Then the ith particle possesses linear momentum p; defined
by p; = m;i;, where the dot denotes differentiation with respect to time ¢. If F;
is the total force on m;, then, by Newton’s second law, we have

F; = p; = m,. 4.7

The total force F; on the ith particle can be divided into an external force F*
due to any external fields present and to the resultant of the internal forces.
We write

TN
F, = F; +,~;F"’

where F;; is the force or the ith particle due to the jth particle and where, for



convenience, we define F;; = 0. If we sum over i in (4.7), we find

d » n d p; n n
TYp=Y L= F+ Y Fy
dt i=1p i=Zl dt iZI i,jz=1 d
Using Newton’s third law, namely, F;; = — F;, then the last term is zero and

we obtain P = F**, where P = ZL , P is termed the total linear momentum

of the system and F* =} 7_ F{* is the total external force on the system.
If, in particular, the system of particles is isolated, then

FXt =0 = P=C,

where ¢ is a constant vector. This leads to the law of the conservation of
linear momentum of the system, namely,

4.3 Relativistic mass

The transition from Newtonian to relativistic mechanics is not, in fact,
completely straightforward, because it involves at some point or another
the introduction of ad hoc assumptions about the behaviour of particles in
relativistic situations. We shall adopt the approach of trying to keep as close
to the non-relativistic definition of energy and momentum as we can. This
leads to results which in the end must be confronted with experiment. The
ultimate justification of the formulae we shall derive resides in the fact that
they have been repeatedly confirmed in numerous laboratory experiments in
particle physics. We shall only derive them in a simple case and state that the
arguments can be extended to a more general situation.

It would seem plausible that, since length and time measurements are
dependent on the observer, then mass should also be an observer-dependent
quantity. We thus assume that a particle which is moving with a velocity u
relative to an inertial observer has a mass, which we shall term its relativistic
mass, which is some function of u, that is,

m = m(u), 4.9)

where the problem is to find the explicit dependence of m on u. We restrict
attention to motion along a straight line and consider the special case of two
equal particles colliding inelastically (in which case they stick together), and
look at the collision from the point of view of two inertial observers S and S’
(see Fig. 4.3). Let one of the particles be at rest in the frame S and the other
possess a velocity u before they collide. We then assume that they coalesce
and that the combined object moves with velocity U. The masses of the two
particles are respectively m(0) and m(u) by (4.9). We denote m(0) by m, and
term it the rest mass of the particle. In addition, we denote the mass of the
combined object by M(U ). If we take S’ to be the centre-of-mass frame, then
it should be clear that, relative to S, the two equal particles collide with equal
and opposite speeds, leaving the combined object with mass M, at rest. It
follows that S’ must have velocity U relative to S.

4.3 Relativistic mass | 45
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Fig. 4.3 The inelastic collision in the
frames Sand S'.
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We shall assume both conservation of relativistic mass and conservation of
linear momentum and see what this leads to. In the frame S, we obtain

m(u) + my = M(U), m(u)u +0=M(U)U,
from which we get, eliminating M(U),

m(u) = my (%) | (4.10)

The left-hand particle has a velocity U relative to S’, which in turn has a
velocity U relative to S. Hence, using the composition of velocities law, we
can compose these two velocities and the resultant velocity must be identical
with the velocity u of the left-hand particle in S. Thus, by (2.6) in non-
relativistic units,

_ 2U
LEaruyey

Solving for U in terms of u, we obtain the quadratic

2
U2—<2%)U+c2=0,

which has roots

o[ (2) -T2 (-3)]

In the limit 4 — 0, this must produéc a finite result, so we must take the
negative sign (check), and, substituting in (4.10), we find finally

where

This is the basic result which relates the relativistic mass of a moving particle
to its rest mass. Note that this is the same in structure as the time dilation
formula (3.16), ie. T = BT,, where B = (1 —v?/c?)™*, except that time



dilation involves the factor § which depends on the velocity v of the frame S’
relative to S, whereas y depends on the velocity u of the particle relative to S.
If we plot m against u, we see that relativistic mass increases without bound as
u approaches ¢ (Fig. 4.4).

It is possible to extend the above argument to establish (4.11) in more
general situations. However, we emphasize that it is not possible to derive the
result a priori, but only with the help of extra assumptions. However it is
produced, the only real test of the validity of the result is in the experimental
arena and here it has been extensively confirmed.

4.4 Relativistic energy
Let us expand the expression for the relativistic mass, namely,
m(u) = ymo = mo(1 — u*/c*) %,

in the case when the velocity u is small compared with the speed of light c.
Then we get

1 4
m(u) = my + ?(%mouz) + 0(-1:7), 4.13)

where the final term stands for all terms of order (u/c)* and higher. If we
multiply both sides by c2, then, apart from the constant myc?, the right-hand
side is to first approximation the classical kinetic energy (k.e.), that is,

mc? = mye? + myu? + .- =~ constant + k.. 4.19)

We have seen that relativistic mass contains within it the expression for
classical kinetic energy. In fact, it can be shown that the conservation of
relativistic mass leads to the conservation of kinetic energy in the Newtonian
approximation. As a simple example, consider the collision of two particles
with rest mass m, and m,, initial velocities v, and ,, and final velocities v,
and v,, respectively (Fig. 4.5). Conservation of relativistic mass gives

mo(1 — v}/c®)™* + ritg(1 — 53/c?) ™ = mo(1 — v3/c?)7#

gl — B2/ct). (415)

If we now assume that v, v,, 7,, and 7, are all small compared with ¢, then
we find (exercise) that the leading terms in the expansion of (4.15) give

2 1~ -2 _ 1 2 1.~ -2
Imgv? + dmov? = dmyv3 + $my03, (4.16)

which is the usual conservation of energy equation. Thus, in this sense,
conservation of relativistic mass includes within it conservation of energy.
Now, since energy is only defined up to the addition of a constant, the result

e—ry O—>7 Before

V2 O—> V2 After
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Fig. 4.4 Relativistic mass as a function of
velocity.

Fig. 4.5 Two colliding particles.
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(4.14) suggest that we regard the energy E of a particle as given-by

This is one of the most famous equations in physics. However, it is not just a
mathematical relationship between two different quantities, namely energy
and mass, but rather states that energy and mass are equivalent concepts.
Because of the arbitrariness in the actual value of E, a better way of stating
the relationship is to say that a change in energy is equal to a change in
relativistic mass, namely,

AE = Amc?

Using conventional units, ¢? is a large number and indicates that a small
change in mass is equivalent to an enormous change in energy. As is well
known, this relationship and the deep implications it carries with it for peace
and war, have been amply verified. For obvious reasons, the term mqc? is
termed the rest energy of the particle. Finally, we point out that conservation
of linear momentum, using relativistic mass, leads to the usual conservation
law in the Newtonian approximation. For example (exercise), the collision
problem considered above leads to the usual conservation of linear
momentum equation for slow-moving particles:

movl + ’;’061 b movz + rhoaz- (4.18)

Extending these ideas to three spatial dimensions, then a particle moving
with velocity u relative to an inertial frame S has relativistic mass m, energy E,
and linear momentum p given by

Some straightforward algebra (exercise) reveals that
(E/c)* = p% — pj — p2.= (moc)?, (4.20)

where m ¢ is an invariant, since it is the same for all inertial observers. If we
compare this with the invariant (3.13), i.e.

2 2

(ct)? — x? — y* — 22 =52,

then it suggests that the quantities (E/c, p,, p;, p,) transform under a Lorentz
transformation in the same way as the quantities (ct, x, y, z). We shall see in
Part C that the language of tensors provides a better framework for dis-
cussing transformation laws. For the moment, we shall assume that energy
and momentum transform in an identical manner and quote the results.
Thus, in a frame S’ moving in standard configuration with velocity v relative
to S, the transformation equations are (see (3.12))

The inverse transformations are obtained in the usual way, namely, by



interchanging primes and unprimes and replacing v by —v, which gives

If, in particular, we take S’ to be the instantaneous rest frame of the
particle, then p’ = 0 and E’ = E, = mqc?. Substituting in (4.22), we find

2
' myC 2
E=BE =—"°% __ — mc?,
BE ==y =™
where m = my(1 — v?/c?)"* and p = (BvE’/c?, 0, 0) = (mv, 0, 0} = mv, which
are precisely the values of the energy, mass, and momentum arrived at in
(4.19) with u replaced by v.

4.5 Photons

At the end of the last century, there was considerable conflict between theory
and experiment in the investigation of radiation in enclosed volumes. In an
attempt to resolve the difficulties, Max Planck proposed that light and other
electromagnetic radiation consisted of individual ‘packets’ of energy, which
he called quanta. He suggested that the energy E of each quantum was to
depend on its frequency v, and proposed the simple law, called Planck’s
hypothesis,

b W L

where h is a universal constant known now as Planck’s constant. The idea of
the quantum was developed further by Einstein, especially in attempting to
explain the photoelectric effect. The effect is to do with the ejection of
electrons from a metal surface by incident light (especially ultraviolet) and is
strongly in support of Planck’s quantum hypothesis. Nowadays, the quan-
tum theory is well established and applications of it to explain properties of
molecules, atoms, and fundamental particles are at the heart of modern
physics. Theories of light now give it a dual wave—particle nature. Some
properties, such as diffraction and interference, are wavelike in nature, while
the photoelectric effect and other cases of the interaction of light and atoms
are best described on a particle basis.

The particle description of light consists in treating it as a stream of quanta
called photons. Using equation (4.19) and substituting in the speed of light,
u =c, we find

me=7"'m=(1-uc*)tm=0, 4.24)

that is, the rest mass of a photon must be zero! This is not so bizarre as it first
seems, since no inertial observer ever sees a photon at rest — its speed is
always ¢ — and so the rest mass of a photon is merely a notional quantity. If
we let A be a unit vector denoting the direction of travel of the photon, then

pP= (px’ Dy pz) = P'Al,
and equation (4.20) becomes
(Efc)* — p* =0.

4.5 Photons | 49
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Taking square roots (and remembering ¢ and p are positive), we find that the
energy E of a photon is related to the magnitude p of its momentum by
E =pc. 4.25)

Finally, using the energy-mass relationship E = mc?, we find that the rela-
tivistic mass of a photon is non-zero and is given by

m = p/c. (4.26)

Combining these results with Planck’s hypothesis, we obtain the following
formulae for the energy E, relativistic mass m, and linear momentum p of the
photon:

It is gratifying to discover that special relativity, which was born to reconcile
conflicts in the kinematical properties of light and matter, also includes their
mechanical properties in a single all-inclusive system.

We finish this section with an argument which shows that Planck’s
hypothesis can be derived directly within the framework of special relativity.
We have already seen in the last chapter that the radial Doppler effect for a
moving source is given by (3.27), namely

A _(L+o/c\}
Ao \1—v/c)’
where 1, is the wavelength in the frame of the source and A is the wavelength

in the frame of the observer. We write this result, instead, in terms of
frequency, using the fundamental relationships ¢ = Av and ¢ = 44v,, to

obtain

3

Yo _(1tv/e)t (4.28)
1 1-v/c

Now, suppose that the source emits a light flash of total energy E,. Let us use
the equations (4.22) to find the energy received in the frame of the observer §.
Since, recalling Fig. 3.11, the light flash i3 travelling along the negative x-
direction of both frames, the relationship (4.25) leads to the result
py = — Ey/c, with the other primed components of momentum zero. Substi-
tuting in the first equation of (4.22), namely,

E = B(E" + vp3),

we get
Eo(1 —v/c) 1—v/c\?*
— — — — E
E B(EO UEO/C) (1 _ UZ/CZ)* V] 1 + U/C ’
or
E, 1+ v/c\?
=2 - . 429
E (1 — v/c) (4.29)
Combining this with equation (4.28), we obtain
Vo Vv

Since this relationship holds for any pair of inertial observers, it follows that
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the ratio must be a universal constant, which we call h. Thus, we have derived

Planck’s hypothesis E = hv.

We leave our considerations of special relativity at this point and turn our
attention to the formalism of tensors. This will enable us to reformulate -
special relativity in a way which will aid our transition to general relativity,
that is, to a theory of gravitation consistent with special relativity.

Exercises

4.1 (§4.1) Discuss the possibility of using force rather than
mass as the basic quantity, taking, for example, a standard
weight at a given latitude as the unit of force. How should
one then define and measure the mass of a body?

4.2 (§4.3) Show that, in the inelastic collision considered in
§4.3, the rest mass of the combined object is greater than the
sum of the original rest masses. Where does this increase
dertve from?

4.3 (§4.3) A particle of rest mass m, and speed u strikes a
stationary particle of rest mass m,,. If the collision is perfectly
inelastic, then find the rest mass of the composite particle.

4.4 (54.4) (i) Establish the transition from equation (4.15)

to (4.16).
(if) Establish the WNewtonian approximation
equation (4.18).

4.5 (§4.4) Show that (4.19) leads to (4.20). Deduce (4.21).

4.6 (§4.4) Newton’s second law for a particle of relativistic
mass m is

Fe d
—a(mu).

Define the work done d E in moving the particle from r to
r+ dr. Show that the rate of doing work is given by

dE d(mu)
—= u.
dt dt

Use the definition of relativistic mass to obtain the result

dE mg du |:H‘ . du du]

—_——— %y inttu—=u— |.

dt (1 —u?/c?)3? " dt de dt
Express this last result in terms of dm/d¢ and integrate to
obtain

E = mc? + constant.

4.7 (§4.4) Two particles whose rest masses are m; and m,
move along a straight line with velocities u, and u,, meas-
ured in the same direction. They collide inelastically to form
a new particle. Show that the rest mass and velocity of the

new particle are m; and u,, respectively, where
m3 =mi +m3 + 2mymyy,7,(1 — uyuy/c?),

wo = M1t + myYau,
= " 2722
myy; +myy,

with

n=0-u}/c)Y,  y=01-ui/)t

4.8 (§4.4) A particle of rest mass m,, energy e,, and
momentum p, suffers a head on elastic collision (i.e. masses
of particles unaltered) with a stationary mass M. In the
collision, M is knocked straight forward, with energy E and
momentum P, leaving the first particle with energy e and p.
Prove that

_ 2poM(eo + Mc?)
T 2Mey + M%c? + mic?

and
po(m*c* — M?c?)
2Me, + M?c® + mgcz'
What do these formulae become in the classical limit?

4.9 (§4.4) Assume that the formulae (4.19) hold for a ta-
chyon, which travels with speed v > c¢. Taking the energy to
be a measurable quantity, then deduce that the rest mass of
a tachyon is imaginary and define the real quantity u, by
my = ip,.

If the tachyon moves along the x-axis and if we assume
that the x-component of the momentum is a real positive
quantity, then deduce

v
m= g ake P Holola,  E=mc?,
v
where o = (v?/c? — 1)7%,
Plot E/mgc? against v/c for both tachyons and sub-
luminal particles.

4.10 (§4.5) Two light rays in the (x, y)-plane of an inertial
observer, making angles 8 and —8, respectively, with the
positive x axis, collide at the origin. What is the velocity v of
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the inertial observer (travelling in standard configuration) e in the emission, prove that the frequency of the emitted
who sees the light rays collide head on? photon is given by

4.11 (§4.5) An atom of rest mass m, is at rest in a laborat-

ory and absorbs a photon of frequency v. Find the velocity
and mass of the recoiling particle.

4.12 (§4.5) An atom at rest in a laboratory emits a photon
and recoils. If its initial mass is m, and it loses the rest energy

e
y= E(l — e/2myc?).
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5.1 Introduction

To work effectively in Newtonian theory, one really needs the language of
vectors. This language, first of all, is more succinct, since it summarizes a set
of three equations in one. Moreover, the formalism -of vectors helps to solve
certain problems more readily, and, most important of all, the language
reveals structure and thereby offers insight. In exactly the same way, in
relativity theory, one needs the language of tensors. Again, the language helps
to summarize sets of equations succinctly and to solve problems more readily,
and it reveals structure in the equations. This part of the book is devoted to
learning the formalism of tensors which is a pre-condition for the rest of the
book.

The approach we adopt is to concentrate on the technique of tensors
without taking into account the deeper geometrical significance behind the
theory. We shall be concerned more with what you do with tensors rather
than what tensors actually are. There are two distinct approaches to the
teaching of tensors: the abstract or index-free (coordinate-free) approach and
the conventional approach based on indices. There has been a move in recent
years in some quarters to introduce tensors from the start using the more
modern abstract approach (although some have subsequently changed their
mind and reverted to the conventional approach). The main advantage of this
approach is that it offers deeper geometrical insight. However, it has two
disadvantages. First of all, it requires much more of a mathematical back-
ground, which in turn takes time to develop. The other disadvantage is that,
for all its elegance, when one wants to do a real calculation with tensors, as
one frequently needs to, then recourse has to be made to indices. We shall
adopt the more conventional index approach, because it will prove faster and
more practical. However, we advise those who wish to take their study of the
subject further to look at the index-free approach at the first opportunity.

We repeat that the exercises are seen as integral to this part of the book and
should not be omitted.

5.2 Manifolds and coordinates

We shall start by working with tensors defined in n dimensions since, and it is
part of the power of the formalism, there is little extra effort involved. A
tensor is an object defined on a geometric entry called a (differential)
manifold. We shall not define a manifold precisely because it would involve
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Half-lines
¢=constant

Circles
R=constant

¢ indeterminate
at 0

Fig. 5.1 Plane polar coordinate curves.

Fig. 5.2 Two non-degenerate coordinate
systems covering an S2.

Fig. 5.3 Overlapping coordinate patches
in a manifold.

us in too much of a digression. But, in simple terms, a manifold is something
which ‘locally’ looks like a bit of n-dimensional Euclidean space R". For
example, compare a 2-sphere S with the Euclidean plane R2 They are
clearly different. But a small bit of $? looks very much like a small bit of R? (if
we neglect metrical properties). The fact that S2 is ‘compact’, i.e. in some sense
finite, whereas IR? ‘goes off to infinity’ is a global property rather than a local
property. We shall not say anything precise about global properties —the
topology of the manifold —, although the issue will surface when we start
to look carefully at solutions of Einstein’s equations in general relativity.
We shall simply take an n-dimensional manifold M to be a set of points
such that each point possesses a set of n coordinates (x!, x2, ..., x"), where
each coordinate ranges over a subset of the reals, which may, in particular,
range from — oo to + co. To start off with, we can think of these coordinates
as corresponding to distances or angles in Euclidean space. The reason why
the coordinates are written as superscripts rather than subscripts will become
clear later. Now the key thing about a manifold is that it may not be possible
to cover the whole manifold by one non-degenerate coordinate system,
namely, one which ascribes a unique set of n coordinate numbers to each
point. Sometimes it is simply convenient to use coordinate systems with
degenerate points. For example, plane polar coordinates (R, ¢) in the plane
have a degeneracy at the origin because ¢ is indeterminate there (Fig. 5.1).
However, here we could avoid the degeneracy at the origin by using
Cartesian coordinates. But in other circumstances we have no choice in the
matter. For example, it can be shown that there is no coordinate system
which covers the whole of a 2-sphere S? without degeneracy. The smallest
number needed is two, which is shown schematically in Fig. 5.2. We therefore

First non-degenerate
coordinate system
covering North Pole

Overlap of coordinate
systems at equator

Second non-degenerate
coordinate system
covering South Pole

Overlap of
coordinate patches Manifold M

Coordinate patch

Coordinate patch



work with coordinate systems which cover only a portion of the manifold and
which are called coordinate patches. Figure 5.3 indicates this schematically.
A set of coordinate patches which covers the whole manifold is calied an
atlas. The theory of manifolds tells us how to get from one coordinate patch
to another by a coordinate transformation in the overlap region. The
behaviour of geometric quantities under coordinate transformations lies at
the heart of tensor calculus.

5.3 Curves and surfaces

Given a manifold, we shall be concerned with points in it and subsets of
points which define curves and surfaces of different dimensions. We shall
frequently define these curves and surfaces parametrically. Thus (in exactly
the same way as is done in Euclidean 2- and 3-space), since a curve has one
degree of freedom it depends on one parameter and so we define a curve by
the parametric equations

where u is the parameter and x*(u), x2(u), ... , x"(u) denote n functions of u.
Similarly, since a subspace or surface of m dimensions (m < n) has m degrees
of freedom, it depends on m parameters and it is given by the parametric
equations

x°=xut,u?, ..., u") (@=12,...,n). (5.2
If, in particular, m = n — 1, the subspace is called a hypersurface. In this case,

x*=xw,u? ..., u""Y) (@=1,2..,n)

and the n — 1 parameters can be eliminated from these n equations to give
one equation connecting the coordinates, i.e.

From a different but equivalent point of view, a point in a general position
in a manifold has n degrees of freedom. If it is restricted to lie in a
hypersurface, an (n — 1)-subspace, then its coordinates must satisfy one
constraint, namely,

f(xl’ x2’ sed g xn) = Oa

which is the same as equation (5.3). Similarly, points in an m-dimensional
subspace (m < n) must satisfy n — m constraints

fl(xla x2, sia ,X") =07
2(,1 2 n —
f:(x,x,...,x) =0, (54)

Frm X2, LX) =0,

which is an alternative to the parametric representation (5.2).

5.3 Curves and surfaces | 57
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5.4 Transformation of coordinates

As we have seen, a point in a manifold can be covered by many different
coordinate patches. The essential point about tensor calculus is that when we
make a statement about tensors we do not wish it simply to hold just for one
coordinate system but rather for all coordinate systems. Consequently, we
need to find out how quantities behave when we go from one coordinate
system to another one. We therefore consider the change of coordinates
x* — x'* given by the n equations

x4 =foxt,x%...,x") (@a=1,2..,n), (5.5)

where the f’s are single-valued continuous differentiable functions, at least for
certain ranges of their arguments. Hence, at this stage, we view a coordinate
transformation passively as assigning to a point of the manifold whose old
coordinates are (x', x?, ..., x") the new primed coordinates (x'!, x'2, ..., x™).
We can write (5.5) more succinctly as x’* = f%(x), where, from now on, lower
case Latin indices are assumed to run from 1 to n, the dimension of the
manifold, and the f“ are all-functions of the old unprimed coordinates.
Furthermore, we can write the equation more simply still as

where x"(x) denote the n functions f%(x). Notation plays an important role
in tensor calculus, and equation (5.6) is clearly easier to write than equa-
tion (5.5).

We next contemplate differentiating (5.6) with respect to each of the
coordinates x°. This produces the n x n transformation matrix of coefficients:

ox't  ox't - ox!
' Xt "
I:W]= 6).c1 ox? ox" |. 5.7
ox™  ox™ ax™"
xt axr T ax

The determinant J’ of this matrix is called the Jacobian of the trans-
formation:

ox'®

=7

. (5.8)

We shall assume that this in non-zero for some range of the coordinates x*.
Then it follows from the implicit function theorem that we can (in principle)
solve equation (5.6) for the old coordinates x* and obtain the inverse trans-
formation equations

x* = x*(x'). (5.9)
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It follows from the product rule for determinants that, if we define the
Jacobian of the inverse transformation by

ox*

J=
ox’®

2

then J = 1/J". .
In three dimensions, the equation of a surface is given by z = f(x, y), then
its total differential is defined to be

d of of

z= 7x dx + E dy.
Then, in an exactly analogous manner, starting from (5.6), we define the total
differential
a ra a q a ra
dx® = 2 dxt + o dx? + o + e dx

ax! 0x? ox"

for each a running from 1 to n. We can write this more economically by
introducing an explicit summation sign:

Ao’ = Z 0x

b=1 6x"

dx’. (5.10)

This can be written more economically still by introducing the Einstein
summation convention: whenever a literal index is repeated, it is understood
to imply a summation over the index from 1 to n, the dimension of the
manifold. Hence, we can write (5.10) simply as

The index a occurring on each side of this equation is said to be free and may
take on separately any value from 1 to n. The index b on the right-hand side is
repeated and hence there is an implied summation from 1 to n. A repeated
index is called bound or dummy because it can be replaced by any other
index not already in use. For example,

ox® |y _ Ox

ot X = e &%

because ¢ was not already in use in the expression. We define the Kronecker
delta 57 to be a quantity which is either 0 or 1 according to

. 1 if a=5b,
5"“{0 if a#b. ' (512)

It therefore follows directly from the definition of partial differentiation
(check) that
ox'®  0x*°

m_fﬁ:sg, (5.13)
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Fig. 5.4 Infinitesimal vector PQ attached
to P.

Fig. 5.5 The tangent vector at two points
of a curve xa = xa(u).

5.5 Contravariant tensors

The approach we are going to adopt is to define a geometrical quantity in
terms of its transformation properties under a coordinate transformation
(5.6). We shall start with a prototype and then give the general definition.
Consider two neighbouring points in the manifold P and Q with coordinates
x* and x® + dx® respectively. The two points define an infinitesimal dis-
placement or infinitesimal vector @ . The vector is not to be regarded as
free, but as being attached to the point P (Fig. 5.4). The components of this
vector in the x%coordinate system are dx®. The components in another
coordinate system, say the x"*-coordinate system, are dx'* which are connec-
ted to dx® by (5.11), namely,

ra

dxe = ‘;’; — dx?. (5.14)

The transformation matrix appearing in this equation is to be regarded as
being evaluated at the point P. ie. strictly speaking we should write

dx'e = [6x ] dx®, (5.15)
P

oxb

but with this understood .we shall stick to the notation of (5.14). Thus,
[0x'?/0x®]p consists of an n x n matrix of real numbers. The transformation
is therefore a linear homogeneous transformation. This is our prototype.

A contravariant vector or contravariant tensor of rank (order) 1 is a set of
quantities, written X° in the x*-coordinate system, associated with a point P,
which transforms under a change of coordinates according to

where the transformation matrix is evaluated at P. The infinitesimal vector
dx® is a special case of (5.16) where the components X* are infinitesimal. An
example of a vector with finite components is provided by the tangent vector
dx®/du to the curve x? = x*(u). It is important to distinguish between the
actual geometric object like the tangent vector in Fig. 5.5 (depicted by an
arrow) and its representation in a particular coordinate system, like the n
numbers [dx?/du]p in the x*-coordinate system and the (in general) different
numbers [dx"/du], in the x"*-coordinate system.

We now generalize the definition (5.16) to obtain contravariant tensors of
higher rank or order. Thus, a contravariant tensor of rank 2 is a set of n?
quantities associated with a point P, denoted by X in the x“-coordinate
system, which transform according to

ra b
ox"® ox" _
O0x° ox*

The quantities X’®® are the components in the x'“-coordinate system, the
transformation matrices are evaluated at P, and the law involves two dummy
indices ¢ and d. An example of such a quantity is provided by the product
Y*Zb, say, of two contravariant vectors Y* and Z*. The definition of third-
and higher-order contravariant tensors proceeds in an analogous manner. An

Xfab —_

(5.17)
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important case is a tensor of zero rank, called a scalar or scalar invariant ¢,
which transforms according to

at P.

5.6 Covariant and mixed tensors

As in the last section, we begin by considering the transformation of a
prototype quantity. Let

¢ = ¢(x) (5.19)

be a real-valued function on the manifold, ie. at every point P in the
manifold, ¢( P) produces a real number. We also assume that ¢ is continuous
and differentiable, so that we can obtain the differential coefficients d¢/0x*.

Now, remembering from equation (5.9) that x* can be thought of as a
function of x’®, equation (5.19) can be written equivalently as

¢ = (x*(x)).

Differentiating this with respect to x™, using the function of a function rule,
we obtain

o6 _ o ox

ox™® " 0x® ox®
Then changing the order of the terms, the dummy index, and the free index
(from b to a) gives

o  oxb 3¢

ax" "~ ax oxb

(5.20)

This is the prototype equation we are looking for. Notice that it involves the
inverse transformation matrix 9x®/8x". Thus, a covariant vector or covariant
tensor of rank (order) 1 is a set of quantities, written X, in the x*-coordinate
system, associated with a point P, which transforms according to

Again, the transformation matrix occurring is assumed to be evaluated at P.
Similarly, we define a covariant tensor of rank 2 by the transformation law

. Oxt ox?
ab = axla axrb cd?

and so on for higher-rank tensors. Note the convention that contravariant
tensors have raised indices whereas covariant tensors have lowered indices.
(The way to remember this is that co goes below.) The fact that the
differentials dx* transform as a contravariant vector explains the convention
that the coordinates themselves are written as x* rather than x,, although

(5.22)
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note that it is only the differentials and not the coordinates which have
tensorial character.

We can go on to define mixed tensors in the obvious way. For example, a
mixed tensor of rank 3 — one contravariant rank and two covariant rank —
satisfies
ox'® 0x° oxS
X, == X 5.23

be axa ax,b ox’ ef ( )
If a mixed tensor has contravariant rank p and covariant rank g, then it is
said to have type or valence (p, q).

We now come to the reason why tensors are important in mathematical
physics. Let us illustrate the reason by way of an example. Suppose we find in
one coordinate system that two tensors, X,, and Y, say, are equal, i..

Xap = Yop- (5.24)

Let us multiply both sides by the matrices dx*/0x" and x?/0x'? and take the
implied summations to get

ox® oxb ox* oxP
axlc ax/d ab — axlc ax;d ab*

Since X, and Y, are both covariant tensors of rank 2 it follows that
X', = Y.,. In other words, the equation (5.24) holds in any other coordinate
system. In short, a tensor equation which holds in one coordinate system
necessarily holds in all coordinate systems. Thus, although we introduce
coordinate systems for convenience in tackling particular problems, if we
work with tensorial equations then they hold in all coordinate systems. Put
another way, tensorial equations are coordinate-independent. This is some-
thing that the index-free or coordinate-free approach makes clear from the
outset.

5.7 Tensor fields

In vector analysis, a fixed vector is a vector associated with a point, whereas a
vector field defined over a region is an association of a vector to every point
in that region. In exactly the same way, a tensor is a set of quantities defined
at one point in the manifold. A tensor field defined over some region of the
manifold is-an association of a tensor of the same valence to every point of the
region, i.e.

P T (P),

where T¢.:(P) is the value of the tensor at P. The tensor field is called
continuous or differentiable if its components in all coordinate systems are
continuous or differentiable functions of the coordinates. The tensor field is
called smooth if its components are differentiable to all orders, which. is
denoted mathematically by saying that all the components are C*. Thus, for
example, a contravariant vector field defined over a region is a set of n
functions defined over that region, and the vector field is smooth if the
functions are all C*. The transformation law for a contravariant vector field
then becomes

a

X(x) = [‘Z’; ,, ]P X*(x) (5.25)
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at each point P in the region, since the old components X* are functions of
the old x“-coordinates and the new components X' are functions of the new
x"*-coordinates.

As in the case of vectors and vector fields in vector analysis, the distinction
between a tensor and a tensor field is not always made completely clear. We
shall for the most part be dealing with tensor fields from now on, but to
conform with general usage we shall often refer to tensor fields simply as
tensors. We will again shorten the transformation law such as (5.25) to the
form (5.21) with everything else being implied. If we wish to emphasize that a
tensor is a tensor field, we shall write it in functional form, namely, as
T8 (x).

5.8 Elementary operations with tensors

Tensor calculus is concerned with tensorial operations, that is, operations on
tensors which result in quantities which are still tensors. A simple way of
establishing whether or not a quantity is a tensor is to see how it transforms
under a coordinate transformation. For example, we can deduce directly
from the transformation law that two tensors of the same type can be added
together to give a tensor of the same type, e.g.

X% =YY% +Z%,. (5.26)

The same holds true for subtraction and scalar multiplication.

A covariant tensor of rank 2 is said to be symmetric if X, = X,,, in which
case it has only 4n(n + 1) independent components (check this by estab-
lishing how many independent components there are of a symmetric matrix
of order n). Symmetry is a tensorial property. A similar definition holds for a
contravariant tensor X, The tensor X, is said to be anti-symmetric or skew
symmetric if X,, = — X,,, which has only {n(n — 1) independent compon-
ents; this is again a tensorial property. A notation frequently used to denote
the symmetric part of a tensor is

In general,

1 . .
Xara) = prl (sum over all permutations of the indices a, to a,)

and

1 . . s
Xiar-a) = 7, (alternating sum over all permutations of the indices
" oa;toa,)

For example, we shall need to make use of the result

X[abc] = %(Xabc - Xacb + Xcab — A cpg + Xbm - Xbac)' (5'29)
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(A way to remember the above expression is to note that the positive terms
are obtained by cycling the indices to the right and the corresponding
negative terms by flipping the last two indices.) A totally symmetric tensor is
defined to be one equal to its symmetric part, and a totally anti-symmetric
tensor is one equal to its anti-symmetric part.

We can multiply two tensors of type (p;,q,) and (p,, q,) together and
obtain a tensor of type (p, + P2, 4; + ¢,), €&

Xea = Y%Zes- (5.30)

In particular, a tensor of type (p, ¢) when multiplied by a scalar field ¢ is
again a tensor of type (p, q). Given a tensor of mixed type (p, q), we can form a
tensor of type (p — 1,q — 1) by the process of contraction, which simply
involves setting a raised and lowered index equal. For example,

contraction on a and b

X5 X ea = Yea

i.e. a tensor of type (1, 3) has become a tensor of type (0, 2). Notice that we can
contract a tensor by multiplying by the Kronecker tensor 83, e.g.

X = SZX“m- (5.31)

In effect, multiplying by &3 turns the index b into a (or equivalently the index
a into b).

5.9 Index-free interpretation of contravariant
vector fields

As we pointed out in §5.5, we must distinguish between the actual geometric
object itself and its components in a particular coordinate system. The
important point about tensors is that we want to make statements which are
independent of any particular coordinate system being used. This is abund-
antly clear in the index-free approach to tensors. We shall get a feel for this
approach in this section by considering the special case of a contravariant
vector field, although similar index-free interpretations can be given for any
tensor field. The key idea is to interpret the vector field as an operator which
maps real-valued functions into real-valued functions. Thus, if X represents a
contravariant vector field, then X operates on any real-valued function f to
produce another function g, i.e. Xf=g. We shall show how actually to
compute Xf by introducing a coordinate system. However, as we shall see,
we could equally well introduce any other coordinate system, and the
computation would lead to the same result.
In the x*-coordinate system, we introduce the notation

0

6‘15@

and then X is defined as the operator

so that
Xf=(X"0,)f= X*(0.f) (5.33)
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for any real-valued function f. Let us compute X in some other x'*-coordinate
system. We need to use the result (5.13) expressed in the following form: we
may take x° to be a function of x'® by (5.9) and x'® to be a function of x° by
(5.6), and so, using the function of a function rule, we find

g 0x* 0 o og  0x" OX€
b= W = axbx (x (x )) = _a—JF axb . (534)
Then, using the transformation law (5.16) and (5.20) together with the above
trick, we get
ey _ y'a a
X4d, =X pwT
ox _, 0x* 0
=0 X o ox
_ae a0
T ox'® ox? ox*
0
=& Xb —
*T oxf
0
=y <
S oxb
T e
= X*%4,.

Thus the result of operating on f by X will be the same irrespective of the
coordinate system employed in (5.32).

In any coordinate system, we may think of the quantities [0/0x,], as
forming a basis for all the vectors at P, since any vector at P is, by (5.32), given

by
xo=0x1,[ 2
P = P ax‘z P9

that is, a linear combination of the [9/0x®],. The vector space of all the
contravariant vectors at P is known as the tangent space at P and is written
Tp(M) (Fig. 5.6). In general, the tangent space at any point in a manifold is

Contravariant vectors

Manifold M

Fig. 5.6 The tangent space at P.
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different from the underlying manifold. For this reason, we need to be careful
in representing a finite contravariant vector by an arrow in our figures since,
strictly speaking, the arrow lies in the tangent space not the manifold. Two
exceptions to this are Euclidean space and Minkowski space-time, where the
tangent space at each point coincides with the manifold.

Given two vector fields X and Y we can define a new vector field called the
commutator or Lie bracket of X and Y by

Letting [ X, Y] = Z and operating with it on some arbitrary function f
Zf=[X,Y1f
=(XY-YX)f
=X(Yf) - Y(X))
= X(Y*0,f) — Y(X“0,f)
= X"0,(Y*0,f) — Y’0,(X"0,f)
=(X%,Y°®— Y0,X%)0,f — X*Y®(0,0.f — 0,0, f).

The least term vanishes since we assume commutativity of second mixed
partial derivatives, i.e.

0% 0*
= i o e
Since fis arbitrary, we obtain the result
[X,Y]*=Z°= X*3,Y° — Y*3,X° (5.36)

from which it clearly follows that the commutator of two vector fields is itself
a vector field. It also follows, directly from the definition (5.35), that

aaab

[X,X]=0 (5.37)
[X,Y]=-[Y, X] ) (5.38)
[x,(v,z1]+[z[x, Y]]+ [Y.[Z, X]] =0O. (5.39)

Equation (5.38) shows that the Lie bracket is anti-commutative. The result
(5.39) is known as Jacobi’s identity. Notice it states that the left-hand side is
not just equal to zero but is identically zero. What does this mean? The
equation x?> — 4 = 0 is only satisfied by particular values of x, namely, +2
and — 2. The identity x> — x2 = 0 is satisfied for all values of x. But, you may
argue, the x? terms cancel out, and this is precisely the point. An expression is
identically zero if, when all the terms are written out fully, they all cancel in
pairs.
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Exercises

5.1 (§5.3) In Euclidean 3-space R:

(i) Write down the equation of a circle of radius
a lying in the (x, y)-plane centred at the origin
in (a) parametric form (b) constraint form.

(i) Write down the equation of a hypersurface
consisting of a sphere of radius a centred
at the origin in (a) parametric form (b) con-
straint form. Eliminate the parameters in
form (a) to obtain form (b).

5.2 (§5.4) Write down the change of coordinates from Car-
tesian coordinates (x*) = (x, y, z) to spherical polar coordin-
ates (x) = (r, 6, ¢) in R3, Obtain the transformation mat-
rices [0x?/0x'*] and [0x'*/0x®] expressing them both in
terms of the primed coordinates. Obtain the Jacobians J and
J'. Where is J' zero or infinite?

5.3 (§5.4) Show by manipulating the dummy indices that
(Zape + Zegp + Zpeo) X°XP X = 37, X XP X",
5.4 (§5.4) Show that ‘
(i) 85X = Xb,

(ii) 82X, = X,

(iii) 82858¢ = &4.
5.5 (§5.5) If Y* and Z° are contravariant vectors, then show
that Y°Z? is a contravariant tensor of rank 2.

5.6 (§5.5) Write down the change of coordinates from Car-
tesian coordinates (x*) = (x, y) to plane polar coordinates
(x) = (R, ¢) in R? and obtain the transformation matrix
[6x"®/6xP] expressed as a function of the primed coordina-
tes. Find the components of the tangent vector to the curve
consisting of a circle of radius a centred at the origin with the
standard parametrization (see Exercise 5.1 (i)) and use (5.16)
to find its components in the primed coordinate system.

5.7 (§5.6) Write down the definition of a tensor of type
2,1.

5.8 (§5.6) Prove that 3% has the tensor character indicated.
Prove also that 8} is a constant or numerical tensor, that is,
it has the same components in all coordinate systems.

5.9 (§5.6) Show, by differentiating (5.20) with respect to x*,
that 82¢/0x*0x® is not a tensor.

5.10 (§5.8) Show that if Y%,  and Z“,, are tensors of the type
indicated then so is their sum and difference.

5.11 (§5.8) (i) Show that the fact that a covariant second
rank tensor is symmetric in one coordinate
system is a tensorial property.

(ii) If X is anti-symmetric and Y, is sym-
metric then prove that XY, = 0.

5.12 (§5.8) Prove that any covariant (or contravariant) ten-
sor of rank 2 can be written as the sum of a symmetric
and an anti-symmetric tensor. [Hint: consider the identity
Xop =3 (Xop + Xp) + Xy — Xia)']

5.13 (§5.8) If X7, is a tensor of the type indicated, then
prove that the contracted quantity Y, = X°,_ is a covariant
vector.

5.14 (§5.8) Evaluate 52 and 3232 in n dimensions.

5.15 (§5.9) Check that the definition of the Lie bracket
leads to the results (5.37), (5.38), and (5.39).

5.16 (§5.9) In R2, let (x°) = (x, y) denote Cartesian and
(x'*) = (R, ¢) plane polar coordinates (see Exercise 5.6).
(i) If the vector field X has components
X°=(l, 0), then find X"
(ii) The operator grad can be written in each
coordinate system as
of O, _ O 5 9

ar=9;.,9;_9 L4y
e o N e LS

where f is an arbitrary function and
R =cos ¢pi + sin ¢ j, ¢A= —singi + cosgj.

Take the scalar product of grad fwith i, j, R,
and ¢ in turn to find relationships between
the operators /0x, 0/dy, 0/0R, and. 6/0¢.
(iii) Express the vector field X as an operator in each
coordinate system. Use part (ii) to show that
these expressions are the same.
@iv) If Y =(0,1) and Z* = (—}y, x), then find Y™,
Z'% Y,and Z.
(v) Evaluate all the Lie brackets of X, Y, and Z.




6.1 Partial derivative of a tensor

In the last chapter, we met algebraic operations which are tensorial, that is,
which convert tensors into tensors. The operations are addition, subtraction,
multiplication, and contraction. The next question which arises is, What
differential operations are there that are tensorial? The answer to this turns
out to be very much more involved. The first thing we shall see is that partial
differentiation of tensors is not tensorial. Different authors denote the partial
derivative of a contravariant vector X* by

0, X* 0
b or =

or X%, or X%,

and similarly for higher-rank tensors. We shall use a mixture of all the first
three notations. (Note that in the literature, the partial derivative of a tensor
is often referred to as the ordinary derivative of a tensor, to distinguish it from
the tensorial differentiation we shall shortly meet). Now differentiating (5.16)
with respect to x, we find

y yvra 6 6x"' b
X" = ox’ <6x" X )

ox? 0 (ox"

= ——| — Xb
ox’c x4 < oxb )

=E6_x“ b 0%x" ﬁ_x" b 6.1
oxb ox ¢ OxPdx? Ox'c )

If the first term on the right-hand side alone were present, then this would be
the usual tensor transformation law for a tensor of type (1, 1). However, the
presence of the second term prevents d,X* from behaving like a tensor.
There is a fundamental reason why this is the case. By definition, the

process of differentiation involves comparing a quantity evaluated at two
neighbouring points, P and Q say, dividing by some parameter representing
the separation of P and Q and then taking the limit as this parameter goes to
zero. In the case of a contravariant vector field X° this would involve
computing

i X1 = [XT

u—0 ou

for some appropriate parameter éu. However, from the transformation law in



the form (5.25), we see that
o0x"® " ox"®
a e __ Xb .
X's [axb]PXP and X [axb]Q 0

This involves the transformation matrix evaluated at different points, from
which it should be clear that X% — X§ is not a tensor. Similar remarks hold
for differentiating tensors in general.

It turns out that if we wish to differentiate a tensor in a tensorial manner
then we need to introduce some auxiliary field onto the manifold. We shall
meet three different types of differentiation. First of all, in the next section, we
shall introduce a contravariant vector field onto the manifold and use it to
define the Lie derivative. Then we shall introduce a quantity called an affine
connection and use it to define covariant differentiation. Finally, we shall
introduce a tensor called a metric and from it build a special affine con-
nection, called the metric connection, and again define covariant differ-
entiation but relative to this specific connection.

6.2 The Lie derivative

The argument we present in this section is rather intricate. It rests on the idea
of interpreting a coordinate transformation actively as a point transforma-
tion, rather than passively as we have done up to now. The important results
occur at the end -of the section and consist of the formula for the
Lie derivative of a general tensor field and the basic properties of Lie
differentiation.

We start by considering a congruence of curves defined such that only one
curve goes through each point in the manifold. Then, given any one curve of
the congruence,

x% = x*(u),

we can use it to define the tangent vector field dx®/du along the curve. If we do
this for every curve in the congruence, then we end up with a vector field X*
(given by dx*/du at each point) defined over the whole manifold (Fig. 6.1).
Conversely, given a non-zero vector field X“(x) defined over the manifold,
then this can be used to define a congruence of curves in the manifold called
the orbits or trajectories of X“. The procedure is exactly the same as the way
in which a vector field gives rise to field lines or streamlines in vector analysis.
These curves are obtained by solving the ordinary differential equations

dx*®
du

= X*(x(u)). (6.2)

The existence and uniqueness theorem for ordinary differential equations
guarantees a solution, at least for some subset of the reals. In what follows, we
are really only interested in what happens locally (Fig. 6.2).

We therefore assume that X“ has been given and we have constructed the
local congruence of curves. Suppose we have some tensor field T5...(x) which
we wish to differentiate using X° Then the essential idea is to use the
congruence of curves to drag the tensor at some point P (i.e. T3...(P)) along
the curve passing through P to some neighbouring point Q, and then
compare this ‘dragged-along tensor’ with the tensor already there (ie.
T¢::(Q)) (Fig. 6.3). Since the dragged-along tensor will be of the same type as
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Fig. 6.1 The tangent vector field
resulting from a congruence of curves.

Fig. 6.2 The local congruence of curves
resulting from a vector field.
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Fig. 6.3 Using the congruence to
compare tensors at neighbouring points.

x>coordinate chart

Fig. 6.4 The point P transformed to Qin
the same xa-coordinate system.

‘Dragged-along tensor’ at Q

‘Tensor’ at P Tensor at ¢

X(p) X

the tensor already at Q, we can subtract the two tensors at Q and so define a
derivative by some limiting process as Q tends to P. The technique for
dragging involves viewing the coordinate transformation from P to @
actively, and applying it to the usual transformation law for tensors. We shall
consider the detailed calculation in the case of a contravariant tensor field of
rank 2, T°(x) say.

Consider the transformation

where du is small. This is called a point transformation and is to be regarded
actively as sending the point P, with coordinates x% to the point Q, with
coordinates x* + du X“*(x), where the coordinates of each point are given in
the same x“-coordinate system, i.e.

P->Q
x% = x% + ou X*(x).

The point @ clearly lies on the curve of the congruence through P which X*¢
generates (Fig. 6.4). Differentiating (6.3), we get

axru

ox?

Next, consider the tensor field T* at the pf)int P. Then its components at P

are T°®(x) and, under the point transformation (6.3), we have the mapping
T*(x) » T'(x),

ie. the transformation ‘drags’ the tensor T* along from P to Q. The

= 82 + dud, X" (64)

-components of the dragged-along tensor are given by the usual trans-

formation law for tensors (see (5.25)), and so, using (6.4),

ox' ox'®
T/ab(x/) = 5;?5}7 Tcd(x)

= (82 + 6ud. X*) (85 + dud, X°)T*(x)

= T%(x) + [0, X*T(x) + 8, X° T*(x)]ou + O(u?). 6.5
Applying Taylor’s theorem to first order, we get

T(x') = T(x¢ + 6u X (x)) = T*(x) + u X9, T*(x). (6.6)

We are now in a position to define the Lie derivative of T°® with respect to



X°, which is denoted by Ly T®, as

This involves comparing the tensor T°*(x’) already at Q with T'®(x’), the
dragged-along tensor at Q. Using (6.5) and (6.6), we find

Ly T% = X°9, T% — T%3,X? — T3,X". (6.8)

It can be shown that it is always possible to introduce a coordinate system
such that the curve passing through P is given by x' varying, with x2, x>
,-..»x" all constant along the curve, and such that

X*232=(1,0,0,...,0) (6.9)

along this curve. The notation £ used in (6.9) means that the equation holds

only in a particular coordinate system. Then it follows that
X=Xx%,%20,,
and equation (6.8) reduces to
LyT% X0, T (6.10)
Thus, in this special coordinate system, Lie differentiation reduces to ordi-
nary differentiation. In fact, one can define Lie differentiation starting from
this viewpoint.

We end the section by collecting together some important properties of Lie
differentiation with respect to X which follow from its definition.

1. 1t is linear; for example

where 4 and p are constants. Thus, in particular, the Lie derivative of the
sum and difference of two tensors is the sum and difference, respectively, of
the Lie derivatives of the two tensors.

2. Itis Leibniz; that is, it satisfies the usual product rule for differentiation, for
example

3. It is type-preserving; that is, the Lie derivative of a tensor of type (p, q) is
again a tensor of type (p, q).
4. It commutes with contraction; for example
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¥ Xt BX% o~ OX°— BX°
]
‘Parallel vector-——"' X2+ 6X°
|
|
]
P Q

Fig. 6.5 The parallel vector X2 + 6X?
at Q.

5. The Lie derivative of a scalar field ¢ is given by

6. The Lie derivative of a contravariant vector field Y is given by the Lie
bracket of X and Y, that is,

7. The Lie derivative of a covariant vector field Y, is given by

8. The Lie derivative of a general tensor field T2 is obtained as follows: we
first partially differentiate the tensor and contract it with X. We then get
an additional term for each index of the form of the last two terms in (6.15)
and (6.16), where the corresponding sign is negative for a contravariant
index and positive for a covariant index, that is,

6.3 The affine connection and
covariant differentiation
Consider a contravariant vector field X%(x) evaluated at a point Q, with

coordinates x* + 6x°% near to a point P, with coordinates x° Then, by
Taylor’s theorem, :

X%(x + 0x) = X%(x) + oxb 9, X° (6.18)
to first order. If we denote the second term by 6X*(x), i.e.
8X%(x) = 6x0, X* = X(x + 6x) — X°(x), (6.19)

then it is not tensorial since it involves subtracting tensors evaluated at two
different points. We are going to define a tensorial derivative by introducing a
vector at Q which in some general sense is ‘parallel’ to X“ at P. Since x* + Jx*
is close to x“ we can assume that the parallel vector only differs from X°(x)
by a small amount, which we denote § X“(x) (Fig. 6.5). By the same argument
as in §6.1 above, §X*(x) is not tensorial, but we shall construct it in such a
way as to make the difference vector

X°(x) + 6X%(x) — [X°(x) + §X°(x)] = 6X°(x) — 6X°(x)  (6.20)

tensorial. It is natural to require that §X(x) should vanish whenever X*“(x)
or 0x* does. Then the simplest definition is to assume that 6X* is linear in
both X* and 6x° which means that there exist multiplicative factors I'g,
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where B
8X%(x) = —I'&(x)X°b(x)ox° 6.21)

and the minus sign is introduced to agree with convention.

We have therefore introduced a set of n® functions I'?.(x) on the manifold,
whose transformation properties have yet to be determined. This we do by
defining the covariant derivative of X* written in one of the notations (where
we shall use a mixture of the first two)

V.X* or X% or X9,

by the limiting process

V.X*= lim % {X°(x + 0x) — [X“(x) + 0X“(x)]}.

0xc—Q

In other words, it is the difference between the vector X%(Q) and the vector at
Q parallel to X“(P), divided by the coordinate differences, in the limit as these
differences tend to zero. Using (6.18) and (6.21), we find

Note that in the formula the differentiation index ¢ comes second in the
downstairs indices of I'. If we now demand that V_X“ is a tensor of type (1, 1),
then a straightforward calculation (exercise) reveals that I'f, myst transform
according to

i
|
5
i

If the second term on the right-hand side were absent, then this would be the
usual transformation law for a tensor of type (1, 2). However, the presence of
the second term reveals that the transformation law is linear inhomogeneous,
and so I'§, is not a tensor. Any quantity I';, which transforms according to
(6.23) or (6.24) is called an affine connection or sometimes simply a
connection or affinity. A manifold with a continuous connection prescribed
onitis called an affine manifold. From another point of view, the existence of
the inhomogeneous term in the transformation law is not surprising if we are
to define a tensorial derivative, since its role is to compensate for the second
term which occurs in (6.1).

We next define the covariant derivative of a scalar field to be the same as its
ordinary derivative, i.e.
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If we now demand that covariant differentiation satisfies the Leibniz rule,
then we find

Notice again that the differentiation index comes last in the I'-term and that
this term enters with a minus sign. The name covariant derivative stems from
the fact that the derivative of a tensor7of type (p, q) is of type (p, q + 1), ie.it
has one extra covariant rank. The expression in the case of a general tensor is
(compare and contrast with (6.17))

It follows directly from the transformation laws that the sum of two
connections is not a connection or a tensor. However, the difference of two
connections is a tensor of valence (1, 2), because the inhomogeneous term
cancels out in the transformation. For the same reason, the anti-symmetric
part of a I'f,, namely,

a _ fa a
bC_Fbt_ cb

is a tensor called the torsion tensor. If the torsion tensor vanishes, then the
connection is symmetric, i.e.

From now on, unless we state otherwise, we shall restrict ourselves to
symmetric connections, in which case the torsion vanishes. The assumption
that the connection is symmetric leads to the following useful result. In the
expression for a Lie derivative of a tensor, all occurrences of the partial
derivatives may be replaced by covariant derivatives. For example, in the case
of a vector (exercise)

Ly Y* = X%3,Y" — Y*9,X° = X*V,Y* — Y*V,X°.  (6.29)

6.4 Affine geodesics

If T3... is any tensor, then we introduce the notation

that is, Vx of a tensor is its covariant derivative contracted with X. Now in
§6.2 we saw that a contravariant vector field X determines a local congruence
of curves,

x? = x*(u),



where the tangent vector field to the congruence is

dx _ xo

du

We next define the absolute derivative of a tensor T'4... along a curve C of
the congruence, written D T'¢.../Du, by

The tensor T'3.:: is said to be parallely propagated or transported along the
curve C if

This is a first-order ordinary differential equation for 7°§..., and so given an
initial value for T'3..., say T'3...(P), equation (6.32) determines a tensor along
C which is everywhere parallel to T4§...(P).

Using this notation, an affine geodesic is defined as a privileged curve
along which the tangent vector is propagated parallel to itself. In other words,
the parallely propagated vector at any point of the curve is parallel, that is,

proportional, to the tangent vector at that point:

D /dx*® dx*®
ﬁz<du)=““’a;-

Using (6.31), the equation for an affine geodesic can be written in the form

-or equivalently (exercise)

The last result is very important and so we shall establish it afresh from first
principles using the notation of the last section. Let the neighbouring points

P and Q on C be given by x*(u) and

dx®
x*(u + du) = x*(u) + ou
(4 + 0u) = x°(u) +
to first order in du, respectively. Then in the notation of the last section

_ dx®

ox ” ou. 6.35)
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Fig. 6.6 Two affine geodesics passing
through P with given directions.

P

Fig. 6.7 Two affine geodesics from P
refocusing at Q.

The vector X“(x) at P is now the tangent vector (dx*/du) (u). The vector at @
parallel to dx/du is, by (6.21) and (6.35),

der L dedx
du “du du
The vector already at Q is
dx* dx®  d*x*
au (u+ ou) = au + " ou

to first order in Ju. These last two vectors must be parallel, so we require

dx* d2x° (dx" , dxb dx* )
" oul,

TR e W R ey

where we have written the proportionality factor as 1 + A(u)du without loss
of generality, since the equation must hold in the limit éu — 0. Subtracting
dx“/du from each side, dividing by éu and taking the limit as du tends to zero
produces the result (6.34). Note that I'§, appears in the equation multiplied by
the symmetric quantity (dx?/du)(dx‘/du), and so even if we had not assumed
that I'f, was symmetric the equation picks out its symmetric part only.

If the curve is parametrized in such a way that A vanishes (that is, by the
above, so that the tangent vector is transported into itself), then the para-
meter is a privileged parameter called an affine parameter, often convention-
ally denoted by s, and the affine geodesic equation reduces to

or equivalently

where « and f are constants. We can use the affine parameter s to define the
affine length of the geodesic between two points P; and P, by | : ds, and so
we can compare lengths on the same geodesic. However, we cannot compare
lengths on different geodesics (without a metric) because of the arbitrariness
in the parameter s. From the existence and uniqueness theorem for ordinary
differential equations, it follows that corresponding to every direction at a
point there is a unique geodesic passing through the point (Fig. 6.6). Similarly,
any point can be joined to any other point, as long as the points are
sufficiently ‘close’, by a unique geodesic. However, in the large, geodesics may
focus, that is, meet again (Fig. 6.7).



6.5 The Riemann tensor

Covariant differentiation, unlike partial differentiation, is not in general
commutative. For any tensor T'3..., we define its commutator to be

V.V, T8 —V,V. T

Let us work out the commutator in the case of a vector X“. From (6.22), we
see that
V.X%=0,X*+TI% X"

Remembering that this is a tensor of type (1, 1) and using (6.27), we find
V,V. X% = 0,(0,X° + I'e. X%) + I'%y(8,X® + ', X%) — I'(0,X* + I'e. X%),
with a similar expression for V.V, X* namely,
V.V, X% = 0,(0,X° + I'5; X%) + I'%.(0,X° + Iy X®) — (8. X° + I's X°).
Subtracting these last two equations and assuming that
040. X% = 0,0, X",

we obtain the result

V.V, X* -V, V. X = R% ,X* +(I', — T',)V. X%, (6.38)
where R, is defined by k

Moreover, since we are only interested in torsion-free connections, the last
term in (6.38) vanishes, namely, using (5.28),

Since the left-hand side of (6.40) is a tensor, it follows that R%,_, is a tensor of
type (1, 3). It is called the Riemann tensor. It can be shown that, for a
symmetric connection, the commutator of any tensor can be expressed in
terms of the tensor itself and the Riemann tensor. Thus, the vanishing of the
Riemann tensor is a necessary and sufficient condition for the vanishing of the
commutator of any tensor. In the section after next, we shall search for a
geometrical characterization of the vanishing of the Riemann tensor.

6.6 Geodesic coordinates

We first prove a very useful result. At any point P in a manifold, we can
introduce a special coordinate system, called a geodesic coordinate system,
in which

[F3dr =0

We can, without loss of generality, choose P to be at the origin of coordinates
x* £ 0 and consider a transformation to a new coordinate system

X4 - X' = x* + 308 x"x", (6:41)
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Fig. 6.8 Parallel transport round two
curves in a general affine manifold.

where Qf. = Q% are constants to be determined. Differentiating (6.41), we get

axla azxm
=i G+ Qfax* and o Qe-

Then, since x* vanishes at P, we have

X _ g
axb P—' bs

from which it follows immediately that the inverse matrix

Substituting these results in (6.23), we find
[(Fyele =[T51p — Qb
Since the connection is symmetric, we can choose the constants so that
Q8 = [I'sc e
and hence we obtain the promised result
[(rls 0. (642)

Many tensorial equations can be established most easily in geodesic co-
ordinates. Note that, although the connection vanishes at P,

. *
[Fi.ale #0
in general. It can be shown that the result can be extended to obtain a
coordinate system in which the connection vanishes along a curve, but not in
general over the whole manifold. If, however, there exists a special coordinate
system in which the connection vanishes everywhere, then the manifold is

called affine flat or simply flat. We shall next see that this is intimately
connected with the vanishing of the Riemann tensor.

6.7 Affine flatness

In a general affine manifold, the intuitive concept of parallelism breaks down.
For if we parallely transport a vector from one point to another along two
different curves we will obtain two different vectors (Fig. 6.8). If, however, we
can transport a vector from one point to any other and the resulting vector is
independent of the path taken, then the connection is called integrable. Thus,
for the usual concept of parallelism to hold, the manifold must possess an
integrable connection. We now consider two lemmas which connect together
the concepts of affine flatness, integrability, and vanishing Riemann tensor.

We consider, first, necessity. Since I'j, is integrable, we can start with a
vector X at any point and from it construct a unique vector field X“(x) over




the manifold by parallely propagating X*°. The equation for parallely pro-
pagating X* is
DXx® dx°

Xﬂ_
Du du e o

and, since dx‘/du is arbitrary, it follows that the covariant derivative of X*
vanishes, i.e.
V.X*=0,X*+TsX"=0. (6.43)

Hence, this equation must possess solutions. A necessary condition for a
solution of this first-order partial differential equation is

040. X% = 0,0, X%, (6.44)

namely, the second mixed partial derivatives should commute. In the
previous section, we met the identity for the commutator of a vector field
(6.38), namely

V.V X* -V, V. X*=0,0,X*— 0,0, X" + R4 X"

The left-hand side of this equation vanishes by construction, that is, by (6.43);
hence it follows that (6.44) will hold if and only if

R X = 0.

Finally, since X® is arbitrary at every point, a necessary condition for
integrability is R%,.; = O everywhere.

We next prove sufficiency. We start by considering the difference in
parallely propagating a vector X* around an infinitesimal loop connecting x*
to x* + 6x“ + dx*, first via x* + 6x® and then via x* + dx° (Fig. 6.9). From
§6.3, if we parallely transport X from x° to x* + dx* we obtain the vector

X%x + 6x) = X%(x) + 6X°(x),
where, by (6.21),

8X%(x) = —I'8(x) X (x)6x°.

Similarly, if we transport this vector subsequently to x* + 6x® + dx?, we
obtain the vector

X%(x + 8x + dx) = X°(x + 0x) + 6 X%(x + 6x),
where, in this case,
8X4(x + 0x) = —I'%(x + 6x)X?(x + 6x)dx°.

Expanding by Taylor’s theorem and using the previous results, we obtain
(where everything is assumed evaluated at x°)

0X°(x + 6x) = —(I's. + 0,T'5.6x*)(X® — ', X*3x7)dx*
= —T§Xbdx* — 0,2 X 6x?dx*
+ I b Xe0x dx + 0,5 I, X *6x45x! dx.
Neglecting the last term, which is third order, we have
X%x + ox + dx)
=X*— T3 X"0x¢ — 'y X?dx® — 0,I'5, X"6x*dx* + '3 I'%, X *3x! dx.

To obtain the equivalent result for the path connecting x° to x* 4+ 6x° + dx*
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G

Fig. 6.10 Deforming C, into C, (infinites-
imally at each stage).

via x® + dx“, we simply interchange dx° and dx® to give
X°%x + dx + 6x)
= X — I'§. X*dx® — 't X*x° — 0,I' s, X*dx*8x° + I'{, It X*dx/ 6x".
Hence, the difference between these two vectors is
AX*® = X%x + 0x + dx) — X(x + dx + x)

=(0,I§, — 0., + %', — e.rg) X oxedx?
=R%;. X box¢ dx?
= —R% 4 Xb6x°dx*

by (6.39) and the fact that the Riemann tensor is anti-symmetric on its
last pair of indices (see (6.77)). Thus, the vector X will be the same at
x? + 6x“ + dx*, irrespective of which path is taken, if and only if R%,,, = 0. It
follows that if the Riemann tensor vanishes then the vector X will not change
if parallely transported around any infinitesimal closed loop. Using this result
and assuming the manifold has no holes (that is, the manifold is simply
connected), then we can continuously deform one curve into another by
deforming the curves infinitesimally at each stage (Fig. 6.10), which estab-
lishes that the connection is integrable (check).
The second lemma is as follows.

Sufficiency is established by first choosing n linearly independent vectors

Xe (i=12,...,n)

at P, where the bold index i runs from 1 to n and labels the vectors. Using the
integrability assumption we can construct the parallel vector fields X;%(x)and
these will also be linearly independent everywhere. Therefore, at each point P,
X/(P) is a non-singular matrix of numbers and so we can construct its
inverse, denoted by X?, which must satisfy

XX = 83, (6.45)
where there is a summation over i. Multiplying the propagation equation

0, X"+ T8 XFf=0
by X* produces

‘ 4 = —Xi0,X7" (6.46)
Differentiating (6.45), we obtain
X0 X = — X, 0. X =T§¢, (6.47)

by (6.46). Using (6.47), we find that
X#(0.X% — 0,X%) = T'}. — I't, =0,

because the connection is symmetric by assumption. Since the determinant of
X;® is non-zero, it follows that the quantity in brackets must vanish, from



which we get
acXib = 0inc.

This in turn implies that X?, must be the gradient of n scalar fields, f(x) say,
that is,

Xty = 0, f*(x).
If we consider the transformation

X% - x'% = f4(x)

then

% = 9,f%(x) = X%, (6.48)
and so, taking inverses,

=i (649)

Multiplying (6.23) by X,* and using (6.48) and (6.49) and then (6.45) and
(6.47), we find

Xahrlgc = Xah(X“aXbechFgf - Xbechanaf)
= Sszexcf['zf = XbechF'e'f =0.

Again, since the determinant of X" is non-zero, I'}® vanishes everywhere in
this coordinate system and hence the manifold is affine flat. The necessity is
straightforward and is left as an exercise.

If we put these two lemmas together, we get the result we have been looking
for.

6.8 The metric

Any symmetric covariant tensor field of rank 2, say g,,(x), defines a metric. A
manifold endowed with a metric is called a Riemannian manifold. A metric
can be used to define distances and lengths of vectors. The infinitesimal
distance (or interval in relativity), which we call ds, between two neigh-
bouring points x* and x* + dx* is defined by

Note that this gives the square of the infinitesimal distance, (ds)?, which is
conventionally written as ds2. The equation (6.50) is also known as the line
element and g, is also called the metric form or first fundamental form. The
square of the length or norm of a contravariant vector X“ is defined by
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The metric is said to be positive definite or negative definite if, for all vectors

X, X2 > 0or X? < 0, respectively. Otherwise, the metric is called indefinite.

The angle between two vectors X and Y* with X2 # 0 and Y2 # 0 is given

by

g X“Y?

(1gea X X (1gey YY)

In particular, the vectors X and Y* are said to be orthogonal if
g XYt =0. (6.53)

If the metric is indefinite (as in relativity theory), then there exist vectors
which are orthogonal to themselves called null vectors, i.c.

cos(X,Y)= (6.52)

g XX =0. (6.54)
The determinant of the metric is denoted by
g = det(g,) (6.55)

The metric is non-singular if g # 0, in which case the inverse of g,,, g, is
given by

It follows from this definition that g is a contravariant tensor of rank 2 and
it is called the contravariant metric. We may now use g, and g*® to lower and
raise tensorial indices by defining

T =g T00 6.57)
and

T % =g®T. 0, (6.58)

.where we use the same kernel letter for the tensor. Since from now on we shall

be working with a manifold endowed with a metric, we shall regard such
associated contravariant and covariant tensors as representations of the
same geometric object. Thus, in particular, -g,,, 85, and g*® may all be
thought of as different representations of the same geometric object, the
metric g. Since we can raise and lower indices freely with the metric, we must
be careful about the order in which we write contravariant and covariant
indices. For example, in general, X ,? will be different from X?2,.

6.9 Metric geodesics

Consider the timelike curve C with paramétric equation x* = x*(u). Dividing
equation (6.50) by the square of du we get

ds \? dx® dx?
(a) = Ga» du du (6.59)

Then the interval s between two points P, and P, on C is given by

L P2 ds P2 dx® dx®\?
S = J‘Px ds = J;l d—udu = J;: (gab a E) du. (6.60)

1



We define a timelike metric geodesic between any two points P, and P, as
the privileged curve joining them whose interval is stationary under smail
variations that vanish at the end points. Hence, the interval may be a
maximum, a minimum, or a saddle point. Deriving the geodesic equations
involves the calculus of variations and we postpone this to the next chapter.
In that chapter, we shall see that the Euler—Lagrange equations result in the
second-order differential equations
d?x? dx?b dx° d?s [ds) dx?
gabq;l—z—‘l'{bc,a}aa:(W/a)gabE:’ (661)

where the quantities in curly brackets are called the Christoffel symbols of
the first kind and are defined in terms of derivatives of the metric by

Multiplying through by g* and using (6.56), we get the equations

d?xe aldx?dx® [(d% [ds\dx®

r% +{bc}‘du‘d—u—<m/a>zr (6.63)
where {5} are the Christoffel symbols of the second kind defined by

erasgespany

In addition, the norm of the tangent vector dx?/du is given by (6.59). If, in
particular, we choose a parameter 4 which is linearly related to the interval s,
that is,

u=oas+pf, (6.65)

where « and f are constants, then the right-hand side of (6.63) vanishes. In the
special case when u = s, the equations for a metric geodesic become

and

where we assume ds # 0.
Apart from trivial sign changes, similar results apply for spacelike geo-
desics, except that we replace s by o, say, where

do? = —g,,dx*dx?

However, in the case of an indefinite metric, there exist geodesics for which
the distance between any two points is zero called null geodesics. It can also
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Affine
geodesics

Fig. 6.11 Affine and metric geodesics on
a manifold.

be shown that these curves can be parametrized by a special parameter ,
called an affine parameter, such that their equation does not possess a right-
hand side, that is,

where

The last equation follows since the distance between any two points is zero, or
equivalently the tangent vector is null. Again, any other affine parameter is
related to u by the transformation

u—ou+ B,
where o and f# are constants.

6.10 The metric connection

In general, if we have a manifold endowed with both an affine connection and
metric, then it possesses two classes of curves, affine geodesics and metric
geodesics, which will be different (Fig. 6.11). However, comparing (6.37) with
(6.66), the two classes will coincide if we take

a _ a
o= { bc} (6.70)

or, using (6.64) and (6.62), if

It follows from the last equation that the connection is necessarily symmetric,
ie.
s =T3. (6.72)

In fact, if one checks the transformation properties of {s} from first prin-
ciples, it does indeed transform like a connection (exercise). This special
connection built out of the metric and its derivatives is called the metric
connection. From now on, we shall always work with the metric connection
and we shall denote it by I'j, rather than {2}, where I's. is defined by (6.71).
This definition leads immediately to the identity (exercise)

Conversely, if we require that (6.73) holds for an arbitrary symmetric



connection, then it can be deduced (exercise) that the connection is neces-
sarily the metric connection. Thus, we have the following important result.

and

6.11 Metric flatness

Now at any point P of a manifold, g, is a symmetric matrix of real numbers.
Therefore, by standard matrix theory, there exists a transformation which
reduces the matrix to diagonal form with every diagonal term either +1
or —1. The excess of plus signs over minus signs in this form is called the
signature of the metric. Assuming that the metric is continuous over the
manifold and non-singular, then it follows that the signature is an invariant.
In general, it will not be possible to find a coordinate system in which the
metric reduces to this diagonal form everywhere. If, however, there does exist
a coordinate system in which the metric reduces to diagonal form with +1
diagonal elements everywhere, then the metric is called flat.

How does metric flatness relate to affine flatness in the case we are
interested in, that is, when the connection is the metric connection? The
answer is contained in the following result.

o
oo
e

.

e

Necessity follows from the fact that there exists a coordinate system in
which the metric is diagonal with + 1 diagonal elements. Since the metric is
constant everywhere, its partial derivatives vanish and therefore the metric
connection I'4, vanishes as a consequence of the definition (6.71). Since I';,
vanishes everywhere then so must its derivatives. (One way to see this is to
recall the definition of partial differentiation which involves subtracting
quantities at neighbouring points. If the quantities are always zero, then their
difference vanishes, and so does the resulting limit.) The Riemann tensor
therefore vanishes by the definition (6.39).

Conversely, if the Riemann tensor vanishes, then by the theorem of §6.7,
there exists a special coordinate system in which the connection vanishes
everywhere. Since this is the metric connection, by (6.73),

chab = acgab - rgcgdb - Fgcgad = 0’
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from which we get

and it follows that d.g,;, = 0. The metric is therefore constant everywhere and
hence can be transformed into diagonal form with diagonal elements +1.
Note the result (6.76) which expresses the ordinary derivative of the metric in
terms of the connection. This equation will prove useful later.

Combining this theorem with the theorem of §6.7, we see that if we use the
metric connection then metric flatness coincides with affine flatness.

6.12 The curvature tensor

The curvature tensor or Riemann—Christoffel tensor (Riemann tensor for
short) is defined by (6.39), namely,

Ry = 0I5 — 04l + T'pal'ee — I3 loy,
where I'j, is the metric connection, which by (6.71) is given as
be = 39 (0suc + .G — Oabe)-

Thus, R%,,; depends on the metric and its first and second derivatives. It
follows immediately from the definition that it is anti-symmetric on its last
pair of indices

R%%ea = —R%%. (6.77)
The fact that the connection is symmetric leads to the identity
R%eq + R + R%, = 0. (6.78)

Lowering the first index with the metric, then it is easy to establish, for
example by using geodesic coordinates, that the lowered tensor is symmetric
under interchange of the first and last pair of indices, that is,

Rypea = Rcda;- (6.79

Combining this with equation (6.77), we see that the lowered tensor is anti-
symmetric on its first pair of indices as well:

Ripea = ~ Rygea- . (6.80)

Collecting these symmetries together, we see that the lowered curvature
tensor satisfies

These symmetries considerably reduce the number of independent compon-
ents; in fact, in n dimensions, the number is reduced from n* to &5 n?(n® — 1),
In addition to the algebraic identities, it can be shown, again most easily
by using geodesic coordinates, that the curvature tensor satisfies a set of




differential identities called the Bianchi identities:

We can use the curvature tensor to define several other important tensors.
The Ricci tensor is defined by the contraction

which by (6.79) is symmetric. A final contraction defines the curvature scalar
or Ricci scalar R by

i

These two tensors can be used to define the Einstein tensor
Gab'= Rab - %gabR’ (685)

which is also symmetric, and, by (6.82), the Einstein tensor can be shown to
satisfy the contracted Bianchi identities

Note that some authors adopt a different sign convention, which leads to the
Riemann tensor or the Ricci tensor having the opposite sign to ours.

6.13 The Weyl tensor

We shall mostly be concerned with tensors in four dimensions or less. The

algebraic identities (6.81) lead to the following special cases for the curvature

tensor:

() ifn=1, R,u,=0;

(2) if n = 2, R4 has one independent component — essentially R;

(3) if n = 3, R, has six independent components — essentially R,;;

(4) if n = 4, R,,; has twenty independent components — ten of which are
given by R, and the remaining ten by the Weyl tensor.

The Weyl tensor or conformal tensor C,,, is defined in n dimensions, (n > 3)
by

1
Capea = Ropea + P (9aaRep + GpcRaa — GacRap — GuaRea)

1
1 — N - R.
+ (n _ 1)(" _ 2) (gacgdb gadgcb)
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Thus, in four dimensions, this becomes

It is straightforward to show that the Weyl tensor possesses the same |
symmetries as the Riemann tensor, namely,

However, it possesses an additional symmetry

Combining this result with the previous symmetries, it then follows that the
Weyl tensor is trace-free, in other words, it vanishes for any pair of contrac-
ted indices. One can think of the Weyl tensor as that part of the curvature
tensor for which all contractions vanish.
Two metrics g, and g, are said to be conformally related or conformal to
each other if :

where ©(x) is a non-zero differentiable function. Given a manifold with two |
metrics defined on it which are conformal, then it is straightforward from
(6.51) and (6.52) to show that angles between vectors and ratios of magnitudes
of vectors, but not lengths, are the same for each metric. Moreover, the null :
geodesics of one metric coincide with the null geodesics of the other (ex- °
ercise). The metrics also possess the same Weyl tensor, i.e.

Any quantity which satisfies a relationship like (6.91) is called conformally
invariant (g,,, I'j,, and R}, are examples of quantities which are not
conformally invariant). A metric is said to be conformally flat if it can be
reduced to the form

v = Q11 (6.92)

where 7, is a flat metricc. We end this section by quoting two results
concerning conformally flat metrics.
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Exercises

6.1 (§6.2) Prove (6.13) by showing that Lydj =0 in two
ways: (i) using (6.17); (ii) from first principles (remembering
Exercise 5.8).

6.2 (§6.2) Use (6.17) to find expressions for LyZ, and
Ly(Y?Z,,). Use these expressions and (6.15) to check the
Leibniz property in the form (6.12).

6.3 (§6.3) Establish (6.23) by assuming that the quantity
defined by (6.22) has the tensor character indicated. Take the
partial derivative of

o OX'"oxe ox?
©Tox'c oxd ox'e
with respect to x’? to establish the alternative form (6.24).

6.4 (§6.3) Show that covariant differentiation commutes
with contraction by checking that V.35 = 0.

6.5 (§6.3) Assuming (6.22) and (6.25), apply the Leibniz rule
to the covariant derivative of X, X* where X ¢ is arbitrary, to
verify (6.26).

6.6 (§6.3) Check (6.29).
6.7 (56.4) If X, Y, and Z are vector fields, f and g smooth
functions, and 4 and u constants, then show that
(i) Vy(AY + uZ) = AVy Y + uV, Z,
(ii) Vix+grZ =fVxZ + gVyZ,
(iii) Vy(fY)=(Xf)Y +fVyY.
6.8 (§6.4) Show that (6.33) leads to (6.34).

6.9 (§6.4) If s is an affine parameter, then show that, under
the transformation
s—§=35(s),

¢ the parameter § will be affine only if s = as + f, where « and

B are constants.
6.10 (§6.5) Show that
ViV X% — ViV X% = R, X% — Ry X7

6.11 (§6.5) Show that

Vx(VyZ%) — Vy(VxZ%) — Vix. 11Z° = R%, 2P X Y4,
6.12 (§6.7) Prove that if a manifold is affine flat then the
connection is necessarily integrable and symmetric.

6.13 (§6.8) Show that if g,, is diagonal, i.c. g, = 0ifa # b,
then g? is diagonal with corresponding reciprocal diagonal
elements.

6.14 (§6.8) The line elements of R * in Cartesian, cylindrical
polar, and spherical polar coordinates are given respectively
by
(i) ds? = dx? + dy? + dz2,
(ii) ds? = dR? + R2d¢? + dz?,
(iii) ds? = dr? + r2d#? + r?sin®6do>.
Find g,, g*, and g in each case.
6.15 (§6.8) Express T, in terms of 7.

6.16 (§6.9) Write down the tensor transformation law of
g Show directly that

a
{bc} = 190494 + 09 — 0a9sc)

transforms like a connection.

6.17 (§6.9) Find the geodesic equation for IR? in cylindrical
polars. [ Hint: use the results of Exercise 6.14(ii) to compute
the metric connection and substitute in (6.68).]

6.18 (§6.9) Consider a 3-space with coordinates
(x*) = (x, y, z) and line element
ds? = dx? + dy* — dz%.
Prove that the null geodesics are given by
x=lu+1l, y=mu+m, z=nu+n',

where u is a parameter and I, I', m, m’, n, n’ are arbitrary
constants satisfying 1> + m? — n? = 0.
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6.19 (§6.10) Prove that V., =0. Deduce that
VX, = go Vo X°

6.20 (§6.10) Suppose we have an arbitrary symmetric con-
nection I'g, satisfying V.g,, = 0. Deduce that I'j, must be the
metric connection. [Hint: use the equation to find expres-
sions for 0,9,., 0.9s and — d,9,., as in (6.76), add the
equations together, and multiply by 1g*.]

6.21 (§6.11) The Minkowski line element in Minkowski
coordinates
(x*) = (x% x*, x%, x*) = (t, x, y, 2)
is given by
ds? = de? — dx? — dy? — dz?
(i) What is the signature?

(it) Is the metric non-singular?
(iti) Is the metric flat?

6.22 (§6.11) The line element of IR? in a particular coordin-
ate system is
ds? =(dx')? +(x*)*(dx?)? +(x! sinx?)?(dx3)?
(i) Identify the coordinates.
(ii) Is the metric flat?

6.23 (§6.12) Establish the identities (6.78) and (6.79). [ Hint:
choose an arbitrary point P and introduce geodesic co-
ordinates at P.] Show that (6.78) is equivalent to R%;.4 = 0.
6.24 (§6.12) Establish the identity (6.82). [ Hint: use geo-
desic coordinates.] Show that (6.82) is equivalent to
Ryepap;e = 0. Deduce (6.86).

6.25 (§6.12) Show that G,, = 0 if and only if R,, = 0.

6.26 (§6.13) Establish the identity (6.89). Deduce that the
Weyl tensor is trace-free on all pairs of indices.

6.27 (§6.13) Show that angles between vectors and ratios of
lengths of vectors, but not lengths, are the same for conform-
ally related metrics.

6.28 (§6.13) Prove that the null geodesics of two conform-
ally related metrics coincide. [ Hint: the two classes of geo-
desics need not both be affinely parametrized.]

6.29 (§6.13) Establish (6.91).

6.30 (§6.13) Establish the theorem that any two-dimen-
sional Riemann manifold is conformally flat in the case of a
metric of signature 0, i.e. at any point the metric can be
reduced to the diagonal form (4 1, —1) say. [ Hint: use nuil
curves as coordinate curves, that is, change to new co- !
ordinates

A= A(x% x"),

v =v(x% x!)

satisfying
9P Aahpy=g"v,v,y=0

and show that the line element reduces to the form

ds? = e?* didv
and finally introduce new coordinates (4 +v) and
34 —v)]

6.31 This final exercise consists of a long calculation which
will be needed later in the book. If we take coordinates

x? = (xO’ x‘; xl, x3) = (ta r, 9, ¢)!

then the four-dimensional spherically symmetric line ele-
ment is

ds? = e’dt? — e*dr? — r?d0? — r? sin®0d¢?,

where v = v(z,7) and A1 = A(t, r) are arbitrary functions of
tand r.

(i) Find g,, g, and g*® (see Exercise 6.13).
(i) Use the expressions in (i) to calculate I'j.. [Hint: re-
member I'f, = I'Z,.
(iii) Calculate R, ,. [Hint: use the symmetry relations
(6.81).]
(iv) Calculate R,;, R, and G,,.
(v) Calculate G*,(=g“G,, = G,7).




7.1 Tensor densities

A tensor density of weight W, denoted conventionally by a gothic letter,
3., transforms like an ordinary tensor, except that in addition the Wth
power of the Jacobian

o

J —
ox'®

appears as a factor, i.e.

Then, with certain modifications, we can combine tensor densities in much
the same way as we do tensors. One exception, which follows from (7.1), is
that the product of two tensor densities of weight W, and W, is a tensor
density of weight W, + W,. There is some arbitrariness in defining the
covariant derivative of a tensor density, but we shall adhere to the definition
that if T5... is a tensor density of weight W then

For example, the covariant derivative of a vector density of weight W is

V.3°=0,3°+ [EI® — WIbIe

In the special case when W = +1 and ¢ = g, we get the important result
{check)

that is, the covariant divergence of a vector density of weight + 1 is identical
to its ordinary divergence. It can be shown that both these quantities are
scalar densities of weight +1 (exercise).
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7.2 The Levi-Civita alternating symbol

We introduce a quantity which is a generalization of the Kronecker delta &,
but which turns out to be a tensor density. The Levi-Civita alternating
symbol £ is a completely anti-symmetric tensor density of weight +1 and
contravariant rank 4, whose values in any coordinate system is +1 or —1if
abcd is an even or odd permutation of 0123, respectively, and zero otherwise.
Thus, for example, in four dimensions, if we let the coordinates range from 0
to 3 (as we shall), i.e.
(xa) - (xo’ xl’ xz’ xa)’
then some of its values are

g0123 — 2301 . _ (0132 _ _ 00321 _ L {

and

‘ g0120 — 0331 _ (0101 _
Similarly, we can define the covariant version g,,,,, which has weight —1.1t
can be used, in particular, to form the determinant of a second-rank density,

ie.

1
det 3% = 2 Sabeae ran T TIT

Assuming this is non-zero, we can then also use it to construct the inverse ofa -

second-rank tensor. The covariant derivatives of both €% and ¢, vanish

identically, which from one point of view motivates the definition (7.2).
We define the generalized Kronecker delta by

+1 fora#b,a=c,b=d,
8% ={(—1 fora#ba=db=c,
0 otherwise,
and similarly for higher-order tensors. They are constant tensors of the type |

indicated, and can be defined in terms of the Kronecker delta by the
determinant relationships

& &
ab __ c c
w7l o
and
& & &
e = (82 & &,
8 8 8

and so forth. In four dimensions they are related to products of the-alterna-
ting symbols according to

abcd abcd

€% e rgn = Ogsghs
aabcasefgd = 5:%,
e, pea = 2037,
g%ode g = 3182,

abcd —
e e = 41,




7.3 The metric determinant

If we have a Riemannian manifold with metric g, then it transforms
according to

L 0xt ox?
gar(X') = 2% 2 9 (74)

and so, taking determinants, we have
g=1J%.

Hence the metric determinant g is a scalar density of weight +2. In the later
chapters, we shall be working with metrics of negative signature in which
case g will be negative, and so we write the last equation in the equivalent
form

(—=9)=J*(~g)

Since all these terms are now positive, we can take square roots, to get

p

and hence (—g)? is a scalar density of weight +1. The quantity (—g)? plays

an important role in integration. Given any tensor 7., we can form the

product (—g)* ¢ which is then a tensor density of weight + 1. In particu-

lar, we can deduce an important result from equation (7.3), namely, for any
vector 77,

Now, at any point, the covariant and contravariant metrics are symmetric
matrices which are inverse to each other by

gapg™ = 8.

Let us digress for a moment and consider the general case of finding the
derivative of a determinant of a matrix whose elements are functions of the
coordinates. Consider any square matrix 4 = (a;;). Then its inverse, (b”) say,
is defined by

(6) = - (4% = - (45), (16

where a is the determinant of A4, A¥ is the cofactor of a;;, and the prime
denotes the transpose. Let us fix i, and expand the determinant a by the ith
row. Then

a= Z aiinj
=1
where we have explicitly included the summation sign for clarity. If we
partially differentiate both sides with respect to a;;, then we get
da
oa

= AY, 7.7

ij

7.3 The metric determinant | 93
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since a;; does not occur in any of the cofactors A (i fixed, j runs from 1 to n).
Repeating the argument for every i, as i runs from 1 to n, we see that the |
formula (7.7) is quite general. Let us suppose that the g;; are all functions of
the coordinates x*. Then the determinant is a functional of the a;;, which in
turn are functions of the x*, that is,

ij?

a = a(a;;(x¥)).

Differentiating this partially with respect to x*, using the function of a
function rule and equation (7.7), we obtain

Ga _ %a Oay
ox*  day; ox*
2a,
ox*
. 0ay;
= gbii =¥
a7 ox*
by equation (7.6). Applying this result to the metric determinant g and
remembering that g* is symmetric, we get the useful equation

= Aij

We now combine this result with (6.76) (which comes directly from the
vanishing of the covariant derivative of the metric) and find

0.9 = g9 (T'e.ga + 't 90a)
= g8Te + gdoT,
=2grs. (19)

Let us compute the covariant derivative of g using (7.2). Then, since g is a
scalar density of weight +2, we have

Veg = 0.9 — 2975,
and so by equation (7.9) it follows that

This is again intimately connected with the choice of the definition (7.2).
Similarly, we find from equation (7.9) that

0.(—g)* = (—9)*Is. =0,
that is, by (7.2),

In particular, for any tensor 7., this leads to the identity
V(=P T5]=(—gP(V.T5), (712)
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that is, we can pull factors of (—g)* and g through covariant derivatives in the
same way as we can with factors involving the covariant or contravariant
metric.

7.4 Integrals and Stokes’ theorem

Unlike tensors in general, we can add a scalar field ¢ evaluated at two
different points, x, and x, say, and the resulting quantity is still a scalar, since
under a coordinate transformation, the sum transforms like

¢'(x1) + ¢'(x3) = d(x1) + ¢(x;) (7.13)

by (5.18). Hence, we might imagine that it is possible to integrate a scalar field
¢ over some n-dimensional region Q of a manifold M. However, it turns
out that the volume element dQ is not a scalar but, as we shall see, a scalar
density of weight —1. It follows that we can integrate a scalar density ¢ of
weight +1 over a region Q,

f #dQ, (7.14)

since at each point @ dQ is a scalar and can be added together by (7.13). There
are analogous statements which can be made about integration over curves,
surfaces, and hypersurfaces.
Consider an m-dimensional subspace of M whose parametric equation by
(52) is
xX*=x'Ww) (i=12,..,m).

The ‘volume’ element of this subspace is defined to be

ox* 0x**  0x°m
=

dp@a2am — gaia2
bibz - a
th2:"bm By Ou, ou

This element is an mth rank contravariant tensor under coordinate trans-
formations and behaves like a scalar under arbitrary change of parameter.
Hence, if X, ,,...q,, is an mth rank covariant tensor, then X, ,, ..., dt*% ""m
is a scalar under both coordinate and parameter transformations, and we can
form the integral

dutdu? .- du™.  (7.15)

m

f X0y a, 7492 am (7.16)
Qm

over some region 2, of the subspace. The coordinate differentials d,x*
corresponding to each parameter u, are defined by

a

d;x® = azi du' (no sum on i). (7.17)

We now state Stokes’ theorem for a simply connected m-dimensional
subspace £2,, bounded by the (m — 1)-dimensional subspace 0Q,, = Q,,_,:

f Xam...,,m_ldr“‘“z""’"‘"=J B Xaray.rvay, AT4970m (7.18)
002y, Om

We will be particularly interested in the special case of a four-dimensional
region @ of a four-dimensional manifold M, where Q is bounded by the
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Fig. 7.1 A four-dimensional region £
bounded by é0.

hypersurface 9@ (Fig 7.1). Stokes’s theorem then becomes the divergence
theorem or Gauss’s theorem for a contravariant vector density I° of
weight + 1, which we write in the form

where
1
ds, = geamd‘fm (7.20)
and
1
dQ = 4—'5,,,,cddz""“ . (7.21)
If we use the coordinates x° as parameters then dQ is written as d*x where
d*x = dx%dx! dx?dx? (7.22)
and

dS, = (dx' dx?dx?, dx°dx?dx3, dx°dx!dx?, dx®dx!dx?). (7.23)
Note from the definition (7.21) that d*x is a scalar density of weight —1.

7.5 The Euler-Lagrange equations

The variational principle and with it the Euler—Lagrange equations will play
an important role in this book. So, although it is something of a digression,
we shall, for completeness, include a brief discussion of their derivation. Then,
as a first indication of their usefulness, we shall show in the next section how
they provide an efficient method for obtaining geodesics.

A functional may be defined as a correspondence between a real number
and a function belonging to some class. Thus, a functional is a kind of
function where the independent variable is itself a function. One of the basic
problems in the calculus of variations is that of finding the stationary values
(maxima, minima, saddle points) of the action I defined by

Iyl = J ’p(y, ¥, x)dx, (1.29)

where L is a functional of the dynamical variable y, its derivative y’ = dy/dx,




7.5 The Euler-Lagrange equations | 97

and the coordinate x, and is called the Lagrangian. The problem is easily
generalized. In order to solve the problem, we need to make use of the
following result.

To establish this, we suppose that ¢(x) # 0 for some x = £ in the interval
(x4, x,). To fix ideas, let us assume ¢(£) > 0. Then, by continuity, there exists
a neighbourhood of ¢ (£, < & < &,) for which ¢(x) > 0. Setting

ne) = {<x — )M = &)* for xe(y, &),

0 otherwise,

we find that n(x) satisfies the conditions of the above lemma. Furthermore,

x2 &2
j dx)n(x)dx = |  P(x)n(x)dx >0,

&1

which produces a contradiction. Similarly, if we assume ¢ (&) < 0, then again
we get a contradiction, and so the result follows.

Returning to (7.24), we assume L is twice differentiable with respect to its
three variables. Let us vary y by an arbitrary small amount and write

7=y + en(x), (7.25)
where ¢ is small and #n(x) satisfies the conditions of the lemma, that is, it has
continuous second derivatives and vanishes at x, and x, but is otherwise
arbitrary. We define a variation of y by

dy=y—y=enx) (7.26)
Differentiating (7.25) with respect to x and using the prime notation, we get

V=Y +en,

so that

oy)=y —y =en' =y,
from which we see that 6 and d/dx acting on y commute. Then, working to
first order in ¢,

I¥] I[y+6y]=j L(y +en,y' +en,x)dx

%2 , oL oL
f (L(y,y,x)+58n+ay,6n>dx

x1

by Taylor’s theorem. Thus defining the quantity

ol =1I{y+éy]—I[yl,

*2 (oL oL
ol = EJ;x (an +5577" )dx.

we get
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The last term can be integrated by parts, to give

x2 oL oL T (= d (oL
oares= ] - [ e

The term in square brackets vanishes since 7(x;) = #(x,) = 0, and hence

S (=[oL d (oL

If y = y(x) is a stationary curve, then 61 must vanish to first order, and so,
using the above lemma, we find that y must satisfy the Euler-Lagrange
equation for L, that is,

Introducing some further notation which serves as a useful abbreviation, we
define the variational derivative, functional derivative, or Euler-Lagrange
derivative of L by

sL_oL_ 4 (oL
dy dy dx\oy )’

so that (7.27) can be written as

*2 4L
I = e " o
dé J;l o dydx (7.29
Then, in this formalism, the principle of stétionary action requires
oI =0 (7.30)

for arbitrary Jy, which leads immediately by the lemma to the
Euler-Lagrange equation

oo (7131)
The argument can be generalized to n dynamical variables each of which

are functions of one variable y,(x),..., y,(x) in a straightforward manner.
Then the action is defined in terms of the Lagrangian by

Iy ¥u] = f L(Y1seaasVns ViseorsVus X)dX (7.32)

and the variations
Vi yi=yi+6dy, (i=12..n),
where
dy; = eny(x), 1(x1) = n(xz) = 0,
lead to

S = J g}l]’_&yidx (summed over i),
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with

SL oL d (6_L>

The principle of stationary action, 61 = 0, for arbitrary independent vari-
ations Jy;, produces the Euler-Lagrange equations

The further generalization to a system of m dynamical variables y,(x)
(A=1,2,...,m), defined on an n-dimensional manifold M, starts from the
action

I =j L (Va> Va5, x7) A2, (7.34)
Q2

where a comma in the subscript denotes a partial derivative, i.. y,,, = 0,4,
and the Lagrangian % is a scalar density of weight +1 and leads to the
Euler-Lagrange equations

The significance of the variational principle approach is that most, if not all,
physical theories may be formulated by specifying a suitable Lagrangian. The
Euler-Lagrange equations can then be computed in a straightforward
manner and these constitute the field equations of the theory.

7.6 The variational method for geodesics

We now apply the technique of the last section to finding a convenient way
for computing the geodesics of a given metric. We start from the Lagrangian
functional (compare with (7.32))

L = L(x* x°,u),

where u is a parameter along a timelike curve and the dot denotes differenti-
ation with respect to #, defined in terms of the metric by

It follows from (6.59) that the action is
Py P>
J Ldu = j ds =5, (7.37)

2% Py

where s is the interval between any two points P; and P, on a curve
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connecting them. The metric geodesic between these points P, and P, is
defined as that curve joining them whose interval is stationary under small
variations which vanish at the end points. In other words, we need to solve
the principle of stationary action problem ds = 0. The solution consists of the
Euler-Lagrange equations (7.33) in the form

oL d (oL
) = 7

In principle these equations solve the problem, but in practice there are a
number of difficulties. First of all, it is much better to work where possible
with L? rather than L to avoid square roots. Then there is the freedom in the
choice of the parameter u. Finally, in the case of an indefinite metric, there is
the distinction between null and non-null geodesics. Assuming L # 0 and
multiplying (7.38) by —2L, we get

d /oL oL
2L[a(ﬁ> - W] =) 0 (7.39)

which can be rewritten as

(7.40)

afor o o ar
dul\ 9x4 ox* To% du’

Substituting for L2, the left-hand side of (7.40) produces

i aLz a_L_z_ = i 0 ( cb 'c) - i( <b -c)
du\ox® ] " ax® ~ dul|oxe N axa Jee X
d , b
= a(zgabxb) - (aagbc)xbxc

= 2gabib + 2acgabxbxc - aagbcxb)ec
= 2gab'§:b + 2x.bxc[%(acgba + abgca - aagbc)]
= 29, X + 2xbx¢{bc, a},

where we have used symmetry, interchange of dummy indices, and (6.62). If
we again assume that L 3 0, then the right-hand side of (7.40) produces

OLAL ) 0 e ad; (g)

0%° du  “ox° du
b oaerm ., d3s
= 2(gp. X" %°) *gadxdw

d?s /ds b
-2(?:?/ a)"“"'

Equating these two results and dividing by 2 gives the equation (6.61).
Multiplying through by g* and using (6.64) leads to
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If we choose the parameter u = s, then the right-hand side vanishes, giving

and hence s is an affine parameter. It follows from (7.41) that any other affine
parameter is related to s by

S=as+ B, (7.43)
where « and B are constants. A similar argument applies to spacelike
geodesics (exercise).

In the case of an indefinite metric, the interval ds between neighbouring
points on a curve may be zero. A null geodesic is a geodesic whose interval
between any of its two points is zero. It follows from (7.36) that L vanishes
and so the argument given above breaks down. However, it is possible to
modify the argument (we shall not do it) to show that the general equations of
a null geodesic are

X9 4+ FExbx = Au)x?,

where A(u) is some function of the curve’s parameter u and where the tangent
vector X satisfies g,,x°x® = 0. As before, if the geodesic equations do not
possess a right-hand side, that is, A'= 0, then the parameter u is called affine.
Any other parameter # will be affine if it is related to u by

i=au+p, (7.44)

where o and B are constants.
Summarizing, if we define the quantity K by

where a is a constant, and if we take u to be an affine parameter, then the
most useful form of the geodesic equations is (exercise)

where

depending on whether the tangent vector is null, or has positive or negative
length, respectively, and where in the last two cases we take u to be the
distance parameters s and o. This is the approach we shall adopt in our en-
suing work. It is possible, by (7.42), to read off directly from (7.46) the com-
ponents of the connection I'f,, and this proves to be a very efficient way of
calculating I'%,.
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7.7 Isometries

Tensor calculus is largely concerned with how quantities change under
coordinate transformations. It is of particular interest when a quantity does
not change, i.e. remains invariant, under coordinate transformations. For
example, coordinate transformations which leave a metric invariant are
of importance since they contain information about the symmetries of a
Riemannian manifold. Just as in an ordinary Euclidean space, there are two
sorts of transformations: discrete ones, like reflections, and continuous ones,
like translations and rotations. In most applications, these latter types are the
more important ones and they can in principle be obtained systematically by
obtaining the so-called Killing vectors of a metric, which we now discuss
below.

A metric g,, is form-invariant or simply invariant under the trans-
formation x® — x"* if

that is, the transformed metric g,,(x’) is the same function of its argument x”
as the original metric g,,(x) is of its argument x°. Then a transformation
leaving g, form-invariant is called an isometry. Since g, is a covariant tensor
it transforms according to (7.4), or equivalently (interchanging primes and
unprimes as we are free to do)

oxcoxt
Jap(X) = Fx® ox? gea(x")-

Then, using (7.48), x* — x'* will be an isometry if

ox® oxP

Jap(x) = Gea(X"). (7.49)

It will be convenient to consider all quantities appearing in this equation to
be functions of x using x"* = x"*(x). In general, the condition (7.49) is very
complicated, but it may be greatly simplified if we consider the special case of
an infinitesimal coordinate transformation

where ¢ is small and arbitrary and X° is a vector field. Differentiating (7.50)
gives

ox"
%,,— = 8¢ + £0, X",

and so, substituting in (7.49) and using Taylor’s theorem, we get
Gap(x) = (85 + £8,X°)(BF + €0, XN ga(x® + X )
= (85 + £0,X )0 + £0, X ) [goa(x) + X 0.g.a(x) + -]
= Gop() + e[9ea0pX* + 6500, X" + X 0,951 + O(?).
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Working to first order in ¢ and subtracting g,,(x) from each side, it follows
that the quantity in square brackets must vanish. This quantity is simply the
Lie derivative of g,, with respect to X by (6.17), namely,

LXgab = Xeaegab + gadabXd + gbdaaXd‘ (7'51)

Now we can replace ordinary derivatives by covariant derivatives in any
expression for a Lie derivative and so, using (6.73) and (6.57), the condition for
an infinitesimal isometry becomes

These are called Killing’s equations and any solution of them is called a
Killing vector field X “. In the language of §6.2, equation (7.52) states that the
metric is ‘dragged into itself” by the vector field X . We have thus established
the following important result.

It proves sufficient to restrict attention to infinitesimal transformations
because it can be shown that it is possible to build up any finite trans-
formation with non-zero Jacobian (i.e. a continuous transformation) by an
integration process involving an infinite sequence of infinitesimal trans-
formations.

Exercises

7.1 (§7.1) Write down the expression for the covariant de- and show that this leads directly to the result
rivative of a scalar density @ of weight + 1.
Y 8 Val(=9)*] = 8,[(~)/*] — Th( —a)*

7.2 (§7.3) Denoting the transformation matrices by L . . L .
(which is consistent with the definition in Exercise 7.1)

. ox Job ox 7.4 (§7.4) Show that, for any vector field 7%, the divergence
= \ox® )’ “\oxt ) theorem in four dimensions can be written in the form
use the argument of §7.3 to show that J T(—g)¥ds, = J V. T%(—g)td*x.
o (2]
0.0 =JJ"0,J,, 7.5 (§7.5) Find the Euler-Lagrange equations for the
Lagrangians

where J = det(J,;,) is the Jacobian. Hence show from first
principles that if T is a vector density of weight + 1 then
0,37 is a scalar density of weight + 1.

() L(y,y,x)=y*+y7?,

(i) Ly, Y25 ¥1: Y2 X)= x93 + 319, + y1 (¥ +¥7).

7.6 (§7.6) Trace the variational argument which leads to
the equations for a spacelike geodesic. Defining K by (7.45)
and (7.47), show that (7.40) can be written in the form (7.46).
V.(—9tT] =0,[(—9)*T°], [Hint: if u is affine, then dL/du = 0.]

7.3 (§7.3) Start from the assumption that, for an arbitrary
vector field 77,
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7.7 §7.7) Use (7.45), (7.46), and (7.47) to find the geodesic
equations of the spherically symmetric line element given in
Exercise 6.31. Use the equations to read off directly the
components I';, and check them with those obtained in
Exercise 6.31(ii). [Hint: remember I'g, = I'g,.

7.8 (§7.7) Find all Killing vector solutions of the metric

o ]
Gab = 0 x ’

where (x°) = (x%, x!) = (x, y).
7.9 (§7.7) Deduce (7.52) from (7.51).

7.10 (§7.7) Find all the Killing vectors X¢ of the three-
dimensional Euclidean line element

ds? = dx? + dy?* + dz2.

[Hint: deduce from Killing’s equations that d,X, + d,X,
= 0, differentiate with respect to x°, permute the indices to
show that 9,0,X, = 0 and integrate to get X° = wix® + ¢4,
where w,, = —w,, and t° are constants of integration, usu-
ally termed parameters.]

Denoting the six independent constants of integration by
Aty Ay, Az, Ag, As, Ag, Write the general solution for X in the
form

AIXI“+12X2"+13X3“+14X4“+15X5“+2.6X6“

Find expressions for the vector fields X* (e = 1,2,...,6),
and hence, or otherwise, find all values of [X ¢, X#]. Inter-
pret the six Killing vector fields in terms of geometrical
transformations.

7.11 (§7.7) Show that if X* and Y* are Killing vectors then
so is any linear combination 1X“ + uY* where A and u are
constants.

7.12 (§7.7) Consider the following operator identity:
LL,—LL,=Ly,-

(i) Check it holds when applied to an arbitrary scalar

function f.

(i) Check it holds when applied to an arbitrary contra-
variant vector field m®. [Hint: use the Jacobi identity.]

(i) Deduce that the identity holds when applied to a covar-
iant vector field p,. [Hint: let f= m®p,, where m® is
arbitrary.]

Use the identity to prove that if u and v are vector fields then

so is their commutator [u, v].

Given that 0/0x and —y0/0x + x0/dy are Killing vector

fields, find another.

7.13 (§7.7) Express (V.V,—V,V. )X, in terms of the
Riemann tensor. Use this result to prove that any Killing
vector satisfies

4"V, V.X. — R, X* = 0.

7.14 (§7.7) By making use of the identity
Ry + Ry + Ry =0
or otherwise, prove that a Killing vector satisfies
VchXa = Rabchd'




p— — s " . T —

- . 1 i . 2 T2 pase wme B b dees C s T L R s e [—

, ; e - 3

by ! . -4 fuoue n
e . 1 1 |
S e i e

| 5

= dies sis
L

G5 R

:,:«L.,
e
|

s e [T
L L1
o

e B Bale e

E

s

W

]

G

7
1

.

s
1]

S b

e
-

o
.

i

Heiew o mnany
i+ ¢ 1 ¢ t ¢+ ¢+ 3 § B
. & . ¥ 1 - 1§ 1

fente 0

[

i

¢

.

1 111
E P11
e 303 3

i

111 1
i 1§ 1

$ 1 3

9
o 1
5 s oames s v
: gas
ae ”

=

o Sra
o

S s s
BuEma

-

St

o ]

?Q«%ﬁ
Geli niin s
[ T




8.1 Minkowski space-time

As we saw in Chapter 2, special relativity discards the old Newtonian picture
in which absolute time is split off from three-dimensional Euclidean space.
Instead, we introduce a four-dimensional continuum called space-time in
which an event has coordinates (t, x, y, z) and where the square of the
infinitesimal interval ds between infinitesimally separated events satisfies the
Minkowski line element (2.13). The essence of special relativity lies in
the special Lorentz transformations, and the significance of the Minkowski
line element is that it is invariant under such transformations. We now use the
language of Part B to formulate this more precisely.

Minkowski space-time, or simply flat space, is defined as a four-dim-
ensional manifold endowed with a flat metric of signature —2. Then, by
definition, since the metric is flat, there exists a special coordinate system
covering the whole manifold in which the metric is diagonal, with diagonal
elements equal to + 1. From now on, we shall use the convention that lower
case latin indices run from 0 to 3. The special coordinate system is called a
Minkowski coordinate system and is written

form
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where from now on we will always take #,, to denote the Minkowski metric

If we use some other general coordinate system then we shall write the metric
in the form
ds? = g, dx*dx>.

For example, in spherical polar coordinates,

(xa) = (ta r, 6, ¢)’

where, as usual,
x = rsinfcos ¢, y =rsinfsin ¢, z =rcos#,
the line element becomes
ds? = dt? — dr? — r2d0? — r2sin? 0 do?

and the metric is
gap = diag(1, —1, —r?, —r?sin?0).

One of the main results of Part B is the theorem of §6.11, which states that
a necessary and sufficient condition for a metric to be flat is that its Riemann
tensor vanishes. In Minkowski coordinates, the metric 7,, is constant and so
the connection I'g, vanishes in this coordinate system, from which it is clear
that the Riemann curvature tensor vanishes. However, in a general co-
ordinate system, the connection components will not necessarily vanish. For
example, in spherical polar coordinates, we find that I'y. has non-vanishing
components

ri,=—r, 'y =rsin?0,
r3,=r"', T = —sinfcosb, ' 8.5
r=r"1, I3 =coth,

but if we compute the Riemann tensor we will again find

Rabcd =0,
as required by the theorem.

8.2 The null cone

In Minkowski space-time, the square of the length or norm of a vector is
defined as usual by

X?=g,X°Xb=X,X° (8.6)
The vector is said to be
timelike if X2>0,
spacelike if X2<0, 8.7

null or lightlike  if X>=0.



Two vectors X and Y* are orthogonal if their inner product vanishes, that is,
g X°Y* =0,

from which it follows that a null vector is orthogonal to itself.

The set of all null vectors at a point P of a Minkowski manifold forms a
double cone called the null cone or light cone. In Minkowski coordinates, the
null vectors X¢ at P satisfy

N X°X? =0,
that is,
X% - (XY - (x? - (X3 =0, (8.8)

which is the equation of a double cone. This null cone lies in the tangent space
T, at P, but since it is easy to show that the tangent space is itself a
Minkowski manifold (by (8.8)) we can identify the tangent space with the
underlying manifold and regard the null cone as lying in the manifold. We
will not be able to do this when we go on to consider non-flat manifolds. If we
define the timelike vector T* in Minkowski coordinates by T = (1, 0, 0, 0),
then a timelike or null vector X“ is said to be

future-pointing if 7, X°T® > 0,
past-pointing  if 7, X°T? < 0.
The future-pointing vectors all lie inside or on one sheet of the cone called the

future sheet and past-pointing vectors lie inside or on the past sheet
(Fig. 8.1).

Nult cone Future-pointing timelike vector
Future-pointing null vector
————Spacelike vector

y

Past-pointing timelike vector

8.3 The Lorentz group

The Lorentz transformations are defined as those linear homogeneous trans-
formations

of Minkowski coordinates which leave the Minkowski metric 7,, invariant.
From (8.9),

ox'®

EE
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Fig. 8.1 The null cone with one dimen-
sion (the z-direction) suppressed.
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and, substituting in the transformation formula for a metric (7.4) (with primes
and unprimes interchanged), we get (exercise)

since the metric remains invariant. We see from (7.49) that Lorentz trans-
formations are isometries. If follows immediately from (8.10) that Lorentz
transformations preserve lengths and innner products of vectors. The Lorentz
transformations form a group called the Lorentz group L. The identity
element of the group is 8; and the inverse element is given by the inverse
matrix. The matrix L*, is invertible, because if we take determinants of each
side of (8.10) we get

(detL%)*=1 = detL% = +1,

and so the matrix is non-singular. If we set ¢ = d = 0 in (8.10), we also find
that

(Loo)2 - [(Llo)2 + (Lzo)2 + (Lso)z] =1,

from which it follows that (L°,)? > 1 and so either L%, > 1 or L%, < —1. We
divide Lorentz transformations into four separate classes depending on
whether det L% = +1and L% > 1 or L%, < —1.Ifdet L% = +1, then L%,
is called proper or orientation preserving. An example of an improper
Lorentz transformation is the discrete transformation

t'=t, x' = —x, y =y, z' =z,

which reverses the x-direction. If L%, > 1, then L*, is called orthocronous or
time-orientation preserving. An example of a non-orthocronous Lorentz
transformation is the discrete transformation

t'=—t, x' =x, y =y, z' =z,

which reverses the t-direction. The proper orthochronous transformations,
denoted by LT, (read ‘L arrow plus’) from a subgroup of L. Clearly, L',
contains the identity, whereas the other three subsets do not and hence are
not subgroups.

In fact, L', is a six-parameter continuous group of transformations. We
can interpret the parameters physically by considering the transformation
actively as transforming one inertial frame S into another one at rest with
respect to an inertial frame S’ in general position (see Fig. 2.20). Then two
parameters correspond to the two Euler rotations required to line up the x-
axis of S with the velocity of S’, one parameter corresponds to a boost from §
to a frame at rest relative to S’ (and this parameter depends on the velocity of
S’ relative to S), and the final three parameters correspond to the three Euler
rotations required to rotate the frame into the same orientation that S’ has.
Another subgroup of L is the ordinary three-dimensional rotation group.

The Poincaré group P consists of those linear inhomogeneous trans-
formations which leave #,, invariant. A Poincaré transformation is made up
of a Lorentz transformation together with an arbitrary translation (in space
and time), i.e.




The Lorentz group L is a proper subgroup of P and the translations form an
invariant (normal) subgroup of P. The Poincaré group P is a ten-parameter
group, consisting of six Lorentz parameters plus four translation parameters.
The continuous Poincaré transformations constitute the full set of isometries
of the Minkowski metric. Physically, a Poincaré transformation maps one
inertial frame S into another inertial frame S’ in general position.

8.4 Proper time

A timelike world-line or timelike curve is defined as a curve whose tangent
vector is everywhere timelike. If, in particular, the curve is a geodesic, it is
called a timelike geodesic. Timelike curves represent tracks on which mater-
ial particles or observers can travel. From §8.2, we see that the velocity
tangent vector to a timelike curve at any point P must lie within the null cone
emanating from P (Fig. 8.2). This is a manifestation of the special relativity
result that material particles travel with speeds always less than the speed of
light. Spacelike and null curves and geodesics are defined in an analogous
manner to timelike ones.

At any point P, we define the null cone or light cone which consists of all
null geodesics passing through P. This coincides with the null cone of null
vectors passing through P. Then the null cone divides space-time into three
distinct regions namely future, past, and elsewhere (Fig. 8.3). Any point in the
future or past may be reached by a future-directed or past-directed timelike
geodesic, respectively. Any point in the region exterior to the null cone, called
elsewhere, can be reached by a geodesic which is everywhere spacelike. This
is an invariant division of events which all observers agree upon. This follows
because of the invariance of 5, under a Lorentz transformation, which means
that null cones get mapped onto null cones. Moreover, events to the future of

P get mapped into events which are still to the future of P under an
orthochronous Lorentz transformation. A similar result holds for past events.
However, non-orthochronous Lorentz transformations reverse the past and
future.

Since I'§, vanishes in Minkowski coordinates, the equations for a non-null
geodesic (7.42) reduce to

d2x*

t Velocity tangent vector at P w

Null cone at P
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Null cone (future sheet)

X

- PAST Null cone (past sheet)

Fig. 8.2 World-line of material particle. Fig. 8.3 Invariant classification of events relative to P.
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for some affine parameter u, where the tangent vector satisfies
dx® dx®
b gy du ~
The geodesic is timelike or spacelike depending on whether k > 0 or k <0,
respectively. In the case when k > 0, we introduce a new parameter

(8.13)

u—u=1i(u

diu \?
(a‘u) =k

satisfying

It follows from (8.13) that the new tangent vector dx®/di has unit length. The
parameter @ is called the proper time and is denoted by 7. Thus, in relativistic
units, from (8.3) and (8.13), the proper time satisfies

BB BERIR AR

This shows that 7 is an affine parameter along timelike geodesics.
In non-relativistic units the equation for the proper time becomes

1
de? = 5 ds%, (8.15)

which checks dimensionally since s is a distance parameter. Let us see how
proper time 7 relates to coordinate time ¢ for any observer whose velocity at

time ¢t is v, where
dx dy dz)

’= (E dt’de
From (8.15) and (3.13), we have

dr?

Elids2 = CLz(czdt2 — dx? —dy? - dz?)

1 /dx\?* [dy\* [dz\?
—di2d1— [ (& ' hascd
-arfi-2{ (&) (&) @) ]

2

‘So the proper time between t, and t,, is given by

<

in agreement with (3.17).

8.5 An axiomatic formulation of special relativity

We are now in a position to give a completely precise formulation of special
relativity which will prove useful when we wish to generalize to the general
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theory. We do this by stating two sets of postulates or axioms.

The first axiom defines the geometry of the theory and the second axiom puts
in the physics. Thus, the first axiom states that I'Z, is the metric connection
(by 1(i)) and that the metric is flat (by I(iii)) and defines a formal parameter
whose physical significance is given in the second axiom. The first part of the
second axiom makes physical the distinction between space and time in the
manifold. In canonical (Minkowski) coordinates, it distinguishes the coordin-
ate x° from the other three as the ‘time’ coordinate. More precisely, it states
that it is the proper time t which a clock measures in accordance with the
clock hypothesis. The remainder of Axiom II singles out the privileged curves
that free particles and light rays travel along.

Looking at this theory from a purely axiomatic viewpoint, one can ask, Is
there any a priori reason for singling out timelike and null geodesics as
trajectories for material particles and photons or light rays, or could one
make some other choice (say, spacelike geodesics)? In Newtonian theory, free
particles travel in straight lines, by Newton’s first law. It would seem natural,
therefore, to take geodesics as the analogue of straight lines. The significance
of timelike geodesics is that their choice, unlike the case of spacelike geo-
desics, is consistent with causality. As we have seen, Minkowski space-time
admits the Poincaré group as its invariance group. Hence, if two neigh-
bouring events P and Q of the history of a free particle occur on a timelike
geodesic at proper times T and t + dr, respectively, then an orthochronous
Poincaré transformation preserves the fact that Q occurs after P. This is
consistent with causality, since we say that the arrival of the particle at Q is
caused by its having previously been at P.

Null geodesics possess a special property which makes them natural
candidates for light signals. The equation of a null geodesic in Minkowski
coordinates is

d?x®

57 =0 (8.17)
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where E d_x” ~ 819
Tab gy du = o
for an affine parameter u. Integrating (8.17), we get
dx*
=k* 8.19
=k, (819)

where the components of k* are constants of integration. Substituting in
(8.18), we obtain
N.pk°k? = 0, (8.20).

and so k?is a null vector. Let us define the 3-velocity v along the null geodesic

by
dx! dx? dx3 k' k? k3
=l 2 )= -, —, — | ==, —, —
v (U , 05,0 ) <dx0a dx°’ dx0> (k()’ ko’ k0>5 (821)

using (8.19) and the fact that k° + 0 (why?). Writing (8.20) out fully, we find
(k°) — (k')* — (K*)* — (k*)* =0,

and hence it follows from (8.21) that v? = 1. Thus, null geodesics have

associated with them a characteristic velocity of magnitude 1. Furthermore,

this property is preserved under a Poincaré transformation, and so they seem
natural candidates for encoding the constancy of the velocity of light.

8.6 A variational principle approach
to classical mechanics

We met an introduction to relativistic mechanics in Chapter 4. We shall now
look for a formulation which rests on a variational principle. The importance
of the variational formulation of a physical theory is that it is often very
simple and elegant and, moreover, it is one method which lends itself easily to
generalization. Indeed, most current theories use the variational approach as
their starting point. We start by summarizing the variational formulation of a
classical system moving under a conservative force.

A mechanical system is described by n generalized coordinates x*
(@a=1,2,...,n) which are functions of time ¢, n generalized velocities x°,
the kinetic energy T = 1g,,%°%", and the potential energy V'(x) which gives
rise to n generalized forces F, = — 0V /dx®. The Lagrangian L is defined to
be

L=T-V.

Then the principle of stationary action is

12
5S=6f Ldt=0

t

and this leads to the Euler-Lagrange equations

oL _dfaL)_,
ox*  dr\ox* )

A straightforward calculation leads to the equations of motion

%% 4+ I8 xb%¢ = F°, 8.22)
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where I, is the metric connection of g,,. If there are no external forces, then
the above equations can be thought of as defining geodesics on an
n-dimensional Riemannian manifold, with metric g,, called configuration
space. We define generalized momenta p, = dL/0x“ and the Hamiltonian
H by

H=p,x*— L.
If H is time-independent, then it can be shown to be equal to the total energy
E of the system.
As an example of this formalism, let us consider the simple case of a free

particle moving in three dimensions with velocity #. Adopting Cartesian
coordinates, we have

(x*) = (x!, x%, x*) = (x, y, 2).
Then
T =imu? = im(x? + y? + 22),
from which we find
gab = dlag(m’ m, m) = maab

By assumption, V' = 0, and so
L=T=1imi?, (8.23)
giving generalized momenta

oL , . .
px= oo =mk, p, = my, p, = mz.

The Euler-Lagrange equations are

d . d . d
a@ (mx) =0, a(my) =0, a(mz) =0,

which are just the three components of Newton’s second law. The
Hamiltonian is

H=pu—L=m(x*+y?+2)—T=4imu?=T=E.

In general, if we consider a system with no forces acting, then the
Lagrangian reduces to

T = 1g,,%9%®.

This Lagrangian is identical to the quantity K defined in (7.45) of §7.6. In that
section, we saw that (if we work with affine parameters) this gives the same
Euler-Lagrange equations as the Lagrangian (7.37), namely, as

ds

5 = (gabxﬂxb)-},

does. Thus, for convenience, we may take the action S for a free particle to be

t2 ds [ 7)
= —dt= .24
S T dt J[ ds (8.24)

1
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8.7 A variational principle approach
to relativistic mechanics

We now consider a free particle in relativistic mechanics moving on a curve
x* = x%(7),

where 1 is the proper time. Since 7 is an affine parameter, we assume from
(8.24) of the last section that the action can be written as

S= —aJ‘ ds, (8.25)

Tt

where a is a constant to be determined. Working in Minkowski coordinates,
we can write the action as

= —aj (napx°x%)* dr,

1

where a dot denotes differentiation with respect to t. The Lagrangian is
therefore
L= —a(n,x*x")*

and the Euler-Lagrange equations
oL _ 4 (oL
ox®  dr\ox*)

d
i [o(1eax5) ¥ %"] = 0. (8.26)

produce

Since
o dx dx® ds?
Meb M 4r a4  do?

in relativistic units, the field equations (8.26) reduce to %* = 0, which are the
standard geodesic equations in Minkowski coordinates.

Instead of using the proper time 7 as our time parameter, let us use instead
the coordinate time ¢ and see how various quantities are defined in terms of
time and space coordinates. The equation of the world-line of the particle is
now ‘

X = x(t)’ y= y(t)’ z = z(t),

and it has a 3-velocity u defined by

dx dy dz
u = (uy, Uy, u3)=< Y >

di’de’ dt
Using
ds? = ngdx*dx®

= dt? — dx? — dy? — dz?

= dt2(1 — u?),
we can write the action (8.25) as

t2
S= —aJ (1 —u?)tds,

t1
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where the new Lagrangian (which we shall also write as L) is

=—a(l —u?P=—a+Fau?+ -

for small velocities. Comparing this with the classical expression (8.23),
namely $mu?, we may identify « with the mass of the particle as u — 0. Note
that the additive constant —o in the Lagrangian is unimportant (see
Exercise 8.9). Thus a is equal to the rest mass m, of the particle. Hence, we
have -

We define the 3-momentum p by (check)
_(2L oL oL
“\0u,’ du,” du,

Comparing this with the classical relationship p = mu, we define the rela-
tivistic mass m by (see (4.11))

) = my(l — u?)"*u. (8.28)

m=my(l —u?)"%
Using the Hamiltonian to define the energy E (see (4.17)), we find
E=H=pu—L=my(l—u?)"t=m (8.29)

after some simple algebra. We have thus regained the results of (4.19) in
relativistic units.

8.8 Covariant formulation of relativistic
mechanics
We finish this discussion of relativistic mechanics by giving a full 4-dimen-

sional or covariant formulation of the variational principle. The action S is
defined as

§=— moj (@apXx%P)t dr,

T1

where g,, is a flat metric and is used for raising and lowering indices. The
4-velocity u° is defined by
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The covariant 4-momentum p, is defined by

from which we find that its contravariant form is given by

If a particle is acted on by a force, then the four-dimensional version of

s second law becomes

’

Newton

where f* is called the 4-force. If there is no external force acting, then

.

ca

-vector. This is the conservation of 4-momentum law

is a constant 4

where [¢

vector. Finally, we define the angular momentum

and generalizes to an isolated system of n particles with 4-momenta p;°
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If we now assume that m, is a scalar, then it follows that all the quantities

have the tensor character indicated under a general coordinate trans-

we restrict attention to Minkowski coordinates

we can relate these four-dimensional quantities to the three-dimensional ones

formation. If, in particular,

of the last section and Chapter 4. We can then consider how the four-
dimensional quantities transform under a Lorentz transformation and so

obtain the transformation law for the three-dimensional quantities (exercise).
Thus, in particular, we can confirm the transformation equations (4.21) for

the energy and momentum of a particle.

We have considered the main ingredients of special relativistic mechanics,
but we shall not pursue the topic further. We shall, rather, concentrate on our

main task — that of establishing the general theory.
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Exercises

8.1 (§8.1) Check (8.5) and show that the Riemann tensor
vanishes.

8.2(§8.2) Show that a timelike vector cannot be orthogonal
to a null vector or to another timelike vector. Show that two
null vectors are orthogonal if and only if they are parallel.

8.3 (§8.2) The vectors 7, X, Y, and Z have components
T°=(1,0,0,0), X°=(0,1,0,0, Y*=(0,0,1,0),
Z*=(0,0,0,1).

Show that the only non-vanishing inner products between
the vectors are

T?=—-X?=-Y*=-Z2=1.
Define the following;

1 1
L* = —(T" + Z°, N*=—(T* - 2%,
\/2( +Z°) \/2( )
o= Lxetivy, M= xe—ive
= — 1 A = — —1 )
e 2

where i = \/— 1. Treating M® and M* as vectors, show that
all four vectors are null and the only non-vanishing inner
products are

L*N,= — M°M, = 1.

8.4 (§8.3) (i) Check that (8.9) leads to (8.10), assuming in-
variance.

(ii) Show that the Lorentz transformations form a group.
(it} Show that the Poincaré transformations form a group.

8.5 (§8.3) Show that a Killing vector X, satisfies the equa-
tion 6,0,X, =0 in flat space in Minkowski coordinates.
[Hint: use Exercise 7.10 or Exercise 7.14.] Deduce that the
Killing vectors are given by

X, = wux®+t,

where w,, = —w,, and ¢, are arbitrary parameters (con-
stants of integration). How many parameters are there in
(a) an n-dimensional manifold?

(b} Minkowski space-time?

What do the parameters correspond to physically in
Minkowski space-time?

8.6 (§8.4) Prove that the proper time is an affine parameter
along timelike geodesics.

8.7 (§8.6) Establish the equation of motion (8.22).

8.8(§8.6) Consider two masses m; and m, suspended on the
ends of a rope passing over a frictionless pulley. Show that
the Lagrangian can be written in the form

L =4(my + my)x% + mygx + myg(l — x),

where the mass m, is a distance x below the horizontal and !
is a constant. Find the Euler-Lagrange equation of motion.
Define the generalized momentum for the system and henc
obtain the Hamiltonian. )

8.9(§8.7) If Lis a Lagrangian, then show that the Lagran-
gians L, and L,, where (i) L, = AL and (ii) L, = L + g,
with A and p constants, possess the same field equations
as L. Show also that if L # 0 then the Lagrangians (iii)
Ly=L? and (iv) L, = Lt give rise to the same field
equations.

8.10 (§8.8) Show that, in Minkowski space-time in
Minkowski coordinates, u®= (u° u', u? u®)=(y, yu),
where y = (1 — u?)™%. Show also that p°® = (E, p).

By considering the invariant p,p® deduce that (see (4.20))

E2 _ pl - m02.

Use the four-dimensional version of Newton’s second law to
identify the 4-force as

J*=(yu-F,yF),

where F is the force acting on the particle. Show also that

dp® ( dE dp)
=\Y VT
dz

and give a physical interpretation of the zero component of
the four-dimensional Newton’s law.

8.11(§8.8)

(i) Use the tensor transformation law on the 4-velocity u®
to find the transformation properties of u under a
special Lorentz transformation between two frames in
standard configuration moving with velocity v. Show in
particular, that y'/y = (1 — u,v), where § = (1— v?)" .

(ii) Find the transformation properties of E and p under a
special Lorentz transformation.

(i) Find the transformation properties of F under a special
Lorentz transformation. Are forces still absolute quant-
ities in special relativity?

(iv) A particle moves parallel to the x-axis under the influ-
ence of a force F = (F, 0, 0). What is the force in a frame
co-moving with the particle?




9.1 The role of physical principles

We are at last ready to embark on our central task, namely, that of extending
special relativity to a theory which incorporates gravitation. In this chapter,
we shall undertake a detailed consideration of the physical principles which
guided Finstein in his search for the general theory. There is a school of
thought that considers this an unnecessary process, but rather argues that it is
sufficient to state the theory and investigate its consequences. There seems
little doubt, however, that consideration of these physical principles helps
give insight into the theory and promotes understanding. The mere fact that
they were important to Einstein would seem sufficient to justify their inclu-
sion. If nothing else, it will help us to understand how one of the greatest
achievements of the human mind came about. Many physical theories today
start by specifying a Lagrangian from which everything else flows. Indeed, we
could adopt the same attitude with general relativity, but in so doing we
would miss out on gaining some understanding of how the framework of
general relativity is different again from the framework of Newtonian theory
or special relativity. Moreover, if we discover limitations in the theory, then
there is more chance of rescuing it by investigating the physical basis of the
theory rather than simply tinkering with the mathematics. It is perhaps
significant that Einstein devoted much of his later life to an attempt to unify
general relativity and electromagnetism by various mathematical devices, but
without success.

There are five principles which, explicitly or implicitly, guided Einstein in
his search. Their names are:

(1) Mach’s principle

(2) principle of equivalence

(3) principle of covariance

(4) principle of minimal gravitational coupling

(5) correspondence principle.

The status of these principles has been the source of much controversy. For
example, the principle of covariance is considered by some authors (e.g.
Bondi, Fock) to be empty, whereas there are others (e.g. Anderson) who
believe it possible to derive general relativity more or less solely from this

principle. There is fairly general agreement that the principle of equivalence is
the key principle. One source of confusion arises from the fact that their
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formulation differs quite markedly from author to author. Since some of the
principles are more of a philosophical nature, this is perhaps not so surpri-
sing, We shall attempt to make some precise formulations of them in the hope
that we can ultimately check the principles out against the theory. We now
discuss the principles in turn.

9.2 Mach’s principle

The essence of the first two principles comes from understanding the nature
of Newton’s laws more precisely. Do Newton’s laws hold in all frames of
reference? As we have seen before, they are stated only for a privileged class of
frames called inertial frames. So the question arises as to what form they take
in other, non-inertial, reference frames.

We shall investigate the status of Newton’s second law for a non-inertial
frame S’ being uniformly accelerated relative to an inertial frame S with
acceleration a. For simplicity, we shall assume the frames are in standard
configuration with the acceleration along the common axis (Fig. 9.1). Assum-
ing that the observers initialize their clocks when they meet, then the
relationship between the frames is given by

x=x"+s, y=y, z=12, t=1t. 9.1
Letting a dot denote differentiation with respect to ¢ (or ¢/, which is the same
by the last equation), then we find from the first equation that
XxX=x"+3
and, differentiating again,

X=X'+§=%+a, 9.2)
by assumption. Consider a particle of mass m moving along the x-axis under
the influence of a force F = (F, 0,0). Then Newton’s second law becomes
F = mx, which by (9.2) gives

F = mx' + ma.

From the point of view of the observer S’, this equation can be rewritten in a
standard form with the term mass times acceleration relative to S’ on the
right-hand side, to give

.

e

Thus, compared to S, observer S’ detects a reduction of the force on the
particle by an amount ma. This additional force is called an inertial force.
Other well-known inertial forces are centrifugal and Coriolis forces arising in

y y
N 3
w

> Acceleration a

/———)——————————-———————7“—> o
X
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Fig. 9.1 Position of Sand S’ at time t.
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Fig. 9.2 The bucket and water in
absolute rotation.

Acceleration a

Fig. 9.3 Inclination of surface of water in
absolute linear acceleration.

a frame rotating relative to an inertial frame (exercise). Notice that all inertial
forces have the mass as a constant of proportionality in them. The status of
inertial forces is again a controversial one. One school of thought describes
them as apparent or fictitious forces which arise in non-inertial frames of
reference (and which can be eliminated mathematically by putting the terms
back on the right-hand side). We shall adopt the attitude that if you judge
them by their effects then they are very real forces. For, after all, inertial forces
cause astronauts to black-out in rocket ships and flywheels to break under °
centrifugal effects. Is it enough to describe these as being due to apparent |
forces or reference frame effects? There must be some interaction going on to
cause such dramatic effects. The question arises, What is the physical origin of
inertial forces? Newtonian theory makes no attempt to answer this question;
the Machian viewpoint, as we shall see, does. ' :

Let us ask another fundamental question. If Newton’s laws only hold in
inertial frames, then how do we detect inertial frames? Newton realized that
this was a fundamental question and attempted to answer it by devising an :
ingenious thought experiment — the famous bucket experiment. He first of -
all postulated the existence of absolute space: ‘Absolute space, in its own
nature, without relation to anything external, remains always similar and
immovable.” Thus he sees absolute space as the backcloth against which all
motion is observed. An inertial observer then becomes an observer at rest or
in uniform motion relative to absolute space. Inertial forces arise in the
manner described above only when an observer is in absolute acceleration
relative to absolute space. The bucket experiment is a device for detecting
such motion. More precisely, the experiment determines whether or not a
system is in absolute rotation relative to absolute space.

The experiment consists of suspending a bucket containing water by a rope
in an inertial frame. The rope is twisted and the bucket is released. The
motion divides into four phases:

B1 At first, the bucket rotates, but the water does not, its surface remaining
flat.

B2 The frictional effects between the bucket and the water eventually com-
municate the rotation to the water. The centrifugal forces cause the water
to pile up round the edges of the bucket and the surface becomes concave
(Fig. 9.2). The faster the water rotates, the more concave the surface
becomes.

B3 Eventually the bucket will slow down and stop, but the water will
continue rotating for a while, its surface remaining concave.

B4 Finally, the water will return to rest with a flat surface.

Newton’s explanation of this experiment is that the curvature of
the water surface in B2 and B3 arises from centrifugal effects due to the
rotation of the water relative to absolute space. This curvature is not directly
connected to local considerations such as the bucket’s rotation since in B1 the
surface is flat when the bucket is rotating and in B3 curved when the bucket is
at rest. In this way, Newton gave a prescription for determining whether a
system is in absolute rotation or not. Similar arguments apply to systems
which are linearly accelerated relative to absolute space. Here, the surface
becomes inclined at angle to the horizontal (Fig. 9.3) (see Exercise 9.1(ii)). In
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simple terms, all observers should be equipped with a bucket of water. Then
an observer will be inertial if and only if the surface of the water is flat.

We now turn to the view which was proposed by Mach in 1893, although it
grew out of similar ideas arrived at earlier by Bishop Berkeley. This is a semi-
philosophical view, the starting point of which is that there is no meaning to
the concept of motion, but only to that of relative motion. For example, a
body in an otherwise empty universe cannot be said to be in motion
according to Mach, since there is nothing to which the body’s motion can be
referred. Moreover, in a populated universe, it is the interaction between all
the matter in the universe (over and above the usual gravitational interaction)
which is the source of the inertial effects we have discussed above. In our
universe, the bulk of the matter resides in what is called the ‘fixed stars’. Then,
from Mach’s viewpoint, an inertial frame is a frame in some privileged state of
motion relative to the average motion of the fixed stars. Thus, it is the fixed
stars through their masses, distribution, and motion which determine a local
inertial frame. This is Mach’s principle in essence. Returning to the bucket
experiment, Newton gives no reason why the surface curves up when it is in
rotation relative to absolute space. Mach, however, says that the curvature
stems from the fact that the water is in rotation relative to the fixed stars. One
way of seeing the difference between the two viewpoints is to ask what would
happen if the bucket was fixed and the universe (i.e. the fixed stars) rotated.
Since all motion is relative, it follows from the Machian viewpoint that
the surfaces of the water would be curved, whereas in Newtonian theory no
such effect would be detected. Hence, Mach sees all matter coupled together
in such a way that inertial forces have their physical origin in matter. The
bucket has very little effect on the water’s motion because its mass is so small.
On the other hand, the fixed stars contain most of the matter in the universe
and this counteracts the fact that they are a very long way away.

There is one very outstanding and simple fact that lends support to the
Machian viewpoint. Consider a pendulum set swinging at the North Pole
(Fig. 9.4). According to Newton, the pendulum swings in a frame which is not
rotating relative to absolute space. In this frame the Earth is rotating under
the pendulum. An observer fixed on the Earth will see the pendulum rotating.
The time taken for the pendulum to swing through 360° is therefore the time
taken for the Earth to rotate through 360° with respect to absolute space.
We can also measure how long the Earth takes to rotate through 360°
relative to the fixed stars. The remarkable fact is that, within the limits of
experimental accuracy, the two times are the same. In other words, the fixed
stars are not rotating relative to absolute space, from which it follows that
inertial frames are those in which the fixed stars are not rotating. In
Newtonian theory, there is nothing a priori to predict this, it is simply a
coincidence. Whenever we find coincidences in a physical theory, we should
be highly suspicious of the theory — it is usually saying that something
fundamental is going on. From the Machian viewpoint, it is the fixed stars
which determine the inertial frames and the result is precisely what we would
expect.

Can one say anything more precise about the interaction postulated by
Mach? Since inertial forces involve the mass of the body experiencing them, it
would seem likely for reasons of reciprocity that the effect of the stars should
be due to their masses and proportional to them. On the other hand, inertial
forces are unaffected (at least to the accuracy of experiment) by local masses
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Fig. 9.4 Pendulum swinging in non-
rotating frame.
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124 | The principles of general relativity

Fig. 9.5 Direction-dependent inertial
effects in an anisotropic universe
(my # m,).

such as the Earth or the Sun. Accordingly the influence of the distant bodies
preponderates. So we would not expect inertial effects to vary appreciably
from place to place.

Consider the motion of a particle in an otherwise empty universe. Then,
according to Mach, since there are no other masses in existence, the particle
cannot experience any inertial effects. Now introduce another particle of tiny
mass. It is inconceivable that the introduction of this very small mass would
restore the inertial properties of the first particle to its customary
magnitude — its effect can only be slight. This implies that the magnitude of
an inertial force on a body is determined by the mass of the universe and its
distribution. If, in particular, the universe were not isotropic, then inertial
effects would not be isotropic. For example, if there were a preponderance of
matter in a particular direction, then inertial effects would be direction-
dependent (as illustrated schematically in Fig. 9.5).

Experiments were carried out separately by Hughes and Drever around
1960 which established that mass is isotropic to at least 1 part in 10'®. The
Hughes—Drever experiment has been called the most precise null experiment
ever performed. This null result can be interpreted in two ways. Either Mach’s
principle is untenable or the universe is highly isotropic. There is evidence
from other sources to suggest that our universe is indeed highly isotropic on
the large scale. ’

In Newtonian theory, the gravitational potential ¢ at a point a distance
r from the origin due to a particle of mass m situated at the origin is
¢ = —Gm/r, where G is Newton’s gravitational constant. The potential at
any point can only depend on the properties of the body itself. However, from
the Machian point of view, the mass m of the body depends on the state of the
universe. Hence, the ratio of these two effects, namely G, contains information
about the universe. In particular, if the universe was in a different state at any
earlier epoch, then the ‘constant’ G would have a different value. An evolu-
tionary universe would require G = G(¢), i.e. a function of epoch. Again, if the
universe did not present the same aspect from every point (except for local
irregularities), G would vary from point to point. A fully Machian theory
should essentially allow one to calculate G from a knowledge of the structure
of the universe. .

What is the current status of Mach’s principle? The biggest limitation of
the principle is that it does not give a quantitative relation for the interaction
of matter. Similarly, it can be argued that Mach’s ideas do not really
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of matter
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9.3 Mass in Newtonian theory | 125

contribute to an understanding of why there appears to be such a funda-
mental distinction between unaccelerated and accelerated motion in nature,
i.. it does not explain why the interaction should be velocity-independent but
acceleration-dependent. [Some critics claim that Mach only replaced
Newton’s absolute space by the distant stars and learnt nothing new thereby.
The principle was considered to be of great importance to Einstein who
attempted to incorporate it into his general theory. This, as we shall see, he
only partially succeeded in doing (however, a more recent alternative theory
to general relativity, called the Brans—Dicke theory, claims to be more fully
Machian).

We finish this section by trying to make more precise the statements of
Mach’s principle which are relevant to the formulation of general relativity.
Thinking in terms of the axiomatic formulation of the last chapter, let us refer
to the privileged paths which particles and light rays travel on as the
‘geometry’ of the universe. The first statement tries to incorporate the
essential part of Mach’s ideas.

The next statement refers to the belief that it is impossible to talk about
motion or geometry in an empty universe, so that there should be no solution
corresponding to an empty universe.

The final statement refers to a universe containing just one body, then, since
there is nothing for it to interact with, it should not possess any inertial
properties.

9.3 Mass in Newtonian theory

Up to now, we have talked rather glibly about the mass m of a body. Even in
Newtonian theory, we can ascribe three masses to any body which describe
quite different properties. Their names, notation, and general description are:

(1) inertial mass m', which is a measure of the body’s resistance to change in
motion;

(2) passive gravitational mass mF, which is a measure of its reaction to a
gravitational field;

(3) active gravitational mass m*, which is a measure of its source strength for
producing a gravitational field.

We shall discuss each of these in turn.
Inertial mass m' is the quantity occurring in Newton’s second law, which
we met in Chapter 4. It is at any one time a measure of a body’s resistance to
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Fig. 9.6 Galileo’s Pisa experiments.

change in motion and is also called the body’s inertia. Newton’s second law, ;
stated more precisely, is |

for constant inertial mass m'. Note that, a priori, m' has nothing directly to do
with gravitation. The next two masses, however, do.

Passive gravitational mass m" measures a body’s response to being placed
in a gravitational field. Let the gravitational potential at some point be
denoted by ¢. Then, if m® is placed at this point, it will experience a force on it
given by

Active gravitational mass m* measures the strength of the gravitational
field produced by the body itself. If m* is placed at the origin, then the
gravitational potential at any point distant r from the origin is given by

We shall now see how these three masses are related in the Newtonian
framework. We start f