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0 Preface o

THIS BOOK INTENDS to provide a comprehensive and self-contained
study of the concept of mass as defined, employed, and interpreted
in contemporary theoretical and experimental physics and as critically
examined in the modern philosophy of science. It studies in particular
how far, if at all, present-day physics contributes to a more profound
understanding of the nature of mass.

In order to make this book accessible not only to the professional
physicist but also to the nonspecialist interested in the foundations of
physics, unnecessary technicalities and complicated mathematical cal-
culations have been avoided without, however, impairing the accuracy
and logical rigor of the presentation.

Next to space and time, mass is the most fundamental notion in
physics, especially once its so-called equivalence with energy had been
established by Albert Einstein. Moreover, it has even been argued
repeatedly that “space-time does not exist without mass-energy,” as
a prominent astrophysicist has phrased it.!

Although for the sake of completeness and comprehension the text
includes some historical and explanatory comments, it deals mainly
with developments that occurred after 1960. In fact, the year 1960 marks
the beginning of a new era of experimental and theoretical research on
gravitation and general relativity, the two main bases of our modern
conception of mass. In 1960 the first laboratory measurement of the
gravitational redshift was performed by P. V. Pound and G. A. Rebka,
and the first recording of a radar echo from a planet (Venus) was made.
In 1960 the spinor approach to general relativity was developed by
R. Penrose. In the same year V. W. Hughes and independently R.W.P.
Drever confirmed the isotropy of inertial mass by what has been called
the most precise null experiment ever performed; and R. H. Dicke,
together with P. G. Roll and R. Krokov, planned the construction of
their famous “Princeton experiment,” which was soon to confirm the
equivalence of inertial and gravitational mass with an unprecedented
degree of accuracy. All these events rekindled interest in studying the
properties of mass and endowed the study with a vigor that has not
abated since.

ID. Lynden-Bell, “Inertia,” in O. Lahav, E. Terlevich, and D. J. Terlevich, eds., Gravita-
tional Dynamics (Cambridge, Mass.: Cambridge University Press, 1996), p. 235.

vii


alan



PREFACE

As this book deals primarily with developments that occurred during
the relatively short interval of only four decades, its presentation is pre-
dominantly thematic and not chronological. The first chapter discusses
the notion of inertial mass and in particular the still problematic issue
of its noncircular definability. Chapter 2 deals with problems related
to the concept of relativistic or velocity-dependent mass and to the
notion of velocity-independent rest mass. Chapter 3 clarifies certain
misconceptions concerning the derivations of the mass-energy relation,
usually symbolized by the equation E = mc?, and comments on various
interpretations of this relation. Chapter 4 analyzes the trichotomy of
mass into the categories of inertial, active gravitational, and passive
gravitational mass and studies the validity of the equivalence principle
for test particles and for massive bodies. The final chapter, probably the
most controversial one, discusses recently proposed global and local
theories of the nature of mass.

In order to make the presentation self-contained I found it appropriate
to recapitulate very briefly some antecedent developments with which
the reader should be familiar in order to understand the new mate-
rial. I have also included historical items, irrespective of their dates,
whenever their inclusion seemed useful for the comprehension of an
important issue of the discussion. The text is fully documented and
contains bibliographical references that will enable readers to pursue
the study of a particular issue in which they happen to be interested.
Some of these bibliographical notes refer to the 1961 Harvard edition of
Concepts of Mass in Classical and Modern Physics, abbreviated henceforth
as COM.? These notes are quoted with reference to the relevant chapter
or its section in COM and not to its pagination for the following reason.
Later editions of COM in English—such as the 1964 paperback edition
in the Torchbook Series of Harper and Row, New York, or translations
into other languages (such as the Russian translation by academician
N. E. Ovchinnikov, issued in 1967 by Progress Publishers, Moscow;
the 1974 German translation by Prof. H. Hartmann, published by Wis-
senschaftliche Buchgesellschaft, Darmstadt; the Italian translation by
Dr. M. Plassa and Dr. I. Prinetti of the Istituto di Metrologia in Torino,
published by G. Feltrinelli Editore, Milan; and the Japanese translation
by professors Y. Otsuki, Y. Hatano, and T. Saito, which appeared under
the imprint of Kodansha Publishers, Tokyo)—differ in pagination but

2Harvard University Press, Cambridge, Mass., 1961; republished in 1997 by Dover
Publications, Mineola, New York.
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PREFACE

not in the order of chapters or of sections. The references can therefore
also be used by the reader of any of these various versions. The present
monograph does not presume to resolve the problem of mass. Its pur-
pose is rather to show that the notion of mass, although fundamental to
physics, is still shrouded in mystery.

ix
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Introduction

THE CONCEPT of mass is one of the most fundamental notions in
physics, comparable in importance only to the concepts of space and
time. Isaac Newton, who was the first to make systematic use of the
concept of mass, was already aware of its importance in physics. It
was probably not a matter of fortuity that the very first statement in
his Principia, the most influential work in classical physics, presents his
definition of mass or of “quantitas materiae,” as he still used to call it.!
However, his definition of mass as the measure of the quantity of matter,
“arising from its density and bulk conjointly,” was for several reasons
soon regarded as inadequate. Since then, the quest for an adequate
definition of mass, combined with the search for a more profound
understanding of its meaning, its nature, and its role in the physical
sciences, has never ceased to engage the attention of physicists and
philosophers alike.

That still today “mass is a mess,” as a contemporary physicist pun-
ningly phrased it,* should not come as a surprise. For “in the world of
human thought generally, and in physical science particularly, the most
important and most fruitful concepts are those to which it is impossible
to attach a well-established meaning.”?

Yet, the remarkable progress in experimental and theoretical physics
made during the past few decades has considerably deepened our
knowledge concerning the nature of mass. In particular, recent advances
in the general theory of relativity and in the theory of elementary
particles have opened new vistas that promise to lead us to a more
profound understanding of the nature of mass. It is the intention of
the present study to review these developments in a rigorous and yet
concise fashion.

11. Newton, Philosophiae Naturalis Principia Mathematica (London: J. Streater, 1687, 1713,
1726), p. 1; Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the
World (Berkeley: University of California Press, 1934), p. 1.

2W. T. Padgett, “Problems with the Current Definitions of Mass,” Physics Essays 3,
178-182 (1990).

3H. A. Kramers, statement at the Princeton Bicentennial Conference on the Future of
Nuclear Energy, 1946, in K. K. Darrow, ed., Physical Science and Human Values (Princeton:
Princeton University Press, 1947), p. 196.
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% CHAPTER ONE *

Inertial Mass

MECHANICS, AS UNDERSTOOD in post-Aristotelian physics,' is gen-
erally regarded as consisting of kinematics and dynamics. Kinematics,
a term coined by André-Marie Ampere,? is the science that deals with
the motions of bodies or particles without any regard to the causes of
these motions. Studying the positions of bodies as a function of time,
kinematics can be conceived as a space-time geometry of motions, the
fundamental notions of which are the concepts of length and time. By
contrast, dynamics, a term probably used for the first time by Gottfried
Wilhelm Leibniz,® is the science that studies the motions of bodies as
the result of causative interactions. As it is the task of dynamics to ex-
plain the motions described by kinematics, dynamics requires concepts
additional to those used in kinematics, for “to explain” goes beyond
“to describe.”*

The history of mechanics has shown that the transition from kinemat-
ics to dynamics requires only one additional concept—either the concept
of mass or the concept of force. Following Isaac Newton, who began his
Principia with a definition of mass, and whose second law of motion, in
Euler’s formulation F = ma, defines the force F as the product of the mass
m and the acceleration a (acceleration being, of course, a kinematical
concept), the concept of mass, or more exactly the concept of inertial
mass, is usually chosen. The three fundamental notions of mechanics
are therefore length, time, and mass, corresponding to the three physical

1 In Aristotelian physics the term “mechanics” or unyoviky (téyvn), derived from piyog
(contrivance), meant the application of an artificial device “to cheat nature,” and was
therefore not a branch of “physics,” the science of nature. “When we have to produce an
effect contrary to nature. . . we call it mechanical.” Cf. the pseudo-Aristotelian treatise
Mechanical Problems (847 a 10).

2 “C’est & cette science ott les mouvements sont considérés en eux-mémes . . . j'ai donné
le nom de cinématique, de kivnuo, mouvement.” A.-A. Ampere, Essai sur la philosophie des
sciences (Paris: Bachelier, 1834), p. 52.

3 G. W. Leibniz, “Essai de Dynamique sur les loix du mouvement,” in C. I. Gerhardt, ed.
Mathematische Schriften (Hildesheim: Georg Olms, 1962), vol. 6, pp. 215-231; “Specimen
Dynamicum,” ibid., pp. 234-254.

4 M. Jammer, “Cinematica e dinamica,” in Saggi su Galileo Galilei (Florence: G. Barbera
Editore, 1967), pp. 1-12.



CHAPTER ONE

dimensions L, T, and M with their units the meter, the second, and
the kilogram. As in the last analysis all measurements in physics are
kinematic in nature, to define the concept of mass and to understand
the nature of mass are serious problems. These difficulties are further
exacerbated by the fact that physicists generally distinguish among three
types of masses, which they call inertial mass, active gravitational mass,
and passive gravitational mass. For the sake of brevity we shall often
denote them by m;, m,, and m,, respectively.

As a perusal of modern textbooks shows, contemporary definitions
of these concepts are no less problematic than those published almost
a century ago.® Today, as then, most authors define the inertial mass
m; of a particle as the ratio between the forced F acting on the particle
and the acceleration a of the particle, produced by that force, or briefly
as “the proportionality factor between a force and the acceleration
produced by it.” Some authors even add the condition that F has to be
“mass-independent” (nongravitational), thereby committing the error
of circularity.

The deficiency of this definition, based as it is on Newton’s second
law of motion

F=mja (1.1)

is of course its use of the notion of force. For if “force” is regarded as
a primitive, that is, as an undefined term, then this definition defines
an ignotum per ignotius; and if “force” is defined, as it generally is, as
the product of acceleration and mass, then the definition is obviously
circular.

The active gravitational mass m, of a body, roughly defined, measures
the strength of the gravitational field produced by the body, whereas
its passive gravitational mass 1, measures the body’s susceptibility or
response to a given gravitational field. More precise definitions of the
gravitational masses will be given later on.

Not all physicists differentiate between m, and m,. Hans C. Ohanian,
for example, calls such a distinction “nonsense” because, as he says, “the
equality between active and passive mass is required by the equality of
action and reaction; an inequality would imply a violation of momentum
conservation.”®

5E. V. Huntington, “Bibliographical Note on the Use of the Word Mass in Current
Textbooks,” The American Mathematical Monthly 25, 1-15 (1918).
6H. C. Ohanian, Gravitation and Spacetime (New York: Norton, 1973), p. 17.
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INERTIAL MASS

These comments are of course not intended to fault the authors of
textbooks, for although it is easy to employ the concepts of mass it
is difficult, as we shall see further on, to give them a logically and
scientifically satisfactory definition. Even a genius such as Isaac Newton
was not very successful in defining inertial mass!

The generally accepted classification of masses into m;, m,, and m,, the
last two sometimes denoted collectively by m, for gravitational mass,
gives rise to a problem. Modern physics, as is well known, recognizes
three fundamental forces of nature apart from gravitation—the elec-
tromagnetic, the weak, and the strong interactions. Why then are non-
inertial masses associated only with the force of gravitation? True, at the
end of the nineteenth century the concept of an “electromagnetic mass”
played an important role in physical thought.” But after the advent
of the special theory of relativity it faded into oblivion. The problem
of why only gravitational mass brings us to the forefront of current
research in particle physics, for it is of course intimately related to the
possibility, suggested by modern gauge theories, that the different forces
are ultimately but different manifestations of one and the same force.
From the historical point of view, the answer is simple. Gravitation was
the first of the forces to become the object of a full-fledged theory which,
owing to the scalar character of its potential as compared with the vector
or tensor character of the potential of the other forces, proved itself less
complicated than the theories of the other forces.

Although the notions of gravitational mass 11, and m, differ conceptu-
ally from the notion of inertial mass m;, their definitions, as we shall see
later on,® presuppose, implicitly at least, the concept of m;. It is therefore
logical to begin our discussion of the concepts of mass with an analysis
of the notion of inertial mass.

There may be an objection here on the grounds that this is not the
chronological order in which the various conceptions of mass emerged
inthe history of civilization and science. It is certainly true that the notion
of “weight,” i.e., m,g, where g is the acceleration of free fall, and hence,
by implication m,, is much older than ;. That weights were used in the
early history of mankind is shown by the fact that the equal-arm balance
can be traced back to the year 5000 B.c. “Weights” are also mentioned

7 For the history of the notion of “electromagnetic mass” see chapter 11 in M. Jammer,
Concepts of Mass in Classical and Modern Physics (Cambridge, Mass.: Harvard University
Press, 1961), referred to henceforth as COM.

8See the beginning of chapter 4.



CHAPTER ONE

in the Bible. In Deuteronomy, chapter 25, verse 13, we read: “You shall
not have in your bag two kinds of weights, a large and a small . . . a full
and just weight you shall have.” Or in Proverbs, chapter 11, verse 1, it
is said: “A false balance is an abomination to the Lord, but a just weight
is his delight.”

But that “weight” is a force, given by m,¢, and thus involves the notion
of gravitational mass could have been recognized only after Newton laid
the foundations of classical dynamics, which he could not have done
without introducing the concept of inertial mass.

Turning, then, to the concept of inertial mass we do not intend to
recapitulate the long history of its gradual development from antiquity
through Aegidius Romanus, John Buridan, Johannes Kepler, Christiaan
Huygens, and Isaac Newton, which has been given elsewhere.” Our
intention here is to focus on only those aspects that have not yet been
treated anywhere else. One of these aspects is what has been supposed,
though erroneously as we shall see, to be the earliest operational def-
inition of inertial mass. But before beginning that discussion let us
recall that, although Kepler and Huygens came close to anticipating the
concept of m;, it is Newton who has to be credited with having been the
first to define the notion of inertial mass and to employ it systematically.

In particular, Galileo Galilei, as was noted elsewhere,'® never offered
an explicit definition of mass. True, he used the term “massa,” but only
in a nontechnical sense of “stuff” or “matter.” For him the fundamental
quantities of mechanics were space, time, and momentum. He even
proposed a method to compare the momenta (“movimenti e lor velocita
o impeti”) of different bodies, but he never identified momentum as the
product of mass and velocity. Richard S. Westfall, a prominent historian
of seventeenth-century physics, wrote in this context: “Galileo does
not, of course, clearly define mass. His word momento serves both for
our ‘moment” and for our ‘momentum,” and he frequently uses impeto
for ‘momentum.”” One of Galileo’s standard devices to measure the
momenti of equal bodies was to compare their impacts, that is, their forze
of percussion.”!!

It was therefore an anachronistic interpretation of Galileo’s method of
comparing momenta when the eminent mathematician Hermann Weyl

9 Chapters 2-6 of COM.

10 Beginning of chapter 5 of COM.

11R. S. Westfall, “The Problem of Force in Galileo’s Physics,” in C. L. Golino, ed., Galileo
Reappraised (Berkeley: University of California Press, 1966), pp. 67-95.
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INERTIAL MASS

wrote in 1927: “According to Galileo the same inert mass is attributed
to two bodies if neither overruns the other when driven with equal
velocities (they may be imagined to stick to each other upon colliding).”*?
This statement, which constitutes the first step of what we shall call
“Weyl’s definition of inertial mass,” can be rephrased in more detail as
follows: If, relative to an inertial reference frame S, two particles A and
B of oppositely directed but equal velocities u4 and up = —u4 collide
inelastically and coalesce into a compound particle A+B, whose velocity
ua4p is zero, then the masses m4 and mg, respectively, of these particles
are equal. In fact, if m4,p denotes the mass of the compound particle,
application of the conservation principles of mass and momentum, as
used in classical physics, i.e.,

MaU + MpUp = MapUarp = (Ma + Mp)layp (1.2)

shows that up = —ua and uayp = 0 imply ma = mp. This test is
an example of what is often called a “classificational measurement”:
Provided that it has been experimentally confirmed that the result of the
test does not depend on the magnitude of the velocities 14 and up and
that for any three particles A, B, and C, if m4 = mp and mp = mc then the
experiment also yields ms = mc (i.e., the “equality” is an equivalence
relation), it is possible to classify all particles into equivalence classes
such that all members of such a class are equal in mass.

For a “comparative measurement,” which establishes an order among
these classes or their members, Weyl’s criterion says: “That body has
the larger mass which, at equal speeds, overruns the other.”** In other
words, my is larger than mp, or my > mp, if ugy = —up but uayp # 0 and
signuy = signuayp. To ensure that the relation “larger” thus defined
is an order relation it has to be experimentally confirmed that it is an
asymmetric and transitive relation, i.e., if my > mp then mp > my
does not hold, and if my > mp and mp > mc have been obtained then
my > mc will also be obtained for any three particles A, B, and C. Since
for uy = —up equation (1.2) can be written

ma —mg = (Ua1B/UA)MALB (1.3)

the condition sign u4 = sign u 44 p shows that the coefficient of m,p is
12H. Weyl, “Philosophie der Mathematik und Naturwissenschaft,” in R. Oldenbourg,
ed., Handbuch der Philosophie (Munich: Oldenbourg, 1927). Philosophy of Mathematics and

Natural Science (Princeton: Princeton University Press, 1949), p. 139.
13 Weyl, Philosophy of Mathematics and Natural Science, p. 139.
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CHAPTER ONE

a positive number and, hence, ms > mj, it being assumed, of course,
that all mass values are positive numbers. The experimentally defined
relation “>" therefore coincides with the algebraic relation denoted
by the same symbol. Finally, to obtain a “metrical measurement” the
shortest method is to impose only the condition u4.p = 0 so that
equation (1.2) reduces to

mA/mB = —MB/MA. (14)

Hence, purely kinematic measurements of u4 and up determine the
mass-ratio ma/mp. Choosing, say, mp as the standard unit of mass
(mp = 1) determines the mass m4 of any particle A unambiguously.

Weyl called this quantitative determination of mass “a definition by
abstraction” and referred to it as “a typical example of the formation
of physical concepts.” For such a definition, he pointed out, conforms
to the characteristic trait of modern science, in contrast to Aristotelian
science, to reduce qualitative determinations to quantitative ones, and
he quoted Galileo’s dictum that the task of physics is “to measure what
is measurable and to try to render measurable what is not so yet.”

Weyl’s definition of mass raises a number of questions, among them
the philosophical question of whether it is really a definition of inertial
mass and not only a prescription of how to measure the magnitude of
this mass. It may also be asked whether it does not involve a circularity;
for the assumption that the reference frame S is an inertial frame is
a necessary condition for its applicability, but for the definition of an
inertial system the notion of force and, therefore, by implication, that of
mass may well be indispensable.

Not surprisingly, Weyl's definition seems never to have been criti-
cized in the literature on this subject, for the same questions have been
discussed in connection with the much better-known definition of mass
that Ernst Mach proposed about sixty years earlier. In fact, these two
definitions have much in common. The difference is essentially only
that Weyl’s definition is based, as we have seen, on the principle of the
conservation of momentum while Mach’s rests on the principle of the
equality between action and reaction or Newton’s third law. But, as is
well known, both principles have the same physical content because the
former is only a time-integrated form of the latter.

Although Mach'’s definition of inertial mass is widely known,* we
shall review it briefly for the convenience of the reader. For Mach, just as

14Gee, e.g., chapter 8 of COM.

10



INERTIAL MASS

for Weyl six decades later, the task of physics is “the abstract quantitative
expression of facts.” Physics does not have to “explain” phenomena in
terms of purposes or hidden causes, but has only to give a simple but
comprehensive account of the relations of dependence among phenom-
ena. Thus he vigorously opposed the use of metaphysical notions in
physics and criticized, in particular, Newton’s conceptions of space and
time as presented in the Principia.”

Concering Newton’s definition of mass Mach declared: “With regard
to the concept of ‘mass,’” it is to be observed that the formulation of
Newton, which defines mass to be the quantity of matter of a body as
measured by the product of its volume and density, is unfortunate. As
we can only define density as the mass of a unit of volume, the circle is
manifest.”!

In order to avoid such circularity and any metaphysical obscurities
Mach proposed to define mass with an operational definition. It applies
the dynamical interaction between two bodies, called A and B, that
induce in each other opposite accelerations in the direction of their
line of junction. If a4,p denotes the acceleration of A owing to B, and
ag;4 the acceleration of B owing to A, then, as Mach points out, the
ratio —apa/aasp is a positive numerical constant independent of the
positions or motions of the bodies and defines what he calls the mass-
ratioma,p = —agsa/as/p. By introducing a third body C, interacting with
A and B, he shows that the mass-ratios satisfy the transitive relation
masp = mascmcyp and concludes that each mass-ratio is the ratio of
two positive numbers, i.e., map = ma/mp, ma;c = ma/mc, and mc;p =
mc/mpg. Finally, if one of the bodies, say A, is chosen as the standard
unit of mass (ms = 1), the masses of the other bodies are uniquely
determined."”

Mach’s identification of the ratio of the masses of two interacting bod-
ies as the negative inverse ratio of their mutually induced accelerations
is essentially only an elimination of the notion of force by combining
Newton’s third law of the equality between action and reaction with his
second law of motion. In fact, if F 4 is the force exerted on A by Band Fga

15Gee, e.g., chapter 5 in M. Jammer, Concepts of Space (Cambridge: Harvard University
Press, 1954, 1969; enlarged edition, New York: Dover, 1993).

16 E. Mach, Die Mechanik in ihrer Entwicklung (Leipzig: Brockhaus, 1883, 1888,1897,1901,
1904, 1908, 1912, 1921, 1933); The Science of Mechanics (La Salle, I1l.: Open Court, 1893, 1902,
1919, 1942, 1960), chapter 2, section 3, paragraph 7. In his Die Principien der Wiirmelehre
(Leipzig: Barth, 1896, 1900, 1919) Mach called Newton'’s definition of mass “scholastisch.”

17 For further details see chapter 8 in COM.
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CHAPTER ONE

the force exerted on B by A, then according to the third law Fap = —Fpa.
But according to the second law Fag = maaap and Fpa = mpapa.
Hence, Mala/p = —Mpap/a OF Map = Ma/Mp = —aA;A/Aa/B, aS stated
by Mach, and the mass-ratio mup is the ratio between two inertial
masses. Thus we see that Mach’s operational definition is a definition
of inertial masses.

We have briefly reviewed Mach's definition not only because it is still
restated in one form or another in modern physics texts, but also, and
more importantly, because it is still a subject on which philosophers of
science disagree just as they did in the early years of the century. In fact,
as we shall see, recent arguments pro or contra Mach’s approach were
first put forth a long time ago, though in different terms. For example,
in 1910 the philosopher Paul Volkmann declared that Mach’s “phe-
nomenological definition of mass,” as he called it, contradicts Mach's
own statement that the notion of mass, since it is a fundamental concept
(“Grundbegriff”), does not properly admit any definition because we
deprive it of a great deal of its rich content if we confine its meaning
solely to the principle of reaction.'® On the other hand, the epistemolo-
gist and historian of philosophy Rudolf Thiele declared that “one can
hardly overestimate the merit that is due to Mach for having derived
the concept of mass without any recourse to metaphysics. His work is
also important for the theory of knowledge, since it provides for the first
time, an immanent determination of this notion without the necessity of
transcending the realm of possible experience.”"

As noted above, many textbooks define inertial mass m; as the ratio
between the force F and the acceleration a in accordance with Newton's
second law of motion, which in Euler’s formulation reads F = m;a.
Further, they often suppose that the notion of force is immediately
known to us by our muscular sensation when overcoming the resistance
in moving a heavy body. But there are also quite a few texts on mechanics
that follow Mach, even though they do not refer to him explicitly, and
introduce m; in terms of an operational definition based either on New-
ton’s third law, expressing the equality of action and reaction, or on the
principle of the conservation of linear momentum. It is therefore strange
that the prominent physicist and philosopher of physics, Percy Williams

18 P. Volkmann, Erkenntnistheoretische Grundziige der Naturwissenschaften (Leipzig: Teub-
ner, 1910), p. 138.

19R. Thiele, “Zur Charakteristik von Mach’s Erkenntnislehre,” in Abhandlungen zur
Philosophie und ihrer Geschichte, vol. 45 (Halle: Niemeyer, 1914), p. 101.

12



INERTIAL MASS

Bridgman, a staunch proponent of operationalism and probably the first
to use the term “operational definition,” never even mentioned Mach's
operational definition of mass in his influential book The Logic of Modern
Physics, although his comments on Mach’s cosmological ideas clearly
show that he had read Mach'’s writings.?

Instead, like many physicists and philosophers of the late nineteenth
century, among them James Clerk Maxwell and Alois Hofler,” Bridgman
introduced “mass” essentially in accordance with Newton’s second law,
but put, as he phrased it, “the crude concept [of force] on a quantitative
basis by substituting a spring balance for our muscles, or instead of the
spring balance . . . any elastic body, and [we] measure the force exerted
by it in terms of its deformation.” After commenting on the role of force
in the case of static systems Bridgman continued:

We next extend the force concept to systems not in equilibrium, in
which there are accelerations, and we must conceive that at first all
our experiments are made in an isolated laboratory far out in empty
space, where there is no gravitational field. We here encounter a new
concept, that of mass, which as it is originally met is entangled with the
force concept, but may later be disentangled by a process of successive
approximations. The details of the various steps in the process of
approximation are very instructive as typical of all methods in physics,
but need not be elaborated here. Suffice it to say that we are eventually
able to give to each rigid material body a numerical tag characteristic
of the body such that the product of this number and the acceleration
it receives under the action of any given force applied to it by a spring
balance is numerically equal to the force, the force being defined, except
for a correction, in terms of the deformation of the balance, exactly as
it was in the static case. In particularly, the relation found between
mass, force, and acceleration applies to the spring balance itself by
which the force is applied, so that a correction has to be applied for
a diminution of the force exerted by the balance arising from its own
acceleration.”

We have purposely quoted almost all of what Bridgman had to say
about the definition of mass in order to show that the definition of
mass via an operational definition of force meets with not inconsiderable

20 P W. Bridgman, The Logic of Modern Physics (New York: Macmillan, 1927, 1961), p. 25.
21 See chapter 8 of COM.
22 Bridgman, Logic of Modern Physics, pp. 102-103.
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difficulties. Nor do his statements give us any hint as to why he com-
pletely ignored Mach's operational definition of mass.

In the late 1930s Mach’s definition was challenged as having only a
very limited range of applicability insofar as it fails to determine unique
mass-values for dynamical systems composed of an arbitrary number
of bodies. Indeed, C. G. Pendse claimed in 1937 that Mach’s approach
breaks down for any system composed of more than four bodies.”

Let us briefly outline Pendse’s argument. If in a system of n bodies a
denotes, in vector notation, the observable induced acceleration of the
kth body and uy;(j # k) the observable unit vector in the direction from
the kth to the jth body, then clearly

a =)y k=1,2,...,n), (1.5)
j=1

where ajj(a = 0) are n(n — 1) unknown numerical coefficients in 3n
algebraic equations. However, these coefficients, which are required for
the determination of the mass-ratios, are uniquely determined only
if their number does not exceed the number of the equations, i.e.,
nm—1) <3n,orn <4.

Pendse also looked into the question of how this result is affected if
the dynamical system is observed at r different instants. Again using
simple algebra he arrived at the conclusion that “if there be more than
seven particles in the system the observer will be unable to determine
the ratios of the masses of the particles . . ., however large the num-
ber of instants, the accelerations pertaining to which are considered,
may be.”

Pendse’s conclusions were soon challenged by V. V. Narlikar on the
grounds that the Newtonian inverse-square law of gravitation, if applied
to a system of n interacting massive particles, makes it possible to assign
auniquemass-valuemy(k =1, 2, ..., n) to each individual particle of the
system. For according to this law, the acceleration ak of the kth particle
satisfies the equation

n
3
ay = Zijrjk/Irjkl , (1.6)
j=1
j#k
23 C. G. Pendse, “A Note on the Definition and Determination of Mass in Newtonian
Mechanics,” Philosophical Magazine 24, 1012-1022 (1937). See also References 27 and 28 in

chapter 8 of COM.
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INERTIAL MASS

where G is the constant of gravitation and ry is the vector pointing
from the position of my to the position of m;. Since all accelerations
ar(k = 1,2,...,n) and all ry are observable, “all the masses become
known in this manner.”*

It should be noted, however, that Narlikar established this result for
active gravitational masses, for the m; in the above equations are those
kinds of masses, and not for inertial masses, which we have seen were
the definienda in Pendse’s approach. It is tempting to claim that this
difficulty can be resolved within Mach’s conceptual framework by an
appeal to his experimental proposition, which says: “The mass-ratios of
bodies are independent of the character of the physical states (of the
bodies) that condition the mutual accelerations produced, be those states
electrical, magnetic, or what not; and they remain, moreover, the same,
whether they are mediately orimmediately arrived at.”? Hence one may
say that the interactions relative to which the mass-ratios are invariant
alsoinclude gravitational interactions although these were not explicitly
mentioned by Mach. However, this interpretation may be questioned
because of Mach’s separate derivation of the measurability of mass by
weight.* As this derivation illustrates, quite a few problematic issues
appertaining to Mach'’s treatment of mass would have been avoided had
he systematically distinguished between inertial and active or passive
gravitational mass.

A serious difficulty with Mach’s definition of mass is its dependence
on the reference frame relative to which the mutually induced accel-
erations are to be measured. Let us briefly recall how the mass-ratio
ma,p of two particles A and B depends on the reference frame S. In a
reference frame S’, which is moving with an acceleration a relative to S,
we have by definition m;VB = _%/A/‘ZA/B = —(apja—a)/(aa/p—a) so that
mﬁq/B = mall1—(a/ap;a)1/[1—(a/aap)] # ma,p (for a # 0). Thusinorder
to obtain uniquely determined mass-values, Mach assumed, tacitly at
least, that the reference frame to be used for the measurement of the
induced accelerations is an inertial system However, such a system is
defined by the condition that a “free” particle (i.e., a particle not acted
upon by a force) moves relative to it in uniform rectilinear motion. This
condition involves, as we see, the notion of force, which Mach defined as

24V. V. Narlikar, “The Concept and Determination of Mass in Newtonian Mechanics,”
Philosophical Magazine 27, 33-36 (1938).

25Mach, The Science of Mechanics, chapter 2, section 7, paragraph 5.

26 Mach, The Science of Mechanics, chapter 2, section 5, paragraph 6.
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“the product of the mass-value of a body times the acceleration induced
in that body.”* Hence, Mach'’s definition involves a logical circle.

Nevertheless, in the early decades of the twentieth century Mach’s
definition of mass, as an example of his opposition to the legitimacy
of metaphysics in scientific thought, enjoyed considerable popularity,
especially among the members of the Viennese Circle founded by Moritz
Schlick. Repudiating Kantian apriorism, logical positivists and scien-
tific empiricists stressed the importance of the logical analysis of the
fundamental concepts of physical science and often regarded Mach’s
definition of mass as a model for such a program. A drastic change
occurred only after the 1950s when the positivistic philosophy of science
became a subject of critical attack. One of the most eloquent critics was
the philosopher Mario Bunge.

According to Bunge, Mach committed a serious error when he “con-
cluded that he has defined the mass concept in terms of observable
(kinematic) properties,” for, “Mach confused ‘measuring’ and ‘comput-
ing’ with ‘defining.”” In particular, the equation ma/mp = —ap/a/aas8,
which establishes an equality between two expressions that differ in
meaning—the left-hand side expressing “the inertia of body A relative
to the inertia of body B” and the right-hand side standing for a purely
kinematical quantity—cannot be interpreted, as Mach contended, as
having the meaning of a definition. It is a numerical, but not a logical,
equality and “does not authorize us to eliminate one of the sides in favor
of the other.”?

Inasimilar vein Renate Wahsner and Horst-Heino von Borzeszkowski
rejected Mach’s definition on the grounds that “the real nature” (“das
Wesen”) of mass cannot be obtained by merely quantitative determina-
tions.” Moreover, they charged Mach, as Ludwig Boltzmann had done
earlier,”® with contradicting his own precept that a mechanics that tran-
scends experience fails to perform its proper task. Mach’s definition,
based as it is on the interaction between two mutually attracting bodies,
has not been proved to be universally valid for all bodies dealt with

27 Mach, The Science of Mechanics, chapter 2, section 7, paragraph 5.

28 M. Bunge, “Mach’s Critique of Newtonian Mechanics,” American Journal of Physics 34,
585-596 (1966); reprinted in J. Blackmore, Ernst Mach—A Deeper Look (Dordrecht: Kluwer,
1992), pp. 243-261.

29R. Wahsner and H.-H. von Borzeszkowski, epilogue to their new edition of Mach’s
Die Mechanik in ihrer Entwicklung (Berlin: Akademie Verlag, 1988), p. 600.

30 L. Boltzmann, “Uber die Grundprinzipien und Grundgleichungen der Mechanik,”
in Populire Schriften (Leipzig: ]. A. Barth, 1905), p. 293.
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in mechanics and his claim that the “experimental propositions” do
not go beyond experience is confuted by the fact that they presuppose
all principles of mechanics. Similarly, in a recent essay on operational
definitions Andreas Kamlah rejects the claim that the concept of mass
can in all cases be defined in a kinematical language containing only
the notions of position, time, and velocity (or acceleration). He also
argues that “Mach’s definition is not a definition in the proper sense . . .
[for] it yields the values of mass only for bodies which just by chance
collide with other bodies. All other values of that function remain
undetermined.”*

In contrast to the preceding unfavorable criticisms (and many others
could have been recounted), Mach’s definition was defended, at least
against two major objections, by Arnold Koslow.* The two objections
referred to concern the restricted applicability of the definition and
its noninvariance relative to different reference frames. Koslow’s main
argument against the former objection contends that the third experi-
mental proposition has not been taken into account. For according to
this proposition the mass-ratios are independent of whether the mutual
accelerations are induced by “electric, magnetic, or what not” interac-
tions. Hence, as Koslow shows in mathematical detail, by performing
the definitional operations with respect to different kinds of interactions,
the number of the equations can be sufficiently increased to ensure
the uniqueness of the mass-ratios for any finite number of particles.
Concerning the latter objection, Koslow justified Mach'’s contention that
“the earth usually does well enough as a reference system, and for larger
scaled motions, or increased accuracy, one can use the system of the
fixed stars.”

An operational definition of inertial mass, which unlike Mach’s defini-
tion seems to be little known even among experts, is the so-called “table-
top definition” proposed in 1985 by P. A. Goodinson and B. L. Luffman.®
Unlike Mach’s and Weyl’s definitions of 1;, which are based, as we have
seen, on Newton’s third law, the Goodinson-Luffman definition is based
on Newton’s second law, which, in Euler’s formulation, says that force

31 A. Kamlah, “The Problem of Operational Definitions,” in W. Salmon and G. Wolters,
eds., Logic, Language, and the Structure of Scientific Theories (Konstanz: Universitatsverlag
Konstanz, 1996), pp. 171-189.

32 A. Koslow, “Mach’s Concept of Mass: Program and Definition,” Synthese 18,216-233

(1968).
33 P. A. Goodinson and B. L. Luffman, “On the Definition of Mass in Classical Physics,”

American Journal of Physics 53, 40—42 (1985).
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is the product of mass and acceleration. However, as the notion of force
(or of weight or of friction) as used in this definition is made part of
the operational procedure, an explicit definition is not required so that
from the purely operational point of view they seem to have avoided a
logical circularity.

Goodinson and Luffman call their definition of m; a “table-top def-
inition” because it involves the measurement of the acceleration ap of
a body B that is moving on a horizontal table—on “a real table, not
the proverbial ‘infinitely smooth table.”” The motion of B is produced
by means of a (weightless) string that is attached to B, passes over a
(frictionless) pulley fixed at the end of the table, and carries a heavy
weight W on its other end. At first the acceleration 4y of a standard body
By, connected via the string with an appropriate weight Wy, is measured.
Measurements of distance and time are of course supposed to have been
operationally defined antecedently, just as in the operational definitions
by Mach or by Weyl.

The procedure of measuring the acceleration a is repeated for a body
B and also for weights W that differ from Wj. A plot of a against 4
shows that

a=kay+c, (1.7)

where k and c are constants. Repetition of the whole series of measure-
ments with a different table again yields a linear relation

a=kag+d (1.8)

with the same slope k but with a constant d that differs from c. This
shows that the intercepts c and d are table-dependent whereas the slope
k is independent of the roughness or friction caused by the table. A
series of such measurements for bodies B;(q = 1,2, ...) yields a series
of straight-line plots, one plot for each a, against ag with slope k;. These
slopes are seen to have the following properties: if B, is “heavier than”
B, then

ky <k (1.9)
and
1/ky +1/ky = 1/kgp, (1.10)

where k;,, is the slope obtained when B, and B, are combined. The
inertial mass m;(B,) of a body B, with respect to the standard body By,
is now defined by
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INERTIAL MASS
mi(By) = 1/k;. (1.11)

In the sequel to their paper Goodinson and Luffman prove that equa-
tions (1.9) and (1.10) are independent of the choice of the standard body
By, and that m;(B1) = m;(By) and m; (B,) = m;(B3) imply m;(B1) = m;(B3)
for any three bodies B, B, and Bs, independently of the choice of
By. In addition to this transitivity of mass, the additivity of mass is
obviously assured because of (1.10). That in spite of the fundamental
differences noted above the table-top definition converges to Mach's
definition under certain conditions can be seen as follows. For two
arbitrary bodies B; and B, with inertial masses m;(B1) = ki I and
m;i(By) = k5, the plots of their respective accelerations a; and a, with
respect to By are

ay = [mi(BO] ™ ag + 1 (1.12)
and
ay = [mi(B)] ™" ag + ¢. (1.13)
Hence
m;(B1)ay = mi(By)az + c1z, (1.14)
where
c12 = mi(By)cr — mi(Ba)ca. (1.15)

Experience shows that the quantity |c;| is table-dependent and ap-
proaches zero in the case of a perfectly smooth table. In the limit,

m;(B1)/m;(By) = ay/ay, (1.16)

which agrees with the Machian definition of the mass-ratio of two bodies
as the inverse ratio of their accelerations (the minus sign being ignored).
Yet in spite of this agreement the table-top definition is proof against the
criticism leveled against Mach’s definition as being dependent on the
reference frame. In fact, if an observer at rest in a reference frame S
graphs the plot for a body B; with respect to By in the form

a1 = [m;i(B)] ag + c1, (1.17)

then an observer at rest in a reference frame S’ that moves with an
acceleration a relative to S (in the direction of the accelerations involved)
will write

a) = [m;(Bl)]_1 ay +cj. (1.18)
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But since 4} = a; —a and a; = a9 — 4, clearly
a; = [mQ(Bl)]_1 ap + ¢, (1.19)
where
o =cj+all —m®Bn]" (1.20)

Hence, the plot of a; against 4 has the slope [mg(Bl)]‘l, which shows, if
compared with (1.17), that m;(B;) = m(B1) since m; is defined only by
the slope. Thus, both observers obtain the same result when measuring
the inertial mass of the body B;. Of course, this conclusion is valid
only within the framework of classical mechanics and does not hold,
for instance, in the theory of relativity.

Therange of objects to which an operational definition of inertial mass,
such as the Goodinson-Luffman definition, can be applied is obviously
limited to medium-sized bodies. One objection against operationalism
raised by philosophers of the School of Scientific Empiricists, an out-
growth of the Viennese School of Logical Positivists, is that quite gener-
ally no operational definition of a physical concept, and in particular of
the concept of mass, can ever be applied to all the objects to which
the concept is attributed. Motivated by the apparently unavoidable
circularity in Mach’s operational definition of mass they preferred to
regard the notion of mass as what they called a partially interpreted
theoretical concept.

A typical example is Rudolf Carnap’s discussion of the notion of mass.
The need to refer to different interactions or different physical theories
when speaking, e.g., of the mass of an atom or of the mass of a star, led
him to challenge the operational approach. Instead of saying that there
are various concepts of mass, each defined by a different operational
procedure, Carnap maintained that we have merely one concept of mass.
“If we restrict its meaning [the meaning of the concept of mass] to a
definition referring to a balance scale, we can apply the term to only a
small intermediate range of values. We cannot speak of the mass of the
moon. . . . We should have to distinguish between a number of differ-
ent magnitudes, each with its own operational definition. . . . It seems
best to adopt the language form used by most physicists and regard
length, mass and so on as theoretical concepts rather than observational
concepts explicitly defined by certain procedures of measurement.”*

34 R. Carnap, An Introduction to the Philosophy of Science (New York: Basic Books, 1966),
pp. 103-104.
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Carnap’s proposal to regard “mass” as a theoretical concept refers
of course to the dichotomization of scientific terms into observational
and theoretical terms, an issue widely discussed in modern analytic
philosophy of science. Since, generally speaking, physicists are not
familiar with the issue, some brief comments, specially adapted to our
subject, may not be out of place.

It has been claimed by philosophers of science that physics owes much
of its progress to the use of theories that transcend the realm of purely
empirical or observational data by incorporating into their conceptual
structure so-called theoretical terms or theoretical concepts. (We ignore
the exact distinction between the linguistic entity “term” and the ex-
tralinguistic notion “concept” and use these two words as synonyms.)

In contrast to “observational concepts,” such as “red,” “hot,” or “iron
rod,” whose meanings are given ostensively, “theoretical concepts,”
such as “potential,” “electron,” or “isospin,” are not explicitly definable
by direct observation. Although the precise nature of a criterion for
observability or for theoreticity has been a matter of some debate, it has
been generally agreed that terms, obtaining their meaning only through
the role they play in the theory as a whole, are theoretical terms. This
applies, in particular, to terms, such as “mass,” used in axiomatizations
of classical mechanics, such as proposed by H. Hermes, H. A. Simon,
J.C.C.McKinsey etal., S. Rubin and P. Suppes,* or more recently by C. W.
Mackey, J. D. Sneed, and W. Stegmiiller.*® In these axiomatizations of
mechanics “mass” is a theoretical concept because it derives its meaning
from certain rules or postulates of correspondence that associate the
purely formally axiomatized term with specific laboratory procedures.
Furthermore, the purely formal axiomatization of the term “mass” is
justified as a result of the confirmation that accrues to the axiomatized
and thus interpreted theory as a whole and not to an individual theorem
that employs the notion of mass.

It is for this reason that Frank Plumpton Ramsey seems to have been
the first to conceive “mass” as a theoretical concept when he declared in
the late 1920s that to say “ ‘there is such a quality as mass’ is nonsense
unless it means merely to affirm the consequences of a mechanical

35 See chapter 9 of COM.

36 G. W. Mackey, Mathematical Foundations of Quantum Mechanics (New York: Benjamin,
1963), chapter 1. J. D. Sneed, The Logical Structure of Mathematical Physics (Dordrecht:
Reidel, 1971). W. Stegmiiller, Probleme und Resultate der Wissenschaftstheorie und analytischen
Philosophie (Vienna: Springer-Verlag, 1973), vol. 2, part 2.
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theory.”?” Ramsey was also the first to propose a method to eliminate
theoretical terms of a theory by what is now called the “Ramsey sen-
tence” of the theory. Briefly expressed, it involves logically conjoining
all the axioms of the theory and the correspondence postulates into a
single sentence, replacing therein each theoretical term by a predicate
variable and quantifying existentially over all the predicate variables
thus introduced.®® This sentence, now containing only observational
terms, is supposed to have the same logical consequences as the original
theory. The term “mass” has been a favorite example in the literature on
the “Ramsey sentence.”%

Carnap proposed regarding “mass” as a theoretical concept, as we
noted above, because of the inapplicability of one and the same opera-
tional definition of mass for objects that differ greatly in bulk, such as a
molecule and the moon, and since different definitions assign different
meanings to their definienda, the universality of the concept of mass
would be untenable. However, this universality would also be violated
if the mass, or rather masses, of one and the same object are being de-
fined by operational definitions based on different physical principles.
This was the case, for instance, when Koslow suggested employing
different kinds of interactions in order to rebut Pendse’s criticism of
Mach’s definition as failing to account for the masses of arbitrarily many
particles. Even if in accordance with Mach’s “experimental proposition”
the numerical values of the thus defined masses are equal, the respective
concepts of mass may well be different, as is, in fact, the case with inertial
and gravitational mass in classical mechanics, and one would have to
distinguish between, say, “mechanical mass” (e.g., “harmonic oscillator
mass”), “Coulomb law mass,” “magnetic mass,” and so on.

The possibility of such a differentiation of masses was discussed
recently by Andreas Kamlah when he distinguished between “energy-
principle mass” (“Energiesatz-Masse”) and “momentum-principle
mass” (“Impulssatz-Masse”), corresponding to whether the conser-
vation principle of energy or of momentum is being used for the
definition.®

37 F. P. Ramsey, The Foundations of Mathematics and Other Logical Essays, edited by R. B.
Braithwaite (London: Kegan, Paul, Trench, Turner, 1931), pp. 260-261.

38 For details see, e.g., R. Tuomela, Theoretical Concepts (Vienna: Springer-Verlag, 1973),
pp. 57-68.

39 Gee, e.g., Carnap, An Introduction to the Philosophy of Science, p. 249. Another example,
soon to be discussed, is P. Lorenzen’s protophysical definition of mass.

40 A. Kamlah, “Zur Systematik der Massendefinitionen,” Conceptus 22, 69-82 (1988).
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Thus, according to Kamlah, the energy-principle masses my (k =

1, ..., n) of n free particles can be determined by the system of equations
n

1Y magt) =c. (1.21)
k=1

where u(t) denotes the velocity of the kth particle at the time (j =
1,...,7) and c is a constant. In the simple case of an elastic collision
between two particles of velocities #; and u;, before, and u and u after,
the collision, the equation

1 2 1 2 1 /2 1 /2
MUy + 5auy = smyu'y + 5mou’y (1.22)

determines the mass ratio
my iy = (s —1u3) /2 — u'3). (1.23)

The momentum-principle masses ; of the same particles are deter-
mined by the equations

> mtik(h) = P, (1.24)
k=1

where P, the total momentum, is a constant. In the simple case of two
particles, the equation

UAU1 + polly = poll] + polly (1.25)

determines the mass-ratio,

w1/ 2 = Uy — up)/(uy — uf) (1.26)

The equality between m;/my and /1, cannot be established without
further assumptions, but as shown by Kamlah, it is sufficient to postulate
the translational and rotational invariance of the laws of nature.

More specifically, this equality is established by use of the Hamilto-
nian principle of least action or, equivalently, the Lagrangian formalism
of mechanics, both of which, incidentally, are known to have a wide
range of applicability in physics. The variational principle § [ L/dt = 0

implies that the Lagrangian function L = L(xi,...,%,, U1, ..., Uy, 1)
satisfies the Euler-Lagrange equation
%L %L oL
ij i|——=0 i = dw;/dt.  (1.27
2 (auiaw”’ " 8uiaxju’> ox; 4 =dy/at (129
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By defining generalized masses m;;(u1, ..., u,) by m; = 0L/0u;0u;, and
masses m;, assumed to be constant, by m; = m;d;, and taking into
consideration that the spatial invariance implies ) ; dL/dx;, = 0, Kamlah
shows that the Euler-Lagrange equation (1.27) reduces to

Z oL/0u; = P = const., (1.28)
1
where dL/9u; = m;ju;. Comparison with equation (1.24) yields m; = u;.

The fundamental notions of kinematics, such as the position of a
particle in space or its velocity, are generally regarded as observable
or nontheoretical concepts. A proof that the concept of mass cannot be
defined in terms of kinematical notions would therefore support the
thesis of the theoreticity of the concept of mass. In order to study the
logical relations among the fundamental notions of a theory, such as
their logical independence, on the one hand, or their interdefinability,
on the other, it is expedient, if not imperative, to axiomatize the theory
and preferably to do it in such a way that the basic concepts under
discussion are the primitive (undefined) notions in the axiomatized
theory. As far as the concept of mass is concerned, there is hardly an
axiomatization of classical particle mechanics that does not count this
concept among its primitive notions.”! In fact, as Gustav Kirchhoff’s
Lectures on Mechanics,** or Heinrich Hertz’s Principles of Mechanics,* or
more recently the axiomatic framework for classical particle mechanics
proposed by Adonai Schlup Sant’Anna* clearly show, even axiomati-
zations of mechanics that avoid the notion of force need the concept of
mass as a primitive notion.

Any proof of the undefinability of mass in terms of other primitive
notions can, of course, be given only within the framework of an axi-
omatization of mechanics. Let us choose for this purpose the widely
known axiomatic formulation of classical particle mechanics proposed
in 1953 by John Charles Chenoweth McKinsey and his collaborators,*

41 The only exception known to the present author is the (unpublished) study “Mecha-
nik ohne Masse” (1985) by Rudolf Opelt of the Technische Hochschule in Bremen,
Germany.

42 G. Kirchhoff, Vorlesungen iiber Mechanik (Leipzig: ]. A. Barth, 1876, 1897).

43 H. Hertz, Die Prinzipien der Mechanik in neuem Zusammenhang dargestellt (Leipzig: J. A.
Barth, 1894); The Principles of Mechanics Presented in a New Form (New York: Dover, 1956).

44 A.S.Sant’Anna, “An Axiomatic Framework for Classical Particle Mechanics without
Force,” Philosophia Naturalis 33, 187-203 (1996).

45].C.C. McKinsey, A. C. Sugar, and P. Suppes, “Axiomatic Foundations of Classical
Particle Mechanics,” Journal of Rational Mechanics and Analysis 2, 253-272 (1953).
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which is closely related to the axiomatization proposed by Patrick
Suppes.*® The axiomatization is based on five primitive notions: P, T, m,
s, and f, where P and T are sets and m, s, and f are unary, binary, and
ternary functions, respectively. The intended interpretation of P is a set
of particles, denoted by p, that of T is a set of real numbers ¢ measuring
elapsed times (measured from some origin of time); the interpretation of
the unary function m on P, i.e., m(p), is the numerical value of the mass
of particle p, while s(p, t) is interpreted as the position vector of particle p
attimet,and f(p, t, i) as the ith force acting on particle p at time ¢, it being
assumed that each particle is subjected to a number of different forces.

Asystem T = (P, T, m,s,f)is called a “system of particle mechanics”
if it satisfies the following six axioms:

KINEMATICAL AXIOMS

A-1: P is a nonempty, finite set.

A-2: T is an interval of real numbers.

A-3:Forp € Pand t € T,s(p, t) is a twice-differentiable vector with
respect to £.

DYNAMICAL AXIOMS

A-4: For p € P, m(p) is a positive real number.
A-5:Forp € Pandt € T, Y 2, f(p, t, i) isan absolutely convergent series.
A-6:Forp e Pandt e T, m(p)d*s(p, t)/dt> =Y 2, f(p, £, 0).

Clearly, A-6 is a formulation of Newton’s second law of motion and,
since for > 72, f(p, t,i) = 0 obviously s(p, t) = a + bt, A-6 also implies
Newton’s first law of motion. However, the question we are interested
in is this: can it be rigorously demonstrated that the primitive m, which
is intended to be interpreted as “mass,” cannot be defined by means
of the other primitive terms of the axiomatization, or at least not by
means of the primitive notions that are used in the kinematical axioms?
The standard procedure followed to prove that a given primitive of an
axiomatization cannot be defined in terms of the other primitives of
that axiomatization is the Padoa method, so called after the logician
Alessandro Padoa, who invented it in 1900. According to this method
it is sufficient to find two interpretations of the axiomatic system that
differ in the interpretation of the given primitive but retain the same

46 P. Suppes, Introduction to Logic (New York: Van Nostrand, 1957), pp. 294-295.
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interpretation for all the other primitives of the system. For if the given
primitive were to depend on the other primitives, the interpretation
of the latter would uniquely determine the interpretation of the given
primitive so that it would be impossible to find two interpretations as
described.

Padoa’s formulation of his undefinability proof has been criticized
for not meeting all the requirements of logical rigor and, in particular,
for its lack of a rigorous criterion for the “differentness” of interpreta-
tions. It has therefore been reformulated by, among others, John C. C.
McKinsey,*® Evert Willem Beth,* and Alfred Tarski.*

That in the above axiomatization m is independent of the other prim-
itive notions can be shown by the Padoa method as follows: P is in-
terpreted as the set whose only member is 1, T as the set of all real
numbers, s(1, t) for all t € T as the vector each component of which is
unity, f(1, t, i) as the null vector forall t € T and every positive integer i;
finally, it is agreed that m;(1) = 1 and my(1) = 2. Thus interpreted,
It = (P.T.m,s.f) and I', = (P,T,my,s,f) are systems of particle
mechanics, i.e., both systems satisfy all the axioms A-1 to A-6, and agree
in all primitives with the exception of m. Hence, according to Padoa’s
method, m is not definable in terms of the other primitives. A similar
argument proves the logical independence of m in the axiomatization
proposed by Suppes. These considerations seem to suggest that, quite
generally, the concept of mass cannot be defined in terms of kinemat-
ical conceptions and, as such conceptions correspond to observational
notions, mass is thus a theoretical term.

47 A. Padoa, “Essai d'une théorie algébrique des nombres entiers, précédé d’une intro-
duction logique a une théorie déductive quelconque,” Bibliothéque du Congres International
de Philosophie, Paris, 1900 (Paris, 1901), vol. 3, pp. 309-365. English (partial) translation
“Logical Introduction to Any Deductive Theory,” in Jean van Heijenoort, ed., From Frege
to Godel: A Source Book in Mathematical Logic 1879-1931 (Cambridge, Mass.: Harvard
University Press, 1967, 1977), pp. 118-123.

48].C.C. McKinsey, “On the Independence of Undefined Ideas,” Bulletin of the American
Mathematical Society 41, 291-256 (135).

49 E. W. Beth, “On Padoa’s Method in the Theory of Definition,” Koninklijke Nederlandse
Akademie van Wetenschappen, Proceedings of the Science Section 56, Series A, Mathematical
Sciences, 330-339 (1953); Indagationes Mathematicae 15, 330-339 (1953).

50 A. Tarski, “Einige methodologische Untersuchungen iiber die Definierbarkeit der
Begriffe,” Erkenntnis 5, 80-100 (1936); “Some Methodological Investigations on the Defin-
ability of Concepts,” in A. Tarski, Logic, Semantics, Metamathematics (Oxford: Clarendon
Press, 1956), pp. 296-319.
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In 1977 Jon Dorling challenged the general validity of such a con-
clusion.® Recalling that in many branches of mathematical physics
theoretical terms, e.g., the vector potentials in classical or in quantum
electrodynamics, have been successfully eliminated in favor of observa-
tional terms, Dorling claimed that the asserted uneliminability results
only from the “idiosyncratic choice” of the observational primitives. Re-
ferring to G. W.Mackey’s above axiomatization in which the acceleration
of each particle is given as a function of its position and the positions of
the other particles and not, as in McKinsey’s or Suppes’s axiomatization,
of time only, Dorling declared: “The claim that the usual theoretical
primitives of classical particle mechanics cannot be eliminated in favor
of observational primitives seems therefore not only not to have been
established by Suppes’s results, but to be definitely controverted in the
case of more orthodox axiomatizations such as Mackey’s.” The issue
raised by Dorling has been revived, though without any reference to
him, by the following relatively recent development.

In 1993 Hans-Jiirgen Schmidt offered a new axiomatization of classical
particle mechanics intended to lead to an essentially universal concept
of mass.”> He noted that in former axiomatizations the inertial mass
my had usually been introduced as a coefficient connected with the
acceleration gi of the kth particle in such a way that the products myay
satisfy a certain condition that is not satisfied by the a alone. “If this
condition determines the coefficients m; uniquely—up to a common
factor—" he declared, “we have got the clue for the definition of mass.
This definition often works if the defining condition is taken simply
as a special force law, but then one will arrive at different concepts
of mass.” In order to avoid this deficiency Schmidt chose instead of
a force-determining condition one that is equivalent to the existence of
a Lagrangian. This choice involves the difficult task of solving the so-
called “inverse problem of Lagrangian mechanics” to find a variational
principle for a given differential equation. This problem was studied
as early as 1886 by Hermann von Helmholtz and solved insofar as he
found the conditions necessary for the existence of a function L such

517. Dorling, “The Eliminability of Masses and Forces in Newtonian Particle Mechanics:
Suppes Reconsidered,” British Journal for the Philosophy of Science 28, 55-57 (1977).

52H.-J. Schmidt, “A Definition of Mass in Newton-Lagrange Mechanics,” Philosophia
Naturalis 30, 189-207 (1993).
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that a given set of equations G; = 0 are the Euler-Lagrange equations of
the variational principle § [ Ldt = 0.5

Assisted by Peter Havas’s 1957 study of the applicability of the La-
grange formalism, Schmidt, on the basis of a somewhat simplified
solution of the inverse problem, was able to construct his axiomatization,
which defines inertial mass in terms of accelerations. The five primitive
terms of the axiomatization are the set M of space-time events, the
differential structure D of M, the simultaneity relation o on M, the set P
of particles, and the set of possible motions of P, the last being bijective
mappings or “charts” of M into the four-dimensional continuum R*.
Six axioms are postulated in terms of these primitives, none of which
represents an equivalent to a force law. The fact that these kinematical
axioms lead to a satisfactory definition of mass is in striking contrast
to the earlier axiomatizations for which it could be shown, for instance,
by use of the Padoa method, that the dynamical concept of mass is
indefinable in kinematical language.*®

This apparent contradiction prompted Kamlah to distinguish be-
tween two kinds of axiomatic approaches to particle mechanics, dif-
fering in their epistemological positions, which he called factualism
and potentialism.* According to factualist ontology, which, as Kamlah
points out, was proclaimed most radically in Ludwig Wittgenstein’s
1922 Tractatus Logico-Philosophicus, “there are certain facts in the world
which may be described by a basic language for which the rules of
predicate logic hold, especially the substitution rule, which makes this
language an extensional one. The basic language has not to be an ob-
servational language.” According to the ontology of potentialism “the
world is a totality of possible experiences. Not all possible experiences ac-
tually happen.” By distinguishing between a factualist and a potentialist
axiomatization Kamlah claims to resolve that contradiction as follows:
The concept of acceleration a; contained in Schmidt’s potentialist kine-
matics can be “defined” operationally in the language of factualist
kinematics. However, Kamlah adds,

53 H. v. Helmholtz, “Uber die physikalische Deutung des Princips der kleinsten Wir-
kung,” Journal fiir die reine und angewandte Mathematik 100, 137-166, 213-222 (1886).

54P. Havas, “The Range of Application of the Lagrange Formalism” Nuovo Cimento
(Supp.) 5, 363-388 (1957).

55 GSee chapter 9 of COM.

56 A. Kamlah, “Two Kinds of Axiomatization of Mechanics,” Philosophia Naturalis 32,
27-46 (1995).
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such determinations of the meaning of concepts are not proper defini-
tions though being indispensable in physics, and therefore the accel-
eration function 4y is a theoretical concept in particle kinematics. This
theoretical concept seems to be powerful enough in combinations with
[Schmidt’s additional axioms] to supply us with an explicit definition of
mass. This result seems to be surprising but does not contradict the well-
established theorem that mass is theoretical (not explicitly definable)
in particle kinematics.

The thesis of the theoretical status of the concept of inertial mass—
whether based on the argument of the alleged impossibility of defining
this concept in a noncircular operational way or on the claim that it is
implicitly defined by its presence in the laws of motion or in the axioms
of mechanics—has been challenged by the proponents of protophysics.
The program of protophysics,” a doctrine that was developed by the
Erlangen School of Constructivism but can be partially traced back
to Pierre Duhem and Hugo Dingler, is the reconstruction of physics
on prescientific constructive foundations with due consideration for
the technical construction of the measuring instruments to be used in
physics. Protophysics insists on a rigorous compliance with what it
calls the methodical order of the pragmatic dependence of operational
procedures, in the sense that an operation O, is pragmatically dependent
upon an operation O; if O, can be carried out successfully only after
O has previously been carried out successfully. In accordance with
the three fundamental notions in physics—space, time, and mass—
protophysicists distinguish among (constructive) geometry, chronom-
etry, and hylometry, the last one, the protophysics of mass, having been
subject to far less attention that the other two. Protophysicists have dealt
with the concept of charge, often called the fourth fundamental notion
of physics, to an even more limited degree.

Strictly speaking, the first to treat “mass” as a hylometrical conception
was Bruno Thiiring, who contended that the classical law of gravitation
has to form part of the measure-theoretical a priori of empirical physics.*®
However, this notion of mass was, of course, the concept of gravita-
tional mass. As far as inertial mass is concerned, the mathematician
and philosopher Paul Lorenzen was probably the first to treat “mass”

57 G. Bohme, Protophysik (Frankfurt a.M.: Suhrkamp Verlag, 1976); P. Janich, ed., “Pro-
tophysik heute,” Philosophia Naturalis 22, 3-156 (1985).

58 B.Thiiring, Die Gravitation und die philosophischen Grundlagen der Physik (Berlin:
Duncke & Humblot, 1967), chapter 3.
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from the protophysical point of view.”® Lorenzen’s starting point, as in
Weyl’s definition of mass, is an inelastic collision of two bodies with
initial velocities u; and u,, respectively, where the common velocity of
the collision is u. That it is technically possible (“hinreichend gut”) to
eliminate friction can be tested by repeating the process with different
7 and u; and checking that the ratio  of the velocity changes u; —u and
Uy — u is a constant. However, the absence of friction cannot be defined
in terms of this constant, for were it verified in the reference frame of
the earth it would not hold in a reference frame in accelerated motion
relative to the earth.

If an inertial system is defined as the frame in which this constancy
has been established, it is a technical-practical question whether the
earth is an inertial system. Foucault’s pendulum shows that it is not.
Lorenzen proposed therefore that the astronomical fundamental coor-
dinate system S, relative to which the averaged rotational motion of the
galaxies is zero, serves as the inertial system. Any derivation from a
constant ¥ must then be regarded and explained as a “perturbation.”
This proposed purely kinematical definition of an inertial system is
equivalent to defining such a system by means of the principle of
conservation of momentum. The statement that numbers m; and m,
can be assigned by this method to bodies as measures of their “mass”
is then the Ramsey sentence for applying the momentum principle for
collision processes in S.

A protophysical determination of inertial mass without any recourse
to an inertial reference frame or to “free motion” has been proposed
by Peter Janich.® Janich employs what he calls a “rope balance” (“Seil-
waage”), a wheel encircled by a rope that has a body attached to each
end. The whole device can be moved, for instance, on a horizontal (fric-
tionless) plane in accelerated motion relative to an arbitrary reference
frame. As Janich points out, the facts that the rope is constant in length
and taut and that the two end pieces beyond the wheel are parallel and

59 P. Lorenzen, “Zur Definition der vier fundamentalen Messgrossen,” Philosophia Na-
turalis 16, 1-9 (1976); reprinted in J. Pfarr, Protophysik und Relativititstheorie (Bibliogra-
phisches Institut, Mannheim, 1981), pp. 25-33. See also P. Lorenzen, “Geometrie als
Messtheoretisches Apriori der Physik,” ibid., pp. 35-53.

0P, Janich, “Ist Masse ein ‘theoretischer Begriff’?,” Journal for General Philosophy of
Science 8, 303-313 (1977); “Newton ab omni naevo vindicatus,” Philosophia Naturalis 18,
243-255 (1981); “Die Eindeutigkeit der Massemessung und die Definition der Tragheit,”
Philosophia Naturalis 22, 87-103 (1985); “The Concept of Mass,” in R. E. Butts and J. R.
Brown, eds., Constructivism and Science (Dordrecht: Kluwer, 1989), pp. 145-162.

30



INERTIAL MASS

of equal length can be verified geometrically. If these conditions are
satisfied the two bodies are said to be “tractionally equal,” a relation
that can be proved to be an equivalence relation. The transition from
this classification measurement to a metric measurement is established
by a definition of “homogeneous density”: a body is homogeneously
dense if any two parts of it, equal in volume, are tractionally equal, it
being assumed, of course, that the equality of volume, as that of length
before, has been defined in terms of protophysical geometry. The ability
to produce technically homogeneously dense bodies such as pure metals
or homogeneous alloys is also assumed. Finally, the mass-ratio m/mg
of two arbitrary bodies A and B is defined by the volume ratio V4/V3
of two bodies B and C, provided that C is tractionally equal to A, D is
tractionally equal to B, and C and D are parts of a homogeneously dense
body. Thus the metrics of mass is reduced to the metrics of volume and
length. By assigning logical priority to the notion of density over that of
mass Janich, in a sense, “vindicated” Newton’s definition of mass as the
product of volume and density—but of course, unlike Newton, without
conceiving density as a primitive concept.*!

On the basis of this definition and measurement of inertial mass, an
inertial reference system can be defined as that reference frame relative
to which, for example, the conservation of linear momentum in an
inelastic collision holds by checking the validity of equation (1.2) all the
terms of which are now protophysically defined. Kamlah has shown
how Janich’s rope balance, which can also be used for a comparative
measurement of masses, is an example of the far-reaching applica-
bility of D’Alembert’s principle.®” This does not mean, however, that
Kamlah accepts the doctrine of protophysics. His criticism of the claim
that the constructivist measurement-instructions cannot be experimen-
tally invalidated without circularity, though directed primarily against
the protophysics of time, applies equally well to the protophysics of
mass.*® Friedrich Steinle also criticized Janich’s definition of mass on
the grounds that it yields a new conception of mass and not a purged
reconstruction of Newton’s conception because for Newton “mass” and

61 Hence the title “Newton ab omni naevo vidicatus” of Janich’s 1981 essay, in analogy
to Gerolamo Saccheri’s 1733 work “Euclides ab omni naevo vindicatus.”

62 A. Kamlah, “Die Bedeutung des d’Alembertschen Prinzips fiir die Definition des
Kraftbegriffes,” in W. Balzer and A. Kamlah, Aspekte der physikalischen Begriffsbildung
(Braunschweig: Vieweg, 1979), pp. 191-217.

63 A. Kamlah, “Methode oder Dogma,” Journal for General Philosophy of Science 12, 138—
162 (1981).
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“weight,” though proportional to one another, were two independent
concepts, whereas, Steinle contends in Janich’s reconstruction this pro-
portionality is part of the definition.* It may also be that Janich’s defi-
nition of the homogeneous density of a body can hardly be reconciled
with the pragmatic program of protophysics; for to verify that any two
parts of the body, equal in volume, are also tractionally equal would
demand an infinite number of technical operations.

In all the definitions of inertial mass discussed so far, whether they
have been proposed by protophysicists, by operationalists, or by ad-
vocates of any other school of the philosophy of physics, one fact has
been completely ignored or at least thought to be negligible. This is the
inevitable interaction of a physical object—be it a macroscopic body or a
microphysical particle—with its environment. (In what follows we shall
sometimes use the term “particle” also in the sense of a body and call
the environment the “medium” or the “field.”)

Under normal conditions the medium is air. But even if the medium
is what is usually called a “vacuum,” physics tells us that it is not empty
space. In prerelativistic physics a vacuum was thought to be permeated
by the ether; in modern physics and in particular in its quantum field
theories, this so-called vacuum is said to contain quanta of thermal
radiation or “virtual particles” that may even have their origin in the
particle itself. Nor should we forget that even in classical physics the
notion of an absolute or ideal vacuum was merely an idealization never
attainable experimentally.

Ingeneral, ifa particleis acted upon by a force F, its acceleration a in the
medium can be expected to be smaller than the hypothetical acceleration
ag it would experience when moving in free space. However, if a < a9
then the mass m, defined by F/a, is greater than the mass my, defined
by F/ag. This allows us to write m = mg + §m, where m denotes the
experimentally observable or “effective” mass of the particle, myq its
hypothetical or “bare” mass, and ém the increase in inertia owing to
the interaction of the particle with the medium.

These observations may have some philosophical importance. Should
it turn out that there is no way to determine 1, i.e., the inertial behavior
of a physical object when it is not affected by an interaction with a field,
it would go far toward supporting the thesis that the notion of inertial
mass is a theoretical concept. Let us therefore discuss in some detail how

64 F, Steinle, “Was ist Masse? Newton’s Begriff der Materiemenge,” Philosophia Naturalis
29, 94-118 (1992).
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such interactions complicate the definition of inertial mass and lead to
different designations of this notion corresponding to the medium being
considered.

Conceptually and mathematically the least complicated notion of this
kind is the concept of “hydrodynamical mass.” Its history can be traced
back to certain early nineteenth-century theories that treated the ether
as a fluid, and in its more proper sense in the mechanics of fluids to Sir
George Gabriel Stokes’s extensive studies in this field.* However, the
term “hydrodynamical mass” was only given currency in 1953 by Sir
Charles Galton Darwin, the grandson of the famous evolutionist Charles
Robert Darwin.®

In order to understand the definition of this concept let us consider
the motion of a solid cylinder of radius r moving through an infinite

incompressible fluid, say water or air, of density p, with constant velocity

v. The kinetic energy of the fluid is E{dn = lmpr?v? and its mass per unit

thickness is M’ = mpr2.¥ If M denotes the mass of the cylinder per
unit thickness, then the total kinetic energy of the fluid and cylinder is
clearly Eyin = 1(M + M")v?; and if F denotes the external force in the
direction of the motion of the cylinder, which sustains the motion, then
the rate at which F does work, being equal to the rate of increase in Eyin,

is given by
Fv = dEy/dt = (M + M')vdo/dt. (1.29)

This shows that the cylinder experiences a resistance to its motion equal
to M'dv/dt per unit thickness owing to the presence of the fluid. Compar-
ison with Newton’s second law suggests that M + M’ be called the “vir-
tual mass” of the cylinder and the added mass M’ the “hydrodynamical
mass.” It can be shown to be quite generally true that every moving body
in a fluid medium is affected by an added mass so that its virtual mass is
M + kM, where the coefficient k depends on the shape of the body and
the nature of the medium. Clearly the notion of “hydrodynamic mass”
poses no special problems because it is formulated entirely within the
framework of classical mechanics.

65 G. G. Stokes, “On the Steady Motion of Incompressible Fluids,” Transactions of the
Cambridge Philosophical Society 7, 439-455 (1842); Mathematical and Physical Papers, vol. 1
(Cambridge, U.K.: The University Press, 1880), pp. 1-16.

66 C. G. Darwin, “Notes on Hydrodynamics,” Proceedings of the Cambridge Philosophical
Society 49, 342-354 (1953).

67 For a rigorous proof see, e.g., L. M. Milne-Thomson, Theoretical Hydrodynamics (Lon-
don: Macmillan, 1968), pp. 246-247.
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Much more problematic is the case in which the medium is not a fluid
in the mechanical sense of the term but an electromagnetic field whether
of external origin or one produced by the particle itself if it is a charged
particle such as the electron. Theories about electromagnetic radiative
reactions have generally been constructed on the basis of balancing the
energy-momentum conservation. But the earliest theory that a moving
charged body experiences a retardation owing to its own radiation, so
that its inertial mass appears to increase, was proposed by the Scottish
physicist Balfour Stewart on qualitative thermodynamical arguments.®
Since a rather detailed historical account of the concept of mass in
classical electromagnetic theory has been given elsewhere,® we shall
confine ourselves here to the following very brief discussion.

Joseph John Thomson, who is usually credited with having discovered
the electron, seems also to have been the first to write on the electro-
magnetic mass of a charged particle. Working within the framework
of James Clerk Maxwell’s theory of the electromagnetic field, Thomson
calculated the field produced by a spherical particle of radius r, which
carries a charge e and moves with constant velocity v.” He found that
the kinetic energy of the electromagnetic field produced by this charge—
this field playing the role of the medium as described above—is given
by the expression

Eﬁllf“ = kezvz/Zrcz, (1.30)

where the coefficient k, of the order of unity, depends on how the charge
e is distributed in, or on, the particle. Comparing (1.30) with the usual
equation for kinetic energy (one-half times mass times velocity squared)
Thomson concluded that the charged particle has an electromagnetic
mass Meim given by

Meim = ke? /rc?. (1.31)

Were the particle uncharged, its kinetic energy would be Eyi, = m/ 202,
where my is its mechanical inertial mass. Hence, Thomson contended,
the total kinetic energy of the charged particle is

68 B. Stewart, “On the Temperature Equilibrium of an Enclosure in Which There Is a
Body in Visible Motion,” Reports of the British Association for the Advancement of Science,
Edinburgh 187, 45-47 (1871).

9 See chapter 11 in COM.

707.]. Thomson, “On the Electric and Magnetic Effects Produced by Motion of Electrified
Bodies,” Philosophical Magazine 11, 229-249 (1881).
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ERR = (mg + e )0?/2, (1.32)

an equation that shows that the experimentally observable mass of the
particle is given by

m = mo + Melm. (1.33)

In agreement with our earlier equation m = mg + ém, my can also be
called the bare mass and §m = mey the inertia of the field produced
and surrounding the charged particle.”

Although Thomson still regarded the increase in inertial mass as
a phenomenon analogous to a solid moving through a perfect fluid,
subsequent elaborations of the concept of electromagnetic mass, such
as those carried out by Oliver Heaviside, George Francis Fitzgerald, and,
in particular, by Hendrick Antoon Lorentz, suggested that this notion
may well have important philosophical consequences. For, whereas the
previous tendency had generally been to interpret electromagnetic pro-
cesses as manifestations of mechanical interactions, the new conception
of electromagnetic mass seemed to clear the way toward a reversal of
this logical order, i.e., to deduce mechanics from the laws of electromag-
netism. If successful, such a theory would explain all processes in nature
in terms of convection currents and their electromagnetic radiation,
stripping the “stuff” of the world of its material substantiality.

However, such an electromagnetic world-picture could be established
only if it could be proved that my, the mechanical or bare mass of a
charged particle, has no real existence. Walter Kaufmann, whose well-
known experiments on the velocity dependence of inertial mass played
an important role in these deliberations, claimed in 1902 that m, which
he called the “real mass” (“wirkliche Masse”)—in contrast to Meim,
which he called the “apparent mass” (“scheinbare Masse”)—is zero,
so that “the total mass of the electron is merely an electromagnetic
phenomenon.””? At the same time, Max Abraham, in a study that can
be regarded as the first field-theoretic treatment of elementary particles,
showed that, strictly speaking, the electromagnetic mass is not a scalar

71 For amodern derivation of equation (1.31) see, e.g., W.K.H. Panofsky and M. Phillips,
Classical Electricity and Magnetism (Reading, Mass.: Addison-Wesley, 1956), pp. 314-317;
or J. Vanderlinde, Classical Electromagnetic Theory (New York: John Wiley and Sons, 1993),
pp. 317-319.

72W. Kaufmann, “Die magnetische und elektrische Ablenkbarkeit der Becquerelstrah-
len und die scheinbare Masse der Elektronen,” Gottinger Nachrichten 1902, 143-155; “Uber
die elektromagnetische Masse des Elektrons,” ibid., pp. 291-296.
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but rather a tensor with the symmetry of an ellipsoid of revolution and
proclaimed: “The inertia of the electron originates in the electromagnetic
field.”” However, he took issue with Kaufmann’s terminology, for, as
he put it, “the often used terms of ‘apparent’ and ‘real’ mass lead to
confusion. For the ‘apparent’ mass, in the mechanical sense, is real, and
the ‘real’ mass is apparently unreal.””

Lorentz, therevered authority in this field, was more reserved. In a talk
“On the Apparent Mass of Ions,” as he used to call charged particles, he
declared in 1901: “The question of whether the ion possesses in addition
to its apparent mass also a real mass is of extraordinary importance;
for it touches upon the problem of the connection between ponderable
matter and the ether and electricity; I am far from being able to give a
decisive answer.”” Furthermore, in his lectures at Columbia University
in 1906 he even admitted: “After all, by our negation of the existence of
material mass, the negative electron has lost much of its substantiality.
We must make it preserve just so much of it that we can speak of
forces acting on its parts, and that we can consider it as maintaining
its form and magnitude. This must be regarded as an inherent property,
in virtue of which the parts of the electron cannot be torn asunder by
the electric forces acting on them (or by their mutual repulsion, as we
may say).””®

It should be recalled that at the same time Henri Poincaré also insisted
on the necessity of ascribing nonelectromagnetic stresses to the electron
inorder to preserve the internal stability of its finite charge distribution.”
But clearly, such a stratagem would put an end to the theory of a purely
electromagnetic nature of inertial mass. The only way to save it would
have been to describe the electron as a structureless point charge, which
means to take » = 0. But then, as can be seen from equation (1.30), the
energy of the self-interaction and thus the mass of the electron would
become infinite. Classical electromagnetic theory has never resolved
this problem. As we shall see in what follows, the same problem of

73M. Abraham, “Die Dynamik des Elektrons,” Gottinger Nachrichten 1902, 20-41.

74 Abraham, “Die Dynamik des Elektrons,” p. 24.

75H. A. Lorentz, “Uber die scheinbare Masse der Ionen,” Physikalische Zeitschrift 2,
78-79 (1901).

76 H. A. Lorentz, The Theory of Electrons (Leipzig: Teubner, 1909, 1916; New York: Dover,
1952), p. 43.

77 H. Poincaré, “Sur la dynamique de 'électron,” Rendiconti del Circolo Matematico di
Palermo 21, 129-176 (1906); Oeuvres de Henri Poincaré, vol. 9 (Paris: Gauthier-Villars, 1954),
pp- 494-550.
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a divergence to infinity also had to be faced by the modern field theory
of quantum electrodynamics.

With the advent of the special theory of relativity in the early years of
the twentieth century, physicists and philosophers focused their atten-
tion on the concept of relativistic mass. Since this notion will be dealt
with in the following chapter we shall turn immediately to the quantum-
mechanical treatment of inertial mass but for the time being only insofar
as the medium affecting the mass of a particle consists of other particles
arranged in a periodic crystal structure. This is a subject studied in the
quantum theory of solids or condensed matter and leads to the notion
of effective mass. More specifically, we consider the case of an electron
moving under the influence of an external force F through a crystal.

Let us recall that in accordance with the wave-particle duality in
quantum mechanics the electron has to be treated as a wave packet,
so that its velocity is given by the equation for the group velocity

vy = v =dw/dk, (1.34)

where o denotes the angular frequency and k the wave number. Since its
energy E satisfies the Einstein energy-frequency relation E = fiw, where
1 is Planck’s constant & divided by 27, the velocity of the electron is

v =h""dE/dk (1.35)
and its acceleration is
a = dv/dt = (dv/dk)(dk/dt) = b~ (d*E/dk?) (dk/dF). (1.36)

However, in accordance with the work-energy relation Fodt = dE =
(dE/dk)dk, so that by (1.35) F(h~'dE/dk)dt = (dE/dk)dk. Hence,

F = h(dk/dt). (1.37)

Defining the mass, now called the effective mass and denoted by m*,
in the usual way as the ratio between force and acceleration (F/a), from
equation (1.36) we obtain

m* = W (d*E/dk*>) . (1.38)

In fact, if we recall the de Broglie momentum-wave-number relation
p = hk and use m* in the energy equation E = p?/2m*, we get

E = #°k? )2m*, (1.39)

which shows that d2E/dk? = #* /m*, which is consistent with the defini-
tion of effective mass.
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Obviously, m* has a constant value only for energy bands of the
form E = Eg + const. - k2. But even in this case the effective mass
may differ from the value of the inertial mass of a free electron. This
difference is, of course, to be expected; for in general the acceleration
of an electron moving under a given force in a crystal may well differ
from the acceleration of an electron that is moving under the same force
in free space. What is more difficult to understand intuitively is the fact
that, owing to reflections by the crystal lattice, an electron can move in
a crystal in the direction opposite to that it would have in free space. In
this case the effective mass m* is negative.”

We conclude this survey with a brief discussion of the concepts of bare
mass and experimental or observed mass as they are used in quantum
electrodynamics, which, like every field theory, ascribes a field aspect
to particles and all other physical entities and studies, in particular, the
interactions of electrons with the electromagnetic field or its quanta, the
photons.

Soon after the birth of quantum mechanics it became clear that a
consistent treatment of the problems of emission, absorption, and scat-
tering of electromagnetic radiation requires the quantization of the
electromagnetic field. In fact, Planck’s analysis of the spectral distri-
bution of blackbody radiation, which is generally hailed as having
inaugurated quantum theory, is, strictly speaking, a subject of quantum
electrodynamics.”

Although no other physical theory has ever achieved such spectacular
agreement between theoretical predictions and experimental measure-
ments, some physicists, including Paul A. M. Dirac himself, have viewed
it with suspicion because of its use of the so-called “renormalization”
procedure, which was designed to cope with the divergences of self-
energy or mass, a problem that, as noted above, was left unresolved
by classical electromagnetic theory. It reappeared in quantum electro-
dynamics for the first time in 1930 in J. Robert Oppenheimer’s calcula-
tion of the interaction between the quantum electromagnetic field and an
atomic electron. “It appears improbable,” said Oppenheimer, “that the
difficulties discussed in this work will be soluble without an adequate

78 For details see, e.g., C. Kittel, Introduction to Solid State Physics (New York: John Wiley
and Sons, 1953, 1986), chapter 8.

79 For details see M. Jammer, The Conceptual Development of Quantum Mechanics (New
York: McGraw-Hill, 1966; enlarged and revised edition, New York: American Institute of
Physics, 1989), chapter 3.
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theory of the masses of electron and proton, nor is it certain that such a
theory will be possible on the basis of the special theory of relativity.”
The “adequate theory” envisaged by Oppenheimer took about twenty
years to reach maturity.

As is well known, in modern field theory a particle such as an elec-
tron constantly emits and reabsorbs virtual particles such as photons.
The application of quantum-mechanical perturbation theory to such
a process leads to an infinite result for the self-energy or mass of the
electron. (Technically speaking, such divergences are the consequences
of the pointlike nature of the “vertex” in the Feynman diagram of the
process.) Here it is, of course, this “cloud” of virtual photons that plays
the role of the medium in the sense discussed above.

As early as the first years of the 1940s, Hendrik A. Kramers, the long-
time collaborator of Niels Bohr, suggested attacking this problem by
sharply distinguishing between what he called mechanical mass, as
used in the Hamiltonian, and observable mass;®! but it was only in the
wake of the famous four-day Shelter Island Conference of June 1947
that a way was found to resolve—or perhaps only to circumvent—
the divergences of mass in quantum electrodynamics. At this confer-
ence Willis E. Lamb reported on the brilliant experiment that he and
Robert C. Retherford had performed using newly invented microwave
techniques, which demonstrated what became known as the Lamb-
Retherford or Lamb shift, namely that the first two excited states of
hydrogen, 2s 1 and 2p 1, are not degenerate but, contrary to Dirac’s
theory, differ by about 1000 MHz. Perhaps inspired by Kramers’s re-
marks at the conference, Hans Albrecht Bethe realized immediately—
actually during his train ride back from Shelter Island—that the Lamb
shift can be accounted for by quantum electrodynamics if this theory
is appropriately interpreted. He reasoned that when calculating the
self-energy correction for the emission and reabsorption of a photon
by a bound electron, the divergent part of the energy shift can be
identified with the self-mass of the electron. Hence, in the calculation
of the energy difference for the bound-state levels, as in the Lamb
shift, the energy shift remains finite since both levels contain the
same, albeit infinite, self-mass terms that cancel each other out in the

80J. R. Oppenheimer, “Note on the Theory of the Interaction of Field and Matter,”
Physical Review 35, 461-477 (1930).

81 See in this context M. Dresden, H. A. Kramers—Between Tradition and Revolution (New
York: Springer-Verlag, 1987), chapter 16.
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subtraction.®? It is this kind of elimination of infinities, based on the
impossibility of measuring the bare mass mg by any conceivable exper-
iment, that constitutes the renormalization of mass in quantum electro-
dynamics. A more detailed exposition of the physics of mass renormal-
ization can be found in standard texts on quantum field theory,* and its
mathematical features in John Collin’s treatise.®* The reader interested
in the historical aspects of the subject is referred to the works of Olivier
Darrigol and Seiya Aramaki,® and the philosopher of contemporary
physics to the essays by Paul Teller.%

82H. Bethe, “The Electromagnetic Shift of Energy Levels,” Physical Review 72, 329-341
(1947); reprinted in J. Schwinger, ed., Selected Papers on Quantum Electrodynamics (New
York: Dover, 1958), pp. 139-141.

83 See, e.g., S. Weinberg, The Quantum Theory of Fields (Cambridge: Cambridge Uni-
versity Press, 1995), chapter 12; or M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (Reading, Mass.: Addison-Wesley, 1995).

847. Collins, Renormalization (Cambridge: Cambridge University Press, 1985).

85 0. Darrigol, Les Débuts de la Théorie Quantique des Champs (Ph.D. Thesis, Université
de Paris I, 1982); S. Aramaki, “Formation of the Normalization Theory in Quantum
Electrodynamics,” Historia Scientiarum 32, 1-42 (1987), 36, 97-116 (1989), 37, 91-112 (1989).

86 P. Teller, “Three Problems of Renormalization,” in H. R. Brown and R. Harré, ed.,
Philosophical Foundations of Quantum Field Theory (Oxford: Clarendon Press, 1998), pp. 73—
89; “Infinite Renormalization,” Philosophy of Science 56, 238-257 (1989).
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Relativistic Mass

HAVING CONFINED our attention thus far to the concept of the inertial
mass of classical physics we turn now to its relativistic analogue, the
concept of mass in the special theory of relativity. If we ignore for
the time being Mach’s principle, which will be discussed in a different
context, we can say thatin classical physics inertial mass m; is an inherent
characteristic property of a particle and, in particular, is independent of
the particle’s motion. In contrast, the relativistic mass, which we denote
by m,, is well known to depend on the particle’s motion in accordance
with the equation

my = mo(1 — u?/c*)~ V2, .1)

where mj is a constant with the dimensionality of mass, u is the velocity
of the particle as measured in a given reference frame S, and c is the
velocity of light. Since u depends on the choice of S relative to which it is
being measured, m, also depends on S and is consequently a relativistic
quantity and not an intrinsic property of the particle.

In an inertial reference frame Sy, in which the particle is at rest, u = 0
and m, obviously reduces to my. For this reason mj is usually called the
rest mass (or proper mass) of the particle. From a logical point of view, m
is just a particular case of the relativistic mass and there is not yet any
cogent reason to identify it with the Newtonian mass of classical physics.
However, as in the so-called nonrelativistic limit, i.e., for velocities that
are small compared with the velocity of light (1 < c), the mathematical
equations of special relativity reduce to the corresponding equations of
classical physics, many theoreticians regard this correspondence as a
warrant to identify my with the Newtonian mass of classical physics.
However, as we shall see later on, this inference can be challenged—at
least on philosophical grounds.

In order to comprehend fully the importance of modern debates on
the status of the concept of relativistic mass and its role in physics it
seems worthwhile to retrace the historical origins of this concept. Its
history is as old as the theory of relativity itself. In his very first paper
on relativity, the famous 1905 essay, “On the Electrodynamics of Moving
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Bodies,”! Einstein introduced the notion of relativistic mass, though not
in its later accepted form, when he discussed, in the last section of the
essay, the dynamics of a slowly accelerating charged particle.

True, the notion of a velocity-dependent mass and, in particular,
Max Abraham’s conception of longitudinal and transverse masses of
electrons, corresponding to the components of the external force along
or normal to the electron’s trajectory, had been widely discussed even
before the theory of relativity was proposed.? Even equation (2.1) for
the mass of an electron in motion had appeared in the literature prior to
1905.2 However, all these notions and proposals originated within the
framework of theories that were based on specific assumptions concern-
ing the shape of the electron or the distribution of its charge and were
part of the electromagnetic world-picture, according to which “mass . . .
is of purely electromagnetic nature” and mechanics essentially but a
subdivision of electromagnetism. Thus it should be emphasized that in
spite of the title of Einstein’s first relativity paper and regardless of the
importance he attributed to electromagnetic considerations, throughout
that paper, including the derivation of the relativistic equations of mass,
Einstein never did endorse the electromagnetic world-picture nor did
he ever regard mechanics as a subdivision of electromagnetism.

Let us outline briefly—in modern notation—Einstein’s treatment of
the dynamics of a slowly accelerating charged particle in an electromag-
netic field and the derivation of his equations of relativistic masses. Let
S’ with coordinates x’, i, z/, and t' be the reference frame in which the
particle is momentarily at rest and thus satisfies the equations of motion,

21/ 24,/ 2.7
moit—/xz = eE,, moflt—/y2 = eE’y mo‘;_/zz =¢eE], 2.2)
where e is the charge of the particle, E' = (E’,, E ;, E!) is the electric field,
and my is the mass of the particle, as long as its motion is slow. Using
the Lorentz transformation and the relativistic transformation of the

1 A. Einstein, “Zur Elektrodynamik bewegter Korper,” Annalen der Physik 17, 891-921
(1905); The Collected Papers of Albert Einstein (Princeton: Princeton University Press, 1989),
vol. 2, pp. 276-306. English translation in the Princeton translation project (Princeton
University Press, 1989), pp. 140-171; also in A. Einstein, H. A. Lorentz, H. Minkowski,
and H. Weyl, The Principle of Relativity (New York: Dover, 1952), pp. 35-65.

2See chapter 11 of COM.

3See, e.g., H. A. Lorentz, “Electromagnetic Phenomena in a System Moving with Any
Velocity Smaller Than That of Light,” Proceedings of the Academy of Sciences of Amsterdam
6, 809-832 (1904); reprinted in Einstein et al., The Principle of Relativity, pp. 11-34.
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components of the electric field E = (Ey, E,, E,) and the magnetic field
B = (B:, By, B), previously established in his paper, Einstein derived
the equations of motion in a reference frame S relative to which both the
particle and the frame S’ are moving with velocity u along the positive
X-axis:

d’x e

W B moyl? *

d*y e

W - mo)/u [Ey - (u/C)Bz]

d’z e

i = v [E; + (”/C)By], (2.3)

where y, = (1 — u?/c?)~1/2, or equivalently,

d?x
mo]/jﬁ = EEx = EE;C

d? ,
mo)/uzd—tlz/ = EVu[Ey - (M/C)BZ] = eEy

d’z

moyMzW = ey, [Ez + (u/c)B,]| = eEL.. (2.4)
Einstein now argued as follows: since the force that acts on the particle
in the reference frame co-moving with the particle is eE’ and “might be
measured, e.g., by a spring balance at rest in this frame,” the equation
mass x acceleration = force implies that the longitudinal mass is

m = moy? = mo(1 — 12 /%) > 2.5)
and the transverse mass is
-1
m=moy; =mo (1 —u?/c*) . (2.6)

Einstein concludes this derivation with two comments: a generaliza-
tion based on a continuity argument and a qualification concerning the
terminology. He generalizes his conclusion by extending its validity
to uncharged particles on the grounds that these “can be made into
charged particles by the addition of an electric charge, no matter how
small”; and he qualifies his result by admitting that “with a different
definition of force and acceleration we should naturally obtain other
values for the masses.”

This is precisely what happened when, less than a year later, Max
Planck proposed a different definition of force, which turned out to be
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more advantageous because it made it possible to establish a Hamilton-
Lagrange formulation for relativistic mechanics.* Planck showed that
equations (2.4) can be written in the form

%(mu) =e[E+ (1/c)u x B], 2.7)
where
m = moy, = mo(1 — u?/c?) "2, (2.8)

Unlike Planck, who wrote (2.7) as three scalar equations for the different
components, we write it as a vector equation in order to show that
as a logical consequence of the special theory of relativity, Einstein’s
derivation of his equations for relativistic mass also implied the well-
known equation e¢(E + (1/c)u x B) for the Lorentz force, which until
then had to be postulated as a separate axiom added to the Maxwell
equations. Furthermore, if, as Newton did, we define force as the (time)
rate of change of momentum and momentum as the product of mass
and velocity, then clearly equation (2.7) implies that the relativistic
momentum is given by

p = mpy,u 2.9)

and the relativistic mass by equation (2.8).

A new chapter in the history of the concept of relativistic mass began
in 1909 when Gilbert N. Lewis and Richard C. Tolman took exception to
the fact that relativistic mechanics had been based on electrodynamics
and that, in particular, the relativistic velocity dependence of mass had
always been derived by recourse to the theory of the electromagnetic
field. Convinced of the conceptual autonomy of mechanics, they insisted
that the expression for relativistic mass, the most fundamental notion in
mechanics, should “be obtained merely from the conservation laws and
the principle of relativity, without any reference to electromagnetics.””

To prove the feasibility of such a procedure they designed a thought
experiment in which two identical bodies are assumed to move toward
each other with equal velocities, to collide elastically, and then to re-

4 M. Planck, “Das Prinzip der Relativitit und die Grundgleichungen der Mechanik,”
Verhandlungen der Deutschen Physikalischen Gesellschaft 4, 136-141 (1906); reprinted in: M.
Planck, Physikalische Abhandlungen und Vortrige (Braunschweig: E. Vieweg, 1958), vol. 2,
pp- 115-120.

5G. N. Lewis and R. C. Tolman, “The Principle of Relativity and Non-Newtonian
Mechanics,” Philosophical Magazine 18, 510-523 (1909).
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bound on their original paths in a direction perpendicular to that of
the relative motion of two inertial observers. Applying the principles of
conservation of mass and conservation of momentum and the relativistic
addition theorem of velocities, they derived equation (2.1). Three years
later Tolman generalized this method to the case of a “longitudinal
collision” in which, unlike in the “transverse collision,” the two bodies
move toward each other in the same direction as the relative velocity
of the two observers.” He also broadened his proof to account for “the
general case of any type of collision between any two bodies—elastic or
otherwise.”

For elastic longitudinal collision Tolman proceeded as follows: He
assumed that two identical bodies moving along the x-axis of an inertial
reference frame S with velocities +u and —u are at rest in S at the moment
they collide and then rebound over their original paths with velocities
—u and +u, respectively. If in the reference frame S’ of another observer,
who moves with a constant velocity v relative to S along the x-axis of S,
the velocities and masses before the collision are denoted, respectively,
by u; and u; and m; and m,, then according to the addition theorem,

u—v —Uu—0

= d =—. 2.10
1 —uv/c? an 2=7 + uv/c? @10

Uy
At the moment of the collision, when both bodies are moving in S’ with
velocity —v, their momentum is — (1 +m)v, which by the conservation
principle is equal to the original momentum before the collision. Hence,

(M1 4+ mp)v = myuq + moty = m S +m L 2.11D)
R I IR T oy T P  f o/ ’
which means that

1— 2

m _ 1 - wjc 2.12)
my 1+ uv/c?
and after a simple algebraic transformation

1 — 12/2)1/2
mo_ A2/ Yy (2.13)

my  (L—ud/c)V2

“Remembering that these were bodies that had the same mass my when
at rest, we see that the mass of a body is inversely proportional to
(1 —u?/c*)'/2, where u is its velocity, and have thus derived the desired

6 For details see chapter 12 of COM.
7R. C. Tolman, “Non-Newtonian Mechanics: The Mass of a Moving Body,” Philosophical
Magazine 23, 375-380 (1912).
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relation m = my(1—u?/c?)~1/2.” Tolman therefore declared emphatically
that “the expression m(1 —u?/c?) =1/ is best suited for THE mass [sic] of
a moving body,”® Tolman’s method of introducing relativistic mass has
been adopted by many authors of textbooks on relativity, among them
P. G. Bergmann, M. Born, C. Mgller, W.G.V. Rosser, and M. Schwartz, to
mention only a few. In his own treatise on relativity, which he dedicated
to G. N. Lewis, Tolman introduced the notion of relativistic mass by
means of an elastic longitudinal collision, just as he had done in his 1912
easay.’ It was due, atleast in part, to the work of Tolman and Lewis thatin
1909 the Fortschritte der Physik, the time-honored German equivalent of
Science Abstracts, stopped listing papers on relativity under the heading
of “Elektrizitdt und Magnetismus.”

But did Tolman really establish m = myy,, and thereby relativistic me-
chanics or, as he called it “non-Newtonian” mechanics, “without any ref-
erence to electromagnetics” as he claimed? Does not the very presence of
¢, the velocity of light, in y,, cast some doubt on this claim. The c appears
in Tolman’s’derivation because of his use of the relativistic composition
theorem of velocities, which is a consequence of the Lorentz transfor-
mation, and the latter is, in turn, a consequence of Einstein’s’postulate
of the universal invariance of the velocity of light. But light, after all,
is an electromagnetic phenomenon, the propagation of electromagnetic
waves with the velocity ¢ = (goi0) "1/?, where ¢y is the electromagnetic
permissibility and o the electromagnetic permeability of space.

A conceptually rigorous realization of Tolman’s procedure would re-
quire divesting c of its electromagnetic connotations by conceiving it, for
instance, as the maximum velocity attainable in mechanics in agreement
with the divergence of myy, to infinity for u = c. However, there is a
better alternative, which follows from a remarkable, but little known,
study by Basil V. Landau and Sam Sampanthar, who showed that c can
be introduced as a constant of integration."” The assumptions that these
mathematicians postulate are these: (1) the mass of a particle depends
somehow on its speed; (2) conservation of mass; (3) conservation of
momentum; and (4) some very general conditions, such as the isotropy
of space, assumptions about velocities of frames of reference S, ', and

8 Tolman, Philosophical Magazine 23, 376 (1912).

9R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford: Clarendon Press,
1934), pp. 43-45.

10B. V. Landau and S. Sampanthar, “A New Derivation of the Lorentz Transformation,”
American Journal of Physics 40, 599-602 (1972).
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S” in uniform motion relative to each other, and the assumption that the
functions encountered are differentiable.

They first introduce a velocity composition operation &, which is so
defined that if v is the velocity of S’ relative to S and u is the velocity of S”
relative to §’, then v @ u is the velocity of S” relative to S, and show that
these relative velocities form an abelian group under this operation. This
enables them to associate with every velocity u a real number, called the
pseudovelocity, denoted by the corresponding capital letter U, such that
whenever v®u = w, then V+U = W, orin terms of a function g, defined
by u = gU), g(V) + g() = g(V + U). A simple argument, based on
considerations of a particle coalescing at almost the same speed shows
that assumption (1) can be expressed in the form

m = mof (U), (2.14)

where f(U) is still an unknown function of U but is equal to unity for
u = 0. Since for u = 0 the mass m equals my, my is the rest mass of
the particle. A thought experiment in which a particle of rest mass My
at rest in S disintegrates symmetrically into two particles, each of rest
mass 11 and pseudovelocity +V or —V, respectively, shows that (1) and
(2) imply

and that f is an even function. In S, where m has the pseudovelocity
U, the pseudovelocities of the daughter particlesare U + Vand U -V,
respectively, so that (2) results in

Mof (U) = mof (U + V) + mof (U — V) (2.16)
or from equation (2.15)
(M) =fU+V)+fU —V). (2.17)

Differentiating twice with respect to V and putting V = 0 yields the
differential equation

frOf ) = f"MU) (2.18)
and its solution
f(U) = coshu. (2.19)
Postulate (3) applied to S’ gives
Mof()g(U) = mof (U + V)g(U + V) +mpf (U — V)g(U —v), (2.20)
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which, by virtue of (2.15) and (2.19), becomes

2myg cosh V cosh Ug(U) = mg cosh (U + V)g(U + V)
+ cosh (U — V)gU - V). 2.21)

Differentiating twice again with respect to V and putting V = 0 yields
the differential equation

2sinh Ug'(U) 4+ cosh Ug”"(U) =0 (2.22)
and its solution
c=gU) =ctanh U, (2.23)

where ¢ is a constant of integration. Finally, from equations (2.14), (2.19),
and (2.23) it follows that

m = mof (U) = mg cosh U = mg cosh (tanh “lu/c)
=mo(1 — u?/c*)~1/2 (2.24)

or
m = myy,. (2.25)

Equation (2.25) provides the physical interpretation of the constant of
integration c. As the mass value m of a particle is a real number if and
only if

lul < lcl, (2.26)

c signifies the upper limit of possible velocities of massive particles.
Within the present context, the fact that this upper limit happens to
coincide with the velocity of electromagnetic waves (or light) in vacuo
remains a mystery.

Undoubtedly, Lewis and Tolman would have welcomed this result
had they been alive in 1972." Landau and Sampanthar did not mention
the fact that their derivation of m = myy, closed the gap that had inter-
fered with the complete realization of Tolman’s work. They considered

M Lewis died in 1946, and Tolman in 1948. Only a few years after their deaths
W. Macke showed in a remarkable but little-known paper, “Begriindung der speziellen
Relativitatstheorie aus der Hamiltonschen Mechanik,” Zeitschrift fiir Naturforschung 7a,
76-78 (1952), that the Hamiltonian canonical formalism, which includes energy and time,
leads to a velocity-dependent mass and, provided that the limiting velocity is identified
with the velocity of light, to the Lorentz transformations in compliance with Tolman’s
program.
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this derivation only as a prelude to their main objective, which was
the derivation of the Lorentz transformations from the equation for
relativistic mass and the conservation laws for mass and momentum.

As this work is not germane to our present concern, we will describe
the way in which it was carried out only briefly. The analysis of a
symmetric disintegration of a particle into two fragments with respect
to two different inertial reference frames, combined with the relativistic
mass equation, led to the relativistic composition rule of velocities. This
rule implied that the Galilean transformation had to be replaced by
another transformation, which from the assumption that it transforms
a uniform motion along a straight line in one reference frame into the
same kind of motion in the other frame, turned out to be the Lorentz
transformation.

The fact that the Lorentz transformation and the relativistic mass
equation mutually imply one another seems to indicate that the relation
between these two is more intimate than commonly thought. Indeed,
we shall show that the equation m = myy, is a direct consequence of the
Lorentz transformation without recourse to any collision experiments
or other auxiliary devices. Since the Lorentz transformations transform
four-vectors, such as the space-time position four-vector, X = (xg =
ct,x1 = x,x, =Y, x3 = z) = (g, X), of an inertial reference frame S into a
four-vector such as X' = (x;, X') of another reference frame S, it is clear
that the formalism we have to use is that of four-vectors. We assume, of
course, that the mass of a particle, as measured in a reference frame, may
depend on the particle’s velocity relative to this frame and that the parti-
cle’s rest mass my is its mass as measured in a frame in which the particle
is at rest. We denote the Lorentz transform of any quantity g by q'. Let

P = (cqo = po, px = miky, py = muy, p, = muz) = (po, p) (2.27)

be a four-vector in S, where m is the mass of the particle in S, u,, Uy, Uy
are the components of the velocity u of the particle in S, and g is an
as yet uninterpreted quantity subject to the condition that P transforms
like a four-vector. For a particle moving with velocity u = u, # 0 along
the x-axis of S the four-vector P reduces to

P = (cqo, mu, 0, 0). (2.28)

In an inertial frame S, in standard configuration with S and with
its origin attached to the particle, the particle’s mass, according to the
assumptions we made above, is
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m =my (2.29)
and P transforms into
P" = (cqy = po. Px- Py P2) = (¢4, 0,0, 0), (2.30)
where p/ is given by
P = Yu(px — udo) (2.31)

in accordance with the Lorentz transformation x' = y,,(x — ut). Hence
by (2.28) and (2.30)

0 = yu(mu — uqo) (2.32)
or, since u # 0,
Jo=m (2.33)
and therefore
qo =m' = my. (2.34)
Furthermore,
0 = vulgo — (w/c)p,] (2.35)

in accordance with the Lorentz transformation t' = y, [t — (u/c?)x].
Hence by (2.28), (2.33), and (2.34)

my = yu(m — mu?/c*) = my, " (2.36)
or
m = myy,. (2.37)

It will have been noted that only the Lorentz transformations have
been used in this derivation of (2.37). As the special theory of relativity
is characterized by invariance under the Lorentz (or rather Poincaré)
group, this derivation of (2.37) seems to support Tolman’s designation
of the relativistic mass as the mass of a particle.

Yet, particle physicists generally ignore the notion of relativistic mass
and, as a rule, use only the concept of the velocity-independent mass
mo, which they measure in units of MeV/c? in accordance with the
mass-energy relation, usually symbolized by the equation E = mc?.
This relation will be dealt with in detail only in chapter 3, but we find
it appropriate to refer to it in the present context insofar as it is relevant
to the notion of relativistic mass.
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First of all, it will have been noted that the four-vector P as defined in
(2.27) is precisely the relativistic momentum four-vector usually defined
as the product of my and the four-velocity U, with U defined as the
derivative of the space-time position four-vector X with respect to the
invariant proper time 7, i.e.,

P = (po, p) = moU = mpdX /dr. (2.38)

In the nonrelativistic limit, where y, — 1, expansionof cpg = c2qoor, by
(2.33), expansion of mc? gives mc? = moc*(1—u?/c?)~V? = moc®+ Lmou+
terms of higher order in u.

Since lmu? is the classical kinetic energy of the particle to which
the relativistic kinetic energy should reduce in this limit, the relativ-
istic kinetic energy is defined by Eyin = mc® — moc?, the rest energy
by Ey = moc%, and the total energy of the particle by E = ¢y + Exin
= mc>.

The preceding remarks concerning the mass-energy relation have
been referred to, in anticipation of chapter 3, because of the role they
have played in what has probably been the most vigorous campaign ever
waged against the concept of relativistic mass. In 1989, Lev Borisovich
Okun, a prominent particle physicist known for his work on weak inter-
actions, published some essays in which he emphatically declared that
“in the modern language of relativity there is only one mass, the New-
tonian mass m, which does not vary with velocity,” and “there is only one
mass in physics which does not depend on the reference frame.”*> Okun
blamed all those who, like Tolman or Wolfgang Pauli, distinguished
between “rest mass” and “relativistic velocity-dependent mass” and
caused thereby widespread confusion that has marred even the “most
serious monographs on relativistic physics.” Okun maintained that the
main reason for this confusion was the popular expression of Einstein’s
mass-energy relation given by E = mc?.

In order to illustrate the widespread extent of this confusion even
among professional physicists Okun reports on an opinion poll that he
conducted among his colleagues at the Moscow Institute for Theoretical
and Experimental Physics. In this poll he presented the following four
equations:

121, B. Okun, “The Concept of Mass (Mass, Energy, Relativity),” Uspekhi Fisicevskikh
Nauk 158, 511-530 (1989). Soviet Physics Uspekhi 32, 629-638 (1989). “The Concept of Mass,”
Physics Today 42, 31-36 (June 1989).

51



CHAPTER TWO
(D) Ey = mc? (II) E = mc? (III) Ey = moc?
(IV) E = myc? (2.39)
and asked the following two questions:

(Q1) Which of these equations most rationally follows from spe-
cial relativity and expresses one of its main consequences and
predictions?

(Q2) Which of these equations was first written by Einstein and was
considered by him a consequence of special relativity?

As Okun recounts it, most of his colleagues opted for equations (II) or
(III) as the answer to both questions and not for equation (I), which
according to Okun is the only correct answer to both. To prove his
contention Okun refers to the two fundamental equations of special
relativity: to the energy-momentum four-vector equation

E? — p2m2 = m?c?, (2.40)

in which each side is a scalar and m is the ordinary mass, “the same as
in Newtonian mechanics,” and to the equation for the momentum

p =uE/c% (2.41)

Since for u = 0, Okun continues, equation (2.41) yields p = 0 and E
becomes the rest energy Eo, equation (2.40) reduces to Ey = mc?, i.e.,
equation (I), where of course, in accordance with Okun’s above quoted
declaration, m denotes the ordinary Newtonian mass. For “as soon as
you reject the ‘relativistic mass’ there is no need to call the other mass the
‘rest mass’ and to mark it with the index 0.” Okun then asks the following
question: if the notation 1y and the term “rest mass” have to be rejected,
why should the notation Ey and the term “rest energy” be retained?
His answer is: “because mass is a relativistic invariant and is the same
in different reference systems, while energy is the fourth [timelike]
component of a four-vector (E, p) and is different in different reference
systems. The index 0 in Ej indicates the rest system of the body.”

As we shall see in what follows, Okun’s position on this issue can
well be defended and is, in fact, very similar to that adopted by Edwin
F. Taylor and John Archibald Wheeler in their influential text Spacetime
Physics, which will be referred to in due course. However, the answer
he gives to his second question is more problematic. As this question
is of an historical nature, it can be interpreted in two different ways.
If it asks which of the four equations (I) to (IV) did Einstein write in
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his “first” (1905) paper on the mass-energy relation, the answer, as we
shall see in chapter 3, is “none.” If it asks which of these four equations
did Einstein write when he expressed this relation for the “first” time
in the form of an equation, and not in words as he had done in his
early papers on this issue, the answer is equation (I), but written in
the notation uv> = ¢y, in a footnote on p- 425 of his 1907 essay “Uber
die vom Relativitatsprinzip geforderte Tragheit der Energie.” Okun’s
answer that “Einstein formulated the famous mass-energy relationin the
second of his 1905 papers on relativity in the form AEy = Amc?,” though
conceptually correct, is not found in that paper in this mathematical
formulation. More details and references on Einstein’s treatment of the
mass-energy relation will be presented in chapter 3.

It is instructive to compare Okun’s argument in favor of equation (I)
with the counterargument offered by the proponents of the notion of
relativistic mass and equation (II) with m being the relativistic mass.
They start with the above statement that the total energy of a particle is
the sum of its rest energy and its kinetic energy, the work done on the
particle from its position of rest. They then show that the latter satisfies
the equation dEy;, = d(my,c?), where m denotes the Newtonian mass
and y, stands for (1—u?/c?)~1/2. Since u = 0 implies Ex;, = 0, integration
yields Eyin = mc?(y, — 1) = m,c* — mc* and Ey = mc?, which m, denotes
the relativistic mass. Finally, E = Ey + Eyin implies

E = m,c?, (2.42)

which is, of course, equation (II) with m interpreted as m,.

Let us also point out that Tolman’s approach was adopted by many
authors of the earlier textbooks on relativity. Thus, for example, in his
influential treatise on relativity Max Born using conservation of momen-
tum in the case of an inelastic collision concluded that it is impossible to
“retain the axiom of classical mechanics that mass is a constant quantity
peculiar to each body.” Rather, he wrote, “mass is to have different values
according to the system of reference from which it is measured, or, if
measured from a definite system of reference, according to the velocity
of the moving body.”** This point of view is diametrically opposed to
that of those who reject the legitimacy of m, on the grounds that it is
objectionable that the mass of a particle decreases or increases for no

13 M. Born, Die Relativititstheorie Einsteins und ihre physikalischen Grundlagen (Berlin:
J. Springer, 1920, 1922, 1964); Einstein’s Theory of Relativity (New York: Dover, 1962, 1965),
p- 269.
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physical reason, merely by being observed from different perspectives.
Moreover, alluding to the early notions of longitudinal and transverse
mass,'* they claim that “no unique dependence of mass on velocity
follows from the mechanics of special relativity” and that it would
be unreasonable to assume that the mass of a particle, supposed to
be an inherent property, should depend on purely geometrical details
such as the spatial direction of the force or the acceleration of the
moving particle.!®

We shall not give a detailed account of the heated debate pro and
contra m, that has been going on for the last two or three decades
but shall confine our discussion to a few brief comments. First of all,
textual evidence shows that the use of four-vectors for the presentation
of relativity does not enforce any preference in this matter. Thus Joseph
Aharoni, who develops relativistic dynamics in four-vector notation,
writes: “the theory of relativity forces us to the conclusion that what
is regarded in the classical theory of mass cannot be assumed (as is
done in the classical theory) to be independent of velocity.”*¢ In contrast,
Robert W. Brehme!” and Andrew Whitaker,'® who regard the four-vector
calculus as the “clearest and simplest” way of thinking, reject 7, on the
grounds that “it gives the impression that the effects of relativity are due
to ‘something happening’ to the particle, whereas they are of course due
to the properties of space-time.”

Still, there has been a general tendency in recent years to dispense with
m,. Thus, as Carl G. Adler noted, a widely used textbook ascribed in
its earlier editions (1963) to the concept of relativistic mass “the greatest
importance when dealing with atomic and subatomic particles,” but
in its later editions (1976, 1980) describes the very same concept as
“misleading” and “not necessary” at all.?’

14 See equations (15) and (16) in chapter 12 of COM.

15 V. L. Ginzburg, “Who Developed the Theory of Relativity,and How?,” in V. A. Ugarov
(ed.), Special Theory of Relativity (Moscow: Mir, 1979), p. 352.

167, Aharoni, The Theory of Relativity (Oxford: Clarendon Press, 1959), p. 140.

17 R. W. Brehme, “The Advantage of Teaching Relativity with Four-Vectors,” American
Journal of Physics 36, 896-901 (1968).

18 M.A.B. Whitaker, “Definition of Mass in Special Relativity,” Physics Education 11,
55-57 (January 1976).

19 C.G. Adler, “Does Mass Really Depend on Velocity, Dad?,” American Journal of Physics
55, 739-743 (1987).

20 F W. Sears and M. W. Zemansky, University Physics (Reading, Mass.: Addison—-Wesley,
1963, 1970, 1976, 1980, 1982).
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According to Taylor and Wheeler the root of this controversy lies in the
fact that the term “mass” is being used in two different connotations—
once in the sense of the invariant (scalar) magnitude of the energy-
momentum four-vector P = (E/c, p) divided by ¢? ie, m = |E> —
p?c?| /c?, and once as the time component of this very same four-vector,
ie., m, = E/c Taylor and Wheeler discourage the use of mass in the
latter sense because it leads to the erroneous belief that the increase in
the energy, alias “mass,” of a particle with velocity or momentum results
from some change in the internal structure of the particle and not in the
geometric properties of space-time itself.”!

More recently, Okun’s polemic condemnation of m, gave rise to an
animated debate in a series of “Letters” in the May 1990 issue of Physics
Today. While Michael A. Vanyck, for example, fully endorses Okun’s re-
jection of m, and suggests even further revisions in this spirit, Wolfgang
Rindler declares: “Okun’s earnest tirade against the use of the concept of
relativistic mass” is harmful for the understanding of relativity. Further,
he adds, “to me, m, is a useful heuristic concept. It gives me a feeling
for the magnitude of the momentum p = m,u at various speeds. The
formula E = m,c? reminds me that energy has masslike properties such
asinertia and gravity, and it tells me how energy varies with speed.”* In
another article, written in 1991, Thomas R. Sandin defends m, even on
aesthetic grounds because “relativistic mass paints a picture of nature
that is beautiful in its simplicity” and its elimination would be “a form
of unnecessary censorship.”?

Although, as noted above, the general trend, especially in the lit-
erature on elementary particle physics, is toward the elimination of
m,, there are quite a few exceptions, mainly in the textbook literature.
Thus, for instance, Richard A. Mould in his recently published text on
relativity argues strongly against the belief that only rest mass should
be admitted. Although he acknowledges the importance of rest mass
because of its invariance under coordinate transformations, he recom-
mends using relativistic mass as well because “it retains the gravitational
and inertial properties long associated with mass, just as energy retains
its familiar association with work-related activity.”** In order to reinforce

21E. F. Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: Freeman, 1963, 1966);
see in particular Table 14: Uses and abuses of the concept of mass, pp. 134-137.

22 “Putting to Rest Mass Misconceptions,” Physics Today 43, 13-15, 115-119 (May 1990).

2 T. R. Sandin, “In Defense of Relativistic Mass,” American Journal of Physics 59, 1032—
1036 (1991).

24 R. A. Mould, Basic Relativity (New York: Springer-Verlag, 1994), p. 119.
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his position he illustrates it in terms of a photon gas, which has a rest
mass equal to zero but, contrary to what is commonly thought, is not
weightless. “Its passive gravitational mass is equal to its relativistic mass
(which equals its total energy >, hvi/c?), so that when it is placed on
a scale in a gravitational field g its weight is equal to Y, hv;/c* x g.
Furthermore, if the gas is accelerated horizontally, it will display inertial
properties also equal to Y, hv;/c?, even at nonrelativistic accelerations.”
The use of m;, is therefore fully justified.

That the crux of this controversy is not a matter of aesthetic simplicity,
terminological convention, or practical applicability but rather, as Taylor
and Wheeler intimated, the result of different mathematical approaches
has recently been argued by R. Paul Bickerstaff and George Patsakos.?
As they point out, a quantity that is an invariant in the nonrelativistic
limit of the Lorentz transformations can be generalized in the relativistic
realm to two quantities with different tensorial characters. The best-
known example, though not mentioned by them, is the concept of time
in classical physics: with respect to the nonrelativistic Galilean transfor-
mation it is an invariant; but if generalized relativistically it becomes
either the scaler “proper time t,” or alternatively the zeroth compo-
nent (divided by c) of the space-time four-vector (ct = xo, x1, X2, x3).
Analogously, the authors claim, the classical (Newtonian) notion of
mass generalizes either to the scaler “rest mass m” or alternatively to
the zeroth component m, = E/c*> of the momentum four-vector. In
fact, the well-known equations df = y,dt and m, = y,m manifest this
analogy in a conspicuous way, which suggests calling z “the rest time”
and m “the proper mass,” as Arthur S. Eddington actually did.? From
the mathematical point of view both sides of the controversy can be
equally well defended, provided the two generalizations are equally
maintainable, and it is at this point that philosophical considerations
come into play.

To understand this issue we have to recall that until not so long
ago philosophers regarded the development of science as a linear con-
tinuous process of ever-increasing accumulation of knowledge. Even
far-reaching innovations in so-called “scientific revolutions” were ulti-
mately, according to this view, only results of articulations and exten-

25R. P. Bickerstaff and G. Patsakos, “Relativistic Generalization of Mass,” European
Journal of Physics 16, 63-68 (1995).

26 A. S. Eddington, The Mathematical Theory of Relativity (Cambridge: Cambridge Uni-
versity Press, 1924, 1965), p. 30.
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sions of existing theories. In the 1960s this so-called “Received View”
was challenged by Thomas S. Kuhn, Paul K. Feyerabend, and others,
who claimed that the development of science is a sequence of dis-
connected different canons of scientific thought, influenced to a great
extent by external factors.”” The various stages in this sequence are
characterized by what Kuhn calls “paradigms” (or later “disciplinary
matrices”), which are “universally recognized scientific achievements
that for a time provide model problems and solutions to a commu-
nity of practitioners.” To adopt a new theory or paradigm means to
accept a completely novel conceptual scheme that has so little in com-
mon with that of the older, now rejected, theory that the two theories
are “incommensurable,” for no objective yardstick exists that makes
it possible to compare them. Furthermore, as the meaning of every
scientific term in a given theory depends upon the theoretical context
in which it occurs, even the individual scientific terms of the new
theory are incommensurable with the terms of the old one, despite
the fact that the same terminology is often retained. Any meaning-
invariance even of homonymous terms of different theories is therefore
strictly denied.

Two of the most frequently quoted incommensurable terms are the
“classical (Newtonian) mass” and the “relativistic rest mass.” Thus,
e.g., according to Feyerabend “the attempt to identify classical mass
with relative [i.e., relativistic] rest mass” cannot be made because these
terms belong to incommensurable theories.?® In another context he says,
“That the relativistic concept and the classical concept of mass are very
different indeed becomes clear if we consider that the former is a relation,
involving relative velocities, between an object and a coordinate system,
whereas the latter is a property of the object itself and independent of its
behavior in coordinate systems.”*

The thesis of the incommensurability of the classical and the relativis-
tic notions of mass can be defended not only on philosophical grounds
but also by physical arguments. It can be argued, following Erik Eriksen

27T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago
Press, 1962, 1970). P. K. Feyerabend, Problems of Empiricism—Philosophical Papers, vol. 2
(Cambridge: Cambridge University Press, 1981).

28 According to Feyerabend, Problems of Empiricism, “two theories will be called in-
commensurable when the meanings of their main descriptive terms depend on mutually
inconsistent principles.”

2P, K. Feyerabend, “Problems of Empiricism,” in R. G. Colodny, Beyond the Edge of
Certainty (Englewood Cliffs, N.J.: Prentice-Hall, 1965), p. 169.
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and Kjell Voyenli, that in particular it would be wrong to regard, as Okun
does, the relativistic rest mass as the only legitimate notion of mass and
as identical with the classical notion of mass and that, instead, both the
classical and the relativistic concepts of mass have to be acknowledged
each in its own right.*

The argument is based on the principle of conservation of momentum
and, in the classical case, on the Galilean transformation and, in the
relativistic case, on the Lorentz transformation. In both cases, masses
are implicitly defined by those constant positive quantities 1 that in a
collision of # incoming particles with velocities uy, . .., u, and p outgo-
ing particles with velocities u,,1, . . ., w,p, relative to a reference frame
S, satisfy the equation

n n+p
iju]- = Z MiUg, (2.43)
j=1 k=n+1

where the total number of particles 1 + p, but in the relativistic case not
necessarily 1 and p separately, is assumed to be invariant.’ In the special
casen =2 and p = 1, so that

miu; + mouy = msus (2.44)

measurement of the velocities, assumed to be not parallel, obviously
determines the mass-ratios, e.g., m; /ms.
Equation (2.43) can also be written in the form

n+p
> gmu; =0, (2.45)
j=1

where ¢ = +1forj =1,...,n,ie., for incoming particles, and 5 = —1

forj=n+1,...n+p,lie, for outgoing particles.

In order to find out how the mass-ratios measured in S are related to
the mass-ratios measured in a reference frame S’ that is moving with
velocity v relative to S, we have to distinguish between the classical and
the relativistic case. Quantities with a prime (') will refer to S'.

S0E. Eriksen and K. Veyenli, “The Classical and Relativistic Concepts of Mass,” Foun-
dations of Physics 6, 115-124 (February 1976).

51 Eriksen and Veyenli consider not only ordinary particles, i.e., so-called tardyons
(with velocity u < c¢), but also luxons (1 = c) and tachyons (1 > c). As is well known,
whether a tachyon is an incoming or an outgoing particle depends on the reference frame.
We confine our discussion to tardyons.
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In classical physics, let equation (2.45) be valid in S and
> gmul =0 (2.46)

be valid in §'. Since according to the Galilean transformation u; = uj/ +v,
we obtain from equation (2.45)

Z gmu; = —v Z &m;. (2.47)
In the case of three particles, equation (2.46) shows that u}, u;, and u are
linearly dependent and therefore define a plane. Hence, the left-hand
side of equation (2.47) is a vector in this plane. Since v can be chosen not
to lie in this plane equation (2.47) splits into the two equations

> gmu =0 (2.48)

> gm; =0, (2.49)

the second of which expresses the conservation of mass. Equations (2.46)
and (2.48) show that

mj/ = nm;, (2.50)

where 7 is a constant for all particles. Equation (2.49) guarantees the
invariance of the mass-ratios. Hence, the selection of a certain particle
as unit mass in every reference frame determines that the mass of every
particle is an invariant.

In relativistic physics, where m now stands for the relativistic mass,
formerly denoted by m,, replacement of the Galilean by the Lorentz
transformation changes equation (2.47) into

Z gmi(1 —v- u]»/cz)u]-’ =—v Z &m;, (2.51)
which again implies that each side equals zero. Again, the equation
> gmi=0 (2.52)

expresses the conservation of mass. Correspondingly, equation (2.50)
has to be replaced by the general mass transformation equation

mj/ =nl—-v- l.lj/Cz)m]', (2.53)

where 7 is the same constant for all particles. If y, denotes (1 —v?/c?)~1/2
and y, and y,, denote the corresponding quantities, the Lorentz trans-
formation leads to

Yo(l —v- u/cz)yuT1 =y (2.54)
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and equation (2.53) reads
My, = /yom v, (2.55)

By virtue of equation (2.55) the invariant mass mo; of the jth particle,
defined by mq; = myy, !, satisfies the equation

mE)]‘ = (n/vo)Mo, (2.56)

which shows the invariance of the mass-ratios. Again, the selection
of a certain particle as unit invariant mass in every reference frame
determines the invariant mass of every particle and (2.56) implies that

n =Y. (2.57)
Equations (2.53), (2.55), and (2.56) now read

m]f = )/v(l - V- uj/cz)m]- (2.58)
S (2.60)

and show that, unlike the mass m;, the mass mg; is an invariant and
that the invariant mass equals the mass in the rest frame of the particle.
Since according to equation (2.52) the sum of the relativistic masses m; is
conserved and the sum of the rest masses 11; is not, whereas according to
equation (2.49) the sum of the classical masses ; is conserved, it would
be wrong to identify the rest mass of a particle with its classical mass.
Further, according to equation (2.53) the relativistic mass-ratios are not
invariant, whereas in accordance with equation (2.49) the classical mass-
ratios are, so it would of course also be wrong to identify the relativistic
mass with the classical mass. “At this stage one might think that the
three concepts of mass are three different physical quantities that may
be dealt with on an equal footing. This would, however, be another
misconception. The relativistic and the classical concepts of mass are
intimately associated with two contradictory theories that deal with
the same subject matter. Hence the classical and relativistic concepts
are rival, contradictory concepts.”*> These words are obviously only a
restatement of the incommensurability thesis described above.

Those who consider the new theory a generalization or extension of
the old one so that the new has a range of applicability that includes

32 Eriksen and Veyenli, Foundations of Physics 6, 123-124 (February 1976).
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that of the old, in agreement with the mathematical generalizations
noted by Bickerstaff and Patsakos, clearly reject the incommensurability
doctrine. So do, in particular, those who regard Newtonian mechanics
as the low-velocity limit of relativistic mechanics, and so certainly do
those who, like Okun, declare that “there is only one mass in physics,
m, which does not depend on the reference frame,” and that m in the
equation E? — p*c? = m*c* “is the ordinary Newtonian mass,” or even
more explicitly, that “the mass of a body . . . is the same, in the theory
of relativity and in Newtonian mechanics.”*

On the other hand, those who like Tolman regard relativistic mechan-
ics as a “non-Newtonian” theory, established on principles independent
of classical physics and declare that “m, is THE mass” in relativity,
obviously endorse the incommensurability doctrine, even if they are
not aware of it. Our analysis of the m vs. m, debate thus leads us to the
conclusion that the conflict between these two formalisms is ultimately
the disparity between two competing views of the development of
physical science.

33 Okun, Physics Today 42, 31-36 (June 1989).
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The Mass-Energy Relation

IT IS CERTAINLY No exaggeration to say that the mass-energy relation,
usually symbolized by E = mc?, is one of the most important and
empirically best confirmed statements in physics. Although initially
conceived as a purely theoretical theorem without any practical applica-
tions, E = mc? eventually became the symbol that marks the beginning
of anew era in the history of civilization—the age of nuclear energy with
its promises and dangers for the human race. As we are interested in
this relation only within the context of our study of the notion of mass,
we ignore all these far-reaching implications and focus our attention
on the conceptual issues involved. We have to admit, however, that
because of its epoch-making consequences the discovery of the mass-
energy relation is itself an important event in the history of physics. It
is therefore interesting to note that the very first proof of this relation—
Einstein’s 1905 derivation—has been criticized as being a logical fallacy
involving a vicious circle.

The first to claim that “the reasoning in Einstein’s 1905 derivation of
the mass-energy relation is defective” was Herbert E. Ives.! Ives’s claim
described in chapter 13 of Concepts of Mass was recently rejected as un-
justified, but had enjoyed rather widespread endorsement.? The alleged
circularity in Einstein’s reasoning was even interpreted as indicative
of his genius when it was said: “Ives has shown (beyond any doubt)
that this [Einstein’s] derivation is circular. That is, Einstein implicitly
postulates the energy-mass relation in his proof. This may be in a way
a tribute to Einstein’s genius, for he seems to intuitively know answers
before he derives them.”?

TH. E. Ives, “Derivation of the Mass-Energy Relation,” Journal of the Optical Society of
America 42, 540-543 (1952).

2See, e.g., H. Arzelies, Etudes Relativistes: Rayonnement et Dynamique du corpuscule chargé
fortement accéléré (Paris: Gauthier-Villars, 1966), pp. 74-79; A. Miller, Albert Einstein’s Special
Theory of Relativity (Reading, Mass.: Addison-Wesley, 1981), p. 377; U. E. Schroder, Spezielle
Relativititsthoerie (Thun: H. Deutsch, 1981), p. 118; K. J. Kohler, “Die Aequivalenz von
Materie und Energie,” Philosophia Naturalis 19, 315-341 (1982); C. A. Zapffe, A Reminder
on E = mc? (Baltimore: CAZLab, n.d.), p. 46.

3 A. F. Antippa, “Variations on a Photon-in-a-Box by Einstein,” UQTR-TH-8 (Quebec:
Université du Québec a Trois-Rivieres, May 1975), pp. 1-52.
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In order to understand the origin of the circularity claim we shall
briefly review, for the convenience of the reader, Einstein’s first deriva-
tion of the mass-energy relation (in the notation of chapter 13 of COM).*

A body B at rest in an inertial frame S and of initial energy content Ey
is supposed to emit two equal quantities of radiant energy in opposite
directions, each of amount AE/2, so that it remains at rest with decreased
energy content E;. Energy conservation requires that

E() = E; + AE. 3.1)

Let Ej and E/ be the energies of B before and after the emission, respec-
tively, as measured in a reference frame S’ that is moving relative to S
with a constant velocity v in a direction making an angle ¢ with the
direction of the emitted radiation. From the relativistic transformation
equation of radiant energy (proved in Einstein’s very first paper on
relativity) and the energy conservation principle it follows that

Ey = E} + 1AEy,[1 4 (v/c) cos ¢1 + L AEy,[1 — (v/c) cos ¢l, (3.2)
where y, = [1 — v?/c?]"1/2. Hence, by subtraction,
(E) — Eo) — (E} —E1) = AE(yy — D). (3.3)

Since E, — Eg and E| — E; are differences in “the energy values of the
same body referred to two reference systems moving relatively to each
other, the body being at rest in one of the two systems . . .it is clear
that the difference E' — E [i.e., E;, — Eg and E; — E;] can differ from the
kinetic evergy T [i.e., To and Tj, respectively] of the body, with respect
to the other system, solely by an additive constant C, which depends on
the choice of the arbitrary additive constants of the energies E" and E”.
Hence, Einstein concluded,

Ey—Ey=Ty+C 3.4)
E;—E;=T;+C 3.5)
and because of (3.3)

4 A. Einstein, “Ist die Tragheit eines Korpers von seinem Energieinhalt abhéngig?,”
Annalen der Physik 18, 639-641 (1905); “Does the Inertia of a Body Depend upon Its Energy
Content?,” in A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl, The Principle of
Relativity (New York: Dover, 1952), pp. 69-71. The original paper is reprinted in The
Collected Papers of Albert Einstein (Princeton: Princeton University Press, 1989), vol. 2,
pp- 312-314; English translation in the translation project, also published by Princeton
University Press, pp. 172-175 (document 24).
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T, — T, = AE(y, — 1). (3.6)

Finally, since in the nonrelativistic limit, where the kinetic energy equals

1mv?, m being the Newtonian mass of the body,

Ty —T; = A (3mo?), B.7)

and, neglecting quantities of the fourth and higher order, the expansion
of AE(y, — 1) yields

AE(y, — 1) = 3(v/c)*AE, 3.8)
where v is constant, it follows from the last three equations that
AE = c*Am 3.9

or in words: “If a body gives off the energy AE in the form of radiation,
its mass decreases by AE/c?.” Generalizing this result Einstein declared:
“The mass of a body is a measure of its energy content.”>

The paper referred to at the beginning of this derivation (Einstein’s
very first paper on relativity) is of course his famous article “Zur Elek-
trodynamik bewegter Koérper” (“On the Electrodynamics of Moving
Bodies”).¢ Precisely two years later Max Planck published his essay “Zur
Dynamik bewegter Systeme” (“On the Dynamics of Moving Systems”),
which, as the title indicates, deals with problems similar to those in
Einstein'’s first relativity paper.” Planck also showed that “through every
absorption or emission of heat the inertial mass of a body changes, the
difference is mass being always equal to the quantity of heat . . . divided
by the square of the velocity of light in vacuo,” and added the remark
that Einstein had already arrived at “essentially the same conclusion
by applying the relativity principle to a special radiation process, but
under the assumption permissible only as a first approximation that the
total energy of a body is composed additively of its kinetic energy and
its energy referred to a system in which it is at rest.”

5 A. Einstein, “Die Masse eines Korpers ist ein Mass fiir dessen Energieinhalt,” Annalen
der Physik 18, 641 (1905).

6 A. Einstein, Annalen der Physik 17, 891-921 (1905). Collected Papers, vol. 2, pp. 276-306
(English translation, pp. 140-171). English translation also in Einstein et al., The Principle
of Relativity, pp. 35-65.

7M. Planck, “Zur Dynamik bewegter Systeme,” Berliner Sitzungsberichte 1907, pp. 542—
570; Annalen der Physik 26, 1-34 (1908); Physikalische Abhandlungen und Vortrige (Braun-
schweig: E. Vieweg, 1958), vol. 2, pp. 176-209.
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Ives, having read this paper by Planck, contended that “what Planck
characterized as an assumption permissible only to a first approximation
invalidates Einstein’s derivation.” In other words, according to Ives,
equations (3.4) and (3.5) are unwarranted, and in order to find the correct
relationships, use has to be made of the equations

Ty = moc*(yy — 1) (3.10)
T;, = mic*(y, — 1) (3.11)

for the kinetic energy, which Einstein had proved in section 10 of his first
relativity paper. As described in chapter 13 of COM, Ives now reasoned
as follows: Subtracting (3.11) from (3.10) yields

Ty — T} = (mg — m)c(yo — 1), (3.12)
which, in view of (3.3) gives
(Ey — Eo) — (E; — E1) = AE (Ty —Tp (3.13)
0 VY T g —mpe 0! '

or considered “as the difference of the two relations,”
AE

E,—Ey=
and

E, —E (T + ), (3.15)

= (mg — my)c
which, if compared with (3.4) and (3.5), show, according to Ives, that

“what Einstein did by setting down these equations (as ‘clear’) was to
introduce the relation”

AE/(my —my)c? =1, (3.16)

which “is the very relation the derivation was supposed to yield.”

The really important issue here is not so much the historical question
of whether Einstein’s first derivation was a petitio principii or not but
rather the question of principle as to whether the derivation is—or can
be supplemented in such a way that it will be—rigorously valid. More
specifically, the issue is whether, contrary to Planck’s remark, equations
(3.4) and (3.5) can be shown to be strictly correct, or equivalently, since
equation (3.3) is undisputable, whether equation (3.6) can be rigorously
maintained. That it cannot, generally speaking, was argued in 1973 by
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Mendel Sachs.® Sachs claimed that if the body is not a structureless
particle but, e.g., a y-ray emitting nucleus, in which electrostatic forces
contribute to the binding of the constituent nucleus, changes in the
electromagnetic configuration energy, relative to the reference frame
in which the body is moving, had to be taken into account. Hence, the
correct equation should read

(T)—T)) + I, — L) = E(y, — 1), (3.17)

where I and I] are the electromagnetic configuration energies in the
excited and de-excited states of the nucleus, respectively.

The issue was taken up again more recently by John Stachel and
Roberto Torretti.? True, they admit, had Einstein really made use of
equation (3.10) or (3.11), he would have indeed committed a circulus
vitiosus, for “he had as yet no grounds for assuming that the dependence
of the kinetic energy on internal parameters can be summed up in a rest
mass term.” But he did not. They also admit that what Einstein regarded
as evident (“it is clear that the difference. . .”) needs an explanation.
They justify Einstein’s derivation by taking into account the internal
energy of anisolated body in equilibrium and at rest in an inertial system
and applying the relativity principle, according to which this state must
be the same when the body is moving in a uniform motion with velocity v
relative to that system. That their justification is not a trivial matter can be
seen from the fact that Willard L. Fadner criticized it on the grounds that
it assumes the possibility “for an observer to measure the rest properties
of a body when the observer is moving at a velocity v relative to that
body,” a conceptual difficulty, which Fadner claims to have eliminated.'

Einstein seems never to have responded to the circularity claim. After
all, Ives’s paper was published only three years prior to Einstein’s death.
Nor does Einstein seem to have been satisfied with his 1905 derivation
or, for that matter, with any other of his various derivations of the mass-
energy relation. Aware of the fundamental importance of this relation,
he regarded it as unsatisfactory that in spite of many strenuous efforts
he did not succeed in establishing a general proof of the relation, that

8 M. Sachs, “On the Meaning of E = mc?,” International Journal of Theoretical Physics 8,
377-383 (1973).

97. Stachel and R. Torretti, “Einstein’s First Derivation of Mass-Energy Equivalence,”
American Journal of Physics 50, 760-763 (1932).

10W. L. Fadner, “Did Einstein Really Discover ‘E = mc*?,” American Journal of Physics
56, 114-122 (1988).
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is, a proof without premises that are valid only in special cases." As
early as in the introduction to his 1907 derivation he declared that to
the question of whether there exist other special cases that would lead
to conclusions incompatible with the relation, “a general answer . . . is
not yet possible because we do not yet have a complete world-view that
would correspond to the principle of relativity.” He remark that only
“ein vollstindiges dem Relativitdtsprinzip entsprechendes Weltbild”
could do full justice to the significance of this relation seems to indicate
that he assigned not only a purely physical-technical significance to
the mass-energy relation but also a deep philosophical meaning, a
perception that as we shall see further on, proved true. That he also
always strived for greater generality by narrowing down the range of
the postulated premises can be gathered from the introductory remarks
to his last published derivation (1946): “The following derivation of
the law of equivalence, which has not been published before, has two
advantages. Although it makes use of the principle of special relativity, it

11Tt would be a psychologically and methodologically interesting research project
to compare Einstein’s various derivations of the mass-energy relation, which are listed
here in chronological order: (1) “Ist die Trédgheit eines Korpers von seinem Energie-
inhalt abhéngig?,” Annalen der Physik 18, 639-641 (1905); Collected Papers of Albert Einstein
(Princeton: Princeton University Press, 1989), vol. 2, pp. 312-314; “Does the Inertia of
a Body Depend upon Its Energy Content?,” A. Einstein, H. A. Lorentz, H. Minkowski,
and H. Weyl, The Principle of Relativity (London: Methuen, 1923; New York: Dover, 1952),
pp- 67-71; Collected Papers (English translations), vol. 2, pp. 172-174. (2) “Prinzip von der
Erhaltung der Schwerpunktsbewegung und die Triagheit der Energie,” Annalen der Physik
20, 627-633 (1906); Collected Papers, vol. 2, pp. 360-366; “The Principle of Conservation
of Motion of the Center of Gravity and the Inertia of Energy,” Collected Papers (English
translation), vol. 2, 200-206. (3) “Uber die vom Relativitétsprinzip geforderte Tragheit
der Energie,” Annalen der Physik 23, 371-384 (1907); Collected Papers, vol. 2, pp. 413-427;
“On the Inertia of Energy Required by the Relativity Principle,” Collected Papers (English
translations), vol. 2, pp. 238-251. (4) Section 14 in “Uber das Relativitatsprinzip und
die aus demselben gezogenen Folgerungen,” Jahrbuch der Radioaktivitdt und Elektronik
4, 411-462 (1907); Collected Papers, vol. 2, pp. 433—484; “On the Relativity Principle and
the Conclusions Drawn from It,” Collected Papers (English translations), vol. 2, pp. 252—
311; “Einstein’s Comprehensive 1907 Essay on Relativity, Part II” (translation by H. M.
Schwartz), American Journal of Physics 45, 811-817 (1977). (5) (unpublished) “Manuscript
on the Special Theory of Relativity (1912-1914),” Collected Papers (1995), vol. 4, pp. 9-101;
“Elementary Derivation of the Equivalence of Mass and Energy,” Bulletin of the American
Mathematical Society 41,223-230 (1935). (6) “An Elementary Derivation of the Equivalence
of Mass and Energy,” Technion Yearbook 5, 16-17 (1946); Concise derivations can also be
found in his books (7) Uber die spezielle und die allgemeine Relativititstheorie (Braunschweig:
E. Vieweg, 1917 and numerous later editions), section 15, as well as in (8) The Meaning of
Relativity (Princeton: Princeton University Press, 1921) (4th edition, p. 45).
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does not presume the formal machinery of the theory but uses only three
previously known laws: (1) the law of the conservation of momentum,
(2) the expression for the pressure of radiation; that is, the momentum of
a complex of radiation moving in a fixed direction, (3) the well-known
expression for the aberration of light.”

We shall not discuss each of Einstein’s derivations or the relations
among them separately in detail but wish to point out that, generally
speaking, they can be classified as variants to one of the three different
approaches: (I) the study of a symmetric emission (or absorption, in
his 1946 derivation) of two identical physical objects (e.g., photons)
with respect to two inertial reference frames in relative uniform motion;
(II) the study of the motion of a single physical object in a cavity or box,
subject to the principle of the conservation of the center of mass or of
linear momentum, with respect to a single inertial reference frame; and
(IIT) the study of the relation between energy, work, and momentum
of a single object in motion with respect to a single inertial reference
frame. Furthermore, all the derivations contain explicitly or implicitly,
e.g., via the Lorentz transformation, some reference to electromagnetic
radiation, which introduces the velocity of light ¢ into the expression
E = mc®.”?

Einstein’s first (1905) derivation of the mass-energy relation was dis-
cussed in extenso at the beginning of the present chapter. It clearly
belongs to class (I) of the just mentioned classification, the two physical
“objects” being the two equal quantities of radiation emitted by the
body B and dealt with in the reference frames S and S'. It became the
paradigm for the construction of numerous variants, each of which was
claimed by its respective author to be more elementary and based on
fewer assumptions that all those that preceded it.

An interesting example is Fritz Rohrlich’s 1990 “elementary deriva-
tion of E = mc=,” which, as its author claims, could have been carried out
as early as 1842 when Christian Johann Doppler discovered the effect
carrying his name, provided the photon and its particle-like properties
had been known at the time. Following Einstein,"® Rohrlich assumes that

12Even in his (almost) group-theoretical derivation of the Lorentz transformations,
which he presented in his lectures on relativity at the University of Berlin, Einstein had to
refer to the velocity of light. See “Relativitdtsvorlesung Winter 1914-1915" in his Notebook,
Collected Papers, vol. 6 (document 7), pp. 44-66, especially pp. 49-51.

13 Einstein, according to T. F Jordan, intended originally to make use of his proposed
notion of “light quanta” or “photons,” as they were later called, as early as March 1905 but
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a source remaining at rest in a reference frame S emits two photons.'*
Conservation of momentum requires them to have equal and oppositely
directed momenta, hence equal frequency v and equal energy hv; con-
servation of energy requires that the source suffer a loss of energy

AE = 2hv. (3.18)

Viewed from a frame S, which moves uniformly relative to S so that the
source is seen to move with velocity v in the same direction as one of the
photons, conservation of momentum and the (classical) Doppler effect
require that

po = py + (/o)1 +v/c) — (/) (1 —v/0), (3.19)

where p; and p; denote, respectively, the momentum of the source before
and after the emission. The source’s loss of momentum in S’ is therefore

po — Py = Ap' = Qhv/c*)o. (3.20)

Since momentum is the product of mass and velocity or p = mv and v
remains constant, the loss in momentum can be accounted for only as a
change Am in mass. Hence

Am = 2hv/c?. (3.21)

If Ej and E’ denote, respectively, the initial and the final energy of the
source as measured in S, then clearly

o=Ej+hv(1+v/c)+hv(1l—v/c), (3.22)
and the loss in energy of the source relative to S’ is

E,— E} = AE' =2hv = AE, (3.23)

changed his mind because he thought that the idea of “light quanta” is “more revolutionary
and less finished than relativity.” T. E. Jordan, “Photons and Doppler Effect in Einstein’s
Derivation of Mass Energy,” American Journal of Physics 50, 559-560 (1982).

14F. Rohrlich, “An Elementary Derivation of E = mc?” American Journal of Physics
58, 348-349 (1990). Rohrlich first published this derivation in his book From Paradox to
Relativity—Our Basic Concepts of the Physical World (Cambridge: Cambridge University
Press, 1987). In his otherwise very laudatory review of this book Victor F. Weisskopf called
Rohrlich’s proof of E = mc? “a flawed derivation” but without stating why he regarded
it as flawed. It was also criticized by R. Ruby and R. E. Reynolds in their “Comments” on
itin American Journal of Physics 59, 756 (1991), as going beyond the conceptual framework
of Newtonian physics. But their critique was rebutted by Rohrlich, ibid., 757.
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where the last equality follows from (3.18). Comparison of (3.21) with
(3.23) yields

Am = AE/c?. (3.24)

Rohrlich completes his derivation by arguing that if the total mass of the
source is supposed to be used up by emitting photons, equation (3.24)
implies
E = mc”. (3.25)
Rohrlich was not the first to use the Doppler effect for a derivation of
the mass-energy relation. Apparently unknown to him, Daniel J. Steck
and Frank Rioux had done so about ten years earlier, in 1980, the only
difference being that the latter had used the relativistic formula of the

Doppler effect.” Thus in their derivation, Rohrlich’s equation (3.19) and
those that follow from it read

;o (1+0/c 2 hy (1—v/c\V?
Po=Pr="; 1-v/c c \1+0o/c
2hv AE
= (c—2> )/,UZ) = <C—2> )/vU, (326)

which with the correspondingly modified equations

Ap' = Am'v Am' = Amy, (3.27)
yields again
Am = AE/c?. (3.28)

Steck and Rioux were also not the first to apply to Doppler effect
to the derivation of the mass-energy relation. Unknown to them—for
they stated “in this note we describe a simple derivation of the mass-
energy equivalence equation that we have not seen previously in the
literature”—their derivation, though couched in a different terminology,
had been presented seventy years earlier by Paul Langevin.'® In a lec-
ture delivered on March 26, 1913, Langevin explained, though without

15D.]. Steck and F. Rioux, “An Elementary Development of Mass-Energy Equivalence,”
American Journal of Physics 51, 461-462 (1983).

16 P, Langevin, “L'inertie de I'énergie et ses conséquences,” Journal de Physique théorique
et appliquée 3, 553-591 (1913); reprinted in Oeuvres Scientifique de Paul Langevin (Paris:
CNRS, 1950), pp. 397-426.
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using the term “Doppler principle,” the “variation de masse. .. par
I’émission du rayonnement” by analyzing the energy content of two
equal quantities of radiation emitted in opposite directions, as viewed
by two observers in relative motion to each other and implying thereby
essentially the relativistic formula of the Doppler effect. Albert Shad-
owitz reformulated this derivation slightly by means of the relativistic
Doppler effect and, calling it “a derivation of P. Langevin,” introduced
it into the textbook literature in 1968."

This “derivation of P. Langevin” should not be confused with another
of Langevin’s derivations of the inertia of energy, presented by him in a
1920 lecture at the Collége de France but never published. It would have
been irretrievably lost were it not that Jean Perrin attended the lecture
and reviewed it in his book on the foundations of physics written for the
general reader.”® In contrast to the 1913 version, Langevin’s 1920 deriva-
tion is based only on the principle of conservation of energy and the
two fundamental postulates of special relativity, i.e., the principle of rel-
ativity and the invariance of the velocity of light. A modernized version
published recently by Y. Simon and N. Husson clearly demonstrates the
important role that relativistic considerations play in this derivation."

In sharp contrast Rohrlich, as we have seen, declared that his der-
ivation “assumes only nineteenth-century physics.” An enthusiastic
reviewer of his essay explicitly declared: “Thus we see that the energy-
mass relation can be derived without the help of the theory of rel-
ativity.”%

In a similar vein, Ralph Baierlein, who proposed a derivation of the
mass-energy relation not much different from Rohrlich’s, said of it that
“it makes no use of Lorentz transformations or other results from the
special theory of relativity” and added that “by 1873 Maxwell knew
everything necessary to derive the equation AE = Amc?. All that was
missing was a context of inquiry that would have led him to search for
a connection between energy and inertia.”*'

Itis certainly true that the relation between energy and inertia or mass
had been a topic of speculation among philosophers and of scientific

17 A. Shadowitz, Special Relativity (Philadelphia: W. B. Saunders, 1968), p. 90.

187. Perrin, Les Eléments de la Physique (Paris: Albin Michel, 1929), pp. 380-391.

19Y. Simon and N. Husson, “Langevin’s Derivation of the Relativistic Expressions for
Energy,” American Journal of Physics 59, 982-987 (1991).

20V. P. Srivastava, “A Simple Derivation of E = mc?,” Physics Education 26, 214 (1991).

21 R. Baierlein, “Teaching E = mc2,” The Physics Teacher 29, 170-175 (1991).
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research among physicists, especially among the proponents of the
electromagnetic theory of mass, long before the advent of the theory
of relativity. Thus, for example, Gustave Le Bon, the director of the Bib-
liotheque de Philosophie Scientifique in Paris, complained in his correspon-
dence with Einstein that his anticipation of the equivalence between
energy and mass, as stated in his book L'Evolution de la Matiére, has
never received the credit it deserves because the Germans habitually
ignore scientific contributions of other nations.?? In his reply Einstein
conceded that the idea of a fundamental identity between mass and
energy had been anticipated long ago but only the theory of relativity
has cogently proved this equivalence. Asking Le Bon for his proof of this
equivalence Einstein added, in response to Le Bon’s accusation of the
Germans, that for violations of intellectual rights only individuals and
not nations can be held responsible.” Having been unable to understand
Le Bon’s argumentation Einstein asked him to discuss the matter with
Paul Langevin of the Collége de France.

In physics, the electromagnetic theory of mass, according to which
inertia is ultimately an electromagnetic induction effect, and especially
the conception of an “electromagnetic momentum,” led physicists, such
as Max Abraham and Henri Poincaré, to suggest a possible relation
between inertia and energy. What was probably the most publicized
prerelativistic declaration of such a relation was made in 1904 by Fritz
Hasenohrl.?* Using Abraham’s theory, Hasenohrl showed that a cav-
ity with perfectly reflecting walls containing electromagnetic radia-
tion behaves, if set in motion, as if it has a mass m given by m =
8Vey/3c?, where V is the volume of the cavity, &y the energy density
at rest, and c the velocity of light. In 1921 Philipp Lenard, who be-
came the leading protagonist of “German physics” during the Nazi

22 G. Le Bon, L'Evolution de la Matiére (Paris: Flammarion, 1905). Letter from Le Bon to
Einstein, dated June 17, 1922. Einstein Archive reel 43-311.

23 “L’idée que masse et énergie soit la seule véritable substance, était déja proclamée par
beaucoup d’auteurs. Mais c’est seulement la théorie de relativité, qui permet a donner une
véritable preuve de cette équivalence. Si vous vouliez m’écrire votre maniére de conclure,
je serais trés reconnaissant a vous. Finalement je vous assure, que les crimes contre la
propriété intellectuelle sont des affairs personelles et non nationales.” Letter from Einstein
to Le Bon, dated June 17, 1922. Einstein Archive, reel 43-313.

24 F Hasenohrl, “Zur Theorie der Strahlung in bewegten Korpern,” Annalen der Physik
15, 344-376 (1904); Wiener Sitzungsberichte 113, 1039-1051 (1904). “Zur Theorie der Strah-
lung in bewegten Korpern,” Annalen der Physik 16, 589-592 (1905), which contains the
correction m = 4Vey/3c%.
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regime, republished Hasenohrl’s discovery together with Johann Georg
Soldner’s 1801 calculation of the deflection of a light ray by 0.84” when
grazing the sun, in order to discredit Einstein by calling into question
has authenticity concerning the well-known results of the theory of
relativity.®

In a rejoinder to Lenard’s article Max von Laue admitted that Ha-
senohrl might be credited with having made the first attempt to con-
struct a dynamical theory of cavity radiation by means of the con-
cept of electromagnetic momentum. “But that every energy flow carries
momentum and that conversely every momentum implies a flow of
energy is an insight which only the theory of relativity could reach
in a consistent way; for only this theory shattered the foundations of
Newtonian dynamics.”? Von Laue also rejected Lenard’s proposal to
call the inertia of energy “Hasenohrlsche Masse” as misleading because
the concept of “mass” is always identical with the concept of “inertia
of energy.”

In a contribution to the well-known Schilpp book on Einstein, von
Laue discussed in more detail the impossibility of a nonrelativistic
derivation of the mass-energy relation, which he called “the law of
the inertia of energy” and declared: “Einstein derived this law rela-
tivistically. And, in fact, a rigorous derivation must start from there.”*
This statement by von Laue, namely that only the theory of relativity
admits a rigorous derivation of the mass-energy relation, highlights the
question of whether or not this notion has been refuted by those who, like
Rohrlich, Srivastava, or Baierlein, have claimed to derive that relation
without any “use of Lorentz transformations or other results from the
theory of relativity.” We believe that the answer lies not so much in
the possibility that these derivations are not rigorous as in the fact that
they use the expression hv/c for the momentum of a light quantum or
Maxwell’s expression for the ratio between momentum and energy of

2 F Lenard, “Vorbemerkung zu J. Soldner, Uber die Ablenkung eines Lichtstrahls von
seiner geradlinigen Bewegung durch Attraktion eines Weltkorpers, an welchem er nahe
vorbeigeht,” Annalen der Physik 65, 593-604 (1921).

26 “Dass aber jede Energiestromung Impuls mit sich fithrt, und dass umgekehrt aller Im-
puls auf Energiestromung beruht, diesen Gedanken konnte erst die Relativitatstheorie fol-
gerichtig durchfiihren; denn erst sie rdumte mit der ihr widersprechenden Newtonschen
Dynamik grundsatzlich auf.” M. von Laue, “Erwiderung auf Hrn. Lenards Vorbemerkung
zur Soldnerschen Arbeit von 1801,” Annalen der Physik 66, 283-284 (1921).

27M. von Laue, “Inertia and Energy” in P. A. Schilpp, ed., Albert Einstein: Philosopher—
Scientist (Evanston, Ill.: Library of Living Philsophers, 1949), p. 524.
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electromagnetic radiation. After all, as the c in the equation E = mc?
indicates, somehow Maxwell’s theory must have been involved, but
Maxwell’s theory is a relativistic one. Hence, one can say of any deriva-
tion of the mass-energy relation that refers to it even only implicitly
what Einstein has said of his 1946 derivation, that “it makes use of the
principle of special relativity, [although] it does not presume the formal
machinery of the theory.”

We conclude our discussion of class-I derivations with an analysis of a
modification of the prototype of these derivations, which is a derivation
of the mass-energy relation that its authors, Mitchell J. Feigenbaum and
N. David Mermin, call “a purely mechanical version of Einstein’s 1905
argument.”?In fact, the physical scenario of their derivation differs from
that of Einstein’s 1905 paper only insofar as the body B loses energy not,
as in Einstein’s argument, by emitting two equal quantities of radiant
energy but by emitting two equally massive particles. In order to see
whether this modification enabled the authors to obtain their result, as
they claim, “without ever leaving the realm of mechanics” we first have
to review their argumentation.

Like Einstein, Feigenbaum and Mermin calculate the energy loss of
B from the viewpoint of two inertial reference frames S, the rest frame
of B, and S, which moves relative to S with uniform velocity v along
a direction making an angle ¢ with the direction of the emission. In
S, E;1 denotes the energy of B before the emission, E; its energy after,
and Ej the energy of each of the particles emitted in opposing directions
moving with velocity u. Energy conservation requires

E] — E2 = 2E3(lx[) (329)

In S’ the initial and final energies of B are denoted by E;(v) and E;(v)
and the energies of the emitted particles by E(1') and E(u"), respectively.
Energy conservation for any value of ¢ requires

E1(v) — Ex(v) = E3(u') + E3(u"). (3.30)
Since the left-hand side of this equation is independent of ¢, the right-
hand side must be independent of ¢ as well, although #" and »” individ-

ually depend on v, u, and ¢ in accordance with the relativistic addition
rule of velocities, which can be written in the form

28 M. J. Feigenbaum and N. D. Mermin, “E = mc?2,” American Journal of Physics 56, 18-21
(1988).
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Y = YuVo(1 — uvcos ¢/c*)

and

Yir = Yuvo(1 + uvcos ¢/c?), (3.31)

where of course for any velocity w the symbol y,, is an abbreviation of
(1 — w?/c?)~1/2. In Einstein’s 1905 derivation the arbitrariness of ¢ was
an unnecessary feature because the argument could have been carried
out taking ¢ = 0 from the very beginning. Indeed, as equation (3.2)
clearly shows, ¢ cancels out. For the Feigenbaum-Mermin derivation, in
contrast, this arbitrariness is of decisive importance because it imposes
severe constraints upon the mathematical structure of the function E(u).
As Feigenbaum and Mermin show by a clever use of the relativistic
velocity addition rule, E(1) must have the structure

E(w) =Ey+k(y, — 1), (3.32)

where Ej and k are velocity-independent constants characteristic of the
particle. Clearly, E(0) = Ey is the energy content of the particle in its rest
frame and the constant k determines its kinetic energy

Ekin(u) = E(M) - EO = k(yu - 1) (3.33)

Application of the generally valid equation (3.32) to the energy conser-
vation equation (3.29) and use of (3.31) yields

E1(0) + ki(yo — 1) = E2(0) — ka(yo — 1) = 2E3(0) + 2k (yuyo — 1) (3.34)
since by (3.31) yiv + Yu» = 2yu¥». In particular for v = 0
E1(0) — E>(0) = 2E3(0) + 2k3()/u - 1. (3.35)

Subtracting (3.35) from (3.34) and canceling the common factor y, — 1
gives

ko = ki — 2ksy,,. (3.36)
But since by (3.33)
Eskin = E3(u) — E3(0) = ka(yu — 1) (3.37)
it follows from (3.35) that
ko = ki — 2ks — 2E3kin (3.38)

Equation (3.33) shows that in the nonrelativistic limit (i.e., u < ¢)
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Eiin(u) = 1k /%, (3.39)

which, compared with the classical equation Eyin = %muz, identifies
k with mc?. Adopting the traditional nomenclature, Feigenbaum and
Mermin obtain the equation

M1 — my = 2m3 + 2Eauin /2, (3.40)

which shows that the loss in mass, Am = m; — m;y, of the emitting body
Bis equal to the sum of the masses of the two emitted particles and their
kinetic energies, the latter divided by ¢2. This is indeed the mass-energy
relation applied to the case of emitted particles that carry away mass as
well as energy.

Having reviewed the Feigenbaum-Mermin paper, let us now ask
whether they have derived the mass-energy relation really “without
ever leaving the realm of mechanics.” It is certainly true that no explicit
reference has been made to nonmechanical terms—with the exception,
of course, of the letter ¢, which denotes the velocity of light and has
been introduced by the relativistic velocity addition theorem. As is
well known, this theorem is usually derived as a consequence of the
Lorentz transformations. Incidentally, Mermin himself, five years before
he wrote the paper with Feigenbaum, had presented an alternative
proof, which shows that the theorem is a direct consequence only of
the constancy of the velocity of light.?” Further, the Lorentz transfor-
mations are usually derived from the “light postulate,” according to
which the velocity of light is a relativistic invariant. But such an in-
variance denies the possibility of conceiving the propagation of light as
a mechanical process in a hypothetical ether. It follows therefore that
the relativistic addition theorem, which, as we have seen, plays the key
role in the Feigenbaum-Mermin argumentation, exceeds the conceptual
framework of the purely mechanical. The problem to be faced here is, of
course, the same one that we encountered in our discussion of Tolman'’s
derivation of the expression for relativistic mass within the framework of
his “non-Newtonian mechanics.” Again, a possible, even if only partial,
solution can be found in the work of Landau and Sampanthar described
in chapter 2.%

29 N. D. Mermin, “Relativistic Addition of Velocities Directly from the Constancy of the
Velocity of Light,” American Journal of Physics 51, 1130-1131 (1983).

30 B. V. Landau and S. Sampanthar, “A New Derivation of the Lorentz Transformation,”
American Journal of Physics 40, 599-602 (1972).
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Let us also recall in this context that from as early as 1910, beginning
with Waldemar von Ignatowsky followed by Philipp Frank and Her-
mann Rothe, physicists and mathematicians realized that the (structure
of the) Lorentz transformations, and hence of the relativistic velocity
addition theorem as well, can be derived without invoking the light
postulate or any other reference to electromagnetic phenomena merely
by using general principles, such as the principle of relativity or the
isotropy and homogeneity of space.’! Of course, such group-theoretical
derivations can involve only a limiting velocity « in lieu of c. The price
to be paid for not invoking the light postulate or any other equivalent
assumption is as Wolfgang Pauli phrased it: “Nothing can, naturally, be
said about the sign, magnitude and physical meaning of o. From the
group-theoretical assumption it is only possible to derive the general
form of the transformation formulae, but not their physical content.”3
The fact that for « = oo these equations degenerate into the Galilean
transformations of Newtonian physics and the mass-energy relation
E = ma? becomes meaningless can be interpreted as an indication that
this relation is an exclusively relativistic result. Conversely, it can also
be said that the mass-energy relation E = mc? or the velocity-dependent
equation of inertial mass can replace the second postulate in the logical
construction of the special theory of relativity.* As long as o remains
finite, its indeterminacy affects the numerical relation between mass and
energy but not the conceptual content of this relation.

The preceding derivations of the mass-energy relation belong to class
(D) in the classification described earlier. The first derivation belonging to
class (II) is Einstein’s 1906 second derivation. Like his first, it is based on

31 For bibliographical references up to 1964 see H. Arzelies, Relativistic Kinematics
(Oxford: Pergamon, 1966), pp. 80-82. Important more recent group-theoretical derivations
of (generalized) Lorentz transformations are: G. Stissmann, “Begriindung der Lorentz-
Gruppe allein mit Symmetrie- und Relativititsannahman,” Zeitschrift fiir Naturforschung
24a, 495-498 (1969); V. Gorini and A. Zecca, “Isotropy of Space,” Journal of Mathematical
Physics 11, 2226-2230 (1970); A. R. Lee and T. M. Kalotas, “Lorentz Transformations from
the First Postulate,” American Journal of Physics 43, 434-437 (1975); ].-M. Levy-Leblond,
“One More Derivation of the Lorentz Transformation,” American Journal of Physics 44,
271-277 (1976).

32'W. Pauli, The Theory of Relativity (New York: Pergamon, 1958), p. 11.

33 For more details and a simple group-theoretical derivation of the (general) Lorentz
transformations see M. Jammer, “Some Foundational Problems in the Special Theory of
Relativity,” in G. Toraldo di Francia, ed., Problems in the Foundations of Physics, Proceedings
of the International School of Physics ‘Enrico Fermi’, Course LXXII (Amsterdam: North-
Holland, 1979), pp. 202-236.
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Maxwell’s theory of the electromagnetic field, which, if supplemented
by J. H. Poynting’s theorem (1884), predicts that electromagnetic ra-
diation of energy AE falling on an absorbing body exerts a pressure
on it and transfers to it a momentum equal to AE/c. This effect was
experimentally confirmed by Petr N. Lebedew in 1890 and with greater
precision by Ernest F. Nichols and Gordon F. Hull in 1901.3

With the exception of this item from Maxwell’s theory, Einstein’s
second derivation uses only the principles of mechanics as its title “The
Principle of Conservation of Motion of the Center of Gravity and the
Inertia of Energy” indicates.”® It considers a “rigid hollow cylinder Z,
“freely floating in space,” of mass M and length L. If the electromagnetic
radiation AE is emitted at time ¢ = #;, say, from the left interior wall of
Z and reaches the opposite wall at time ¢ = t,, so that (approximately)
t —t; = At = L/c, conservation of momentum requires Z to recoil to
the left with a velocity u given by Mu + AE/c = 0, and hence over a
distance Ax; = uAt = —LAE/MCc?. If then, as Einstein assumes, AE in
any form of energy is transferred back to the left wall by a massless
carrier, Z will recoil to the right over a distance Ax, = AmL/M, where
Am is the mass associated with AE. According to the center-of-mass
conservation principle the total displacement of Z has to be zero. But
since this total displacement is Ax; + Ax, = —(LAE/Mc?) + (AmL/M),
it follows that Am = AE/c* is “the necessary and sufficient condition
for the law of the conservation of motion of the center of gravity to be
valid.” Einstein was of course well aware that both the equation for
At and the nonrelativistic expression Mu for the momentum of Z were
valid only “apart from terms of higher order.” He admitted therefore that
this derivation is correct only “in first approximation.” This deficiency
was certainly one of the motivations for his continuing search for more
accurate derivations. Furthermore, he soon realized that the notion of a
rigid body is incompatible with the theory of relativity.

The notion of which this derivation hinges is the concept of mo-
mentum of radiation or radiation pressure, which is a necessary con-
sequence of Maxwell’s electromagnetic theory and, as such, implicitly
a relativistic conception. Replacing the radiative emission by a purely

34 For the history of this effect, which dates back to at least 1708, see E. Whittaker,
A History of the Theories of Aether and Electricity (London: Thomas Nelson, 1910, 1951),
vol. 1, pp. 273-276.

35 A. Einstein, “Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trag-
heit der Energie,” Annalen der Physik 20, 627-633 (1906).
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classical mechanical recoil process would not have led to the mass-
energy relation. It is therefore erroneous to contend, as R. T. Smith did,
that Einstein’s 1906 derivation is “purely classical and has nothing to do
with relativity.”*

Just as Einstein’s 1905 derivation became the prototype of numerous
modified versions belonging to class I, so his 1906 derivation initiated
a long series of class II variants, of which each was intended to be more
rigorous than all those that preceded it. Since Adel F. Antippa’s detailed
survey of class Il derivations is readily available a brief summary of this
development will suffice.?”

In his contribution to the Schilpp book, Max von Laue reformulated
Einstein’s 1906 derivation with only one minor change.*® He added
to the physical scenario two bodies or disks, one at each end of the
cylinder, one of which transfers AE back from right to left. He thus
replaced Einstein’s “imagined massless carrier,” which he regarded
as physically unrealistic by a mechanical process. Another disturbing
feature of Einstein’s 1906 derivation is his assumption of the rigidity
of the cylinder, an assumption which, in his third (1907) derivation,
he showed to be incompatible with the relativity of simultaneity. This
deficiency in the 1906 derivation was criticized in 1960 by Eugene
Feenberg, who pointed out that “the recoil generates an elastic wave
traveling with finite velocity from the source point; the far end does
not begin to move until the radiation has been absorbed, and then
the first motion is away from the source.”® It is only after some time,
when the elastic waves are damped out by dissipative processes that the
cylinder is finally at rest, having undergone the displacement. However,
as Feenberg shows, these complications do not invalidate the correctness
of the mass-energy relation.

In the early 1920s, in the wake of an international wave of general
interest in the theory of relativity, Max Born was invited to deliver

36 R. T. Smith, “Classical Origins of ‘E = mc*,” Physics Education 27, 248-250 (1992).

37 A.T. Antippa, “Variations on a Photon-in-a-Box by Einstein,” UQTR-TH-8, Université
du Québec a Trois-Rivieres, pp. 1-48; “Inertia of Energy and the Liberated Photon,”
American Journal of Physics 44, 841-844 (1976). See also the earlier survey on some of
Einstein’s derivations by W. Kantor, “Inertia of Energy,” American Journal of Physics 22,
528-541 (1954). A thorough analysis of Einstein’s 1906 and 1907 derivations as well as
their elaborations by Planck and von Laue has also been given by A. 1. Miller in his Albert
Einstein’s Special Theory of Relativity (Reading, Mass.: Addison-Wesley, 1981), pp. 353-367.

38 Van Laue in P. A. Schilpp, ed., Albert Einstein, pp. 524-527.

39 E. Feenberg, “Inertia of Energy,” American Journal of Physics 28, 565-566 (1960).
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a series of public lectures on relativity at the University of Frankfurt.
Both in his lectures and in his book,* which is an elaboration of these
lectures, he strictly followed Einstein’s 1906 derivation when explaining
the mass-energy relation. However, when he was asked to republish his
book in an English version in the early 1960s he took fully into account,
following Feenberg, the time intervals during which the elastic move-
ments, excited by the emission and by the absorption of AE expanded
over the whole cylinder (or tube, as he called it) and during which “also
all elastic vibrations have died out and only the displacements of the
whole tube are left over.”* Still retaining the approximation At = L/c
for the flight duration of AE, Born showed that all these corrections do
not impair the mass-energy relation. That even—in order to correct the
AT equation—the introduction of an additional inertial frame, relative
to which the tube is at rest during the interval between the emission
and the absorption of AE, does not affect the mass-energy relation, was
shown by Carl J. Rigney and Roy H. Biser.*?

In order to avoid the complications owing to the nonrigidity of the
cylinder or Einstein’s box, as it is often called, Anthony P. French sug-
gested in 1966 to “unhinge” the box, that is to “ignore completely any
connection between the ends of the box and to regard it as two masses
my and my,” separated by a distance L.** If m; at the position x = 0 emits
the energy AE at the time t = 0 and its mass decreases thereby to m1],
then according to the momentum-conservation principle m} will recoil
with the velocity

AE
u = AL (3.41)
my
so that its position at time ¢t > 0 is given by
AE
) =t = — 2L (3.42)

1

At time t = L/c the m, absorbs AE and increases thereby to m;. Its
position at t > L/c is given by

40 M. Born, Die Relativititstheorie Einsteins und ihre physikalischen Grundlagen (Berlin:
J. Springer, 1922).

41 M. Born, Einstein’s Theory of Relativity (New York: Dover, 1962), pp. 283-286.

42C.J. Rigney and R. H. Biser, “Note on a Famous Derivation of E = mc2,” American
Journal of Physics 34, 623 (1966).

43 A.P. French, Special Relativity (New York: Norton, 1966; Wokingham, Berkshire, U.K.:
Van Nostrand-Reinhold, 1968, 1984), pp. 27-28.
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AE L
o) =L+ —— (t - —> : (3.43)
mzc c

Finally, if M denotes the total mass of the system, X and X’ the position
of its center of mass before and after the whole process, respectively,
then

MX =m0+ myL (3.44)

MX' = | (—%) t+m) [L+ (Aj,/c> <t - %)] (3.45)
1 2

Since according to the center-of-mass principle X = X/, the preceding
equations show that Am = m}, —my = Am, = m; —m; = —Am satisfies
the equation

and

E =c*Am. (3.46)

By “unhinging” Einstein’s box French discarded, picturesquely speak-
ing, the mantle of Einstein’s cylinder and used only the two end walls
for his derivation of the mass-energy relation. Antippa continued this
demolition process by taking into consideration only one wall, say the
left wall, which he regarded as an atom at rest at the distance D from
the origin, i.e., at x = 0, and emitting at time ¢t = 0 a photon of energy
content AE.* Before the emission, which decreases the mass of the atom
from m to m’, the center of mass of the system is at the position

X =D, (3.47)
and since the atom recoils afterward with the velocity
E
U= ——//C (3.48)
m

its position X' is given by the equation
mX' =m'(D + ut) + Am(D + ct), (3.49)

where Am = m —m'. The center-of-mass principle requires that X = X/,
which leads to the equation

D[(m —m') — Am] — t(cAm — AE/c) = 0. (3.50)
4 Antippa, UQTR-TH-8 and American Journal of Physics 44.
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However, this equation should be independent of the choice of the origin
and should be valid for all > 0, which is possible only if the coefficients
of both D and ¢ are identically zero. This implies that

m—m = Am = AE/c%. (3.51)

In order to avoid any misunderstanding Antippa concluded his deri-
vation of the mass-energy relation with the statement: “It should be
noted thatm’ is the ‘relativistic’ atomic mass including the kinetic energy
contribution to the mass of the atom. Also Am is not the rest mass lost
by the atom, but rather the rest mass lost less the mass associated with
the kinetic energy of the atom.”#

As this comment indicates and as a closer inspection of Antippa’s as
well as French’s derivations shows, their reasoning is partially based
on a petitio principii insofar as the existence of a quantitative relation
between mass and energy is presupposed and it is demonstrated only
that the coefficient of proportionality between Am and AE is ¢2. Their
reasoning thus differs from that of the preceding class II derivations in
which such a quantitative relation was not presupposed a priori.

Turning now to the derivations of class III we must admit that it is
difficult to pinpoint exactly where or when they appeared for the first
time. For being relativistic generalizations of the classical method of
calculating the kinetic energy of a particle they were used implicitly,
that is, without being recognized as potential derivations of the mass-
energy relation, by Einstein, Planck, and von Laue in their early papers
on relativity. An example is equation 14 in Einstein’s 1907 article “On
the Relativity Principle and the Conclusions drawn from It.”# Because
of their analogy to classical calculations they have been readily adopted
by many authors of textbooks on relativity, among them by D. Meller
(1952, 1972), A. Papapetrou (1955), D. F. Lawden (1962, 1982), W.G.V.
Rosser (1964), H. M. Schwartz (1968), and more recently by R. A. Mould
(1994),* to mention only a few. In principle they differ from their classical
analogue only in their use of the relativistic mass m = myy, instead
of the classical mass. In their standard one-dimensional version they
proceed as follows. They consider an inertial reference frame S in which

45 Antippa, American Journal of Physics 44, 844.

46 Einstein, Jahrbuch der Radioaktivitit und Elektronik 4, 411-462.

47R. A. Mould, Basic Relativity (New York: Springer-Verlag, 1994). See also W. G.
Holladay, “The Derivation of Relativistic Energy from the Lorentz y,” and the references
listed therein, American Journal of Physics 60, 281 (1992).
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a massive body is being moved by a force F through a distance dx. The
change in the kinetic energy of the body is

_ dp _ dpdx dx
AdEyin = Fdx = d = —dt = dp—
= ud(mu) = u?dm + mudu, (3.52)

where du = dx/dt is the velocity, p = mu the momentum, m = myy,
the relativistic mass of the body, and y, = [1 — (u?/c?)]~1/2. Since
dm = mouduy; /c* it follows that dExin, = y mou du, which integrates to

Exin = moc®(yu — 1) = mc? — myc? (3.53)

with the constant of integration so chosen that for # = 0, Exy, = 0 as
well. Dimensional considerations suggest that we also regard mpc® as
an energy, called the rest energy Eq. Hence the total energy E of the
body is

E = Exin + Eo = mc?. (3.54)

Some authors prefer to derive the mass-energy relation by means of
a relativistic four-vector generalization of classical mechanics without
the need for any integration. Choosing the unit of time so that c = 1,
they apply the fundamental invariant of the Lorentz transformation
ds? = dt* — dx®> — dy? — dz?. Writing the ordinary velocity vector as
u = (u1, up, uz) = (dx/dt, dy/dt, dz/dt) they obtain ds = y~1dt, where
y = (1—u?)71/2. The velocity four-vector U is then given by U = y (1, u)
and the momentum four-vector Pby P = myU = (myy, moyu), where my
is the nonrelativistic mass. Neglecting the third and any higher power of
u, they obtain P = (mo+ §m0u2, mou) and reason as follows. Since in this
approximation the space components mou represent the components
of the particle’s momentum and the time component, aside from the
additional constant 1, the kinetic energy in classical mechanics, they
conclude that the relativistic kinetic energy Eyin is given by myy — myg so
that mpy = Exin + myp, or expressed in the usual time units, moyc? =
Exin + moc?. Finally, since for u = 0 also Exn = 0 and mc? has the
dimension of energy, they regard nyc? as the rest energy Eo and moyu?
as the total energy E of the particle, i.e.,

E = Ein + Eo = moyc® = mc?. (3.55)

This derivation, like any other derivation based on the correspon-
dence, in the limit, with classical mechanics, is vulnerable to a criticism
that Einstein expressed in 1935 as follows:
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Of course, this derivation cannot pretend to be a proof since in no way is
it shown that this impulse [momentum] satisfies the impulse-principle
and this energy the energy-principle if several particles of the same
kind interact with one another; it may be a priori conceivable that in
these conservation principles different expressions of the velocity are
involved. Furthermore, it is not perfectly clear as to what is meant
in speaking of the rest-energy, as the energy is defined only to within
an undetermined additive constant; in connection with this, however,
the following is to be remarked. Every system can be looked upon
as a material point as long as we consider no processes other than
changes in its translation velocity as a whole. It has a clear meaning,
however, to consider changes in the rest-energy in case changes are
to be considered other than mere changes of translation velocity. The
above interpretation asserts, then, that in such a transformation of a
material point its inertial mass changes as the rest-energy; this assertion
naturally requires a proof.

Clearly, the validity or acceptability of “new” theoretical constructs
cannot be proved by showing that, in the limit, they converge or reduce
to their corresponding classical analogues unless it is also shown that
they satisfy the theoretical principles for the validity of which they
have been contrived. For the convergence, or reduction, to their clas-
sical analogues is a necessary but not a sufficient condition for their
acceptability.

In the present case these principles are those of the conservation of
momentum and of energy. Einstein thus saw the real task of his 1935
essay on the mass-energy relation as demonstrating the following: “If
the principles of conservation of impulse and energy are to hold for
all coordinate systems which are connected with one another by the
Lorentz transformations, then impulse and energy are really given by
the above expressions and the presumed equivalence of mass and rest-
energy also exists.”*

In order to carry out this task Einstein assumed that the relativistic
momentum and relativistic energy of a particle or, as he called it, “ma-
terial point” moving with velocity u relative to a reference frame S are

48 A.Einstein, “Elementary Derivation of the Equivalence of Mass and Energy,” Bulletin
of the American Mathematical Society 41,223-230 (1935). See also F. Flores’s instructive essay
“Einstein’s 1935 Derivation of E = mc2,” Studies in History and Philosophy of Modern Physics
29, 223-243 (1998). Chapter 5 of this essay contains a detailed analysis of Einstein’s 1935
derivation of the mass-energy relation.
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given, respectively, by p, = mu,F(u) and E = Ey + mG(u), (n = 1,2, 3),
where m is the rest-mass (or simply mass), Ey is the rest-energy, mG(u)
is the kinetic energy of the particle, and F and G are universal even
functions of u which vanish for © = 0. The assumption that the same
mass constant m occurs in p, and E is later shown to be at least partially
justified. By analyzing both an elastic eccentric collision and an inelastic
collision between two particles of equal mass and equal rest energy he
showed that the conservation of momentum and energy requires that
F(u) = y (1) and G(1) = y (u) —1. Einstein thus arrived at the conclusion:
“If for collisions of material points the conservation laws are to hold for
arbitrary (Lorentz) coordinate systems, the well-known expressions for
impulse and energy follow, as well as the validity of the principle of
equivalence of mass and rest-energy.”

All the derivations of the mass-energy relation discussed so far have
dealt only with the inertial mass of a body. But as we already know and as
will be explained soon in greater detail, there is a conceptual distinction
between inertial and gravitational mass. The former determines the
inertial behavior of a physical object and is used in the equation of its
kinetic energy, whereas the latter determines the weight of the body.
It may be asked therefore whether a mass-energy relation can also be
derived for gravitational mass. That the answer is positive was shown
by Einstein as early as in the 1907 essay on special relativity referred
to above. When dealing at the very end of this essay with the principle
of energy conservation he showed that in addition to the quantity E—
the energy value as measured at a given location—the energy integral
also contains a term E®/c?, where & is the gravitational potential at
that location. He thus concluded that “to every energy E there always
belongs in the gravitational field an energy which is as large as the
energy of position of a gravitational mass of magnitude E/c2.” In other
words, the mass-energy relation has also been proved to be valid for the
concept of gravitational mass.

Let us now turn to the philosophical problem concerning the mass-
energy relation, that is, to the question of what, precisely, is the con-
ceptual meaning of the equation E = mc?. As we shall see, at least
two different interpretations have been proposed in the literature on
this subject. According to one interpretation the relation expresses the
convertibility of mass into energy or inversely of energy into mass, with
one entity being annihilated and the other being created. According
to another interpretation the equation expresses merely a proportion-
ality between two attributes or manifestations of one and the same
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ontological substratum without the occurrence of any annihilative or
creative process.*

The problem of the meaning of E = mc?> became the subject of
lively discussions after the Second World War, that is, after the atomic
bombardment of Hiroshima and Nagasaki had so tragically revealed
the ominous significance of the mass-energy relation for the destiny of
humanity. In fact, the first public debate on the issue began in 1946 with
C. Roland Eddy’s statement in the widely circulated periodical Sciernce:
“It is evident, from many recent writings on the atomic bomb, that a
serious misconception still persists, not only in the popular press but
also in the mind of some scientists. The idea that matter and energy are
interconvertible is due to a misunderstanding of Einstein’s equation,
E = mc?. This equation does not state that a mass, m, can be converted
into an energy, E, but that an object of mass m contains simultaneously
an energy, E”.°

To corroborate the statement that mass is not converted into energy
in a nuclear fission Eddy considered a symmetrical disintegration of a
nucleus of rest mass M into two fragments, each of rest mass m, and
velocity u. According to the mass-energy relation the energy released is
E = (M — 2mg)c?, and according to the theory of relativity the kinetic
energy of each fragment is %E = moyc*(yy — 1) = mc* — myc?, since
the mass of a particle at velocity u is m = mgy,. By combining the two
former equations he obtained M = 2m, which shows that the initial mass
equals the final mass. Thus, since no mass is lost, he concluded that no
mass can have been converted into energy. In the sequel to his paper
he claimed that this conclusion also holds in the case of a more general
fission process as well as in the case of the so-called “annihilation” of a
positron and electron if it is recalled that the mass of a photon is hv/c%.

A few weeks later Science published critical responses to Eddy’s arti-
cle. Marshall E. Deutsch declared that, although he agrees with Eddy’s
statement of the law of conservation of mass as far as elementary par-
ticles are concerned, “I must reserve doubts about this law applying to
matter” in general. Referring to exothermic reactions in physical chem-
istry he declared that “except for bodies at a temperature of absolute
zero, as far as mass is concerned, the whole (mass of an entire body) is
less than the sum of its parts (masses of the individual bodies composing
the body)!” Another participant in this rejoinder, Austin ]J. O’Leary,

49 This substratum was dubbed “massergy” in chapter 13 of COM.
50 C. R. Eddy, “A Relativistic Misconception,” Science 104, 303-304 (1946).
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expressed the view that Eddy’s conclusion, “the law of conservation
of mass still holds,” is “purely a question of definition.”>!

A particularly strong protest against the misconception of an intercon-
vertibility of mass and energy was voiced by E. F. Barker in the same year.
Barker distinguished sharply between the notions of mass and matter
and admitted that matter, but not mass, can be created out of energy
as, e.g., in the process of pair production, where “mass is conserved,
though matter is not.” Analyzing in detail, as an example, the famous
1930 J. D. Cockcroft and E.T.S. Walton experiment of the production of
two a-particles by bombarding a lithium atom with a proton, he showed
that in this experiment, as in any other nuclear disintegration, mass
is not changed into energy nor is energy changed into mass. He thus
concluded: “Energy may be transferred from one system to another,
either with or without a change in form; mass is always transferred in
the process, but is never transformed.”>

The debate about this “misconception” has been revived several
times. In 1976, e.g., ]. W. Warren complained that numerous modern
texts perpetuate this “misconception.”®® He presented a long list of
quotations from such books and reported on a poll that he conducted
among 147 students of science and engineering in which he asked
whether the following statement is correct: “A nuclear power station
differs from one burning coal or oil as it converts mass into energy
according to the law E = mc?.” Only 32 students, Warren complained,
found fault with the expression “converts mass into energy.” Another
equally long list of such “misinterpretations” in scientific publications,
including the Encyclopaedia Britannica, was collected by Sir Hermann
Bondi and C. B. Spurgin.> They recommend never forgetting that (i) en-
ergy has mass, (ii) energy is always conserved, (iii) mass is always
conserved, and (iv) never using the term “equivalence of mass and
energy.” Their advice stirred some lively debate. Calling these rules
“dogmatic,” Rudolf Peierls takes exception especially to rules (ii) and
(iii) for the following reason.®® When talking of the mass of a body one

51 “Comments on ‘A Relativistic Misconception,”” Science 104, 400-401 (1946).

52E. F. Barker, “Energy Transformations and the Conservation of Mass,” American
Journal of Physics 14, 309-310 (1946).

53]J. W. Warren, “The Mystery of Mass-Energy,” Physics Education 11, 52-54 (January
1976).

54 H. Bondi and C. B. Spurgin, “Energy Has Mass,” Physics Bulletin 38, 62—-63 (February
1987).

55 R. Peierls, “Mass and Energy,” Physics Bulletin 38, 128 (1987).
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usually means the sum of the rest masses of its constituent particles, and
when talking of its energy one means the available energy apart from
the rest masses of these constituents. “Thus in a mechanical problem
at low energy we are accustomed to count only kinetic and potential
energy; it would be most inconvenient if we had to include in the
energy equation the very large, but practically constant, rest energy
of the bodies involved.” As to (iv), Michael Nelkon, in the same issue of
the Bulletin, draws attention to the fact that Einstein repeatedly used the
expression “equivalence of mass and energy,” for instance, in the title of
his 1935 derivation of the mass-energy relation, which concludes with
the words: the equation E = mc? “expresses the law of the equivalence of
energy and mass.”* In fact, Nelkon could have quoted many textbooks
that use the term “equivalence” in this context, among them the well-
known texts by W. Pauli, P. G. Bergmann, C. Meller, E. F. Taylor and J. A.
Wheeler, H. M. Schwartz, W.G.V. Rosser, and J. L. Anderson, to mention
only a few. Now, the term “equivalence,” which, strictly speaking is
noncommittal, carries a psychological connotation because it reminds
us of the “equivalence of mechanical work and heat,” or briefly, “the
mechanical equivalent of heat,” the number of joules of mechanical work
required to generate one calorie of heat, a process in which mechanical
energy is converted into thermal energy. In thermodynamics this process
is expressed mathematically by the equation

Q=JW (3.56)

where W denotes the mechanical work in joules, Q the quantity of heat
measured in calories, and | the “mechanical equivalent” of heat per unit
of energy, the so-called “conversion factor” (4.1858 cal J-1). It is tempting
therefore to offer an analogous interpretation of the equation

E=c%m (3.57)

as follows: m is the amount of mass, measured in grams, required
to obtain the quantity of energy E, measured in ergs, and c? is the
conversion factor. However, whereas (3.56) can correctly be interpreted
as stating the convertibility of work into heat (or vice versa), (3.57)
cannot state the convertibility of mass into heat (or vice versa) for
the following reason. In (3.56) the conversion factor J, being the ratio
between quantities of the same physical dimension (work), is a pure

56 A. Einstein, Bulletin of the American Mathematical Society 41, 223-230 (1935).
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number, the “conversion factor” ¢? in (3.57) is not. In short, E and m,
having different physical dimensions, cannot be interconvertible.

It is perhaps historically interesting to note that in the 1950s and 1960s
the interpretation problem of the mass-energy relation played an impor-
tant role in the discussions concerning the compatibility of the theory
of relativity with the ideology of dialectical materialism, the officially
sanctioned philosophy in the Communist regimes of Soviet Russia and
other socialist countries in Eastern Europe. In their exegesis of Lenin’s
writings, Marxist philosophers asserted that matter, or its physical man-
ifestation as mass, “nowhere and at no time disappears . . . nor appears
out of nothing,” and that “energy is but the measure of the motion of
matter.”” These ideological maxims led logically to an anathematization
of the interconvertibility interpretation and to its condemnation as an
idealistic contrivance to discredit dialectical materialism. In fact, in those
years the leading Russian periodicals in physics and in philosophy, the
Uspekhi Fisiceskik Nauk and the Vorposy Filosofii abounded with articles
on the subject. The interested reader is referred to the writings of Nikolai
Federovi¢ Ov¢innikov® and to a review essay by the present author.”
Needless to say, the former German Democratic Republic followed
in step and its official philosophical organ, the Deutsche Zeitschrift fiir
Philosophie, also published quite a few articles in the same spirit.®

57M. A. Leonov, Ocerk dialekticeskogo materializma (Essay on Dialectical Materialism)
(Moscow: Gosizdat, 1948), p. 39.

5 N. F. Ov¢innikov, “Massa i Energia,” Prioda 11, 7-16 (1951); Ponjatje Massy i Energii
(Moscow: Nauk, 1957); see also his commentary (pp. 231-246) in the Russian edition of the
present author’s book Ponjatje Massy v Klassiceskoj i Sovremennoj Fizika (Moscow: Progress,
1967), pp. 231-246.

59 M. Jammer, “Mass and Energy,” in C. D. Kernig, ed., Marxism, Communism and Western
Society—A Comparative Encyclopedia (Freiburg: Herder, 1971), pp. 365-373.

60 See, e.g., W. Prokop, “Zur Deutung der Einsteinschen Energie-Masse-Relation,”
Deutsche Zeitschrift fiir Philosophie 8, 50-61 (1960); H. Cumme, “Uber Philosophische Fragen
der modernen Physik, ibid., 2, 686-694 (1952). Cf. also A. Polikarov, “Zum Problem der
Deutung des Einsteinschen Aquivalenzsatzes von Masse und Energie,” Wissenschaftliche
Zeitschrift der Humboldt-Universitit zu Berlin, Mathematisch-naturwissenschaftliche Reihe 13,
123-125 (1964).
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Gravitational Mass and the

Principle of Equivalence

SO FAR THE SUBJECT of our discussions has been almost exclusively
the concept of inertial mass, which determines the inertial behavior
of particles or bodies. Now we shall turn our attention to the concept
of gravitational mass, which determines the gravitational behavior of
matter. Since every body is a source of a gravitational field and is
in turn affected by it, it has become common practice, as we noted
in chapter 1, to assign to every body, apart from its inertial mass m;,
an active gravitational mass m,, which specifies the body’s role as
the source of a gravitational field, and a passive gravitational mass
my,, which specifies the body’s susceptibility to being affected by this
field. In many respects m, and m, can be conceived of as gravitational
analogues to electrical charges and are therefore sometimes referred to
as “gravitational charges.”

Since the history of the conceptual development that led to the classi-
fication of mass into m;, m,, and m, appears never to have been studied
before, it seems appropriate to comment upon it briefly. This trichotomy,
which is of rather recent origin, was preceded by the dichotomy of mass
into inertial and gravitational mass or, symbolically, into m; and m,,
where m, denotes either m, or m,. But even this dichotomy was rarely,
if ever, explicitly emphasized prior to the twentieth century.

True, Newton, as we shall see very soon, did distinguish between
what he called “quantity of matter” (“quantitas materiae,” “massa,”
or “corpus”), which corresponds to m;, and “weight” (“pondus”), but
he never regarded “weight” as the product of a gravitational mass
and the acceleration that is denoted by g. Nevertheless, until about
1900 physicists and philosophers who dealt with the foundations of
physics often confounded the notions of mass and weight, a histor-
ical fact that was noted with disapproval as early as 1908 by Emile
Meyerson.'

v

1E. Meyerson, Identité et Réalité (Paris: Alcan, 1908); Identity and Reality (London: George
Allan and Unwin, 1930; New York: Dover, 1962), chapter 4.
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Although most physicists of the nineteenth century were, of course,
aware of the difference between mass and weight, an unambiguous
terminology to accentuate the distinction was not yetavailable. A typical
example is the way William Thomson (Lord Kelvin) and Peter Guthrie
Tait tried to explain it: “A merchant with a balance and a set of standard
weights would give his customers the same quantity of the same kind
of matter however the earth’s attraction might vary, depending as he
does upon weights for his measurement; another using a spring balance
would defraud his customers in high latitude, and himself in low, if his
instrument (which depends on constant forces and not on the gravity
of constant masses) were correctly adjusted in London.”? Clearly, had
Thomson and Tait made use of m; and m,, or at least of m; and m, their
task would have been considerably facilitated.

The rather widespread confusion between the conceptions of weight
and mass was explained on psychological grounds in 1896 by Charles
Louis de Freycinet as being the result of the well-known proportionality
of weight and mass.® Although de Freycinet was not averse to introduc-
ing newly coined terms to describe the dynamical properties of mass,
les corps” (somehow the inverse of m;), he never made use of the term,
or even of the notion, of gravitational mass.

One of the earliest, though not the first, to use explicitly a term to
denote gravitational mass was Henri Poincaré, when he wrote in 1908:
“Mass may be defined in two ways—firstly, as the quotient of the force
by the acceleration, the true definition of mass, which is the measure
of the body’s inertia, and secondly, as the attraction exercised by the
body upon a foreign body, by virtue of Newton’s law. We have therefore
to distinguish between mass, the coefficient of inertia, and mass, the
coefficient of attraction.”*

It is, of course, difficult, if not impossible, to identify the first indi-
vidual to use the notion or the term “gravitational mass.” However,
records show that in discussions held in 1907 at a convention of the

2Lord Kelvin and P. G. Tait, Elements of Natural Philosophy (London: Collier, 1872),
paragraph 186.

3 “Les poids des corps sont rigoureusement proportionnels a leur masses. . . . Ce fait
expérimental est connu depuis long temps. Il nous est devenu tellement familier que nous
finissons presque par confondre la masse avec le poids.” C. L. de Freycinet, Essais sur la
Philosophie des Sciences (Paris: Gauthier-Villars, 1896), p. 181.

4 H. Poincaré, Science et Méthode (Paris: Flammarion, 1908); Science and Method (London:
Nelson, n.d.; New York: Dover, 1952), p. 235.
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Italian Physical Society, attended by E. Alessandri, G. Castelnuovo, and
G. Vailati, among others, the term “massa gravitazionale” was used.’ It
thus seems certain that there was an explicit distinction between m; and
mg not later than 1907.

It is also difficult to name with certainty the first individual to dis-
tinguish between m, and mp. What is certain, however, is the fact that
this distinction played an important role in physical discussions from
the time Hermann Bondi publicized it in his often quoted essay on
negative mass in general relativity. There he wrote in 1957: “we can
distinguish between three kinds of mass according to the measurement
by which it is defined: inertial, passive gravitational, and active grav-
itational mass. Inertial mass is the quantity that enters (and is defined
by) Newton's second law (a mass-independent force—say, of electro-
magnetic nature—has to be used here); passive gravitational mass is the
mass on which the gravitational field acts, that is, it is defined by F =
—m grad U; active gravitational mass is the mass that is the source of
gravitational fields and is hence the mass that enters Poisson’s equation
and Gauss’ law.”¢

Although this often quoted statement is certainly correct as far as
its factual content is concerned, it is neither a logically flawless nor, of
course, an operational definition of those terms. Since definitions of m;,
such as the one presently proposed, were dealt with in great detail in
chapter 1, we shall confine our discussion here to Bondi’s definitions of
my, and m,. Bondi defines 1, by means of the equation of motion

F = m;a= —m, grad U, “4.1)

where U denotes the gravitational potential. He defines m, by means of
the Poisson equation, i.e., by

V2U = —47Gp, = —4nGm,/V, 4.2)

where p, = m,/V is the gravitational mass-density, i.e., m, divided by
the volume V of the body, and G is the gravitational constant (about
6.67 x 10711 N'm3 kg~2 or 6.67 x 10~8 dyne cm? g~2 as measured, e.g.,

5F. Piola, “Il concetto di massa nell’ insegnamento elementare della meccanica. Dis-
cussione fatta in seno alla Societa Italiana di Fisica,” Nuovo Cimento 14, 80-124 (1907). See
also G. Giorgi, “Relazione sull’ argomento i richiamare le diverse concezioni di massa,”
ibid., 225-245.

6 H. Bondi, “Negative Mass in General Relativity,” Reviews of Modern Physics 29, 423~
428 (1957).
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by performing a Cavendish-type experiment). Let it be granted that m;
has been satisfactorily defined and the quantities a, V, and G have been
measured. Then the preceding equations define m,, in terms of U, and U
in terms of m, or vice versa. Hence, m, and m, are logically interdepen-
dentand the equations do not provide an independent definition of 1, or
of m,. Bondi’s statement, by defining a definiendum as something “that
enters” an equation (e.g., Poisson’s equation), is what logicians (J. D.
Gergonne and W. Dubislav, among others) call an “implicit definition,”
and as such is certainly not an operational definition. This also follows
from the fact that the statement hinges on the notion of the “gravitational
potential U,” which is not even an observable in physics. Obviously, it
was not Bondi’s intention to present an operational definition of m,
or of m,.

The question of how to define m,, and m, operationally has rarely, if
ever, been discussed in the professional literature.” However, it can be
resolved by adopting the technique that was used by Mach or by Weyl
for their operational definitions of m;: a fundamental law of classical
physics, which contains in its usual formulation the concepts to be
defined, is reformulated as a definition of these concepts. In fact, Mach’s
operational definition of the mass-ratio of two bodies as the negative
inverse ratio of their accelerations is, after all, merely a reformulation
of Newton’s third law, and Weyl’s definition merely a reformulation of
the law of the conservation of linear momentum. The validity of the
classical law is then a logical consequence of the definitions of the terms
involved.

In order to apply this technique to the design of an operational
definition of m, or m,, one has to choose a physical law that involves
these notions. The simplest law of this kind is of course Newton's
law of gravitation, which, expressed in scalar notation, says that the
gravitational force F, exerted by a body or particle B as the source
of the field and experienced by a body B; at a distance r from Bj is
given by

Fy = mi(Bi)ay = Gnta(Bo)my(B1) /17, (4.3)
where a symbol of the type m(B) denotes the mass of the body B, a; is the

acceleration of By, and G is the constant of gravitation. (Strictly speaking,

7 An exception is H. C. Ohanian’s Gravitation and Spacetime (New York: Norton, 1976,
1994) and his essay “What Is the Principle of Equivalence?,” American Journal of Physics
45, 903-909 (1977).
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it has to be assumed that the body is small enough so that tidal forces
can be ignored and, in the case of a particle, that is has no spin.)
Let By be a standard body for which by definition

m;(Bo) = my(By) = m,(By) =1 [unit of mass]. 4.4)

Since the scale of each of the three kinds of mass is assumed to be
independent of the scale of the other two, this normalization is an
acceptable convention. Let it be granted that the inertial mass m;(B) of
an arbitrary body B has been defined, e.g., a la Mach by an interaction
with By, so that

m;(B) = ap/a, 4.5)

where a9 and a are the accelerations of the standard body By and of B,
respectively. If, in particular, B, in (4.3) is the standard body By and B,
an arbitrary body B, then the force experienced by B is

F = mi(B)a = Gm,(Bo)m,(B)/r* “4.3)
so that, because of (4.4),
my,(B) = m;(B)ar*/G, (4.6)

which defines m,(B) in terms of m,(B) and other measurable quantities.

To see as well that G is, in fact, operationally definable, even without
recourse to the Cavendish experiment, let B}, be a replica of By, so that
(4.4) is also valid for B,. Replacement of B by Bj, in (4.3') yields

G = ayr?, 4.7)

where a = aj) is the acceleration of Bj,. Thus G is measured by a; and 7.
Interchanging the roles of B and By in (4.3'), one obtains

ma(B) = agr*/G, 4.8)

an equation that provides an operational definition of the active gravi-
tational mass of an arbitrary body B.

Obviously, if m; has been defined by Mach'’s operational definition so
that, neglecting signs,

m;(Bo)ag = m;(B)a 4.9
then

ap = m;(B)a,
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and by (4.8)
m,(B) = m;(B)ar*/G
or, by (4.6),
1,(B) = m,(B). 4.10)

In other words, if we assume Newton’s third law or, for that matter,
equivalently, the conservation of momentum, then the active and pas-
sive gravitational masses of every body, though conceptually different,
are numerically equal. Conversely, the equality between m, and m,
together with Newton’s law of gravitation is easily seen to be a sufficient
condition for the validity of Newton’s third law.

The equation m, = m, and the equation m; = m,, the experimen-
tal evidence of which will soon be discussed, may raise the question
of whether the trichotomy into m;, m,, and m,, though conceptually
justified, has any physical significance. True, in classical physics this
categorization is for all practical purposes unnecessary and is there-
fore generally ignored in standard textbooks on classical mechanics.
However, in modern theories of gravitation this trichotomy does have
physical significance. The advent of possible alternatives to Einstein’s
relativistic theory of gravitation and the development of high-precision
techniques for testing such theories made it necessary to formulate a
metatheory or framework of theories of gravitation in order to classify
them, to compare them systematically, and to explore the possibility of
constructing not-yet-devised theories of gravitation.

The most important framework of this kind is the so-called “para-
metrized post-Newtonian formalism,” or briefly PPN formalism. Used
in a rudimentary fashion as early as 1922 by Arthur Stanley Eddington,
and later by Howard Percy Robertson and Leonard I. Schiff, PPN owes
its modern formulation primarily to Kenneth Nordtvedt Jr.® and Clifford
M. Will.? The formulation applies only to metric theories of gravitation,
that is, theories that satisfy the conditions that space-time has a metric,
the world-lines of uncharged test bodies are geodesics of this metric,
and in local freely falling frames the nongravitational laws of physics

8 K. Nordtvedt Jr., “Equivalence Principle for Massive Bodies, II: Theory,” Physical
Review 169, 1017-1025 (1968).

9 C. M. Will, “Theoretical Framework for Testing Relativistic Gravity, II: Parametrized
Post-Newtonian Hydrodynamics and the Nordtvedt Effect,” Astrophysical Journal 163,
611-628 (1971).
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are those of special relativity. Most modern theories of gravitation, such
as those proposed by Einstein, Whitehead, Brans and Dicke, Bergmann,
Wagoner, Nordvedt, Bekenstein, Rosen, and Rastall, are metric theories,
and to describe precisely how the PPN formalism is applied would lead
us too far into technical details. Thus, we shall only sketch the general
idea of the procedure.”

Metric theories may differ in their field equations and in the nu-
merical coefficients that appear in the metric. The PPN formalism re-
places these coefficients, which characterize each theory, by parame-
ters, the so-called (ten) PPN parameters, which in Einstein’s relativistic
theory of gravitation are either zero or unity but differ from these
values in other theories. Different PPN parameters correspond to dif-
ferent gravitational theories, but two different theories can have the
same set of PPN parameters. Within the framework of the PPN formal-
ism, the study of the equations of motion of massive self-gravitating
bodies shows that m;, m,, and m, of such bodies are generally different
functions of these parameters, and as such they may well differ from
each other.

Let us return to equation (4.1) and introduce into it the local gravita-
tional acceleration g, defined by g = — gradU. The ensuing equation

a= (my/mjg 4.11)

shows that, at a given location, all bodies fall (in vacuo) with the same
acceleration or, if released from rest, through the same distance within
the same time, if and only if m,/m; has the same value for all bodies. If
this is indeed the case it is convenient to choose appropriate units, as
we shall henceforth assume, so that this ratio is unity or

mj = ny. (4.12)

It is instructive to prove the contention just noted in greater detail
for the historically most important case of the free fall of a body in the
gravitational field at the surface of the earth. According to Poisson’s
equation or Newton’s law of gravitation, the gravitational potential at
the surface of the earth is

10 For details see C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge:
Cambridge University Press, 1981, 1991), or I. Ciufolini and J. A. Wheeler, Gravitation and
Inertia (Princeton: Princeton University Press, 1995), pp. 163-168.
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U =-GM,/R, 4.13)
where G is the gravitational constant (6.67 x10~"'m? kg=! s72), M, the

active gravitational mass of the earth (5.98 x 10?4 kg), and R the radius
of the earth (6.37 x 10° m). Hence

g= | — grad u| = G]\/IH/R2 =982m S_z. (4.14)

If m;(B1) and m,(B1) denote, respectively, the inertial and passive grav-
itational mass of a body Bj, then according to equation (4.3)

m;(B1)g(B1) = m,(B1)GM,/R?, (4.15)

where the acceleration a of B; has been denoted by g(B1).
Analogously, we obtain for an arbitrary body B,, which may differ
from B in its chemical composition, size, and structure,

m;(B2)g(B2) = my,(By) GM,/R?, (4.16)

and by subtraction of the last from the former equation

mp(Bl) . mp(BZ):| GM,

mi(B1) m(By) | R?2 4.17)

g(B1) —g(Bo) = [

Since B; and B, are arbitrary bodies, this equation proves that all bodies
fall at the surface of the earth with the same acceleration if and only if
my,/m; has the same value for all bodies.

The statement that for all bodies, regardless of their weight, size,
shape, structure, or material composition the ratio m,/m; is the same
or in appropriate units m; = m,, is called the weak principle of equivalence
or briefly WEP. This term was coined by Robert Henry Dicke in 1959 and
defined by him as “the principle which assumes that the gravitational
acceleration of a body is independent of its structure.”"

For reasons soon to be explained we propose to distinguish, at least
temporarily, between two versions of WEP, that is, between its kinematic
version WEPy,,, which states that at a given location all bodies fall with
the same acceleration, and its dynamic version WEPgy,,, which states
that m; = m,. WEPy4, can also be called the principle of the universality of

11 R. H. Dicke, “New Research on Old Gravitation,” Science 129, 621-624 (1959). See also
R. H. Dicke, “Experimental Relativity,” in C. DeWitt and W. DeWitt, eds., Relativity Groups
and Topology (New York: Gordon and Breach, 1964), p. 168.
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free fall (UFF) but should not be confounded with what certain authors
call the principle of the uniqueness of free fall and also abbreviate by UFF
but use as a synonym for WEP."?

Our distinction between WEPy;, and WEP4y,, is motivated by logical
and historical reasons. WEPy;, does not presuppose the concept of mass
in any of its meanings and could therefore historically have preceded
WEP4yn before the notion of mass was conceived. In fact, WEPy;,, which
contradicts the Aristotelian thesis that heavy bodies fall faster than light
ones of the same material, can be traced back to the ancient atomists.
Epicurus of Samos, for instance, declared about 300 B.c., in his letter to
Herodotus, that “the atoms must fall with equal velocity (“isotacheis”)
when they are moving through the void.”" Similarly, the sixth-century
commentator Ioannis Philoponus, also called John the Grammarian, one
of the early critics of Aristotelian physics, wrote that, “if you let fall from
the same height two weights of which one is many times as heavy as
the other, you will see that the ratio of the times required for the motion
does not depend on the ratio of the weights.”™

With this statement Philoponus clearly anticipated Galileo Galilei’s
famous, but probably only apocryphal, experiment of dropping two
objects of different weights simultaneously from the top of the Leaning
Tower of Pisa to show that they reach ground at the same time. We
shall not discuss here the question of whether, or how far, the idea
of the experiment had been anticipated by Galileo’s immediate pre-
decessors, and among them especially by Giovanni Battista Benedetti
in his Demonstratio Proportionum Localium (1554). Less known but not
less ingenious was Galileo’s thought experiment, which he designed
“to prove, by means of a short and conclusive argument, that a heavier
body does not move more rapidly than a lighter one provided both
bodies are of the same material.” Galileo imagined a light stone being
attached to a heavy stone. When both are dropped, then according to
Aristotle’s theory the light stone would slow down the heavy stone so
that the combined system would fall more slowly than the heavy stone;
but since the combined system is heavier than the heavy stone alone, it

12Gee, e.g., the widely used text by C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation (San Francisco: Freeman, 1973), p. 1050.

13P. von der Muehll, ed., Epicuri Epistulae Tres (Letter 1, 61.6) (Stuttgart: Teubner, 1975),
p- 16. See also T. Lucretius, De Rerum Natura Libri Sex, book 2, verse 238-239.

14 Joannis Philoponi in Aristotelis Physicorum Libros Quinque Posteriores Commentaria
(Berlin: Reimer, 1888), pp. 676—684. English translation in M. R. Cohen and I. E. Drabkin,
A Source Book in Greek Science (New York: McGraw-Hill, 1948), pp. 217-231.
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should also fall faster than the heavy stone. Galileo thus demonstrated
that Aristotle’s thesis, that heavy objects fall faster than light ones of the
same material, is self-contradictory.” It should be noted, however, that
Galileo’s argument loses its logical cogency if the two objects in question
are not of the same material composition.

Turning now to WEPg4yn,, we know that it was clearly conceived and
even experimentally tested for the first time by Isaac Newton. However,
this version of the weak equivalence principle also seems to have a
prehistory, which, like that of WEPyiy, can be traced back to Epicurus. In
order to understand how this could have been possible so long before
there was a concept of mass we have to recall the following facts. In
his treatise On Generation and Corruption (326 a 11) Aristotle quotes
Democritus as having said that “the more any indivisible [atom] exceeds
[in bulk], the heavieritis.” The term used here by Aristotle for “heavier”
is “baryteron,” the comparative of “barys,” denoting “heavy.” Aristotle
thus clearly attributed heaviness or weight to Democritean atoms. But
that these atoms have weight had been emphatically denied by the
second-century A.D. doxographer Aetius in his statement: “Democritus
says that the atoms do not possess weight but move in the infinite as the
result of striking one another” (Placita I, 12, 6). The question of which
of these two apparently contradictory statements is true has intrigued
many scholars of ancient philosophy.

Recently Alan Chalmers suggested resolving this contradiction by
pointing out that the term “barys” had been used in the two statements
equivocally, that is, in different meanings: it denoted not only “heavy”
in the sense of having weight but also what Chalmers calls “unwieldy,”
namely “that property of a heavy object that determines the degree of
difficulty involved in moving or stopping it, distinct from the tendency
objects have to fall. . . . The modern reader familiar with Newtonian
physics will note that this usage of ‘heaviness’ and ‘weight” refers to
what is more accurately designated as ‘inertial mass.” ”'¢ Interestingly,
but not mentioned by Chalmers, Aristotle himself declared in his Topics
(106 a 18) that “barys is used with a number of meanings (pollachds),
inasmuch as its contrary also is so used.”

15 G. Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze (Leiden:
Elsevir, 1638), p. 107; Dialogues Concerning Two New Sciences (New York: Macmillan, 1914;
New York: Dover, 1954), p. 62.

16 A. Chalmers, “Did Democritus Ascribe Weight to Atoms?” Australian Journal of
Philosophy 75, 279-287 (1997).

99



CHAPTER FOUR

If, as Chalmers claims, Democritus ascribed to atoms only “unwieldi-
ness” or, in modern terms, inertial mass m; and Aristotle called it “barys”
or “heavy,” then Aristotle was right; and if Aetius maintained that Dem-
ocritean “unwieldiness” does not imply an inherent tendency to move
downward or, in modern terminology, to be possessed of gravitational
mass m,, then Aetius was right as well. However, it then also follows
logically that by attributing both of these properties to atoms Epicurus
ascribed to them m; as well as my. Of course, the idea of a quantitative
proportionality or equality of these two attributes was still beyond the
conceptual framework of that time.

Returning after this historical digression to Galileo, we know that he
did not yet conceive the notion of mass. True, occasionally he made use
of the term “massa,” as for example on page 67 of his Discorsi, but only
in the general sense of “substance” or “stuff.” Those of his experiments
described above as well as those that he claimed to have performed with
inclined planes and pendulums should therefore be interpreted only as
tests of WEPyin. The expression that is sometimes used, namely “Galilei
equivalence principle,” as encompassing both WEPy;, and WEP4yy, is
therefore historically misleading.

From now on, in our account of the post-Galilean era beginning
with Isaac Newton, we follow the common terminology and use the
abbreviation WEP to denote both WEPy;, and WEPgy,. For once the
notion of mass is available, the term “weak equivalence principle”
always has the connotation of asserting the proportionality or equality
between m; and m,,, even if this relation is only implicit in the statement,
e.g., that at a given location all bodies fall with the same acceleration.

The first individual who fully deserves the credit for having pro-
claimed and experimentally demonstrated WEP is Isaac Newton."” He
suspended two pendulums side by side, loaded with two different
substances, such as wood and lead, and he looked for a phase difference
between them as they oscillated for a long time. If L denotes the length
of the pendulum, ¢ the angle between the string and the vertical, and m;
and m, the inertial and passive gravitational masses of the suspended
body, then the tangential component of the accelerating force is

Fiang = —mypg sin ¢ (4.18)
17 According to Edward Hussey, Aristotle could be credited with having conceived
WEDP, as he interprets Physics VII, 5 (250 a et seq.) as saying that there exists “an ‘inertial

resistance’ to action which is proportional to weight.” E. Hussey, Aristotle’s Physics (Oxford:
Clarendon Press, 1983), p. 133.
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or for small amplitudes
Fiang = —1m1,8¢. 4.19)
Since the tangential acceleration is
ftang = Ld¢ /dt* (4.20)
the differential equation of motion reads
miLd’¢ /dt* = —m,g, 4.21)
which, if solved, yields for the period of oscillation
T = 27 (m;L/m,g)"/>. 4.22)

Hence the ratio between the periods of the two pendulums, one loaded
with gold (Au), the other with lead (Pb), is

Tauw/Trb = [mi(Aw) /m,(Aw1'? /[m;(Pb) /m,(Pb)]'/2,  (4.23)

where m;(Au) and m,(Au) are the masses of gold, and m;(Pb) and
my,(Pb) those of lead. Since the pendulums “play together forwards
and backwards, for a long time, with equal vibrations,” i.e., Tay = Tpb,
Newton concluded that the ratio m;/ my is the same for both substances,
with an accuracy of one part in 103. Having repeated this experiment
with silver, glass, sand, common salt, and wheat with the same result,
Newton announced what he called the proportionality between mass
and weight, i.e., essentially between m; and m1,.

Newton realized the importance of this relation. For although he de-
scribed this experiment only in Book III, proposition VI, of his Principia,
he mentioned its result at the very beginning of this work, immediately
after his definition of mass. He probably did so because he felt that this
proportionality provides what we would call an operational definition
or, at least, determination of mass since weights can easily be measured
by the use of the balance.

Nevertheless, it is a unique irony in the history of physics that the very
same proportionality between m; and m,, to which Newton attached
such an importance, also became the starting point and cornerstone of
Einstein’s construction of his general theory of relativity, which refuted
and superseded Newtonian physics. But, interestingly, Newton has also
recently been credited with having anticipated, in corollaries V and VI
of his third law of motion, what in modern terminology is called the
strong equivalence principle, the very foundation of general relativity,
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and with having anticipated, to some extent, even the idea of testing
what is now called the Nordtvedt effect. We shall return to this issue
later on, when we discuss these points in detail.

In November 1907 Einstein realized—he called it “the happiest
thoughtin my life”—that the m; = m, equality enables him to “transform
away” a homogeneous gravitational field locally and thus to extend the
applicability of special relativity to the case of uniformly accelerated
reference frames.” To understand how the m; = m, equality allows
one locally to “transform away” a static homogeneous gravitational
field, we imagine a spatially localized laboratory to contain n particles
acting upon each other with distance-dependent forces f(r; — ry), where
= (%,9.%), G,k =1,2,...,n) denotes the position of particle j. The
equation of motion for particle g is

n
mig d*ty /A = myg + > f(r; — 1)) g=1,2, ...,n, (424
s=1
where Mig and My denote the inertial and gravitational mass, re-
spectively, of particle q. Application of the non-Galilean space-time
transformation

/

r=r— %gif2 t =t, (4.25)

provided Mig = My, yields
mig dx) /dt* = " f(x, — 1)), (4.26)
s=1

which is the equation in a gravitation-free coordinate system.

Thus, to use Einstein’s illustrative example, the mechanical behavior
of particles in an elevator falling freely in an external homogeneous
gravitational field is the same as that in an elevator that is at rest relative
to the distant stars in the absence of an external gravitational field.
Further, m; equals m, because both quantities denote the same quality of
a body, which “manifests itself according to circumstances as ‘inertia’ or
as ‘weight.” 7" Furthermore, this equality indicated how the construc-
tion of the general theory had to proceed. If we use modern space-time

18 “Der gliicklichste Gedanke meines Lebens,” A. Einstein, Grundgedanken und Methoden
der Relativititstheorie in ihrer Entwicklung dargestellt,” unpublished manuscript, Pierpont
Morgan Library, New York City; Einstein Archive, reel 2-070.

19 “Dieselbe Qualitdt des Korpers dussert sich je nach Umstanden als ‘Tragheit’ oder
als ‘Schwere.”” A. Einstein, Uber die spezielle und die allgemeine Relativititstheorie (Braun-
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terminology and the notion of a “testbody,” i.e., a body of negligible self-
gravitational energy and of so small a size that its coupling via multiple
moments or spin to inhomogeneities of the external field is negligible,
WEP says: the world-line of an uncharged test body, released at an initial
space-time event with a given initial velocity, is independent of the
weight, size, shape, and material composition of the body. WEP thus
defines a preferred set of (not necessarily geodetic) curves in space-time
and thus suggests that the structure of space-time specifies properties
of a geometrized gravitational field, though not necessarily in the sense
of a non-Euclidean geometry.’

Although primarily a theoretician, Einstein was always ready to
give up completely, rather than modify, his theories should experi-
mental evidence conflict with predictions derived from their funda-
mental principles.?! Having recognized the heuristic importance of the
equivalence principle, he was eager to make certain that its predictions,
foremost the proportionality of inertial and gravitational mass, are
experimentally confirmed. Toward this end, in July 1912, he asked his
friend the experimentalist Wilhelm Wien, to test this proportionality for
lead and uranium by means of a precision-measurement method that
Einstein thought he himself had invented for the purpose.”

Einstein was obviously not aware that such a test, by essentially the
same method, had been carried out more than twenty years earlier by
the geophysicist Roland, Baron E6tvos of Vasarosnamoény. Thus it is no
exaggeration to say that Einstein began the construction of his general
theory of relativity without the support of any observational evidence.
Of course, certain observations, such as the discovery of the perihelion
precession of Mercury, known since the late 1850s, suggested a modifica-
tion of the classical theory of gravitation; but they provided no clue as to
how to revise it, let alone how to replace it by a totally different concep-
tual scheme. Whereas all other theories of modern physics, especially
those of quantum mechanics and elementary particles, originated from a

schweig: Vieweg, 1920, 1965), p. 45; Relativity—The Special and the General Theory (London:
Methuen, 1920, 1988), p. 65.

20D. E. Dugdale, “The Equivalence Principle and Spatial Curvature,” European Journal
of Physics 2, 43-51 (1981).

21 K. Hentschel, “Einstein’s Attitude Toward Experiments: Testing Relativity Theory
1907-1927,” Studies in History and Philosophy of Science 23, 593624 (1992).

227, Illy, “Einstein und der E6tvos-Versuch,” Annals of Science 46, 417—422 (1989). Letter
from Einstein to W. Wien, dated July 10, 1912. Einstein Archive, reel 23-566.
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large set of detailed observations, general relativity owes its inception—
apart from its methodological postulate of the general covariance of the
physical laws—to only one physical assumption, the proportionality
between m; and m,, which at that time Einstein thought to be still in
need of an observational verification.

Before we discuss the significance of the E6tvos experiment and its
variants for the notion of mass we return to the as yet unanswered ques-
tion of why WEP has been called the “weak” principle of equivalence.
This is the right place to do so because the answer is intimately related
to Einstein’s first step, noted just above, on his path toward the general
theory. In his 1907 summary essay on relativity Einstein described in
detail how he extended the principle of relativity to uniformly acceler-
ated reference frames. He considered two reference systems S and S', the
former being at rest in a homogeneous gravitational field that imparts
an acceleration —g in the direction of its x-axis to all objects, and the
latter being accelerated along the same axis with a constant acceleration
g. “As far as we know,” he continued, “the physical laws with respect
to S’ do not differ from those with respect to S; this derives from the
fact that all bodies are accelerated alike in the gravitational field. We
have therefore no reason (“Anlass”) to suppose in the present state of
our experience that the systems S’ and S differ in any way, and will
therefore assume in what follows the complete physical equivalence
(“die vollige physikalische Gleichwertigkeit”) of the gravitational field
and the corresponding acceleration of the reference system.”?

Clearly, this “complete physical equivalence” with respect to the laws
of physics of any kind, including, e.g., the laws of electrodynamics, is not
a logical consequence of “the fact that all bodies are accelerated alike in
the gravitational field.” It is rather a bold extrapolation or generalization
of this fact to physics as a whole. To emphasize this point, Dicke, in the
essay in Science cited above, called it the “strong equivalence principle”
or SEP. Itis sometimes also called the “Einstein equivalence principle” or
EEP. Some authors distinguish between “the medium strong form of the
equivalence principle,” which they also call the “Einstein equivalence

23 A. Einstein, “Uber das Relativititsprinzip und die aus demselben gezogenen Fol-
gerungen,” Jahrbuch der Radioaktivitdt und Elektronik 4, 411-462 (1907); “Berichtigung,”
ibid., 5,98 (1908). English translation “Einstein’s Comprehensive 1907 Essay on Relativity,”
American Journal of Physics 45, 512-517, 811-817, 899-902 (1977). Collected Papers, vol. 2,
pp. 432-484, 494-495.
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principle,” and which refers only to nongravitational laws, and the “very
strong form of the equivalence principle,” which refers to all laws of
physics.?* To avoid misconceptions, we shall henceforth use the term
EEP for the statement that all nongravitational laws of physics are the
same in all local freely falling reference frames that are small enough so
that inhomogeneities in the gravitational field can be ignored. Clearly,
a theory that satisfies EEP also satisfies WEP because the statement that
bodies unaffected by external forces follow unaccelerated trajectories is
a law of physics.

In 1960 Leonard Schiff conjectured that, conversely, at least as far
as complete and self-consistent theories are concerned,” a gravitational
theory that satisfies WEP also satisfies EEP.* Schiff’s conjecture has been
validated for the case of test bodies composed of electromagnetically
interacting particles falling from rest in a static, spherically symmetric
gravitational field and for other special cases by showing that a violation
of EEP implies a violation of WEP# However, a rigorous general proof
has not been and probably cannot be given. In any case, this conjecture
enhances the importance of the E6tvos experiment, for if Schiff’s con-
jecture is right, then the equality m; = m,, which this experiment was
designed to confirm with high precision, would suffice to prove EEP
and thereby that gravitation must be interpreted as a curved space-time
phenomenon.

It is often said that the proportionality of inertia and weight or, more
precisely, of m; and m, is in Newtonian physics a completely inexplicable
and merely accidental fact of nature, but that it has been explained by
Einstein in his general theory of relativity. It is worthwhile examining
these statements more closely.

24 Gee, e.g., S. Weinberg, Gravitation and Cosmology (New York: John Wiley and Sons,
1972), p. 69; or Ciufolini and Wheeler, Gravitation and Inertia, p. 14.

25 A theory of gravitation is complete if it allows the calculation of the detailed behavior
of atoms in a gravitational field. It is self-consistent if different methods of calculating the
prediction of an experiment yield the same result.

26 L. I. Schiff, “On Experimental Tests of the General Theory of Relativity,” American
Journal of Physics 28, 340-343 (1960).

27 A. P. Lightman and D. L. Lee, “Restricted Proof that the Weak Equivalence Principle
Implies the Einstein Equivalence Principle,” Physical Review D 8, 364-376. A. P. Lightman,
“The Equivalence Principle as a Foundation for Gravitation Theories,” in P. Barker and
E. G. Shugart, eds., After Einstein (Memphis, Tenn.: Memphis State University Press, 1981),
pp. 57-65.
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That this proportionality is fortuitous in Newtonian physics can
hardly be denied in view of the fact that m, plays the role of a “grav-
itational charge” and is therefore, just like an electrical charge, totally
independent of the inertial mass of the body. A world in which the
ratio m,/m; would vary from body to body would logically not be
incompatible with the conceptual framework of Newtonian physics and
its laws of motion. Still, in the history of classical physics there are a
number of arguments on record that claim to have proved the necessity
of this proportionality.

William Whewell, for example, the well-known philosopher of science
and author of a Treatise on Mechanics (1819) and a Treatise on Dynamics
(1823), contended in 1841 that he had proved that “inertia is necessarily
proportional to weight.” Whewell summarized his proof as follows:
“When weight produces motion, the inertia is the reaction which makes
the motion determinate. The accumulated motion produced by the
action of unbalanced weight is as determinate a condition as the equi-
librium produced by balanced weight. In both cases the condition of
the body acted on is determined by the opposition of the action and
reaction. Hence inertia is the reaction which opposes the weight, when
unbalanced. But by the conception of action and reaction (as mutually
determining and determined) they are measured by each other: and
hence the inertia is necessarily proportional to the weight.”?

Another example is the totally different explication of that propor-
tionality that was originally suggested by the mathematician Valentin-
Joseph Boussinesq and was publicized primarily by Wilhelm Ostwald.
It is based on the Kant-Laplace nebular hypothesis, which was the fa-
vored theory of the origin of the solar system throughout the nineteenth
century. This cosmogonic hypothesis describes the birth of the sun as a
gigantic conflux of particles from all over space. The argument claims
that when these particles were still dispersed in space they differed in
the ratio of their weight and mass. But when the condensation process
began, according to the law of gravitation, those particles for which
this ratio is a maximum or, inversely, particles of equal weight with
minimum value of mass, must have been the first to agglomerate into
the central body, the sun. Owing to this selection process the particles
that constitute the sun and the planets are those for which this ratio

28 W. Whewell, “Demonstration that All Matter Is Heavy,” Essay Il in his The Philosophy
of the Inductive Sciences (London: Parker, 1847; New York: Johnson Reprints, 1967), vol. 2,
pp. 624-634.
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is the same, namely the highest. Ostwald even thought it might be
possible to calculate the age of the earth from this ratio for terres-
trial matter.”

Arguments such as those proposed by Whewell and Ostwald would
certainly be rejected by modern scientists as being too vague and lacking
mathematical elaboration. Recently Andrew E. Chubykalo and Stoyan
J. Vlaev published a paper in which they claim to have proved that
the proportionality of inertial and gravitational mass is not a postulate
but rather a theorem in classical mechanics. They decided to study this
issue when they found to their surprise that for a certain mechanical
system the kinetic energy, which is usually associated only with inertial
masses, can also be expressed solely in terms of gravitational masses.
They considered two bodies m and M with inertial mass m;, and M; and
gravitational mass m, and M,, respectively, moving in circular motion
with constant velocities v,, and vy, respectively, around their center of
inertia C, which always lies on the straight line connecting the bodies. If
R denotes the distance between the bodies and x that of M from C, then
according to the equations of centripetal acceleration and Newton’s law
of gravitation, clearly

mivs, /(R — x) = GmgM, /R* = Mjvy, /x, (4.27)

where G is, of course, the constant of gravitation. Since the angular
velocities about C are equal, v,,/(R — x) = vp/x. Calculating v,, and
vy from the preceding equations, they found that the kinetic energy,
which in this case is given by K = 1m;v% + M;v%,, also satisfies the
equation K = GmgM,/2R. In order to prove that m; = nm,, where 7 is
a constant independent of the masses and their velocities, the authors
consider a coordinate system that is fixed at body M, and using the
equation m;v*/R = GmgM,/R? again, they derive the proportionality of
m; and my.*°

29 “Es werden in den Centralkérper namlich zunéchsts solche Massen gelangen, deren
verhaltnissméssige Schwere am grossten ist, oder umgekehrt bei Kérpern von gleicher
Schwere die, deren Massen am kleinsten sind. Es findet eine Auslese aller vorhandenen
Korper statt, welche dahin wirken muss, dass im Centrum zunéchsts die am schnellsten
fallenden eintreffen. Fiir diese wird das Verhiltniss zwischen Schwere und Masse densel-
ben Werth haben, und zwar den grossten vorkommenden.” W. Ostwald, Vorlesungen tiber
Naturphilosophie (Leipzig: Veit, 1902), p. 192.

30 A. E. Chubykalo and J. Vlaev, “Theorem on the Proportionality of Inertial and
Gravitational Masses in Classical Mechanics,” European Journal of Physics 19, 1-6 (1998).
See also B. Jancovici, “Comment,” ibid., 399.
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Of course, their paper caused quite a stir, for, if correct, it would throw
new light on the very foundations of the general theory of relativity,
which is based on the equivalence principle. But is it correct? Bernard
Jancovici, a member of the editorial board of the periodical in which the
paper was published, declared in his “comment” that the paper “should
never have been accepted” for the following reason: “A very simple
disproof of the authors’ argument is that the same argument, applied to
the electric charge rather than to the gravitational mass, would lead to
the “proof’ that all particles have the same charge-to-mass ratio.”

However, in spite of the mathematical similarity between Newton’s
law of gravitation and Coulomb’s law of the force acting between
charged bodies at rest with respect to each other, analogies between
gravitational masses and electric charges do not always lead to correct
conclusions because of the magnetic forces caused by charges in motion.
A refutation of the paper would be more convincing if an error could
be found in the authors’ argument itself. In fact, such an error does
exist. The equation m;0*/R = GmyM,/R?, which as we have seen plays
a critical role in the proof, would be valid in an inertial system but is
not valid in the coordinate system “fixed at the body M,” which, as the
authors themselves point out, is not an inertial system.

The statement that Einstein “explained” the proportionality (or equal-
ity) of m; and m, also requires some critical clarification, because its valid-
ity depends on the meaning of the term “explanation.” According to the
widely accepted Hempel-Oppenheim “covering-law model” or many of
its alternatives, explanation is a logical deduction of the explanandum
from general laws.*! Hence, whether an explanandum can be explained
within the framework of a given theory depends on the general laws
on which the theory is founded. Einstein based his general theory on
the assumption quoted above of “the complete physical equivalence of
a gravitational field and the corresponding acceleration of the reference
system.” In his 1907 summary essay and in his 1911 demonstration that
“energy possesses a gravitational mass which is equal to its inertial
mass,” this assumption is referred to as a “hypothesis.”*? But in his

31C. G. Hempel and P. Oppenheim, “Studies in the Logic of Explanation,” Philosophy of
Science 15, 125-175 (1948); C. G. Hempel, Aspects of Scientific Explanation and Other Essays
in the Philosophy of Science (New York: Free Press, 1965).

32 A. Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes,” Annalen
der Physik 35, 898-908 (1911); Collected Papers, vol. 3, pp. 485-496; “On the Influence of
Gravitation on the Propagation of Light,” in A. Einstein, H. A. Lorentz, H. Minkowski,
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subsequent 1912 essay on the gravitational deflection of light its status
is raised to that of a “principle” and it is called, for the first time, the
“equivalence principle” (“Aquivalenzprinzip”).?* From this point on it
plays, together with the “relativity principle,” the role of a most general
law in the new theory. Since the equivalence principle implies m; = m,
it is legitimate to say that the general theory of relativity “explains”
this relation. It should be remembered, however, that this is true only
because Einstein, as Abraham Pais expressed it, “had the gift of learning
something from ancient wisdom by turning it around” or by reversing
“the arrow of logic.”**

Turning now to the E6tvos experiment and its subsequent variants,
designed to test WEP, we have to note that the principle behind all
these tests, including Galilei-type free-fall experiments and Newton-
like pendulum experiments, is to expose bodies of different material
composition to be acted upon simultaneously by a m;-dependent and a
my,-dependent force and to check for detectable effects in their reactions
to these forces. In the E6tvos experiment the 11,-dependent force is the
gravitational attraction of the earth and the m;-dependent force is the
centrifugal force owing to the earth’s rotation. The instrument used
is a Cavendish torsion balance, with its beam suspended by a thin
fiber near its midpoint so that the lengths of its two arms, I; and I,
are approximately equal. Two laboratory-sized bodies B; and B, are
attached, B; at the end of I; and B, at the end of I;. That an inequality
m;(B1)/my(B1) # m;(By)/my,(B,) should produce a torque can be seen
as follows. The gravitational force acting on B; is m,(B1)g and that
on B is my(B2)g, where ¢ is the local gravitational acceleration in the
direction toward the center of the earth, i.e., without any centrifugal
component. Acting in the opposite direction, the vertical component
of the centrifugal force exerts the force m;(Bi)c, on Bj, and the force
m;(B2) ¢, on By, where ¢, is the vertical component of the centrifugal
acceleration. The equilibrium condition requires that

I [m,(B1)g — mi(B1)cy | = L [m,(B2)g — mi(Ba)cy | (4.28)

and H. Weyl, The Principle of Relativity (London: Methuen, 1923; New York: Dover, 1952),
pp- 99-108. Collected Papers (English translations), vol. 3, pp. 379-387.

33 A. Einstein, “Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” Annalen der
Physik 38, 355-369 (1912); “The Speed of Light and the Statics of the Gravitational Field,”
Collected Papers, vol. 4, pp. 130-144.

34 A.Pais, "SubtleIs the Lord . . ." The Science and the Life of Albert Einstein (Oxford: Oxford
University Press, 1982), p. 195.
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The horizontal component of the centrifugal force imparts a torque T to
the balance around the vertical axis equal to

T = lim;(B1)cy — lom;(By)cy, (4.29)

where ¢, is the horizontal component of the centrifugal acceleration.
Elimination of I, by means of (4.28) yields the following value for T

my,(B2) B mp(Bl)i| / |:g my,(Ba) B
mi(Bz)  m;(B1) m;(B2)

T = m;(B1)cohg [ cv} . (4.30)
Hence, the balance experiences a torque if and only if the ratio m;/m, for
B differs from that for B,. Since the centrifugal force could not be turned
off to determine the zero from which the torque had to be measured, the
whole apparatus had to be rotated by 180° in the horizontal plane. The
resulting total twist angle of the beam was therefore proportional to
twice the torque.

Eotvos had thought that it might be possible to eliminate the trou-
blesome rotation of the apparatus by comparing the gravitational force
owing to the sun with the inertial force owing to the earth’s orbital
motion about the sun,* but he died in 1909 without having been able to
carry out such a project. His terrestrial experiment, however, was greatly
improved upon by his successors Desiderius Pekdr and Eugen Fekete,
who tested the WEP for a wide variety of substances and concluded “that
not in a single case could they detect an observable violation of the law
of the proportionality between inertia and gr