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1.1 Notes for the student 
There is little doubt that relativity theory captures the imagination. Nor is it 
surprising: the anti-intuitive properties of special relativity, the bizarre 
characteristics of black holes, the exciting prospect of gravitational wave 
detection and with it the advent of gravitational wave astronomy, and the 
sheer. scope and nature of cosmology and its posing of ultimate questions; 
these and other issues combine to excite the minds of the inquisitive. Yet, ifwe 
are to look at these issues meaningfully, then we really require both physical 
insight and a sound mathematical foundation. The aim of this book is to help 
provide these. 

The book grew out of some notes I wrote in the mid-1970s to accompany a 
UK course on general relativity. Originally, the course was a third-year 
undergraduate option aimed at mathematicians and physicists. It sub­
sequently grew to include M.Sc. students and some first-year Ph.D. students. 
Consequently, the notes, and with it the book, are pitched principally at the 
undergraduate level, but they contain sufficient depth and coverage to 
interest many students at the first-year graduate level. To help fulfil this dual 
purpose, I have indicated the more advanced sections (level-two material) by 
a grey shaded bar alongside the appropriate section. Level-one material is 
essential to the understanding of the book, whereas level two is enrichment 
material included for the more advanced student. To help put a bit more light 
and shade into the book, the more important equations and results an: given 
in tint panels. 

In designing the course, I set myself two main objectives. First of all, I 
wanted the student to gain insight into, and confidence in handling, the basic 
equations of the theory. From the mathematical viewpoint, this requires good 
manipulative ability with tensors. Part B is devoted to developing the 
necessary expertise in tensors for the rest of the book. It is essentially written 
as a self-study unit. Students are urged to attempt all the exercises which 
accompany the various sections. Experience has shown that this is the only 
real way to be in a position to deal confidently with the ensuing material. 
From the physical viewpoint, I think the best route to understanding 
relativity theory is to follow the one taken by Einstein. Thus the second 
chapter of Part C is devoted to discussing the principles which guided 
Einstein in his search for a relativistic theory of gravitation. The field 
equations are approached first from a largely physical viewpoint using these 
principles and subsequently from a purely mathematical viewpoint using the 



 

4 I The organization of the book 

variational principle approach. After a chapter devoted to investigating the 
quantity which goes on the 'right-hand side' of the equations, the structure of 
the equations is discussed as a prelude to solving them in the simplest case. 
This part of the course ends by cpnsidering the experimental status of general 
relativity. The course originally assumed that the student had some reason­
able knowledge of special relativity. In fact, over the years, a growing number 
of students have taken the course without this background, and so, for 
completeness, I eventually added Part A. This is designed to provide an 
introduction to special relativity sufficient for the needs of the rest of the 
book. 

The second main objective of the course was to develop it in such a way 
that it would be possible to reach three major topics of current interest, 
namely, black holes, gravitational waves, and cosmology. These topics form 
the subject matter of Parts D, E, and F respectively. 

Each of the chapters is supported by exercises, numbering some 300 in 
total. The bulk of these are straightforward calculations used to fill in parts 
omitted in the text. The numbers in parentheses indicate the sections to which 
the exercises refer. Although the exercises in general are important in aiding 
understanding, their status is different from those in Part B. I see the exercises 
in Part B as being absolutely essential for understanding the rest of the book 
and they should not be omitted. The remaining exercises are desirable. The 
book is neither exhaustive nor complete, since there are topics in the theory 
which we do not cover or only meet briefly. However, it is hoped that it 
provides the student with a sound understanding of the basics of the theory. 

A few words of advice if you find studying from a book hard going. 
Remember that understanding is not an all or nothing process. One under­
stands things at deeper and deeper levels, as various connections are made or 
ideas are seen in different contexts or from a different perspective. So do not 
simply attempt to study a section by going through it line by line and expect it 
all to make sense at the first go. It is better to begin by reading through a few 
sections quickly- skimming- thereby trying to get a general feel for the 
scope, level, and coverage of the subject matter. A second reading should be 
more thorough, · but should not stop if ideas are met which are not clear 
straightaway. In a final pass, the sections should be studied in depth with the 
exercises attempted at the end of each section. ·However, if you get stuck, do 
not stop there, press on. You will often find that the penny will drop later, 
sometimes on its own, or that subsequent work will produce the necessary 
understanding. Many exercises (and exam questions) are hierarchical in 
nature. They require you to establish a result at one stage which is then used 
at a subsequent stage. If you cannot establish the result, then do not give up. 
Try and use it in the subsequent section. You will often find that this will give 
you the necessary insight to allow you .to go back and establish the earlier 
result. For most students, frequent study sessions of not too long a duration 
are more productive than occasional long drawn out sessions. The best study 
environment varies greatly from one individual to another. Try experimen­
ting with different environments to find out what is the most effective for you. 

As far as initial conditions are concerned, that is assumptions about your 
background, it is difficult to be precise, because you can probably get by with 
much less than the book might seem to indicate (see § 1.5). Added to which, 
there is a big difference between understanding a topic fully and only having 
some vague acquaintance with it. On the mathematical side, you certainly 



 

need to know calculus, up to and including partial differentiation, and 
solution of simple ordinary differential equations. Basic algebra is assumed 
and some matrix theory, although you can probably take eigenvalues and 
diagonalisation on trust. Familiarity with vectors and some exposure to 
vector fields is assumed. It would also be good to have met the ideas of a 
vector space and bases. We use Taylor's theorem a lot, but probably 
knowledge of Maclaurin's will be sufficient. On the Physics side, you obvi­
ously need to know Newton's laws and Newtonian gravitation. It would be 
helpful also to know a little about the potential formulation of gravitation 
(though, again, just the basics will do). The book assumes familiarity with 
electromagnetism (Maxwell's equations, in particular) and fluid dynamics 
(the Navier-Stokes equation, in particular), but neither of these are abso­
lutely essential. It would be very helpful to have met some ideas about waves 
(such as the fundamental relationship c = lv) and the wave equation in 
particular. In cosmology, it is assumed that you know something about basic 
astronomy. 

Having listed all these topics, then, if you are still unsure about your 
background,, my approach would be to say: try the book and see how you get 
on, if it gets beyond you (and it is not a level two section) press on for a bit 
and, if things do not get any better, then cut out. Hopefully, you may still have 
learnt a lot, and you can always come back to it when your background is 
stronger. In fact, it should not require much background to get started, for 
part A on special relativity assumes very little. After that you hit part B, and 
this is where your motivation will be seriously tested. I hope you make it 
through because the pickings on the other side are very rich indeed. So, 
finally, good luck! 

1.2 Acknowledgements 
Very little of this book is wholly original. When I drew up the notes, I decided 
from the outset that I would collect together the best approaches to the 
material which were known to me. Thus, to take an example right from 
the beginning of the book, I believe that the k-calculus provides the best 
introduction to special relativity, because it offers insight from the outset 
through the simple diagrams that can be drawn. Indeed one of the themes of 
this book is the provision of a large number of illustrative diagrams ( over 200 
in fact). The visual sense is the most immediate we possess and helps lead 
directly to a better comprehension. A good sl.lbtitle for the book would be, 
An approach to relativity theory via space-time pictures. The k-calculus is an 
approach developed by H. Bondi from the earlier ideas of A. Milne. My use of 
it is not surprising since I spent my years as a research student at King's 
College, London, in the era of Hermann Bondi and Felix Pirani, and many 
colleagues will detect their influences throughout the book. So the fact is that 
many of the approaches in the book have been borrowed from one author or 
another; there is little that I have written completely afresh. My intention has 
been to organize the material in such a way that it is the more readily 
accessible to the majority of students. 

General relativity has the reputation of being intellectually very de­
manding. There is the apocryphal story, I think attributed to Sir Arthur 
Eddington, who, when asked whether he believed it true that only three 
people in the world understood general relativity, replied, 'Who is the third?' 

1.2 Acknowledgements I 5 



 

6 I The organization of the book 

Indeed, the intellectual leap required by Einstein to move from the special 

theory to the general theory is, there can be little doubt, one of the greatest in 
the history of human thought. So it is not surprising that the theory has the 
reputation it does. However, general relativity has been with us for some 
three-quarters of a century and our understanding is such that we can now 
build it up in a series of simple logical steps. This brings the theory within the 
grasp of most undergraduates equipped with the right ba;,,kground. 

Quite clearly, I owe a huge debt to all the authors who have provided the 

source material for and inspiration of this book, However, I cannot make the 
proper detailed acknowledgements to all these authors, because some of them 
are not known even to me, and I would otherwise run the risk of leaving 
somebody out. Most of the sources can be found in the bibliography given at 

the end of the book, and some specific references can be found in the section 

on further reading. I sincerely hope I have not offended anyone (authors or 

publishers) in adopting this approach. I have written this book in the spirit 
that any explanation that aids understanding should ultimately reside in the 
pool of human knowledge and thence in the public domain. None the less, I 
would like to thank all those who, wittingly or unwittingly, have made this 
book possible. In particular, I would like to thank my old Oxford tutor, Alan 

Tayler, since it was largely his backing that led finally to the book being 

produced. In the process of converting the notes to a book, I have made a 
number of changes, and have added sections, further exercises, and answers. 

Consequently this new material, unlike the earlier, has not been vetted by the 
student body and it seems more than likely that it may contain errors of one 
sort or another. If this is the case, I hope that it does not detract too much 

from the book and, of course, I would be delighted to receive corrections from 
readers. However, I have sought some help and, in this respect, I would 

particularly like to thank my colleague James Vickers for a critical reading of 

much of the book. 
Having said I do not wish to cite my sources, I now wish to make one 

important exception. I think it would generally be accepted in the relativity 
community that the most authoritative text in existence in the field is 
The large scale structure of space-time by Stephen Hawking and George 
Ellis (published by Cambridge University Press). Indeed, this has taken on 

something akin to the status of the Bible in the field. However, it is written at 

a level which is perhaps too sophisticated for most undergraduates (in parts 
too sophisticated for most specialists!). When I compiled the notes, I had in 
mind the aspiration that they might provide a small stepping stone to 
Hawking and Ellis. In particular, I hoped it might become the next port of 
call for anyone wishing to pursue their interest further. To that end, and 

because I cannot improve on it, I have in places included extracts from that 

source virtually verbatim. I felt that, if students were to consult this text, then 
the familiarity of some of the material might instil confidence and encourage 

them to delve deeper. I am hugely indebted to the authors for allowing me to 
borrow from their superb book. 

1.3 A brief survey of relativity theory 

It might be useful, before embarking on the course proper, to attempt to give 
some impression of the areas which come under the umbrella of relativity 
theory. I have attempted this schematically in Fig. 1.1. This is a rather partial 
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Fig.1.1 An individual survey of relativity. 

Table 1.1 

and incomplete view, but should help to convey some idea of our planned 
route. Most of the topics mentioned are being actively researched today. Of 
course, they are interrelated in a much more complex way than the diagram 
suggests. GRO 1955 Bern, Switzerland 

~ 

Every few years since 1955 (in fact every three since 1959), the relativity 
community comes together in an international conference of general relat­
ivity and gravitation. The first such conference held in Berne in 1955 is now 
referred to as GRO, with the subsequent ones numbered accordingly. The list, 
to date, of the GR conferences is given in Table 1.1. At these conferences, 
there are specialist discussion groups which are held covering the whole area 
of interest. Prior to GR8, a list was published giving some detailed idea of 
what each discussion group would cover. This is presented below and may be 
used as an alternative to Fig. 1.1 to give an idea of the topics which comprise 
the subject. 

GRl 1957 Chapel Hill , North Carolina , USA 
GR2 1959 Royaumont, France 
GR3 1962 Jablonna, Poland 
GR4 1965 London, England 
GR5 1968 Tbilisi, USSR 
GR6 1971 Copenhagen, Denmark 
GR7 1974 Tel-Aviv, Israel 
GR8 1977 Waterloo, Canada 
GR9 1980 Jena, DDR 
GRlO 1983 Padua, Italy 
GRll 1986 Stockholm, Sweden 
GR12 1989 Boulder, Colorado, USA 
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I. Relativity and astrophysics 

Relativistic stars and binaries; pulsars and quasars; gravitational waves and 
gravitational collapse; black holes; X-ray sources and accretion models. 

II. Relativity and classical physics 

Equations of motion; conservation laws; kinetic theory; asymptotic flatness 
and the positivity of energy; Hamiltonian theory, Lagrangians, and field 
theory; relativistic continuum mechanics, electrodynamics, and thermo­
dynamics. 

III. Mathematical relativity 

Differential geometry and fibre bundles; the topology of manifolds; ap­
plications of complex manifolds; twistors; causal and conformal structures; 
partial differential equations and exact solutions; stability; geometric singu­
larities and catastrophe theory; spin and torsion: Einstein-Cartan theory. 

IV. Relativity and quantum physics 

Quantum theory on curved backgrounds; quantum gravity; gravitation and 
elementary particles; black hole evaporation; quantum cosmology. 

V. Cosmology 

Galaxy formation; super-clustering; cosmological consequences of spontan­
eous symmetry breakdown: domain structures; current estimates of cosmo­
logical parameters; radio source counts; microwave background; the isotropy 
of the universe; singularities. 

VI. Observational and experimental relativity 

Theoretical frameworks and viable theories; tests of relativity; gravitational 
wave detection; solar oblateness. 

VII. Computers in relativity 

Numerical methods; solution of field equations; symbolic manipulation 
systems in general relativity. 

1.4 Notes for the teacher 
In my twenty years as a university lecturer, I have undergone two major 
conversions which have profoundly affected the way I teach. These have, in 
their way, contributed to the existence of this book. The first conversion was 
to the efficacy of the printed word. I began teaching, probably like most of my 
colleagues, by giving lectures using the medium of chalk and talk. I soon 
discovered that this led to something of a conflict in that the main thing that 
students want from a course (apart from success in the exam) is a good set of 
lecture notes, whereas what I really wanted was that they should understand 
the course. The process of trying to give students a good set of lecture notes 
meant that there was, to me, a lot of time wasted in the process of note taking. 
I am sure colleagues know the caricature of the conventional lecture: notes 
are copied from the lecturer's notebook to the student's notebook without 
their going through the heads of-either-a definition which is perhaps too 



 

close for comfort. I was converted at an early stage to the desirability of 
providing students with printed notes. The main advantage is that it frees up 
the lecture period from the time-consuming process of note copying, and the 
time released can be used more effectively for developing and explaining the 
course at a rate which the students are able to cope with. I still find that there 
is something rather final and definitive about the printed word. This has the 
effect on me of making me think more carefully about what goes into a course 
and how best to organize it. Thus, printed notes have the added advantage of 
making me put more into the preparation of a course than I would have done 
otherwise. It must be admitted that there are some disadvantages with using 
printed notes, but this is not the place to elaborate on them. 

My second conversion was to the efficacy of self-study. This is a rather 
elaborate title for the concept of students studying and learning on their own 
from books or prepared materials. It is still a surprise to me just how little of 
this actually goes on in certain disciplines. And yet you would think that one 
of the main objectives of a university education is to teach students how to 
use books. My experience is that, in mathematics particularly, students find 
this hard to do. This is not so surprising since it requires high-level skills 
which many do not come to university equipped with. So one needs a 
mechanism which encourages students to use books. My first experience was 
in designing a Keller-type (self-paced) self-study course, where the students 
study from specially prepared units and are required to pass periodic tests 
before they move on to new topics. This eventually led me in other courses to 
use a coursework component counting towards a final assessment as a 
mechanism for helping to get students to study on their own. I have been 
involved in a good deal of research into this approach and the most frequent 
remark students make about coursework is that 'it gets me to work'. The 
coursework approach was particularly important in the design of the general 
relativity course for reasons which I believe are worth exploring. 

In the mid-1970s, there were very few undergraduate courses in general 
relativity in existence in the UK. Those that there were usually only got as far 
as the Schwarzschild solution and then stopped. This was because the bulk of 
the course was devoted to developing the necessary expertise in tensors and 
there did'not seem to be any short cut. This meant, from the viewpoint of 
both the student and the teacher, that the course ended just as things were 
beginning to get really interesting. It was clear to me that what students really 
wanted to know about most were the topics of black holes, gravitational 
waves, and cosmology. So, from the outset, the object was to design a course 
which made this possible. It was achieved by separating out what is Part B of 
this book as a self-study unit on tensors. The notes were distributed at the 
beginning of the course and the students were instructed to begin immedi­
ately working through the self-study part and attempting all the exercises. 
The fact that most students put in the bulk of their efforts in their other 
courses towards the end of these courses helped in this respect, since they 
were less heavily loaded at the outset. The students were offered some 
optional tutorials in case they got stuck (as some undertaking individual 
study for the first time invariably did). The inducement for doing the exercises 
was that they counted towards the final assessment (by some 35 per cent 
currently). The deadline for completing the exercises was set for about a third 
of the way through the course. While the students were busy in their own time 
working on the tensors, the lecture course began by revising the key ideas in 

1.4 Notes for the teacher I 9 
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special relativity. The special theory was then formulated in a tensorial way, 
making use of the new language and so providing some initial motivation. 
This was followed by a detailed and deliberate development of the principles 
underlying general relativity. Tensors are then used in earnest for the first 
time in deriving the equation of geodesic deviation of Chapter 10. It is by 
about this time that the students have gained considerable expertise in 
manipulating tensors and the lectures help to provide further motivation and 
consolidation. This device means that the Schwarzschild solution can be 
reached by not much more than half-way through the course. Another 
important advantage of printed lecture notes is that one has much more 
control over the speed at which the course is delivered, and one can to some 
extent tune the speed to fit the capabilities of the class. 

The Southampton course is some thirty-six lectures in length. In the early 
years, when the students had a good background in special relativity, I was 
able to cover all three end topics. Indeed, in the first year of operation, I 
ended up in the final week by organizing five seminars given by outside 
speakers which all the students attended and which attempted to show how 
the work we had covered related to some topics of current research interest. 
In more recent years, the preparation of the students in special relativity has 
been more patchy, and so I have taken this more on board and have been 
somewhat less ambitious. This has usually meant leaving out a topic such as 
rotating black holes or gravitational radiation. Of course, since these are 
contained in the notes, the students are able to fill in these gaps if they so 
choose. 

I have been encouraged to write up the notes in book form for a number of 
reasons. The course has been running for some fifteen years and several 
hundred students have been through it, so that I have a good deal of 
consumer experience to draw upon. Not only has the course proved popular, 
but it seems to have coped surprisingly successfully with students of a wide 
ability range. This may in part be because I have included many of the more 
detailed steps in the text itself (and where these have been left out they have 
often been relegated to straightforward exercises). In fact, the notes are sold to 
the students to cover the cost of production. It has been gratifying that each 
year a number of students who are not on the course, sometimes not even in a 
related discipline, but who have by chance come across the notes, purchase a 
copy for themselves. Finally, a number ofmy relativity colleagues both in the 
UK and abroad have asked for copies and used them in varying degrees in 
their own courses. So, despite the fact that there are a number of fine texts 
around in the area, I have agreed to present the notes in book form. I hope 
you, the teacher, find them a valuable resource in your teaching. 

1.5 A final note for the less able student 
I was far from being a child prodigy, and yet I learnt relativity at the age of 15! 
Let me elaborate. As testimony to my intellectual ordinariness, I had left my 
junior school at the age of 11 having achieved the unremarkable feat of 
coming 22nd in the class in my final set of examinations. Yet I really did know 
some relativity four years on -and I don't just mean the special theory, but 
the general theory (up to and including the Schwarzschild solution and the 
classical tests). I remember detecting a hint of disbelief when I recounted this 
to the same Alan Tayler, who was later to become my tutor, in an Oxford 



 

 
 
 
 

entrance interview. He followed up by asking me to define a tensor, and when 
I rattled off a definition, he seemed somewhat surprised. Indeed, as it turned 
out, we did not cover very much more than I first knew in the Oxford third 
year specialist course on general relativity. So how was this possible? 

I, too, had heard the s-tory about how only a few people in the world really 
understood relativity, and it had aroused my curiosity. I went to the local 
library and, as luck would have it, I pulled out a book entitled Einstein's 
Theory of Relativity by Lillian Lieber (1949). This is a very bizarre 
book in appearance. The book is not set out in the usual way but rather as 
though it were concrete poetry. Moreover, it is interspersed by surrealist 
drawings by Hugh Lieber involving the symbols from the text (Fig. L2). 
I must confess that at first sight the book looks rather cranky; but it is not. 
I worked through it, filling in all the details missing from the calculations as 
I went. What was amazing was that the book did not make too many 
assumptions about what mathematics the reader needed to know. For 
example, I had not then met partial differentiation in my school mathematics, 
and yet there was sufficient coverage in the book for me to cope. It felt almost 
as if the book had been written just for me. The combination of the intrinsic 
interest of the material and the success I had in doing the intervening 
calculations provided sufficient motivation for me to see the enterprise 
through to the end. 

Perhaps, if you consider yourself a less able student, you are a bit daunted 
by the intellectual challenge that lies ahead. I will not deny that the book 
includes some very demanding ideas (indeed, I do not understand every facet 
of all of these ideas myself). But I hope the two facts that the arguments are 
broken down into small steps and that the calculations are doable, will help 
you on your way. Even if you decide to cut out after part C, you will have 
come a long way. Take heart from my little story- I am certain that if you 
persevere you will consider it worth the effort in the end. 

Exercises 

Exercises I 11 

Fig. 1.2. 'The product of two tensors 
is equal to another' according to Hugh 
Lieber. 

1.1 (§1.3) Go to the library and see if you can locate current 
copies of the following journals: 

(i) General Relativity and Gravitation; 
(ii) Classical and Quantum Gravity; 

1.2 Look back through copies of Scientific American for 
future reference, to see what articles there have been in 
recent years on relativity theory, especially black holes, 
gravitational waves, and cosmology. 

(iii) Journal of Mathematical Physics; 
(iv) Physical Review D. 

See if you can relate any of the articles in them to any of the 
topics contained in Fig. 1.1. 

1.3 Read a biography of Einstein (see Part A of the Selected 
Bibliography at the end of this book). 



 
 



 
 
 

2.1 Model building 
Before we start, we should be clear what we are about. The essential activity 
of mathematical physics, or theoretical physics, is that of modelling or model 
building. The activity consists of constructing a mathematical model which 
we hope in some way captures the essentials of the phenomena we are 
investigating. I think we should never fail to be surprised that this turns out to 
be such a productive activity. After all, the first thing you notice about the 
world we inhabit is that it is an extremely complex place. The fact that so 
much of this rich structure can be captured by what are, in essence, a set of 
simple formulae is to me quite astonishing. Just think how simple Newton's 
universal law of gravitation is; and yet it encompasses a whole spectrum of 
phenomena from a falling apple to the shape of a globular cluster of stars. As 
Einstein said, 'The most incomprehensible thing about the world is that it is 
comprehensible.' 

The very success of the activity of modelling has, throughout the history of 
science, turned out to be counterproductive. Time and again, the successful 
model has been confused with the ultimate reality, and this in turn has 
stultified progress. Newtonian theory provides an outstanding example of 
this. So successful had it been in explaining a wide range of phenomena, that, 
after more than two centuries of success, the laws had taken on an absolute 
character. Thus it was that, when at the end of the nineteenth century it was 
becoming increasingly clear that something was fundamentally wrong with 
the current theories, there was considerable reluctance to make any funda­
mental changes to them. Instead, a number of artificial assumptions were 
made in an attempt to explain the unexpected phenomena. It eventually 
required the genius of Einstein to overthrow the prejudices of centuries and 
demonstrate in a. number of simple thought experiments that some of the 
most cherished assumptions of Newtonian theory were untenable. This he 
did in a number of brilliant papers written in 1905 proposing a theory which 
has become known today as the special theory of relativity. 

We should perhaps be discouraged from using words like right or wrong 
when discussing a physical theory. Remembering that the essential activity is 
model building, a model should then rather be described as good or bad, 
depending on how well it describes the phenomena it encompasses. Thus, 
Newtonian theory is an excellent theory for describing a whole range of 
phenomena. For example, if one is concerned with describing the motion of a 
car, then the Newtonian framework is likely to be the appropriate one. 
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However, it fails to be appropriate if we are interested in very high speeds 
(comparable with the speed oflight) or very intense gravitational fields (such 
as in the nucleus of a galaxy). To put it another way: together with every 
theory, there should go its range of validity. Thus, to be more precise, we 
should say that Newtonian theory is an excellent theory within its range of 
validity. From this point of view, developing our models of the physical world 
does not involve us in constantly throwing theories out, since they are 
perceived to be wrong, or unlearning them, but rather it consists more of a 
process of refinement in order to increase their range of validity. So the moral 
of this section is that, for all their remarkable success, one must not confuse 
theoretical models with the ultimate reality they seek to describe. 

2.2 Historical background 
In 1865, James Clerk Maxwell put forward the theory of electromagnetism. 
One of the triumphs of the theory was the discovery that light waves are 
electromagnetic in character. Since all other known wave phenomena re­
quired a material medium in which the oscillations were carried, it was 
postulated that there existed an all-pervading medium, called the 'lumini­
ferous ether', which carried the oscillations of electromagnetism. It was then 
anticipated that experiments with light would allow the absolute motion of a 
body through the ether to be detected. Such hopes were upset by the null 
result of the famous Michelson-Morley experiment (1881) which attempted 
to measure the velocity of the earth relative to the ether and found it to be 
undetectably small. In order to explain this null result, two ad hoc hypotheses 
were put forward by Lorentz, Fitzgerald, and Poincare (1895), namely, the 
contraction of rigid bodies and the slowing down of clocks when moving 
through the ether. These effects were contained is some simple formulae 
called the 'Lorentz transformations'. This would affect every apparatus 
designed to measure the motion relative to the ether so as to neutralize 
exactly all expected results. Although this theory was consistent with the 
observations, it had the philosophical defect that its fundamental assump­
tions were unverifiable. 

In fact, the essence of the special theory of relativity is contained in the 
Lorentz transformations. However, Einstein was able to derive them from 
two postulates, the first being called the 'principle of special relativity' - a 
principle which Poincare had also suggested independently in 1904- and 
the second concerning the constancy of the velocity of light. In so doing, he 
was forced to re-evaluate our ideas of space and time and he demonstrated 
through a number of simple thought experiments that the source of the 
limitations of the classical theory lay in the concept of simultaneity. Thus, 
although in a sense Einstein found nothing new in that he rederived the 
Lorentz transformations, his derivation was physically meaningful and in the 
process revealed the inadequacy of some of the fundamental assumptions of 
classical thought. Herein lies his chief contribution. 

2.3 Newtonian framework 
We start by outlining the Newtonian framework. An event intuitively means 
something happening in a fairly limited region of space and for a short 
duration in time. Mathematically, we idealize this concept to become a point 
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in space and an instant in time. Everything that happens in the universe is an 
event or collection of events. Consider a train travelling from one station P to 
another R, leaving at 10 a.m. and arriving at 11 a.m. We can illustrate this in 
the following way: for simplicity, let us assume that the motion takes place in 
a straight line (say along the x-axis (Fig. 2.1); then we can represent the 
motion by a space-time diagram (Fig. 2.2) in which we plot the position of 
some fixed point on the train, which we represent by a pointer, against time. 
The curve in the diagram is called the history or world-line of the pointer. 
Notice that at Q the train was stationary for a period. 

We shall call individuals equipped with a clock and a measuring rod or 
ruler observers. Had we looked out of the train window on our journey at a 
clock in a passing station then we would have expected it to agree with our 
watch. One of the central assumptions of the Newtonian framework is that 
two observers wiJJ, once they have synchronized their clocks, always agree 
about the time of an event, irrespective of their relative motion. This implies 
that for all observers time is an absolute concept. In particular, all observers 
can agree on an origin of time. In order to fix an event in space, an observer 
may choose a convenient origin in space together with a set of three Cartesian 
coordinate axes. We shall refer to an observer's clock, ruler, and coordinate 
axes as a frame of reference (Fig. 2.3). Then an observer is able to coordina­
tize events, that is, determine the time t an event occurs and its relative 
position (x, y, z). 

We have set the stage with space and time; they provide the backcloth, but 
what is the story about? The stuff which provides the events of the universe is 
matter. For the moment, we shall idealize lumps of matter into objects called 
bodies. If the body has no physical extent, we refer to it as a particle or point 
mass. Thus, the role of observers in Newtonian theory is to chart the history 
of bodies. 

2.4 Galilean transformations 
Now, relativity theory is concerned with the way different observers see the 
same phenomena. One can ask: are the laws of physics the same for all 
observers or are there preferred states of motion, preferred reference systems, 
and so on? Newtonian theory postulates the existence of preferred frames of 
reference. This is contained essentially in the first law, which we shall call Nl 
and state in the following form: 

Thus, there exists a privileged set of bodies, namely those not acted on by 
forces. The frame of reference of a co-moving observer is called an inertial 
frame (Fig. 2.4). It follows that, once we have found one inertial frame, then all 
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Fig. 2.1 Train travels in straight line. 
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Fig. 2.2 Space-time diagram of pointer. 
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Fig. 2.3 Observer's frame of reference. 
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Fig. 2.4 Two observed bodies and their 
inertial frames. 

Fig. 2.5 Two frames in standard 
configuration at time t. z 
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others are at rest or travel with constant velocity relative to it (for otherwise 
Newton's first law would no longer be true). The transformation which 
connects one inertial frame with another is called a Galilean transformation. 
To fix ideas, let us consider two inertial frames called S and S' in standard 
configuration, that is, with axes parallel and S' moving along S's positive x­
axis with constant velocity (Fig. 2.5). We also assume that the observers 
synchronize their clocks so that the origins of time are set when the origins of 
the frames coincide. It follows from Fig. 2.5 that the Galilean transformation 
connecting the two frames is given by 

The last equation provides a manifestation of the assumption of absolute 
time in Newtonian theory. Now, Newton's laws hold only in inertial frames. 
From a mathematical viewpoint, this means that Newton's laws must be 
invariant under a Galilean transformation. 

2.5 The principle of special relativity 
We begin by stating the relativity principle which underpins Newtonian 
theory 
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This means that, if one inertial observer carries out some dynamical ex­
periments and discovers a physical law, then any other inertial observer 
performing the same experiments must discover the same law. Put another 
way, these laws must be invariant under a Galilean transformation. That is to 
say, if the law involves the coordinates x, y, z, t of an inertial observer S, then 
the law relative to another observer S' will be the same with x, y, z, t replaced 
by x', y', z', t', respectively. Many fundamental principles of physics are 
statements of impossibility, and the above statement of the relativity princi­
ple is equivalent to the statement of the impossibility of deciding, by per­
forming dynamical experiments, whether a body is absolutely at rest or in 
uniform motion. In Newtonian theory, we cannot determine the absolute 
position in space of an event, but only its position relative to some other 
event. In exactly the same way, uniform velocity has only a relative signifi­
cance; we can only talk about the velocity of a body relative to some other. 
Thus, both position and velocity are relative concepts. 

Einstein realized that the principle as stated above is empty because there 
is no such thing as a purely dynamical experiment. Even on a very elementary 
level, any dynamical experiment we think of performing involves observation, 
i.e. looking, and looking is a part of optics, not dynamics. In fact, the more 
one analyses any one experiment, the more it becomes apparent that practic­
ally all the branches of physics are involved in the experiment. Thus, Einstein 
took the logical step of removing the restriction of dynamics in the principle 
and took the following as his first postulate. 

Hence we see that this principle is in no way a contradiction of Newtonian 
thought, but rather constitutes its logical completion. 

2.6 The constancy of the velocity of light 
We previously defined an observer in Newtonian theory as someone equip­
ped with a clock and ruler with which to map the events of the universe. 
However, the approach of the k-calculus is to dispense with the rigid ruler 
and use radar methods for measuring distances. (What is rigidity anyway? If a 
moving frame appears non-rigid in another frame, which, if either, is the rigid 
one?) Thus, an observer measures the distance of an object by sending out a 
light signal which is reflected off the object and received back by the observer. 
The distance is then simply defined as half the time difference between 
emission and reception. Note that by this method distances are measured in 
intervals of time, like the light year or the light second ( ~ 1010 cm). 

Why use light? The reason is that we know that the velocity of light is 
independent of many things. Observations from double stars tell us that the 
velocity of light in vacuo is independent of the motion of the sources as well as 
independent of colour, intensity, etc. For, if we suppose that the velocity of 
light were dependent on the motion of the source relative to an observer (so 
that if the source was coming towards us the light would be travelling faster 
and vice versa) then we would no longer see double stars moving in Keplerian 
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orbits (circles, ellipses) about each other: their orbits would appear distorted; 
yet no such distortion is observed. There are many experiments which 
confirm this assumption. However, these were not known to Einstein in 1905, 
who adopted the second postulate purely on heuristic grounds. We state the 
second postulate in the following form. 

Or stated another way: there is no overtaking oflight by light in empty space. 
The speed of light is conventionally denoted by c and has the exact numerical 
value 2.997 924 580 x 108 ms - 1, but in this chapter we shall adopt relativistic 
units in which c is taken to be unity (i.e. c = 1). Note, in passing, that another 
reason for using radar methods is that other methods are totally impractic­
able for large distances. In fact, these days, distances from the Earth to the 
Moon and Venus can be measured very accurately by bouncing radar signals 
off them. 

2. 7 The k-factor 
For simplicity, we shall begin by working in two dimensions, one spatial 
dimension and one time dimension. Thus, we consider a system of observers 
distributed along a straight line, each equipped with a clock and a flashlight. 
We plot the events they map in a two-dimensional space-time diagram. Let us 
assume we have two observers, A at rest and B moving away from A with 
uniform (constant) speed. Then, in a space-time diagram, the world-line of A 

will be represented by a vertical straight line and the world-line of B by a 
straight line at an angle to A's, as shown in Fig. 2.6. 

A light signal in the diagram will be denoted by a straight line making an 
angle ¼n with the axes, because we are taking the speed of light to be 1. Now, 
suppose A sends out a series of flashes of light to B, where the interval 
between the flashes is denoted by T according to A's clock. Then it is 
plausible to assume that the intervals of reception by B's clock are propor­
tional to T, say kT. Moreover, the quantity k, which we call the k-factor, is 

B 

Time 
A B 

T 
~---- ---- -space 

Fig. 2.6 The world-lines of observers A Fig. 2.7 The reciprocal nature of the 
and 8. k-factor. 
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clearly a characteristic of the motion ofB relative to A. We now assume that if 
A and Bare inertial observers, then k is a constant in time. (In fact, there is a 

t, 
hidden assumption here, since how do we know that B's world-line will be a 
straight line as indicated in the diagram? Strictly speaking, we are assuming 
that there is a linear relationship between the space and time coordinates of A 
and B.) Then the principle of special relativity requires that the relationship 
between A and B must be reciprocal, so that, if B emits two signals with a time 
lapse of T according to B's clock, then A receives them after a time lapse of kT 
according to A's clock (Fig. 2.7). Note that, from B's point of view, A is 
moving away from B with the same relative speed. 

Observer A assigns coordinates to an event P by bouncing a light signal off 
it. So that if a light signal is sent out at a time t = t 1 , and received back at a 
time t = t2 (Fig. 2.8), then, according to our radar definition of distances, the 
coordinates of P are given by 

(t, x) = (½(t1 + t2), ½(t2 - t1)), 

remembering that the velocity of light is 1. 
We now use the k-factor to develop the k-calculus. 

2.8 Relative speed of two inertial observers 

(2.2) 

P(t,x) 

L---------x 

Fig. 2.8 Coordinatizing events. 

A B Consider the configuration shown in Fig. 2.9 and assume that A and B 
synchronize their clocks to zero when they cross at event 0. After a time T, A 
sends a signal to B, which is reflected back at event P. From B's point of view, 
a light signal is sent to A after a time lapse of kT by B's clock. It follows from 
the definition of the k-factor that A receives this signal after a time lapse of 
k(kT). Then, using (2.2) with t 1 = Tand t2 = k2 T, we find the coordinates of 
P according to A's clock are given by k'T 

(t,x) = (½(k2 + l)T,½(k2 - l)T). (2.3) 

Thus, as Tvaries, this gives the coordinates of the events which constitute B's 
world-line. Hence, if v is the velocity of B relative to A, we find 

X k2 - 1 
V=t=k2+1· 

Solving for k in terms of v, and noting from the diagram that k must be 
greater than 1 if the observers are separating, we find 

We shall see in the next chapter that this is the usual relativistic formula for 
the radial Doppler shift. If B is moving away from A then k > 1 which 
represents a 'red' shift, whereas if B is approaching A then k < 1 which 
represents a 'blue' shift. Note that the transformation v -+ -v corresponds to 
k ➔ l/k. Moreover, 

v = 0 = k = 1, 

Fig. 2.9 Relating the k-factor to the rela­
tive speed of separation. 

T 

T 

T 

as we should expect for observers relatively at rest: once they have syn- Fig. 2.10 Observers relatively at rest 
chronized their clocks, the synchronization remains (Fig. 2.10). (k = 1). 
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A 

T 

Fig. 2.11 Composition of k-factors. 

2.9 Composition law for velocities 
Consider the situation in Fig. 2.11, where kAB denotes the k-factor between A 
and B, with kBc and kAc defined similarly. It follows immediately that 

kAc = kABkBc· (2.5) 

Using (2.4), we find the corresponding composition law for velocities: 

This formula has been confirmed by Fizeau's experiment in which the speed 
of light in a moving fluid is measured and turns out not to be simply the sum 
of the speed of light and the moving fluid but rather obeys the more 
complicated law (2.6) to higher order. Note that, if vAB and vBc are small 
compared with the speed of light, i.e. 

then we obtain the classical Newtonian formula 

to lowest order. Although the composition law for velocities is not simple, the 
one for k-factors is, and in special relativity it is the k-factors which are the 
directly measurable quantities. Note also that, formally, if we substitute 
vBc = 1, representing the speed of a light signal relative to B, in (2.6), then the 
resulting speed of the light signal relative to A is 

V,tB + 1 1 
V,tc=-1+ =, 

VAB 

in agreement with the constancy of the velocity of light postulate. 
From the composition law, we can show that, if we add two speeds less 

than the speed of light, then we again obtain a speed less than the speed of 
light. This does not mean, as is sometimes stated, that nothing can move 
faster than the speed of light in special relativity, but rather that the speed of 
light is a border which can not be crossed or even reached. More precisely, 
special relativity allows for the existence of three classes of particles. 

1. Particles that move slower than the speed of light are called subluminal 
particles. They include material particles and elementary particles such as 
electrons and neutrons. 

2. Particles that move with the speed of light are called luminal particles. 
They include the carrier of the electromagnetic field interaction, the 
photon, and theoretically the carrier of the gravitational field interaction, 
called the graviton. These are both particles with zero rest mass (see §4.5). 
It was thought that neutrinos also had zero rest mass, but more recent 
evidence suggests they may have a tiny mass. 

3. Particles that move faster than the speed of light are called superluminal 
particles or tachyons. There was some excitement in the 1970s surround­
ing the possible existence of tachyons, but all attempts to detect them to 
date have failed. This suggests two likely possibilities: either tachyons do 



 

2.10 The relativity of simultaneity I 23 

not exist or, if they do, they do not interact with ordinary matter. This 
would seem to be just as well, for otherwise they could be used to signal 
back into the past and so would appear to violate causality. For example, 
it would be possible theoretically to construct a device which sent out a 
tachyon at a given time and which would trigger a mechanism in the 
device to blow it up before the tachyon was sent out! 

2.10 The relativity of simultaneity 
Consider two events P and Q which take place at the same time, according to 
A, and also at points equal but opposite distances away. A could establish 
this by sending out and receiving the light rays as shown in Fig. 2.12 
(continuous lines). Suppose now that another inertial observer B meets A at 
the time these events occur according to A. B also sends out light rays RQU 
and SPV to illuminate the events, as shown (dashed lines). By symmetry 
RU = SV and so these events are equidistant according to B. However, the 
signal RQ was sent before the signal SP and so B concludes that the event Q 
took place well before P. Hence, events that A judges to be simultaneous, B 
judges not to be simultaneous. Similarly, A maintains that P, 0, and Q 
occurred simultaneously, whereas B maintains that they occurred in the 
order Q, then 0, and then P. 

This relativity of simultaneity lies at the very heart of special relativity and 
resolves many of the paradoxes that the classical theory gives rise to, such as 
the Michelson-Morley experiment. Einstein realized the crucial role that 
simultaneity plays in the theory and gave the following simple thought 
experiment to illustrate its dependence on the observer. Imagine a train 
travelling along a straight track with velocity v relative to an observer A on 
the bank of the track. In the train, Bis an observer situated at the centre of 
one of the carriages. We assume that there are two electrical devices on the 
track which are the length of the carriage apart and equidistant from A. 
When the carriage containing B goes over these devices, they fire and activate 
two light sources situated at each end of the carriage (Fig. 2.13). From the 
configuration, it is clear that A will judge that the two events, when the light 
sources first switch on, occur simultaneously. However, B is travelling 
towards the light emanating from light source 2 and away from the light 
emanating from light source 1. Since the speed oflight is a constant, B will see 
the light from source 2 before seeing the light from source 1, and so will 
conclude that one light source comes on before the other. 

V 

Firing device 1 ___ _,,..- Firing device 2 
X X 

B 

Fig. 2.12 Relativity of simultaneity. 

Fig. 2.13 Light signals emanating from 
the two sources. 
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'Light cone' 

Fig. 2.14 Event relationships in special 
relativity. 

A 

p 

'~/ 
Fig. 2.15 The clock paradox. 

Fig. 2.16 Spatial analogue of clock 
paradox. 

We can now classify event relationships in space and time in the following 
manner. Consider any event O on A's world-line and the four regions, as 
shown in Fig. 2.14, given by the light rays ending and commencing at 0. Then 
the event E is on the light ray leaving 0 and so occurs after 0. • Any other 
inertial observer agrees on this; that is, no observer sees E illuminated before 
A sends out the signal from 0. The fact that E is illuminated (because A 
originally sends out a signal at 0) subsequent to 0 is a manifestation of 
causality-the event O ultimately causes the event E. Similarly, the event F 
can be reached by an inertial observer travelling from 0 with finite speed. 
Again, all inertial observers agree that F occurs after 0. Hence all the events 
in this region are called the absolute future of 0. In the same way, any event 
occurring in the region vertically below takes place in O's absolute past. 

However, the temporal relationship to 0 of events in the other two regions, 
called elsewhere (or sometimes the relative past and relative future) will not 
be something all observers will agree upon. For example, one class of 
observers will say that G took place after 0, another class before, and a third 
class will say they took place simultaneously. The light rays entering and 
leaving 0 constitute what is called the light cone or null cone at 0 (the fact 
that it is a cone will become clearer later when we take all the spatial 
dimensions into account). Note that the world-line of any inertial observer or 
material particle passing through O must lie within the light cone at 0. 

2.11 The clock paradox 
Consider three inertial observers as shown in Fig. 2.15, with the relative 
velocity V,4.c = -v,4.8, Assume that A and B synchronize their clocks at O and 
that C's clock is synchronized with B's at P. Let B and C meet after a time T 

according to B, whereupon they emit a light signal to A. According to the 
k-calculus, A receives the signal at R after a time kT since meeting B. 

Remembering that C is moving with the opposite velocity to B (so that 
k ➔ k - 1 ), then A will meet C at Q after a subsequent time lapse of k- 1 T. The 
total time that A records between events O and Q is therefore (k + k- 1 ) T. For 
k =I 1, this is greater than the combined time intervals 2T recorded between 
events OP and PQ by Band C. But should not tJie time lapse between the two 
events agree? This is one form of the so-called clock paradox. 

However, it is not really a paradox, but rather what it shows is that in 
relativity time, like distance, is a route-dependent quantity. The point is that 
the 2T measurement is made by two inertial observers, not one. Some people 
have tried to reverse the argument by setting B and C to rest, but this is not 
possible since they are in relative motion to each other. Another argument 
says that, when Band C meet, C should take B's clock and use it. But, in this 
case, the clock would have to be accelerated when being transferred to C and 
so it is no longer inertial. Again, some opponents of special relativity (e.g. 
H. Dingle) have argued that the short period of acceleration should not make 
such a difference, but this is analogous to saying that a journey between two 
points which is straight nearly all the time is about the same length as one 
which is wholly straight (as shown), which is absurd (Fig. 2.16). The moral is 
that in special relativity time is a more difficult concept to work with than the 
absolute time of Newton. 

A more subtle point revolves around the implicit assumption that the 
clocks of A and B are 'good' clocks, i.e. that the seconds of A's clock are the 
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same as those of B's clock. One suggestion is that A has two clocks and 
adjusts the tick rate until they are the same and then sends one of them to Bat 
a very slow rate of acceleration. The assumption here is that the very slow 
rate of acceleration will not affect the tick rate of the clock. However, what is 
there to say that a clock may not be able to somehow add up the small bits of 
acceleration and so affect its performance. A more satisfactory approach 
would be for A and B to use identically constructed atomic clocks (which is 
after all what physicists use today to measure time). The objection then arises 
that their construction is based on ideas in quantum physics which is, a priori, 
outside the scope of special relativity. However, this is a manifestation of a 
point raised earlier, that virtually any real experiment which one can imagine 
carrying out involves more than one branch of physics. The whole structure is 
intertwined in a way which cannot easily be separated. 

2.12 The Lorentz transformations 
We have derived a number of important results in special relativity, which 
only involve one spatial dimension, by use of the k-calculus. Other results 
follow essentially from the trahsformations connecting inertial observers, the 
famous Lorentz transformations. We shall finally use the k-calculus to derive 
these transformations. 

Let event P have coordinates (t, x) relative to A and (t', x') relative to B 
(Fig. 2.17). Observer A must send out a light ray at time t - x to illuminate P 
at time t and also receive the reflected ray back at t + x (check this from 
(2.2)). The world-line of A is given by x = 0, and the origin of A's time 
coordinate tis arbitrary. Similar remarks apply to B, where we use primed 
quantities for B's coordinates (t', x'). Assuming A and B synchronize their 
clocks when they meet, then the k-calculus immediately gives 

t' - x' = k(t - x), t + x = k(t' + x'). (2.7) 

After some rearrangement, and using equation (2.4), we obtain the so-called 
special Lorentz transformation 

This is also referred to as a boost in the x-direction with speed v, since it takes 
one from A's coordinates to B's coordinates and B is moving away from A 
with speed v. Some simple algebra reveals the result (exercise) 

showing that the quantity t2 - x 2 is an invariant under a special Lorentz 
transformation or boost. 

To obtain the corresponding formulae in the case of three spatial dimen­
sions we consider Fig. 2.5 with two inertial frames in standard configuration. 
Now, since by assumption the xz-plane (y = 0) of A must coincide with the 
x'z'-plane (y' = 0) of B, then they and y' coordinates must be connected by a 
transformation of the form 

y = ny', (2.9) 

t-x 

8 

p (t,x) 
(r,x') 

Fig. 2.17 Coordinatization of events by 
inertial observers. 
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Fig. 2.18 The x- and y-axes reversed in 
Fig. 2.5. 

Fig. 2.19 Figure 2.18 from B's poir:it of 
view. 

y' y 

~------------------~-,' ' 
z' z 

because 
y =0 <-> y' =0. 

We now make the assumption that space is isotropic, that is, it is the same in 
any direction. We then reverse the direction of the x- and y-axes of A and B 
and consider the motion from B's point of view (see Figs. 2.18 and 2.19). 
Clearly, from B's point of view, the roles of A and B have interchanged. 
Hence, by symmetry, we must have 

y' = ny. (2.10) 

Combining (2.9) and (2.10), we find 

n2 = 1 => n = ± 1. 

The negative sign can be dismissed since, as v-+ 0, we must have y' -+ y, in 
which case n = 1. Hence, we find y' = y, and a similar argument for z 
produces z' = z. 

2.13 The four-dimensional woa:ld view 
We now compare the special Lorentz transformation of the last section in 
relativistic units with the Galilean transformation connecting inertial ob­
servers in standard configuration (see Table 2.1). In a Galilean trans­
formation, the absolute time coordinate remains invariant. However, in a 

Table 2.1 

Galilean transformation 

t' = t 

x' = x- vt 

Y'=Y 
Z'=Z 

Lorentz transformation 

t- vx 
t'=--­

(1 - v2); 

x- vt 
X'=---

(1 - v2 )t 

y ' =y 

Z '= Z 
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Lorentz transformation, the time and space coordinates get mixed up (note 
the symmetry in x and t). In the words of Minkowski, 'Henceforth space by 
itself, and time by itself are doomed to fade away into mere shadows, and only 
a kind of union of the two will preserve an independent reality.' 

In the old Newtonian picture, time is split off from three-dimensional 
Euclidean space. Moreover, since we have an absolute concept of simu­
ltaneity, we can consider two simultaneous events with coordinates 
(t, Xi, Yi, zi) and (t, x 2 , y2 , z2), and then the square of the Euclidean distance 
between them, 

(2.11) 

is invariant under a Galilean transformation. In the new special relativity 
picture, time and space merge together into a four-dimensional continuum 
called space-time. In this picture, the square of the interval between any two 
events (ti, Xi, Yi, zi) and (t2 , x 2 , y2 , z2 ) is defined by 

s2 = (ti - t2)2 - (xi - x2)2 - (Yi - Y2)2 - (zi - z2)2, (2.12) 

and it is this quantity which is invariant under a Lorentz transformation. 
Note that we always denote the square of the interval by s2, but the quantity s 
is only defined if the right-hand side of (2.12) is non-negative. If we consider 
two events separated infinitesimally, (t, x, y, z) and (t + dt, x + dx, y + dy, 
z + dz), then this equation becomes 

where all the infinitesimals are squared in (2.13). A four-dimensional space­
time continuum in which the above form is invariant is called Minkowski 
space-time and it provides the background geometry for special relativity. 

So far, we have only met a special Lorentz transformation which connects 
two inertial frames in standard configuration. A full Lorentz transformation 
connects two frames in general position (Fig. 2.20). It can be shown that a full 
Lorentz transformation can be decomposed into an ordinary spatial rotation, 
followed by a boost, followed by a further ordinary rotation. Physically, the 
first rotation lines up the x-axis of S with the velocity v of S'. Then a boost in 

y' 

x' 

Fig. 2.20 Two frames in general position. 
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this direction with speed v transforms S to a frame which is at rest relative to 
S'. A final rotation lines up the coordinate frame with that of S'. The spatial 
rotations introduce no new physics. The only new physical information arises 
from the boost and that is why we can, without loss of generality, restrict our 
attention to a special Lorentz transformation. 

Exercises 

2.1 (§2.4) Write down the Galilean transformation from 
observer S to observer S', where S' has velocity v1 relative to 
S. Find the transformation from S' to Sand state in simple 
terms how the transformations are related. Write down the 
Galilean transformation from S' to S", where S" has velocity 
v2 relative to S'. Find·the transformation from S to S". Prove 
that the Galilean transformations form an Abelian (com­
mutative) group. 

2.2 (§2,7) Draw the four fundamental k-factor diagrams 
(see Fig. 2. 7) for the cases of two inertial observers A and B 
approaching and receding with uniform velocity v: 

(i) as seen by A; 
(ii) as seen by B. 

2.3 (§2.8) Show that v -+ - v corresponds to k -+ k- 1. If 
k > 1 corresponds physically to a red shift of recession, what 
does k < 1 correspond to? 

2.4 (§2.9) Show that (2.6) follows from (2.5). Use the com­
position law for velocities to prove that if O < v AB < 1 and 
0 < VBc < 1, then O < VAc < 1. 

2.5 (§2.9) Establish the fact that if v AB and Vac are small 
compared with the velocity of light, then the composition 
law for velocities reduces to the standard additive law of 
Newtonian theory. 

2.6 (§2.10) In the event diagram of Fig. 2.14, find a geomet­
rical construction for the world-line of an inertial observer 
passing through 0 who considers event G as occurring 

simultaneously with 0. Hence describe the world-lines of 
inertial observers passing through 0 who consider G as 
occurring before or after 0. 

2.7 (§2.11) Draw Fig. 2.15 from B's point of view. Co­
ordinatize the events 0, R, and Q with respect to Band find 
the times between 0 and R, and R and Q, and compare them 
with A's timings. 

2.8 (§2.12) Deduce (2.8) from (2.7). Use (2.7) to deduce 
directly that 

Confirm the equality under the transformation formula (2.8). 

2.9 (§2.12) In S, two events occur at the origin and a 
distance X along the x-axis simultaneously at t = 0. The 
time interval between the events in S' is T. Show that the 
spatial distance between the events in S' is (X2 + T 2)½ 
and determine the relative velocity v of the frames in terms of 
X and T. 

2.10 (§2.13) Show that the interval between two events 
(t1,X1, Y1,zil and (t2,X2,Y2,z2) defined by 

s2 = (t1 - t2)2 - (x, - X2)2 - (Yi - Y2l2 - (z, - Z2)2 

is invariant under a special Lorentz transformation. 
Deduce the Minkowski line element (2.13) for infinitesimally 
separated events. What does s2 become if t1 = t2, and how is 
it related to the Euclidean distance <1 between the two 
events? 



 
 
 

3.1 Standard derivation of the Lorentz 
transformations 

We start this chapter by deriving again the Lorentz transformations, but 
this time by using a more standard approach. We shall· work in non­
relativistic units in which the speed of light is denoted by c. We restrict 
attention to two inertial observers S and S' in standard configuration. As 
before, we shall show that the Lorentz transformations follow from the two 
postulates, namely, the principle of special relativity and the constancy of the 
velocity of light. 

Now, by the first postulate, if the observer S sees a free particle, that is, a 
particle with no forces acting on it, travelling in a straight line with constant 
velocity, then so will S'. Thus, using vector notation, it follows that under a 
transformation connecting the two frames 

r = ro + ut -= r' = ro + u't'. 

Since straight lines get mapped into straight lines, it suggests that the 
transformation between the frames is linear and so we shall assume that the 
transformation from S to S' can be written in matrix form 

(3.1) 

where Lis a 4 x 4 matrix of quantities which can only depend on the speed of 
separation v. Using exactly the same argument as we used at the end of 
§2.12, the assumption that space is isotropic leads to the transformations of y 
and z being 

y' = y and z' = z. (3.2) 

We next use the second postulate. Let us assume that, when the origins of S 
and S' are coincident, they zero their clocks, i.e. t = t' = 0, and emit a flash of 
light. Then, according to S, the light flash moves out radially from the origin 
with speed c. The wave front of light will constitute a sphere. If we 
define the quantity I by 

I(t, x, y, z) = x 2 + y 2 + z 2 - c2 t 2 , 

then the events comprising this sphere must satisfy I = 0. By the second 
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Fig. 3.1 A rotation in (x, T)-space. 

postulate, S' must also see the light move out in a spherical wave front with 
speed c and satisfy 

I'= x'z + y'2 + z'2 - c2t'2 = 0. 

Thus it follows that, under a transformation connecting Sand S', 

I = 0 -= I' = 0, (3.3) 

and since the transformation is linear by (3.1), we may conclude 

I = nl', (3.4) 

where n is a quantity which can only depend on v. Using the same argument 
as we did in §2.12, we can reverse the role of S and S' and so by the relativity 
principle we must also have 

I'= nl. (3.5) 

Combining the last two equations we find 

n2 = 1 => n = ± l. 
In the limit as v -+ 0, the two frames coincide and I' -+ I, from which we 
conclude that we must take n = 1. 

Substituting n = 1 in (3.4), this becomes 

x2 + Y2 + z2 _ c2t2 = x'2 + y'2 + z'2 _ c2t'2, 

and, using (3.2), this reduces to 

We next introduce imaginary time coordinates T and T' defined by 

T=ict, 

T' = ict', 

in which case equation (3.6) becomes 

x2 + r2 = x'2 + T'z. 

(3.6) 

(3.7) 

(3.8) 

In a two-dimensional (x, T)-space, the quantity x 2 + T 2 represents the 
distance of a point P from the origin. This will only remain invariant under a 
rotation in (x, T)-space (Fig. 3.1 ). If we denote the angle of rotation by 0, then 
a rotation is given by 

x' = xcos0 + Tsin0, 

T' = -xsin0 + Tcos0. 

(3.9) 

(3.10) 

Now, the origin of S' (x' = 0), as seen by S, moves along the positive x-axis of 
S with speed v and so must satisfy x = vt. Thus, we require 

x' = 0 -= x = vt -= x = vT/ic, 

using (3.7). Substituting this into (3.9) gives 

tan0 = iv/c, (3.11) 

from which we see that the angle 0 is imaginary as well. We can obtain an 
expression for cos 0, using 
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If we use the conventional symbol /3 for this last expression, i.e. 

where the symbol = here means 'is defined to be', then (3.9) gives 

x' = cos0(x + Ttan0) = f3[x + ict(iv/c)] = f3(x - vt). 

Similarly, (3.10) gives 

T' = ict' = cos 0( - x tan e + T) = f3 [ -x(iv/c) + ict], 

from which we find 
t' = /3(t - vx/c 2 ). 

Thus, collecting the results together, we have rederived the special Lorentz 
transformation or boost (in non-relativistic units): 

If we put c = 1, this takes the same form as we found in §2.13. 

3.2 Mathematical properties of 
Lorentz transformations 

From the results of the last section, we find the following properties of a 
special Lorentz transformation or boost. 

1. Using the imaginary time coordinate T, a boost along the x-axis of 
speed v is equivalent to an imaginary rotation in (x, T)-space through an 
angle e given by tan e = iv/c. 

2. If we consider v to be very small compared with c, for which we use the 
notation v ~ c, and neglect terms of order v2/c 2, then we regain a Galilean 
transformation 

t' = t, x' = x - vt, y' =y, z' = z. 

We can obtain this result formally by taking the limit c ➔ oo in (3.12). 

3. If we solve (3.12) for the unprimed coordinates, we get 

t = f3(t' + vx' /c 2 ), x = f3(x' + vt'), y = y', z = z'. 

This can be obtained formally from (3.12) by interchanging primed and 
unprimed coordinates and replacing v by - v. This we should expect from 
physical reasons, since, if S' moves along the positive x-axis of S with speed v, 
then S moves along the negative x'-axis ofS' with speed v, or, equivalently, S 
moves along the positive x' -axis of S' with speed - v. 

4. Special Lorentz transformations form a group: 
(a) The identity element is given by v = 0. 
(b) The inverse element is given by -v (as in 3 above). 
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Fig. 3.2 A rod moving with velocity v 

Telative to S. 

(c) The product of two boosts with velocities v and v' is another boost with 

velocity v". Since v and v' correspond to rotations in (x, T)-space of 0 and 
0', where 

tan0 = iv/c and tan0' = iv'/c, 

then their resultant is a rotation of 0" = 0 + 0', where 

. "/ _ 0,, _ (0 0,)- tan0 + tan0' 
w c - tan - tan + - 1 0 0, , 

- tan tan 

from which we find 
,, v + v' 

V =----
1 + vv' /c 2 • 

Compare this with equation (2.6) in relativistic units. 
(d) Associativity is left as an exercise. 

5. The square of the infinitesimal interval between infinitesimally separ­
ated events (see (2.13)), 

is invariant under a Lorentz transformation. 

We now turn to the key physical attributes of Lorentz transformations. 
Throughout the remaining sections, we shall assume that S and S' are in 
standard configuration with non-zero relative velocity v. 

3.3 Length contraction 
Consider a rod fixed in S' with endpoints x~ and x~, as shown in Fig. 3.2. In 
S, the ends have coordinates X,4 and x8 (which, of course, vary in time) given 
by the Lorentz transformations 

(3.14) 

In order to measure the lengths of the rod according to S, we have to find the 

x-coordinates of the end points at the same time according to S. If we denote 
the rest length, namely, the length in S', by 

and the length in Sat time t = t,4 = t 8 by 

l = XB - x,., 



 

then, subtracting the formulae in (3.14), we find the result 

Since 
lvl < c - P > 1 - l < 10 , 

the result shows that the length of a body in the direction of its motion with 
uniform velocity vis reduced by a factor (1- v2/c2 )½. This phenomenon is 
called length contraction. Clearly, the body will have greatest length in its 
rest frame, in which case it is called the rest length or proper length. Note also 
that the length approaches zero as the velocity approaches the velocity of 
light. 

In an attempt to explain the null result of the Michelson-Morley experi­
ment, Fitzgerald had suggested the apparent shortening of a body in motion 
relative to the ether. This is rather different from the length contraction of 
special relativity, which is not to be regarded as illusory but is a very real 
effect. It is closely connected with the relativity of simultaneity and indeed can 
be deduced as a direct consequence of it. Unlike the Fitzgerald contraction, 
the effect is relative, i.e. a rod fixed in S appears contracted in S'. Note also 
that there are no contraction effects in directions transverse to the direction of 
motion. 

3.4 Time dilation 
Let a clock fixed at x' = x'.4 in S' record two successive events separated by an 
interval of time T0 (Fig. 3.3). The successive events in S' are (x'.4, t1) and 
(x'.4, t1 + T0 ), say. Using the Lorentz transformation, we have in S 

ti = P(t'i + vx'.4/c 2), t2 = P(t'i + T0 + vx'.4/c 2 ). 

On subtracting, we find the time interval in S defined by 

T = t2 - ti 
is given by 

Thus, moving clocks go slow by a factor (1- v2/c2)-t. This phenomenon is 
called time dilation. The fastest rate of a clock is in its rest frame and is called 
its proper rate. Again, the effect has a reciprocal nature. 

Let us now consider an accelerated clock. We define an ideal clock to be 
one unaffected by its acceleration; in other words, its instantaneous rate 
depends only on its instantaneous speed v, in accordance with the above 
phenomenon of time dilation. This is often referred to as the clock hypoth­
esis. The time recorded by an ideal clock is called the proper time -r (Fig. 3.4). 
Thus, the proper time of an ideal clock between t0 and ti is given by 
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World-line 
of clock 

F'ig. 3.3 Successive events recorded by a 
clock fixed in S'. 

s 
World-line 

t1 
of clock 

f to 

F'ig. 3.4 Proper time recorded by an 
accelerated clock. 
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Fig. 3.5 Particle in motion relative to S 
and S' 

The general question of what constitutes a clock or an ideal clock is a non­
trivial one. However, an experiment has been performed where an atomic 
clock was flown round the world and then compared with an identical clock 
left back on the ground. The travelling clock was found on return to be 
running slow by precisely the amount predicted by time dilation. Another 
instance occurs in the study of cosmic rays. Certain mesons reaching us from 
the top of the Earth's atmosphere are so short-lived that, even had they been 
travelling at the speed oflight, their travel time in the absence of time dilation 
would exceed their known proper lifetimes by factors of the order of 10. 
However, these particles are in fact detected at the Earth's surface because 
their very high velocities keep them young, as it were. Of course, whether or 
not time dilation affects the human clock, that is, biological ageing, is still an 
open question. But the fact that we are ultimately made up of atoms, which 
do appear to suffer time dilation, would suggest that there is no reason by 
which we should be an exception. 

3.5 Transformation of velocities 
Consider a particle in motion (Fig. 3.5) with its Cartesian components of 
velocity being 

and 

' 
I I 

(
dx' dy' dz') 

( U ) in S'. 
U1' 2, U3 = dt'' dt'' dt' 

Taking differentials of a Lorentz transformation 

t' = {J(t - vx/c 2 ), 

we get 

dt' = {J(dt - vdx/c2 ), 

and hence 

x' = {J(x - vt), 

dx' = {J(dx - v dt), 

y' = y, 

dy' = dy, 

dx • --v 
dx' {J(dx - v dt) dt u1 - v 

u'i = dt' = {3(dt - vdx/c 2 ) = 1 _ _!__(v dx) = 1 - u1 v/c2 ' 

c2 dt 

dy 

I dy' dy dt 

U2=dt'= {3(dt-vdx/c2) = /3[1- cl2(v!:)] 

z' = z, 

dz' = dz, 

(3.18) 

~ s S' Path of particle 

~---+---------------------------
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dz 
dz' dz 

u3= dt' = /3(dt-vdx/c 2 ) 

dt 

Notice that the velocity components u2 and u3 transverse to the direction of 
motion of the frame S' are affected by the transformation. This is due to the 
time difference in the two frames. To obtain the inverse transformations, 
simply interchange primes and unprimes and replace v by - v. 

3.6 Relationship between space-time 
diagrams of inertial observers 

We now show how to relate the space-time diagrams of Sand S' (see Fig. 3.6). ct er 
We start by taking ct and x as the coordinate axes of S, so that a light ray has 
slope ¼n (as in relativistic units). Then, to draw the ct'- and x'-axes of S', we 
note from the Lorentz transformation equations (3.12) 

ct' = 0 - ct = (v/c)x, 

that is, the x'-axis, ct' = 0, is the straight line ct= (v/c)x with slope v/c < 1. 
Similarly, 

x' = 0 - ct = (c/v)x, 

that is, the ct'-axis, x' = 0, is the straight line ct= (c/v)x with slope c/v > 1. 
The lines parallel to O(ct') are the world-lines affixed points in S'. The lines 
parallel to Ox' are the lines connecting points at a fixed time according to S' 
and are called lines of simultaneity in S'. The coordinates of a general event 
Pare (ct, x) = (OR, OQ) relative to Sand (ct', x') = (OV, OU) relative to S'. 
However, the diagram is somewhat misleading because the length scales 
along the axes are not the same. To relate them, we draw in the hyperbolae 

x2 - c2t2 = x'2 - c2t'2 = ± 1, 

as shown in Fig. 3.7. Then, ifwe first consider the positive sign, setting ct'= 0, 
we get x' = ± 1. It follows that PA is a unit distance on Ox'. Similarly, taking 
the negative sign and setting :t' = 0 we get ct' = ± 1 and so OB is the unit 
measure on Oct'. Then the coordinates of Pin the frame S' are given by 

( , ') (ou ov) 
ct' x = OA' OB • 

Note the following properties from Fig. 3.7. 

1. A boost can be thought of as a rotation through an imaginary angle in the 
(x, T)-plane, where Tis imaginary ti~. We have seen that this is equival­
ent, in the real (x, ct)~plane, to a skewing of the coordinate axes inwards 
through the same angle. (This was not appreciated by some past oppo­
nents of special relativity, who gave some erroneous counter­
arguments based on the mistaken idea that a boost could be represented 
by a real rotation in the (x, ct)-plane.) 

2. The hyperbolae are the same for all frames and so we can draw in any 
number of frames in the same diagram and use the hyperbolae to calibrate 
them. 

x' 

Fig. 3.6 The world-lines in S of the fixed 
points and simultaneity lines of S'. 

ct=l 

x=l 

Fig. 3.7 Length scales in Sand S'. 
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3. The length contraction and time dilation effects can be read off directly 
from the diagram. For example, the world-lines of the endpoints of a unit 
rod OA in S', namely x' = 0 and x' = 1, cut Ox in less than unit distance. 
Similarly world-lines x = 0 and x = 1 in S cut Ox' inside OE, from which 
the reciprocal nature of length contraction is evident. 

4. Even A has coordinates (ct', x') = (0, 1) relative to S', and hence by a 
Lorentz transformation coordinates (ct, x) = (Pv/c, P) relative to S. The 
quantity OA defined by 

OA = (c 2 t 2 + x2 )½ = {3(1 + v2/c2 )½ 

is a measure of the calibration factor 

3.7 Acceleration in special relativity 
We start with the inverse transformation of (3.18), namely, 

U'1 + V 

U1 = 1 + u'1v/c2' 

from which we find the differential 

du - du'1 -( u'1 + v ).!:..du' 
1 - 1 + u'1v/c2 (l + u'1v/c2)2 c2 1 

1 du'1 

= 132 (1 + u~v/c2)2. 

Similarly, from the inverse Lorentz transformation 

t = P(t' + x'v/c2 ), 

we find the differential 

dt = P(dt' + dx'v/c;:) = p(l + u'1v/c2)dt'. 

Combining these results, we find t~t the x-component of the acceleration 
}ransforms according to 

du1 1 du'1 
dt = {3 3 (1 + u'1 v/c2 ) 3 dt' • (3.21) 

Similarly, we find 

du2 1 du2 VUz du1 
dt = _p2(1 + u'1v/c2 )2 cit' - c2 {3 2 (1 + u'1 v/c 2 )3 dt'' (3.22) 

du3 1 du3 vu3 du'1 
dt = {3 2 (1 + u'1v/c 2 )3 cit' - c2P2 (1 + u'1v/c2)3 cit'. (3.23) 

The inverse transformations can be found in the usual way. 
It follows from the transformation formulae that acceleration is not an 

invariant in special relativity. However, it is clear from the formulae that 
acceleration is an absolute quantity, that is, all observers agree whether a 
body is accelerating or not. Put another way, if the acceleration is zero in one 
frame, then it is necessarily zero in any other frame. We shall see that this is 



 

 

Table 3.1 

Theory Position Velocity Time Acceleration 

Newtonian Relative Relative Absolute Absolute 
Special 

Relative Relative Relative Absolute 
relativity 

General 
Relative Relative Relative Relative 

relativity 

no longer the case in general relativity. We summarize the situation in 
Table 3.1, which indicates why the subject matter of the book is 'relativity' 
theory. 

3.8 Uniform acceleration 
The Newtonian definition of a particle moving under uniform acceleration is 

du 
dt = constant. 

This turns out to be inappropriate in special relativity since it would imply 
that u ➔ oo as t ➔ ro, which we know is impossible. We therefore adopt a 
different definition. Acceleration is said to be uniform in special relativity if it 
has the same value in any co-moving frame, that is, at each instant, the 
acceieration in an inertial frame travelling with the same velocity as the 
particle has the same value. This is analogous to the idea in Newtonian 
theory of motion under a constant force. For example, a spaceship whose 
motor is set at a constant emission rate would be uniformly accelerated in this 
sense. Taking the velocity of the particle to be u = u(t) relative to an inertial 
frame S, then at any instant in a co-moving frame S', it follows that v = u, the 
velocity relative to S' is zero, i.e. u' = 0, and the acceleration is a constant, a 
say, i.e. du'/dt ' = a. Using (3.21), we find 

3 

!: = ; 3 a = ( 1 - :: Ya. 

We can solve this differential equation by separating the variables 

du 
----3 =adt 
(1 - u2/c2F 

and integrating both sides. Assuming that the particle starts from rest at 
t = t0 ; we find 

Solving for u, we get 
dx a(t - t0 ) 

u = - = - - ~ - - ~~~ 
dt [1 + a2(t - t0 )2 /c2 J½ • 

Next, integrating with respect to t, and setting x = x0 at t = t0 , produces 
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ct 

II 

This can be rewritten in the form 

(x - x0 + c2/a)2 

(c2 /a)2 
(3.24) 

which is a hyperbola in (x, ct)-space. If, in particular, we take x0 - c2 /a = t0 = 0, 
-+--+----1i---1r-t-----1----1--- x then we obtain a family of hyperbolae for different values of a (Fig. 3.8). These 

Fig. 3.8 Hyperbolic motions. 

ct 

A Uniform reversal 
of direction 

Uniform velocity 

Uniform acceleration away from 
the Earth 

Fig. 3.9 The twin paradox. 

ct 

Fig. 3.10 Simultaneity lines of A on the 
outward and return journeys. 

world-lines are known as hyperbolic motions and, as we shall see in 
Chapter 23, they have significance in cosmology. It can be shown that the 
radar distance between the world-lines is a constant. Moreover, consider the 
regions I and II bounded by the light rays passing through 0, and a system of 
particles undergoing hyperbolic motions as shown in Fig. 3.8 (in some 
cosmological models, the particles would be galaxies). Then, remembering 
that light rays emanating from any point in the diagram do so at 45°, no 
particle in region I can communicate with another particle in region II, and 
vice versa. The light rays are called event horizons and act as barriers beyond 
which no knowledge can ever be gained. We shall see that event horizons will 
play an important role later in this book. 

3.9 The twin paradox 
This is a form of the clock paradox which has caused the most controversy -
a controversy which raged on and off for over 50 years. The paradox concerns 
two twins whom we shall call A and A. The twin A takes off in a spaceship for 
a return trip to some distant star. The assumption is that A is uniformly 
accelerated to some given velocity which is retained until the star is reached, 
whereupon the motion is uniformly reversed, as shown in Fig. 3.9. According 
to A, A's clock records slowly on the outward and return journeys and so, on 
return, A will be younger than A. If the periods of acceleration are negligible 
compared with the periods of uniform velocity, then could not A reverse the 
argument and conclude that it is A who should appear to be the younger? 
This is the basis of the paradox. 

The resolution rests on the fact that the accelerations, however brief, have 
immediate and finite effects on A but not on A who remains inertial 
throughout. One striking way of seeing this effect is to draw in the simul­
taneity lines of A for the periods of uniform velocity, as in Fig. 3.10. Clearly, 
the period of uniform reversal has a marked effect on the simuitaneity lines. 
Another way oflooking at it is to see the effect that the periods of acceleration 
have on shortening the length of the journey as viewed by A. Let us be 
specific: we assume that the periods of acceleration are T1 , T2 , and T3 , and 
that, after the period Ti, A has attained a speed v = ✓3c/2. Then, from A's 
viewpoint, during the period T1 , A finds that more than half the outward 
journey has been accomplished, in that A has transferred to a frame in which 
the distance between the Earth and the star is more than halved by length 
contraction. Thus, A accomplishes the outward trip in about half the time 
which A ascribes to it, and the same applies to the return trip. In fact, we 
could use the machinery of previous sections to calculate the time elapsed in 
both the periods of uniform acceleration and uniform velocity, and we would 
again reach the conclusion that on return A will be younger than A. As we 
have said before, this points out the fact that in special relativity time is a 
route-dependent quantity. The fact that in Fig. 3.9 A's world-line is longer 



than A's, and yet takes less time to travel, is connected with the Minkow­
skian metric 

ds2 = c2 dt 2 - dx 2 - dy 2 - dz2 

and the negative signs which appear in it compared with the positive signs 
occurring in the usual three-dimensional Euclidean metric. 

3.10 The Doppler effect 
All kinds of waves appear lengthened when the source recedes from the 
observer: sounds are deepened, light is reddened. Exactly the opposite occurs 
when the source, instead, approaches the observer. We first of all calculate the 
classical Doppler effect. 

Consider a source of light emitting radiation whose wavelength in its rest 
frame is A0 . Consider an observer S relative to whose frame the source is in 
motion with radial velocity ur. Then, if two successive pulses are emitted at 
time differing by dt' as measured by S', the distance these pulses have to travel 
will differ by an amount u,dt' (see Fig. 3.11). Since the pulses travel with speed 
c, it follows that they arrive at S with a time difference 

At= dt' + urdt'/c, 
giving 

At/dt; = 1 + u,/c. 

Now, using the fundamental relationship between wavelength and velocity, 
set 

A= cAt and Ao= cdt'. 

We then obtain the classical Doppler formula 

Let us now consider the special relativistic formula. Because of time 
dilation (see Fig. 3.3), the time interval between successive pulses according 
to S is /Jdt' (Fig. 3.12). Hence, by the same argument, the pulses arrive at S 
with a time difference 

At = /J dt' + ur/J dt'/c 

(a) 

SL s·r-.u, 

------------------------~ 

u,dt' 

(b) 
SL _____________________ - -- -- --1----S' _u, 
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Fig. 3.11 The Doppler effect: 
(a) first pulse; (b) second pulse. 
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and so this time we find that the special relativistic Doppler formula is 

V 
). l + u,/c 

).0 (1 - v2/c 2 )½' 
(3.26) 

If the velocity of the source is purely radial, then u, = v and (3.26) reduces to 

Fig. 3.12 The special relativistic Doppler 
shift. 

This is the radial Doppler shift, and, if we set c = 1, we obtain (2.4), which is 
the formula for the k-factor. Combining Figs. 2.7 and 3.12, the radial Doppler 
shift is illustrated in Fig. 3.13, where dt' is replaced by T. From equa­
tion (3.26), we see that there is also a change in wavelength, even when the 
radial velocity of the source is zero. For example, if the source is moving in a 
circle about the origin of S with speed v (as measured by an instantaneous co­
moving frame), then the transverse Doppler shift is given by 

V 

Fig. 3.13 The radial Doppler shift k. 

This is a purely relativistic effect due to the time dilation of the moving 
source. Experiments with revolving apparatus using the so-called 'Mossbauer 
effect' have directly confirmed the transverse Doppler shift in full agreement 
with the relativistic formula, thus providing another striking verification of 
the phenomenon of time dilation. 

Exercises 

3.1 (§3.1) Sand S' are in standard configuration with v = etc 
(0 < ct < 1). If a rod at rest in S' makes an angle of 45° with 
Ox in Sand 30° with O'x in S', then find ex. 

3,2 (§3,1) Note from the previous question that perpendicu­
lar lines in one frame need not be perpendicular in another 
frame. This shows that there is no obvious meaning to the 
phrase 'two inertial frames are parallel', unless their relative 
velocity is along a common axis, because the axes of either 
frame need not appear rectangular in the other. Verify that 
the Lorentz transformation between frames in standard 
configuration with relative velocity v = (v, 0, 0) may be 
written in vector form 

( v·r ) r' = r + -;; (/1 - 1) - {1t v, ( v·r) t' = p t- 2 . 

where r = (x, y, z). The formulae are said to comprise the 
'Lorentz transformation without relative rotation'. Justify 

this name by showing that the formulae remain valid when 
the frames are not in standard configuration, but are parallel 
in the sense that the same rotation must be applied to each 
frame to bring the two into standard configuration (in which 
case v is the velocity of S' relative to S, but v = (v, 0, 0) no 
longer applies). 

3.3 (§3.1) Prove that the first two equations of the special 
Lorentz transformation can be written in the form 

ct' = - xsinh </> + ctcosh </>, x' = xcosh </> - ctsinh </>, 

where the rapidity </> is defined by </> = tanh- 1 (v/c). 
Establish also the following version of these equations: 

ct'+ x' = e-4>(ct + x), 

ct' - x' = e4>(ct - x), 

e2 4> = (1 + v/c)/(1 - v/c). 

What relation does </> have to 0 in equation (3.11)? 



 
 
 
 
 
 
 
 

3.4 (§3.1) Aberration refers to the fact that the direction of 
travel of a light ray depends on the motion of the observer. 
Hence, if a telescope observes a star at an inclination 0' to 
the horizontal, then show that classically the 'true' inclina­
tion 0 of the star is related to 0' by 

sin0 
tan 0' = ----, 

cos0 + v/c 

where v is the velocity of the telescope relative to the star. 
Show that the corresponding relativistic formula is 

sin0 
tan 0' = -----

{J(cos 0 + v/c) 

3.5 (§3.2) Show that special Lorentz transformations are 
associative, that is, if O(vi) represents the transformation 
from observer S to S', then show that 

(O(v 1)0(v2 ))0(v3 ) = O(vi)(O(v2 )0(v3 )). 

3.6 (§3,3) An athlete carrying a horizontal 20-ft-long pole 
runs at a speed v such that (1 - v2/c 2 )-½ = 2 into a 10-ft­
long room and closes the door. Explain, in the athlete's 
frame, in which the room is only 5 ft long, how this is 
possible. [Hint: no effect travels faster than light.] Show that 
the minim um length of the room for the performance of this 
trick is 20/(.J3 + 2) ft. Draw a space-time diagram to indic­
ate what is going on in the rest frame of the athlete. 

3.7 (§3.5) A particle has velocity u = (u1 , u2 , u3 ) in Sand 
u' = (u1, u;, u;) in S'. Prove from the velocity trans­
formation formulae that 

c2(c2 - u'2)(c2 - v2) 
c2 - u2 = --------. 

(c 2 + u'1 v)2 

Deduce that, if the speed of a particle is less than c in any one 
inertial frame, then it is less than c in every inertial frame. 

3.8 (§3.7) Check the transformation formulae for the com­
ponents of acceleration (3.21)-(3.23). Deduce that acceler­
ation is an absolute quantity in special relativity. 

3.9 (§3.8) A particle moves from rest at the origin of a frame 
S along the x-axis, with constant acceleration ex (as measured 
in an instantaneous rest frame). Show that the equation of 
motion is 
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and prove that the light signals emitted after time t = c/cx at 
the origin will never reach the receding particle. A standard 
clock carried along with the particle is set to read zero at the 
beginning of the motion and reads Tat time tin S. Using the 
clock hypothesis, prove the following relationships: 

U IXT 
- = tanh-, 
C C 

( u2)-½ IXT 
1- - = cosh-, 

c2 C 

IXt IXT 
- = sinh-, 
C C 

c2 ( (XT ) x = ~ cosh~ - 1 . 

Show that, if T 2 <l! c2 /a2, then, during an elapsed time Tin 
the inertial system, the particle clock will record approxim­
ately the time T(l - a2 T 2/6c2). 

If a = 3g, find the difference in recorded times by the 
spaceship clock and those of the inertial system 

(a) after 1 hour; 
(b) after 10 days. 

3.10 (§3.9) A space traveller A travels through space with 
uniform acceleration g (to ensure maximum comfort). Find 
the distance covered in 22 years of A's time. [Hint: using 
years and light years as time and distance units, respectively, 
then g = 1.03]. If on the other hand, A describes a straight 
double path X YZ YX, with acceleration g on X Y and Z Y, 
and deceleration on YZ and YX, for 6 years each, then draw 
a space-time diagram as seen from the Earth and find by 
how much the Earth would have aged in 24 years of A's 
time. 

3.11 (§3.10) Let the relative velocity between a source of 
light and an observer be u, and establish the classical 
Doppler formulae for the frequency shift: 

source moving, observer at rest: 

observer moving, source at rest: 

Vo 
v=---, 

1 + u/c 

v = (1 - u/c)v0 , 

where v0 is the frequency in the rest frame of the source. 
What are the corresponding relativistic results? 

3.12 (§3.10) How fast would you need to drive towards a 
red traffic light for the light to appear green? [Hint: ).,ed ::::: 7 
x 10- 5 cm, ).1, ••• ::::: 5 x 10- 5 cm.] 



 
 

4.1 Newtonian theory 
Before discussing relativistic mechanics, we shall review some basic ideas of 
Newtonian theory. We have met Newton's first law in §2.4, and it states that 
a body not acted upon by a force moves in a straight line with U{liform 
velocity. The second law describes what happens if an object changes its 
velocity. In this case, something is causing it to change its velocity and this 
something is called a force. For the moment, let us think of a force as 
something tangible like a push or a pull. Now, we know from experience that 
it is more difficult to push a more massive body and get it moving than it is to 
push a less massive body. This resistance of a body to motion, or rather 
change in motion, is called its inertia. To every body, we can ascribe, at least 
at one particular time, a number measuring its inertia, which (again for the 
moment) we shall call its mass m. If a body is moving with velocity v, we 
define its linear momentump to be the product of its mass and velocity. Then 
Newton's second law (N2) states that the force acting on a body is equal to 
the rate of change oflinear momentum. The third law (N3) is less general and 
talks about a restricted class of forces called internal forces, namely, forces 
acting on a body due to the influence of other bodies in a system. The third 
law states that the force acting on a body due to the influence of the other 
bodies, the so-called action, is equal and oppo_site to the force acting on these 
other bodies due to the influence of the first body, the so-called reaction. We 
state the two laws below. 

Then, for a body of mass m with a force F acting on it, Newton's second law 
states 



 

If, in particular, the mass is a constant, then 

dv 
F=m-=ma 

dt 

where a is the acceleration. 

(4.2) 

Now, strictly speaking, in Newtonian theory, all observable quantities 
should be defined in terms of their measurement. We have seen how an 
observer equipped with a frame of reference, ruler, and clock can map the 
events of the universe, and hence measure such quantities as position, 
velocity, and acceleration. However, Newton's laws introduce the new con­
cepts of force and mass, and so we should give a prescription for their 
measurement. Unfortunately, any experiment designed to measure these 
quantities involves Newton's laws themselves in its interpretation. Thus, 
Newtonian mechanics has the rather unexpected property that the opera­
tional definitions of force and mass which are required to make the laws 
physically significant are actually contained in the laws themselves. 

To make this more precise, let us discuss how we might use the laws to 
measure the mass of a body. We consider two bodies isolated from all other 
influences other than the force acting on one due to the influence of the other 
and vice versa (Fig. 4.1). Since the masses are assumed to be constant, we 
have, by Newton's second law in the form (4.2), 

F1 = m1 a1 and F2 = m2 a2 . 

In addition, by Newton's third law, F1 = -F2 . Hence, we have 

Therefore, if we take one standard body and define it to have unit mass, then 
we can find the mass of the other body, by using (4.3). We can keep doing this 
with any other body and in this way we can calibrate masses. In fact, this 
method is commonly used for comparing the masses of elementary particles. 
Of course, in practice, we cannot remove all other influences, but it may be 
possible to keep them almost constant and so neglect them. 

We have described how to use Newton's laws to measure mass. How do we 
measure force? One approach is simply to use Newton's second law, work 
out ma for a body and then read off from the law the force acting on m. This is 
consistent, although rather circular, especially since a force has independent 
properties of its own. For example, Newton has provided us with a way for 
working out the force in the case of gravitation in his universal law of 
gravitation (UG). 

If we denote the constant of proportionality by G (with value 6.67 x 1 o- 11 in 
m.k.s. units), the so-called Newtonian constant, then the law is (see Fig. 4.2) 
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Fig, 4.1 Measuring mass by mutually 
induced accelerations. 

F 

r 

Fig. 4.2 Newton's universal law of 
gravitation. 
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where a hat denotes a unit vector. There are other force laws which can be 
stated separately. Again, another independent property which holds for 
certain forces is contained in Newton's third law. The standard approach to 
defining force is to consider it as being fundamental, in which case force laws 
can be stated separately or they can be worked out from other considerations. 
We postpone a more detailed critique of Newton's laws until Part C of the 
book. 

Special relativity is concerned with the behaviour of material bodies and 
light rays in the absence of gravitation. So we shall also postpone a detailed 
consideration of gravitation until we discuss general relativity in Part C of the 
book. However, since we have stated Newton's universal laws of gravitation 
in (4.4), we should, for completeness, include a statement of Newtonian 
gravitation for a distribution of matter. A distribution of matter of mass 
density p = p(x, y, z, t) gives rise to a gravitational potential cf> which satisfies 
Poisson's equation 1 

at points inside the distribution, where the Laplacian operator V2 is given in 
Cartesian coordinates by 

a2 ,J2 a2 

v2 = 8x2 + fJy2 + 8z2" 

At points external to the distribution, this reduces to Laplace's equation 

We assume that the reader is familiar with this background to Newtonian 
theory. 

4.2 Isolated systems of particles in 
Newtonian mechanics 

In this section, we shall, for completeness, derive the conservation of linear 
momentum in Newtonian mechanics for a system of n particles. Let the ith 
particle have constant mass mi and position vector ri relative to some 
arbitrary origin. Then the ith particle possesses linear momentum p1 defined 
by p1 = mii'i, where the dot denotes differentiation with respect to time t. If Fi 

is the total force on mi, then, by Newton's second law, we have 

(4.7) 

The total force F1 on the ith particle can be divided into an external force Ff'1 

due to any external fields present and to the resultant of the internal forces. 
We write 

n 

Fi = Ff'1 + L Fij, 
j= l 

where Fli is the force or the ith particle due to the jth particle and where, for 



convenience, we define Fii = 0. If we sum over i in (4.7), we find 

d • • dp1 • • - L Pi = L - = L Ft"1 + L Fi}· 
dt i= 1 i= 1 dt 1= 1 i,J= 1 

Using New~on's third law, namely, Fil= -F1i, then the last term is zero and 
we obtain P = pext, where P = L ;= 1 p1 is termed the total linear momentum 

of the system and p••1 = I;= 1 Ff•1 is the total external force on the system. 
If, in particular, the system of particles is isolated, then 

pext = 0 => p = C, 

where c is a constant vector. This leads to the law of the conservation of 
linear momentum of the system, namely, 

4.3 Relativistic mass 
The transition from Newtonian to relativistic mechanics is not, in fact, 
completely straightforward, because it involves at some point or another 
the introduction of ad hoc assumptions about the behaviour of particles in 
relativistic situations. We shall adopt the approach of trying to keep as close 
to the non-relativistic definition of energy and momentum as we can. This 
leads to results which in the end must be confronted with experiment. The 
ultimate justification of the formulae we shall derive resides in the fact that 
they have been repeatedly confirmed in numerous laboratory experiments in 
particle physics. We shall only derive them in a simple case and state that the 
arguments can be extended to a more general situation. 

It would seem plausible that, since length and time measurements are 
dependent on the observer, then mass should also be an observer-dependent 
quantity. We thus assume that a particle which is moving with a velocity u 
relative to an inertial observer has a mass, which we shall term its relativistic 
mass, which is some function of u, that is, 

m = m(u), (4.9) 

where the problem is to find the explicit dependence of m on u. We restrict 
attention to motion along a straight line and consider the special case of two 
equal particles colliding inelastically (in which case they stick together), and 
look at the collision from the point of view of two inertial observers Sand S' 
(see Fig. 4.3). Let one of the particles be at rest in the frame S and the other 
possess a velocity u before they collide. We then assume that they coalesce 
and that the combined object moves with velocity U. The masses of the two 
particles are respectively m(O) and m(u) by (4.9). We denote m(O) by m0 and 
term it the rest mass of the particle. In addition, we denote the mass of the 
combined object by M( U). Ifwe take S' to be the centre-of-mass frame, then 
it should be clear that, relative to S', the two equal particles collide with equal 
and opposite speeds, leaving the combined object with mass M0 at rest. It 
follows that S' must have velocity U relative to S. 
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Fig. 4.3 The inelastic collision in the 
frames Sand S'. 
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We shall assume both conservation ofrelativistic mass and conservation of 
linear momentum and see what this leads to. In the frame S, we obtain 

m(u) + m0 = M(U), m(u)u + 0 = M(U)U, 

from which we get, eliminating M ( U ), 

m( u) = m0 (u ~ U ). (4.10) 

The left-hand particle has a velocity U relative to S', which in turn has a 
velocity U relative to S. Hence, using the composition of velocities law, we 
can compose these two velocities and the resultant velocity must be identical 
with the velocity u of the left-hand particle in S. Thus, by (2.6) in non­
relativistic units, 

2U 
u=(1+u2;c2)· 

Solving for U in terms of u, we obtain the quadratic 

( 2c2) U2 - ---;- u + c2 = 0, 

which has roots 

u =: ± [ c: y -c2 r = : [1 ± ( 1 - :: r l 
In the limit u -+ 0, this must produce a finite result, so we must take the 

negative sign (check), and, substituting in (4.10), we find finally 

where 

This is the basic result which relates the relativistic tnass of a moving particle 
to its rest mass. Note that this is the same in structure as the time dilation 
formula (3.16), i.e. T=PT0 , where P=(l-v2/c2 )-t, except that time 



 
 

dilation involves the factor f3 which depends on the velocity v of the frame S' m(u) 
relative to S, whereas y depends on the velocity u of the particle relative to S. 
Ifwe plot m against u, we see that relativistic mass increases without bound as 
u approaches c (Fig. 4.4). 

It is possible to extend the above argument to establish (4.11) in more 
general situations. However, we emphasize that it is not possible to derive the 
result a priori, but only with the help of extra assumptions. However it is mo 
produced, the only real test of the validity of the result is in the experimental 
arena and here it has been extensively confirmed. 
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Fig. 4.4 Relativistic mass as a function of 
velocity. 

4.4 Relativistic energy 
Let us expand the expression for the relativistic mass, namely, 

m(u) = ym0 = m0 (1 - u2/c2 )-½, 

in the case when the velocity u is small compared with the speed of light c. 
Then we get 

1 1 2 (u4
) m(u) = m0 + c2 (z-m0u ) + 0 c4 , (4.13) 

where the final term stands for all terms of order (u/c)4 and higher. If we 
multiply both sides by c2, then, apart from the constant m0 c2 , the right-hand 
side is to first approximation the classical kinetic energy (k.e.), that is, 

mc2 = m0c2 + ½m0 u2 + • •· ~ constant+ k.e. (4.14) 

We have seen that relativistic mass contains within it the expression for 
classical kinetic energy. In fact, it can be shown that the conservation of 
relativistic mass leads to the conservation of kinetic energy in the Newtonian 
approximation. As a simple example, consider the collision of two particles 
with rest mass m0 and m0 , initial velocities v1 and ii1 , and final velocities v2 

and ii2 , respectively (Fig. 4.5). Conservation of relativistic mass gives 

m0 (1 - vUc2 )-½ + m0 (1 - iir/c2 )-½ = m0 (1 - v~/ c2 )-½ 

+ mo(l - vVc2 )-½. (4.15) 

If we now assume that v1 , v2 , v1 , and v2 are all small compared with c, then 
we find (exercise) that the leading terms in the expansion of (4.15) give 

(4.16) 

which is the usual conservation of energy equation. Thus, in this sense, 
conservation of relativistic mass includes within it conservation of energy. 
Now, since energy is only defined up to the addition of a constant, the result 

Before 

O---V2 After 
m0 Fig. 4.5 Two colliding particles. 
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(4.14) suggest that we regard the energy E of a particle as given·by 

This is one of the most famous equations in physics. However, it is not just a 
mathematical relationship between two different quantities, namely energy 
and mass, but rather states that energy and mass are equivalent concepts. 
Because of the arbitrariness in the actual value of E, a better way of stating 
the relationship is to say that a change in energy is equal to a change in 
relativistic mass, namely, 

AE = Amc2 

Using conventional units, c2 is a large number and indicates that a small 
change in mass is equivalent to an enormous change in energy. As is well 
known, this relationship and the deep implications it carries with it for peace 
and war, have been amply verified. For obvious reasons, the term m0 c-2 is 
termed the rest energy of the particle. Finally, we point out that conservation 
of linear momentum, using relativistic mass, leads to the usual conservation 
law in the Newtonian approximation. For example (exercise), the collision 
problem considered above leads to the usual conservation of linear 
momentum equation for slow-moving particles: 

(4.18) 

Extending these ideas to three spatial dimensions, then a particle moving 
with velocity u relative to an inertial frame S has relativistic mass m, energy E, 
and linear momentum p given by 

Some straightforward algebra (exercise) reveals that 

(E/c)2 - p; - p; - p;.= (m0 c)2 , (4.20) 

where m0 c is an invariant, since it is the same for all inertial observers. If we 
compare this with the invariant (3.13), i.e. 

(ct)2 - x2 - y2 - z2 = s2, 

then it suggests that the quantities (E/c, p,,, Py, p,) transform under a Lorentz 
transformation in the same way as the quantities (ct, x, y, z). We shall see in 
Part C that the language of tensors provides a better framework for dis­
cussing transformation laws. For the moment, we shall assume that energy 
and momentum transform in an identical manner and quote the results. 
Thus, in a frame S' moving in standard configuration with velocity v relative 
to S, the transformation equations are (see (3.12)) 

The inverse transformations are obtained in the usual way, namely, by 



 

 

interchanging primes and unprimes and replacing v by -v, which gives 

If, in particular, we take S' to be the instantaneous rest frame of the 
particle, then p' = 0 and E' = E0 = m0c2. Substituting in (4.22), we find 

, moc2 2 

E=/3E =(1-v2;c2)½=mc' 

where m = m0 (1 - v2/c2)-½ andp = (f3vE' /c2 , 0, 0) = (mv, 0, 0) = mv, which 
are precisely the values of the energy, mass, and momentum arrived at in 
(4.19) with u replaced by v. 

4.5 Photons 
At the end of the last century, there was considerable conflict between theory 
and experiment in the investigation of radiation in enclosed volumes. In an 
attempt to resolve the difficulties, Max Planck proposed that light and other 
electromagnetic radiation consisted of individual 'packets' of energy, which 
he called quanta. He suggested that the energy E of each quantum was to 
depend on its frequency v, and proposed the simple law, called Planck's 
hypothesis, 

where his a universal constant known now as Planck's constant. The idea of 
the quantum was developed further by Einstein, especially in attempting to 
explain the photoelectric effect. The effect is to do with the ejection of 
electrons from a metal surface by incident light (especially ultraviolet) and is 
strongly in support of Planck's quantum hypothesis. Nowadays, the quan­
tum theory is well established and applications of it to explain properties of 
molecules, atoms, and fundamental particles are at the heart of modern 
physics. Theories of light now give it a dual wave- particle nature. Some 
properties, such as diffraction and interference, are wavelike in nature, while 
the photoelectric effect and other cases of the interaction of light and atoms 
are best described on a particle basis. 

The particle description oflight consists in treating it as a stream of quanta 
called photons. Using equation (4.19) and substituting in the speed of light, 
u = c, we find 

(4.24) 

that is, the rest mass of a photon must be zero! This is not so bizarre as it first 
seems, since no inertial observer ever sees a photon at rest - its speed is 
always c - and so the rest mass of a photon is merely a notional quantity. If 
we let ii be a unit vector denoting the direction of travel of the photon, then 

P = (Px, Py, P,) = pn, 

and equation (4.20) becomes 

(E/c) 2 - p2 = 0. 
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Taking square roots (and remembering c and pare positive), we find that the 
energy E of a photon is related to the magnitude p of its momentum by 

E = pc. (4.25) 

Finally, using the energy-mass relationship E = mc2 , we find that the rela­
tivistic mass of a photon is non-zero and is given by 

m = p/ c. (4.26) 

Combining these results with Planck's hypothesis, we obtain the following 
formulae for the energy E, relativistic mass m, and linear momentum p of the 
photon: 

It is gratifying to discover that special relativity, which was born to reconcile 
conflicts in the kinematical properties of light and matter, also includes their 
mechanical properties in a single all-inclusive system. 

We finish this section with an argument which shows that Planck's 
hypothesis can be derived directly within the framework of special relativity. 
We have already seen in the last chapter that the radial Doppler effect for a 
moving source is given by (3.27), namely 

~=(l+v/c)t 
10 1 - v/c ' 

where Ao is the wavelength in the frame of the source and l is the wavelength 
in the frame of the observer. We write this result, instead, in terms of 
frequency, using the fundamental relationships c = Av and c = Ao v0 , to 
obtain 

Vo=(~)½. 
v 1 - v/c 

(4.28) 

Now, suppose that the source emits a light flash of total energy £ 0 . Let us use 
the equations (4.22) to find the energy received in the frame of the observer S. 
Since, recalling Fig. 3.11, the light flash is travelling along the negative x­
direction of both frames, the relationship (4.25) leads to the result 
p~ = -E0 / c, with the other primed components of momentum zero. Substi­
tuting in the first equation of (4.22), namely, 

E = /3(E' + vp~), 
we get 

or 

E0 =(1+v/c)t· 
E 1 - v/c 

(4.29) 

Combining this with equation (4.28), we obtain 

E0 E 

Vo V 

Since this relationship holds for any pair of inertial observers, it follows that 
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the ratio must be a universal constant, which we call h. Thus, we have derived 
Planck's hypothesis E = hv. 

We leave our considerations of special relativity at this point and turn our 
attention to the formalism of tensors. This will enable us to reformulate . 
special relativity in a way which will aid our transition to general relativity, 
that is, to a theory of gravitation consistent with special relativity. 

Exercises 

4.1 (§4.l) Discuss the possibility of using force rather than 
mass as the basic quantity, taking, for example, a standard 
weight at a given latitude as the unit of force. How should 
one then define and measure the mass of a body? 

4.2 (§4.3) Show that, in the inelastic collision considered in 
§4.3, the rest mass of the combined object is greater than the 
sum of the original rest masses. Where does this increase 
derive from? 

4.3 (§4.3) A particle of rest mass m0 and speed u strikes a 
stationary particle of rest mass m0 . If the collision is perfectly 
inelastic, then find the rest mass of the composite particle. 

4.4 (§4.4) (i) Establish the transition from equation (4.15) 
to (4.16). 

(ii) Establish the Newtonian approximation 
equation (4.18). 

4.5 (§4.4) Show that (4.19) leads to (4.20). Deduce_(4.21). 

4.6 (§4.4) Newton's second law for a particle of relativistic 
mass mis 

d 
F=-(mu). 

dt 

Define the work done d E in moving the particle from r to 
r+ dr. Show that the rate of doing work is given by 

dE d(mu) 
-=--·u. 
dt dt 

Use the definition of relativistic mass to obtain the result 

dE m0 du 
-= u-
dt (1 - u2/ c2)312 dt 

[ Hint : u· du= u du] . 
dt dt 

Express this last result in terms of dm/dt and integrate to 
obtain 

E = mc2 + constant. 

4.7 (§4.4) Two particles whose rest masses are m1 and m2 

move along a straight line with velocities u1 and u2 , meas­
ured in the same direction. They collide inelastically to form 
a new particle. Show that the rest mass and velocity of the 

new particle are m3 and u3 , respectively, where 

ml= mf + m~ + 2m1 m 2 y1y2(1 - u 1 u 2/ c 2 ), 

m1Y1U1 + m2r2u2 
U3 = 

m1 Y1 + m2r2 

with 

4.8 (§4.4) A particle of rest mass m0 , energy e0 , and 
momentum p0 suffers a head on elastic collision (i.e. masses 
of particles unaltered) with a stationary mass M. In the 
collision, M is knocked straight forward, with energy E and 
momentum P, leaving the first particle with energy e and p. 
Prove that 

and 

2p0 M(e0 + M c2 ) 
P=--------

2Meo + M2 c2 + m~c2 

Po(m2c2 - M2c2) 
p= 

2MeO + M2 c2 + m~c2 

What do these formulae become i!) the classical limit? 

4.9 (§4.4) Assume that the formulae (4.19) hold for a ta­
chyon, which travels with speed v > c. Taking the energy to 
be a measurable quantity, the,n deduce that the rest mass of 
a tachyon is imaginary and define the real quantity µ0 by 
mo= iµo . 

If the tachyon moves along the x-axis and if we assume 
that the x-component of the momentum is a real positive 
quantity, then deduce 

V 
m = -a.µo , 

lvl 
E = mc2, 

where a.= (v2 /c2 - 1)-t. 
Plot E/mOc2 against v/c for both tachyons and sub­

luminal particles. 

4.10 (§4.5) Two light rays in the (x, y)-plane of an inertial 
observer, making angles 0 and -0, respectively, with the 
positive x axis, collide at the origin. What is the velocity v of 
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the inertial observer (travelling in standard configuration) 
who sees the light rays collide head on? 

4.11 (§4.5) An atom of rest mass m0 is at rest in a laborat­
ory and absorbs a photon of frequency v. Find the velocity 
and mass of the recoiling particle. 

4.12 (§4.5) An atom at rest in a laboratory emits a photon 
and recoils. If its initial mass is m0 and it loses the rest energy 

e in the emission, prove that the frequency of the emitted 
photon is given by 



 
 



 

5.1 Introduction 
To work effectively in Newtonian theory, one really needs the language of 
vectors. This language, first of all, is more succinct, since it summarizes a set 
of three equations in one. Moreover, the formalism -o_f vectors helps to solve 
certain problems more readily, and, most important of all, the language 
reveals structure and thereby offers insight. In exactly the same way, in 
relativity theory, one needs the language of tensors. Again, the language helps 
to summarize sets of equations succinctly and to solve problems more readily, 
and it reveals structure in the equations. This part of the book is devoted to 
learning the formalism of tensors which is a pre-condition for the rest of the 
book. 

The approach we adopt is to concentrate on the technique of tensors 
without taking into account the deeper geometrical significance behind the 
theory. We shall be concerned more with what you do with tensors rather 
than what tensors actually are. There are two distinct approaches to the 
teaching of tensors: the abstract or index-free (coordinate-free) approach and 
the conventional approach based on indices. There has been a move in recent 
years in some quarters to introduce tensors from the start using the more 
modern abstract approach (although some have subsequently changed their 
mind and reverted to the conventional approach). The main advantage of this 
approach is that it offers deeper geometrical insight. However, it has two 
disadvantages. First of all, it requires much more of a mathematical back­
ground, which in turn takes time to develop. The other disadvantage is that, 
for all its elegance, when one wants to do a real calculation with tensors, as 
one frequently needs to, then recourse has to be made to indices. We shall 
adopt the more conventional index approach, because it will prove faster and 
more practical. However, we advise those who wish to take their study of the 
subject further to look at the index-free approach at the first opportunity. 

We repeat that the exercises are seen as integral to this part of the book and 
should not be omitted. 

5.2 Manifolds and coordinates 
We shall start by working with tensors defined inn dimensions since, and it is 
part of the power of the formalism, there is little extra effort involved. A 
tensor is an object defined on a geometric entry called a (differential) 
manifold. We shall not define a manifold precisely because it would involve 
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Fig. 5.1 Plane polar coordinate curves. 

Fig. 5.2 Two non-degenerate coordinate 
systems covering an 52 • 

Fig. 5.3 Overlapping coordinate patches 
in a manifold. 

us in too much of a digression. But, in simple terms, a manifold is something 
which 'locally' looks like a bit of n-dimensional Euclidean space JR". For 
example, compare a 2-sphere S2 with the Euclidean plane JR 2. They are 
clearly different. But a small bit of S2 looks very much like a small bit of JR 2 (if 
we neglect metrical properties). The fact that S2 is 'compact', i.e. in some sense 
finite, whereas JR 2 'goes off to infinity' is a global property rather than a local 
property. We shall not say anything precise about global properties-the 
topology of the manifold-, although the issue will surface when we start 
to look carefully at solutions of Einstein's equations in general relativity. 

We shall simply take an n-dimensional manifold M to be a set of points 
such that each point possesses a set of n coordinates (x1, x2, ... , x"), where 
each coordinate ranges over a subset of the reals, which may, in particular, 
range from - oo to + oo. To start off with, we can think of these coordinates 
as corresponding to distances or angles in Euclidean space. The reason why 
the coordinates are written as superscripts rather than subscripts will become 
clear later. Now the key thing about a manifold is that it may not be possible 
to cover the whole manifold by one non-degenerate coordinate system, 
namely, one which ascribes a unique set of n coordinate numbers to each 
point. Sometimes it is simply convenient to use coordinate systems with 
degenerate points. For example, plane polar coordinates (R, ¢) in the plane 
have a degeneracy at the origin because ¢ is indeterminate there (Fig. 5.1). 
However, here we could avoid the· degeneracy at the origin by using 
Cartesian coordinates. But in other circumstances we have no choice in the 
matter. For example, it can be shown that there is no coordinate system 
which covers the whole of a 2-sphere S2 without degeneracy. The smallest 
number needed is two, which is shown schematically in Fig. 5.2. We therefore 

,..,,..,..,..,.,.,,.,..,._ ___ First non-degenerate 
coordinate system 
covering North Pole 

) 
Overlap of coordinate 
systems at equator 

"""'~~~'----Second non-degenerate 
coordinate system 
covering South Pole 

Overlap of 
coordinate patches Manifold M 

Coordinate patch 



work with coordinate systems which cover only a portion of the manifold and 
which are called coordinate patches. Figure 5.3 indicates this schematically. 
A set of coordinate patches which covers the whole manifold is called an 
atlas. The theory of manifolds tells us how to get from one coordinate patch 
to another by a coordinate transformation in the overlap region. The 
behaviour of geometric quantities under coordinate transformations lies at 
the heart of tensor calculus. 

5.3 Curves and surfaces 
Given a manifold, we shall be concerned with points in it and subsets of 
points which define curves and surfaces of different dimensions. We shall 
frequently define these curves and surfaces parametrically. Thus (in exactly 
the same way as is done in Euclidean 2- and 3-space), since a curve has one 
degree of freedom it depends on one parameter and so we define a curve by 
the parametric equations 

where u is the parameter and x1 ( u ), x2 ( u ), ... , xn( u) denote n functions of u. 
Similarly, since a subspace or surface of m dimensions (m < n) has m degrees 
of freedom, it depends on m parameters and it is given by the parametric 
equations 

xa = xa(u1, u2, ••• 'u"') (a= 1, 2, ... 'n). (5.2) 

If, in particular, m = n - 1, the subspace is called a hypersurface. In this case, 

xa=xa(u1,u2, ... ,u"- 1 ) (a=l,2, ... ,n) 

and the n - 1 parameters can be eliminated from these n equations to give 
one equation connecting the coordinates, i.e. 

From a different but equivalent point 9fview, a point in a general position 
in a manifold has n degrees of freedom. If it is restricted to lie in a 
hypersurface, an (n - 1)-subspace, then its coordinates must satisfy one 
constraint, namely, 

f (x1, x2, ... , x") = 0, 

which is the same as equation (5.3). Similarly, points in an m-dimensional 
subspace (m < n) must satisfy n - m constraints 

f 1 (x1, .t2, ... , x") = 0, } 
f 2 (x1, x2, ... , x") = 0, 

f"-"'(x1, x2, ... , x") = 0, 

(5.4) 

which is an alternative to the parametric representation (5.2). 
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5.4 Transformation of coordinates 
As we have seen, a point in a manifold can be covered by many different 
coordinate patches. The essential point about tensor calculus is that when we 
make a statement about tensors we do not wish it simply to hold just for one 
coordinate system but rather for all coordinate systems. Consequently, we 
need to find out how quantities behave when we go from one coordinate 
system to another one. We therefore consider the change of coordinates 
x0 -+ x'0 given by the n equations 

x'• = f 0 (x1, x 2, .•. , x") (a= 1, 2, ... , n), (5.5) 

where the f's are single-valued continuous differentiable functions, at least for 
certain ranges of their arguments. Hence, at this stage, we view a coordinate 
transformation passively as assigning to a point of the manifold whose old 
coordinates are (x1, x 2, ... , x") the new primed coordinates (x'1, x'2, ... , x'"). 
We can write (5.5) more succinctly as x'• = f°(x), where, from now on, lower 
case Latin indices are assumed to run from 1 to n, the dimension of the 
manifold, and the f" are alt functions of the old unprimed coordinates. 
Furthermore, we can write the equation more simply still as 

where x'0 (x) denote then functionsf°(x). Notation plays an important role 
in tensor calculus, and equation (5.6) is clearly easier to write than equa­
tion (5.5). 

We next contemplate differentiating (5.6) with respect to each of the 
coordinates xb. This produces then x n transformation matrix of coefficients: 

OX' 1 OX' 1 OX' 1 

OX 1 ox2 ox" 

[!;:] = 
ox'2 ox'2 ox'2 

OX 1 ox2 ox• (5.7) 

ox'" ox'" ox'" 
OX 1 ox2 ox• 

The determinant J' of this matrix is called the Jacobian of the trans­
formation: 

(5.8) 

We shall assume that this in non-zero for some range of the coordinates xb. 
Then it follows from the implicit function theorem that we can (in principle) 
solve equation (5.6) for the old coordinates x• and obtain the inverse trans­
formation equations 

x" = x0 (x'). (5.9) 
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It follows from the product rule for determinants that, if we define the 
Jacobian of the inverse transformation by 

then J = 1/1 1
• 

In three dimensions, the equation of a surface is given by z = f(x, y), then 
its total differential is defined to be 

aJ aJ 
dz = ax dx + ay dy. 

Then, in an exactly analogous manner, starting from (5.6), we define the total 
differential 

for each a running from 1 to n. We can write this more economically by 
introducing an explicit summation sign: 

ft <:I IQ 

d IQ~"' ~db 
X L..<:ibX. 

b=I uX 
(5.10) 

This can be written more economically still by introducing the Einstein 
summation convention: whenever a literal index is repeated, it is understood 
to imply a summation over the index from l to n, the dimension of the 
manifold. Hence, we can write (5.10) simply as 

The index a occurring on each side of this equation is said to be free and may 
take on separately any value from 1 to n. The index b on the right-hand side is 
repeated and hence there is an implied summation from 1 to n. A repeated 
index is called bound or dummy because it can be replaced by any other 
index not already in use. For example, 

because c was not already in use in the expression. We define the Kronecker 
delta o,: to be a quantity which is either O or 1 according to 

o,: = { l if a = b, 
0. if a -=I- b. 

(5.12) 

It therefore follows directly • from the definition of partial differentiation 
(check) that 

(5.13) 
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Fig. 5.4 Infinitesimal vector PQattached 
to P. 

Fig. 5.5 The tangent vector at two points 
of a curve xa = x•( u). 

5.5 Contravariant tensors 
The approach we are going to adopt is to define a geometrical quantity in 
terms of its transformation properties under a coordinate transformation 
(5.6). We shall start with a prototype and then give the general definition. 
Consider two neighbouring points in the manifold P and Q with coordinates 
x• and x• + dx", respectively. The two points define an infinitesimal dis­

placement or infinitesimal vector PQ. The vector is not to be regarded as 
free, but as being attached to the point P (Fig. 5.4). The components of this 
vector in the x"-coordinate system are dx". The components in another 
coordinate system, say the x'"-coordinate system, are dx'• which are connec­
ted to dx" by (5.11), namely, a ,. 

dx'• = a:b d~. (5.14) 

The transformation matrix appearing in this equation is to be regarded as 
being evaluated at the point P. i.e. strictly speaking we should write 

(5.15) 

but with this understood we shall stick to the notation of (5.14). Thus, 
[ox'• /oxb]p consists of an n x n matrix of real numbers. The transformation 
is therefore a linear homogeneous transformation. This is our prototype. 

A contravariant vector or contravariant tensor of rank (order) 1 is a set of 
quantities, written x• in the x•-coordinate system, associated with a point P, 

which transforms under a change of coordinates according to 

where the transformation matrix is evaluated at P. The infinitesimal vector 
dx" is a special case of (5.16) where the components x• are infinitesimal. An 
example of a vector with finite components is provided by the tangent vector 

dx"/du to the curve x'l = x"(u). It is important to distinguish between the 
actual geometric object like the tangent vector in Fig. 5.5 (depicted by an 
arrow) and its representation in a particular coordinate system, like the n 
numbers [dx"/du]p in the x•-coordinate system and the (in general) different 
numbers [dx'"/du]p in the x'"-coordinate system. 

We now generalize the definition (5.16) to obtain contravariant tensors of 
higher rank or order. Thus, a contravariant tensor of rank 2 is a set of n2 

quantities associated with a point P, denoted by x•b in the x•-coordinate 
system, which transform according to 

OX'" OX'b 
X'•b=--X'd 

OX' OXd 
(5.17) 

The quantities X'"b are the components in the x'"-coordinate system, the 
transformation matrices are evaluated at P, and the law involves two dummy 
indices c and d. An example of such a quantity is provided by the product 
Yo zb, say, of two contra variant vectors y• and z•. The definition of third­
and higher-order contra variant tensors proceeds in an analogous manner. An 
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important case is a tensor of zero rank, called a scalar or scalar invariant ¢, 
which transforms according to 

at P. 

5.6 Covariant and mixed tensors 
As in the last section, we begin by considering the transformation of a 
prototype quantity. Let 

<P = </J(x") (5.19) 

be a real-valued function on the manifold, i.e. at every point P in the 
manifold, q,(P) produces a real number. We also assume that q, is continuous 
and differentiable, so that we can obtain the differential coefficients aq,/ax•. 

Now, remembering from equation (5.9) that x• can be thought of as a 
function of x'b, equation (5.19) can be written equivalently as 

<P = </J(x"(x')). 

Differentiating this with respect to x'b, using the function of a function rule, 
we obtain 

aq, aq, ax• 
ax'b = ax• ax'b • 

Then changing the order of the terms, the dummy index, and the free index 
(from b to a) gives 

a</) axb a</) 
ax'• = ax'• axb. (5.20) 

This is the prototype equation we are looking for. Notice that it involves the 
inverse trausformation matrix axb / ax'•. Thus, a covariant vector or covariant 
tensor of rank (order) 1 is a set of quantities, written x. in the x"-coordinate 
·system, associated with a point P, which transforms according to 

Again, the transformation matrix occurring is assumed to be evaluated at P. 
Similarly, we define a covariant tensor of rank 2 by the transformation law 

axe 8xd 
X~b = ax'• ax'b Xcd' (5.22) 

and so on for higher-rank tensors. Note the convention that contravariant 
tensors have raised indices whereas covariant tensors have lowered indices. 
(The way to remember this is that co goes below.) The fact that the 
differentials dx" transform as a contravariant vector explains the convention 
that the coordinates themselves are written as x" rather than x0 , although 
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note that it is only the differentials and not the coordinates which have 
tensorial character. 

We can go on to define mixed tensors in the obvious way. For example, a 
mixed tensor of rank 3 - one contra variant rank and two covariant rank -
satisfies 

,a 0X'0 OX' OX/ d 

X be = oxd ox'b ox" X ef 
(5.23) 

If a mixed tensor has contravariant rank p and covariant rank q, then it is 
said to have type or valence (p, q). 

We now come to the reason why tensors are important in mathematical 
physics. Let us illustrate the reason by way of an example. Suppose we find in 
one coordinate system that two tensors, x.b and Yab say, are equal, i.e. 

(5.24) 

Let us multiply both sides by the matrices ox'/ox" and oxbjox'd and take the 
implied summations to get 

Ox' OXb Ox' OXb 
ox" ox'd x.b = ox" ox'd Yab· 

Since Xab and Yab are both covariant tensors of rank 2 it follows that 
X~b = Y~b- In other words, the equation (5.24) holds in any other coordinate 
system. In short, a tensor equation which holds in one coordinate system 
necessarily holds in all coordinate systems. Thus, although we introduce 
coordinate systems for convenience in tackling particular problems, if we 
work with tensorial equations then they hold in all coordinate systems. Put 
another way, tensorial equations are coordinate-independent. This is some­
thing that the index-free or coordinate-free approach makes clear from the 
outset. 

5. 7 Tensor fields 
In vector analysis, a fixed vector is a vector associated with a point, whereas a 
vector field defined over a region is an association of a vector to every point 
in that region. In exactly the same way, a tensor is a set of quantities defined 
at one point in the manifold. A tensor field defined over some region of the 
manifold is-an association of a tensor of the same valence to every point of the 
region, i.e. 

P-+ T,:: :: (P), 

where r,:: :: (P) is the value of the tensor at P. The tensor field is called 
continuous or differentiable if its components in all coordinate systems are 
continuous or differentiable functions of the coordinates. The tensor field is 
called smooth if its components are differentiable to all orders, which . is 
denoted mathematically by saying that all the components are C"' . Thus, for 
example, a contravariant vector field defined over a region is a set of n 
functions defined over that region, and the vector field is smooth if the 
functions are all C"' . The transformation law for a contravariant vector field 
then becomes 

(5.25) 
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at each point P in the region, since the old components X 0 are functions of 
the old x0 -coordinates and the new components X' 0 are functions of the new 
x'"-coordinates. 

As in the case of vectors and vector fields in vector analysis, the distinction 
between a tensor and a tensor field is not always made completely clear. We 
shall for the most part be dealing with tensor fields from now on, but to 
conform with general usage we shall often refer to tensor fields simply as 
tensors. We will again shorten the transformation law such as (5.25) to the 
form (5.21) with e_verything else being implied. If we wish to emphasize that a 
tensor is a tensor field, we shall write it in functional form, namely, as 
n::(x). 

5.8 Elementary operations with tensors 
Tensor calculus is concerned with tensorial operations, that is, operations on 
tensors which result in quantities which are still tensors. A simple way of 
establishing whether or not a quantity is a tensor is to see how it transforms 
under a coordinate transformation. For example, we can deduce directly 
from the transformation law that two tensors of the same type can be added 
together to give a tensor of the same type, e.g. 

(5.26) 

The same holds true for subtraction and scalar multiplication. 
A covariant tensor of rank 2 is said to be symmetric if X ab = X ba• in which 

case it has only ½n(n + 1) independent components (check this by estab­
lishing how many independent components there are of a symmetric matrix 
of order n). Symmetry is a tensorial property. A similar definition holds for a 
contravariant tensor X 0 b. The tensor x.b is said to be anti-symmetric or skew 
symmetric if Xab = -Xba, which has only ½n(n - 1) independent compon­
ents; this is again a tensorial property. A notation frequently used to denote 
the symmetric part of a tensor is 

and the anti-symmetric part is 

In general, 

1 
X<a,a,···a,) = r! (sum over all permutations of the indices a1 to a,) 

and 

(alternating sum over all permutations of the indices 
a1 to a,) 

For example, we shall need to make use of the result 
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(A way to remember the above expression is to note that the positive terms 
are obtained by cycling the indices to the right and the corresponding 
negative terms by flipping the last two indices.) A totally symmetric tensor is 
defined to be one equal to its symmetric part, and a totally anti-symmetric 
tensor is one equal to its anti-symmetric part. 

We can multiply two tensors of type (p1 , qi) and (p2 , q2 ) together and 
obtain a tensor of type (p1 + p2 , q1 + q2), e.g. 

(5.30) 

In particular, a tensor of type (p, q) when multiplied by a scalar field <f, is 
again a tensor of type (p, q). Given a tensor of mixed type (p, q), we can form a 
tensor of type (p - l, q - l) by the process of contraction, which simply 
involves setting a raised and lowered index equal. For example, 

contraction on a and b 
xa bed --------- xa a<d = Ycd• 

i.e. a tensor of type (l, 3) has become a tensor of type (0, 2). Notice that we can 
contract a tensor by multiplying by the Kronecker tensor o:, e.g. 

(5.31) 

In effect, multiplying by o: turns the index b into a (or equivalently the index 
a into b). 

5.9 Index-free interpretation of contravariant 
vector fields 

As we pointed out in §5.5, we must distinguish between the actual geometric 
object itself and its components in a particular coordinate system. The 
important point about tensors is that we want to make statements which are 
independent of any particular coordinate system being used. This is abund­
antly clear in the index-free approach to tensors. We shall get a feel for this 
approach in this section by considering the special case of a contravariant 
vector field, although similar index-free interpretations can be given for any 
tensor field. The key idea is to interpret the v~ctor field as an operator which 
maps real-valued functions into real-valued functions. Thus, if X represents a 
contra variant vector field, then X operates on any real-valued function! to 
produce another function g, i.e. Xf = g. We shall show how actually to 
compute Xf by introducing a coordinate system. However, as we shall see, 
we could equally well introduce any other coordinate system, and the 
computation would lead to the same result. 

In the x0 -coordinate system, we introduce the notation 

a 
aa = axa 

and then X is defined as the operator 

so that 
(5.33) 
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for any real-valued function/. Let us compute X in some other x'"-coordinate 
system. We need to use the result (5.13) expressed in the following form: we 
may take x" to be a function of x'b by (5.9) and x'b to be a function of x' by 
(5.6), and so, using the function of a function rule, we find 

1:11 _ ox" _ 0 "( ''( --")) ox" ox" 
ub - oxb - oxb X X ~ - = ox" oxb • (5.34) 

Then, using the transformation law (5.16) and (5.20) together with the above 
trick, we get 

X'" o' = X'" __!__ 
" ox'" 

ox'" ox' o =-Xb __ 
oxb ox'" ox' 

ox' ox'" o 
=--Xb-

ox'" 0Xb OX' 

:::::: Xb_!_ 
0Xb 

= X"_!_ 
ox" 

= X"o,.. 

Thus the result of operating on f by X will be the same irrespective of the 
coordinate system employed in (5.32). 

In any coordinate system, we may think of the quantities [o/ox,.]p as 
forming a basis for all the vectors at P, since any vector at Pis, by (5.32), given 
by 

Xp = [X"]p[o~ 1• 
that is, a linear combination of the [o/ox"]p. The vector space of all the 
contravariant vectors at Pis known as the tangent space at P and is written 
Tp(M) (Fig. 5.6). In general, the tangent space at any point in a manifold is 

Contravariant vectors 

Tangent space Tp(M) 

Fig. 5.6 The tangent space at P. 
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different from the underlying manifold. For this reason, we need to be careful 
in representing a finite contravariant vector by an arrow in our figures since, 
strictly speaking, the arrow lies in the tangent space not the manifold. Two 
exceptions to this are Euclidean space and Minkowski space-time, where the 
tangent space at each point coincides with the manifold. 

Given two vector fields X and Y we can define a new vector field called the 
commutator or Lie bracket of X and Y by 

Letting [X, Y] =Zand operating with it on some arbitrary function! 

Zf= [X, Y]f 

= (XY- YX)f 

= X(Yf) - Y(Xf) 

= X( Y"o0 f) - Y(X0 00 f) 

= XbiJb( YoiJ0 f) - ybi)b(X0 00 f} 

= (Xbob ya - ybi)bX0 )8af - xa Yb(oboaf - OaObf). 

The least term vanishes since we assume commutativity of second mixed 
partial derivatives, i.e. 

a2 a2 

OaOb = ox"oxb = oxbox• = aba •• 

Since f is arbitrary, we obtain the result 

[X, YJ" = z· = xbab y• - ybabx• (5.36) 

from which it clearly follows that the commutator of two vector fields is itself 
a vector field. It also follows, directly from the definition (5.35), that 

[X,X]=O 

[X, Y] = -[Y,X] 

[x, [Y, ZJ] + [z, [X, YJ] + [ Y, [Z, XJ] = 0. 

(5.37) 

(5.38) 

(5.39) 

Equation (5.38) shows that the Lie !?racket is anti-commutative. The result 
(5.39) is known as Jacobi's identity. Notice it states that the left-hand side is 
not just equal to zero but is identically zero. What does this mean? The 
equation x2 - 4 = 0 is only satisfied by particular values of x, namely, + 2 
and - 2. The identity x 2 - x2 = 0 is satisfied for all values of x. But, you may 
argue, the x2 terms cancel out, and this is precisely the point. An expression is 
identically zero if, when all the terms are written out fully, they all cancel in 
pairs. 



 
 
 
 
 
 

Exercises 

5.1 (§5.3) In Euclidean 3-space JR 3: 

(i) Write down the equation of a circle of radius 
a lying in the (x, y)-plane centred at the origin 
in (a) parametric form (b) constraint form. 

(ii) Write down the equation of a hypersurface 
consisting of a sphere of radius a centred 
at the origin in (a) parametric form (b) con­
straint form. Eliminate the parameters in 
form (a) to obtain form (b). 

5.2 (§5.4) Write down the change of coordinates from Car­
tesian coordinates (x") = (x, y, z) to spherical polar coordin­
ates (x'•) = (r, 0, ¢) in JR3. Obtain the transformation mat­
rices [8x"/8x'b] and [8x'•/axb] expressing them both in 
terms of the primed coordinates. Obtain the Jacobians J and 
J '. Where is J' zero or infinite? 

5.3 (§5.4) Show by manipulating the dummy indices that 

(Zab, + Z,ab + Zbca)X" xb X' = 3Z.bcx· xb X'. 

5.4 (§5.4) Show that 

(i) o:x· = xb, 

(ii) o:xb = x., 
(iii) o:oio: = o:. 

5.5 (§5.5) If y• and z• are contravariant vectors, then show 
that yazb is a contravariant tensor of rank 2. 

5.6 (§5.5) Write down the change of coordinates from Car­
tesian coordinates (x") = (x, y) to plane polar coordinates 
(x'•) = ( R, </>) in JR 2 and obtain the transformation matrix 
[ox'• /axb] expressed as a function of the primed coordina­
tes. Find the components of the tangent vector to the curve 
consisting of a circle of radius a centred at the origin with the 
standard parametrization (see Exercise 5.1 (i)) and use (5.16) 
to find its components in the primed coordinate system. 

5.7 (§5.6) Write down the definition of a tensor of type 
(2, 1). 

5.8 (§5.6) Prove that o! has the tensor character indicated. 
Prove also that Bi is a constant or numerical tensor, that is, 
it has the same components in all coordinate systems. 

5.9 (§5.6) Show, by differentiating (5.20) with respect to x", 
that o2</>lox•oxb is not a tensor. 
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5.10 (§5.8) Show that if y• be and z• be are tensors of the type 
indicated then so is their sum and difference. 

5.11 (§5.8) (i) Show that the fact that a covariant second 
rank tensor is symmetric in one coordinate 
system is a tensorial property. 

(ii) If x•b is anti-symmetric and Y.b is sym-
metric then prove that x•b Y.b = 0. 

5.12 (§5.8) Prove that any covariant (or contravariant) ten­
sor of rank 2 can be written as the sum of a symmetric 
and an anti-symmetric tensor. [Hint: consider the identity 
x.b = ½(Xab + xb.) + ½(X.b - xb.).] 

5.13 (§5.8) If x•b, is a tensor of the type indicated, then 
prove that the contracted quantity Y, = x•ac is a covariant 
vector. 

5.14 (§5.8) Evaluate o: and o:o! in n dimensions. 

5.15 (§5.9) Check that the definition of the Lie bracket 
leads to the results (5.37), (5.38), and (5.39). 

5.16 (§5.9) In JR 2, let (x") = (x, y) denote Cartesian and 
(x'•) = (R, <I>) plane polar coordinates (see Exercise 5.6). 

(i) If the vector field X has components 
x• = (1, 0), then find X'". 

(ii) The operator grad can be written in each 
coordinate system as 

aJ . aJ. aJ ~ aJ i 
gradf=-1+-1=-R +--, 

ax 8y 8R 8</> R 

where f is an arbitrary function and 

R = cos <J>i + sin <f>j, i = - sin<J>i + cos<J>j. 

Take the scalp.r product of gradf with i,j, R, 
and j in turn to find relationships between 
the operators a;ax, a;ay, 8/8R, and af o</>. 

(iii) Express the vector field X as an operator in each 
coordinate system. Use part (ii) to show that 
these expressions are the same. 

(iv) If Yo = (0, 1) and z• = ( -y, x), then find Y'•, 
Z'•, Y, and Z. 

(v) Evaluate all the Lie brackets of X, Y, and Z. 



 
 
 
 

6.1 Partial derivative of a tensor 
In the last chapter, we met algebraic operations which are tensorial, that is, 
which conv_ert tensors into tensors. The operations are addition, subtraction, 
multiplication, and contraction. The next question which arises is, What 
differential operations are there that are tensorial? The answer to this turns 
out to be very much more involved. The first thing we shall see is that partial 
differentiation of tensors is not tensorial. Different authors denote the partial 
derivative of a contravariant vector xa by 

a a axa a xa 
bx or axb or X ,b or Jb 

and similarly for higher-rank tensors. We shall use a mixture of all the first 
three notations. (Note that in the literature, the partial derivative of a tensor 
is often referred to as the ordinary derivative of a tensor, to distinguish it from 
the tensorial differentiation we shall shortly meet). Now differentiating (5.16) 
with respect to x'C, we find 

a' ,a - a (ax'a b) 
ex - ax'C axb X 

(6.1) 

If the first term on the right-hand side alone were present, then this would be 
the usual tensor transformation law for a tensor of type (1, 1). However, the 
presence of the second term prevents abxa from behaving like a tensor. 

There is a fundamental reason why this is the case. By definition, the 
process of differentiation involves comparing a quantity evaluated at two 
neighbouring points, P and Q say, dividing by some parameter representing 
the separation of P and Q and then taking the limit as this parameter goes to 
zero. In the case of a contravariant vector field xa, this would involve 
computing 

1. [Xa]p - [Xa]Q 
1m -----~ 

du-o OU 

for some appropriate parameter ou. However, from the transformation law in 



 

the form (5.25), we see that 

and X'a = [ ~~:1 xt. 
This involves the transformation matrix evaluated at different points, from 
which it should be clear that X'j, - Xa is not a tensor. Similar remarks hold 
for differentiating tensors in general. 

It turns out that if we wish to differentiate a tensor in a tensorial manner 
then we need to introduce some auxiliary field onto the manifold. We shall 
meet three different types of differentiation. First of all, in the next section, we 
shall introduce a contravariant vector field onto the manifold and use it to 
define the Lie derivative. Then we shall introduce a quantity called an affine 
connection and use it to define covariant differentiation. Finally, we shall 
introduce a tensor called a metric and from it build a special affine con­
nection, called the metric connection, and again define covariant differ­
entiation but relative to this specific connection. 

6.2 The Lie derivative 
The argument we present in this section is rather intricate. It rests on the idea 
of interpreting a coordinate transformation actively as a point transforma­
tion, rather than passively as we have done up to now. The important results 
occur at the end of the • section and consist of the formula for the 
Lie derivative of a general tensor field and the basic properties of Lie 
differentiation. 

We start by considering a congruence of curves defined such that only one 
curve goes through each point in the manifold. Then, given any one curve of 
the congruence, 

x• = x"(u), 

we can use it to define the tangent vector field dx• /du along the curve. If we do 
this for every curve in the congruence, then we end up with a vector field x• 
(given by dx"/du at each point) defined over the whole manifold (Fig. 6.1). 

Conversely, given a non-zero vector field X"(x) defined over the manifold, 
then this can be used to define a congruence of curves in the manifold called 
the orbits or trajectories of x•. The procedure is exactly the same as the way 
in which a vector field gives rise to field lines or streamlines in vector analysis. 
These curves are obtained by solving the ordinary differential equations 

dx" 
cfu = x•(x (u)) . (6.2) 

The existence and uniqueness theorem for ordinary differential equations 
guarantees a solution, at least for some subset of the reals. In what follows, we 
are really only intere11ted in what happens locally (Fig. 6.2). 

We therefore assume that x• has been given and we have constructed the 
local congruence ofcurves. Suppose we have some tensor field rr: :(x) which 
we wish to differentiate using x•. Then the essential idea is to use the 
congruence of curves to drag the tensor at some point P (i.e. rr: :( P)) along 
the curve passing through P to some neighbouring point Q, and then 
compare this 'dragged-along tensor' with the tensor already there (i.e. 
~ :: :(Q)) (Fig. 6.3). Since the dragged-along tensor will be of the same type as 
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Fig. 6.1 The tangent vector field 
resulting from a congruence of curves. 

Fig. 6.2 The local congruence 6f curves 
resulting from a vector field . 
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Fig. 6.3 Using the congruence to 
compare tensors at neighbouring points. 

Fig. 6.4 The point P transformed to Qin 
the same xa -coordinate system. 

'Tensor' at P 
'Dragged-along tensor' at Q 

1 
I 
I 
I 
I 
I 

Q 

'Tensor' at Q 

x•(o, 

the tensor already at Q, we can subtract the two tensors at Q and so define a 
derivative by some limiting process as Q tends to P. The technique for 
dragging involves viewing the coordinate transformation from P to Q 
actively, and applying it to the usual transformation law for tensors. We shall 
consider the detailed calculation in the case of a contra variant tensor field of 
rank 2, r•h(x) say. 

Consider the transformation 

where l>u is small. This is called a point transformation and is to be regarded 
actively as sending the point P, with coordinates x•, to the point Q, with 
coordinates x• + ou X"(x), where the coordinates of each point are given in 
the same x•-coordinate system, i.e. 

P--+Q 

x•--+ x• + ou X"(x). 

The point Q clearly lies on the curve of the congruence through P which x• 
generates (Fig. 6.4). Differentiating (6.3), we get 

(6.4) 

Next, consider the tensor field r•b at the point P. Then its components at p 
are T"b(x) and, under the point transformation (6.3), we have the mapping 

T"b(x)--+ T'"b(x'), 

i.e. the transformation 'drags' the tensor pb along from P to Q. The 
• components of the dragged-along tensor are given by the usual trans­
formation law for tensors (see (5.25)), and so, using (6.4), 

0 ,a O rb 

T'"b( ') = _:_ _:_ red( ) 
X OX' OXd X 

= (8~ + ouocX")(o~ + ouodX6 )T"d(x) 

= T06(x) + [o,X0 T'6 (x) + adX6 T 0d(x)]ou + O(ou2 ). (6.5) 

Applying Taylor's theorem to first order, we get 

T"b(x') = T"6(x' + ou X'(x)) = T06 (x) + ou X' ac T06(x). (6.6) 

We are now in a position to define the Lie derivative of pb with respect to 



 

x•, which is denoted by Lx Yob, as 

This involves comparing the tensor T 0 b(x') already at Q with T' 0 b(x'), the 
dragged-along tensor at Q. Using (6.5) and (6.6), we find 

(6.8) 

It can be shown that it is always possible to introduce a coordinate system 
such that the curve passing through P is given by x 1 varying, with x 2, x 3 

, ... , x" all constant along the curve, and such that 

x· ~ o~ = (1, o, o, ... , o) (6.9) 

along this curve. The notation ~ used in (6.9) means that the equation holds 
only in a particular coordinate system. Then it follows that 

x = x·a. ~ 01, 

and equation (6.8) reduces to 

(6.10) 

Thus, in this special coordinate system, Lie differentiation reduces to ordi­
nary differentiation. In fact, one can define Lie differentiation starting from 
this viewpoint. 

We end the section by collecting together some important properties of Lie 
differentiation with respect to X which follow from its definition. 

1. It is linear; for example 

where A and µ are constants. Thus, in particular, the Lie derivative of the 
sum and difference of two tensors is the sum and difference, respectively, of 
the Lie derivatives of the two tensors. 

2. It is Leibniz; that is, it satisfies the usual product rule for differentiation, for 
example 

3. It is type-preserving; that is, the Lie derivative of a tensor of type (p, q) is 
again a tensor of type (p, q ). 

4. It commutes with contraction; for example 
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x• 

p 

X'+bX" 
I 

'Parallel' vector ---l 
I 
I 
I 
I 

Q 

Fig. 6.5 The parallel vector xa + oX8 

at Q. 

5. The Lie derivative of a scalar field </> is given by 

6. The Lie derivative of a contravariant vector field ya is given by the Lie 
bracket of X and Y, that is, 

7. The Lie derivative of a covariant vector field Ya is given by 

8. The Lie derivative of a general tensor field r:::: is obtained as follows: we 
first partially differentiate the tensor and contract it with X. We then get 
an additional term for each index of the form of the last two terms in (6.15) 
and (6.16), where the corresponding sign is negative for a contravariant 
index and positive for a covariant index, that is, 

6.3 The affine connection and 
covariant differentiation 

Consider a contravariant vector field xa(x) evaluated at a point Q, with 
coordinates xa + cha, near to a point P, with coordinates xa. Then, by 
Taylor's theorem, 

xa(x + ch) = xa(x) + bxb abx· 

to first order. If we denote the second term by bX"(x), i.e. 

bX"(x) = bxbabx· = xa(x + bx) - X"(x), 

(6.18) 

(6.19) 

then it is not tensorial since it involves subtracting tensors evaluated at two 
different points. We are going to define a tensorial derivative by introducing a 
vector at Q which in some general sense is 'parallel' to x• at P. Since x• + bx• 
is close to xa, we can assume that the parallel vector only differs from xa(x) 
by a small amount, which we denote bX"(x) (Fig. 6.5). By the same argument 
as in §6.1 above, bX"(x) is not tensorial, but we shall construct it in such a 
way as to make the difference vector 

X"(x) + bX"(x) - [X"(x) + bX"(x)] = c5X"(x) - bX°(x) (6.20) 

tensorial. It is natural to require that bX"(x) should vanish whenever X"(x) 
or bx" does. Then the simplest definition is to assume that bX" is linear in 
both x• and c5x", which means that there exist multiplicative factors I'f.c 
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where 
(6.21) 

and the minus sign is introduced to agree with convention. 
We have therefore introduced a set of n3 functions r,:c(x) on the manifold, 

whose transformation properties have yet to be determined. This we do by 
defining the covariant derivative of X 0 , written in one of the notations (where 
we shall use a mixture of the first two) 

VcXa or xa;c or X 0
11 c, 

by the limiting process 

1 -
VcX 0 = lim Tc { X 0 (x + bx) - [X0 (x) + bX0 (x)]}. 

~xc-o ux 

In other words, it is the difference between the vector xa(Q) and the vector at 
Q parallel to X 0 (P), divided by the coordinate differences, in the limit as these 
differences tend to zero. Using (6.18) and (6.21), we find 

Note that in the formula the differentiation index c comes second in the 
downstairs indices of r. If we now demand that VcX 0 is a tensor of type (1, 1), 
then a straightforward calculation (exercise) reveals that r,;c m\lst transform 
according to 

Qr equivalently (exercise) 

If the second term on the right-hand side were absent, then this would be the 
usual transformation law for a tensor of type (1, 2). However, the presence of 
the second term reveals that the transformation law is linear inhomogeneous, 
and so rbc is not a tensor. Any quantity rbc which transforms according to 
(6.23) or (6.24) is called an affine connection or sometimes simply a 
connection or affinity. A manifold with a continuous connection prescribed 
on it is called an affine manifold. From another point of view, the existence of 
the inhomogeneous term in the transformation law is not surprising if we are 
to define a tensorial derivative, since its role is to compensate for the second 
term which occurs in (6.1). 

We next define the covariant derivative of a scalar field to be the same as its 
ordinary derivative, i.e. 
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If we now demand that covariant differentiation satisfies the Leibniz rule, 
then we find 

Notice again that the differentiation index comes last in the I'-term and that 
this term enters with a minus sign. Th~ name covariant derivative stems from 
the fact that the derivative of a tensor/ of type (p, q) is of type (p, q + l), i.e. it 
has one extra covariant rank. The expression in the case of a general tensor is 
(compare and contrast with (6.17)) 

It follows directly from the transformation laws that the sum of two 
connections is not a connection or a tensor. However, the difference of two 
connections is a tensor of valence (l, 2), because the inhomogeneous term 
cancels out in the transformation. For the same reason, the anti-symmetric 
part of a r:c, namely, 

T~ = r~ - r~b 
is a tensor called the torsion tensor. If the torsion tensor vanishes, then the 
connection is symmetric, i.e. 

From now on, unless we state otherwise, we shall restrict ourselves to 
symmetric connections, in which case the torsion vanishes. The assumption 
that the connection is symmetric leads to the following useful result. In the 
expression for a Lie derivative of a tensor, all occurrences of the parti~ 
derivatives may be replaced by covariant derivatives. For example, in the cas\: 
of a vector (exercise) 

Lx y• = xb i\ y• - Yb abx· = Xb\\ Y" - Yb\:\X". (6.29) 

6.4 Affine geodesics 
If rr:: is any tensor, then we introduce the notation 

that is, V x of a tensor is its covariant derivative contracted with X. Now in 
§6.2 we saw that a contra variant vector field X determines a local congruence 
of curves, 

x• = x"(u), 



where the tangent vector field to the congruence is 

dxa = xa 
du • 

We next define the absolute derivative of a tensor r:::: along a curve C of 
the congruence, written D Tb: : : /Du, by 

The tensor rr:: is said to be parallely propagated or transported along the 
curve C if 

This is a first-order ordinary differential equation for n:: :, and so given an 
initial value for r;;:::, say rr :: (P), equation (6.32) determines a tensor along 
C which is eyerywhere parallel to r;;:: :(P). 

Using this notation, an affine geodesic is defined as a privileged curve 
along which the tangent vector is propagated parallel to itself. In other words, 
the parallely propagated vector at any point of the curve is parallel, that is, 
proportional, to the tangent vector at that point: 

E_(dxa) = A(u) dxa. 
Du du du 

Using (6.31), the equation for an affine geodesic can be written in the form 

or equivalently (exercise) 

The last result is very important and so we shall establish it afresh from first 
principles using the notation of the last section. Let the neighbouring points 
P and Q on C be given by x0 (u) and 

dx0 

x"(u +bu)= x 0 (u) + du bu 

to first order in bu, respectively. Then in the notation of the last section 

dx0 

bx0 = dubu. (6.35) 
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Fig. 6.6 Two affine geodesics passing 
through P with given directions. 

Q 

p 

Fig. 6.7 Two affine geodesics from P 
refocusing at Q. 

The vector X"(x) at Pis now the tangent vector (dx"/du) (u). The vector at Q 
parallel to dx"/du is, by (6.21) and (6.35), 

dx• dxb dxc 
- --I''t,--bu. 
du du du 

The vector already at Q is 

dx" dx• d2 x• 
du (u + bu) =du+ du2 bu 

to first order in bu. These last two vectors must be parallel, so we require 

dx" d2x" (dx" dxb dxc ) 
du+ du 2 bu= [1 + l(u)bu] du - r:c du du bu , 

where we have written the proportionality factor as 1 + l(u)bu without loss 
of generality, since the equation must hold in the limit bu ➔ 0. Subtracting 
dx"/du from each side, dividing by bu and taking the limit as bu tends to zero 
produces the result (6.34). Note that I''t, appears in the equation multiplied by 
the symmetric quantity (dxb/du)(dx</du), and so even if we had not assumed 
that I''t, was symmetric the equation picks out its symmetric part only. 

If the curve is parametrized in such a way that l vanishes (that is, by the 
above, so that the tangent vector is transported into itself), then the para­
meter is a privileged parameter called an affine parameter, often convention­
ally denoted by s, and the affine geodesic equation reduces to 

or equivalently 

An affine parameters is only defined up to an affine transformation (exercise) 

where a and /3 are constants. We can use the affine parameters to define the 
affine length of the geodesic between two points P1 and P2 by J:: ds, and so 
we can compare lengths on the same geodesic. However, we cannot compare 
lengths on different geodesics (without a metric) because of the arbitrariness 
in the parameters. From the existence and uniqueness theorem for ordinary 
differential equations, it follows that corresponding to every direction at a 
point there is a unique geodesic passing through the point (Fig. 6.6). Similarly, 
any point can be joined to any other point, as long as the points are 
sufficiently 'close', by a unique geodesic. However, in the large, geodesics may 
focus, that is, meet again (Fig. 6.7). 



 

6.5 The Riemann tensor 
Covariant differentiation, unlike partial differentiation, is not in general 
commutative. For any tensor r::::, we define its commutator to be 

VcVdT:::: -VdVcT::::. 

Let us work out the commutator in the case of a vector X 0 • From (6.22), we 
see that 

VcX 0 = acxa + I'fx:Xb. 

Remembering that this is a tensor of type (1, 1) and using (6.27), we find 

VdVcX0 = oAocX0 + r;:cxb) + r:Aocxe + rbcxb) - r:Aaexa + I'i:eXb), 

with a similar expression for Ve VdX 0 , namely, 

V, vdxa = Oc(odx· + r;:dxb) + r:c(adx• + n:dxb) - r~cea.xa + r;:exb). 

Subtracting these last two equations and assuming that 

OdOcX" = OcOdX•, 

we obtain the result 

vcvdxa -vdvcxa = R"bcdxb + (I'~d - r;c)VeX 0 , (6.38) 

where R0 bcd is defined by 

Moreover, since we are only interested in torsion-free connections, the last 
term in (6.38) vanishes, namely, using (5.28), 

Since the left-hand side of (6.40) is a tensor, it follows that R0 bcd is a tensor of 
type (1, 3). It is called the Riemann tensor. It can be shown that, for a 
symmetric connection, the commutator of any tensor can be expressed in 
terms of the tensor itself and the Riemann tensor. Thus, the vanishing of the 
Riemann tensor is a necessary and sufficient condition for the vanishing of the 
commutator of any tensor. In the section after next, we shall search for a 
geometrical characterization of the vanishing of the Riemann tensor. 

6.6 Geodesic coordinates 
We first prove a very useful result. At any point P in a manifold, we can 
introduce a special coordinate system, called a geodesic coordinate system, 
in which 

[I'fx:]p ~ 0. 

We can, without loss of generality, choose P to be at the origin of coordinates 
x0 ~ 0 and consider a transformation to a new coordinate system 

(6.41) 
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Fig. 6.8 Parallel transport round two 
curves in a general affine manifold. 

where Qi= Q~b are constants to be determined. Differentiating (6.41), we get 

Then, since x0 vanishes at P, we have 

from which it follows immediately that the inverse matrix 

[ iJx0 ] 
ox'b p = O't,. 

Substituting these results in (6.23), we find 

[r~Jp = [r't,Jp - m,. 

Since the connection is symmetric, we can choose the constants so that 

me= [riJp, 

and hence we obtain the promised result 

(6.42) 

Many tensorial equations can be established most easily in geodesic co­
ordinates. Note that, although the connection vanishes at P, 

[I'~,d]p # Q 

in general. It can be shown that the result can be extended to obtain a 
coordinate system in which the connection vanishes along a curve, but not in 
general over the whole manifold. If, however, there exists a special coordinate 
system in which the connection vanishes everywhere, then the manifold is 
called affine flat or simply flat. We shall next see that this is intimately 
connected with the vanishing of the Riemann tensor. 

6. 7 Affine flatness 
In a general affine manifold, the intuitive concept of parallelism breaks down. 
For if we parallely transport a vector from one point to another along two 
different curves we will obtain two different vectors (Fig. 6.8). If, however, we 
can transport a vector from one point to any other and the resulting vector is 
independent of the path taken, then the connection is called integrable. Thus, 
for the usual concept of parallelism to hold, the manifold must possess an 
integrable connection. We now consider two lemmas which connect together 
the concepts of affine flatness, integrability, and vanishing Riemann tensor. 

We consider, first, necessity. Since I''t,, is integrable, we can start with a 
vector X 0 at any point and from it construct a unique vector field X 0(x) over 



 

the manifold by parallely propagating X 0 • The equation for parallely pro­
pagating xa is 

DX0 dx' 
Du = du \\Xa = 0, 

and, since dx'/du is arbitrary, it follows that the covariant derivative of X 0 

vanishes, i.e. 
(6.43) 

Hence, this equation must possess solutions. A necessary condition for a 
solution of this first-order partial differential equation is 

(6.44) 

namely, the second mixed partial derivatives should commut~: In the 
previous section, we met the identity for the commutator of a vector field 
(6.38), namely 

v,vdxa - vdv,xa = a,adxa - ada,xa + R0 bcdxb. 

The left-hand side of this equation vanishes by construction, that is, by (6.43); 
hence it follows that (6.44) will hold if and only if " 

Rabcdxb = 0. 

Finally, since Xb is arbitrary· at every point, a necessary condition for 
integrability is R°b,d = 0 everywhere. 

We next prove sufficiency. We start by considering the difference in 
parallely propagating a vector X 0 around an infinitesimal loop connecting x 0 

to x• + bx0 + dx0 , first via x0 + bx0 and then via x0 + dx0 (Fig. 6.9). From 
§6.3, if we parallely transport X 0 from x0 to x0 + bx0 , we obtain the vector 

X 0 (x +bx)= X0 (x) + c5X0 (x), 
where, by (6.21), 

Similarly, if we transport this vector subsequently to x0 + bx0 + dx0 , we 
obtain the vector 

X 0 (x +bx+ dx) = X 0 (x +bx)+ i5X 0 (x + bx), 

where, in this case, 

i5X 0 (x +bx)= -rb,(x + bx)Xb(x + bx)dx'. 

Expanding by Taylor's theorem and using the previous results, we obtain 
(where everything is assumed evaluated at x0 ) 

b.X0 (x +bx)= -(I'b, + adrb,bxd)(Xb - r:1X'bx1)dx" 

= -I'~Xbdx' - adrb,Xbbxddx' 

+ rb,r:,x•bx1 dx' + adr~r~,x•Jxdbx1 dx'. 

Neglecting the last term, which is third order, we have 

X 0 (x + bx + dx) 

= xa - r~Xbbx' - rb,Xbdx' - adn,xbbxddx' + r~r:,x•bx1 dx'. 

To obtain the equivalent result for the path connecting x0 to x 0 + bx0 + dx0 
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x'+bx' 

x'+bx'+dx' 

x'+dx' 

Fig. 6.9 Transporting xa around an 
infinitesimal loop. 
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via x• + dx0 , we simply interchange bx• and dx" to give 

X 0 (x + dx + bx) 

= x· - r:cxbdxc - r:cxbbxc - adrbcXbdx4bxc + r:cr~1X'dx1 bxc. 

Hence, the difference between these two vectors is 

!!.X 0 = X"(x + bx + dx) - X 0 (x + dx + bx) 

= (adr:c- acnd + r:,rric- r:cnd)Xbbx<dx4 

=R·bdcXbbx'dx4 

= -R"bcdXbbx<dx' 

by (6.39) and the fact that the Riemann tensor is anti-symmetric on its 
last pair of indices (see (6.77)). Thus, the vector x• will be the same at 
x• +bx•+ dx0 , irrespective of which path is taken, if and only if R"bcd = O. lt 
follows that if the Riemann tensor vanishes then the vector x• will not change 
if parallely transported around any infinitesimal closed loop. Using this result 

--...;;::==-,;~Q and assuming the manifold has no holes (that is, the manifold is simply 

Fig. 6.10 Deforming C, into C2 (infinites­
imally at each stage). 

connected), then we can continuously deform one curve into another by 
deforming the curves infinitesimally at each stage (Fig. 6.10), which estab­
lishes that the connection is integrable (check). 

The second lemma is as follows. 

Sufficiency is established by first choosing n linearly independent vectors 

X;" (i = 1, 2, ... , n) 

at P, where the bold index i runs from 1 ton and labels the vectors. Using the 
integrability assumption we can construct the parallel vector fields X;"( x) and 
these will also be linearly independent everywhere. Therefore, at each point P, 
X;"(P) is a non-singular matrix of numbers and so we can construct its 
inverse, denoted by Xib, which must satisfy 

(6.45) 

where there is a summation over i. Multiplying the propagation equation 

by Xie produces 
(6.46) 

Differentiating (6.45), we obtain 

X/acXib = -XibacX;" = rbc (6.47) 

by (6.46). Using (6.47), we find that 

X;"(acx;b - abxic) = r:c - r~b = 0, 

because the connection is symmetric by assumption. Since the determinant of 
X;" is non-zero, it follows that the quantity in brackets must vanish, from 



 

which we get 
i\Xib = obXic· 

This in turn implies that Xib must be the gradient of n scalar fields,Ji(x) say, 
that is, 

Xib = odi(x). 

If we consider the transformation 

x 0 -+x' 0 =f•(x) 
then 

and so, taking inverses, 

(6.48) 

(6.49) 

Multiplying (6.23) by X,/ and using (6.48) and (6.49) and then (6.45) and 
(6.47), we find 

XahI'"1,c = x.h(X•dX{ X/ r:1 - xb· X/o,X•1) 

= o:x,,e x/ r~1 - x,,· x/ r:1 = o. 
Again, since the determinant of X ,,h is non-zero, I'~~ vanishes everywhere in 
this coordinate system and hence the manifold is affine flat. The necessity is 
straightforward and is left as an exercise. 

Ifwe put these two lemmas together, we get the result we have been looking 
for. 

6.8 The metric 
Any symmetric covariant tensor field of rank 2, say gab(x), defines a metric. A 
manifold endowed with a metric is called a Riemannian manifold. A metric 
can be used to define distances and lengths of vectors. The infinitesimal 
distance (or interval in relativity), which we call ds, between two neigh­
bouring points x• and x• + dx0 is defined by 

Note that this gives the square of the infinitesimal distance, (ds)2, which is 
conventionally written as ds2• The equation (6.50) is also known as the line 
element and 9ab is also called the metric form or first fundamental form. The 
square of the length or norm of a contravariant vector x• is defined by 

6.8 The metric I. 81 



 

82 I Tensor calculus 

The metric is said to be positive definite or negative definite if, for all vectors 
X, X 2 > 0 or X 2 < 0, respectively. Otherwise, the metric is called indefinite. 
The angle between two vectors xa and ya with X 2 i= 0 and Y 2 i= 0 is given 
by 

g xayb 

cos(X, Y) = (lgcdxc XdJ)½(lg,f ye Yfl)½. 

In particular, the vectors xa and ya are said to be orthogonal if 

gabxayb = 0. 

(6.52) 

(6.53) 

If the metric is indefinite (as in relativity theory), then there exist vectors 
which are orthogonal to themselves called null vectors, i.e. 

gabxaxb = o. 
The determinant of the metric is denoted by 

g = det(gab) 

(6.54) 

(6.55) 

The metric is non-singular if g i= 0, in which case the inverse of gab• gab, is 
given by 

It follows from this definition that gab is a contra variant tensor of rank 2 and 
it is called the contravariant metric. We may now use g.b and g•b to lower and 
raise tensorial indices by defining 

(6.57) 
and 

(6.58) 

where we use the same kernel letter for the tensor. Since from now on we shall 
be working with a manifold endowed with a metric, we shall regard such 
associated contravariant and covariant tensors as representations of the 
same geometric object. Thus, in particular, •gab• 8!, and gab may all be 
thought of as different representations of the same geometric object, the 
metric g. Since we can raise and lower indices freely with the metric, we must 
be careful about the order in which we write contravariant and covariant 
indices. For example, in general, X/ will be different from Xba• 

6.9 Metric geodesics 

Consider the timelike curve C with paranretric equation x• ":' x"(u). Dividing 
equation (6.50) by the square of du we get 

( ds ) 2 _ dxa dxb 
du - gab du du' (6.59) 

Then the interval s between two points P I and P 2 on C is given by 

=f P, _ f P, ds _ f P2 ( dxa dxb )½ 
s ds - d du - gab d d du. 

Pi Pi U, Pi U U 
(6.60) 



 

We define a timelike metric geodesic between any two points P 1 and P2 as 
the privileged curve joining . them whose interval is stationary under small 
variations that vanish at the end points. Hence, the interval may be a 
maximum, a minimum, or a saddle point. Deriving the geodesic equations 
involves the calculus of variations and we postpone this to the next chapter. 
In that chapter, we shall see that the Euler-Lagrange equations result in the 
second-order differential equations 

d 2 xb dxb dxc (d2s;ds) dxb 
gab du2 + { be, a} du du = du2 du gab du' (6.61) 

where the quantities in curly brackets are called the Christoffel symbols of 
the first kind and are defined in terms of derivatives of the metric by 

Multiplying through by gad and using (6.56), we get the equations 

d2 xa + { a } dxb dxc = ( d2s / d,.s ) dxa 
du 2 be du du du2 du du ' (6-63) 

where Uc} are the Christoffel symbols of the second kind defined by 

In addition, the norm of the tangent vector dxa /du is given by (6.59). If, in 
particular, we choose a parameter u which is linearly related to the interval s, 
that is, 

U = CXS + /J, (6.65) 

where IX and pare constants, then the right-hand side of(6.63) vanishes. In the 
special case when u = s, the equations for a metric geodesic become 

and 

where we assume ds # 0. 
Apart from trivial sign changes, similar results apply for spacelike geo­

desics, except that we replace s by u, say, where 

du2 = -gabdxadxb 

However, in the case of an indefinite metric, there exist geodesics for which 
the distance between any two points is zero called null geodesics. It can also 
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be shown that these curves can be parametrized by a special parameter u, 
called an affine parameter, such that their equation does not possess a right­
hand side, that is, 

where 

The last equation follows since the distance between any two points is zero, or 
equivalently the tangent vector is null. Again, any other affine parameter is 
related to u by the transformation 

U ➔ IXU + {J, 

where IX and fJ are constants. 

6.10 The metric connection 
In general, ifwe have a manifold endowed with both an affine connection and 
metric, then it possesses two classes of curves, affine geodesics and metric 
geodesics, which will be different (Fig. 6.11). However, comparing (6.37) with 
(6.66), the two classes will coincide if we take 

ra = { a } 
be be 

(6.70) 

Metric or, using (6.64) and (6.62), if 
geodesics 

Fig. 6.11 Affine and metric geodesics on 
a manifold. 

It follows from the last equation that the connection is necessarily symmetric, 
i.e. 

(6.72) 

In fact, if one checks the transformation properties of {;c} from first prin­
ciples, it does indeed transform like a connection (exercise). This special 
connection built out of the metric and its derivatives is called the metric 
connection. From now on, we shall always work with the metric connection 
and we shall denote it by qc rather than {t:,}, where I'i:c is defined by (6.71). 
This definition leads immediately to the identity (exercise) 

Conversely, if we require that (6.73) holds for an arbitrary symmetric 



 

connection, then it can be deduced (exercise) that the connection is neces­
sarily the metric connection. Thus, we have the following important result. 

In addition, we can show that 

and 

6.11 Metric flatness 

(6.74) 

(6.75) 

Now at any point P of a manifold, g0 b is a symmetric matrix of real numbers. 
Therefore, by standard matrix theory, there exists a transformation which 
reduces the matrix to diagonal form with every diagonal term either + 1 
or -1. The excess of plus signs over minus signs in this form is called the 
signature of the metric. Assuming that the metric is · continuous over the 
manifold and non-singular, then it follows that the signature is an invariant. 
In general, it will not be possible to find a coordinate system in which the 
metric reduces to this diagonal form everywhere. If, however, there does exist 
a coordinate system in which the metric reduces to diagonal form with ± 1 
diagonal elements everywhere, then the metric is called flat. 

How does metric flatness relate to affine flatness in the case we are 
interested in, that is, when the connection is the metric connection? The 
answer is contained in the following result. 

Necessity follows from the fact that there exists a coordinate system in 
which the metric is diagonal with ± 1 diagonal elements. Since the metric is 
constant everywhere, its partial derivatives vanish and therefore the metric 
connection I''i,c vanishes as a consequence of the definition (6.71). Since I'1,c 
vanishes everywhere then so must its derivatives. (One way to see this is to 
recall the definition of partial differentiation which involves subtracting 
quantities at neighbouring points. If the quantities are always zero, then their 
difference vanishes, and so does the resulting limit.) The Riemann tensor 
therefore vanishes by the definition (6.39). 

Conversely, if the Riemann tensor vanishes, then by the theorem of §6.7, 
there exists a special coordinate system in which the connection vanishes 
everywhere. Since this is the metric connection, by (6.73), 

Vcgab = Ocgab - r~cgdb - I'1,,:g.d = 0, 
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from which we get 

and it follows that a ell ab = 0. The metric is therefore constant everywhere and 
hence can be transformed into diagonal form with diagonal elements ± l. 
Note the result (6.76) which expresses the ordinary derivative of the metric in 
terms of the connection. This equation will prove useful later. 

Combining this theorem with the theorem of§6.7, we see that ifwe use the 
metric connection then metric flatness coincides with affine flatness. 

6.12 The curvature tensor 
The curvature tensor or Riemann-Christoffel tensor (Riemann tensor for 
short) is defined by (6.39), namely, 

where I''fx is the metric connection, which by (6.71) is given as 

I''i,, = ½g•d( ablldc + a,gdb - adllbc). 

Thus, R\,d depends on the metric and its first and second derivatives. It 
follows immediately from the definition that it is anti-symmetric on its last 
pair of indices 

R•bcd = -R"bdc• (6.77) 

The fact that the connection is symmetric leads to the identity 

(6.78) 

Lowering the first index with the metric, then it is easy to establish, for 
example by using geodesic coordinates, that the lowered tensor is symmetric 
under interchange of the first and last pair of indices, that is, 

(6.79) 

Combining this with equation (6.77), we see that the lowered tensor is anti­
symmetric on its first pair of indices as well: 

(6.80) 

Collecting these symmetries together, we see that the lowered curvature 
tensor satisfies 

These symmetries considerably reduce the number of. independent compon­
ents; in fact, inn dimensions, the number is reduced from n4 to /2 n2(n2 - 1). 
In addition to the algebraic identities, it can be shown, again most easily 
by using geodesic coordinates, that the curvature tensor satisfies a set of 



 
 

differential identities called the Bianchi identities: 

We can use the curvature tensor to define several other important tensors. 
The Ricci tensor is defined by the contraction 

which by (6.79) is symmetric. A final contraction defines the curvature scalar 
or Ricci scalar R by 

These two tensors can be used to define the Einstein tensor 

(6.85) 

which is also symmetric, and, by (6.82), the Einstein tensor can be shown to 
satisfy the contracted Bianchi identities 

Note that some authors adopt a different sign convention, which leads to the 
Riemann tensor or the Ricci tensor having the opposite sign to ours. 

6.13 The Weyl tensor 
We shall mostly be concerned with tensors in four dimensions or less. The 
algebraic identities (6.81) lead to the following special cases for the curvature 
tensor: 

(1) if n = 1, Rabcd = O; 
(2) if n = 2, Rabcd has one independent component - essentially R; 

(3) if n = 3, Rabcd has six independent components - essentially R.b; 

(4) if n = 4, R.bcd has twenty independent components - ten of which are 
given by Rab and the remaining ten by the Wey! tensor. 

The Weyl tensor or conformal tensor Cabcd is defined in n dimensions, (n ~ 3) 
by 

1 
Cabcd = Rabcd + --2 (g.dRcb + llbcRda - OacRdb - llbdRca) n-

1 
+ (n _ l)(n _ 2) (g.cgdb - lladgcb)R. 
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Thus, in four dimensions, this becomes 

It is straightforward to show that the Weyl tensor possesses the same 
symmetries as the Riemann tensor, namely, 

Combining this result with the previous symmetries, it then follows that the 
Weyl tensor is trace-free, in other words, it vanishes for any pair of contrac­
ted indices. One can think of the Weyl tensor as that part of the curvature 
tensor for which all contractions vanish. 

Two metrics Oab and iiab are said to be conformally related or conformal to 
each other if 

where f.!(x) is a non-zero differentiable function. Given a manifold with two 
metrics defined on it which are conformal, then it is straightforward from 
(6.51) and (6.52) to show that angles betwee·n vectors and ratios of magnitudes 
of vectors, but not lengths, are the same for each metric. Moreover, the null 
geodesics of one metric coincide with the null geodesics of the other (ex­
ercise). The metrics also possess the same Weyl tensor, i.e. 

Any quantity which satisfies a relationship like (6.91) is called conformally 
invariant (gab• ric, and R~d are examples of quantities which are not 
conformally invariant). A metric is said to be conformally flat if it can be 
reduced to the form 

(6.92) 

where flab is a flat metric. We end this section by quoting two results 
concerning conformally flat metrics. 



 

Exercises 

6.1 (§6.2) Prove (6.13) by showing that Lxo;; = 0 in two 
ways: (i) using (6.17); (ii) from first principles (remembering 
Exercise 5.8). 

6.2 (§6.2) Use ( 6.17) to find expressions for L x Z b, and 
Lx( ya Zb,). Use these expressions and (6.15) to check the 
Leibniz property in the form (6.12). 

6.3 (§6.3) Establish ( 6.23) by assuming that the quantity 
defined by (6.22) has the tensor character indicated. Take the 
partial derivative of 

with respect to x•b to establish the alternative form (6.24). 

6.4 (§6.3) Show that covariant differentiation commutes 
with contraction by checking that V,o;; = 0. 

6.5 (§6.3) Assuming (6.22) and (6.25), apply the Leibniz rule 
to the covariant derivative of X .x•, where x• is arbitrary, to 
verify ( 6.26). 

6.6 (§6.3) Check (6.29). 

6.7 (§6.4) If X, Y, and Z are vector fields, f and g smooth 
functions, and .l. and µ constants, then show that 

(i) Vx(.l.Y + µZ) = .l.Vx Y + µVxZ, 

(ii) V1x+ 9,Z =fVxZ + gV,Z, 

(iii) VxUYJ = (Xf) Y + fVx Y. 

6.8 (§6.4) Show that (6.33) leads to (6.34). 

6.9 (§6.4) Ifs is an affine parameter, then show that, under 
the transformation 

s--+ s = s(s), 

the parameter swill be affine only ifs = ocs + /3, where cc and 
p are constants. 

6.10 (§6.5) Show that 
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6.11 (§6.5) Show that 

V x(V yZ") - Vy(V xZ") - Vex. Y]z· = R"b,dzb X' yd. 

6.12 (§6. 7) Prove that if a manifold is affine flat then the 
connection is necessarily integrable and symmetric. 

6.13 (§6.8) Show that if 9ab is diagonal, i.e. 9ab = 0 if a #- b, 
then g•b is diagonal with corresponding reciprocal diagonal 
elements. 

6.14 (§6.8) The line elem en ts of JR 3 in Cartesian, cylindrical 
polar, and spherical polar coordinates are given respectively 
by 

(i) ds2 = dx2 + dy2 + dz2 , 

(ii) ds2 = dR 2 + R2 d</> 2 + dz 2 , 

(iii) ds2 = dr2 + r2 d0 2 + r2 sin2 0dcp2 . 

Find 9ab, g•b, and g in each case. 

6.15 (§6.8) Express T.b in terms of T'd. 

6.16 (§6.9) Write down the tensor transformation law of 
9ab· Show directly that 

transforms like a connection. 

6.17 (§6.9) Find the geodesic equation for JR 3 in cylindrical 
polars. [Hint: use the results of Exercise 6.14(ii) to compute 
the metric connection and substitute in (6.68).] 

6.18 (§6.9) Consider a 3-space with coordinates 
(x") = (x, y, z) and line element 

ds2 = dx2 + dy2 - dz2 . 

Prove that the null geodesics are given by 

x = lu + I', y =mu+ m', z =nu+ n', 

where u is a parameter and /, /', m, m', n, n' are arbitrary 
constants satisfying 12 + m 2 - n2 = 0. 
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6.19 (§6.10) Prove that V,gab = 0. Deduce that 
vbxa = g., VbX'. 

6.20 (§6,10) Suppose we have an arbitrary symmetric con­
nection I''t,, satisfying V,gab = 0. Deduce that I''t,, must be the 
metric connection. [Hint: use the equation to find expres­
sions for abgd,• a,g4b and - a,gbc, as in (6.76), add the 
equations together, and multiply by ½gaa.] 

6.21 (§6.11) The Minkowski line element in Minkowski 
coordinates 

(x•) = (x0 , x', x2 , x3 ) = (t, x, y, z) 

is given by 

ds2 = dt2 - dx 2 - dy2 - dz2 

(i) What is the signature? 
(ii) Is the metric non-singular? 

(iii) Is the metric flat? 

6.22 (f6.11) The line element of JR 3 in a particular coordin­
ate system is 

ds2 =(dx 1 )2 + (x 1 )2 (dx2)2 +(x1 sinx2 )2 ( dx3 )2 

(i) Identify the coordinates. 
(ii) Is the metric flat? 

6.23 (§6.12) Establish the identities (6.78) and (6.79). [Hint: 
choose an arbitrary point P and introduce geodesic co­
ordinates at P.] Show that (6.78) is equivalent to R•lbcdJ = 0. 

6.24 (§.6.12) Establish the identity (6.82). [Hint: use geo­
desic coordinates.] Show that (6.82) is equivalent to 
Rd,[ab;c] = 0. Deduce (6.86). 

6.25 (§6.12) Show that G.b = 0 if and only if R.b = 0. 

6.26 (§6.13) Establish the identity (6.89). Deduce that the 
Weyl tensor is trace-free on all pairs of indices. 

6.27 (§6.13) Show that angles between vectors and ratios of 
lengths of vectors, but not lengths, are the same for conform­
ally related metrics. 

6.28 (§6.13) Prove that the null geodesics of two conform­
ally related metrics coincide. [Hint: the two classes of geo­
desics need not both be affinely parametrized.] 

6.29 (§6.13) Establish (6.91). 

6.30 (§6.13) Establish the theorem that any two-dimen­
sional Riemann manifold is conformally flat in the case of a 
metric of signature 0, i.e. at any point the metric can be 
reduced to the diagonal form ( + 1, -1) say. [Hint: use null 
curves as coordinate curves, that is, change to new co­
ordinates 

). = ).(x0 , x 1), v = v(x0 ,x1 ) 

satisfying 
g•b ).,a ).,b = g® V,a V,b = Q 

and show that the line element reduces to the form 

ds2 = e2µ d).dv 

and finally introduce new coordinates ½0- + v) and 
½(). - v).] 

6.31 This final exercise consists of a long calculation which 
will be needed later in the book. If we take coordinates 

x 0 =(x0 ,x 1,x2 ,x3 )=(t,r,0,tj>), 

then the four-dimensional spherically symmetric line ele­
ment is 

ds2 = e'dt2 - e'dr2 - r2d02 - r2 sin2 0dcp2, 

where v = v( t, r) and ). = ).( t, r) are arbitrary functions of 
t and r. 

(i) Find 9ab, g, and g•b (see Exercise 6.13). 
(ii) Use the expressions in (i) to calculate rb,. [Hint: re­

member I'bc = I'~b-] 

(iii) Calculate Rahed' [Hint: use the symmetry relations 
(6.81).] 

(iv) Calculate Rab• R, .and Gab· 

(v) Calculate G0 b( =g0 'G,b = Gb0 ). 



 

7.1 Tensor densities 
A tensor density of weight W, denoted conventionally by a gothic letter, 
1r:, transforms like an ordinary tensor, except that in addition the Wth 
power of the Jacobian 

I ox• I 
J = OX'b 

appears as a factor, i.e. 

Then, with certain modifications, we can combine tensor densities in much 
the same way as we do tensors. One exception, which follows from (7.1), is 
that the product of two tensor densities of weight W1 and W2 is a tensor 
density of weight W1 + W2 . There is some arbitrariness in defining the 
covariant derivative of a tensor density, but we shall adhere to the definition 
that if !i::: is a tensor density of weight W then 

For example, the covariant derivative of a vector density of weight Wis 

V/!" = o/!" + rgc!b - WI':C!". 

In the special case when W = + 1 and c = a, we get the important result 
(check) 

that is, the covariant divergence of a vector density of weight + 1 is identical 
to its ordinary divergence. It can be shown that both these quantities are 
scalar densities of weight + 1 (exercise). 
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7 .2 The Levi-Civita alternating symbol 
We introduce a quantity which is a generalization of the Kronecker delta o:, 
but which turns out to be a tensor density. The Levi-Civita alternating 
symbol eabcd is a completely anti-symmetric tensor density of weight + 1 and 
contravariant rank 4, whose values in any coordinate system is + 1 or -1 if 
abed is an even or odd permutation of0123, respectively, and zero otherwise. 
Thus, for example, in four dimensions, if we let the coordinates range from 0, 
to 3 (as we shall), i.e. 

then some of its values are 

i,0123 = i,2301 = -EOt32 = -E0321 = + 1 

and 

Similarly, we can define the covariant version Eabcd• which has weight -1. It 
can be used, in particular, to form the determinant of a second-rank density, 
i.e. 

Assuming this is non-zero, we can then also use it to construct the inverse of a 
second-rank tensor. The covariant derivatives of both e•bcd and &abed vanish 
identically, which from one point of view motivates the definition (7.2). 

We define the generalized Kronecker delta by 

{ 
+ 1 for a t= b, a = c, b = d, 

o~: = - 1 for a t= b, a = d, b = c, 
0 otherwise, 

and similarly for higher-order tensors. They are constant tensors of the type 
indicated, and can be defined in terms of the Kronecker delta by the 
determinant relationships 

and 
od oS o:; 

od~ = o: o: o~ , 
01 o} 01 

and so forth. In four dimensions they are related to products of the'a1terna­
ting symbols according to 

g•bcdEefgh = 0:r:h, 
&abcdEefgd = 0:}~, 

e•bcd&efcd = 20:}, 

e•bcdEebcd = 3 ! 0:, 

&abed &abed = 4 !. 



 

7 .3 The metric determinant 
If we have a Riemannian manifold with metric gab• then it transforms 
according to 

(7.4) 

and so, taking determinants, we have 

g' = J2g. 

Hence the metric determinant g is a scalar density of weight + 2. In the later 
chapters, we shall be working with metrics of negative signature in which 
case g will be negative, and so we write the last equation in the equivalent 
form 

Since all these terms are now positive, we can take square roots, to get 

and hence (-g)¼ is a scalar density of weight + 1. The quantity (-g)¼ plays 
an important role in integration. Given any tensor r:,-::, we can form the 
product ( -g)¼ T:,-:: which is then a tensor density of weight + 1. In particu­
lar, we can deduce an important result from equation (7.3), namely, for any 
vector Ta, 

Now, at any point, the covariant and contravariant metrics are symmetric 
matrices which are inverse to each other by 

gabgbc = 0~. 

Let us digress for a moment and consider the general case of finding the 
derivative of a determinant of a matrix whose elements are functions of the 
coordinates. Consider any square matrix A = (aii). Then its inverse, (bii) say, 
is defined by 

(7.6) 

where a is the determinant of A, A ii is tQe cofactor of a,,, and the prime 
denotes the transpose. Let us fix i, and expand the determinant a by the ith 
row. Then 

n 
- ~ A11 a-L.,a,, 

j=l 

where we have explicitly included the summation sign for clarity. If we 
partially differentiate both sides with respect to aii• then we get 

aa .. 
-=A'J 
aaij ' 

(7.7) 
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since aii does not occur in any of the cofactors Aii (i fixed,} runs from 1 ton) . . 
Repeating the argument for every i, as i runs from 1 to n, we see that the 
formula (7.7) is quite general. Let us suppose that the aii are all functions of 
the coordinates xk. Then the determinant is a functional of the aii, which in 
turn are functions of the xk, that is, 

a= a(a;j(xk)). 

Differentiating this partially with respect to x\ using ihe function of a 
function rule and equation (7.7), we obtain 

aa aa aaij 
axk = aa .. axk ,, 

= abi; aaii 
axk 

by equation (7.6). Applying this result to the metric determinant g and 
remembering that g•b is symmetric, we get the useful equation 

We now combine this result with (6.76) (which comes directly from the 
vanishing of the covariant derivative of the metric) and find 

acg = gg•b(r:clldb + rtcgad) 

= go:r:c + uoSrtc 

= 2gr;c. (7.9) 

Let us compute the covariant derivative of g using (7.2). Then, since g is a 
scalar density of weight + 2, we have 

Veg= acg - 2gr;c, 

and so by equation (7.9) it follows that 

This is again intimately connected with the choice of the definition (7.2). 
Similarly, we find from equation (7.9) that 

ac(-g)½ - (-g)½ r:c = 0, 

that is, by (7 .2), 

In particular, for any tensor Tt:::, this leads to the identity 

Vc[(-g)tr,::::] = (-g)½(VcT,::::), (7.12) 
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that is, we can pull factors of ( -g)½ and g through covariant derivatives in the 
same way as we can with factors involving the covariant or contravariant 
metric. 

7.4 Integrals and Stokes' theorem 
Unlike tensors in general, we can add a scalar field <p evaluated at two 
different points, x 1 and x2 say, and the resulting quantity is still a scalar, since 
under a coordinate transformation, the sum transforms like 

(7.13) 

by (5.18). Hence, we might imagine that it is possible to integrate a scalar field 
cj, over some n-dimensional region Q of a manifold M. However, it turns 
out that the volume element dQ is not a scalar but, as we shall see, a scalar 
density of weight -1. It follows that we can integrate a scalar density <P of 
weight + 1 over a region Q, 

L <PdQ, (7.14) 

since at each point <P dQ is a scalar and can be added together by (7.13). There 
are analogous statements which can be made about integration over curves, 
surfaces, and hypersurfaces. 

Consider an m-dimensional subspace of M whose parametric equation by 
(5.2) is 

x• = x"(u;) (i = 1, 2, ... , m). 

The 'volume' element of this subspace is defined to be 

ax• 1 ax•2 ax•m d,•1•2···•m = 0•1•2· ·· •m -- - - ... --duldu2 ... dum (7.15) 
b1b2···b.,,. aul au2 aum • 

This element is an mth rank contravariant tensor under coordinate trans­
formations and behaves like a scalar under arbitrary change of parameter. 
Hence, if X 0102 ... .... is an mth rank covariant tensor, then x.,.2 ...• .,,.d,"1" 2 ·· ·•.,,. 

is a scalar under both coordinate and parameter transformations, and we can 
form the integral 

(7.16) 

over some region Qm of the subspace. The coordinate differentials d;x" 
corresponding to each parameter u; are defined by 

ax• 
d x• = -. du1 (no sum on i). 

I au' (7.17) 

We now state Stokes' theorem for a simply connected m-dimensional 
subspace Qm bounded by the (m - !)-dimensional subspace a!Jm = Qm-i: 

i X d •1 • 2 ···• ... - 1 -i a X d •1 • 2 ···• ... (718) a1a2·"dm-1 't - Dm a1a2 .. ·am-t '!' • • 
on,,. n,,. 

We will be particularly interested in the special case of a four-dimensional 
region Q of a four-dimensional manifold M, where Q is bounded by the 
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Fig. 7.1 A four-dimensional region n 
bounded by an. 

osi 

x2 

hypersurface 8fi (Fig 7.1). Stokes's theorem then becomes the divergence 
theorem or Gauss's theorem for a contravariant vector density '.!0 of 
weight + 1, which we write in the form 

where 

and 

dr, l d bed •• = 4! Eab<d t" , 

(7.20) 

(7.21) 

If we use the coordinates x• as parameters then d.Q is written as d4x where 

(7.22) 

and 
dS. = (dx 1 dx2 dx3 , dx0 dx2 i:ix3, dx0 dx 1 dx 3

, dx0 dx 1 dx 2

). (7.23) 

Note from the definition (7.21) that d4 x is ~ scalar density of weight -1. 

7.5 The Euler-Lagrange equations 
The variational principle and with it the Euler-Lagrange equations will play 
an important role in this book: So, although it is something of a digression, 
we shall, for completeness, include a brief discussion of their derivation. Then, 
as a first indication of their usefulness, we shall show in the next section how 
they provide an efficient method for obtaining geodesics. 

A functional may be defined as a correspondence between a real number 
and a function belonging to some class. Thus, a functional is a kind of 
function where the independent variable is itself a function. One of the basic 
problems in the calculus of variations is that of finding the stationary values 
(maxima, minima, saddle points) of the action I defined by 

fx2 

I[y] = L(.Y, y', x)dx, 
x, 

(7.24) 

where Lis a functional of the dynamical variable y, its derivative y' = dy/dx, 
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and the coordinate x, and is called the Lagrangian. The problem is easily 
generalized. In order to solve the problem, we need to make use of the 
following result. 

To establish this, we suppose that cp(x) "# 0 for some x = e in the interval 
(x 1, xi). To fix ideas, let us assume cp(e) > 0. Then, by continuity, there exists 
a neighbourhood of e (e 1 < e < e2 ) for which cp(x) > 0. Setting 

(x) = {(x - e1)4(x - e2)4 for xe(e1, e2), 
11 O otherwise, 

we find that 11(x) satisfies the conditions of the above lemma. Furthermore, 

fx2 f~2 
cp(x)11(x)dx = cp(x)17(x)dx > 0, 

x, :, 

which produces a contradiction. Similarly, if we assume cp(e) < 0, then again 
we get a contradiction, and so the result follows. 

Returning to (7.24), we assume L is twice differentiable with respect to its 
three variables. Let us vary y by an arbitrary small amount and write 

Y = y + e17(x), (7.25) 

where e is small and 17(x) satisfies the conditions of the lemma, that is, it has 
continuous second derivatives and vanishes at x1 and x 2 but is otherwise 
arbitrary. We define a variation of y by 

(7.26) 

Differentiating (7.25) with respect to x and using the prime notation, we get 

ji' = y' + e17', 
so that 

b(y') = y' - y' = e11' = (i>y)', 

from which we see that b and d/dx acting on y commute. Then, working to 
first order in e, 

fx2 

I[y] = l[y +by]= L(y + BIJ, y' + e11', x)dx 
x, 

Jx2 
( oL oL ) = L(y, y', x) + 8 e11 + a,t:'1' dx 

x, y y 

by Taylor's theorem. Thus defining the quantity 

M = I[y + by] - I[y], 

we get 

Jx2 (oL oL ) M = e 8 11 + avr11' dx. 
x, y y 
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The last term can be integrated by parts, to give 

f
x2 oL [f}L ]x2 fx2 d (f}L) a't,'dx = a,'1 - d a' qdx. 

Xt y y x, x, X y 

The term in square brackets vanishes since q(x1) = 17(x2) = 0, and hence 

M =/efx2 [oL -~(a~)]11dx. 
x, oy dx iJy 

(7.27) 

If y = y(x) is a stationary curve, then M must vanish to first order, and so, 
using the above lemma, we find that y must satisfy the Euler-Lagrange 
equation for L, that is, 

Introducing some further notation which serves as a useful abbreviation, we 
define the variational derivative, functional derivative, or Euler-Lagrange 
derivative of L by 

/JL oL d (oL) 
/Jy = oy - dx oy' ' 

so that (7.27) can be written as 

Then, in this formalism, the principle of stationary action requires 

M = 0 

(7.29) 

(7.30) 

for arbitrary /Jy, which leads immediately by the lemma to the 
Euler- Lagrange equation 

/JL • 
/Jy = 0. (7.31) 

The argument can be generalized to n dynamical variables each of which 
are functions of one variable y1 (x), ... , Yn(x) in a straightforward manner. 
Then the action is defined in terms of the Lagrangian by 

(7.32) 

and the variations 

Yi--+ Yi = Yi + /Jyi (i = 1, 2, ... , n), 

where 

lead to 
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with 

;~ = :~ - d~ (:~). 

The principle of stationary action, M = 0, for arbitrary independent vari­
ations by,, produces the Euler- Lagrange equations 

The further generalization to a system of m dynamical variables y A (x) 
(A = 1, 2, . . . , m), defined on an n-dimensional manifold M, starts from the 
action 

I= L ~(YA, YA ,b• x")dQ, (7.34) 

where a comma in the subscript denotes a partial derivative, i.e. YA,b = abYA, 

and the Lagrangian .P is a scalar density of weight + 1 and leads to the 
Euler- Lagrange equations 

The significance of the variational principle approach is that most, if not all, 
physical theories may be formulated by specifying a suitable Lagrangian. The 
Euler-Lagrange equations can then be computed in a straightforward 
manner and these constitute the field equations of the theory. 

7.6 The variational method for geodesics 
We now apply the technique of the last section to finding a convenient way 
for computing the geodesics of a given metric. We start from the Lagrangian 
functional (compare with (7.32)) 

L = L(x", x•, u), 

where u is a parameter along a timelike curve and the dot denotes differenti­
ation with respect to u, defined in terms of the metric by 

It follows from (6.59) that the action is 

I P2 f P2 
Ldu = ds = s, 

Pi P1 . 

(7.37) 

where s is the interval between any two points P1 and P2 on a curve 
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connecting them. The metric geodesic between these points P1 and P2 is 
defined as that curve joining them whose interval is stationary under small 
variations which vanish at the end points. In other words, we need to solve 
the principle of stationary action problem bs = 0. The solution consists of the 
Euler- Lagrange equations (7.33) in the form 

:~ - ddu (:~) = 0. (7.38) 

In principle these equations solve the problem, but in practice there are a 
number of difficulties. First of all, it is much better to work where possible 
with L 2 rather than L to avoid square roots. Then there is the freedom in the 
choice of the parameter u. Finally, in the case of an indefinite metric, there is 
the distinction between null and non-null geodesics. Assuming L ¥- 0 and 
multiplying (7.38) by - 2L, we get 

2L[ :u( :~ )- :~] = 0 (7.39) 

which can be rewritten as 

d (iJL2) iJL2 _ 2 oL dL 
du i}:x;a - i}xa - i}:x;a du • (7.40) 

Substituting for L 2, the left-hand side of (7.40) produces 

= 2ga/xb + 2iJcgabXb:Xc - Oagbcxbxc 

= 2g.bxb + 2:xbx<[½(ocgba + i}bgca - Oagbc)J 

= 2gabXb + 2:xbx_<{bc, a}, 

where we have used symmetry, interchange of dummy indices, and (6.62). If 
we again assume that L ¥- 0, then the right-hand side of (7.40) produces 

2 oL dL = 2~(gbcxb:x<)½..~-(ds) 
ox0 du ox• du du 

= 2(gbcxb xci-t gaaxd ::: 

Equating these two results and dividing by 2 gives the equation (6.61). 
Multiplying through by g0 d and using (6.64) leads to 
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If we choose the parameter u = s, th~n the right-hand side vanishes, giving 

and hences is an affine parameter. It follows from (7.41) that any other affine 
parameter is related to s by 

S =/XS+ /3, (7.43) 

where IX and {J are constants. A similar argument applies to spacelike 
geodesics (exercise). 

In the case of an indefinite metric, the interval ds between neighbouring 
points on a curve may be zero. A null geodesic is a geodesic whose interval 
between any of its two points is zero. It follows from (7.36) that L vanishes 
and so the argument given above breaks down. However, it is possible to 
modify the argument (we shall not do it) to show that the general equations of 
a null geodesic are 

Xa + I'tcXbXc = A(U)X0 , 

where ,1,(u) is some function of the curve's parameter u and where the tangent 
vector x 0 satisfies g0 bx0 xb = 0. As before, if the geodesic equations do not 
possess a right-hand side, that is, X= 0, then the parameter u is called affine. 
Any other parameter u will be affine if it is related to u by 

U =/XU+ {J, 

where IX and {J are constants. 
Summarizing, if we define the quantity K by 

(7.44) 

where oc is a constant, and if we take u to be an affine parameter, then the 
most useful form of the geodesic equations is (exercise) 

where 

depending on whether the tangent vector is null, or has positive or negative 
length, respectively, and where in the last two cases we take u to be the 
distance parameters sand a. This is the approach we shall adopt in our en­
suing work. It is possible, by (7.42), to read off directly from (7.46) the com­
ponents of the connection r:,, and this proves to be a very efficient way of 
calculating I'bc• 
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7. 7 lsometries 
Tensor calculus is largely concerned with how quantities change under 
coordinate transformations. It is of particular interest when a quantity does 
not change, i.e. remains invariant, under coordinate transformations. For 
example, coordinate transformations which leave a metric invariant are 
of importance since. they contain information about the symmetries of a 
Riemannian manifold. Just as in an ordinary Euclidean space, there are two 
sorts of transformations: discrete ones, like reflections, and continuous ones, 
like translations and rotations. In most applications, these latter types are the 
more important ones and they can in principle be obtained systematically by 
obtaining the so-called Killing vectors of a metric, which we now discuss 
below. 

A metric 9ab is form-invariant or simply invariant under the trans­
formation x 0 ➔ x'0 if 

that is, the transformed metric g~b(x') is the same function of its argument x'c 

as the original metric g.b(.x) is of its argument xc. Then a transformation 
leaving 9ab form-invariant is called an isometry. Since 9ab is a covariant tensor 
it transforms according to (7.4), or equivalently (interchanging primes and 
unprimes as we are free to do) 

Then, using (7.48), x• ➔ x'0 will be an isometry if 

OX" OX1d 

9ab(X) = ox• OXb 9cix'). (7.49) 

It will be convenient to consider all quantities appearing in this equation to 
be functions of x using x'0 = x'"(x). In general, the condition (7.49) is very 
complicated, but it may be greatly simplified if we consider the special case of 
an infinitesimal coordinate transformation 

where e is small and arbitrary and x• is a vector field. Differentiating (7.50) 
gives 

and so, substituting in (7.49) and using Taylor's theorem, we get 

9ab(x) = (Ii~ + eaaxc)(ot + eobX4 )gcix• + ex•) 

=(Ii~+ ea.xc)(ot + eobX 4)[gcix) + ex•a.gcix) + ••• ] 

= 9ab(x) + e[gadobxd + 9bdo.X4 + x•a.gab] + O(e2 ). 



 
 

Working to first order in e and subtracting g.b(x) from each side, it follows 
that the quantity in square brackets must vanish. This quantity is simply the 
Lie derivative of g.b with respect to X by (6.17), namely, 

(7.51) 

Now we can replace ordinary derivatives by covariant derivatives in any 
expression for a Lie derivative and so, using (6.73) and (6.57), the condition for 
an infinitesimal isometry becomes 

These are called Killing's equations and any solution of them is called a 
Killing vector field x•. In the language of §6.2, equation (7.52) states that the 
metric is 'dragged into itself' by the vector field x•. We have thus established 
the following important result. 

It proves sufficient to restrict attention to infinitesimal transformations 
because it can be shown that it is possible to build up any finite trans­
formation with non-zero Jacobian (i.e. a continuous transformation) by an 
integration process involving an infinite sequence of infinitesimal trans­
formations. 

Exercises 

Exercises I 103 

7.1 (§7.1) Write down the expression for the covariant de­
rivative of a scalar density tP of weight + I. 

and show that this leads directly to the result 

7.2 (§7.3) Denoting the transformation matrices by 

use the argument of §7.3 to show that 

where J = det( J.b) is the Jacobian. Hence show from first 
principles that if '.!" is a vector density of weight + 1 then 
a.'.!" is a scalar density of weight + I. 

7.3 (§7.3) Start from the assumption that, for an arbitrary 
vector field T", 

V.[(-g)½J = o.[(-g)t J-I'&.( - g)t 

(which is consistent with the definition in Exercise 7.1) 

7.4 (§7.4) Show that, for any vector field T", the divergence 
theorem in four dimensions can be written in the form 

7.5 (§7.5) Find the Euler- Lagrange equations for the 
Lagrangians 
(i) L(y, y', x) = y2 + y' 2, 

(ii) L(Y1,Y2,Y; , y;z, x)=xyl + Y1 Y2 + yi(y;2 + y;2 ). 

7.6 (§7.6) Trace the variational argument which leads to 
the equations for a spacelike geodesic. Defining K by (7.45) 
and (7.47), show that (7.40) can be written in the form (7.46). 
[Hint: if u is affine, then dL/du = O.] 
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7.7 (§7.7) Use (7.45), (7.46), and (7.47) to find the geodesic 
equations of the spherically symmetric line element given in 
Exercise 6.31. Use the equations to read off directly the 
components r:, and check them with those obtained in 
Exercise 6.3l(ii). [Hint: remember r:., = r:b.] 
7.8 (§7.7) Find all Killing vector solutions of the metric 

g.b=[~2 ~l 
where (x") = (x0, x1 ) = (x, y). 

7.9 (§7.7) Deduce (7.52) from (7.51). 

7.10 (§7.7) Find all the Killing vectors x• of the three­
dimensional Euclidean line element 

ds2 = dx2 + dy2 + dz2 • 

[Hint: deduce from Killing's equations that a bxa + abxb 

= 0, differentiate with respect to x', permute the indices to 
show that BiJ,X. = 0 arid integrate to get x• = wixb + t", 
where w.b = -rob• and t• are constants of integration, usu­
ally termed parameters.] 

Denoting the six independent constants of integration by 
.l.1 , ).2 , ).3 , .l.4 , .l. 5 , .l.6 , write the general solution for x• in the 
form 

.l.1X 1a + .l.2 X2a + .l.3 X3a + ).4 X~• + .l.5X~ + .l.6 X 00 

Find expressions for the vector fields x« ( a = l, 2, ... , 6), 
and hence, or otherwise, find all values of [X•, XP]. Inter­
pret the six Killing vector fields in terms of geometrical 
transformations. 

7.11 (§7.7) Show that if x• and Yo are Killing vectors then 
so is any linear combination ).X• + µY•, where). andµ are 
constants. 

7.12 (§7.7) Consider the following operator identity: 

L.L. - L.L. = ½u, v)• 

(i) Check it holds when applied to an arbitrary scalar 
function/ 

(ii) Check it holds when applied to an arbitrary contra­
variant vector field m•. [Hint: use the Jacobi identity.] 

(iii) Deduce that the identity holds when applied to a covar­
iant vector field p •. [Hint: Jet f = m•p., where m• is 
arbitrary.] 

Use the identity to prove that if u and v are vector fields then 
so is their commutator [u, v]. 
Given that 8/ox and - yEJ/ox + x8/8y are Killing vector 
fields, find another. 

7.13 (§7.7) Express (V,Vb - VbVclX. in terms of the 
Riemann tensor. Use this result to prove that any Killing 
vector satisfies 

!'Vb v.x, - Ra1,Xb = 0. 

7.14 (§7.7) By making use of the identity 

R·bcd + R·dbc + R",db = 0 

or otherwise, prove that a Killing vector satisfies 

v,vbx. = RabcdX4• 
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8.1 Minkowski space-time 
As we saw in Chapter 2, special relativity discards the old Newtonian picture 
in which absolute time is split off from three-dimensional Euclidean space. 
Instead, we introduce a four-dimensional continuum called space-time in 
which an event has coordinates (t, x, y, z) and where the square of the 
infinitesimal interval ds between infinitesimally separated events satisfies the 
Minkowski line element (2.13). The essence of special relativity lies in 
the special Lorentz transformations, and the significance of the Minkowski 
line element is that it is invariant under such transformations. We now use the 
language of Part B to formulate this more precisely. 

Minkowski space-time, or simply flat space, is defined as a four-dim­
ensional manifold endowed with a flat metric of signature - 2. Then, by 
definition, since the metric is flat, there exists a special coordinate system 
covering the whole manifold in which the metric is diagonal, with diagonal 
elements equal to ± 1. From now on, we shall use the convention that lower 
case latin indices run from O to 3. The special coordinate system is called a 
Minkowski coordinate system and is written 

We adopt the sign convention in which the Minkowski line element takes the 
form 

We write this in tensorial form as 
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where from now on we will always take 'lab to denote the Minkowski metric 

If we use some other general coordinate system then we shall write the metric 
in the form 

ds2 = 9abdxadxb. 

For example, in spherical polar coordinates, 

(xa) = (t, r, e, <P ), 
where, as usual, 

x = rsin0cos</J, 

the line element becomes 

y = rsin0sin<jJ, z = rcos0, 

ds 2 = dt 2 - dr 2 - r2 d02 - r 2 sin2 0d<jJ 2 

and the metric is 
9ab = diag(l, -1, -r2, -r2 sin2 0). 

One of the main results of Part B is the theorem of §6.11, which states that 
a necessary and sufficient condition for a metric to be flat is that its Riemann 
tensor vanishes. In Minkowski coordinates, the metric "lab is constant and so 
the connection r:, vanishes in this coordinate system, from which it is clear 
that the Riemann curvature tensor vanishes. However, in a general co­
ordinate system, the connection components will not necessarily vanish. For 
example, in spherical polar coordinates, we find that rg,, has non-vanishing 
components 

I'J.2 = -r, 
rf2 = r-1, 

I'1\=r-1, 

rJ3 =rsin2 0, } 
I']3 = ~ sin0cos0, 

n3 = cote, 

but if we compute the Riemann tensor we will again find 

Rabcd = 0, 
as required by the theorem. 

8.2 The null cone 

(8.5) 

In Minkowski space-time, the square of the length or norm of a vector is 
defined as usual by 

The vector is said to be 

timelike 

spacelike 

null or lightlike 

(8.6) 

if xi> o, } 
if xi< o, 
if x 2 = o. 

(8.7) 



 

Two vectors x• and Y" are orthogonal if their inner product vanishes, that is, 

9abx•ya = 0, 

from which it follows that a null vector is orthogonal to itself. 
The set of all null vectors at a point P of a Minkowski manifold forms a 

double cone called the null cone or light cone. In Minkowski coordinates, the 
null vectors x• at P satisfy 

that is, 
(8.8) 

which is the equation of a double cone. This null cone lies in the tangent space 
Tp ~t P, but since it is easy to show that the tangent space is itself a 
Minkowski manifold (by (8.8)) we can identify the tangent space with the 
underlying manifold and regard the null cone as lying in the manifold. We 
will not be able to do this when we go on to consider non-flat manifolds. If we 
define the timelike vector T" in Minkowski coordinates by T" = (1, 0, 0, 0), 
then a timelike or null vector x• is said to be 

future-pointing if f/abX• Tb > 0, 

past-pointing if 1/abx· Tb < 0. 

The future-pointing vectors all lie inside or on one sheet of the cone called the 
future sheet and past-pointing vectors lie inside or on the past sheet 
(Fig. 8.1). 

-:----i----::==+--Future-pointing timelike vector 
---Future-pointing null vector 

- Spacelike vector 
Al~-------+Y 

X 

8.3 The Lorentz group 
The Lorentz transformations are defined as those linear homogeneous trans­
formations 

of Minkowski coordinates which leave the Minkowski metric 'lab invariant. 
From (8.9), 
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Fig. 8.1 The null cone with one dimen­
sion (the z-direction) suppressed. 
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and, substituting in the transformation formula for a metric (7.4) (with primes 
and unprimes interchanged), we get (exercise) 

since the metric remains invariant. We see from (7.49) that Lorentz trans­
formations are isometries. If follows immediately from (8.10) that Lorentz 
transformations preserve lengths and innner products of vectors. The Lorentz 
transformations form a group called the Lorentz group L. The identity 
element of the group is o;: and the inverse element is given by the inverse 
matrix. The matrix L O b is invertible, because if we take determinants of each 
side of (8.10) we get 

(detL°b)2 =1 => detL°b=±l, 

and so the matrix is non-singular. If we set c = d = 0 in (8.10), we also find 
that 

(Lo0 )2 _ [(L1 0 )2 + (L20 )2 + (L30 )2] = 1, 

from which it follows that (LO 0 ) 2 ~ 1 and so either L OO ~ 1 or LOO ~ -1. We 
divide Lorentz transformations into four separate classes depending on 
whether det L O b = ± 1 and L OO ~ 1 or L OO ~ - 1. If det L \ = + 1, then L \ 
is called proper or orientation preserving. An example of an improper 
Lorentz transformation is the discrete transformation 

t' = t, x' = -x, y' = y, z' = z, 

which reverses the x-direction. If L OO ~ 1, then L O bis called orthocronous or 
time-orientation preserving. An example of a non-orthocronous Lorentz 
transformation is the discrete transformation 

t' = - t, X 1 =X, y' =y, z' = z, 

which reverses the t-direction. The proper orthochronous transformations, 
denoted by L 1 + (read 'Larrow plus') from a subgroup of L. Clearly, L 1 + 

contains the identity, whereas the other three subsets do not and hence are 
not subgroups. 

In fact, L 1 + is a six-parameter continuous group of transformations. We 
can interpret the parameters physically by considering the transformation 
actively as transforming one inertial frame S into another one at rest with 
respect to an inertial frame S' in general position (see Fig. 2.20). Then two 
parameters correspond to the two Euler rotations required to line up the x­
axis of S with the velocity of S', one parameter corresponds to a boost from S 
to a frame at rest relative to S' (and this parameter depends on the velocity of 
S' relative to S), and the final three parameters correspond to the three Euler 
rotations required to rotate the frame into the same orientation that S' has. 
Another subgroup of L is the ordinary three-dimensional rotation group. 

The Poincar6 group P consists of those linear inhomogeneous trans­
formations which leave rtab invariant. A Poincare transformation is made up 
of a Lorentz transformation together with an arbitrary translation (in space 
and time), i.e. 



 

The Lorentz group L is a proper subgroup of P and the translations form an 
invariant (normal) subgroup of P. The Poincare group P is a ten-parameter 
group, consisting of six Lorentz parameters plus four translation parameters. 
The continuous Poincare transformations constitute the full set of isometries 
of the Minkowski metric. Physically, a Poincare transformation maps one 
inertial frame S into another inertial frame S' in general position. 

8.4 Proper ti me 
A timelike world-line or timelike curve is defined as a curve whose tangent 
vector is everywhere timelike. If, in particular, the curve is a geodesic, it is 
called a timelike geodesic. Timelike curves represent tracks on which mater­
ial particles or observers can travel. From §8.2, we see that the velocity 
tangent vector to a timelike curve at any point P must lie within the null cone 
emanating from P (Fig. 8.2). This is a manifestation of the special relativity 
result that material particles travel with speeds always less than the speed of 
light. Spacelike and null curves and geodesics are defined in an analogous 
manner to timelike ones. 

At any point P, we define the null cone or light cone which consists of all 
null geodesics passing through P. This coincides with the null cone of null 
vectors passing through P. Then the null cone divides space-time into three 
distinct regions namely future, past, and elsewhere (Fig. 8.3). Any point in the 
future or past may be reached by a future-directed or past-directed timelike 
geodesic, respectively. Any point in the region exterior to the null cone, called 
elsewhere, can be reached by a geodesic which is everywhere spacelike. This 
is an invariant division of events which all observers agree upon. This follows 
because of the invariance of 'lab under a Lorentz transformation, which means 
that null cones get mapped onto null cones. Moreover, events to the future of 
P get mapped into events which are still to the future of P under an 
orthochronous Lorentz transformation. A similar result holds for past events. 
However, non-orthochronous Lorentz transformations reverse the past and 
future. 

Since I''t,c vanishes in Minkowski coordinates, the equations for a non-null 
geodesic (7.42) reduce to 

(8.12) 

Velocity tangent vector at P 

'C"--.«--- Null cone at P 
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.}-----+--------y 
,✓-__----'--.:s:--- Null cone (past sheet) 

X 
X 

Fig. 8.2 World-line of material particle. Fig. 8.3 Invariant classification of events relative to P. 
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for some affine parameter u, where the tangent vector satisfies 

dx" dxb 
'lab du du = k. (8.13) 

The geodesic is timelike or spacelike depending on whether k > 0 or k < 0, 
respectively. In the case when k > 0, we introduce a new parameter 

u ➔ il = u(u) 
satisfying 

It follows from (8.13) that the new tangent vector dx" /du has unit length. The 
parameter u is called the proper time and is denoted by r. Thus, in relativistic 
units, from (8.3) and (8.13), the proper time satisfies 

This shows that r is an affine parameter along timelike geodesics. 
In non-relativistic units _the equation for the proper time becomes 

2 1 2 dr = 2 ds, 
C 

(8.15) 

which checks dimensionally .since s is a distance parameter. Let us see how 
proper time r relates to coordinate time t for any observer whose velocity at 
time t is v, where 

( dx dy dz) 
V = dt ' dt ' dt • 

From (8.15) and (3.13), we have 

1 1 
dr 2 = - ds 2 = - (c2 dt 2 - dx 2 - dy2 - dz 2) 

c2 c2 

= dt 2 ( 1 - :: ) 

\So the proper time between t0 and t1 , is given .by 

in agreement with (3.17). 

8.5 An axiomatic formulation of special relativity 
We are now in a position to give a completely precise formulation of special 
relativity which will prove useful when we wish to generalize to the general 
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theory. We do this by stating two sets of postulates or axioms. 

The first axiom defines the geometry of the theory and the second axiom puts 
in the physics. Thus, the first axiom states that I"t,c is the metric connection 
(by l(i)) and that the metric is flat (by I(iii)) and defines a formal parameter 
whose physical significance is given in the second axiom. The first part of the 
second axiom makes physical the distinction between space and time in the 
manifold. In canonical (Minkowski) coordinates, it distinguishes the coordin­
ate x0 from the other three as the 'time' coordinate. More precisely, it states 
that it is the proper time r which a clock measures in accordance with the 
clock hypothesis. The remainder of Axiom II singles out the privileged curves 
that free particles and light rays travel along. 

Looking at this theory from a purely axiomatic viewpoint, one can ask, Is 
there any a priori reason for singling out timelike and null geodesics as 
trajectories for material particles and photons or light rays, or could one 
make some other choice (say, spacelike geodesics)? In Newtonian theory, free 
particles travel in straight lines, by Newton's first law. It would seem natural, 
therefore, to take geodesics as the analogue of straight lines. The significance 
of timelike geodesics is that their choice, unlike the case of spacelike geo­
desics, is consistent with causality. As we have seen, Minkowski space-time 
admits the Poincare group as its invariance group. Hence, if two neigh­
bouring events P and Q of the history of a free particle occur on a timelike 
geodesic at proper times r and r + dr, respectively, then an orthochronous 
Poincare transformation preserves the fact that Q occurs after P. This is 
consistent with causality, since we say that the arrival of the particle at Q is 
caused by its having previously been at P. 

Null geodesics possess a specjal property which makes them natural 
candidates for light signals. The equation of a null geodesic in Minkowski 
coordinates is 

(8.17) 
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where dx0 dxb 
'1abdu du= 0 

for an affine parameter u. Integrating (8.17), we get 

dxa = ka 
du ' 

(8.18) . 

(8.19) 

where the components of k 0 are constants of integration. Substituting in 
(8.18), we obtain 

(8.20), 

and so k 0 is a null vector. Let us define the 3-velocity v along the null geodesic 
by 

( dx 1 dx 2 dx 3 ) (k 1 k 2 k3) 
v = (v1, v2, v3) = dxo, dxo' dxo = ko' ko' ko ' (8.21) 

using (8.19) and the fact that k0 =I= 0 (why?). Writing (8.20) out fully, we find 

(k0)2 -(kl)2 - (k2)2 - (k3)2 = 0, 

and hence it follows from (8.21) that v2 = 1. Thus, null geodesics have 
associated with them a characteristic velocity of magnitude 1. Furthermore, 
this property is preserved under a Poincare transformation, and so they seem 
natural candidates for encoding the constancy of the velocity of light. 

8.6 A variational principle approach 
to classical mechanics 

We met an introduction to relativistic mechanics in Chapter 4. We shall now 
look for a formulation which rests on a variational principle. The importance 
of the variational formulation of a physical theory is that it is often very 
simple and elegant and, moreover, it is one method which lends itself easily to 
generalization. Indeed, most current theories use the variational approach as 
their starting point. We start by summarizing the variational formulation of a 
classical system moving under a conservative force. 

A mechanical system is described by n· generalized coordinates x• 
(a = 1, 2, ... , n) which are functions of time t, n generalized velocities x", 
the kinetic energy T = foabx•xb,.and the potential energy V(x) which gives 
rise ton generalized forces F0 = -oV/ox0 • The Lagrangian Lis defined to 
be 

L = T- V. 

Then the principle of stationary action is 

ft, 

JS= b Ldt = 0 
,, 

and this leads to the Euler- Lagrange equations 

:~ - :t ( :t) = o. 

A straightforward calculation leads to the equations of motion 

(8.22) 
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where r:c is the metric connection of Oab • If there are no external forces, then 
the above equations can be thought of as defining geodesics on an 
n-dimensional Riemannian manifold, with metric Oab called configuration 
space. We define generalized momenta Pa = iJL/iJx" and the Hamiltonian 
H by 

If H is time-independent, then it can be shown to be equal to the total energy 
E of the system. 

As an example of this formalism, let us consider the simple case of a free 
particle moving in three dimensions with velocity u. Adopting Cartesian 
coordinates, we have 

Then 

from which we find 

Oab = diag(m, m, m) = moab 

By assumption, V = 0, and so 

(8.23) 

giving generalized momenta 

iJL . 
p,. = ox = mx, Py= my, Pz = mi. 

The Euler-Lagrange equations are 

:/mx) = o, 
d 
dt (mi) =0, 

which are just the three components of Newton's second law. The 
Hamiltonian is 

H = p • u - L = m(x2 + y2 + i 2) - T = ½ mu 2 = T = E. 

In general, if we consider a system with no forces acting, then the 
Lagrangian reduces to 

This Lagrangian is identical to the quantity K defined in (7.45) of §7.6. In that 
section, we saw that (if we work with affine parameters) this gives the same 
Euler-Lagrange equations as the Lagrangian (7.37), namely, as 

ds ( •a ·b)½ 
dt = OabX X , 

does. Thus, for convenience, we may take the action S for a free particle to be 

S= -dt= ds f 12 ds f 12 

It dt 11 

(8.24) 
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8. 7 A variational principle approach 
to relativistic mechanics 

We now consider a free particle in relativistic mechanics moving on a curve 

xa = xa(r), 

where -r is the proper time. Since t is an affine parameter, we assume from 

(8.24) of the last section that the action can be written as 

ftl 

S = -a: ds, 
ti 

(8.25) 

where ix is a constant to be determined. Working in Minkowski coordinates, 

we can write the action as 

where a dot denotes differentiation with respect to -r. The Lagrangian is 

therefore 
L = - ix(17abxa x6 )½ 

and the Euler-Lagrange equations 

oL -~(oL) =O 
oxa d-r oxa 

produce 

(8.26) 

Since 

in relativistic units, the field equations (8.26) reduce to xa = 0, which are the 

standard geodesic equations in Minkowski coordinates. 
Instead of using the proper time t as our time parameter, let us use instead 

the coordinate time t and see how various quantities are defined in terms of 

time and space coordinates. The equation of the world-line of the particle is 
now 

X = X(t), y = y(t), z = z(t), 

and it has a 3-velocity u defined by 

Using 

( dx dy dz) 
u=(u1,U2,U3)= dt'dt'dt. 

ds 2 = '1abdxadxb 

= dt 2 - dx 2 - dy 2 - dz 2 

= dt 2 (1 - u2 }, 

we can write the action (8.25) as 

S = -ixf 
12 (1 - u2 )½dt, 
,, 
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where the new Lagrangian (which we shall also write as L) is 

L = - 1X(l - u 2)½ = -IX+ ½1Xu 2 + .. • 

for small velocities. Comparing this with the classical expression (8.23), 
namely ½mu2 , we may identify IX with the mass of the particle as u-. 0. Note 
that the additive constant - IX in the Lagrangian is unimportant (see 
Exer~ise 8.9). Thus IX is equal to the rest mass m0 of the particle. Hence, we 
have 

We define the 3-momentum p by (check) 

p = ( 8L' 8L' 8L) = mo(l - u2)-½u. 
8U1 8Uz 8U3 

(8.28) 

Comparing this with the classical relationship p = mu, we define the rela­
tivistic mass m by (see (4.11)) 

m = m0 (1 - u2 )-½. 

Using the Hamiltonian to define the energy E (see (4.17)), we find 

E = H = p·u - L = m0 (1 - u2)-½ = m (8.29) 

after some simple algebra. We have thus regained the results of(4.19) in 
relativistic units. 

8.8 Covariant formulation of relativistic 
mechanics 

We finish this discussion of relativistic mechanics by giving a full 4-dimen­
sional or covariant formulation of the variational principle. The action S is 
defined as 

where gab is a flat metric and is used for raising and lowering indices. The 
4-velocity u0 is defined by 

and the 4-acceleration ab by 
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The covariant 4-momentum Pa is defined by 

from which we find that its contravariant form is given by 

If a particle is acted on by a force, then the four-dimensional version of 
Newton's second law becomes 

where f° is called the 4-force. If there is no external force acting, then 

where 1• is a constant 4-vector. This is the conservation of 4-momentum law 
and generalizes to an isolated system of n particles with 4-momenta p;" 
(i = 1, 2, ... , n) 

• I Pi°= t•. 
i= 1 

where t• is a constant 4-vector. Finally, we define the angular momentum 
tensor J•b of the particle by 

If we now assume that m0 is a scalar, then it follows that all the quantities 
have the tensor character indicated under a general coordinate trans­
formation. If, in particular, we restrict attention to Minkowski coordinates 
we can relate these four-dimensional quantities to the three-dimensional ones 
of the last section and Chapter 4. We can then consider how the four­
dimensional quantities transform under a Lorentz transformation and so 
obtain the transformation law for the three-dimensional quantities (exercise). 
Thus, in particular, we can confirm the transformation equations (4.21) for 
the energy and momentum of a particle. 

We have considered the main ingredients of special relativistic mechanics, 
but we shall not pursue the topic further. We shall, rather, concentrate on our 
main task - that of establishing the general theory. 



 
 
 

Exercises 

8.1 (§8.l) Check (8.5) and show that the Riemann tensor 
vanishes. 

8.2 (§8.2) Show that a timelike vector cannot be orthogonal 
to a null vector or to another timelike vector. Show that two 
null vectors are orthogonal if and only if they are parallel. 

8.3 (§8.2) The vectors T,-X, Y, and Z have components 

T• = (l, 0, 0, 0), x• = (0, 1, 0, 0), Y" = (0, 0, l, 0), 

z· = (0, o, o, 1). 

Show that the only non-vanishing inner products between 
the vectors are 

T2 = -X2 =-Y2 = _z2 = 1. 

Define the following: 

1 1 
L" = J2 (T" + Z"), N• = J2 (T" - Z"), 

1 
M" = J2 (X" + iY"), 

- 1 
M 0 = J2 (X" - iY"), 

where i = J - I. Treating M" and M" as vectors, show that 
all four vectors are null and the only non-vanishing inner 
products are 

8.4 (§8.3) (i) Check that (8.9) leads to (8.10), assuming in­
variance. 
(ii) Show that the Lorentz transformations form a group. 

(iii) Show that the Poincare transformations form a group. 

8.5 (§8.3) Show that a Killing vector x. satisfies the equa­
tion aba,x. = 0 in flat space in Minkowski coordinates. 
[Hint: use Exer_cise 7.10 or Exercise 7.14.J Deduce that the 
Killing vectors are given by 

where w.b = -wb• and ta are arbitrary parameters (con­
stants of integration). How many parameters are there in 
(a) an n-dimensional manifold? 
(b) Minkowski space-time? 
What do the parameters correspond to physically m 
Minkowski space-time? 

8.6 (§8.4) Prove that the proper time is an affine parameter 
along timelike geodesics. 

8.7 (§8.6) Establish the equation of motion (8.22). 
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8.8 (§ 8.6) Consider two masses mi and m2 suspended on the 
ends of a rope passing over a frictionless pulley. Show that 
the Lagrangian can be written in the form 

L = ½(mi + m2 ).x 2 + m1gx + m2g(l - x), 

where the mass m1 is a distance x below the horizontal and I 
is a constant. Find the Euler-Lagrange equation of motion. 
Define the generalized momentum for the system and hence 
obtain the Hamiltonian. '· 

8.9 (§8.7) If Lis a Lagrangian, then show that the Lagran­
gians Li and L2 , where (i) Li = },,L and (ii) L2 = L + µ, 
with A and µ constants, possess the same field equations 
as L. Show· also that if L =I- 0 then the Lagrangians (iii) 
L3 = L 2 and (iv) L4 = U give rise to the same field 
equations. 

8.10 (§8.8) Show that, in Minkowski space-time in 
Minkowski coordinates, u" = (u0 , u1, u2, u3 ) = (y, yu), 
where y = (1 - u2 )-t. Show also that p" = (E,p). 
By considering the invariant p.p•, deduce that (see (4.20)) 

E2 _ P2 = m/. 
Use the four-dimensional version of Newton's second law to 
identify the 4-force as 

f" = (yu· F, yF), 

where F is the force acting on the particle. Show also that 

dp" = (r dE ,y dp) 
d-r dt dt 

and give a physical interpretation of the zero component of 
the four-dimensional Newton's law. 

8.11(§8.8) 
(i) Use the tensor transformation law on the 4-velocity u• 

to find the transformation properties of u under a 
special Lorentz transformation between two frames in 
standard configuration moving with velocity v. Show in 
particular, that y'/y = P(l - uxv), where P = (1- v2 )-t. 

(ii) Find the transformation properties of E and p under a 
special Lorentz transformation. 

(iii) Find the transformation properties of F under a special 
Lorentz transformation. Are forces still absolute quant­
ities in special relativity? 

(iv) A particle moves parallel to the x-axis under the influ­
ence of a force F = (F, 0, 0). What is the force in a frame 
co-moving with the particle? 



 
 
 

9.1 The role of physical principles 
We are at last ready to embark on our central task, namely, that of extending 
special relativity to a theory which incorporates gravitation. In this chapter, 
we shall undertake a detailed consideration of the physical principles which 
guided Einstein in his search for the general theory. There is a school of 
thought that considers this an unnecessary process, but rather argues that it is 
sufficient to state the theory and investigate its consequences. There seems 
little doubt, however, that consideration of these physical principles helps 
give insight into the theory and promotes understanding. The mere fact that 
they were important to Einstein would seem sufficient to justify their inclu­
sion. If nothing else, it will help us to understand how one of the greatest 
achievements of the human mind came about. Many physical theories today 
start by specifying a Lagrangian from which everything else flows. Indeed, we 
could adopt the same attitude with general relativity, but in so doing we 
would miss out on gaining some understanding of how the framework of 
general relativity is different again from the framework of Newtonian theory 
or special relativity. Moreover, if we discover limitations in the theory, then 
there is more chance of rescuing it by investigating the physical basis of the 
theory rather than simply tinkering with the mathematics. It is perhaps 
significant that Einstein devoted much o( his later life to an attempt to unify 
general relativity and electromagnetism by various mathematical devices, but 
without success. 

There are five principles which, explicitly or implicitly, guided Einstein in 
his search. Their names are: 

(1) Mach's principle 

(2) principle of equivalence 

(3) principle of covariance 

(4) principle of minimal gravitational coupling 
(5) correspondence principle. 

The status of these principles has been the source of much controversy. For 
example, the principle of covariance is considered by some authors (e.g. 
Bondi, Fock) to be empty, whereas there are others (e.g. Anderson) who 
believe it possible to derive general relativity more or less solely from this 
principle. There is fairly general agreement that the principle of equivalence is 
the key principle. One source of confusion arises from the fact that their 
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formulation differs quite markedly from author to author. Since some of the 
principles are more of a philosophical nature, this is perhaps not so surpri­
sing. We shall attempt to make some precise formulations of them in the hope 
that we can ultimately check the principles out against the theory. We now 
discuss the principles in tum. 

9.2 Mach's principle 
The essence of the first two principles comes from understanding the nature 
of Newton's laws more precisely. Do Newton's laws hold in all frames of 
reference? As we have seen before, they are stated only for a privileged class of 
frames called inertial frames. So the question arises as to what form they take 
in other, non-inertial, reference frames. 

We shall investigate the status of Newton's second law for a non-inertial 
frame S' being uniformly accelerated relative to an inertial frame S with 
acceleration a. For simplicity, we shall assume the frames are in standard 
configuration with the acceleration along the common axis (Fig. 9.1). Assum­
ing that the observers initialize their clocks when they meet, then the 
relationship between the frames is given by 

X = X' + S, y = y', z = z', t = t'. (9.1) 

Letting a dot denote differentiation with respect tot (or t', which is the same 
by the last equation), then we find from the first equation that 

x = x' + s 
and, differentiating again, 

x = x' + § = x' + a, (9.2) 

by assumption. Consider a particle of mass m moving along the x-axis under 
the influence; of a force F = (F, 0, 0). Then Newton's second law becomes 
F = mx, which by (9.2) gives 

F = mx' + ma. 

From the point of view of the observer S ', this equation can be rewritten in a 
standard form with the term mass times acceleration relative to S' on the 
right-hand side, to give 

Thus, compared to S, observer S' detects a reduction of the force on the 
particle by an amount ma. This additional force is called an inertial force. 
Other well-known inertial forces are centrifugal and Coriolis forces arising in 

y y' 

s S' 

Acceleration a 

X 

z z' 
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Fig. 9.1 Position of Sand S' at time t. 



 

 

122 I The principles of general relativity 

Fig. 9.2 The bucket and water in 
absolute rotation . 

Fig. 9.3 Inclination of surface of water in 
absolute linear acceleration. 

a frame rotating relative to an inertial frame (exercise). Notice that all inertial 
forces have the mass as a constant of proportionality in them. The status of 
inertial forces is again a controversial one. One school of thought describes 
them as apparent or fictitious forces which arise in non-inertial frames of 
reference (and which can be eliminated mathematically by putting the terms 
back on the right-hand side). We shall adopt the attitude that if you judge 
them by their effects then they are very real forces. For, after all, inertial forces 
cause astronauts to black-out in rocket ships and flywheels to break under 
centrifugal effects. Is it enough to describe these as being due to apparent 
forces or reference frame effects? There must be some interaction going on to 
cause such dramatic effects. The question arises, What is the physical origin of 
inertial forces? Newtonian theory makes no attempt to answer this question; 
the Machian viewpoint, as we shall see, does. ' 

Let us ask another fundamental question. If Newton's laws only hold in 
inertial frames, then how do we detect inertial frames? Newton realized that 
this was a fundamental question and attempted to answer it by devising an 
ingenious thought experiment - the famous bucket experiment. He first of 
all postulated the existence of absolute space: 'Absolute space, in its own 
nature, without relation to anything external, remains always similar and 
immovable.' Thus he sees absolute space as the backcloth against which all 
motion is observed. An inertial observer then becomes an observer at rest or 
in uniform motion relative to absolute space. Inertial forces arise in the 
manner described above only when an observer is in absolute acceleration 
relative to absolute space. The bucket experiment is a device for detecting 
such motion. More precisely, the experiment determines whether or not a 
system is in absolute rotation relative to absolute space. 

The experiment consists of suspending a bucket containing water by a rope 
in an inertial frame. The rope is twisted and the bucket is released. The 
motion divides into four phases: 

Bl At first, the bucket rotates, but the water does not, its surface remaining 
flat. 

B2 The frictional effects between the bucket and the water eventually com­
municate the rotation to the water. The centrifugal forces cause the water 
to pile up round the edges of the bucket and the surface becomes concave 
(Fig. 9.2). The faster the water rotates, the more concave the surface 
becomes. 

B3 Eventually the bucket will slow down and stop, but the water will 
continue rotating for a while, its surface remaining concave. 

B4 Finally, the water will return to rest with a flat surface. 

Newton's explanation of this experiment is that, the curvature of 
the water surface in B2 and B3 arises from centrifugal effects due to the 
rotation of the water relative to absolute space. This curvature is not directly 
connected to local considerations such as the bucket's rotation since in Bl the 
surface is flat when the bucket is rotating and in B3 curved when the bucket is 
at rest. In this way, Newton gave a prescription for determining whether a 
system is in absolute rotation or not. Similar arguments apply to systems 
which are linearly accelerated relative to absolute space. Here, the surface 
becomes inclined at angle to the horizontal (Fig. 9.3) (see Exercise 9.l(ii)). In 
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simple terms, all observers should be equipped with a bucket of water. Then 
an observer will be inertial if and only if the surface of the water is flat. 

We now turn to the view which was proposed by Mach in 1893, although it 
grew out of similar ideas arrived at earlier by Bishop Berkeley. This is a semi­
philosophical view, the starting point of which is that there is no meaning to 
the concept of motion, but only to that of relative motion. For example, a 
body in an otherwise empty universe cannot be said to be in motion 
according to Mach, since there is nothing to which the body's motion can be 
referred. Moreover, in a populated universe, it is the interaction between all 
the matter in the universe (over and above the usual gravitational interaction) 
which is the source of the inertial effects we have discussed above. In our 
universe, the bulk of the matter resides in what is called the 'fixed stars'. Then, 
from Mach's viewpoint, an inertial frame is a frame in some privileged state of 
motion relative to the average motion of the fixed stars. Thus, it is the fixed 
stars through their masses, distribution, and motion which determine a local 
inertial frame. This is Mach's principle in essence. Returning to the bucket 
experiment, Newton gives no reason why the surface curves up when it is in 
rotation relative to absolute space. Mach, however, says that the curvature 
stems from the fact that the water is in rotation relative to the fixed stars. One 
way of seeing the difference between the two viewpoints is to ask what would 
happen if the bucket was fixed and the universe (i.e. the fixed stars) rotated. 
Since all motion is relative, it follows from the Machian viewpoint that 
the surfaces of the water would be curved, whereas in Newtonian theory no 
such effect would be detected. Hence, Mach sees all matter coupled together 
in such a way that inertial forces have their physical origin in matter. The 
bucket has very little effect on the water's motion because its mass is so small. 
On the other hand, the fixed stars contain most of the matter in the universe 
and this counteracts the fact that they are a very long way away. 

There is one very outstanding and simple fact that lends support to the 
Machian viewpoint. Consider a pendulum set swinging at the North Pole 
(Fig. 9.4). According to Newton, the pendulum swings in a frame which is not 
rotating relative to absolute space. In this frame the Earth is rotating under 
the pendulum. An observer fixed on the Earth will see the pendulum rotating. 
The time taken for the pendulum to swing through 360° is therefore the time 
taken for the Earth to rotate through 360° with respect to absolute space. 
We can also measure how long the Earth takes to rotate through 360° 
relative to the fixed stars. The remarkable fact is that, within the limits of 
experimental accuracy, the two times are the same. In other words, the fixed 
stars are not rotating relative to absolute space, from which it follows that 
inertial frames are those in which the fixed stars are not rotating. In 
Newtonian theory, there is nothing a priori to predict this, it is simply a 
coincidence. Whenever we find coincidences in a physical theory, we should 
be highly suspicious of the theory - it is usually saying that something 
fundamental is going on. From the Machian viewpoint, it is the fixed stars 
which determine the inertial frames and the result is precisely what we would 
expect. 

Can one say anything more precise about the interaction postulated by 
Mach? Since inertial forces involve the mass of the body experiencing them, it 
would seem likely for reasons of reciprocity that the effect of the stars should 
be due to their masses and proportional to them. On the other hand, inertial 
forces are unaffected (at least to the accuracy of experiment) by local masses 
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Earth 

Fig. 9.4 Pendulum swinging in non­
rotating frame. 
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Fig. 9.5 Direction-dependent inertial 
effects in an anisotropic universe 
(m, ,,t. m2)-

such as the Earth or the Sun. Accordingly the influence of the distant bodies 
preponderates. So we would not expect inertial effects to vary appreciably 
from place to place. 

Consider the motion of a particle in an otherwise empty universe. Then, 
according to Mach, since there are no other masses in existence, the particle 
cannot experience any inertial effects. Now introduce another particle of tiny 
mass. It is inconceivable that the introduction of this very small mass would 
restore the inertial properties of the first particle to its customary 
magnitude - its effect can only be slight. This implies that the magnitude of 
an inertial force on a body is determined by the mass of the universe and its 
distribution. If, in particular, the universe were not isotropic, then inertial 
effects would not be isotropic. For example, if there were a preponderance of 
matter in a particular direction, then inertial effects would be direction­
dependent (as illustrated schematically in Fig. 9.5). 

Experiments were carried out separately by Hughes and Drever around 
1960 which established that mass is isotropic to at least 1 part in 1018. The 
Hughes-Drever experiment has been called the most precise null experiment 
ever performed. This null result can be interpreted in two ways. Either Mach's 
principle is untenable or the universe is highly isotropic. There is evidence 
from other sources to suggest that our universe is indeed highly isotropic on 
the large scale. 

In Newtonian theory, the gravitational potential </> at a point a distance 
r from the origin due to a particle of mass m situated at the origin is 
</> = - Gm/r, where G is Newton's gravitational constant. The potential at 
any point can only depend on the properties of the body itself. However, from 
the Machian point of view, the mass m of the body depends on the state of the 
universe. Hence, the ratio of these two effects, namely G, contains information 
about the universe. In particular, if the universe was in a different state at any 
earlier epoch, then the 'constant' G would have a different value. An evolu­
tionary universe would require G = G(t), i.e. a function of epoch. Again, if the 
universe did not present the same aspect from every point (except for local 
irregularities), G would vary from point to point. A fully Machian theory 
should essentially allow one to calculate G from a knowledge of the structure 
of the universe. 

What is the current status of Mach's principle? The biggest limitation of 
the principle is that it does not give a quantitative relation for the interaction 
of matter. Similarly, it can be argued that Mach's ideas do not really 
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contribute to an understanding of why there appears to be such a funda-
mental distinction between unaccelerated and accelerated motion in nature, 
i.e. it does not explain why the interaction should be velocity-independent but 
acceleration-dependent. Some critics claim that Mach only replaced 
Newton's absolute space by the distant stars and learnt nothing new thereby. 
The principle was considered to be of great importance to Einstein who 
attempted to incorporate it into his general theory. This, as we shall see, he 
only partially succeeded in doing (however, a more recent alternative theory 
to general relativity, called the Brans-Dicke theory, claims to be more fully 
Machian). 

We finish this section by trying to make more precise the statements of 
Mach's principle which are relevant to the formulation of general relativity. 
Thinking in terms of the axiomatic formulation of the last chapter, let us refer 
to the privileged paths which particles and light rays travel on as the 
'geometry' of the universe. The first statement tries to incorporate the 
essential part of Mach's ideas. 

The next statement refers to the belief that it is impossible to talk about 
motion or geometry in an empty universe, so that there should be no solution 
corresponding to an empty universe. 

The final statement refers to a universe containing just one body, then, since 
there is nothing for it to interact with, it should not possess any inertial 
properties. 

9.3 Mass in Newtonian theory 
Up to now, we have talked rather glibly about the mass m of a body. Even in 
Newtonian theory, we can ascribe three masses to any body which describe 
quite different properties. Their names, notation, and general description are: 

(1) inertial mass m1, which is a measure of the body's resistance to change in 
motion; 

(2) passive gravitational mass mP, which is a measure of its reaction to a 
gravitational field; 

(3) active gravitational mass mA, which is a measure of its source strength for 
producing a gravitational field. 

We shall discuss each of these in turn. 
Inertial mass m1 is the quantity occurring in Newton's second law, which 

we met in Chapter 4. It is at any one time a measure of a body's resistance to 
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Fig. 9.6 Galileo's Pisa experiments. 

change in motion and is also called the body's inertia. Newton's second law, / 
stated more precisely, is 

or 

for constant inertial mass m1. Note that, a priori, m1 has nothing directly to do 
with gravitation. The next two masses, however, do. 

Passive gravitational mass mp measures a body's response to being placed 
in a gravitational field. Let the gravitational potential at some point be 
denoted by <J,. Then, ifmP is placed at this point, it will experience a force on it 
given by 

Active gravitational mass mA measures the strength of the gravitational 
field produced by the body itself. If mA is placed at the origin, then the 
gravitational potential at any point distant r from the origin is given by 

We shall now see how these three ~asses are related in the Newtonian 
framework. We start from the observational result that if we neglect non­
fundamental forces, like air resistance, then two bodies dropped from the 
same height will reach the ground together. In other words they suffer the 
same acceleration irrespective of their internal composition. This empirical 
result is attributed to Galileo in his famous Pisa experiments (Fig. 9.6). 

Before After 
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Before 
==0-

After 

Of course, you would not get this result with a hammer and a feather, say, 
because the air resistance would slow down the fall of the feather. It would be 
possible on the Moon, however, since the Moon has no atmosphere. Indeed, 
readers may remember the incident on one of the Moon landings when 
an astronaut tried this 'experiment' and confirmed the anticipated result 
(Fig. 9.7). 

Let us assume that two particles of inertial masses m~ and m~ and passive 
gravitational masses m~ and m~ are dropped from the same height in a 
gravitational field. Then, from (9.5) and (9.6), we have 

m~a1 = F1 = -m~grad<J>, 

m~a2 = F2 = -m~grad<J>. 

The observational result is a1 = a2 , from which we get 

m11 /m~ = m~/m~. 

Repeating this experiment with other bodies, we see that the ratio m1/mP for 
any body is equal to a universal constant, IX say. By a suitable choice of units, 
we can, without loss of generality, take IX = 1, from which we obtain the result 

This equality is one of the best attested results in physics and has been verified 
to 1 part in 1012 (see §15.7). 

In order to relate passive gravitational mass to active gravitational mass, 
we make use of the observation that nothing can be shielded from a 
gravitational field. All matter is both acted upon by a gravitational field and 
is itself a source of a gravitational field. Consider two isolated bodies situated 
at points Q and R moving under their mutual gravitational interaction 
(Fig. 9.8). The gravitational potential due to each body is, by (9.7), 

Q R 

Fig. 9.7 The moon landing 'experiment'. 

Fig. 9.8 The mutual gravitational 
Body l Body 2 interaction of two isolated bodies. 
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The force which each body experiences is, by (9.6), 

If we take Q to be the origin, then the gradient operators are 

.o d gradR = r or = - gra Q, 

so that 
G P A 

F m1m1 • 
t =-,-2-r, 

But, by Newton's third law, F 1 = -F2, and so we conclude 

m~/mt = m~/mt. 

Using the same argument as before, we see that 

' 
This is why in Newtonian theory we can simply refer to the mass m of a body, J 
where ' 

m = m' = mp = mA. 

9.4 The principle of equivalence ! 
1 

We define a gravitational test particle to be a test particle which experiences] 
a gravitational field but does not itself alter the field or contribute to the field i 
We wish to embody the empirical result of the Pisa experiments into a ' 
principle. 

This is known as the strong form of the principle of equivalence, and we are 
going to build general relativity on this principle. Notice the difference in 
its status in the two theories. In Newtonian theory, it is an observational 
result-another coincidence. It could be possible, for example, that if we 
looked closer (with an accuracy greater than 1 in 1012 ) then different bodies 
would possess different accelerations when placed in a gravitational field. 
This would not upset Newtonian theory, which could accommodate such a 
result. In general relativity, it forms an essential hypothesis of the theory, and 
if it falls then so does the theory. 

Next, we wish to make explicit the assumption that matter both responds 
to, and is a source of, a gravitational field. However, we have seen in special 
relativity that matter and energy are equivalent, so the statement about the 
gravitational field applies to energy as well. We incorporate this result into a 
statement which is known as the weak form of the principle of equivalence. 
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Thus, no body can be shielded from a gravitational field. However, it is 
possible to remove gravitational effects locally from our theory and so regain 
special relativity. This we do by considering a frame of reference which is in 
free fall, i.e. co-moving with a gravitational test particle. If, in particular, we 
choose a freely falling frame which is not rotating, then we regain the concept 
of an inertial frame, at least locally. We mean here by 'locally' that observa­
tions are confined to a region over which the variation of the gravitational 
field is unobservably small. In such inertial frames, test particles remain at 
rest or move in straight lines with uniform velocity. This leads to the 
following statement of the principle of equivalence. 

Notice that once again we have encoded our principle as a statement of 
impossibility. 

Einstein noticed one other coincidence in Newtonian theory which proved 
to be of great importance in formulating a statement of the principle of 
equivalence. All inertial forces are proportional to the mass of the body 
experiencing them. There is one other force which behaves in the same way, 
that is, the force of gravitation. For, if we drop two bodies in the Earth's 
gravitational field, then they experience forces m1 g and m2 g, respectively. 
This coincidence suggested to Einstein that the two effects should be con­
sidered as arising from the same origin. Thus he suggested that we treat 
gravitation as an inertial effect as well, in other words it is an effect which 
arises from not using an inertial frnme. Comparing the force mg of a falling 
body with the inertial force ma of (9.3) suggests the following version of the 
principle of equivalence. 

These last two versions of the principle of equivalence can be vividly clarified 
by considering the famous thought experiments (Gedankenexperiment in 
German) of Einstein called the lift experiments. 

We consider an observer confined to a lift, or more precisely a room with 
no windows in it or other means of communication with the outside world. 
The observer is allowed equipment to carry out simple dynamical ex­
periments. The object of the exercise is to try and determine the observer's 
state of motion. We consider four states of motion (Figs. 9.9-9.12). 

Case 1. The lift is placed in a rocket ship in a part of the universe far 
removed from gravitating bodies. The rocket is accelerated forward with a 
constant acceleration g relative to an inertial observer. The observer in the lift 
releases a body from rest and (neglecting the influence of the lift, etc.) sees it 
fall to the floor with acceleration g. 

Case 2. The rocket motor is switched off so that the lift undergoes uniform 
motion relative to the inertial observer. A released body is found to remain at 
rest relative to the observer. 

Fig. 9.9 Case 1: The lift in an accelerated 
rocket ship. 

Fig. 9.10 Case 2: The lift in an 
unaccelerated rocket ship. 
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Case 3. The lift is next placed on the surface of the Earth, whose rotational 
and orbital motions are ignored. A released body is found to fall to the floor 

o with acceleration g. 
Case 4. Finally, the lift is placed in an evacuated lift shaft and allowed to 

fall freely towards the centre of the Earth. A released body is found to remain 
at rest relative to the observer. 

Earth Clearly, from the point of view of the observer, cases 1 and 3 are indis-
Fig. 9.11 Case 3: The lift placed on the tinguishable, as required by P4, and cases 2 and 4 are indistinguishable, as 
Earth's surface. required by P3. Let us trace the argument that shows that these requirements 

Fig. 9.12 Case 4: The lift dropped down 
an evacuated lift shaft. 

lead to the concept of a non-flat, i.e. a curved space-time. 
In special relativity, in a coordinate system adapted to an inertial frame, 

namely, Minkowski coordinates, the equation for a test particle is 

d2x" 
dt2 = 0. 

If we use a non-inertial frame of reference, then this is equivalent to using a 
more general coordinate system. In this case, the equation becomes 

d2x" dxb dxc 
dt2 + I'1x: dr ch = O, 

where ric is the metric connection of gab• which is still a flat metric but not the 
Minkowski metric Ylab· The additional terms involving I'1,c which appear are 
precisely the inertial force terms we have encountered before. Then the 
principle of equivalence requires that the gravitational forces, as well as the 
inertial forces, should be given by an appropriate rbc· In this case, we can no 
longer take space-time to be flat, for otherwise there would be no distinction 
from the non-gravitational case. The simplest generalization is to keep fi,c as 
the metric connection, but now take it to be the metric connection of a non­

'1.lat metric. If we are to interpret the nc as force terms, then it follows that we 
should regard the g.b as potentials. The field equations of Newtonian 
gravitation consist of second-order partial differential equations in the gravi­
tational potential ef,. In an analogous manner, we would expect general 
relativity also to involve second-order partial differential equations in the 
potentials gab· The remaining task which will allow us to build a relativistic 
theory of gravitation is to choose a likely set of second-order partial differ­
ential equations. 

9.5 The principle of general covariance 
Recall the principle of special relativity, namely, that all inertial observers are 
equivalent. As we have seen in the last section, general relativity attempts to 
include non-inertial observers into its area of concern in order to cope with 
gravitation. Einstein argued that all observers, whether inertial or not, should 
be capable of discovering the laws of physics. If this were not true, then we 
would have little chance in discovering them since we are bound to the Earth 
whose motion is almost certainly not inertial. Thus, Einstein proposed the 
following as the logical completion of the principle of special relativity. 
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Observers are intimately tied up with their reference systems or coordinate 
systems. So, if any observer can discover the laws of physics, then any old 
coordinate system should do. The situation is somewhat different in special 
relativity, where, because the metric is flat and the connection integrable, 
there exists a canonical or preferred coordinate system; namely, Minkowski 
coordinates. In a curved space-time, that is, a manifold with a non-flat metric, 
there is no canonical coordinate system. This is just another statement of the 
non-existence of a global inertial observer. However, the statement needs to 
be treated with caution, because in many applications, there will be preferred 
coordinate systems. For example, many problems possess symmetries and the 
simplest thing to do is to adapt the coordinate system to the underlying 
symmetry. It is not so much that any coordinate system will do, but rather 
that the theory should be invariant under a coordinate transformation. Thus, 
the full import of the principle of general relativity is contained in the 
following statement. 

Some authors argue that this statement is empty, because it is possible to 
formulate any physical theory in tensorial form. (Of course, this realization 
only came after the advent of general relativity.) Whether or not this is the 
case, it was clearly of central importance to Einstein, as is evident from the 
name he gave it. We shall make use of it in the form of the principle of general 
covariance, which is why we undertook our major digression in Part B to 
learn the language of tensors. 

9.6 The principle of minimal 
gravitational coupling 

The principles we have discussed so far do not tell us how to obtain field 
equations of systems in general relativity when the corresponding equations 
are known in special relativity. The principle of minimal gravitational coup­
ling is a simplicity principle or Occam's razor that essentially says we should 
not add unnecessary terms in making the transition from the special to the 
general theory. For example, we shall later meet the conservation law 

(9.10) 

in special relativity in Minkowski coordinates. The simplest generalization of 
this to the general theory is to take the tensor equation 

(9.11) 

However, we could equally well take 

(9.12) 

since R"ocd = 0 in special relativity and (9.12) again reduces to (9.10) in 
Minkowski coordinates. We therefore adopt the following principle. 
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The principle was not stated by Einstein but was used implicitly. Unfortu­
nately, it is rather vague and ambiguous and needs to be used with care. 

9. 7 The correspondence principle 
As we stated from the outset, we are engaged with modelling, and together 
with any model should go its range of validity. Then any new theory must be 
consistent with any acceptable earlier theories within their range of validity. 
General relativity must agree on the one hand with special relativity in the 
absence of gravitation and on the other hand with Newtonian gravitational 
theory in the limit of weak gravitational fields and low velocities (compared 
with the speed of light). This gives rise to a correspondence principle, 
as indicated in Fig. 9.13, where arrows indicate directions of increased 
specialization. 

Fig. 9.13 The correspondence principle 
for general relativity. 

Exercises 

9.1 (§9.2) 

General relativity 

t 
Special relativity 

(i) A pendulum is suspended from the roof of a car moving 
in a straight line with uniform acceleration a. Find the 
angle the pendulum makes with the vertical. Explain 
what is happening from the viewpoint of an inertial 
observer external to the car and a non-inertial observed 
fixed in the car. 

(ii) A bucket of water is located in the car as well. Find the 
angle which the surface of the water makes with the 
horizontal. 

(iii) A bucket of water slides freely under gravity down a 
slope of fixed angle ix to the horizontal. What is the 
angle of inclination of the surface of the water relative to 
the base of the bucket? 

9.2 (§9.2) 
(i) Consider a body rotating relative to an inertial frame 

Newtonian theory 
of gravitation 

t 
Newtonian mechanics 

in the absence of 
gravitation 

about a fixed point O with angular velocity w in New­
tonian theory. The velocity v of any point Pin the body 
with position vector OP = r is given by 

I)= W X r 

Let i,j, k denote unit vectors in the inertial frame S and 
i', j', k' denote unit vectors in a frame S' fixed in the 
body, where both origins are at 0. If 11 =' 11(t) is a 
general vector with components 

in S', show, by differentiating this equation, that 

[d"] = [d"] + w x II. 
dt s dt S' 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) Consider a non-inertial frame S' moving arbitrarily 
relative to an inertial frame S, where the position of the 
origin 0' of S' relative to the origin O of S is s( t) and its 
angular velocity is w(t ). A particle of constant mass m 
situated at a point with position vectors rand r' relative 
to Sand S', respectively, is acted on by a force F. Show 
that S' can write the equation of motion of the particle 
in the form 

F- [ma+ 2mwxr' + mwx(w xr') 

+ mciJ X r'] = mr', 

where a is the acceleration of O' relative to O and a dot 
denotes differentiation with respect to time in the frame 
of S'. What are the quantities in square brackets? Inter­
pret these quantities physically. 

9.3 (§9.3) Fill in the details that lead to the equalities (9.8) 
and (9.9). 

9.4 (§9.3) Write down the equations of motion for an iso­
lated system of three bodies of inertial masses m\ , m~ and 
m~. Eliminate the internal forces from these equations and 
demonstrate that if two of the bodies are rigidly bound to 
form a composite system then the inertial mass is additive. 

9.5 (§9.4) In the lift experiments, explain the motion o(the 
released body from the point of view of: case ( 1) an inertial 
observer; case (2), an inertial observer who initially sees the 
rocket moving away with constant velocity v; case (4), an 
observer at rest on the surface of the Earth. 

9.6 (§9.4) Consider a sphere of non-interacting particles 
falling towards the Earth's surface. Taking into account the 
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different accelerations of particles in the sphere, what is the 
ensuing shape of the enclosing volume? 

9.7 (§9.4) Find the geodesic equations for IR 3 in cylindrical 
polar coordinates (see Exercise 6.17). Interpret the terms 
occurring which involve r~. 

9.8 (§9.4) What is the path of a free particle 
(i) in an inertial frame? 

(ii) in the presence of a uniform gravitational field? 
Use the principle of equivalence and the particle theory of 
light to find the path of a light ray in the above two cases and 
hence deduce light bending in a gravitational field. 

9.9 (§9.6) Write down a generalization of(9.10) to a curved 
space which involves a term quadratic in the Riemann 
tensor. 

9.10 (§9.6) An anti-symmetric tensor F a1, satisfies the equa­
tion in special relativity in Minkowski coordinates 

Write down the simplest generalization to a curved space­
time and show that it is identical to the original equation. 

9.11 (§9.7) Write down the correspondence principle for 
the transition from special relativity (in non-relativistic un­
its) to Newtonian theory in the absence of gravitation. 
Express this transition as a limit involving the speed of light. 
Draw a sequence of diagrams to indicate what happens to 
the null cone in this limit. What happens to the three regions 
defined by the null cone in special relativity? What happens 
to the concept of simultaneity in the limit? 
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Fig. 10.1 Case 1: The lift in an 
accelerated rocket ship . 

10.1 Non-local lift experiments 
The considerations of the last chapter led us to conclude that, locally, i.e. 
neglecting variations in the gravitational field, we can regain special rela­
tivity. However, in a non-local situation, we require a non-flat metric which 
may be thought of as the potentials of the gravitational field. Correspondence 
with Newtonian theory then suggests that we require second-order field 
equations in these potentials, and, moreover, from the principle of covari­
ance, these equations must be tensorial in character. In this chapter, we shall 
pursue the Newtonian correspondence further and reformulate Newtonian 
theory in such a way that it leads naturally to the particular set of field 
equations of general relativity. 

We return to the lift experiments and consider performing the following 
non-local experiments. We assume that the observer's equipment is suffi­
ciently sensitive to detect variations in the gravitational 'field. The four 
experiments take the same form as before, but this time the observer releases 
two bodies, whose mutual interactions we ignore (Figs. 10.1-10.4). 

Case 1. From the point of view of the observer in the lift, the two bodies fall 
to the ground parallel to each other. 

Case 2. The bodies remain at rest relative to the observer. 

Case 3. The two bodies fall towards the centre of the Earth and hence fall on 
paths which converge. 

Fig. 10'.2 Case 2: The lift in an 
unaccelerated rocket ship. 

Fig. 10.3 Case 3: The lift placed on the 
earth's surface. 
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Case 4. The bodies appear to the observer to move closer together, because 
they are falling on lines which converge towards the centre of the 
earth. 

It follows that the observer can distinguish the uniform inertial field of case 
1 from the Earth's non-uniform gravitational field of case 3. Again, in free fall, 
bodies travel on geodesics in a gravitational field which converge (or diverge), 
as in case 4. The point of these thought experiments is that the presence of a 
genuine gravitational field, as distinct from an inertial field, is verified by the 
observation of the variation of the field rather than by the observation of the 
field itself. We shall see that in general relativity this variation is described by 
the Riemann tensor through the equation of geodesic deviation. Fig. 10.4 Case 4: The lift dropped down 

an evacuated lift shaft. 

10.2 The Newtonian equation of deviation 

The non-local lift experiments reveal that we should focus our attention on 
two neighbouring test particles in free fall in a gravitational field. We look at 
this motion first of all in Newtonian theory using the tensor apparatus of 
Part B. We introduce Cartesian coordinates 

(x") = (x 1, x2 , x3 ) = (x, y, z), 

where, for the rest of this chapter, Greek indices run from 1 to 3, and then the 
line element of Euclidean 3-space JR 3 is 

do-2 = dx2 + dy2 + dz2 , • 

from which we obtain the Euclidean metric 

g.11 = o.11 = diag(l, 1, 1) (10.1) 

We therefore raise and lower indices with the three-dimensional Kronecker 
delta. This means that in Newtonian theory there is really no distinction 
between raised and lowered indices, but we will retain the notation in order to 
help us compare results later with the general theory. We consider the paths 
of two neighbouring gravitational test particles of unit mass travelling in 
vacuo in a gravitational field whose potential is cp. 

Let the particles travel on curves C1 and C2 so that they reach the points P 
and Q at time t (Fig. 10.5). If we use the time t as the parameter along the 
curves, then the parametric equations of C1 are 

x• = x"(t) (10.2) 

Xl 
Fig. 10.5 Freely falling gravitational test 
particles at time t. 
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and those of C 2 are 
(10.3) 

when ti" is a small connecting vector which connects points on the two curves 
with equal values of t. Since the particles have unit mass, the equation of 
motion of the first particle, by (9.5) and (9.6), can be written in the tensor form 

where a dot denotes differentiation with respect to time and 

a•cp = o•Pa/Jcp = (!!, !! , ~!)=(grad cp)p , (10.5) 

Similarly, omitting the unit masses, the equation of motion of the second 
particle is 

Since ti" is small, we may expand the term on the right-hand side by Taylor's 
theorem (exercise), to obtain 

-(o"cp )Q = -(o"cp )p - (tiPa/Ja•cp )p 

to first order. Subtracting (10.4) from (10.6), we get 

ij" = -ti/J opo"cp. 

If we define the tensor K" fl by 

(10.7) 

(10.8) 

K"p = K/ = a·afJcp, (l0.9) 

then the equation of motion ( 10.8) of the connecting vector ti", which we call 
the Newtonian equation of deviation, becomes 

This equation is intimately connected with the Newtonian field equations in 
empty space, namely, Laplace's equation (4.6), which can be written (exercise) 

In other words, the tensor K•, is trace-free. We now search for a relativistic 
generalization of these equations. 

10.3 The equation of geodesic deviation 
Following the axioms of §8.5, we assume that free test particles in general 
relativity travel on timelike geodesics. We therefore consider a 2-surface S 
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ruled by a congruence of timelike geodesics, that is, a family of geodesics 
such that exactly one of the curves goes through every point of S. The 
parametric equation of S is given by 

where r is the proper time along the geodesics and v labels distinct geodesics. 
We define two vector fields on S by 

dx" 
(10.13) v•=-

dr 
and 

¢• = dx• 
dv • (10.14) 

Then v• is the tangent vector to the timelike geodesic at each point and e• is a 
connecting vector connecting two neighbouring curves in the congruence 
(Fig. 10.6). The commutator of v• and e• satisfies 

[v, ¢]•=Vb<\¢• - ¢hobv• 

d2x" d2 x" 
= drdv - dvdr 

=0 (10.15) 

since the mixed partial derivatives commute. (It can be shown that the 
vanishing of the commutator is a necessary and sufficient condition for the 
vector fields to be surface-forming, which means that the congruences 
generated by the two vectors knit together to form a 2-surface.) By (6.15), the 
commutator is also equal to the Lie derivative Lv¢•. We now use the result 
which allows us to replace partial derivatives by covariant derivatives in an 
expression for a Lie derivative 

0 = Lv¢• 

= Vb obe• - eh Ob v• 

= VbVb¢• - ebvbv• 

= Vv¢• - V~v•. (10.16) 

Taking the covariant derivative of this equation with respect to v•, we find 

(10.17) 

The equation we are seeking derives from the identity (Exercise 6.11) 

(10.18) 

Ifwe set x• = z• = v• and y• = ¢•, then the second term on the left vanishes, 
because v• is tangent to an affinely parametrized geodesic, and so, by (6.36), 

(10.19) 

s 

Fig. 10.6 The vectors va and ea at a point 
Pin S. 
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The third term vanishes by ( 10.15), since the covariant derivative of any 
tensor with respect to the zero tensor is zero. Thus, (10.18) becomes 

(10.20) 

By definition, 

and so, using (10.17), equation (10.20) becomes the promised equation of 
geodesic deviation 

The absolute derivative along the curve is the tensorial analogue of the time 
derivative along the curve in (10.10). However, this is not quite the form we 
want to compare with (10.10), because it involves the 4-vector ,•, which has 
four pieces of information in it. We are really only interested in the spatial 
information in this equation. 

We extract this by first introducing a projection operator h"b• defined by 

which projects tensors into the 3-space orthogonal to v0 at any point P of S. It 
possesses the following properties (exercise) which establish it as a projection 
operator: 

(a) h"bvb = 0, 

(b) w•v. = 0 ¢> h\wb = w•, 

(c) h"bhbc = h"c, (10.23) 

(d) h". = 3, 
(e) h.b = hba. 

We thus define th\! orthogonal connecting vector 17• by 

We need one more result which follows from the fact that v• is a unit tangent 
vector, since 

(10.25) 

Taking the covariant derivative with respect to ,•, we get the result 

(10.26) 



since the covariant derivative of 1 is zero (why?). Then 

= V v(l'/ 0 + v•vb,;b) 

= Vvl'/" + (Vvv")vb,;b + v0 (Vvvb),;b + v•vb(Vv,;b) 

o,,· 
= Dr + v•vb(V~vb) 

o,,· 
= DT' 

using (10.24), (10.19), (10.16), and (10.26). In addition, 
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(10.27) 

(10.28) 

since R0 bcd is anti-symmetric on c and d (see Exercise 5.ll(ii)). So, finally, 
(10.21) can be written in terms of,,., using (10.27) and (10.28), to give 

We have now written the equation of geodesic deviation in terms of the 
orthogonal connecting vector. However, this is still a four-dimensional 
equation and so, in the next section, we shall show how to extract the three­
dimensional information. 

10.4 The Newtonian correspondence 
At any point P on the curve C 1 , we introduce an orthogonal frame of three 
unit spacelike vectors 

which are all orthogonal to v• and where ot is a bold label running from O to 3. 
We define 

and then, remembering (10.25), we have the following set of orthonormality 
relations 

e0°e0• = -eJ°e10 = -e2°e20 = -e/e30 = 1, } 
e0°e10 = e0°e20 = e0"e30 = e/e20 = eJ°e30 = e/e30 = 0 

(10.30) 

The four vectors ei" (i = 0, 1, 2, 3) are said to form a frame or tetrad 
(vierbein, in German) at P, and the orthonormality relations (10.30) can be 
succinctly summarized as 

where 1'/;i is the Minkowski metric, that is, 

1'/1J = diag (1, -1, -1, -1). 
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Fig. 10.7 The frame and the orthogonal 

Treating e;° as a 4 x 4 matrix at P, we can define its inverse (called the dual 
basis) el. by requiring 

(10.32) 

where 6j is the Kronecker delta, or the identity matrix in matrix terms. We 
have introduced the frame notation merely as a convenience so far, but it 
turns out that frames possess a powerful formalism of their own (which is 
outside the scope of this book, but see §19.1). For example, in exactly the same 
way that we raise and lower tensor indices with the metric gab• we can raise 
and lower frame indices (i, j, ... ) with the frame metric 1711 . Let us multiply 
(10.32) by e1b and write it in the form 

(elbet)el. = elb, 

from which it should be clear that the quantity in parentheses must be the 
tensorial Kronecker delta, namely, 

(10.33) 

The physicalinterpretation of the frame is as follows: e8" = v• is the 4-velocity 
of an observer whose world-line is C 1 , and the three spacelike vectors e: are 
rectangular coordinate vectors (such as the usual Cartesian basis i,j, and k, 
for example) at P, where the bold Greek indices run from 1 to 3. So far, the 
frame has only been defined at P, but we now propagate the frame along C1 

by parallel propagation, i.e. 

(10.34) 

In the same way as we can get the Cartesian components of a three­
dimensional vector by taking the scalar product ofit with i,j, and k, then we 
define the spatial frame components of the orthogonal connecting vector 17• 
by 

This is the precise analogue of the vector '1a of§ 10.2. Note that 

(10.36) 

by (10.24) and (10.23a). We represent the various quantities schematically in 
Fig. 10.7. 

To find the spatial part of (10.29) we contract it with e•., and then, using 
(10.34), we find 

(10.37) 

Using (10.33), (10.36), and (10.35), we get 

connecting vector at P. and so, substituting in (10.37), we can write the spatial part of the equation of 
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geodesic deviation as 

where 

Equation (10.38) is the analogue of (10.10) which we have been seeking. 

10.5 The vacuum field equations 
of general relativity 

We saw that the vacuum field equations of Newtonian theory could be 
expressed as the vanishing of the trace of K"r. In an analogous manner, let us 
investigate the vanishing of the trace of (10.39), namely, 

(10.40) 

We do this by introducing a special coordinate system at P adapted to the 
frame, so that in this coordinate system 

e/ ~ (1, 0, 0, 0), et"~ (0, 1, 0, 0) ez" ~ (0, 0, 1, 0), e/ ~ (0, 0, 0, 1) 

or more succinctly 

Then (10.40) reduces to 

But, since the Riemann tensor is anti-symmetric on its last pair of indices, it 
follows that, in any coordinate system, 

R0ooo = 0, 

and we can combine the last two equations to give 

R 0 ooa ~ 0. 
Then 

by (6.83). Now Rbcvbvc is a scalar, and hence if it vanishes in one coordinate 
system then it must vanish in all coordinate systems. Moreover, since it 
vanishes for all observers, that is, for all timelike vectors v 0 at P, then it 
follows that (exercise) [R0 b]P = 0. Finally, since Pis arbitrary, our analogy 
suggests that the vacuum field equations of general relativity should be 

By Exercise 6.25, the vanishing of the Ricci tensor is equivalent to the 
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vanishing of the Einstein tensor, so that we can write alternatively 

Equations (10.41) or (10.42) are the equations which Einstein proposed 
should serve as the vacuum field equations of general relativity. 

10.6 The story so far 
Our arrival at the vacuum field equations of general relativity has involved 
rather a long story. This is not so surprising when you consider that it took 
Einstein over ten years of endeavour to move from the formulation of the 
special theory (1905) to a final formulation of the general theory (1916). It 
might be helpful, therefore, to outline again the main points of the argument. 

1. The principle of equivalence reveals that if we freefall in a gravitational 
field then we can eliminate gravity locally and regain specialrelativity. 

2. It also states that locally we cannot distinguish a gravitational field from a 
(uniform accelerative) inertial field and consequently we should regard 
gravitation as an inertial force. 

3. Following special relativity, we assume that free test particles travel on 
timelike geodesics. Then inertial forces arise in the geodesic equations in 
the terms involving the metric connection of a flat metric. In order to 
include the extra effect of gravitation in the metric connection, we gen­
eralize the metric to being curved. 

4. The metric then plays the role of the potentials of the theory and, in 
analogy with Newtonian theory, we seek a set of second-order partial 
differential equations for the potentials as field equations of the theory. 
Moreover, by the covariance principle, these equations must be tensorial. 

5. Ifwe now take non-local effects into account, then a genuine gravitational 
field can be observed by the variation in the field rather than by an 
observation of the field itself. This variation causes test particles to travel 
on timelike geodesics which converge (or diverge), and the convergence 
is described by the Riemann tensor through the equation of geodesic 
deviation. 

6. The Riemann tensor is a tensor which involves second partial derivatives 
of the metric and so we might expect the field equations of the theory to 
involve the Riemann tensor. The fact that the Newtonian vacuum field 
equations involve the vanishing of a contracted tensor suggests that we 
might consider a contraction of the Riemann tensor. There is only one 
meaningful contraction (why?), namely, the Ricci tensor, and its vanishing 
is equivalent to the vanishing of the Einstein tensor. 

10.7 The full field equations of general relativity 
For completeness, we introduce briefly the full field equations which hold in 
the presence of fields other than gravitation. As we shall see, these fields are 
described by the energy-momentum tensor pb_ Now the equivalence of 
mass and energy from special relativity suggests that all forms of energy act 
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as sources for the gravitational field; indeed this is the content of the weak 
form of the principle of equivalence P2. We therefore take Tab as a source 
term in the field equations. In special relativity in Minkowski coordinates, 
the energy-momentum tensor satisfies the conservation equations (see 
Chapter 12) 

ab Tab= 0. 

The principle of minimal gravitational coupling suggests the general rela­
tivistic generalization 

Vb Tab= 0. 

However, we know that the covariant derivative of the Einstein tensor 
vanishes through the contracted Bianchi identities (6.86): 

Vb Gab= 0. 

The last two equations suggest that the two tensors are proportional and one 
can write consistently 

where K is a constant of proportionality called the coupling constant. Note 
that this equation is in line with Mach's principle in the form Ml since the 
matter ( Tab) determines the geometry (Gab) and hence is the source of inertial 
effects. The constant K is then determined by the correspondence principle, 
since this equation must reduce to Poisson's equation (4.5) in the appropriate 
limit. We shall see in §12.10 that this is given in non-relativistic units by 

The equations (10.43) subject to (10.44) constitute the full field equations of 
general relativity. We shall, for the most part, work in relativistic units, in 
which we can take both c = 1 and G = 1, and then the coupling constant is 
simply 

K = 81t. (10.45) 

At this stage, we shall define the theory of general relativity to consist of 
the axioms of special relativity as stated in §8.5 except that l(iii) is now 
replaced by equation (10.43) subject to (10.44). However, before we consider 
further the significance of the field equations, we shall look at, in the next 
chapter, an alternative derivation based on a mathematical principle rather 
than physical principles, namely, the variational principle, and follow this up 
with an investigation of the right-hand side of (10.43), namely, the 
energy-momentum tensor. 
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Exercises 

10.1 (§10.2) Taylor's theorem in three dimensions can be 
written 

00 (h·V)" 
f(x + h) = f(x) + L - - f(x), 

1 n! 
where 

x =xi+ yj + zk, 

h = h1i + h2 j + h3 k, 

o o o 
V = i- + j- + k-. ox oy oz 

Write out the first three terms of the expansion. 

10.2 (§10.2) (i) Use Exercise 10.1 to verify (10.7). 
(ii) Verify that Laplace's equation can be 

written in the form (10.11 ). 

10.3 (§10.3) Verify the properties (10.23) of the projection 
operator h"b· 

10.4 (§10.3) If v• = dx" /d, is the tangent vector to a time­
like geodesic parametrized by the proper time, and ~• is an 
arbitrary vector field, show that 

(i) Vvv• = 0, 
(ii) Vvv• = 0, 

(iii) v0 V~v• = 0, 
(iv) v•v ~v. = 0, 
(v) Lvh"b = 0. 

10.5 (§10.3) Show that a Killing vector x• satisfies the 
equation of geodesic deviation 

0 2x• d~ dx' 
-- - R\,4 - -X4 = 0 
Du2 du du 

along any geodesic x• = x"(u). [Hint: use Exercise 7.14.) 

10.6 (§10.4) Show that ifa frame e;" is parallelly propagated 
along C then so is its dual frame ei •. 

10.7 (§10.4) If 'Iii is the inverse of '1ij, then show that 

9ab = 1111e1.eib and g•b = 111ie;"e{ 

If (x") = (t, r, 0, </>) and 

e0" = (A-t, 0, 0, 0), 

ez" = (0, 0, 1/r, 0), 

e/ = (0, At, 0, 0), 

e/ = (0, 0, 0, 1/rsin 0), 

where A= A(r) is an arbitrary function, then find g"6, 906 
and the line element ds2 . 

10.8 (§10.5) If at some point P, the symmetric tensor R.b 
satisfies 

R.bv0v6 = 0 

for an arbitrary timelike vector v•, then deduce that R.b 
must vanish at P. (Hint: let v• = t• + ,1.s•, where t"t. = I, 
s•s. = - 1, t•s. = 0, 0 ,s;;; ,1. < 1, ). arbitrary, and con­
sider a special coordinate system in which t" !c 6~ and 
s" !a 1\1, 1>1, 1>; in turn.] 

10.9 (§10.6) What principles are used in each of the six 
steps outlined in § 10.6? 

10.10 (§10.7) What principles are used in the transition to 
the full theory? 



 
 
 
 

11.1 The Palatini equation 
Many tensor identities are best derived using the technique of geodesic 
coordinates, where we choose an arbitrary point P at which rbc ~ 0. Then, in 
particular, covariant derivatives reduce to ordinary derivatives at the point P. 
The Riemann tensor (6.39) reduces to 

(11.1) 

We now contemplate a variation of the connection I'bc to a new connection 
fbc: 

(11.2) 

Then 8 rbc, being the difference of two connections, is a tensor of type ( 1, 2). 
This variation results in a change in the Riemann tensor: 

where 
8R"bcd ~ ac(JF:d) - ad(8I'bc) 

~ Vc(8I'bd) - VA8I'bc), 

since partial derivative commutes with variation and is equivalent to covar­
iant derivative in geodesic coordinates. Now both 8R"bcd• being the difference 
of two tensors, and the quantities on the right-hand side of the last equation 
are tensors, and so by our fundamental result (if a tensor equation holds in 
one coordinate system it must hold ir:an coordinate systems) we can deduce 
the Palatini equation 

at the point P. Since P is an arbitrary point the result holds quite generally. 
Contraction on a and c gives the useful result 
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11.2 Differential constraints on the 
field equations 

The variational principle proceeds from the specification of a Lagrangian 
density !l' which is assumed to be a functional of the metric gab and its first 
and possibly higher derivatives, that is, 

(11.5) 

ft' is required to be a scalar density of weight + 1 so that we can form the 
action integral 

(11.6) 

over some region Q of the manifold. The principle of stationary action then 
states that, if we make arbitrary variations of the gab which vanish on the 
boundary oQ of Q, then/ must be stationary. Writing this out formally using 
the variational notation of Chapter 7, we obtain 

where 

and ft'ab is the Euler- Lagrange derivative 

The field equations are then 

Since M is the difference between two scalars it must itself be a scalar, and 
hence from (11.8) it follows that ft'ab is a symmetric tensor density of 
weight + 1. We shall consider the details of the calculation of ft'ab in later 
sections. However, before we do this we shall derive some very important 
differential constraints on the field equations which hold whether or not the 
field equations hold and which follow simply from the fact that .P is a 
density. In general relativity, these will turn out to be the contracted Bianchi 
identities. 

The idea is to generate a 'variation' in the gab which is brought about 
simply by carrying out a change of coordinates in Q. Then, since I remains 



 
 

invariant, it follows that M must be identically zero, 

<>i=O. 

We consider an infinitesimal change of coordinates (7.50) in Q 

x•-+ x'• = x• + eX"(x), 

(11.11) 

(11.12) 

where x• is a smooth vector field which vanishes on the boundary of Q. 

Performing a similar calculation to that of §7.7, we find (exercise) 

bg.b = g:b(x)- g.b(x) = -fl'.x9ab = -e(VbXa + v.xb)- (11.13) 

Hence, combining this with (11.8) and (11.11), we obtain 

0 = M = -2efn .!l'"b(VbX.)dQ, 

since 2•b is symmetric by the definition (11.9). We now use a standard trick, 
called integration by parts, to write the integral as a difference of two terms, 
namely (check), 

0 = 2e L (Vbg>•b)X.dQ - 2e I.a Vb[g>•b X 0] dQ. (11.14) 

The term in square brackets is a vector density of weight + 1, and hence by 
(7.3) its covariant derivative can be replaced by an ordinary derivative. Then 
the divergence theorem (7.19) gives 

2ef ob[g>•bX.]dQ = 2e I g>•bx.dsb, (11.15) 
n Jan 

which converts the last term in (11.14) to a surface integral. But, by assump­
tion, x• vanishes on oQ, and hence this term must vanish. Thus (11.14) 
reduces to f n (Vbg>•b)X0 dD = 0, 

and, since Q is arbitrary, we must conclude (exercise) 
- ~ 

(Vbg>•b)X. = 0. 

(11.16) 

(11.17) 

Finally, since x• is arbitrary, we obtain the promised differential identities 

11.3 A simple example 
Let us use the following notation: a gothicized tensor is to represent the 
corresponding tensor multiplied by (-g)½. Thus, for example, 

9ab = (-g)½gab and '.tab= (-g)½Tab· 

Then all tensors in gothic type will be tensor densities of weight + 1. 
The simplest scalar density that we can make out ofg.b alone is ( -g)½ itself, 

namely, 
(11.19) 
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where ( -g)t is to be regarded as a functional of the dynamical variable gab· 
Recalling (7.7), we write 

and so 
8(-g)½ _j_ (-g) ab_j_( )½ ab_j_ ab ag;;: - 2 (-g)½ g - 2 -,g g - 2 g , 

from which we deduce that 

a2 
.!f•b = __ = fo•b. 

8gab 

(11.20) 

(11.21) 

Clearly, g•b = 0 cannot serve as field equations. The identities (11.18) become 

(11.22) 

which is trivially satisfied, since both gab and ( -g)½ have vanishing covariant 
derivatives by (6.73) and (7.11). 

11.4 The Einstein Lagrangian 
The Lagrangian ( 11.19) clearly cannot serve as the Lagrangian of a physical 
theory. However, it turns out that the next most complicated scalar which 
can be built out of g.b and its derivatives-and it is very much more 
complicated-is the curvature scalar R. The resulting Lagrangian • 

is called the Einstein Lagrangian, where the label G denotes that it is the 
Lagrangian for gravitation. We shall employ the notation of a comma for 
partial differentiation, otherwise we end up writing terms like 82 /8(0,g.b). 
Then, explicitly, 

.!f G = (-g)½ g'' R,, 

= g'' R•,,, 

= s''(r:, .. - r: •. , + r{,rj. - r{,I'j4) 

= g'4{[tg•f(g,f,d + gdf.c - g,d,f)],, 

- [½g'1(g,f,e + g,f,c - g,,,f)J,d 

+ [½gfh(g,h,d + gdh,c - g,4,i,)] [½g•i(gfi,e + g,i,f - gfe)] 

- [½gfh(gch,e + g,h,c - g,,,i,)] [½g''(gfi, d + gdi,f - gfd,;)]}. 
(11.24) 

We must think of this as a functional of gab and its first and second 
derivatives, namely, 

.!fl G = .!fl a(gab• gab,c> gab,cd), 

where we regard g•b and g (and therefore g•b) as functions of gab· Note that we 
could equally well regard .!fl a as a functional of one of gab, gab, or gab and their 
corresponding first and second derivatives. In the case where g.b are the 



 
 

11.5 Indirect derivation of the field equations I 149 

dynamical variables, the Euler-Lagrange derivative is a generalization of 
(7.35) and becomes 

8!f'a 8!f'a (8!f'o) ( 8!f'o) 
<>gab = Ogab - Ogab,c ,c + Ogab,cd ,cd. 

(11.25) 

Following the procedure of the last section, we would expect next to calculate 
actual expressions for each of these terms. For example (exercise), 

off' __ G_ = (-g)½[½(ga<gbd + gadgb<) _ gabg<d]. 
8gab,cd 

(11.26) 

The calculation of the remaining terms, though straightforward, is, unfortu­
nately, absolutely horrendous and we shall not pursue it further. Instead, we 
will exploit the variational formalism in the next section and show how this 
indirect approach leads to a more tractable calculation. However, had we 
proceeded, then we would have found (exercise for the completely dedicated 
reader!) 

and so the Euler-Lagrange equations lead to the vacuum field equations 

that is, the vanishing of the Einstein tensor. In addition the identities ( 11.18) 
become 

that is, the contracted Bianchi identities. 

11.5 Indirect derivation of the field equations 
The approach depends on exploiting the 8 notation fully. It can be shown 
(exercise) that {> behaves much like a derivative when applied to sums, 
differences, and products. For example, let us see what happens when we 
apply 8 to the tensor o:. The variation 

gab -+ gab + <>gab 

induces a variation in gab, which we write 

Then 
gab -+ gab + fJgab. 

0: = gab gbc-+ (g•b + {>gab}(gbc + {>gbc) 

= 0~ + tJgabgbc + gab{>gbc + Q(c:52) 

(11.30) 
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But, since 8~ is a constant tensor, it cannot change and therefore 

/Jgab gbc + gab /Jgbc = 0 

to first order, or, multiplying through by g<4, 

{Jgad = _ gab g<d {Jgbc-

(11.3 I) 

(11.32) 

Compare this with the corresponding relationship between partial 
derivatives. 

Starting from I written in the form 

J = f n gab RabdQ, 

we carry out a variation and use the Leibniz rule for products, to get 

{JI= L (ogab Rab+ gablJR.b)dQ. (11.33) 

We now use the Palatini equation in the form (11.4), so that the second term 
on the right-hand side becomes 

L gab{JRabdQ = L gab[Vc/JI'~ -VboI'~]dQ 

= L [Vc(gab /JI'~b) - Vb(gab or~c)] dQ 

= L <\(gab /JI'~b - gac /JI'!b) dQ, 

since the covariant derivative of gab vanishes identically and the quantities in 
parentheses are vector densities of weight + 1. Using the same argument as 
we did in § 11.2, this can be converted to a surface integral by the divergence 
theorem, which vanishes because the variations are assumed to vanish on the 
surface of Q. Hence, (11.33) reduces to 

{JI = L Rab /Jgab d.Q . 

= L Rab o[( -g)½ gab] d.Q 

= L [Rabgab /J(-g}½ + Rab( -g)½{Jgab] d.Q 

= L ( -g)½(½Rgcd - Rabgacgb4)/Jgcdd.Q 

= - L (-g)½(W4 - ½Rg<4 ){Jgcdd.Q 

= L [ -(-g)½Gab]og.bdQ, 

where we have used (11.31) and the result (exercise) 

/J(-g)½ = ½(-g)½gab{Jgab· 

(11.34) 

(11.35) 
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Using (11.8), we again get the vacuum field equation in the form (11.28) and 
the contracted Bianchi identities (11.29) as the corresponding differential 
constraints on the field equations. 

11.6 An equivalent Lagrangian 
The resulting field equations are second order in the partial derivatives. This 
is at first sight rather surprising since by (11.25) we might expect the last term 
to produce fourth-order equations. However, it turns out, as we have seen in 
(11.26), that 8.ff' 0 / 8gab,cd only involves undifferentiated llab's and 8.ff' 0 /8gab,c 
only involves once differentiated llab's (exercise). In this section, we make the 
second-order nature of the equations more evident by showing that 

(11.36) 

where !l O depends on the metric and its first derivatives only. It can be shown 
that in applying the variational principle argument to such an equation the 
divergence Qa, a can be discarded (by converting to a vanishing surface 
integral), and hence it follows that .ff' 0 and .PO give rise to the same field 
equations. However, !l O is no longer a scalar density. We sketch the 
argument below. 

The Einstein Lagrangian 

.ff' 0 = ( - g)½ R 

where 

= gab Rab 

= g•b(r~b,c - r~,b + r~br:d - r:,rid) 

= 9ab r~b,c - gab r~c,b - 2o, 

Integrating the first two terms in (11.37) by parts, we get 

ff'o = -gab,cr~b + 9ab,br~c - 2o + Qa,a, 
where 

(11.37) 

(11.39) 

Qa = gbc F:c - gab r1,. (11.40) 

From the fact that the covariant derivative of gab vanishes, we find (exercise) 

(11.41) 
Substituting in (11.39) and simplifying, we obtain the result (11.36). 

Once again, we could consider !l O as a functional of one of llab, gab, 9ab, or 
gab and their corresponding first derivatives. For example, let us choose the 
gab as the dynamical variables. Then 

!lo= 2o(g"\ 9ab,c), 

from which it can be shown that 

and 

820 rd re re rd 8gab = ac bd - ab cd 

8!Jo re I s:crd ½"crd 
~ = ab -2°a bd - ub ad• 

9 ,c 

(11.42) 

(11.43) 



 
 
 

152 I General relativity from a variational principle 

The Euler-Lagrange equations 

flab=a!lo_(a!lo) =0 
G agab ag•b,e e 

then lead to 

Jl'ff = -r;b,e +,½rtd,a + tr~d,b - r;br:, + r~Jw, 

If we use the result (exercise) 

[ln(-g)+J,. = r~, 
then 

r~.b = [ln(-g)½J,.b = [ln(-g)½lba = rt .• , 

and so (11.45) gives 

!l'ff = -(r~.e - r~.b + r~r:, - r~Jw) = -Rab. 

The field equations are correspondingly R.b = 0. 

11. 7 The Palatini approach 

(11.44) 

(11.45) 

(11.46) 

The Palatini approach is very elegant and is based on the idea of treating 
both the metric and the connection separately as dynamical variables in the 
Einstein Lagrangian. To be specific, let us choose .!i10 as a functional of gab 

and a symmetric connection r1,c and its derivatives, i.e. 

fi1o = ..<t'o(g•b, r1,c, rbe,d), 
where 

.!i1 G = g•b R.b 

= g•b(r;b,e - r~,b + r;br:, - r~Jw), (11.47) 

so that the Ricci tensor depends on r,:e and its derivatives only. Then, if we 
carry out a variation with respect to g•b only, 

M = L og•b R.bdD 

and the principle of stationary action gives immediately the vacuum field 
equations Rab = 0. 

We next carry out a variation with respect to r1,c, so that 

M = L g•b oR.b dD 

= L g•b[V,(or;b) - vb(or;.,)J do 

by the corollary of the Palatini equation (11.4). Integrating by parts and 
discarding the divergence term by the usual argument, we get 

M = f [V g•b ore - V g•b ore ] dQ b ac c ab 
n 

= L[(o!Vdg•'-v,g•b)or;b]dD. 
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Since l>1 vanishes for arbitrary volumes Q, the integrand must vanish, i.e. 

(Wvdgad - Vcgab)JI'~b = 0. 

The variations bI'~b are arbitrary, but symmetric in a and b, and so only the 
symmetric part of the expression in brackets vanishes, i.e. 

(11.48) 

Manipulating this equation, one can show in turn (exercise) that the covar­
iant derivatives of gab, ( - g)t, gab, and gab vanish. Finally, by Exercise 6.20, if 

Vcgab = 0, 

then it follows that I''fx: is necessarily the metric connection 

I''fx: = ½gad(gbd, c + gcd, b - gbc, d) 

To summarize, the Palatini approach starts from the Einstein Lagrangian 
(11.47) ,considered as a functional of a metric and an arbitrary symmetric 
connection and its derivatives. Variation with respect to the metric produces 
the vacuum field equations of general relativity, and variation with respect 
to the connection reveals that the connection is necessarily the metric 
connection. 

11.8 The full field equations 
So far, we have been concerned with the vacuum field equations. To obtain 
the full field equations, we assume that there are other fields present beside 
the gravitational field, which can be described by an appropriate Lagrangian 
density ..'l'M-the matter Lagrangian. The action is then 

where " is the coupling constant. Both Lagrangians are to be considered as 
functionals of the metric and its derivatives, and so, varying with respect to 
g.b (say), we obtain 

(11.50) 

and 

(11.51) 

where the latter equation defines the energy-momentum tensor Tab for the 
fields present. Dividing through by (-g)t, the field equations become 

in agreement with (10.43). In the next chapter, we shall investigate the right­
hand side of this equation and look at the definition of the energy­
momentum tensor for various important fields. 
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Exercises 

11.1 (§11.2) Show that, under an infinitesimal change of 
coordinates 

x•---+ x'• = x• + eX0 (x), 

the transformed metric satisfies 

g~b(x) - g.b(x) = -e(VbXa + v.xb) 

to first order in e. 

11.2 (§11.4) Show that 

i)ft'G 
__ = (-g)½[½(g•cghd + g•dgh') _ g•bgcd] 
ogab,cd ., • 

11.3 (§11.4) Show that 

og'd 
_ = -½(g"'gbd + gh'g•d) 
i)gab 

11.4 (§11.4) Check that i)fE o /ogab,, depends only on g.b 
and its first derivatives. [Hint: consider (11.24).] 

11.5 (§11.5) If y,. are dynamical variables and L1 = L1(y,.) 
and L

2 
= L

2
(y,.), then show from first principles that 

(i) o(.l.£ 1 + µL
2

) = ).oL
1 

+ µoL
2

, where ). and µ are con­
stants, 

(ii) o(L1 L 2
) = L

1 
oL

2 
+ L

2
0L

1
. 

11.6 (§11.5) Show that 

(i) gab(Jg•b = -g•b ()gab, 
(ii) <>g = gg•b <>gab, (compare this with (7.8)) 
(iii) <>(-g)t =½(-g)ig•b{Jgab· 

11.7 (§11.5) Show that, if we regard g•b, 9.b, and g•b, re­
spectively, as dynamical variables, then 

. ()ft' G 
(1) --b = R.b, 

<>g" 

(' ') <>It' G - R•b 11-- -- , 
<>gab 

<>.:l' 
(iii) ____<:l_b = (-g)½Gab · 

{Jg• 

What differential constraints do each of these quantities 
satisfy? 

11.8 (§11.5) (i) If fn <P dQ = 0, where O is arbitrary, then 
prove that <P = 0. [Hint: choose an arbitrary point P where 
<P(P) > 0, say, use continuity to show that there is a region 
surrounding P where <P remains positive, deduce that 
f n <P dQ > 0 for a suitable Q and derive a contradiction; then 
complete the proof.] 
(ii) If w• x. = 0, where x. is arbitrary, then show that 
w• = 0. [Hint: take x. 4' (1, 0, 0, 0), etc.] 

11.9 (§11.6) If the Lagrangians L(y, y', x) and [(y, y', x) 
differ by a divergence, i.e. 

_ dQ(y, y', x) 
L=L+----, 

dx 

then show that L and L give rise to the same field equation. 

11.10 (§11.6) (i) Establish the results (11.41) and (11.46). 
(ii) Establish the result (11.36) for the Einstein Lagrangian. 
(iii) Establish the result (11.42) and (11.43). 

11.11 (§11.7) Show that, if 

½otVdgad + ½o~Vdgbd - v,9•b = o 
for an arbitrary connection, then 

(i) V,g•b = 0, 
(ii) V,( -g)t = 0, 

(iii) V ,g•b = 0, 
(iv) V,gab = 0, 

and deduce that the connection is necessarily the metric 
connection. 

11.12 (§11.7) Use the variational principle approach to 
find the field equations of the theory (considered by A. S. 
Eddington) • 

fE = ( - g)½ R•bcd Rabcd· 

11.13 (§11.8) Find the energy-momentum tensor for the 
Lagrangian 

ft'= (-g)½(<f> . .<f>.bg•b + m5</>2), 

where </> = </>( x) is a scalar field. 



 
 
 

12.1 Preview 
Our programme for this chapter is to look: at the three most important 
energy-momentum tensors in general relativity, namely, the energy­
momentum tensors for incoherent matter or dust, a perfect fluid, and the 
electromagnetic field. In passing, we shall encounter a tensor formulation of 
Maxwell's equations governing the electromagnetic field. Again, our treat­
ment will not be exhaustive or complete, but will be sufficient for generating 
the explicit expressions for the three tensors, and these expressions will be 
essentially all that we require in future chapters. We shall also look more 
carefully at the Newtonian limit and discuss the calculation for determining 
the coupling constant. 

12.2 Incoherent matter 
We start by considering the simplest kind of matter field, namely, that of non­
interacting incoherent matter or dust. Such a field may be characterized by 
two quantities, the 4-velocity vector field of flow 

dx0 

u"=­d,' 

where, is the proper time along the world-line of a dust particle (Fig. 12.1), 
and a scalar field 

Po= Po(x) 

describing the proper density of the flow, that is, the density which would be 
measured by an observer moving with the flow (a co-moving observer). The 
simplest second-rank tensor we can construct from these two quantities is 

and this turns out to be the energy-momentum tensor for the matter field. 
Let us investigate this tensor in special relativity in Minkowski coordin­

ates. Then, by Exercise 8.10, the 4-velocity is 

u0 = y(l, u), (12.2) 

Fig. 12.1 The world-lines of dust 
particles. 
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where y = (1 - u2 )-½. The proper time is defined by 

d1: 2 = ds2 

= 'lab dxa dxb 

= dt2 - dx2 - dy2 - dz2 

= dt2 (1 - u2 ) 

= y-2dt2. 

Then the zero- zero component of Tab is 

dx0 dx0 dt 2 
Too _ p _ p _ ,,2p 

- o dt dt - o d1:2 - , o, 

(12.3) 

(12.4) 

by (12.3). This quantity has a simple physical interpretation. First of all, in 
special relativity, the mass of a body in motion is greater than its rest mass by 
a factory, by (4.11). In addition, if we consider a moving three-dimensional 
volume element, then its volume decreases by a factor y through the Lorentz 
contraction. Thus, from the point of view of a fixed as opposed to a co­
moving observer, the density increases by a factor y2. Hence, if a field of 
material of proper density p0 flows past a fixed observer with velocity u, then 
the observer will measure a density 

p = 1'2 Po· (12.5) 

The component T 00 may 'therefore be interpreted as the relativistic energy 
density of the matter field since the only contribution to the energy of the 
field is from the motion of the matter (note that this requires a factor of c2 in 
the definition (12.1) in non-relativistic units). 

The components of Tab can be written, using (12.2) and (12.5), in the form 

[
:x 

Ux Uy 

u. l u2 UxUy UxU, 
Tab= p X (12.6) 

Uy UxUy u2 u,u. y 

Uz UxUz u,u. u2 
% 

We now show that the equations governing the force-free motion of a matter 
field of dust can be written in the following very succinct way: 

Using (12.6), in the case when a= 0, this equation becomes (exercise) 

op o o o at + ox (pux) + oy (puy) + oz (pu,) = o. 

This is precisely the classical equation of continuity 

In classical fluid dynamics, this expresses the conservation of matter with 



density p moving with velocity u. Since matter is the same as energy in 
special relativity, it follows that the conservation of energy equation for dust 
is i\ T 0 b = 0. The equations corresponding to a = ix (ix = 1, 2, 3) are similarly 
found to be (exercise) 

o o o o 
ot (pu) + ox (pu,,u) + oy (pu,u) + oz (pu,u) = 0. 

Combining this with (12.8), the equation can be written as (exercise) 

p [ ~; + (u • V)u] = 0. (12.9) 

Comparing this with the Navier-Stokes equation of motion for a perfect fluid 
in classical fluid dynamics, namely, 

where p is the pressure in the fluid and Xis the body force per unit mass, we 
see that (12.9) is simply this equation in the absence of pressure and external 
forces. 

We have seen that the requirement that the energy-momentum tensor 
has zero divergence in special relativity is equivalent to demanding conser­
vation of energy and conservation of momentum in the matter field- hence 
the name energy-momentum tensor. Moreover, (12.7) is known as the 
energy-momentum conservation law. If we use a non-flat metric in special 
relativity, then (12.7) is replaced by its covariant counterpart 

We now make the transition to general relativity and once again define the 
energy-momentum tensor for incoherent matter by (12.1), and, using the 
principle of minimal gravitational coupling, retain (12.11) as the statement of 
the conservation law. 

12.3 Perfect fluid 
A perfect fluid is characterized by three quantities: ,a ~v~ocity u0 = dx0 /dt; 
a proper density field p0 = p0 (x); and a scalar pressure\field p = p(x). In the 
limit asp vanishes, a perfect fluid reduces to incoherent matter. This suggests 
that we take the energy-momentum tensor for a perfect fluid to be of the form 

(12.12) 

for some symmetric tensor S0 b. The only second-rank tensors which are 
associated with the fluid are u0 ub and the metric g0 h, and so the simplest 
assumption we can make is 

(12.13) 
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where A. and µ are constants. Proceeding as we did in the last section, we 
investigate the conservation law obT"b = 0 in special relativity in Minkowski 
coordinates and demand that it reduces in an appropriate limit to the 
continuity equation (12.11) and the Navier-Stokes equation (12.10) in the 
absence of body forces. This requirement leads to A. = 1 and µ = -1. Then 
(12.12) and (12.13) give 

which we take as the definition for the energy-momentum tensor of a perfect 
fluid. If we use a non-flat metric in special relativity, then we again take the 
covariant form (12.11) for the conservation law. In the full theory, we also 
take (12.14) as the definition of a perfect fluid and (12.11) as the conservation 
equations. 

In addition, p and p are related by an equation of state governing the 
particular sort of perfect fluid under consideration. In general, this is an 
equation of the form p = p(p, T), where T is the absolute temperature. 
However, we shall only be concerned with situations in which Tis effectively 
constant so that the equation of state reduces to 

12.4 Maxwell's equations 
In this section, we wish to reformulate Maxwell's equations for the electro­
magnetic field in tensorial form. We start by rewriting them in special 
relativity in Minkowski coordinates. Working in Heavyside-Lorentz units 
with c = 1, we find that Maxwell's equations in vacuo for the electromagnetic 
field split up into two pairs of equations, namely, the source equations 

and the internal equations 

where E is the electric field, B is the magnetic induction, p is the charge 
density, andj is the current density. In simple physical terms: (12.15) is the 
differential form of Gauss's law relating the flux through a closed surface to 



 
 

the enclosed charge; (12.16) is a generalized Ampere's law relating the 
magnetic field to a flow of current (where the term involving Eis Maxwell's 
displacement current added in part to produce wave equations for E and B); 
(12.17) is the statement that magnetic monopoles do not exist; and (12.18) is 
essentially Faraday's law of induction. The quantities p and j cannot be 
prescribed independently because, differentiating (12.15) with respect tot, we 
get (remembering that o/ot commutes with o/ox, o/oy, and o/oz) 

divoE = op 
ot at' 

and taking the divergence of (12.16) gives 

d. oE d ' . 
- JV&= JVJ. 

Thus, p andj must satisfy the equation of continuity 

Ifwe interpretj as a convection current, i.e.j = pu, where u is the velocity field 
of the material with charge density p, then (12.19) is identical to (12.8), the 
continuity equation of fluid dynamics. 

In order to write these equations in tensorial form, we define an anti­
symmetric tensor Fab, called the electromagnetic field tensor or Maxwell 
tensor, by 

and the current density or source 4-vector r by 

Then (exercise) the source equations and internal equations can be written in 
the form 

The anti-symmetry of Fab means that (12.23) can be written more succinctly 
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as 
OcaFbc] = 0. (12.24) 

The continuity equation (12.19) becomes 

aar = 0. (12.25) 

Let us be clear what we have done so far. We have merely shown that, 
given the definitions (12.20) and (12.21), Maxwell's equations (12.15)-(12.18) 
can be written formally as (12.22) and (12.23). We have treated pab andj° as 
tensors, but the only justification for doing this is knowing their trans­
formation properties under Lorentz transformations. Before the advent of 
special relativity, their transformation properties were in fact unclear. Indeed, 
from one point of view, it was precisely the desire to make Maxwell's 
equations Lorentz-covariant that led to the development of special relativity. 
The approach we shall adopt is to propose (12.20) and (12.21) as an ansatz 
(working hypothesis) and from these definitions work out their trans­
formation properties. The ultimate justification then, as always, lies in 
comparing the predictions with observation and there are a host of ex­
periments which support the ansatz. 

12.5 Potential formulation of 
Maxwell's equations 

Rather than working with the fields E and B directly, it is usually more • 
convenient to work in terms of the potentials. The scalar potential <p and the 
vector potential A are defined by 

iJA 
E= -grad,i.. -­

'I' at' 

B = curl A. 

If we define the 4-potential by 

<Pa= (</J, A), 

then we find that (12.26) and (12.27) ·are equivalent to (exercise) 

(12.26) 

(12.27) 

(12.28) 

The 4-potential is not defined uniquely by this equation since we may 
perform a gauge transformation 

where t/t is an arbitrary scalar field. Although a gauge transformation alters 
the potentials, it leaves F0 b, and hence E and B, unchanged, and these are the 
strictly measurable quantities. 

In solving particular problems, it is often convenient to reduce the gauge 
freedom by imposing a constraint on <Pa, called a gauge condition, which in 
turn simplifies the problem. For example, an important gauge for discussing 
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electromagnetic radiation is provided by the Lorentz gauge 

Applying this constraint to (12.30), we find that the scalar field is no longer 
arbitrary but must be a solution of the wave equation 

Di/J = 1'/ab'P,ab = 0 (12.32) 

where D is the d' Alembertian operator 

□ = a~ - af - a~ - a~. 
The definition (12.29) results in the internal equations (12.23) being auto­
matically satisfied, that is, they become identities (exercise). The source 
equations (12.22) become, in terms of the 4-potential, 

i\[rf°cribd( Bd'f>c - oc<f>d)] = j°. 

In the Lorentz gauge, this reduces to (exercise) 

04>a =j°. 

In source-free regions, j° vanishes, and this becomes 

(12.33) 

(12.34) 

(12.35) 

from which it follows that ¢0 and p•b, and therefore E and B, all satisfy wave 
equations. 

So far, we have restricted our attention to special relativity in Minkowski 
coordinates. To obtain the covariant formulation, we simply replace ordinary 
derivatives by covariant derivatives. However, it is not necessary in equations 
(12.24) abd (12.29) because (exercise) 

and 
(12.36) 

(12.37) 

The covariant formulation of Maxwell's equations in vacuo in special rela­
tivity is 

subject to 

In terms of the 4-potential, we still have 
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Using the principle of minimal gra~itational coupling, we adopt equations 
(12.38) and (12.39) in general relativity, where, however, the metric is no 
longer flat but is a solution of the full field equations Gab = KT°b and Tab is 
the energy-momentum tensor arising from the electromagnetic field - which 
we now seek. 

12.6 The Maxwell energy-momentum tensor 
We shall construct the energy-momentum tensor for the electromagnetic 
field from a variational approach. For simplicity, we shall work in vacuo in 
special relativity in Minkowski coordinates and restrict attention to a source­
free region, i.e. a region where j" vanishes. Consider the Lagrangian for the 
electromagnetic field defined by 

ft' E( </Ja, Fab) = 4~ [ -½ Fabpab + ( </Ja, b - </Jb, 0 )F•b]. (12.42) 

Then 

b.PE _ a.PE -(a.PE) 
b</J. - a¢. a¢ •. b ,b 

. 1 
= 0 - - (F•b - pb•) b 

41t ' 

and the field equations corresponding to a variation with respect to 'Pa 
become 

(12.43) 
Similarly, 

{J,;f'E Oft'E 

bFab oFab 

a 1 
= aF.b 41t [ -½ri''r,df F,4F,1 + 1'/cel'/df(<J>,,d - <l>d,c)F,,] 

1 = _ [-l.n••nbf F _ l..,ca.,db F + .,candb(,I, _ ,1, )] 41t 2•t 'I ef 2'1 'I c, 'I 'I 'l'c,d 'l'd,c 

and the field equations corresponding to a variation with respect to Fab 
become 

(12.44) 

This last equation defines F.b in terms of the 4-potential and reveals that F.b is 
anti-symmetric. The definition also means that the internal equations are 
satisfied automatically and (12.43) reduces to 

p•b,b = Q, 

namely, the source equations (in source-free regions). The result (12.44) also 
allows us to re-express the Lagrangian as 

ff _ l ac bdp · F 
E - 81t I'/ I'/ ab cd• (12.45) 
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We now make the transition to the full theory and assume that 

together with the definition (12.44) of Fabin terms of 'Pa· The factor (-g)t is 
included to ensure that .PE is a scalar density (note that it reduces to 1 in 
special relativity in Minkowski coordinates). Then we find (exercise) 

a.PE - (-g)t( cdp F .1 F pcd) 
!> ab - - -4- -g ac bd + 4 gab cd • . ug 1t 

The analogue of (11.51) for the contravariant metric is 

{J.fl'E - - - t [,gab - ( g) T.b • 

(12.47) 

(12.48) 

These last two equations lead to the definition of the Maxwell energy­
momentum tensor T.b in source-free regions 

Then, in relativistic units, K = 81t, and the full field equations in source-free 
regions are called the Einstein-Maxwell equations and become 

Let us look at some of the components of T.b in special relativity in 
Minkowski coordinates. In particular, we find that the energy density of the 
electromagnetic field is given by 

1 2 2 T00 = Sit (E + B ), (12.51) 

which agrees with the usual expression for energy density in electrodynamics. 
Again, the momentum density is 

1 
(To 1 ,T02 ,To3 )= - 41tExB, (12.52) 

where the vector E x B is the Poynting vector of electrodynamics and 
represents the momentum density of the electromagnetic field. In addition 
it is straightforward to verify that Maxwell's equations imply that Tab is 
divergenceless, i.e. 

(12.53) 

12. 7 Other energy-momentum tensors 
We have met two methods for obtaining energy-momentum tensors. The first 
is an ad hoc method which constructs likely looking tensors out of the matter 
and energy fields present and investigates the conservation equations (12.7) in 
the non-relativistic limit. The second method proceeds from a variational 
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principle formulation and investigates the field equations arising from a 
proposed Lagrangian. We can construct energy- momentum tensors for other 
fields or combination of fields using either approach or a combination of 
them. In particular, we can combine non-interacting fields by superimposing 
them. For interacting fields, we have to take the interactions into account. 

We illustrate this with one example of each procedure. The energy­
momentum tensor for a field of charged matter of proper mass density p0 and 
4-velocity u0 is (see (12.1) and (12.49)) 

(12.54) 

The conservation equations then express the conservation of energy and the 
equations of motion for the field. The Lagrangian for an elementary particle 
described by a scalar field </>(x), for example the 1t0 -meson, is given by 

2. = (-g)½(gab<P;a<P;b + mo2</>2), (12.55) 

where m0 is the rest mass of the particle. The energy-momentum tensor is 
defined by (12.48) and again the conservation equations express the conserva­
tion of energy and the equations of motion of the field. 

12.8 The dominant energy condition 
In general, the components of any tensor in a particular coordinate system do 
not have an invariant meaning. However, ifwe choose an invariantly defined 
frame and look at the frame components of the tensor, then these will have 
physical significance. In the case of the energy- momentum tensor T,,b, we 
choose a frame at a point by looking for solutions of the eigenvalue equation 

T. bua = A.Uh, 

where u0 is the eigenvector corresponding to the eigenvalue ;._ This has 
characteristic equation 

IT.b - Jo/I= o. 
If this equation has real non-zero roots, then the corresponding eigenvectors 
can be normalized to form a frame ei° of one timelike and three spacelike 
vectors. The frame components of T.b are 

Tii = T,,bef°el = diag(µ, P1, P2, p3), 

since the matrix is diagonal with the eigenvalues as elements. The eigenvalue 
µ is called the energy density and u0 = e0° is the 4-velocity of the medium. 
The eigenvalues P« (ex = 1, 2, 3) are called the principal stresses, and the 
corresponding eigenvectors ea0 the principal axes of stress. An energy­
momentum tensor will only represent a physically realistic matter field if the 
energy density is non-negative and dominates any stresses present. More 
precisely, all known matter fields satisfy the dominant energy condition of 
Hawking and Ellis: 

The latter condition can be shown to be equivalent to requiring that the local 
speed of sound is not greater than the local speed of light. 



 
 

If, in particular, the three principal stresses are positive and equal, to p say, 
then setting µ = p0 the energy-momentum tensor takes the form of a perfect 
fluid (12.14). If the three principal stresses vanish, then the energy­
momentum tensor takes the form of dust (12.1). 

12.9 The Newtonian limit 
In this section, we consider more precisely the Newtonian limit of a slowly 
varying weak gravitational field. We shall work in non-relativistic units. In 
the Newtonian limit, we assume that there exists a privileged coordinate 
system 

(x0 ) = (x0 , x1, x 2, x3 ) = (x0, x«) = (ct, x, y, z) 

in which the metric g0b differs only slightly from the Minkowski metric 'lab· 
Moreover, we assume that the field is produced by bodies whose velocities 
are small compared with the velocity of light. If v is a typical velocity of the 
bodies, then we let e denote a small dimensionless parameter of order v/c and 
our basic assumption is 

where throughout we shall work to lowest order in e. In time &, a body moves 
a distance /'Jx« with velocity v, i.e. 

ox«~ velocity x time ~ vbt ~ (v/c)cbt ~ eox0 , 

and so 

s/Jx« ~ 1/ox0 . 

Then, for any functiopf. we assume the slow-motion approximation 

that is, derivatives with respect to x0 are of order e times the spatial 
derivatives. The conditions (12.57) and (12.58) are the starting assumptions 
for obtaining the Newtonian limit. 

We consider the motion of a free test particle moving with a speed of the 
order of v on a world-line x• = x0(,) parametrized by the proper time. It 
travels on a timelike geodesic 

By definition, 

d2 x• dxb dxc 
d,2 + ric dt ch = 0. 

c2dr 2 = ds2 

= c2 dt2 - dx2 - dy2 - dz2 

= dt2 (c2 - v2 ) 

= c2 dt 2 (1 - s2 ), 

(12.59) 
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and so, taking square roots, 

(12.60) l 
Hence, working to lowest order in e, we can replace r by t in (12.59). 
Moreover, from our slow-motion approximation, 

dxa ~ ecdt, 
so that 

In addition 

dxa 
-d = O(e). 
C t 

(12.61) _ 
~ 
1 
-si 

r~ = tg•d(0c9bd + 0b9cd - 0d9bc) 

= t,,,•de(ochbd + obhcd - odhbc) + O(e2), 
so that 

(12.62) j 
1 

I'i,c = O(e). 
-;j 

(12.63) ~ 

Since we are interested in the Newtonian limit, we restrict our attention to the 
spatial part of (12.59), i.e. when a= rt, and we obtain, by using (12.60) and 
dividing by c2, 

1 d2 x• (dxll) (dxll) (dxY) 
= c2 dt2 + I'~o + 2I'~p cdt + I"iir cdt cdt + O(e2). 

From (12.61) and (12.63), the third and fourth terms in this equation are O(e2) 

and O(e3), respectively. From (12.62), the second term is 

-' :~ 

l 
by the slow motion approximation (12.58). So the spatial part of the geodesic j 
equation can be written j 

dd2 
~• = - ½c2 0f 0: [1 + O(e)] (12.64) 1 
t ux 1 

using (12.57). We compare this with the corresponding Newtonian equation j -, 
(10.4), namely, : 

d2 x" ocp 
dt2 - ox•' 

where </> is the Newtonian gravitational potential. Noting that, at large 
distances from the sources of the field, </> -+ 0 and g00 -+ 1, we conclude 

This is called the weak-field limit. 
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Let us consider the effect of an infinitesimal coordinate transformation 

x• ➔ x'" = x• + eX"(x) 

which is consistent with the two assumptions (12.57) and (12.58). Then, as in 
Exercise 11.1, we find 

where 
X. = 'labXb. 

To preserve (12.58), we require 

ax. ax. 
-~e­axo • ox•' 

(12.66) 

which means from (12.66) that g 00 is the only component of gab that does not 
alter to first order in e. We have therefore shown that the only component of 
the metric tensor which is well defined to first order for a slowly varying weak 
gravitational field is determined to this order by the requirement that the 
theory should agree with Newtonian theory to this order, and it is given by 
(12.65). Note that no mention of the field equations has been made in deriving 
(12.65). It arises purely from assuming geodesic motion and the Newtonian 
limit as embodied in the equations -(12.57) and (12.58). 

12.10 The coupling constant 
In Chapter 20, we shall see that the assumption (12.57) leads to the full field 
equations (20.28), which we write 

(12.67) 

Contracting with 'lab and applying the slow-motion approximation (12.58), 
we find (exercise) 

(12.68) 

Let us take, as the source of the field, a distribution of dust of small proper 
density Po moving at low velocity of order v. This assumption means that we 
neglect terms both of order v/c and p0 v/c, and then by (12.6) in non­
relativistic units, the energy-momentum tensor reduces in our privileged 
coordinate system to 

(12.69) 
which in turn implies 

T.b = c2 po0~6~ and '1cd1'.:d = C2Po • (12.70) 

The zero-zero component of the field equations (12.68) then becomes 

eV2 h00 = Kp0 + O(e2 ). (12.71) 
But, by (12.57), 

so that 

and, by (12.65), 

2 2 (2</>) V g00 = V 2 + O(e). 
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Substituting these results in (12.71), we get 

V2 </> = ½c4 Kp + O(e). 

Comparing this with Poisson's equation (4.5), namely, 

V2 </> = 41tGp0 , 

we obtain the result (10.44), namely, 

Thus, as promised, we have used the correspondence principle with 
Newtonian theory to obtain the coupling constant K appearing in the full 
field equations (10.43). 

Exercises 

12.1 (§12.2) Establish (12.6) from (12.1). Show that (12.7) 
leads to (12.8) and (12.9). 

12.2 (§12.3) Show that the conservation equations for a 
perfect fluid lead to the equation of continuity and the 
equation of motion. 

12.3 (§12.4) 
(i) Show that Maxwell's equations can be written in the 

form (12.22) and (12.23), given the definitions (12.20) and 
(12.21). 

(ii) Show that the internal equations can be written in the 
form ( 12.24 ). 

(iii) Show that the continuity equation can be written in the 
form (12.25). Show directly from (12.22) that this equa­
tion is an identity. 

12.4 (§12.4) Find the transformation properties of E, B, p, 

andj under a boost in the x-direction. [Hint: consider pb 

and j 0 .] 

12.5 (§12.5) 
(i) Show that (12.29) is equivalent to (12.26) and (12.27). 

(ii) Show that F ab is invariant under a gauge trans­
formation. 

(iii) Show that if Fab is defined in terms of a 4-potential then 
the internal equations are automatically satisfied. 

12.6 (§12.5) Show that, in an appropriate gauge, Maxwell's 
equations reduce to □ ,t,• = j" in regions where the source 
4-vector is non-zero. What remaining gauge freedom is left? 
Deduce that E and B satisfy the wave equation in source-free 
regions. 

12.7 (§12.5) Check (12.36) and (12.37). 

12.8 (§12.6) 
(i) Establish (12.47) and (12.49). 

(ii) Confirm (12.51) and (12.52). 
(iii) Investigate the conservation equation~ (12.53). 

12.9 (§12.7) Investigate the conservation equations for the 
energy-momentum tensor arising from (12.55). 

12.10 (§12.9) Write out the argument fully which deduces 
(12.65) from (12.64). 

12.11 (§12.9) Check (12.66). Deduce that g00 is the only 
component not to alter to order E. 

12.12 (§12.10) Derive (12.68) from (12.67) and deduce 

(12.71). 



 
 
 

13.1 Interpretation of the field equations 
Before attempting to solve the field equations we shall consider some of their 
important physical and mathematical properties in this chapter. The full field 
equations (in relativistic units) are 

(13.1) 

They can be viewed in three different ways. 

1. The field equations are differential equations for determining the metric 
tensor gab from a given energy-momentum tensor Tab• Here, we are reading 
the equations from right to left. This is a Machian way of viewing the 
equations since one specifies a matter distribution and then solves the 
equations to ascertain the resulting geometry. It is also a natural way of 
looking at the Einstein- Maxwell equations, namely, what geometry corres­
ponds to a given Maxwell tensor? The most important case of the equations 
is when T0 b = 0, in which case we are concerned with finding vacuum 
solutions. 

2. The field equations are equations from which the energy-momentum 
tensor can be read off corresponding to a given metric tensor gab· Here, we 
are reading the equations from left to right. It was originally thought that this 
would be a productive way of determining energy-momentum tensors. We 
simply choose arbitrarily ten functions of the coordinates, namely, the 
symmetric gab, and then we can compute Gab and read off T.b from (13.1). 
However, this rarely turns out to be very useful in practice because the 
resulting T.b are usually physically unrealistic and violate the dominant 
energy conditions. In particular, it frequently turns out that the energy 
density goes negative in some region, which we reject as unphysical because 
the positive character of energy density dominates gravitation theory. 

3. The field equations consist often equations connecting twenty quantit­
ies, namely, the ten components of g 0 b and the ten components of T.b - Hence, 
from this point of view, the field equations are to be viewed as constraints on 
the simultaneous choice of gab and T.b- This approach is used when one can 
partly specify the geometry and the energy- momentum tensor from physical 
considerations and then the equations are used to try and determine both 
quantities completely. 
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13.2. Determinacy, non-linearity, 
and differentiability 

Let us consider solving the vacuum field equations 

(13.2) 

for llab· Then, at first sight, the problem seems well posed: there are ten 
equations for the ten unknowns llab· However, the equations are not inde­
pendent but are connected by four differential constraints through the 
contracted Bianchi identities 

(13.3) 

So we seem to have a problem of under-determinacy, since there are fewer 
equations than unknowns. However, we cannot expect complete determinacy 
for any set llab, since they can be transformed with fourfold freedom by a 
coordinate transformation 

x• ➔ x'• = x'•(x) (a = 0, 1, 2, 3). 

We can in fact use this coordinate freedom to impose four conditions on 
the llab · These are known as coordinate conditions or gauge conditions. For 
example, we could introduce Gaussian or normal coordinates in which 

lloo ~ 1, (13.4) 

Then the remaining six unknowns g.p can be determined by the six independ­
ent equations in (13.2). However, there is rather more to the story, but we 
postpone its consideration until §13.5. Similar remarks apply to the full 
theory. 

The field equations are very difficult to handle because they are non-linear. 
They do not therefore possess a principle of superposition, that is to say, if 
you have two solutions of the field equations then you cannot add them 
together to obtain a third. Put another way, it means that you cannot analyse 
a complicated physical problem by breaking it up into simpler constituent 
parts. The non-linearity reveals itself physically in the following way: the 
gravitational field produced by some source contains energy and hence, by 
special relativity, mass, and this mass in turn is itself a source of a gravita­
tional field; that is to say, the gravitational field is coupled to itself. This non­
linearity means that the equations are very difficult to solve in general. 
Indeed, originally Einstein anticipated that one would never be able to find 
an exact solution of them. It came as something of a surprise when 
K. Schwarzschild found an exact solution in less than a year- from the 
publication of the theory in 1915. However, Schwarzschild's solution arises 
by making a symmetry assumption, indeed the simplest assumption of all, 
namely, spherical symmetry. Today there are a large number of solutions in 
existence, probably in excess of four figures (depending on how you count 
them). Nearly all of them have been obtained by imposing symmetry condi­
tions. It is known that non-linear partial differential equations admit large 
classes of solutions, many of which are unphysical. It could well be that a 
large number of the exact solutions are, because of the symmetry assump­
tions, also unphysical and not in any sense 'close' to a physically meaningful 
solution, but rather pathologies thrown up by the particular set of partial 
differential equations. This is still largely an open question. 



 
 
 

Ideally, one wants to know what the theory says about physically import­
ant situations. In cases where symmetry is absent, or where the symmetry 
conditions are not strong enough to determine a solution, then recourse has 
to be made to approximation methods. We met such a method in the 
Newtonian limit of the last chapter. These approximation methods are based 
on the weakness of the gravitational fields which are most often encountered 
in nature, or on asymptotic methods applied to isolated sources, so that again 
the fields are weak a long way from the sources. The weakness means, from a 
mathematical viewpoint, that the linear terms in certain equations are more 
important than the rest. We shall meet a linearized form of the field equations 
in Chapter 20. 

There are important mathematical questions concerning the differenti­
ability of the solution. However, we shall not take them into account since we 
will assume that all our fields are smooth or C 00 , so that they can be 
differentiated indefinitely. This condition can be weakened considerably, for 
example if we assume that the metric is C2, which means that it can 
be differentiated twice, then this ensures that the field equations can be 
constructed. There are other conditions affecting the differentiability which 
are connected with surfaces of discontinuities that arise in the theory, for 
example the surface of a material body. One important set of conditions 
(analogous to the continuity conditions of potential theory) are the Lichnero­
wicz conditions: second and higher derivatives of 9ab need not be continuous 
across a surface of discontinuity S, but 9ab and 9ab,c must be continuous 
across S. 

13.3 The cosmological term 
Einstein was rather sceptical about the full field equations (13.1) and regarded 
the vacuum field equations (13.2) as more fundamental. However, Einstein 
considered that even these equations were deficient in that they violated 
Mach's principle in the form M2, since they admit Minkowski space-time as a 
solution. This means that a test body in an otherwise empty universe would 
possess inertial properties (as all bodies do in special relativity) even though 
there is no matter to produce the inertia. As we pointed out before, a set of 
partial differential equations possesses large classes of solutions many of 
which are unphysical. In order to decide which solutions are realized in 
nature, one must also prescribe boundary conditions. A natural requirement 
would be to take space-time to be asymptotically flat so that the Riemann 
tensor vanishes at spatial infinity. However, this requirement does not 
preclude a flat space solution of the vacuum field equations. 

Einstein, realizing the need for prescribing appropriate boundary condi­
tions, adopted a different approach. Cosmology, that is, the modelling of the 
universe, had not really emerged as a separate science prior to general 
relativity. In as much as there was some generally accepted model of the 
universe in existence then, it was rather an imprecise one. It suggested that, 
overall, the universe is static (i.e. not undergoing any large-scale motion) and 
homogeneous (i.e. filled uniformly with matter). There are two possible ideas 
about the spatial extent of the universe, either it is open (or infinite), in which 
case it goes on forever in spatial directions, or it is closed (compact or finite), 
in which case it is bounded in spatial directions. Einstein therefore tried to 
incorporate a simple model of the universe into the theory and then use this 
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model to prescribe boundary conditions. In particular, he tried to find a static 
closed solution of the field equations corresponding to a universe uniformly 
filled with matter. In so doing, he found he was forced to modify the field 
equations by introducing an extra term, the cosmological term Ag.b, where A 
is a constant called the cosmological constant, so that they become (with our 
sign conventions) 

Since 
"i;\gab = 0, 

we see that (13.5) is consistent with the requirement 

Vb Tab= 0. 

Using the results of §11.3, the corresponding Lagrangian becomes 

.If'= (-g)½(R - 2A) + .If'M 

(13.6) 

(13.7) 

Indeed, if, quite generally, we demand that the gravitational field equations 
should 

(1) be generally covariant, 

(2) be of second differential order in gab• 

(3) involve the energy-momentum tensor T.b linearly, 

then it can be shown that the only equation which meets all of these 
requirements is 

(13.8) 

where µ, A, and ,c are constants. The demand that T.b satisfies the conserva­
tion equations (13.6) then leads toµ= -½. In fact, it was in the same year as 
Einstein proposed his equations that the great mathematician Hilbert derived 
them independently from a variational principle. Of course, they lacked the 
physical meaningfulness which Einstein had bestowed on them, especially 
through their reliance on the principle of equivalence. 

The full field equations with the cosmological term are Machian in the 
sense that they no longer admit flat space as a solution. However, shortly 
after Einstein obtained the static cosmological solution, it was discovered 
that the universe is not in fact static, but rather is undergoing large-scale 
expansion, as evidenced by the galactic red shift. Einstein therefore discarded 
the static solution. At the same time non-static closed solutions of the field 
equations without the cosmological term, corresponding to an expanding 
distribution of matter, were found. Worse still, from the Machian viewpoint, 
de Sitter discovered a vacuum solution of the field equations with the 
cosmological term. These discoveries Jed Einstein to reject the cosmological 
term. He did so with some vehemence, describing his original decision to 
include it as ' ... the biggest mistake I ever made'. However, despite the fact 
that its inclusion does not make the theory any more Machian, there is no 
a priori reason to leave it out. The constant A is assumed to be 'very small' in 
some sense and only of significance on a cosmological scale (or, somewhat 
bizarrely, on a quantum scale). Most treatments of cosmology include the 
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term, but it is usually omitted for considerations connected with terrestrial or 
solar system phenomena and, indeed, we shall neglect it until we come to 
relativistic cosmology. It is worth noting that it is possible to incorporate a 
number of ad hoc assumptions into Newtonian theory and obtain a cosmo­
logical theory which has much in common with relativistic cosmology (see 
§22.3). In the Newtonian model, if A > 0, then all matter experiences a 
'cosmic repulsion', which tends to disperse the matter to spatial infinity. 
Conversely, A < 0 corresponds to a cosmic attraction. Since all matter 
experiences the force, it provides, in some sense, a realization of a long-range 
Machian-type interaction. 

13.4 The conservation equations 
We have suggested an axiomatic formulation of general relativity which 
replaces R0 bc4 = 0 by Gab = 81tT,,b in Axiom l(iii) of §8.5. However, it turns out 
that, rather surprisingly, the geodesic Axioms II(ii) and II(iii) need not be 
stated separately in general relativity because it can be shown that they must 
hold automatically by virtue of the field equations themselves. That this is 
possible can be made plausible by considering more carefully the motion of a 
test particle or photon in a gravitational field. Strictly speaking, the test 
particle or photon is itself part of the energy and matter present and so should 
be contained in the energy-momentum tensor. This tensor, in turn, being the 
source term in the field equations, determines the geometry of space-time and 
in particular its geodesic structure. In this sense, the motion of a test particle 
should somehow be contained in the field equations. In fact, it is coded into 
the Bianchi identities since they lead to the requirement that 

(13.9) 

namely, the conservation equations. It is possible to show that these equa­
tions specify unique equations of motion for a point particle in a gravitational 
field and that the ensuing trajectory of that particle is a geodesic of the 
corresponding metric. The original demonstration of this result was started 
by Einstein and Grommer, and developed further by Einstein with contribu­
tions from Infeld, Plebanski, and Fock. It rests on treating test particles as 
singularities in the field and, as a consequence, relies on special mathematical 
apparatus which they had to construct to cope adequately with these 
singularities. The resulting work is both very complicated and voluminous 
and we will make no attempt to describe it. Indeed, not all of the work was 
fully published. However, the results have been confirmed subsequently by 
several workers using more powerful mathematical machinery. 

There is one neat little calculation which is very suggestive of what happens 
in essence in the general case. It consists of investigating the equations for a 
distribution of dust, 

Then the conservation equations (13.9) require 

~\[pouaub] = 0. 

The trick is to think of the term in square brackets as being the product 
[(p0ub}u0 ] and apply the Leibniz rule to this product: 

(13.10) 
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Fig. 13.1 The initial data fo.r the Cauchy 
IVP. 

We next contract this equation with ua and use the result 

U6 U0 = 1 = u0 ('\\u") = 0, 

which makes the second term vanish, leaving 

Vb(PoUb) = 0. 

Substituting this result back in (13.10) and dividing by p0 -:/a 0, we get 

ubVbu• = 0, 

which is the condition for u• to be tangent to a geodesic. In other words, the 
conservation equations necessitate geodesic motion for the dust particles. 

13.5 The Cauchy problem 
In this section, we look in some detail at the following mathematical problem. 

This is the problem of finding the causal development of a physical system 
from initial data and is a fundamental problem in the theory of partial 
differential equations. It is known as the Cauchy problem or initial value 
problem, or IVP for short. 

We start with a three-dimensional spacelike hypersurface Sin the mani­
fold, which we can take without loss of generality to be given by x0 = 0. We 
specify 9ab and its first derivatives 9ab,c on S (Fig. 13.1). However, ifwe know 
9ab everywhere on S, then we know its spacelike derivatives 9ab,a everywhere 
in S. Hence, it is sufficient to specify the following initial data on S: 

that is, the metric potentials and their time derivatives. Our problem is then 
to use the second-order vacuum field equations, which we take in the form 
Rab= 0, to try and/ solve for the second time derivatives 9ab, 00 . Let us 
suppose that we have found some equations for determining 9ab, 00 . Then, by 
repeatedly differentiating these equations with respect to time, we can get all 
higher time derivatives of 9ab • It follows that, if we assume that g.b is an 
analytic function of x0 , we can develop it in a power series in x0 . More 
precisely, if P and Qare the points (0, Xo) and (x0, Xo), so that Q lies on the 

{ 
fiab 

Prescribe 
fiab, O 



 
 

x0-curve passing through P (Fig. 13.2), then, by Taylor's theorem, 

g.b(Q) = g.b(P) + gab,o(P)x0 + I -!, oigablp(x 0 )". 
n=2 n. 

(13.11) 

A straightforward calculation (exercise) reveals that the field equations can 
be written in the following form: 

Roo = -½g"11 g.p,oo + Moo= 0, 

Ro.=½g 011 g.p,oo + Mo.=0, 

R.11 = - ½goog.11,00 + M.p = 0, 

(13.12) 

(13.13) 

(13.14) 

where the terms involving M can be expressed solely in terms of the initial 
data on S. This gives rise to two problems of determination: 

1. The system (13.12)-(13.14) does npt contain g00, 00 ; hence we have a 
problem of under-determination. • 

2. The system (13.12)-(13.14) represents ten equations in the six unknowns 
g.11 , 00 ; hence we have a problem of over-determination. This means that 
there must be compatibility requirements for the initial data on S. 

We have met Problem 1 before, and it is not unexpected since it relates to 
the fourfold freedom of coordinate transformations. Let us exploit this 
coordinate freedom and carry out a coordinate transformation which leaves 
gab and gab, 0 unchanged on S but which makes 

Consider the transformation 

x•-+ x'• = x• + ¼(x0 ) 3 C"(x). , (13.16) 

Then the hypersurface x0 = 0 gets mapped to x'0 = 0 (check). Moreover, 
on S, 

(ox'•) = 
" b 0, ux ,c 

(ox'•) = • 
" o C' uX , 00 

(ox'•) 
ox• , 00 = 0. (13.17) 

Using 
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Fig. 13.2 Determining the metric at a 
later time x0 . 
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we find on S (exercise) 

gab = g~b• 

gab,c = g~b,c, 

gab,oa = g~b,aa, 

goo. oo = goo. oo + 2goaC0 = goo. oo + 2goaC", 

goa, 00 = goa, 00 + g~. ca = goa, 00 + g.,. c·, 

gap, 00 = g~/1. 00 • 

Then choosing c• such that 

goo,oo = 2go.C" and goa,oo = g.,.c•, 

(13.18) 

which is always possible because det(g.b) #- 0 and so these equations can be 
viewed as four independent equations for four unknowns, our result (13.15) 
follows. The conditions (13.15) are known as normalization conditions and 
overcome Problem 1. 

Turning to Problem 2, then, as long as g00 #- 0, we can consider the 
equations (13.14) as serving to determine the six unknowns gap, 00 . We call 
these the evolution, dynamical, or main equations. Then the remaining four 
equations, namely, 

Roo =Roa= 0, 

will act as constraints on the initial data. To see this more clearly, we get, 
from (1112) and (13.14), 

goo Roo - ga/J Ra/J = goo Moo - gafl M afl = 0, 

and, from (13.13) and (13.14), 

(13.19) 

goo Roa+ g0/1 Ra/J = goo Moa + gO/J Ma/I= 0. (13.20) 

It should be immediate from these last two equations that if the evolution 
equations Rap = 0 are satisfied then the remaining equations only involve the 
initial data. It proves more convenient to write these constraints in terms of 
the mixed Einstein tensor G/. A simple calculation reveals (exercise) 

G o _ 1.(goo M _ gal M ) 
0 - 2 00 afJ, 

G/ = goo Moa + g0/1 Map, 

(13.21) 

(13.22) 

which are equivalent to (13.19) and (13.20). Then, following Lichnerowicz, we 
may write the vacuum field equations in the normal form 

where the first six equations are evolution equations for gap, 00 and the last 
four equations are constraints equations which the initial data must satisfy 
on S. This resolves Problem 2. 

We now prove a remarkable result 



 

To show this, we assume that the evolution equations hold and then we ,can 
write the mixed Einstein tensor in terms of the Ricci components R00 and 
Roa, i.e. 

Goo= ½goo Roo, 

Gao= goo Roa, 
(13.23) 

Go a = go« Roo + gaP Rop, 

G / = g0P Roa - ½o~(g00 Roo + 2g0Y Roy). 

By (13.19)-(13.22), the equations Ga0 = 0 are equivalent to Roa= 0 if the 
evolution equations hold. It follows that G / depends linearly on Ga° with 
coefficients involving the metric tensor. It is then straightforward to show 
(exercise) that the identities 

VbG/=VoGa 0 +VaGaa=o 

can be written in the form 

(13.24) 

(13.25) 

where cb«a and Db a depend only on the metric tensor and its first derivatives. 
Then (13.25) form a system of four first-order partial differential equations for 
the time derivatives of G. 0 • This system is in so-called normal form and 
therefore possesses a unique solution. Indeed, since [ Ga 0 ] 5 = 0, it follows 
that G. 0 = 0 everywhere, which is the promised result. 

Let us summarize our results. We prescribe initial data g.b and gab,o on S 
subject to the constraints [G. 0 ] 5 = 0. We next prescribe the four compon­
ents g00 quite arbitrarily in space and time apart from the requirement that 
they match the initial data on S and satisfy the normalization conditions 
[g 00, 00 ] 5 = 0. Then, assuming g00 # 0, we find that the evolution equations 

gap,oo = 2(goo)-1 Map 

determine gap, 00 on S. By repeated differentiation of this equation, we can 
find all higher time derivatives of g«P on S, and so we can develop g«/J in a 
Taylor series in x0 . This determines g«/J everywhere, and, together with the 
prescribed g00 , we have determined a vacuum metric gab· 

This procedure relies on the assumption that our solution is analytic in x0 . 

This assumption is unnatural because Einstein's equations are of hyperbolic 
type and do not require analytic solutions. The proof of existence and 
uniqueness of the Einstein equations for finite development in time under 
certain simple differentiability hypotheses has been given by Choquet­
Bruhat. The questions of existence, uniqueness, and stability (i.e. do 'small' 
variations of the initial data result in 'small' variations in the solution?), and 
the extent to which solutions can be developed in general relativity, are deep 
and complex questions, and are the topics of current research. 

13.6 The hole problem 
We have, in fact, been somewhat imprecise in setting up the Cauchy problem 
and in so doing we have covered up something which had originally caused 
Einstein considerable difficulty. We defined the Cauchy problem as starting 
with a manifold with no metric on it (a so-called 'bare' manifold), prescribing 
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Matter distribution 
known 

Fig. 13.3 The hole problem. 

initial data on a hypersurface in the manifold, and then using the field 
equations to generate a unique solution for the metric g. However, as we 
know from the principle of general covariance, we may then apply a coordin­
ate transformation tog and so obtain another solution g, say. How are the 
solutions g and g related physically? 

This question had troubled Einstein and was one of the reasons why, even 
though the principle of general covariance was formulated in 1907, another 
eight years were to elapse before the field equations were finally obtained. 
Einstein raised the question in the form of the 'hole problem'. Suppose that 
the matter distribution is known everywhere outside of some hole H in the 
manifold. Then the field equations together with the boundary conditions 
will enable the metric g to be determined inside H and, in particular, at some 
point P, say. Now carry out a coordinate transformation which leaves 
everything outside H fixed, but which (from the active viewpoint) moves 
points around inside H, for example moving P to P', say (Fig. 13.3). Next, 
determine afresh the metric gin H. Is g the same as g? The answer is that, 
although g will in general be functionally different from g (i.e. the components 
of g will involve different functions of its coordinates compared with g), it will 
still represent the same physical solution. How can this be so if the points 
inside H have moved? The nub of the argument is that the point Pin the bare 
manifold is not distinguished from any other point. It does not become a 
point with physical meaning (that is, an event) until a metric is determined in 
H. As John Stachel puts it so succinctly, 'no metric, no nothing'. Thus, a 
physical solution, that is, a space-time, consists of a manifold together with a 
metric. Two space-times are physically equivalent, in other words, give rise to 
the same gravitational field, if the two metrics can be transformed into each 
other. Mathematically, we should regard physical solutions as equivalence 
classes of space-times possessing metrics which are related by coordinate 
transformations. 

13. 7 The equivalence problem 
The question which then arises is, Given two metrics, g and g, are they in fact 
the same, that is, does there exist a coordinate transformation transforming 
one into the other? This is a classic problem in differential geometry, known 
as the equivalence problem, and its classic solution by E. Cartan involves 
computation and comparison of the 10th covariant derivatives of the 
Riemann tensors of g and g. 

As one discovers in working out the Riemann tensor, even for something as 
simple as the Schwarzschild solution (see Exercise 6.31), it is a non-trivial 
task. It is all too easy to make slips in a long hand calculation. In fact, this 
task of undertaking large amounts of algebraic calculation has been made 
much more tractable and less error-prone with the advent of general 
purpose computer algebra systems, the best known of which include REDUCE, 
MACSYMA, and MAPLE. The system most used in general relativity (for which 
it was specifically designed) is the system SHEEP, together with its extensions 
CLASS! (for classifying metrics) and STENSOR (for symbolic tensor manipula­
tion). These systems make possible computations which would have been 
impossible to contemplate undertaking by hand. Even so, they are not 
capable currently of computing anything like 10th covariant derivatives of 
Riemann tensors and so appear to be of little use in the equivalence problem. 



 
 
 

The situation has been improved profoundly by the work of A. Karlhede. 
We will not pursue the details, but in broad outline the Karlhede approach is 
to classify a geometry by introducing a frame or tetrad, which is defined in 
stages, such that the Riemann tensor and its covariant derivatives take on a 
simple or rather canonical form at each stage. This is a well-defined proced­
ure leading to a set of invariant quantities characterizing a given geometry. 
With this approach, the worst case theoretically involves computing the 7th 
covariant derivative. However, experience in using the algorithm suggests 
that one may never need go beyond the third derivative and often the first 
derivative is enough. This makes computer calculation a viable proposition. 
Thus, given two metrics, one first computes their invariant classification. If 
the two sets are different, then so are the metrics. If they are the same, then 
there may be a transformation relating them. The problem is then reduced to 
solving a set of four algebraic equations to determine the transformation. In 
general this is non-algorithmic, but in practice it is often manageable. 

As a direct consequence of this advance, a project is currently underway to 
construct a computer database of exact solutions of the Einstein equations, 
fully classified and documented. The long-term goal is to put all known 
solutions in the database. Then any possibly new solutions which are 
discovered can be checked against the database, which can be updated 
accordingly. Not only would this provide a valuable resource to the research 
community, but it would also prevent the reporting of already-known 
solutions. Examples of this are well known: indeed, the Schwarzschild 
solution itself has apparently been 'discovered' in the literature on some 20 
different occasions! 

Exercises 
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c. =Ju., 13.1 (§13.3) Show that the Lagrangian (13.7) gives rise to 
the full field equations with cosmological term (13.5). 

n.b = ½(Vb Ca - v.cb)-
13.2 (§13.3) Show that if (13.8) is to be consistent with 
(13.6) then µ = - ½-
13.3 (§13.3) Show that the trace of the Maxwell energy­
momentum tensor is zero. If A = 0, then what value of µ 
ensures that both sides of (13.8) are trace-free? Hence, 
propose an alternative Einstein-Maxwell theory. 

13.4 (§13.3) Show that flat space is not a solution of (13.5). 
13.5 (§13.4) 
(i) Show that the conservation equations for a perfect fluid 

lead to 

(Po+ p)u"V.ub + (u•ub - g"b)V.p = 0. 

(ii) We suppose that Po = p0 (p) and define the following 
quantities: 

(f dp ) /=exp --- , 
P + Po(P) 

Deduce that c·n.b = 0. 

13.6 (§13.5) If g.b is known everywhere on S, then establish 
that g.b.• is known everywhere on S. 

13.7 (§13.5) Establish the equations (13.12), (13.13), and 
(13.14). 

13.8 (§13.5) Check the results (13.17) and (13.18). 

13.9 (§13.5) Derive (13.21) and (13.22). [Hint: use the de­
vice of breaking up all Latin indices into their zero and 
Greek constituents, e.g. g0• R

0
• = g00 R00 + g 0

• R0., etc.] 
13.10 (§13.5) 

(i) Establish (13.23). 
(ii) Confirm (13.25). 

(iii) Assume that G. 0 is an analytic function of x0 and use 
the result (13.25) to develop it in a formal power series in 
x 0

. Show that if [ G. 0 Js = 0 then G. 0 aa 0. 



 
 

Before (t= ti) After (t=t2>ti) 

(a) - ..... ........ -
Xi X2 Xi X2 

(b) - - - -
Xi X2 Xi X2 

(c) • • • • 
Xi X2 Xi X2 

Fig. 14.1 Two gas particles in a pipe in 
(a) non-stationary, (b) stationary, and 
(c) static flow. 

14.1 Stationary solutions 
We now turn . our attention to solving the vacuum field equations in the 
simplest case, namely, that of spherical symmetry. As a preliminary, in the 
next two sections we make clear the distinction between stationary and static 
solutions. In simple terms, ~solution is stationary if it is time-independent. 
This does not mean that the solution is in no way evolutionary, but simply 
that the time does not enter into it explicitly. On the other hand, the stronger 
requirement that a solution is static means that it cannot be evolutionary. In 
such a case, nothing would change if at any time we ran time backwards, i.e. 
static means time-symmetric about any origin of time. Think of the motion of 
a gas in a pipe (Fig. 14.1). If it is being pumped by some time-dependent 
device, then the motion will be non-stationary. If the gas travels with constant 
velocity at each point in the pipe, then the motion is stationary. If the gas 
velocity is zero everywhere, then the system is static. 

A metric will be stationary if there exists a special coordinate system in 
which the metric is visibly time-independent, i.e. 

Ogab ~ Q 
8x0 ' 

(14.1) 

where x0 is a timelike coordinate. Of course, in an arbitrary coordinate 
system the metric will probably depend explicitly on all the coordinates; so 
we need to make the statement (14.1) coordinate-independent. If we define a 
vector field 

(14.2) 

in the special coordinate system, then 

Lxgab = xcgab,c + gacxc, b + gbcxc,a 

~ «5ogab,c = Uab, O = 0 

by (14.1). LxUab is a tensor, so if it vanishes in one coordinate system it 
vanishes in all coordinate systems. Hence, it follows that X 0 is a Killing vector 
field. Conversely, given a timelike Killing vector field X 0 , then there always 
exists a coordinate system which is adapted to the Killing vector field, that is, 
in which (14.2) holds, and then 

0 = Lxgab4, gab,O> 

and so the metric is stationary. We have therefore established the coordinate-
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independent definition 

14.2 Hypersurface-orthogonal vector fields 
In order to discuss static solutions in a coordinate-independent way, we need 
to introduce the concept of a hypersurface-orthogonal vector field, which we 
do in this section. We start with the equation of a family of hypersurfaces 
given by 

where different members of the family correspond to different values of µ 
(Fig. 14.2). Consider two neighbouring points P and Q with coordinates (x0) 
anp (x0 + dx0), respectively, lying in one of the hypersurfaces, S say. Since 
(x°-:,+ dx0) lies in S, we also have, by (14.3), ® /11},µ=:_3=µ2 

µ =f(x0 + dx0) =f(x0 ) + ~dx0 
~----· 8x0 

µ-µ1 
to first order. Subtracting (14.3) from this equation, we find 

8f dx" = 0 
8x0 

F'ig. 14.2 A family of hypersurfaces 
(14.4) labelled byµ. 

at P. If we define the covariant vector field n0 to the family of hypersurfaces 
by 

then (14.4) becomes 
nadx0 = gabn°dxb = 0 

at P, which tells us that n° is orthogonal to the infinitesimal contravariant 
vector. field dx0 • Since dx0 lies in S by construction, it follows that n° is 
orthogonal to S and is therefore known as the normal vector field to S at P 
(Fig. 14.3). Any other vector field X 0 is said to be hypersurface-orthogonal if 
it is everywhere orthogonal to the family of hypersurfaces, in which case it 
must be proportional to n° everywhere, i.e. 

(14.6) 

for some proportionality factor A., which in general will vary from point to 

n• 

L p 4:_t-,,.·1•, 

F'ig. 14.3 The normal vector field na at a 
point P. 

point. Then the orbits of X 0 are orthogonal to the family of hypersurfaces F'ig. 14.4 A hypersurface-orthogonal 
(Fig. 14.4). From (14.6) and (14.5), the hypersurface-orthogonal condition can vector field xa. 
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also be written 

and so 
x.abxc = ).J..A,bf.c + A2 f.af.cb· 

Taking the totally anti-symmetric part of this equation and noting that the 
first term on the right is symmetric in a and c and the second term is 
symmetric in b and c, so that their totally anti-symmetric parts vanish, then 

X[aobXc] = 0. (14.8) 

This equation is unchanged if we replace the ordinary derivative by a 
covariant derivative (exercise), namely, 

We have shown that any hypersurface-orthogonal vector field satisfies 
(14.9). We shall now establish _a partial converse, namely, any non-null Killing 
vector field satisfying (14.9) is necessarily hypersurface-orthogonal. Since x• 
is a Killing vector, it satisfies (7.52), namely, 

Lxgab = vbxa + v.xb = 0. 

• It follows that interchanging indices on the covariant derivative of x. 
introduces a minus sign: 

v.xb = -vbx •. 

Using this, the six terms in (14.9) reduce to three terms: 

x. vbxc + Xe v.xb + xb vex.= 0. 

Contracting with xc and writing X 2 = x• x. , we get 

X 0 XcVbXc + X 2 V0 Xb + .XbXcVcXa = 0, 

or, using (14.10), 

x.xcvbxc + X 2 VaXb - XbXcVaXc = 0. 

(14.10) 

Interchanging the raised and lowered index for the dummy index c (why can 
we do this?) and using (14.10) on the middle term, this becomes 

XaXcVbXc - X 2 VbXa - XbXcVaXc = 0. 

Adding these last two equations, we get 

x. vbx 2 -:-- xb v.x2 + x 2 (v.xb - vbx.) = o, 

or, since X 2 is a scalar field and the terms in the parentheses involving the 
connection vanish (see (12.37)), 

x.abx 2 - xba.x 2 + X 2 (o.xb - obX.) = 0. 

We write this in the form 

X 2 00 Xb - XboaX 2 = X 2 obXa - X 0 obX 2 , 



 
 
 

or equivalently, dividing by X4, 

(14.11) 

since x• is non-null by assumption and so X 2 ,fa 0. This last equation 
requires that the term in parentheses be a gradient of some scalar field, f say, 
i.e. 

(14.12) 

and so finally 

This is the hypersurface-orthogonal condition (14.7) with.?.= X 2 . 

14.3 Static solutions 
If a solution is stationary, then, in an adapted coordinate system, the metric 
will be time-independent but the line element will still in general contain cross 
terms in dx0 dx•. If, in addition, the metric is static, we would expect these 
cross terms to be absent for the following reason. Consider the interval 
between two events (x0 , x 1 , x 2 , x 3

) and (x0 + dx 0

, x 1 + dx\ x2 , x3

) in our 
special coordinate system. Then 

ds2 ~ g 00 ( dx0 ) 2 + 2g01 dx0 dx 1 + g11 ( dx 1 ) 2 , (14.14) 

where all the g.b depend on x• only (why?). Under a time reversal 

xo----+ x'o = -xo, 

the g.b remain unchanged, but ds2 becomes 

ds2 ~ g00 ( dx0 ) 2 - 2g01 dx0 dx1 + g11 ( dx 1 ) 2. 

(14.15) 

(14.16) 

The assumption that the solution is static means that ds2 is invariant under a 
time reversal about any origin of time, and so, equating (14.14) and (14.16), we 
find that g01 vanishes. Similarly g 02 and g 03 must vanish, and so we have 
shown that there ar:e no cross terms dx0 dx• in the line element in the special 
coordinate system. 

Let us investigate the hypersurface-orthogonal condition (14.13) in a 
stationary space-time in a coordinate system adapted to the timelike Killing 
vector field, that is, x• ~ oi. Then 

X 0 = g 0 bXb ~ gab()t = gOa 
and 

So (14.13) gives 
go.~ goof. (14.17) 

for some scalar field f When a = 0, this produces f O ~ 1, and so integration 
gives 

f ~ x0 + h(x•), 

where h is an arbitrary function of the spacelike coordinates only. Consider 
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Fig. 14.5 Two 'simultaneous' events in 
world time . 

the coordinate transformation defined by 

x0 -+ x' 0 = x0 + h(x«), 

Then we find, in the new coordinate system (exercise), 

X' 0 ~ 6~, 

01ab,O 4, 0, 
I * goo= Ooo, 

010« 4: 0. 

(14.18) 

(14.19) 

(14.20) 

(14.21) 

(14.22) 

The last equation reveals that there are no cross terms in dx0 dx« and so the 
solution is static. We therefore have established the following definition. 

Moreover, we have established the following important result. 

It can be shown (exercise) that there still exists the coordinate freedom 

x0 -+ x' 0 = Ax0 + B, (14.23) 

where A and B are constants and the functions h'" are arbitrary. If the 
boundary conditions require g00 -+ 1 at spatial infinity, then this requires 
A = ± 1. Neglecting time reversal, then this fixes A to be 1, and so we have 
defined a time coordinate, called world time, which is defined to within an 
unimportant additive constant. Thus, in a static space-time, we have regained 
the old Newtonian idea of an absolute time in the sense that the manifold can 
be sliced-up in a well-defined way into hypersurfaces t = constant (Fig. 14.5). 
Then there exist a privileged class of observers who measure world time and 
hence can agree on events being simultaneous. The corresponding co­
ordinates are Gaussian since g00 4= 6~. 

14.4 Spherically symmetric solutions 
Spherical symmetry can be defined rigorously in terms of Killing vector fields 
as follows. 
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Then (see Exercise 8.5) there exists a coordinate system in which the Killing 
vectors take on a standard form as expressed in the following result. 

The quantity w«/J depends on three parameters which specify three spacelike 
rotations. These results then lead to a canonical form for the line element. The 
calculation is;rather detailed, so we shall proceed in a different manner and 
present a heuristic argument for determining the form of the line element. 

Intuitively, spherical symmetry means that there exists a privileged point, 
called the origin 0, such that the system is invariant under spatial rotations 
about 0. Then, if we fix the time and consider a point Pa distance a from 0, 
the spatial rotations will result in P sweeping out a 2-sphere centred on 0. We 
can then introduce an axial coordinate q> and an azimuthal coordinate 0 on 
the sphere in the usual way. Dropping a perpendicular from P to the 
equational plane (z = 0) at Q, then q, is the angle which OQ makes with the 
positive x-axis and 8 is the angle which OP makes with the positive z-axis 
(Fig. 14.6). All points on the 2-sphere will be covered by the coordinate ranges 

- 7t < q, ~ 7t. 

Moreover, the line element of the 2-sphere is (exercise) 

ds2 = a2 (d0 2 + sin 2 8dq, 2 ). 

(14.24) 

(14.25) 

(14.26) 

It is then natural to assume that in four dimensions we can augment 0 and q, 
with an arbitrary timelike coordinate t and some radial-type parameter r, so 
that the line element reduces to the form (14.26) on a 2-sphere t = constant, 
r = constant. Spherical symmetry requires that the line element does not vary 
when 8 and q, are varied, so that 8 and q, only occur in the line element in the 
form (d02 + sin 2 8dq, 2 ). Moreover, using an analogous argument to the one 
we used at .the beginning of §14.3, there can be no cross terms in d0 or 
dq, (exercise) because the metric must be invariant separately under the 
reflections 

0-- 8' = 7t - 0 
and 

(14.27) 

(14.28) 

Our starting ansatz, then, is that there exists a special coordinate system 

(x 0 } = (x0 , x1 , x2, x3 } = (t, r, 0, q,) 

in which the line element has the form 

ds 2 = Adt2 - 2Bdtdr- Cdr2 - D(d82 + sin2 8dq, 2 ), (14.29) 

where A, B, C, and D are as yet undetermined functions of t and r, i.e. 

A= A(t, r), B = B(t, r), C = C(t, r), D = D(t, r). 

z 

p 

0 

X 

Fig. 14.6 The standard spherical 
coordinates 0 and tf>. 



 

186 I The Schwarzschild solution 

If we introduce a new radial coordinate by the transformation 

r-+r' = Dt, 
then (14.29) becomes 

ds2 = A'(t, r')dt2 - 2B'(t, r')dtdr' - C'(t, r')dr'2 - r'2 (d0 2 + sin2 0dtf>2 ). 

(14.30) 
Consider the differential 

A'(t, r')dt - B'(t, r')dr'. 

The theory of ordinary differential equations tells us that we can always 
multiply this by an integrating factor, I= I(t, r') say, which makes it a perfect 
differential. We use this result to define a new time coordinate t' by 
requiring 

dt' = l(t, r')[A'(t, r')dt - B'(t, r')dr']. 

Squaring, we obtain 

dt' 2 = l 2 (A' 2 dt2 - 2A'B'dtdr' + B'2 dr' 2 ), 

and so 

and the line element (14.30) becomes 

ds2 = A'- 1 r 2 dt' 2 - (C' - A'- 1 B'2 )dr' 2 ..,... r' 2 (d02 + sin2 0d,t,2 ). 

Defining two new functions v and }. by 

and 

and dropping the primes, we finally obtain the form 

where 
v = v(t, r), }. = }.(t, r). 

(14.31) 

(14.32) 

The definitions of v and }. in (14.31) and (14.32) are given in terms of 
exponentials, which, since they are always positive, guarantees that the 
signature of the metric is - 2. In fact, there are rigorous arguments which 
confirm that the most general spherically symmetric line element in four 
dimensions (with signature -2) can be written in the canonical form (14.33). 

14.S 'The Schwarzschild solution 
We now use Einstein's vacuum field equations to determine the unknown 
functions v and }. in (14.33). The covariant metric is 

9ab = diag(ev, -e"-, -r2, -r2 sin2 0) 

and, since the metric is diagonal, its contravariant form is 

gab= diag(e-v, -e-\-r- 2 , -r- 2 sin- 2 0). 

(14.34) 

(14.35) 
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Ifwe denote derivatives with respect tot and r by dot and prime, respectively, 
then, by Exercise 6.3l(v), the non-vanishing components of the mixed 
Einstein tensor are 

0 -). ( ..1.' 1 ) 1 G0 =e -- - +-, 
r r2 r2 

(14.36) 

(14.37) 

(14.38) 

The contracted Bianchi identities reveal that equation (14.39) vanishes auto­
matically if the equations (14.36), (14.37), and (14.38) all vanish (exercise). 
Hence,'there are three independent equations to solve, namely, 

Adding (14.40) and (14.41), we get 
..1.' +v' =0 

and integration gives 
A.+ V = h(t), 

(14.40) 

(14.41) 

(14.42) 

(14.43) 

where his an arbitrary function of integration. Here, ..1. is purely a function of r 
by (14.42), and so (14.40) is simply an ordinary differential equation, which we 
write 

or equivalently 

Integrating, we get 
re-;.= r + constant. 

Choosing the constant of integration to be - 2m, for later convenience, we 
then obtain 

(14.44) 

So, at this stage, the metric has been reduced, by (14.43) and (14.44), to 

llab = diag[eh<tl(l - 2m/r), -(1 - 2m/r)- 1 , - r2, - r2 sin2 0]. (14.45) 

The final stage is to eliminate h( t ). This is done by transforming to a new time 
coordinate t', i.e. t ➔ t', where t' is determined by the relation 

t' = f: eth<u) du (14.46) 

where c is an arbitrary constant. Then the only component of the metric 
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z 

X 

Fig. 14.7 A pulsating spherical star 
cannot emit gravitational waves. 

which changes is (exercise) 
g~0 = (1 - 2m/r). 

Dropping primes, we have shown that it is always possible to find a 
coordinate system in which the most general spherically symmetric solution 
of the vacuum field equations is 

This is the famous Schwarzschild line· element. 

14.6 Properties of the Schwarzschild solution 
We restrict attention to the exterior region r > 2m where "lhe coordinates 
t and rare timelike and spacelike respectively (see§ 16.1). It is immediate from 
(14.47) that gab,o,J, 0, and so the solution is stationary. Moreover, the coord­
inates are adapted to the Killing vector field xa J, oi . Since 

Xa = gabXb J, 9abot = 9oa = gooD2 = (1 - 2m/r, 0, 0, 0), 

we see that xa is hypersurface-orthogonal, that is, Xa = ).f,., with 

). = X 2 J, g00 and f (xa) J, t = constant. 

Alternatively, we can check (exercise) that 

Xca abX,1 = 0. (14.48) 

Thus, the timelike Killing vector field xa is hypersurface-orthogonal to 
the family of hypersurfaces t = constant, and hence the solution is static and 
tis a world time. Alternatively, it is immediate from (14.47) that the solution 
is time-symmetric, since it is invariant under the time reflection t--+ t' = - t, 
and time translation invariant, since it is invariant under the transformation 
t--+ t' = t + constant, and so again it is static (see Exercise 14.1 ). We have 
thus proved the following somewhat unexpected result. 

This is unexpected because in Newtonian theory spherical symmetry has 
nothing to do with time dependence. This highlights the special character of 
non-linear partial differential equations and the solutions they admit. In 
particular, Birkhoff's theorem implies that if a spherically symmetric source 
like a star changes its shape, but does so always remaining spherically 
symmetric, then it cannot propagate any disturbances into the surrounding 
space. Looking ahead, this means that a pulsating spherically symmetric star 
cannot emit gravitational waves (Fig. 14.7). If a spherically symmetric source 
is restricted to the region r :,s;; a for some a > 2m, then the solution for 
r > a must be the Schwarzschild solution, or to give it its full name the 
Schwarzschild exterior solution. However, the converse is not true: a source 
which gives rise to an exterior Schwarzschild solution is not necessarily 
spherically symmetric. Some counter-examples are known. Thus, in general, 
a source need not inherit the symmetry of its external field. 



Ifwe take the limit of(14.47) as r-> oo, then we obtain the flat space metric 
of special relativity in spherical polar coordinates, namely, 

ds2 = dt2 - dr2 - r2 (d02 + sin2 0dcp2 ). (14.49) 

We have therefore shown that a spherically symmetric vacuum solution is 
necessarily asymptotically flat Some authors obtain the Schwarzschild solu­
tion from the starting assumptions that the solution is spherically symmetric, 
static, and asymptotically flat. However, as we have seen, there is no need to 
adopt these last two assumptions a priori, because the field equations force 
them on you. Let us attempt an interpretation of the constant m appearing in 
the solution, by co~sidering the Newtonian limit. A point mass M situated at 
the origin O in New'tonian theory gives rise to a potential cp = - GM /r. 
Inserting this into the weak-field limit (12.65) gives 

g00 ~ 1 + 2cp/c2 = 1 - 2GM/c2 r, 

and, comparing this with (14.47), we see that 

in non-relativistic units. In other words, if we interpret the Schwarzschild 
• solution as due to a point particle situated at the origin, then the constant mis 
simply the mass of the particle in relativistic units. It is clear from (14.47) that 
m has the dimensions of length. It is sometimes known as the geometric 
mass. We postpone a discussion of the coordinate ranges and the interpreta­
tion of the coordinates until Chapter 16. We end this section by summarizing 
the properties we have met. The Schwarzschild solution: 

(1) is spherically symmetric; 

(2) is stationary; 

(3) has coordinates adapted to the timelike Killing vector field x•; 
(4) is static = is time-symmetric and time translation invariant, 

= has a hypersurface-orthogonal timelike Killing vector 
field x•; 

(5) is asymptotically flat; 

(6) has geometric mass m = GMc- 2 . 

14.7 Isotropic coordinates· 
In this section, we seek an alternative set of coordinates in which the time 
slices t = constant are as close as we can get them to Euclidean 3-space. More 
specifically, we attempt to write the line element in the form 

ds2 = A(r)dt2 - B(r)do-2 , 

where do-2 is the line element of Euclidean 3-space, namely, 

do-2 = dx 2 + dy2 + dz2 

in Cartesian coordinates, or equivalently 

do-2 = dr2 + r2 d02 + r2 sin2 0dcp2 

in spherical polar coordinates. In this form, the metric in a slice t = constant 
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Exercises 

is conformal to the metric of Euclidean 3-space, and hence, in particular, 
angles between vectors and ratios of lengths are the same for each metric (see 
Exercise 6.27). 

We consider a transformation in which the coordinates 0, <p, and t remain 
unchanged while 

r -+p = p(r), (14.51) 

so that p is some other radial coordinate, and we attempt to put the solution 
in the form 

(14.52) 

We could consider how (14.47) transforms under the transformation (14.51), 
but it is easier to proceed as follows. Comparing (14.52) with (14.47), the 
coefficients of d02 + sin2 0d</> 2 must be equal, which requires 

r2 = ;.,2p2. 

Equating the two radial elements produces 

(1- 2m/ r)- 1 dr2 = ).2 dp2 • 

Eliminating A and taking square roots, we find 

dr = + dp_ 
(r2 - 2mr)½ - p 

(14.53) 

(14.54) 

(14.55) 

This is an ordinary differential equation in which the variables are separated. 
Since we require p -+ oo as r-+ oo, we take the positive sign, and by integra­
tion we find (exercise) 

and so, from (14.53), 
r = p(l + ½m/p)2 

;.,2 = (1 + ½m/ p)4. 

(14.56) 

(14.57) 

Using (14.56) to eliminate r, we find that the Schwarzsc;.hild solution can be 
written in the following isotropic form: ,. 

14.1 (§14.1) A system is time-symmetric if it is invariant 
under 

14.2 (§14.1) Show that if gab is stationary then there exists a 
privileged coordinate system (t, x") in which the Killing 
vector field X reduces to X = a;at, with X(g.b) = 0. Show 
that X generates a time translation invariance 

t .... t' = -t. 

Give an example of a non-stationary time-symmetric sys­
tem. Show that if a time-symmetric system is also time 
translation invariant, i.e. invariant under 

t .... t' = t + constant, 

then the system is static. Deduce that a stationary time­
symmetric system is necessarily static. 

t .... t' = t + constant. 

14.3 (§14.2) 
(i) Take the differential of (14.3) to confirm (14.4). 

(ii) Show that (14.9) is equivalent to (14.8). 
(iii) Check that (14.12) is consistent with (14.11). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14.4 (§14.3) 
(i) Establish (14.19)- (14.22) under the transformation 

(14.18). 
(ii) Show that there still remains the coordinate freedom 

(14.23). 

14.5 (§14.4) Consider a point P on a 2-sphere of radius a 
centred at the origin. Find the distance P travels under an 
increase of coordinates 
(i) 0 ➔ 0 + d0, 
(ii) cf> -+ cf>. + d cf>. 
Use Pythagoras' theorem to obtain the line element (14.26) 
for a 2-sphere. 

14.6 (§14.4) Show that a spherically symmetric line ele­
ment cannot possess cross terms in d0 and dqi because the 
metric must be invariant under the reflections (14.27) and 
(14.28). [Hint: assume that all the metric components 9ab 
(a, b #- 3) and g33 sin- 2 0 do not depend on 0 or qi.] 

14.7 (§14.5) Show that if (14.36), (14.37), and (14.38) vanish 
then so does (14.39) by the contracted Bianchi identities. 

14.8 (§14.5) Show that, under the transformation to a new 
time coordinate t' given by (14.46), the line element (14.45) is 
transformed into the form (14.47),'where primes have been 
dropped in (14.47). 

14.9 (§14.6) Check that (14.48) holds for the Schwarzschild 
line element where x• is the timelike Killing vector field. 

14.10 (§14.6) Find the dimensions of G. [Hint: use (4.4) 
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and Newton's second law.] Use (14.50) to show that m has 
the dimensions of a length. 

14.11 (§14.6) Find the non-zero components of Rabcd for 
the Schwarzschild solution. 

14.12 (§14.7) 
(i) Show that (14.55) taken with the positive sign integrates 

to give (14.56). 
(ii) Use (14.52), (14.56), and (14.57) to derive (14.58). 

14.13 (§14.7) Consider (14.58) in the weak-field limit m ~ p 
to show that gOO "" 1 - 2m/p and confirm (14.50). 

14.14 (§14.7) Which of the six properties listed at the end 
of§ 14.6 still hold for the isotropic form of the Schwarzschild 
line element? 

14.15 (§14.7) Show that the isotropic form of the Schwarz­
schild solution 

(1-½m/p) 2 

ds2 = ----dt2 

- (1 + ½m/p) 4 [dx 2 + dy2 + dz2

], 

(l + ½m/p) 2 

where 
r = (x2 + y2 + z2 )½ = p(l + ½m/p)2 

admits the Killing vector fields 

0 0 0 0 0 
- x--y- y--z­
ot' oy ox' oz By' 

0 0 
z--x-. ax oz 

[Hint: use the symmetry in x, y, and z.] Find all their 
commutators. 



 
 
 

15.1 Introduction 
In this chapter, we shall consider the experimental status of general relativity. 
We shall see that the status is very different from that of special relativity, 
which has been subjected to a welter of different tests. Indeed, there are very 
few theories whose experimental footing has been so well established. In 
contrast, there are very few tests of the general theory. The main reason for 
this small number is that the gravitational fields experienced in our locality 
are very weak and their effects are not significantly different from the 
corresponding Newtonian ones. The extent to which the tests we have are 
actually tests of the particular set of field equations of general relativity as 
opposed to much weaker statements like the principle of equivalence is also 
arguable. The first tests of the theory were the three so-called 'classical tests' 
of general relativity, namely, the precession of the perihelion of Mercury, the 
bending of light, and the gravitational red shift. These tests have been 
augmented more recently by a fourth classical test, the delay of a light signal 
in a gravitational field. Perhaps the most significant test of the theory 
involves the orbital motion of the binary pulsar PSR 1913 + 16, because of its 
indirect indication of gravitational radiation. It seems likely that the tests 
which will prove to be the most conclusive are those which occur on a 
cosmological scale, in particular, through the possible detection of black 
holes and gravitational waves. We shall postpone consideration of black 
holes and gravitational waves until Parts D and E of the book, respectively. 

There have probably been at least a score of alternative relativistic theories 
of gravitation proposed since the advent of special relativity. These are 
classical alternative theories as opposed to quantum ones. The one which has 
enjoyed most attention to date is the Brans-Dicke theory, especially in the 
mid-1960s when there was a reported detection of solar oblateness. We shall 
consider briefly the story concerning solar oblateness in this chapter. We 
shall end with a brief chronology of the main experimental or observational 
events connected with general relativity. Although the experimental tests are 
few in number, those that are there support general relativity as being the best 
and simplest classical theory that we have. 

15.2 Classical Kepler motion 
We first review the classical Kepler problem, namely, the motion of a test 
particle in the gravitational field of a massive body, before considering its 
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general relativistic counterpart. It starts from the assumption that a particle 
of mass m moves under the influence of an inverse square law force whose 
centre of attraction is at the origin 0, that is, 

F µ. = -mzr, 
r 

where µ is a constant. Then Newton's second law is 

The angular momentum of mis defined as 

L = r X mr, 
and so 

dL . . .. dt = r x mr + r x mr 

=0, 

(15.1) 

(15.3) 

where the cross products of;. with itself and r with r both vanish because the 
vectors are parallel. Hence, the angular momentum is conserved and 

L=mh, (15.4) 

where his a constant vector. Assuming h la 0, it follows from (15.3) that r is 
always perpendicular to h, and so the particle is restricted to move in a plane. 
If we introduce plane polar coordinates ( R, <j, ), then the equation of motion 
(15.2) becomes 

(R - Ref>2)R + .!__~(R24>)j = _ _E_ R. 
R dt R 2 

(15.5) 

Taking the scalar product with i throughout and integrating produces 

which is conservation of angular momentum again, where h is the magnitude 
of the angular momentum per unit mass. Taking the scalar product with R 
throughout (15.5) gives 

(15.7) 

We are interested in obtaining the equation of the orbit of the particle, 
which in plane polar coordinates is 

R = R(</J). (15.8) 

f • If we introduce the new variable u = R - 1, then this can also be written as 



 

194 I Experimental tests of general relativity 

Perihelion 

g 
F'ig. 15.1 Kepler motion in an ellipse. 

Fig. 15.2 The two-body problem. 

u = u( </> ). Using the function of a function rule, we find 

R=dR=~(!)= _ _!_dud</>= _ _!___hu2 du = -hdu 
dt dt u u2 d</> dt u2 d<f> d</> 

by (15.6). Similarly (exercise), 

and so (15.7) becomes Binet's equation 

(15.9) 

Binet's equation is the orbital differential equation for the particle, and has 
solution (exercise) 

µ 
u = h2 + C cos(</> - </>0), (15.11) 

where C and </>0 are constants. This can be written in terms of R as 

where l = h2 /µand e = Ch 2 /µ.This is the polar equation of a conic section in 
which l (semi-latus rectum) determines the scale, e (eccentricity) the shape, 
and </>0 the orientation (relative to the x-axis). In particular, ifO < e < 1 then 
the conic is an ellipse (Fig. 15.1), and the point of nearest approach to the 
origin is called the perihelion. , 

The motion of a test particle in the field of a massive body is called the one­
body problem. We shall establish the classic result that in Newtonian theory 
the two-body problem of two point masses moving under their mutual 
gravitational attraction can be reduced to a one-body problem. Consider two 
masses m1 and m2 with position vectors r1 and r2, respectively (Fig. 15.2). 
Define the position vector of m1 (say) relative to m2 by 

If F12 is the force on m1 due to m2 , and F21 the force on m2 due to m1 , then, by 
Newton's third law, 

(15.13) 

Using Newton's second law, (15.13), and Newton's universal law of gravita­
tion (4.4), we obtain 

F .. .. Gm1m2. 
12 = m1r1 = -m2r2 = - - r-2-r, 

and so 
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We find finally that the equation of motion can be written as 

F •• µ A 

12 = mr = -m 2 r, 
r 

where m, the reduced mass, is given by 

and 

(15.14) 

Comparing (15.14) with (15.2), we see that this is the one-body problem we 
discussed earlier. In the simplest model of planetary motion, we take m2 to be 
the mass of the sun and m1 to be the mass of the planet. Then, suitably 
interpreted (see Exercise 15.6), the motion of a planet is again a Kepler ellipse. 

15.3 Advance of the perihelion of Mercury 

We now look at the one-body problem in general relativity. We assume that 
the central massive body produces a spherically symmetric gravitational field. 
The appropriate solution in general relativity is then the Schwarzschild 
solution. Moreover, a test particle moves on a timelike geodesic, and so we 
begin by studying some of the geodesics of the Schwarzschild solution. The 
simplest approach is to employ the variational method of §7.6. Letting a dot 
denote differentiation with respect to proper time r, we then find, for timelike 
geodesics, 

We next work out the Euler-Lagrange equations. It turns out to be sufficient 
to restrict attention to the three simplest equations, which are given when 
a = 0, 2, 3 in (7.46), and which are 

d . 
dr [(1 - 2m/r)t] = 0, (15.18) 

(15.19) 

(15.20) 

This is because we need four differential equations to determine our four 
unknowns, namely, 

t=t(t), r = r(r), </>=</>(t}. 
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Fig. 15.3 Motion of a test particle (a) 
in space-time and (b) projected on to 
t = constant. 

However, (15.17) is itself an integral of the motion and so, together with 
(15.18)-(15.20), provides the four equations needed. We have seen in 
Newtonian theory that the corresponding motion is confined to a plane. Let 
us see if planar motion is possible in general relativity. Specifically, let us 
consider motion in the plane equatorial 0 = ½x (the (x, y) plane). In this 
plane, 0 = 0, and hence, by (15.19), it follows that 8 = 0. Differentiating 
(15.19), we can show that all higher derivatives of 0 must vanish as well, and 
hence it follows that planar motion is possible (why?). Then (15.20) can be 
integrated directly to give 

r2 ef, = h, (15.21) 

where h is a constant. This is conservation of angular momentum (compare 
with (15.6) and note that, in the equatorial plane, the spherical polar coordin­
ate r is the same as the plane polar coordinate R). Similarly, (15.18) gives 

(1 - 2m/r)i = k, (15.22) 

where k is a constant. Substituting in (15.17), we obtain 

k2(l - 2m/r)- 1 - (1 - 2m/ r)- 1r2 - r2 ef, 2 = 1. (15.23) 

We proceed as we did in the classical theory and set u = r- 1 , which leads to 

. h du 
r = - d,f>' 

then, using (15.21), we find (15.23) becomes 

( du ) 2 k2 - l 2m 
def> + u2 = ~ + h2 u + 2mu3 • (15.24) 

This is a first-order differential equation for determining the orbit of a test 
particle, or more precisely the trajectory of the test body projected into a slice 
t = constant (Fig. 15.3). It can be integrated directly by using elliptic func­
tions. We shall use an approximation method to solve it. 

Differentiating (15.24), we obtain the second-order equation 

This is the relativistic version of Binet's equation (15.10) and differs from the 
Newtonian result by the presence of the last term. For planetary orbits, this 

t 

l 
(a) (b) 
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last term is small, because the ratio of the two terms on the right-hand side of 
(15.25) is 3h2/r2 , which for Mercury, for example, goes like 10- 1 . On this 
assumption, we may solve the equation approximately by a perturbation 
method. We introduce the parameter 

e = 3m2 /h2 , (15.26) 

which in non-relativistic units is dimensionless (remember we have set c = 1). 
Ifwe denote differentiation with respect to cf, by a prime, then (15.25) becomes 

u" + u = ; + e ( h~
2 

) • (15.27) 

We assume that this has a solution of the form 

u = u0 + eu1 + O(e2 ). (15.28) 

Substituting in (15.27), we find 

,, m ( ,, h2 u5) 2 u0 + u0 - h2 + e u 1 + u1 - ----,;;- + O(e ) = 0. (15.29) 

If we equate the coefficients of different powers of e to zero, then the zeroth­
order solution u0 is the usual conic section (15.11) 

m 
u0 = h2 (1 + ecoscp), 

where, for convenience, we have taken cf,0 = 0. The first-order equation is 

and so substituting for u0 we get 

If we try a particular solution of the form 

u1 =A+ Bcpsincp + Ccos2cp, 

then we find (exercise) 

me 
B=fi2• 

Thus, the general solution of (15.27) to first order is 

u ~ u0 + e; [1 + ecpsincp + e2 (½- icos2cp)]. 

(15.30) 

(15.31) 

(15.32) 

(15.33) 

The most important correction to u0 is the term involving ecp sincp, because 
after each revolution it gets larger and larger. If we neglect the other 
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F'ig. 15.4 Precession of the perihelion. 

Table 15.1 Theoretical and observation 
values of residual perihelion precession 

Planet GR prediction Observed 

Mercury 43.0 43.1 ± 0.5 
Venus 8.6 8 .4 ± 4.8 
Earth 3.8 5.0 ± 1.2 
Icarus 10.3 9.8 ± 0.8 

corrections, this becomes 

u ~; [1 + ecos<f> + ee<f>sin<f>], 

or 

again neglecting terms of order e2 (check). Thus, the orbit of the test body is 
only approximately an ellipse. The orbit is still periodic, but no longer of 
period 2it; rather it is of period 

2it 
-- ~ 2it(l + e). 
1-B 

(15.35) 

In simple intuitive terms, a planet will travel in an ellipse but the axis of the 
ellipse will rotate, moving on by an amount 21te between two points of closest 
approach (Fig. 15.4). This is the famous precession of the perihelion. In non­
relativistic units, this becomes (exercise) 

(15.36) 

where a is the semi-major axis of the ellipse and Tis the period of the orbit. 
Now, in fact, in Newtonian theory, there is also an advance of the 

perihelion. This is because the planetary system is not a two-body system but 
rather an n-body system, and all the other planets produce a perturbation 
effect on the motion of one particular planet (rather similar in effect to the 
perturbation in (15.25)). For example, the planet Jupiter produces a measur­
able perturbation because its mass is relatively large, being about 0.1 % of that 
of the Sun. Mercury has an orbit with high eccentricity and small period (see 
(15.36)) and the perihelion position can be accmately determined by observa­
tion. Before general relativity, there was a discrepancy between the classical 
prediction and the observed shift of some 43 seconds of arc per century. Even 
though this is a very small difference, it is very significant on an astrophysical 
scale and represents about a hundred times the probable observational error. 
This discrepancy had worried astronomers since the middle of the last 
century. In fact, in an attempt to explain the discrepancy, it was suggested 
that there existed another planet, which was given the name Vulcan, whose 
orbit was inside the orbit of Mercury. (Indeed, there is a famous incident of its 
reported 'observation' by a French astronomer.) However, Vulcan does not 
exist, and general relativity appears to explain the discrepancy, since it gives a 
theoretical prediction of 42.98 seconds of arc per century. The agreement of 
the residual perihelion precession with the other planets is .not so marked 
because their observed precessions are very small and some of the observa­
tional data involved is not sufficiently accurate. One exception is a measure­
ment in 1971 of the residual precession of the minor planet Icarus, which once 
again is in good agreement with the predicted values of general relativity 
(Table 15.1 ). 



 

15.4 Bending of light 
We next consider the case of the trajectory of a light ray in a spherically 
symmetric gravitational field. The calculation is essentially the same as that 
given in the last section, except that a light ray travels on a null geodesic and 
so a dot now denotes differentiation with respect to an affine parameter and 
the right-hand side of (15.17) is zero. The analogue of (15.25) is easily found to 
be (exercise) 

In the limit of special relativity, m vanishes and the equation becomes 

d2 u 
d¢2 + u = 0, 

the general solution of which can be written in the form 

u = -}, sin( <p - <p0 ), 

(15.38) 

(15.39) 

where D is a constant. This is the equation of a straight line (exercise) as <p 
goes from cp0 to cp 0 + 1t, where D is the distance of closest approach to the 
origin. The straight line motion (Fig. 15.5) is the same as is predicted by 
Newtonian theory. 

The equation of a light ray in Schwarzschild space-time (15.37) can again 
be thought of as a perturbation of the classical equation (15.38). However, 
this time we treat the dimensionless quantity mu or mfr as small. We therefore 
seek an approximate solution of the form 

(15.40) 

where u0 is the solution (15.39). Again, for convenience, we can take ¢ 0 = 0. 
Tqen, if we neglect terms of order (mu)2, the equation for u1 becomes 

,, 2 sin2 ¢ 
U1 + U1 = Uo = ~- (15.41) 

This has (1 + Ccos<p + cos2 </J) / 3D2 as solution (exercise), where C is an 
arbitrary constant of integration, and so the general solution of (15.37) is 
approximately 

~ Since m/D is small, this is clearly a perturbation from straight line motion. We 
't .. · are interested in deter~ining the angl~ of deflection, b say, for a light ray in 
• the presence of a spherically symmetric source, such as the sun. A long way 
!. from the source, r .... oo and hence u .... 0, which requires the right-hand side of 
[' (15.42) to vanish. Let us take the values of </J for which r--> oo, that is, the 
, angles of the asymptotes, to be -e1 and 1t + e2 , respectively, as shown in 
t 
' 
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F'ig. 15.5 Straight line motion of a light 
ray in special relativity. 
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Fig. 15.6 Deflection of light in a gravita­
tional field. 

f'ig. 15.7 Position of stars in a field (a) 
when sun is absent and (b) during a total 
eclipse. 

*----- Asymptotes 

~~~i~i~;t - - - - ------- /\ . -- - --------
of star ---- ____ _ 

Light ray -- - -- _><::- i]- Apparent direction 
~::------ -- _______ of hght ray 

q -~ ~ ===-A- £1 *~ Sun ~~ 

Fig. 15.6. Using the small-angle formulae for 81 and 82 , we get 

8 1 m 
- D + D2 (2 + C) = 0, 

82 m 
- D + D2 (2 - C) = 0. 

Adding, we find 
(15.43) 

or, in non-relativistic units, 

The deflection predicted for a light ray which just grazes the Sun is 1.75 
seconds of arc. Attempts have been made to measure this deflection at a time 
of total eclipse when the light from the Sun is blocked out by the Moon, so 
that the apparent position of the stars can be recorded. Then, if photographs 
of a star field in the vicinity of the Sun at a time of total eclipse are compared 
with photographs of the same region of the sky taken at a time when the sun 
is not present, they reveal that the stars appear to move out radially because 
oflight deflection (Fig. 15.7). 

The first expedition to record a total eclipse was one in 1919 under the 
leadership of Sir Arthur Eddington. The.fact that this took place shortly after 
the end of World War I (and, moreover, that the expedition was led by an 
English scientist attempting to confirm a theory of a German scientist) caught 
the imagination of a war-weary world. When Eddington reported that the 
observations confirmed Einstein's theory, Einstein became something of a 

* * * 
* * 

* 
(a) (b) 



celebrity and the newspapers of the day carried popular articles attempting to 
explain how we now lived in a curved four-dimensional world. Einstein was 
so convinced that his theory was right that he reportedly remarked that he 
would have been sorry for God if the observations had disagreed with the 
theory. In fact, it is now believed that the observations were not as clear-cut 
as they then seemed, because of problems associated with the solar corona, 
systematic errors, and photographic emulsions. In all, there have been some 
seven attempts to make eclipse measurements. The results have varied 
markedly from 0.7 to 1.55 times the Einstein prediction. So the best that can 
be said is that the results are in qualitative agreement with the Einstein 
prediction, but are uncertain in terms of their quantitative agreement. With 
the advent of large radio telescopes and the discovery of pointlike sources 
called quasars (quasi-stellar objects), which emit huge amounts of electro­
magnetic radiation, the deflection can now be measured using interferometric 
techniques when such a source passes near the Sun. Early measurements 
range from 1.57 to 1.82 ± 0.2 seconds of arc, but significant improvement on 
the accuracy of these measurements should be possible. 

If one considers a family of curves representing light rays coming in parallel 
to each other from a distant source, then the presence of a massive object like 
the sun causes the light rays to converge and produce a caustic line on the 

. axis <f> = 0. In this way, a spherically symmetric gravitational field acts as a 
gravitational lens (Fig. 15.8). Moreover, distant point-like sources can pro­
duce double images (see Fig. 15.9). There was considerable interest in 1980 
when astronomers first reported the identification of what was previously 
considered two distinct quasars (known as 0957 + 561A, B), separated by 
6 seconds of arc. The evidence is that there is a galaxy, roughly a quarter of 
the way from us to the quasar, which is the principal component of a 
gravitational lens. 

--

Apparent _ 
image __ _ *---
15.5 Gravitational red shift 
The third classical test is the gravitational red shift. At first, it was thought to 
be a direct test of general relativity since it employed the Schwarzschild 
solution. However, it is now clear that any relativistic theory of gravitation 
consistent with the principle of equivalence will predict a red shift. We outline 
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Fig. 15.8 The graviational lens effect of a 
Schwarzschild field. 

Fig. 15.9 Schematic representation of 
the double image effect of the gravita­
tional lens. 
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Excited 
state 
atoms 

Parabolic 
mirror 

Ground 
state 
atoms 

Fig. 15.10 A gravitational perpetuum 
mobile? 

Word-line 
of absorber 

d~ 
/ 

xj . 
X2 

x• 

Fig. 15.l,1 Emission and reception of 
successive wave crests of a signal. 

below a thought experiment which leads directly to the existence of a 
gravitational red shift. Consider an endless chain running between the Earth 
and the Sun carrying buckets containing atoms in an excited state on one side 
and an equal number of atoms in the ground state on the other side 
(Fig. 15.10). Since the excited atoms possess greater energy, they must have 
greater mass (using E = mc2 ). They will be heavier than the ground state 
atoms and so, by the principle of equivalence, they will fall towards the Sun, 
whose gravitational field predominates. Suppose we have a device which 
returns an atom arriving at the Sun to its ground state, collects the emitted 
energy radiated in a mirror, and reflects it back to the Earth, where it is used 
to excite an incoming atom in the ground state. Then the rotating chain will 
run on indefinitely. In this way, we have constructed a perpetuum mobile, or 
perpetual motion machine. Such a device contradicts the principle of conser­
vation of energy, the cornerstone of physics, and so something must be wrong 
with the argument. It breaks down because the radiation arriving at the Earth 
is not sufficiently energetic to excite the incoming ground state atom. In other 
words, it gets downgraded climbing up the gravitational field: the radiation 
has been shifted to the red. 

We shall next obtain a quantitative expression for the red shift in the 
special case of a static space-time. The coordinates are taken to be 

(x") = (x0, x"'), 

where x0 is the world time and x"' are spatial coordinates. We consider two 
observers carrying ideal atomic clocks whose world-lines are x"' = x1 and 
x"' = x 2, respectively (see Fig. 15.11). Let the first observer possess an atomic 
system which is sending out radiation to the second observer. We denote the 
time separation between successive wave crests as measured by the first clock 
by d, in terms of proper time and by dx? in terms of coordinate tin,ie. It 
follows from the definition of proper time that 

(15.45) 

since g.6 can only depend on the spatial coordinates. Let the corresponding 
interval of reception recorded by the second observer be ex d, in proper time 
and dxg in coordinate time. Then, similarly, 

(cxd,)2 = g00 (xi)(dxg)2. 

However, the assumption that the space-time is static means that 

dx~ = dxg, 

(15.46) 

(15.47) 

because otherwise there would be a build-up or depletion of wave crests 
between the two observers, in violation of the static assumption. Dividing 
(15.45) and (15.46), we find 

a= (goo(xi))½ 
9oo(xD • 

(15.48) 

The factor a records how many times the second clock has ticked between the 
reception of the two wave crests. It follows that if the atomic system has 
characteristic frequency v0 then the second observer will measure a frequency 
for the first clock of v0 , where 

__ Vo_ (9oo(x~))½ Vo - - - Vo 
a goo(x'i) • 

(15.49) 



 

Then, in particular, 
(15.50) 

which means that the frequency is shifted to the red. We define the frequency 
shift to be 

---, 
V Vo 

which, in the case of the weak-field limit (12.65), namely, 

goo~ 1 + 2</>/c2, 
gives (exercise) 

(15.51) 

Note that we have obtained this expression without recourse to the field 
equations. In the special case of the Schwarzschild solution, this becomes, in 
non-relativistic units, 

Then 
(15.54) 

and so the frequency is shifted to the red. 
If we take r 1 to be the observed radius of the Sun and r 2 the radius of the 

earth's orbit (Fig. 15.12), then (neglecting the Earth's gravitational field) 

/).v/v ~ -2.12 x 10- 6. (15.55) 

Observations of the Sun's spectra near its edge give results of this order, but 
there is great difficulty in interpreting the results generally because of lack of 
knowledge of the detailed structure of the Sun and the solar atmosphere. 
Similar remarks hold about white dwarfs, which, because of their small radii 
compared with their masses, have a more pronounced shift. 

Since there are difficulties associated with astronomical measurements of 
the gravitational red shift, there has been interest in the possibility of a 
lerrestrial test. This is a difficult task because the expected shift over a vertical 
distance of 100ft, say, is only of the order of 10- 15 . Fortunately, the discovery 
of the Mossbauer effect in 1958 gave a method of producing and detecting 
gamma rays which are monochromatic to 1 part in 1012, and so makes a 
terrestrial test feasible. Pound and Rebka carried out such a test in 1960. 
They placed a gamma ray emitter at the bottom of a vertical 72 ft tower with 
an absorber at the top. Gamma rays emitted at the bottom then suffered a 
gravitational red shift climbing up the Earth's gravitational field to the top of 
the tower and were therefore less favourably absorbed. By moving the emitter 
upwards at a small measured velocity, a compensating Doppler shift was 
produced which allowed the rays to be resonantly absorbed. The experi­
mental result gave 0.997 ± 0.009 times the predicted shift of 4.92 x 10- 15, 
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Sun 
Earth 

Fig. 15.12 • Observation of red shift of 
atoms near the Sun's edge. 
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that is, an agreement of better than l %. Other experiments since 1960 have 
measured the change in the rate of atomic clocks transported on aircraft, 
rockets, and satellites; these have produced agreement with the theoretical 
predictions to about the same order of accuracy. One example being the shift 
experienced by radio signals from the spaceprobe Voyager I in its flight past 
Saturn in 1980. The accuracy was increased by two more orders of magnitude 
over the 1960 result in 1976 when a hydrogen maser clock was flown on a 
Scout rocket to an altitude of some 10 000 km and compared to a similar 
clock on the ground. It is intriguing to note that the length of the Scout rocket 
was almost exactly the same as the height of the Jefferson Physical Laborat­
ory tower at Harvard University used for the 1960 experiment. 

15.6 Time delay of light 
A fourth test which may also be considered a classical test of general relativity 
was proposed by Shapiro in 1964. The idea is to use radar methods to 
measure the time travel of a light signal in a gravitational field. Because 
space-time is curved in the presence of a gravitational field, this travel time is 
greater than it would be in flat space, and the difference can be tested 
experimentally. 

We begin by considering the path of a light ray in the equatorial plane 
0 = ½1t in Schwarzschild space-time,-where, using (14.47), 

( 1 - 2m/r)dt2 - ( 1 - 2mfr)- 1 dr2 - r2 dc/> 2 = 0. (15.56) 

To find the travel time of a light ray, we need to eliminate <f, in terms of rand 
so obtain a differential equation for dt/dr. We could use our solution (15.42) 
but, since we are only going to work to first order in mfr, it is sufficient to take 
the straight-line approximation 

rsin<f, = D. 
Differentiating, we get 

rcos<f,d<f, + drsin<f, = 0, 
so that 

rd<f, = -tan<f,dr 
and 

Substituting in (15.56), we find 

dt2 = ( ( 1 - 2m/r )- 2 + ( 1 - 2mfr )- 1 r2 ~
2 
D2 ) dr2 • 

Expanding in powers of mfr, we then have, to first order, 

dt2 :::::'. ( 1 + 4mfr + (l + 2mfr) r 2 ~
2
D2 )dr2 

= ( r2 + 4mr - 2mD2 fr) dr2 

r2 - D2 

r2 2 3 2 = 2 2 ( 1 + 4mfr - 2mD fr ) dr . 
r -D 
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Taking square roots, we get 

± r 2 3 ½ dt ~ (r2 _ D2 )½ (1 + 4m/r - 2mD /r ) dr, 

which, again to first order, gives 

± r 2 3 
dt ~ (r2 _ D2 )½ (1 + 2m/r - mD /r )dr. (15.57) 

We are interested in the travel time for a signal between a planet and the 
Earth. Integrating, we find the travel time is (exercise) 

T = [(D; - D2 )½ + (Di - D2 )½J 

+ 2mln{[(D~ - D2 )½ + Dp][(Di - D2 )½ + DE]/D2 } 

- m[(D; - D2 )½/DP + (Di - D2 )½/Ds], (15.58) 

where Dis the closest approach to the Sun, DP is the planet's orbit radius, and 
DE is the Earth's orbit radius (see Fig. 15.13). The first term in square brackets 
in (15.58) represents the flat space result (as should be clear from the figure 
and also by setting m = 0). 

The experimental verification of the delay consists in sending pulsed radar 
signals from the Earth to Venus and Mercury and timing the echoes as the 
positions of the Earth and the planet change relative to the Sun. For Venus, 
the measured delay is about 200 µs, which gives an agreement with the 
theoretical prediction of better than 5%. 

15.7 The Eotvos experiment 
We have seen that the gravitational red shift is essentially a test of the 
principle of equivalence. The bending of light is also closely related to the 
principle of equivalence (see Exercise 9.8). Indeed, Schiff has shown that it is 
possible to obtain light bending from this principle coupled with Newtonian 
mechanics and some heuristic arguments about rigid rods (although these 
latter arguments have resulted in some dispute). Time delay of light signals is 
intimately connected with light bending. It would therefore seem that only 
the first classical test of the perihelion advance is a direct test of the theory. 
We shall consider this result again in the next section. 

Since the principle of equivalence is so central to general relativity, we 
~mention briefly here the important Eotvos torsion balance experiment which 
supports the principle. The experiment grew out of the much earlier work of 
Newton and Bessel using pendula. The Eotvos experiment consists of two 
objects of different composition connected by a rod of length I and suspended 
horizontally by a fine wire (Fig. 15.14). If the gravitational acceleration of the 
two masses is different, then it can be shown that there will be a torque Non 
the wire with 

INI = 11l(gxk)•i, (15.59) 

where g is the gravitational acceleration, i and k are unit vectors along the 
rod and the wire, and I'/ is a limit on the difference in acceleration called 
the Eotvos ratio. If the apparatus is rotated with angular velocity w then the 
torque will be modulated with period 21t/w. In the original experiment of 

Fig. 15.13 A· light ray travelling from a 
planet to the Earth in the Sun's gravita• 
tional field. 

Fine wire 

(JJ 

g 

Fig. 15.14 The Elitvlis torsion balance. 
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Baron von Eotvos around the beginning of the century, g was the gravita­
tional acceleration due to the Earth and the apparatus was rotated about the 
direction of the wire. Eotvos found a limit on 1'/ of 1'71 < 5 x 10- 9 _ 

More recently, the experiment has been repeated and improved by Dicke 
at Princeton and Braginski at Moscow. In their experiments, g was due to the 
Sun, and the rotation of the Earth provided the modulation of the torque. 
The torque was determined by measuring the force required to keep the rod 
in place in the Princeton experiment and gave a result I 11 I < 10- 11 . In the 
Moscow experiment, the torque was determined by measuring the torsional 
motion of the rod and produced I '71 < 10- 12, one of the most accurate results 
in physics. 

15.8 Solar oblateness 
As we have seen, general relativity cannot be considered a completely 
Machian theory. In an attempt to produce a relativistic theory of gravitation 
which better incorporated Mach's principle, Brans and Dicke proposed an 
alternative theory in 1961. We shall not discuss the details of it here except to 
say that it is motivated in part by the idea of treating the Newtonian constant 
Gas a function of epoch (time), rather than a constant as in general relativity. 
The resulting theory has an adjustable parameter in it called w and if, for 
suitable boundary conditions, we allow w ➔ oo, then the theory corresponds 
to general relativity. The theory came into prominence in 1966 when Dicke 
and Goldenberg made a measurement of the visual oblateness, or flattening, 
of the Sun's disc and found a difference in the apparent polar and equatorial 
radii. Any oblateness in the Sun would produce a perturbation in the orbit 
equation (15.25) in addition to the general relativistic perturbation. The value 
they reported contributes some 4 seconds of arc per century to Mercury's 
perihelion shift, and this seriously undermines the remarkable agreement 
which general relativity has with the observed shift. On the other hand, the 
Brans-Dicke theory can accommodate this additional source of perihelion 
shift by setting w ~ 5. 

This led to considerable controversy in the relativity community and a 
large number of papers were produced which both supported and opposed 
solar oblateness. The experiment hinged on the method of placing an 
occulting disc in front of the Sun and measuring the difference in brightness 
between the pole and the equator at the limits of the Sun. The main counter­
argument was that the difference reported could equally well be interpreted 
by assuming a sun with negligible oblateness but with a temperature differ­
ence between the pole and the equator, which indeed a standard model of the 
sun would require. The arguments depend critically on the precise model of 
the sun which is adopted and this is turn rests on complex solar physics 
theory which is not completely understood. 

The controversy died away when Hill and collaborators performed a 
similar measurement in 1973 and failed to find any visual oblateness. More 
precisely, their value was at least one-fifth of Dicke's value and produces a 
perihelion result consistent with general relativity. The disagreement between 
the two results is unresolved, but mainstream opinion would appear to 
discount solar oblateness as being of any great significance. 
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15.9 A chronology of experimental 
and observational events 

We end our considerations of experimental relativity with a brief chronology 
of the more important experimental and observational events which relate to 
general relativity. 

1919 Eclipse expedition 

1922 Eotvos torsion balance experiments 
Eclipse expedition 

1929 Eclipse expedition 

1936 Eclipse expedition 

194 7 Eclipse expedition 

1952 Eclipse expedition 

1960 Hughs-Drever mass-anisotropy experiments 
Pound- Rebka gravitational red-shift experiment 

1962 Princeton Eotvos experiments 

1965 Discovery of 3 K cosmic microwave background radiation 

1966 Reported _detection of solar oblateness 

1967 Discovery of pulsars 

1968 Planetary radar measurements of time delay 
First radio deflection measurements 

1970 Cygnus XI: first black hole candidate 
Mariners 6 and 7 time-delay measurements 

1972 Moscow Eotvos experiments 

1973 Eclipse expedition 

1974 Discovery of binary pulsar 

1976 Rocket gravitational red-shift experiment 
Mariner 9 and Viking time-delay results 

1978 Measurement of orbit-period decrease in binary pulsar 

1979 Scout rocket maser clock red-shift measurements 

1980 Discovery of gravitational lens 

15.10 Rubber-sheet geometry 
We end our considerations of general relativity with the description of a 
simple model which may help in understanding the theory. The model 
consists of an open box with a sheet of rubber stretched tightly over it. If a 
marble is then projected across the sheet, then it will move (approximately) in 
a straight line with constant velocity. This simulates flat space or special 

Track of marble 

Taut 
rubber 

Marble sheet 

relativity, with the marble's path corresponding to the straight line geodesic Fig. 15.15 Simulation of straight line 
motion of special relativity (Fig. 15.15). Next, a weight is placed on the centre geodesic motion in special relativity_ 
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Central 
weight 

Track of 
marble 

Fig. 15.16 Simulation of precessing 
elliptical motion in general relativity. 

Fig. 15.17 Schwarzschild solution 
(t = constant, 0 = ½n) embedded in 
Euclidean 3-space. 

Fig. 15.18 Embedded geometry exterior 
and interior to a spherical star. 

of the sheet, causing the rubber to become curved. If the marble is now 
projected correctly it will be seen to orbit the central weight. This simulates 
general relativity, where a central mass curves up space-time in its vicinity in 
such a way that a particle with suitable initial conditions will orbit the mass. 
The orbiting marble is performing the 'straightest' motion possible on the 
curved rubber sheet, or, more precisely, it is travelling on a geodesic of the 
sheet. Moreover, if the marble is projected carefully, it can be seen to be 
travelling on an elliptically shaped orbit which, owing to frictional effects 
between the marble and the rubber sheet, precesses about the central weight 
in analogy to a planetary orbit (Fig. 15.16). 

We can relate this model better to the full theory if we consider an 
embedding diagram of the Schwarzschild solution in a slice t = constant and 
in the equatorial plane 8 = ½1t. The line element then reduces to 

(15.60) 

The curved geometry of this two-dimensonal surface is best understood if it is 
embedded in the flat geometry of a three-dimensional Euclidean manifold. 
This is depicted in Fig. 15.17, where the distance between two neighbouring 
points (r, <p) and (r + dr, <p + d</J) defined by (15.60) is correctly represented. 
However, distances measured off the curved surface have no direct 'physical 
meaning, nor do points off the curved surface; only the curved 2-surface has 
meaning. If we fill in the interior of the Schwarzschild solution for 
r ~ r0 (r0 > 2m), then this represents the gravitational field due to a spher­
ical star and the embedding diagram looks like Fig. 15.18. The surface 

z 



 
 

Apparent position of star 

\ 

depicted in Fig. 15.18 is similar in nature to the curved surface of the rubber 
sheet in Fig. 15.16. This embedding diagram also helps us to understand the 
phenomenon of light bending (Fig. 15.19). The front cover contains a similar 
representation of a double image. 

Although these diagrams are helpful in providing some insight into the 
idea of a curved space-time, they need to be used with caution. For example, 
the actual deflection oflight is twice that suggested by Fig. 15.19 because the 
light travel takes place in space-time rather than space. What they do show, 
however, is how mass curves up space (actually space-time) in its vicinity and 
how free particles and photons travel in the straightest lines possible, namely, 
on the geodesics of the curved space. As J. A. Wheeler puts it so succinctly, 
'Matter tells space how to curve, and space tells matter how to move.' The 
model also explains how the influence of the central mass is communicated to 
free particles and photons. This is very different from the action at a distance 
theory of Newtonian gravitation, where a central mass communicates its 
influence on a distant particle in a rather mysterious or at least unexplained 
way. Moreover, if the central mass changes in any way in Newtonian theory, 
then its influence is altered at all distant points instantaneously. In general 
relativity any change in the mass of the central source will spread out like a 
ripple in the rubber-sheet geometry, travelling with the speed of light. This 
leads to the beginnings of understanding how gravitational waves are gener­
ated, which we shall consider further in Part E. 

Exercises 

Exercises I 209 

Fig. 15.19 Depiction of light bending in 
the gravitational field of a star. 

15.1 (§15.2) Show that (15.3) and (15.4) lead immediately to 
(15.6) if h # 0. What is the motion if h = O? 

K3: The squares of the periods r of any two planets are 
proportional to the cubes of the semi-major axes a of 

15.2 (§15.2) Establish the result (15.9), Binet's equation 
(15.10), and its solution (15.11) and (15.12). 

15.3 (§15.2) Establish Kepler's laws of planetary motion 
for the one-body problem, namely: 

Kl: Each planet moves about the Sun in an ellipse, with the 
Sun at one focus. 

K2: The radius vector from the Sun to the planet sweeps out 
equal areas in equal intervals of time. 

' their respective orbits, i.e. r ~ a2. 

15.4 (§15.2) Show that the total energy E for the one-body 
problem can be written in terms of ( R, </>) as 

E = ½m(R 2 + R2 ¢2 ) - mµ/ R. 
Express this in terms of (u, <I>) and use (15.12) to identify the 
parameters as 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

210 I Experimental tests of general relativity 

15.5 (§15.2) Establish (15.14) subject to (15.15) and (15.16) 
for the two-body problem. 

15.6 (§15.2) Define the centre of mass R by 

m 1 r1 + m2 r1 
R=----

m1 +m2 

for the two-body problem and deduce that it moves with 
constant velocity. Transform to an inertial frame S' in which 
the centre of mass is at rest and situated at the origin O' of 
the frame S'. Define position vectors r'1 and r~ of m1 and m2 

relative to O', and hence describe the motion of m1 and m2 

relative to O'. How are Kepler's laws modified in the case of 
the two-body problem? Show that, in particular, 

' '!""" 21ta2 (Gm,u0 )- t. 

15.7 (§15.3) Establish the Euler- Lagrange equations 
(15.18Hl5.20). Write down the equation corresponding to 
a= land confirm that (15.18H15.20) are the three simplest 
Euler-Lagrange equations. 

15.8 (§15.3) Derive (15.24) and deduce (15.25) from it. What 
do the equations become in special relativity? 

15.9 (§15.3) Show that (15.31) subject to (15.32) is a particu­
lar solution of (15.30). Hence establish (15.34). 

15.10 (§15.3) Establish the result (15.36). [Hint: replace t 
by ct in (14.47) and use (14.50) and Exercise 15.6.] 

15.11 (§15.4) Show that the right-hand side of (15.25) may 
be written in the form 

GM ( ds ) 2 + 3 GM 
c2 r4 d<J, c2 ,2 

in appropriate units. Hence deduce the limiting case of the 
orbit equation for a light ray in the equatorial plane. 

15.12 (§15.4) Show that (15.39) is the general solution of 
(15.38) and interpret (15.39) geometrically. Hence establish 
(15.42) as the approximate solution of (15.37). 

15.13 (§15.5) Show that (15.49) leads to (15.52) in the weak­
field limit. Deduce (15.53) for the Schwarzschild solution. 

15.14 (§15.6) Integrate (15.57). [Hint: use a new variable u, 
where r = D cosh u.] Deduce ( 15.58). 



 
 
 



 
 

16.1 Characterization of coordinates 
In this chapter, we are going to make an effort to understand the Schwarz­
schild vacuum solution. The solution (14.47) is exhibited in a particular 
coordinate system. In general, if we wish to write down a solution of the field 
equations, then we need to do so in some particular coordinate system. But 
what, if any, is the significance of any particular coordinate system? For 
example, take the Schwarzschild solution and apply as complicated a co­
ordinate transformation as you can imagine, labelling the new coordinates 
x'0• Now suppose you had been given this solution and were asked to 
interpret the solution and identify the coordinates x'0• The solution will, of 
course, still satisfy the vacuum field equations, but there is likely to be little or 
no geometrical significance attached to the coordinates x'0• For example, one 
cannot just set x' 0 = t, say, and interpret t as .a 'time' parameter. As a trivial 
illustration of this, consider the transformation 

X 1 0 = 0, X' 1 = r, X' 2 = t, x' 3 = <p. 
One thing we can do, however, is establish whether the coordinate hyper­
surface 

x<•> = constant (16.l) 

(where the parentheses enclosing the label a mean that it is to be regarded as 
fixed) is timelike, null, or spacelike at a point. For the normal vector field is 

nb = Oba)' 

or in contravariant form 
n< = if b nb = g<b 6 ba) = g<(a)' 

which has magnitude squared given by 

n2 = n<nc = gc(a>ot> = g<•H•) (not summed). 

Hence, if the signature is -2, then the hypersurface (16J) at P is timelike, 
null, or spacelike depending on whether g<•H•> is >0, =0, or <0. At any 
point where the coordinate system is regular, the coordinate hypersurfaces 
may have any character, but the four normal vector fields nfa> must be linearly 
independent. Thus, for example, the hypersurfaces could all be null, timelike, 
or spacelike, or any combination of the three. We shall be meeting the three 
most common situations where the four coordinates consist of: 

1 timelike, 3 spacelike 
1 null, 3 spacelike 
2 null, 2 spacelike. 
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Although a metric may be displayed in any coordinate system, if it 
possesses symmetries then there will exist preferred coordinates adapted to 
the symmetries. We have already seen in Chapter 14 that if a solution 
possesses a Killing vector field then the coordinates may be adapted to the 
Killing vector field. If a solution possesses more than one Killing vector field, 
then the coordinates can be adapted to each of them as long as the Killing 
vector fields commute, that is, their Lie brackets vanish. If they do not 
commute, then the story is more complicated, but none the less the sym­
metries can be used to tie down the possible coordinate systems. 

With these ideas in mind, let us look at the Schwarzschild solution in the 
form ( 14.4 7) to see if we can characterize the coordinates ( t, r, 0, </> ). First of 
all, since 

1 
g33 = __ _ 

- r2 sin2 e' 
(16.2) 

it follows that x0 = tis timelike and x1 = r is spacelike as long as r > 2m and 
both x 2 = 0 and x 3 = </> are spacelike. Next, since the metric is independent of 
t and there are no cross terms in dt, it follows that the solution is static and tis 
the invariantly defined world time of § 14.3. The coordinate r is a radial 
parameter which has the property that the 2-sphere t = constant, r = con­
stant has the standard line element 

from which it follows that the surface area of the 2-sphere is 4nr2 . This would 
fail to be the case if we had chosen a different radial parameter, such as the 
isotropic coordinate pin (14.58). Then, finally, 0 and cf> are the usual spherical 
polar angular coordinates on the 2-spheres, which are invariantly defined by 
the spherical symmetry. In short, the Schwarzschild coordinates ( t, r, 0, cp) 
are canonical coordinates defined invariantly by the symmetries present. 

16.2 Singularities 
We now turn to another problem associated with coordinates, that is, the fact 
that in general a coordinate system only covers a portion of the manifold. 
Thus, for example, the Schwarzschild coordinates do not cover the axis 0 = 0, 
n because the line element becomes degenerate there and the metric ceases to 
be of rank 4. This degeneracy could be removed by introducing Cartesian 
coordinates (x, y, z), where, as usual, 

x = rsin0coscp, y = r sin 0 sin </>, z = rcos0. 

Such points are called coordinate singularities because they reflect deficien­
cies in the coordinate system used and are therefore removable. There are 
two other values of the coordinates for which the Schwarzschild solution is 
degenerate, namely, r = 2m and r = 0. The value r = 2m is known as the 
Schwarzschild radius. The hypersurface r = 2m again turns out to be a 
removable coordinate singularity. This is indicated by the Riemann tensor 
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scalar invariant 
RabcdR•bcd = 48m2,-6, 

which is finite at r = 2m. Since it is a scalar, its value remains the same in all 
coordinate systems. By the same token, this invariant blows up at the origin 
r = 0. The singularity at the origin is indeed irremovable and is variously 
called an intrinsic, curvature, physical, essential, or real singularity. Notice 
also by (15.48) that, since g00 vanishes at the Schwarzschild radius, the surface 
r = 2m is a surface of infinite red shift. We shall pursue this later. 

The normal interpretation of the Schwarzschild solution is as a vacuum 
solution exterior to some spherical body of radius a> 2m (Fig. 16.1). A 
different metric would describe the body itself for r < a, and would then 
correspond to some distribution of matter resulting in a non-zero 
energy- momentum tensor. Indeed, Schwarzschild obtained a spherically 
symmetric static perfect fluid solution known as the interior Schwarzschild 
solution. However, our programme in this chapter will be to investigate the 
Schwarzschild vacuum solution abstracted away from any source for all 
values of r. In such a case, it should be clear from (16.2) that r = 2m is a null 
hypersurface dividing the manifold into two disconnected components: 

l.2m<r<oo 

II. 0 < r < 2m. 

Inside the region II the coordinates t and r reverse their character, with 
t now being spacelike and r timelike. It follows that the topology of the 
Schwarzschild solution is not simply Euclidean. 

16.3 Spatial and space-time diagrams 
The main technique we shall use to help interpret the solution is to investigate 
its local future light cone structure. A local light cone is defined as the locus of 
points x~ + dx", in the neighbourhood of a point x~, for which 

g.bdx"dxb = 0. 

The light cone structure puts constraints on the possible histories of an 
observer, since an observer moves on a timelike world-line whose direction at 
any point must lie within the future light cone at the point. Various diagrams 
will help us in trying to understand the nature of the solution. 

In a purely spatial diagram, we shall be interested in what happens at 
various points in the manifold at two successive intervals of time, t 1 and t2 
say. At time t 1 , a light flash is emitted from each point of interest and the 
spatial diagram indicates where the wave fronts of these flashes have reached 
at time t2 . This is illustrated in Fig. 16.2 for Minkowski space-time. In this 
figure, the light from each point will form a spherical wave front centred on 
the point. If there are symmetries present, it may be sufficient to consider 
what happens if we suppress one spatial dimension. For example, Fig. 16.2 
becomes Fig. 16.3 in the plane z = 0, say, and the spheres now become circles. 

In a space-time diagram, we are interested in the history of these light 
flashes. Suppose we take successive 'snapshots' of the wave fronts emanating 
from some point Pat instants t 1 , t2 , t 3 , etc. (Fig. 16.4). The idea, in a space­
time diagram, is to stack these pictures up in time. Since this would involve a 
four-dimensional picture - and there are enough problems in drawing three-

.10'.'.V:H!---Schwarzschild 
radius 

vacuum 

Fig. 16.1 Standard interpretation of the 
Schwarzschild exterior solution . 

z 

0 
.>---------+Y 

X 

Fig. 16.2 Spatial diagram of Minkowski 
space- time. 

y 

0 0 

o'-----=-o- X 

Fig. 16.3 Spatial diagram of Minkowski 
space time (one spatial dimension sup­
pressed). 
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Fig. 16.4 Light flash from a point at three 
successive times. 

p 

z z z 

.p G 
y y y 

X X l2>t1 X t3>t2 

dimensional pictures in two dimensions - we suppress one spatial dimension 
and, as in Chapter 2, we draw the time axis vertically. To be specific, let us 
restrict attention to the plane z = 0 and then the wave fronts will become 
circles (which will appear as ellipses in the diagram to take some account of 
perspective) lying on the future light cone through P (Fig. 16.5). In the same 
way, we can include the past light cone which can be thought of as an 
imploding wave front. Again, it will often be sufficient to consider a space­
time diagram with two spatial dimensions suppressed (Fig. 16.6). In a Cl!rved 
space-time, the curvature manifests itself in space-time diagrams through the 

Y light cones being squashed or opened out and tipped or tilted in various 
ways, as we shall see below. 

X 

Fig. 16.5 Space-time diagram of light 
flash (one spatial dimension 
suppressed). 

p 

'---------+X 

Fig. 16.6 Space-time diagram of light 
flash (two spatial dimensions 
suppressed). 

16.4 Space-time diagram in 
Schwarzschild coordinates 

We first consider the class of radial null geodesics defined by requiring 

Then, using our variational principle approach, we have 

2K = (1 - 2m/r)i2 -(1 - 2m/r)- 1 i-2 = 0, (16.4) 

where a dot denotes differentiation _with respect to an affine parameter 
u along the null geodesic. The Euler- Lagrange equation (7.46) corresponding 
to a= 0 is 

d . 
du [(1 - 2m/r)t] = 0, 

which integrates to give 
(l - 2m/r)i = k, 

where k is a constant. Substituting in (16.4) we find 

or 
r= ±k, 

( 16.5) 

(16.6) 

(16.7) 

from which it follows that r is an affine parameter (exercise). Rather than find 
the parametric equation of these curves, let us look directly for their equation 
in the form t = t(r). Then 

dt dt/du 
dr dr/du 

(16.8) 
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which can be found from (16.5) and (16.7). Taking the positive sign in (16.7), 
. we get 

dt r 
(16.9) 

which can be integrated, to give (exercise) 

In the region I, by (t 6.9), 

r> 2m 
dr 
dt > O, 

so that r increases as t increases. We therefore define the curves (16.10) to be a 
congruence of outgoing radial null geodesics. Similarly, the negative sign 
gives the congruence of ingoing radial null geodesics 

Notice that, under the transformation t -+ - t, ingoing and outgoing geo­
desics get interchanged, as we would expect. 

We can now use these congruences to draw a space-time diagram 
(Fig. 16.7) of the Schwarzschild solution in Schwarzschild coordinates with 
two dimensions suppressed (exercise). The space-time diagram is drawn for 
some fixed 0 and </). Since the diagram will be the same for all 0 and </), we 
should think of each point ( t, r) in the diagram as representing a 2-sphere of 
area 41tr2. Notice that, as r-+ oo , the null geodesics make angles of 45° with 
the coordinate axes as in flat space in relativistic units, which we should 

Ingoing null congruence 

r=O r=2m 

F'lg. 16.7 Schwarzschild solution in 
Schwarzschild coordinates (two 
dimensions suppressed). 
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Fig, 16.8 Radially infalling particle in 
times r and t. 

expect since the solution is asymptotically flat. The local light cones tip over 
in region II, because the coordinates t and r reverse their character. For 
example, the line t = constant is a timelike line in region II and so must lie 
within the local light cone. An observer in region II cannot stay at rest, that is, 
at a constant value of r, but is forced to move in towards the intrinsic 
singularity at r = 0. This diagram seems to suggest tliat an observer in 
region I moving in towards the origin would take an infinite amount of time 
to reach the Schwarzschild radius r = 2m. Equally, the diagram suggests that 
the same is true for an ingoing light ray. However, it turns out that this space­
time diagram is misleading, as we shall see. 

16.5 A radially infalling particle 
Let us consider the path of a radially infalling free particle. It will move on a 
timelike geodesic given by the equations (exercise) 

(1 - 2m/r)i = k, 

(1 - 2m/r)i2 - (1- 2m/r)- 1 r2 = 1, 

(16.12) 

(16.13) 

where a dot now denotes differentiation with respect to -r, the proper time 
along the world-line of the particle. Different choices of the constant k 
correspond to different initial conditions. Let us make the choice k = 1, 
which corresponds to dropping in a particle from infinity with zero initial 
velocity (exercise), so that, for large r, we have i c::,: 1, that is, asymptotically 
t c::,: !· Then (16.12) and (16.13) give 

(16.14) 

Taking the negative square root (why?) and integrating, we find (exercise) 

2 1 .l 

t - to = J(2m)½ (r~ - r2), (16.15) 

where the particle is at r0 at proper time , 0 . This is, perhaps rather sur­
prisingly, precisely the same as the classical result. No singular behaviour 
occurs at the Schwarzschild radius and the body falls continuously tor = 0 in 
a finite proper time. 

If, instead, we describe the motion in terms of the Schwarzschild coordinate 
time t, then 

Integrating, we obtain (exercise) 

2 3 .l 
t - t = ---- (r1 - r 2 + 6mrt - 6mrt) 

o 3(2m)½ o o 

+ 2mln (rt+ (2m)½J [r5 - (2m)½J. 

[r5 +\2m)½J[r½ -(2m)½J 

(16.16) 

(16.17) 

For situations where r0 and rare much larger than 2m, the results (16.15) and 
(16.17) are approximately the same, as we should expect. If, however, r is very 
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near to 2m, then we find (-exercise) 

r - 2m = (r0 - 2m)e-(•-•oJ/lm, (16.18) 

from which it is clear that 

t --+ oo => r - 2m --+ 0 

so that r = 2m is approached but never passed. The two situations are 
illustrated in Fig. 16.8. 

The coordinate t is useful and physically meaningful asymptotically at 
larger since it corresponds to the proper time measured by an observer at rest 
far away from the origin. From the point of view of such an observer, it takes 
an infinite amount of time for a test body to reach r = 2m. However, as we 
have seen, from the point of view of the test body itself, it reaches both r = 2m 
and r = 0 in finite proper time. Clearly, then, the Schwarzschild time coordi­
nate t is inappropriate for describing this motion. Moreover, the coordinate 
system goes bad at r = 2m, as is evident from the behaviour of the line 
element there. In Jhe next section, we shall introduce a new time coordinate 
which is adapted to radial infall, and in the process we shall remove the 
coordinate singularity at r = 2m. 

16.6 Eddington-Finkelstein coordinates 
The idea is very simple: we change to a new time coordinate in which the 
ingoing radial null geodesics become straight lines. It follows immediately 
from (16.10) that the appropriate change is given by 

for r > 2m, because in the new (t, r, 0, cf,) coordinate system (16.11) becomes 

t = - r + constant, (16.20) 

which is a straight line making an angle of -45° with the r-axis. Differ­
entiating ( 16.19), we get 

_ 2m 
dt = dt + --2- dr, 

r- m 
(16.21) 

and, substituting for dt in the Sc~warzschild line element (14.47), we find the 
Eddington-Finkelstein form (ex,rcise) 

This solution is now regular at r = 2m; indeed, it is regular for the whole 
range O < r < 2m. Thus, in some sense, the transformation (16.19) extends the 
coordinate range from 2m < r < oo to O < r < oo. The process is rather 
reminiscent of analytically continuing a function in complex analysis and, 
because of this, (16.22) is called an analytic extension of(14.47) (see Fig. 16.9). 
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Fig. 16.9 Analytic extension of the 
Schwarzschild solution. 

Fig. 16.10 Schwarzschild solution in 
advanced Eddington-Finkelstein 
coordinates. 

Coordinates good Coordinates good 

II 

One could object that the coordinate transformation (16.19) cannot be used 
at r = 2m because it becomes singular. However, (16.19) is just a convenient 
device to get us from (14.47) to (16.22). Our starting point is really the two line 
elements (14.47) and (16.22). Given these solutions, we then ask the question, 
What is the largest range of the coordinates . for which each solution is 
regular? The answer is the patch 2m < r < oo ( together with, of course, 
- oo < t < oo, 0 ~ 0 ~ 1t, and - 7t < q, ~ 1t, apart from the usual problem 
with the coordinates on the axis 0 = 0, 7t) for (14.47) and the patch O < r < oo 
for (16.22Pn the.overlap region (2m < r < oo), the two solutions are related 
by (16.19), and hence they must represent the same solution in this region. 
Note that the solution in Eddington-Finkelstein coordinates is no longer 

Singularity 

r=O r=2m 

Radially infalling 
particle 

v=constant 



 

time-symmetric. We can obtain a time-reversed solution by introducing a 
different time coordinate 

t-+ t* = t - 2m1n(r - 2m), 

which straightens out outgoing radial null geodesics. 
We can write (16.22) in a simpler form by introducing a null coordinate 

V = t + r, (16.23) 

which for historical reasons is called an advanced time parameter. The 
resulting line element is (exercise) 

It is then easy to show that the congruence of ingoing radial null geodesics is 
given by v = constant, which should be evident from (16.20). The space-time 
diagram for the Schwarzschild solution in Eddington-Finkelstein coordin­
ates is given in Fig. 16.10. As before, the light cones open out to 45° cones as 
r-+ oo. The left-hand edge of the light cones are all at -45° to the r-axis. The 
right-hand edge starts at 45° to the r-axis at infinity and tips up as r decreases, 
becoming vertical at r = 2m, and tipping inwards for r < 2m. Notice that at 
r = 2m radially outgoing photons 'stay where they are'. We can get a three­
dimensional picture (in the equatorial plane 0 = 0, say) by rotating Fig. 16.10 
about the i:axis. Figure 16.10 now illustrates correctly what happens to a 
radially infalling particle. 

16. 7 Event horizons 
Figure 16.10 suppresses the angular information in the Schwarzschild solu­
tion. This can best be depicted in the equatorial plane in a spatial diagram, as 
shown in Fig. 16.11. A long way from the origin, the spatial picture is similar 
to the special relativity picture (Fig. 16.3). As we move close to the origin, the 
spherical wave fronts are attracted inwards, so that the points from which 
they emanate are no longer at the centre. This becomes more marked until, 
on the surface r = 2m, only radial outgoing photons stay where they are, 
whereas all the rest are dragged inwards. In region II, all photons, even 
radially 'outgoing' ones, are dragged inwards towards the singularity. 

0 0 
Singularity 

G 

0 
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EVEN1 

Fig. 16.11 Spatial diagram of Schwarz-
0 schild solution in advanced Eddington­

Finkelstein coordinates. 
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Fig. 16.12 Schwar,zschild solution in 
retarded Eddington-Finkelstein 
coordinates. 

It is clear from this picture that the surface r = 2m acts as a one-way 
membrane, letting future-directed timelike and null curves cross only from 
the outside (region I) to the inside (region II). Moreover, no future-directed 
null or timelike curve can escape from region II to region I. The surface 
r = 2m is called an event horizon because it represents the boundary of all 
events which can be observed in principle by an external inertial observer. 
The situation is reminiscent of the event horizons of hyperbolic motions in 
§3.8. However, they were observer-dependent. The Schwarzschild event 
horizon is absolute, since it seals off all internal events from every external 
observer. 

If, instead, we use the null coordinate 

(16.25) 

called a retarded time parameter, then the line element becomes 

This solution is again regular for O < r < oo and corresponds to the time 
reversal of the advanced Eddington-Finkelstein solution (16.22) (Fig. 16.12). 
The surfacer = 2m is again a null surface which acts as a one-way membrane. 
However, this time it acts in the other direction of time, letting only past­
directed timelike or null curves cross from the outside to the inside. 

t ' 

r=O r=2m 



 

16.8 Black holes 
The theory of stellar evolution tells us that stars whose masses are of the 
order of the sun's mass can reach a final equilibrium state as a white dwarf or 
a neutron star. But, for much larger masses, no such equilibrium is possible, 
and in such a case the star will contract to such an extent that the gravita­
tional effects will overcome the internal pressure and stresses which will not 
be able to halt further contraction. General relativity predicts that a spher­
ically symmetric star will necessarily contract until all matter contained in the 
star arrives at a singularity at the centre of symmetry. 

We imagine a situation in which the collapse of a spherically symmetric 
non-rotating star takes place and continues until the surface of the star 
approaches its Schwarzschild radius. To get an idea of the magnitude of the 
Schwarzschild radius, we note that the Schwarzschild radius for the Earth 
is about 1.0 cm and that of the Sun is 3.0 km. As long as the star 
remains spherically symmetric, its external field remains that given by the 
Schwarzschild vacuum solution. Figure 16.13 is a two-dimensional space­
time diagram of the gravitational collapse, where the Schwarzschild vacuum 
solution is taken to be in Eddington- Finkelstein coordinates. As is clear 
from the diagram, an observer can follow a collapsing star through its 
Schwarzschild radius. If signals are sent out from an observer on the surface 
of the star at regular intervals according to that observer's clock, then as the 
surface of the star reaches the Schwarzschild radius, a distant observer will 
receive these signals with an ever-increasing time gap between them. The 
signal at r = 2m will never escape from r = 2m, and all successive signals will 
ultimately be dragged back to the singularity at the centre. In fact, no matter 
how long the distant observer waits, it will only be possible to see the surface 
of the star as it was just before it plunged through the Schwarzschild radius. 
In practice, however, the distant observer would soon see nothing of the star's 
surface, since the observed intensity would die off very fast owing to the 
infinite red shift at the Schwarz.schild radius. The star would quickly fade 
from view leaving behind a 'black hole' in space, waiting to gobble up 
anything which ventured too close. 

If this were not bizarre enough, the theory apparently allows for the 
possibility of the time reversal of a black hole, which is called a white hole. A 
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distant observer Fig. 16.13 Gravitational collapse (two 
~~'--'--..,__.'--A-__ ---'-----+ r spatial dimensions suppressed). 
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Fig. 16.14 Gravitational collapse (one 
spatial dimension suppressed). 

V 

Fig. 16.15 Escape velocity in Newtonian 
gravitation. 
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white hole consists of a visible singularity (?) which, for no apparent reason, 
suddenly errupts into a star whose radius increases inexorably through its 
Schwarzschild radius. For completeness, we conclude this section with a 
three-dimensional space-time diagram of gravitational collapse (Fig. 16.14), 
which is obtained essentially by rotating Fig. 16.13 about the t-axis. 

16.9 A classical argument 
The idea ofa black hole, in the restricted sense of the gravitational field of a 
star being so strong that light cannot escape to distant regions, is in fact a 
consequence of Newtonian theory, if we adopt a particle theory of light. 
Consider a particle of mass m moving away radially from a spherically 
symmetric distribution of matter of radius R, uniform density p, and total 
mass M (Fig. 16.15). If the particle possesses a velocity v at a distance r from 
the centre, then conservation of energy E gives 

E = kinetic energy + potential energy 

= ½mv2 - GMm/r. (16.27) 

We define the escape velocity v0 to be the velocity at the surface of the 
distribution of matter which enables the particle to escape to infinity with 
zero velocity. This requires v-+ 0 as r-+ oo, which by (16.27) results in E = 0. 
Solving for v, we find v2 = 2GM/r, and hence the escape velocity is 

v~ = 2GM/R. (16.28) 

Then, if a particle has a radial velocity less than v0 at the surface, it will 
eventually be pulled back by the gravitational attraction of the distribution. If 
light has velocity c, then it will just escape to infinity if it is related to the mass 
and radius of the distribution by 

c2 = 2GM/R. (16.29) 

Thus, if the mass M were increased (keeping the radius constant) or, equival­
ently, the radius R decreased (keeping the mass constant), then it follows that 
light could no longer escape. This was recognized by Laplace in 1798 who 
pointed out that a body of about the same density as the Sun but 250 times its 
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radius would prevent light from escaping. Note that the limiting condition 
(16.29) in terms of the radius R is 

R = 2GM/c2, (16.30) 

or R = 2m in relativistic units, which is the Schwarzschild radius. 

16.10 Tidal forces in a black hole 
Consider a distribution of non-interacting particles falling freely towards the 
Earth in Newtonian theory, where initially the distribution is spherical (see 
Exercise 9.6). Each particle moves on a straight line through the centre of the 
Earth, but those nearer the Earth fall faster because the gravitational attrac­
tion is stronger. The sphere no longer remains a sphere but is distorted into 
an ellipsoid with the same volume (Fig. 16.16). Thus, the gravitation produces 
a tidal force in the sphere of particles. The tidal effect results in an elongation 
of the distribution in the direction of motion and a compression of the 
distribution in transverse directions. The same effect occurs in a body falling 
towards a spherical object in general relativity, but if the object is a black hole 
the effect becomes infinite as the singularity is reached. We can gain some 
idea of this by considering the equation of geodesic deviation ( see (10.38) and 
(10.39)) in the form • 

(16.31) 

for the spacelike components of the orthogonal connecting vector ri• con­
necting two neighbouring particles in freefall. Let the frame e;" be defined in 
Schwarzschild coordinates as 

e0° ~ (1- 2m/r)-f(l,0,0,0), 

et"~ (1 - 2m/r)t (0, 1, 0, 0), 

el :!c r- 1 (0, 0, 1, 0), 

e3° ~ (rsine)- 1 (0,0, 0, 1), 

and let us denote the components of ri« by 

r/" = (t/1, t/2, t/3) = (t7', t/8, t7<P). 

Sphere of@ 
particles '\':" 

(16.32) 

(16.33) 

(16.34) 

(16.35) 

(16.36) 

@Ellipsoid T of particles 

-----Earth~ 
~ 7/////// //// ////; 

(a) (b) 
Fig. 16.16 Newtonian tidal force: 
(a) before; (b) after. 
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Fig. 16.17 Successive times in the 
astronaut's fall. 

Then (16.31) reduces in Schwarzschild space-time in the above frame to the 
equations (exercise) 

(16.37) 

(16.38) 

D2 17" m 
D-r2 = - r3 '7"· (16.39) 

The positive sign in (16.37) indicates a tension or stretching in the radial 
direction and the negative signs in (16.38) and (16.39) indicate a pressure or 
compression in the transverse directions (see Misner, Thorne, and Wheeler 
(1973) for further details). Moreover,-the equations reveal that the effect 
becomes infinite at the singularity r = 0. 

Consider an intrepid astronaut falling feet first into a black hole 
(Fig. 16.17). The astronaut's feet are attracted to the centre by an infinitely 
mounting gravitational force, while the astronaut's head is accelerated down­
ward by a smaller though ever-rising force. The difference between the two 
forces becomes greater and greater as the astronaut reaches the centre, where 
the difference becomes infinite. At the same time as the head-foot stretching, 
the astronaut is pulled by the gravitational field into regions with ever­
decreasing circumference and so the astronaut is squashed on all sides. Again 
the squashing becomes infinite at the centre. Indeed, not only do the tidal 
effects tear the astronaut to pieces, but the very atoms of which the astronaut 
is composed must ultimately share the same fate! 

I 

16.11 Observational evidence for black holes 
Observing a black hole directly is impossible, unless one were lucky enough 
to see a star disappear. However, searches have been made for double stars 
with one invisible component. The belief is that, if a black hole is sucking off 
matter from its visible partner, then this will form an accretion disc around 
the black hole and the hot inner regions will produce intense bursts of X-rays 
formed by synchrotron radiation shortly before the spiralling matter dis­
appears down the hole (Fig. 16.18). It was the discovery in 1971 of the rapid 
variations of the X-ray source Cygnus Xl by telescopes aboard the Uhuru 
satellite that provided the first evidence of the likely existence of black holes. 
The visible component is a supergiant star, and detailed study of the X-rays 
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led to the conclusion that the unseen body is a compact object with a mass in 
excess of 9 solar masses. Since the maximum masses of white dwarfs and 
neutron stars are believed to be approximately 1.4 and 4 solar masses, 
respectively, then the simplest conclusion is that the object is a black hole. 
Since 1971, a number of other black hole candidates have been found in X­
ray binaries. In addition, studies of the central regions of some galaxies 
(including our own) and globular clusters have indicated the possible exist­
ence of supermassive black holes. 

There might also be quite a number of very much smaller black holes 
scattered around the universe, formed not by the collapse of stars but by the 
collapse of highly compressed regions in the hot dense medium that is 
believed to have existed shortly after the big bang in which the universe 
originated. Such 'primordial' or 'mini' black holes are of greatest interest for 
their possible quantum characteristics. A black hole weighing a billion tons 
(about the size of a mountain) would have a radius of about 10- 13 cm, which 
is the size of a neutron or proton. It could orbit, for example, around the sun . 
or the centre of the galaxy. 

16.12 Theoretical status of black holes 
A crucial part of the interpretation of an X-ray binary rests on the assump­
tion that the maximum mass of a neutron star is less than 4 solar masses. One 
uncertainty is the equation of state, and some arguments suggest that a high­
density equation of state could lead to an increased maximum mass of 5 solar 
masses. Another uncertainty relates to rotation, which could increase the, 
maximum again to 6 solar masses. A third uncertainty relates to the theory of 
gravitation employed. Most alternative gravity theories give similar results 
for weak gravitational fields, but they differ markedly in strong field regions 
such as occur in neutron stars. Indeed, some theories predict no maximum 
mass for neutron stars. 

Fig. 16.18 A binary star with one visible 
and one black hole component. 
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Asymmetry 

(a) (bl 

Fig. 16.19 Asymmetry radiated away: 
(a) before; (b) eventually. 

At the theoretical level, there is the objection that the solution is too special 
in being spherically symmetric. For example, no account has been taken 
of charge or rotation. In Chapters 17 and 18, we shall consider the 
Reissner-Nordstrnm and Kerr solutions, which deal with changed and rota­
ting black holes, respectively. We shall see that, although the story changes in 
detail, the chief characteristics of a black hole, namely, the existence of 
absolute event horizons and singularities, persist. The next objection is that 
asymmetries have been excluded. It is not surprising, it can be argued, that if 
all the matter is moving in radially towards the centre then it will ultimately 
result in a singularity there. However, perturbations of the Schwarschild 
solution have been considered and appear to suggest that all asymmetries are 
eventually radiated away and that, asymptotically in time, the system settles 
down to a Schwarzschild black hole (Fig. 16.19). 

Another objection relates to the particular set of field equations used, 
namely, those of general relativity. flowever, Penrose and Hawking have 
managed to prove some remarkable theorems, the so-called singularity 

theorems, which suggest that many of the qualitative features of this collapse 
picture remain in a more general situation. Their results do not depend on the 
particular field equations of general relativity, but on much weaker assump­
tions such as the geometrical interpretation of gravity and the consequent 
curvature of space-time, relativistic causality, and the dominant energy con­
ditions (§19.12). The theorems prove that, with these very reasonable assump­
tions, there exist geodesics which come to an end, that is to say, that cannot 
be extended any further. This is usually taken to mean that they are ending on 
a singularity. Quite where the singularities are located and what their structure 
is like are issues which the theorems do not directly address. Of course, even 
these very weak assumptions may not apply in extremely strong gravitational 
fields. It could be possible, for example, that such fields result in the emission 
of tachyons which would violate causality. The general belief, however, is that 
the theorems provide strong evidence that singularities are, in fact, generic 
features of relativistic theories of gravitation. 

There is another problem which has not yet been resolved. In order to 
discuss in detail the stability of a collapse situation, we need to understand 
what is going on inside the star. That is, we need realistic interior solutions 
which can be matched on to the known exterior solutions. However, all 
attempts at finding a realistic interior Kerr solution, and there have been 
many of them, appear to have failed. This is somewhat disturbing, because 
the attempts seem to suggest that the matching cannot be done. Were we to 
have an interior solution, it is conceivable that the motion might be unstable 
leading finally to fragmentation rather than collapse. Finally, we point out 
that gravitational collapse deals with situations of high densities and that 
these are really the province of quantum theory. It seems likely that a classical 
theory like general relativity might be modified profoundly by quantum 
effects. Indeed, some theories of quantum gravity suggest that the collapse is 
halted before a singularity is reached and a bounce takes place. Penrose has 
·pointed out that we do not need high densities to create event horizons. It is 
possible to take an average-size galaxy of about 1011 stars, and then, if one 
could arrange to steer them all in the right direction, they could all fit 
together inside their collective gravitational radius without ever coming into 
contact with each other, and yet the resulting overall density would only be 
similar to that of the density of water. 



 
 
 
 
 
 
 

Exercises 

'. 16.1 (§16.l) Interpret the solution 

2 ( 2m) 2 ( 2m)-i 2 ds = l - -;p d0 - l - -;p de/> 

- </>2 dt2 - </>2 sin2 t dr2 • 

16.2 (§16.l) Apply the transformations 

t = Fr, r = rcos (J + 2m 

cp = cos(¢t) 

to the Schwarzschild line element (14.47) and find the coeffi­
cient of dt2. 

16.3 (§16.l) What is the character of the coordinates of 
(i) (t, p, z, cp) in 

ds2 = p-2mdt2 _ p-2m[p2m2 (dp2 + dz2) + p2d</>2]; 

(ii) (u, r, x, y) in 

ds2 = x2 du2 - 2 du dr + 4rx - 1 du dx 

- ,2dx2 - x2dy2. 

16.4 (§16.1) Dingle's metric is the most general diagonal 
metric 

ds2 = A dt2 - B dx2 - C d y2 - D dz2, 

where A, B, C, and D are functions of all four coordinates. 
What does this solution become if ofox, 8/oy, 8/oz are 
commuting vector fields and the solution is adapted to these 
Killing vector fields? 

16.5 (§16.2) Write the Schwarzschild line element (14.47) in 
coordinates (t, x, y, z) where x, y, z are defined by 

x = r sin 0 cos <I>, y = r sin 0 sin</>, z = r cos 0. 

16.6 (§16.3) Draw a two-dimensional space-time diagram 
of null geodesics in special relativity. Draw the world-line of 
an observer moving into the origin and out again. 

16.7 (§16.4) Integrate (16.6). Deduce that r is an affine 
parameter. Integrate (16.9) to obtain (16.10). 

16.8 (§16.4) Confirm Fig. 16.7 by first drawing the graphs 
• of 

(i) y = In x (x > 0) 
(ii) y = Inlxl 
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(iii) y = 2m lnlxl 
(iv) y = x + 2mlnlxl, 
in turn, translating the y-axis to x = 2m, and then drawing 
the graphs of 
(v) y = x - 2m + 2m lnlx - 2ml (x > 0) 

(vi) y = x + 2m lnlx - 2ml + c (x > 0) 
for different values of the constant c. What is the slope of the 
radial null geodesics at r = 0? 

16.9 (§16.5) Establish (16.12) and (16.13) for the equations 
of a radially infalling particle. Show that the choice k = 1 
corresponds to the particle having zero velocity at spatial 
infinity (r = oo ). 

16.10 (§16.5) Integrate (16.14) to obtain (16.15). Show that 
this is the same result as that for a particle falling radially 
from r0 to r in Newtonian theory under the influence of a 
point particle situated at the origin of mass M, where the 
particle has zero velocity at infinity. 

16.11 (§16.5) Integrate (16.16) to obtain (16.17). 

16.12 (§16.5) If r is near 2m, set e = 1 - r/2m and show that 
the dominant term in (16.16) is 1/e. Hence deduce (16.18). 

16.13 (§16.6) Show that (16.19) transforms the Schwarzs­
child line element (14.47) into the form (16.22). Use (16.23) to 
express the resulting line element in the form (16.24). 

16.14 (§16.6) Draw the Schwarzchild solution in advanced 
Eddington-Finkelstein coordinates with one spatial dimen­
sion suppressed in the equatorial plane 0 = ½it. [Hint: rotate 
Fig. 16.10 about the t-axis.] 

16.15 (§16.7) Show that (16.25) leads to the form (16.26). 
Find the equations for radial null geodesics and establish 
Fig. 16.12. 

16.16 (§16.8) Draw the white hole analogue of Fig. 16.13 
and describe its appearance to an external observer. 

16.17 (§16.10) Show that (16.32)-(16.35) defines an ortho­
normal frame in Schwarzschild space-time. Show that the 
spatial part of the equation of geodesic deviation leads to 
(16.37)-(16.39). Give a qualitative argument which reveals 
that r( increases without bound as r -> 0. 



 
 
 

17.1 Maximal analytic extensions 
We saw in the last chapter that the Schwarzschild solution for 2m < r < oo 
can be extended either into the advanced Eddington- Finkelstein solution 
(16.24) or the retarded Eddington-Finkelstein solution (16.26), where 
0 < r < oo. That this is possible is indicated by the fact that a radial timelike 
geodesic can be extended through r = 2m down to r = 0. The question 
naturally arises, Is it possible to extend these solutions further? 

We need to make this question more precise, which we do by introducing a 
couple of definitions. A manifold endowed with an affine or metric geometry 
is said to be maximal if every geodesic emanating from an arbitrary point of 
the manifold either can be extended to infinite values of the affine parameter 
along the geodesic in both directions or terminates on an intrinsic singularity. 
If, in particular, all geodesics emanating from any point can be extended to 
infinite values of the affine parameters in both directions, the manifold is said 
to be geodesically complete. Clearly, a geodesically complete manifold is 
maximal, but the converse is not true in general. Minkowski space-time 
provides a trivial example of a geodesically complete manifold. Neither the 
Schwarzschild nor the Eddington-Finkelstein advanced or retarded exten­
sions is in fact maximal. However, Kruskal has found the maximal analytic 
extension of the Schwarzschild solution and, moreover, this extension is 
unique. The Kruskal solution, although maximal, is again not complete 
because of the existence of intrinsic singularities. The Kruskal solution can be 
obtained by simultaneously straightening out both incoming and outgoing 
radial null geodesics. We shall sketch the original procedure ofKruskal in the 
next section. 

17.2 The Kruskal solution 
We start by introducing both an advanced null coordinate v and a retarded 
null coordinate w, in which case, in the coordinates (v, w, 0, </> ), the Schwarz­
schild line element becomes (exercise) 

ds2 = (1 - 2m/r) dv dw - r2 (d02 + sin 20 d</> 2 ), (17.1) 

where r is a function of v and w determined implicitly by 

½(v- w) = r + 2m1n(r- 2m). 

The 2-space 0 = constant, </> = constant has metric 

ds2 = (1 - 2m/r) dv dw, 

(17.2) 

(17.3) 



 

and hence by the second theorem in §6.13 must~ conformally flat. To make -
this evident, we define • 

t =.½(v+ w), x = ½(v - w), 

and then (17.3) becomes 

ds2 = (1 - 2m/r)(dt2 - dx2 ). 

; The most general coordinate transformation which leaves the 2-space (17.3) 
t expressed in such conformally flat double null coordinates is 

j v ➔ v' = v'(v), w ➔ w' = w'(w), 

f where v' and w' are arbitrary, which leads to 
r 
f ds2 = (1 - 2m/r) ::, :;, dv' dw'. 

I· Introducing 
!s t' = ½(v' + w'), x' = ½(v' - w'), 

we can write (17.3) in the general form 

ds2 = F 2(t', x')(dt' 2 - dx' 2 ). 

A particular choice of v' and w' will then determine the precise form of the line 
element. 

The choice which Kruskal made was 

v' = exp(v/4m), 

w' = -exp(-w/4m). 

(17.4) 

(17.5) 

The radial coordinate r is to be considered a function oft' and x' determined 
implicitly by the equation 

and F is given by 

t'2 - x'2 = -(r - 2m) exp(r/2m) (17.6) 

16m2 
F 2 =--exp(-r/2m). 

r 

Then the line element becomes 

subject to (17.6). 
A two-dimensional space-time diagram of the Kruskal solution is shown in 

Fig. 17.1. As we indicated, all the light cones are now 45° cones and the 
incoming and outgoing radial null geodesics are straight lines. Figure 17.1 
shows a radial timelike geodesic which starts from (r = 4m, t' = 0) and falls 
into the event horizon r = 2m, ending up on the future singularity at r = 0. 
The figure includes some of the signals sent out from this geodesic and 

f illustrates the trapped nature of the signals sent inside the event horizon. 
~; 
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Fig. 17.1 Space-time diagram of the 
Kruskal solution. 

Future singularity r=O t' 

Past singularity r=O 

1( 
/ 

Escaping 
signals 

2m 1' 
/ 

Radially 
infalling 
particle 

t=-m 

Notice from (17.6), which is quadratic in t' and x', that one value of r 
determines two hypersurfaces. In two dimensions, the space-time is bounded 
by two hyperbolae representing the intrinsic singularity at r = 0. They are 
termed the past singularity and future singularity, respectively. The future 
singularity is spacelike and hence unavoidable in region II. The asymptotes 
of the hyperbolae represent the event horizons corresponding to r = 2m. 
These asymptotes divide the space-time into four regions labelled I, II, I', and 
II'. The regions I and II correspond to the advanced Eddington-Finkelstein 
solution (see Fig. 16.10) with region I corresponding to the Schwarzschild 
solution for r > 2m and region II corresponding to the black hole solution. 
The regions I and 11' correspond to the retarded Eddington-Finkelstein 
solution (see Fig. 16.12) with region II' corresponding to the white hole 
solution. What is surprising is that there is a new region called I' which is 
geometrically identical to the asymptotically flat exterior Schwarzschild 
solution region I. The topology connecting I and I' is rather complicated and 
we consider it next. 

17.3 The Einstein-Rosen bridge 
Remember that each point in the diagram represents a 2-sphere. We can gain 
some intuitive idea of the overall four-dimensional structure if we consider 
first the submanifold t' = 0. Then from (17. 7) the line element induced on this 
hypersurface is given by 

(17.8) 

As we move along the x'-axis from + oo to - oo, the value ofrdecreases to a 
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minimum 2m at x' = 0 and then increases again as x' goes to - oo. We can 
draw a cross-section of this manifold corresponding to the equatorial plane 
0 = ½1t, in which case (17.8) reduces further to 

ds2 = -(F 2 dx'2 + r2 dcf> 2 ). (17.9) 

To interpret this we consider a two-dimensional surface possessing this line 
element embedded in a flat three-dimensional space. The surface appears as 
in Fig. 17.2. Thus, at t' = 0, the Kruskal manifold can be thought of as being 
formed by two distinct but identical asymptotically flat Schwarzschild mani­
folds joined at the 'throat' r = 2m. Ast' increases, the same qualitative picture 
holds but the throat narrows down, the universes joining at a value of r < 2m. 
At t' = 1, the throat pinches off completely and the two universes touch at the 
singularity r = 0. For larger values oft', the two universes, each containing a 
singularity at r = 0, are completely separate. The Kruskal solution is time­
symmetric with respect to t', and so the same thing happens if we run time 
backwards from t' = 0. The full time evolution is shown schematically in 
Fig. 17.3, where each diagram should be rotated about the central vertical 
axis to get the two-dimensional picture analogous to that shown in Fig. 17.2. 

The intriguing question of whether or not the mathematical procedure for 
extending the solution which results in the 'new universe' I' has any physical 
significance is still an open one. Although Einstein's equations fix the local 
geometry of space-time, they do not fix its global geometry or its topology. In 
Fig. 17.4, we see an embedding of the slice t' = constant which is geometri­
cally identical but topologically different. This embedding leads to a 
Schwarzschild 'wormhole' which connects two distant regions of a single 
asymptotically flat universe. We shall not pursue the idea further. 

Although Fig. 17.1 is very informative, it does not indicate what happens to 
points at 'infinity'. We shall see that the process of conformal compactific­
ation allows us to investigate the structure of these points and leads to 
another picture called a Penrose diagram. 

--......- :x: )( ) C )( :x: ---__..,,,...._ 
------r<l t'=-1 -l<t'<O t'=O l<t'<O t'=l r>l 

Fig. 17.4 A Schwarzschild wormhole. 

</>=constant x' =constant 

Fig. 17.2 The Einstein-Rosen bridge. 

Fig. 17.3 Time evolution of the 
Einstein-Rosen bridge. 
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Fig. 17.5 The function tan - 1 x maps 
(- oo, oo ) on to ( -½rr, ½rr). 

17.4 Penrose diagram for Minkowski space-time 
We shall introduce the idea of a Penrose diagram by first of all considering 
the procedure for Minkowski space-time. This will provide a prototype for 
other solutions. The essential idea is to start off with a metric g.b, which 
we call the physical metric, and introduce another metric gab• called the 
unphysical metric, which is conformally related to 9ab, that is, 

where Q is the conformal factor. Then, by a suitable choice of Q 2, it may be 
possible to 'bring in' the points at infinity to a finite position and hence study 
the causal structure of infinity. As we found in Exercise 6.28, the null 
geodesics of conformally related metrics are the same. The null geodesics 
determine the light cones, which in turn define the causal structure. The 
essential idea for bringing in the points at infinity is to use coordinl!-te 
transformations involving functions like tan - 1 x, which, for example, maps 
the infinite interval (-co, co) onto the finite interval (-½1t,½1t) (Fig.17.5). 

We introduce double null coordinates defined by 

V = t + r, 

w = t - r, 

(17.11) 

(17.12) 

in which case the line element of Minkowski space-time becomes (exercise) 

ds2 = dv dw - ¼(v - w)2(d02 + sin2 0 d<f, 2 ). (17.13) 

From (17.11) and (17.12), it follows that r = ½(v - w), and so the coordinate 
range ( - co < t < co, 0 ::;;; r < co) becomes ( - co < v < co, - co < w < oo ), 
with the requirement 

(17.14) 

The space-time diagram for Minkowsk:i space-time is shown in Fig. 17.6. 
We next define new coordinates p and q by 

------------------- -------------------
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with the coordinate ranges -½1t < p < ½1t and -½1t < q < ½1t, and where by 
(17.14) 

(17.17) 

Then (17.13) becomes (exercise) 

ds2 = g0bdx"dxb = ¼sec2 psec2 q[4dpdq - sin2 (p - q)(d82 + sin2 8d</>2 )], 

(17.18) 

and the line element of the unphysical metric is 

ds2 = Oabdx"dxb = 4dpdq - sin2 (p - q)(d82 + sin2 8d</>2 ), 

with the conformal factor 

Q = ¼sec2 p sec2 q. 

Finally, we introduce the coordinates 

where the coordinate range is 

t' = p + q, 

r' = p- q, 

(17.19) 

(17.20) 

(17.21) 

the last condition resulting from (17.17). The unphysical line element is now 

subject to the coordinate range (17.22)-(17.24). 
The line element (17.25) is that of the Einstein static universe which we 

introduced in §13.3 and which we shall meet in more detail in Part F. The 
topology of this solution is cylindrical with the time coordinate running 
along the generators of the cylinder. A cross-section of the cylinder, 
t' = constant, has the topology of a 3-sphere S3. Then the coordinate range 
of the manifold is 

- oo < t' < oo, 0 ~ r' ~ 1t, 0 ~ 0 ~ 1t, -1t < cp ~ 1t, (17.26) 

where r' = 0, 7t and 0 = 0, 7t are coordinate singularities. We shall discuss this 
further in Part F, but for . the moment it is sufficient to think of an S3 as a 
three-dimensional generalization of a 2-sphere S2 . In fact, the Einstein static 
universe can be embedded as the cylinder 

x2 + y2 + z2 + w2 = 1 

in a five-dimensional flat space of signature - 3 with line element 

ds2 = dt2 - dx2 - dy2 - dz2 - dw 2. 

(Suppressing two dimensions, this is the more familiar equation of a cylinder, 

w=constant 

v=constant 

Fig. 17.6 Space-time diagram of 
Minkowski space-time. 
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r'=O 

Fig. 17.7 Compactified Minkowski 
space-time (two dimensions 
suppressed). 

j+ 

namely, x 2 + y2 = 1, in a three-dimensional space, but with a Minkowski­
type geometry ds2 = -dt2 + dx2 + dy2.) The Einstein static universe then 
has line element (17.25) and coordinate range (17.26). We have shown that 
Minkowski space-time is conformal to that part of the Einstein static 
universe defined by the coordinate range (17.22)-(17.24). This is depicted in 
Fig. 17.7. The coordinate range (17.22)-(17.24) defines the diamond-shape 
region of the cylinder indicated. Thus, the whole of Minkowski space-time 
has been shrunk or compacted into this finite region. The proce~s is called 
conformal compactification and the region is called compactified Minkowski 
space-time. The boundary of this region represents the conformal structu.re 
of infinity for Minkowski space-time. In terms of the coordinates p and q, it 
consists of the following: 

a null surface p = fit called J+, 

a null surface q = -½1t called J-, 
a point (p = ½1t, q = ½x) called i+, 

a point (p = ½1t, q = -½1t) called i0 , 

a point (p = -½1t, q = -½1t) called i-, 

where J is pronounced 'scri' - short for script i. Then it can be shown that all 
timelike geodesics originate at i- and terminate at i+ . Similarly, null geo­
desics originate at points of J- and end at points of J+, while spacelike 
geodesics both originate and end at i 0 (but these ·rules are not satisfied by 
non-geodesic curves). Thus, one may regard i+ and i- as representing future 
and past timelike infinity, J+ and J- as representing future and past null 
infinity, and i 0 as representing spacelike infinity. This is illustrated in 
Fig. 17.8. 

A Penrose diagram is a space-time diagram of a conformally compactified 
space-time. The Penrose diagram for Minkowski space-time is shown in 
Fig. 17.9. The diagram shows the curves r = constant which correspond to 
the histories of 2-spheres r = constant, and the curves t = constant which 
correspond to timelike slices. Ingoing and outgoing radial null geodesics are 

i0 (regarded as one point) 

r=O 

p=constant 

. r 

Fig. 17.8 Origin and termination of geodesics in 
compactified Minkowski space-time (one dimension 
suppressed). 

Fig. 17.9 Penrose diagram of Minkowski 
space-time (two dimensions 
suppressed). 
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represented by the straight lines p = constant and q == constant making 
angles -45° and 45°, respectively. A large class of asymptotically flat space­
times, which Penrose calls simple space-times, can be analysed in a similar 
manner. 

17.5 Penrose diagram for the Kruskal solution 
The conformal compactification of the Kruskal solution may be obtained by 
defining new advanced and retarded null coordinates in terms of the null 
coordinates v' and w' of §17.2 

v" = tan- 1[v'/(2m)½], 

for the coordinate range 

-½1t < v" <½1t, 

-½1t < w" <½1t, 

-7t < v" + w" < 1t. 

We omit the calculational details and simply present the Penrose diagram in 
Fig. 17.10. Again null geodesics and light cones have angles ±45° in the 
figure. Both regions I and I' have their own future, past, and null infinities. 
For any point outsider= 2m, an outward radial null geodesic ends up at J+ 
but an inward radial null geodesic ends up at the future singularity. For any 
point lying inside r = 2m, both outward and inward radial null geodesics end 
up on the future singularity. 

We now take into account the fact that each point in the diagram 
represents a 2-sphere. Consider a 2-sphere S0 situated in region I which is 
illuminated at some time. Then the photons at each point of S0 move out in a 
2-sphere and the envelope of these 2-spheres is again two 2-spheres S1 and S2 

as shown in Fig.17.11. The area of S2 will be greater than S0 , which in turn 
will have a greater area than S 1 . However, if S0 lies in region II, both wave 
fronts are imploding and the areas of S 1 and S2 will both be less than S0 . Such 

Future singularity r=O 

I 

Past singularity r=O 
Fig. 17.10 Penrose diagram of the 
Kruskal solution. 
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Polar 
origin 
r=O 

Closed trapped surface 

Fig. 17.11 Spherical wave fronts of an 
il luminated 2-sphere S0 . 

Fig. 17.12 Penrose diagram of 
spherically symmetric gravitational 
collapse. 

a 2-surface is called a closed trapped surface. Similarly, each point in region 
11' represents a time-reversed closed trapped surface. It turns out that it is 
precisely the existence of closed trapped surfaces which lead in the singularity 
theorems to the existence of singularities. 

In Fig. 17.12, we show the Penrose diagram for a collapsing spherical star 
(compare with Figs. 16.13 and 16.14). 

Exercises 

17.1 (§17.2) Show that Schwarzschild space-time can be 
written in the form (17.l) subject to (17.2) in double null 
coordinates. [Hint: use (16.23) and (16.25)]. 

17.2 (§17.2) Show that (17.4) and (17.5) lead to the form 
(17.7) subject to (17.6). 

17.3 (§17.2) Show that radial null geodesics make angles of 
±45° with the x'-axis in the Kruskal space-time diagram. 

17.4 (§17.2) Where can observers from universes I and I' 
meet in the Kruskal solution? What is their ultimate fate? 

17.5 (§17.4) Show that Minkowski space-time takes the 
form (17.13) in double null coordinates. 

17.6 (§17.4) Show that Minkowski space-time takes .the 
form (17.18) under the coordinate transformations (17.15) 
and (17.16). 

17.7 (§17.4) Draw a diagram of the region in the (t', r')· 
plane described by the inequalities (17.22) and (17.23). What 
subregion satisfies (17.24) as well? 

17.8 (§17.4) Write down the transformation from the usual 
Minkowski coordinates (t, r) to (t', r') given in (17.20) and 
(17.21). Find the equations for the curves t = constant and 
r = constant in terms of t' and r' and draw them in the 
Penrose diagram of Minkowski space-time. 

17.9 (§17.5) Draw the analogue of Fig. 17.11 for a closed 
trapped surface. Draw the corresponding figure for a 2-
sphere in region II'. 

17.10 (§17.5) Consider the transition from Fig. 17.10 to 
Fig. 17.12. What has happened to regions I' and II'? 



 
 

18.1 The field of a charged mass point 
In this chapter, we shall obtain and investigate the Reissner- Nordstrnm 
solution for a charged mass point. The importance of this solution is that its 
structure is in many ways similar to that of the more complicated Kerr 
solution describing rotating black holes which we shall meet in the next 
chapter. The approach we adopt is to look for a static, asymptotically flat, 
spherically symmetric solution of the Einstein- Maxwell field equations. The 
Einstein-Maxwell equations are 

(18.1) 

where T,,b is the Maxwell energy-momentum tensor, which in source-free 
regions is given by (12.49). In Exercise 13.3, we saw that this tensor is trace­
free, which, by (18.1), implies that the Ricci scalar vanishes (exercise). We can 
therefore also work with the equivalent equations to (18.1), namely, 

(18.2) 

In addition, the Maxwell tensor F.b must satisfy Maxwell's equations in 
source-free regions 

VbF•b = 0, 

OcaFbc] = 0. 

(18.3) 

(18.4) 

The assumption of spherical symmetry means that we can introduce 
coordinates (t, r, 0, <p) in which the line element reduces to the canonical form 
(14.33), namely, 

(18.5) 

where v and }c are functions oft and r. If we next impose the condition that the 
solution is static, then this requires that v and }c are functions of r only, 
namely, 

v = v(r), }c = l(r). (18.6) 

The assumption that the field is due to a charged particle, which we take to be 
situated at the origin of coordinates, means that the line element and the 
Maxwell tensor will become singular there. Moreover, the charged particle 
will give rise to an electrostatic field which is purely radial (Fig. 18.1). This 

Fig. 18.1 Radia l electrostatic fie ld of 
charged point particle. 
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means that the Maxwell tensormust take on the form (exercise) 

-1 0 0] 0 0 0 
0 0 0 • 

0 0 0 

(18.7) 

Plugging the assumptions (18.5)- (18.7) in (18.3) and (18.4), we find (exercise) 
that (18.4) is satisfied automatically and (18.3) reduces to one equation, 
namely, 

(18.8) 

where the prime indicates differentiation with respect to r. This integrates to 
give 

(18.9) 

where B is a constant of integration. Our assumption that the solution is 
asymptotically flat requires 

v, I ➔ 0 as r ➔ oo, (18.10) 

and so E ~ B/ r 2 asymptotically. This latter result is exactly the same as the 
classical result for the electric field of a point particle of charge e situated at 
the origin. We therefore interpret e as the charge of the particle. 

Wehow use (18.5) to (18.9) together with (12.49) to compute the Maxwell 
energy momentum tensor T.b- Plugging this into the field equations (18.2), we 
find that the 00 and 11 equations lead to 

A'+ v' = 0, (18.11) 

which by (18.10) results in ..t = - v. The 22 equation is the one remaining 
ind~pendent equation and it leads to 

(re•)'= 1 - B2/r2, (18.12) 

which integrates immediately to give 

e• = 1 - 2m/r + e2/r2, ( 18.13) 

where m is a constant of integration. We have finally obtained the 
Reissner-Nordstrem solution 

When e = 0, this reduces to the Schwarzschild line element (14.47), and so we 
again identify m as the geometric mass. In deriving this solution, we have, in 
addition to assuming spherical symmetry, also assumed the solution is static 
and asymptotically flat. In fact, as in the case of th~ Schwarzschild solution, it 
is not necessary to adopt these last two assumptions: they are forced on you . 

. The full calculation is similar to the Schwarzschild case but rather longer, 
which is why we have omitted it. There is therefore an analogue to Birklft>ff's 
theorem. 
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18.2 Intrinsic and coordinate singularities 
Consider the coefficients 

Ooo = - (011)- 1 = 1 - 2m/r + e2/r2 = Q/r2, 
where 

Q = r 2 ~ 2mr + e2. 

The discriminant of the quadratic Q is 

L1 = m2 - e2, 

(18.15) 

and, if this is negative, i.e. £2 > m2 , the quadratic has no real roots and is 
positive for all values of r. Hence, it follows that the line element (18.14) is 
non-singular for all values of r except at the origin r = 0. The solution 
possesses an intrinsic singularity at r = 0 - as can be shown by calculating 
the Riemann invariant R•bcd Rabcd ,-which is not surprising since this is where 
the point charge producing the field is located. The more interesting case 
occurs when e2 ~ m2, for then the metric has singularities when Q vanishes, 
namely, at r = r + and r 7- r _, where 

r ± = m ± (m 2 - e2 )½ (18.16) 

In Fig, 18.2, we plot g00 in the case e2 < m2 and compare it with the 
Schwarzschild coefficient sOoo = 1 - 2m/r. 

The line element (18.14) is regular in the regions: 

I. r + < r < oo, 
II. r _ < r < r +, 

III. 0 < r < r _ . 

If e2 = m2, then only the regions I and III exist. The regions are separated.by 
the null hypersurfaces r = r + and r = r _. The situation at r = r + is rather 

Fig. 18.2 Graphs of g00 for Reissner­
Nordstreim and Schwarzschild solutions, 
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similar to the Schwarzschild case at r = 2m. The coordinates t and r are 
timelike and spacelike, respectively, in the regions I and III, but interchange 
their character in region II. Thus, regions I and III are static, but region II is 
not. As in the case of the Schwarzschild solution, these coordinates suggest 
that the regions I, II, and III appear totally disconnected because the light 
cones have totally different orientations on either side of the null hyper­
surfaces r = r ±. We will not pursue the structure of the solution in these 
coordinates further, but rather proceed as we did with the Schwarzschild 
solution and look for the analogue of the Eddington-Finkelstein coordinates. 

18.3 Space-time diagram of the 
Reissner-Nordstrom solution 

In the next two sections, we restrict our attention to the important case 
e2 < m2. We first find the equation for the congruence of ingoing radial null . 
geodesics (exercise). T~n, defining for r > r + the new time coordinate 

rt r~ 
f = t + --- ln(r - r +) - --- In (r - r _ ), (18.17) 

r+ - r _ 

the line element takes on the form (exercise) 

where, for convenience, we define 

f = 1 - g00 = 2m/r - e2/r2. (18.19) 

This form is regular for all positivt:'--values of r and again has an intrinsic 
singularity at r = 0. The conditions for radial null geodesics are 

0 = ef, = ds 2 = 0. (18.20) 

These lead to (exercise) the ingoing family of null geodesics 

f + r = constant (18.21) 

and the outgoing family whose differential equation is 

df 1 + f 
dr 1-j' 

(18.22) 

We do not, in fact, need to solve this equation exactly since our aim is to draw 
a space-time diagram, in which case it is sufficient to use the equation to 
obtain qualitative information about the slope for different values of r. The 
graphs of 1 + f and 1 - fare shown in Fig. 18.3. At infinity, f vanishes and 
so the slope is 45°, as we would expect for an asymptotically flat solution. As 
we come in from infinity, 1 + f increases and 1 - f decreases and so the slope 
increases until, at r = r +, 1 - f vanishes and the slope becomes infinite. In 
region II, the slope increases from - oo at r = r + to some maximum 
negative value at r = e2 /m, and then decreases again to - oo as r ap­
proaches r _ . In region III, the slope decreases from + oo to 1, where the 
graphs cross, and continues decreasing to zero, where the graph I + f crosses 
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Singularity 
r=O---

r=r_-

the r-axis. The slope then decreases through negative values until it reaches 
- l at the origin. With this information, we can draw the space-time diagram 

in Fig. 18.4. It is clear from the light cones at r = r + that no light signal can 
escape from region II to region I. Thus, the surfacer = r + is an event horizon. 
In region II, the light cones are inclined towards the singularity r = 0, and 
hence any particle entering region II will move necessarily towards the centre 
until it either crosses r = r _ or reaches it asymptotically. In the region III, the 
light cones are no longer inclined towards the centre and consequently 
particles need not fall into the singularity. In fact, the opposite occurs in that 
neutral particles cannot reach the singularity, as we shall next show. 

18.4 Neutral particles in Reissner-Nordstrem 
space-tim•t 

To consider the motion of a neutral test particle, we shall investigate a radial 
tirnelike geodesic, the conditions for which are 

0 = ¢ = s2 - 1 = 0, (18.23) 

where dot denotes differentiation with respect to the proper time ,. Defining 
the covariant 4-velocity u0 = 9abdxb/d,, we find that the geodesic equations 

Fig. 18.3 Graphs of the functions 1 + f 
and 1 - f. 

Fig. 18.4 Reissner-Nordstr¢>m solution 
(e2 < m2 ) in advanced Eddington­
Finkelstein type coordinates. 
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Fig. 18.5 Bounded and unbounded 
motion of a neutral particle. 

lead to a first integral of the motion (exercise) 

u0 = constant 

and a remaining equation which can be written in the form 

;-2 = A, 
where 

(18.24) 

(18.25) 

A = u~ - 900 • (18.26) 

We can investigate what qualitative fotms of motion are possible by plotting 
the curve of 900 against rand drawing in lines parallel to the r-axis a distance 
u~ from it, for various values of u~ (Fig. 18.5). Consider first the case 
when u~ < 1. Then the.line intersects the graph of 900 at two points P and Q 
in regions I and III, respectively. At these points, A vanishes by (18.26), and 
(18.25) then shows that r = 0. Moreover, from (18.25), the left-hand side of the 
equation is positive, from which it follows that A must be positive. Therefore, 
by (18.26), motion is only possible when u~;., 900 . It follows that the motion 
is bounded between the two values r = rp and r = rQ. Similar arguments 
show that if u~ > 1 then unbounded motion is possible, but there is a 
minimum distance of approach r = rR in region III. Thus, the point charge at 
the origin produces a potential barrier, which means that a neutral free 
particle can only approach within a certain distance before being repelled. 

According to Fig. 18.4, once a particle is in region III, it cannot cross 
r = r _ but can only reach it asymptotically. However, it can be shown that if 
a particle reaches r = r _ then it does so in finite proper time. The diagram is 
misleading in exactly the same way as the Schwarzschild diagram in 
Schwarzschild coordinates (Fig. 16.7) is misleading in describing what hap­
pens to a radially infalling free particle in region I. Thus, the manifold 
described by the line element (18.18) is not maximal and needs extending in 
analogy with the Kruskal case. 

18.5 Penrose diagrams of the maximal 
analytic extensions 

If we introduce double null coordinates 

V = t + r, W = 2t - V, 

then the line element (18.18) takes on the form (exercise) 

(18.2 

ds2 = (1 - 2~ + ::)dvdw - r 2 (d02 + sin2 0dc/> 2). (18.2 
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In the case e

2 < m

2, we define new coordinates 

, (r + - r _ ) 
v = exp 2,t v , 

( r - r+ ) 
w' = -exp - 2,t w , 

which transforms the line element into the form 

4 4 ( ) I + r2 /r2 ( ) d 2 r+ r - r_ - + ,_ - r+ d 'd , 
s = 

2 
( ) 2 exp 

2 
r v w 

r r+-r- r+ 

- r 2 (d0 2 + sin2 0d<f, 2 ) 

where r is defined implicitly by 

( r + - , _ ) , 1 , 
v'w'=-exp rt r (r-r+)(r-r_)-' - '• 

(18.29) 

(18.30) 

(18.31) 

This line element is the analogue of the Kruskal solution and represents the 
maximal analytic extension of the Reissner-Nordstrnm solution for e

2 < m

2 . 

The Penrose diagram for this maximal extension is shown in Fig. 18.6. 

Singularity ---­
r=O / 

/ 

/ 
/ 

;+ / II 

r=O---~ 

/=constant 
/ 

r=constant 

II 

' '~'- r=r_, 

' / ' / 
III )< III 

/ ' 
/ ' 

/. - ' / r=r_ r-r_' 

---- Singularity 
r=O 

>-----r=O 

/=constant 

Fig. 18.6 Penrose diagram for maximal 
analytic extension (e2 < m 2 ) . 
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Singularity 
r=O 

Fig, 18.8 Penrose diagram for the case 
e2 > m2. 

This time, the maximal extension gives rise to an infinity of'new universes'. 
There are an infinite number of asymptotically flat regions I where r > r +. 

These are connected by intermediate regions II and III where r _ < r < r + 

and O < r < r .:.. , respectively. Region III possesses an intrinsic singularity at 
r = 0 but, unlike the Kruskal solution, it is timelike and so can be avoided by 
a future-directed timelike curve from a region I which crosses r = r + . A 
timelike curve is drawn in Fig. 18.6 which starts in a particular region I, 
passes through regions II, III, and II and re-emerges into another asymp­
totically flat region I. This gives rise to the highly speculative possibility that 
it may be possible to travel to other universes by passing through the 
'wormholes' produced by charges. Unfortunately, it would seem as though it 
would not be possible to return. However, there is the possibility of identify­
ing regions I (giving rise to a more complicated topology), so that a particle 
could then re-emerge from the black hole through the horizon r = r +. 

Whether or not the particle emerges into the same part or a different part of 
the universe will depend on how the identification is made. A particle crossing 
the event horizon r = r + would appear to suffer an infinite red shift to an 
observer who remains in region I. In region II, each point represents a closed 
trapped surface. The extended solution possesses a very bizarre property in 
that any observer crossing the surface r = r _ would see the whole of the 
remaining history of the asymptotically flat region I in a finite time! The line 

• element (18.30) has a coordinate singularity at r = r _. It is therefore neces­
sary to introduce new null coordinates (in fact, an infinity of such co­
ordinates) in order to 'patch' the manifold together. We shall not pursue this 
further. 

The case e2 = m2 can be extended similarly and the Penrose diagram is 
shown in Fig. 18.7. The remaining case e2 > m2 is already inextendible in the 
original coordinates and the Penrose diagram is shown in Fig. 18.8. 

Singularity 
r=O 

/ 

III 
/ 

/ 

/ 

/ 
/ 

/r=m r=oo 

r=constant 

Fig. 18.7 Penrose diagram for 
the case e2 = m 2• 



 
 
 
 
 
 
 
 
 
 
 

Exercises 

18.1 (§18.1) Show that Einstein-Maxwell equations can be 
written in the equivalent form (18.2) in source-free regions. 

18.2 (§18.1) Given the definition (12.20) of the Maxwell 
tensor in Minkowski coordinates (t, x, y, z), find its compon­
ents in spherical polar coordinates (t, r,}, c/> ). Hence confirm 
the ansatz (18.7). 
18.3 (§18.1) Show that the assumptions (18.5)-(18.7) lead 
to the result that (18.4) is satisfied automatically and (18.3) 
reduces to (18.8). 

18.4 (§18.1) Use (18.5)-(18.8) and (12.49) to compute the 
energy-momentum tensor T•b· Show that the two independ­
ent Einstein- Maxwell field equations are (18.11) and (18.12). 
Hence obtain the Reissner-Nordstrnm solution. 

18.5 (§18.2)' Establish Fig. 18.2. 

18.6 (§18.2) Establish the character of the coordinates t 
and r in (18.14) for e2 < m2 in the regions I, II, and III. Find 
the surfaces of infinite red shift. 

18.7 (§18.2) Draw a retarded Eddington-Finkelstein 
space-time diagram for the Reissner- Nordstrom solution. 

18.8 (§18.3) Find the equation for the congruence of in­
going radial null geodesics for the line element (18.14) in the 
case e2 < m2 . 

18.9 (§18.3) Draw a space-time diagram for Reissner­
Nordstrom solution in the coordinates of (18.14) for 
e2 < m2 • What happens to the diagram when e2 = m2 ? 

18.10 (§18.3) Show that (18.17) transforms (18.14) into the 
form (18.18). Show that the two families of radial null 
geodesics are given by (18.21) and (18.22). 

18.11 (§18.3) Show that the transformations 

rt r~ 
f = t +--- Jn(r + - r)- ---Jn(r- r_) 

r + -r_ r+ -r_ 

for r _ < r < r + 
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r; r~ 
f = t +---ln(r + - r) - - --ln(r _ - r) 

r+ -r_ r+ -r_ 

for O < r < r _ 

transform (18.14) for e2 < m2 into the form (18.18). 

18.12 (§18.3) Show that the transformations 
m2 

f = t + m In (r - m)2 - -- if e2 = m2 

r-m 

_ 2m2 - e2 r - m 
t=t+mln(r2 -2mr+e2)+ 2 2 ttan - 1 ~ 2-~--,-

(e - m ) (e - m2)½ 

if e2 > m2 

transform (18.14) into the form (18.18). 

18.13 (§18.3) Find the advanced Eddington-Finkelstein 
form of the Reissner-Nordstrnm solution. 

18.14 (§18.3) Consider the graphs of 1 + f and 1 - f in 
Fig. 18.3. Where is the slope dt,ldr a maximum in region II? 
Where is the slope zero in the region III? What is the slope at 
the origin? 

18.15 (§18.4) Show that the equation for a radial timelike 
geodesic for the solution (18.18) in the case e2 < m2 leads to 
(18.24) and (18:25). 

18.16 (§18.5) Show that the transformation (18.27) trans­
forms the line element (18.18) into the form (18.28). Show 
that the transformation (18.29) transforms (18.28) into the 
form (18.30) subject to (18.31). 

18.17 (§18.5) Consider the world-line of the observer in 
Fig. 18.6 emanating from the point P and the histories of all 
timelike geodesics in the region I containing P. Hence show 
that the observer will see all the remaining history of these 
geodesics as the horizon r = r _ is crossed. 



 
 
 

19.1 Null tetrads 
In this chapter, we shall investigate the Kerr solution which describes 
rotating black holes. It turns out to be a rather long process to solve 
Einstein's vacuum equations directly for the Kerr solution. We shall, instead, 
describe a 'trick' of Newman and Janis for obtaining the Kerr solution from 
the Schwarzschild solution. This same trick can then be applied to the 
Reissner-Nordstr0m solution to obtain the Kerr-Newman solution, the 
most general solution for a charged rotating black hole. In order to discuss 
this approach, we start by introducing the very important idea of a null 
tetrad. 

In § 10.4, we met the idea of a tetrad et of one timelike and three spacelike 
vectors. In fact, these tetrads, or frames, possess a formalism of their own 
called the frame formalism, which has proved extremely useful in many 
applications in general relativity. The most important case is when the tetrad 
vectors are taken to be null vectors. The systematic use of null tetrads is the 
basis of the 'Newman-Penrose' formalism, which has been used extensively in 
the study of gravitational radiation, among other topics. In this section, we 
shall restrict our attention to the definition of a null tetrad. 

We start with four linearly independent vector fields e;", where i serves to 
label the vectors. Then, working at a point, we define a matrix of scalars ll;j, 
called the frame metric, by 

(19.1) 

Since e;" are linearly independent and g.b is non-singular, it follows that the 
~_atrix g1i is non-singular and hence invertible. We therefore define its inverse 
g'1, the contravariant frame metric, by the relation 

(19.2) 

We then use the frame metric to raise and lower frame indices in the same way 
that we use the metric tensor to raise and lower tensor indices. It is then easy 
to verify that the inverse relationship to (19.1) is 

(19.3) 

In § 10.4, we took the tetrad to consist of one timelike vector v• and three 
spacelike vectors i• ,j", and k•, say, in which case the orthonormality relations 
lead to 

9;i = 'Iii = diag(l, -1, -1, -1), 



 
 

where the frame metric is the Minkowski metric 1711 . We now take 

e0• = [• = J2 (v" + i0), (19.4) 

et" = n° = J2 (v" - i"), 

in which case I" and n• are null vectors (Fig. 19.1), that is, 

1°1. = n°n0 = 0 

and satisfy the normalization condition 

[•n. = 1. 

(19.5) 

(19.6) 

(19.7) 

Then, ifwe take ez" = j° and eJ° = k", the orthonormality relations (19.1) lead 
to the frame metric 

1 0 

0 0 

0 -1 

0 0 jJ (19.8) 

Finally, it is advantageous to introduce a complex null vector defined by 

1 
m• = ✓2 (j 0 + ik0

), (19.9) 

together with its complex conjugate 

1 m0 = ✓2 (j" - ik0 ). (19.10) 

It is then easy to verify (exercise) that the vectors are null, 

(19.11) 

and satisfy the normalizing condition 

(19.12) 

If we choose 

(19.13) 

then this defines a null tetrad with frame metric 

1 0 

0 0 

0 0 
(19.14) 

0 -1 

Thus, writing out (19.3) explicitly, we have decomposed g0 b into products of 
the null tetrad vectors according to 
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n' 

Fig. 19.l The null vectors n• and /a. 
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The contravariant form of this equation is 

19.2 The Kerr solution from a 
complex transformation 

The Schwarzschild solution in advanced Eddington-Finkelstein coordinates 
is given by (16.24). The non-zero components of the contravariant metric g•b 
are found to be (exercise) 

1 g33= -~~-
r2 sin2 0 • 

22 1 
g = - r2' 

(19.17) 

It is straightforward to check, using (19.16), that the contravariant metric 
may be written in terms of the following null tetrad: 

1° = (0, 1, o, 0)= Si, 
n° = (-1, -½(1 - 2m/r), 0, 0) = -60 -½(1 - 2m/r)6i, 

a_ 1 (o O i )- 1 ('=• i "") m - ✓2r ' ' l, sin0 - ✓2r 02 + sin0 03 • 

(19.18) 

The 'trick' starts by allowing the coordinate r to take on complex values 
and the tetrad is rewritten in the form 

(19.19) 

where throughout this procedure we keep l" and n• real and m• and m• 
complex conjugate to each other. We next formally perform the complex 
coordinate transformations 

V-+V'=v+iacosO, r-+r'=r+iacos0, o ..... o', </J-+</J' (19.20) 

on the null tetrad. Then, if we require that v' and r' are real, we obtain the 
following tetrad (exercise): 

I'" = 6i, 

,. _ o• 1 (1 2mr' ) 6" 
n -- 0 -2 -r'2 +a2 cos2 0 1 • (19.21) 

1 ( i ) m'• = 12( , . O) - ia sin 0(60 + 6i) + 62 + -:----0 63 . 
y r + iacos sm 

This is the promised Kerr solution and the contravariant components can be 
read off using (19.16). 
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19.3 The three main forms of the Kerr solution 
The procedure of the last section gives rise to the following line element: 

where 
p2 = r2 + a2 cos2 8 (19.23) 

and, for later convenience, we have replaced q, by ¢. This is obtained by 
complexifying the advanced Eddington-Finkelstein form of the Schwarz­
schild solution, and so we shall term (19.22) the advanced 
Eddington-Finkelstein form of Kerr's solution. To obtain the analogue of the 
Schwarzschild form, we carry out the coordinate transformation (to be 
explained later) from the old coordinates (v, r, 8, ¢) to new coordinates 
(t, r, 8, <p ). It turns out to be easier to work with the coordinate differentials 
rather than the coordinates themselves, in which case the transformation is 
given by 

_ 2mr+L1 
dv = dt + dr = dt + L1 dr (19.24) 

- a 
dq, = dq, + J dr (19.25) 

where 
L1 = r2 - 2mr + a2 (19.26) 

and r and 8 remain unchanged. This leads to the form of Kerr's solution 
called the Boyer-Lindquist form, namely, 

In fact neither (19.22) nor (19.27) was 'the form in which Kerr originally 
discovered the solution. He used Cartesian-type coordinates (t, x, y, z) to 
obtain the Kerr form 
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where 

t = v- r, } 
x = rsin0cos¢ + asin0sin¢, 
y = rsin0sin</J- asin0cos</J, 
z = rcos0. 

This line element has the general form 

ds2 = 'labdxadxb - Ala lb dxa dxb, 

(19.29) 

(19.30) 

where the vector 1a is null with respect to the Minkowski metric 'lab• that is, 

'lablalb = 0. 

In the particular case of the Kerr form (19.28), we have 

2mr3 
A.=----

and 
r4 + a2z2 

( rx + ay ry - ax z) 
la = 1, a2 + y2 , a2 + y2 , r . 

In the special case of the Schwarzschild solution this reduces to 

A= 2m/r 
and 

l0 = (1, x/r, y/r, z/r). 

(19.31) 

(19.32) 

(19.33) 

(19.34) 

(19.35) 

Indeed, it was precisely by considering metrics of the form (19.30) subject to 
(19.31) that Kerr originally found the solution; see Adler et al. (1975) for the 
details. We shall now attempt to gain some physical insight into the Kerr 
solution, and in so doing we shall make use of all three forms, namely, the 
Eddington-Finkelstein, Boyer-Lindquist, and Kerr versions of the solution, 
which is why we have collected them together in this section. 

19.4 Basic properties of the Kerr solution 
The Boyer-Lindquist form is the most useful one for investigating the , 
elementary properties of the Kerr solution. First of all, it is clear that the 
solution depends on the two parameters m and a. If we set a = 0, we regain 
the Schwarzschild solution in Schwarzschild coordinates and so m is identi­
fied as the geometric mass. The metric coefficients in (19.27) are independ­
entof both t and ¢, and hence the solution is both stationary and axially 
symmetric. In other words, both iJ/iJt and iJ/iJ<P are Killing vector fields. To 
say that a solution is axially symmetric means that there exists an invariantly 
defined axis (which in coordinate terms we take to be the z-axis or 8 = 0) such 
that the solution is invariant under rotation about this axis. Or, equivalently, 
the orbits of the Killing vector field iJ/iJ<P, namely, the curves t = constant, 
r = constant, 8 = constant, are circles. These are the only continuous sym­
metries. As for discrete symmetries, the solution is not symmetric separately 
under time reflection or <P reflection (reflection in the (x, z)-plane), but it is 
invariant under the simultaneous inversion of t and ¢, that is, under the 
transformation 

t-+ -t, <P-+ -<f,. (19.36) 
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This suggests that the Kerr field may arise from a spinning source, since 
running time backwards with a negative- spin direction is equivalent to 
running time forwards with a positive spin direction. Again, the line element 
is invariant under 

t-+ -t, a-+ -a, 

which suggests that a specifies a spin direction. 
A third property which lends support to the spinning source interpretation 

is the presence in these canonical (t, </> )-coordinates of a cross term involving 
d<f, dt (the only cross term present). Let us consider in Newtonian theory two 
frames Oxyz and Ox'y'z' whose origins and z-axes coincide, in which the 
primed frame is rotating relative to the unprimed frame with constant 
angular velocity ak (Fig. 19.2). Then a point P has cylindrical coordinates 
(r, </>, z) and (r', <j/, z') relative to the two frames, where 

r' = r, </>'=</>-at, z' = z. (19.37) 

If we take Oxyz to be inertial, then this represents a transformation to a 
rotating frame. Now write flat space in cylindrical polar coordinates (t, r, </>, z), 
namely, 

ds 2 = dt 2 - (dr 2 + r 2 d</> 2 + dz 2 ), (19.38) 

and carry out the coordinate transformation (19.37) to a 'rotating frame' 
(leaving t unchanged). The line element (19.38) becomes (exercise) 

ds 2 = (1 - a2r 2 )dt2 - 2ar 2 d</>' dt - (dr2 + r 2 d<f,' 2 + dz 2 ), (19.39) 

which, as we see, also possesses a cross term in d</>' dt. This is somewhat 
imprecise since we have not discussed rigid rotation in special relativity (nor 
shall we). The argument presented is merely suggestive of rotation. Nor have 
we said anything precise yet about the coordinates rand 0 in (19.27). Indeed, r 
is not the usual spherical polar radial coordinate except asymptotically 
(although we shall retain r to agree with standard notation). For, if we take 
(x, y, z) in (19.28) to be the usual Cartesian coordinates, then the standard 
spherical polar coordinate R is defined by 

and hence, from (19.29), 
R2 = r2 + a2 sin2 0. 

However, for r ~ a (exercise), 

a2 sin2 0 
R=r+---+ .. ·, 

2r 

(19.40) 

(19.41) 

(19.42) 

which shows that R and r coincide asymptotically. They also coincide in the 
Schwarzschild limit a-+ 0. Further, it follows from the Kerr form (19.28) that 

gab-+ l'/ab as R -+ 00, 

so that the Kerr solution is asymptotically flat. 
If we return to the idea that the Kerr solution represents a vacuum field 

exterior to a spinning source, then there are a number of independent 
arguments to suggest that a is related to the angular velocity and ma to the 
angular momentum (as measured at infinity). One argument involves com­
paring the Kerr solution with a solution due to Lense and Thirring for the 

z 

X 

x' 

F'ig. 19.2 Primed frame rotating about z. 
axis of unprimed frame_ 



 

254 I Rotating black holes 

gravitational field exterior to a spinning sphere of constant density in the 
weak-field limit. Another argument is based on the definition of the multipole 
moments of an isolated source. There are difficulties associated with this 
latter work because a number of different definitions have been proposed 
(indeed an infinitude of them); however, they all lead to the angular 
momentum being proportional to ma for the Kerr metric. We have already 
seen that in the weak-field limit the 1/R term in Yoo determines the total mass 
of the field. It is also possible to show that, in certain circumstances, the 1/R 
terms in Yo« (ix = 1, 2, 3) determine the components of the angular 
momentum. Expanding the Kerr solution (19.28) in powers of 1/R, we find 

2 ( 2m ) 2 4ma ds = 1-R+ ••• dt - R 3 (xdy-ydz)dt+ (19.43) 

which again suggests that the total angular momentum is proportional 
to ma. 

19.5 Singularities and horizons 
Calculation of the Riemann invariant Rabcd Rabcd reveals that the Kerr metric 
has only one intrinsic singularity and that is when p = 0. Since 

p2 = r2 + a 2 cos2 (J = 0, 

it follows that r = cos (J = Oand, from (19.29), (19.40), and (19.41), this occurs 
when 

This singularity is, rather surprisingly, a ring of radius a lying in the 
equatorial plane z = 0. We have only considered how to calculate the 
gravitational red shift in a static space-time, but it can be shown that 
the surfaces of infinite red shift in the Kerr solution are again given by the 
vanishing of the coefficient y00 . From (19.27), we find 

Yoo= (r 2 

- 2mr + a2 cos 2 0)/p 2

, (19.45) 

and so the surfaces of infinite red shift are 

In the Schwarzschild limit, a ➔ 0 and the surface S + reduces to r = 2m and 
S _ to r = 0. The surfaces are axially symmetric, with S + possessing a radius 
2m at the equator and (assuming a2 < m2 ) a radius m + (m2 - a2 )½ at the 
poles, and the surface S _ being completely contained inside S + . We shall 
primarily be concerned with the physically more interesting case a2 < m2

, 

when the spin is small compared with the mass. 
The existence of these infinite red-shift surfaces imply the existence of a null 

event horizon as follows. The Killing vector field 

xa = (1, 0, 0, 0) 
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has magnitude 
X 2 = X 0 X 0 = gabXa Xb = goo· 

It follows from (19.45) and (19.46) that X 0 is timelike outside S+ and inside S_, 
null on S + and S _, and spacelike between S + and S _. In analogy with the 
Schwarzschild solution, we search for the event horizon by looking for the 
hypersurfaces where r = constant becomes null, that is, where g 11 vanishes. 
From the .Boyer- Lindquist form (19.27), we find (exercise) 

LI 
gll = - -

p2 

and hence g11 vanishes when 

r2 - 2mr + a2 

r 2 + a2cos2 0 ' 

LI = r 2 - 2mr + a2 = 0, 

which results in two null event horizons (assuming a2 < m2 ) 

Then, in a similar way in which the Reissner-Nordstrnm solution is regular in 
three regions, the Kerr solution is regular in the three regions: 

I. r + < r < oo, 
II. r _ < r < r +, 

III. 0 < r < r _. 

In the Schwarzschild limit, a -+ 0, and the two event horizons reduce to 
r = 2m and r = 0, from which it follows that in the Schwarzschild solution the 
surfaces of infinite red shift and the event horizons coincide. The event 
horizon r = r + lies entirely within S +, giving rise to a region between the two 
called the ergosphere, the properties of which we shall discuss in §19.11. The 
various surfaces and the ring singularity are illustrated in Fig. 19.3. 

Infinite red-shift 
surface s-

Event horizon r=r• 

z 

I 
I 

Symmetry axis (0=0) 

Ring singularity 

Stationary limit surface 
(infinite red-shift surface) 

s+ 
y 

Ergosphere 

Fig. 19.3 The event horizons, stationary 
limit surface, and ring singularity of the 
Kerr solution. 
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We end this section by summarizing the properties we have met so far. The 
Kerr vacuum solution: 

(1) is stationary; 
(2) is axisymmetric; 
(3) is invariant under the discrete transformations 

t --+ - t, <I> --+ - <I> and t--+ -t, a--+ -a; 

(4) has geometric mass m; 
(5) represents the field exterior to a spinning source where the spin of the field 

is related to a and the angular momentum to ma; 
(6) is asymptotically flat; 
(7) has a ring singularity at 

x2 + y2 = a, 

(8) has two surfaces of infinite red shift 

z = O; 

r = m ± (m2 - a 2 cos2 0)½; 

(9) in the case a2 < m2, has two event horizons 

r = m ± (m2 :_ a2 )½. 

19.6 The principal null congruences 
The Kerr solution is no longer spherically symmetric and so we no longer 
expect that there are any curves corresponding to radial null geodesics. This 
is because, fo a loose sense, we expect a rotating source to 'drag' space around 
with it and consequently drag the geodesics with it. The situation is very 
different from what happens in Newtonian theory, where, if one was in­
vestigating a source rotating about the z-axis, say, one could transfer to a 
frame rotating with the source and so reduce it to rest. However, one cannot 
do this in general relativity because it is not possible to find a coordinate 
system which reduces the Kerr solution to the Schwarzschild solution. Put 
another way, the nonlinear field equations couple the source to the exterior 
field. 

Since the metric is axially symmetric, we might expect to obtain null 
geodesics which lie in the hypersurface 0 = constant. We therefore search for 
null geodesics for which 

0 = ds 2 = 0, (19.48) 

where the dot denotes differentiation with respect to an affine parameter and 
where, throughout, 0 is kept constant. We use the Boyer- Lindquist form 
(19.27), and then the fact that the metric coefficients are independent oft and 
</> means that the Euler-Lagrange equations immediately lead to first integ­
rals of the motion. These are 

Ll . . 2 • a sin2 0 2 2 • • 

2 (t-asm 0</>)+--2 -[(r +a )<f>-at]=l, 
p p 

(19.49) 

,. • 29 ( 2 + 2) • 20 ansm (' • 20 ,i.) r a sm [( 2 2 ),i. '] 
- ~ 2-t-asm 'I'+ 2 r +a 'l'-at =n, 

p p 
(19.50) 

where land n are constants of integration. We have another first integral from 
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the condition ds2 = 0, namely, 

.d sin2 0 . p2 f 2 

- (i - asin20</,)2 - --[(r2 + a2 )</>- ai] 2 - - = 0. (19.51) 
p2 p2 .d 

Finally, we have the Euler-Lagrange equation corresponding to x 2 = 8 and, 
using the fact that If= 0 from (19.48), this becomes 

a2.d . . 20J. 2 2a.d</, -. . 2 • 
-(t-asm '+') ---(t-asm 0</>) 
p4 pl 

r2 + a2 . . a2,2 
-~ [(r2 + a2 )</> - at]2 + J = 0. (19.52) 

Since (19.49), (19.50), (19.51), and (19.52) represent four equations in the three 
unknowns i, r, and ef,, it follows that there must exist some constraint between 
I and n. Some algebra reveals that the constraint is (exercise) 

(n + alsin2 0)(n - alsin2 0) = 0, (19.53) 

where 0 is constant. Restricting attention to the condition 

n - alsin2 8 = 0, 

the system of equations can be solved for i, f, and ci,, to give 

i = (r 2 + a2 )l/ .d, 

f = ±1, 

<f, = al/.d. 

(19.54) 

(19.55) 

(19.56) 

(19.57) 

We have therefore found two null congruences corresponding to the two 
signs in (19.56). Moreover, (19.56) shows that r is an affine parameter along 
each congruence. 1 Choosing f = + /, we get 

dt i r2 + a2 
(19.58) 

dr f .d 
and 

d</> ef, a 
(19.59) 

dr r .d 

If we restrict our attention to the case a2 < m2, these equations can be 
immediately integrated to give (exercise) 

and 
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Using the fact that Ll > 0 in regions I and III and ,1 < 0 in region II, then it 
follows from (19.58) that dr/dt > 0 in region I, and so this congruence is 
called the principal congruence of outgoing null geodesics. The solution 
corresponding to r = -I is again given by (19.60) and (19.61) if we simply 
replace t by - t and ¢ by -¢, and so is called the principal congruence of 
ingoing null geodesics. The solutions reduce to the Schwarzschild congru­
ences (16.10) and (16.11), respectively, in the limit a ➔ 0, as we should 
expect. 

These two congruences play the same role as the null radial congruences 
do in the Schwarzschild solution. They give information about the radial 
variation of the light cone structure in that the most outgoing and most 
ingoing null lines - those for which ldr/dtl is a maximum at any point -
are members of the principal null congruences. We can draw a space-time 
diagram of the light cones using these equations and we find in region I a 
diagram analogous to Fig. 16.7 with the light cones narrowing down 
as r ➔ r +. On r = r +, both t and ¢ become infinite, suggesting, as in the 
Schwarzschild solution, that r = r + is a coordinate singularity. We therefore 
proceed as we did in the Schwarzschild solution and look for the analogue of 
the Eddington- Finkelstein coordinate system. 

19.7 Eddington-Finkelstein coordinates 
We use the principal null congruences to obtain a coordinate transformation 
which extends the solution through r = r +. We could work explicitly with the 
equations of the congruence (19.60) and (19.61), but it turns out to be simpler 
to work with them in the differential form (19.58) and (19.59), that is, 

r2 + a2 
dt= - - --dr ,1 , (19.62) 

(19.63) 

" for the ingoing congruence. In the Schwarzschild case, we looked for a 
transformation to new coordinates (f, r, e, ¢) in which the equations.for the 
ingoing radial null congruence take on the simpler differential form 

di= - dr, d0 = d¢ = 0. (19.64) 

Proceeding similarly in the Kerr case, we search for a transformation to 
new coordinates (t, r, e, qi) in which the principal ingoing congruence 
reduces to 

dt = -dr, (19.65) 

Using (19.58) and (19.59), the requisite transformations are (exercise) 

_ _ 2mr 
t ➔ t where dt = dt + J dr, (19.66) 

- a 
¢ ➔ qi where d¢ = d¢ + "J dr. (19.67) 

If we define an advanced time coordinate 

V = t + r, (19.68) 



 
 

r=O 

then the Boyer-Lindquist line element is transformed into (19.22), the ad­
vanced Eddington-Finkelstein form of the Kerr solution. The two-dimen­
sional space-time diagram for this solution is given in Fig. 19.4 (compare this 
with the Reissner-Nordstrnm space-time diagram, Fig. 18.4). 

19.8 The stationary limit 
Consider the set of null curves in the region I given by 

dr = d0 = ds2 = 0. 

Then the Boyer-Lindquist line element reduces to 

Ll . sin2 0 
2 (dt - asm2 0dq,)2 - - 2- [(r2 + a 2 )dq, - adt]2 = 0, 
p p 

and solving for dq,/dr produces 

d<f, a sin 0 ± Ll ½ 
dt = (r2 + a 2 )sin0 ± aL1½sin 2 0· 

(19.69) 

(19.70) 

These curves are not geodesics, but are tangent to world-lines of photons 
initially constrained to orbit the source with fixed r and 0. The positive sign in 
(19.70) leads to d<f,/dt > 0, that is, the photon orbits the source in the same 
direction as the rotation of the source. We now investigate when it is possible 
for d<f,/dt ~ 0, in which case we must restrict attention to the negative sign in 
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Fig. 19.4 Kerr solution (a2 < m2 ) in 
advanced Eddington- Finkelstein type 
coordinates. 
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Fig. 19.5 Spatial diagram of Kerr 
solution (a2 < m2) in the equatorial 
plane. 

(19.70). In region I, 

r > r + <a> (r2 + a 2 )sin2 0 - a.1½sin2 0 > 0, 

so that the denominator of (19.70) is positive. Hence (exercise), 

d¢ ~O 
dt 

<a> asin0-.1½~0 (19.71) 

Thus, on S +, the derivative dcf,/dt is zero, and hence any particle on this 
hypersurface attempting to orbit the source against its direction of rotation 
must travel with the local speed of light just to remain stationary (that is, to 
be precise, stationary relative to a stationary observer at infinity). In the 
ergosphere, the light cones tip over in the direction of cf, increasing to such an 
extent that photons and particles are forced to orbit the source in the 
direction of its rotation. It is because of this that the infinite red-shift surface 
S+ is also termed the stationary limit surface. The stationary limit surface is 
a timelike surface except at the two points on its axis, where it is null and 
where it coincides with the event horizon r = r +. Where the surface is 
timelike, the light cone structure reveals that it can be crossed by particles in 
either the ingoing or outgoing direction. These properties are most clearly 
revealed in a spatial diagram of the Kerr solution (a 2 < m2 ) in the equatorial 
plane (Fig. 19.5). 

Ring singularity 

G 

Event horizon Stationary limit 
r=r • surfaces. 

19.9 Maximal extension for the case a2 < m2 

The Kerr metric can be extended by using advance<l and retarded 
Eddington- Finkelstein coordinates 

,2 + a2 
du±= dt ± - .1-- dr, 

in a manner analogous to the Reissner-Nordstrnm case, where the maximal 
extension is built up by a combination of these extensions. The global 
structure is very similar to that of the Reissner-Nordstrnm solution except 
that now one can continue through the ring singularity to negative values of 
r. Figure 19.6 shows the conformal structure of the solution along the 
symmetry axis for the case a2 < m2 . The regions I (r + < r < oo ) are station­
ary asymptotically flat regions exterior to the outer event horizon. Th~ 
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r=r -
r=O r=O 

r=oo 

Fig. 19.6 Penrose diagram of maximal 
extension of Kerr solution (a2 < m2 ) 

along symmetry axis. 
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r=m 

r=m 

r=oo 
r=O 

r=oo 

Fig. 19.7 Penrose diagram of 
maximal extension of Kerr solu­
tion (a2 = m2) along symmetry 
axis. 

regions II (r _ < r < r +) are non-stationary and each point in one is a closed 
trapped surface. The regions III ( - oo < r < r _) contain the ring singularity 
which is timelike and hence avoidable. This region also contains closed 
timelike curves. Such curves violate causality and would seem highly 
unphysical since, if they represent world~lines of observers, then these ob­
servers would travel back and meet themselves in the past! There is no 
causality violation in the regions I and II. In the limiting case a2 = m2, the 
event horizons r + and r _ coincide and there are no regions II. The maximal 
extension is similar to that of the Reissner-Nordstrnm solution when 
e2 = m2 and its conformal structure along the symmetry axis is shown in 
Fig. 19.7. 

19.10 Maximal extension for the case a2 > m2 

In the case a2 > m2 , we find that LI > 0 and the Boyer-Lindquist form of the 
Kerr solution (19.27) is regular everywhere except at r = 0, where there is a 
ring singularity. The coordinate r, by (19.29), can be determined in terms of 
x, y, z from 

r4 - (x2 + y2 + z2 - a2)r2 - a2 z2 = 0. 

For r # 0, the surfaces r = constant are confocal ellipsoids in a slice 
t = constant which degenerate to the disc x 2 + y2 ~ a2, z = 0 when r = 0. 
The ring singularity is the boundary of this disc. The function r can be 
analytically continued from positive to negative values through the interior of 
the disc to obtain a maximal analytic extension of the solution. To do this, 
one attaches another surface with coordinates (x', y', z'), where a point on the 
top side of the disc is identified with a point with the same x- and y­
coordinates on the bottom side of the corresponding disc in the (x', y', z')­
surface, and similarly for points on the bottom of the disc (see Fig. 19.8). The 
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Fig. 19.8 Maximal extension of Kerr 
solution (a2 > m2). 
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surface 

Ring 
singularity 

Fig. 19.9 The Kerr solution (a2 > m 2 ) as 
a naked singularity. 
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line element (19.27) then extends to this larger manifold and has the same 
form on the (x', y', z')-region, but r is now negative. Then on circling twice 
round the ring singularity, for example, one passes from the (x, y, z)-region, 
where r is positive, to the (x', y', z')-region, where r is negative, and back 
to the (x, y, z)-region. At large negative values of r, the space is again 
asymptotically flat, but this time it has negative mass. 

For a small value ofr near the singularity, the vector iJ/iJ <f, is timelike so the 
circles t = constant, r = constant, 0 = constant are timelike curves. These 
closed timelike curves can be deformed to pass through any point of the 
extended space, so that the solution badly violates causality. The solution is 
geodesically incomplete at the ring singularity, but the only timelike and null 
geodesics which reach this singularity are those in the equatorial plane on the 
positive-r side. This leads to another bizarre property of the solution. The 
event horizons have now disappeared, but an intrinsic space-time singularity 
still exists at the ring and now it is possible for information to escape from the 
singularity to the outside world, provided it spirals around sufficiently 
(Fig. 19.9). In short, the singularity is visible, in all its nakedness, to the 
outside world. Such a singularity is called a naked singularity. If naked 
singularities exist, then they open up a whole new realm for wild speculation, 
so much so that Penrose has suggested the existence of the cosmic censor­
ship hypothesis, which would forbid the existence of naked singularities but 
would only allow singularities to be hidden behind event horizons. Attempts 
to establish under what conditions, if any, the cosmic censorship hypothesis 
holds have been an area of active research in recent years and the source of 
considerable controversy. 

19.11 Rotating black holes 
We consider the ideal case of a rotating star whose exterior field is given by 
the Kerr solution for O < a 2 < m2 . Intuitively we may think of the source as a 
rotating sphere or ellipsoid of matter, but as we have indicated before there is 
as yet, despite considerable efforts, no known physically realistic interior Kerr 
solution. (Perhaps the existence of a ring singularity suggests that we might 
be able to fill in the Kerr solution with a toroidal rather than a spherical 
source.) Nonetheless, we envisage this source collapsing through the event 



 

horizon r = r + to give rise to a black hole. As before, any observer following 
the collapse through r = r + will be unable to return to their original region I. 
The collapse will necessarily continue through r = r _ and any observer in 
region II must follow the collapse through to region III. A difference arises in 
the rotating case, as compared with the non-rotating case, in that the collapse 
may now halt. The maximal extension then suggests that an observer in 
region III is able to escape into a new asymptotically flat region I. We shall 
return to the question of a more physically realistic collapse situation later. 

Penrose has suggested that it might be possible to extract energy from a 
rotating black hole as follows. A particle is fired into the ergosphere, where it 
decays into two products, one falling into the black hole and the other 
escaping outside the stationary limit. Calculations reveal that the escaping 
component can contain more mass-energy than the original particle. This is 
possible because the angular momentum of the black hole is reduced in the 
process. This leads to a fanciful suggestion that an advanced civilization 
could Jive near a rotating black hole and develop some mechanism for 
extracting their energy requirements from the black hole's rotation 
(Fig. 19.10). 

In order to obtain the most general black hole solution, we apply the 
Newman-Janis trick of §19.2 to the Reissner-Nordstrnm solution in ad­
vanced Eddington- Finkelstein coordinates (see Exercise 18.13), namely, 

\ \ 
\ b \Energized 
\ \ matter 

Matter\\ b out 
in \ \ 

\ \ 
Outer~\~ Particle 
event I decay 
horizon ' :::;.o 

Stationary 
limit 
surface 
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Fig. 19.10 Living off a rotating black 
hole . 
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Fig. 19.11 A black hole has no hair. 

We find the result (exercise) 

( 2mr 8 2 ) 2a -ds 2 = 1 - - 2 + 2 dv 2 - 2dvdr + 2 (2mr - 8 2)sin2 0dvd¢ p p p 

+ 2asin2 0drd¢ - p 2 d0 2 

(19.72) 

which is the Kerr-Newman solution in advanced Eddington-Finkelstein 
coordinates. The solution clearly depends on the three parameters m, a, e, 
defining the mass, spin, and charge, respectively. It is stationary and axisym­
metric, and possesses a stationary limit surface 

r = m + (m2 - 82 - a2 cos2 0)½ 

and, provided that a2 + 82 ~ m2, an outer event horizon 

r = m + (m2 - e2 - a 2 )½. 

(19.73) 

(19.74) 

It has properties analogous to the Kerr solution, but we shall not pursue the 
details further. 

If we consider a realistic collapse of a charged rotating black hole, then the 
Kerr-Newman solution will not represent the true geometry exterior to the 
star at early times. This is because, if the star has not gone far down the road 
to collapse, it will not possess the symmetries of stationarity and axi­
symmetry. Gravitational moments will arise from mountains and other 
asymmetries. However, if an event horizon develops, then these asymmetries 
will be radiated away. In fact, a remarkable theorem has been proved which 
states that, if an event horizon develops in an asymptotically flat space-time, 
then the solution exterior to this horizon necessarily approaches a 
Kerr-Newman solution asymptotically in space-time. Thus, we have remark­
ably complete information as to the asymptotic state of affairs resulting from 
a gravitational collapse. 

Detailed considerations of gravitational collapse suggest the following 
picture. A body, or collection of bodies, collapses down to a size comparable 
to its Schwarzschild radius, after which a trapped surface can be found in the 
region surrounding the matter. Some way outside the trapped surface there is 
another surface which will ultimately form the event horizon. But at present 
this surface is still expanding somewhat. Its exact location is a complicated 
affair and it depends on how much more matter or radiation falls in. We 
assume only a finite amount falls in. Then the expansion of the absolute event 
horizon gradually slows down to stationarity. Thus, when a black hole is 
created by gravitational collapse, it rapidly settles down to a stationary state 
that is characterized by the three parameters m, e, and a. Apart from these 
three properties, the black hole preserves no other details of the object that 
collapsed. Wheeler has termed this the theorem that 'a black hole has no 
hair'. If you've seen one, you've seen them all! Wheeler depicts this rather 
humorously by a picture in which a vase of flowers and a television set fall 
into a black hole (Fig. 19.11). Once the system has settled down the only 
quantities which may have altered are m, e, and a. All details of the objects 
swallowed up are obliterated. Considering the time reversal of this situation, 
we see that if you happen to be an astronaut travelling in space and you 
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suddenly see a vase of flowers and a television set pop out of nowhere then 
you know you are in the vicinity of a white hole - a rather 'hairy' prospect! 

19.12 The singularity theorems 
In this section, we consider briefly the question, Are singularities a necessary 
consequence of gravitational collapse in general relativity? As we have stated 
before, the singularity theorems of Hawking and Penrose state that the 
presence of a trapped surface always implies the presence of some form of 
space-time singularity. There are also versions of the theorems which apply in 
cosmological situations, that is, when the cosmological constant A is included 
(see (13.5) ). As we shall see in Part F, some of the cosmological models involve 
singularities at the big bang and the big crunch. We shall refer to these 
cosmological singularities as Friedmann singularities. Again, gravitational 
waves seem to have singularities associated with them, as we shall see in 
Part E. The main significance of the theorems is that they show that the 
presence of space-time singularities in exact models is not just a feature of 
their high symmetry, but can be expected in generically perturbed models. 
This is not to say that all solutions are singular; in fact, many exact solutions 
are known which are complete, that is, maximal and singularity-free. But 
those which closely resemble the Kerr-Newman collapse models, or the 
Friedmann cosmological models containing a big bang or big crunch, or 
colliding plane gravitational waves, must be expected to be singular. The 
theorems do not, however, say that the singularities need look like those of 
Kerr-Newman, Friedmann, or colliding plane gravitational waves; in fact, 
there is some evidence that generic singularities may have a much more 
complicated structure, but little is known about this. 

The main assumption that the theorems depend upon is the dominant 
energy condition (12.56), which can be written in the more general form 

(19.75) 

so that the vector w• = r•b tb must be timelike or null. The significance of the 
energy condition lies in the effect discovered by Raychaudhuri (see (21.44)) 
which states that, whenever a system of timelike geodesics normal to a 
spacelike hypersurface starts converging, then this convergence inevitably 
increases along the geodesics until finally the geodesics focus (assuming the 
geodesics are complete). There is a corresponding focusing effect in the case of 
null geodesics. This depends on the weak energy condition which can be 
expressed in the form 

(19.76) 

If the energy-momentum tensor has energy density µ and principal stresses 
p. (ct = 1, 2, 3), then the weak energy condition can be expressed equivalently 
as 

There is a strong physical basis for this requirement, but the basis is not so 
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strong as it is for (12.56), although all known matter satisfies it. Most 
theorems require the dominant energy condition. 

Most of the theorems require as an additional assumption the non­
existence of closed timelike curves, so that causality is not violated. In 
addition, some of the theorems require a genericity condition, namely, 

VcaRb]cd[evnv"vd =I- 0, 

somewhere along every timelike or null geodesic, where va is the tangent 
vector. It is only in very special cases that we might expect this condition to 
be violated. 

None of the theorems leads directly to the existence of singularities. 
Instead, one obtains the result that space-time is not geodesically complete in 
timelike or null directions and, furthermore, cannot be extended to a geo­
desically complete space-time. The most reasonable explanation would seem 
to be that space-time is confronted with infinite curvature at its boundary. 
But the theorems do not quite say this and other types of space-time 
singularities may be possible. 

19.13 The Hawking effect 
This book is concerned with classical relativity theory and quantum consid­
erations are beyond its brief. However, we shall make an exception and finish 
our treatment of black holes by describing in simple terms a quantum .effect 
which suggests that black holes are not the permanent structures that the 
classical theory suggests. The surface area of the event horizon of a black hole 
has the remarkable property that it always increases when additional matter 
or radiation falls into the hole. Moreover, if two black holes collide and 
merge to form a single hole, the area of the new horizon is greater than the 
sum of the areas of the colliding holes. These properties suggest there is a 
resemblance between the area of the event horizon of a black hole and the 
concept of entropy in thermodynamics. (Entropy can be regarded simply as a 
measure of the disorder of a system or, equivalently, as a lack of knowledge of 
its precise state. The second law of thermodynamics states that entropy 
always increases with time.) Indeed, Hawking and collaborators discovered 
that the laws of thermodynamics have exact analogues in the properties of 
black holes. The first law relates the change in mass of a black hole to a 
change in area of the event horizon. The factor of proportionality involved is 
a quantity called the surface gravity, which is a measure of the strength of the 
gravitational field at the event horizon. This suggests that smface gravity is 
analogous to temperature, and indeed it is a constant at all points on the 
event horizon, just as the temperature is the same everywhere in a body at 
thermal equilibrium. 

How, more precisely, can the area of a black hole be related to the concept 
of entropy? Well, the no-hair theorem implies that a large amount of 
information is lost in a gravitational collapse. A black hole of given mass, 
angular momentum, and charge could have been formed by the collapse of 
any one of large numbers of different configurations of matter. If one now 
takes into account quantum effects, the uncertainty principle requires that the 
number of configurations, although very large, must be finite. The logarithm 
of this number is the measure of the entropy of the hole and thus measures the 
information that was irretrievably lost during the collapse through the event 



 

horizon when the black hole was created. It follows that if this number is 
finite then the black hole must have a finite temperature (proportional to its 
surface gravity), and so it could be in thermal equilibrium with thermal 
radiation at some temperature other than zero. Yet, according to classical 
concepts, no such equilibrium is possible, since the black hole would absorb 
any thermal radiation that fell on it, but by definition would not be able to 
emit anything in return. This paradox was eventually resolved by Hawking 
who discovered that black holes seem to emit particles at a steady rate: this is 
the 'Hawking effect'. 

Quantum mechanics implies that the whole of space is filled with pairs of 
'virtual' particles and antiparticles that are constantly materializing in pairs, 
separating, and then coming together again and annihilating each other. 
These particles are called virtual because they cannot be observed directly 
with a particle detector (although they can be measured indirectly by the 
'Lamb shift' in the spectrum of hydrogen). Now, in the presence of a black 
hole, the gravitational attraction will cause one member of a pair to fall into 
the hole, leaving the other member without a partner with which to undergo 
annihilation. This particle may also fall into the hole, but it may also escape 
to infinity, where it appears to be radiation emitted by the black hole. 
Equivalently, one may regard the member which falls into the hole (the 
antiparticle, say) as being really a particle travelling backwards in time. Then 
the motion of the antiparticle can be interpreted as a particle coming out of 
the hole (travelling backwards in time), and when it reaches the point at 
which the particle-antiparticle pair originally materialized it is scattered by 
the gravitational field, so that it travels forward in time. Thus quantum 
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Fig. 19.12 Hawking radiation. 
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mechanics does allow, in this interpretation, an escape of particles from the 
hole-a form of quantum-mechanical 'tunnelling' (see Fig. 19.12). 

As a black hole emits particles, its mass and size steadily decrease. This 
makes it easier for particles to tunnel out, and so the emission will continue at 
an ever-increasing rate until eventually the black hole radiates itself out of 
existence. In the long run, every black hole in the universe will evaporate in 
this way. For large black holes, it will take a very long time indeed (about 
1066 years for a black hole the mass of the Sun). On the other hand, a 
primordial black hole, as discussed in §16.11, should have almost completely 
evaporated in the 10 billion years that have elapsed since the big bang. Thus 
mini-black holes may be exploding now and may be the source of highly 
energetic gamma rays. Attempts have been made to quantify this rate of 
production and to compare the predictions with terrestrial observations of 
incident gamma radiation, but the results are inconclusive. 

Exercises 

19.1 (§19.1) Show that the definitions (19.4) and (19.5) lead 
to (19.6), (19.7), and (19.8). Show also that the definitions 
(19.9) and (19.10) lead to (19.11), (19.12), (19.14), and (19.15) 
(see Exercise 8.3). 

19.2 (§1~.2) Find the covariant metric g.b and contra­
variant metric g•b for the Schwarzschild line element ( 16.24) 
in advanced Eddington- Finkelstein coordinates. Hence 
confirm (19.17) and (19.18). 

19.3 (§19.2) Show that the transformations (19.20) applied 
to (19.19) lead to (19.21) (keeping v' and r' real). Deduce the 
line element (19.22) subject to (19.23). 

19.4 (§19.3) Apply the transformations (19.24) and (19.25), 
subject to (19.26), to the line element (19.22), to obtain the 
form (19.27). 

19.5 (§19.3) Apply the transformations (19.29) to (19.28), 
and then the transformation (19.24) to the result, to obtain 
the form (19.27). 

19.6 (§19.3) Show that (19.28) can be written in the form 
(19.30), subject to (19.31), where j[ and 1. are defined by 
(19.32) and (19.33). Show that, in the Schwarzschild limit, j[ 

and I. become (19.34) and (19.35). [Hint: l.lbdx"dx" =(/.dx")2.] 

19.7 (§19.4) Show that the transformations (19.37) together 
with t' = t convert (19.38) into (19.39). 

19.8 (§19.4) Show that the definition (19.40) leads to (19.41) 
and (19.42). Deduce that the Kerr solution is asymptotically 
flat. 

19.9 (§19.5) Confirm Fig. 19.3. 

19.10 (§19.5) Show that the stationary limit surface is time­
like everywhere except at its poles. 

19.11 (§19.5) Find g 11 for the Boyer- Lindquist form of the 
Kerr solution (19.27). 

19.12 (§19.6) Confirm equations (19.49)-(19.52). Show that 
they lead to (19.53). Why is it sufficient to consider the 
condition (19.54)? Check the deductions (19.55), (19.56), and 
(19.57), and show that r is an affine parameter. Obtain the 
geodesic equations (19.60) and (19.61). 

19.13 (§19.7) Confirm the differential form (16.64) for the 
ingoing null congruence of the Schwarzschild solution in 
Eddington-Finkelstein coordinates. Check that the trans­
formations (19.66) and (19.67) map the congruences (19.62) 
and (19.63) onto (19.65). 

19.14 (§19.7) Confirm Fig. 19.4 and draw the retarded time 
version of it. 

19.15 (§19.8) Show that (19.69) leads to (19.70), and hence 
deduce (19.71). [Hint: take second term in line element over 
to the right-hand side and take square roots.] 

19.16 (§19.11) Use the Newman- Janis trick to obtain the 
Kerr-Newman solution (19.72) from the Reissner­
Nordstrnm solution. Investigate the surfaces of infinite red 
shift and the event horizons (where present). 
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20.1 The linearized field equations 
Our consideration of gravitational radiation or gravitational waves (gravity 
waves for short) starts from the pioneering work of Einstein and is based on 
the linearized form of the field equations. In this approximation, we shall see 
that plane wave solutions lead to the result that gravitational waves are 
transverse and possess two polarization states. Put another way, the gravita­
tional field has two radiation degrees of freedom. In the linearized approx­
imation of the field equations, general relativity is recast as a Lorentz­
covariant theory. Considerable caution has to be exercised in doing this 
because there are associated with it a number of serious difficulties and 
limitations (the details of which are beyond the brief of this book), but 
nonetheless it does throw some important light on the general theory. 

We begin by assuming that the metric differs only slightly from the 
Minkowski metric in Minkowski coordinates, that is, 

where e is a small dimensionless parameter and, throughout, we shall neglect 
terms of second order or higher in e. In addition, we adopt the boundary 
conditions that space-time is asymptotically flat, that is, if r denotes a radial 
parameter, then 

lim h0 b = 0. 
,- co 

Defining 

then 

from which we get 

Since 'lab is constant, we also have (exercise) 

nc = !ll0 d(gdc, b + gdb.c - gbc,d) 

= ½e1J 0 d(hdc,b + hdb,c - hbc,d) 

= ½e(hac.b + hab,c - hbc,a ), 

(20.2) 

(20.3) 

(20.4) 

(20.5) 

(20.6) 
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where we make use of the result that, since this term is of order e, we can, 
using (20.1) and (20.5), raise and lower indices with the Minkowski metric. 
The Riemann tensor then becomes 

The Bianchi identities 
Rab[cd; e] = 0 

are 
Rab[cd, e] = 0 

and are identically satisfied by (20.7). 
The Ricci tensor is (exercise) 

Rab= 'led Rcadb = ½e(hca,bc + h\,ac - Dhab - h,ab), 
where 

and □ is the d' Alembertian operator 

0 = 'labaaab 

= a0 a. 
=~-v2 

at2 

8
2 ( 82 02 02 ) 

= ot 2 
- ox 2 + oy 2 + oz2 

' 

defined previously in (12.32). The Ricci scalar is 

R = e(hcd,cd - □ h) 

and finally the Einstein tensor is 

Gab= ½e(hca,bc + hcb,ac - Dhab - h,ab - 'labhcd,cd + 'lab □ h). 

(20.8) 

(20.9) 

(20.10) 

(20.11) 

(20.12) 

(20.13) 

In fact, the Einstein tensor can be found directly from the quadratic 
Lagrangian 

.!l'(h0 b,J = ½e(hab,bh'c,a - hab,chcb,a + ½hcd,ahcd,a - ½h\, 0 h 4 4" 0 ), (20.14) 

using (exercise) 

=-(a::) . 
,c ,c 

(20.15) 

20.2 Gauge transformations 
Let us consider what happens to the linearized equations under a coordinate 
transformation of the form 
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Then 

(20.17) 

and, applying this to the transformation formula for llab, (7.4), we find the 
consequent transformation of hab (see exercise 11.1), namely, 

By analogy with electromagnetic theory (see (12.30)), this is called a gauge 
transformation of hab · It is easy to establish (exercise) that both the linearized 
curvature tensor (20.7) and its contractions are gauge-invariant quantities, 
that is, unchanged to first order in i; by transformations of the form (20.18). 

Just as in electrodynamics, we may impose further conditions to fix the 
gauge. Going back to the field equations, we observe that if new variables I/Jab 

are defined by 

then (20.10) becomes 

and consequently 

and 

(20.20) 

(20.21) 

(20.22) 

This suggests that our field equations will reduce to wave equations if we 
impose the condition 

or, in terms of hab, 

h\a - ½h,b = 0, (20.24) 

which is called variously the Einstein, de Donder, Hilbert, or rock gauge. A 
straightforward calculation (exercise) reveals that, under the gauge trans­
formation (20.16), 

I/Jab ➔ I/J 1ab = I/Jab - ,;a,b - ,;b,a + '1ab,;',c, 

from which we find 

(20.25) 

(20.26) 
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It follows from (20.26) that the gauge transformation (20.16) will transform 
the equations into the Einstein gauge, that is, 

t/J 10b,a = Q 
if we choose e. to satisfy 

(20.27) 

In other words, if we treat the e. as unknowns then the problem involves 
solving wave equations with a source term. Then, by (20.22), Einstein's full 
field equations reduce to (dropping primes) 

The gauge is not completely fixed by (20.27) because we can always carry out 
additional transformations with 

(20.29) 

which leaves t{l0b,a unaltered. 
The vacuum field equations in the Einstein gauge reduce to 

Dt/Jab = 0 (20.30) 

and, taking the trace, 

r/"bDt/Jab = D(rt0 bt/Jab) = D(h - 2h) = - Oh= 0, (20.31) 

by (20.19). Combining this result with (20.30) and (20.19), we find that h.b 

must also satisfy 

in the Einstein gauge (20.24), which in terms of h0 b is 

20.3 Linearized plane gravitational waves 
Before we attempt to solve the linearized field equations, let us consider what 
theoretical motivation there might be which suggests that gravitational 
waves exist. We have seen that the linearized vacuum field equations reduce 
to the wave equations 

(20.34) 

in the Einstein gauge, from which we might be tempted to conclude that 
gravitational effects propagate as waves with the velocity of light. However, 
this is open to the objection that the perturbation hab is linked to an arbitrary 
coordinate system and therefore the existence of a non-zero h0 b is not an 
invariant indication of the existence of a gravitational field. A better argu-
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ment is based on the fact that if (20.34) holds then, by (20.7), 

□Robed= 0. (20.35) 

Thus, the Riemann tensor, which gives an absolute criterion for the existence 
of a gravitational field, itself obeys the wave equation. It follows that, in the 
linearized theory, gravitational effects propagate with the velocity of light. 
This does not of itself, however, prove whether or not gravitational radiation 
exists, since radiation involves energy transfer. We return to this question in 
the next chapter. 

We look for a simple solution of the linearized vacuum field equations 
which represents an infinite plane wave propagating in the x-direction. We 
start by introducing the coordinates 

(x0, x1, x2, x 3 ) = (t, x, y, z) 
and adopt the ansatz 

which requires 
(20.37) 

This assumption means that the Riemann tensor is highly degenerate and, 
from (20.7), we find that the 20 independent components fall into the 
following three groups of terms (exercise): 

Ro123 = Ro223 = Ro3z3 = R1223 = R1323 = R23z3 = 0; 

Ro101 = ½e(2ho1, 01 - hoo, 11 - h11, oo), 

Ro102 = ½e(ho2,01 - h12,oo), 

Ro103 = ½e(ho3, 01 - h13, oo), 

Ro112 =½e(ho2,11 - h12,01), 

Ro113 = ½e(ho3, 11 - h13,oi); 

Ro202 = - ½eh22, oo, 

Ro203 = - ½eh23, oo, 

Ro212 = -½eh22,01, 

Ro213 = -½eh23,01, 

Ro303 = -½eh33,oo, 

Ro313 = - ½eh33,01, 

R1212 = - ½eh22, 11, 

R1213 = - ½eh23, 11, 

R1313 = -½eh33, 11• 

(20.38) 

(20.39) 

(20.40) 

We now impose the linearized vacuum field equations in the form Rab = 0. 
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Fig. 20.1 The ansatz (20.45). 

Then, for example, 
(20.41) 

so that one of the independent components of (20.39) vanishes. In fact, the 
vacuum field equations result in all the group (20.39) vanishing (exercise). 
Thus, only the components in the group (20.40) are non-zero and these only 
involve the components h22 , h23 , and h33 . This means that we can decompose 
hab into two parts: 

where 

h< 1> = [ ~ 
0 0 

.:,] 0 0 
ab Q 0 h22 

(20.43) 

0 0 h23 h33 
and 

[ 

hoo ho1 ho2 ho3] 

h(21 __ ho1 hu h12 h13 
(20.44) 

ab ho2 h12 0 0 • 

ho3 h13 0 0 

The vacuum field equations then lead to the result that the curvature tensor 
of hW is identically zero. This suggests that there may exist a coordinate 
system in which h.b has only h22 , h23 , and h33 components; that is, hab is a 
pure h~i1-type solution. We shall show that we can exploit the gauge freedom 
to achieve this in the case of a plane wave. 

We sharpen our ansatz (20.36) by requiring 

so that it clearly represents a solution propagating in the x-direction with the 
speed of light (see Fig. 20.1 ). The Einstein gauge conditions (20.33) then 

y 

z 



 

become 

hoo,o - ho1, 1 -½h,o = 0, 

ho1 ,o - h11 , 1 -½h, 1 = 0, 

ho2,o - h12, 1 = 0, 

ho3,o - h13, 1 = 0, 
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(20.46) 

or, letting a prime denote differentiation with respect to the argument t - x, 
these can be written 

~' 
These integrate to give 

h~o + ho1 - ½h' = 0, 

ho1 + h~ 1 + ½h' = 0, 

ho2 + h;2 = 0, 

ho3 + h'13 = 0. 

hoo + ho1 -½h =f1, 

ho1 + hu + ½h = f2, 

~02 + h12 =/3, 

ho3 + h13 =f4, 

(20.47) 

where the f's are all functions of y and z only. However, since the hab all 
vanish at spatial infinity by (20.2), it follows that 

!1 = f2 = f3 = /4 = 0. 
Then (20.47) gives 

h12 = -ho2, h13 = -ho3, ho1 = -½(hoo + hu), h33 = -h22, 
that is, 

[ 

hoo -½(hoo + hu) ho2 
ho3] -½(hoo + h11) h11 -ho2 -ho3 . 

(20.48) hab = 
ho2 -ho2 h22 h23 

ho3 -ho3 h23 -h22 

We still have the remaining gauge freedom (20.18), where ea satisfies (20.29). 
Let us try and choose this so that 

Then, by (20.18), this requires 

If we assume that 

hoo - 2eo.o = 0, 

ho2 - <;0,2 - e2.o = 0, 

, ho3 - ~o.3 - <;3,0 = 0, 

h11-2{1,1 =0. 

ea= ea(t- x), 

(20.49) 

(20.50) 

(20.51) 
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then (20.29) is automatically satisfied. We choose 

(eo, e1, e2, e3) = (Fo(t - x), F 1(t- x), F2(t- x), F3(t - x)), (20.52) 

where, setting u = t - x, we see that the functions F O, F b F 2 , and F 3 are all 
functions of u only and are determined by the ordinary differential equations 

dF0 1 dF1 1 dF2 dF3 du= 2hoo(u), du= -2h11(u), du= h02 (u), du= h03 (u). (20.53) 

This choice satisfies (20.51) and (20.50), and, moreover, it leaves h22 , h23 , and 
h33 unchanged. Hence, dropping primes, we have shown that h.b may be 
transformed into the canonical form 

Clearly, hab only depends on two functions, namely, 

h22 (t - x) and h23 (t - x). 

We consider the physical significance of these two independent functions in 
the next section. 

20.4 Polarization states 
In the case h23 = 0, the line element becomes 

We shall call this an 'h22-wave'. Let us suppose that h22 is some oscillatory 
function of u so that there are values when h22 > 0 and values when h22 < 0. 
Let us investigate what happens when an h22-wave is incident on a distribu­
tion of test particles. First of all, consider two neighbouring particles in the 
(y, z)-plane which initially have coordinates (y0, z0 ) and (y0 + dy, z0 ) in the 
plane. Then, using (20.55), the proper distance between them is given by 

ds2 = -(1 - eh22 ) dy2. (20.56) 

The proper distance is a coordinate-independent quantity, and hence if 
initially h22 changes from zero to h22 > 0 the particles move closer together 
and, conversely, if h22 changes from zero to h22 < 0 the particles move further 
apart. The opposite happens if we consider free particles with coordinates 
(y0, z0 ) and (y0, z0 + dz) in the plane, since now 

ds2 = -(1 + eh22 )dz2. (20.57) 

Thus, if an oscillatory plane gravitational wave propagating in the x­
direction is incident on a ring of dust particles situated in the yz-plane, then 



00 
the ring is distorted into a pulsating ellipse whose major axis is in turn 
parallel to the y- and z-axes (see Fig. 20.2). The transverse character 
of an h22-wave is clear from this. We refer to this state as a wave with 
+ polarization. 

Let us turn attention to an 'h23-wave', that is, the case when h22 = 0, and 
the line element becomes 

Let us perform a rotation through 45° in the (y, z) plane given by (see (3.9) and 
(3.10)) 

1 
z-+ i = J2 ( - y + z), (20.59) 

so that the line element becomes (exercise) 

ds 2 = dt 2 

- dx 2 - [1 - eh23 (t - x)] dy 2 

- [1 + eh
23

(t - x)] di2

. (20.60) 

Comparing this with (20.55) we see that an h23-wave produces exactly the 
same effect as an h22-wave but with the axes rotated through 45° (see Fig. 
20.3). The transverse character of an h23-wave is again clear and we refer to 
the state as a wave with x polarization. 

Clearly, a general wave is a superposition of these two polarization states. 
The fact that the two polarization states are at 45° to each other contrasts 
with the two polarization states of an electromagnetic wave, which are at 90° 
to each other. (This can be shown to stem from the fact that gravity is 
represented by the second-rank symmetric tensor hab, whereas electro­
magnetism is represented by the vector potential A0 .) 

An alternative method for investigating these results is to consider the 
equation of geodesic deviation (10.21). If we introduce a local coordinate 

oaoo 
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Fig. 20.2 Time sequence showing 
the transverse effect of an oscillatory 
linear plane gravitational wave with 
+ polarization. 

Fig. 20.3 Time sequence showing the 
transverse effect of an oscillatory linear 
plane gravitational wave with x 
polarization. 
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system adapted to the tetrad so that 

then, by (10.37), the equation becomes 

02,,. 

0,2 + R•o,o'II = 0. 

Setting 
,i1 = (x, y, z) 

and using (20.38), (20.39), and (20.40), we get 

Then, for example, an h22 -wave leads to 

(20.61) l 
l 

I 
'.iJ 
j 
j 

and, as in §16.10, the different signs in the relative accelerations lead to the 
behaviour we have described above. 

-20.5 Exact plane gravitational waves 
If we introduce double null coordinates defined by 

U=t-x, v=t+x 

in (20.55), then an h22 -wave has a line element of the form 

,;} 
,~ 
] 
J 
] 

I 
i 

-1 

1 

f 2 (u) = 1 - ehn(u), g2 (u) = 1 + eh22 (u). (20.63) j 
•J 

where 

The functions are squared to ensure the correct signature (which is justified in .• .. 1·.··••,··•·. 

the linearized approximation by assuming that e is small in (20.63)). , 
Let us now choose (20.62) as an ansatz and plug this line element into the ' 

full vacuum field equations to see ifwe can solve them. We find that the non- } 
vanishing components of the connection are (exercise) :l 

::-' 

n2 = 21r. n3 = 2gg', n2 = r1 J. n3 = g'/g, (20.64) ·1: 

where a prime denotes d;fferentiation w;th w.;poct to u. The Riemann le"'•"•·· 
has two independent components . 

Ro202 =ff", Ro303 = gg" I 
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and there is only one vacuum field equation, namely, 

f"/f + g"/g = 0. 

Let us denote the first term by the function h(u), i.e. 

f"/f = h. 

Then the field equation will be satisfied if g is chosen so that 

g"/g = -h. 

(20.65) 

(20.66) 

(20.67) 

These last two equations determine f and gin terms of h(u) up to constants of 
integration. Hence any choice of the arbitrary function h(u) gives rise to a 
vacuum solution. Such exact solutions are called linearly polarized plane 
gravitational waves. They represent plane-fronted gravitational waves, ab­
stracted away from any sources, propagating in the x-direction. 

The form of the line element (20.62) is essentially that due originally to 
Rosen. If we carry out the coordinate transformation 

U =U, Y=fy, Z=gz, (20.68) 

then the line element is transformed into the Brinkmann form (exercise) 

which shows the explicit dependence on the freely specifiable function h. This 
function can be shown to represent the amplitude of the polarized wave. 

Although such solutions are highly unphysical, being infinite in extent, it 
may be hoped that they represent some of the properties of real waves from 
bounded sources in . some .far zone limit. In particular, they allow us to 
investigate the question of the scattering of gravitational waves. For, unlike 
electromagnetic theory, where the linearity of the theory means that electro­
magnetic waves pass through each other unaltered, there is, in general, no 
superposition principle in general relativity. Indeed, we may expect the non­
linearity of the theory to reveal itself in the interaction of two gravitational 
waves. However, (20.69) does reveal a limited superposition principle in that 
two plane waves moving in the same direction can be superposed simply by 
adding their corresponding h functions. Thus, when moving in the same 
direction, two such gravitational waves do not scatter one another. To 
exhibit scattering, we need two waves moving in different directions. If we 
consider two linearly polarized waves colliding at an angle, we can always 
find a class of observers who consider the collision to be head on (see, for 
example, Exercise 4.10). Hence, it is sufficient to work in a coordinate system 
in which the waves appear to collide head on. We shall consider this question 
in the limited case of impulsive gravitational waves, which we discuss next. 

20.6 Impulsive plane gravitational waves 
We start with a mathematical digression. The Heaviside step function 0(u) is 
defined by 

0(u) = {o '.f u ~ 0, 
1 1f u > 0. 

(20.70) 
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z 

Flat 

Speed= 1 

Flat 
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Fig. 20.4 Spatial picture of an impulsive 
plane g·ravitational wave. 

Fig. 20.5 Space-time picture (two dimen ­
sions suppressed) of an impulsive plane 

It is closely related to the Dirac delta function /J(u). Strictly speaking, /J is not 
a function but rather a distribution and lives under an integral sign. It will be 
sufficient for our purposes to define /J by the requirements 

/J(u) = 0 if u cf. 0, 

f ~ 
00 

f (u)/J(u) du = f(0), 

(20.71) 

(20.72) 

for any suitably defined function f (u). Then, with these definitions, we can 
establish the results (exercise) 

0'(u) = /J(u), 

u/J(u) = 0, 

u0'(u) = 0. 

We now consider a line element in the Rosen form defined by 

f(u) = 1 + u0(u), g(u) = 1 - u0(u). 

Then we find, using the above results, that (exercise) 

f' = -g' = 0(u), f" = -g" = /J(u), f"/ f = -g"/g = /J(u), 

(20.73) 

(20.74) 

(20.75) 

(20.76) 

(20.77) 

which means, from (20.65), that (20.76) gives rise to a plane wave. Hence, the 
Ricci and Einstein tensors vanish, but the Riemann tensor (or, since the 
solution is vacuum, equivalently the Wey! tensor) does not vanish, having 
non-vanishing components 

Ro202 = - Ro303 = /J(u). (20.78) 

The solution has delta functions in the curvature and hence it is non-flat only 
when u = 0. This can be seen more clearly in the Brinkmann form of the 
solution, which, from (20.66), is obtained by setting 

h(U) = /J(U). 

Hence, for u = U cf. 0, the line element reduces to 

ds2 = dU dV - dY2 - dZ 2 , 

(20.79) 

(20.80) 

wave . which is Minkowski space-time in double null coordinates. The hypersurface 
u = 0, where the field is concentrated, thus separates two flat regions. It 
represents a plane wave similar to that of Fig. 20.1, except that now there is 
just one wave front (Fig. 20.4). Such a solution is called a shock wave or 
impulsive plane gravitational wave. Figure 20.5 is a space-time picture (with 
two dimensions suppressed) of such a solution. 

Flat We define a sandwich wave to be a non-flat vacuum solution bounded by 
plane hypersurfaces outside of which the solution is flat (Fig. 20.6). An 
observer moving on a geodesic will 'feel' the wave passing for a finite period 

,................,....,..._ _____ --+x when moving from region I through region II and out into region III. 
Neighbouring test particles will be accelerated transversely to the direction of 
propagation of the wave. Then an impulsive gravitational wave can be 
viewed as a thin sandwich wave in a suitable limit as the thickness goes to 

Fig. 20.6 A space-time picture of a zero. Although impulsive waves are yet another idealization, they do prove 
sandwich wave. easier to work with than more general waves at first. 
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20.7 Colliding impulsive plane 
gravitational waves 

In the next two sections, we shall outline the pioneering work of Penrose, 
Khan, and Szekeres on the important problem of colliding plane gravita­
tional waves. We start by generalizing the Rosen form (20.62) to the form 

ds2 = ldudv - f 2 dy 2 
- g 2 dz 2

, (20.81) 

where l,f, and g are now functions of both u and v. This form then allows us to 
incorporate waves moving in both directions. The explicit vacuum solution of 
Penrose and Khap is then given by 

m3 
I=----~ 

rw(pq + rw)2 ' 
12 = m2(~)(w + P), 

r-q w-p 

92 = m2(~)(w - P), 
r+q w+p 

where 

p = u0(u), q = v0(v), r = (1 - p2)½, w = (1- q2)½, m = (1 - p2 - q2)½. 

The space-time diagram is shown in Fig. 20.7. 
The solution is only valid in the four regions: 

I. U < 0, V < 0, 

II. 0 < u <. 1, v < 0, 

III. u < 0, 0 < v < 1, 

IV. u > 0, v > 0, u2 + v2 < 1. 

Regions I, II, and III are flat, and region IV is curved. Region I is separated 
from region II by an incoming impulsive wave and from region III by another 
impulsive wave travelling in the opposite direction. They collide at the origin 
in the figure, and then region IV represents the interaction region between 
them. If we consider the world-line of the observer x = 0, then the two waves 
collide at t = 0, scatter each other, and leave a curved region between them, 

Caustic 
2-surface '-------

Flat (Rabcd=O) 

Caustic 
/ 2-surface 

Flat (Rabcd=O) 

F'ig. 20.7 Penrose and Khan space-time 
picture of two colliding impulsive plane 
waves. 
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___,--- Initial data 
___,--- prescribed 

IV 

u 

II III 

Fig. 20.8 The characteristic initial ·value 
problem for colliding waves. 

which, in finite proper time according to the observer, develops an intrinsic 
singularity. (This is an intrinsic singularity in the usual sense that scalar 
invariants in the curvature tensor blow up.) There is also a coordinate 
singularity in region II at (u = 1, v < 0) and an analogous one in region III at 
(v = 1, u < 0). These singularities are, in fact, topological singularities, some­
times called fold singularities, and are in this case caustic 2-surfaces caused 
by each wave focusing the other, i.e. they are surfaces where the null geodesics 
cross. They are not intrinsic curvature singularities. The space-time diagram 
(Fig. 20.7) is a bit misleading at first sight since you might think it possible for 
an observer in region II to cross u = 1 and escape. However, the caustic 
surface is just a 'seam' in the hypersurface v = 0, and so the chances of hitting 
it are remote, and, anyway, any observer getting close will be swept up into 
region III and end up on the singularity. There is a finite jump in the 
curvature tensor at (u = 0, 0 < 1 v < 1) and at (v = 0, 0 < u < 1) (sometimes 
called a step wave) in addition to the delta function there. Furthermore, 
inspection of the solution reveals that the waves no longer have planar 
symmetry after impact. 

To summarize, two impulsive plane gravitational waves approaching each 
other from different directions scatter each other and cease to be plane waves. 
Eventually, the focusing effect of each wave on the other results in the 
formation of a spacelike intrinsic singularity (recall that, whereas timelike 
singularities are avoidable, spacelike singularities are not). 

,, 
,s, 

20.8 Colliding gravitational waves 
The fact that two colliding impulsive waves give rise to a singularity is 
perhaps something of a surprise. At first (recall the situation in black boles 
with the Schwarzscbild solution), it was thought that this may be due to the 
high symmetry of the solution and that a more realistic solution would re­
main regular. However, Peter Szekeres provided a general framework for in­
vestigating colliding gravitational waves and discovered some exact solutions 
which again result in singularities. The framework consists essentially of 
formulating the problem as a characteristic initial value problem (see §21.5), 
which, in double null coordinates (u, v), consists of prescribing initial data on 
a pair of null hypersurfaces u = 0, v = 0 intersecting in a spacelike 2-surface 
(Fig. 20.8). Region I is taken to be flat, and regions II and III contain two 
waves which are approaching from opposite directions. Region IV is then the 
interaction region of the two waves. The problem is well posed in that it can 
be shown that any given initial data gives rise to a unique solution in region 
IV. It is convenient to assume that two commuting spacelike Killing vectors 
8/oy and 8/oz exist throughout the whole space-time. Szekeres shows that 
coordinates of the Rosen type exist in which the metric takes on the form 

ds2 = e- Mdudv - e-u(ev cosh Wdy 2 - 2sinh Wdydz + e- v cosh Wdz2 ), 

where M, U, V, and Ware functions of u and v in general. However, in region 
II, the functions M, U, V, and W depend on u only; in region III, they depend 
on v only. If the waves have constant and parallel polarizations, then it can be 
shown that one can put W = 0 globally and the solution to the initial value 
problem reduces to a one-dimensional integral for V and two quadratures 
for M. 
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Szekeres considered the more realistic case of sandwich waves in regions II 
and III and again found that they give rise to singularities in region IV. Since 
the early 1970s, when this work was first reported, there have been a large 
number of exact solutions found for colliding gravitational waves, including 
plane gravitational waves and waves coupled with electromagnetic waves, 
perfect fluids, and null dust (i.e. an energy-momentum tensor of the form 
(12.1) but where the 4-vector u• is null). Indeed, there has been considerable 
controversy over what happens when two planar impulsive gravitational 
waves, each followed by a distribution of null dust, collide. Do the two 
distributions pass through each other or do they mix magically to produce a 
perfect fluid with a 'stiff' equation of state p = p? These ambiguities make it 
clear that these sorts of problems, which are a mixture of initial value and 
boundary value problems, need careful handling and that particular at­
tention needs tb be paid to the physical interpretation of the resulting 
solutions. 

Although most solutions develop spacelike singularities, not all do. Some 
examples give rise to non-singular horizons, for which the metric can be 
analytically extended across the horizon to produce a maximal space-time 
which contains topological singularities and in some cases curvature singu­
larities as well. Some advances in our understanding of these solutions has 
resulted from the work of Yurtsever. By considering a class of perturbations 
of the initial data producing such solutions, he has shown that these horizons 
are in fact unstabi~. Moreover, the work seems to suggest that the develop­
ment of spacelike 'singularities, by colliding gravitational waves is a generic 
phenomenon. If this is indeed the case, it leads to the puzzling question of 
why we do not detect singularities in our locality, since we are certainly 
immersed in a sea of colliding gravitational waves emanating from many 
sources situated both within and outside our own galaxy. However, the time 
taken for these singularities to form for the amplitudes of waves which are 
likely to exist is very large (perhaps comparable with the age of the universe). 
On the other hand, it could well be that the singularities are simply an 
artefact of the planar symmetry, and that if more realistic (non-planar) 
solutions are employed then the singularities will likely disappear. 

20.9 Detection of gravitational waves 
We turn to the possible detection of gravitational waves. The pioneer in this 
field is J. Weber whose work dates back to the 1960s. His method is based on 
the fact that free particles moving through a gravitational field experience 
relative accelerations as expressed through the equation of geodesic devi­
ation. Weber's ~echnique consists in measuring the deformations set up in a 
large aluminium cylinder by any inpident gravitational radiation. Con­
siderable controversy surrounded his claims to be detecting radiation eman­
ating from the centre of the galaxy, since the sensitivity of the bar was 
considered to be too low to detect radiation at the energy which might be 
expected. Such signals would probably be swamped by the noise emanating 
from people, vehicles, aircraft, and so on, passing near the equipment. 
Moreover, there was also disquiet over the way the results were analysed, and 
the consensus is that the equipment was probably not detecting gravity 
waves. However, Weber has played ari important part in alerting the experi­
mentalists to the need to undertake this work. 
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Fig. 20.9 Estimates of the strength of 
gravity waves bathing the Earth. 

Let us discuss briefly the possible sources of gravitational radiation. 
Thorne distinguishes between three sorts of radiation, namely, bursts, 
periodic, and stochastic. The possible sources of bursts are collapsing and 
bouncing cores of supernovae in our galaxy and other galaxies; the birth of 
black holes, especially massive ones; collisions between black holes and 
between black holes and neutron stars in globular clusters, galactic nuclei, 
and quasars; and the final spiralling in, coalescence, and destruction of 
compact binaries (like the binary pulsar PSR 1913 + 16). Possible sources of 
periodic waves include binary star systems, rotating deformed stars, rotating 
deformed white dwarfs, and pulsations of white dwarfs following nova 
outbursts. Stochastic sources include the hot big bang, inhomogeneities in the 
very early universe, and black holes formed from population III stars (stars 
born before galaxies were formed). 

It is extremely difficult to obtain estimates of the energy output from the 
various sources, because they often depend on the details of the model 
employed about which little is known. Added to which, it may not be possible 
to carry out the algebraic computations involved either exactly or even 
approximately. There is a growing role here for numerical relativity, which is 
the field of using computers to solve Einstein's equations numerically from 
prescribed initial data. For example, numerical codes exist which suggest that 
a collapsing star may emit up to 1 or 2% of its mass in the form of 
gravitational waves. • 

Thorne gives some estimates of the energy output, as shown in Fig. 20.9, in 
which the amplitude h of the gravitational waves is plotted against their 
frequency v. He suggests that bursts with a frequency of once a month are 
likely to lie in the vertically hatched region, although there may be stronger 
bursts from supernovae in our own galaxy. The line labelled 'cherished 
beliefs' is based on the most optimistic of estimates. The horizontally hatched 
region gives estimates of where the strongest periodic sources may lie. On 
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some estimates, there could be a stochastic background as large as the solid 
line (whose energy density would be sufficient to close the universe). 

There have been three sorts of detectors proposed so far: Weber bars, laser 
interferometers, and spacecraft tracking. Bar detectors are currently 
narrow-band detectors, being tuned to a particular frequency. Laser systems, 
on the other hand, are broad band and can operate over a range in frequency 
of an order of magnitude, which means that they can be used to study the 
detailed time structure h(t) of the wave. The bars are made of a number of 
materials including aluminium, silicon, and niobium and are isolated from 
various sources of noise and cooled to a temperature of 2 K or less. The 
oscillations are then measured by mechanical or electrical transducer devices. 
Early bars achieved r.m.s. noise levels of h '.::'. 10- 16 for frequencies 
v '.::'. 103 Hz at room temperatures. There are a large number of centres which 
have bar detectors, and the best currently operates around h '.::'. 10- 18, 

although 10- 20 seems possible. Perhaps of more interest are attempts to 
detect coincidences in two or more detectors situated at different sites, since 
this would provide stronger evidence for the observation of some real 
external source. There appears to be little evidence of statistically significant 
coincidenceS' )to date. 

The basic design of a laser interferometer is shown in Fig. 20.10. The first 
prototype system was run in 1972 with an r.m.s. sensitivity of h '.::'. 10- 14 for 
v ~ 1-10 kHz. These sort of detectors are very promising because the sensi­
tivity goes like 

h = A(L1 - L2 )/L1 , 

where A is the change due to gravity waves, and so this sensitivity can be 
improved rapidly by simply scaling up the length of the arms without other 
major clr,inges in instrumentation. There are many different strategies for 
noise re<iuction, which is reflected in wide differences in design. For example, 
some involve multiple bounces of the beam, others use an optically resonant 
cavity. There is a quantum-mechanical limit which suggests a possible 
sensitivity ultimately of h '.::'. 10- 22. The sensitivity of current interferometers 
goes like h '.::'. 10- 18 or 10- 19, but there are considerable technological 
hurdles to overcome before the quantum-mechanical limit can be reached. 

At low frequencies of v ~ 1 Hz, it is difficult, if not impossible, to shield 
Earth-based detectors from noise. The only solution is to use detectors in 
space. One possibility is the Doppler tracking of spacecraft. Measurements 
on the Voyager spacecraft yielded a sensitivity in the range 10- 13 to 10- 14 

for v between 10-4 and 10- 2 Hz. Future flights may yield h ;S 10- 16 using 

I 
Beam 
splitter 

Mirror 2 

Fig. 20.10 Idealized version of a laser 
interferometer gravity wave detector. 
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very accurate onboard clocks such as hydrogen maser clocks. Using several 
such spacecraft to track each other, it may eventually be possible to achieve 
h < 10- 21 for 10-4 Hz< v < 30 Hz. 

The binary pulsar PSR 1913 + 16 appears to provide indirect evidence of 
gravitational radiation. It is thought that this is a rotating binary system 
emitting gravitational radiation leading to a decrease in the energy of the 
system and a consequent increase in the rotation and a decrease in the period 
-r. The general relativistic prediction for i is - 2.4 x 10- 12, which compares 
well with the observed value of - (2.30 ± 0.22) x 10- 12 [see Schutz (1980) 
for further details]. 

In short, there appears as yet to be no clear-cut direct observation of 
gravity waves by detectors. However, all the evidence is that these observa­
tions may be just around the comer and that, in addition to radio, infrared, 
optical, ultraviolet, X-ray and gamma-ray observations, we may soon have a 
window onto new phenomena in our universe through the advent of gravita­
tional astronomy. 

Exercises 

20.1 (§20.1) Show that, if we work to order e2, then (20.1) 
implies (20.4), (20.5), (20.6), (20. 7), and (20.10) (subject to 
(20.11) ), (20.12), and (20.13). 

20.2 (§20.1) Show that the Bianchi identities (20.8) can be 
written in the form (20.9) to order e2, and that these equa-
tions are satisfied automatically by (20.1 ). ' 

20.3 (§20.1) Show that the quadratic Lagrangian (20.14) 
leads to the field equations (20.13). [Hint: the field equations 
must be symmetric in a and b.] 

20.4 (§20.2) Show that hab transforms according to (20.18) 
to order e2 under the coordinate transformation (20.16). 
Show also that I/lab transforms according to (20.25) under 
this transformation. 

20.5 (§20.2) Show that in the slow-motion approximation 
for a distribution of dust of proper density p0 that (20.28) 
reduces to 

eV2 i/100 = 161tp0 • 

Compare this with Poisson's equation in relativistic units to 
deduce that 

ei/Joo = 4¢ 

with all other components vanishing. Use (20.19) to deduce 
that 

eh00 = eh 11 = eh22 = eh33 = 2¢ 

and hence that, in this approximation, the metric is 

ds 2 = (1 + 2¢)dt2 - (1 - 2¢)(dx2 + dy2 + dz 2 ) 

Show that this is consistent with the Schwarzschild solution 
(in isotropic coordinates) in the weak-field limit. 

20.6 (§20.2) Confirm equations (20.20), (20.21), and (20.22), 
and deduce (20.28), (20.30), and (20.32) in the Einstein gauge. 

Show that there is an additional gauge freedom (20.18) 
subject to (20.29). 

20.7 (§20.3) Show that the ansatz (20.36) leads to a Riem­
ann tensor satisfying (20.38), (20.39), and (20.40). [Hint: use 
the identity (6.78) to eliminate R0312 .] Show that the line­
arized vacuum field equations lead to the vanishing of the 
group of equations (20.39). [Hint: Consider R00 = R03 = 

R12 = R13 = R00 - R11 +R22 + R33 = 0, and remember 
to raise and lower indices with 'lab ·] 

20.8 (§20.3) Fill in the details of the argument which shows 
that the ansatz (20.45) leads to the canonical form (20.54). 
[Hint: be careful about signs.] 

20.9 (§20.4) Show that the transformation (20.59) trans­
forms (20.58) to (20.60). 

20.10 (§20.4) Show that the equation of geodesic deviation 
can be written in the form (20.61). Investigate the equation 
for an h22 -wave and an h23 -wave. 

20.11 (§20.5) Show that the line element (20.62) leads to 
(20.64) and (20.65). 

20.12 (§20.5) Show that (20.68) transforms vacuum solu­
tions in the Rosen form into the Brinkmann form (20.69). 
What is the inverse form of (20.68)? 

20.13 (§20.5) Some authors write the Rosen line element 
with a 2 in front of the first term, i.e. 

ds 2 = Yabdx"dxb = 2dudv -J2(u)dji2 - g2 (v)dz2. 

(i) Show that if 

u = (1/ ✓2)u, v = (1/✓2)v, ji = y, z = z, 

then the line element reduces to the Rosen form (20.62). 



 

(ii) Show that if 

u = u, v = v, y = ✓2y, z = ✓2z 

then Uab = 2g0 b, where g.b is the Rosen metric (20.62) and 
deduce that iiab gives rise to the same connection, Ricci 
and Einstein tensors as g06 does. 

20.14 (§20.6) Show that the definitions (20.71) and (20.72) 
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lead to the results (20.73), (20. 74), and (20. 75). [Hint: use 
integration by parts to establish (20.73).] Deduce that 
uc5'(u) = - c5(u). 

20.15 (§20.6) Show that (20.76) leads to (20.77), (20.78), and 
(20.79). 



 
 
 

21.1 Radiating isolated sources 
The extent to which the results of the linearized theory can be trusted is not 
clear. The non-linearity of the gravitational field is one of its most character­
istic properties, and it is likely that at least some of the crucial properties of 
the field should show themselves through the non-linear terms. Indeed, we 
have met exact solutions of the Einstein vacuum field equations correspond­
ing to plane gravitational waves and we have seen that superposition of them 
leads to the creation of intrinsic singularities. This result is certainly absent in 
the linear case, so clearly there are differences. However, even these solutions 
are global vacuum solutions abstracted away from sources and as such are 
physically unrealistic, even if they may give us important information about 
how waves behave in asymptotic regions. What we would really like to do is 
to be able to investigate gravitational waves from bounded isolated sources, 
since then we would be in a position to discuss energy transfer and it is this 
which determines whether or not gravitational waves behave in the same way 
as other forms of radiation. Such a model system consists of an isolated 
bounded source (preferably possessing as much symmetry as possible, so that 
the field equations are easier to handle) which has been quiescent for a semi­
infinite period, then radiates for a finite time, and afterwards becomes 
quiescent again. If the resulting waves are real physical waves, in that they 
carry energy, then we might expect the source to lose mass (and possibly 
other multipole moments may change) in the process. 

The simplest field due to a bounded isolated source is spherically sym­
metric, but Birkhoff's theorem reveals that a spherically symmetric vacuum 
field is necessarily static and therefore spherically symmetric solutions cannot 
emit waves. Spherical symmetry assumes the existence of three spacelike 
Killing vector fields. The next simplest starting assumption, therefore, is to 
assume that the solution possesses two Killing vector fields. These fields must 
both be spacelike, otherwise, if one is timelike, the solution is stationary and 
so could not accommodate any time-dependent phenomena such as mass 
loss. An important case which has attracted a lot of attention is that of 
cylindrical symmetry. A solution is cylindrically symmetric if it admits a 
symmetry axis and is invariant under both rotations about this axis and 
translations parallel to it. In adapted coordinates, this requires invariance 
under rotations, namely, 

<p --> </>' = <p + constant, 
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and translations, namely, 

z -+ z' = z + constant, 

where the z-axis is the symmetry axis. Such a solution admits two commuting 
spacelike Killing vector fields, namely, i}jocp and o/oz. Investigations of simple 
model interior solutions joined on to radiative exterior solutions do indeed 
suggest that the radiation carries away mass from the source. Unfortunately, 
there are considerable difficulties with the interpretation of cylindrical solu­
tions and, moreover, they are considered physically unrealistic because the 
source is infinite in extent (being a cylinder extending from z = - oo to 
z = + oo ). It turns out, similarly, that work on other solutions admitting two 
spacelike Killing vectors also leads to problems of interpretation, and so we 
shall not -pursue such solutions further. 

The next simplest assumption is to consider a system admitting just one 
spacelike Killing vector field together possibly with discrete reflection sym­
metries. This, indeed, was the starting point of Bondi in his pioneering work 
on gravitational radiation in the early 1960s in which he considered a source 
which is axially symmetric and non-rotating. The symmetry assumptions are 
therefore, in adapted coordinates, 

<p -+ cp' = <p + constant, (21.1) 

(21.2) 

where the reflection symmetry (21.2) prohibits the solution from rotating 
(why?). Although these assumptions simplify things somewhat, the math­
ematics is still quite difficult and ultimately recourse has to be made to 
asymptotic approximation methods to discuss the radiation. It is also pos­
sible to employ the additional reflection symmetry in the equatorial plane, 
namely, 

8 -+ 8' = 1t - 8, (21.3) 

but this does not lead to any great simplification and so we shall omit it. We 
shall return to the definition of the other coordinates in §21.3. 

Fig. 21.1 Bondi mass loss: m 2 < m, . 
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Fig. 21.2 A null hypersurface. 

We therefore consider an axially symmetric non-rotating bounded isolated 
source which is initially static, radiates for a finite period (for example by 
pulsating axially symmetrically), and subsequently returns to a static config­
uration (Fig. 21.1). This model assumes that, once a system has radiated, it is 
possible subsequently for it to become quiescent again. One might expect the 
non-linearity to cause the waves to interfere, backscatter, and so excite the 
source, causing it to radiate indefinitely. This is a delicate problem, which is 
outside the scope of this book, and so, following Bondi, we shall assume a 
quiescent model is possible and restrict ourselves to outlining the proof of the 
mass-loss result in this case. We start by considering the surfaces which act as 
wave fronts in the theory. 

21.2 Characteristic hypersurfaces of 
Einstein's equations ;' 

The field equations of general relativity form a system of hyperbolic partial 
differential equations. This is most easily seen in the linearized approxima­
tion, where, in an appropriate gauge, the equations are simply wave equa­
tions. As Bondi has pointed out, hyperbolic equations are very different in 
character to elliptic or parabolic equations since they allow for 'time-bomb' 

_ solutions, that is, solutions which are initially static but then suddenly 
become dynamic. Such solutions propagate their effects along privileged 
curves called the bicharacteristics of the theory. Moreover, these bicharac­
teristics lie on privileged surfaces called characteristic hypersurfaces which 
play the role of wave fronts in the propagation of these effects. Along 
characteristic hypersurfaces, different solutions can meet continuously and, 
as a consequence, they are defined as those singular hypersurfaces for which 
the usual Cauchy initial value problem cannot be solved. 

To find the characteristic hypersurfaces for the vacuum field equations, 
recall that, in considering the Cauchy problem, we obtained the evolution 
equations in the form (13.14), namely, 

googa/J,00 = 2Ma/J• 

Thus, we would be unable to solve for gap. 00 if and only if g00 = 0. As we have 
seen in §16.1, this is the condition for the hypersurface x 0 = constant to be a 
null hypersurface. The normal vector to such a hypersurface is null and 
consequently it is also tangent to the hypersurface. Thus, a null hypersurface 
is a hypersurface that is locally tangent to the light cone (Fig. 21 ,2). Not only 
are null hypersurfaces characteristic surfaces, but they are ruled by null 
geodesics which turn out to be the bicharacteristics of the theory (see §21.3 

Null 
geodesic (rays) 

1----1-----Tangent and 
normal vector 

fe+----Surface everywhere 
tangent to local 
light cone 



 

below). This makes clearer the idea we met in the linearized theory, namely, 
that gravitational disturbances are propagated along null geodesics with the 
speed of light. It is clear from these considerations that null hypersurfaces 
play an important role in the study of gravitational radiation. 

21.3 Radiation coordinates 
The discussion of the last section suggests that, in order to investigate 
radiation, we should introduce the coordinate hypersurfaces 

as a 'f~mily of non-intersecting null hypersurfaces. The normal covariant 
vector field to these surfaces is therefore 

1. = a.u = (1, 0, 0, 0) = 0~ 
and, since it is null, 

(21.5) 

(21.6) 

and the vector field is both tangent and normal .to the null hypersurfaces. The 
bicharacteristics are the orbits of the contravariant vector field I", that is, 
they have equation 

for some parameter p, where 

dx" 
dp = 1• = g•b iJbu. 

Then, taking the absolute derivative of (21.8), we get 

D (dx")- D ( •hi) ) 
Dp dp - Dp g bu 

dxc 
= dp Vc(g•hiJbu) 

dxc 
= g•b dp (VbiJcu) 

= g•b gcd iJ du(V b OcU) 

= ½g•bvb(gcdOcUOdU) 

=0, 

(21.7) 

(21.8) 

(21.9) 

using the symmetry of the connection in the fourth equality and (21.6) in the 
last. Hence, the bicharacteristics are null geodesics and p is an affine 
parameter. These null geodesics are often called null rays. 

We choose as a second coordiQate 

21.3 Radiation coordinates I 293 
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Fig. 21.3 Bondi's radiation coordinates 
{u, r, 0, ¢). 

where r is a radial parameter along the null rays, and we then use the 
remaining coordinates x2 and x 3 to label the null rays. Assuming that space-
time is asymptotically flat, that is, ·.~.l 

lim Oab = 'lab• (21.11) l 
we can then take x 2 and x3 to be the usual spherical polar angles 

defined on each 2-sphere (u = constant, r = oo) at future null infinity J +. 

These coordinates are called Bondi or radiation coordinates. They are really 
only defined in a neighbourhood of J + because if we follow the null rays 
back into the interior the gravitational field will cause them to focus and cross 
in general (Fig. 21.3). However, we shall ultimately be working asymptotically 
and so the coordinate system will be adequate for our needs. 

0,</> 
defined on S2 

label rays 

r / 
radial 
parameter 
along 
null rays 

~ 

Null hypersurface 
u=constant 

Rays focus and 
cross in general 

21.4 Bondi's radiating metric 
A null ray is one of the coordinate curves 

u = u0, 0 = 00, </> = </>o, 

where u0, 00, and </>0 are constants, and r is varying. The tangent vector to 
this curve is 

dx0 

dr = (0, 1, 0, 0) = 81, 

and so it must be parallel to 1°, that is, /0 = A.81 for some proportionality 
factor A. But, by (21.8) and (21.5), 

for which we get 
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These conditions on the contra variant metric are equivalent to the conditions 
on the covariant metric (exercise) 

Newman and Penrose, in work on gravitational radiation subsequent to 
Bondi, took x1 to be an affine parameter, in which case (exercise) A= 1 and 

gOl = gOI = 1 (21.15) 

However, Bondi chose x 1 = r to be a luminosity distance parameter defined 
by requiring 

lg22 g231 = r4sin20. 
g23 g33 

(21.16) 

The significance of this choice is that the 2-surfaces (u = constant, r = con­
stant) have the usual surface area of a 2-sphere, namely, 4itr2. 

We next impose the symmetry assumptions of axial symmetry (21.1), which 
results in ( exercise) 

and azimuth reflection invariance (21.2), which results in (exercise) 

or equivalently 

Putting all these assumptions together, we can write the metric in the 
particular form of Bondi's radiating metric (exercise) 

where V, U, {3, and y are four arbitrary functions of the three coordinates u, r, 
and 0 by (21.17), that is, 
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21.5 The characteristic initial value problem 
We now consider the initial value problem for Bondi's radiating metric. The 
situation is different from the Cauchy problem because this time initial data 
is set on a characteristic or null hypersurface rather than on a spacelike 
hypersurface. As a consequence, it is called the characteristic initial value 
problem. Bondi showed that the ten vacuum field equations break up into 
four groups: 

(1) three symmetry conditions 

(2) four main equations 

(3) one trivial equation 

(4) two supplementary conditions 

The three components R03 , R 13 , R23 vanish identically as a consequence of 
the symmetry assumptions. Recall that in the Cauchy problem we proved a 
result which states that if the dynamical equations hold everywhere and the 
constraint equations hold on an initial hypersurface then the contracted 
Bianchi identities ensure that the constraint equations hold everywhere. 
There is an analogous result for the characteristic initial value problem, 
except that in this case the 'constraint equations' consist of the trivial 
equation and the supplementary conditions, and the trivial equation is 
automatically satisfied as an algebraic consequence. 

Hence, the initial value problem reduces to solving the main equations and 
satisfying the supplementary conditions for one value of r. The main equa­
tions break up further into the following: 



(2a) one dynamical equation 

(2b) three hypersurface equations 

The dynamical equation is the only main equation which involves a term 
differentiated with respect to u and hence propagating into the future (that is, 
from one null hypersurface to the next). The hypersurface equations only 
involve differentiation within the hypersurface u = constant. 

If we assume that the solution is analytic everywhere, then a detailed 
analysis of the main equations leads to the following schema for integration. 
We first prescribe y on u = u0 , that is, on some initial hypersurface N 0 , say. 
The three hypersurface equations then determine fJ, U, and V on N O. The 
dynami9al equation serves to determine Y,o on N 0 , which means that y is 
determined on the 'next neighbouring' null hypersurface N 1 , say. We then go 
through the whole cycle again on N 1 (Fig. 21.4). Proceeding in this way, we 
can generate a solution of the field equations in some region to the future of 
N0 • However, we have neglected functions of integration in the schema and it 
turns out that one of them, called the 'news' function, plays a key role in the 
analysis. 

21.6 News and "mass loss 
In order to proceed further, we need to expand everything in inverse powers 
of the radial parameter r and carry out an asymptotic analysis. We shall 
outline the procedure. We start by strengthening the condition (21.11) and a 
detailed analysis reveals that the asymptotic behaviour of the metric is given 
by 

g00 = 1 + O(r- 1), 
g01 = 1 + O(r- 1), 

g02 = 0(1), 
9. 22 = -r2 + O(r), 
g33 = -r2 sin2 0 + O(r). 

(21.28) 

We mention briefly that the coordinate transformations which preserve the 
form of the metric (21.20) together with the above asymptotic conditions form 
a group called the Bondi-Metzner-Sachs, or BMS, group. The BMS group is 
important because it plays the same role asymptotically for an isolated 
radiative system as the Poincare group does in special relativity. Bondi 
adopts a final assumption, namely, 

l• [o(ry)] o 1m -
r ➔ oo ~ u=const - ' 

(21.29) 

in an attempt to prevent radiation coming in from past null infinity and 
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Main equations 
determine 

y 
on N1 

N1:U=U1 (=LJo+du) 

Fig. 21.4 An integration schema for 
Bondi's solution. 



 

298 I Radiation from an isolated source 

J 

Source __,_ _ ___,,, r 

Fig. 21.5 Penrose diagram indicating 
initial data. 

affecting the source. He chose this condition in analogy to the Sommerfield 
condition in electromagnetic theory which prevents incoming radiation,. but 
it turns out that (21.29) is not strong enough to prevent the occurrence of 
sufficiently weak incoming radiation. 

We now have sufficient starting assumptions to expand everything in 
inverse powers of r. It is only necessary to work to a certain limited order in 
inverse powers to obtain the mass-loss result. For example, to the required 
order, we get (changing the original notation slightly) 

y = ~ + !l_ + O(r - 4), 
r r3 

(21.30) 

where n = n(u, 0) and q = q(u, 0) are arbitrary functions at this stage. The 
hypersurface conditions lead to 

/3 = -n2/(4r 2 ) + O(r- 3 ), l 
U = -(n, 2 + 2ncot0)/r 2 +(2d+3nn, 2 +4n2 cot0)/r3 + O(r- 4 ) 

V= r - 2M + O(r- 1), 

(21.31) ! 

where d = d(u, 0) and M = M(u, 0) are also arbitrary. The dynamical equa­
tion produces 

4q,O = 2Mn - d,2 + dcot0. 

The supplementary conditions lead to 

M ,0 = - n;0 + ½(n, 22 + 3n,2cot0- 2n), 0 , (21.32) 

- 3d, 0 = M, 2 + 3nn, 02 + 4nn, 0 cot0 + n, 0n, 2, (21.33) 

where these last two equations are exact results by the lemma, since this is the 
part of the equations which holds on r = constant. 

A detailed investigation reveals that, as before, our initial data involves 
prescribing one function of three variables, namely, 

y = y(u, r, 0), (21.34) 

on N 0 . However, in addition, we must prescribe one function of two variables, 
namely, the u derivative of n. 

n,0 = n, 0 (u, 0), (21.35) 

for any value of r. Since we are working asymptotically we shall prescribe n, 0 

on f +. Finally, we must prescribe two functions of one variable, namely, 

M = M(u0 , 0), d = d(u0 , 0), (21.36) 

which we prescribe on the intersection of N 0 and f+ (see Fig. 21.5). With this 
initial data, all other quantities are determined. Clearly, it is the data n, 0 

which determines the evolution of the source and, as a consequence,_ it is 
termed the news function. If the solution is static then the news function 
vanishes. If we restrict our attention to the periods when the sou.rce is static, 
then it is possible to find a coordinate transformation which relates the 
quantities M, d, and q to known physical parameters. It turns out tfu\t M is 
intimately connected to the mass and is termed the mass aspect. In fact, the 
quantity 

m(u) = ½ f M(u, 0)sin0d0 (21.37) 
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determines the mass of the system at J + and is called the Bondi 
mass. (Similarly dis termed the dipole aspect and q the quadrupole aspect.) 
Multiplying (21.32) by sin 0, integrating with respect to 0 from 0 to 1t, and 
using (21.37) together with some regularity conditions on the symmetry axis, 
we find (exercise) 

The non-positive nature of the right hand side leads to the promised result. 

Thus, if a system remains quiescent, then there is no news and hence the 
Bondi mass remains constant. If, however, the system radiates, then there is 
news and the minus sign in (21.38) means there is a consequent mass loss. If a 
radiating system can become quiescent again, then this establishes the 
content of Fig. 21.1. The power of this result is that we have obtained it 
without paving to assume that the gravitational field is weak everywhere and 
no linearization of the field is needed. We mention that, shortly after Bondi 
published his results, Sachs dropped the symmetry assumptions and obtained 
essentially the same result. The calculations are obviously longer, and, in 
general, it turns out that there are two news functions, corresponding to the 
two gravitational degrees of freedom, but otherwise the argument proceeds 
along similar lines. 

21.7 The Petrov classification 
The gravitational field is governed by the Riemann tensor. We can gain 
considerable insight into the possible types of gravitational field by consider­
ing the algebraic structure of the Riemann tensor. We restrict ourselves to the 
vacuum case, where the Riemann tensor coincides with the Weyl tensor, 
because in four dimensions, by (6.87), 

(21.39) 

and in the vacuum case Rab = R = 0. 
The Weyl tensor has the same symmetries as the Riemann tensor and, in 

addition, possesses the trace-free property 

(21.40) 

Since Cabcd is skew symmetric on each pair of indices and also symmetric 
under their interchange, we can start by thinking of it as a 6 x 6 symmetric 
matrix (exercise). We can then classify the Weyl tensor algebraically by 
classifying this 6 x 6 matrix in terms of its eigenvalues and eigenvectors. So, 
at first sight, we would expect this to involve classifying the possible roots of a 
sixth-order or sextic equation. However, the procedure is complicated by the 
additional symmetries (21.40) and Ca[bcdJ = 0. We shall not pursue the details 
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Table 21.1 

,-0 
Fig. 21.6 The hierarchy of Petrov types. 

Petrov type: 

Quartic 
roots: 

Distinct 
eigenvectors: 

all 
distinct 

4 

II 

one 
d6uble 

3 

D 
two 
double 

2 

III 

one 
triple 

2 

N 

one 
four-fold 

further, but it turns out that these symmetries reduce the problem to 
classifying the roots of a quartic equation. The resulting classification due to 
Petrov-and hence called the Petrov classification-itemizes the various 
possibilities of distinct eigenvalues and eigenvectors of the Weyl tensor at a 
point and gives them a name or type as shown in Table 21.1. Ifwe add to this 
the completely degenerate case of conformally flat space-times in which Cabcd 
vanishes (called type 0), then there are six possibilities which can be 
conveniently arranged in a triangular hierarchy (Fig. 21.6), as suggested by 
Penrose. In the diagram, the arrows point in the direction of increasing 
specialization. The Petrov type of a given vacuum space-time is then defined 
as the type at those points which are highest up the hierarchy. Thus, a 
solution may be the same type everywhere, or may reduce to lower types at 
some points or region, but by definition the type cannot move up the 
hierarchy. A generic solution will be type I, which is called algebraically 
general, whereas all other types are called algebraically special. 

A different but equivalent method, due to Debever, consists in classifying 
certain null vectors, called principal null directions, which have a special 
relationship to the Riemann tensor. The result rests on the following theorem. 

There is a corresponding result for non-vacuum space-times if we replace 
Rabcd by Cabcd. The Petrov type then relates to the coincidence of these null 
directions according to 

Type: 
Coincidence: 

I 
[1111] 

II 
[211] 

D 
[22] 

III 
[31] 

N 
[4] 

The coincidence also agrees with the coincidence of roots in the Petrov 
quartic equation. 

The particular vacuum solutions of Schwarzschild, Reissuer-Nordstrom, 
and Kerr are all algebraically special type D. Plane gravitational waves are 
type N, and hence the gravitational field from an isolated radiating source is 
expected to be asymptotically type N. However, any solution which is 
sufficiently complex to model a realistic solution will be type I. Bondi's 
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radiating vacuum solution, namely (21.20), subject to (21.30) and (21.31), is 
type I, but asymptotically type N with 

Rahed ~ n, oo/r + O(r - 2) 

when n,00 f= 0. We add that, in a non-vacuum space-time, the Petrov 
classification of the Weyl tensor is augmented by an analogous classification 
of the Ricci tensor called the Plebanski type. Moreover, the complete 
classification of the Weyl tensor and its covariant derivatives (in a canonically 
defined frame) leads to the Karthede classification mentioned in §13.7. 

21.8 The peeling-off theorem 
In the last section, we defined the possible algebraic types of the Riemann 
tensor in a vacuum space-time. In this section, we consider the physical 
significance of this classification. Sachs investigated the case of a retarded 
wave solution emanating from an isolated source in the linearized theory and 
was able to expand the Riemann tensor in terms of an affine parameter r 
along each outward null ray (null geodesic) producing the result 

N III II I I' 
R = ~ + - 0 + ~ + ~ + ~ + O(r- 6 ) 

r r 2 r 3 r4 r 5 
(21.41) 

where, for convenience, we have suppressed the indices. Thus, asymptotically, 
the leading order of the Riemann tensor in type N, then type III, type II and 
type I, respectively, at the subsequent orders. In the equation the 0 denotes a 
vanishing absolute derivative in the ray direction I". Unlike the other coeffic­
ients in (21.41), I~ does not have a special relationship with I" since its one 
principal null direction is not tangent to a null geodesic. Sachs also con­
sidered algebraically special fields and found that they do not have an 
expansion as general as (21.41), but, in generalizing the work of Bondi, he was 
able to show that the Riemann tensor for an asymptotically flat isolated 
radiative system has precisely the same form as (21.41). Indeed, starting in the 
wave zone, where the Riemann tensor is type N with a fourfold repeated ray 
direction I", the other principal null directions peel off as we move in towards 
the source, where terms of a less special nature predominate (Fig. 21.7). This is 
known as the peeling-off theorem. 

Szekeres has investigated the properties of type N, III, and D fields by 
considering their effect on a cloud of test particles. An observer sets up an 
orthonormal triad {et", e/, e/} of spacelike vectors adapted to the field in 
each case. For type N fields, the forces on the ring of particles results in the 
distortion shown in Fig. 21.8 (compare with Fig. 20.2). This clearly indicates 
the transverse character of such fields, since ei" points in the direction of 
propagation of the field. Szekeres terms this a pure transverse gravitational 
wave. For type III fields, the effect on the particles is still planar, but in this 
case the plane contains the wave direction ei" and the axis is tilted through 

N ,-1 III ,-2 II ,- 3 I ,-• Fig. 21.7 The peeling-off theorem. 
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Fig. 21.8 The effects of a type N field on 
a ring of test particles. 

Fig. 21.11 The optical scalars: 
(a) expansion; (b) twist; (c) shear. 

Fig. 21.9 The effects of a type 111 field on 
a ring of test particles. 

Fig. 21.10 The effects of a type D field on 
a sphere of test particles. 

45° to the wave direction (Fig. 21.9). Szekeres terms this a longitudinal wave 
component. For type D fields, the effect ceases to be planar. In this case, a 
sphere of particles is distorted into an ellipsoid with major axis lying in the 
wave direction (Fig. 21.10). This is precisely the tidal force we discussed before 
in §16.10 for a radially infalling observer in the Schwarzschild field. Szekeres 
terms this a Coulomb-type field in analogy with electromagnetism. For type I 
and type II fields, nothing simple emerges. 

21.9 The optical scalars 
Consider a congruence of null geodesics with tangent vector field 1°. By a 
change of scale, it is always possible to obtain the geodesic equation in the 
simple form (exercise) 

l";blb=O. 

We assume this has been done and define three quantities called optical 
scalars determined by the congruence 1• as follows: 

expansion (divergence): 

twist (rotation): 

shear (distortion): 

CO - {.!./ /• ;b}½ - 2 [a;b] 

lal = {½l(a;b)la;b - 02}½ 

Their physical interpretation is embodied in the following result of Sachs. If a 
small object in a null geodesic congruence casts a shadow on a screen, then all 
portions hit it simultaneously. The shape, size, and orientation of the shadow 
depend only on the location of the screen and not on its velocity. If the screen 
is an infinitesimal distance dr from the object, then the shadow is expanded 
by 0dr, rotated by codr, and sheared by laldr (Fig. 21.11). The quantity shear 
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turns out to be the most important physically, as is evident from the following 
theorem. 

In an isolated radiative system, the news function is also intimately connected 
to the shear. 

The Petrov classification, optical scalars, and Killing vectors are three very 
important tools for classifying vacuum solutions in a coordinate-independent 
way. In particular, they have been used to find particular exact solutions of 
the field equations. Indeed, there are known vacuum solutions for each of the 
four classes of algebraically special Petrov type determined by the vanishing 
or otherwise of the expansion and twist. In some of these cases, all possible 
solutions are known. For example, all vacuum type D solutions have been 
found. There are also a large number of vacuum type I or algebraically 
general solutions known. However, few of these solutions are fully under­
stood in the sense that we are able to understand their causal structure, 
geodesic structure, global structure, and singularity structure. Thus, there are 
relatively few solutions for which we can draw space-time, spatia~ and 
Penrose diagrams. Moreover, there is evidence to suggest that many of them 
have a strange singularity structure and, as such, are pathological in nature 
and unlikely to approximate to any physically realistic solution. 

Finally, we mention that, by using the Riemann identity on 1° 

(21.42) 

and the definitions of optical scalars, it is a straightforward matter to derive 
propagation equations for the optical scalars. For example, setting 

z = - 8 + iw, (21.43) 
we can deduce 

(21.44) 

This is a null version of the Raychauduri equation and equations such as 
these play a central role in the proof of the singularity theorems. 

Exercises 

21.9 Exercises I 303 

21.1 (§21.1) Define cylindrical symmetry. What conditions 
does this impose on the metric coefficients in adapted co­
ordinates (x0) = (x0, x1, <J,, z)? Write down the metric of the 
2-space (</> = constant, z = constant). Use the result of 
Exercise 6.30 to deduce that there exist coordinates in which 
the line element can be written in the form 

where C£ is a function oft and p only. What are the conditions 
for the (t, p) plane to be orthogonal to the (</>, z)-plane? 
Assuming these conditions, show that a cylindrically sym­
metric line element can be written in the canonical form 

ds2 = e2,-2"(dt2 - dp2) - p2e - 2"d</>2 

- e21H2"(dz + xd<J,)2, 

where y, 1/1, µ, and x are all functions oft and p only. 
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21.2 (§21.1) What is the condition for a cylindrically sym­
metric solution to be non-rotating? What effect does this 
have on the line element of Exercise 21.1? 

21.3 (§21.4) Show that if a null ray is given by 

u = u0 , 0 = 00 , <Ji = </Jo 

then it leads to the conditions (21.13). Show that (21.13) is 
equivalent to (21.14). [Hint: consider inverting a general 
symmetric 4 x 4 matrix with zeros in the positions defined 
by (21.13).] Show that if x 1 is an affine parameter it leads to 
the conditions (21.15). Show that axial symmetry and azi­
muth reflection invariance leads to the conditions (21.18) or 
(21.19). Let x 1 = r be a luminosity parameter defined by 
(21.16) and deduce Bondi's radiating metric (21.20) subject 
to (21.21). [Hint: show first that the conditions lead to a 
metric in which g00 , g0 i, g02 , and g22 are four arbitrary 
functions of u, r, and 0; then the actual form of these 
coefficients are chosen to preserve the signature and for later 
convenience.] 

21.4 (§21.4) Show that the surface area of the 2-surface 
(u = u0 , r = r0) is 41trl . 

21.5 (§21.4) Firid the non-zero components of the metric 
connection r;:,, of Bondi's radiating metric. [Hint: use the 
variational principle approach of §7.6.] 

21.6 (§21.5) Use the results of Exercise 21.5 to establish the 
lemma of §21.5. [Hint: write out the contracted Bianchi 
identities in terms of rt and R.b; do not insert the metric 

expressions for r;:,, and R0b in the identities, but merely 
consider which quantities are zero and which are not.] 

21.7 (§21.5) Evaluate the components of the Ricci tensor 
which define the four main equations. [Hint: this is a long 
but straightforward calculation.] Use the results to confirm 
the integration schema for Bondi's solution. 

21.8 (§21.6) The requirement that the Bondi metric re­
mains regular on the symmetry axis 0 = 0, 1t leads to a 
number of conditions including n(u, 0) = n(u, 1t) = 0. Use 
these conditions together with (21.32) and (21.37) to deduce 
the mass-loss result. 

21.9 (§21.7) Show that the symmetries 

Cabcd = - Cabdc = - Cbocd = c,,ab 

mean that we can treat C0 bc4 at a point as a symmetric 6 x 6 
matrix. 

21.10 (§21.9) Consider a congruence of null geodesics with 
tangent vector /". Write down the geodesic equation /0 

satisfies in general. Show that if we rescale /" so that 

t•-+ 'f' = Al" 

then we can choose A so that the geodesic equation reduces 
to 

F\i' = 0. 
21.11 (§21.9) Compute an expression for the expansion 
for Bondi's radiating line element (21.20) using 
1•~e- 2PJ1 . 



 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

22.1 Preview 
Cosmology is the study of the dynamical structure of the universe as a whole. 
As in most modelling exercises, we shall start by trying to find a very simple 
model of the universe. This is done by smoothing out all the irregularities in 
space and in time and concentrating simply on the gross features of the 
universe. So, to start with, we ignore all details such as the solar system, our 
own galaxy (the Milky Way), the local cluster of galaxies and so on; the 
consideration of these details can then hopefully be introduced at a later stage 
to yield a more complete or better theory. We shall be concerning ourselves 
only with the very basics of cosmology, that is, the overall dynamics of the 
system. We shall see in this chapter that this is governed by a first-order 
ordinary differential equation called Friedmann's equation. The resulting 
solutions are the standard solutions of relativistic cosmology and are called 
the Friedmann models. We shall investigate some of these in the next 
chapter. 

Cosmology as a separate scientific study really only came into existence 
with the advent of general relativity. It is possible to consider cosmology in a 
Newtonian framework, but this had not been seriously attempted prior to 
general relativity largely because, in as far as there was a generally accepted 
model of the universe in existence, it was considered devoid of dynamics; that 
is, the universe was considered static. Perhaps, surprisingly, it is possible to 
construct a 'Newtonian cosmology', based on Newtonian theory together 
with a number of ad hoc assumptions, which also results in Friedmann's 
equation. (However, the interpretation of some of the terms in the equation is 
different.) But it is emphasized that this Newtonian approach only came into 
existence after general relativity had first tackled the problem. We shall 
look at a discrete Newtonian model in §22.3. The starting point for both 
Newtonian and relativistic cosmology is a simplicity principle called the 
cosmological principle which states, essentially, that the universe is unchang­
ing in space from point to point. This leads to the requirement that space is 
homogeneous and isotropic (the same in every direction) about each point. 

In the early decades of cosmology, there were very few reliable observa­
tional results and, not surprisingly, different Friedmann models enjoyed 
periods of fashion, that is, periods when they were considered the best 
available model for our own universe. However, there was one school of 
thought that argued vociferously for a simple non-Friedmann model called 
the steady-state solution (§23.12), based on the perfect cosmological princi­
ple that the universe is unchanging in space and time. Most of these 
considerations are largely historical in nature, for, although the Friedmann 
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models are still basic to much of cosmological thinking, the theory has 
progressed considerably beyond them. None the less, we shall largely content 
ourselves with obtaining and investigating the Friedmann models in this 
introduction to cosmology. 

In more recent decades, one model has emerged as the best available, at 
least as far as the origins of the universe are concerned, and that is the hot big 
bang. In this model it is assumed that there occurred a cataclysmic event 
(some 1010 years ago), called the big bang, when the universe sprang into 
existence and expanded away from a singular point. In the earliest phases, the 
universe consisted of radiation at incredibly high temperatures and densities. 
As the universe expanded, the temperature and density fell and protons, 
electrons, and neutrons emerged from the radiation bath. As the system 
cooled further, the simple atoms such as hydrogen and helium emerged first, 
followed later by the heavier elements. This phase can be treated mathemat­
ically and one of the great successes of this approach has been the agreement 
of the theoretical prediction of the abundancies of the heavy elements with 
the observed abundancies. As the system expands and cools yet further, then 
conditions become favourable for the condensation of the nebulae, that is, the 
stars and galaxies, from the primeval matter. The model then encompasses 
the dynamics of these nebulae up to the present epoch. 

The development of the hot big bang model brings out an important point; 
namely, in modelling the universe in the large we have made use of our 
understanding of local physical laws. The justification for this is that we are 
more or less forced to do so - otherwise we would hardly be able to start -
and yet it has proved extremely successful, to date, in providing insight into 
the structure of the universe. However, we cannot rule out the possibility that 
there exist additional interactions which only reveal themselves on a cosmo­
logical scale. One example of this is the cosmological term (Ag.b) which 
Einstein incorporated into general relativity. Another important point relates 
to the fact that, in most branches of physics, it is possible to investigate 
phenomena by repeatedly carrying out experiments in the laboratory in 
controlled conditions where all but a small number of parameters are held 
fixed. No such possibility occurs in cosmology. Indeed, cosmology is unlike 
any other branch of physics in that the system we are studying is unique. 
Given this constraint, it is perhaps surprising that we are able to construct 
such apparently successful models. This success is so marked that, in some 
cosmological circles, the claim is that the universe is well understood after the 
first 10- 43 seconds from its birth, so well in fact that the period after this time 
is referred to in these circles as the 'late universe'! 

22.2 Olbers' paradox 
The fact that, prior to general relativity, the universe was considered static is 
perhaps even more surprising when one is confronted by a paradox put 
forward by Olbers in 1826 which stems from the observation that the sky is 
dark at night. (In fact, others had considered similar ideas before, but Olbers 
gave a more precise statement of the paradox.) He assumed that space is 
Euclidean and infinite and that the average number of stars per unit volume 
and the average luminosity of each star is constant throughout space and 
time, provided these averages are taken over sufficiently large regions. He 
also assumed that the universe has been in existence for an infinite time and 



that, on the large scale, it is static, Now consider a shell of radius r and 
thickness dr, and let I denote the prbduct of the average number of stars per 
unit volume and the average lumino~ity per star. The intensity at the centre of 
the shell will be given by the total luminosity produced by the shell divided by 

•• its area, that is, approximately, 

(4nr2 dr)I = Id 
4 2 r. 
nr 

(22.1) 

If we surround any point P by an r infinite succession of shells, each of 
thickness dr, then clearly the intensity at P will be J; l dr, which is infinite! 
However, we have omitted to account for the possibility that light from a star 
may be intercepted on its way by another star (Fig. 22.1). When this is taken 
into account, it can be shown that the result is no longer infinite but equal to 
the average luminosity at the surface of a star. Since Pis arbitrary, the result 
must hold everywhere. This leads to a paradox, because the sky is observed to 
be dark at night. The same conclusion may be reached by thermodynamic 
arguments. For, if the system is static and of infinite age, then it must have 
reached thermodynamic equilibrium, which means that each star must be 
absorbing as much radiation as it emits, and the result follows. Yet another 
argument is that, if one lo9ks in any direction in an infinite universe in which 
t~e average number of stars per unit volume is finite, then the line of sight will 
eventually end on a star. Since the system is static, the light received from the 
star is not degraded, and the result again follows. 

It is interesting to note that the bulk of this enormous amount of radiation 
arrives from very distant parts, half, in fact, from regions so distant that the 
light has only a 50% chance of arriving without being absorbed by other 
stars. An estimate from observations in our own neighbourhood suggests 
that half of this radiation should be due to stars more than 1020 light years 
distant. 

Olbers tried to resolve this paradox by postulating the existence of a 
tenuous gas which would absorb the radiation in transit over long distances. 
This argument will not work, though, because the gas would be heated until it 
reaches a temperature at which it radiates as much as it receives, and hence it 
will not reduce the average density of radiation. The same paradox arises 
even if the assumption that the universe is Euclidean is dropped (exercise). 
Nor does it make any difference whether the universe is infinite (open) or 
bounded (closed). 

As we look further out into space, we are looking further back in time. One 
resolution of the paradox rests on assuming that I is a function of time which 
is sufficiently small in the distant past that the distant regions do not 
contribute significantly to the radiation density. If it is assumed that the 
universe is static and that the stars do not start radiating until some finite 
period in the past, then it is possible to arrange for this period to be short 
enough to lead to the radiation density we observe today. However, some 
estimates would then suggest that the universe is younger than the age of the 
oldest stars. The accepted resolution rests on assuming that the universe is 
not static but rather undergoing large-scale expansion. Then, because of the 
Doppler shift, light received from receding stars will be shifted to the red and, 
if the recessional velocity is large enough, the loss of energy will be sufficient 
to reduce the radiation density to the observed level. 
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310 I Relativistic cosmology 

In summary, assuming that a dark night sky is not just a phenomenon of 
our current epoch, then Olbers' paradox requires that either the universe is 
young or it is expanding. In the latter case the question may be asked as to 
what happens to the 'lost' energy resulting from the Doppler shift. In fact, it is 
precisely this energy which is doing the work involved in the expansion of the 
universe. 

22.3 Newtonian cosmology 
In this section, we shall introduce Newtonian cosmology by investigating a 
simple discrete model in which it is assumed that the universe consists of a 
finite number of galaxies. Let the ith galaxy have mass mi and position r;(t) a,s 
measured from a fixed origin O. We now impose the cosmological principle 
(see §22.4) in the form that the motion about O must be spherically sym­
metric, in which case the motion of the galaxies is purely radial, i.e. 

r;(t) = r;(t)r. (22.2) 

The kinetic energy T of the system is then 

" T l. '\' ·2 = 2 L. m;r;. 
i=l 

The gravitational potential energy between a pair of galaxies mi and mi is 
given by -Gmim)lri - ril, and so the total potential energy Vofthe system 
is 

V= -G f mimi 
i,i= 1 Ir; - r-1' 
(i<j) J 

(22.3) 

where the inequality in the double sum means that each pair of particles is 
only counted once. We also assume that there is a cosmological force acting 
on the ith galaxy of the form 

(22.4) 

where A is a constant called the cosmological constant. This yields an 
additional potential energy, called the cosmological potential energy Ve of the 
system, given by 

" 
V, = - ¾A I m;rf. (22.5) 

i= 1 

The total energy E of the system is therefore 

1. f •2 f mimi 1 f 2 E = 2 L. miri - G L. --- 6 A L. m;r; . (22.6) 
i=t i,j=1lr,-r) i=t 

(i<j) 

Let us assume that the distribution and motion of the system is known at 
some fixed epoch t0 . Then the radial motion required by the cosmological 
principle implies that, at any time t, 

(22.7) 

where S(t) is a universal function of time which is the same for all particles 
and is called the scale factor. This means that the only motions compatible 
with homogeneity and isotropy are those of uniform expansion or contrac­
tion, that is, a simple scaling up or down by a time-dependent scale factor. 



 

The radial velocity of the ith galaxy is then 

. . ~(rj 
r1(t) = S(t)r;(t0 ) = S(t) r;(t) (22.8) 

by (22.7). We define a quantity called ,the Hubble parameter H(t) by 

and then (22.8) can be written as 

which is called Hubble's law. This states that, in an expanding universe, at 
any one epoch, the radial velocity of recession of a galaxy from a given point 
is proportional to the distance of the galaxy from the point. The value of the 
Hubble parameter at our epoch is known as the Hubble constant. 

If we substitute (22.7) and (22.8) into (22.6), we find (exercise) 

• 2 B 
E = A[S(t)] - S(t) - D[S(t)]2, (22.11) 

whei;e the coefficients are positive constants defined by 

• 
A = ½ L m1[r1(t0 )] 2, (22.12) 

i= 1 

(22.13) 

• 
D = ¼A L m1[r1(t0 )] 2 = ½AA. (22.14) 

i= 1 

This is one form of the cosmological differential equation for the scale factor 
S(t). It has a simple interpretation. First of all, consider what happens when A 
vanishes, in which case we can neglect the last term. If the universe is 
expanding, then the second term on the right-hand side decreases and, since 
the total energy remains constant, it follows that the first term must decrease 
as well. Therefore the expansion must slow down. If A is positive, then all 
galaxies experience a cosmic repulsion, pushing them away from the origin 
qut to infinity. In this case, the cosmological term contributes positively to 
the expansion. If A is negative, then the opposite happens and all galaxies 
experience a cosmic attraction towards the origin. In a later section, we shall 
go on to consider what solutions of the differential equation are possible for 
different values of the parameters occurring in them. In particular, we shall 
investigate whether it is possible for the expansion to slow down, stop, and 
reverse so that eventually the universe will collapse -the so-called 'big 
crunch'. 
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We finish this section by rewriting the differential equation in a form closer 
to the general relativistic equation. Solving (22.11) for S2, we find 

•2 (B) 1 D 2 E s = A s+As +A 

( B) 1 1 2 E = A s+3As +A (22.15) 

by (22.14). We now rescale the scale factor S(t) to obtain a new scale factor 
R(t), where 

R(t) = µS(t). 

Then, multiplying (22.15) by µ2 , we can write it in the form 

where the constants C and k are defined by 

If E = 0 we choose µ arbitrarily, but if E ¥- 0 we choose it so that 

µ2 = A/IEI. 

(22.16) 

(22.18) 

This choice of rescaling means that k can only have the values + 1, 0, or - I. 
In this case, (22.17) has exactly the same form as the Friedmann differential 
equation of relativistic cosmology. In a similar manner, it is possible to 
construct a finite continuum Newtonian model. Although this model may be 
taken to be arbitrarily large, it does not apply to an infinite universe. 

22.4 The cosmological principle 
Cosmology is based on a principle of simplicity, namely, the cosmological 
principle. It is, in essence, a generalization of the Copernican principle that 
the Earth is not at the centre of the solar system. In the same spirit, we would 
not expect the Earth, or the solar system, or our galaxy, or our local group of 
galaxies either to occupy any specially favoured position in the universe. We 
state the principle in the following form. 

We need to make this statement mathematically precise. We assume that 
there is a cosmic time t and formulate the principle in each of the spacelike 
slices t = constant. The statement that each slice has no privileged points 
means that it is homogeneous. Technically, a spacelike hypersurface is 
homogeneous if it admits a group of isometries which maps any point into 
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any other point (Fig. 22.2). The principle requires that not only should a slice 
have no privileged points but it should have no privileged directions about 
any point either. A manifold which has no privileged directions about a point 
is called isotropic and it clearly must be spherically symmetric about that 
point. A manifold is globally isotropic if it is isotropic about every point. It 
can be shown that if a manifold is globally isotropic then it is necessarily 
homogeneous. Thus, the cosmological principle requires that space-time can 
be sliced up or 'foliated' into spacelike hypersurfaces which are spherically 
symmetric about any point in them. The homogeneity of the universe has to 
be understood in the same sense as the homogeneity of a gas: it does not 
apply to the universe in detail, but only to a 'smeared-out' universe averaged 
over cells of diameter 108 to 109 light years, which are large enough to include 
many clusters of galaxies. 

Thus, the cosmological principle is a simplicity principle which leads to the 
requirement that the universe is both isotropic and homogeneous. What 
observational evidence is there for each? Observations from visible galaxies 
are not so precise but suggest that their distribution is isotropic to perhaps 
30%. Associated measurements of the Hubble constant suggest it is isotropic 
to perhaps 25%. The observations of radio galaxies reveal them to be much 
more isotropic with a distribution which is isotropic to below 5%. The 
universe seems to be pervaded by cosmic X-rays and these again are isotropic 
to below 5%. But the greatest support for isotropy came in 1965 with the 
discovery of the cosmic microwave background by Penzias and Wilson. They 
discovered that the universe is currently pervaded by a bath of thermal 
radiation with a temperature of 2.7 K and, moreover, that this radiation is 
isotropic to fractions of a per cent. The generally accepted explanation is that 
this radiation is a thermal remnant of the hot big bang. Spatial homogeneity 
is also supported by the counts of galaxies and the linearity of the Hubble 
law. 

Despite the high degree of isotropy and homogeneity which we observe 
now, some cosmologists have considered anisotropic and inhomogeneous 
models. There are basically three reasons for this. First of all, ·calculations of 
statistical fluctuations in Friedmann models suggest that they cannot col­
lapse fast enough to form the observed galaxies. Secondly, although there are 
strong reasons to support a big bang, there is less reason to suppose that the 
original singularity has the simple spherically symmetric pointlike structure 
of a Friedmann singularity. Indeed, calculations by Belinski, Khalatnikov, 
and Lifschitz- the s.o-called BKL approach-suggest that a general cosmo­
logical singularity would have a quite different structure. Finally, there is the 
idea that the universe may have been anisotropic and inhomogeneous in the 
past, but that there is some mechanism by which these characteristics would 
be washed out in the subsequent evolution, regardless of the initial 
conditions. 

Considerable work has been done on the theoretical side in investigating 
anisotropic and inhomogeneous solutions. One of the biggest group of such 
solutions is that of the Bianchi models, which are spatially homogeneous 
anisotropic models (technically they admit a three-dimensional group of 
transformations which map any point in a hypersurface of homogeneity into 
any other point). These are subdivided into classes and labelled I, II, III, IV, 
V, VI, VII, VIII, and IX. The field equations then reduce to ordinary 
differential equations with time as the independent variable. These equations 

lsometry mapping 
one point to another 

Fig. 22.2 Manifold sliced up into 
homogeneous 3-spaces. 
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can then be studied by either qualitative or numerical methods. These 
models, in general, have singularities. For example, the vacuum Bianchi I 
models are described by the Kasner solution 

ds2 = dt2 - t 2P'dx2 - t2P2dy2 - t2P'dz2 

where p1 , p2 , and p3 are constants satisfying 

P1 + P2 + P3 =Pi+ P~ + P~ = 1, 

which means that there is only one freely specifiable constant. In general, 
these solutions have a 'cigar'-like singularity when t = 0, that is, a small 
spatial region which is spherical at some time becomes infinitely long and 
thin as t-+ 0. There is also a special case when the initial singularity is 
apparently of a 'pancake' type where the spherical region becomes an 
infinitely thin disc. Indeed, if we now include matter, it turns out that most of 
the Bianchi solutions have physical singularities, in the sense that the density 
becomes infinite, of these cigar or pancake types. Some special solutions give 
rise to weaker singularities called 'whimper' singularities which have the 
property that the Ricci components in an orthonormal frame parallely 
propagated along a curve hitting the singularity are unbounded, whereas the 
components in some other frame are bounded. However, the physical singu­
larities are the generic ones. There is a fair amount known about the 
qualitative nature of the evolution of these models, but we will not consider 
them further. 

A more radical notion is that there is no 'smeared-out' universe at all, but 
only clusters of galaxies, and clusters of clusters, and clusters of clusters 
of clusters, and so on, as in the hierarchical model proposed in 1908 by 
C. V. I. Charlier. There is in fact some observational evidence for super­
clustering centred on the Virgo cluster, but the hierarchy appears to stop at 
cluster of clusters of galaxies, and shows no evidence of inhomogeneities on a 
larger scale. 

We shall, from now on, adopt the cosmological principle. The real reason 
for this is not that it is definitely correct, but rather that it allows us to make 
use of the limited data provided to cosmology by observational astronomy. 
Any weaker assumptions, as in the anisotropic models or hierarchical mo­
dels, would lead to metrics for which there would be insufficient data 
to determine the unknown functions occurring in them. By making such 
simplifying assumptions, we have a real chance of confronting theory with 
observation. 

22.5 Weyl's postulate 
In 1923, H. Weyl addressed the problem of how a theory like general 
relativity, based on general covariance, can be applied to a unique system like 
the universe. From one viewpoint, general relativity was specifically designed 
to deal with the equivalence of the observations of relatively accelerated 
observers. The universe consists of a single system which looks different to 
observers in different states of motion. Wey! argued that in attempting to 
understand the distant we must base ourselves, as far as possible, on the 
theories verified in our neighbourhood. General relativity offers the best 
available summary oflocal macroscopic physics and is accordingly a suitable 
theory. Other assumptions are needed such as the cosmological principle. 



 

Wey! also added to this the assumption that there is a privileged class of 
observers in the universe, namely, those associated with the smeared-out 
motion of the galaxies. The fact that one can work with this smeared-out 
motion follows from the observation that the relative velocities of matter in 
each astronomical neighbourhood - each group of galaxies - are small. He 
then posits the introduction of a 'substratum' or fluid pervading space in 
which the galaxies move like 'fundamental particles' in the fluid, and assumes 
a special motion for these particles. This is contained in the following 
postulate. 

The postulate requires that the geodesics do not intersect except at a 
singular point in the past and possibly a similar singular point in the future. 
There is, therefore, one and only one geodesic passing through each point of 
space-time, and consequently the matter at any point possesses a unique 
velocity. This means that the substratum may be taken to be a perfect fluid 
and this)s the essence of Weyl's postulate. Although the galaxies do not 
follow this motion exactly, the deviations from the general motion appear to 
be random and less than one-thousandth of the velocity of light. This is to be 
compared with the relative velocities of the galaxies due to the general motion 
which i~ comparable with the velocity of light. Accordingly, the random 
motion may be neglected in the first instance. Combined with the observation 
that the general motion is one of expansion, Wey l's postulate is seen to closely 
reflect the actual situation in the universe. 

22.6 Relativistic cosmology 
Relativistic cosmology is based on three assumptions, namely: 

(l) the cosmological principle 

(2) Weyl's postulate 

(3) general relativity. 

Weyl's postulate requires that the geodesics of the substratum are orthogonal 
to a family of spacelike hypersurfaces. We introduce coordinates (t, x1, x 2, x3) 

such that these spacelike hypersurfaces are given by t = constant and the 
coordinates (x 1, x 2, x3 ) are constant along the geodesics. This means that the 
spacelike coordinates of each particle are constant along its geodesic and, as a 
consequence, such coordinates are called co-moving. The orthogonality 
condition means that t can be chosen so that the line element is of the form 

ds2 = dt2 - h.p dx" dxP 

where, as usual, Greek indices run from 1 to 3 and 

h.p = h.p(t, x). 

The coordinate t then plays the role of a cosmic time or world time. 
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( 

Fig. 22.3 Cosmic time surfaces and 
substratum geodesics. 

Fig. 22.4 The world map and world 
picture of an observer. 

) 

The world time defines a concept of simultaneity. A world map is then the 
distribution of events on the surfaces of simultaneity (Fig. 22.3). The world 
picture is the aspect of the universe presented to an observer at any instant of 
world time, that is, it comprises the events seen looking along the observers 
past light cone (Fig. 22.4). Clearly, events from distant parts of the universe 
occur at earlier values of the world time than those nearby. 

Consider a small triangle formed of three particles at some time t and also 
the triangle formed by these particles some time later. The second triangle 
will, in general, differ from the first in many respects. But, when we use the fact 
that the cosmological principle requires that the 3-spaces are isotropic and 
homogeneous, so that no point and no direction in the hypersurfaces may be 
preferential, then it follows that the second triangle must be geometrically 
similar to the first. Moreover, the magnification factor must be independent 
of the position of the triangle in the 3-space by similar arguments. It follows 
then that the time can enter h.p only through a common factor in order that 
the ratios of the distances corresponding to the small displacements may be 
the same at all times. Hence, the time may only enter h.p in the form 

Xa=Xj 

X a=X~--+----< 

Past light ----+-,. 
cone through P 

Substratum 
geodesics 

P's world map 

(22.19) 
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The ratio of the two values of S(t) at two different times is the magnification 
factor and because of this it is called the scale factor. The scale factor S(t) 
must be real, for otherwise the lapse of time could change a spacelike into a 
timelike interval. Next, we have to impose the condition that each slice is 
homogeneous and isotropic and also independent of time. This requires that 
the curvature at any point must be a constant, for otherwise all points would 
not be geometrically identical. Such a space is called a space of constant 
curvature, which we discuss next. 

22.7 Spaces of constant curvature 
Mathematically, a space of constant curvature is characterized by the 
equation 

where K is a constant called the curvature. As we shall see, the geometries of 
these spaces are qualitatively different depending on whether the curvature is 
positive, negative, or zero. In the case of a three-dimensional space, this 
becomes 

R.pya = K(g.Yg/16 - gdgfiy). 

Contractin~with g"Y, we get 

g•Y R.pya = Rpa 

= Kg"Y(g.ygfi6 - g.agpy) 

= K(3gpa - gpa) 

= 2Kgp6 , 

(22.21) 

(22.22) 

Now, since the 3-space is isotropic about every point, it must be spherically 
symmetric about every point. It follows that the line element will have the 
form (compare with (14.33)) 

(22.23) 

where A = J(r). The non-vanishing components of the Ricci tensor are 

R11 = l'/r, (22.24) 

and the conditions for a space of constant curvature (22.22) reduce to the two 
eq_uations 

A'/r = 2Ke", (22.25) 

The solution of these equations is 

e-,i = 1 - Kr2• (22.26) 

We have shown that the metric for a 3-space of constant curvature is 
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where K is pos1t1ve, negative, or zero. We can introduce a new radial 
parameter i' related to r by 

(22.28) 

in which case the metric takes on the conformally flat form (exercise) 

Combining this with the results of the last section, we obtain the line 
element for relativistic cosmology, namely, 

(22.30) 

or, in terms of the barred radial coordinate, 

d 2 = d 2 - [S( )]2 di'2 + r2(d02 + sin20d<J>2) 
s t T (1 + ¼Kr2)2 (22.31) 

We prefer to write these line elements in an alternative form where the 
arbitrariness in the magnitude of K is absorbed into the radial coordinate 
and the scale factor. Assuming K -j, 0, we define k by K = IKlk, so that k is 
+ 1 or -1 depending on whether K is positive or negative, respectively. If we 

introduce a rescaled radial coordinate 

(22.32) 

then (22.30) becomes (exercise) 

ds2 = dt2 - [S(t)]2 ( dr*2 + r* 2(d02 + sin2 0dcf,2)) (22.33) 
IKI 1 - kr* 2 • 

Finally, we define a rescaled scale function R(t) by (see (22.16)) 

R(t) = S(t)/IKI½ if K -j, 0, 

R(t) = S(t) if K = 0. 

Then, dropping the stars on the radial coordinate, we have shown that the 
line element of relativistic cosmology can be written in the alternative form 

or, in terms of the barred radial coordinate, 

where k is now either + 1, -1, or 0. This second form is called the 
Robertson-Walker line element after the first investigators to obtain it. At any 
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epoch t = t0 , the geometry of the slice is given by 

where the constant R0 is given by R0 = R(t0). In the next section, we shall 
investigate further the geometry of these 3-spaces of constant curvature for 
the three cases k = + 1, 0, and -1. 

22.8 The geometry of 3-spaces of 
constant curvature 

Case 1: k= +1 

Notice that in this case the coefficient of dr2 becomes singular as r---+ 1. We 
therefore introduce a new coordinate X, where 

r = sinx, (22.37) 
so that 

and (22.36) becomes 

du2 = RHdx2 + sin2 x(d82 + sin2 8dq,2)]. (22.38) 

We can now embed this 3-surface in a four-dimensional Euclidean space with 
coordinates (w, x, y, z), where 

w = RoCOSX, } 
x = R0 sinxsin8cosq,, 
y = R0 sinxsin8sinq,, 
z = R0 sinxcos8. 

(22.39) 

The embedding is possible because (exercise) 

du2 = dw2 + dx2 + dy2 + dz2 = RUdx2 + sin2 x(d82 + sin2 8dq,2 )] 

in agreement with (22.38). Also, from (22.39), we get (exercise) 

w2 + x2 + y2 + z2 = Rt, (22.40) 

which shows that the surface can be regarded as a three-dimensional sphere 
in four-dimensional Euclidean space. This is depicted in Fig. 22.5, where one 
dimension (y = 0 or q, = 0) is suppressed. The hypersurface is defined by the 
coordinate range 

The 2-surfaces x = constant, which appear as circles in the pictures, are 2-
spheres of surface area (exercise) 

Ax== l"=o J;:
0 

(R0 sinxd8)(R0 sinxsin8dq,) = 41tR5sin2 x, 

and (0, q,) are the standard spherical polar coordinates of these 2-spheres. 
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Fig. 22.5 A surface of constant 
positive curvature embedded in a 
four-dimensional Euclidean space 
(¢ = 0). 

Cosmic time t 

Spatial slice S3 

(the epoch t= lo) 

Fig. 22.6 The cylindrical topology JR x S3 

of space-time when k = + 1. 

w 

-----1----r------.;,S2 (x=constant) 

z 

Thus, the area of these 2-spheres is zero at the North Pole, increases to a 
maximum at the equator, and decreases again to zero at the South Pole. The 
surface has 3-volume given by (exercise) 

V = r=O r=O J::o (Rodx)(Rosinx d0)(Rosinx sin 0dq,) 

= 21t2 R6 = 21t2 R3 (t0 ), (22.41) 
which is why R(t0 ) is often referred to as the 'radius of the universe'. 

This 3-space is clearly the generalization of an S2 , or 2-sphere, to a three­
dimensional entity and is called an S3, or 3-sphere. The physical space 
should not really be thought of as embedded in anything else, since it is the 
totality of everything that exists at any one epoch. Thus, there are no physical 
points outside it nor does it have a boundary. It may be helpful to think of it 
as follows. If we introduce yet another radial-type coordinate r', where 
r' = R0 x, then (22.38) becomes 

do-2 = dr' 2 + R5sin2 (r'/R0 )(d02 + sin2 0dq,2 ), 

and the surface area of the 2-spheres x = constant is given by 

Ax= 41tR5sin2 (r'/R0 ). 

Notice that, for small r', sin r' ~ r', and ·so Ax ~ 41tr12• Now choose any point 
P and consider the surface area of a series of 2-surfaces centred on P of 
increasing radius r', all at one epoch t0 . For small values of the radius r' 
(compared with R(t0 )), the area is close to the Euclidean value 41tr'2. As r' 
increases, the area increases but becomes increasingly less than 41tr' 2. The 
surface area reaches a maximum value when r ' = ½1tR0 and decreases from 
then on until it again becomes zero when r' = 1tR0 . In this space, any radial 
geodesic returns to its starting point. The topology of this space is variously 
called closed, bounded, or compact. The topology of the whole space-time is 
called cylindrical, since it is the product JR x S3, where JR represents the one­
dimensional cosmic time (Fig. 22.6). 

Case 2: k=O 

If we set 
x = R0 rsin0cosq>, 

y = R0 rsin0sinq,, 

z = R 0 rcos0, 
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then (22.36) becomes 
do-2 = dx2 + dy2 + dz2 , 

which is clearly three-dimensional Euclidean space. The 3-space is covered by 
the usual coordinate range 

0 ~ r < oo, 0 ~ </> < 21t. 

The topology of the space-time is the same as that of four-dimensional 
Euclidean space, namely JR 4, and is called open. 

Case 3: k=-1 

If we introduce a new coordinate X, where 

,. r=sinhx, 
then 

and (22.36) becomes 

do-2 = Rl[dx2 + sinh2 x(d02 + sin2 0d</>2 )]. 

(22.42) 

(22.43) 

We can no longer embed this 3-surface in a four-dimensional Euclidean 
space, but it can be embedded in a flat Minkowski space with signature + 2 
(exercise), 

where 
do-2 = -dw2 + dx2 + dy2 + dz2, 

) 
w = R0 coshx, 

x = R0 sinhxsin0cos<f>, 

y = R0 sinhxsin0sin</>, 

z = R0 sinhxcos0. 
/ . 

These equations imply that (exercise) 

w2 - xi - Yi - z2 = Rl, 

(22.44) 

(22.45) 

(22.46) 

so that the 3-surface is a three-dimensional hyperboloid in four-dimensional 
Minkowski space. This is depicted in Fig. 22.7 where one dimension (y = 0 or 
<f, = 0) is suppressed. The hypersurface is defined by the coordinate range 

0 ~ X < oo, 0 ~ 0 ~ 1t, 0 ~ </> < 21t. 

w 

~--------.x 

z 
The 2-surfaces x = constant, which appear as circles in the figure, are 2-
spheres of surface area 

Ax= 41tR5sinh2 x, 

where ( 0, <I>) are the standard spherical polar coordinates on these 2-spheres. 
As x ranges from O to oo, the area of the successive 2-spheres increases from 
zero to infinity. For large X, the surface area increases far more rapidly than it 
would if the hypersurface were flat. The 3-volume of the surface is infinite. 
The topology is again JR 4 and open. In each of the three cases, we have only 
specified the simplest topology possible; in fact, other topologies are possible 
by identifying points or regions, but we will not consider the issue further. 

Fig. 22.7 Surface of constant negative 
curvature embedded in a four­
dimensional Minkowski space (t/J = 0). 
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22.9 Friedmann's equation 
Our three ingredients of relativistic cosmology are as follows. 

(1) The cosmological principle, which leads to the Robertson-Walker line 
element, namely, 

d 2 = d 2 _ [ ( )]2 [df2 + f2(d82 + sin28d¢2)J. 
s t Rt [l+¼kr2]2 , (22.47) 

(2) Weyl's postulate, which requires that the substratum is a perfect fluid, 
namely, 

T..b = (p + p)u.ub - pg.b; 

(3) General relativity, with cosmological term, namely, 

Gab - Agab = 81tTab· 

Then using the fact that, in our preferred coordinate system 

u• ::_ (1, 0, 0, 0), 

the field equations lead to two independent equations (exercise) 

(22.48) 

(22.49) 

where we have used relativistic units and a dot denotes differentiation with 
respect to time. By homogeneity and isotropy, the density and pressure can 
only be functions of time t. Together with these equations, we have the 
requirements that the fluid is physically realistic, as expressed in the domi­
nant energy conditions (12.56). Using our Newtonian analogue, (22.51) 
involves a second time-derivative of R and so may be thought of as an 
equation of motion, whereas (22.50) only involves a first time derivative of R 
and so may be considered an integral of the motion, that is an energy 
equation. If we differentiate (22.50) with respect to t, multiply through by 
l /81t, and add the result to (22.51) multiplied through by -3.R/8nR, we get 

p+3p~= _2._~( 3.R 2 +~-A)= -3p~ 
R 81t R R 2 R2 R' 

again using (22.50). Multiplying through by R3, we can rewrite this in the 
form 

(22.52) 

Consider a set of particles in the substratum enclosing a volume V. Then, 
clearly, owing to the motion of the substratum, V ~ R3 (t). If we now call the 
total mass-energy in the volume E = p V, then equation (22.52) can be written 
in the form 

dE + pdV= 0. (22.53) 

This is the first law of thermodynamics, or conservation of energy, and shows 



 

that the pressure does work in the expansion. This is exactly the same 
equation as results from the conservation equations (exercise) 

(22.54) 

Thus, the field equations of the theory contain in them the equation for 
the conservation of energy. We have met this before in §13.4, and it arises 
from the fact that the field equations (22.49) satisfy the contracted Bianchi 
identities 

( Gab - Ag•b); b = 0, 

which in turn leads to the conservation equations (22.54). 
The pressure p includes all types of pressure, such as that due to the 

random motion of the stars and galaxies, that due to heat motion of 
molecules, radiation pressure, and so forth. However, observation reveals 
that at the present epoch the pressure is far smaller than the energy density p 
due to matter. The ratio of the two quantities is about 10- 5 or 10- 6 . 

Accordingly, as long as only states of the universe differing not too widely 
from the present one are considered, we may take 

and so the substratum is comprised of dust. Then (22.51) integrates immedi­
ately to give 

R(R. 2 + k) - ½AR3 = C, 

where C is a constant of integration, and, using (22.50), we find 

C=}1tR3 p. 

(22.56) 

(22.57) 

Apart frorira numerical factor, this is the energy content E of a volume V of 
the substratum and is constant immediately by (22.53), which becomes a 
conservation of mass equation when p vanishes. The value can be re­
membered as twice the mass of a spherical volume of a Euclidean universe of 
radius R and density p. If we now use (22.57) to eliminate p in (22.50), the 
result can be written in the form 

This is Friedmann's equation for the time variation of the scale factor in the 
absence of pressure. Note that it is identical with the Newtonian analogue 
(22.17). We shall consider the solutions of this equation-the Friedmann 
models - in the next chapter. Some authors refer to these as the FRW 
models, short for Friedmann-Robertson-Walker models. Recall that, in 
obtaining the Newtonian analogue (22.17), we imposed the assumption (22.7), 
which is essentially equivalent to Hubble's law (22.10) (see Exercise 22.4). In 
the rest of this chapter, we shall consider light propagation and distance in 
relativistic cosmology in order to deduce Hubble's law from the premises of 
the theory. 
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22.10 Propagation of light 
We assume that light propagates in relativistic cosmology in the same way as 
it does in general relativity. Let us consider how an observer O receives light 
from a receding galaxy. We use the unbarred form of the Robertson-Walker 
line element (22.34). Since we assume that the time slices are homogeneous 
3-spaces, we can, without loss of generality, take O to be at the origin of 
coordinates r = 0. Inserting the conditions for a radial null geodesic, namely,· 

ds2 = dB = d<f, = 0, 
into (22.34), we find 

dt dr 
R(t) = ± (1 - kr2 )½' 

(22.59) 

where the + sign corresponds to a receding light ray and the minus sign to an 
approaching light ray. Consider a light ray emanating from a galaxy P with 
world-liner= ri, at coordinate time ti, and received by Oat coordinate time 
t0 (Fig. 22.8). Using (22.59), we get (exercise) 

(22.60) 

where 

(t0, 0) 

O's world-line 

if k = + 1, 

if k = 0, 
Fig. 22.8 Light ray from galaxy P to 

(22.61) observer O. 

k = -1. 

Next, consider hto successive light rays emanating from P at times ti and lo+dl 

ti + dt, and received by O at times t0 and t0 + dt0 , respectively (Fig. 22.9). 
Then, from (22.60), to 

f.
ro + dro dt f.'o dt 

r1+dr 1 R(t) = 11 R(t)' 

since each side is equal to the same functionf(ri). Therefore (check), 

f.
to+dto ~ -f.'o ~ = f.to+dto ~ -f.t1+dr1 ~ = O, 
r1+dr 1 R(t) t, R(t) to R(t) ti R(t} 

and, assuming that R(t) does not vary greatly over the intervals dt 1 and dt0 , 

we can take it outside the integral in the last equation and deduce that 

(22.62) 

All fundamental particles (galaxies) of the substratum have world-lines on 
which the coordinates r, 8, <pare constant and hence, from (22.34), ds2 = dt2• 

It follows that t measures the proper time along the substratum world-lines. 
The intervals dt 1 and dt2 are the proper time intervals between the rays as 
measured at the source and observer, respectively. Hence, from (22.62), the 
interval, as measured by 0, is R(t0 )/R(ti) times the interval measured by P. 
In an expanding universe, 

t 0 > t 1 ⇒ R(t0 ) > R(ti), 

0 

Fig. 22.9 Successive light rays from 
galaxy P to observer 0. 
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and it follows that the observer O will experience a red shift z given by 

(22.63) 

where v1 and v0 are the frequencies measured by the emitter and receiver, 
respectively. This red shift is also called a Doppler shift, but is not to be 
confused with the special relativistic Doppler shift. Clearly, in a contracting 
universe, 0 will detect a corresponding blue shift. 

If, roughly speaking, Pis 'near' to 0, then the cosmic times of emission and 
reception differ only by a small amount, dt say, that is, t0 = t 1 + dt, and so 
(22.63) produces 

1 + z = R(to) ~ R(t0 ) ~ 1 + R(t0 ) dt 
R(t0 - dt) R(t

0
) - R(t

0
)dt R(t

0
) 

to first order in dt. In addition, 

f 10 dt f 11 +dt dt dt dt dt 
11 R(t) = 11 R(t) ~ R(t 1 ) = R(t0 - dt) ~ R(t0 )' 

But for small r, using (22.61), 

J10 dt 
ti R(t) =f(ri) ~ r1, 

and so 
dt 

R(to) ~ '1· 

Combining this with (22.64), we get the result 

z~R.(t0 )r1 . 

(22.64) 

(22.65) 

Thu~: at any one epoch, the red shift z is proportional to the distance r1 . 

Interpreting z as a velocity of recession, we have obtained a velocity-distance 
relation similar to Hubble's law. To make this more precise, we need to 
consider how distance is measured, as least theoretically, on a cosmologically 
interesting scale. 

22.11 A cosmological definition of distance 
Because we have a world time, it is mathematically easy to define an absolute 
distance between fundamental particles by considering them at the same 
value of world time and then measuring the geodesic distance between them 
in the slice (Fig. 22.10). If we set dt = d0 = d<f> = 0 in (22.34), then the 
absolute distance dA between O and P at time t is 

fr, dr 
dA = R(t) o (1 - kr2)½. (22.66) 

This is of no practical use and so we try another tack. If we know the actual 
size of a distant nebulae, then we can define an observational distance by 

d0 = a/{J, (22.67) 

where IX is the actual diameter of the nebulae and fJ is the observed angular 
diameter. Such a definition would be satisfactory if some means of determin­
ing IX were known. Since this is not known, we instead use a definition based 

0 

Fig. 22.10 An absolute distance between 
fundamental particles. 
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on the apparent luminosity of a nebula. Let Ebe the energy radiated per unit 
time by the distant nebula and let I be the intensity of the radiation received 
per unit area per unit time. Then, assuming the energy is distributed uni­
formly on a sphere in a Euclidean space and neglecting the red shift, the 
distance can be defined as (E/41t/)t. But, in an expanding universe, the 
interval of time during which a certain amount of energy is received is longer 
than the interval of emission by virtue of the Doppler shift, and hence the 
number of photons received per unit time is reduced by the factor 1 + z. In 
addition, the energy of each photon of light is reduced by the same factor 
(because energy is the time component of a 4-vector and so the trans­
formation from one observer to another introduces the factor 1 + z). These 
considerations lead to the definition of a luminosity distance dL, where 

The luminosity distance is in essence the distance used by astronomers. 
However, the detailed way in which astronomical distances are measured is 
quite complicated and beyond the scope of this book (for further details, see 
Weinberg (1972)), although we mention, without being precise, that one unit 
of measurement is called apparent magnitude m. It is related to the energy 
received ER by the relation 

m = constant - 0.4log10 ER. 

Moreover, there is a problem with the definition (22.68), because it involves E, 
the absolute luminosity of the source, which is not observationally measur­
able. This definition thus appears to suffer from the same defects as (22.67). 
However, the distances to nearby galaxies may X>e determined by other means 
and hence their absolute luminosities may be calculated, and it appears that 
all galaxies have roughly the same absolute luminosity. So a first approxima­
tion is to take all galaxies as having the same absolute luminosity. This 
assumption is almost certainly wrong, though, because if we live in an 
evolutionary universe then the mean age of the more distant galaxies is much 
less than the mean age of nearby galaxies and so there is no reason to believe 
that they will have the same mean luminosity. We will not pursue the matter 
further, but simply employ (22.68). 

22.12 Hubble's law in relativistic cosmology 
We start by finding an expression for the luminosity distance in terms of the 
coordinates of the Robertson-Walker line element in the unbarred form 
(22.34). Consider light emanating from galaxy Pat time t1 , and observed by 
us 'now' at Oat a time t = t0 (t 1 < t0 ) (Fig. 22.11). The light will have spread 
out over the surface of a sphere with centre at the event P0 (t = t0 , r = ri) 
and passing through the event 0 0 (t = t0, r = 0). The surface area of this 
sphere is the same as that of the sphere centred on 0 0 passing through P0 
( dotted line in Fig. 22.11 ), owing to the homogeneity of the 3-sphere. The line 
element for this sphere (t = t0 , r = r1) is, from (22.34), 

ds2 = -[R(t0 )r1 ] 2 (d02 + sin2 0dcf,2 ). 
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r=r0 

0 p 

This is the usual line element for a sphere of radius R( t0 )r 1 , and so the sphere 
has surface area 4nR2(t0)rf. Hence, the observed intensity is given by 

E 
l=-----~-

4nrf R2 (t0 )(1 + z)2 ' 

taking into account the double Doppler shift factor. Comparing this with 
(22.68), we obtain an expression for the luminosity distance in terms of the 
scale factor, namely, 

dL = r 1 R(to)- (22.69) 

If we define,the Hubble parameter by (see (22.9)) 

then (22.65) and (22.69) give 

where H(t0 ) is the value of the Hubble parameter at the current epoch and is 
called Hubble's constant. This is the famous Hubble law in relativistic 
cosmology. It states that for 'nearby' nebulae the radial velocity of recession 
as measured by the red shift z is proportional to its distance. The dimension 
of H(t) is that of inverse time, and so ifwe define T = 1/ H(t) then Thas the 
dimension of time. Current observations give the value 

T0 ~ 1010 years, (22.72) 

which is believed correct to within a factor of 2. We stress that Hubble's law is 
an approximate one in relativistic cosmology. We define the deceleration 
parameter q by 

Fig. 22.11 Light from P1 spreading out 
on a sphere passing through 00 . 
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Fig. 22.12 Red shift versus corrected 
apparent magnitudes (Sandage 1970). 

Then, since R > 0 and R. 2 > 0, it follows that 

=> q >0, -~ 

' ' and so a positive q measures the rate at which the expansion of the universe is 1 
slowing down. The current value of the deceleration parameter q0 is un- ij 
certain, but most measurements make it positive and close to 1 with a typical ] 
range • j 

q0 = 1 ± 0.5. (22.74) j 
i 

Then, taking the second-order term into account in (22.64), we find the 1 
relationship (exercise) 

1 
(22.75) 

For objects too close to the observer, the random motions which we have 
excluded from our model do in fact obscure the general motion. But there is a 
good range of nebulae satisfying the velocity-distance law (out to about the 
18th magnitude) from which a good determination of T can be made. For 
more distant observations, the relationship (22.75) must be used, which is 
crucially dependent on the value of q0 . In Fig. 22.12, we present some data 
given in a 1970 review by Sandage. It is remarkable to note Hubble first 
proposed his law in 1929 on the basis of observations of only 18 nearby 
galaxies, and this data corresponds to a tiny part of the graph in Fig. 22.12. 

Differentiating Friedmann's equation (22.58), we get 

... C . 2 • 
2RR = - R 2 R + 3 ARR, 

and multiplying by -R/2R.3 gives 

RR C R2 
--=---.1,1_ 

R2 2RR 2 3 R2 • 

Then, using (22.73), (22.57), and (22.70), we can write this in the form 

0.1 

0.01 

z Qo=l 

Qo=O 
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This shows that there is an intimate connection between the deceleration 
parameter q, the Hubble parameter H, and p, the mean density of the 
universe. 

There is one other important observable and that is N, the number of 
nebulae in a given volume. We assume that there are n(t) nebulae per unit 
volume. Using (22.34), the volume enclosed by a sphere centred at O bounded 
by r = r1 at time t0 is (exercise) 

['' r2 dr 
V = 41tR3(to) Jo (1 - kr2)½. 

The number of nebulae in this volume is then 

N = Vn(t0 ). 

(22.77) 

(22.78) 

In relativistic cosmology, the assumption is usually made that all nebulae 
existing at t = t0 have also existed at the time of emission of light (t = t 1 in 
the case of P in Fig. 22.8), which is a somewhat doubtful assumption. 
Mathematically, this amounts to putting 

R3(t)n(t) = constant. (22.79) 

In order to replace this assumption by something else, we would need to 
know more about nebular evolution. In the next chapter, we shall see that the 
observational parameters H, q, p, and N play a crucial role in discriminating 
between different cosmological models. 

Exercises 

22.1 (§22.2) Show that Olbers's paradox remains if we as­
sume space is non-Euclidean but still homogeneous by the 
cosmological principle. 

22.2 (§22.3) Write down an expression for the cosmo­
logical potential energy v., of the ith particle such that 
F, = -grad V01 • 

22.3 (§22.3) Substitute (22.7) into (22.6) and establish 
(22.11)-(22.14). Identify A physically. Show that if E # 0 the 
choice (22.18) of µ in (22.16) allows (22.11) to be written in 
the standard form (22.17) with k = ± 1. 

22;4 (§22.3) Integrate Hubble's law (22.10) and deduce the 
scale factor law (22.7), identifying the function S(t) in terms 
of H(t). 

22.5 (§22.7) If three-dimensional space is isotropic (i.e. it 
has no preferred directions, in which case every direction is 
an eigendirection), then deduce that R"p = c8"p at each 
point. If, in addition, the space is homogeneous, what can we 
conclude about c? Show that c = ½R. Use the definition of 
the Wey! tensor in §6.13 together with the fact that it 
vanishes in three dimensions to show that the Riemann 
tensor can be expressed in the form (22.21) and relate K 
to C. 

22.6 (§22.7) Work out the non-vanishing components 
(22.24) of the Ricci tensor for the line element (22.23). [Hint: 
use the results of Exercise 6.31 (iv).] Confirm that if this line 
element is a space of constant curvature then ;_ is given by 
(22.26). 

22.7 (§22.7) Confirm the results of the following trans­
formations: 

(i) (22.28) transforms (22.27) into (22.29); 

(ii) (22.32) transforms (22.30) into (22.33). 

22.8 (§22.8) Confirm the results of the following trans­
formations: 

(i) (22.37) transforms (22.36) into (22.38); 
(ii) (22.42) transforms (22.36) into (22.43). 

22.9 (§22.8) 
(i) Show that (22.39) is a parametric form of the surface 

(22.40) in Euclidean 4-space. Confirm that its line ele­
ment reduces to (22.38). 

(ii) Show that (22.45) is a parametric form of the surface 
(22.46) in Minkowski space with line element, (22.44). 
Confirm that its line element reduces to (22.43). 
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22.10 (§22.8) Write down the line elements for the 2-
spheres x = constant in the cases k = + 1 and k = - 1. By 
comparing them with the standard line element for a sphere 
of radius a, namely, 

ds 2 = a2 (d02 + sin2 0dq,2 ), 

confirm the formula for the surface area Ax in each case. 
Confirm (22.41) and show that the volume o[the 3-surface in 
the case k = - 1 is infinite. 

22.11 (§22.9) Establish the field equations of relativistic 
cosmology (22.50) and (22.51). [Hint: this involves working 
out the Ricci and Einstein tensors for the line element 
(22.47).] 

22.12 (§22.9) Use (22.50) and (22.51) to establish the result 
(22.53). Confirm that the same equation results from the 
conservation law (22.54) 

(i) by direct computation 
(ii) without utilizing expressions for the connection. [Hint: 

take the covariant derivative of every term in (22.48) and 
use the results that u• is a tangent to a geodesic, u• ~ 03 
and u•,. = ½(d/dt)(lng)-why?] 

22.13 (§22.9) Use (22.5O)·and (22.51) to obtain (22.58) sub­
ject to (22.57) in the case (22.5 5). 

22.14 (§22.10) Confirm the result (22.60) subject to (22.61). 
Deduce (22.62) and (22.65). 

22.15 (§22.12) Confirm Hubble's law in the form 
(i) (22.71) to first order 

(ii) (22.75) to second order. 

22.16 (§22.12) Confirm (22.77). 



 
 
 

23.1 The flat space models 
Our considerations of the last chapter led to Friedmann's equation 

governing the scale factor in the pressure-free epochs of relativistic cosmology 
(and in Newtonian cosmology suitably interpreted). The task is to solve this 
non-linear first-order ordinary differential equation for different values of the 
parameters occurring in it. Recall that the values of these parameters are 
governed by the requirements 

-oo <A< +oo, k = -1, 0, +l. (23.2) 

There are a number of ways of proceeding. The equation can be solved, in 
general, by using elliptic functions, or resort can be made to computer plots of 
numerically generated solutions. However, many of the sub-cases can be 
integrated directly rGsing elementary functions or, failing that, elementary 
functions can be used to investigate their qualitative features. We shall not 
give an exhaustive account of this approach here (but see Landsberg and 
Evans (1977) for details). Instead, we shall restrict our attention to the 
important cases of flat space (k = 0) and vanishing cosmological constant 
(A= 0). The techniques employed may be applied to the other cases. 

In the flat space case, (23.1) reduces to 

We first assume A > 0 and introduce a new variable 

. 2A 3 
U=-R. 

3C 

Differentiating, we get 

. = 2A R2R 
u C ' 

(23.3) 
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r 

and, substituting in (23.3), we find 

u2 = ~ 2
2 

R4 ( ~ + ½AR2 ) 

4A2 4A 3 

=cR3 + 3c2 R6 

= 6Au + 3Au2 

= 3A(2u + u2

). (23.4) 

Taking the positive square root, we have 

which can be integrated by parts. If we assume a big bang model, namely, 
R = 0 when t = 0, then u = 0 initially, and so integrating gives 

Ifwe complete the square in the u-integral and set v = u + 1 and cosh w = v, 
then we get 

- -~~-~ - ~-~ - --~-~ - dw - w Ju du f" dv fw sinh wdw Jw 
0 

[(u + 1)2 
- l]½ -

1 

(v2 
- 1)½ -

0 

(cosh 2 w - l)½ -
0 

- • 

In terms of R, the solution becomes 

If A < 0, we introduce a new variable 

u = - 2A R3 
3C 

and then, proceeding as before, we obtain the solution (exercise) 

(23.6) 

The case A = 0 may be obtained by taking the series for cosh, namely, 

Then (23.5) gives 

R3 = - 1 + -- + -- + ··· - 1 3C [ ( 3At2 3A2 t4 
) ] 

2A 2 8 ' 



 
 

and so, in the limit as A--+ 0, we have R3 = !Ct 2 , or equivalently 

This is called the Einstein-de Sitter model. Alternatively, we can obtain this 
result directly from (23.3) which becomes R. 2 = C/R. Taking square roots, the 
equation is immediately separable, producing 

R½dR = C½dt. 

Integrating, using R = 0 when t = 0, we get 

so again 
R = (!Ct2 Ji°, 

as in (23.8). The Hubble parameter H(t) and the deceleration parameter q(t) 
can be easily computed from (23.5), (23.7), or (23.8). For example, in the 
Einstein-de Sitter case (exercise), 

', 

and 
H(t) = R/R = 2/(3t) 

q(t) = -RR/R.2 = ½-

(23.9) 

(23.10) 

In the initial stages of a big bang universe, R is small and so the term C/R 
dominates over ¼AR 2 in (23.1). Hence, for small t, 

R.2 ~ C/R, (23.11) 

and, integrating, we obtain, as in (23.8), 

R ~ (!Ct2 }t. (23.12) 

So, in the early stages, all big bang models behave like the Einstein-de Sitter 
model, namely, they expand at the rate ti. If we write (23.3) in the form 

R. 2 = F(R), (23.13) 
where 

F(R) = C/R + ½AR2 , (23.14) 

then much of the qualitative behaviour of R can be inferred from the 
behaviour of F(R). For example, 

I 
A< 0 ~ f(R) = 0 when R =Rm= [3C/(-A)]3 , 

so that R vanishes at Rm, which is a local minimum (exercise). Conversely, if 
A ~ 0, the solution grows without bound. In the case when A > 0, then, for 
large t, the second term on the right dominates in (23.3), and so 

R. 2 ~ ½AR 2, (23.15) 

and, integrating, we find (exercise) 

(23. 16) 

We now have enough information to sketch the graphs of the three models. 
We postpone this to §23.3. 
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23.2 Models with vanishing 
cosmological constant 

In this section, we consider the case when A vanishes. Friedmann's equation 
then becomes 

JP= C/R- k. (23.17) 

To solve this, we need to consider separately the cases k = + 1 and k = -1. 
In the former case, (23.17) becomes JP = C / R - 1. This time we start with 
a change of variable given by 

u2 = R / C. (23.18) 

Then 2uu = R/ C, and, substituting in (23.17), we find 

• 2 R. 2 1 ( C ) 1 ( 1 ) 
u = 4C2 u2 = 4C2 u2 R - 1 = 4C2 u2 u2 - 1 ; 

Taking positive square roots, the equation is separable, and, integrating with 
big bang initial conditions, we get 

2 { (1 ~:2 )½ du= i I dt = ~-

To evaluate the u-integral, we set u = sin 0. Then 

f" u2 _ f6 sin2 0cos0d0 
2 (l z)tdu-2 (l • 20 )½ 

0 -u O -sm 

= 2 f: sin2 0d0 

= J: (1 - cos 20)d0 

= 0 - ½sin20 

= 0 - sin0cos0 

= sin- 1 u - u(l - u2 j½. 

Writing the solution in terms of R, we obtain the result 

Similarly, in the case A = 0, k = -1, the solution becomes (exercise) 

The case A = 0, k = 0 is the Einstein-de Sitter model and has already been 
dealt with in §23.1. Again, the Hubble parameter and deceleration parameter 
can be computed directly from (23.19) or (23.20). For example, when k = + 1, 

(23.21) 
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and 

q = ½{1 - R/C)- 1 

with R determined implicitly in terms oft by (23.19). 
As in the last section, if we write (23.17) in the form 

R. 2 = G(R), 
where 

G(R) = C(R - k, 

(23.22) 

(23.23) 

(23.24) 

then we find that the model for which k = + l has a local minimum, whereas 
the other two models grow without bound. When k = -1, for large t, we 
have R. 2 ~ 1, and so R ~ t. We again have enough information to sketch the 
graphs of the models. 

23.3 Classification of Friedmann models 
In Fig. 23.1, we collect together the graphs of all the various possibilities. 
They are divided up into three major cases, namely, k = -1, 0, or + 1, and 
subdivided into 3, 3, and 8 sub-cases, respectively, depending on the sign or 
value of A. We describe the sub-cases briefly. 

A>O A=O 

k=-1 

R 

~t ~t 
(i) (ii) 

II 

k=O 

(i) (ii) 

III 
R R R R 

k=+l 

(i) (ii) (iii) (iv) 

Fig. 23.1 Classification of Friedmann models. 

A<O 

R 

(iii) 

R 

R 

L..------4-t 
(v) 
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Fig. 23.2 An indefinitely oscillating 
model. 

Case I: k= -1 

All of these models have open topology. 

(i) A > 0. This is an indefinitely expanding model, but it possesses a 
'kink' in it where the rate of expansion slows down for a period before picking 
up again, and asymptotically it approaches exp[(½ A)½t]. Initially, like all big 
bang models, the rate of expansion goes like that of the Einstein-de Sitter 
model, namely, like ti. 

(ii) A = 0. An indefinitely expanding model without a kink and which 
goes like t asymptotically. 

(iii) A < 0. In this case, the cosmological force is attractive and eventu­
ally halts the expansion and forces the model to collapse ending in an 
apocalyptic event called the big crunch. It is usually referred to as an 
oscillating model. There is also the possibility that the model is indefinitely 
oscillating with each cycle followed by another, as in Fig. 23.2. All models for 
which A < 0 are oscillating models. 

R 

etc. 

Case II: k=O 

All of these models have open topology. 

(i) A > 0. This is identical in character to the sub-case I(i) above, again 
possessing a kink and asymptotically approaching exp[(½A)½t]. 

(ii) A = 0. The Einstein-de Sitter model where R ~ tf. 
(iii) A < 0. An oscillating model. 

Case Ill: k= + 1 

All of these models have closed topology. 
In this case, there are more possibilities since there is a positive critical 

value of the cosmological constant Ac given by 

and an associated critical value of the scale factor Re given by 

RC= tc. 

(23.25) 

(23.26) 

(i) A > Ac. This is called Lemaitre's model and is again similar to the 
indefinitely expanding models I(i) and Il(i). However, the closer A is to Ac, the 
more pronounced the kink is and the closer the expansion is brought to a halt 
in this period. 



 

(ii) A= Ac. There are three possibilities in this sub-case, which depend 
on the value of a constant of integration. 

(a) This is the Einstein static model in which the gravitational attraction is 
exactly counterbalanced by the cosmic repulsion. The scale factor then 
has the constant value Re. 

(b) This is a big bang model which asymptotically approaches the Einstein 
static model. 

(c) This is the Eddington- Lemaitre model in which if time is run backwards 
it asymptotically approaches the Einstein static model. In forward time, it 
is an ever-expanding model asymptotically approaching exp[(½A}'"t]. 

(iii) Ac > A > 0. There are again two possibilities depending on a con­
stant of integration. 

(a) An oscillating model. 
(b) This is a model which has a contracting phase followed by an expanding 

phase in which the scale factor always remains positive. It is symmetric 
about its point of minimum radius with R ~ exp[(½A)½tJ as t--+ oo and 
R~exp[(½A)½(-t)] as t--+ - oo. 

(iv) A = 0. An oscillating model. 
(v) A < 0. An oscillating model. 

23.4 The de Sitter model 
This is not a model of relativistic cosmology because it is devoid of matter. 
However, as we shall see, it is important historically. It is obtained by setting 
p = p = k = 0 in (22.50) and (22.51). Then (22.50) gives 

3R. 2 /R 2 -A= 0, 
or 

(23.27) 

which on integration becomes 

R = A exp[(½A)½tJ, 

where A is a constant of integration. Since the origin of this curve is arbitrary, 
let us choose R = 1 when t = 0, in which case A = 1. Alternatively, we can 
rescale r and absorb the factor A into it. This leads to the de Sitter model, for 
which 

The graph of the scale factor is shown in Fig. 23.3. This solution is the 
common limiting case to which all the models l(i), Il(i), III(i), III(iic), and 
III(iiib) tend as t --+ oo. 

From (22.34), (23.28), and the requirement that k vanishes, the line element 
becomes 
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R 

Fig. 23.3 The de Sitter model. 
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or, in Cartesian coordinates, the standard form 

where 

This line element is invariant under a shift in t and a simultaneous change of 
scale in the space coordinates (exercise). Note that the metric is completely 
specified by ct. The coordinate range oft is from - oo to + oo with the zero of 
t being conventional. This is because the exponential curve is 'self-similar', 
that is, one cannot tell where one is along it by intrinsic measurements; it has 
no natural origin. If we introduce new coordinates ( i; x, ji, z), where 

t = t -½ctln[l - ct - 2(x2 + y2 + z2)exp(2t/ct)], 

x = xexp(t/ ct), 

ji = yexp(t/ct), 
(23.31) 

z = zexp(t/ ct), 

then (23.29) becomes, dropping bars, (exercise) 

ds2 = [1 - ct- 2(x2 + y2 + z2)]dt2 - dx2 - dy2 - dz2 

ct- 2(xdx + ydy + zdz)2 

l -ct-2(x2 + y2 + z2) ' 
(23.32) 

which is visibly stationary (why?). We shall return to this solution in §23.16. 
We are now in a position to give a semi-historical account of the models 

which have been considered at one time or another as models of our universe. 

23.5 The first models 

The Einstein static model (/1/(iia)) 

This was the first relativistic cosmological model ever to be considered. As we 
have said before, it was constructed by Einstein in an attempt to incorporate 
Mach's principle into general relativity and also to overcome the boundary 
conditions of the theory. It was discarded as soon as it became clear that the 
matter of the universe is not at rest on average, but is undergoing a large-scale 
expansion. In addition, Eddington has shown that it is unstable under small 
perturbations. This is fairly apparent because, if we consider a universe in an 
Einstein state which for some reason suffers a slight expansion, then, since an 
expansion would decrease the gravitational attraction and increase the 
cosmic repulsion, the system would continue to expand indefinitely. 

The de Sitter model (p=p=k=O, A > 0) 

This solution was discovered in 1917 and provided an example of an empty 
space solution which satisfies the Einstein equations with cosmological term. 
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The de Sitter model is expanding and yet contains no matter and so is clearly 
in violation with Mach's principle. Since it was the only model in existence at 
the time which could accommodate expansion, it was seized upon as a 
possible model for our universe. To explain the emptiness of the model, it was 
argued that the density of the matter in the universe was in any case low, 
though the meaning of the remark was not discussed seriously until much 
later. However, it was thought that there might well be solutions of the 
Einstein equations with A intermediate between Einstein's 'matter without 
motion' and de Sitter's 'motion without matter', and some solution not far 
from de Sitter's might well represent the actual universe. The work of 
Freidmann largely solved the problem. 

23.6 The time-scale problem 
Before 1952, the reciprocal of the Hubble constant was estimated to be 
T0 ~ 1.8 x 109 years. On the other hand, the age of the earth was thought to 
be at least 3 x 109 years and many stars were thought to have existed for 
5 x 109 years. (Modern estimates are considerably longer.) Hence, it was 
argued, if the universe has only existed for a finite time, then its age must be at 
least 5 x 109 years. Now consider the graph of R against t for any big bang 
model (Fig. 23.4). If t = t0 represents 'now', then the tangent to the curve at 
t = t0 cuts the t-axis at a time t = t 1 , say, and so 

(23.33) 

This rests on the assumption that R ~ 0 for all t, or equivalently q > 0, that is, 
the rate of expansion has been slowing down since the big bang. It follows 
that the big bang must have occurred at a time less than T0 . So, with the old 
value of T0 , there would not have been time for the stars to develop, and 
hence all such models were rejected. This is known as the time-scale problem, 
and it was thought tµat the only way to overcome it was to consider models 
possessing,periods for which R > 0. However, if we multiply (22.51) by -3 
and add it to (22.50), we obtain 

81t(p + 3p) = 2A - 6R/ R. (23.34) 

The left-hand side is always positive and, if A < 0 or A = 0, then .R would 
have to be negative for all time. Therefore big bang models were thought to 
require A > 0 to overcome the time-scale problem. 

23. 7 Later r,nodels 

The Eddington-Lemaitre solution (/1/(iic)) 

The model was discovered by Lemaitre in 1925, and was put forward 
forcefully by Eddington. It is not a big bang model, but was chosen because it 
overcame the time-scale problem. It is best pictured by reference to the static 
Einstein universe in which gravitational attraction and cosmic repulsion are 
just in equilibrium. As discussed earlier, the model is unstable and a small 
expansion would result in continuing expansion, as in Ill(iic), and similarly a 
small contraction would result in a time reversal of 11l(iib). This model 
therefore has an infinite past which was spent in the Einstein state. Thus it 
appeared to surmount the time-scale problem since it permits an arbitrarily 

R(t) 

Fig. 23.4 The time-scale problem for big 
bang models. 
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long time scale of evolution. The picture of the history of the universe derived 
from this model was that, for an infinite period in the distant past, there was a 
completely homogeneous distribution of matter in equilibrium in the Ein­
stein state until some event started off the expansion. This expansion has been 
going at an increasing pace ever since, which requires a negative value for q. 
The condensation of the stars and galaxies from the primeval matter took 
place at the time the expansion began, but this development was stopped 
later by the decrease of average density due to the progress of expansion. 

One objection to this model is that the initial condensation and its 
neighbourhood would differ from the rest of the universe. No such distinction 
is known from observation and, anyway, its existence would be incompatible 
with the cosmological principle. Again, a condensation must have been 
unlikely at the temperature and density assumed to exist in an Einstein state, 
for otherwise the life of that state would be very short. But, once the 
expansion starts, circumstances become still less favourable owing to the 
decrease in density. The requirement that q is negative also seems to contra­
dict observations. These and other objections remain unanswered, and so the 
model eventually fell from favour. 

Lemaitre's model (/1/(i)) 

In 1935, there was a swing away from the Eddington-Lemaitre model when 
the question of the generation of the elements - nucleogenesis - came 
under active consideration. The universe is believed to consist very largely of 
hydrogen, the simplest atom, and it was considered desirable by many to 
account for the generation of the heavy elements from hydrogen. Nuclear 
physics showed that the building of heavy elements requires conditions of 
extremely high density and temperature. The point source models appear to 
offer such a possibility, since, as R tends to zero, the density tends to infinity 
as R - 3 and it can be shown that the temperature goes as R - 1 . Such models 
are consequently called hot big bang models. The purely gravitational effects 
will not dominate in such conditions and so we cannot follow the model up to 
its origin using solely the equations of general relativity. 

Lemaitre investigated the problem and concluded that three distinct 
periods in the evolution of the universe should be distinguished: 

(1) a period of explosion from a point source, during which the elements were 
formed; 

(2) a period of very much reduced expansion, during which conditions were 
favourable for the formation of condensations leading to the nebulae; 

(3) a final period of renewed expansion, during which the recession of the 
nebulae is accelerating and the formation of new condensations is made 
unlikely by the diminishing density. 

The three models I(i), II(i), and IIl(i) each are point source models with a 
period of decreasing rate of expansion followed by an increasing rate of 
expansion. However, only in the last model is the expansion brought almost 
to a standstill, thus allowing for a period of the form (2) above. If A is very 
slightly in excess of Ac, then this model starts off like III(iib) a~d slowly 
approaches the Einstein state, but, since gravitation can 1'ever completely 
counteract the cosmic repulsion, the development then essentially follows the 
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Eddington-Lemaitre solution. This model, like all in which A> 0, requires 
that the formation of new galaxies is impossible since the cosmic repulsion is, 
and has been for some time, more powerful than the gravitational attraction 
of the smoothed-out universe. This means that hardly any nebulae can be 
younger than a certain time, in fact of the order of i T, which is something 
that can be directly tested. 

23.8 The missing matter problem 
Many of the considerations discussed so far became profoundly altered 
when in 1952 Baade and Sandage looked again at the observations lead­
ing to a value for Hubble's constant, and came up with a revised value of 
T0 •~ 1.3 x 1010 years. Thus, at one stroke, the time-scale problem for big 
bang models was largely resolved. In addition, there are known alternative 
mechanisms for nucleogenesis. For example, it is thought that supernovae 
explode from a stellar condition capable of nucleogenesis and result in the 
heavy elements being distributed over a wide area. Again, it is thought that 
the neutrons in the nuclei of red giants would rapidly transmute light 
elements into heavy ones. One of the most remarkable pieces of work was 
that of Hoyle, Burbidge, and Fowler, who, using these processes, were able to 
account for the observed abundancies of elements with remarkable accuracy. 
(Indeed, Hoyle was forced to predict correctly a previously ill-determined 
nuclear energy level in 12C in the process). 

The resolution of the time-scale problem means it is no longer necessary to 
take A > 0 in order to consider big bang models. Indeed, there is a strong 
body of opinion that says that we should take A = 0. After all, Einstein 
introduced it on grounds which turned out to be erroneous, so on simplicity 
grounds, if on no other, it should be dropped from consideration. The three 
models with A = 0 are called the standard models and are the ones to which 
most attention cis, given today. We shall discuss these in the next section. 
Setting A = 0 in (22.58) and using (22.57), we find (exercise) 

k = -R.2 + J1tR2 p(t) = [p(t)- 3H2/81tH1tR 2 . (23.35) 

We denote the current value of H by H0 and p by Po, i.e. 

Po = p(to) 

and define a density, called the critical density Pc, by 

Then it follows immediately from (23.35) that p0 discriminates between the 
three standard models as follows: 
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In addition, setting A = 0 in (22.76) gives 

which determines q0 in terms of p0 and H0. lfwe use the estimate T0 ~ 1010 

years, then we find (exercise) 

(23.39) 

We prefer the historic c.g.s. units because much of the literature on cosmology 
uses them. The smoothed out density of luminous matter in galaxies, which 
we denote p1, is believed to be rather less than this, in fact 

P1 ::5 10-30 gcm-3 

according to present-day estimates. This discrepancy is known as the missing 
matter problem and has led many to speculate about what other forms of 
matter (other than the luminous matter in galaxies) may exist. One possibility 
is that intergalactic space contains a gas density of ~ 2 x 10- 29 g cm - 3. 
However, although some evidence exists for intergalactic hydrogen (the most 
invisible of all elements) a:nd even ionized hydrogen, it would appear again to 
be less than 10- 30 g cm - 3. There is a:lso the possibility that a large amount of 
matter is hidden inside black holes. Indeed, current observations suggest that 
there may well be massive black holes situated at the centre of every galaxy, 
gobbling up stars in the galactic nucleus. Even so, the question of the actual 
density of the universe is still an open one, but it would seem that it is most 
likely a good deal less than the critical value Pc· 

23.9 The standard models 

The Einstein-de Sitter model (//(ii)) 

In this model there is an exact expression for T, namely, from (23.9), t = i T. 
Using the value T0 ~ 1.3 x 1010 years, it follows that the age of the universe 
t0 ~ 8.6 x 10 years, which with present-day estimates is less than the age of 
the oldest stars and close to the age of the Sun. In fact, radioactive dating and 
the theory of stellar evolution gives uncertainties in the range 0.7 x 1010 to 
1.6 x 1010 years, but even so it is clear that, unless T0 is significantly greater, 
this model possesses a time-scale problem. The model predicts a fixed value 
for q, namely, from (23.10), q = ½, which, compared with the currently 
observed value, is low but within the observed range (22.74). Substituting 
q0 = ½ in (23.35) reveals immediately that Po = Pc, in agreement with (23.37). 
Thus, the model also suffers from the missing matter problem discussed in the 
last section. 

The oscillating model (/1/(iv)) 

In this case p0 > Pc, by (23.37), so that the missing matter problem is made 
worse. Keeping HO fixed in (23.38), we then find 
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which is reasonable. Unfortunately, the time-scale problem is worse since 
to< 1 To. 

Indefinitely expanding model (l(i)) 

This model requires Po< p 0 , which is good, but as a consequence O < q0 < ½, 
which is not so good. Indeed, to obtain a value of p0 consistent with p1, we 
would need q0 == -Jo, which seems unlikely. As we lower the value of p0 , so 
t0 ➔ T0 , since the effect of gravity is being lowered. Thus, this model would 
appear to cope best with the time-scale problem. 

In short, all three standard models have problems in accommodating the 
presently observed values of the three observational parameters. There is the 
possibility that future observations could lead to one or more of these 
parameters changing radically, but it seems unlikely. The two most favoured 
models are the oscillating and indefinitely expanding ones and they each have 
their advocates. Of course, they are markedly different models, since one 
requires the universe to be closed and the other requires it to be open. It is 
perhaps surprising that, even though cosmology as a serious science began 
with Einstein as long ago as 1915, the basic question as to whether we live in a 
finite or infinite universe is still open. 

23.10 Early epochs of the universe 
In constructing the simplest possible model of the universe, we have neglected 
pressure. However, in the early epochs of the universe, one would expect the 
radiation to dominate completely over matter as a source of gravitation. Let 
us look briefly at a simple model which includes pressure at the extreme 
relativistic condition 

which is the equation of state for radiation. Then, taking A = 0 in (22.50) and 
(22.51), the condition (23.40) requires that (exercise) 

R R2 k 
R + R2 + R2 = 0. (23.41) 

In the earliest phases, the first two terms will dominate, and so, neglecting the 
last term in (23.41), we find that, for small t (exercise), R ~ t½ . Comparing this 
with the small-time behaviour we had previously, namely, R ~ tf, we see that 
this corresponds to a more rapid expansion. The effect of the pressure of 
radiation is that it exerts its own gravitational field, thereby increasing the 
amount of gravity acting. This increases the rate of expansion, as is clear if we 
reverse the sense of time and consider the resulting rate of collapse. 

23.11 Cosmological coincidences 
There are a number of startling numerical coincidences which have led some 
authors to try and construct cosmological models which incorporate these 
coincidences. They are best stated in terms of dimensionless ratios. One such 



 
 

344 I Cosmological models 

is (in non-relativistic units) -

radius of universe = ~ ~ 1040 
classical radius of electron e2 /m c2 ~ ' 

where e and m. are the charge and mass of an electron. Another ratio is 

electric force between electron and proton ~ 2 1039 

gravitational force between electron and proton ~ x ' 

which is more or less equal to the first ratio. The same number is approxim­
ately equal to N½, where N is the 'number of particles in the universe', that is, 
the number of hydrogen atoms within a sphere of radius c T, as derived from 
observations of the mean density p of the universe (which as we have seen is 
uncertain by one or two orders of magnitude). It follows directly from these 
coincidences that 

GpT2 ~ 1, (23.42) 

a result which crops up a great deal in cosmology (see, for example, (23.38)). It 
is possible to use Mach's principle to give an explanation of this result. As we 
stated in the consideration of Mach's principle, the Machian interaction 
depends on the value of the gravitational constant G and the amount of 
matter in the universe. This latter is given by the density multiplied by the 
volume of the universe, narp_ely, ~ p(c T) 2 . The problem of calculating the 
total effect of all matter in the universe is rather similar to the problem of 
calculating the background radiation due to a uniform distribution of sources 
and involves the introduction of a cut-off distance, in the former case of the 
order of c T. The condition that there is just enough matter in the universe to 
induce the observed amount of inertia into a local body can then be shown to 
be precisely of the form of (23.42). It is also possible to give plausible 
arguments for the other coincidences and thereby circumvent the needfor the 
introduction of a new theory, but we shall not pursue the matter further. 

23.12 The steady-state theory 
In 1948, Bondi and Gold and, independently in the same year, Hoyle 
produced a cosmological theory which was in many ways radically different 
from the models of relativistic cosmology. It is a theory of charming sim­
plicity, but, unfortunately, one which involves a modification of the law of 
conservation of energy - a law close to the hearts of many physicists. The 
theory provides definite answers to cosmological questions and so is more 
amenable to direct tests. Put another way, since it makes unique predictions, 
it is easier to disprove. Unfortunately, the theory seems to be at variance with 
much of present-day observations, and hence many consider it to be of 
historic interest only. Nonetheless, it has made something of a comeback 
from time to time and it does raise a number of important questions about 
the interpretation of observations which were perhaps glossed over too easily 
in the past. We shall summarize the original formulation here, and not enter 
into the more recent reinterpretations of the theory. 

The fundamental assumption of the theory as derived by Bondi and Gold 
is the following principle. 
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It follows immediately from this principle that the universe must be ex­
panding on thermodynamic grounds. For, if the universe were static and 
unchanging, a state of thermodynamic equilibrium would exist in which there 
would be no time -the so-called 'heat death' of the universe. In a contracting 
universe, the Doppler shift leads to a disequilibrium in which radiation 
preponderates over matter; whereas, in an expanding universe, the opposite 
is true. The observational fact that matter predominates over radiation in the 
current universe establishes its expansion. 

The perfect cosmological principle also requires that the average density of 
matter must not change in time. There is only one way in which a constant 
density can be compatible with a continual expansion and that is for there to 
exist a continuous creation of matter. It can be shown that this is, on average, 
given by 3pT- 1 ~ 10- 46gcm- 3 s- 1 . This represents a creation rate of one 
proton per litre every 5 x 1011 years. It is clear that it is utterly impossible to 
observe directly such a rate and so in this sense it does not contradict our 
local conservation of matter law. However, the fact that the matter is created 
out of nothing is a rather startling thought and as such has been the basis of 
much controversy. 

The steady-state theory derives from the three assumptions: 

(1) the perfect cosmological principle; 
(2) Weyl's postulate; 

(3) the general relativistic properties of light propagation. 

As we have seen in the last chapter, assumption (1), in the weaker form 
of the ordinary cosmolo~,cal principle, and assumption (2) lead to the 
Robertson-Walker line element. We next use the requirement of stationarity 
contained in (1). Since the universe is expanding, R(t) must be an increasing 
function of time. But the curvature of a 3-space of constant curvature in a 
Robertson-Walker space-time goes like kR- 2 (exercise), and this is an 
observable quantity (affecting, for example, the rate of increase of the number 
of nebulae with distance). The fact that it is observable means that it must be 
constant by (1), and since R varies wit!\ time we must conclude that k = 0. 
The function R(t) is not directly observable, but the Hubble parameter 
R(t)/R(t) is and so again must remain constant. Thus, R/R = 1/T0 , where T0 

is a constant and, proceeding as in (23.27), we get 

R(t) = exp(t/T0 ) 

and the line element becomes 

(23.43) 

This is the same as the line element of the de Sitter model, which we 
considered in relativistic cosmology but discarded because it led to an empty 
universe. This difficulty does not arise in the steady-state theory because the 
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field equations of general relativity no longer hold. Note that (23.44) is 
completely specified by the scale factor T0 . We leave the question of coordin­
ate range until §23.16. 

Assumption (3) means that we can consider light propagation in the same 
way as we did in §22.10. Then (22.59) becomes in this case 

dt 
exp(t/To) = ±dr. (23.45) 

For an incoming ray reaching r = 0 at t = t0 , we get 

r = To(e-•!To _ e-•o/To). (23.46) 

The luminosity distance dL is given by (22.69), which in this case becomes 

(23.47) 

so that the coordinate r is proportional to the luminosity distance. Then, 
using (22.63), we have 

1 + z = R(to)/R(t1) = e<•o-tt)/To = 1 + r1e'o/To/To 

by (23.46). Combining this result with (23.47), we find 

(23.48) 

Thus, in the steady-state theory, Hubble's law is exact. It follows from (23.43) 
that (exercise) 

that is, the universe is continuously expanding at an ever-increasing rate. 
The number n of nebulae per unit volume is observable and so must be 

constant. It follows from the line element (23.44) and (23.45) that the number 
of nebulae with a radial coordinate between r and r + dr from which light 
reaches r = 0 at t = t0 is 

In relativistic cosmology, it is the number of nebulae per unit coordinate 
volume, r2 sin 0 dr d0 d<f>, which is taken to be constant, and so the last factor 
in (23.51) does not occur. Hence, owing to the expansion of the co-moving 
system of coordinates, relativistic cosmology requires a higher nebulae 
density per unit volume in the past than now. Thus, as we look further out, we 
are looking further back in time and we should see an increase in nebulae 
density. The steady-state theory, in contradistinction, requires that this 
density should remain a constant. The theory as presented so far does not 
predict the mean average density of matter in space, so we outline a 
formulation of the theory which does. 
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At the same time that Bondi and Gold put forward the steady-state theory 
on the basis of the perfect cosmological principle, Hoyle proposed the theory 
as a set of local physical laws contained in a set of field equations. He took 
general relativity without a cosmological term as his starting point and 
modified the theory in two distinct ways. First, he changed the conservation 
of matter property of general relativity. Secondly, he changed the tensor 
character of the theory by introducing a privileged class of observers much 
along the lines of the fundamental particles of Weyl's postulate. As in Weyl's 
postulate, we start with a congruence of timelike geodesics diverging from a 
point O in the past. Then, through any point P, there will, in general, be a 
unique geodesic emanating from 0 . Let C(xa) be a scalar function defined to 
be proportional to the geodesic length OP (the definition needs modification 
if O is an infinite distance from P). The first derivative C,a defines a field of 
vectors tangent to the geodesic congruence and of constant length, and the 
second derivative C,ab defines a symmetric tensor field. Hoyle then takes as 
the modified field equations 

It can be shown that this equation possesses the de Sitter metric as a solution 
if the universal length of C,a is 3/ T0 . Moreover, the de Sitter solution is stable 
and any other solution tends to it asymptotically. The density of matter is 
given by 

(23.53) 

(compare with (23.38), taking q = ½ ), which, as in the Einstein-de Sitter 
model, leads to a mean density of Pc · The term C,ab is of the same order as the 
~QSmological term in general relativity and hence has no detectable effect on 
local physical laws. The energy- momentum tensor is not conserved since the 
C field has negative energy density and 

as is required by the continuous creation of matter. 
The steady-state theory would not appear to stand up too well to observa­

tion. It requires Hubble's law to be exact, whereas observation suggests that 
on a large scale the linear relation ceases to hold. T)]e deceleration parameter 
q = -1, whereas observation indicates that q is non-negative. There is no 
time-scale problem in the steady-state theory, but the problem of the missing 
matter is just as apparent as in the Einstein-de Sitter universe. The theory 
requires that there are the same number of galaxies per unit volume in the 
remote past as there are in the present, whereas evolutionary theories require 
that, the further back in the past we look, the more galaxies per unit volume 
we should see. Optical observations are inconclusive in this respect, but 
observations of radio galaxies tend to support the evolutionary theories. In 
addition, the red shift of quasars tell heavily against the theory. Perhaps it 
was the discovery of the 3 K cosmic background microwave radiation and its 
generally held interpretation as the remnants of the hot phase of a big bang 
universe which finally made the steady-state theory seem untenable. 
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Fig. 23.5 The event horizon of an 
observer in the de Sitter universe. 

23.13 The event horizon of the de Sitter universe 
As we have seen in (23.46), the equation of the past light cone through the 
point r = 0, t = t0 has the equation 

(23.54) 

At any particular time, information can be received only from events inside 
an observer's past light cone. If we take the limit in (23.54) as t0 ➔ oo, then it 
follows that an observer whose world-line is r = 0 can never receive any 
information from events occurring outside the hypersurface 

In other words, this hypersurface is an event horizon for O and has a similar 
character to the event horizon of black holes. Let us consider what an 
observer would see while observing a particle of the substratum P with 
world-liner= r1 (Fig. 23.5). Ifwe set r = r1 in (23.55), then P crosses O's event 
horizon at the event P1 at time 

(23.56) 

Observer O can only receive signals from P at events of P's world-line 
for which t < t1. These signals travel on null geodesics (the dotted line in 
Fig. 23.5), which reach O at time (exercise) 

'= - To ln(e-t/To - e-<, /To). 

So, by (22.69), 0 ascribes to P the luminosity distance 

dL = r1et/To = r1(e-t /To - e-•1 /To)-1 

and a red shift, by (23.49), of 

z = ddT0 • 

(23.57) 

(23.58) 

(23.59) 

Therefore, as t ➔ t 1, it follows that , ➔ oo and the light takes longer and 

Event 
horizon-c:::,,.,.,,,,.,.,,,"7't---+~-r 

of O 

Observer 0-
r=O 

•·. 

Particle P 
r=r1 
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longer to reach O from P. In addition, both dL ➔ oo and z ➔ oo as P 
disappears over O's horizon and this happens in a finite proper time as 
measured by P. At time t, the geodesic distance l from O to P is, by (22.66) 

l = r1 e•/To' (23.60) 

which is still finite at the event P1 . The velocity of recession is 

di = !:!_ e'/ To = e<•-rdTo 
dt T0 

(23.61) 

by (23.56), and this tends to 1 as t ➔ t 1 . Thus, the geodesically measured 
velocity of recession tends to the velocity of light as the particle approaches 
the event horizon. So far, we have only considered an observer at r = 0, but, 
by homogeneity of the de Sitter solution, the above conclusions apply to any 
observer moving with the substratum. 

The event horizon is rather like a curtain behind which one can see 
nothing. However, the curtain can be drawn, but at a price. Consider the 
world-line of an explorer E who is sent out into space by O and is asked to 
send back reports on all that E sees (Fig. 23.6). The explorer E will be able to 
see past O's horizon, but not until passing the event E1 on this horizon, after 
which E can never return home to O nor send any information back to 0. So 
we see that O can never receive information about events beyond O's horizon. 
However, their existence cannot be neglected, since, by travelling around, O's 
horizon can be changed and some of the forbidden knowledge can be found 
out-but no return home is then possible. We have met similar event 
horizons in Minkowski space-time (Fig. 3.8). In suitably chosen coordinates, 
the world-line of a uniformly accelerated observer travelling in the x­
direction has equation x 2 - t2 = constant, y = z = 0. It is clear from 
Fig. 23.7 that light emitted from events in the shaded region will never reach 
the observer P, who therefore has an event horizon. No such horizon exists 
for inertial observers of course. 

' 

J 
23.14 Particle and event horizons 

World-line of 
uniformly 
accelerated observer P 

',,._ Past light 
', cone of event P0 

' ' ' 

We can, in fact, distinguish between different sorts of horizons. Consider the 
world-line of an observer O moving on a timelike geodesic in a space-time in 

World-line 
of 0 

Fig. 23.6 Explorer E draws the curtain . 

Fig. 23.7 Event horizons in Minkowski 
space-time. 
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Fig. 23.8 Particle horizons of an 
observer (.r spacelike). 

Past light 
cone of 
Oat P 

Fig. 23.9 The case when J- is null. 

= Events which 
= will never be 
=seenbyO 

Particle 
world-lines 

Os 
world-line 

Past light cone 
of Oat P 

which J - is spacelike (Fig. 23.8). Then, at any point Pon O's world-line, the 
past light cone at Pis the set of events in space-time which can be observed by 
0 at that time. The division of particles into those seen by O at P and those 
not seen by Oat P gives rise to the particle horizon of Oat P. It represents the 
history of those particles lying at the limits of O's vision. Of course, if J- is 
null (for example, as in Minkowski space-time), then all particles are seen by 
0 at P (Fig. 23.9). Now consider a space-time in which both J- and J + are 
spacelike (Fig. 23.10). lfwe consider the whole history ofthe observer 0, then 
the past light cone of O at P on J + is called the future event horizon of 0. 
Events outside this horizon will never be seen by 0. Next, consider the case 
when J + is null (Minkowski space-time, for example). If O moves on a 
timelike geodesic, then O does not possess an event horizon. However, if 
observer O moves with uniform acceleration, then, asymptotically, the speed 
of the observer approaches the speed of light-which means that the world­
line ends up on J + -and then O possesses a future event horizon 
(Fig. 23.11). Notice that these event horizons are observer-dependent. This is 
to be contrasted with the event horizons of black holes which are more 
accurately termed absolute event horizons because they are observer-inde­
pendent. 

Os future 
event horizon 

f+ 

/ 
/ 

/ 
/ 

i+ Os geodesic 
world-line 

Os non-geodesic 
world-line 

O's future 
event horizon 

Fig. 23.10 The case when J+ and J- are spacelike. Fig. 23.11 The case when J+ is null. 
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23.15 Conformal structure of Robertson-Walker 
space-ti mes 

We proceed as we did in §22.8 and introduce a new radial coordinate x so 
that the Robertson-Walker line element takes the form 

where 

k = 0, 

k = + 1, 

k = -1, 

r=x=J(x), } 
r = sinx = J(x), 

r = sinhx =J(x). 

(23.63) 

The coordinate x runs from 0 to oo when k = 0 or - 1, and from 0 to 211 
when k = + 1. Next, we introduce a new time coordinate i- defined by 

so that (23.62) becomes 

where 

di-=R- 1 (t)dt, 

(23.64) 

(23.65) 

Let us restrict our attention to the standard models A = 0, in which case R( i-) 
has one of the forms (23.8), (23.19), or (23.20). When k = + 1, the unphysical 
line element (23.65) is precisely the Einstein static space (17.25). Indeed, all 
three models can be mapped on to different portions of the Einstein static 
space depending on the values taken by i-. In the case k = 0, the procedure is 
exactly the same as that employed in obtaining the conformal structure of 
Minkowski space-time (§17.4) except that now 0 < i- < oo. The solution is 
therefore conformal to the half t' > 0 in Fig. 17.7. When k = + 1, -r lies in the 
range 0 < -r < 11. When k = -1, it can be shown that the space is conformal 

--- ----- --
k=O k=+l k=-1 

Fig. 23.12 Conformal Robertson-Walker 
space-times (A = 0). 
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x=O - World-lines of 
fundamental 
particles 

bbd:aa!adl =:!,,..!,,,~ ; □ 

F(t=O) Big bang 

Fig, 23.13 Penrose diagram for k = 0 
and -1 (A= 0). 

Fig. 23.14 Penrose diagram for k = + 1 
(A =0). 

to the region 
- ½n ::;;; t' + r' ,;;;; ½ 1t, 

- ½n ::;;; t' - r ' ,;;;; ½ 1t, 

t' ~ 0. 

The various regions of the Einstein static cylinder for each case are depicted 
in Fig. 23.12. 

These conformal diagrams are somewhat different from the others we have 
met so far, in that part of the boundary is not 'infinity' in the sense it was 
previously, but represents the initial singularity when R = 0. In fact, this 
makes little difference to the conformal diagrams. The Penrose diagram for 
the ever-expanding cases k = 0 and -1 is given in Fig. 23.13 (two dimensions 
suppressed). The initial singularity-the big bang-is a spacelike surface. 
The Penrose diagram for the oscillating universe k = + 1 is given in 
Fig. 23.14 (two dimensions suppressed). In this case, both the initial and the 
final singularity - the big crunch - are spacelike surfaces. It can be shown 
that matter-filled Robertson- Walker universes are, in fact, inextendible. 

J+(,=n) Big crunch 

x=O -

.1-(,= 0) Big bang 

/ 

-

Surfaces 
t=constant 

x=n 

World-lines of 
fundamental particles 

23.16 Conformal structure of de Sitter 
space-time 

De Sitter space-time is most easily visualized as the hyperboloid 

- v2 + w2 + x2 + p2 + £2 = T5 (23.66) 

embedded in flat five-dimensional Euclidean space with a Minkowski-type 
line element 

ds 2 = dv2 - dw 2 

- dx 2 

- dy2 - d£ 2

. (23.67) 

One can introduce coordinates ( i, X, 0, <jJ) on the hyperboloid by the relations 

v = T0 sinh(t/ T0 ), 

w = T0 cosh(t/ T0 )cosx, 
x = T0 cosh(i/ T0 )sinxcos0, (23.68) 

y = T0 cosh(i/ T0 )sinxsin0cos</J, 

£ = T0 cosh( i/ T0 ) sin x sin 0 sin</>, 

in which case the line element has the form 

ds 2 = df2 

- T5cosh2 (i/ T
0
)[dx2 + sin2 x(d02 + sin2 0d</J 2

)]. (23.69) 
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Apart from coordinate singularities at x = 0, 7t and (J = 0, 1t, the hyperboloid 
is covered by the coordinate range 

-00 < t < + oo, 
0..;x:!:,1t, 

0..;0:!:,7t, 

0..; cp < 27t. 

The surfaces £ = constant are 3-spheres of constant positive curvature, the 
particles of the substratum travel on timelike geodesics normal to these 
surfaces, and the overall topology is cylindrical, being IR x S 3 (Fig. 23.15). If 
we then introduce coordinates 

t = T0 ln[(w + v)/T0 ], 

X = Tox/(w + v), 

y = T0 y/(w + v), 

z = T0 z/(w + v), 

(23.70) 

then the line element (23.67) reduces to the form (23.29) in Cartesian co­
ordinates with ,x = T0 , or (23.44) in the corresponding spherical polar co­
ordinates on the hyperboloid. However, the coordinates (t, x, y, z) only cover 
half the hyperboloid since t is not defined for w + v ..; 0 ( Fig. 23.16). In these 
coordinates, the surfaces t = constant are flat 3-spaces, and the particles of 
the substratum are geodesics normal to these 3-spaces diverging from a point 
in the infinite past. Thus, the region of de Sitter space-time corresponding to 
w + v > 0 forms the space-time for the steady-state model. 

We can obtain the conformal structure by defining a new time coordinate 

t' = 2 tan - i [exp (f/T0 )] - ½1t, 

where 
-½1t < t' < ½1t. 

Then 
ds2 = ncosh2 (t'/T0)ds2 , 

where ds2 is the Einstein static line element (17.25) on identifying r' = X· The 

x=n 

~-+-4--~'f--r:-::i'>Surfaces t=constant: 
constant positive 
curvature S3 

:-:r---t-t-Hi~4-~Geodesic 
normals 

Fig. 23.15 de Sitter space-time 
embedded in five-dimensional 
Minkowski space-time. 

Null surface 
f=-00 

Surface of 
constant 
time t 

Geodesic 
normals 

Fig. 23.16 de Sitter space-time in 
(t, x, y, z)-coordinates. 

---------,,,.- -.... 
r(t'= -½1rl 

Fig. 23.17 Conformal de Sitter 
space-time. 
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Fig. 23.18 Penrose diagram of (a) de 
Sitter space-time and (b) the steady­
state model. 
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region to which de Sitter space is conformal is shown in Fig. 23.17. The 
Penrose diagrams of de Sitter space-time and the steady-state universe are 
shown in Fig. 23.18. It is clear that the steady-state theory suffers, at least 
aesthetically, from being geodesically incomplete in the past. 

23.17 Inflation 
No discussion of modern cosmology would be complete without some 
mention of inflation, since it has attracted so much attention in recent years. 
This is the idea that some 10- 3o seconds after the big bang, there existed a 
phase in which the universe expands much faster (in fact exponentially) than 
the rate given by the standard scenario. The mechanism driving this ex­
pansion arises from modern physical theories called GUTs (grand unified 
theories), which attempt to unify three of the four fundamental forces, namely, 
the strong nuclear, weak nuclear, and electromagnetic forces. In particular, it 
relies on the existence of a scalar field introduced to break the symmetry 
between these forces. As such, these ideas lie beyond the scope of this book. 
None the less, we can get the gist of the ideas involved in inflation ifwe simply 
use the result that in this phase the energy density p is dominated by the 
vacuum energy density V0 of the scalar field, i.e. p :,,: V0 . In the standard 
models (A = 0), this requires, from (22.57) and (22.58), that 

(23.71) 

Moreover, physical arguments reveal that, at the onset of this phase, the size 
of the scale factor is such that the term involving R2 dominates over k in 
(23.71), so that we can neglect k. Then, dividing (23.71) by R2, we get 

R2/ R2 = JnVo, 

which is the square of the Hubble parameter, so that 

H=(J1tV0 )½. 

(23.72) 

(23.73) 

Taking the positive square root of (23.72) and integrating, we find that 

R = R0 exp(Ht), (23.74) 

where R0 is the value of the scalar factor at the start of the phase (compare 



 

with the de Sitter model (23.28)). Thus, we have obtained an exponential rate 
of expansion for this early phase, whereas previously, in the standard scen­
ario, we had only obtained power laws. 

The idea of inflation has attracted attention because it seems to answer a 
number of fundamental problems arising in the standard cosmological 
models. Two of these are the flatness and horizon problems, which we now 
briefly discuss. If we define 

Q(t) = p(t)/Pc, 

then present-day estimates give bounds on Q of 

0.01 < Q(t0 ) < 10. 

As we saw in (23.37), the universe is ever expanding, flat, or closed depending 
on whether Q < 1, Q = 1, or Q > 1, respectively. A major difficulty with 
standard cosmology is that it requires very fine tuning of the initial para­
meters to result in a universe consistent with present-day observations. In 
particular, it requires that Q is very close to unity in the early universe. A 
typical estimate is that IQ - 1 I < 10 - 5 7 at the Planck time of some 10 - 43 

seconds after the big bang. This necessity for fine tuning is called the flatness 
problem. Inflation helps to overcome this problem because the exponential 
rate of expansion makes the universe very flat. This is analogous to imagining 
the universe as a balloon, with the curved surface of the balloon representing 
curved space. If the balloon is not blown up very much, then the curvature is 
high. However, if the balloon is 'inflated' by a large amount, its surface 
becomes very flat. 

The observable universe is highly homogeneous and isotropic on the large 
scale. Detailed investigations reveal that this would only appear to be 
possible if the universe was also highly homogeneous and isotropic in the 
earliest epochs. Moreover, these investigations lead to the conclusion that the 
region which evolved into the observable universe would have been too large 
for all points in it to be causally connected (i.e. there would not have been 
sufficient time for influences travelling with the speed of light to connect all 
points in the region). Thus, one is unable to use physical forces to account for 
the homogeneity and isotropy of the early universe, unless one uses forces 
capable of viol~ting causality. This is the horizon problem. Inflation helps 

R 

Inflationary era 

Inflationary model Present 
to 
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Fig. 23.19 Scale factor for inflationary 
and standard models. 
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overcome the problem because it allows the initial region of space which 
evolved into our present-day observed universe to be much smaller than the 
horizon distance. Mechanisms can then be discussed which account for the 
homogeneity and isotropy then required. 

There is certainly much more to inflation than this brief introduction 
suggests, but we shall content ourselves by ending this section with a diagram 
(Fig. 23.19) illustrating how the behaviour of the scale factor differs qualitat­
ively in an inflationary model. The need for an inflationary model is motiva­
ted in part by ideas originating in discussions of the anthropic principle, 
which is where we finally turn. 

23.18 The anthropic principle 
Cosmology is based on the cosmological principle which is a simplicity 
principle leading to a smoothed out universe, namely one which is homo­
geneous and isotropic. But why is the universe so smooth? One answer is that 
if we are to exist then it could hardly be otherwise. Put another way, l\. non­
smooth universe would noi have allowed us humans to have developed. This 
is an example of the anthropic principle which in simple terms, states the 
following. 

The principle comes in two versions, the weak and the strong, which we 
consider in turn. 

This form of the principle can be used to 'explain' why the bing bang occurred 
some ten thousand million years ago; namely, because it takes that long for 
sentient beings to emerge. More precisely, this is the time needed for all the 
intervening processes, such as the condensation of the galaxies from the 
primeval matter, the subsequent formation of the heavy elements (in super­
novae), the eventual birth of our own galaxy, the formation of the solar 
system, the cooling of the Earth and the slow process of evolution up to the 
present day. 

The earliest epochs of the universe really involve quantum ideas, and this 
leads to the area of quantum cosmology. As is well known, quantum theory 
involves deep problems of interpretation (see Penrose (1989) for an intriguing 
discussion). One interpretation leads to the 'many worlds' of Everett and 
Wheeler, in which the universe is bifurcating from one instant to the next into 
many (indeed infinite) disjoint new universes (Fig. 23.20). Or again, the 

F'lg. 23.20 The 'many worlds' interpreta- universe may consist of many different regions, each with its own initial 
tion of Everett and Wheeler. configuration and perhaps with its own set of laws of science. If we consider 
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these disjoint regions as different universes then the strong version of the 
anthropic principle can be stated as follows. 

The laws of science involve a number offundamental constants (such as the 
charge on the electron) which, at present, cannot be predicted from theoret­
ical considerations, but can only be found by observation. Moreover, their 
actual values seem to be very finely adjusted. The slightest alteration of these 
values would lead to very different universes, most of which could not 
support life. One can interpret them in two ways: as evidence of a divine 
purpose or Creator (the argument from design in theology) and with it the 
choice of a particular set of laws of science, or as support for the strong 
anthropic principle. Although it is not clear the extent to which Einstein 
believed in a personal God, it is worth remarking that Einstein believed 
profoundly in the argument of a divine purpose. He considered that God 
could not have created the universe in any other way. 

There are a number of objections to the strong formulation of the principle. 
If all these universes are really separate from us, in what sense can they be 
said to exist? If what happens in another universe has no observable conse­
quences on ours then, on simplicity grounds alone, we can ignore them. If, on 
the other hand, they are different but accessible regions of our universe, then 
they are just the result of different initial configurations and so the strong 
anthropic principle would reduce to the weak one. Another objection is that 
the principle runs counter to the way that ideas have developed throughout 
the history of science, which has continuously demoted the importance of 
humankind in the scheme of things. For example, the cosmological principle 
leads us to believe that we live in a typical part of the universe, attached to a 
typical star, in a typical galaxy, belonging to a typical cluster, and so on. Yet 
the strong form of the anthropic principle turns this on its head and says that 
the whole giant structure exists simply for our sake. 

The attempt to find a mod,el of the universe in which many different initial 
configurations could have evolved into something like the present universe 
led to the idea of inflation. So inflation, together with the weak form of the 
anthropic principle, may be used to explain why the universe looks the way it 
does now. 

The anthropic principle can also be used to throw light on whether the 
three arrows of time agree or not. These are the thermodynamic arrow (as 
expressed in the idea that disorder or entropy is always increasing), psycho­
logical time (as perceived by humans) and cosmological time (world time). 
For further development of these ideas see Hawking (1988) (on which this 
account is based), and for a more technical account see Barrow and Tippler 
(1986). It seems appropriate to end with a reference to Hawking, given that 
one of the goals of the book is to make contact with Hawking and Ellis (1973). 
It also seems appropriate to finish with an amusing representation of the 
development of life subsequent to the big bang in the universe (the big U) by 
Wheeler (Fig. 23.21), because this is reminiscent of the surrealistic pictures by 
Hugh Lieber in Lillian Lieber's book-which is where I came in. 

Fig. 23.21 Wheeler's 'big U' from the big 
bang (upper right) to the development of 
the human eye. 



 
 

358 I Cosmological models 

23.19 Conclusion 
We have seen in this chapter that de Sitter space-time possesses event 
horizons and that most of the Friedmann models possess singularities: both 
phenomena we have met before in our considerations of classical black holes 
in Part D. The big bang singularity is a very drastic one, in which both the 
density and temperature increase without bound as R ➔ 0, and indeed space­
time itself becomes singular at R = 0, where it is squeezed out of existence. 
However, the results have been deduced from the assumptions of exact 
spatial homogeneity and spherical symmetry. Although these assumptions 
may be reasonable on the large scale, they certainly do not hold locally. One 
might expect that, if one traced the evolution of the universe back in time, the 
local irregularities would grow and could prevent the occurrence of a 
singularity - causing the universe to 'bounce' instead. Yet, once again, the 
singularity theorems of Hawking and Penrose reveal that the occurrence of 
singularities is generic and, as a consequence, there is good evidence to 
believe that the physical universe was singular in the past. 

There is another difference about the initial singularity of cosmology, 
compared with the black hole singularities, in that the big bang singularity is 
in principle observable. And it is observation that is the linchpin of cosmo­
logy. It is perhaps disappointing that the observations of cosmology are not 
sufficiently precise to yet determine whether we live in an open or closed 
universe. But there is good reason to believe that there will be a considerable 
increase in our observational knowledge in the not-too-distant future. For 
example, orbiting space stations should improve much of the astronomical 
data, X-ray astronomy being just one example of an area which will benefit 
significantly. Again, it is to be hoped that gravitational astronomy, that is, the 
detection of gravitational waves, will not be long in the offing. This would 
open up a whole new window on the world and, in all likelihood, allow us to 
put our cosmological theories more rigorously to the test. 

It is a natural consequence of our inquisitive nature that we should wish to 
understand our own origins and that of the universe we inhabit. The hot big 
bang theory would appear to be a great stride forward in our search for this 
understanding. Whether or not the universe had this singular origin is 
perhaps the central question of cosmology. The mathematical basis of this 
question and the attempt to answer it is the principal problem dealt with in 
the book of Hawking and Ellis (1973). In turn, it has been one of the main 
objectives in writing this book to make their book, or at least parts of it; more 
accessible and the hope is that some readers may make this their next port of 
call. 

And so, we end our considerations of cosmology and with it we end the 
book. There are many topics in general relativity which have not been 
mentioned, and even those that we have met have been covered in a largely 
introductory manner. None the less, we have acquainted ourselves with the 
essential components of the precursor to the general theory, namely, special 
relativity, we have looked carefully at the principles behind general relativity 
and investigated both the formulation of the theory and its principal conse­
quences. In particular, we have reached the three endpoints we had promised 
ourselves, namely, classical black holes, gravitational waves, and cosmology. 
In the process, it is hoped that some of the richness and beauty of the theory 
and some of its absorbing and bizarre consequences have been revealed. At 
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the start of this book, we set out on a long journey of discovery. It would seem 
that we have come a long way, but the journey is really only just begun. 

Exercises 

23.1 (§23.1) Show that taking the negative square root in 
(23.4) leads to the same result (23.5). 

23.2 (§23.1) Use the substitution (23.6) to establish the 
solution (23.7) in the case k = 0, A < 0. 

23.3 (§23.1) Confirm (23.9) and (23.10) for the Einstein-de 
Sitter model. Show that (23.15) leads to (23.16). 

23.4 (§23.2) Use the substitution (23.18) to establish the 
solution (23.20) in the case A = O, k = - 1. 

23.5 (§23.2) Confirm (23.21) and.(23.22) for the model with 
solution (23.19). 

23.6 (§23.3) Show that the general differential equation for 
.R and R. can be written in the form 

.. 2 
R = -(-1/x2 + J,,x), 

9C 

R.2 = ½(2/x + h 2 - 3k), 

where Rc = 3C/2, Ac= 4/(9C2 ), x = R/Rc and },, = A/Ac. 
[Hint: Let R = Rc, A = Ac when R = R = 0.] 

(i) Deduce that if R = R = 0 at some time then R = Rc, 
A = Ac, k = 1, and R = R = 0 for all times. 

(ii) If at some finite time t0 , R.(t0 ) = 0 and .R(t0 ) #- 0, then 
what type of cosmological model results? 

(iii) Show that 
(a) If A <, 0, then all models are oscillating; 
(b) If A > 0, then oscillating models require k = 1 and 

A<A,. 
[Hint: consider the equations for x and .l. in turn·when x is 
small and large and },, is positive and negative.] 

23.7 (§23.3) A straight channel contains a fixed particle of 
mass M at its origin 0, while another particle P of mass m 
moves under gravitational attraction. Let OP be denoted by 

x, and take the time to be zero when the particle starts off 
from O in the positive x-direction. If the particle has velocity 
v0 at x0 , then show there exists a value of x, x = x, say 
(positive, negative, or infinite), at which the velocity vanishes 
and find it in terms of x0 and v0 . Show that the energy 
equation can be written in the form 

x2 = 2_GM/x - 2GM/x1 . . 

Compare this with Friedmanri's equation and hence inter­
pret the types of motion possible for various values of x1 . 

23.8 (§23.4) Show that the line element (23.29) is invariant 
under a shift in t and a simultaneous change of scale in the 
space coordinates. Confirm that (23.29) is transformed into 
(23.32) under the transformation (23.31 ). 

23.9 (§23.8) Establish (23.35) for the standard models and 
deduce (23.37), where Pc is defined by (23.36). Use the 
estimate T0 ~ 1010 years to obtain the value (23.39) for Pc· 
[Hint: in non-relativistic units (23.36) is Pc = 3H6/81tG.J 

23.10 (§23.10) Show that if A = 0 then (22.50) and (22.51), 
subject to (23.40), lead to (23.41). Neglecting the last term, 
deduce that R ~ t½. 

23.11 (§23.12) Use the Robertson-Walker line element in 
the form (22.34) to show that the three-dimensional Ricci 
scalar curvature of a 3-space t = t0 is 6k[R(t0 )]- 2. 

23.12 (§23.12) Confirm the results (23.49), (23.50), and 
(23.51) for the steady-state theory. 

23.13 (§23.13) Confirm the results (23.57) and (23.60). 

23.14 (§23.16) Check that (23.68) satisfies (23.66). Show 
that the line element (23.67) reduces to the forms (23.69) and 
(23.29) on the hypersurface. [Hint: use (23.68) and (23.70), 
respectively.] 



 
 
 

y = y' 

z = z' 
t = t'. 

y'=y 

z' = z 

t' = t. 

Interchange primes and unprimes and replace v1 by -v1 . 

2.2 

(i) 

y'' = y' 

z11 = z' 
t11 = t'. 

y" =y 

z" = z 

t" = t. 

A 

T 

A B 

2.3 Blue shift. 

2.6 Draw circle centre 0, radius OG and two light rays 
entering and leaving G which cut the circle at points P and 
Q, as shown. 

Then POQ is the world-line of an inertial observer who 
considers O and G to be simultaneous (since PO = OQ). 
Observers whose world-lines through O intersect LQ con­
sider that G occurs later than 0, and observers whose world­
lines intersect QM consider that G occurs before 0 . 



 
 

2.7 

C 

According to B, the coordinates (t, x) of the three events are 
0 (0, 0) 
R (½(k2 + l)T,½(k2 - l)T) 
Q (½(k2 + 1)(1 + l/k2 )T, ½(k2 - 1)(1 + 1/k2 )T) 

Thus, whereas A's clock has elapsed by (k + 1/k) T between 
events O and Q, the time lapse of B's clock is ½(1 + k2)(1 
+ 1/k2) T (which for k > l is greater than A's time lapse). 

2.9 V = ± T(x2 + r 2,-t_ 

2.10 s2 = -(x1 -x2>2-(Y1 -y2)2-(z1 -z2>2 = -u2• 

3.1 (2/3)½. 

3.3 (J = i<f,. 

3.6 Take the room to be in the frame S' moving along the x­
axis of the rest frame of the pole with speed -v, as shown 
(not to scale): • 

y 

• Pole 

----1------+x 
0 

y' 

V 

X 

Room (front and 
back walls projected 
on to x' -axis) 

---1----L.---➔ x' 
O' X' 
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Then in S's frame 

World-line of O'- ---World-line of X' (t=-~ + ~) 
V V 

• Light signal (t= -f) 

World-line of X 

When O and O' coincide, S will 'see' X at F, as a result of a 
light signal from event E. 

3.9 (a) 7.5 X 10- 5 S. 

(b) 17 min. 

3.10 3.4 x 109 light years. 
940 years. 

,----r=6yr 

r=6yr 

3.11 
v = [(1 - u/c)/(1 + u/c)]t, 

v = [(1 + u/c)/(1 - u/c)]½. 

3.12 0.32c. 

4.1 One possibility is to define a unit of force F 1 as that 
which results in a standard mass ms undergoing an acceler­
ation gL, that is 

(1) 

where gL is the acceleration due to gravity at a given latitude. 
We can then use Newton's second law to compare any other 
force F by measuring the acceleration ~ this produces when 
applied to the standard mass, that is 

F ms~ ~ 
(2) 

msgL 

We could then define unit mass m1 as that mass which, when 
acted on by a unit force F 1, suffers a unit acceleration 1. 
Other masses could then be defined by either (i) measuring 



 

362 I Answers to exercises 

the acceleration a that a mass experiences under the influ­
ence of the unit force, that is 

F 1 ma 

F 1 m1 1' 

or (ii) using (2) to measure a force F and then applying this 
force to a mass m and measuring the resulting acceleration a, 
so that 

m = F/a. 

4.2 The kinetic energy of the initial particle in motion. 

4.3 (m5y4 + 2m0 m0 y + m5)t where y = (1 - u2/c2)-t, 

4.8 P = 2Mp0 /(m0 + M), p = (m0 - M)p0 /(m0 + M). 

4.9 

-1 

4.10 - ccos 0. 

4.11 chv/(hv + m0 c2), 

(m5 + 2hvm0 /c2)t. 

5.1 (i) (a) x = a cos <J>, y = a sin <J>, z = 0 (0 ~ <J> ~ 2n). 
(b) x2 + y 2 - a2 = 0, z = 0. 

5.2 

(ii) x = asin 0cos </>, y = a sin 0sin <f,, z = acos0 
(0 ~ 0 ~ n, 0 ~ <J, ~ 2n). 
(b) x2 + y 2 + z2 - a2 = 0. 

(x°) = (x1, x 2, x3 ) = (x, y, z) 

(x'") = (x' 1, x'2, x" 3 ) = (r, 0, <f,) 

(x0) -+ (x'"): 

r = (x2 + y2 + z2)t 

0 = tan- 1 ((x2 + y2)½/z] . 

</>=tan - 1(y/x) 

(x'") -+ (x"): 

x = rsin0cos<f, 

y = r sin 0 sin <f, 

z = rcos0 

(

sin 0 cos <J, r cos 0 cos <J, 

(:;,:) = sin0sin<J, rcosQsin<p 

cos0 - rsin0 

- rsin0sin<J,) 
rsin 0cos <p 

0 

( 

sin 0cos <J, 
ox'• 

(axb) = cos0cos<J,/r 

sin0sin<J, 

cos 0sin<J,/r 

cos <J, /(r sin 0) - sin <J,/(r sin 0) 

J = J'- 1 = r2 sin0. 

J'-+ 0 when r-+ OJ, 

J' -+ OJ when r = 0 and 0 = 0, n. 

5.6 
(x") -+ (x'"): 

R = (x2 + y2)t 

<J> = tan - 1 (y/x) 

( ox'•) ( cos<f, 
oxb = - sin<f,/R 

sin</> ) 
cos <J,/R ' 

dx• 
X"= d<J, =(-asin<f,,acos<f,), 

x·· = (0, 1). 

5.7 
OX'0 ox•b iJxf 

X'•b=---X de 
C 0Xd 0Xe OX'C f • 

5.16 (i) X •• = (cos</>, - sin <J,/ R). 
(ii) 

a a sin<f,o 
-=cos<J,-----
ox oR R o<f>' 

cos0 ) 
- s~n0/r 



 

(iii) 

o. o cosrpo 
-=smrp-+---
oy oR R orp' 
o x o y o 
-= +----
oR (x 2 + y2)½ ox (x 2 + y2)½ oy' 
o o o 
-= -y-+x-. 
orp ox oy 

o 
x•o =-

• OX' 

,. ' 0 sin <P a 
x o. = cos <P oR -Torp. 

(iv) 
Y'° = (sin rp, cos rp/R), 
z·· = (O, 1), 

0 . 0 cosrp 0 
Y=-=smrp-+---

oy oR R orp' 

o o o 
Z= -y-+x-=-. 

ox oy orp 

(v) The Lie brackets are given in the table below (the 
vector in the column being the first entry): 

X 
y 

z 

6.2 

X y 

0 0 
0 0 
-Y X 

z 
y 

-X 
v Q 

LxZb< = zb<, 4 X 4 + z,,x',b + zbdx'., 

Lx(Y·z,,.,) = (Y·Zb<),,X4 - y 4z,,.,x·,d 

+ ya z,,x',b + ya zbdx 4., 

6.14 
gab = diag(l, 1, 1), if& = diag(l, l, 1), g = 1. 

gab = diag(l, R2, 1), g•b = diag(l, R-2, 1), g = R 2. 

gab = diag(l, r2, r2 sin2 0), g•b = diag(l, ,- 2, r - 2sin - 2 0), 

g = r4 sin2 0. 

6.16 

6.17 

, ax' ax' 
gab = ox'• OX'b g,d • 

d2R - R(drp)2 = 0 
du2 du ' 
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d2 rp 2 dR drp 
-+---=0, 
du2 R du du 

d2z 
--=0. 
du2 

6.21 (i) -2. 
(ii) Yes. 

(iii) Yes. 
6.22 (i) (x 1, x 2, x3 ) = (r, 0, rp). 

(ii) Yes. 

6.31 (i) 
g.b = diag(e', - e", - r2, - r2 sin2 0), 

g = -e•+lr4sin2 0, 

g®=diag(e-•, -e-.i., -,-2, -,-2 sin- 2 0). 

(ii) Non-zero independent components: 

rzo = ½v, rg. = ½v', r~. = ½e,\-v .l., 
no= ½e• - .\v', n. = ti, r:. = ½).', , .. 
I'}2 = - re - .i, I'}3 = -re-.isin2 0, 

I'!2 = , - 1 • n3 = -sin0cos0, 

n3=r-•, I'~3=Cot0. 

(iii) Non-zero independent components: 

Ro101 = - ½e'v" + ¼e' 12 - ¼e1·vl 
+ ½e•:i-¼e'v'2 + ¼e"v'A', 

Ro202 = - ½re•-•v', 

Ro212 = = ½rl, 

Ro303 = - ½re' -1. v' sin2 0, 

Ro313 = - ½r l sin20, 

R1212 = - ½ r.l', 
R1313 = - ½ r A' sin2 0, 

R2323 = r2 e- • sin2 0 - r2 sin2 0. 

(iv) Non-zero independent compgnents: ,,.. .x :" .. ->< 
R00 = ½e•-•v" -¼J: + ¼v.l. -½.l. '-

+ ¼e•-•v'2 -¼e•-•v' .l.'~ ,-•e•-•f0 

Roi= ,-1 i, 
Ru= - ½v" + ¼e•-· i 2 -¼el - •vi 

+ ½e•-•X- ¼v'2 + ¼v'.l.' + ,- 1;_•, 

R 22 = -½re-•v' + ½re-•.l.' - e-• + 1, 

R33 = sin2 0R22 . 

R = e-•v" - ½e-• i 2 + ½e-•vi 

- e- • X + ½e - •v'2 - ½e - •v' .l.' 

+ 2,- 1 e-•v' -2,- 1e-• .l.' +2r- 2e-•-2,- 2 . 
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Goo= r-le•-A;: -r-2e•-A + r-2e•, 

Go1=r-1i., 

G11 = r- 1v' - r- 2eA + r- 2, 

G22 = ½re-Av' -½re-•l' + ½r2e-•v" 

-¼r2e-• i 2 + ¼r2e-•vi-½r2e-• X 
+ ¼r2e-Av'2 -¼r2e-•v' 1i, 

G33 = sin2 0G22 . 

(v) Non-zero components: 

Goo= r-1e-Al' - r-2e-A + r-2, 

G0 1 = r- 1e-•i, 

G10 = - r-1e-•.l., 

G11 = - r- 1e-•v' - r- 2 e-• + r- 2, 

G22 = ½r- 1e-•l' -½r- 1e-•v' 

-½e-•v" + ¼e-• i 2 - ¼e-•vi 

+ ½e-• X- ¼e-•v'2 + ¼e-Av' l', 

G\ = G22· 

7.1 ~,. = ~ .• - ~r: .. 
7.5 (i) y" - y = 0. 

(ii) 2y,y1 + y'/ - Yi - 3xyf - Y2 ~ 0, 

2Y1Y2 + 2y',y'.z - Y1 = 0. 

0 
7.8-. 

oy 

0 0 ~ 0 
1.10 x 1 =-, x 2 =- X 3 =-

ox oy' oz' 

4 O O S O O 
X =y - -z-, X =z--x-

oz oy ox oz' 

6 0 0 
X =x--y-

oy ox 

xi x2 x3 X4 

xi 0 0 0 
x2 0 0 0 
x3 0 0 0 
x4 0 -X3 x2 
xs x3 0 -XI 
x6 -X2 xi 0 

7.13 (V,Vb - VbV,)X. = Ra,kbX4 • 

8.5 (a) ½n(n - 1) wab, n t0 • 

0 
x3 

-X2 

0 
x6 

-xs 

xs 

-X3 

0 
xi 

-X6 
0 
x4 

(b) 6w.b - 3 spatial rotations, 3 boosts. 

x6 

x2 
-X' 

0 
xs 

-X4 

0 

4 t0 - 3 spatial translations, 1 time translation. 

8.8 
. (m1 - m2) 
X=----g, 

(m1 + m2) 

p = (m1 + m2 )x, 

p2 
H(p,x) =-----m1gx -m2g(l-x). 

2(m1 + m2 ) 

8,10 Zeroth component gives the rate of work done by 
force F, viz. 

dE 
-=F.u. 
dt 

' u. 
U:=----.. 

p(l -u,,v) 

(ii) E' = P(E - vp,,), p~ = P(p,, - vE/c2 ), 

( ... ) F' F,-vF.u 
111 x=----, 

1 - u.v 

F' - F, 
• - P(l - u,,v) 

Yes. 

(iv) F' = (F~. F~, F~) = (F, 0, 0) = F. 
9.1 (i) tan- 1(a/g). 
The inertial observer will see the mass accelerate in the 
direction of motion due to a tension in the rod whose 
horizontal component produces the acceleration and whose 
vertical component counterbalances the weight. A non­
inertial observer in the car will consider that the pendulum 
mass experiences two forces, the weight mg down and an 
inertial force me in the opposite direction to motion. 
(ii) tan- 1 (a/g). 

(iii) 0. 

9.2 (ii) Four inertial forces, namely:-
(a) a linear accelerative force as discussed in 
Ex. 9.1 
(b) a velocity-dependent Coriolis force 
(c) a centrifugal force 
(d) a non-uniform rotational force (analogous 
tangentially to '(a)). 

9.5 (1) The released body undergoes uniform motion (due 
to Newton's first law) and the rocket accelerates with accel­
eration g, so the inertial observer sees the floor ofthe rocket 
ship come up and hit the body with relative acceleration g. 

(2) The rocket. and the body have no forces acting on 
them and therefore, by Newton's first law, both undergo 
uniform motion i.e. travel with the same constant velocity. 

(4) The body and the lift both fall under gravity with the 
same acceleration. 

9.6 Ellipsoid (see §16.10). 



 

9.7 

d2R -R(dcf,)2 =0 
du2 du ' 

d2cf, 2 dR def, 
-+---=0, 
du2 R du du 

d2 z 
-=0 du2 • 

Inertial force (centrifugal arid Coriolis components). 

9.8 (i) Straight line. 
(ii) Parabola (projectile motion). 

9.9 One example: 

VbT•b + R 0 ..,,,R.,"",V.Tal = 0 

9.10 V10 Foc1 = 0 

9.11 

Special C-+00 Newtonian theory 
in the absence of 

relativity gravitation 
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• 10.9 (i) Principle of equivalence 
(ii) Principle of equivalence 

(iii) Correspondence principle 
(iv) Correspondence and covariance principles 
(v) Principle of equivalence 

(vi) Correspondence principle. 

10.10 Principle of equivalence, principle of minimal gravi­
tational coupling, Mach's principle (?) and correspondence 
principle. 

11.7 (i) V0 ((-g)tG.b) = 0 

(ii) - V.((-g)tGab) = 0 

(iii) V0 ((-g)tG.b) = 0. 

11.12 fi'0 v = (-g)½ [g..,Rabcd Rabcv + g 0,R0 bcd Robco 

- ½u •• Robcd Robed]. 

--+.____I____,/ 

In the limit, the null comes degenerate into planes of simul­
taneity. That is, all observers, irrespective of their motion, 
agree that events occurring in one of these planes do SQ 

simultaneously. 
10.1 

10.7 

/(x + b) =f(x) + ( h1 !_ + h2 !_ + h3 !_)/(x) 
ox oy oz 

1 ( 02 02 

+- hf-2 + 2h 1 h2 --
2 ox oxoy 

a2 a2 

+ 2h1 h3 --+ h~-2 0X0Z C oy 

g0b = diag(A- 1, -A, -r- 2 , -r- 2 sin - 2 0), 

Yob= diag(A, -A-,, -r2,-r2 sin2 0), 

ds 2 = Adt2 

- A- 1 dr2 - r2 d0 2 

- r2 sin2 0cf, 2

• 

12.4 

E; = P(E, - vB,), 

E: = P(E, + vB,), 

B; = P(B, + vE,), 

B: = P(B, - vE,). 

p' = P(P - vj,), j~ = PU. - vp), j~ =j,, 

12.6 ct,-+ <fo = ct,. + 00 1/J 

where i/1 must be a solution of □ i/J = 0. 

13.3 µ= -¼. 
Rob - ¼uobR = 2(F .. F'b + ¼u.;,F,,F''). 
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14.1 One example: a particle falls in from infinity at time 
t = - oo reaching the origin at time t = 0 whereupon the 
motion is reversed. 

14.5 (a) els = adll. 
(b) ds = asin0d<f>. 

14.11 

Ro101 = 2mr-3 

( 2m)m 
Ro202 = - l -7 -; 

( 2m)m . 2 
Ro303 = - 1 - --;:- -; sm 0 

( 2m)- 1 m 
R1212 = 1 - 7 -; 

14.14 (i), (ii), (iii), (iv), (v), and (vi). 

15.1 Motion in a straight line. 

15.6 The laws become modified to: 
Kl': Each planet moves in an ellipse about the centre­

of-mass as one of the foci. 
K2': The radius vector from the centre-of-mass to the 

planet sweeps out equal area in equal times. 

2,r 3 
K3': T = t a2. 

(G(mplanet + m, •• )) 

15.7 1-- f- 1-- -f +-t -r0 ( 2m)-i ( 2m)-z m 2 m .2 2 

r r r 2 r 2 

- rsin2 0J2 = 0. 

15.8 

( du)2 +u2=k2-1 
d</> h2 ' 

d 2 u 
d</>2 + u = 0. 

15.14 

±to:: (r2 - D2 )½ + 2mcosh - ,(~) 

(r2 - D')t 
- m--- + constant 

r 

( r + (r2 - D2)') = (r 2 - D2)• + 2mlog D 

(r 2 - D2)½ 
- m--- + constant. 

r 

16.1 This is the Schwarzschild solution under the renaming 
of the coordinates: 

(0, </>, t, r) ➔ (t, r, 0, </>). 

4t2f3 cos~ - -
16.2 iJ - (fcosiJ + 2m)2r2 ff2</> 2 sin2 (.ji°t ). 

fcos + 2m 

16.3 (i) t-timelike; p, z, </>-spacelike. 
(ii) u-null; r, x, y-spacelike. 

16.4 ds2 = A(t)dt 2 - B(t)dx2 - C(t)dy2 - D(t)'4 2. 

16.5 

ds2 = 1 - - dt2 - 1 + --,----- dx 2 ( 2m) [ 2mx2 
] 

• r r2(r - 2m) 

4mxy d --,-----dx y 
r 2(r - 2m) 

- --,-----dxdz - 1 +--,-- -- dy2 4mxz [ 2my2 ] 
r 2 (r - 2m) r 2(r - 2m) 

- --,----- dydz - 1 + --,---- dz 2 4myz [ 2mz2 ] 
r2 (r - 2m) r 2 (r - 2m) 

where r = (x2 + y2 + z2)½. 

16.6 

World-line--+­
of observer 

16.7 r = ± ku + c, 

16.8 -1. 

c constant. 



 
 
 

16.14 (Roughly) 

16.16 A non-rotating white hole consists of a visible singul­
arity situated at the origin -0f coordinates, which suddenly 
erupts into a star whose radius increases inexorably through 
its Schwarzschild radius. 

Origin of polar 
coordinates 

17.4 Region II. 

Signals sent 
from visible 
singularity 

They cannot escape from region II, but are ultimately 
crushed out of existence by the singularity. 

17.7 

t' 

Subregion r'~O 

17.8 

17.9 
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t' = tan- 1(t + r) + tan- 1(t -r), 

r' = tan - 1(t + r)- tan- 1(t -r). 

t = t0 +---> tan ½(t' + r') + tan ½(t' - r') = 2t0 , 

r = r0 +---> tan ½(t' + r') - tan ½(t' - r') = 2r0 • 

,-constant 

t=constant 

17.10 Figure 17.10 is the Penrose diagram of the Schwarzs­
child solution in the absence of a source. The introduction of 
a source suppresses regions I' and II'. 

18.4 

T.b = 82 
4 diag[(1 - ~ + ;), 

8nr r r 

m B 22 ' 2 ( 2)-1 ] - 1----;+-;i ,r , r sm 0. 

18.6 I: t timelike, r spacelike. 
II: t spacelike, r timelike. 

III: t timelike, r spacelike. 
r = r ± = m ± (m2 - e2 )½. 
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18.7 

rt 
18.8 t + r +---log(r- r +) 

r + + r _ 

18.9 

r~ 
- ---log(r - r _) = constant. 

r+ - r_ 

If e2 = m2 there is no region II. 

18.13 ds2 = ( I - 2~ .+ ~)dv2 

- 2dvdr - r2 (d82 + sin2 0rp 2 ). 

18.14 r = e2/m. 

19.2 

r = -m + (m 2 + e2 )½, 

-1. 

•--er 
-1 

0 

0 

0 

0 

0 

_,2 

0 

19.11 

gll = 

-1 0 

-(1 - 2m/r) 0 

0 -,-2 

0 0 

(r2 - 2mr + a2 ) 

(r2 + a2 cos2 8) • 

19.12 The other condition is identical, except that the sign 
of I is reversed and both signs of I are considered in (19.56) 
and the sequel. 

19.14 

20.12 
U= U, 

v = V- yi f'/f-zig'/g, 

y = Y/f, 

z = Z/g, 

where/ =f(U) and g = g(U). 

21.1 A solution is cylindrically symmetric if it admits a 
symmetry axis and is invariant under both rotations about 
the axis and translations parallel to it. 

Yab = Yab(x 0, x1) only. 

ds 2 = g00 dt 2 + 2go 1 dtdp + g11dp 2 . 

g02 = g03 = gl2 = g13 = 0. 

21.2 Invariant under rp-+ -</J. 
No cross term in drpdz, i.e. x = 0. 

21.5 Non-zero independent components are: 

rgo = ,2u2e2y-2pY.1 + ,2ue2,-2,U,1 + rU2e2,-2, 

+ 2fJ,o - ,-t V{J, 1 -½r- 1 V, 1 + ½r- 2 V, 

rg2 = _,2ue2y-2pY,1 -½r2e2, - 2,u.1-rue2y-2p + P.2, 



 
 
 

rg2 = r2e2,-211Y, 1 + re2r211, 

rg3 = -r2e - 121 +211>sin20y, 1 + re - <21 +211>sin20, 

I'l,o = r2U3e2,-211Y,2 + r2u2e2, - 211Y.o + r2u2e2,-211u,2 

- rU2 Ve 21 - 211 y, 1 - rUVe 2,- 211 U, 1 

- U 2 Ve 21 - 211 - r- 1 UV/3. 2 - ½r- 1 UV, 2 

-r-1 V/3,o + ½r-1 V.o + ,-2v2f3., 

+½r- 2 VV, 1 -½r- 3 V2, 

ri, = - ½r2Ue21 - 211 V, 1 - U/3.2 

+ ,-1 V/3.1 + ½,-1 v.1 - ½,-2 v, 
rl,2 = _ ,2u2e2,-211Y, 2 _ ,2ue2r211Y,o 

- r2ue2,-211u,2 + rUVe2,-211Y,1 

• , +½rVe2r211u,1 + UVe2,-211 +½r - 1 Jl'.2, 

r:1 = 2/3,,, 

r: 2 = ½r2e21 - 211 U. 1 + P,2, 

I'}2 = ,2ue2,-211Y.2 + ,2e2,-211Y,o 

+ ,2e2r211u, 2 _ rJ<e2,-211Y,l _ ve2,-211, 

I'i3 = r2 ue-< 21 +211>cos 0sin 0 - r 2 ue-<21 +211>sin2 0y, 2 

- ,2e-,2,+211>sin2 0Y,o 

+ rVe-(ly+lll>sin20y, 1 - Ve-(ly+llllsin20, 

rl,o = ,2u3e2y-2Jl')',1 + ,2u2e2r211u,1 

+ rU 3e2,- 211 - U 2y, 2 + 2Uf3,o - 2VY,o - UU,2 

- U.c{- r - 1 UV/3,1 - ½r- l VJ!'. I+ ½r - 2 UV 

+ ,-3 ve211 - 2, /3.2 + ½r - 3e211-2, 1-".2, 

rl,1 = -VY,1 -tu,, -r-lU + r-2e211-2Yf3,2, 

I'l,2 = -r2u2e2,-211Y.1 -½r2ue2,- 211u,1 

- rU2e2,-211 + U/3,2 + Y,o, 

I'f2=Y,,+r-1, 

I'~2 = r2ue2,-211Y,1 + rUe2,-211 + Y.2, 

I'j3 = - r2 Ue-(ly+ 2lllsin2 0y, 1 + rUe-(ly+l/l)sin2 0 

-e- 4 'co&,0sin0 + e- 4 'sin2 0y, 2 , 

n3 = -Y,o, 

I'f3 = -Y,1 + ,- 1, 

n3 = cot0- r,2• 

21.7 
R 11 = -2y~1 +4r- 1 /1.,: 

R12 = _,2e2,-211/1.1U.1 + ,2e2,-211Y,,V,, 
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+ ½r2e2,- 21 U, 11 + 2rc2,-26 U, 1 + 2cot8y,, 

- /1. 12 - 2y, 1 Y,2 + Y. 12 + 2,- 1 /1,2, 

R22 = -½r4 e4'- 4'U~1 + r2 Ue 2,- 2Pcot0y, , 

+ 2,2 ue2,-211Y, 12 + ,2e2,-2,Y, I U,2 

+ r 2e2' - 2'r.2 U., + 2r2e2'- 211 Y,01 

+ r2e21 - 211u.12 + rUe2'- 2'cot0 + 2rUe2'-2'r.2 

- rve2,- 2,Y, 11 + 2,e2,-2,')', I 

- re2,-211Y,1 v,, + 3re2,-211u.2 - ve2,-211Y,1 

+ 3cot0y, 2 - 2(1\ + 2/1, 2 Y, 2 -2/3,22 

-2y\ +Y.22 + l-e2,-211v,,, 

R33 = - r 2ue-<2,+2P>cos8sin8y, 1 - 2,2ue-12,+2P>sin20y,12 

+ r 2e -<2,+2P>cos 8 sin 8U, 1 

- ,2e -<2 , + 211> sin2 0y,, U, 2 - ,2e -<2,+ 211>sin2 0y, 2 U,, .. 
- 2,2e-<2,+211>sin2 0Y,01 

+ 3rue- 12,+ 2P>cos0sin8-' 2rue-12,+ 211>sin20y, 2 

+ rve- 12,+ 211>sin2By, 11 

- 2,e-121 • 211>sin20y, O + ,e-<21 • 211>sin20y, 1 V, 1 

+ ,e - 12,+211>sin20u,2 

+ ve - 12,+ 2P>sin20y, 1 - 2e - 4'cos0sin8/3. 2 

+ 3e - 4, cos 0 sin 0y, 2 

+ 2e- 4'sin20P, 2y, 2 -2e-4'sin20l2 

+ e- 4, sin2 0y, 22 + e- 4'sin2 0 

- e - 12 ,+ 211> sin2 0 V, 1. 

21.10 l";blb = ,1,1•. 

21.11 0 = 2e- 211;,. 

A 2 
22.2 Ve,= - 6 miri . 

22.3 A is a half of the sum of the moments of inertia of the 
system about a set of orthogonal axes situated at the origin 
at epoch t0 (i.e. a half of the trace of the inertia tensor). 

22.5 c must be a constant. 

K = c/2. 

22.10 
(k = + 1) du 2 = Rl,sin2 x(d0 2 + sin2 0d<f> 2 ). 

(k = -1) du2 = Rl, sinh2 x(d0 2 + sinh2 0d<f>2 ). 

23.6 (ii) Oscillating model. 



 
 
 

Here are a few suggestions for further reading. I have limited 
myself to books, and the full references can be found in the 
selected bibliography. The Resource Letters GR-1 and Gl-1 in 
the American Journal of Physics, February 1968 and June 1982, 
list many books and articles on general relativity at an in­
troductory and at more advanced levels. In addition, many of 
the texts in the selected bibliography have extensive reference 
sections, such as Schutz (1985) and Misner et al. 

Chapter 1 
It would be fun to have a look at Lieber. It is out of print, and 
there seem to be few copies in libraries so you will probably 
have to go through an inter-library Joan service. It is certainly 
worth reading Einstein's autobiography in the Schilpp volume. 
I consider Pais to be the most authoritative biography. 

Chapter 2 
This chapter is based heavily on Bondi's article in the Brandeis 
volume (Trautmann et al.). I do not know any other treatment 
of the k-calculus in print. 

Chapter 3 
There are many fine texts around on special relativity, includ­
ing two introductory ones written by an ex-Southampton 
university colleague, Les Marder (Marder 1968). Rindler is 
frequently cited as the most authoritative. 

Chapter 4 
See Rindler again, but also try Taylor and Wheeler, and Dixon. 

Chapters 5, 6, and 7 
As discussed in the book, we consider tensors via the index 
approach. The older texts adopt the same approach and one 
example of a classic text on differential geometry, which was a 
major source for this book, is Synge and Schild. Many of the 
modern books which utilize the index-free approach are, in my 
opinion, a bit sophisticated for a first course in general rela-

tivity. One exception, however, is the excellent book of Schutz 
(1985). This is written at about the same level as this book and, 
in part because it contains material not covered in this book, is 
used as a companion text to the course at Southampton. The 
earlier book of Schutz (1980) provides a more solid grounding 
in differential geometry, but is perhaps more of a graduate text. 
Wald is also excellent but yet more advanced. The most 
advanced and complete treatment of geometrical methods can 
be found in the two volumes of Penrose and Rindler. Our 
treatment has one important omission, and that is the topic of 
differential forms (which is omitted because we do not use it). 
Hughston and Tod is a book on general relativity that includes 
both a treatment and a subsequent application in discussing 
anisotropic cosmologies. The various sign conventions can be 
found on the inside cover of Misner et al. We use the timelike 
convention of Landau and Lifshitz (1971). 

Chapter 8 
For further consideration of the Lorentz group, see Carmeli. 
The axiomatic formulation of special relativity is that of 
Trautmann et al. (1964). 

Chapters 9 and 10 
The text which I used to recommend for a first course in 
general relativity is that of Adler et al. Unfortunately, I believe 
this is now out of print. There are many other excellent 
standard texts on general relativity which are currently avail­
able including Ohanion, Schutz, Stephani, and Hughston and 
Tod. We mostly avoid issues of units in this book by working 
in relativistic units, but for more on this topic see, for example, 
Schutz or Wald. 

Chapter 11 
My approach to the variational principle is based on the lovely 
little book of Schri:idinger. 

Chapter 12 
Again, all the standard texts have a treatment of energy­
momentum tensors. The dominant energy condition comes 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from Hawking and Ellis and the Newtonian limit from 
Trautmann (1964). 

Chapter 13 
The treatment of the Cauchy problem is taken from Adler et al. 
For a more advanced treatment see, for example, Smarr. I have 
written a review article on computer algebra in general rela­
tivity in the Einstein centenary volume edited by Held. Most of 
the known solutions of Einsteins equations can be found in the 
book of Kramer et al. 

Chapter 14 
There is another omission in this chapter in that I do not 
consider the interior Schwarzschild solution. For a simple 
treatment see Hughston and Tod. 

Chapter 15 
All standard texts include consideration of the experimental 
tests. A complete, but advanced treatment, can be found in 
Will. I would also recommend looking at the relevant sections 
of the text of Misner, Thorne, and Wheeler, known for short as 
'MTW'. MTW is a rich resource and is certainly worth con­
sulting for a whole string of topics. However, its style is not 
perhaps for everyone (I find it somewhat verbose in places and 
would not recommend it for a first course in relativity). MTW 
has a very extensive bibliography. 

Chapters 16, 17, 18, and 19 
The key source for black holes is, not surprisingly, Hawking 
and Ellis. For more on tidal forces see MTW. For a complete 
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derivation of the Kerr solution see Adler et al. (second edition). 
A comprehensive, but advanced treatment, is contained in 
Chandrasekhar. See also the book of Thorne et al. 

Chapters 20 and 21 
The companion text of Schutz treats sources of gravitational 
radiation and their detection, which we do not. In particular, 
he derives the important quadrupole radiation formula and 
applies it to the binary pulsar. Obanion is another source for 
these topics. A complete treatment of gravitational wave solu­
tions can be found in Griffiths. 

Chapter 22 
The source for our approach to cosmology is the classic text of 
Bondi. Our brieflook at Newtonian cosmology can be pursued 
further in Landsberg and Evans. Probably the most authorita­
tive text on cosmology is that of Weinberg. In particular, he 
includes a comprehensive discussion of distance in cosmology. 
Tod and Hughston have a chapter on anisotropic cosmologies. 
Other important texts are Robertson and Noonan and MTW. 

Chapter 23 
The main source for this chapter is Hawking and Ellis, al­
though the origins of the steady-state theory is considered in 
more detail in Bondi. The final topics of inflation and the 
anthropic principle can be found in the popular best seller of 
Hawking. A more mathematical treatment is contained in 
Barrow and Tipler. 



 
 
 

A. Biographies of Einstein (1879-1955) 
There are a large number of books and articles of a biographical nature on 
Einstein. Most of the post-1955 biographies are listed below, together with a 
few of the more important earlier biographies. The Schilpp volume is 
particularly significant because it includes Einstein's autobiography. 

Bernstein, J. (1976). Einstein, Modern Masters Series. Penguin, 
London. 

Born, M. (1971). Born-Einstein letters, 1916-1955. Mac­
millan, London. 

Burke, T. F. (ed.) (1984). Einstein: a portrait. Pomegranate. 
Cahn, W. (1955). Einstein: A pictorial biography. Citadel, 

New York. 
Clark, R. W. (1973), Einstein: the life and times. Hodder and 

Stoughton, London. 
Cuny, H. (1963). Albert Einstein: the man and his theories. 

Souvenir, London. 
Dank, M. (1983). Albert Einstein, Impact Biography Series. 

Watts. 
de Broglie, L., Armand, L., and Simon, P. (1979). Einstein. 

Peebles, New York. 
Fliickiger, M. (1974). Albert Einstein In Bern. Paul Hampt 

Verlag, Bern. 
Frank, P. (1947). :_Albert Einstein: his life and times. Knopf, 

New York. 

B. Texts on Differential Geometry, 
Relativity, and Cosmology 

Hoffman, B. (1972). Albert Einstein: creator and rebel. Viking, 
New York. 

Hunter, N. (1987). Einstein, Great Lives Series. Bookwright, 
Watts. 

Infeld, L. (1950). Albert Einstein: his work and his influence on 
the world. Charles Scribner's Sons, New York. 

Kirsten, C. and Treder, H. J. (eds.) (1979). Albert Einstein in 
Berlin 1913-1933. Akademie Verlag, Berlin. 

Levinger, E. E. (1962). Albert Einstein. Dodson, London. 
Pais, A. (1982). 'Subtle is the Lord .. .' the science and life of 

Albert Einstein. Oxford University Press. 
Reisner, A. (1930). Albert Einstein, a biographical portrait. A 

and C Boni, New York. 
Schilpp, P. A. (ed.) (1949). Albert Einstein: phllosopher­

sclentist, Volume VIII. The Library of Living Philoso­
phers, Evanston, Illinois. 

Seelig, C. (1960). Albert Einstein. Europa Verlag, Ziirich. 
Whitrow, G. J. (ed.) (1967). Einstein: the man and his achieve­

ment. Dover, New York. 

The following texts are largely on relativity and cosmology, and consist of a 
selection of more recent as well as classic texts. They are supplemented by a 
few important references on differential geometry. 

Adler, R., Bazin, M., and Schiffer, M. (1975). Introduction to 
,general relativity (2nd edn). McGraw-Hill, New York. 

Anderson, J. L. (1967). Principles of relativity physics, 
Academic Press, New York. 

Barrow, J. D. and Tipler, F. J. (1986). The anthropic cosmo­
logical principle. Clarendon Press, Oxford. 

Beem, J. K . and Ehrlich, P. E. (1981). Global Lorentzian 
geometry. Dekker, New York. 

Bergmann, P. G. (1942). Introduction to the theory of relativity, 
Prentice-Hall, Englewood Cliffs, New Jersey. 

Berry, M. (1976). Principles of cosmology and gravitation. 
Cambridge University Press. 



 

Bishop, R. L. and Goldberg, S. I. (1968). Tensor analysis on 
manlfolds. Macmillan, London. 

Bohm, D. (1965). The special theory of relativity. Benjamin, 
New York. 

Bondi, H. (1961). Cosmology. Cambridge University Press. 
Bowler, M. G. (1976). Gravitation and relativity. Pergamon, 

Oxford. 
Buchdahl, H. A. (1981). Seventeen simple lectures on general 

relativity. Wiley, New York. 
Burke, W. L. (1980). Spacetlme, geometry, cosmology. Univer­
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The index is organised somewhat unconventionally in that it may be necessary to look under any of the words which occur in a 
multiple word entry (or which may be cbnsidered to be part of a multiple word entry) to locate it. For example, 'speed of sound' is 
located under 'speed' whereas 'speed of light' is located under 'light' (where it is grouped together with other related concepts, such 
as vel~oity of light). Again, references to particular solutions may occur under their name, under 'line element', 'Penrose diagram', 
'space-time', or 'space-time diagram', depending on their actual usage in the text. Some commonly used terms (e.g. 'observer') have 
an initial reference only, whereas others (e.g. 'special relativity') have a comprehensive list of references. 

A 
abberation 41 
absolute 

quantity 36--7, 119 
space 122, 123, 125 
time 17, 18, 24, 26, 84 

acceleration 
absolute 122 
in special relativity 36, 41 
uniform 37, 38, 41, 129, 349 

action 42, 96, 99, 115-17, 153 
integral 146 

affine 
connection (affinity), see connection 
geodesic 7 5-6 
length 70 
manifold 73, 230 
parameter 76, 83, 89, 90, 101, 103, 112, 

114, 116, 119, 137, 216, 229, 230, 257, 
268, 293, 295, 301 

transformation 176 
algebraically 

general 300 
special 300, 301, 303 

algorithm 179 
alternative theories 192, 206, 227 
Ampere's law 159 
amplitude 281, 286 
analytic extension 219 

maximal 230, 231, 245, 260-3, 285 
analytic solution 174, 297 
Anderson 120 
angle 82 

angular 
momentum 193, 253, 254, 256, 263, 266 
momentum tensor 118 
velocity 133, 253 

anisotropic model 313-14 
ansatz 160, 185, 247, 275, 276, 280, 288 
anthropic principle 356, 357 

strong 356, 357 
weak 357 

antiparticle 267 
apparent magnitude 326, 328 
asymptote 199, 200, 232 
asymptotically flat 171,189,218,232,233, 

237,239,240,242,246,253,256,260, 
262-4, 268, 271, 294, 301 

asymptotic analysis 298 
atlas 57 
_atomic system 202 

axial symmetry (axisymmetry), see sym­
metry 

axiomatic formulation of 
special relativity 113 
general relativity 143, 173 

axis, see symmetry 
azimuth reflection invariance, see symmetry 

B 
Baade 341 
backscattering 292 
basis 65 

dual 140 
Belinsky 313 

Berkeley 123 
Bessel 205 
Bianchi identities 87, 173, 187,272,288 

contracted 87, 143, 146, 149, 151, 170, 
176, 191, 296, 304, 323 

Bianchi model 313-14 
bicharacteristic 292-3 
big bang 227, 265, 268, 308, 313, 332-4, 336, 

337,339,341,352, 354-6, 358 
hot 286, 308, 313, 340, 347, 358 

big crunch 265, 311, 313, 336, 352 
binary 

pulsar 192, 207, 286, 288 
star 226--7 

Binet's equation 194, 196, 209 
Birkhoff's theorem 188, 240, 290 
BKL approach 313 
black hole 3, 4, 9, 11, 192,207, 232, 266--7, 

284, 286, 342, 348, 358 
charged 228,239-47 
charged rotating 248, 264 
colliding 266, 286 
mini 227, 268 
non-rotating 223-8 
primordial 227, 268 
rotating 10, 228, 248, 262-5 

blue shift 21, 325 
body force 157, 158 
Bondi 5, 120, 291, 292, 295, 296, 297, 299, 

301, 344, 347 
Bondi-Metzner-Sachs (BMS) group 297 
boost 25, 27, 28, 31, 32, 35, 110, 168; see 

also special Lorentz transformation 
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boundary 
conditions 171, 184, 338 
value problem 285 

Braginski 206 
Brans 206 
Brans-Dicke theory 125,192,206 
Brinkmann 281 
bucket experiment, see experiment 
Burbridge 341 

C 
calculus of variations 83, 96 
canonical form 179, 186, 239, 278, 288, 303 
Cartan 178 
Cauchy problem 174-7, 292, 296 
causality 24, 113, 228, 261, 262, 266, 355 
causally connected 355 
causal structure 234, 303 
caustic two-surface 283, 284 
centre or mass 45, 210 
centrifugal force 121, 122 
characteristic equation 164 
charge 227, 240, 264, 266 

density 158, 159 
charged mass point 239--40 
Charlier 314 
Choquet-Bruhat 177 
Christoffel symbols 

first kind 83 
second kind 83 

CLASS! 178 
classical tests 192 
clock 17, 20, 21, 24, 25, 34 

accelerated 33 
atomic 25, 34, 204 
good 24-5 
hydrogen maser 288 
hypothesis 33, 41, 113 
human 34 
ideal 33, 34, 113, 202 
paradox 24-5, 38 
proper rate 33 
sychronization 17, 18, 21, 24, 25, 29 

closed 
timelike curve 261, 262, 266 
trapped surface 238, 246, 261, 264, 265 

collapse, see gravitational 
collision 

elastic 51 
inelastic 45, 51 

commutator 66, 77, 104, 137 
composition law for velocites 22, 28, 46 
computer 

algebra 178 
data base 179 

configuration space 115 
conformal 

compactification 233, 236---7 
factor 234, 23 5 
invariance 88 

structure 260, 261 
tensor 87---8 

conformally flat 88, 89, 90, 231, 319 
congruence 

or curves 69-71, 74 
null 257 
null geodesic 302, 303 
principal null 258 
radial null 258, 268 
Schwarzschild 258 
shear-free null geodesic 303 
timelike geodesic 137, 315, 347 

conic section 194, 197 
connection 

affine 69, 72-6, 113, 145, 152-4, 288, 330 
integrable affine 78, 89, 131 
metric 69, 84-5, 86, 90, 113, 115, 130, 142, 

153, 154, 280 
conservation 

of angular momentum 193, 196 
of energy 47, 157, 164, 202, 224, 322, 323, 

344 
of energy-momentum 157 
equations 143, 164, 168, 172, 173--4, 179, 

323 
of four-momentum 118 
of kinetic energy 47 
law 131, 157, 158 
of linear momentum 45, 46, 48 
of mass 46, 323 
of matter 156, 345, 347 
of momentum 157 
of relativistic mass 47 

continuous creation of matter 345, 347 
convection current 159 
coordinate 

advanced time 221, 230, 258 
axial 185 
azimuthal 185 
conditions · 170 
curve 294 
differential 95, 251, 258 
double null 231, 234, 237, 238, 244, 280, 

282, 284 
hypersurface 213-14, 291-4 
imaginary time 30, 31 
null 214, 221, 222, 237, 246 
patch 57 
radial 186, 293 
rescaled (radial) 318,337 
retarded time 222, 230, 268 
spacelike 183, 214 
time 113,116,202 
timelike 180, 185, 214 

coordinate-free 55, 62 
coordinates 17, 21, 27, 56 

adapted 180, 188, 214, 290, 291, 303 
Bondi 294 
canonical 113,130,214,253 
Cartesian 67, 115, 135, 189, 214 
co-moving 315, 346 

complex 250 
cylindrical polar 89, 133, 253 
degenerate 56 
Eddington-Finkelstein 219-23, 242, 243, 

250, 258-60, 268 
Gaussian 170, 184 
isotropic 189-191, 214 
Minkowski 90, 107, 108, 111, 113, 116, 

118, 119, 130, 131, 133, 143, 155, 158, 
161-3, 238, 247, 271 

non-degenerate 56 
normal 170 
plane polar 67, 193 
radiation 294 
Rosen 284 
spherical polar 67, 89, 108, 189, 247, 253 

coordinate transformation 58, 175, 184 
active 69, 110 
continuous 102 
discrete 102 
infinitesimal 102, 147, 154, 167 
inverse 58 
passive 58, 69 

Copernican principle 312 
Coriolis force 121 
correspondence principle, see principle of 
cosmic 

attraction 173, 311 
censorship hypothesis 262 
(background) microwave radiation 207, 

313, 347 
ray 49 
repulsion 173,311, 337-41 
time 312, 315, 320 
X-ray 313 

cosmological 
coincidences 343-4 
constant 171,265, 310, 331, 336 
differential equation 311 
force 310, 336 
principle 307, 310, 312-16, 322, 329, 340, 

345, 356 
term 171-3, 179,308,311,322,347 

cosmology 3, 4, 7, 11, 56, 91, 171, 172, 307, 
308, 342, 344, 354, 356, 358; see also 
relativistic cosmology 

coupling constant 143, 153, 155, 167-8 
covariant formulation of 

Maxwell's equations 161 
relativistic mechanics 117-18 

critical value 336 
current density 158, 159 
curvature 

constant 317-21, 345 
scalar 87; see also Ricci scalar 
tensor 86---7, 132, 276, 284; see also Ricci 

tensor 
curve 57 

null 111 
spacelike 111 
timelike 111 



 

Cygnus Xl 207, 226 
cylindrical symmetry, see symmetry 

D 
d'Alembertian 272 
Debever 300 
deceleration parameter 227, 329, 333, 334, 

347 
deflection angle 199-200 
degrees of freedom 57 

radiation 271, 299 
density 156, 253, 339, 340, 345, 347, 358 

critical 341-2, 347 
mean 340, 344, 346, 347 
pfoper 155-7, 167 

dedvative 
absolute 75, 138, 293, 301 
covariant 69, 72-7, 89, 330 

of scalar density 94-5 
of tensor 73--4 
of tensor density 91 

Lie 69-72, 89, 103, 137 
ordinary 68 
partial 68 

de Sitter 172 
conformal space-time 353--4 
model 337-9, 347, 348-9, 352-3, 355, 358 

Dicke 206 
differential 

constraint 146--7, 151 , 154 
identity 147, 148 

dimensionless parameter 165, 197, 199, 271 
Dingle 24 
Dingle's metric 229 
dipole aspect 299 
Dirac delta function 282, 284 
discriminant 241 
distance 19, 27, 81 

absolute 325 
cosmological 325---{i 
luminosity 326--8 
observational 325 

distortion 302 
distribution 282 
divergence 151, 154, 157, 302 

covariant 91 
ordinary 91 
theorem 96, 103, 147, 150 

dominant energy condition 164, 169, 228, 
265,322 

Doppler shift 39--40, 41, 203, 309, 310, 325, 
326, 327, 345 

classical 39 
radial 21, 40, 50 
special relativistic 40 
transverse 40 

dust (incoherent matter) 155-7, 164, 167, 
173, 323 

null 285 

dynamical variables 96, 98, 99, 148, 151, 
152, 154 

E 
eccentricity 194, 198 
eclipse 200 

expedition 200-1, 207 
Eddington 5, 154, 200, 338, 339 
Eddington-Lemaitre model 337, 339--40, 341 
eigendirection 329 
eigenvalue 164, 299, 300 
eigenvector 164, 299, 300 
Einstein 3, 6, 15, 19, 20, 23, 49, 120, 125, 

129, 130-2, 142, 170-3, 177, 178, 186, 
200, 201, 271, 308, 338, 341, 343, 357 

static universe 235, 236, 337--40, 351, 352 
summation convention 59 
tensor 87, 90, 142, 143, 149, 176, 177, 187, 

272, 282, 330 
Einstein-de Sitter model 333---{i, 341, 342, 

347,359 
Einstein-Rosen bridge 232-3 
electric field 158 
electrodynamics 163, 273 
electromagnetic 

field tensor 159 
radiation 161 , 201 
wave 279, 281, 285 

electromagnetism (electromagnetic theory) 
16,120,273,279, 281, 298, 302 

electrostatic field 239 
ellipse 19, 194, 195, 198, 208, 209, 216, 279 
Ellis 6, 164, 358 
elsewhere 24, 111 
embedding geometry 208,209,233,319,321, 

352 
entropy 266 
Eotvos 206 

ratio 205 
energy 

density 163, 164, 169, 265, 323, 347, 354 
relativistic 156 

kinetic 4 7, 114, 224, 310 
potential 114, 224, 310, 329 
relativistic 48 
transfer 275, 290 

epoch 124,311,312, 319, 320, 323, 331, 343, 
355 

equation, see field equations 
equation of 

continuity 156, 159, 160, 168 
geodesic 75-6, 83--4, 89, 90, 100-1, 111, 

113, 116, 130, 133, 142, 144, 165, 166, 
173, 174,195,210,216,218,221,242, 
243,247,268,302,304 

geodesic deviation 135, 136--42, 144, 225, 
279,285,288 

motion 114, 119, 136, 164, 168, 195 
Newtonian deviation 136 
state 158, 285 

Index I 377 

equatorial plane 196,210,221, 229,254,260, 
291 

equivalence problem 178-9 
ergosphere 255, 260, 263 
escape velocity 224 
ether 16 
Euclidean space 27, 56, 57, 66, 67, 102, 107, 

135, 189, 190,208,308,319, 320, 321, 
326, 329, 352 

Euler-Lagrange 
derivative 98, 146, 149 
equations 83, 96--101, 103, 114-16, 119, 

149, 152, 195,210,216,256,257 
event 16 

diagram 24, 39 
future horizon 350 
horizon 38, 222, 228, 231, 232, 243, 246, 

247, 254---{i, 260--2, 264, 266, 268, 285, 
348-9, 350,358 

Everett 356 
exact solution 179, 285, 290, 303 
existence 177 
expansion 302, 303 

(of universe) 172, 309-11, 336, 338--40, 
345, 346, 354, 355 

experiment 
bucket 122-3, 132 
Eotvos 205-7 
Fizeau 22 
Hughes-Drever 124, 207 
lift 129-30, 133, 134-5 
Michelson-Morley 16, 23, 33 
moon 126--7 
Pisa 126, 128 
Pound- Rebka 203,207 
thought 16, 129 

extreme relativistic condition 343 

F 
Faraday's law 159 
field 

electromagnetic 155, 158, 162, 163 
electrostatic 239 
inertial 135, 142 
see also gravitational 

field equation(s) 99, 119, 142, 143, 146, 148, 
151, 152, 162, 164, 169-77, 192, 228, 
313,322, 323,346,347 

constraint 176, 177, 296 
dynamical 176, 296--8 
Einstein 177, 179 
Einstein- Maxwell 163, 169, 179,239, 241, 

247 
evolution 176, 177 
full 142-3, 153, 162, 163, 167- 9, 171, 172, 

179, 274 
internal 158, 159, 161, 162, 168 
hypersurface 297, 298 
Laplace 44, 136, 144 
linearized 271-9, 288 
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field equation(s) (cont.) 
main 176,296,297, 304 
Maxwell's 155, 158----62, 168 
Navier-Stokes 157, 158 
Palatini 145, 150, 152 
Poisson 44, 143, 168 
source 158, 159, 161, 162 
steady state 347 
supplementary condition 296, 298 
symmetry condition 296 
trivial 296 
vacuum 141, 142, 149, 151-3, 170, 171, 

174, 176, 179, 186,187,248,274,279, 
280,281,290,292,296 

first fundamental form 81 
Fitzgerald 16, 33 

contraction 16, 33 
fixed stars 123 
flatness problem 355 
flat space 107, 171, 179,189,204,207,217, 

282, 283, 284 
fluid dynamics 156, 157, 159 
Fock 120, 173 
focusing of geodesics 76, 265, 284, 294 
force 42, 51 

electromagnetic 3 54 
fundamental 354 
gravitational 130 
inertial. 121, 123, 124, 129, 130, 142 
internal 42 , 
strong nuclear 354 
weak nuclear 354 

four-acceleration 117 
four-force 118, 119 
four•momentum 118 
four-potential 160-2, I 68 
four-velocity 117, 119, 140, 155, 157 
Fowler 341 
frame 139, 141, 179,225,248 

components 140, 164 
dual 140, 144 

• formalism 248 
metric 248-9 
orthogonal 139 
orthonormal 314 
parallely propagated 140, 314 

frame of reference 17, 43 
co-moving 37, 119 
free fall 129, 135 
inertial 17, 18, 25, 27, 37, 40, 41, 110, 111, 

121-3, 129, 130, 133,210,253 
non-inertial 121, 130, 133, 253 
rotating 253 

frequency 49, 52, 202, 286, 287, 325 
shift 202 

Friedmann 339 
(cosmological) model 265, 307, 308, 489, 

322-3, 335-7, 358 
singularity 313 

Friedmann's equation 307, 312, 323, 328, 
331, 334, 359 

FRW models 323 
full theory 144, 163, 170 
functional 96, 146, 148, 152, 153 

derivative 98 
future 111 

absolute 24 
relative 24 
sheet 109 

G 
Galilean transformation 18, 19, 26, 27, 28, 

31 
Galileo 128 
gamma ray 203, 268 
gauge 

condition 160, 170 
deDonder 273 
Einstein 273-4, 276, 288 
Fock 273 
freedom 168, 276, 277, 288 
Hilbert 273 
Lorentz 161 
transformation 160, I 68, 273 

gauge-invariant quantity 273 
Gauss's 

law 158 
theorem 96 

general relativity 3, 4, 5, 6, 9, 37, 44, 51, 56, 
120, 125, 128, 130-6, 141, 142, 143, 146, 
153, 155, 157, 162, 171, 173, 177, 192, 
195, 196, 198, 202, 204-9, 223, 225, 228, 
248,256,265,271,281,292,307,308, 
314, 315, 322, 324, 338, 340, 346, 347, 
358 

generalized 
coordinate 114 
force 114 
momentum 115, 119 
velocity 114 

genericity condition 266 
geodesic 115, 207, 209 

affine 75-6 
coordinates 77-8, 90, 145 
metric 83, I 00-1 
motion 174 
null 83-4, 89, 90, IOI, 113-14, 199, 234, 

237,256,292,293 
radial null 216,217,219,221,229,230, 

231, 237, 238, 242, 247, 256, 324 
radial timelike 218,230,231, 243, 247 
spacelike 101, 111, 113 
structure 173, 303 
timelike 111,113, 119,136,137, 142, 144, 

165 
geodesically complete 230, 262, 265, 266, 354 
global structure 303 
Gold 344, 347 
Goldenberg 206 
grand unified theory (GUT) 354 

gravitational 
acceleration 127-30, 205 
astronomy 3, 288, 358 
collapse 223, 228, 238, 262- 6, 286 
field 22, 125-30, 132- 5, 142, 153, 165, 167, 

170,171,173,178,192,195,199,201, 
204, 205, 209, 224, 226, 227, 271, 274, 
275,290,294,299,300,343 

lens 201, 207 
potential 44, 124, 126, 127, 128, 130, 135, 

166 
gravitational radiation 10, 192,248, 271, 

275,285,286,291,293,295 
burst 286 
periodic 286 
stochastic 286-7 

gravitational (gravity) wave 3, 4, 9, 188, 192, 
209, 265,271,274, 284-7, 288,301,358 

Brinkmann form 281,282,288 
colliding plane 265, 283- 5 
Coulomb-type 302 
impulsive 281-4 
longitudinal 302 
Penrose-Khan form 283 
plane (exact) 280-1, 283, 290, 300 
plane (linearized) 271, 274-9 
pure transverse 301 
retarded 30 I 
Rosen form 281-3, 288 
sandwich 282, 285 
shock 282 
step 284 
transverse 271, 279 

graviton 22 
GR conferences 7 
Grommer 173 
group 28, 31-2, 110, 119, 297, 312, 313 

abelian (commutative) 28 
BMS 297 
Lorentz 109-11, 119 
Poincare 110, 113, 119, 297 
rotation 110 

GUT 354 

H 
Hamiltonian II 5, 117, 119 
Hawking 6, 164, 228, 265-7, 357, 358 

effect 266-8 
radiation 267 

heat death 345 
heavy elements 308, 340, 341, 356 
Heavyside step function 281 
hierarchical model 314 
Hilbert 172 
Hill 206 
history 17 
hole problem 177-8 
homogeneous space 307, 310, 312,313,316, 

317,322,324,329,349,355,356,358 



 
 

horizon, see event 
horizon problem 355 
hot big bang, see big bang 
Hoyle 341, 344, 347 
Hubble 328 

constant 311, 313, 327, 339, 341 
parameter 311,327,329, 333-5, 354 

Hubble's law 311, 313, 323, 325, 327, 329, 
330, 346, 347 

hydrogen 267, 308, 342 
hyperbola 35, 38, 231 
hyperbolic motion 38, 222 
hypersurface 57, 67, 175, 178, 181 

characteristic 292, 296 
null 241, 242, 284, 292, 293, 296 
spacelike 174, 312, 313, 315 

Icarus 198 
identification 246, 261, 321 
identity 66, 288 

element 110 
index 

bound 59 
dummy 59, 61 
free 59, 61 
repeated 59 

index-free 55, 62, 64 
inertia 42, 126, 171, 344 
Infcld 173 
infinity 56, 233, 234 

future null 236, 237, 294 
future timelike 236 
null 236, 237 
past null 236, 297 
past timelike 236 
.spacelike 236 
spatial 171, I 84, 229 

inflation 354--6, 357 
integrating factor 186 
integration 

by parts 147 
schema 297,304 

interference 292 
incoherent matter, see dust 
inhomogeneous model 313-14 
initial data 174-8, 284, 285, 298 
initial value problem (IVP) 268, 284, 285, 

292,296 
characteristic 284, 296 

interior Schwarzschild solution 215 
intensity 309, 326 
interval 27, 28, 32, 81, 82, 83 
invariant 119 
inverse 

element 110 
square law 193 

isolated 
radiative system 297, 300, 301 

source 171,254,281,290,292, 301 
system 44--5, 133 

isometry 102-3, I 10, 111, 312 
isotropic space 26, 29, 307, 310, 313, 316, 

317, 322, 329, 355, 356 
globally 313 

J 
Jacobian 58, 59, 67, 91, 103 
Jacobi's identity 66 
Janis 248 
Jupiter 198 

K 
k-calculus 5, 19, 21-8 
k-factor 20-2, 28, 40 
Kasner solution 314 
Karlhede 179 

classification 179,301 
Keller 9 
Kepler problem 192-5 
Kepler's laws 209, 210 
Kerr 398, 399 
Kerr solution 228, 239, 248, 250-64, 268, 

300 
(advanced) Eddington-Finkelstein form 

251, 252, 258-{iQ, 263, 264, 268 
Boyer-Lindquist form 251, 252, 255, 256, 

261, 268 
Kerr form 251 

Kerr-Newman solution 248, 264, 265, 268 
Khalatnikov 313 
Khan 283 
Killing vector 102-4, 119, 144, 180-5, 

188-91, 214,229,252,284, 290, 291, 303 
Kronecker delta 59, 67, 82, 92, 110, 135, 140 

generalized 92 
Kruskal 230, 231 

solution 231, 233, 237-238, 245, 246 

L 
Lagrangian (density) 97-101, 103, 114-17, 

119, 120, 146, 153, 154, 162-4, 172, 179, 
272,288 

Einstein 148-9, 151-3 
Lamb shift 267 
Laplace 224 
Laplacian 44 
laser interferometer 287 
Leibnitz rule 71, 74, 89, 150, 173 
Lemaitre 340 
Lemaitre's model 340-1 
length 

affine 76 
contraction 32- 3, 36, 38 
proper 33 
rest 33 
scales 35 

Lense 253 
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Levi-Civita alternating symbol 92 
Lichnerowicz 176 

conditions 171 
Lie bracket 66, 67, 214 
Lie derivative, see derivative 
Lieber 11, 370 
Lifschitz 313 
light 

bending 133,192, 199- 201,205,209 
cone 24, 109, 111, 215, 216, 218, 221, 234, 

237, 243,258,260, 316, 348, 349, 350; 
see also null cone 

flash 29, 50,215 
propagation 324-5, 345, 346 
ray 23-5, 35, 38, 41 , 51, 113, 125, 133, 

199, 200, 201, 204, 205, 210, 292, 324, 
325; see also null ray 

speed of 16, 22, 23, 29, 30, 34, 47, 49, 111, 
132, 133, 164, 209, 218, 276, 293, 355 

signal 20-4, 41, 113, 243 
velocity of 16, 19, 20, 21, 28, 29, 33, 114, 

165, 274, 275 
line element 81, 90, 315, 317, 352 

Bondi's radiating 304 
Boyer- Lindquist 259 
cylindrically symmetric 303 
de Sitter 337, 338, 345 
Einstein static universe 235, 353 
(three dimensional) Euclidean 104, 189 
Minkowski 28, 90, 107, 234, 329 
relativistic cosmology 318 
Robertson- Walker 318, 322, 324, 326, 

345, 351, 359 
Rosen 281, 282, 288 
Schwarzschild 188, 191,219,229, 230, 

240, 268 
sphere 326, 327, 330 
(four dimensional) spherically symmetric 

90, 104 
steady state 345 

linearity 71 
linearized 

approximation 271, 280, 292 
equations 272, 274-6 
theory 290, 293, 301 

linear momentum 42, 44, 45, 48, 50, 118, 119 
total 45 

local light cone 215 
. light cone, see light 

Lorentz 16 
contraction 156 
group 109- 11, 119 

Lorentz-covariant theory 160, 271 
Lorentz transformation I 6, 25-8, 29-41, 

109- 11, 118, 119, 160 
discrete l I 0 
full 27 
improper 110 
orthocronous 101, 111 
proper 110 
space-orientation preserving 110 
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Lorentz transformation (cont.) 
special 25-8, 31, 40, 41, 107, 119; see also 

boost 
time-orientation preserving 110 
without relative rotation 40 

luminosity 308, 309 
absolute 326 
apparent 326 
distance 326, 327, 346, 348 

parameter 295, 304 

M 
Mach 123-5 
Mach's principle, see principle of 
MACSYMA 178 
magnetic 

monopole 158 
induction 158 

manifold 55-7, 131, 177, 178 
affine 73 
(affine) flat 78-81, 89 
bare 177 
four-dimensional 113 
geodesically complete 230, 265 
maximal 230, 244, 265 
Minkowski 109 
Riemannian 81, 89, 90, 102, 115 
simply connected 80, 95 

many worlds cosmology 356 
MAPLE 178 
mass 42, 43, 51, 74, 117, 119, 123-6, 128, 

129, 133, 135, 136, 142, 170, 254, 264, 
290,291 

active gravitational 125, 126-8 
aspect 298 
Bondi 299 
geometric 189, 240, 252, 256 
inertial 125, 126, 127-8, 133 
loss 290--2, 298-9, 304 
negative 262 
passive gravitational 125, 126, 127-8 
point 17 
proper density 164 
reduced 195 
relativistic 45-7, 48, 50, 51, 117 
rest 45, 46, 49, 51, 52, 117, 156, 164 

matter field 155, 156, 164 
Maxwell 16 

energy-momentum tensor 163,239,240, 
247 

tensor 159, {69, 179, 239, 240, 247 
Maxwell's displacement current 159 
mechanics 

classical 114 
Newtonian 43, 44, 45 
relativistic 42, 45-9, 114, 116, 117 

Mercury 192, 197, 198,205, 206 
metric 81, 152, 153, 169, 174; see also line 

element 
~~ndi's radiating 295, 301, 304 

conformally flat 88, 189 
conformally related 88, 90, 189, 234 
contravariant 82 
curved (non-flat) 130, 142 
determinant 82, 93-5 
diagonal 89, 107, 186 
Euclidean 13 5 
flat 85-6, 90, 107, 117, 130, 131 
form 81 
form invariant 102 
frame 140, 248 
indefinite 82 
invariant 102 
inverse 82 
Minkowski 39, 108, 110, 111, 130, 139, 

165, 249, 252, 271, 272 
negative definite 82 
non-singular 82, 90, 248 
physical 233 
positive definite 82 
potential 174 
rank 215 
signature 85, 90, 93, 107, 186, 213, 280, 

304,321 
unphysical 233, 235 

Milne 5 
Minkowski 27 

coordinates, see coordinates 
line element, see line element 
metric, see metric 
space-time, see space-time 

missing matter problem 341-2, 347 
modelling 15,307,308 
momentum density 163 
Mossbauer effect 40, 203 
motion 

bounded 244 
unbounded 244 

multipole moment 254, 290 

N 
neutron star 223, 227, 286 
Newman 248, 295 
Newman-Janis trick 248, 250, 263, 268 
Newman-Penrose formalism 248 
news function 298-299 
Newton 122, 123, 205 
Newtonian 

approximation 47, 48, 51 
constant 43, 124, 143, 206, 344 
cosmology 307, 310--12, 331 
gravitation 15, 43-4, 130, 132, 194, 209 
limit 155, 165-7, 171,295 
theory 15-19, 28, 37, 42-4, 55, 113, 121-5, 

128, 129, 132-5 141, 142, 167, 168, 173, 
188, 194, 196, 198, 199, 205, 209, 224, 
225, 229, 253, 256, 307 

Newton's laws 17, 42-5, 51, 113, 115, 121, 
125, 126, 128, 191, 193, 194 

four-dimensional 118, 119 

no-hair theorem 264, 266 
noise 285, 287 
non-inertial reference frame, see reference 

frame 
non-linearity 170, 171, 256, 290, 292 
normal form 176, 177 
normalization condition 176, 177, 249 
nucleogenesis 340, 341 
null 

cone 24, 109, 111, 133; see also light cone 
ray 293, 294, 301, 304; see also light ray 
tetrad 248-50 

numerical relativity 286 

0 
observer 17 

co-moving 17, 155, 156. 
inertial 18, 19, 21, 23-5, 29, 35, 45, 49---51, 

122, 129, 130--3, 222, 349 
non-inertial 130, 132 

Olbers 308, 309 
Olbers' paradox 308-10 
one-body problem 194, 195, 209 
operator 64, 67, 104 
optical scalars 302, 303 
orbit 69, 181, 184, 193, 196, 198,208,209 

equation 194, 206 
Keplerian 19 

orientation 194 
orthonormality relations 139, 248 
oscillating model 336, 337, 341-3, 352, 359 

p 
Palatini approach 152-3 
parallel propagation (transport) 75, 78-81, 

140, 144, 314 
particle 17 

free 29, 113, 115, 116, 209, 225 
fundamental 3 I 5, 325, 34 7 
gravitational test 128, 129 
horizon 350 
luminal 22 
radially infalling (free) 218-19, 229 
subluminal 22 
superluminal 22; see also tachyon 
(free) test 130, 135, 136, 142, 165, 173, 

194-6, 278, 285, 301 
neutral 243-4 
virtual 267 

past 111 
absolute 24 
relative 24 
sheet 109 

peeling-off theorem 301 
pendulum 123, 132, 205 
Penrose 228, 237, 262, 263, 265, 283, 295, 

300, 358 
diagram 234, 236-8, 245, 246, 261, 298, 

303, 352, 354 



 

diagrams of 
de Sitter 354 
Kerr (a1 < m1 ) 261 
Kerr (a1 = m1) 261 
Kruskal 237 
Minkowski 236 
Reissner-Nordstrem (e1 < m1 ) 245 
Rcissner-Nordstrnm (e1 = m1 ) 246 
Reissncr-Nordstrem (e1 > m1 ) 246 
Robertson-Walker 352 
spherically symmetric gravitational 
collapse 238 
steady-state 354 

Penzias 313 
perfect 

cosmological principle 307, 345 
fluid 155, 157-8, 165, 179, 285, 315, 322 
gas 312 

perihelion 194 
precession (advance, shift) 192, 198, 205, 

206,208 
perpetuum mobile (perpetual motion 

machine) 202 
perturbation 199, 206, 285 

effect 198 
method 197 

Petrov 300 
Petrov classification 299-301, 303 
photoelectric effect 49 
photon 22, 49---50, 52, 113, I 73, 209, 221, 

237,259,260,326 
Pirani 5 
Planck 49 
Planck's constant 49 

hypothesis 49, 50, 51 
Planck time 355 
planar symmetry, see symmetry 
Plebanski 173 

type 301 
Poincare 16 

group 110, 113, 119, 297 
transformation 110, 114, 119 

point 
mass 17, 189 
transformation 70 

polarization 271, 279, 281, 284 
position 

absolute 19 
relative 19, 37 

Poynting vector 163 
Pound 203 
pressure 157, 158, 322, 323, 331, 343 
primeval matter 308, 340, 3 56 
principal 

axis 164 
null direction 3~1 
stress 164, 165, 265 

principle of 
constancy of the velocity of light 19-20, 

22, 29 
correspondence 120, 132-4, 143, 168 

covariance 120, 130, 134, 142, 178 
equivalence 120, 128-30, 133, 142, 192, 

201, 202, 205 
strong 128 
weak 128,143 

general relativity 130 
Mach 120, 121-5, 143, 171, 206, 338, 339, 

344 
minimal gravitational attraction 120, 

130-1, 143, 157, 162 
restricted special relativity 18 
special relativity 16, 19, 21, 29, 30, 130 
stationary action 98-100, 114, 146, 152 
superposition 170,281,290 

projection operator 138, 144 
pulsar 207 
Pythagoras's theorem 191 

Q 
quadrature 284 
quadrupole·aspect 299 
quanta 49 
quantum 

cosmology 356 
gravity 228 
mechanical limit 287 
theory (mechanics) 49, 228, 266, 267 

quasar (quasi-stellar object) 201, 286, 347 

R 
radar measurement 19, 20, 21, 38,204,205 
radiation, see gravitational 
radio galaxy 313, 34 7 
radius of the universe 320, 344 
rapidity 40 
Raychaudhuri 265,303 
reaction 42 
Rebka 203 
red giant 341 
red shift 21, 28, 172, 223, 246, 325-8, 347, 

348 
gravitational 192, 201-5, 207 

REDUCE 178 
reflection 185, 188, 191,202, 252, 291 
Reissner-Nordstrem solution 228, 239-48, 

255,260,261,263,268,300 
relative 

motion 17, 123 
quantity 19, 37 

relativistic cosmology 173, 307, 312, 315-17, 
318, 323, 324, 327, 329, 330, 331, 337, 
344-6 

rest 
energy 48 
frame 33, 41, 49 
length 32 
mass, see mass 

Ricci 
scalar 87, 90, 239, 272, 359 
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tensor 87, 141, 142, 152, 177,272, 282, 
288, 301, 304, 314, 317, 329, 330 

Riemann 
(scalar) invariant 215, 241, 254, 284 
tensor 77, 78, 80, 81, 86, 88, 104, 108, 119, 

133, 135, 141, 142, 145, 171, 179, 275, 
280, 282, 288, 299-301, 329; see also 
curvature tensor 

Riemann-Christoffel tensor 86 
Robertson-Walker, see line element; space­

time 
Rosen 281 
rotation 

absolute 122 
rigid 253 

rubber-sheet geometry 207-9 

s 
Sachs 299, 301, 302 . 
Sandage 328,341 -~/ 
scalar (field, invariant) 61, 72, 95, iT(' 154, 

155, 164, 354 
density 93,' 9:1, 96, 99, 103, 146, 147, 163 
potential 160 

scale factor 310-12, 317,318,323,327, 329, 
331, 337, 354, 355 

scattering 281, 283 
Schiff 205 
Schwarzschild 170 

solution 9, 10, 170,178,179, 186-9, 190,191, 
195, 202-4, 208, 213-15, 217,220, 
221- 3, 225, 228-30, 232, 238, 240, 242, 
248,250,252,255,300 

radius 214, 215, 218, 223-5, 264 
scri 236 • 
semi-latus rectum 194 
sensitivity 287 
Shapiro 204 
shear 302, 307 
SHEEP )78 
signature, see metric 
simultaneity 16, 23, 27, 28, 33, 133, 184 

lines 35, 38 
singularity 173,217, 220, 221, 223--{;, 228, 

233, 238, 243, 262, 265, 266, 284, 285, 
303, 314, 358 

big bang 358 
cigar 314 
coordinate 214, 235, 246, 258, 284, 353 
cosmological 265, 313 
curvature 215 
final 352 
fold 284 
Friedmann 265, 313 
future 231, 232, 237 
initial 352, 358 
intrinsic (curvature, essential, physical, 

real) 215, 218, 230, 232, 241, 242, 246, 
254,262,284,285,290,314 

naked 262 
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singularity (cont.) 
pancake 314 
past 232, 237 
ring 254---{i, 260---2 
spacelike 232, 284, 285 
structure 303 
theorems 228, 238, 265-6, 303, 358 
timelike 246, 260, 284 
topological 284, 285 
whimper 314 

slice, see time slice 
slow motion approximation 165, 166 
solar oblateness 192, 206, 207 
Sommerfield condition 298 
source four-vector I 59 
source-free 161-3, 239 
spacecraft tracking 287 
space of constant curvature 317-21, 329 
space-time 27, 107, 178, 204, 209; see also 

line element; metric 
compactified Minkowski 236 
conformally flat 89, 90, 231 
conformal Robertson- Walker 351 
curved 130,131,216 
Minkowski 27, 66,107, 108, 113, 119, 171, 

215, 230, 234, 236, 238, 282, 349, 350, 
351 

Robertson-Walker 345, 352 
Schwarzschild 199 
simple 237 
spherically symmetric 184, 185 
static 184, 202, 254 
stationary 181 

space-time diagram (picture) 5, 17, 20, 35, 
41, 215, 216, 218, 242, 258, 282, 303 

compactified Minkowski 236 
gravitational collapse 223, 224 
impulsive plane wave 282 
Kerr (advanced Eddington- Finkelstein 

coordinates) 259 
Kruskal 231, 238 
Minkowski 230, 234 
Penrose-Khan 283 
Reissner-Nordstrnm (advanced 

Eddington-Finkelstein coordinates) 243, 
259 

Reissner-Nordstrnm (retarded Eddington­
Finkelstein coordinates) 247 

sandwich wave 282 
Schwarzschild (advanced Eddington­

Finkelstein coordinates) 221 
Schwarzschild (retarded · Eddington­

Finkelstein coordinates) 222 
Schwarzschild (Schwarzschild 

coordinates) 217 
special relativity 229 

spatial diagram 215, 282, 303 
Kerr 260 
Schwarzschild 221 

speed of 
light, see light 

sound 164 

special relativity 3, 4, 5, 10, 15, 16, 22-5, 27 
29, 33, 35-8, 41, 44, 50, 51, 107, 111, 
112, 119, 120, 128-34, 142, 143, 155-8, 
160, 162, 163, 170, 171, 189, 192, 199, 
207, 210, 221, 229, 253, 297, 358 

spectrum 203, 267 
spherical symmetry, see symmetry 
spin 253, 254, 256, 264 
stability 177, 285, 338, 339 
Stachel 178 
standard 

configuration 18, 25, 27, 29, 32, 40, 119, 
121 

model 341, 342-3, 351, 354, 355, 359 
static solution 171, 180, 181, 183-4, 188-90, 

214,239, 240-2, 290,292, 298, 307- 9 
stationary solution 180--1, 183, 188-90, 252, 

256,260,264,290,338,345 
steady-state 

solution 307, 353, 354 
theory 344-7, 359 

STENSOR 178 
Stokes' theorem 95 
strong nuclear force 354 
subspace 57 
substratum 315, 316, 322-4, 348,349, 353 
surface 57 

area 266, 304 
gravity 266--7 
of infinite red shift 215, 246, 247, 254---{i, 

260,268 
stationary limit 260, 263, 264, 268 

symmetry 102, 131, 171, 214, 354 
axial 252, 254, 256, 264, 291, 292, 295, 304 
axis 214, 252, 260, 261, 290, 291, 299, 304 
azimuth reflection invariance 295, 304 
cylindrical 290, 303, 304 
planar 284, 285 
reflection 291 
spherical 170, 180, 184--6, 188, 189, 191, 

195, 199,201,223, 224, 227, 239-41, 
256, 290,310,313, 317, 358 

time 180, 183, 190 
synchrotron radiation 226 
Szekeres 283-5, 301 

T 
tachyon 22, 23, 51, 228 
tangent 

space 66, 109 
vector, see vector 

Tayler 6, 10 
Taylor's theorem 70, 72, 79, 97, 102, 136, 

144, 175, 177 
temperature 266, 267, 313, 358 

absolute 158 
tensor 

anti-symmetric 63, 64, 67 
constant 67 
contraction 64, 67, 71 

contravariant 60, 67 
covariant 61 
density 91, 93, 146 
dragged-along 69-71 
energy-momentum 143, 153-69, 172, 173, 

215, 239, 240, 247, 265, 285, 347 
field 62- 3 
gothicized 147 
Kronecker 59, 64 
mixed 62 
numerical 67 
order 60 
rank 60, 61 
skew-symmetric 63, 64 
smooth 62 
symmetric 63, 64, 67, 81, 144 
torsion 74 
type 62, 64 
valence 62 
see also conformal; Einstein; Ricci; 

Riemann; Weyl 
tetrad 139, 179, 248, 249, 280 
thermal 

equilibrium 266, 267 
radiation 267 

thermodynamics 266, 309, 322, 345 
Thirring 253 
Thorne 286 
thought-experiment 15, 16, 23, 202 
three-momentum 117 
three-volume 321 
three-sphere 320, 326, 353 
three-velocity 114, 116 
tidal force 225-6, 302 
time 

absolute 17, 18, 24, 26, 184 
arrows of 357 

cosmological 357 
psychological 357 
thermodynamic 357 

delay I 92, 204-5, 207 
dilation 33-4, 36, 40, 46, 47 
imaginary 30, 3 I 
proper 33, 112, 113, 116, 119, 137, 144, 

155, 156, 165, 195, 202, 218, 219, 244, 
284,324 

reflection (reversal) 183 
slice 189,196, 261 , 313, 317,319 
translation invariant 188, 189, 190 

time-bomb 292 
time-scale problem 339, 341, 342, 347 
time-symmetric 188, 190, 221, 223 
topology 56, 215, 232, 233, 246 

bounded 320 
closed 320, 336 
compact 56, 320 
cylindrical 235, 320, 353 
open 321, 336 

torsion 74 
balance 205 

trace 141 
trace-free 88, 90, 136, 239, 299 



 

 
 
 

trajectory 69, 196 
transformation matrix 58, 60, 67, 103 

inverse 61 
transformation of 

energy-momentum 48, 49, 119 
velocity 34-5, 41 

translation 102, 110, 111, 291 
tunnelling 268 
twin paradox 38-9 
twist 302-4 
two-body problem 194, 195, 198, 210 
two-sphere 56, 185, 191, 214,217,232, 

235-8, 294, 295, 3 I 9, 320, 321, 330 
two-surface 211,284,295, 319, 320 

u 
uncertainty principle 266 
uniqueness 177, 284 
unique solution 177, 178 
units 

c.g.s. 342 
Heavyside-Lorentz 158 
non-relativistic 29, 46, 112, 133, 143, 165, 

189,197,198,200,203,344,359 
relativistic 20, 32, 35, 112, 116, 117, 143, 

163, 167, 169, 189, 217, 225, 322 
universe 19, 43, 123, 124, 129, 171,227,238, 

307, 308, 310, 312- 16, 323, 338-41, 
343-5,355, 357,358 

anisotropic 124 
closed 171, 343, 355, 358 
expanding 310,311,324,326,345,355 
flat 331- 3, 355 
homogeneous 171, 313 
isotropic 124, 313 
new 233,246 
open 309,343,358 
oscillating 336, 337, 341-3, 352, 359 
static 171-2, 309, 345 

V 
vacuum solution (space-time) 169, 172, 174, 

188,223,241,281,282,300,303 
valence 62 
variation 97, 98, 99, 145, 147, 152, 153, 162 
variational 

derivative 98 
principle 4, 7, 96, 99, 114, 116, 117, 143, 

146, 151, 154, 162, 163, 172,216,304 
vector 

complex null 249 
connecting 136, 137 
contravariant 60, 66, 68, 72 
covariant 61, 72, 81, 181 
density 91, 103, 150 
future-pointing 109 
hypersurface-orthogonal 181- 3, 188, 189 
infinitesimal 60 
inner product 109, 110, 119 
length 81, 108, ti 0 
lightlike 108 
norm 81, 108 
normal 181, 292, 293 
null 82, 108, 119, 248, 249, 285, 293 
orthogonal 82, 109, 119 
orthogonal connecting 138 
past-pointing 109 
potential 160 
spacelike I 08, 164 
surface-forming 137 
tangent 61, 67, 69, 75, 101, 111, 137, 144, 

294 
tetrad 248, 249 
timelike 108, 119, 141, 144, 164 
unit 112 
unit tangent 139 

velocity of 
light, see light 
recession 309, 311, 325, 327, 349 

Venus 20,198,205 
Vickers 6 
vierbein 139 

volume element 95, 156 
Vulcan 198 

w 
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wave, see electromagnetic; gravitational 
equation 161, 168, 273-5, 292 
front 29, 30, 216, 282, 292 
zone 281, 301 

weak 
energy condition 265 
nuclear force 354 

weak-field limit 166, 189, 191,203,210,254 
Weber 285 

bar 287 
weight 91 
Wey! 314, 315 

tensor 87-8, 90, 282, 299, 300, 301, 329 
Weyl's postulate 314-5, 322, 345, 347 
Wheeler 209, 264, 356, 357 
white dwarf 203, 223, 226, 286 
white hole 223, 224, 232, 265 
Wilson 313 
world 

map 316 
picture 316 
time 184, 188, 214, 315, 316, 325 

world-line 17, 20, 25, 28, 35, 36, 38, 111, 113, 
116, 140, 155, 165, 337 

timelike 111 
wormhole 233, 246 

X 
X-ray 226, 227, 288, 313 

astronomy 358 
binary 226---7 

y 
Yurtsever 285 




