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We present the first results from a rotating Michelson-Morley experiment that uses two orthogo-
nally orientated cryogenic sapphire resonator-oscillators operating in whispering gallery modes near
10 GHz. The experiment is used to test for violations of Lorentz Invariance in the frame-work of
the photon sector of the Standard Model Extension (SME), as well as the isotropy term of the
Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously
unmeasured κ̃ZZ

e− component of 2.1(5.7) × 10−14, and set more stringent bounds by up to a factor
of 7 on seven other components. In the RMS a more stringent bound of −0.9(2.0) × 10−10 on the
isotropy parameter, PMM = δ − β + 1

2
is set, which is more than a factor of 7 improvement.

PACS numbers: 03.30.+p, 06.30.Ft, 12.60.-i, 11.30.Cp, 84.40.-x

The Einstein Equivalence Principle (EEP) is a found-
ing principle of relativity [1]. One of the constituent el-
ements of EEP is Local Lorentz Invariance (LLI), which
postulates that the outcome of a local experiment is in-
dependent of the velocity and orientation of the appara-
tus. The central importance of this postulate has moti-
vated tremendous work to experimentally test LLI. Also,
a number of unification theories suggest a violation of
LLI at some level. However, to test for violations it is
necessary to have an alternative theory to allow interpre-
tation of experiments [1], and many have been developed
[2, 3, 4, 5, 6, 7]. The kinematical Roberson-Mansouri-
Sexl (RMS) [2, 3] framework postulates a simple param-
eterization of the Lorentz transformations with experi-
ments setting limits on the deviation of those parame-
ters from their values in special relativity (SR). Because
of their simplicity they have been widely used to interpret
many experiments [8, 9, 10, 11]. More recently, a gen-
eral Lorentz violating extension of the standard model
of particle physics (SME) has been developed [6] whose
Lagrangian includes all parameterized Lorentz violating
terms that can be formed from known fields.

This work presents first results of a rotating lab ex-
periment using cryogenic microwave oscillators. Previ-
ous non-rotating experiments [10, 12, 13] relied on the
earth’s rotation to modulate a Lorentz violating effect.
This is not optimal for two reasons. Firstly, the sensitiv-
ity is proportional to the noise of the oscillators at the
modulation frequency, typically best for periods between
10 and 100 seconds. Secondly, the sensitivity is propor-
tional to the square root of the number of periods of
the modulation signal, therefore taking a relatively long
time to acquire sufficient data. Thus, by rotating the ex-
periment the data integration rate is increased and the
relevant signals are translated to the optimal operating
regime [14].

Our experiment consists of two cylindrical sapphire
resonators of 3 cm diameter and height supported by
spindles within superconducting niobium cavities [15],
and are oriented with their cylindrical axes orthogonal
to each other in the horizontal plane. Whispering gallery
modes [16] are excited near 10 GHz, with a difference
frequency of 226 kHz. The frequencies are stabilized
using Pound locking, and amplitude variations are sup-
pressed using an additional control circuit. A detailed
description of such oscillators can be found in [17, 18].
The resonators are mounted in a common copper block,
which provides common mode rejection of temperature
fluctuations. The structure is in turn mounted inside two
successive stainless steel vacuum cylinders from a copper
post, which provides the thermal connection between the
cavities and the liquid helium bath. A foil heater and
carbon-glass temperature sensor attached to the copper
post controls the temperature set point to 6 K with mK
stability.

A schematic of the rotation system is shown in Fig.1.
The cryogenic dewar along with the room temperature
oscillator and control electronics is suspended within a
ring bearing. A multiple ”V” shaped suspension made
from elastic cord avoids high Q-factor pendulum modes
by ensuring that the cord has to stretch and shrink (pro-
viding damping) for horizontal and vertical motion. The
rotation system is driven by a microprocessor controlled
stepper motor. A commercial 18 conductor slip ring con-
nector, with a hollow through bore, transfers power and
various signals to and from the rotating experiment. A
mercury based rotating coaxial connector transmits the
difference frequency to a stationary frequency counter
referenced to an Oscilloquartz oscillator. The data acqui-
sition system logs the difference frequency as a function
of orientation, as well as monitoring systematic effects in-
cluding the temperature of the resonators, liquid helium
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FIG. 1: Schematic of the cryogenic dewar, mounted in the ro-
tation table. Inside the dewar a schematic of the two orthogo-
nally orientated resonators is shown, along with the Poynting
vectors of propagation S1 and S2.

FIG. 2: Square Root Allan Variance fractional frequency in-
stability measurement of the difference frequency when ro-
tating (crosses) and stationary (circles). The hump at short
integration times is due to systematic effects associated with
the rotation of the experiment, with a period of 18 seconds.
Above 18 seconds the instability is the same as when the ex-
periment is stationary.

bath level, ambient room temperature, oscillator control
signals, tilt, and helium return line pressure.

Inside the sapphire crystals standing waves are set up
with the dominant electric and magnetic fields in the ax-
ial and radial directions respectively, corresponding to a
Poynting vector around the circumference. The experi-

mental observable is the difference frequency, and to test
for Lorentz violations the perturbation of the observable
with respect to an alternative test theory must be de-
rived. For example, in the photon sector of the SME this
may be calculated to first order as the integral over the
non-perturbed fields (Eq. (34) of [7]), and expressed in
terms of 19 independent variables (discussed in more de-
tail later). The change in orientation of the fields due
to the lab rotation and Earth’s orbital and sidereal mo-
tion induces a time varying modulation of the difference
frequency, which is searched for in the experiment. Al-
ternatively, with respect to the RMS framework, we an-
alyze the change in resonator frequency as a function of
the Poynting vector direction with respect to the veloc-
ity of the lab through the cosmic microwave background
(CMB). The RMS parameterizes a possible Lorentz vi-
olation by a deviation of the parameters (α, β, δ) from
their SR values (− 1

2
, 1

2
, 0). Thus, a complete verification

of LLI in the RMS framework [2, 3] requires a test of (i)
the isotropy of the speed of light (PMM = δ − β + 1

2
), a

Michelson-Morley (MM) experiment [19], (ii) the boost
dependence of the speed of light (PKT = β − α − 1), a
Kennedy-Thorndike (KT) experiment [20] and (iii) the
time dilation parameter (PIS = α + 1

2
), an Ives-Stillwell

(IS) experiment [21, 22]. Because our experiment com-
pares two cavities it is only sensitive to PMM .
Fig.2 shows typical fractional frequency instability of

the 226 kHz difference with respect to 10 GHz, and com-
pares the instability when rotating and stationary. A
minimum of 1.6× 10−14 is recorded at 40s. Rotation in-
duced systematic effects degrade the stability up to 18s
due to signals at the rotation frequency of 0.056Hz and
its harmonics. We have determined that tilt variations
dominate the systematic by measuring the magnitude of
the fractional frequency dependence on tilt and the varia-
tion in tilt at twice the rotation frequency, 2ωR(0.11Hz),
as the experiment rotates. We minimize the effect of tilt
by manually setting the rotation bearing until our tilt
sensor reads a minimum at 2ωR. The latter data sets
were up to an order of magnitude reduced in amplitude
as we became more experienced at this process. The re-
maining systematic signal is due to the residual tilt varia-
tions, which could be further annulled with an automatic
tilt control system. It is still possible to be sensitive to
Lorentz violations in the presence of these systematics by
measuring the sidereal, ω⊕ and semi-sidereal, 2ω⊕ side-
bands about 2ωR, as was done in [8]. The amplitude and
phase of a Lorentz violating signal is determined by fit-
ting the parameters of Eq.1 to the data, with the phase
of the fit adjusted according to the test theory used.

∆ν0

ν0
= A+Bt+

∑

i

Cicos(ωit+ϕi)+Sisin(ωit+ϕi) (1)

Here ν0 is the average unperturbed frequency of the two
sapphire resonators, and ∆ν0 is the perturbation of the
226 kHz difference frequency, A and B determine the
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FIG. 3: Spectrum of amplitudes
√

C2
i
+ S2

i
calculated using

WLS, showing systematic leakage about 2ωR for 2 data sets,
data set 1 (3.6 days, circles), data set 5 (6.1 days, squares)
and the combined data (18 days spanning 3 months, solid
triangles). Here ω⊕ is the sidereal frequency (11.6µHz). By
comparing a variety of data sets we have seen that leakage
is reduced in longer data sets with lower systematics. The
insets show the typical amplitude away from the systematic,
which have statistical uncetainties of order 10−16.

frequency offset and drift, and Ci and Si are the ampli-
tudes of a cosine and sine at frequency ωi respectively.
In the final analysis we fit 5 frequencies to the data,
ωi = (2ωR, 2ωR±ω⊕, 2ωR±2ω⊕), as well as the frequency
offset and drift. The correlation coefficients between the
fitted parameters are all between 10−2 to 10−5. Since
the residuals exhibit a significantly non-white behavior,
the optimal regression method is weighted least squares
(WLS) [13]. WLS involves pre-multiplying both the ex-
perimental data and the model matrix by a whitening
matrix determined by the noise type of the residuals of
an ordinary least squares analysis.

We have acquired 5 sets of data over a period of 3
months beginning December 2004, totaling 18 days. The
length of the sets (in days) and size of the systematic are
(3.6, 2.3 × 10−14), (2.4, 2.1 × 10−14), (1.9, 2.6 × 10−14),
(4.7, 1.4× 10−15), and (6.1, 8.8× 10−15) respectively. We
have observed leakage of the systematic into the neigh-
boring side bands due to aliasing when the data set is not
long enough or the systematic is too large. Fig.3 shows
the total amplitude resulting from a WLS fit to 2 of the
data sets over a range of frequencies about 2ωR. It is ev-
ident that the systematic of data set 1 at 2ωR is affecting
the fitted amplitude of the sidereal sidebands 2ωR ± ω⊕

due to its relatively short length and large systematics.
By analyzing all five data sets simultaneously using WLS
the effective length of the data is increased, reducing the
width of the systematic sufficiently as to not contribute
significantly to the sidereal and semi-sidereal sidebands.

In the photon sector of the SME [7], Lorentz violating
terms are parameterized by 19 independent components,
which are in general grouped into three traceless and

symmetric 3× 3 matrices (κ̃e+, κ̃o−, and κ̃e−), one anti-
symmetric matrix(κ̃o+) and one additional scalar, which
all vanish when LLI is satisfied. To derive the expected
signal in the SME we use the method of [7, 11] to calcu-
late the frequency of each resonator in the SME and in
the resonator frame. We then transform to the standard
celestial frame used in the SME [7] taking into account
the rotation in the laboratory frame in a similar way
to [23]. The resulting relation between the parameters
of the SME and the Ci and Si coefficients are given in
Tab.I which, for short data sets, were calculated using
the leading order expansion at the annual phase posi-
tion of the data. The 10 independent components of κ̃e+

and κ̃o− have been constrained by astronomical measure-
ments to < 2 × 10−32 [7, 25]. Seven components of κ̃e−

and κ̃o+ have been constrained in optical and microwave
cavity experiments [10, 13] at the 10−15 and 10−11 level
respectively, while the scalar κ̃tr component recently had
an upper limit set of < 10−4 [23]. The remaining κ̃ZZ

e−

component could not be previously constrained in non-
rotating experiments [10, 13].
In contrast, our rotating experiment is sensitive to

κ̃ZZ
e− . However, it appears only at 2ωR, which is domi-

nated by systematic effects. From our combined analysis
of all data sets, and using the relation to κ̃ZZ

e− given in
Tab.I, we determine a value for κ̃ZZ

e− of 4.1(0.5)× 10−15.
However, since we do not know if the systematic has can-
celed a Lorentz violating signal at 2ωR, we cannot rea-
sonably claim this as an upper limit. Since we have five
individual data sets, a limit can be set by treating the
C2ωR

coefficient as a statistic. The phase of the system-
atic depends on the initial experimental conditions, and
is random across the data sets. Thus, we have five val-
ues of C2ωR

, ({−4.2, 11.4, 21.4, 1.3,−8.1} in 10−15). If
we take the mean of these coefficients, the systematic
signal will cancel if its phase is random, but the possible
Lorentz violating signal (with constant phase) will not.
Thus a limit can be set by taking the mean and stan-
dard deviation of the five coefficient of C2ωR

. This gives
a more conservative bound of 2.1(5.7)× 10−14, which in-
cludes zero. Our experiment is also sensitive to all other
seven components of κ̃e− and κ̃o+ (see Tab.I) and im-
proves present limits by up to a factor of 7, as shown in
Tab.II.
In the RMS frame-work, a frequency shift due to a

putative Lorentz violation is given by Eq.2 [9, 11],

∆ν0

ν0
=

PMM

2πc2

[
∮

(

v.θ̂1

)2

dϕ1 −

∮

(

v.θ̂2

)2

dϕ2

]

(2)

Where v is the velocity of the preferred frame wrt the
CMB, θ̂j is the unit vector in the direction of the az-
imuthal angle (direction of propagation) of each res-
onator (labeled by subscripts 1 and 2), and ϕ is the az-
imuthal variable of integration in the cylindrical coordi-
nates of each resonator. Perturbations due to Lorentz
violations occur at the same five frequencies as the SME,
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TABLE I: Coefficients Ci and Si in (1) for the five frequencies of interest and their relation to the components of the SME
parameters κ̃e− and κ̃o+, derived using a short data set approximation including terms up to first order in orbital velocity,
where Φ0 is the phase of the orbit since the vernal equinox (see [24] for details of the calculation). Note that for short data
sets the upper and lower sidereal sidebands are redundant, which reduces the number of independent measurements to 5. To
lift the redundancy, more than a year of data is required so annual offsets may be de-correlated from the twice rotational and
sidereal sidebands listed.

ωi Ci Si

2ωR 0.21κ̃ZZ

e− -
2ωR + ω⊕ 2.5× 10−5 sinΦ0κ̃

XY

o+ − 1.0 × 10−5 cosΦ0κ̃
Y Z

o+ − cos Φ0

[

2.3× 10−5κ̃XY

o+ − 1.0× 10−5κ̃XZ

o+

]

−0.27 κ̃XZ

e− −0.27κ̃Y Z

e−

2ωR + 2ω⊕ −2.1× 10−5 cos Φ0κ̃
XZ

o+ −2.3× 10−5 sinΦ0κ̃
XZ

o+

+2.3× 10−5 sinΦ0κ̃
Y Z

o+ − 0.11(κ̃XX

e− − κ̃Y Y

e− ) −2.1× 10−5 cos Φ0κ̃
Y Z

o+ − 0.23 κ̃XY

e−

2ωR − ω⊕ −0.31C2ωR+ω⊕
0.31S2ωR+ω⊕

2ωR − 2ω⊕ 9.4× 10−2C2ωR+2ω⊕
−9.4× 10−2S2ωR+2ω⊕

TABLE II: Results for the SME Lorentz violation parameters,
assuming no cancelation between the isotropy terms κ̃e− (in
10−15) and first order boost terms κ̃o+ (in 10−11) [12].

κ̃XY

e− κ̃XZ

e− κ̃Y Z

e− (κ̃XX

e− − κ̃Y Y

e− )
this work -0.63(0.43) 0.19(0.37) -0.45(0.37) -1.3(0.9)
from [13] -5.7(2.3) -3.2(1.3) -0.5(1.3) -3.2(4.6)

κ̃ZZ

e− κ̃XY

o+ κ̃XZ

o+ κ̃Y Z

o+

this work 21(57) 0.20(0.21) -0.91(0.46) 0.44(0.46)
from [13] − -1.8(1.5) -1.4(2.3) 2.7(2.2)

TABLE III: Dominant coefficients in the RMS, using a short
data set approximation calculated from Eq.2. The measured
values of PMM (in 10−10) are shown together with the sta-
tistical uncertainties in the bracket. From this data the mea-
sured and statistical uncertainty of PMM is determined to be
−0.9(2.0) × 10−10, which represents more than a factor of 7
improvement over previous results 2.2(1.5) × 10−9[10].

ωi Cui PMM

2ωR + ω⊕ [−1.13 × 10−7
− 3.01× 10−8 cos Φ0 −2.1(7.2)

+8.83 × 10−9 sinΦ0]PMM

2ωR − ω⊕ [3.51 × 10−8 + 9.31 × 10−9 cos Φ0 62.4(23.3)
−2.73 × 10−9 sinΦ0]PMM

2ωR + 2ω⊕ [4.56 × 10−7
− 1.39 × 10−8 cos Φ0 −1.3(2.1)

−7.08 × 10−8 sinΦ0]PMM

2ωR − 2ω⊕ [4.37 × 10−8
− 1.34 × 10−9 cos Φ0 −7.5(22.1)

−6.78 × 10−9 sinΦ0]PMM

but for the RMS analysis we do not consider the 2ωR

frequency due to the large systematic, as we only need to
put a limit on one parameter. The dominant coefficients
are due to only the cosine terms with respect to the CMB
right ascension, Cui, which are shown in Tab.III.

In conclusion, we set bounds on 7 components of the
SME photon sector (Tab.II) and PMM (Tab.III) of the
RMS framework, which are up to a factor of 7 more strin-
gent than those obtained from previous experiments. We
have also set an upper limit [2.1(5.7)×10−14] on the pre-
viously unmeasured SME component κ̃ZZ

e− . To further

improve these results, tilt and environmental controls
will be implemented to reduce systematic effects. To re-
move the assumption that κ̃o+ and κ̃e− do not cancel
each other, data integration will continue for more than
a year. Note added: Two other concurrent experiments
have also set some similar limits [26, 27].

This work was funded by the Australian Research
Council.
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[25] Kostelecký V.A., and Mewes M., Phys. Rev. Lett. 87,

251304 (2001).
[26] Antonini, M. Okhapkin, E. Göklü and S. Schiller, Phys.
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