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Abstract. The data reduction system of the Gaia space mission gen-
erates a large amount of intermediate data and plots for diagnostics,
beyond practical possibility of full human evaluation. We investigate
the feasibility of adoption of deep learning tools for automatic detec-
tion of data anomalies, focusing on convolutional neural networks and
comparing with a multilayer perceptron. The results evidence very good
accuracy (~99.7%) in the classification of the selected anomalies.

Keywords: Deep learning + Astronomical data - Diagnostics -
Big data

1 Introduction

In recent years supervised learning’s popularity increased dramatically, focus-
ing on deep learning algorithms that are able to exploit large datasets [18]: in
particular, deep learning has shown outstanding performance in spatio-temporal
sequences processing (such as text or speech) and image processing. This led
to two different — but equally successful — deep architectures: recurrent neural
networks (RNNs, [29]) for tasks characterized by the presence of time sequences,
and convolutional neural networks (CNNs) for imaging,.

CNNs were firstly introduced in 1989 to recognize handwritten ZIP codes
[23] and then used over the next ten years even if the relatively small datasets
at the time were not suitable to proper training of CNNs with a huge number
of parameters.

Only the advent of modern, much larger datasets makes the training of very
deep CNNs effective: the breakthrough came in 2012, when Krizhevsky et al. [22]
achieved the highest classification accuracy in the ILSVRC 2012 competition,
using a CNN trained on the images of ImageNet dataset.

This radical shift would not have been possible without two factors that have
been a real booster for its success, albeit not directly related to the field: on the
© Springer Nature Switzerland AG 2019
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one hand, the already mentioned impressive growth of data availability, mostly
due to the development and the widespread diffusion of the internet technol-
ogy; on the other hand, a computing capability hardly conceivable before, that
takes advantage of recent years’ parallelisation trend thanks to GPU technolo-
gies. These ideas and practices are now recognised as the foundation for modern
CNNs. Since then, CNNs have been successfully applied, inter alia, in the recog-
nition and classification of various items, such as hand-written digits (as in the
MNIST [24] dataset), traffic signs [30], and more recently the 1000-category Ima-
geNet dataset [22]; other important applications include object detection, image
segmentation and motion detection.

CNNs have also recently found increasing usage in astrophysical applications,
for better exploitation and inter-calibration of the large datasets produced from
modern sky surveys’ information. Some relevant examples include the develop-

ment of CNNs for:

— derivation of fundamental stellar parameters (i.e. effective temperature, sur-
face gravity and metallicity) [21];

— studies of galaxy morphology [32];

— high-resolution spectroscopic analysis using APO Galactic Evolution Exper-
iment data [25];

— determination of positions and sizes of craters from Lunar digital elevation
maps [31].

Also, in [34] ExoGAN (Exoplanet Generative Adversarial Network) is pre-
sented, a new deep-learning algorithm able to recognize molecular features,
atmospheric trace-gas abundances, and planetary parameters using unsupervised
learning.

In this paper we investigate the use of CNNs in the framework of the Gaia
mission [28] of the European Space Agency (ESA), which will provide an all-sky
catalogue of position, proper motion and parallax of about 1.7 billion objects
among Milky Way stars and bright galaxies.

Our research concerns initial exploration of deep learning tools for data min-
ing on the huge set of as yet unexploited Gaia plots, with the goal of improving
on the identification of transients and peculiar operating conditions.

The current preliminary study is focused on two specific areas: (i) identifica-
tion of runaway conditions on the Gaia plots (with parameters drifting beyond
appropriate limiting values), and (ii) identification of one or more missing data
in the plots.

In Sect.2 we recall the main features of the Gaia mission and of the data
used in this work; Sect. 3 includes a description of the deep architecture we use
and of the experimental framework; we also analyse and evaluate the achieved
results. Finally, in Sect.4 we draw our conclusions, also outlining options for
future work.
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2 An Overview of Gaia

The Gaia mission will observe every object in the sky brighter than its limiting
magnitude V' = 20 mag, with unprecedented astrometric accuracy [16,26] and
astrophysical potential [12,14,17]. The current version of the output catalogue,
based on the first half of the mission, is the Data Release 2 [15] (described also
in https://cosmos.esa.int/web/gaia/dr2), available e.g. through the user inter-
face https://gea.esac.esa.int/archive/, and it is already widely used by the astro-
nomical community. The catalogue is materialised in the astrometric parameters
(position, proper motion and parallax) of the sample of observed objects in DR2,
mainly stars in our Galaxy. Gaia was launched on 2013, Dec. 19 from the French
Guyana space center, and it reached its operating site (the L2 Lagrange point)
about two weeks later. The five year mission lifetime has recently been extended
by one plus one years.

The Gaia concept [28] relies on simultaneous observation of two fields of view,
by two nominally equal telescopes, separated by a large basic angle (~106°),
repeatedly covering the full sky by the combination of orbital revolution, satellite
spin and precession. The Gaia focal plane has 7 x 9 large format astrometric
Charge Coupled Device (CCD) sensors, complemented by specialised CCDs for
detection of object as they enter the field, and sensors for photometric and
spectroscopic measurements, for a grand total of about 1 Gpixel.

The data reduction scheme [26] derives, by self-consistency of the set of mea-
surements, the kynematic information on celestial objects throughout the mis-
sion lifetime, factoring out the instrument parameters and their evolution by
calibration.

The Gaia data reduction is managed by the Data Processing and Analysis
Consortium (DPAC), including more than 450 European scientists. The DPAC
is composed of Coordination Units (CUs), each in charge of specific parts of the
overall reduction chain. Initial processing (Initial Data Treatment, IDT) per-
forms preliminary estimate of several parameters (star position and magnitude,
and initial attitude), which are then fed to different computing chains, all access-
ing the main database which includes raw and intermediate data, as well as the
final results. Processing are split in many layers, operating on different data
amounts and complexity, from daily operations (which must keep up with the
continuous data inflow), up to the six-month cycle related to full sphere solu-
tion. Reduction software updates, required to account for unforeseen aspects of
operating conditions, and for a progressively improving understanding of the
instrument response, are also synchronised to the six month cycle.

The CU3, in particular, takes care of the so-called Core Processing, operating
on the unpacked, filtered and pre-processed data of a large subset of well-behaved
stars, and reconstructing their astrometric parameters, which are progressively
improved for each object as the measurements pile up, by means of increasingly
accurate (and more computer intensive) algorithms provided by the DPAC sci-
entists.

The iterative astrometric core solution provides the calibration data and
attitude reconstruction needed for all the other treatments, in addition to the
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astrometric solution of several million primary sources and the overall reference
system of coordinates.

The whole Gaia database, including raw, intermediate and final data for the
nominal five year mission, is estimated to exceed 1 Petabyte.

The processing chain includes a number of diagnostics functions, imple-
mented in each unit at different levels, which have been used to monitor the mis-
sion behaviour in normal periods, the progressive evolution of many instrument
parameters, and the insurgence of critical conditions related either to excessive
variation of the payload (e.g. optical transmission degradation by contamina-
tion), or to external disturbances (e.g. solar flares), requiring modification of
on-board setup. Moderate instrument variations must be taken into account by
the data reduction system, by appropriate update of the parameters used, or by
further algorithm development.

Diagnostics [9,10] is based on a large number of intermediate quantities,
whose monitoring is often automated, but for cases where human assessment is
considered as potentially necessary the data reduction system includes automatic
generation of several thousand plots on a daily timeframe, which are stored in
the database as intermediate data in graphical file format.

During critical periods, many such plots are studied by the payload experts
for better understanding of the disturbances in play, and to define corrective
measures if needed. Over most of the Gaia lifetime, fortunately, good operating
conditions have been experienced so that most of the plots were not further con-
sidered. However, it is becoming clear that the payload is in a state of continual
evolution, at the targeted precision level, and that the final mission accuracy
will benefit of further improvements in the data processing taking into account
the instrument response at a more detailed level.

In this paper, we evaluate the feasibility of using CNNs for processing of the
huge set of as yet unexploited Gaia plots, with the goal of improving on the
identification of transients and peculiar operating conditions.

We focus on two specific areas: identification of runaway conditions on
the Gaia plots (with parameters drifting beyond appropriate limiting values),
and missing data in the plots (ignored in the normal processing if it has small
duration).

2.1 Selected Input Data

The first feasibility tests have been performed on the family of plots showing the
daily statistics of along scan photo-center estimate. Such plots are generated on
every day of operation for each of the 7 x 9 CCDs in the astrometric focal plane,
and for each telescope. Since the electro-optical instrument response changes
over the field of view, they are similar but appreciably different at the level
of precision of Gaia. The data of each 30 min observation segment provide an
average value and an error bar, due not only to photon statistics fluctuations,
but also to “cosmic scatter”, i.e. different characteristics of the many thousand
detected celestial sources. Each plot includes therefore 48 points with errors. The
abscissa is the mission running time, in satellite revolutions, whereas the vertical
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axis is in micro-meters with respect to the center of the readout window of each
object. One detector pixel is 10 pm; a slip by more than one pixel in either
direction of the average photo-center requires re-adjustment of the on-board
parameters used for computation of the placement of the read-out windows.

To issue an alert and trigger the corrective action it is therefore necessary to
implement an automatic detection of such conditions, so far managed mostly by
human supervision. Similar checks, with different thresholds, can be applied to
other relevant quantities summarising the quality of the measured data, e.g. the
statistics of image moments like root mean square width, skewness and kurtosis.

T

Fig. 1. A sample Gaia plot.

The original plots, generated for human evaluation, have format 1500 x 927
pixels, therefore imposing a large computational load due to their size. However,
human readability requires a large amount of white space between points, which
are placed in fixed positions (every half hour, over one day). Besides, the vertical
labels are the same within each family of plots, and the horizontal labels (cor-
responding to the running time, a known quantity) are different but irrelevant
to the test goals. Therefore, we decided to alleviate the data size, and corre-
spondingly the computational load, by implementing an automated procedure
which “squeezes” the initial plots by cutting the image strips associated to the
labels, and removing most of the white space between useful data points. An
example is shown in Fig. 1. We applied the same pre-processing also to a large
number of plots expressly generated for simulating additional anomalous data;
this is necessary for proper supervised CNN training, because “unfortunately”
Gaia works in good operating conditions for most of the time.

Furthermore, in order to ease the detection of runaway conditions and missing
data, we generated a new set of difference plots by subtracting from each of
them the reference zero-offset case. This operation also removes the grid and axes
of the original plots. The resulting images have much smaller format (128 x 128),
but retain the initial information, providing a compression which is not strictly
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(a) Class #1 (b) Class #2 (c) Class #3
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(d) Class #4 (e) Class #5 (f) Class #6

Fig. 2. Examples for the six classes of input images.

required by the deep learning tools used for subsequent computation, but follows
good general practices of economy.

These final images, shown in Fig. 2, are the inputs to the CNN models used
for our diagnostic task.

3 Experimentation and Results

In this section we present in detail the neural architectures used during the
experimentation and the obtained results.

3.1 Owur Proposed Model

Our principal aim is to classify GATA images with respect to the presence or
absence of certain kind of anomalies. In the task of supervised classification,
there exist a lot of successful approaches: two widespread examples are support
vector machines and random forests.

A support vector machine [13], a binary classifier in its standard formulation,
builds a special kind of separation rule, called a linear classifier, with theoretical
guarantees of good predictive performance. Statistical learning theory [33] gives
theoretical basis for this family of methods. To work even with non-linear data,
the so-called kernel trick can be used to construct special kinds of non-linear
rules. Also, many approaches exist to build a non-binary classifier system from
a set of binary classifiers (one-vs-all, one-vs-one, error correcting output codes
(ECOC) [11], Directed Acyclic Graph (DAG) [27]). In all of these approaches we
combine prediction results from multiple previously trained binary classifiers.
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A random forest [5] is a machine learning technique useful for prediction
problems. The seminal algorithm, developed by Breiman [8], applies random
feature selection [2,19] and bootstrap aggregation [7] to a set of classification
trees to obtain a better prediction. It is known that decision trees are not the
most efficient classification method, as they are highly unstable and very likely
to overfit training data. However, random forest mitigates individual trees over-
fitting [3,4,6] by a voting system over a set of separately trained decision trees.

Taking into account these approaches, we decided to experiment CNNs over
GATA dataset, verifying also the applicability of random forests and support
vector machines.

In Fig.2 we can see examples of all six classes. Class #1 (Fig.2a) contains
images not evidencing anomalies. One typical anomaly in the plot is the run-
away condition: classes #2 (Fig. 2b) and #3 (Fig. 2c) represent respectively the
cases of downward and upward shift of the data points. The other anomaly we
want to investigate corresponds to one or more consecutive missing data points,
resulting in adjacent vertical white lines: classes #4 (Fig. 2d), #5 (Fig. 2e) and
#6 (Fig. 2f) identify one, two or three consecutive missing data points respec-
tively. Wider gaps, corresponding to more relevant on-board failures, are detected
by other subsystems triggering suitable corrective actions.

The difference plots are composed by vertical strokes in greyscale; those are
comparable to handwritten strokes produced when someone draws or writes
something. This fact gives us a hint to analyse our data with an architecture sim-
ilar to the one used as state-of-art for the MNIST dataset of handwritten digits,
i.e. the CNN with 2 convolutional blocks (double-convolution CNN) described
in the following.

Recalling briefly how a CNN is usually built, its principal constituents are
a set of convolutional blocks, followed by a set of fully connected layers. A
convolutional block is composed by some layers of convolutional filters, followed
by an activation function and a pooling.

A convolution acts as a filter that multiplies each pixel in the N x N sub-
region for the corresponding value, summing up all values to get a single scalar.

The previously computed weighted sum is then fed to an activation function,
usually the Rectified Linear Unit, or ReLU.

After application of both the filter and the activation, a pooling is performed:
every square block of size M x M (typically M < N) is represented by its
maximum or average value.

The set of fully connected layers behaves as a classical multilayer perceptron;
all neurons of the last convolutional layer are connected to one (or more) layers
of hidden neurons, and from here to the output layer.

Our proposed double-convolution CNN is shown in Fig. 3.

In the perspective of possible reduction of the computational effort in oper-
ation, we also explored a single-convolution CNN containing only one convolu-
tional block.

We decided to compare our CNNs also to a simpler network structure, in
particular our third model is a multilayer perceptron (MLP).
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Fig. 3. CNN structure.

For analogy with the previously built CNN, the MLP structure is extracted
directly from such network. In particular, we used the final fully connected part
of the CNNs. All models share the choice of the ReLLU activation function.

For the entire validation and testing processes, we generated a total of 9000
images: 6000 for the training set, 1500 for the validation set and 1500 for the
test set. All such images are equally spread among the 6 different classes, thus
providing a balanced distribution.

Since the possible classes are 6, the typical representation of labels for each
image is a one-hot mono-dimensional array. This array can represent, in fact, a
probability distribution and works well with the cross-entropy loss function. We
minimize such loss using the ADAM optimizer [20].

The previously introduced validation set guided the tuning of hyperparam-
eters in our models. In particular, we grid-searched for best values over the
tunable parameters: convolutional filters size; number of convolutional filters;
max-pooling filter size; dropout rate; batch size; and, both in the MLP and in
the fully connected layer on the CNNs, number of hidden neurons.

Table 1. Final hyperparameter choice.

Hyperparameter CNN model
Single-convolution | Double-convolution
1st conv. filters size 5x5 5x5
2nd conv. filters size - 5Xx5H
1st conv. number of filters | 16 8
2nd conv. number of filters | - 16
Max-pooling filter size 2 X2 2 %2
Dropout rate 0.5 0.5
Batch size 50 50

Number of hidden neurons | 1024 1024
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The best CNN structures appear to be the double-convolution one with 8 and
16 filters respectively in the two convolutional blocks, and the single-convolution
one with 16 filters. In both cases, 5 x 5 filters obtain the best results.

Table 1 shows the optimal hyperparameter values.

The better-performing MLP network is the one with 200 hidden neurons,
with acceptably good results between 100 and 400.

All tests are performed with 10 different random weights initializations in
order to yield different starting points to the training process, hence providing
statistics (i.e. average values and standard deviations) to our tests. The stop
criterion used during training is the loss stabilization.

3.2 Experimental Results

All the experiments are run using a software framework based on TensorFlow [1]
and written in Python 3.6.

The three models, selected during validation procedure, are tested on a
GeForce GTX 1070 with 1920 CUDA cores.

Table 2. Test results: statistics over 10 different random weights initializations.

Accuracy Time (s)

Avg | Std Avg | Std
Single-convolution CNN |0.9967 | 0.0045 | 158.64 | 0.12
Double-convolution CNN | 0.9965 | 0.0013 | 127.56 | 0.07
MLP 0.9655 | 0.0110 | 18.54|0.05

The results achieved on the test set are summarised in Table 2. We remark
that both CNNs achieve almost the same accuracy, over 99%; however, the
double-convolution CNN seems more stable, since the standard deviation is
smaller. MLP reaches an accuracy ~3% lower than CNNs: this might suggest
that a non-convolutional network is less able to evince structure and discrepan-
cies between classes than a convolutional one. Besides, MLP standard deviation
is more than two times higher than CNN’s worst case. We also remark that its
training time is smaller, as expected.

Notwithstanding the excellent performance achieved by the CNN approach,
for the sake of completeness we also explored the aforementioned methods, i.e.
random forest and support vector machine. The former reached a test accuracy
of 0.9387 with 4096 trees; the latter, instead, provided a test accuracy of 0.5093
with RBF kernel and C' = 1. We suppose that the poor performance of support
vector machine is due to the extremely high dimensionality of input data, since
each image pixel is an independent dimension.

In order to assess the statistical significance of our results, we decided to
perform a Student’s ¢-test. It provides evidence, at a significance level of 99.9%,
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that the MLP performance is worse than either CNN architectures. Similarly, the
performance of single-convolution CNN and double-convolution CNN is equal,
at the same significance level.

An interesting fact is that the CNN training time is smaller in the double-
convolution case. This behavior is due to the presence, in this case, of a second
pooling layer further reducing the input size of the fully connected layer.

4 Conclusions

We deal with the issue of detection and classification of anomalous data on
automatically generated images from the intermediate processing in the data
reduction system of the Gaia space mission.

We investigate the application of convolutional neural networks, evidencing
very good classification accuracy and quite acceptable training time.

Single- and double-convolution CNNs have comparable performance, with
better stability and shorter training time in the latter case. However, the for-
mer, lighter architecture would result in faster runtime on operation. MLP still
provides good classification performance, but significantly lower than either CNN
(in spite of faster training and running time). Random forests and support vector
machines achieve, respectively, acceptable and poor results.

The results are promising with respect to possible adoption of CNNs and
deep learning tools in the Gaia data reduction system. Further investigation
may be devoted to increasing the range of target anomalies, thus refining the
diagnostic class definition.
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