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Preface 

What is mathematics of physics and engineering? An immediate answer 
would be "all mathematics that is used in physics and engineering", which is 
pretty much ... all the mathematics there is. While it is nearly impossible 
to present all mathematics in a single book, many books on the subject 
seem to try this. 

On the other hand, a semester-long course in mathematics of physics 
and engineering is a more well-defined notion, and is present in most univer­
sities. Usually, this course is designed for advanced undergraduate students 
who are majoring in physics or engineering, and who are already familiar 
with multi-variable calculus and ordinary differential equations. The basic 
topics in such a course include introduction to Fourier analysis and partial 
differential equations, as well as a review of vector analysis and selected top­
ics from complex analysis and ordinary differential equations. It is therefore 
useful to have a book that covers these topics — and nothing else. Besides 
the purely practical benefits, related to the reduction of the physical di­
mensions of the volume the students must carry around, the reduction of 
the number of topics covered has other advantages over the existing lengthy 
texts on engineering mathematics. 

One major advantage is the opportunity to explore the connection be­
tween mathematical models and their physical applications. We explore 
this connection to the fullest and show how physics leads to mathematical 
models and conversely, how the mathematical models lead to the discovery 
of new physics. We believe that students will be stimulated by this inter­
play of physics and mathematics and will see mathematics come alive. For 
example, it is interesting to establish the connection between electromag-
netism and Maxwell's equations on the one side and the integral theorems 
of vector calculus on the other side. Unfortunately, Maxwell's equations 
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are often left out of an applied mathematics course, and the study of these 
equations in a physics course often leaves the mathematical part somewhat 
of a mystery. In our exposition, we maintain the full rigor of mathemat­
ics while always presenting the motivation from physics. We do this for 
the classical mechanics, electromagnetism, and mechanics of continuous 
medium, and introduce the main topics from the modern physics of rel­
ativity, both special and general, and quantum mechanics, topics usually 
omitted in conventional books on "Engineering Mathematics." 

Another advantage is the possibility of further exploration through prob­
lems, as opposed to standard end-of-section exercises. This book offers a 
whole chapter, about 30 pages, worth of problems, and many of those prob­
lems can be a basis of a serious undergraduate research project. 

Yet another advantage is the space to look at the historical developments 
of the subject. Who invented the cross product? (Gibbs in the 1880s, see 
page 3.) Who introduced the notation i for the imaginary unit sf^ll 
(Euler in 1777, see page 79.) In the study of mathematics, the fact that 
there are actual people behind every formula is often forgotten, unless it is a 
course in the history of mathematics. We believe that historical background 
material makes the presentation more lively and should not be confined to 
specialized history books. 

As far as the accuracy of our historical passages, a disclaimer is in order. 
According to one story, the Russian mathematician ANDREI NiKOLAEVlCH 
KOLMOGOROV (1903-1987) was starting as a history major, but quickly 
switched to mathematics after being told that historians require at least 
five different proofs for each claim. While we tried to verify the historical 
claims in our presentation, we certainly do not have even two independent 
proofs for most of them. Our historical comments are only intended to 
satisfy, and to ignite, the curiosity of the reader. 

An interesting advice for reading this, and any other textbook, comes 
from the Russian physicist and Nobel Laureate LEV DAVIDOVICH LANDAU 

(1908-1968). Rephrasing what he used to say, if you do not understand a 
particular place in the book, read again; if you still do not understand after 
five attempts, change your major. Even though we do not intend to force a 
change of major on our readers, we realize that some places in the book are 
more difficult than others, and understanding those places might require a 
significant mental effort on the part of the reader. 

While writing the book, we sometimes followed the advice of the German 
mathematician CARL GUSTAV JACOB JACOBI (1804-1851), who used to 
say: "One should always generalize." Even though we tried to keep abstract 
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constructions to a minimum, we could not avoid them altogether: some 
ideas, such as the separation of variables for the heat and wave equations, 
just ask to be generalized, and we hope the reader will appreciate the 
benefits of these generalizations. As a consolation to the reader who is not 
comfortable with abstract constructions, we mention that everything in this 
book, no matter how abstract it might look, is nowhere near the level of 
abstraction to which one can take it. 

The inevitable consequence of unifying mathematics and physics, as we 
do here, is a possible confusion with notations. For example, it is customary 
in mathematics to denote a generic region in the plane or in space by G, 
from the German word Gebiet, meaning "territory." On the other hand, 
the same letter is used in physics for the universal gravitational constant; 
in our book, we use G to denote this constant (notice a slight difference 
between G and G). Since these two symbols never appear in the same 
formula, we hope the reader will not be confused. 

We are not including the usual end-of-section exercises, and instead 
incorporate the exercises into the main presentation. These exercises act 
as speed-bumps, forcing the reader to have a pen and pencil nearby. They 
should also help the reader to follow the presentation better and, once 
solved, provide an added level of confidence. Each exercise is rated with a 
super-script A, B, or C; sometimes, different parts of the same exercise have 
different ratings. The rating is mostly the subjective view of the authors 
and can represent each of the following: (a) The level of difficulty, with C 
being the easiest; (b) The degree of importance for general understanding 
of the material, with C being the most important; (c) The aspiration of the 
student attempting the exercise. Our suggestion for the first reading is to 
understand the question and/or conclusion of every exercise and to attempt 
every C-rated exercise, especially those that ask to verify something. The 
problems are at the very end, in the chapter called "Further Developments," 
and are not rated. These problems provide a convenient means to give brief 
extensions of the subjects treated in the text (see, for example, the problems 
on special relativity). 

A semester-long course using this book would most likely emphasize 
the chapters on complex numbers, Fourier analysis, and partial differential 
equations, with the chapters on vectors, mechanics, and electromagnetic 
theory covered only briefly while reviewing vectors and vector analysis. 
The chapters on complex numbers and Fourier analysis are short enough to 
be covered more or less completely, each in about ten 50-minute lectures. 
The chapter on partial differential equations is much longer, and, beyond 
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the standard material on one-dimensional heat and wave equations, the 
selection of topics can vary to reflect the preferences of the instructor and/or 
the students. We should also mention that a motivated student can master 
the complete book in one 15-week semester by reading, on average, just 5 
pages per day. 

We extend our gratitude to our colleagues at USC: Todd Brun, To­
bias Ekholm, Florence Lin, Paul Newton, Robert Penner, and Mohammed 
Ziane, who read portions of the manuscript and gave valuable sugges­
tions. We are very grateful to Igor Cialenco, who carefully read the en­
tire manuscript and found numerous typos and inaccuracies. The work of 
SVL was partially supported by the Sloan Research Fellowship, the NSF 
CAREER award DMS-0237724, and the ARO Grant DAAD19-02-1-0374. 

E. K. Blum and S. V. Lototsky 
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Chapter 1 

Euclidean Geometry and Vectors 

1.1 Euclidean Geomet ry 

1.1.1 The Postulates of Euclid 

The two Greek roots in the word geometry, geo and metron, mean "earth" 
and "a measure," respectively, and until the early 19th century the de­
velopment of this mathematical discipline relied exclusively on our visual, 
auditory, and tactile perception of the space in our immediate vicinity. 
In particular, we believe that our space is homogeneous (has the same 
properties at every point) and i s o t r o p i c (has the same properties in ev­
ery direction). The abstraction of our intuition about space is Euclidean 
geometry, named after the Greek mathematician and philosopher EUCLID, 

who developed this abstraction around 300 B.C. 

The foundations of Euclidean geometry are five postulates concerning 
points and lines. A point is an abstraction of the notion of a position in 
space. A l i n e is an abstraction of the path of a light beam connecting 
two nearby points. Thus, any two points determine a unique line passing 
through them. This is Euclid's f i r s t pos tu l a t e . The second pos tu l a t e 
states that a line segment can be extended without limit in either direction. 
This is rather less intuitive and requires an imaginative conception of space 
as being infinite in extent. The t h i r d pos tu l a t e states that, given any 
straight line segment, a circle can be drawn having the segment as radius 
and one endpoint as center, thereby recognizing the special importance 
of the circle and the use of straight-edge and compass to construct pla­
nar figures. The four th pos tu l a t e states that all right angles are equal, 
thereby acknowledging our perception of perpendicularity and its unifor­
mity. The f i f t h and f i n a l pos tu l a t e states that if two lines are drawn 
in the plane to intersect a third line in such a way that the sum of the 

l 
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inner angles on one side is less than two right angles, then the two lines 
inevitably must intersect each other on that side if extended far enough. 
This postulate is equivalent to what is known as the p a r a l l e l pos tu l a t e , 
stating that, given a line and a point not on the line, there exists one and 
only one straight line in the same plane that passes through the point and 
never intersects the first line, no matter how far the lines are extended. For 
more information about the parallel postulate, see the book Godel, Escher, 
Bach: An Eternal Golden Braid by D. R. Hofstadter, 1999. The paral­
lel postulate is somewhat contrary to our physical perception of distance 
perspective, where in fact two lines constructed to run parallel seem to 
converge in the far distance. 

While any geometric construction that does not exclusively rely on 
the five postulates of Euclid can be called non-Euclidean, the two basic 
non-Euclidean geometries, hyperbolic and e l l i p t i c , accept the first 
four postulates of Euclid, but use their own versions of the fifth. Inciden­
tally, Euclidean geometry is sometimes called parabol ic . For more infor­
mation about the non-Euclidean geometries, see the book Euclidean and 
Non-Euclidean Geometries: Development and History by M. J. Greenberg, 
1994. 

The parallel postulate of Euclid has many implications, for example, 
that the sum of the angles of a triangle is 180°. Not surprisingly, this 
and other implications do not hold in non-Euclidean geometries. Classical 
(Newtonian) mechanics assumes that the geometry of space is Euclidean. In 
particular, our physical space is often referred to as the three-dimensional 
Euclidean space R3, with Bfc denoting the set of the real numbers; the 
reason for this notation will become clear later, see page 7. 

The development of Euclidean geometry essentially relies on our intu­
ition that every line segment joining two points has a length associated 
with it. Length is measured as a multiple of some chosen unit (e.g. me­
ter). A famous theorem that can be derived in Euclidean geometry is the 
theorem of Pythagoras: the square of the length of the hypotenuse of a 
right triangle is equal to the sum of the squares of the lengths of the other 
two sides. Exercise 1.1.4 outlines one possible proof. This theorem leads 
to the distance function, or metr ic , in Euclidean space when a cartesian 
coordinate system is chosen. The metric gives the distance between any 
two points by the familiar formula in terms of their coordinates (Exercise 
1.1.5). 
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1.1.2 Relative Position and Position Vectors 

Our intuitive conception and observation of position and motion suggest 
that the position of a point in space can only be specified relative to some 
other point, chosen as a reference. Likewise, the motion of a point can only 
be specified relative to some reference point. 

The view that only relative motion exists and no meaning can be given 
to absolute position or absolute motion has been advocated by many promi­
nent philosophers for many centuries. Among the famous proponents of this 
relativistic view were the Irish bishop and philosopher GEORGE BERKELEY 

(c. 1685-1753), and the Austrian physicist and philosopher ERNST MACH 
(1836-1916). An opposing view of absolute motion also had prominent 
supporters, such as Sir ISAAC NEWTON (1642-1727). In 1905, the German 
physicist ALBERT EINSTEIN (1879-1955) and his theory of special relativ­
ity seemed to resolve the dispute in favor of the relativists (see Section 2.4 
below). 

Let us apply the idea of the relative position to points in the Euclidean 
space M3. We choose an arbitrary point O as a reference point and call it an 
or ig in . Relative to O, the position of every point P in R3 is specified by the 
directed line segment r = OP from O to P. This line segment has length 
||r|| — \OP\, the distance from O to P, and is called the p o s i t i o n vector 
of P relative to O (the Latin word vector means "carrier"). Conversely, any 
directed line segment starting at O determines a point P. This description 
does not require a coordinate system to locate P. 

In what follows, we denote vectors by bold letters, either lower or 
upper case: u, R. Sometimes, when the starting point O and the 
ending point P of the vector must be emphasized, we write OP to 
denote the corresponding vector. 

The position vectors, or simply vectors , can be added and multiplied 
by real numbers. With these operations of addition and multiplication, the 
set of all vectors becomes a vector space. Because of the special geometric 
structure of K3, two more operations on vectors can be defined, the dot 
product and the cross product, and this was first done in the 1880s by the 
American scientist JosiAH WlLLARD GlBBS (1839-1903). We will refer to 
the study of the four operations on vectors (addition, multiplication by real 
numbers, dot product, cross product) as vector algebra. By contrast, 
vector ana lys i s (also known as vector calculus) is the calculus on M3, 
that is, differentiation and integration of vector-valued functions of one or 
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several variables. Vector algebra and vector analysis were developed in the 
1880s, independently by Gibbs and by a self-taught British engineer OLIVER 

HEAVISIDE (1850-1925). In their developments, both Gibbs and Heaviside 
were motivated by applications to physics: many physical quantities, such 
as position, velocity, acceleration, and force, can be represented by vectors. 

All constructions in vector algebra and analysis are not tied to any 
particular coordinate system in M3, and do not rely on the interpretation of 
vectors as position vectors. Nevertheless, it is convenient to depict a vector 
as a line segment with an arrowhead at one end to indicate direction, and 
think of the length of the segment as the magnitude of the vector. 

Remark 1.1 Most of the time, we will identify all the vectors having 
the same direction and length, no matter the starting point. Each vec­
tor becomes a representative of an equivalence class of vectors and can be 
moved around by parallel translation. While this identification is convenient 
to study abstract properties of vectors, it is not always possible in certain 
physical problems (Figure 1.1.1). 

F\ F2 F2 Fi 
-« 1 I *- *i N 

Stretching Compressing 

Fig. 1.1.1 Starting Point of a Vector Can Be Important! 

1.1.3 Euclidean Space as a Linear Space 

Consider the Euclidean space K3 and choose a point O to serve as the 
origin. In mechanics this is sometimes referred to as choosing a frame of 
reference, or frame for short. As was mentioned in Remark 1.1, we assume 
that all the vectors can be moved to the same starting point; this starting 
point defines the frame. Accordingly, in what follows, the word frame will 
have one of the three meanings: 

• A fixed point; 
• A fixed point with a fixed coordinate system (not necessarily Carte­

sian) ; 
• A fixed point and a vector bundle, that is, the collection of all 

vectors that start at that point. 
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Let r be the position vector for a point P. Consider another frame with 
origin O'. Let r' be the position vector of P relative to O'. Now, let v be 
the position vector of O' relative to O. The three vectors form a triangle 
OO'P; see Figure 1.1.2. This suggests that we write r = v + r'. To get 
from O to P we can first go from O to O' along v and then from O' to 
P along r'. This can be depicted entirely with position vectors at O if 
we move r' parallel to itself and place its initial point at O. Then r is a 
diagonal of the parallelogram having sides v and r ' , all emanating from O. 
This is called the paral le logram law for vector addition. It is a geometric 
definition of v + r'. Note that the same result is obtained by forming the 
triangle OO'P. 

r'l S^T IT' r = v + r' 

O v a 
Fig. 1.1.2 Vector Addition 

Now, consider three position vectors, u,v,w. It is easy to see that the 
above definition of vector addition obeys the following algebraic laws: 

u + v = v + u (commutativity) 

(it + v) + w = u + (v + w) (associativity; see Figure 1.1.3) (1.1.1) 

it + 0 = 0 + tt = u 

The zero vector 0 is the only vector with zero length and no specific direc­
tion. 

Next consider two real numbers, A and JJL. In vector algebra, real num­
bers are called s ca l a r s . The vector Ait is the vector obtained from it by 
multiplying its length by |A|. If A > 0, then the vectors it and Ait have 
the same direction; if A < 0, then the vectors have opposite directions. For 
example, 2it points in the same direction as it but has twice its length, 
whereas —u has the same length as u and points in the opposite direction 
(Figure 1.1.4). 
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U + V + W 

Fig. 1.1.3 Associativity of Vector Addition 

Fig. 1.1.4 Multiplication by a Scalar 

Multiplication of a vector by a scalar is easily seen to obey the following 
algebraic rules: 

X(u + v) = Xu + Xv (distributivity over vector addition) 

(A + /x)u = Xu + piu (distributivity over real addition) 

(AjLt)u = A(/itt) (a mixed associativity of multiplications) 

I u = u. 

(1.1.2) 

In particular, two vectors are parallel if and only if one is a scalar multiple 
of the other. 

Definition 1.1 A (real) vector space is any abstract set of objects, 
called vectors, with operations of vector addition and multiplication by 
(real) scalars obeying the seven algebraic rules (1.1.1) and (1.1.2). 
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Note that, while the set of position vectors is a vector space, the con­
cepts of vector length and the angle between two vectors are not included 
in the general definition of a vector space. A vector space is said to be 
n-dimensional if the space has a set of n vectors, u i , . . . , u n such that 
any vector v can be represented as a linear combination of the Ui, that is, 
in the form, 

» = i i u H Vxnun, (1.1.3) 

and the scalar components x\,..., xn, are uniquely determined by v. An 
n-dimensional real vector space is denoted by R"; with R denoting the set 
of real numbers, this notation is quite natural. 

We say that the vectors it,, i — 1 , . . . , n, form a bas i s in Rn . Notice 
that nothing is said about the length of the basis vectors or the angles 
between them: in an abstract vector space, these notions do not exist. 
The uniqueness of representation (1.1.3) implies that the basis vectors are 
l i n e a r l y independent, that is, the equality x\ u\ -\ \-xnun = 0 holds 
if and only if all the numbers x\,...,xn are equal to zero. It is not difficult 
to show that a vector space is n dimensional if and only if the space contains 
n linear independent vectors, and every collection of n + 1 vectors is linear 
dependent; see Problem 1.7, page 411. 

In the space R3 of position vectors, we do have the notions of length 
and angle. The standard basis in R3 is the c a r t e s i a n bas i s (?, j , k), 
consisting of the origin O and three mutually perpendicular vectors i, j , k 
of unit length with the common starting point O. In a cartesian basis, 
every position vector r = OP of a point P is written in the form 

r = xi + yj + zk; (1.1.4) 

the numbers (x, y, z) are called the coordinates of the point P with respect 
to the c a r t e s i a n coordinate system formed by the lines along i, j , and 
k. In the plane of i and j , the vectors x i+y j form a two-dimensional vector 
space R2. With some abuse of notation, we sometimes write r = (x,y,z) 
when (1.1.4) holds and the coordinate system is fixed. 

The word "cartesian" describes everything connected with the French 
scientist R E N E DESCARTES (1596-1650), who was also known by the Latin 
version of his last name, Cartesius. Beside the coordinate system, which 
he introduced in 1637, he is famous for the statement "I think, therefore I 
am." 
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Much of the power of the vector space approach lies in the freedom 

from any choice of basis or coordinates. Indeed, many geometrical concepts 

and results can be s ta ted in vector terms without resorting to coordinate 

systems. Here are two examples: 

(1) The line determined by two points in M3 can be represented by the 

position vector function 

r(s) = u + s(v - u) — sv + (1 - s)u, - c o < s < +oo , (1.1.5) 

where u and v are the position vectors of the two points. More gen­

erally, a line passing through the point PQ and having a d i r e c t i o n 

v e c t o r d consists of the points with position vectors r(s) = OPQ + sd. 

(2) The plane determined by the three points having position vectors 

u,v,w is represented by the position vector function 

r(s, t) = u + s(v — u) + t(w — u) 
, x (1-1-6) 

= sv + tw + (1 — s — t)u, —oo < s, t < +co . 

E X E R C I S E 1.1.1.-8 Verify that equations (1.1.5) and (1.1.6) indeed define a 

line and a plane, respectively, in M3. 

E X E R C I S E 1.1.2.B Let L\ and Li be two parallel lines in R 3 . A line inter­

secting both L\ and L^ is called a t r a n s v e r s a l . 

(a) Let L be a transversal perpendicular to L\. Prove that L is perpen­

dicular to Li. Hint: If not, then there is a right triangle with L as one side, 

the other side along L\ and the hypotenuse lying along Li- (b) Prove that the 

alternate angles made by a transversal are equal. Hint: Let A and B be the 

points of intersection of the transversal with L\ and L2 respectively. Draw the 

perpendiculars at A and B. They form two congruent right triangles. 

E X E R C I S E 1.1.2>? Use the result of Exercise 1.1.2(b) to prove that the sum 

of the angles of a triangle equals a straight angle (180°). Hint: Let A,B,C 

be the vertices of the triangle. Through C draw a line parallel to side AB. 

E X E R C I S E 1.1.4:4 Let a, b be the lengths of the sides of a right triangle with 

hypotenuse of length c. Prove that a2 + b2 = c2 (Pythagorean Theorem). 

Hint: See Figure 1.1.5 and note that the acute angles A and B are complementary: 

A + B = 90°. 

E X E R C I S E 1.1.5. c Use the result of Exercise 1.1.4 to derive the Euclidean 

distance formula: d(Pi, P2) — \{x\ — X2)2 + {y\ - yi)2 + {z\ — Z2)2]1 /2 
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Fig. 1.1.5 Pythagorean Theorem 

EXERCISE I.I.6."4 Prove that the diagonals of a parallelogram intersect at 
their midpoints. Hint: let the vectors u and v form the parallelogram and let 
r be the position vector of the point of intersection of the diagonals. Argue that 
r = u + s(v — w) = t(u + v) and deduce that s = t = 1/2. 

1.2 Vector Operations 

1.2.1 Inner Product 

Euclidean geometry and trigonometry deal with lengths of line segments 
and angles formed by intersecting lines. In abstract vector analysis, lengths 
of vectors and angles between vectors are defined using the axiomatically 
introduced notions of norm and inner product. 

In M3, where the notions of angle and length already exist, we use these 
notions to define the inner product u • v of two vectors. We denote the 
length of vector u by ||u||. A un i t vector is a vector with length equal to 
one. If u is a non-zero vector, then u/| | tt | | is the unit vector with the same 
direction as u; this unit vector is often denoted by u. More generally, a hat 
~ on top of a vector means that the vector has unit length. With the dot • 
denoting the inner product of two vectors, we will sometimes write a.b to 
denote the product of two real numbers a, b. 

Definition 1.2 Let u and v be vectors in M3. The inner product of u 
and v, denoted u • v, is defined by 

u • v = | |M||.| |U|| cos#, (1.2.1) 
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where 9 is the angle between u and v, 0 < 6 < TT (see Figure 1.2.1), and 
the notation ||it||.||i;|| means the usual product of two numbers. If u = 0 
or v = 0, then u • v = 0. 

I V 
u u 

Fig. 1.2.1 Angle Between Two Vectors 

Alternative names for the inner product are dot product and s c a l a r 
product. 

If u and v are non-zero vectors, then u • v = 0 if and only if 6 = 
7r/2. In this case, we say that the vectors u and v are orthogonal or 
perpendicular , and write u l t ) . Notice that 

u u = \\uf >0. (1.2.2) 

In R3, a set of three unit vectors that are mutually orthogonal is called an 
orthonormal se t or orthonormal bas is . For example, the unit vectors 
i, j , k of a cartesian coordinate system make an orthonormal basis. Indeed, 
i _L j, i ± K, and J I K , i j = i k — j k = 0, and i i — jj= k- k = 1. 

The word "orthogonal" comes from the Greek orthogonios, or "right-
angled" ; the word "perpendicular" comes from the Latin perpendiculum, or 
"plumb line", which is a cord with a weight attached to one end, used to 
check a straight vertical position. The Latin word norma means "carpen­
ter's square," another device to check for right angles. 

The dot product simplifies the computations of the angles between two 
vectors. Indeed, if u and v are two unit vectors, then u-v = cosO. More 
generally, for two non-zero vectors u and v we have 

6 = cos"1 (j^;) , (1.2.3) 

The notion of the dot product is closely connected with the ORTHOGO­

NAL PROJECTION. If u and v are two non-zero vectors, then we can write 
u = uv + Up, where uv is parallel to v and up is perpendicular to v (see 
Figure 1.2.2). 
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Uv — U± V Uv = U± 
Fig. 1.2.2 Orthogonal Projection 

It follows from the picture that ||ti„|| = ||u||.| cos#| and uv has the same 
direction as v if and only if 0 < 9 < -n/2. Comparing this with (1.2.1) we 
conclude that 

Uv 
UV V (1.2.4) 

The vector uv is called the orthogonal p ro jec t ion of u on v, and is 
denoted by uj_; the number u • t>/||t;|| is called the component of u in the 
direction of v; note that «/ | |«| | is a unit vector. The verb "to project" comes 
from Latin "to through forward." Let us emphasize that the orthogonal 
projection of a vector is also a vector. 

Let us now use the idea of the orthogonal projection to establish the 
PROPERTIES OF THE INNER PRODUCT. 

Consider two non-zero vectors u and w and a unit vector v. Then 
(u + w) • v is the projection of u + w on v. From Figure 1.2.3, we conclude 
that (u + w) • v = u • v + w • v. 

(u + w)± 
Fig. 1.2.3 Orthogonal Projection of Two Vectors 
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Furthermore, if A is any real scalar, then (Xu) v = X(u-v). For example 
(2u) • v = 2(ii • v). Also (—it) • v = — (u • v), since the angle between — u 
and v is-K — 9 and cos(7r — 6) = — cos6. These observations are summarized 
by the formula 

(\u + (iv) • w = \(u • w) + fi(v • w), (1.2.5) 

where A and /U are any real scalars. 
Note that these properties of inner product are independent of any co­

ordinate system. 
Next, we will find an expression for the inner product in terms of the 

components of the vectors in cartesian coordinates. Let i, j , « be an 
orthonqrmal set forming a cartesian coordinate system. Any position vector 
x = OP can be expressed as x = xii+X2j+X3K, where xi = xi, X2 = xj 
and X3 = x • fi, are the cartesian coordinates of the point P. If y is another 
vector, then y = yii+y2j+y3& and by (1.2.5) and the orthonormal property 
of i, j , K, we get 

x • y = xiy! + x2y2 + X3V3- (1.2.6) 

This formula expresses xy in terms of the coordinates of a; and y. Together 
with (1.2.3), we can use the result for computing the angle between two 
vector with known components in a given cartesian coordinate system. 

In linear algebra and in some software packages, such as MATLAB, 
vectors are represented as column vectors , that is, as 3 x 1 matrices; for 
a summary of linear algebra, see page 451. If x and y are column vectors, 
then the transpose xT is a row vector ( 1 x 3 matrix) and, by the rules of 
matrix multiplication, x • y = xTy. 

EXERCISE 1.2.1.c Let x, y be column vectors and, A a 3 x 3 matrix. Show 
that Axy = y7'Ax = xTATy = ATy • x. Hint: (AB)T = BTAT. 

We can now summarize the main properties of the inner product: 

(11) u • u > 0 and u • u = 0 if and only if u = 0. 
(12) (Ait + /j,v) • w = \{u • w) + n(v • w), where A, fj, are real numbers. 
(13) uv = vu. 
(14) u • v = 0 if and only if u _L v. 

Property (14) includes the possibility u = 0 or v = 0, because, by conven­
tion, the zero vector 0 does not have a specific direction and is therefore 
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orthogonal to any vector. This is consistent with (12): taking A — \i — 1 
and v = 0, we also find w • 0 = 0 for every w. 

EXERCISE 1.2.2.C Prove the law of cosines: a2 = b2 + c2 - 2bccos6, where 
a, b, c are the sides of a triangle and 6 is the angle between b and c. Hint: 
Let c = | |n| | , 6 = ||r2||. Then a2 = \\r2 - r i f = ( n - r2) • ( n - r 2 ) . 

We now discuss some APPLICATIONS OF THE INNER PRODUCT. We start 
with the EQUATION OF A LINE IN R2. Choose an origin O and drop the 
perpendicular from O to the line L; see Figure 1.2.4. 

Fig. 1.2.4 Line in The Plane 

Let n be a unit vector lying on this perpendicular. For any point P on 
L, the position vector r satisfies 

r n = d, (1.2.7) 

where \d\ is the distance from O to L; indeed, |r • n\ is the length of the 
projection of r on n . In a cartesian coordinate system (x,y), r = xi + yj, 
and equation (1.2.7) becomes ax + by = d, where n = ai + bj. More 
generally, every equation of the form a\x + a^y — 013, with real numbers 
ffli, 0,2,0,3, defines a line in M2. 

Similar arguments produce the EQUATION OF A PLANE IN R3. Let n be 
a unit vector perpendicular to the plane. For any point P in the plane, the 
equation (1.2.7) holds again; Figure 1.2.4 represents the view in the plane 
spanned by the vectors n and r and containing points O, P. In a cartesian 
coordinate system (x,y,z), r = xi+yj+zk,, and equation (1.2.7) becomes 
ax + by + cz = d, where n = ai + bj+ck. More generally, every equation of 
the form a\x + a,2y + a^z = 04 defines a plane in R3 with a (not necessarily 
unit) normal vector ax i + a-i 3 + az k. For alternative ways to represent 
a line and a plane see equations (1.1.5) and (1.1.6) on page 8. 
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EXERCISE 1.2.3.c Using equation (1.2.7), write an equation of the plane 
that is 4 units from the origin and has the unit normal n = (2, —1,2)/3. 
How many such planes are there? 

EXERCISE 1.2.4.C Let 2x-y + 2z = 12 and x + y - z = 1 be the equations 
of two planes. Find the cosine of the angle between these planes. 

Yet another application of the dot product is to computing the WORK 
DONE BY A FORCE. Let F be a force vector acting on a mass m and 
moving it through a displacement given by vector r . The work W done by 
F moving m through this displacement is W = F • r, since ||.F|| cos# is the 
magnitude of the component of F along r and ||r|| is the distance moved. 

We will see later that, beside the position and force, many other me­
chanical quantities (acceleration, angular momentum, angular velocity, mo­
mentum, torque, velocity) can be represented as vectors. 

To conclude our discussion of the dot product, we will do some AB­
STRACT VECTOR ANALYSIS. The properties (II)—(13) of the inner product 
can be taken as axioms defining an inner product operation in any vec­
tor space. In other words, an inner product is a rule that assigns to any 
pair u, v of vectors a real number u • v so that properties (II)—(13) hold. 
With this approach, the definition and properties of the inner product are 
independent of coordinate systems. 

Consider the vector space R" with a basis it = (m,... ,un); see page 
7. We can represent every element x of Mn as an n-tuples (xi,..., xn) of 
the components of x in the fixed basis. Clearly, for y = (yi,. • • ,yn) and 
A G R , 

x + y = (xi +yi,...,xn + yn), Xx = (Xxi,..., Xxn). 

We then define 

n 

x-y = xiyi + \-xnyn = 'Y^Xiyi. (1.2.8) 
t = i 

It is easy to verify that this definition satisfies (II)—(13). For n = 3 with a 
Cartesian basis, equation (1.2.6) is a special case of (1.2.8). 

If an inner product is defined in a vector space, then in view of property 
(II) we can define a norm or length of a vector by 

N l = («-«)1 / 2- (1.2.9) 
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While an inner product defines a norm, other norms in E n exist that are 
not inner product-based; see Problem 1.8 on page 411. 

An orthonormal bas i s in K™ is a basis consisting of pair-wise orthog­
onal vectors of unit length. 

EXERCISE 1.2.5.^ Verify that, under definition (1.2.8), the corresponding 
basis U\,..., un is necessarily orthonormal. Hint: argue that the basis vector 
Ufc is represented by an n-tuple with zeros everywhere except the position k. 

EXERCISE 1.2.6.B Prove the para l le logram law; 

||u + vf + ||u - vf = 2\\u\\2 + 2\\v\\2. (1.2.10) 

Show that in R3 this equality can be stated as follows: in a parallelogram, 
the sum of the squares of the diagonals is equal to the sum of the squares 
of the sides (hence the name "parallelogram law"). 

Theorem 1.2.1 The norm defined by (1.2.9) satisfies the tr iangle 
i nequa l i t y 

l|ti + w | | < H | + ||t;|| (1.2.11) 

and the Cauchy-Schwartz i nequa l i t y 

| i i-« |<| | t t | | . | | t» | | . (1.2.12) 

Proof. We first show that (1.2.11) follows from (1.2.12). Indeed, 

\\u + v\\2 = {u + v)-{u + v) = \\u\\2 + 2(u • v) + \\v\\2 

< \\uf + 2|u • »| + IMI2 < | |M||2 + 2||u||.||v|| + ||v||2 = (||u|| + IMI)2. 

To prove (1.2.12), first suppose u and v are unit vectors. By properties 
(II)—(13) of the inner product, for any scalar A, 

0 < (u + Xv) • (u + Xv) = u • u + 2A« -v + X2v-v = l + 2Xu -v + X2. 

Now, take A = -{u • v). Then 0 < 1 - 2(u • v)2 + {u • v)2 = 1 - (u • v)2. 
Hence, \u • v\ < 1. On the other hand, for every non-zero vectors u and 
v, u = \\u\\ -u/\\u\\ and v = ||w|| -«/ | |« | | . Since u / | | « | | and v/\\v\\ are unit 
vectors, we have \u • v|/( | | ii | | ||w||) < 1, and so |u • i;| < ||u|| ||«||. 

If either u or v is a zero vector, then (1.2.12) trivially holds. Theorem 
1.2.1 is proved. • 

Remark 1.2 Analysis of the proof of Theorem 1.2.1 shows that equality 
in either (1.2.11) or (1.2.12) holds if and only if one of the vectors is a 



16 Vector Operations 

scalar multiple of the other: u = Xv orv = Xu for some real number X; we 
have to write two conditions to allow either u or v, or both, to be the zero 
vector. 

EXERCISE 1.2.7.C Choose a Cartesian coordinate system (x,y,z) with the 
corresponding unit basis vectors (i, j , k). Let P, Q, be points with coordi­
nates (1, —3,2) and (—2,4, - 1 ) , respectively. Define u = OP, v — OQ. 
(a) Compute QP = u — v, \\u\\, and \\v\\. Compute the angle between u 
and v. Verify the Cauchy-Schwartz inequality and the triangle inequality. 
(b) Let w = 2 £ + 4 j — 5 k. Check that the associative law holds for u, v, w. 
(c) Suppose u is a force vector. Compute the component of u in the v di­
rection. Suppose v is the displacement of a unit mass acted on by the force 
u. Compute the work done. 

Inequality (1.2.12) is also known as the Cauchy-Bunyakovky-Schwartz 
inequality, and all three possible combinations of any two of these three 
names can also refer to the same or similar inequality. This inequality 
is extremely useful in many areas of mathematics, and all three, Cauchy, 
Bunyakovky, and Schwartz, certainly deserve to be mentioned in connec­
tion with it. The Russian mathematician VIKTOR YAKOVLEVICH BUN­

YAKOVSKY (1804-1889) and the German mathematician HERMANN AMAN-

DUS SCHWARZ (1843-1921) discovered a version of (1.2.12) for the integrals: 

J \f{x)g(x)\dx < (J f(x)dx) IJ g2(x)dx\ ; (1.2.13) 

Bunyakovsky published it in 1859, Schwartz, most probably unaware of 
Bunyakovsky's work, in 1884. The French mathematician AUGUSTIN Louis 
CAUCHY (1789-1857) has his name attached not just to (1.2.12) but to 
many other mathematical results. There are two main reasons for that: he 
was the first to introduce modern standards of rigor in the mathematical 
proofs, and he published a lot of papers (789 to be exact, some exceeding 
300 pages), covering most ares of mathematics. We will be mentioning 
Cauchy a lot during our discussion of complex analysis. Throughout the 
rest of our discussions, we will refer to (1.2.12) and all its modifications as 
the Cauchy-Schwartz inequa l i ty . 

EXERCISE 1.2.8^ (a) Use the same arguments as in the proof of (1.2.12) to 
establish (1.2. IS), (b) Use the same arguments as in the proof of (1.2.12) 
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to establish the following version of the Cauchy-Schwartz inequality: 

oo / oo \ 1 / 2 / oo \ V 2 

£ M * | < $>2
fc (J2bl) . (1.2.14) 

In both parts (a) and (b), assume all the necessary integrability and con­
vergence. 

We conclude this section with a brief discussion of transformations of 
a linear vector space. We will see later that a mathematical model of the 
motion of an object in space is a special transformation of K3. 

Definition 1.3 A t ransformation A of the space R™, n > 2, is a rule 
that assigns to every element x of M" a unique element A(x) from R™. 
When there is no danger of confusion, we write Ax instead of A(x). 
A transformation A is called an isometry if it preserves the distances be­
tween points: ||.Aa: - Ay\\ — ||x — y|| for all x, y in R™. 
A transformation A is called l inear if A(Xx + fiy) = A A(x) + /u A(y) for 
all x, y from Rn and all real numbers A, \i. 

A transformation is called orthogonal if it is both a linear transformation 
and an isometry. 

The two Latin roots in the word "transformation," trans and forma, mean 
"beyond" and "shape," respectively. The two Greek roots in the word 
"isometry", isos and metron, mean "equal" and "measure." We know from 
linear algebra that, in R" with a fixed basis, every linear transformation is 
represented by a square matrix; see Exercise 8.1.4, page 453, in Appendix. 

EXERCISE 1.2.9^ (a) Show that if A is a linear transformation, then A(0) — 
0. Hint: use that 0 = A0 for all real A. 
(b) Show that the transformation A is orthogonal if and only if it preserves 
the inner product: (Ax) • (Ay) = x • y for all x, y from M.n. Hint: use the 
parallelogram law (1.2.10). 

1.2.2 Cross Product 

In the three-dimensional vector space R3, we use the Euclidean geometry 
and trigonometry to define the inner product of two vectors. This defini­
tion easily extends to every i n , n > 2. In R3, and only in R3, there ex­
ists another product of two vectors, called the cross product, or vector 
product. 



18 Vector Operations 

Definition 1.4 Let u and v be two vectors in R3. Let 8 be the angle 
between tt and v (0 < 9 < IT, see Figure 1.2.1). The cross product, u x v, 
is the vector having magnitude \\u x v\\ = ||u||.||u|| sin# and lying on the 
line perpendicular to u and v and pointing in the direction in which a 
right-handed screw would move when u is rotated toward v through angle 
6. 

Sometimes, the symbol Q is used to represent a vector perpendicular 
to the plane and coming out of the plane toward the observer, while the 
symbol ® represents a similar vector, but going away from the observer; 
see Figure 1.2.6. 

The triple (u,v,u x v) forms a right-handed triad (Figure 1.2.5). More 
generally, we say that an ordered triplet of vectors (u, v, w) with a common 
origin in R3 is a r ight-handed tr iad (or right-handed triple) if the vectors 
are not in the same plane and the shortest turn from u to v, as seen from 
the tip of w, is counterclockwise. 

U X V JC. u 

U X V 

Fig. 1.2.5 The Cross Product I 

o- u U X V U X V 

Fig. 1.2.6 The Cross Product II 

An important application of cross-product in mechanics is the moment 
of a force about a point O. Suppose an object located at a point P is 
subjected to a force vector F, applied at P. Let r be the position vector of 
P. The force F tends to rotate the object around O and exerts a torque, 
or moment, T around O. (The Latin verb torquere means "to twist.") The 
magnitude of the torque T is ||T|| = | |r | | . | |F| |sin0, where 6 is the angle 
between r and F; recall that a.b denotes the usual product of two numbers 
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a, b. The quantity | |F | | sin# is the magnitude of the component of F per­
pendicular to r. (The component of F along r has no rotational effect.) 
The magnitude ||r|| is called the moment arm. Our experience with levers 
convinces us that the torque magnitude is proportional to the moment arm 
and the magnitude of force applied perpendicular to the arm. Hence, we 
define the torque of F around O to be the vector T = r x F, where r is 
the position at which F is applied. The direction of T is perpendicular to 
r and F and (r, F, T) is a right-handed triad. 

PROPERTIES OF THE CROSS PRODUCT. From the definition it follows 
immediately that the vector w = u xv has the following three properties: 

(CI) H | = ||«||.|H|sin(?. 
(C2) w • u = w • v = 0. 
(C3) —w = v x u. 

A fourth property captures the geometry of the right-handed screw in 
algebraic terms. Choose any right-handed cartesian coordinate system 
given by three orthonormal vectors i, j , k. Suppose the components of 
the vectors u, v, w = u x v in the basis (z, j , k) are, respectively, 
(ui,U2,u3), (vi,V2,v3),&nd(wi,W2,w3). Then 

( wi u2 u3\ 
vi v2 v3 > 0 , 
Wx W2 W3 J 

where det is the determinant of the matrix; a brief review of linear algebra, 
including the determinants, is in Appendix. To prove (C4), choose k' = 
w/\\w\\, j ' = v/| |v| | , and select a unit vector %' orthogonal to both k' 
and j ' to make (?', j ' , k') a right-handed triad. In this new coordinate 
system, property (C4) becomes 

( u[ u'2 0 \ 
0 ||v|| 0 =ui | | t> | | . |H | > 0 . (1.2.15) 

0 0 H I / 
Since (u,v,w) is a right-handed triad, the choice of %' implies that u[ > 
0, and (1.2.15) holds. For the system z, j , k with the same origin as 
(?', j ' , k'), consider an orthogonal transformation that moves the basis 
vectors i, Vcj, k to the vectors ?', Vcj', k', respectively. If B is the matrix 
representing this transformation in the basis (i, Vcj, k), then deti? = 1, 
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and the two matrices, A in (C4) and A' in (1.2.15) are related by A' = 
BABT. Hence, detA = det.4' > 0 and (C4) holds. 

EXERCISE 1.2.10? Verify that A' = BABT. Hint: see Exercise 8.1.4 on page 
453 in Appendix. Pay attention to the basis in which each matrix is written. 

The following theorem shows that the properties (Cl), (C2), and (C4) 
define a unique vector w = u x v. 

Theorem 1.2.2 For every two non-zero, non-parallel vectors u,v in 
M3, there is a unique vector w — u x v satisfying (Cl), (C2), (C4)- If 
(ux,U2,uz) and (vi,V2,vs) are the components of u and v in a cartesian 
right-handed system i, j , k, then the components wi,u>2,u)3 ofuxv are 

wi = U2V3 - U3V2, w2 = U3V1 - uiv3, w3 = uiv2 - U2V1. (1.2.16) 

Conversely, the vector with components defined by (1.2.16) has Properties 
(Cl), (C2), and (C4). 

Proof. Let w be a vector so that w • u — 0 and w • v = 0, that is, w 
is orthogonal to both u and v. By the geometry of R3, there is such a 
vector. Choose a w with magnitude ||tu|| = ||tt|| ||v|| sin#, satisfying (Cl). 
By (C2), 

uiwi + U2W2 + U3W3 = 0, (1.2.17) 

w i^ i+u 2 w 2 + W3W3 = 0. (1.2.18) 

Multiply (1.2.17) by V3 and (1.2.18) by U3 and subtract to get 

a b 
-A- -A. 

(U1V3 - U3Vi)u>i = (U3V2 - U2V3)W2. (1.2.19) 

Similarly, multiply (1.2.17) by vi and (1.2.18) by ui and subtract to get 

c ~a 

(v2ui - viu2)w2 = (U3V1 - uiv3)u>3. (1.2.20) 

Abbreviating, let a = U1V3 — U3V\,b = U3V2 — U2V3 and c = u\v2 — v\u2. 
Then (1.2.19) and (1.2.20) yield 

w\ = (b/a)w2; W3 = {-c/a)w2. (1.2.21) 

Hence, ||u>||2 = (b/a)2w% + w\ + (c/a)2u>2 and 

HUJII2 = (1 + (62 + c2)/a2)w2
2 = (a2 +b2 + c 2 ) ( ^ / a 2 ) . (1.2.22) 
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Now, by simple algebra, 

a2 + b2 + c2 - (U1V3 - U3V1)2 + (u3v2 - u2v3)
2 + {uiv2 - V1U2)2 

= (w2 + u\ + ul){v2 + v% + vl) - (ui«i + u2v2 + u3v3)
2 

2 (1-cos2 6) = \\u\\2\\v\\2-(u.Wy l lu | | 2 IMI 2 ' 

Ni l 2 Il-u||2sin2< 
(1.2.23) 

Applying Property (CI), we get a2+b2+c2 = \\w\\2. Using (1.2.22), w\ja2 = 
1. Hence, w2 = ± a and by (1.2.21), wi = ± b and W3 = =F c. To determine 
the signs, consider the special case u = i and v — j . Then u\ = l,u2 — 0 
and v\ = 0,^2 = 1 and c = 1 - 1 - 0 - 0 = 1. On the other hand, the 
determinant in Property (C4) for this choice of u and v is 

det 
1 0 0 
0 1 0 

±b ±a^fc 
=pc, 

depending on whether W3 = — 1 or w3 = 1. Since the determinant must 
be positive, we must take w2 = —a, in order to make W3 = c = 1 in this 
case. This implies wi = —b. Therefore, w is uniquely determined and 
has components u>i = —b, w2 = —a, w3 = c. In other words, there exists a 
unique vector with the properties (Cl), (C2), and (C4), and its components 
are given by (1.2.16). 

Conversely, let to be a vector with components given by (1.2.16). Then 
direct computations show that w has the properties (C2) and (C4). After 
that, we repeat the calculations in (1.2.23) to establish Property (Cl). The 
details of this argument are the subject of Problem 1.3 on page 410. 

Theorem 1.2.2 is proved. • 

Remark 1.3 Formula (1.2.16) can be represented symbolically by 

u x v = det 
i 3 K 

«1 U2 U3 

Vl v2 V3 

(1.2.24) 

and expanding the determinant by co-factors of the first row. Together with 
properties of the determinant, this representation implies Property (C3) of 
the cross product. Also, when combined with (Cl), formula (1.2.24) can 

be used to compute the angle between two vectors with known components. 
Still, given the extra complexity of evaluating the determinant, the inner 
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product formulas (1.2.3) and (1.2.6) are usually more convenient for angle 
computations. 

Remark 1.4 From (1.2.16) it follows that (Aw) x v = X(u x v) = u x 
At; for any scalar A. Another consequence of (1.2.16) is the distributive 
property of the cross product: 

rx(u + v) — rxu + rxv. (1.2.25) 

Still, the cross product is not associative; instead, the following identity 
holds: 

u x (v x w) + v x (w x u) + w x (u x v) = 0. 

EXERCISE 1.2.11."4 Prove that 

u x (v x w) = (u • w)v — (u • v)w. 

(1.2.26) 

(1.2.27) 

Then use the result to verify (1.2.26). Hint: A possible proof of (1.2.27) is 
as follows (fill in the details). Choose an orthonormal basis t, j , k so that i is 
parallel to w and j is in the plane of w and v. Then w = w\l and v = v%i + v-z] 
and 

= —V2W1K,; v x w = det 

) = det 

i 3 it 
V\ V2 0 
101 0 0 

1 j k 
U\ «2 U3 

0 0 —V2W1 

= —U2V2W11 + U1V2W1J; 

(u -w)v — (u -v)lV = UlWl(v\l + V2J) — (uiVl +U2«2)Wl* = — U2V2W1I + U\V2W\j. 

While the properties (Cl)-(C4) of the cross product are independent of 
the coordinate system, the definition does not generalize to M.n for n > 4 
because in dimension n > 4 there are too many vectors orthogonal to two 
given vectors. 

Property (CI) implies that ||u x v|| is the area of the parallelogram 
generated by the vectors u and v. Accordingly, we have u x v = 0 if and 
only if one of the vectors is a scalar multiple of the other. If Pi , P2, P3 
are three points in E3 , these points are c o l l i n e a r (lie on the same line) if 
and only if 

P1P2 x PXP3 = 0, (1.2.28) 
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where PiPj = OPj — OPi- If (xi, yi, Zi) are the cartesian coordinates of the 
point Pi, then the criterion for collinearity (1.2.28) becomes 

det 
Z J K 

X2 ~ Xl 2/2 - 2/1 Z2 - Z\ 

Xj, - Xl 1/3 - 2/1 23 - Z\ 

= 0. (1.2.29) 

In the following three exercises, the reader will see how the mathematics 
of vector algebra can be used to solve problems in physics. 

EXERCISE 1.2.12.C Suppose two forces F\, F2 are applied at P; r = OP. 
Show that the total torque at P is T = Ti + T2, where Ti = r x Fi and 
T2 = r xF2. 

EXERCISE 1.2.13/1 Consider a rigid rod with one end fixed at the origin O 
but free to rotate in any direction around O (say by means of a ball joint). 
Denote by P the other end of the rod; r = OP. Suppose a force F is applied 
at the point P. The rod will tend to rotate around O. 
(a) Let r = 2i + 3j + k and F = i + j + k. Compute the torque T. (b) 
Let r = 2 i + Aj and F = i + j , so that the rotation is in the (i, j) plane. 
Compute T. In which direction will the rod start to rotate? 

EXERCISE 1.2.14/4 Suppose a rigid rod is placed in the (i, j) plane so that 
the mid-point of the rod is at the origin O, and the two ends P and Pi have 
position vectors r = i + 2 j and T"i = — i — 2 j . Suppose the rod is free to 
rotate around O in the (i, j) plane. Let F = i + j and Fi = — i — j be two 
forces applied at P and Pi, respectively. Compute the total torque around 
O. In which direction will the rod start to rotate? 

1.2.3 Scalar Triple Product 

The sca l a r t r i p l e product (u,v,w) of three vectors is defined by 

(u, v, w) = u • (v x w). 

Using (1.2.24) it is easy to see that, in cartesian coordinates, 

(u, v, w) = det 
Ul « 2 ""3 

Vi V2 V3 

Wi W2 U>3 

From the properties of determinants it follows that 

(u,v,w) = —(v,u,w) = (v,w,u) = (w,u,v) 
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Thus, 

u • (v x w) = w • (u x v) = (u x v) • w. (1.2.30) 

In other words, the scalar triple product does not change under cyclic per­
mutation of the vectors or when • and x symbols are switched. 

EXERCISE 1.2.15? Verify that the ordered triplet of non-zero vectors u, v, w 
is a right-handed triad if and only if (u, v, w) > 0. 

Recall that \\v x w\\ = ||u|| • ||iu|| sin# is the area of the parallelogram 
formed by v and w. Therefore, \u • (v x w)\ is the volume of the paral­
lelepiped formed by u,v, and w. Accordingly, (u,v,w) = 0 if and only 
if the three vectors are linearly dependent, that is, one of them can be ex­
pressed as a linear combination of the other two. Similarly, four points 
Pi, i = 1 , . . . , 4 are co-planar (lie in the same plane) if and only if 

(P1P2,PiP3,P1P4) = 0, (1.2.31) 

where PjP, = OPj — OPi. If (XJ, yi, z^ are the cartesian coordinates of the 
point Pi, then (1.2.31) becomes 

det 
x2 ~xiy2- 2/i z2 - zi 
%3 - x\ 2/3 - 2/i z3 - zi 

x4 - x i y 4 - j/i z4 - zx 

(1.2.32) 

Notice a certain analogy with (1.2.28) and (1.2.29). 

EXERCISE 1 .2 .16 . C Let u = (1,2,3), t; = ( -2 ,1 ,2) , w = ( -1 ,2 ,1) . (a) 

Compute uxv, vxw, (uxv)x(vxw). (b) Compute the area of the paral­
lelogram formed by u and v. (c) Compute the volume of the parallelepiped 
formed by u, v, w using the triple product (u, v, w). 

1.3 Curves in Space 

1.3.1 Vector-Valued Functions of a Scalar Variable 

To study the mathematical kinematics of moving bodies in M3, we need to 
define the velocity and acceleration vectors. The rigorous definition of these 
vectors relies on the concept of the derivative of a vector-valued function 
with respect to a scalar. We consider an idealized object, called a point 
mass, with all mass concentrated at a single point. 
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Choose an origin O and let r(t) be the position vector of the point 
mass at time i. The collection of points P(t) so that OP(t) = r{t) is 
the trajectory of the point mass. This trajectory is a curve in R3. More 
generally, a curve C is defined by specifying the position vector of a point 
P on C as a function of a scalar variable t. 

Definition 1.5 A curve C in a frame O in E 3 is the collection of points 
defined by a vector-valued function r = r(t), for t in some interval I in M, 
bounded or unbounded. A point P is on the curve C if an only if OP = r(t0) 
for some to & I- A curve is called simple if it does not intersect or touch 
itself. A curve is called closed if it is defined for t in a bounded closed 
interval I = [a,b] and r(a) = r(b). For a simple closed curve on [a, b], we 
have r(t\) — rfa), a < ti < t2 < 6 if and only if fi = a and tz = b. 

By analogy with the elementary calculus, we say that the vector function 
r is continuous at to if 

l i m | | r ( i ) - r ( t 0 ) | | = 0 . (1.3.1) 
t—no 

Accordingly, we say that the curve C is continuous if the vector function 
that defines C is continuous. 

Similarly, the de r iva t ive at to of a vector-valued function r(t) is, by 
definition, 

dr, ,. . r(t0 + At) - r{t0) 
^ I t - t o ^ r («>) = j i m , Xt • (1-3.2) 

We say that r is diff e r en t i ab l e at to if the derivative r'(t) exists at 
to; we say that r is differentiable on (a,b) if r'(t) exists for all t S {a,b). 
We say that the curve is smooth if the corresponding vector function is 
differentiable and the derivative is not a zero vector. 

Yet another notation for the derivative r '(t) is r(t), especially when the 
parameter t is interpreted as time. For a scalar function of time x = x(t), 
the same notations for the derivative are used: 

%=x'(t) = ±{t). 

Note that r(t + At) — r(t) = Ar(t) is a vector in the same frame O. The 
limits in (1.3.1) and (1.3.2) are defined by using the distance, or metric, for 
vectors. Thus, lim r(t) — r(tG) means that \\r(t) — r(to)|| —> 0 as t —> t0. 

t—'to 

The derivative r'(t), being the limit of the difference quotient Ar ( t ) /A t 
as At —> 0, is also a vector. 
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Given a fixed frame O, the formulas of differential calculus for vector 
functions in this frame are easily obtained by following the corresponding 
derivations for scalar functions in ordinary calculus. As in ordinary calculus, 
there are several rules for computing derivatives of vector-valued functions. 
All these rules follow directly from the definition (1.3.2). 
The derivative of a sum: 

ft(u(t)+v(t))=u'(t)+v'(t). (1.3.3) 

Product rule for multiplication by a scalar: if X(t) is a scalar function, 
then 

ft(X(t)r (t)) = X'(t)r(t) + X(t)r '(t). (1.3.4) 

Product rules for scalar and cross products: 

d , . . . . . du dv 
_ ( „ ( t ) . w W ) = - . « + « • - , (1.3.5) 

and 

d , . . . . . du dv 
s ( « ( i ) x „ ( i ) ) = - x „ + « x _ . (1.3.6) 

The chain rule: If t — (j>(s) and r i (s) = r(<p(s)), then 

dr\ dr d(f> 
ds dt ds 

(1.3.7) 

From the two rules (1.3.3) and (1.3.4), it follows that if (£, j , k) are 
constant vectors in the frame O so that r(i) = x(t) l + y{t)j+ z(t)k, then 
r'(t)=x'(t)i + y'{t)j + z'(t)k. 

Remark 1.5 The underlying assumption in the above rules for differen­
tiation of vector functions is that all the functions are defined in the same 
frame. We will see later that these rules for computing derivatives can fail 
if the vectors are defined in different frames and the frames are moving 
relative to each other. 

Lemma 1.1 If r is differentiable on (a,b) and \\r(t)\\ does not depend 
on t for t G (a,b), then r(t) _L r'(t) for all t G (a,b). In other words, the 
derivative of a constant-length vector is perpendicular to the vector itself. 

Proof. By assumption, r(t) • r(t) is constant for all t. By the product rule 
(1.3.5), 2r '(t) • r{t) = 0 and the result follows. • 
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EXERCISE 1.3.1/4 (a) Show that if r is differentiable at t0, then r is con­
tinuous at to, but the converse is not true, (b) Does continuity of r imply 
continuity of \\r\\ ? Does continuity of \\r\\ imply continuity of r? (c) Does 
differentiability of r imply differentiability of\\r\\? Does differentiability of 
\\r\\ imply differentiability of r? 

The complete description of every curve consists of two parts: (a) the 
set of its points in R3, (b) the ordering of those points relative to the or­
dering of the parameter set. For some curves, this complete description is 
possible in purely vector terms, that is, without choosing a particular coor­
dinate system in the frame O. For other curves, a purely vector description 
provides only the set of points, while the ordering of that set is impossible 
without the selection of the particular coordinate system. We illustrate this 
observation on two simple curves: a straight line and a circle. 

A straight line is described by r(t) = T2 — <l>(t)(ri—r2), — oo < t < oo, 
where r\ and r^ are the position vectors of two distinct points on the 
line and <j)(t) is a scalar function whose range is all of R. The function (j> 
determines the ordering of the points on the line. For example, if <p{t) = t, 
then the point rfa) follows r{t\) in time if ti >t\. 

The circle as a set of points in R3 is defined by the two conditions, 
| |r(i)| | = R and r(t) • n = 0, where n is the unit normal to the plane of the 
circle. Direct computations show that these conditions do not determine 
the function r(t) uniquely, and so do not give an ordering of points on the 
circle. To specify the ordering, we can, for example, fix one point r(to) on 
the circle at a reference time to and define the angle between r(t) and r(to) 
as a function of t. But this is equivalent to choosing a polar coordinate 
system in the plane of the circle. 

1.3.2 The Tangent Vector and Arc Length 

Let r = r(t) define a curve in R3. If OP = r(to) and r'(to) ^ 0, then, by 
definition, the un i t tangent vec tor u at P is: 

u{to) = ^ | 4 y ( L 3 - 8 ) 

l|r'(*o)|| 

Note that the vector A r = r(to + At) - r(to) defines a line through two 
points on the curve; similar to ordinary calculus, definition (1.3.2) suggests 
that the vector r '(£Q) should be parallel to the tangent line at P. 
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The equation of the tangent l i n e at point P is 

R(s) = r(to) + su{t0). (1.3.9) 

EXERCISE 1.3.2.c Let C be a planar curve defined by the vector function 
r(t) = cosH + sintj, —n < t < n. Compute the tangent vector r'(t) and 
the unit tangent vector u(t) as functions oft. Compute r ' (0) and u(0). 
Draw the curve C and the vectors r ' (0) , u'(0). Verify your results using 
a computer a lgebra system, such as MAPLE, MATLAB, or MATHE-
MATICA. 

EXERCISE 1.3.3.c Let C be a spatial curve defined by the vector function 
r(t) = costi + sintj + tk. Compute the tangent vector r'(t), the unit 
tangent vector u(t) and the vector u'(t). Compute r'{ix/2). Draw the 
curve C for 0 < t < n/2 and draw U'(TV/2) at the point r(n/2). Verify 
your results using your favorite computer algebra system. 

Definition 1.6 A curve C, defined by a vector function r(t), a < t < b, is 
called smooth if the unit tangent vector u = u(t) exists and is a continuous 
function for all t € (a,b). If the curve is closed, then, additionally, we 
must have r'(a) = r'(b). The curve is called piece-wise smooth if it is 
continuous and consists of finitely many smooth pieces. 

EXERCISE 1.3.4.A Give an example of a non-smooth curve C defined by a 
vector function r(t), — 1 < t < 1, so that the derivative vector r'{t) exists 
and is continuous for all t G (—1,1). 

EXERCISE 1.3.5. c Explain how the graph of a function y = f(x) can be 
interpreted as a curve in K3. Show that this curve is smooth if and only if 
the function f = f(x) has a continuous derivative, and show that, at the 
point (xo,f(xo),0), formula (1.3.9) defines the same line as y = f(xo) + 
f'(xo)(x-x0),z = 0. 

Given a curve C and two points with position vectors r(c),r(d), a < 
c < d < b, on the curve, we define the distance between the two points 
along the curve using a limiting process. The construction is similar to the 
definition of the Riemann integral in ordinary calculus. 

For each n > 2, choose points c — to < h < • • • < tn = d and form 
n - l 

the sums Ln = Y^, ll^rill> where AT-J = r{ti+\) — r(U). Assume that 

maxo<,<n_i(£i+i — U) —> 0 as n —> oo. If the limit linin-Kx, Ln exists for all 
a < c < d < b, and does not depend on the particular choice of the points 
tk, then the curve C is called r e c t i f i a b l e . By definition, the distance 
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Lc{c,d) between the points r(c) and r(d) along a rectifiable curve C is 

Lc(c,d) = lim Ln, 

Theorem 1.3.1 Assume that r '(t) exists for all t G (a, b) and the vector 
function r'(t) is continuous. Then the curve C is rectifiable and 

Lc(c,d)= f | |r '(i)| |dt. (1.3.10) 

Proof. It follows from the assumptions of the theorem and from relation 
(1.3.2) that Arj — r'(ti) At; + Vi, where AU — t i + 1 - ti and the vectors 
Vi satisfy max0<j<n-i \\vi\\/Ati —> 0 as max0<i<„_i At* —> 0. Therefore, 

| |Ari| | = Wr'itJWAti + SiAU, (1.3.11) 
n— 1 n — 1 TI—1 

5] ||Ar-iH = Y, \\r\U)\\ A^ + £ e 'A i-
i=0 i=0 i=0 

where the numbers e$ satisfy 
maxo<i<n—I £i —̂  0, n —> oo. Then (1.3.10) 

follows after passing to the limit. • 

EXERCISE 1.3.6? (a) Verify (1.3.11). Hint use the triangle inequality to esti­
mate \\r'(U) Ati + Vi\\ — \\r'(ti)\\ AU. (b) Show that a piece-wise smooth curve 
is rectifiable. Hint: apply the above theorem to each smooth piece separately, and 
then add the results. 

EXERCISE 1.3.7. c Interpreting the graph of the function y — f(x) as a 
curve in M3, and assuming that f'(x) exists and is continuous, show that 
the length of this curve from (c, /(c), 0) to (d,f(d),Q), as given by (1.3.10), 
is fc yjl + \f'(x)\2dx; the derivation of this result in ordinary calculus is 
similar to the derivation of (1.3.10). 

Given a point r(c) on a rectifiable curve C, we define the arc length 
function s — s(t), t > c, as 

s(t) = Lc(c,t) 

It follows that ds/dt = \\r'{t)\\ > 0. We call ds = ||r'(*)||dt the l i n e 
element of the curve C. If r(t) = x(t) i + y(t) j + z(t) k, where (£, j , k) is 
a cartesian coordinate system at O, then 

'ds\ 
dt 

2 .1.. 2 / , \ 2 / . \ 2 / , \ 2 
dr 
~dl -1 s) + (S) + ( I ) • <-12> 
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If the curve is smooth, then ds/dt > 0 and s is a monotone function of t so 
that t is a well-defined function of s. Hence, r(t(s)) is a function of s, and 
is called the canonical paramet r iza t ion of the smooth curve by the arc 
length. By the rules of differentiation, 

dr _ dr dt _ dr 1 r'(t) _ _ 
ds ~ ~dt ds ~ ~dt ds/dt = \\r'(t)\\ ~ U^'' 

EXERCISE 1.3.8.C Consider the r ight-handed c i r c u l a r h e l i x 

r(t) = acosti + asintj+tH, a > 0. (1.3.13) 

Re-write the equation of this curve using the arc length s as the parameter. 

1.3.3 Frenet's Formulas 

In certain frames, called inertial, the Second Law of Newton postulates the 
following relation between the force F = F(t) acting on the point mass m 
and the point's trajectory C, defined by a curve r = r(t): 

mfgl=F(t). (1.3.14) 

A detailed discussion of inertial frames and Newton's Laws is below on page 
43. When F(t) is given, the solution of the differential equation (1.3.14) 
is the trajectory r(t). However, to get a unique solution of (2.1.1), we 
must start at some time to and provide two initial conditions r'(to) and 
r(to) to determine a specific path. In other words, r(to) and r ' ( io) are 
reference vectors for the motion. At every time t > to, the vectors r(t) and 
r '(t) have a well-defined geometric orientation relative to the initial vectors 
r(to), r'(to). The three Frenet formulas provide a complete description of 
this orientation. In what follows, we assume that the curve C is smooth, 
that is, the unit tangent vector u exists at every point of the curve. 

To write the formulas, we need several new notions: curvature, principal 
unit normal vector, unit binormal vector, and torsion. We will use the 
canonical parametrization of the curve by the arc length s measured from 
some reference point Po on the curve. 

Let u = u(s) be the unit tangent vector at P, where the parameter s is 
the arc length from Po to P. By Lemma 1.1 on page 26, the derivative u'(s) 
of u(s) with respect to s is orthogonal to u. By definition, the curvature 
K(S) at P is 

«(*) = ||tt'(a)||; 
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the principal unit normal vector at P is 

p =-«'(«); (1.3.15) 

the unit binomial vector at P is 

b(s) = u(s) x p{s). 

EXERCISE 1.3.9.C Parameterizing the circle by the arc length, verify that 
the curvature of the circle of radius R is \/R. 

To define the torsion, we derive the relation between b'(s) and the 
vectors u,p,b. Using Lemma 1.1 once again, we conclude that b'(s) is 
orthogonal to b(s). Next, we differentiate the relation b(s) • u(s) = 0 with 
respect to s and use the product rule (1.3.5) to find b'(s)-u(s)+b(s)-u'(s) — 
0. By construction, the unit vectors u,p,b are mutually orthogonal, and 
then the definition (1.3.15) of the vector p implies that b(s) • u'(s) = 0. 
As a result, b'(s) • u(s) = 0. Being orthogonal to both u(s) and b(s), the 
vector b'(s) must then be parallel to p(s). We therefore define the t o r s i on 
of the curve C at point P as the number r = T(S) so that 

b'(s) = -T(s)p(s); (1.3.16) 

the choice of the negative sign ensures that the torsion is positive for the 
right-handed circular helix (1.3.13). 

Note that the above definitions use the canonical parametrization of the 
curve by the arc length s; the corresponding formulas can be written for an 
arbitrary parametrization as well; see Problem 1.11 on page 412. 

Relations (1.3.15) and (1.3.16) are two of the Prenet formulas. To derive 
the third formula, note that p(s) = b(s) x u(s). Differentiation with respect 
to s yields p' = bxu' + b'xu = bxKp — rpxu, and 

p'{s) = -Ku{s) + Tb(s). (1.3.17) 

Different sources refer to relations (1.3.15) - (1.3.17) as either the 
Frenet or the Frene t -Ser re t formulas. In 1847, the French mathemati­
cian JEAN FREDERIC FRENET (1816-1900) derived two of these formulas in 
his doctoral dissertation. Another French mathematician, JOSEPH ALFRED 

SERRET (1819-1885), gave an independent derivation of all three formulas, 
but we could not find the exact time of his work. Of course, neither Frenet 
nor Serret used the modern vector notations in their derivations. 
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At every point P of the curve, the vector triple (v., p, b) is a right-
handed coordinate system with origin at P. We will call this coordi­
nate system Frene t ' s t r ihedron at P. The choice of initial conditions 
r(to), r '(to) means setting up a coordinate system in the frame with origin 
at PQ, where OPQ = r(to). The coordinate planes spanned by the vectors 
(u, p), (p, b), and (b, u) are called, respectively, the oscula t ing , normal, 
and r e c t i f y i n g (binormal) planes. The word osculating comes from 
Latin osculum, literally, a little mouth, which was the colloquial way of say­
ing "a kiss". Not surprisingly, of all the planes that pass through the point 
P, the osculating plane comes the closest to containing the curve C. 

EXERCISE 1.3.10? A curve is called p lanar if all its points are in the same 
plane. Show that a planar curve other than a line has the same osculating 
plane at every point and lies entirely in this plane (for a line, the osculating 
plane is not well-defined). 

The curvature and torsion uniquely determine the curve, up to its posi­
tion in space. More precisely, if K(S) and r(s) are given continuous functions 
of s, we can solve the corresponding equations (1.3.15)-(1.3.17) and obtain 
the vectors u(s),p(s), b(s) which determine the shape of a family of curves. 
To obtain a particular curve C in this family, we must specify initial values 
(u(so),p(so), b(so)) of the trihedron vectors and an initial value r(so) of a 
position vector at a point PQ on the curve. These four vectors are all in 
some frame with origin O. To obtain r(s) at any point of C we solve the 
differential equation dr/ds = u(s), with initial condition r(so), together 
with (1.3.15)-(1.3.17). Note that the curvature is always non-negative, and 
the torsion can be either positive or negative. 

EXERCISE 1.3.11.A For the right circular helix (1.3.13) compute the curva­
ture, torsion, and the Frenet trihedron at every point. Show that the right 
circular helix is the only curve with constant curvature and constant positive 
torsion. 

As the point P moves along the curve, the trihedron executes three ro­
tations. These rotations about the unit tangent, principal unit normal, and 
unit binormal vectors are called r o l l i n g , yawing, and p i tch ing , respec­
tively. Rolling and yawing change direction of the unit binormal vector 6, 
rolling and pitching change the direction of the principal unit normal vector 
p, yawing and pitching change the direction of the unit tangent vector u. 
To visualize these rotations, consider the motion of an airplane. Intuitively, 
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it is clear that the tangent vector 2 points along the fuselage from the tail 
to the nose, and the normal vector p points up perpendicular to the wings 
(draw a picture!) In this construction, the vector b points along the wings 
to make u,p,b a right-handed triple. The center of mass of the plane is 
the natural common origin of the three vectors. The rolling of the plane, 
the rotation around u, lifts one side of the plane relative to the other and 
is controlled by the ailerons on the back edges of the wings. Yawing, the 
rotation around p, moves the nose left and right and is controlled by the 
rudder on the vertical part of the tail. Pitching of the plane, the rotation 
around 6, moves the nose up and down and is controlled by the elevators 
on the horizontal part of the tail. 

Note that rolling and pitching are the main causes of motion sickness. 

1.3.4 Velocity and Acceleration 

Let the curve C, defined by the vector function r = r(t), be the trajectory 
of a point mass in some frame O. Between times t and t + At the point 
moves through the arc length As — s(t + At) — s(t), and therefore ds(t)/dt 
is the speed of the point along C. As we derived on page 30, 

dr ds dr ds ^. , ._ „ _„, 
— = — — = —«(<). (1.3.18) 
dt dtds dt v ' K ' 

Therefore, we define the ve loc i t y v(t) as 

v{t) = dr/dt. 

In particular, ||u|| = \ds/dt\ = ds/dt, that is, the speed is the magnitude of 
the velocity; recall that the arc length s — s(t) is a non-decreasing function 
of t. This mathematical definition of velocity agrees with our physical 
intuition of speed in the direction of the tangent line, while making the 
physical concept of velocity precise, as required in a quantitative science. 
The definition also works well in practical problems of motion. Indeed, 
precise physics is mathematical physics. 

Similarly, the acce l e r a t i on a(t) of the point mass is, by definition, 

a(t)=v'(t) = r"(t). 

Since dvjdt = d((ds/dt)u(t))/dt, the product rule (1.3.4) implies 

dv _ d2s _ ds du ds 
~dl ~ ~dl?U^ ' + ~di ~ds"di 
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or 

. , d2s _ . . Ids\2 du(s) .„ „„ , 
° < « > = d * " < ' > + ( * ) - 1 1 . (1.3.19) 

Equation (1.3.19) shows that the acceleration a(t) has two components: the 
t a n g e n t i a l a cce l e r a t i on (d2s/dt2) u{t) and the normal acce l e r a t i on 
(ds/dt)2 (du(s)/ds). By Lemma 1.1, page 26, the derivative of a unit 
vector is always orthogonal to the vector itself, and so the tangential and 
normal accelerations are mutually orthogonal. The derivation also shows 
that the decomposition (1.3.19) of the acceleration into the tangential and 
normal components does not depend on the coordinate system. 

EXERCISE 1.3.12.c In (1.3.20) below, r — r(t) represents the position of 
point mass m at time t in the Cartesian coordinate system: 

r(t) = t2i + 2t2j + t2k; r(t) = 2cos7rfz + 2sin7r£ j ; 

r{t) = 2cost2i + 2smt2 j \ r(t) = cos t2 i + 2 sin t2 j . 

For each function r — r(t), 

(1.3.20) 

• Sketch the corresponding trajectory; 
• Compute the velocity and acceleration vectors as functions of t; 
• Draw the trajectory for 0 < t < 1 and draw the vectors r '(1), r "(1); 
• Compute the normal and tangential components of the acceleration and 

draw the corresponding vectors when t = 1; 
• Verify your results using a computer algebra system. 

We will now write the decomposition (1.3.19) for the CIRCULAR MOTION 
IN A PLANE. Let C be a circle with radius R and center at the point O. 
Assume a point mass moves along C. Choose the cartesian coordinates 
i, j , k with origin at O and i, j in the plane of the circle. Denote by 9(t) 
the angle between i and the position vector r(t) of the point mass. Suppose 
that the function 6 = 6(t) has two continuous derivatives in t, |#'(t) | > 0, 
t > 0, and 0(0) = 0. Then 

r(t) = Rcos9(t) i + Rsin6(t)j, 

v = r'(t) = -0'(t)Rsm6(t)i + 0'(t)Rcose(t)j, 

\\v\\ = (r'.r'^=R\e'(t)\, 



Velocity and Acceleration 35 

and v • r — 0. So v is tangent to the circle. The acceleration a is 

a(t) =v'(t) = - R(9"(t) sin 9(t) - (9'(t))2 cos<?(*)) I 

+ R(6"(t) cos8(t) - {9'(t))2sm9(t))j 

or 

a=-(0')2r+(6"/6')v. (1.3.21) 

Thus, the tangential component of a is (9"/6')v, and the normal com­
ponent, also known as the c e n t r i p e t a l acce le ra t ion , is ~{9')2r. Also, 

H| = zV(0')4 + (0")2-
EXERCISE 1.3.13.B Verify that (1.3.21) coincides with (1.3.19). Hint: First 
verify that ds/dt = R6'{t) and du(t)/dt = -(0'(t)/R)r(t). 

If the rotation is uniform with constant angular speed LJ, then 0(t) = cot 
and we have the familiar expressions ||a|| = u>2R = ||i>||2/.R. 

Note that the centripetal acceleration is in the direction of — r, that is, 
in the direction toward the center. It is not a coincidence that the Latin 
verb petere means "to look for." 

Next, we write the decomposition (1.3.19) for the GENERAL PLANAR 

MOTION IN POLAR COORDINATES (r, 9). Consider a frame with origin O 
and fixed cartesian coordinate system (i, j , k) so that the motion is in the 
(i, j) plane. Recall that, for a point P with position vector r, r = \\r\\, and 
9 is the angle from vector i t o r . Let r = r/r be the unit radius vector 
and let 9 be the unit vector orthogonal to r so that r x 9 = i x j ; draw a 
picture or see Figure 2.1.3 on page 48 below. Then 

{ r = cos#£ + s in0j , 

8 = - sin 9 i + cos 9 j . 

The vectors f, 9 are functions of 9. From (1.3.22) we get 

{ dr/d9 = — sin#z + cos9j= 0, 

d9/d9 = - cos9i — sin# j = —f. 

(1.3.22) 

(1.3.23) 

Let r(t) be the position of the point mass m at time t. In polar 
coordinates, r(t) = r(t)r(9(t)). The velocity of m in the frame O is 
v — dr/dt = d(r(t)r(8(t)))/dt. Using the rule (1.3.4) and the chain rule, 
we get v = (dr/dt)f+ r (dr/d9)(d9/dt), or 

v = fr + r90 = fr + nJ0. (1.3.24) 
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The velocity v is a sum of the radial velocity component fr and the angular 

velocity component rujd. We call f and r6 the r a d i a l and angular speeds, 

respectively. 

The acceleration a in the frame O is obtained by differentiating (1.3.24) 

with respect to t according to the rules (1.3.3), (1.3.4): 

a = dv/dt = rr + f (dr/d0)6 + (rd + r$)9 + r6 (dO/d9)9, 

or 

a = (r-r62)r + (r6 + 2f6)6. (1.3.25) 

The acceleration a is a sum of the r a d i a l component ar and the a n g u l a r 

component ag, where 

ar = (f - ruj2) r and ae = {r§ + 2fuj) 6. (1.3.26) 

E X E R C I S E 1.3.14.B Verify that decomposition (1.3.26) of the acceleration 

is a particular case of (1.3.19). 

Now assume tha t the trajectory of the point mass is a circle with center 

at O and radius R. Then r(t) = R for all t and f(t) = r(t) = 0. Let 

9\t) =u(t). By (1.3.26), 

(1.3.27) { ar = —RUJ2 f (centripetal acceleration) 

ag = Rwd (angular acceleration). 

Also, by (1.3.24), 

v = Rwd. (1.3.28) 

E X E R C I S E 1.3.15.5 Verify that formula (1.3.27) is a particular case of the 

decomposition (1.3.21) of the acceleration, as derived on page 34-

If we further assume tha t the angular speed is constant, tha t is, u>(t) = 

u>o for all t, then w = 0, and, by (1.3.27), 

ar = -Ru%r, a0 = 0. (1.3.29) 

E X E R C I S E 1 . 3 . 1 6 . B Verify that if the acceleration of a point mass in polar 

coordinates is given by (1.3.29), then the point moves around the circle of 

radius R with constant angular speed WQ. Hint: Combine (1.3.29) and (1.3.26) 

to get differential equations for r and 6. Solve the equations with initial conditions 

r(0) = R, r(0) = 0, 0(0) = 0, 0(0) = w0 to get r{i) = R, 0(i) = w0t. 
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EXERCISE 1.3.17.A Let (r(t),9(t)) be the polar coordinates of a 2-D motion 
of a point mass m in a fixed frame O. Let r(t) = St and 9(t) — 2t. Sketch 
the trajectory of the point in the frame O for 0 < t < 5 and verify the result 
using a computer algebra system. Compute the velocity and acceleration 
vectors in the frame O in terms of the unit vectors r, 6. 
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Chapter 2 

Vector Analysis and Classical and 
Relativistic Mechanics 

2.1 Kinematics and Dynamics of a Point Mass 

Kinematics is the study of motion without reference to forces; the Greek 
word kinema means "motion." Dynamics is the study of motion under the 
action of forces; the Greek word dynamis means "force." Also, the Greek 
word mechanikos means "machine." 

A curve C, defined by a vector-valued function of time r = r(t) provides 
the mathematical description of the trajectory in M3 of a particle (point 
mass) so that the location of the particle at time t is at the end point 
of the vector r(t). The initial point O of the vector is the origin of the 
corresponding frame in which the motion is studied. It is clear that the same 
motion can be studied in different frames and in different coordinates. The 
Prenet trihedron (page 32) is an example of a coordinate system in which 
the particle is at rest, but the coordinate system is moving. The objective 
of this section is to derive the rules for describing the motion of a point 
mass in different coordinate systems. 

Unless explicitly mentioned otherwise, we assume that the curve C is 
smooth, that is, the unit tangent vector u exists at every point of the 
curve; see page 27. 

2.1.1 Newton's Laws of Motion and Gravitation 

The motion of a point mass m is related to the net force F acting on the 
mass. In an inertial frame, this relation is made precise by Newton's three 
laws of motion, and conversely, every frame in which these laws hold is 
called i n e r t i a l . These laws were first formulated by Newton around 1666, 
less than a year after he received his bachelor's degree from Cambridge 

39 
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University. 

Newton's First Law: Unless acted upon by a force, a point mass is either 
not moving or moves in a straight line with constant speed. This law is also 
called the Law of I n e r t i a or G a l i l e o ' s P r inc ip le . 
Newton's Second Law: The acceleration of the point mass is directly 
proportional to the net force exerted and inversely proportional to the mass. 
Newton's Third Law: For every action, there is an equal and opposite 
reaction. 

Mathematically, the Second Law is 

o9r(t) _ F 
dt2 m 

where r = r(t) is the position of the point mass at time t. 

EXERCISE 2.1.1. c Show that the Second Law implies the First Law. In 
other words, show that if (2.1.1) holds, then the point mass m acted on by 
zero external force will move with constant velocity v. Hint: find the general 
solution of equation (2.1.1) when F = 0. 

The notion of momentum provides an alternative formulation of New­
ton's Second Law. Consider a point mass m moving along the path r — r(t) 
with velocity r(t) relative to a reference frame with origin at O. The (linear) 
momentum p is the vector 

p = mr. (2.1-2) 

If the reference frame is inertial, then (2.1.1) becomes 

p = F, (2.1.3) 

and the force is now interpreted as the rate of change of the linear momen­
tum. Incidentally, the Latin word momentum means "motion" or "cause of 
motion." One advantage of (2.1.3) over (2.1.1) is the possibility of variable 
mass. 

Similarly, the study of circular motion suggest the definition of the 
angular momentum about the point O as the vector 

Lo = mr x r. (2-1-4) 

Note that both p and Lo depend on the reference point O, but do not 
depend on the coordinate system. 

(2.1.1) 



Newton's Laws of Motion and Gravitation 41 

Recall that a force F acting on the point mass m has a torque, or 
moment, about O equal to 

T0 = rxF. 

Applying the rule (1.3.6), page 26, to formula (2.1.4) we find 

dLQ 

(2.1.5) 

dt 
m(rxr + rxr) = mrxf. 

If the frame O is inertial, then r — F/m and 

dLc 
dt 

= r x F = T0. (2.1.6) 

Relation (2.1.6) describes the rotational motion just as (2.1.3) describes the 
translational motion. 

As an example, consider the SIMPLE RIGID PENDULUM, which is a 
massless thin rigid rod of length £ connected to a point mass m at one 
end. The other end of the rod is connected to a frictionless pin-joint at a 
point O, which is a zero-diameter bearing that permits rotation in a fixed 
plane. We select a cartesian coordinate system (i, j , K) with center at O 
and i, j fixed in the plane of the rotation (Figure 2.1.1), and assume that 
the corresponding frame is inertial. 

Fig. 2.1.1 Simple Rigid Pendulum 

The motion of m is a circular rotation in the (i, j) plane, and is best 
described using polar coordinates (r,6); see page 35. The rigidity as­
sumption implies r(t) = £ for all t. Denote by 0 = 6{t) the angle from 
% to the rod at time t. Let r(t) be the position vector of the point 
mass in the frame O. Then r(t) = £r(0(t)), and by (1.3.24) on page 35, 
r — £80. Hence, the angular momentum of the point mass about O is 
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L — mr x r = m(£r x 196) = m£29A, and 

^=m£r6k. (2.1.7) 
at 

The forces acting on the pendulum are the weight W of m, the air resistance 
Fa and the force Fp exerted by the pin at O. Clearly, W = mgi, where 
g is the acceleration of gravity. Physical considerations suggest that the 
force Fa on m may be assumed to act tangentially to the circular path and 
to be proportional to the tangential velocity: Fa = —c£9 6, where c is the 
damping constant. The total torque T about O exerted by these forces is 

T = r xW + r x Fa + Ox Fp, = £rxmgi-£rxc£9 8, 

or 

T=-(mg£ sin 9 + £2C9)K. (2.1.8) 

Since the frame O is inertial, equation (2.1.6) applies, and by (2.1.7) and 
(2.1.8) above, we obtain ml? 6 = —mg£sin6 — l2c6, or 

m£e + d6 = -mg sin9. (2.1.9) 

Equation (2.1.9) is a nonlinear ordinary differential equation and cannot 
be integrated in quadratures, that is, its solution cannot be written using 
only elementary functions and their anti-derivatives. When c = 0, such a 
solution does exist and involves elliptic integrals; see Problem 2.3, page 417, 
if you are curious. 

The more familiar harmonic oscillator 

6 = -{g/£)6 (2.1.10) 

is obtained from (2.1.9) when c = 0 and 6 is small so that sin0 w 6; this 
equation should be familiar from the basic course in ordinary differential 
equations. If 9(0) = 0O and 0(0) = 0, then the solution of (2.1.10) is 

0(t) = 0O cos(cjt), where w = (£/g)1/2. 

The period of the small undamped oscillations is 2n(£/g)1/2, and the value 
of £ can be adjusted to provide a desired ticking rate for a clock mechanism. 
The idea to use a pendulum for time-keeping was studied by the Italian 
scientist GALILEO GALILEI (1564-1642) during the last years of his life, 
but it was only in 1656 that the Dutch scientist CHRISTIAAN HUYGENS 

(1629-1695) patented the first pendulum clock. 
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EXERCISE 2.1.2r Let point mass m move in a planar path C given by r(t), 
where r is the position vector with origin O. 
(a) Use formulas (1.3.24), Pa9^ 35, and (2.1.4) to express the angular mo­
mentum of the point mass about O in the coordinate system {r,6). 
(b) Suppose that the point mass moves in a circular path C with radius R 
and center O. Denote the angular speed by w(i). (i) Compute the angular 
momentum LQ of the point mass about O and the corresponding torque, 
(ii) Find the force F that is required to produce this motion, assuming the 
frame O is inertial. (Hi) Write F as a linear combination ofr and 6. (iv) 
How will the expressions simplify ifui(t) does not depend on time? 

As we saw in Exercise 2.1.1, the Second Law of Newton implies the 
First Law. For further discussion of the logic of Newton's Laws see the 
book Foundations of Physics by H. Margenau and R. Lindsay, 1957. Re­
garding the First Law, they quote A. S. Eddington's remark from his book 
Nature of the Physical World, first published in the 1920s, that the law, 
in effect, says that "every particle continues in its state of rest or uniform 
motion in a straight line, except insofar as it doesn't." This is a somewhat 
facetious commentary on the logical circularity of Newton's original formu­
lation, which depends on the notion of zero force acting, which can only 
be observed in terms of the motion being at constant velocity. The same 
logical difficulty arises in the definition of an i n e r t i a l frame as a frame 
in which the three laws of Newton hold. We do not concentrate on these 
questions here and simply assume that the primary i n e r t i a l frame, that 
is, a frame attached to far-away, and approximately fixed, stars is a good 
approximation of an inertial frame for all motions in the vicinity of the 
Earth. The idea of this frame goes back to the Irish bishop and philoso­
pher G. Berkeley. The deep question "What is a force?" is also beyond the 
scope of our presentation; for the discussion of this question, see the above-
mentioned book Foundations of Physics by H. Margenau and R. Lindsay, 
or else take as given that there are four basic kinds of forces: gravitational, 
electromagnetic, strong nuclear, and weak nuclear. In inertial frames, all 
other forces result from these four. 

Newton discovered the Law of Universal Gravitation by combining his 
laws of motion with Kepler's Laws of Planetary Motion. The history behind 
this discovery is a lot more complex than the familiar legend about the apple 
falling from the tree and hitting Newton on the head. As many similar 
stories, this "apple incident" is questioned by modern historians. Below, 
we present some of the highlights of the actual development. 
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The basic ideas of modern astronomy go back to the Polish astronomer 
NICOLAUS COPERNICUS (1473-1543) and his heliocentric theory of the solar 
system. Copernicus was a canon (in modern terms, senior manager) of the 
cathedral at the town of Prauenburg (now Frombork) in northern Poland, 
and observed the stars and planets from his home. Around 1530, he came 
to the conclusion that planets in our solar system revolve around the Sun. 
He was hesitant to publish his ideas, both for fear of being charged with 
heresy and because of the numerous problems he could not resolve; his 
work, titled De revolutionibus orbium coelestium ("On the Revolutions of 
the Celestial Spheres") was finally published in 1543, apparently just a few 
weeks before he died. 

It took some time to formalize the heliocentric ideas mathematically, 
and the key missing element was the empirical data. The main instrument 
for astronomical observations, the telescope, was yet to be invented: it was 
only in 1609 that Galileo Galilei made the first one. Without a telescope, 
collecting the data required a lot of time and patience, but the Danish 
scientist TYCHO BRAHE (1546-1601) had both. Brahe was the royal as­
tronomer and mathematician to Rudolf II, the emperor of the Holy Roman 
Empire. At the observatory in Prague, the seat of the Holy Roman Empire 
at that time, Brahe compiled the world's first truly accurate and complete 
set of astronomical tables. His assistant, German scientist JOHANN KEPLER 

(1571-1630), had been a proponent of the heliocentric theory of Coperni­
cus. After inheriting the position and all the astronomical data from Brahe 
in 1601, Kepler analyzed the data for the planet Mars and formulated his 
first two laws in 1609. Further investigations led him to the discovery of 
the third law in 1619. 

Kepler ' s Firs t Law: The planets have elliptical orbits with the Sun at 
one focus. 

Kepler ' s Second Law: The radius vector from the Sun to a planet 
sweeps over equal areas in equal time intervals. 
Kepler ' s Thi rd Law: For every planet p, the square of its period Tp of 
revolution around the Sun is proportional to the cube of the average distance 
Rp from the planet to the Sun. In other words, T% = KsRl, where the 
number Ks is the same for every planet. 

A planetary orbit has a very small eccentricity and so is close to a 
circle of some mean radius R. Kepler speculated that a planet is held 
in its orbit by a force of attraction between the Sun and the planet, and 
Newton quantified Kepler's qualitative idea. In modern terms, we can 
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recover Newton's argument by combining equation (1.3.29), page 36, with 
his second law (2.1.1). Take an inertial frame with origin at the Sun and 
assume that a planet of mass m executes a circular motion around the 
origin with constant angular speed w. Then (2.1.1) and (1.3.29) result in 

F = ma = -moj2r(t) = -mw2Rr{t), 

where r = r/\\r\\ is the unit radius vector pointing from the Sun to the 
planet. On the other hand, u> — 2n/T, and therefore the magnitude 
of F is | |F | | = m(4rr2/T2)R. Applying Kepler's Third Law, we obtain 
| |F | | = m{Air2/KsR?)R = Cm/R2, where C = 4n2/Ks. In other words, 
the gravitational force exerted by the Sun on the planet of mass m at a 
distance R is proportional to m and R~2. By Newton's third law, there 
must be an equal and opposite force exerted by m on the Sun. By the 
same argument, we conclude that the magnitude of the force must also be 
proportional to M and R~2, where M is the mass of the Sun. Therefore, 

11*11 = ^ , (2.1.11) 

where G is a constant. Newton postulated that G is a un ive r sa l 
g r a v i t a t i o n a l constant , that is, has the same value for any two masses, 
and therefor (2.1.11) is a Universal Law of Gravi ta t ion. In 1798, the 
English scientist HENRY CAVENDISH (1731-1810), in his quest to determine 
the mass and density of Earth, verified the relation (2.1.11) experimentally 
and determined a numerical value of G: G « 6.67 x 10 - 1 1 m3/(kg- sec2). 
Since then, the Universal Law of Gravitation has been tested and verified 
on many occasions. An extremely small discrepancy has been discovered 
in the orbit of Mercury that cannot be derived from (2.1.11), and is ex­
plained by Einstein's law of gravitation in the theory of general relativity; 
see Problem 2.2 on page 414. 

In our derivation of (2.1.11), we implicitly used the equivalence principle 
that the two possible values of m, its inertial and gravitational masses, are 
equal. A priori, this is not at all obvious. Indeed, the mass m in equa­
tion (2.1.1) of Newton's Second Law, the i n e r t i a l mass, expresses an 
object's resistance to external force: the larger the mass, the smaller the 
acceleration. The mass m in (2.1.11), the g r a v i t a t i o n a l mass, expresses 
something completely different, namely, its gravitational attraction: the 
larger the mass, the stronger the gravitational attraction it produces. The 
equivalence principle is one of the foundations of Einstein's theory of gen­
eral relativity and can be traced back to Galilei, who was among the first 
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to study the motion of bodies under Earth's gravity. Even though many 
modern historians question whether indeed, around 1590, he was dropping 
different objects from the leaning tower of Pisa, in 1604 Galileo did con­
duct related experiments using an inclined plane; in 1608, he formulated 
mathematically the basic laws of accelerated motion under the gravitational 
force. The conjecture of Galilei that the acceleration due to gravity is es­
sentially the same for all kinds of matter has been verified experimentally. 
Between 1905 and 1908, the Hungarian physicist VASAROSNAMENYI BARO 

EOTVOS LORAND (1848-1919), also known as ROLAND EOTVOS, measured 
a variation of about 5 x 10~9 in the Earth's pull on wood and platinum; 
somehow, the result was published only in 1922. In the 1950s, the Ameri­
can physicist ROBERT HENRY DiCKE (1916-1997) measured a difference of 
(1.3 ± 1.0) x 10 - 1 1 for the Sun's attraction of aluminum and gold objects. 

Following the historical developments, we derived relation (2.1.11) from 
Newton's Second Law of Motion and Kepler's Third Law of Planetary Mo­
tion. Problem 2.1, page 413, presents a deeper insight into the problem. In 
particular, more detailed analysis shows that, in our derivation of (2.1.11), 
Kepler's Third Law can be replaced by his First Law, along with the as­
sumption that the gravitational force is attracting and cen t ra l , that is, 
acts along the line connecting the Sun and the planet. Moreover, the reader 
who completes Problem 2.1 will see that all three Kepler's laws follow from 
(2.1.1) and (2.1.11). This illustrates the power of mathematical models in 
reasoning about physical laws. 

2.1.2 Parallel Translation of Frames 

Recall that Newton's laws of motion hold only in inertial frames; see page 4 
for the definition of frame. Ignoring the possible logical issues, we therefore 
say that an i n e r t i a l frame is a frame in which a point mass maintains 
constant velocity in the absence of external forces. The same frame can 
be (approximately) inertial in some situations and not inertial in others. 
For example, a frame fixed to the surface of the Earth is inertial if the 
objective is to study the motion of a billiard ball on a pool table. The same 
frame is no longer inertial if the objective is to study the trajectory of an 
intercontinental ballistic missile: the inertial frame for this problem should 
not rotate with the Earth; the primary inertial frame fixed to the stars is 
a possible choice, see page 43. In this and the following two sections, we 
investigate how relation (2.1.1) changes if the frame is not inertial. The 



Parallel Translation of Frames 47 

starting point is the analysis of the relative motion of frames. 
The easiest motion is parallel translation, where the corresponding basis 

vectors in the frames stay parallel. Consider two such frames with origins 
O and Oi respectively. Denote by roi(t) the position vector of 0\ with 
respect to O. Let the position vectors of a point mass in frames O and 0\ 
be r0{t) and ri(i) respectively (Figure 2.1.2). 

Fig. 2.1.2 Translation of Frames 

Clearly, ro(t) — roi(i) + Vi(t), and the absence of relative rotation 
allows us to consider this equality in the frame O for each t We can identify 
the parallel vectors that have the same direction and length. Since position 
vectors in O and 0\ maintain their relative orientation when there is no 
relative rotation of the frames, the coordinate systems in the frames O and 
0\ are the same. Then we can apply the rule for differentiating a sum 
(1.3.3) to obtain simple relations between the velocities and accelerations 
in the frames O and 0\\ 

r o ( * ) = r 0 i ( t ) + fi( t) , r ( t )= ro i (* ) + r i ( t ) . (2.1.12) 

If the frame O is inertial, then, by Newton's Second Law, mr(t) = F(t), 
where m is the mass of the point, and F is the sum of all forces acting on 
the point. The second equality in (2.1.12) then implies 

mri(t) = F(t) - mroi(t) (2.1.13) 

In effect, there are two forces acting on m in the frame 0\. One is the force 
F. The other, — mroi, is called a t r a n s l a t i o n a l acce l e r a t i on force. 
It is an example of an apparent, or i n e r t i a l , force, that is, a force that 
appears because of the relative motion of frames and is not of any of the 
four types described on page 43. If roi(t) is constant, then roi(t) = 0 and 
the Second Law of Newton holds in 0\, that is, Oi is also an inertial frame. 
Thus, all frames moving with constant velocity relative to an inertial frame 
are also inertial frames. 



48 Kinematics and Dynamics of a Point Mass 

As an EXAMPLE, consider a golf ball in a moving elevator. We fix the 
frame O on the ground, and 0\, on the elevator, and select the usual carte­
sian coordinate systems in both frames so that the corresponding coordinate 
vectors are parallel. Assume that the elevator is falling down with the grav­
itational acceleration g, so that roi(t) = —gk, and the ball is falling down 
inside the elevator, also with the gravitational acceleration g so that ro{t) — 
-gk. Then (2.1.12) shows that r\(t) = ro(t) — roi(t) = —gk + gk — 0. 
Therefore, f*i(t) is constant, and if r\(to) = 0, then r[(t) = 0 for all t > to 
(or until the elevator hits the ground). An observer in the elevator would 
see the ball as fixed in the elevator frame 0\: the translational acceleration 
force -mfo i ( i ) compensates the gravitational force m?o(t), and the ball 
behaves as weightless in the elevator frame. 

2.1.3 Uniform Rotation of Frames 

Note that it is the absence of rotation that allowed us to use the differenti­
ation rule (1.3.3) in the derivation of relation (2.1.12). This and other rules 
of differentiation no longer apply if the frames are rotating relative to each 
other, and relation (2.1.12) must be modified. 

We start with the analysis of uniform ro t a t ion , that is, rotation with 
constant angular speed around a fixed axis. As a motivational example, 
consider a car driving with constant angular speed u>o in a circle with radius 
R and center at O. Consider an object (a point mass m) moving inside the 
car with constant radial speed VQ relative to O, and rotating together with 
the car with constant angular speed UQ around O. Introduce a new (non-
inertial) rotating frame with origin 0\ inside the car and the coordinate 
basis vectors i\ = r, j 1 = 0; see Figure 2.1.3. As before, let ro and n be 
the position vectors of the point mass in the frames O and Oi, respectively, 
and denote 00\ by roi- Assume that T*I(0) = 0. 

' * — • -

0 0[ r 

Fig. 2.1.3 Rotation of Frames 

By construction, roi = Rf. For a passenger riding in the car, the 
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path r\(t) — votr of the point mass relative to the car is a straight line, 
since there is no angular displacement of m relative to the car. Thus, 
ro(t) = (R + vot)r(t). Note that the polar coordinates of m in frame 
O are (r(t),9(t)), where r(t) = R + v0t. Hence r(t) = v0 and f(t) = 0. 
Also, Q(t) = OJQ and 6(t) = 0. Formulas (1.3.26) on page 36 provide the 
acceleration a = ar + a# of the mass in the frame O, where, with f — Q 
and 6 = 0, 

ar = -(R + v0t)Jl r, ae = 2v0wo §• (2.1.14) 

By (1.3.27) on page 36, r 0 i = -Rw$r. In frame 01: r^t) = 0. Then 
(2.1.14) shows that the acceleration fo(t) is 

r 0 ( 0 = roi(t) + r\(t) - v0ttj$r + 2v0uj0d. (2.1.15) 

We see that the simple relation (2.1.12) between the accelerations in trans­
lated frames does not correctly describe acceleration of the point mass in 
the frame O in terms of the acceleration in the frame 0\. 

If O is an inertial frame and J1 is a force acting on the point mass in 
O to produce the motion, then, by the Newton's Second Law, m ro = F . 
According to (2.1.15), 

mf\ = F + (mRul + mvotwl) r — 2mv0ujo&- (2.1.16) 

Thus, frame 0\ is not inertial. Similar to (2.1.13), inertial forces appear as 
correctors to Newton's Second Law: the centrifugal force Fc = {rnRiS^ + 
mvoiwg) r and the Coriolis force Fcor = — 2mvou>0 6. The centrifugal force 
prevents the mass from flying off at a tangent because of the rotational 
motion of the car and the mass. One component of this force, mRwQ r = 
—mroi(t), is related to the motion of the car causing the rotation of the 
origin of the frame Oi; the other, mvotuiQ r, takes into account the outward 
radial motion of the point. Note that the direction of the centrifugal force 
is in the direction of r, and is therefore away from the center and opposite 
to the direction of the centripetal acceleration (cf. page 35). Incidentally, 
the Latin verb fug ere means "to run away." 

The Coriolis force — 2mvocoo Q is somewhat less expected. This force is 
perpendicular to the linear path in Oi and ensures that the trajectory of 
the point in the rotating frame is a straight radial line despite the rotation 
of the frame. This force was first described in 1835 by the French scien­
tist GASPARD-GUSTAVE DE CORIOLIS (1792-1843). His motivation for the 
study came from the problems of the early 19th-century industry, such as 
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the design of water-wheels. More familiar effects of the Coriolis force, such 
as rotation of the swing plane of the Poucault pendulum and the special 
directions of atmospheric winds, were discovered in the 1850s and will be 
discussed in the next section. 

Recall that in our example r\ = 0. From (2.1.16) we conclude that 
F + Fc + Fcor = 0. The real (as opposite to inertial) force F must balance 
the effects of the inertial forces to ensure the required motion of the object in 
the rotating frame. For a passenger sliding outward with constant velocity 
VQ r in a turning car, this real force is the reaction of the seat in the form 
of friction and forward pressure of the back of the seat. . 

EXERCISE 2.1.3? Find the vector function describing the trajectory ofm in 
the O frame. What is the shape of this trajectory? Verify your conclusion 
using a computer algebra system. 

EXERCISE 2 .1 .4 . A Suppose a point mass m is fixed at a point P in the O 
frame, that is, m remains at P in the O frame for all times. Find the vector 
function describing the trajectory ofm in the 0\ frame. What is the shape 
of this trajectory? Verify your conclusion using a computer algebra system. 
Hint. This is the path of m relative to the car seen by a passenger riding in the 
car. Show that O is fixed in Ox. 

Coming back to Figure 2.1.3, note that the coordinate vectors in the 
frame 0\ spin around 0\ with constant angular speed WQ, while the origin 
0\ rotates around O with the same angular speed WQ. This observation 
leads to further generalization by allowing different speeds of spinning and 
rotation. 

EXERCISE 2.I.5.'4 Suppose the origin 0% rotates around the point O with 
angular speed U>Q, while the coordinate vectors (r, 9) spin around 0\ with 
constant angular speed 2WQ. Suppose a point mass is fixed at a point P in 
the 0 frame. Find the vector function describing the trajectory of m in 
the 0\ frame. What is the shape of this trajectory? Verify your conclusion 
using a computer algebra system. 

Our motivational example with the car illustrated some of the main 
effects that arise in rotating frames. The example was two-dimensional in 
nature, and now we move on to uniform rotations in space. There are many 
different ways to describe rotations in R3. We present an approach using 
vectors and linear algebra. 

We start with a simple problem. Consider a point P moving around a 
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circle of radius R with uniform angular velocity u (Figure 2.1.4). Denote by 
r(t) the position vector of the point at time t and assume that the origin O 
of the frame is chosen so that ||r|| does not change in time. How to express 
r(t) in terms of r(t) and w? 

Fig. 2.1.4 Rotating Point 

To solve this problem, consider the plane that contains the circle of 
rotation and define the r o t a t i o n vector u> as follows (see Figure 2.1.4). 
The vector u> is perpendicular to the plane of the rotation; the direction 
of the vector u> is such that the rotation is counterclockwise as seen from 
the tip of the vector (alternatively, the rotation is clockwise as seen in the 
direction of the vector); the length of the vector u: is w, the angular speed 
of the rotation. As seen from Figure 2.1.4, r(t) = r(t) + r* and the vector 
r* does not change in time, so that r(t) = r'(t). Consider a cartesian 
coordinate system (?, j) with the origin at the center O of the circle in the 
plane of rotation so that r(t) = Rcoscjti + Rsinwtj. Direct computations 
show that 

r'(t) = ( i x j ) x («f(<)) = iv x r{t) = w x r(t), (2.1.17) 

r{t) = LJ x r[t). (2.1.18) 

EXERCISE 2.1.6.c Verify all equalities in (2.1.17). 

We will now use (2.1.18) to derive the relation between the velocities 
and accelerations of a point mass m relative to two frames O and Oi, 
when the frame 0\ is rotating with respect to O. We assume that the 
two frames have the same origins: O = 0\. We also choose cartesian 
coordinate systems (i, J, k) and (£i, j l t ki) in the frames; see Figure 2.1.9 



52 Kinematics and Dynamics of a Point Mass 

on page 62. Let the frame 0\ rotate relative to the frame O so that the 
corresponding rotation vector u> is fixed in the frame O. Because of this 
rotation, the basis vectors in Oi depend on time when considered in the 
frame O: ti = »i(t), Jx =J1(*), *i = M*)- % (2-1.18), 

dii/dt = u> x ii, djx/dt = u> x j 1 , dki/dt = u> x k\. (2.1.19) 

Denote by ro(t) and ri(t) the position vectors of the point mass in O and 
Oi, respectively. If P is the position of the point mass, then ro(t) = OP, 
r\(t) = 0\P, and, with O = 0\, we have ro(t) — r\(t) for all t. Still, the 
time derivatives of the vectors are different: ro(t) ^ ri(t) because of the 
rotation of the frames. Indeed, 

ri {t) = xx (t) §i + yi (t) j x + zx (t) ku 

r0(t) = x1(t)i1{t)+y1(t)j1{t)+zl(t)K1{t); 

recall that the vectors i%, j x , k\ are fixed relative to Oi, but are moving 
relative to O. Let us differentiate both equalities in (2.1.20) with respect to 
time t. For the computations of ri(t), the basis vectors are constants. For 
the computations of ro(t), we use the product rule (1.3.4) and the relations 
(2.1.19). The result is 

r0(t) = r i ( t ) + u ; x r 1 ( t ) . (2.1.21) 

EXERCISE 2.1.1? Verify (2.1.21). 

There is nothing in the derivation of (2.1.21) that requires us to treat ro 
as a position vector of a point. Accordingly, an alternative form of (2.1.21) 
can be stated as follows. Introduce the notations Do and D\ for the time 
derivatives in the frames O and 0\, respectively. Then, for every vector 
function R = R(t), the derivation of (2.1.21) yields 

D0R{t) = DiR(t) +UJX R(t). (2.1.22) 

Relation (2.1.21) is a particular case of (2.1.22), when R is the position 
vector of the point. We now use (2.1.22) with R = r0, the velocity of the 
point in the fixed frame, to get the relation between the accelerations. Then 
(i) ZVo = r0 ; (ii) by (2.1.21), Dxr0 = f 1 + w x t , i ; (hi) also by (2.1.21) 
w x r 0 = w x (r i + w x n ) . Collecting the terms in (2.1.22), 

ro = r i + 2 u x r i + w x ( w x j ' i ) . (2.1.23) 

Therefore, the acceleration in the fixed frame has three components: the 
acceleration fi in the moving frame, the Cor io l i s acce le ra t ion acor = 
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2u> x r i , and the centripetal acceleration o,c — u} x [u) x f i ) . Note that o,c 

is orthogonal to both u> and w x r i . 
Assume that the fixed frame O is inertial, and let F be the force acting 

on the point mass m in O. By Newton's Second Law, we have mro = F in 
the inertial frame O and, by (2.1.23), 

mfi = F - 2mw x n - m w x f w x r i ) (2.1.24) 

in the rotating frame 0\. Similar to (2.1.16), inertial forces appear as 
corrections to Newton's Second Law in the non-inertial frame 0\. There 
are two such forces in (2.1.24): the Coriolis force Fcor = - 2 m « x r\ and 
the centrifugal force Fc = — mw x (a; x n ) . 

As an example illustrating the relation (2.1.23), consider a point mass 
m moving on the surface of the Earth along a meridian (great circle through 
the poles) with constant angular speed 7; the axis of rotation goes through 
the North and South Poles. We place the origins O and 0\ of the fixed and 
rotating frames at the center of the Earth and assume that the frame 0\ 
is rotating with the Earth. (Figure 2.1.5). 

Fig. 2.1.5 Motion Along a Meridian 

Denote by P the current position of the point, and consider the plane 
(NOP) Relative to the Earth, that is, in the frame Ox, the plane (NOP) 
is fixed, and the motion of m is a simple circular rotation in this plane 
with constant angular speed 7 so that 6(t) = jt. Relative to the fixed 
frame O, the plane (NOP) is rotating, and the rotation vector is u>. We 
will determine the three components of the acceleration of the point in the 
frame O according to (2.1.23). 

Introduce the polar coordinate vectors r, 6 in the plane (NOP). By 
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(1.3.27), page 36, we find ag = 0 and so 

rl=ar = -j2Rr, (2.1.25) 

where R is the radius of the Earth. 
Similarly, we use (1.3.28), page 36, to find the velocity r j , of the point 

in the frame 0\\ ti — "fR9, and then the Coriolis acceleration in O is 
acor = 2CJ x r\ — 2^Ru> x 9. 

To evaluate the product w x 9, we need some additional constructions. 
Note that both u> and 9 are in the plane (NOP). Let b be the unit vector 
that lies both in the (NOP) and the equator planes as shown in Figure 
(2.1.5). This vector is rotating with the plane (NOP) and therefore changes 
in time; by (2.1.18), b'(t) = u> x b(t). With this construction, the vector 
LJ x 9 is in the plane of the equator and has the same direction as — b'(t). 
By definition, 9 is orthogonal to r. By construction, the vectors CJ and b 
are also orthogonal, and so the angle 6 between the vectors b and r is equal 
to the angle between the vectors u> and 9. Since ||b'(£)|| — u = ||u>|| and 
||0|| = 1, we find UJ x 9 — -sinOb', and therefore 

acor(t) = -27-Rsin(7i)b'(i). (2.1.26) 

Finally, we use 9 and b to write the centripetal acceleration ac = w x ( u x r ) 
of the point. We have 

u>xr = Rsm(n/2-e)b' = RcosQb', u xb'=-uj2b. (2.1.27) 

Hence, 

ac = -(<Jj
2Rcos'yt)b. (2.1.28) 

Combining (2.1.25), (2.1.26), and (2.1.28) in (2.1.23), we find the total 
acceleration r(t) of the point mass in the fixed frame O: 

r(t) = --y2Rr(t) -2^Rsia{jt)b'(t) - cj2Rcos(-ft)b(t). (2.1.29) 

EXERCISE 2.1.8.c Verify all the equalities in (2.1.27). 

We now use (2.1.24) to study the dynamics of the point mass m moving 
on (or close to) the surface of the Earth. Let r\ = r\(t) be the trajectory 
of the point in the frame 0\. Unlike the discussion leading to (2.1.29), we 
will no longer assume that the point moves along a meridian. Suppose that 
O is an inertial frame. If F is the force acting on m in the frame O, then 
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Newton's Second Law implies mr = F. By (2.1.24), 

mf\ = F - 2mu> x f i - mu> x (u> x n). (2.1.30) 

The force F is the sum of the Earth's gravitational force Fa = 
— {Km/\\r\\\2)ri and the net "propulsive" force Fp(t) that ensures the 
motion of the point. If we prescribe the trajectory r\(t) of m in the frame 
0\, then the force Fp necessary to produce this trajectory is given by 

FP(t) = mri + 2mu>u x r i + rnu x ( w x n) — Fa- (2.1.31) 

Conversely, if the force Fp — Fp(t) is specified, then the resulting trajec­
tory is determined by solving (2.1.30) with the corresponding initial condi­
tions ri(0), r i(0) and with F = FG + FP. 

Note that (2.1.30) can be written as 

mri = F — m acor — mac = FQ + Fp + Fcor + Fc. 

Both forces FQ and Fc act in the meridian plane (NOP). Indeed, by the 
Law of Universal Gravitation, the gravitational force FQ acts along the 
line OP, where P is the current location of the point. The centrifugal force 
Fc = mijj x (u> x n ) acts in the direction of the vector b, as follows from 
the properties of the cross product; see Figure 2.1.5. 

To analyze the effects of the Coriolis force Fcor = —macor = - 2 m u x 
f i on the motion of the point mass, we again assume that the point is in 
the Northern Hemisphere and moves north along a meridian with constant 
angular speed. According to (2.1.26), the force Fcor is perpendicular to 
the meridian plane and is acting in the eastward direction. The magnitude 
of the force is proportional to sin#, with the angle 6 measured from the 
equator; see Figure 2.1.5. In particular, the force is the strongest on the 
North pole, and the force is zero on the equator. By (2.1.25) and (2.1.31), to 
maintain the motion along a meridian, the force Fp must have a westward 
component to balance Fcor. Thus, to move due North, the mass must be 
subject to a propulsive force Fp having a westward component. The other 
component of Fp is in the meridian plane. 

The following exercise analyzes the Coriolis force when the motion is 
parallel to the equator. 

EXERCISE 2.1.9. Let ii, be the northward vector along the axis through 
the North and South poles. We assume that the Earth rotates around this 
axis, and denote by u> k the corresponding rotation vector. Let O be the 
fixed inertial frame and 0\, the frame rotating with the Earth; the origins 
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of both frames are at the Earth center. Suppose that a point mass m is in 
the Northern hemisphere and moves East along a p a r a l l e l ( a circle cut on 
the surface of the Earth by a plane perpendicular to the line through the poles). 
Denote by f i the velocity of the point relative to the frame 0\ so that rx 

is perpendicular to the meridian plane; see Figure 2.1.6. By (2.1.24), the 
Coriolis force acting on the point mass is Fcor = —2mu)h x f\. 

Fig. 2.1.6 Motion Along a Parallel 

(a)c Assume that both | | r i | | and 9 stay (approximately) constant during 
the travel and that there is zero propulsion force Fp, as after a missile has 
been fired. Ignore air resistance. 
(i) Show that the point mass is deflected to the South, and the magnitude of 
the deflection isu\\ri\\ sin9t2, wheret is the time of travel. Hint: verify that 
Fcor • 9 = — 2mw||ri||sin0) and so 2mw||ri||sin6| is the force pushing the point 
mass to the South, (ii) Suppose that 9 = 41°, ||ri || = 1000 meters per second, 
and the point mass travels 1000 kilometers. Verify that the point mass will 
be deflected by about 50 kilometers to the South: if the target is due East, 
the missile will miss the target if aimed due East. Hint: 2o>sin0 « 10~4. 

(b)A Compute the deflection of the point mass taking into account the 
change of \\ri\\ and 9 caused by the Coriolis force. 

We now summarize the effects of the Coriolis force on the motion of a 
point mass near the Earth. 

• The force is equal to zero on the equator and is the strongest on the poles. 

• For motion in the Northern Hemisphere: 
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Direction of Motion 

North 
South 
East 
West 

Deflection of trajectory 

East 
West 
South 
North 

• For motion in the Southern Hemisphere 

Direction of Motion 

North 
South 
East 
West 

Deflection of trajectory 

West 
East 

North 
South 

EXERCISE 2 .1 .10 . B Verify the above properties of the Coriolis force. Hint: 
The particular shape of the trajectory does not matter; all you need is the direction 

ofr\, similar to Exercise 2.1.9. 

EXERCISE 2.1.11. A Because of the Coriolis force, an object dropped down 
from a high building does not fall along a straight vertical line and lands to 
the side. Disregarding the air resistance, compute the direction and mag­
nitude of this deviation for an object dropped from the top of the Empire 
State Building (or from another tall structure of your choice). 

One of the most famous illustrations of the Coriolis force is the Fou-
CAULT PENDULUM, named after its creator, the French scientist JEAN 

BERNARD LEON FOUCAULT (1819-1869). Foucault was looking for an 
easy demonstration of the Earth's rotation around its axis, and around 
1850 came up with the idea of a pendulum. He started with a small weight 
on a 6 feet long wire in his cellar, and gradually increased both the weight 
and the length of the wire. He also found a better location to conduct his 
experiment. The culmination was the year 1851, when he built a pendulum 
consisting of a 67 meter-long wire and a 28 kg weight swinging through a 
three-meter arc. The other end of the wire was attached to the dome of the 
Paris Pantheon and kept swinging via a special mechanism to compensate 
for the air resistance and to allow the swing in any vertical plane. Because 
of the rotation of the Earth around its axis, the Coriolis force was turning 
the plane of the swing by about 270 degrees every 24 hours, in the clockwise 
direction as seen from above. 

EXERCISE 2.\.Yl.c Draw a picture and convince yourself that, if the pen-
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dulum starts to swing in the Northern Hemisphere in the meridian plane, 
then the Coriolis force will tend to turn the plane of the swing clockwise as 
seen from above. 

Let us perform a simplified analysis of the motion of the Foucault pen­
dulum in the Northern Hemisphere, away from the North Pole and the 
equator. Assume that the pendulum starts to swing in a meridian plane. 
Figure 2.1.7 presents a (grossly out-of-scale) illustration, with the Earth's 
surface represented by the semi-circle. In reality, the length of the sup­
port and the height of the supporting point 0\ are much smaller than the 
radius R of the Earth, so that \00\\ « |0.Po| ^ R- Also, the ampli­
tude of the swing is small compared to the length of the support, so that 
|OiPo| « \0\PN\ = |OiPs| , and the linear distance \PNPS\ is approxi­
mately equal to the length of the corresponding circular swing arc. 

Fig. 2.1.7 Foucault Pendulum 

The pendulum is suspended at the point 0\, and the points PN, PS are 
the two extreme positions of the weight. The angle 9 is the latitude of the 
support point 0\. Denote the distance \PNPS\ by 2r. As seen from the 
picture, the point PN is closer to the axis ON of the rotation of the Earth 
than the point 0\, and the amount of this difference is \QNPQ\ = rsm9. 
Similarly, the point Ps is farther from the axis than 0\ by the same amount. 
Since the Earth is rotating around the axis ON with angular speed u, the 
points PN, 0\, and Ps will all move in the direction perpendicular to the 
meridian plane. The point PN will move slower than Oi, and the point Ps, 
faster, causing the plane of the swing to turn. The speed of Ps relative to 
0\ and of 0\ relative to PN is ruj sin 9. If we assume that these relative 

file:///0/Pn/
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speeds stay the same throughout the revolution of the swing plane, then 
the weight will be rotating around the point Po with the speed rusinO, 
and we can find the time T of one complete turn. In time T, the weight 
will move the full circle of radius r, covering the distance 2nr. The speed 
of this motion is ru sin#, and so 

T = - ^ = ^ , (2.1.32) 
ru sin 8 sin f) 

where To = 27r/o; « 24 hours is the period of Earth's revolution around its 
axis. The plane of the swing will rotate 2n sin 0 radians every 24 hours. For 
the original Foucault pendulum in Paris, we have 6 « 48.6°, which results 
in T = 32 hours, or a 270° turn every 24 hours. 

Note that the result (2.1.32) is true, at least formally, on the poles and 
on the equator. Still, 

• On the poles, T = 24 hours as the Earth is turning under the pendulum, 
making a full turn every 24 hours. 

• On the equator, where there is no Coriolis force, the points OI,PN,PS 

are at the same distance from the axis ON (this is only approximately 
true if the swinging is not in the plane of the equator). As a result, the 
plane of the swing does not change: T = +oo. 

EXERCISE 2.1.13.B Find the period T for the Foucault pendulum in your 
home town. 

The Coriolis force due to the Earth's rotation has greater effects on the 
motion than might be deduced from an intuitive approach based on the 
relative velocities of the moving object and the Earth. In particular, these 
effects must be taken into account when computing trajectories of long-
range missiles. With all that, we must keep in mind that the effects of the 
Coriolis force due to the Earth rotation are noticeable only for large-scale 
motions. In particular, the Coriolis force contributes to the erosion of the 
river banks, but has nothing to do with the direction of water swirling in 
the toilet bowl. 

The Coriolis force also influences the direction of the ATMOSPHERIC 
WINDS. This was first theorized in 1856 by the American meteorologist 
WILLIAM FERREL (1817-1891) and formalized in 1857 by the Dutch me­
teorologist CHRISTOPH HEINRICH DIEDRICH BUYS BALLOT (1817-1890). 
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60° 
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Fig. 2.1.8 Atmospheric Winds 

The general wind pat tern on the Ear th is as follows (see Figure 2.1.8). 

Warm air rises vertically from the surface and is deflected by the Corio-

lis force, resulting in easterly trade winds, temperate westerlies, and polar 

easterlies. The deflection is to the right in the Northern Hemisphere and to 

the left in the Southern Hemisphere, so tha t the pat terns in the two hemi­

spheres are mirror images of each other. Three regions of relative calm 

form: the doldrums around the equator, calms of Cancer around the 30° 

parallel in the Northern Hemisphere, and calms of Capricorn around the 

30° parallel in the Southern Hemisphere. 

Let us discuss the formation of the easterly t rade winds in the Northern 

Hemisphere. The Sun heats the surface of the Ear th near the equator. 

The air near the equator also gets warm, becomes lighter, and moves up, 

creating the area of low pressure near the equator and causing the cooler 

air from the north to flow south. The flow of the cooler air from the North 

creates the area of low pressure at high altitudes, deflecting the rising warm 

air from the equator to the north. The Coriolis force deflects this flow to the 

East. At higher altitudes, the air cools down. Cooler, denser air descends 

around the 30° parallel and flows South back to the lower pressure area 

around the equator. The Coriolis force deflects this southward flow to the 

West. In the stat ionary regime, this circulation produces a steady wind 

from the North-East , the easterly t rade winds. 
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EXERCISE 2.1.14. Explain the formation of the temperate westerlies and 
the polar easterlies. 

EXERCISE 2.1.15.'4 The flight time from Los Angeles to Boston is usually 
different from the flight time from Boston to Los Angeles. Which flight 
takes longer? Which of the following factors contributes the most to this 
difference, and how: (a) The Earth's rotation under the airplane; (b) The 
Coriolis force acting on the airplane; (c) The atmospheric winds? Hint: If 
in doubt, check the schedules of direct flights between the two cities. 

The complete mathematical model of atmospheric physics is vastly 
more complicated and is outside the scope of this book; possible refer­
ence on the subject is the book An Introduction to Dynamic Meteorology 
by J. R. Holton, 2004, and some partial differential equations appearing in 
the modelling of flows of gases and liquids are discussed below in Section 
6.3.5. 

In 1963, while studying the differential equations of fluid convection, the 
American mathematician and meteorologist EDWARD NORTON LORENZ (b. 
1917) discovered a chaotic behavior of the solution and a strange attrac-
tor. These Lorentz differential equations are a prime example of a chaotic 
flow. They also illustrate the intrinsic difficulty of accurate weather predic­
tion. His book The Nature And Theory of The General Circulation of The 
Atmosphere 1967, is another standard reference in atmospheric physics. 

2.1.4 General Accelerating Frames 

The analysis in the previous section essentially relied on the equation 
(2.1.18) on page 51, which was derived for uniformly rotating frames. In 
what follows, we will use linear algebra to show that, with a proper def­
inition of the vector u>, relation (2.1.18) continues to hold for arbitrary 
rotating frames. 

Consider two cartesian coordinate systems: (i, j , k) with origin O, and 
(£i, j l 7 KI ) with origin 0\. We assume that O = 0\\ see Figure 2.1.9. 

Consider a point P in R3. This point has coordinates (x, y, z) in 
(z, j , k) and {x\, j/i, z{) in (fj, j l t ki). Then 

x i + y j + z k = xi ii + yi j 1 + zi ki. (2.1.33) 

We now take the dot product of both sides of (2.1.33) with i to get 

x = xi(ii -i) + yi(j1 •i) + zi(ki -i). (2.1.34) 
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Fig. 2.1.9 3-D Rotation of Frames 

Similarly, we take the dot product of both sides of (2.1.33) with j : 

V = xi(ii • 3) + 2/i(Ji • 3) + *i(«i • 3) (2.1.35) 

and with k: 

z = xi{i\ • k) + j / i & • k) + zi(ki • k). (2.1.36) 

The three equations (2.1.34)-(2.1.36) can be written as a single matrix -
vector equation, 

*i • 3 3\-3 K-i-3 
Kii • k 3i ' £ ki • k 

(2.1.37) 

Consider the matrix 

*i ' l 3i ' % K i • * 

U = I 5i • 3 3i3 Ki • 3 
Ji • k j1-k K I - K , 

(2.1.38) 

EXERCISE 2.1.16. ( a ) c Verify that the matrix U is orthogonal, that 
is UUT = UTU = I. Hint: 1 = h • fc = (f • d ) 2 + (i • t i )2 + (A • i"i)2, 
0 = *i • Ji = (*i • *)(ii • «) + (*i • i)(ji • i) + (ii • K)C?I • «)• W A Veri/j/ i/iai 

£/ie determinant of the matrix U is equal to 1. (c)A Verify that the matrix 
U is a representation, in the basis (i\, J1 ; k\), of an orthogonal transfor­
mation (see Exercise 8.1.4, page 453, in Appendix). This transformation 
rotates the frame 0\ so that {i\, j \ , «i) moves into (i, 3, k). (d)A Verify 
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that the matrix UT is a representation, in the basis (z, j , k), of an or­
thogonal transformation that rotates the space so that (z, j , k) moves into 

Now assume that the picture on Figure 2.1.9 is changing in time as 
follows: 

• Frame O and its coordinate system (i, j , k) are fixed (not moving). 
• Oi(t) = 0 for a l i i . 
• The coordinate system (?i, j x , k{) in frame 0\ is moving (rotating) 

relative to (i, j , k). 
• The point P is fixed in frame 0\ relative to (ii, j l y k\). 

Thus, xi,yi,z\ are constants and P is rotating in the (?, j , k) frame. Then 
(2.1.33) becomes 

x(t) i + y(t) j + z(t) k = xi h(t) +yi3i(t) +ziki(t), 

Define the matrix U = U(t) according to (2.1.38), and assume that the 
entries of the matrix U are differentiable functions of time; it is a reasonable 
assumption if the rotation is without jerking. Since U(t)UT(t) = I for all t, 
it follows that d/dt(UUT) = 0, the zero matrix. The product rule applies 
to matrix differentiation and therefore 

i/uT + ui/T = iiuT + (iiuT)T = o, 

which means that fi(£) = U(t)UT(t) is antisymmetric, that is, has the form 

/ 0 -w3(i) W2(t) \ 

fi(t) = w3(t) 0 -wi( t ) 

We use the entries of the matrix Q(t) to define mathematically the 
ins tantaneous r o t a t i o n vector in the fixed frame O: 

u(t) = u>i (t) i + W2(t)j+ w3 (t) k. (2.1.39) 

EXERCISE 2.1.17? (a) Verify that, for every vector R = Rii + R^j+R3k 
and each t, 

Q.{t) R = w(t) x R. (2.1.40) 
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Hint: direct computation, (h) Consider the vector OP = r*o(i) = x(t) i + 
y(t)j + z(t) k rotating in the frame O. Verify that, with the above definition 
of u, we have 

r0(t) = w(t) x r 0 ( i ) . (2.1.41) 

Hint: write relation (2.1.37) as ro(t) = U{t)f\, where f\ = x\ i + j/i j + z\ k. 
Then rx = UT{t)r0(t) and r0{t) = U{t)ri. 

Note that (2.1.41) agrees with (2.1.18) on page 51 when u(t) is constant 
and justifies the above definition of u>(t) as a rotation vector. 

Denote by ro(t) the position vector of a point P in the frame O, and 
by T*I(£), the position of the same point in the frame 0\. Since the frames 
have the same origin, we have ro(t) = ri(t) for all t. On the other hand, 
because of the relative rotation of the frames, the values of ro(t) and r i ( i ) 
are different. As we did earlier on page 52, denote by Do and D\ the 
derivatives with respect to time in the frames O and 0\, respectively. If the 
point P is fixed in the rotating frame 0\ and 0\P = r\ = x\ £1+2/1 Ji+zi ki 
is the position vector of P in 0\, then Dir0(t) = r\(t) = 0, and (2.1.41) 
implies Doro(t) = ro(t) — UJ x ro(t). 

Similar to the derivation of (2.1.21), we can show that if the point P 
moves relative to the frame 0\, then 

r0(
t) = ri(t)+u>xr0(t). (2.1.42) 

Therefore, for every vector R — R(t), expressed as functions in frames O 
and Oi, both denoted by R 

D0R(t) = DiR(t) + u(t) x R(t). (2.1.43) 

EXERCISE 2.1.18? Verify (2.1.43). Hint: write R(t) = x(t)i1(t)+y(t)j1(t) + 
z(t) ki(t) and differentiate this equality using the product rule. Since the vectors 
*i> J i ! ki are fixed in the frame 0\, you can use equality (2.1.41) to compute 

the time derivatives of these vectors. Also, by definition, D\R(t) = x(t)i\(t) + 

» ( * ) 5 i ( t ) + * ( * ) « i (*)• 

Remark 2.1 Let us stress that the vector ro(t) = x(t)i+y(t)j+z(t) k is 
the same as the vector ri(t) = zi(£) ?i(£) +2/1 (£)&(*) +21 (£) ki(t): both are 
equal to OP even if the point P moves relative to the frame 0\. As a result, 
ro(i) =/= U(t)ri(t). There is no contradiction with (2.1.37), because the 
components of the vectors TQ, r\ are defined in different frames and cannot 
be related by a matrix-vector product. What does follow from (2.1.37) is 
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the equality ro(t) = U{t)r\{t), where f\{t) = x\(t)i + y\{t) j + z\{t) k. 
Also keep in mind that, despite the equality of the vectors ro(t) = ri(t), the 
curve C defined by ro in the frame O is different from the curve C\ defined 
by 7*1 in the frame 0\. For example, if P is fixed in 0\, then C\ is jus a 
single point. 

EXERCISE 2.1.19r Consider the special case of a uniform rotation of frame 
0\ relative to frame O so that the origins of the frames coincide, k = ki, 
and the rotation vector is u> = W3K. Calculate U(t) and U{t). Show that 
the matrix fl = U(t)UT(t) has the form 

/O - w 3 0 \ 
n = w3 0 0 . 

\ o 0 0 / 

For the point P fixed in the rotating frame and having the position vector 
in the fixed frame ro(t) = x(t) i + y(t) j + z(t) k\ show that 

r0{t) = Cl,ro{t) = -u3y{t)i + u>3x(t)3 = w x r0(t). 

As a result, you recover relation (2.1.18) we derived geometrically on page 
51. 

To continue our analysis of rotation, assume that the vector function 
w = u){t) is differentiable in t. Then we can set R = ro = A)f*o in (2.1.43) 
and use (2.1.42) to derive the relation between the accelerations of the point 
in the two frames: 

ro(*) = r i ( t ) + 2w( t )x f i ( t ) + w(t)x ( u ( t ) x r 0 ( t ) ) + w ( t ) x r 0 ( t ) ; (2.1.44) 

as before, ro and r i are the position vectors of the point in the frames O 
and 0\, respectively. 

EXERCISE 2.1.20? (a) Verify (2.1.44). Hint: r0(t) = D0r0(t) = D0(fi +u> x 
r0) = D\r\ + u x r i + u x r o + u x ( f i + u x ro). Note that both u) and ro are 
defined in the same frame O, so the product rule (1.3.6), page 26, applies, (b) 
Verify that (2.1.44) can &e written as 

Mt)=ri(t) + 2u(t)xri(t)+w(t)x(u(t)xri(t))+w(t)xr1(t). (2.1.45) 

Finally, assume that the point 0\ is moving relative to O so that the 
function roi(t) = 00\ is twice continuously differentiable. Then we have 
r(t) = roi(t) + ri(t). Consider the parallel translation of the frame O 
with the origin O' at 0\, and define the rotation vector u to describe the 
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rotation of the frame 0\ relative to this translated frame O'. We can now 
combine relation (2.1.44) for rotation with relation (2.1.12) on page 47 for 
parallel translation to get 

ro(*) = ro i (* )+ r i ( t ) 

+ 2u( t ) x fi( t) +w(f) x (u(t) x r i ( t ) ) + u ( J ) x n ( t ) . 

EXERCISE 2.1.21? Verify (2.146). Hint: Apply (2.1.45) ton, replacing frame 
O with O'. 

Suppose that the frame O is inertial, and a force F is acting on the 
point mass m. Then, by Newton's Second Law, mro{t) = F; to simplify 
the notations we will no longer write the time dependence explicitly. By 
(2.1.46), 

mf\ = F - mr-Qi - 2mw x r\ - mu x (u x n ) -mCo x T\. (2.1.47) 

As before in (2.1.13), page 47, and in (2.1.24), page 53, we have several 
corrections to Newton's Second Law in the non-inertial frame 0\. These 
corrections are the t r a n s l a t i o n a l a cce l e r a t i on force Fta = —in^oi, 
the Cor io l i s force Fcor = —2mu> x r i , the cen t r i fuga l force Fc = 
—rawx (wxr i ) , and the angular a cce l e r a t i on f o r c e F a a = - m w x r i . 

2.2 Systems of Point Masses 

The motion of a system of point masses can be decomposed into the motion 
of one point, the center of mass, and the rotational motion of the system 
around the center of mass. In what follows, we study this decomposition, 
first for a finite collection of point masses, and then for certain infinite 
collections, namely, rigid bodies. 

2.2.1 Non-Rigid Systems of Points 
n 

Let 5 be a system of n point masses, m i , . . . , mn, and M — J^ rrij, the total 

mass of S. We assume that the system is non-rigid, that is, the distances 
between the points can change. Denote by rj the position vector of rrij in 
some frame 0. By definition, the center of mass (CM) of S is the point 
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with position vector 

1 n 

We will see that some information about the motion of S can be obtained 
by considering a single point mass M with position vector TCM-

EXERCISE 2.2.1. c Verify that a change of the reference point O does 
not change either the location in space of the center of mass or formula 
(2.2.1) for determining the location: if O' is any other frame and fj is 
the position vector of rtij in O', then the position vector of CM in O' is 

n > ^ 

rcM = (1/-W) 5Z m j Tj. Hint: fj = Vj + O'O and so TCM = TCM + O'O, 

which is the same point in space. 

EXERCISE 2.2.2. (a)B Show that the center of mass for three equal 
masses not on the same line is at the intersection of the medians of the 
corresponding triangle. (b)A Four equal masses are at the vertices of a 
regular tetrahedron. Locate the center of mass. 

The velocity and acceleration of the center of mass are TCM and fcM, 
respectively. Differentiating (2.2.1) with respect to t, we obtain the relations 

1 n 

rcM = jjYlmii'i> (2-2-2) 
J=I 

1 " 
fCM = jf^Zmjfj. (2.2.3) 

3 = 1 

To study the motion of the center of mass, suppose tha t the reference 

frame O is inertial and denote by Fj, 1 < j < n, the force acting on the 

point mass rrij. Then Fj = rrij fj, and, multiplying (2.2.3) by M, we get 

the relation 

n m 

MfCM = Yl m3 *3 =J2Fi = F (2-2-4) 
3=1 3=1 

Equality (2.2.4) suggests tha t the total force F can be assumed to act on 

a point mass M at the position TCM- As a next step, we will s tudy the 

s tructure of the force F. 
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Typically, each Fj is a sum of an external force F\ ' from outside of S 

and an internal system force F], exerted on rrij by the other n — 1 point 

masses. Thus, Fj = Ylk^tj Fjk> where F V is the force exerted by rrik 
on rrij. Hence, 

F = itFJ = Y, F<JE) + £ FT = p{B)+F{1) • 
j=l j=l j=l 

By Newton's Third Law, F$ = -F$. It follows that F ( 7 ) = £ " = 1 Ff] = 

0 and therefore, F = ^ ) " = 1 F
(E) = F{E). By (2.2.4), the motion of the 

center of mass is then determined by 

MrCM = F{E). (2.2.5) 

The (linear) momentum PQM °f the center of mass is, by definition, 

PCM = MVCM-

With this definition, equation (2.2.5) becomes pCM = F^E\ and if the net 
external force F^ ' is zero, then PCM ls constant. By (2.2.2), 

n n 

PCM = J2 m^ = 12PJ> (2-2-6) 

where Pj = rrij Tj is the momentum of rrij. Thus, if F^E' = 0, then the 
total linear momentum ps — Yll=i Pj °f ^ e system is conserved. 

Next, we consider the rotational motion of the system. By definition 
(see (2.1.4) on page 40), the angular momentum LQ-J of the point mass 
rrij about the reference point O is given by Loj = Tj X rrij Tj = Vj x Pj. 
Accordingly, we define the angular momentum Lo of the system S about 
O as the sum of the Lo,j'-

n n n 

j = i j=i j=\ 

For the purpose of the definition, it is not necessary to assume that the 
frame O is inertial. Note that, unlike the relation (2.2.6) for the linear 
momentum, in general LQ ^ rCM x Mr CM-
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From (2.2.7) it follows that 

AT n n 

3 = 1 j=l 3 = 1 

since rj x rj = 0. Now, we again assume that the frame O is inertial. Then 
F j = rrij Tj and dLo/dt = Y^j=i rj x Fj = !Cj=i Tj, where Tj = Tj X FJ 
is the torque about O of the force Fj acting on rrij. We define the total 
torque To = 2 j = i Tj and conclude that 

^ = r0. (2.2.8) 

Equation (2.2.8) is an extension of (2.1.6), page 41, to finite systems of 
point masses. If To = 0, then Lo is constant, that is, angular momentum 
is conserved. 

In general, unlike the equation for the linear momentum (2.2.5), the 
torque To in (2.2.8) includes both the internal and external forces. If 
the internal forces are central, then only external forces appear in (2.2.8). 
Indeed, let us compute the total torque in the case of CENTRAL INTERNAL 

FORCES. The internal force FJ J ) acting on particle j is FJ7 ) = f^ F^. By 
fc=i 
k?j 

Newton's Third Law, we have F$ = -F$. Then 

, j- n n n n 

-^ = J2rjX F> = £ - , x Ff> + J > x X>g> 
j = i j = i j'=i k=i 

k?j 
n n . . 

The terms in the product Yl rj x 2 -̂ k c a n ^ e arranged as a sum of 
J ' = I fc=i 

pairs r j x FJj/ + r^ x FJy for each (j, k) with j ̂  /c. Also, TJ X FJfc' + 

rk x FJL- = (r^ — rk) x Fjk- The vector rk — T"j is on the line joining rrij 

and rrik- If the forces F-k are central, as in the cases of gravitational and 

electrostatic forces, then the vector F L is parallel to the vector (rj —rk), 

and (rj — rk) x F k ' = 0. In other words, the internal forces do not 

contribute to the torque, and (2.2.8) becomes 

d ^ = ±rjxFf=±T^=T^, (2.2.9) 
3 = 1 .7 = 1 
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where T J E ) = rj x Ff] is the external torque of F J £ ) and T{
0

E) is the 

total torque on the system S by the external forces. 

Next, we look at the A N G U L A R M O M E N T U M O F A S Y S T E M RELATIVE 

TO THE CENTER OP MASS. Again, let O be an arbi t rary frame of reference, 

let r j (t) be the position of mass rrij, 1 < j < n, and let TCM (*) D e the 

position of the center of mass. Define by Xj the position of rrij relative to 

the center of mass: 

tj = ^ - rCM. (2.2.10) 

Then r-j = feu + ij and, according to (2.2.7), 

n n 

3 = 1 3 = 1 
n n n 

= ^2 rrij rCM x rcM + ̂  rrij Xj x rCM + ̂  rrij TCM X ij (2.2.11) 
3 = 1 3 = 1 3 = 1 

n 
+ ^ m j r j xij. 

3 = 1 

E X E R C I S E 2.2.3.c (a) Verify that 

n 

Y^mjXj = 0, (2.2.12) 
j=i 

where Xj is the position vector of the point mass rrij relative to the center 
n n n n 

of mass. Hint: ]>2 rrij tj = ^2 rrijrj — ^2 rrij rcM = ^2 mi ri ~ Mr CM — 0. 
3 = 1 3=1 3 = 1 3=1 

(b) Use (2.2.11) and (2.2.12) to conclude that 

n 

L0 = M rCM x rc'M + ̂  rrij Xj x ij. (2.2.13) 

3=1 

If we select the origin O of the frame at the center of mass of the sys­

tem, then TQM = 0, and we get the expression for the a n g u l a r momentum 

around t h e c e n t e r of mass: 

n 

LCM = J^2mjXj xij, (2.2.14) 

3 = 1 
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where Vj(t) = rj(t) - rcM(t). Hence, (2.2.13) becomes 

L0 = M rCM x rCM + LCM, (2.2.15) 

that is, the angular momentum of the system relative to a point O is equal to 
the angular momentum of the center of mass relative to that point plus the 
angular momentum of the system relative to the center of mass. Once again, 
we see that the center of mass plays a very special role in the description 
of the motion of a system of points. 

We emphasize that LQ ^ Mr CM X rcM as long as LCM ^ 0. Note 
also that the vector functions Xj (t) and ij (t) depend on the choice of the 
reference frame. 

Let us now compute the time derivative of LcM{t) using the differen­
tiation rules of vector calculus (1.3.3), (1.3.4), (1.3.6) (see page 26). Since 
ij x ij = 0, we have 

j n n n 

—LCM = y~} r n i xi x *•»' "*" 5 Z m J *•» x ^' = 5 Z m J xi x XJ' (2-2.16) 
3 = 1 j = l j = l 

To express dLcM/dt in terms of the forces Fj acting on the rrij, we would 
like to use Newton's Second Law (2.1.1), and then we need the frame to be 
inertial. The frame at the center of mass is usually not inertial, because 
the center of mass can have a non-zero acceleration relative to an inertial 
frame. Accordingly, we choose a convenient inertial frame O and apply 
(2.2.4), page 67, in that frame: 

ij = jr-j - TCM = Fj/rrij - F/M, 

rrij Xj x ij = Xj x Fj - (rrij/M) Xj x F. 

By (2.2.16) above, 

dLcM 
dt 

and then (2.2.12) implies 

n 1 / " \ 

j= i \j=i j 

dLcM 
= Y,XjXFj. (2.2.17) 

dt 

If the internal forces i^L are central, then, by (2.2.9), these forces do not 
contribute to the total torque. Since Xj —Xk = Tj — TCM — (>*fc — I"CM) = 
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Tj — rfe, we therefore find 

^ f = t*J x Ff> = £ T & , = T & , (2.2.18) 

where TCM, is the external torque of Fj ' about the center of mass and 

TQM ^S t n e total torque by the external forces. Using (2.2.16) above, we 
find 

^ = ±mjvj,ij=Tc
S

M. (2.2.19) 

Equations (2.2.5) and (2.2.19) provide a complete description of the motion 
of the system of point masses in an inertial frame. 

As an EXAMPLE illustrating (2.2.5) and (2.2.19), let us consider BI­
NARY STARS. A binary, or double, star is a system of two relatively close 
stars bound to each other by mutual gravitational attraction. Mathemati­
cally, a binary star is a system of n = 2 masses mi and mi that are close 
enough for the mutual gravitational attraction to be much stronger than 
the gravitational attraction from the other stars. In other words, we have 
F$ = -F^ and F[B) = F(

2
E) = 0. Using the equation for the linear 

momentum (2.2.5), page 68, we conclude that rcM = 0 and TCM is con­
stant relative to every inertial frame O. We can therefore choose an inertial 
frame with origin at the center of mass of the two stars. Applying (2.2.19) 
in this frame, we find dLcAi/dt — 0, and by (2.2.16), 

mi t i x t i + m.212 x x-2 = 0. (2.2.20) 

EXERCISE 2.2.4.B Assume that mi = m^. Show that the two stars move 
in a circular orbit around their center of mass. Hint: you can complete the 
following argument. By (2.2.1), rcM = (1/2)(T*I -\-T2). SO CM is the midpoint 
between m\ and m.2. Hence, t i = —12, i i = —12, t i = —12- By (2.2.20) above, 
2ri x Vi = 0 . This implies that ti and vi are parallel (assuming ti ^= 0). Since 
dLcM/dt = 0, LCM is constant. By (2.2.14) on page 70, 2m\X\ x ti is constant 
as well. Together with X\ x ti = 0, this is consistent with equations (1.3.27), 
(1.3.28), and (1.3.29), page 36, for uniform circular motion. 

Binary stars provide one of the primary settings in which astronomers 
can directly measure the mass. It is estimated that about half of the fifty 
stars nearest to the Sun are actually binary stars. The term "binary star" 
was suggested in 1802 by the British astronomer Sir WILLIAM HERSCHEL 
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(1738-1822), who also discovered the planet Uranus (1781) and infra-red 
radiation (around 1800). 

2.2.2 Rigid Systems of Points 

A system 5 of point masses rrij, 1 < j < n, is called r i g i d if the distance 
between every two points rrii, rrij never changes. Let O be a reference frame 
and let Vj{t) be the position in that frame of rrij at time t. The rigidity 
condition can be stated as 

\\rj{t)-ri{t)\\=dii foralU, i,j = l,...,n, (2.2.21) 

where the dij are constants. 

EXERCISE 2.2.5? Verify that condition (2.2.21) is independent of the choice 
of the frame. 

EXERCISE 2.2.6.° Let S be a rigid system in motion. Prove that the norm 
\\rj — rCM|| and the dot product Tj • TCM remain constant over time for all 
j = 1 , . . . , n, that is, the center of mass of a rigid system is fixed relative to 
all rrij. Hence, the augmented system mi,... ,mn, M, with M located at 
the center of mass, is also a rigid system. 

We will now derive the equations of motion for a rigid system. If we con­
sider a motion as a linear transformation of space, then condition (2.2.21) 
implies that the motion of a rigid system is an isometry. The physical real­
ity also suggests that this motion is orientation-preserving, that is, if three 
vectors in a rigid system form a right-handed triad at the beginning of the 
motion, they will be a right-handed triad throughout the motion. 

EXERCISE 2.2.7. (a)B Show that an orientation-preserving orthogonal 
transformation is necessarily a rotation. (b)c Using the result of part (a) 
and the result of Problem 1.9 on page 412 conclude that the only possible 
motions of a rigid system are shifts (parallel translations) and rotations. 

Let O be a frame with a Cartesian coordinate system (z, j , k). Let S 
be a rigid system moving relative to O. Denote by rcM(t) the position of 
the center of mass of S in the frame O. We start by introducing two frames 
connected with the system. Let OCM be the parallel translation of the 
frame O to the center of mass. Thus, OCM moves with the center of mass 
of the system S but does not rotate relative to O. Let 0\ be the frame with 
00\ — rcM{t) and with the cartesian basis (?i, J j , k\) rotating with the 
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system. Define the corresponding rotation vector u> according to (2.1.39) 
on page 63. Let us apply equation (2.1.46), page 66, to the motions of the 
point mass rrij relative to frames O and 0\. Denote by rj the position 
vector of rrij in the frame O (draw a picture!) Then Xj = rj — TCM is 
the position vector of rrij in OCM • Because of the rigidity condition, the 
position vector rij of rrij in the frame Oi does not change in time, and so 
f\j = 0 and rij = 0. By (2.1.42) on page 64, rj = rcM + w x Xj, and 
then, by (2.1.46), 'fj = TTCM + u x (u> XXJ) + U; x Xj. Since the frame OCM 
is not rotating relative to O, we have x = f j — rcM, and 

Xj=uxxj, (2.2.22) 

Xj = u> x (u> x Xj) + u> x Xj. (2.2.23) 

Next, we use identity (1.2.27) on page 22 for the cross product: 

w x (u> x Xj) = (w • Xj) OJ - (a; • u>) Xj = (u • Xj) LJ - J1 Xj, (2.2.24) 

where u) = ||u>||. To compute the rate of change of the angular momentum, 
we will need the cross product Xj x Xj. Applying (1.2.27) one more time, 

Xj X(UXXJ) = \\xj\\2u-{xj-uj)xj. (2.2.25) 

Putting everything together, we get 

Xj x ij = (u • Xj) XjXu> + \\XJf cj - (XJ • u) Xj. (2.2.26) 

After summation over all j , the right-hand side of the last equality does 
not look very promising, and to proceed we need some new ideas. Let 
us look at (2.2.26) in the most simple yet non-trivial situation, when the 
rotation axis is fixed in space, and all the point masses rrij are in the plane 
perpendicular to that axis. Then w • t j = 0 for all j , and <ii = Co Q, where 
Q is the unit vector in the direction of u>; note that since the rotation axis 
is fixed, the vectors w and w are parallel. Accordingly, equality (2.2.24) 
becomes U}X(LJ xxj) = —co2Xj, and since d(toCj)/dt = u u), equality (2.2.25) 
becomes Xj X(UJXXJ) = ||tj ||2wQ. Summing over all j in (2.2.26) and taking 
into account these simplifications, we find from (2.2.16) on page 71 

U1U), 
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and it is therefore natural to introduce the quantity ICM = 2 m j l l*j | | 2! 

which is called the moment of inertia of S around the line that passes 
through the center of mass and is parallel to Q. Then 

dLcM T . ~ ,„ „ „_* 

dt = ICMUU. (2.2.27) 

Our main goal is to extend equality (2.2.27) to a more general situation; 
the moment of inertia thus becomes the main object to investigate. To 
carry out this investigation, we backtrack a bit and look closely at the 
angular momentum of the rigid system around the center of mass LCM = 
Z3"=i mjVj x ij. By (2.2.22), we have Xj x ij = Xj x (w x Xj). Similar to 
(2.2.25) we find Xj x (w x Xj) = | | t j | | 2 w — (XJ • U>)XJ and 

VCM = \ J2m^x^2 u -J2mi(xi ' w)rJ- (2.2.28) 
^ ' = 1 / 3 = 1 

As written, equality (2.2.28) does not depend on the basis in the frame 
OCM- To calculate LCM, we now choose a cartesian coordinate system 
(i, j , k) in the frame OCM- Let Xj(t) = Xj(t)i + Vj(t)j+ Zj(t)k and 
w(t) = wx(t) i + ojy(t)j + LJz(t) k. From (2.2.28) above, 

LCM = ( J2mi(x2i + $ + **) I w - I ̂ 2mixi vi I w* 
* V j = 1 I (2.2.29) 

u= i / \j=i 
rrijZjXj wz, 

where we omitted the time dependence notation to simplify the formula. 
Since LCM = LCMX * + LCMV 3 + LCMZ «•, to compute the ^-component 

LCMX of LCM, we replace the vector Xj in (2.2.29) with Xj, and the vector 
u>, with wx: 

n n n 

LCMX =^x^2 rrij [y] + zf) - uy ^ rrijXjyj - wz ^ rrijXjZj; 
3 = 1 3 = 1 3 = 1 

similar representations hold for LcMy and LCMZ-



76 Systems of Point Masses 

It is therefore natural to introduce the following notations: 

n n n 

j=i j=\ j=\ 
n n 

•*xy = -*yx = / j ^'j'^jUji ^xz == *zx = / j TTljXjZj, 

•iyz — *zy — / J
lmjVizj-

(2.2.30) 

With these notations, LCMx = uxIxx - ujyIxy - wzIxz. 

EXERCISE 2.2.8.C Verify that 

LcMy — —WxIyx + COylyy — U!zIyz, LQMZ — ~^XIZX — UJyIzy + WZJZZ. 

EXERCISE 2.2.9.C ' Assume that all the point masses are in the (i, j) plane. 
Show that Ixz = Iyz = 0 and Ixx + Iyy = Izz. 

We can easily rewrite (2.2.28) in the matrix-vector form: 

CCM(t) = IcM(t)Ct(t), (2.2.31) 

where CcM(t) is the column vector (LCMx{t), LCMv(t), LCMz{t))T, Cl(t) 
is the column vector {wx{t), u)y(t), ivz(t))

T, and 

(2.2.32) 

The matrix ICM is called the moment of i n e r t i a matrix, or t ensor of 
i n e r t i a , of the system 5 around the center of mass in the basis (i, j , K). 
The Latin word tensor means "the one that stretches," and, in mathematics, 
refers to abstract objects that change in a certain way from one coordinate 
system to another. All matrices are particular cases of tensors. For a 
summary of tensors, see page 457 in Appendix. 

As much as we would like it, equality (2.2.31) is not the end of our 
investigation, and there two main reasons for that: 

(1) It is not at all clear how to compute the entries of the matrix ICM-
(2) Because the system S is rotating relative to the frame O, the entries of 

the matrix ICM depend on time. 
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Remembering that our goal is an equation of the type (2.2.27), we have to 
continue the investigation of the moment of inertia. 

Let us forget for a moment that we are dealing with a rotating system, 
and instead concentrate on the matrix (2.2.32). We know from linear al­
gebra that every change of the coordinate system changes the look of the 
matrix; see Exercise 8.1.4, page 453 for a brief summary. For many pur­
poses, including ours, the matrix looks the best when diagonal, that is, 
has zeros everywhere except on the main diagonal. While not all matrices 
can have this look, every symmetric matrix is diagonal in the basis of its 
normalized eigenvectors; see Exercise 8.1.5 on page 454. 

By (2.2.30) and (2.2.32), the matrix ICM is symmetric, and therefore 
there exists a cartesian coordinate system (?*, j * , k*) in which ICM has at 
most three non-zero entries 1*^, I22 > -̂ 33 > and all other entries zero. In other 
words, there exists an orthogonal matrix U» so that the matrix ICM = 
U*ICMUJ is diagonal. The matrix [/* is the representation in the basis 
(2, j , k) of a linear transformation (rotation) that moves the vectors i, j , k 
to ?*, j * , k*, respectively. The vectors i*, j * , k* are called the p r i n c i p a l 
axes of the system S. We will refer to the frame with the origin at the center 
of mass and the basis vectors i*, f, k* as the p r i n c i p a l axes frame. 
Both the principal axes and the numbers 7^ , J£2i ^33 depend only on the 
configuration of the rigid system S, that is, the positions of the point masses 
rrij relative to the center of mass. A matrix can have only one diagonal look, 
but in more than one basis: for example, the identity matrix looks the same 
in every basis. Accordingly, the principal axes might not be unique, but 
the numbers 1^ , I%2, I^3 are uniquely determined by the configuration of the 
system, and, in particular, do not depend on time. We know from linear 
algebra that the numbers 1^, I^\,I33 are the eigenvalues of the matrix ICM > 
and the matrix U* consists of the corresponding eigenvectors. 

EXERCISE 2.2.10.A Given an example of a symmetric 3 x 3 matrix whose 
entries depend on time, but whose eigenvalues do not. Can you think of a 
general method for constructing such a matrix? 

Formulas (2.2.30) for the entries of the matrix of inertia are true in 
every basis, and therefore can be used to compute the numbers 1^, I22, 7|3. 
Since these numbers do not depend on time, the coordinates x*-, y*j, z* of 
rrij in the principal axes frame should not depend on time either. In other 
words, the principal axes frame is not rotating relative to the system S, but 
is fixed in S and rotates together with S. 
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EXERCISE 2.2.11. Consider four identical point masses m at the vertices 
of a square with side a. Denote by O the center of the square. Let (i, j , k) 
be a cartesian system, at O, with the vectors i and j along the diagonals 
of the square (draw a picture!). Verify the following statements: (a) The 
center of mass of the system is at O. (b) The vectors i, j , k define the 
three principal axis of the system, (c) The diagonal elements of the matric 
IQM in {%, j , k) are ma2, ma2, 2ma2. (d) If the system (i, j , k) is rotated 
by 7r/4 around k (does not matter clock- or counterclockwise), the result is 
again a principal axis frame for the system, and the matrix IQM does not 
change. 

EXERCISE 2.2.12/1 When are some of the diagonal entries of IQM equal to 
zero? Hint: not very often. 

We now summarize our excursion into linear algebra: for every rigid 
system S of point masses, there exists a special frame, called the p r i n c i p a l 
axes frame, in which the matrix of inertia IQM of the system is diagonal 
and does not depend on time. This special frame is centered at the center 
of mass and is fixed (not rotating) relative to the system S. 

Let us go back to the analysis of the motion of the system 5. With 

CM = LCMXI + LCMxz +LCMxi, U = OJXZ +u>yj +UJZK , 

and after multiplying by U* on the left and by Uj on the right, equation 
(2.2.31) becomes 

£*CM = ^CM^*I (2.2.33) 

where CCM = U^CCMUJ is the column vector {L*CMx, L*CMx, L*CMz)
T 

and ft* = C/*fJ[/J is the column-vector (w*, u>*, w*)T. 
By construction, the principal axes frame rotates relative to the frame 

O, and the corresponding rotation vector is w. Denoting the time derivative 
in the frame O by Do, and in the the principal axes frame, by £>*, and using 
the relation (2.1.43) on page 64, we find 

D0LCM(t) = D. LCM{t) + u(t) x LCM(t). (2.2.34) 

To proceed, let us assume that the underlying frame O is inertial. Then 
relation (2.2.17) applies, and we find D0LcM(t) = TcM(t): the change of 
LCM (t) in the inertial frame is equal to the torque of all forces about the 
center of mass. In the principal axes frame, we have TcM{t) = TQMx{t) i* + 
TcMy{t) j * +T(XMz(i) k*. Also, since the basis vectors i*, f, k* are fixed in 
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the principal axes frame, we have D*LcM{t) = L*CMx{t) i* 4- L*CMy(t) j * + 
L*CMz(t)k*. On the other hand, since the matrix i £ M does not depend 
on time, we use (2.2.33) to conclude that the column vector t*CM of the 
components of D*LcM{t) satisfies t*CM = IQM^ • Finally, we compute 
the cross product in (2.2.34) by writing the vectors in the principal axes 
frame and using the relation (2.2.33) for the components C*CM{t) of LCM 
in that frame. The result is the three Euler equations describing the 
rotation of the rigid system about the center of mass: 

< i;yul+u*xul{rxx-rzz) = T*CMy, (2.2.35) 

These equations were first published in 1765 by a Swiss mathematician 
LEONHARD EULER (1707-1783). Leonhard (or Leonard) Euler was the 
most prolific mathematician ever: extensive publication of his works con­
tinued for 50 years after his death and filled 80+ volumes; he also had 
13 children. He introduced many modern mathematical notations, such 
as e for the base of natural logs (1727), f(x) for a function (1734), E for 
summation (1755), and i for the square root of —1 (1777). 

EXERCISE 2.2.13? (a) Verify that (2.2.34) is indeed equivalent to (2.2.35). 
(b) Write (2.2.27) in an inertial frame and verify that the result is a par­
ticular case of (2.2.35). 

With a suitable definition of the numbers I*x, I*y, I*z and the vector 
T*CM, equations (2.2.35) also describe the motion of a rigid body. We study 
rigid bodies in the following section. 

2.2.3 Rigid Bodies 

Any collection of points, finite or infinite, can be a rigid system: if two 
points in the collection have trajectories rl(t), r2(t) in some frame, then 
the rigidity condition ||T*i(i) — T*2(*)|| = llri(0) — >*2(0)|| must hold for every 
two points in the collection. 

Intuitively, a r i g i d body is a rigid system consisting of uncountably 
many points, each with infinitesimally small mass. Mathematically, a rigid 
body is described in a frame O by a mass dens i ty funct ion p = p{r), so 
that the volume A y of the body near the point with the position vector ro 
has, approximately, the mass Am = p(r) AV. Even more precisely, if the 
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body occupies the region H in R3, then the mass M of the body is given 
by the triple (or volume) integral 

Af = III p{r)dV. 

Without going into the details, let us note that rigid bodies can also be 
two-dimensional, for example, a (hard) spherical shell, or one-dimensional, 
for example, a piece of hard-to-bend wire. In these cases, we use surface 
and line integrals rather then volume integrals. In what follows, we focus 
on solid three-dimensional objects. 

All the formulas for the motion of a rigid body can be derived from the 
corresponding formulas for a finite number of points by replacing rrij with 
the mass density function, and summation with integration. For example, 
the center of mass of a rigid body is the point with the position vector 

VCM = ^ JJJ rp(r)dV. (2.2.36) 

n 

EXERCISE 2.2.14.C Show that both the mass and the location of the center 
of mass of a rigid body are independent of the frame O. 

For a rigid body 11 moving in space relative to a frame O, we denote 
by lZ(t) the part of the space occupied by the body at time t relative to 
that frame O. If the frame O is inertial, then an equation similar to (2.2.5) 
connects the trajectory rcM = fCM(t) of the center of mass in the frame 
with the external forces per unit mass F1-^ = F^E\r) acting on the points 
of the body: 

MfCM(t) = JJJF^'(r(t)) P(r(t))dV, (2.2.37) 

The angular momentum of TZ about O is, by definition, 

Lo(t) = III r(t) x r{t) P(r(t))dV. (2.2.38) 

n{t) 

Similar to (2.2.15), page 71, we have 

L0(t) = MrCM(t) x rCM(t) + [[[*(!) x *(*) P(r(t))dV, (2.2.39) 
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where v(t) = r(t) - rcM(t), and is (2.2.14) replaced by 

LCM(t) = llf*(t) x «(*) P(r(t)) dV, (2.2.40) 
TC(t) 

which is the angular momentum relative to the center of mass. 
As with finite systems of points, consider the parallel translation of 

the frame O to the center of mass of the body. The rotation of the rigid 
body relative to this translated frame is described by the rotation vector 
u>(t) = u>x{t) i + Wy(t) 3 + ojz(t) k, where (S, j , k) is the cartesian basis in 
the translated frame. By analogy with (2.2.30), we write v(t) = x(t)i + 
vit)3+ *(*)&, LCM(t) = LCMx(t)i + LCMy{t)3 + LcMz(t)k, and define 

Ixx = IIIiy2{t) + Z2{t)) P{x{t)) dV' Iyy = III{x2{t) + Z2{t))P{x{t)) dV' 
-R(t) n(t) 

= IJJ(x2(t) + y2(t))p(x(t))dV, 

K{t) 

•*-xy — -*-yx 

lyz — J-zy 

jJjx(t)y{t)p{x{t))dV, 
*xz — Izx — 

JJJx(t)z(t)p(x(t))dV, 
Tl(t) 

= JJJy{t)z{t)p{x{t))dV. 

it(t) n(t) 

W) 
(2.2.41) 

Then we have relation (2.2.31), page 76, for rigid bodies: 

CcM(t)=ICM(t)n(t), (2.2.42) 

where CcM{t) is the column vector (LcMx(t), LcMy{t), LcMz(t))T, ft is 
the column vector (wx{t), wy(t), uz(t))

T, and 

( J-xx ~~±xy *xz \ 

-Iyx Iyy —IyZ I • (2.2.43) 

•'zx ~*zy *zz / 

The matrix IQM is called the moment of i n e r t i a m a t r i x , or t e n s o r of 
i n e r t i a , of the rigid body TZ around the center of mass in the basis 
(i, j , k). As in the case of a finite rigid system of points, there exists a 
principal axes frame, in which the matrix ICM is diagonal, and the diag­
onal elements I*x,I*y,I*z are uniquely determined by mass density func-
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tion p. The principal axes frame, with center at the center of mass and 
basis vectors i*, j * , k*, is attached to the body and rotates with it. If 
u>(t) = u* i* + LJ*J* + w* k*, then the Euler equations (2.2.35) describe 
the rotation of the body about the center of mass. Equations (2.2.37) and 
(2.2.35) provide a complete description of the motion of a rigid body. 

As an example, consider the DISTRIBUTED RIGID PENDULUM. Recall 
that in the simple rigid pendulum (page 41), a point mass is attached to the 
end of a weightless rod. In the distributed rigid pendulum, a uniform rod 
of mass M and length I is suspended by one end with a pin joint (Figure 
2.2.1). 

-*-3 

Cross-section of the rod 

Fig. 2.2.1 Distributed Pendulum 

We assume that the cross-section of the rod is a square with side a. Then 
the volume of the rod is la2 and the density is constant: p(r) = M/(£a2). 

EXERCISE 2.2.15.c Verify that the center of mass CM of the rod is the 
mid-points of the axis of the rod. 

Consider the cartesian coordinates (z*, j * , k*) with the origin at the 
center of mass (Figure 2.2.1). As usual, k* = i* x j * . 

Let us compute I*z, as this is the only entry of the matrix 7£M we will 
need: 

+ y2)p(r)dV 

M 
la? 

/ a/2 a/2 1/2 e/2 a/2 a/2 \ 

dy I dz I x2dx + I dx I dz I y2dy 

\ -a /2 -a /2 -1/2 -1/2 -a/2 -a /2 

= (pa2£3 /12) + (plo^jYL) = (M/12){12 + a2). 



Rigid Bodies 83 

EXERCISE 2.2.16.C Verify that the vectors i*, j * , k* define a principal axis 
frame. Hint: I*y = I*z = I*z = 0, as seen from (2.2.41) and the symmetry of 
the rod. 

The motion of the rod is a 2-D rotation around the pin at O, and the 
vector k* is not rotating. There are no internal forces in the rod to affect 
the motion. As a result, the angular velocity vector is UJ = ui*z k* —Ok*, 

and the Euler equations (2.2.35) simplify to I*z —^ = T^MI, or 

M{P+a?).. (B) 
^ V~1CMz' (2.2.44) 

where TQM'Z is the rc*-component of the external torque around the center 
of mass. 

To simplify the analysis, we ignore air resistance. Then the external 
torque T*jM' around the center of mass is produced by two forces: the force 
of gravity W and the force Fpin exerted by the pin at O. Since the rod 
is uniform, the torque due to gravity is zero around the CM. To compute 
Fpin we now assume that the frame fixed at O is inertial and Newton's 
Second Law (2.2.5) applies. The external force on mass M at the CM is the 
sum of the total gravity force, W = Mgi, and the reaction of the pin FPin. 
Hence, Fpin = M rcM — W. Since CM moves around O in a circle of radius 
£/2 we use (1.3.27) on page 36 to obtain the components ar, ag of TCM 
in polar coordinates with origin at O: ar = {—1/2)UJ2 r, a$ = (^/2)w 6. 
The point of application of Fpin relative to CM has the position vector 
-rCM = -{i/2)r. Then 

TCM = ~rCM x Fpin + 0xW = --rx Fpin. 

Hence, 

T*C(M = 4 ? X {MV,CM -W) = ^(^Lbrx0-gvxi^ 

-IM (I . . „ , .» 
-uj + gsmv I K . 2 V2 

Substituting in (2.2.44, we get (M(£2 + a2)/12)6 = -(£M/2)({£/2)u> + 
g sin 6) or {(£2 + a2)/l2)0 + (£2w/4) + (^s in0/2) = 0, or, with w = 0, 

({At2 + o?)/l2)e = -{gl/2) sinS. (2.2.45) 
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If a « 0 and 6 is so small that sin# « #, then equation (2.2.45) becomes 

{21/3)0+ g0 = 0. (2.2.46) 

Comparing this with a similar approximation for the simple rigid pendu­
lum (2.1.10), page 42, we conclude that a thin uniform stick of length £ 
suspended at one end oscillates at about the same frequency as a simple 
rigid pendulum of length (2/3)1 

The objective of the above example was to illustrate how the Euler 
equations work. Because of the simple nature of the problem, the system 
of three equations (2.2.35) degenerates to one equation (2.2.45). In fact, an 
alternative derivation of (2.2.45) is possible by avoiding (2.2.35) altogether; 
the details are in Problem 2.4, page 417. 

Note that if the frame O is fixed on the Earth, then this frame is not 
inertial, and the Coriolis force will act on the pendulum, but a good pin 
joint can minimize the effects of this force. 

For two more examples of rigid body motion, see Problems 2.7 and 2.8 
starting on page 419. 

2.3 The Lagrange-Hamilton Method 

So far, we used the Newton-Euler method to analyze motion using forces 
and the three laws of Newton (it was L. Euler who, around 1737, gave a 
precise mathematical description of the method). An alternative method 
using energy and work was introduced in 1788 by the French mathe­
matician JOSEPH-LOUIS LAGRANGE (1736-1813) and further developed in 
1833 by the Irish mathematician Sir WILLIAM ROWAN HAMILTON (1805-
1865). This Lagrange-Hamilton method is sometimes more efficient than the 
Newton-Euler method, especially to study systems with constraints. An ex­
ample of a constraint is the rigidity condition, ensuring that the distance 
between any two points is constant. 

In what follows, we provide a brief description of the Lagrange-Hamilton 
method. The reader is assumed to be familiar with the basic tools of multi-
variable calculus, in particular, the chain rule and line integration. 
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2.3.1 Lagrange's Equations 

We first illustrate Lagrange's method for a point mass moving in the plane. 
The modern methods of multi-variable calculus reduce the derivation of the 
main result (equation (2.3.17)) to a succession of simple applications of the 
chain rule. 

Consider an inertial frame in M2 with origin O and basis vectors i, j . 
Let r = xi + yjbe the position of point mass m moving under the action 
of force F = F2 i + F2 j . By Newton's Second Law (2.1.1), 

Fi = m i , F2 = my. (2.3.1) 

The state of m at any time t is given by the four-dimensional vector 
(x,y,x,y), that is, by the position and velocity. Knowledge of the state 
at a given time allows us to determine the state at all future times by 
solving equations (2.3.1). 

Now consider a different pair ((71,(72) of coordinates in the plane, for 
example, for example, polar coordinates, so that 

x = x(q1,q2), y = y{qi,q2); q\ = qi(x, y), q2 = q2{x, y), (2.3.2) 

and all the functions are sufficiently smooth. Differentiating (2.3.2), 

dx . dx . . dy . dy . ,„ „ „, 
x = —qi + —q2, y=~-qi + ^-q2. (2.3.3) 

dqi dq2 dqi dq2 

We call qi,q2,q\,q2 the general ized coordinates , since their values de­
termine the state (x,y,x,y) by (2.3.2) and (2.3.3). Note that the partial 
derivatives dx/dqi, dy/dqi, i = 1,2, depend only on q\ and q2. We then 
differentiate (2.3.3) to find 

dx _ dx dx _ dx dy dy dy dy 
dq\ dq\' dq2 dq2 ' dq\ dqi' dq2 dq2 ' 

Next, we apply the chain rule to the function dx(qi(t),q2(t))/dqi to find 

_d_ / dx\ _ d2x dq\ d2x dq2 _ d2x . d2x . 

Jt\dTi)^Wi^ + d~q~2~bTlltt^Wiqi + ^dTiq2' } 

Prom (2.3.3), differentiating with respect to the variable q\, 

dx d2x . d2x . d (dx\ ,n „ „, 
— = -jr-jgi + T-j^q2 = - £ ; , - • 2.3.6) 
dqi dq{ dqidq2 dt \dqi J 
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(2.3.7) 

Similarly, 

d / dx \ dx d ( dy\ _ dy 
dt\dqi) dqi' dt \dqiJ dqi' 

d ( dx \ _ dx d f dy\ _ dy 

dt \dq2J dq2 dt \dq2J dq2' 

EXERCISE 2.3.1.C Verify (2.3.7). 
By definition, the kinetic energy £K of m is 

£K = j(i2 + y2). (2-3.8) 

Replacing x and y by their functions of qi,q2 as given by (2.3.3), we obtain 
the function 

£if = £/c(9i,92,91,92)- (2.3.9) 

From (2.3.8), again by differentiation and using (2.3.4), 

d£K 9£K dx Q£K dy . dx . dy 
dq\ dx dq\ dy dqi dq\ dqi 

Differentiating with respect to t and applying (2.3.7), we get 

d (d£K\ ..dx ..dy . dx . dy / 0 q 1 f ^ 
TJT \-^r- )= mx-— + my— + m i - \-my-. (2.3.10) 
dt \ dqi J dqi dq\ dqi dqi 

From (2.3.8) we also get 

9£K . dx .dy , O Q 1 l , 
—— = mx-^— +my—. (2.3.11) 
dqi dqi dqi 

Subtracting (2.3.11) from (2.3.10), we find that 

d fd£K\ d£K ..dx ...dy , „ , , „ > 
— mx- \-my-—. (2.3.12) dt \ dqi J dqi dqi dqi 

EXERCISE 2.3.2.c Verify that 

d (d£K\ d£K ..dx ..dy , „ , . „ , 
-77 [-XT- - - 5 — =mx— +my—. (2.3.13) 
dt \ dq2 ) dq2 dq2 dq2 

To continue our derivation, we use equations (2.3.1) to rewrite (2.3.12) 
and (2.3.13) as 

±(^)-%«=F1^ + F * j = 1 > 2 . (2.3.14) 
dt \ dqj J dqj dqj dqj 

file:///-my-
file:///-my-
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Recall that the work W done by the force F is the line integral JcF • dr. 
Hence, the differential is dW = F • dr. Since dr — dxi + dyj, we have 

dW = Fidx + F2dy. (2.3.15) 

By the chain rule, 

dx = (dx/dqi)dq1 + {dx/dq2)dq2, dy = (dy/dq^dqi + (dy/dq2)dq2. 

Substituting in (2.3.15), we get dW = Q\dq\ + Q2dq2, where 

n - p dx _u F
 Qy - T?

 dr 

Ql = r\- V t2 — = t • ——, 
9 1 Ql qi (2 3 16) 

Q2 = Flp. + F2^=F.^L. 
oq2 aq2 aq2 

The functions Q\ and Q2 are called genera l ized forces corresponding to 
the generalized coordinates q\,q2. Substituting in (2.3.14), we obtain the 
Lagrange equations of motion, 

*(w )-%">'• -1 '2- <2'317) 

where Qj is given by (2.3.16). 

For the point mass moving in cartesian coordinates under the force 
F = F\ i + F2j, we have q\ = x, q2 = y, 8K = m(x2 +y2)/2, and equations 
(2.3.17) coincide with (2.3.1), so it might seem that we did not accomplish 
much. It is clear, though, that (2.3.17) is more general, and covers mo­
tions not only in cartesian, but also polar and any other coordinates that 
might exist in R2. In other words, equation (2.3.17) is at a higher level of 
abstraction than (2.3.1), and therefore has a higher mathematical value. 

EXERCISE 2.3.3. (a)c Verify that for qi = x, q2 = y, equations (2.3.17) 
indeed coincide with (2.3.1). (b)A Write (2.3.17) in polar coordinates, with 
9i =t, q2= 0. 

Next, we consider a system of n point masses in IR3, and assume that 
there are k degrees of freedom, k < 3n. In other words, only k out of 3n 
coordinates can change independently of one another; the remaining 2>n - k 
coordinates are uniquely determined by those k. The state vector is now 

{xi,yi,zi, x2,y2,z2,... ,xn,yn,zn,±i,yi,zi,... ,xn,yn,zn) 
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and the generalized coordinates are 

(9 i ,92,93, . - . ,9fc,9i , - - - ,9fc)> 

two for each degree of freedom. Equations of the type (2.3.1)-(2.3.8) can 
be written for Xi, qi, Xi, qi. The kinetic energy is then given by 

n 

£K = J2(mi/2)(x2i+yf + zf) o r £K = £*(?i , . • • ,9fc,9i, • • •,«*)• (2-3.18) 
i = l 

With forces Fi = (•Fi,»,i:2,i,-p3,i), i = l,---,n, equations (2.3.1) become 

Fi,j = mjZj, F2,j = rriij/i, F3) i = m,^ , i = 1 , . . . , n, 

equation (2.3.12) becomes 

d (d£K\ d£K <A .. dxi ^ ~ <9?/i , v ^ •• ^ /o o m\ 
T7 "^v- - - 5 — = V r a j Z i — + > m m - 5 — + > m^t-S—> (2.3.19) d* V dqj ) dqj j ^ dqj f^ dqj £ > dqj 

equation (2.3.14) becomes 

Tf (iT-) - IT = £ (F"P + F^7T + F>.*jr) • <2-3-20) 
dt V d?j y dq, f^ \ dqj dqj dqj J 

j = 1 , . . . , fc, and equation (2.3.15), 

n k 

dW = J2Fi-dri = J2 Qid(ir (2.3.21) 
i = l j = l 

The generalized forces are 

Qi = £ (F^P + ̂  + ̂ ) = £ * • P> (2-3-22) 

j — l,...,k. Thus, there are exactly k Lagrange's equations, one for each 
degree of freedom: 

*(%)-%-*>• ' - 1 k- < 2 ' 3 2 3 ) 

Let us now look at the particular case of CONSERVATIVE FORCE FIELDS. 
By definition, we say that the force F is conservat ive or defines a 
conservat ive force f i e l d if the vector F is a gradient of some scalar 
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function: F = — VV; the negative sign is used by convention. The func­
tion V is called the p o t e n t i a l of the force field F. The work done by a 
conservative force along a path r(t), a < t < b, is 

rb rb 

w 
b w,„uw (2.3.24) 

pO no 

= / F-rdt = / -W-rdt 
J a J a 

= _ [b (^te + ^dy + dV_dz\dt=_ fb dV(r(t)) M 

Ja \ dx dt dy dt dz dt J Ja dt 

= -{V(r(b))-V(r(a))), 

That is, dW = —dV, and the work done by a conservative force equals the 
change in potential. 

Let us assume that all the forces Fi,...,Fn are conservative, and 
denote by V\,...,Vn the corresponding potentials. By construction, we 
have Fi = Fi(xuyi,Zi), i = l,...,n and so V* = Vi(xi,yi,Zi). De­
fine V = Vi + • • • + Vn. According to (2.3.21), dW = X)"=1 Ft • dr{ = 
— Y17=i dVi = —dV. We now write V as a function of the generalized coordi­
nates: V = V(qi,...,qk), and get dW = -(dV/dqi)dqi (dV/dqk)dqk. 
Comparison of the last equality with (2.3.21) results in the conclusion 
Qj = —dV/dqj, j — l , . . . , fc . Thus, for conservative forces, equations 
(2.3.23) become 

±(0£K\_ dtK=_dV^ j = 1 ( 2 3 2 5 ) 
dt \ dq\j J dqj dqj' 

We will transform (2.3.25) even further by noticing that V does not depend 
on the velocities, and therefore is independent of qy. dV/dqj = 0. We then 
define the Lagrangian 

L = SK-V, (2.3.26) 

and re-write equation (2.3.25) as 

d fdL\ dL 

dtvdqj-wr0- (2-3-27) 

Equation (2.3.27) has at least three advantages over (2.3.23): (a) a more 
compact form; (b) a higher level of abstraction; (c) a possibility to include 
constraints. 

To conclude this section on Lagrange's equations, let us look briefly 
at some NON-CONSERVATIVE FORCES. AS before, q = (q\,...,qk) is the 
vector of generalized coordinates and q = (gi, • • • ,<7fc), the vector of the 
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corresponding time derivatives, so that the vector (q, q) uniquely deter­
mines the state of the system. We derived (2.3.27) under the assumption 
Q — (Qii • • • i Qk) = — W , where V = V(q). Now assume that the gener­
alized force Q is no longer conservative, and has a non-conservative compo­
nent that depends only on q; many non-conservative forces, such as friction 
and some electromagnetic forces, indeed depend only on the velocity. In 
other words, we assume that 

Q = Q ( 1 ) + Q ( 2 ) , Q ( 1 ) = - W i , Q ( 2 ) = jVV2 (2.3.28) 

for some scalar functions V\ = V\{q) and V% = V2(q). Then 

Define V = Vi + V2 so that dVi/dqj = dV/dqj, dV2/dqj = OV/dq,, and 

If L = SK — V, then Lagrange's equations (2.3.27) follow after substi­
tuting (2.3.30) into (2.3.17). Alternatively, if we define the conservative 
Lagrangian L\ = £K — Vi, then (2.3.17) and (2.3.30) imply 

d dL\ dLi ^(2i 

* ^ T - ^ = « ? ) ' (2-3-31) 

a modification of (2.3.17). 

2.3.2 An Example of Lagrange's Method 

Our goal in this section is to verify the Lagrange equations (2.3.17) for 
a points mass that moves in space, but has only one degree of freedom. 
The example below is adapted from the book Introduction to Analytical 
Mechanics by N. M. J. Woodhouse, 1987. 

Consider a smooth wire in the shape of an elliptical helix. Choose an 
inertial frame with origin O and cartesian basis vectors (?, J, k), so that k 
is along the axis of the helix. In this frame, the helix is the set of points 
with coordinates (x, y, z) so that 
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see also Exercise 2.3.4 below. A bead of mass m placed on the wire will slide 
down under the force of gravity. Note that the two equations in (2.3.32), 
describing the helix, define two constraints and leave the bead with only 
one degree of freedom. We assume that the friction force is negligible, so 
that the restraining force N = (N\,N2,Ns), exerted by the wire on the 
bead, is orthogonal to the velocity vector at every point of the motion. Our 
objective is to derive the equations of the motion of the bead along the 
wire. 

First, let us look at what the Newton-Euler method will produce. By 
Newton's Second Law, we get three equations 

mx = Nx, my — Ny, m'z = Nz — mg, (2.3.33) 

with the six unknowns x,y,z,Ni,N2,Ns. Equations (2.3.32) are the two 
constraint equations on x, y, z. The sixth equation comes from the orthog­
onality condition for frictionless motion: 

r-N = xN1+yN2 + zN3 = 0. (2.3.34) 

To solve this system of six equations, it is natural to parameterize the helix 
by setting 

x = acosq, y = bsinq, z = cq, (2.3.35) 

where q is the generalized coordinate for this problem. 

EXERCISE 2.3.4-5 Verify that equations (2.3.32) and (2.3.35) define the same 
set of points. How should one interpret the inverse cosine in (2.3.32)? 

The position vector of the bead is r(q) = x(q) i + y(q) j + z(q) k, and 
the motion of the bead is determined by the function q = q(t). Note 
that the tangent vector to the helix is dr/dq. Using the six equation, the 
unknown reaction force N can be eliminated and a single second-order 
ordinary differential equation for q = q(t) can be obtained; the details of 
this approach are the subject of Problem 2.9, page 421. 

We now look more closely at the alternative approach using the La­
grange method. Let p = m r be the momentum of the sliding bead. Then 
equation (2.3.33) in vector form becomes 

p = N -mgk. (2.3.36) 

Denote by ptan = P • (dr/dq) and Q = —mgk • (dr/dq) the tangential 
components of the momentum p and the gravitational force —mg k. This 
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Ptan = P • — + P • "J-J Q-

definition of Q agrees with (2.3.22) on page 88. Differentiating ptan with 
respect to t, we get 

dr d2r 

dq~+P'df 

Using (2.3.36) and p = mr = m (dr/dq) q, we find 

, . r ... dr dr d?r .2 

Ptan = {N -mgn)- — +m— • J - J <T, 

or, since N • (dr/dq) = 0, 

(IT (IT 

Ptan = Q + m-j--j^q2, (2.3.37) 

The kinetic energy is then 

^ = -2mvr^----e, (2.3.38) 

and by (2.3.35), 

£K = ^ ( a
2 sin2 q + b2 cos2 q + (?) q2. (2.3.39) 

Hence, from (2.3.38), 

8£K dr dr . dr dr 
dq dq dq dq dt 

From (2.3.39), using standard rules of partial differentiation, 

—— = m(a2 sin q cos q — b2 cos q sin q) q2. 

Now, r(q) = a cos #2 + b sin qj + cqk, so that 

dr d2r ^ 
— = —asmqt + bcosqj + CK, —5- = —acosqt — bsmqj. 
dq dqz 

Therefore, 

8£K dr d2r .9 

dq dq dq2 

and equation (2.3.37) is equivalent to Lagrange's equation of motion 

d ( 8£K\ OSK „ 
1 * * =Q, (2.3.40) dt \ dq J dq 
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where Q is the generalized force from (2.3.16), that is, 

Q = F • dr/dq = -mg k • dr/dq. (2.3.41) 

We therefore accomplished our objective and verified the Lagrange method 
for our example by explicitly deriving equation (2.3.40). Once (2.3.39) and 
(2.3.41) are taken into account, equation (2.3.40) becomes a second-order 
ODE for the function q = q(t). A reader interested in solving this equation 
should try Problem 2.9, page 421. 

Notice that the unknown, constraint-induced, reaction force N appears 
in Newton's equation (2.3.33), but not in the Lagrange equation (2.3.40). 
Of course, the Newton-Euler method, requiring elimination of the unknown 
force N, results in the same equation of motion; see Problem 2.9 for details. 

2.3.3 Hamilton's Equations 

Lagrange's equations (2.3.27) are a system of k second-order ODEs. A 
change of variables reduces this system to Ik first-order ODEs. While there 
are many changes of variables to achieve this reduction, one special change 
transforms (2.3.27) into a particularly elegant form, known as Hamilton's 
equations. 

Given the Lagrange function (2.3.26), introduce new variables p = 

iPu • • • ,Pk) b y 

* = ! £ • (2-3-42) 
and assume that equations (2.3.42) are solvable in the form 

q = f(p,q) (2.3.43) 

for some vector function / = ( / i , . •-,/&)• For example, if L = 
\J2j=i(mj(lj ~ hjQj)i t n e n (2.3.42) becomes pj = rrijqj or qj = Pj/rrij. 
In applications to mechanics, <jj usually has the dimension of distance and 
rrij is the mass, so that pj has the dimension of momentum. This is why 
the variable pj defined by (2.3.42) is called the genera l ized momentum. 

Together with (2.3.42), equations (2.3.27) become a system of k first-
order ODEs 
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To obtain another k equation, define the Hamiltonian 

k 

H(p, q) = Y<PM ~ L(l> <?)> (2-3-45) 

where, according to (2.3.43), each qj is a function of p and q. Then direct 
calculations show that 

dqL_d_H_ dpl_ d_H_ 
dt - dp^ dt - dq,' • ? - i " - - ' f c - ^6Ab> 

Equations (2.3.46) are a system of 2k first-order ODEs, known as 
Hamilton's equations. 

EXERCISE 2.3.5.B Derive equations (2.3-46) Hint: the first follows directly by 
computing dH/dpj and using (2.3.42), (2.3-43), and qj = dqj/dt; for the second, 
note that dL/dqj = —dH/dqj and use (2.3-44)-

EXERCISE 2.3.6F Show that if (2.3.31) is used instead of (2.3.27), then the 
second equation in (2.3-46) becomes 

We conclude the section by showing that, in a typical mechanical prob­
lem, when the vector q is the position and V is the potential energy, the 
Hamiltonian is the total energy of the system. 

Theorem 2.3.1 Consider a system of n point masses in M3. Assume 
that the position vectors rj and the potential V of the system do not depend 
on q and depend only on q. Then the Hamiltonian of the system is equal 
to the total energy: 

Proof. By assumption, 

Then 

H(p,q)=£K + V. (2.3.48) 

ri = ri(q), i = l,...,n. (2.3.49) 

ElH- (2-3-50) 
*d<b 



Hamilton's Equations 95 

Substituting (2.3.50) into 

1 ™ 

results in 

3fe 

£K = Yl aMiQi = QTAq, (2.3.51) 

where A = (a,j:e, j,t= 1 , . . . ,3k) is a symmetric matrix and 

1 v ^ dri dri 
2~i dqj dqe 

Clearly, if F(x) — xTBx = Y2i,j bijXjXj is a quadratic form with the 
coefficients bij independent of x, then V F = 2Bx and V F • x = 2.F. 
Therefore, by (2.3.51), 

V f ^ = 2£K. (2.3.52) 

Since V does not depend on q, it follows that d£x/dqj = dL/dqj = pj, 
and (2.3.52) becomes 

3fe 

Since ff = J2i=i PiQi ~ L a n d L = £K -V, equality (2.3.48) follows. D 

As with most equation related to the Lagrange-Hamilton method, the 
main significance of (2.3.46) is its mathematical elegance and high level of 
abstraction; it is the level of abstraction that makes (2.3.46) an extremely 
interesting object to study in various branches of mathematics. With all 
that, equations (2.3.46) simplify the analysis of many concrete problems in 
mechanics. Unfortunately, these topics fall outside the scope of this book. 

2.4 Elements of the Theory of Relativity 

Newtonian mechanics, as discussed in the previous sections, describes the 
motion of objects at speeds much smaller than the speed of light; at speeds 
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close to the speed of light the description is provided by the theory of 
relativity. 

Special relativity mechanics arose from Newtonian mechanics and the 
hypothesis that the mathematical equations describing laws of mechanics 
should have the same form in every two inertial frames that move with the 
constant velocity relative to each other. This hypothesis of mathematical 
invariance does not just express a mathematical aesthetic. From a physical 
standpoint, the hypothesis requires that two observers, one in a frame O 
and the other in a frame 0\ moving with constant velocity v relative to 
O, should be able to describe the motion of a particle using the same 
law. One such law could be Newton's Second Law (2.1.1) on page 40. 
Although Newton understood the position is relative to the observer in 
different frames, he assumed time to be an absolute physical quantity that 
is the same in different frames. Mathematically, these assumptions are 
expressed by the Gal i lean t ransformation r i = r + vt, t\ = t. Note 
that the Galilean transformation does leave (2.1.1) unchanged: f\ = r, 
and so if m r = F, then m'f\ = F. 

The assumption of absolute time contradicts the experimental result, 
not known at Newton's time, that light has the same speed in O and 0\. 
We will see that the constant speed of light implies that time is as rela­
tive as position, and the Galilean transformation must be replaced by that 
of Lorentz. Not surprisingly, the Lorentz transformation no longer leaves 
(2.1.1) unchanged, and we will see how the law of motion must be modified 
to satisfy the invariance hypothesis; see (2.4.15) on page 102 below. This 
new law of motion is a more general mathematical model of mechanics than 
(2.4.1) and leads to a number of remarkable conclusions, such as the famous 
relation £ — mc2 between the mass and energy. 

The theory of relativity is universally considered as one of the pinnacles 
of human intellectual achievements. Many also believe that understanding 
of this theory is beyond the ability of all but very few bright minds. Our 
main objective in the following few sections is to demystify the subject and 
to demonstrate that one only needs a basic knowledge of linear algebra 
and multi-variable calculus to understand the main ideas of the theory, to 
follow the computations that lead to the most famous implications of this 
theory, and to see how the mathematical models of relativity interact with 
the underlying physical phenomena. 

We start with a short historical background, mostly related to the de­
velopment of special relativity. Next, we present an elementary derivation 
of the Lorentz transformation, and finally discuss the main results of gen-
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eral relativity. An interested reader can follow up on some of the topics in 
Problem 2.2, page 414, and in Section 3. 

2.4.1 Historical Background 

As one legend puts it, back when he was a little boy, A. Einstein was curious 
about two questions: (1) What happens if you run after a ray of light and 
try to catch it? (2) What happens if you are in a moving elevator and 
suddenly somebody turns off the gravity? The answers to these questions 
later became the theory of special and general relativity. 

We mentioned earlier that both the "relative" and "absolute" points 
of view had proponents from the early years of modern science. In 1707, 
the Irish bishop George Berkeley disputed the concept of absolute space 
as described in Newton's 1687 book Principia. Newton contended that an 
absolute rotation can be determined experimentally by measuring the effect 
of a centrifugal force as in his famous experiment with a rotating bucket of 
water in which the surface of the rotating water assumed a concave shape. 
Hence, Newton argued, there is no need for a second body relative to which 
the rotation is measured. Berkeley disputed this on philosophical grounds, 
saying that "motion cannot be understood without a determination of its 
direction, which in turn cannot be understood except in relation to our or 
some other body." Absolute space, he claimed, is unobservable. If a body 
is the only one in the universe, it is meaningless to speak of its rotation, 
and we need the existence of other bodies, relative to which the rotation 
can be measured. We now know mathematical formulas supporting this 
argument: for example, the centrifugal force - m w x (a; x r\) in (2.1.47) on 
page 66 involves the rotation vector u> that must be defined in an inertial 
frame. For more about the dispute between Newton and Berkeley, see the 
book The Physical Foundations of General Relativity by D. Sciama, 1969. 

The propagation of light was more difficult to understand. Up until the 
late 19th century, it was assumed that light propagated through the aether 
(or ether), a hypothetical substance believed to be filling all absolute space 
and serving as the medium for the propagation of electromagnetic waves. 
In 1887 in Ohio, two American physicists, ALBERT ABRAHAM MICHELSON 

(1852-1931) and EDWARD WILLIAMS MORLEY (1838-1923) conducted an 
experiment aimed at measuring the velocity of the Earth relative to the 
aether. 

The relative propagation speed of other wave disturbances in a medium, 
like sound and water waves, depends on the velocity of the source. If the 
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aether existed, then the Earth's motion around the Sun, at the speed of 
about 30km/sec, would affect the speed of light depending on the direction 
of the light beam. Michelson and Morley emitted a beam of light, first in 
the direction of the Earth's motion and then perpendicular to it. They used 
mirrors and an interferometer to measure the speed of light in each case, 
and failed to detect any significant difference; see Problem 3.3 on page 424 
for details. As a result, contrary to its initial intent, the Michelson-Morley 
experiment provided the first evidence against the existence of the aether, 
and in that respect became the most famous failed experiment in history. 
The experiment certainly had a profound effect on the further development 
of natural sciences, and in 1907 Michelson became the first American to 
receive a Nobel prize in physics. 

In 1905, Albert Einstein, who was 26 at the time, made the result of the 
Michelson-Morley experiment the basis of a new theory of relative motion, 
special relativity. He proposed two postulates: 

(i) An observer measures the speed of light to be the same in any direction 
regardless of the observer's motion relative to other bodies; this is a 
consequence of the Michelson-Morley experiment, 

(ii) Any two observers moving with constant relative velocity can agree on 
all observed data and mathematical relations (laws) between the data; 
this is the postulate of mathematical invariance. 

According to Postulate (i), all observers measure the same value for the 
speed of light in a vacuum: c = 3 x 108 meters/second. It follows that 
absolute motion (in some special frame) is unobservable, hence physically 
meaningless. In other words, Einstein sided with Berkeley against Newton 
on the question of relative motion. The letter c in the notation for the 
speed of light is for celerity (swiftness). 

According to Postulate (ii), for two observers in frames O and 0\, math­
ematical relations which hold in the frame O are to be transformed into 
corresponding relations in the other frame 0\ by a transformation of the 
variables (x,y,z,t) to the variables (xi,yi,zi,t\); the experimental study 
of light propagation suggests that this transformation should be linear. 
The result, called the Lorentz transformation, is a necessary consequence 
of Einstein's two postulates. 
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2.4.2 The Lorentz Transformation and Special Relativity 

Consider two frames, the fixed frame O and the moving frame 0\. We 
choose cartesian coordinate systems in both frames and assume that, at 
each time moment, the frame 0\ is a parallel translation of the frame O 
so that the vectors i, i\ are always on the same line; see Figure 2.4.1. As 
usual, we represent the points in the frames O and 0\ with vectors of the 
form xi + yj + zk and x\ %\ + y\ j 1 + z\ k\, respectively. 

3\ 

^l O l / Ox 

R, ki 
Fig. 2.4.1 Fixed and Moving Frames 

Thus, 0\ is moving to the right relative to O with constant velocity v. 
A linear transformation of the space-time coordinates is 

x = axi+0ti, y = 3/1, z = zi (2.4.1) 

and 

t = 7H + ati (2.4.2) 

for some real numbers a, (3, ~f,a. Equation (2.4.2) means that time is no 
more absolute than space: each frame has its own time coordinate as well 
as space coordinates. Equations (2.4.1) and (2.4.2) also demonstrate that 
space and time are bound together in one space-time continuum. We will 
see that Postulate (i) cannot hold without relation (2.4.2) with appropriate 
7 and a. 

Consider point 0\, the origin of the moving frame. It has the f i coordi­
nate x\ = 0 in the 0\ frame at all times t\. In the fixed O frame, by (2.4.1), 
the i coordinate of 0\ is x = @t\; by (2.4.2), we also have t = at\. Note 
that /3 > 0. If v = ||u|| is the speed of 0\ relative to O, then v = x/t = f3/a. 
A light impulse emitted at the instant when O = 0\ will reach, at time t, 
a point P, where the coordinates (x, y, z) of P in O satisfy 

x2+y2 + z2 = c2t2. (2.4.3) 

By Postulate (i), if (xi,yi,zi) are the coordinates of the same point P in 



100 Theory of Relativity 

the frame 0\, then 

A + y\ + *\ = cH\ (2.4.4) 

By Postulate (ii), and because of relations (2.4.1), (2.4.2) above, equation 
(2.4.3) becomes 

(axi + (3hf + y\ + z\ = c2(7Zi + ah)2, or 

{a2 - c V ) x 2 + yj + z\ + 2(a0 - c V ) z i * i = c V - p2/c2)t2. 

Since the last equality must agree with (2.4.4) for all (xi, j/i, z\, t\) values, 
it follows that 

a2 - c2
7

2 = 1, (2.4.5) 

a/3 - c27<7 = 0, (2.4.6) 

a2 - p2/c2 = 1. (2.4.7) 

These three equation together with 0/a — v can be solved easily for 
a,P, 7,<T. Prom (2.4.6), (5/a — c2^/a = v. So 7 = va/c2. Substitut­
ing in (2.4.5), we get a = (1 -v2/c2)~* and so 7 = (v/c2)(l — v2/c2)~2. In 
(2.4.7), substitute /? = va and solve for a to get a = a. Therefore, (2.4.1) 
and (2.4.2) become y — yi, z = z\ and 

v 

x = . t =—==£=. (2.4.8) 

In what follows, we will often use the notations 

a = [ l - - } , 7 = ^ « , (2A9) 

and write (2.4.8) as 

x = ax\ + vati, t = ati+jxi. (2.4.10) 

Then the inverse transformation becomes 

xi — ax - vat, t\ = at - jx. (2.4.11) 

One can verify this directly or use the physical argument that the inverse 
transformation must be obtained from (2.4.10) by switching the roles of 
{x,t), {x\,t\) and replacing v with —v. 
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Equations (2.4.9), (2.4.10), and (2.4.11) are the Lorentz 
t ransformat ion equations that govern special relativity kinematics. If v is 
very small compared to c, then 1 — (v2/c2) is close to 1 and the Lorentz 
equations become (approximately) x = x\ + vt, t = t\. This is the tradi­
tional Gal i lean t ransformation relating two frames moving with relative 
velocity v in Newtonian kinematics. We always use the Galilean transfor­
mation, especially the t = t\ part, in our investigations of the classical 
Newtonian mechanics. Let us stress again that, in Newtonian mechanics, 
time is the same in both frames. 

Equations (2.4.11) were first proposed in 1904 by the Dutch scientist 
HENDRIK ANTOON LORENTZ (1853-1928) as a means of explaining the re­
sult of the Michelson-Morley experiment. The transformation became the 
main mathematical means of verifying whether a proposed equation can 
describe effects at speeds comparable with the speed of light: all one needs 
to check is whether the equation is invariant under the Lorentz transfor­
mation, or, in other words, whether the equation treats the space and time 
variables in a manner consistent with special relativity. 

The Galilean transformation goes back to Galilei's 1638 book Discorsi 
e Dimostrazioni Matematiche, intorno a due nuoue scienze, known in the 
English translation as Discourse on Two New Sciences. 

The Lorentz transformation implies a number of important, and some­
times counter-intuitive, results of special relativity. Let us summarize some 
of these results. 
(i) RELATIVITY OF SPACE AND TIME INTERVALS: The length I of a rod 

placed along the z-axis and moving with speed v, as measured by an ob­
server in the fixed frame O, is smaller than the length £Q of the same rod 
measured in the frame 0\ that moves with the rod; see Figure 2.4.1. Sim­
ilarly, the time interval At between two events in a frame moving with 
speed v, as measured in the fixed frame, is longer than the time interval 
Aio between the same events, measured in the moving frame: 

* = W l ~ ("Vc2), A t = ° = • (2.4.12) 
y/1 - {V2/C2) 

(ii) RELATIVITY OF MASS: the r e s t mass mo of an object is either its 
inertial or gravitational mass measured in an inertial frame when the object 
is not moving relative to that frame. The r e l a t i v i s t i c mass m and the 
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t o t a l energy £ of the same object moving with velocity v are 

m 
m0 

Vl-(«2/c2) 
£ = mc2. (2.4.13) 

EXERCISE 2.4.1? Verify (24-12). Hint: Use the Lorentz transformation. For 
£, use (2.4.11), since £0 = Axi = (AT - vAt)(l - {v/c)2))~1/2 with At = 0, 
because the difference of the coordinates is recorded at the same time in the fixed 
frame. Similarly, for At, use (2.4-8) with Ax\ = 0, as the events happen at the 
same point of the moving frame. 

The relativity of mass (2.4.13) is a consequence of the relativity of time 
and is a necessary consequence of the required invariance of the laws of 
mechanics under the Lorentz transformation. This is one of the foremost 
examples of how a mathematical model, namely, the Lorentz transforma­
tion, leads to discoveries of new physical phenomena. Relations (2.4.13) 
have been verified experimentally on various particles. In 2005, the journal 
Nature reported an experimental verification of the relation £ = roc2 to 
within 0.00004%. 

We will now derive the main equation of relativistic kinematics. Recall 
that Newton's Second Law for the point mass m can be written as F = 
dp/dt, where p = mr is the momentum of m; see page 40. The extra 
requirement of invariance of the law under the Lorentz transformation leads 
to the definition of the r e l a t i v i s t i c momentum 

p = mr = . , (2.4.14) 
x/i-(IHI/c)2' 

where m is the relativistic mass from (2.4.13). The relativistic form of 
Newton's Second Law is therefore 

F = ^ , or F = * ( * ) . (2.4.15) 

dt> ^Wi-dHIA)2 / 
Equation (2.4.15) is the main equation of relativistic kinematics. It is invari­
ant under the Lorentz transformation, just as the non-relativistic Second 
Law of Newton is invariant under the Galilean transformation; see Problem 
3.2 on page 423. Note that, in the limits c ^ o o o r |jdr||/c —> 0, meaning 
speed of motion much smaller than the speed of light, equation (2.4.14) 
becomes the familiar Second Law of Newton (2.1.1): F = mo r. 
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EXERCISE 2.4.2. (a)c Verify that 

| |p||2 + mlc2 = m2c2. (2.4.16) 

Hint: direct computation using (2.4-14). 
(b)B Show that the quantity c2(m — mo) is natural to interpret as the rel-
ativistic kinetic energy, that is, £ = mc2 = £K + m^c2. Hint: if C is the 
trajectory, v = ||r|| is the speed, and the initial speed is zero, then the work done 
by a force F is 

£K= J F-dr= f rd{mr)= f' ydl m°V , ., ) =mc2-m0c
2, 

Jc Jo Jo V C1 - (l/7c2)) ' / 

where the last equality follows after integration by parts. 

One consequence of the second equality in (2.4.12) is the Twin Paradox, 
which is often described as follows. Consider two identical twin brothers, 
Peter and Paul, who live in an inertial frame O. Peter stays in that frame 
O, and Paul makes a round trip in a spaceship, travelling out and back in 
a fixed direction with fixed speed v = (24/25)c. Then the total travel time 
A*o = 2*i, as measured by Paul in the moving spaceship's frame, will be 
A* = 25A*o/7 in the frame O as measured by Peter; the key relation here, 
beside (2.4.12), is 252 = 242 + 72. In particular, if A*0 = 14 years, then 
A* = 50 years, that is, Peter will be waiting for 50 years for Paul to return 
from what is 14-year long trip for Paul. If Paul's biological clock also obeys 
(2.4.12), then, by the end of the trip, Paul will be 26 year younger than 
Peter. 

For further discussions of (2.4.12) and (2.4.13), including the Twin Para­
dox, see, for example, the books Concepts of Modern Physics by A. Beiser, 
2002, and Spacetime Physics by E. F. Taylor and J. A. Wheeler, 1992. 

We conclude this section with a brief discussion of the geometry of 
relativistic space-time. The reader will see that this geometry is not exactly 
Euclidean, thus getting a gentle introduction to general relativity. 

R e l a t i v i s t i c space-time is a combination of time with the three spa-
cial dimensions of our physical space, and is modelled mathematically as a 
four-dimensional vector space. Fixing a coordinate system in this space 
represents every point by four coordinates (x,y,z,t). A curve r(s) = 
(x(s),y(s), z(s),t(s)), so < s < si, in this space is called a world l i ne . If 
this were a truly Euclidean space with cartesian coordinates, then, by anal­
ogy with formula (1.3.10) for the arc length on page 29, the length of this 
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world line would be £,,,,„„ = f£ ^\x'(s)\2 + |y ' (s) | 2 + | z ' ( s ) | 2 + \t'(s)\2 ds. 

Even if we disregard tha t t has the dimension of time and not distance, this 

is still not the correct way to measure the length: as the reader will soon 

discover, this formula is not invariant under the Lorentz transformation. 

Accordingly, let us try to find an invariant distance formula in the form 

/ 2 \fa\\x'(s)\2 + a,2\y'{s)\2 + 03 |z ' (s) | 2 + 6| t ' (s) |2 ds for some real numbers 

ai ,ci2,a3,6; the requirement of invariance takes priority over the require­

ment of positivity. Following formula (1.3.12) for the arc length on page 

29, it is convenient to write the distance formula in the differential form: 

(ds)2 = ax(dx)2 + a2(dy)2 + a3(dz)2 + b (dt)2. (2.4.17) 

E X E R C I S E 2.4.3? Verify that (2-4-17) is invariant under the Lorentz trans­

formation if and only if a\ = a2 = a^ = —b/c2, where c is the speed of 

light. Hint: direct computations. Start with the frame moving along the x-axis 

so that x — ax\ + avt\, y = yi, z — z\, t = at\ + 7x1, with 0 ,7 from (2-4-9) 

on page 100. Compute dx = adx\ + avdt\, etc., and plug in (2-4-17). Then the 

invariance requirement (ds)2 = a\(dx{)2 + ai{dy\)2 + a3(dz\)2 + b(dt\)2 implies 

c2ai = —b. Letting the frame move along y axis and then along z axis, conclude 

that c2a2 = —b, c2a^ = —b. 

As a result, the general form of ds, invariant under the Lorentz trans­

formation, is (ds)2 = a((dx)2 + (dy)2 + (dz)2 -c2(dt)2), and the two natural 

choices of a are 1 and — 1; other choices would introduce uniform stretching 

or compressing. Both a = 1 and a = — 1 are used in different areas of 

physics. In what follows, our selection will be a = 1, corresponding to 

(ds)2 = (dx)2 + (dy)2 + (dz)2 - c2(dt)2. (2.4.18) 

To avoid negative distances, we have to modify the arc length formula 

(1.3.10) and compute the length of the world line as follows: 

L(s1)S2) = f" ^e (\x'(s)\2 + \y'(s)\2 + \z'(s)\2 - c2\t'(s)\2) ds, (2.4.19) 

where 

_ f 1, if |a:'(s)|2 + \y'(s)\2 + \z'(s)\2 - c2\t'(s)\2 > 0 (space-like world line), 

\ - l , if \x'(s)\2 + \y'(s)\2 + \z'(s)\2 - c2\t'(s)\2 < 0 (time-like world line). 

This special way to measure distance is the main difference between 

relativistic space-time and ordinary Euclidean space. As a result, the 

vector space E 4 in which the distance is measured by (2.4.18) is often 
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called the Minkowski space, after the German mathematician HERMANN 
MINKOWSKI (1864-1909), who introduced relativistic space-time in 1907 as 
a part of a new theory of electrodynamics. 

Mathematics takes (2.4.17) to a whole new level of abstraction by writ­
ing 

(ds)2 = {dx, dy, dz, dt) g (dx, dy, dz, dt)T', (2.4.20) 

where (dx,dy,dz,dt) is the row vector, g is the metr ic tensor , that is, 
a 4 x 4 symmetric matrix with non-zero determinant, and (dx, dy, dz, dt)T 

is the column vector, Formula (2.4.20) defines a metr ic in M4, and ds is 
called the l i n e element corresponding to the metric g. As a result, the 
same vector space K4 can lead to different metric spaces, corresponding to 
different choices of the matrix g. While this construction is possible in any 
number of dimensions, and is the subject of pseudo-Riemannian geometry 
(the standard Riemannian geometry deals with positive-definite matrices 
g), we will only consider the four-dimensional case. The matrix g can, in 
principle, be different at different points (x, y, z, t). A metric corresponding 
to a constant matrix g is called f l a t ; in particular, the metric (2.4.18) 
used in special relativity is often called the f l a t Minkowski metr ic . In 
general r e l a t i v i t y , the metric is not flat, and the matrix g is different 
at different points, that is, each element fljj of g is a function of (x,y, z,t). 
We will discuss general relativity in Section 2.4.3. 

If the matrix g is the same at all points, then, after a suitable change 
of basis, we can assume that g is diagonal, see Exercise 8.1.5 on page 454. 
For a non-constant matrix, a simultaneous reduction to a diagonal form at 
all points at once might not be possible. A non-constant matrix g that is 
diagonal everywhere still gives rise to a non-flat metric. 

EXERCISE 2.4.4. c (a) What matrix corresponds to the usual Euclidean 
metric? Hint: the identity matrix, (b) Write the components of the matrix g 
corresponding to the metric (2.4-18). Hint: the matrix is diagonal. 

2.4.3 Einstein's Field Equations and General Relativity 

As we discussed on page 95, Einstein adopted the hypothesis that physical 
laws should be stated in a form that is invariant under coordinate trans­
formations between frames. In his theory of special relativity, the frames 
move with constant relative velocity, and there is only one possible coordi­
nate transformation: the Lorentz transformation. In his theory of general 
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relativity, the frames can move with variable relative velocities, for exam­
ple, rotate, and there are many admissible coordinate transformations. To 
achieve this general invariance, he used tensor analysis and non-Euclidean 
geometry. Thus,the mathematical foundation of general relativity is ten­
sor analysis and pseudo-Riemannian geometry, and the main result is a 
system of ten nonlinear partial differential equations. This is more than 
enough to scare most people away from even trying to understand the sub­
ject. The good news is that, while deriving the equations indeed requires 
all this advanced knowledge, solving these equations often requires little 
beyond the basic theory of ordinary differential equations. Accordingly, 
we start by introducing the equations. We will then describe the mean­
ing of all components of the equations, and finally derive and analyze one 
particular solution, known as the Schwarzschild solution. For the sake of 
completeness, we summarize the main facts about tensors in Section 8.3 in 
Appendix. 

At the end of Section 2.4.2, we discussed the metric geometry of rela-
tivistic space-time. This geometry is characterized by the matrix, or the 
metr ic tensor , Q in equation (2.4.20), page 105. In special relativity, the 
metric is flat, that is, the matrix g is the same at every point, see (2.4.18) 
on page 104. 

In general relativity, the metric tensor can be different at different points 
and is determined by the gravitational field. The corresponding metric in 
space-time is no longer flat, but curved. This equivalence between gravita­
tion and curvature of space-time is the mathematical expression of the main 
idea of general relativity. Let us emphasize t h a t general relat ivi ty 
deals only with gravitational forces. 

Einstein's field equations, also known as E i n s t e i n ' s g r a v i t a t i o n 
equations, or the field equations of general relativity, describe the rela­
tion between the metric tensor g and the gravitational field at every point 
of relativistic space-time. To state these equations, we switch from the 
(x,y,z,t) variables to (a:1 ) variables: 

x^x1, y = x2, z = x3, t = x*, x = (x1,x2,x3,x4). (2.4.21) 

Note the use of super-scripts rather than sub-scripts in this definition. The 
position of indices is important in tensor calculus; for example, in tensor 
calculus, g y is an object very different from Qij. The reader should pay 
special attention to position of indices in all formulas in this section. 

The equations, introduced by A. Einstein in 1915, are written as follows: 
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^ • [ f l ] - ^ [ f l ] f l « = ^ T « [ f l ] , i,j = l,..A, (2.4.22) 

where Rij, R, and T^- are non-linear partial differential operators acting 
on the metric tensor Q. 

Our most immediate goal now is to understand the meaning of every 
component of (2.4.22). 
• The metric tensor a = (gij(x), i,j = 1,...,4) is a symmetric 4 x 4 
matrix defined at the points x = (a;1, a;2, a;3, a;4) of relativistic space-time. 
This matrix has a nonzero determinant and continuous second-order partial 
derivatives of all components %%j(x) for most x (say, all but finitely many). 
This matrix defines a metric on space-time by defining the l i n e element 
ar every point x according to the formula 

4 

(ds)2(x)= ] T gij(x)dxidxj; (2.4.23) 

compare this with (2.4.20) on page 105. Summations of this kind will 
appear frequently in our discussion. To minimize the amount of writing, 
we will use E i n s t e i n ' s summation convention, assuming summation in 
an expression over an index from 1 to 4 if the index appears in the expression 
twice. With this convention, (2.4.23) becomes 

(ds)2(x) = Qi:j{x) dxi dxj. (2.4.24) 

EXERCISE 2.4.5.c The Kronecker symbol S is defined by 

l=J' (2.4.25) 

Verify that, according to Einstein's summation convention, 5\ = 4. 

• The operators R^ in (2.4.22) are denned as follows: 
f)Vk (T) dT^(x) 

KM*) = -^J-—^Fi+rS(*)r^(a')-Cfc(x)r?i(x)> (2.4.26) 
where 

rS(-)-j.~(«)(^ + ̂ i - ^ 4 ) P«7) 
and gmn(x), m,n = 1,...,4, are the components of the inverse matrix 

g~1(x), that is, gmn(x)g„j(x) = 6™ for every x, with 6™ defined in 
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(2.4.25). 

• The operator R in (2.4.22) is denned as follows: 

R[B](x)=aij(*)Rij[B\(.x)- (2-4.28) 

EXERCISE 2.4.6. (a)c With the summation convention now in force, write 
all the missing sums in (24.26), (2.4.27), and (2.4.28). (b)B Verify that, 
for all x and all i,j,k,m, TJ™- = V%, and so there are at most 40 distinct 
values of T™y Hint: all you need is that flij(x) = Qji(x). (c)A Verify that 
Rij[o\(x) — Rji[g](x). Hint: find a function f so that r ^ = df/dxj. 
(d)B Verify that 

8y(x)^-[fl](x) - \gi\x)R[g\{x)gij{x) = -R[g](x). (2.4.29) 

• The collection of operators Ty, i,j = 1,.. . ,4, in (2.4.22) is called 
the s t r e s s -ene rgy tensor and is determined by a given distribution of 
the gravitational matter in a region of space. This tensor is symmetric: 
Ty = Tji (it has to be, since the left-hand side of (2.4.22) is symmetric). At 
this level of generality, no specific representation for Ty can be provided: 
the particular form of Ty depends on the particular problem. In what 
follows, we will concentrate on the vacuum so lu t ions of the field equations, 
that is, the solutions of (2.4.22) corresponding to Ty = 0; accordingly, we 
will not discuss the stress-energy tensor any further. 

• The remaining letters in (2.4.22) have the following meaning: G « 
6.67 • 10 - 1 1 m3/(kg- sec2) is the universal gravitational constant, c « 3 • 108 

m/sec is the speed of light, n « 3.14. 

EXERCISE 2 .4 .7 . C Verify that (2.4-22) is a system of ten equations for the 
ten components gy, 1 < i < j < 4 of the metric tensor. 

The system of equations (2.4.22) does not depend on the particular 
choice of the coordinate system (ar 4) in space-time; in fact, the 
functions g^, T™fc, Ri3 [g], and R[g] can be defined in a coordinate-free way, 
and the formulas (2.4.26)-(2.4.28) turn out the same in every coordinate 
system (of course, the particular form of fly will depend on the coordinate 
system). The resulting independence of the field equations (2.4.22) of the 
coordinate system is the very foundation of general relativity. 

Equations (2.4.22) are too complicated to justify as a postulate or as 
a generalization of experimental facts. Instead, the main postulate of gen-
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eral relativity is that the physical laws are independent of a particular frame, 
inertial or not, in space-time, that is, the equations are invariant under gen­
eral coordinate transformations from one frame to another; what makes spe­
cial relativity special is the restriction of this invariance to inertial frames. 
When combined with differential geometry and tensor calculus, whose con­
structions do not depend on a particular coordinate system and are valid 
in every space, Euclidean or not, this invariance assumption motivates the 
formulation of equations (2.4.22). Before formulating the equations in 1915, 
Einstein studied Riemannian geometry and also learned tensor calculus di­
rectly from one of the creators of the theory, the Italian mathematician 
TULLIO LEVI-CIVITA (1873-1941). We give a brief and elementary sum­
mary of tensors on page 457 in Appendix. 

In classical Newtonian theory, the gravitational field is described by the 
partial differential equation <pxx + (pyy + tpzz = 4irGp, where <p is the poten­
tial of the field and p is the density of the gravitating mass; see Exercise 3.3.8 
on page 168 below. Einstein started with a relation, -Ayfe] = 4irGTij[g], 
with g instead of <p and the stress-energy tensor instead of the usual mass 
density, and assumed that the tensor Aij depends linearly on the second-
order partial derivatives of 0. In tensor analysis, it is proved that such a 
tensor A^ [g] must have the form 

Ai:j [g\ = a Ri:j [g] + (3 R[g]gij + 7 0y 

for some real numbers a, 0, 7, with R^ and R denned in (2.4.26) and 
(2.4.28), respectively. Physical considerations, such as dimension analysis 
and conservation of energy and momentum, result in the values a = —2/3 = 
c4/2, 7 = 0. For more details, see the book Theory of Relativity by W. Pauli, 
1981. 

To complete the general discussion of (2.4.22), let us mention some other 
related terms and names: 
• The collection of Rij[g], i,j = 1,.. . ,4, is called the Ricci curvature 
tensor (also Ricci curvature or Ricci tensor), after the Italian mathemati­
cian GREGORIO RICCI-CURB ASTRO (1853-1925), whose most famous pub­
lication The Absolute Differential Calculus, written together with his former 
student T. Levi-Civita, was published with his name truncated to Ricci. 
• The number R[g] is called the sca la r curvature or Ricci sca la r . 
• Each r L is called a Chr i s to f fe l symbol, after the German mathe­

matician ELWIN BRUNO CHRISTOPFEL (1829-1900). Because of the way 

the numbers n f c change when the coordinate system is changed, the col­
lection of Christoffel symbols is not a tensor. 
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• The tensor Rij[g] — {l/2)R[g)gij, which is the left-hand side of (2.4.22), 
is called Einste in's tensor. 

Even though equations (2.4.22) are complicated, let us assume that 
we were able to solve them and found the metric tensor g. In classical 
Newtonian mechanics, the ultimate goal is to compute the trajectory of a 
moving object under the action of forces. The equation of the trajectory is 
provided by the Second Law of Newton. In general relativity, the Second 
Law of Newton is replaced by a postulate that a point mass in a curved 
space moves along a geodesic. A geodesic in a curved space is what a 
straight line is in a flat space. Once you think about it, a straight line in 
a fiat space has two special properties: (a) it defines the path of shortest 
distance between two points; (b) it is straight in the sense that the tangent 
vectors at each point are parallel, all being parallel to the direction vector 
of the line. Accordingly, each of these properties could be used to define 
a geodesic in a curved space, and it turns out that the second property 
results in a more convenient definition. By this definition, it is shown in 
differential geometry that x% = xl{s), s > 0, i = 1,. . . ,4, is the vector 
representation of a geodesic if and only if 

where the r*-fc are from (2.4.27) on page 107. Below, we outline the proof 
that a curve defined by (2.4.30) is a path of shortest distance between two 
points. 

Therefore, a trajectory of a moving object in a gravitational field in 
general relativity is computed as follows: 
(a) Find the metric tensor g by solving the field equations (2.4.22) for the 
specified stress-energy tensor Ty; 
(b) Compute the functions Tl

jk according to (2.4.27); 
(c) Solve the system of equations (2.4.30). 

This summarizes the general relativity mechanics. 

Let us now look more closely at equations (2.4.30). Without any gravi­
tation, the space is flat so that each fly is independent of x, which makes 
each Tljk — 0. Then the geodesic equations (2.4.30) become d2 xl(s)/ds2 = 0 
so that xl (s) — xl(0) + vxs, which is a straight line, corresponding to the 
motion with constant velocity. 
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It turns out that a geodesic is always parameterized by its arc length 
s, although not necessarily canonically. In other words, equations (2.4.30) 
imply that ds = ads for some constant a > 0; canonical parametrization 
corresponds to a = 1, see page 30. 

EXERCISE 2.4.8.A (a) Verify that, if a vector function x = x(s) satisfies 
(2.4.30), then 

d ( . , ..dxUs) dxi(s)\ 

Ts{3^s))-dir^r)=0- ( 2 A 3 1 > 
Hint: differentiate and use (2.4-27). (b) Conclude that 5 = as + f3, where s 
is the arc length of the curve and a, j3 are real numbers. Hint: the left-hand 
side of (2.4.31) is d2s(s)/ds2. 

By following the steps below, the reader can prove that the geodesic, 
as defined by (2.4.30), can be interpreted as the shortest path between two 
points in a curved space. 
Step 1. It is easier to do the basic computations in an abstract setting in IRn. 
Let A and B be two fixed points in Mn and F = F(q,p), a smooth M-valued 
function of 2n variables q1,..., qn,px,... ,pn; we keep the convention of this 
section and write the indices as superscripts. Let x — x(s), a < s < b, be 
a smooth function with values in Rn . Consider the funct ional 

L(x)= I F(x(s),x'(s))ds, 
J a 

where x'(s) = dx(s)/ds; being a rule assigning a number to a function, L 
is indeed a functional. Later, we will take 

F{q-,P) = y9ij((l)PiPj (remember the summation convention), (2.4.32) 

so that L(x) is the distance from A to B along the curve x(s). 
(a) Let y = y(s), a < s < b, be a smooth function with values in ffi" so 
that y(a) = y(b) = 0 and let x(s) be a function for which the value L(x) 
is the smallest (assume that such a function exists.) For a real number A, 
define /(A) = L(x + Xy). Argue that / ' (0) = 0. (b) Show that 

fb fdF(x(s),x'(s)) a F ( £ ( 3 ) , x ' ( s ) ) d y ' ( a ) \ 
n'~Ja V W V{S)+ d^ ds ) d S -
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(c) Integrate by parts and use y%{a) = yl(b) = 0 to conclude that 

dF(x(s),x'(s)) d dF(x(s),x'(s))\ i( 

W Ts W ) y { s ) d s -

(d) Argue that, since / '(0) = 0 and y = y{s) is an arbitrary smooth 
function, the expression in the big parentheses in the last equality must 
vanish for all s and so, for all i = 1 , . . . , n, 

d2F{x(s),x(s))dxi d2F{x(s),x(s))d2x^ dF{x(s),x{s)) 
dqidqi ds dfdpi ds2 dqi ~ 

(2.4.33) 
System (2.4.33) is an example of the Euler-Lagrange equations of vari­
ational calculus. 
Step 2. Verify that, with F as in (2.4.32) and s = s, equation (2.4.33) 
becomes (2.4.30). 

While in most situations of practical importance the geodesic does in­
deed define the shortest path between two points, and the path is unique up 
to a re-parametrization, there are two main technical problems with defin­
ing the geodesic as the distance-minimizing path: (i) The a priori possibility 
that several different paths have this property, and (ii) The possibility that 
the sign of (2.4.32) is different in different parts of the space (even the flat 
Minkowski metric (2.4.18) can change sign.) Definition (2.4.30) avoids these 
problems by generalizing a different property of the straight line, namely, 
that the tangent vectors at every two points of the curve are parallel. This 
property formalizes the intuitive notion of going straight, and the functions 
Tl

jk define the parallel transport of a vector along a curve by means of the 
Levi -Civ i ta connection. For more details, an interested reader should 
consult a specialized reference on Riemannian geometry, such as Chapter 10 
of the book Differentiable Manifolds: A First Course by L. Conlon, 1993. 

The rest of the section will be an investigation of the important spe­
cial case of (2.4.22), corresponding to Tij = 0, namely, the equation 
Rij [g] — (l/2)Rgij = 0. The solutions of this equation are called the vacuum 
so lu t ions of (2.4.22), because Ty = 0 in empty space. 

EXERCISE 2.4.9.c Verify that Rij[g] - (1/2)11$^ = 0 if and only if 

Rij[g]=0. (2.4.34) 

Hint: use (2.4-28) and (2.4-29); the matrices g and j? -1 are non-singular. 

m-I.( 
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From now on, we will consider (2.4.34), which is still a system of 10 
equations, and call this system the vacuum f i e l d equations. Every fiat 
metric, that is, a constant non-singular matrix g, is a trivial solution of 
(2.4.34). Indeed, for constant g, the numbers T\j are all equal to zero, and 
then so are Rij. A relativistic vacuum solution must be invariant under the 
Lorentz transformation. By Exercise 2.4.3 on page 104, such a solution g is 
a constant multiple of the f l a t Minkowski metric (2.4.18) on page 104. 

EXERCISE 2.4.10.c Verify the above assertion that every trivial solution of 
(2.4-34), invariant under the Lorentz transformation, is a constant multiple 
of the flat Minkowski metric (2.4-18). 

In 1916, the German physicist KARL SCHWARZSCHILD (1873-1916) 
found the first non-trivial solution of the vacuum field equations. Vacuum 
field equations do not necessarily describe a space without any gravitation 
whatsoever; gravitating matter can be present, but in other parts of the 
space, where we are not trying to solve the field equations. Accordingly, 
in the derivation of the Schwarzschild solution, it is assumed that there is 
only a stationary spherical object of mass M somewhere in space. 

Introduce spherical coordinates (r, 0, <p) in the space part of space-time 
(x,y,z,t): x = rcos9sintp, y = rsmOsimp, z = rcosip. Then we set 
x1 = r, x2 = 6, x3 = ip, x4 = t. Schwarzschild 's so lu t ion , or 
Schwarzschi ld 's metric, g is a diagonal matrix so that 

d(s? = X_}R /r)(dr? + r 2 ( s i n M ^ ) 2 + W ' ) - c2(l - {R0/r)){dt)\ 
(Ro/r) 

where 
(2.4.35) 

Ra = ™i (2.4.36) 

is called the Schwarzschild rad ius of the mass M. Schwarzschild found 
this metric by looking for a spherically symmetric solution of (2.4.34); see 
below for an outline of the corresponding computations. 

EXERCISE 2.4.11. c (a) Verify that R0 indeed has the dimension of the 
length, (b) Compute the Schwarzschild radius of the following objects: (i) 
The Sun (take M = 2 • 1030 kg), (ii) The Earth, (Hi) yourself, (c) Find the 
mass and the Schwarzschild radius of the ball whose density is p = 1000 
kg/m3 and whose radius is R0. Hint: you have R0 = 2G(4n/3)Rlp/c2; find 
R0 and then M = (4n/3)Rlp. (d) Repeat part (c) when p = 1018 kg/m3, the 
density of a typical atomic nucleus, (e) Verify that, as r —> oo, the metric 
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in (2.4-35) approaches the flat Minkowski metric in spherical coordinates 
(dr)2+r2 (sin2 ip(d9)2 + (d<p)2)-c2(dt)2. 

The reader can derive (2.4.35) by following the steps below. The com­
putations are not hard, but Steps 2 and 3 require a lot of care and patience. 
Step 1. Argue that spherical symmetry and stationarity imply ds2 — 
F(r)(dr)2 + r2(sin2(p{d6)2 + (dtp)2) + H(r)(dt)2 for some functions F,H 
that are not equal to zero. With x1 = r, x2 = 0, x3 = tp, x4 = t, we have 
the components of the metric tensor gn = F(r), 022 = r2 sin2 <p, g33 = r2, 
044 = H(r) and all other g -̂ are zero. Similarly, for the inverse tensor, 

0 i i = l/F(r), g22 = l / ( r 2 sin2 <p), g33 = 1/r2, g44 = l/H(r) and all other 
g u are zero. 

Step 2. Using formulas (2.4.27), verify that, of the 40 values of r j f c , only 
nine are non-zero: 

,i F'(r) pi rsin2<p r i l 
u ~ 2 F ( r ) ' ™~ F(r) ' 1 3 3 _ 

l 2 1 p 2 COStp 3 1 3 

12 ~ ' l 23 — • i i 13 "~ i L 22 — 

r sinw r 

r pi H'(r). 
F(rY 44 2F( r ) ' 

F 4 ^ ' ( r ) sin <p cos </>; r 1 4 = 

(2.4.37) 

57ep 5. Using formulas (2.4.26), verify that, out of 10 values of R^, only 
four are non-zero: 

_ H"(r) (H'(r))2 F'(r) F'(r)H'(r) 
11 ~ 2H(r) 4H2(r) rF(r) AF(r)H(r)' 

, , 1 rF'(r) rH'ir) \ . , 

_ 1 rF'(r) rH'(r) _ R22 

F(r) 2F2(r) + F(r)H(r) ~ sin2<p] 

(2.4.38) 

H"(r) F'(r)H'(r) H'(r) (H'(r))2 

2F(r) AF2(r) rF(r) 4F(r)H(r)' 

Step 4- (a) Multiply by 4rF(r)H2(r) the equation Rn = 0, multiply by 
4rF2(r)H(r) the equation R44 — 0, and take the difference to conclude 
that AH(r)(H(r)F(r))' = 0 or F(r)H(r) = A for some real number A. (b) 
Multiply by 2F2(r)H(r) the equation R33 = 0 and use F(r)H(r) = A to 
conclude that rF ' ( r ) = F(r)(l - F(r)) or F(r) = (1 + lf(Br))-1 for some 
real number B. 
Step 5. We have l im^oo F(r) = l im, .-^ H(r) = 1 and, by (2.4.18) on page 
104, far away from the gravitating mass the metric should be flat, that is 
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(cte)2 = (dr)2 + r2 sin2 <p (d6)2 + r2{dip)2 - c2(dt)2. Conclude that A = - c 2 , 
where c is the speed of light. Keep in mind that (dx)2 + (dy)2 + (dz)2 = 
{dr)2 + r2 sin2 <p (d6)2 + r2(d<p)2. 
Step 6. Using (2.4.30) and (2.4.37), verify that the geodesic equations for 
the trajectory (r(s),8(s),(p(s),t(s)) are as follows: 

[S) + 2F(r(s))[V {S)) F(r(s)) {° [S>> 2F(s) ° ' 

9"(s) + -r'(s)9'(s) = 0; 
r j (2.4.39) 

¥>"(*) + -ri:r'(s)ip'(s) - sin<p{s) cosip(s)(6'(s))2 = 0; 
r(s) 

t"(s) + ^r'(s)t'(s) = 0. 

Keep in mind that, since rf- = T^, the terms in (2.4.30) often come in 
pairs. 
Step 7. Consider the circular trajectory of radius R in the equatorial 
plane (<p = 7r/2) in the Newtonian approximation, so that r(s) = R, 
ip(s) = 7r/2, t'(s) — 1; the absolute time t'(s) = 1 is the key feature 
of Newtonian mechanics. Use the function H(r) = —c2(l + l/(Br)) we 
found in Steps 4 and 5, to conclude from the first equation in (2.4.39) 
(6'(s))2 = -H'(R)/(2R) = -c2/(2BR3). On the other hand, Newton's 
laws imply that, for the circular trajectory in the gravitational field of 
mass M, (6»'(s))2 = MG/R3. Conclude that B = -c2/(2MG) = -1/R0. 
This completes the derivation of (2.4.35). 

It is always a major accomplishment to find an explicit non-trivial so­
lution of a nonlinear partial differential equation. The importance of the 
Schwarzschild solution is further enhanced by the following facts: 
• This solution leads to a direct verification of general relativity in three 
important problems, namely, perihelion precession of planets, gravitational 
deflection of light, and gravitational red shift; we discuss these problems 
below); 
• The solution is a lot more general than it looks: in 1927, the American 
mathematician GEORGE DAVID BIRKHOFF (1884-1944) proved that, after 
a suitable change of coordinates, every spherically symmetric solution of 
the vacuum field equations becomes a Schwarzschild solution. 
• The solution formula (2.4.35) leads to a natural, and mathematically pre­
cise, definition of a black hole as an object whose size is smaller than or 
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equal to the corresponding R0. As the preceding exercise shows, a black 
hole can be produced either by compression or by vast accumulation of un­
compressed matter. Once you do Exercise 2.4.11, you realize that neither 
you nor the Earth nor the Sun is likely to become a black hole. 

The first experimental verification of general relativity was the calcula­
tion of the precession of the perihelion (the point closest to the Sun) for the 
planet Mercury. Astronomical observations of the precession had been car­
ried out since the late 18th century, but the Newtonian theory of gravitation 
was unable to calculate the observed precession correctly. In 1916, Einstein 
used the Schwarzschild solution, with R0 equal to the Schwarzschild radius 
of the Sun, to compute the correct value of the precession; see Problem 2.2 
on page 414. 

The reader can derive equation (7.2.7) on page 415, describing the tra­
jectory of Mercury (or any other planet, for that matter) by following the 
steps below. 
Step 1. Write three equations for the geodesic involving 0(s), <p(s), and 
t(s) using (2.4.30) and (2.4.37); use g to denote dg(s)/ds, and Q', to de­
note dQ(r)/dr, for the appropriate functions g,Q: 

§(s) + - ^ 6(s)f(s) = 0; (2.4.40) 
r{s) 

<p{s) + - ^ - ff>{s)r(s) - sin <p(s) cos ip(s) 62{s) = 0; (2.4.41) 
r(s) 

... . H'(r(s)) ., s , , , 
t{s)+ H(r(s))t{s)^s)=°- {2AA2) 

Step 2. From (2.4.40) conclude that r2(s)6(s) — a, with the real number 
a independent of s; from (2.4.41), that <p(s) = n/2 is a possible solution; 
from (2.4.42), that i(s) = /?F(r(s)), with j3 independent of s. 
Step 3. Keeping in mind that the geodesic is parameterized by the arc 
length, take ds — cds to have s in time units, and then, with <p(s) = TT/2, 
conclude that (2.4.35) implies 

{dsf = c2H(r(s))(dt{s))2 - F(r(s))(dr(s))2 - r2(s)(d0(s))2, 

1 = c2H(r(s)) (i(s))2 - F(r(s))(f(s))2 - r2(s)(0(s))2, 

(r(*))2 + 4^ (l ~ TT) - ^TT = c 2 ^ " !)• (2-4-43) 
rJ(s) \ r(s)J r(s) 

Similar to (2.4.19) on page 104, we have to switch the sign in (2.4.35) to 
ensure that the expression for (ds)2 is positive. 
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Step 4- Put u(9(s)) = l/r(s), using r{s) = -(u'(9)/u2(9))6(s) = -cm'(9), 
to get 

{u'(9))2 + u2{9){\ - RoU{9)) - c2R0u{9)/a2 = c2{(32 - I)/a2. 

Step 5. Differentiate the last equality with respect to 6 to get 

«"(9) + «(9) = § + Y«2(«) I 

which is exactly equation (7.2.7) on page 415, with A$ = c2R0/(2a2). 

Another experimental verification of general relativity is the predicted 
GRAVITATIONAL DEFLECTION OF LIGHT. For the flat Minkowski metric 
(2.4.18), page 104, the trajectories of photons are lines satisfying x2 + y2 + 
z2 = c2t2 or ds — 0. In a curved space, a photon geodesic is not necessarily 
a line and can be curved (deflected) by the gravitational mass. Because of 
the properties of g, this geodesic must still satisfy ds = 0. 

EXERCISE 2.4.12.3 Verify that the trajectory of a photon satisfies ds = 0 in 
every curved space. Hint: change the metric on the flat space; the zero on the 
right will stay zero. 

Using the Schwarzschild metric (2.4.35), Einstein calculated the deflec­
tion of light rays passing near the Sun. The experimental validation of the 
calculation came in 1919, when, during a total solar eclipse, the British 
astronomer Sir ARTHUR STANLEY EDDINGTON (1882-1944) showed that a 
star whose light passed close to the Sun appeared displaced by the amount 
that corresponded to the deflection value calculated by Einstein. 

EXERCISE 2.4.13? Consider a photon moving radially, that is, d6 = dip — 0. 
Use (2.4-35) to conclude that ds2 = 0 implies that, for r > R0, t — ±( r + 
ro + R0 In ((r/i?D) — l)- Therefore, the equation of trajectory (world line) 
of the photon is different from the equation of the straight line in four-
dimensional space-time. 

Yet another experimental verification of general relativity is GRAVITA­

TIONAL RED SHIFT, that is, the increase of wavelength of photons that 
are mowing away from the source of the gravitational field Red light has 
the longest wavelength in the optical spectrum, whence the term red shift. 
On a deep level, the gravitational red shift illustrates two major results of 
general relativity, the slow-down of time and shortening of length in a grav­
itational field; both these results can be deduced from the Schwarzschild 
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solution. On an intuitive level, this shift can be explained without using 
the Schwarzschild solution or any general relativity. Indeed, let a photon 
of wavelength A be emitted from a far-away star of mass M and radius 
R. At the moment of the emission, the photon has radiation energy hu, 
mass m = hv/c2, and potential energy —mMG/R. Far away from the 
star, with no other gravitating objects around, the potential energy of the 
photon is approximately zero. This increase in potential energy of the 
photon must be compensated by a decrease of its radiation energy. Thus, 
mMG/R = -hAu or Av/v = -MG/{Rc2) = -Ra/{2R). Assuming that 
the relative changes are small, and using v = c/A, we can write the result 
as 

EXERCISE 2.4.14. (a)c Estimate the gravitational red shift for the Sun. 
(take M = 2 • 1030 kg, R — 7 • 109 m). (b)c Consider the radiation emitted 
at the surface of the Earth and received H meters above the surface, with H 
much smaller than the radius of the Earth. Denote by g the gravitational 
acceleration on the Earth surface. Show that the observed red shift should 
be 

£ - f • <*".> 
(c)A Explain how the slow-down of the clock and shrinking of length in 
the gravitational field can be deduced from the Schwarzschild solution, and 
connect these effects with the gravitational red shift. Hint: for example, with 
dO = d<p = dt = 0 in (24.35), we have ds = (1 - {Ra/r))~1/2dr. 

Einstein predicted the gravitational red shift eight years before formu­
lating the theory of general relativity, but, because of the need for very high 
accuracy, both in the generation of the radiation and in the measurements, 
it was only in the 1960s that the gravitational red shift was observed in an 
experiment (for H = 90m, the right-hand side of (2.4.45) is about 10~14). 
The famous Pound-Rebka-Snider experiment was first conducted in 1960 
at Harvard University by R. V. Pound and G. A. Rebka Jr.; in 1964, R. 
V. Pound and J. L. Snider carried out a more accurate experiment; as of 
2005, Robert V. Pound is Emeritus Professor of Physics at Harvard. 

For an observer on the Earth, the clock on an orbiting satellite will 
appear to be running slow because of the special relativity effects, see for­
mula (2.4.12) on page 101, and because of the gravitational red shift: the 



Einstein's Field Equations 119 

gravitational field of the Earth is much weaker in space. With communica­
tion signals travelling at the speed of light, even a small discrepancy in the 
clocks can cause problems. For example, a 10-meter error in space can be 
caused by a 3.3 • 10~8-second error in time (the time it take a radio-signal 
to travel 10 meters). The relativity effects can be 10~6 seconds per day or 
more. The appropriate adjustment of the clock is necessary, and is indeed 
implemented, on many navigation satellites. 

EXERCISE 2.4.15.A+ Estimate the necessary time correction per day for a 
satellite on a geostationary orbit (that is, a satellite moving in the equatorial 
plane of the Earth in the direction of the rotation of the Earth and with 
period of revolution around the Earth equal to the Earth period of rotation 
about its axis). Take into account both special and general relativity effects. 

The gravitational red shift is different from the cosmological red 
sh i f t , which is attributed to the expansion of the Universe, and which 
was first observed in 1929 by the American astronomer EDWIN POWELL 

HUBBLE (1889-1953). The cosmological red shift is consistent with general 
relativity, and is connected with non-vacuum solutions of the field equa­
tions; it is a popular topic of research in modern cosmology. The idea is to 
assume a particular form of the stress-energy tensor Ty on the right-hand 
side of the Einstein field equations (2.4.34) so that the solution has a pre­
scribed form. A popular form of the solution produces the following line 
element: 

(ds)2 = c2(dt)2 - R(t) ({dr)2 +r2(sm2p(de)2 + (dip)2)) - c2{dt)2, 

where R(t) represents the radius of the Universe. 

EXERCISE 2A.16.C (a) Verify that the radial motion of the photon, corre­
sponding to above metric, with ds = 0 and 6 = <p = 0, satisfies 

/

4l Ht 

Wr (2A46) 

(b) Assume that a pulse of electromagnetic radiation, lasting Aio seconds, 
is emitted from a point in space at time moments to; the value of 1/Aio 
can be interpreted as the frequency of the emitted radiation. The pulse is 
received at a different point during the time interval [ti,ti + Aii] , where 
ti > h + Aio; the value 1/Aii can be interpreted as the frequency of the 
received radiation. Assuming that both Ato and At\ are small, use (2.4-46) 
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to conclude that 

At0 A£i 

R(h) RihY 
Hint: r(ti) - r(t0) = r(h + Ati) - r(t0 + At0). 

(2.4.47) 

By observing the light from distant galaxies, Hubble determined that 
Ato < A^i or 1/Ato > 1/Ati, that is, the frequency of the received radi­
ation shifts toward the lower-frequency, or red, part of the spectrum. By 
(2.4.47), this observation implies R(t0) < R(h), that is, the Universe is 
expanding. 



Chapter 3 

Vector Analysis and Classical 
Electromagnetic Theory 

3.1 Functions of Several Variables 

3.1.1 Functions, Sets, and the Gradient 

In the previous chapter, we saw how the tools of vector analysis work in 
modelling the mechanics of point masses and rigid bodies. In this chapter 
we will see how the tools of vector analysis work in continuum mechanics, 
that is in the study of continuous media such as fluids, heat flow, and 
electromagnetic fields. 

Mathematically, a continuous medium is described using certain func­
tions, called scalar and vector fields. Recall that a funct ion is a corre­
spondence between two sets A and B so that to every element A & K there 
corresponds at most one element f(A) G B. Despite its simplicity, it was 
only in 1837 that the German mathematician JOHANN P E T E R GUSTAV 

LEJEUNE DIRICHLET (1805-1859) introduced this definition of a function. 
We write / : A -> B. 

For most functions in this chapter, the set A will be either R2 or 
R3, and the set B, R, R2, or R3. When B = R, the collection of pairs 
{(P, f(P)), P G A} is called a s ca l a r f i e ld ; the function / is also called 
a scalar field. When B = A, that is, when f(P) is a vector, the collection of 
pairs {(P, f(P)), P € A} is called a vector f i e ld ; the function / is also 
called a vector field. Following our convention from the previous chapters, 
we will denote vector fields with bold-face letters. 

Let us review the main definitions related to the sets in R2 and R3. 
Recall that the distance between two points A, B in R™, n = 2,3, is denoted 
by \AB\. A neighborhood of a point A is the set {B : \AB\ < b] for some 
b > 0, that is, an open disk in R2 and an open b a l l in R3, with center 
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at A and radius b. A point in a set is called i n t e r i o r if there exists a 
neighborhood of the point that lies entirely in the set. 

A point P is called a boundary point of the se t G if every neigh­
borhood of the point contains at least one point that is not in G, and at 
least one point that belongs to G and is different from P. The collection of 
all boundary points of G is called the boundary of G and is denoted by 
dG. FOR EXAMPLE, the boundary points of the set G = {B : \AB\ < 1} 
are exactly the points P satisfying \AP\ = 1, so that dG — {P : \AP\ = 1} 
is the circle with center at A and radius 1. 

A point P in a set is called i s o l a t e d if there exists a neighborhood of 
P in which P is the only point belonging to the set. 

A set is called 

• Bounded, if it lies entirely inside an open ball of sufficiently large radius. 
• Closed, if it contains all its boundary points. 
• Connected, if every two points in the set can be connected by a con­

tinuous curve lying completely in the set. 
• Open, if for every point in the set there exists a neighborhood of this 

point that is contained in the set. In other words, all points of an open 
set are interior points. 

• Domain, if it is open and connected. 
• Simply connected, if it has no holes. More precisely, consider a curve 

that lies entirely in the set and assume that this curve is simple, closed, 
and continuous (see page 25). The set is simply connected if there is 
a surface that lies entirely in the set and has this curve as the bound­
ary. For a planar set, this condition means that every simple closed 
continuous curve in the set encloses a domain that lies entirely in the 
set. 

The c losure of a se t is the set together with all its boundary points. 
The complement of a set is the set of all points that are not in the set. 

F O R EXAMPLE, the closure of the open set {P : \OP\ < 1} is {P : 
\OP\ < 1}, and the complement of that open set is the closed set {P : 
\OP\ > 1}. Every disk or ball is both connected and simply connected, 
while the set {P : 0 < \OP\ < 1} is connected, and is simply connected in 
M3, but not simply connected in E.2 (make sure you understand why). 

EXERCISE 3.I.I.'4 Give an example of a set in R3 that is not bounded, is 
neither open nor closed and is neither connected nor simply connected. 

Intuitively, it is obvious that a simple, closed, continuous curve (also 
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known as a Jordan curve) divides the plane into two domains, and the 
domain enclosed by the curve is simply connected, but the rigorous proof 
of this statement is surprisingly hard. The French mathematician MARIE 

ENNEMOND CAMILLE JORDAN (1838-1922) was the first to realize the im­
portance and difficulty of the issue. Even though Jordan's proof later turned 
out to be wrong, the result is known as the Jordan curve theorem. It was 
the American mathematician OSWALD VEBLEN (1880-1960), who, in 1905, 
produced the first correct proof. We will take the Jordan curve theorem 
for granted. The analog of this result in space, that a closed continuous 
simple (that is, without self-intersections) surface in R3 separates R3 into 
interior and exterior domains, is even harder to prove, and we take it for 
granted as well. 

We will now discuss continuity of functions on R n , n = 2,3. A scalar 
field / is called continuous a t the point A if / is defined in some neigh­
borhood of A and 

lim \f(A)-f(B)\=0. (3.1.1) 

Since the point A in the above definition is fixed, the condition \AB\ —» 0 
means that B is approaching A: B —> A. Then (3.1.1) can be written in 
the form that is completely analogous to the definition of continuity for 
functions of a real variable: 

lim f(B) = f(A). 

Similarly, a vector field F is called continuous at a point A if F is defined 
in some neighborhood of A and 

lim | | F ( J 4 ) - F ( B ) | | = 0 . (3.1.2) 
|AB|->0 

Next, we discuss the question of differentiability for scalar fields. Let 
/ : A H R be a scalar field, where A is either R2 or R3. Let u 
be a unit vector and, for a real t, define the point Bt so that ABt = 
tu. A function / is called d i f f e r e n t i a b l e a t the point A in the 
d i r e c t i o n of u if the function g(t) = f(Bt) is differentiable for t = 0. 
We also call ^'(0) the ( d i r e c t i o n a l ) de r iva t i ve of / a t A in the 
d i r e c t i o n of u and denote this directional derivative by Dnf(A). 
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The function / is called dif f e r en t i ab l e a t the point A if / is de­
fined in some neighborhood of A and there exists a vector a so that 

lim \f(B)-f(A)-a.AB\={ 

\AB\-^0 \AB\ 

Alternatively, for every unit vector u, 

lha\KBt)-f(A)-ta.u\^ 
t-^o t 

where ABt = t u. If / is differentiable at the point A, then the correspond­
ing vector a in (3.1.3) is denoted by V / ( J 4 ) or grad/(A) and is called 
the gradient of / at A. We say that the function / is continuously 
d i f f e r e n t i a b l e in a domain G if the vector field V/(^4) is defined at 
all points A in G and the vector field V / is continuous in G. Similarly, a 
vector field F is called continuously d i f f e r e n t i a b l e in G if, for every 
unit vector n, the scalar field F • n is continuously differentiable in G. 
A scalar or vector field is called smooth if it is continuously differentiable 
infinitely many times. 

EXERCISE 3.1.2. (a)c Verify that if f is differentiable at the point A, 
then f is differentiable at A in every direction u, and 

Duf{A) = Vf{A)-u. (3.1.5) 

(b)A What does it mean for a vector field F to be three times continuously 
differentiable in a domain G? 

By (3.1.5) and the definition of the dot product (1.2.1), page 9, we have 

-\\Vf(A)\\<Dzf(A)<\\Vf(A)\\, 

which shows that the most rapid rate of increase of / at the point A is in 
the direction of V/(^4), and the most rapid rate of decrease of / at the 
point A is in the direction of — Vf(A). 

Given a point A, a direction at A can be defined by another point B with 

the unit vector UQ = -A^m in the direction of AB. Then (3.1.3) becomes 

f(B) = f(A) + (Vf(A) • uB) \AB\ + s(B), (3.1.6) 

where l im|A B |_0 |e(JB)|/|AB| = 0. The number V/ (A) • UB is 
the ( d i r e c t i o n a l ) de r iva t ive of / at point A in the d i r e c t i o n 
of point B. 

(3.1.3) 

(3.1.4) 
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EXERCISE 3.I.3.5 Show that if V / = 0 in a domain G, then f is constant 
in G. Hint: For point P g G and a unit vector u, define the point Bt, t £ R, 
so that PBt = tu. Using the definition of open set show that Bt is in G for 
sufficiently small \t\. Apply the mean-value theorem to g(t) = f(Bt) to show that 
f(Bt) = f(P)- Given another point Pi in G, connect P and Pi with a continuous 
curve in G, and apply the above argument several times as you move along the 
curve from P to Pi. 

Let us now introduce cartesian coordinates in the space A. Then every 
point P will have coordinates (x, y) or (x, y, z) and we write f(P) = f(x, y) 
or f(P) = f(x,y,z). Recall that the p a r t i a l de r iva t ive fx is computed 
by differentiating / with respect to x and treating all other variables as 
constants: 

fx{x0,yo)= lim - - - (3.1.7) 
A i - » 0 X 

EXERCISE 3.1.4.C Verify that, in cartesian coordinates, fx = D\f. 

An alternative notation for fx is df/dx. The partial derivatives fy, fz 

are defined similar to (3.1.7) and coincide with the directional derivatives 
in the j and K directions, respectively. The higher-order partial derivatives 
are defined as partial derivatives of the corresponding lower-order partial 
derivatives: 

/** - dx , Jxy - dy , Jvx - Qx , etc. 

EXERCISE 3.1.5? For two scalar fields f,g, verify the following properties of 
the gradient, generalizing the product and quotient rules from one-variable 
calculus: 

V ( / 5 ) = fVg + gVf, V(f/g) = (gVf - fVg)/g2. 

The next two results should be familiar from a course in multi-variable 
calculus: 
• If the function f = f(x,y,z) has partial derivatives fx,fy,fz in some 
neighborhood of the point A and the derivatives are continuous at A, then 
the function is differentiate at A and 

V/(A) = fx(A) i + fy(A) j + fz(A) «• (3-1-8) 
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• If the partial derivatives fxy and fyx exist and are continuous in some 
neighborhood of the point A, then fxy(A) = fyx(A); the result is known 
as C l a i r a u t ' s theorem, after the French mathematician ALEXIS CLAUDE 
CLAIRAUT (1713-1765). 

EXERCISE 3.1.6.C Let r = r(t) be a vector-valued function, and f, a scalar 
field. Define the function g(t) = f(r(t)), where f(r(t)) = f(P) if' r(t) — 
OP for some fixed reference point O. Assume that r is differentiable at 
the point t = to and the function f is differentiable at the point A, where 
0l = r(to). Show that the function g is differentiable at the point t = to 
and 

g'(t0) = Vf(A)-r'(to). (3.1.9) 

Try to argue directly by the definitions without using partial derivatives. 
Hint: by (3.1.6), g(t) - g(t0) « Vf(A) • (r(t) - r{t0)). 

If r = r(t) is a vector-valued function of one variable and G is a vec­
tor field, then R(t) = G(r(t)) is a vector-valued function of one variable. 
How to find the derivative R'(t) in terms of r and G? In cartesian co­
ordinates, G — G\ i + G23 + G3K, and G\,G2,G^ are scalar fields. By 
(3.1.9), we conclude that R'{t) = r ' ( t ) - V G i ( r ( t ) ) i + r ' ( t ) - V G 2 ( r ( t ) ) j + 
r'(t) • VG3(r(t))/«. To make the construction coordinate-free, we define 
the vector (r'(t) • V)G(r(t)) so that, for every fixed unit vector n, 

((r'(i) • V)G(r(*))) • n = r'(t) • (V(G • n)(r( t ))) . 

With this definition, 

~G(r(t)) = (r'(t) • V)G(r(t)). (3.1.10) 

More generally, for two vector fields F, G, we define the vector field 
(F • V )G so that, for every fixed unit vector n, 

n - ( ( F - V ) G ) = F - ( V ( G - n ) ) . (3.1.11) 

The expressions of the type (F • V).F often appears in the equations de­
scribing the motion of fluids. 

Given a scalar field / and a real number c, the set of points {P : f(P) — 
c} is called a l eve l se t of / . In two dimensions, that is, for A = M2, the 
level sets of / are curves. In three dimensions (A = M3), the level sets of 
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/ are surfaces. This observation leads to several possible ways to define 
curves and surfaces. 

Consider the space R2 with cartesian coordinates (x,y). Then each of 
the following defines a curve in R2: 
• A graph y — g(x) of a function of one variable. 
• A level set f(x, y) = c of a function of two variables. 
• A vector-valued function r(t) = x(t) i+y(t)j, to <t < t\, of one variable. 

EXERCISE 3.1.7. (a)B Give an example of a curve that cannot be repre­
sented as a graph y = g(x). (b)A+ Is there a continuous curve that cannot 
be represented as a level set of a function of two variables? 

Consider the space R3 with cartesian coordinates (x,y,z). Then each 
of the following defines a surface in R3: 
• A graph z = f{x,y) of a function of two variables; 
• A level set F(x,y,z) = c of a function of three variables; 
• A a vector-valued function r(u, v) = x(u, v)i + y(u, v) j+ z(u, v) k. of two 
variables; this is known as a parametric r ep re sen ta t i on of the surface. 

EXERCISE 3.1.8. (a)B Give an example of a surface that cannot be rep­
resented as a graph z = f(x,y). (b)B Think of at least two different ways 
to represent a curve in R3. (c)A+ Is there a surface that can be repre­
sented parametrically using a continuous function r = r(u,v) but cannot 
be represented as a level set of a function of three variables? 

EXERCISE 3.1.9. Below, we summarize some geometric properties of the 
gradient that are usually studied in a vector calculus class. 

(a) Let f(x,y) = c be a curve. Let {xo,yo) be a point on the curve and 
assume that the function f is differentiable at (xo,yo)- (i) Show that the 
curve is smooth at the point (xo,yo) if and only if V/ (xo , j/o) ¥" 0. (ii) 
Use (3.1.9) to show that V/(:ro,2/o) is perpendicular to the unit tangent 
vector of the curve at the point (xo,yo)- Hint: in this case, g(t) = c and so 
g'(to) = 0. (Hi) Write the equation of the normal l i n e to the curve at the 
point (xo,yo). Hint: the line has V/(xo,j/o) as the direction vector. 

(b) Let F(x, y,z) = c be a surface. Let Po = (xo, yo, ZQ) be a point on the 
surface, and C, a smooth curve on the surface passing through the point Po. 
Assume that the function F is differentiable at PQ. (i) Show that 'VF(PQ) 

is perpendicular to the unit tangent vector to C at PQ. Hint: same arguments 
as in part (a), (ii) Write the equation of the tangent plane to the surface 
at the point PQ. Hint: the plane has Vir(Fo) as the normal vector. 



128 Functions of Several Variables 

(c) Let r = r(u,v) be a parametric representation of the surface. As­
sume that the partial derivatives ru and rv exist, are continuous, and are 
not equal to zero at a point (UQ,VO). Let Po be the point on the sur­
face corresponding to the position vector T{UQ,VQ), andC, a smooth curve 
on the surface passing through the point PQ. (i) Verify that the vector 
ru{uo,vo) x rv(uo,vo) is perpendicular to the unit tangent vector to C at 
Po- Hint: C is represented by a vector function r(u(t),v(t)) for suitable functions 

u,v; at the point Po this curve has a tangent vector ruv! + rvv'. (ii) Write the 

equation of the tangent plane to the surface at the point Po. Hint: the 
plane has ru(uo,vo) x rv(uo,vo) as the normal vector. 

The same surface can have different representations. The graph z = 
f(x,y) is a level set F(x,y,z) = 0 with F(x,y,z) — f(x,y) — z or 
F(x,y,z) = z — f(x,y). The same graph can also be written in the 
parametric form r(u,v) — ui + vk + f(u,v)k. Similarly, the vector 
r — x(u, v) i + y(u, v)j+ z(u, v) k defines a parametric representation of 
the level set F(x, y,z) = c if and only if F(x(u, v), y(u, v), z(u, v)) = c for 
all (u,v). In particular, one can write the level set in parametric form by 
solving the equation F(x,y,z) = c for one of the variables x,y,z. FOR 
EXAMPLE, the hemisphere x2 + y2 + z2 = 4, x > 0, can be written as 
x = y/A — y2 — z2. Taking u = y and v = z, we find the equivalent para­
metric representation r(u, v) = %/4 — u2 — v2 i+uj+v K, where u2+v2 < 4. 
The most convenient representation of the given surface depends on the 
particular problem. 

EXERCISE 3.1.10.c Verify that the surface x = ^/4 — y2 — z2 can be rep­
resented as r(u,v) = 2cosvz + 2cosus invj + 2sinusint;K, 0 < u < 2TT, 
0<v< IT/2. 

EXAMPLE. Consider the function f(x, y) — 2x2+3y2 . This function has 
continuous partial derivatives of every order everywhere in K2: fx = Ax, 
fxx = 4, fy = 6y, fyy = 6, and all other derivatives are equal to zero. Thus, 
Vf(x,y) = Axi + 6yj. Consider the point A = (1,2). Then V/ (A) = 
Al + 12j, so that the most rapid increase of / at A is in the direction of 
i + 3J, with the rate ||Vf(A)\\ — Ay/16. Similarly, the most rapid decrease 
of / at A is in the direction of - i — 3j, with the rate - | | V / ( J 4 ) | | = —4y/I6. 
The rate of change of / at A in the direction toward the origin is - 2 8 / \ / 5 

and is computed by (3.1.6) as follows: B — (0,0), AB = — i — 2j, UB = 
-(i+2j)/y/5, Vf(A) • uB = -28/V5. 

Next, consider the surface z = 2x2 + 3y2. Writing 2x2 + 3y2 — z = 0, 



Functions, Sets, Gradient 129 

we conclude that the vector Ax + 12 j — k defines the plane tangent to the 
surface at the point PQ = (1,2,14). The equation of the plane at PQ is 
4x + 12y — z = 14 : note that x = 1, y = 2, z = 14 must satisfy the 
equation, and you get the number 14 on the right by plugging in these 
values for x,y,z. 

EXERCISE 3.1.11. B Verify that r(u,v) = ui + vj + (2u2 + 3v2)k and 
r(u,v) = (v/y/2) cosuz4- (v/y/3) sinuj+v2 k are two possible parametric 
representations of the surface z = 2a:2 4- 3y2. Verify that, for both repre­
sentations, the vector ru x rv at the point (1,2,14) is parallel to the vector 
4i+12j- k. 

Recall that P is a c r i t i c a l point of a scalar field / if either V/(Po) — 
0 or / is defined but not differentiable at PQ. HP is not a critical point of 
/ , then — V / ( P ) is the direction of the most rapid decrease of the function 
/ at the point P . This observation suggests the following iterative method 
for finding the point of local minimum of / : given a reference point O, a 
starting point Pi , and a collection of positive numbers ak, k = 2 , 3 , . . . , 
define the points Pj, recursively by 

OPk+i =OPk- ofcV/(Pfc). (3.1.12) 

Sometimes it is convenient to identify the point Pfc with the position vector 
rfc = OPk and to write (3.1.12) in an equivalent form as 

T-fc+i = r f c -akVf(rk)-

The new point Pk+\ can be denned as long as V'/(Pfc) ^ 0. If the sequence 
of the points Pk, k > 1, converges as k —> oo, then the limit P* must be the 
point of local minimum of / ; otherwise V / (P* ) ^ 0 and the sequence can 
be continued. As a result, V/(Pfc) —> 0, and in practice, the computations 
are stopped as soon as ||V/(Pfc)|| is sufficiently small. Special choices of the 
numbers ak can speed up the convergence. This method is known as the 
method of s t eepes t descent. It was one of the first numerical methods 
for minimizing a function. The method can converge very slowly, but is 
easy to implement. There exist more sophisticated numerical methods for 
finding critical points. 

EXERCISE 3.1.12. A (a) Draw a picture illustrating (3.1.12). (b) Write 
a computer program that implements (3.1.12) to find the local minimum 
of the function f(x,y) = 2x2 + 3y2. Experiment with various starting 
points, various values of ak and different stopping criteria (for example, 
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|| V/(Pfc)|| < 10 m for some positive integer m). 

3.1.2 Integration and Differentiation 

Let us recall the definition of the Riemann i n t e g r a l from the one-variable 
calculus: 

l f{x)dx = lim V / ( 4 ) A a ; f c , 
J a m a x A n - 4 0 ^ 

where a = xo < • • • < XN = b is a partition of the interval [a,b\, Axk = 
Xk — Xk-i, and x*k is a point in the interval [xk-i,Xk\. By definition, the 
function / is Riemann-integrable if the limit exists and does not depend on 
the particular sequence of partitions or on the choice of the points x^. The 
same definition is extendable to real-valued functions / defined on a set G 
other than an interval, as long as there exists a function m that measures 
the sizes of the subsets of the set G; we will not discuss the deep question 
of measurability. Using the measure m, we define 

r N 

fdm= lim V/(P*)rn(G f c ) , (3.1.13) 
JG maxm(G f c ) -»0f^ 

where Gi,..., Gjv are mutually disjoint (Gk C\ Gm = 0 ) sets such that 
their union |J fc=1 Gfe contains the set G and every set Gk is measurable 
(the size m(Gfc) of Gk is defined) and has a non-empty intersection with G 
(Gfc f) G ^ 0 ) ; Pk is a point in Gk f] G. Note that definition (3.1.13) is not 
tied to any coordinate system. 

We will integrate functions defined on intervals, curves, planar regions, 
surfaces, and solid regions: 

Set 

Interval 
Curve 
Planar region 
Surface 
Solid region 

Measure m 

Length 
Arc length 
Area 
Surface Area 
Volume 

dm 

dx 
ds 
dA 
da 
dV 

The limit in (3.1.13) must be independent of the particular choice of 
the sets Gfc and the points Pk, which, in general, puts certain restrictions 
on both the function / (integrability) and the set G (measurability). If / is 
integrable over a measurable set G, then the average value of / over G 
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is, by definition, 

lG=w)Lfdm- (3-Li4) 

The idea of the Riemann integral was introduce by the German mathemati­
cian GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866) in 1854 in his 
H a b i l i t a t i o n dissertation (Habilitation is one step higher than Ph.D. and 
is the terminal degree in several European countries). 

We now summarize the main facts about line, area, surface, and volume 
integrals. 

LINE, OR PATH, INTEGRALS. The set G in (3.1.13) is a curve C defined 
by the vector-valued function r = r(t), a < t < b. The set is measurable 
and has the line element ds if C is piece-wise smooth; see pages 28-29. 
The l i n e i n t e g r a l of the f i r s t kind Jcfds is defined for a continu­
ous scalar field / by the equality 

[ fds= [ f(r(t))\\r'(t)\\dt, (3.1.15) 
JC Ja 

where f{r(t)) is the value of the scalar field / at the point on the curve 
with position vector r{t). If f{P) represents the linear density of the curve 
at the point P, then Jc f ds is the mass of the curve. 

The l i n e i n t e g r a l of the second kind LF-dr is defined for a 
continuous vector field F by the equality 

f Fdr= f F(r{t))-r'{t)dt, (3.1.16) 
JC Ja 

where F(r(t)) is the value of the vector field F at the point on the curve 
with position vector r(t). For a simple closed curve C, the corresponding 
line integral of the second kind is denoted by §CF • dr and is called the 
c i r c u l a t i o n of F along C. The line integral of the second kind can be 
reduced to the line integral of the first kind: 

L'-*-L F-uds, (3.1.17) 

where u is the unit tangent vector to the curve. The direction of u defines 
the orientation of C; the integral reverses sign if the orientation of C is 
reversed. In cartesian coordinates, F = Fi i + F2 j + F3K, and JCF -dr is 
often written as j c F\dx + i^dy + F$dz. 
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We say that F is a p o t e n t i a l vector field with potential / if F = V / 
for some scalar field f.UF = V / , then, by (3.1.9), 

F(r(t))-r'(t) = ftf(r(t)), 

and the value of the integral (3.1.16) depends only on the starting and 
ending points r(a), r(b) of the curve and not on the curve itself: 

Vf-dr = f(r(b))-f(r(a)). (3.1.18) 

In particular, §c V / • dr = 0 for every simple closed curve C. 
The alternative name for a potential vector field is conservat ive, which 

comes from the physical interpretation of the line integral. If F is a force 
acting on a point mass moving along C, then Jc F-dr is the work done by the 
force along the curve C. By the Second Law of Newton, F(r(t)) = mr "(t), 
so that F(r(t)) • r'(t) = (l/2)md\\r'(t)\\2/dt = d£K(t)/dt, where £K is 
the kinetic energy; verify this. For a potential force field F, we write 
F = - V V , where V is a scalar function, called the p o t e n t i a l energy. 
Then 

J F-dr = £K(b) - SK(a) = V(r(a)) - V(r(b)), 

so that £K{O) + V(r(a)) — £*:(&) + V(r(b)), which means that the total 
energy £# + V is conserved as the point mass moves along C. 

In general, we say that a vector field F has the path independence 
proper ty in a domain G if §c F • dr = 0 for every simple closed piece-wise 
smooth curve C in G. The following result should be familiar from a course 
in multi-variable calculus. 

Theorem 3.1.1 A continuous vector field has the path independence 
property in a domain G if and only if the field has a potential. 

EXERCISE 3.1.13. c Prove the above theorem. Hint: in one direction, use 
(3.1.18). In another direction, verify that, as stated, the path independence prop­
erty implies that, for every two points A,B inG the value of the integral fcF-dr 
does not depend on the particular choice of the curve C in G connecting the 
points A and B. Then fix a point A in G and, for each point P in G define 
f{P) = fcF • dr, where C is a simple piece-wise smooth curve starting at A and 
ending at P. Path independence makes f a well-defined function of P. Verify 
that V / = F. 

I 
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T H E AREA INTEGRAL. We now take the set G in (3.1.13) to be a subset 
of the plane K2. The set is measurable, and has area A, if the boundary of G 
is a continuous, piece-wise smooth simple closed curve. In area integrals, we 
use the differential form of the area element dA. In cartesian coordinates, 
the area element is dA — dxdy. In the genera l ized polar coordinates 
x = arcos6, y = brsin.6, the area element is dA = ab rdrd6; the usual 
polar coordinates correspond to a = b = 1. The area integral is evaluated 
by reduction to a suitable iterated integral. The area integral is also known 
as the double integral and is often written as JfG f dA. The integral is 
defined if / is a continuous scalar field in G. If / is the area density of G, 
then fjG f dA is the mass of G. Computation of double integrals is one of 
the key skills that must be acquired in the study of multi-variable calculus. 

EXERCISE 3.1.14. (a)B Let G be the parallelogram with vertices 
(0,0), (3,0), (4,1), (1,1), and f, a continuous function. Write the limits 
in the iterated integrals below: 

fffdA= J ffdxdy = f ffdydx = f ffrdr dO = f f fdO rdr. 

G 

Hint: some integrals must be split into several. (b)c Verify that the area of 
the ellipse (x2/a2) + {y2/b2) < 1 with semi-axis a and b is irab. Hint: use 
generalized polar coordinates. 

T H E SURFACE INTEGRAL. We now take the set G in (3.1.13) to be a 
surface S defined by the vector-valued function r = r(u, v) of two variables, 
where (u,v) belong to some measurable planar set G\. We say that the 
surface is piece-wise smooth if the function r is continuous on G\ and 
the set Gi can be split into finitely many non-overlapping pieces so that, 
on each piece, the vector field ru x r„ , representing the normal vectors to 
the surface, is continuous and is not equal to zero. We say that the surface 
is o r i en tab le if it is piece-wise smooth and has two sides (the intuitive 
idea of a side is enough for our discussion). A piece-wise smooth surface S* 
is measurable and its area m(S) is defined as 

m(S) = If \\ru x rv\\dA(u,v), (3.1.19) 

Gi 

where dA(u, v) is the area element of G\. We call 

da = \\ru x rv\\ dA(u,v) 
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the surface area element of S. 

EXERCISE 3.1.15. B Justify (3.1.19). Hint. Verify that | |r„ x rv\\AuAv is 

the area of the parallelogram in the tangent plane to S at the point r(u,v), with 

sides Au, Av parallel to the vectors ru, rv, respectively. For small Au, Av, this 

area closely approximates a curved parallelogram-like surface element of S with 

vertices atr(u,v), r(u + Au,v), r(u,v + Av), r(u + Au,v + Av). Summing up 

over all such surface elements and passing to the limit as Au —• 0, At; —» 0 gives 

(3.1.19). For a slightly different derivation of (3.1.19), see Exercise 3.1.35(c) on 

page 149 below. 

The s u r f a c e i n t e g r a l of t h e f i r s t k i n d Jf f da is defined for a 
s 

continuous scalar field / by the equality 

J Jfda = J J f(r(u,v)) \\ru x r „ | | dA(u , i ; ) , (3.1.20) 

S Gi 

where dA(u, v) is the area element. If f(P) represents the areal density of 
the surface a t point P, then JJ f da is the mass of the surface. The s u r f a c e 

s 
i n t e g r a l of t h e second k i n d JJ F-dcr is defined for a continuous vector 

s 
field F with values in E3 and an orientable surface 5" by the equality 

ffFd(T= fJ F(r(u,v)) • ( r u x rv)dA(u,v); (3.1.21) 

S Gi 

the integral is also called the f l u x of F across S. A surface integral of the 

second kind can be reduced to a surface integral of the first kind: 

IIFd(T= ffF-nsda, (3.1.22) 

where fis is the unit normal vector to the surface. The direction of ns 

defines the orientation of S; the integral reverses the sign if the orientation 

of S is reversed. 

If F = pv, where v is the velocity of a fluid flow, and p is the density of 

the fluid, then J J F • da is the mass of the fluid passing across the surface 
s 

S per unit time; verify tha t 

F • fis da = pv • fis da 



Integration and Differentiation 135 

is the mass of fluid passing across the surface area element da per unit time. 
On page 154 we derive the equation of continuity that governs such flows. 

T H E VOLUME INTEGRAL. We now take the set G in (3.1.13) to be 
a subset of the space K3. The set is measurable and has volume V if 
the boundary of G is a piece-wise smooth surface. In volume integrals, 
we use the differential form of the volume element dV. In cartesian 
coordinates, dV = dxdydz. In general ized c y l i n d r i c a l coordinates 
x = arcos6, y = brsin9,z — z, dV = ab rdrdOdz; the usual cylindri­
cal coordinates correspond to a = b = 1. In genera l ized sphe r i ca l 
coordinates x — ar cos9 siny>, y = br sinO sine/?, z = cr costp, dV = 
abc r2 sin <p dr d6 d<p; the usual spherical coordinates correspond to a = b = 
c = 1. The volume integral is evaluated by reduction to three iterated in­
tegrals; this is why the volume integral is also known as the triple integral 
and is often written as JJJ f dV. The integral is defined if / is a continuous 

G 
scalar field in G. If / is the volume density of G, then JJJ f dV is the mass 

a 
of G. 

EXERCISE 3.1.16. B Find the volume of the ellipsoid (x2/a2) + (y2/b2) + 
(z /c2) < 1. Hint: use generalized spherical coordinates. 

Let us summarize the main facts related to the orientation of domains 
and their boundaries. For a domain G in the (?, j) plane, we denote by 
dG the boundary of G and assume that this boundary consists of finitely 
many simple closed piece-wise smooth curves. The p o s i t i v e o r i e n t a t i o n 
of dG means that the domain G stays on your left as you walk around the 
boundary in the direction of the orientation of the corresponding curve. An 
equivalent mathematical description is as follows. At all but finitely many 
points of dG, there exists the unit tangent vector u; the direction of u 
defines the orientation. At every point of dG where u exists, consider the 
unit vector n that is perpendicular to u and points outside of G. Draw a 
picture and convince yourself that the orientation of dG is positive if and 
only if fi x u has the same direction as i x j . 

For a domain G in R3, we denote by dG the boundary of G and assume 
that this boundary consists of finitely many piece-wise smooth simple closed 
surfaces. The p o s i t i v e o r i e n t a t i o n of dG means that, when it exists, 
the normal vector to dG points outside of G. 

For a piece-wise smooth surface S that is not closed, we denote by 
dS the boundary of the surface and assume that this boundary consists 



136 Functions of Several Variables 

of finitely many simple closed piece-wise smooth curves. We say that the 
o r i e n t a t i o n s of S and dS agree if S stays on your left as you walk 
around the boundary in the direction of the orientation of the corresponding 
curve with your head in the direction of the normal vector to S. If this is 
possible, then S is orientable. An equivalent mathematical description is 
as follows. Assume that the orientation of S is fixed and given by the unit 
vectors ris that exist at most points of S. Then a small piece of S near dS 
looks like a small piece of a domain in the (i, j) plane, with us defining 
the direction of i x j . Then the positive orientation of dS means positive 
orientation of the boundary of this two-dimensional domain as described 
earlier. 

A famous example of a smooth non-orientable surface is the Mobius 
s t r i p , first discovered by the German mathematician AUGUST FERDINAND 
MOBIUS (1790-1868). You can easily make this surface by twisting a long 
narrow strip of paper and taping the ends. Verify, for example, by drawing 
a line along the strip, that the surface has only one side 

We will now use integrals to provide coordinate-free definitions for the 
divergence and curl of a vector field. A traditional presentation starts with 
the definitions in the cartesian coordinates. Then, after proving Gauss's and 
Stokes's Theorems, one can use the results to show that the definitions do 
not actually depend on the coordinate system. We take a different approach 
and start with the definitions that are not connected to any coordinate 
system. 

We begin with the DIVERGENCE. Divergence makes a scalar field out 
of a vector field and is an example of an operator. This operator arises 
naturally in fluid flow models. Let v = v(P) be the velocity at point P in 
a moving fluid, and let p = p{P) be the density of the fluid at P. Consider 
a small surface of area ACT with unit normal vector u. The rate of flow 
per unit time, or flux, of fluid across ACT is pv • u ACT. For a region G 
bounded by a smooth simple closed surface dG, the total flux across dG 
is 3>(G) = JJ pv • uda. This flux is equal the rate of change in time of 

G 
the mass of fluid contained in G. The quantity $(G)/m(G), where m(G) 
is the volume of G, is the average flux per unit volume in G; in the limit 
m(G) —> G, that is, as the region G shrinks to a point, we get an important 
local characteristic of the flow. This naturally leads to the definition of 
divergence. 

Let F be a continuous vector field with values in R3. Then the 
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d i v e r g e n c e of F at the point P is the number div F(P) so tha t 

lim 
m(G)-»o m(G) 

div F ( P ) = lim _ —^— /"/" F • d<r, (3.1.23) 

9G 

where G = G(P) is a measurable solid region tha t contains the point P, 

and m(G) is the volume of G. This definition assumes tha t the limit exists 

and does not depend on the particular choice of the regions G. Interpreting 

F as the velocity field of fluid, the right-hand side of expression (3.1.23) 

determines the density of sources (div F(P) > 0) or sinks (div F(P) < 0) at 

the point P. For an electric field, sources and sinks correspond to positive 

and negative charges, respectively. The vector field F is called s o l e n o i d a l 

in a domain G if div F = 0 everywhere in G. The reason for this terminology 

is tha t , in the theory of magnetism, there are no analogs of positive and 

negative electric charges. Therefore, a magnetic field has no sources or sinks 

and its divergence is zero everywhere. On the other hand, a magnetic field 

is often produced by a s o l e n o i d — a coil of wire connected to an electric 

source. 

EXERCISE 3.1.17? Let F = F\ 1 + F2J + F3 k and assume that the functions 

Fi,F2,Fs have continuous first-order partial derivatives. Show that 

divF = Flx + F2y + F3z, (3.1.24) 

where, as usual, F\x = dF\jdx, etc. Hint: let P = (xo,yo,zo) and consider a 
cube G with center at P, faces parallel to the coordinate planes, and side a. Then 
m(G) = a3. The total flux through the two faces that are parallel to the (j, k) 
plane is then approximately 

(F1(x0 + a/2,y0,zo) - Fi(x0 - a/2,y0,z0))a
2; (3.1.25) 

draw a picture and keep in mind the orientation of the boundary. Then consider 

the faces parallel to the other two coordinate planes. The total flux out of G is the 

sum of the resulting three fluxes. After dividing by the volume of G and passing 

to the limit, (3.1.25) results in Fix(xo,yo, zo), and Fiv,Fzz come form the fluxes 

across the other two pairs of faces. 

Next, we discuss the CURL. A S a motivation, we again consider a vector 

field v representing the velocity of moving fluid or gas. The flow of fluid 

or gas can have vortices: think of the juice in a blender or hurricanes, 

tornadoes or large-scale circulation of atmospheric winds due to Coriolis 

force. Vortices are caused by circular motion of the particles in the flow, 
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and, for a smooth simple closed planar curveC, the circulation ^ = §v-dr 
c 

measures the amount of vorticity. If S is the planar region enclosed by C, 

then ^/m(S) is the average vorticity in the region, where m(5) is the area 

of S. In the limit m(5) —> 0 we get another important local characteristic 

of the flow. This naturally leads to the definition of the curl. 

Let F b e a continuous vector field with values in R 3 . Fix a point P and 

a unit vector n and consider the plane passing through P and having n as 

the normal vector. Let C be a piece-wise smooth simple closed curve in the 

plane, and S, the par t of the plane enclosed by the curve. We assume tha t 

P G S, P £ C, and the orientation of C is counterclockwise as seen from 

the top of n . By definition, the c u r l of F at the point P is the vector 

curl F(P) so tha t , for all C and u, 

cmlF(P).n= lim -L-JF-dr, (3.1.26) 
m(S)—om(i>) Jc 

where m(S) is the area of S. This definition assumes tha t the limit exists 

for every unit vector fi, and, for each vector n, the limit does not depend 

on the particular choice of the curves C. 

E X E R C I S E 3.1.18? Let F = Fii+F2 J+F3K and assume that the functions 

Fi,F2, F3 have continuous first-order partial derivatives. Show that cur l .F 

can be computed as the vector given by the symbolic determinant 

curLF 
l J K 

A A A 
dx dy dz 
F\ F2 F3 

(F3y-F2z)i+(Flz-F3x)3+(F2X-Fly)K. (3.1.27) 

Hint: with P — (xo,yo,zo), take the plane through P parallel to one of the coor­
dinate planes and let C be the boundary of the square in that plane with center at 
P and side a so that m(S) = a?. Taking the plane so that n = i, we find that 

j> F -dr tta(F3{xo,yo + a/2,zo) - F3{x0,yo -a/2,z0)) 

+ a(F2(xQ,yo,zo -a/2) - F2(xQ,yo,z0 + a/2)); 

draw the picture and keep track of the orientations. Dividing by a and passing 

to the limit a —+ 0 gives the i component of curl F. The other two components 

are computed similarly. 

Relations (3.1.24) and (3.1.27) suggest the introduction of the vector 
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differential operator 

and the symbolic vector representations of the divergence and curl: 

d i v F = V - F , cur lF = V x F. (3.1.29) 

We can also interpret g rad / as a multiplication of the vector V by the 
scalar / . Then it is easy to remember the following identities: 

div(curl F) = 0 : V • (V x F) = 0; curl(grad/) = 0 : V x ( V / ) = 0; 

V - ( / F ) = V / - F + / V - F , V x ( / F ) = V / x F + / V x F ; 

V • (F x G) = G • (V x F) - F • (V x G); V • ( V / x Vg) = 0. 

(3.1.30) 

Not all formulas are nice and easy, though: the expressions for V ( F • G) 
and curl(F x G) are rather complicated. 

EXERCISE 3.1.19.A Recall that, for two vector fields F, G, we define the 
vector field (F • V ) G ; see (3.1.11) on page 126. Show that 

{F • V ) G = | (cur l (F x G) + grad(F • G) - G d i v F + F divG 

- G x c u r l F - F x curlGV 

Use the result to derive the following formulas: 

curl(F x G) = F divG - G d i v F + (G • V ) F - ( F • V)G, 

grad(F -G) = Fx curlG + G x cur lF + ( F • V ) G + (G • V ) F . 

For a scalar field / , div(grad / ) is called the Laplacian of / and denoted 
by V 2 / ; an alternative notation A / is also used. 

EXERCISE 3.1.20.c Verify that, in cartesian coordinates, 

V2f = fxx + fyy + fzz. (3.1.31) 

For a vector field F , we define 

V 2 F = grad(div F ) - curl(curl F ) . (3.1.32) 

EXERCISE 3.1.21. (a)A Verify the equalities in (3.1.30) Hint: choose 
cartesian coordinates so that F = F\i. (b) Verify that if F — F\ t+F2 3+F3 k, 
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then V 2 F = V2Fi z + V 2 F 2 j + V 2 F 3 k. (cf Verify that V2(fg) = gV2f+ 

Given a reference point O, there is a natural vector field, denoted by 
r , which maps every point P to the corresponding position vector 
OP. The corresponding scalar field r = \\r\\ is the distance from 
OtoP. 

The following exercise establishes a number of remarkable properties of 
the fields r and r. 

EXERCISE 3 . 1 . 2 2 . C (a) Verify that if g 
then 

Vff(r) = g'(r) r 

Hint: use cartesian coordinates so that r = x i+yj+z K, and r = \Jx2 + y2 + z2. 
(b) Verify that, in M", divr = n, n = 2,3. (c) Verify that, in R2, V2 lnr = 
0 for r ^ 0. (d) Verify that, in K3, V 2 r _ 1 = 0 for r ^ 0. Hint: for (c) 
and (d), use (3.1.33) together with some of the identities in (3.1.30). (e) Let 
h = h(t) be a differentiate function. Verify that curl(h(r) r ) = 0. Hint: 
the fastest way is to conclude from (3.1.33) that h(r)r = V/7(r) for a suitable 
function H; then use (3.1.30). (f) Let b be a constant vector. Verify that 

g r a d ( 6 - r ) = 6 . (3.1.34) 

Hint: write the dot product in cartesian coordinates, (g) Let F = cr/r be a 

central inverse-square force field in R3 Prove that / F • dr is independent 

of the path C joining any two points, as long as C does not pass through the 
origin. Hint: show that F is conservative by finding f = f(r) so that F = V / . 

EXERCISE 3 . 1 . 2 3 . C Let F = cr/ra = (c/ra+l)r, where c and a are real 
numbers. Verify that the flux of F across the sphere S with center at the 
origin and radius R is equal to &-nR2~ac. Hint: Use (3.1.22); Hs = f; on S, 
r = R. 

EXERCISE 3.1.24? Let BR be a ball with center at the origin and radius R. 
Verify that limR^0 fff r~pdV = 0 for all p < 3. 

BR 

Our motivation of the definition of the curl suggests that curl is asso­
ciated with rotation; in fact, some books denote the curl of F by rotF. 
Let us look closer at this connection with rotation. Recall that, for fixed 

= g(t) is a differentiate function, 

= ^ - r . (3.1.33) 
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vectors u> and ro, the vector w x r 0 is the velocity of the point with po­
sition vector ro, rotating with constant angular speed u — ||u>|| about a 
fixed axis; the vector w is the angular velocity of the rotation, see page 
48. The vector field v = u> x r therefore corresponds to the rotation of all 
points in space with the same angular velocity CJ. Direct computations in 
cartesian coordinates show that curlw = 2u>, establishing the connection 
between the curl and rotation: if F = F(P) is interpreted as the velocity 
field of a continuum of moving points, then curl F measures the rotational 
component of this velocity; the field F is called i r r o t a t i o n a l in a domain 
Gif cur lF = O inG. 

3.1.3 Curvilinear Coordinate Systems 

Recall that a vector field (P,F(P)) is a collection of vectors with different 
starting points, and, to study the vector field, we need a local coordinate 
system, that is, a set of basis vectors, at every point P. So far, we mostly 
worked with cartesian coordinates, where this local coordinate system is 
the parallel translation of (i, j , k) to the corresponding point P. More 
generally, these local coordinate systems are not necessarily parallel trans­
lations of one another. For example, the polar coordinates r, 6 in R2 give 
rise to the unit vectors r,8, see (1.3.22) on page 35 or Figure 3.1.1 below. 
At every point, r A. 6, but the corresponding vectors r have, in general, 
different directions at different points. For various applications, it is natural 
to use cylindrical or spherical coordinates, and then it becomes necessary 
to express all the operations of differentiation (gradient, divergence, curl, 
Laplacian) in these coordinate systems. 

The objective of this section is to study general orthogonal curvilinear 
coordinate systems, where the basis vectors at every point are mutually or­
thogonal, but their direction changes from point to point. Our first step 
is to establish the general relation between the coordinates and their ba­
sis vectors. For notational convenience, we denote by X — (£1,0:2,0:3) the 
cartesian coordinates, with the correspondence x\ = x, X2 = y, X3 = z. For 
non-cartesian coordinates Q = {qi,q2,q?), each qk is a given function of 
xi,X2,Xz: qk = qfc(a:i,a:2,a;3), k = 1,2,3. The correspondence between the 
X and Q coordinates must be invertible, so that each Xk is a correspond­
ing function of q\,q2,qz'- xk = Xk{qi,q2,qz), k = 1,2,3. F O R EXAMPLE, 

in c y l i n d r i c a l coordinates , with qi = r, q^ — 6, qz = z, we have 
r = \Jx\ + x\, 9 = t a n - 1 (0:2/0:1), z = 0:3, so that 0:1 = rcosO, o:2 = 
rsin#, X3 = z. This example also shows that there could be some points 
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where the correspondence between the X and Q-coordinates is not invert-
ible: the polar angle 6 is not defined when x = y — 0. We call such points 
special and allow their existence as long as there are not too many of them; 
at this point, we rely on intuition to decide how many is "many" and will 
not go into the details. 

EXERCISE 3.1.25.B Let 91 = r, 92 = 6, 93 — if be the usual sphe r i ca l 
coordinates so that Xi = rcosO siny, x-i = rs in# simp, X3 = rcosip. 
Express qi,q2,q3 as functions of Xk, k = 1,2,3. Find all special points. 

A coordinate curve in system Q is obtained by fixing two of the Q 
coordinates, and using the remaining one as a parameter. For every non-
special point P with Q coordinates (cj, 02,03), there are three coordinate 
curves passing through P. For example, we can fix 92,93 and vary qi. 
The corresponding coordinate curve C\ is given in cartesian coordinates 
by xk = x(<7i>c2,C3), k = 1,2,3. The coordinate curves Ci and C3 are 
obtained in a similar way. The coordinate system Q is called orthogonal 
if the coordinate curves are smooth and are mutually orthogonal at every 
non-special point. The unit tangent vectors qk, k = 1,2,3 to these curves 
at P define the local orthonormal basis at P ; we choose the orientation and 
the ordering of the curves so that the basis is right-handed: q-^ x q2 — q3. 
Figure 3.1.1 shows the coordinate curves and unit tangent vectors for the 
polar coordinates x = r cos 0,y = r sin 6. 

0 = §2 y r = q j 

2. 
o l 

Fig. 3.1.1 Polar Coordinates 

In the Q coordinates, the coordinate curves are also represented as in­
tersections of pairs of surfaces: {(91,92,93) : 9n = cn,qm = c m } , where 
m, n = 1,2,3, m < n, and cm, cn are real numbers. If we assume that, at 
time t = 0, each curve passes through the point P, then, in the Q coordi­
nates, 
• The 91 coordinate curve with 92 = 02, 93 = 03, is the collection of points 
(ci +£,c 2 ,c 3 ) , teR; 
• The 92 coordinate curve with qi= c\, 93 = 03, is the collection of points 



Curvilinear Coordinate Systems 143 

(ci,C2 + t,C3), t € R ; 
• The qz coordinate curve with q\= c\, q2 = c2, is the collection of points 
(ci,c2,c3 + t), i e l . 
Since, by assumption, Xk = Xk(qi,q2,q3), the equations of these curves in 
cartesian coordinates are 

ri(t) = xi(ci + i , c 2 , c 3 ) l + X2(ci + t , c 2 , c 3 ) j + X3(ci +t,c2,c3)k 

r2{t) = Xi(<=i, c2 + 1 , c3) i + X2(ci ,c2 + t, c3) 3 + Xz{ci ,c2 + t, c3) K 

^3(*) = Xl (Cl, C2, C3 + i) Z + X2(Cl, C2, C3 + t) J + X3(Cl, C2, C3 + 0 K 

(3.1.35) 

We define the functions hk, k = 1,2,3 so that the tangent vectors are 

r'fc(0) = ^fc«fc. (3.1.36) 

By (3.1.35), 

hk(P) = ||r'fc(0)|| = NS(fe) . <--> 
where the partial derivatives are evaluated at (c\, c2, c3), the Q coordinates 
of the point P. The orthogonality condition means that 

7̂ (0) • r'n(0) = J2^^=0,m^n. (3.1.38) 

The functions hk defined in (3.1.36) will play the central role in many 
computations to follow. We will assume that, away from the special points, 
the functions hk = hk(qi,q2,qs) have continuous partial derivatives of every 
order. 

EXERCISE 3.1.26? (a) Verify the relations (3.1.37) and (3.1.38). (b) Verify 
that cylindrical and spherical coordinates are orthogonal. Hint: a picture is 
helpful. 

Our next goal is to study ARC LENGTH in Q coordinates. Let C be a 
curve represented in cartesian coordinates X by the vector function r(t) — 
xi(t)t-\-x2(t)3 + xs(t) ii. We rewrite the expression (1.3.12) on page 29 for 
the line element as (ds/dt)2 = J2k=i(dxk/dt)2. Since Xk = Xk{qi,q2,qz), 
we have xk(t) = Xk(qi(t),q2(t),q3(t)), where qk(t) = qk(xi(t),x2(t),x3(t)), 
k = 1,2,3 By the chain rule, dxk/dt = Tlli=i(dXk/dqm)(dqm/dt), and 



144 Functions of Several Variables 

then, using (3.1.36) and dropping (dt)2, we find tha t the l i n e e lement in 

Q coordinates is 

(ds)2 = ^2h2
k(qi,q2,q3)(dqk)

2. (3.1.39) 

fc=i 

E X E R C I S E 3.1.27.5 (a) Verify (3.1.39). 

(b) Verify that, for small a, the distance between the two nearby points 

with the Q coordinates (ci,02,03) and (ci +0 ,02 ,03 ) is approximately h\a. 

(c) Verify that in cylindrical coordinates, (ds)2 = (dr)2+r2(d0)2 + (dz)2. 

(d) Verify that in spherical coordinates, (ds)2 = (dr)2 + r2 sin (p (d9)2 + 

r2(dtp)2. Hint for (b) and (c): while direct substitution into (3.1.39) will work, 

getting closer to the basics produces an easier argument. For example, in spherical 

coordinates, if r and ip are fixed and 6 is changing, the corresponding coordinate 

curve is a circle of radius rsimp (draw a picture). Then a change of A0 in 8 

produces the change r sin tp A9 in the arc length. Similar arguments work for the 

other two coordinate curves, and then it remains to use orthogonality. Note that, 

with this approach, you get the values of hk without using (3.1.37). 

(e) Verify that if the Q coordinate are not orthogonal, then 

(ds)2 = Y^ Ha dQi d1ji where H^ = ] P -a^-*^-
i,i=i fc=i 0Qi OQj 

(3.1.40) 

We already used a four-dimensional analog of this relation in the study of 

general relativity; see (2.4-23) on page 107. 

For future reference, let us summarize the values of the functions hk for 

cylindrical and spherical coordinates: 

Cylindrical 

Spherical 

hi 

1 

1 

hi 

r 

rs'm<p 

h3 

1 

r 

We can now derive the expression for the GRADIENT in Q coordinates. 

The value of a function at a point does not depend on the coordinate 

system, but the formula for computing that value does: if / = X1X2 +x% in 

cartesian coordinates, the same function in spherical coordinates becomes 

r2 cos#sin#sin tp + r cosip. Given an expression /(gi,92,(73) for a function 

in Q coordinates, we define the partial derivatives df/dqk, k — 1,2,3 in 
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the usual way; for example, 

9f = n m / (g l+ t ,g2 ,g3) - / (g l ,g2 ,g3) 
dqi t-»o t 

Unlike cartesian coordinates, the partial derivative df/dqk is not equal to 
the directional derivative Dqkf- Instead, by (3.1.9), (3.1.35), and (3.1.36), 
we conclude that 

dqk 
^ - = V / • r'fc(0) = hkVf-qk = hkD9hf. (3.1.41) 

EXERCISE 3.1.28? (a) Convince yourself that, in general, df/dqk ^ Dqkf. 
Hint: if P has Q coordinates (91,92,93), and Pt, the coordinates (91 +£,92,93), 
then, in general, OPt ^= OP + tq1, but the equality does hold in cartesian coordi­
nates, (b) Verify (3.1.41). 

Since the representation V / = !Cfc=i(^/ ' 9fc)9fc holds in every or-
thonormal coordinate system, equality (3.1.41) implies the following for­
mula for computing the gradient in general orthogonal coordinates: 

V / = l | ^ 1 + l | ^ 2 + l | ^ 3 , (3.1-42) 

h\ dq\ h2 dq2 h3 dq3 

where the functions hi,h2,h3 are denned in (3.1.37). 

EXERCISE 3.1.29.B (a) Verify that 

Vf=
d-Lr+

1-d-L§+
d-lz 

dr r 86 dz 

is the gradient in cylindrical coordinates, (b) Verify that 

or r sin <p 06 r o<p 

is the gradient in spherical coordinates, and verify that, for f(r, 6, ip) = g(r), 
the result coincides with (3.1.33). 

Next, we derive the expression for the DIVERGENCE in Q coordinates 
using the definition (3.1.23). Recall that, to compute the divergence in the 
cartesian coordinates, we consider a family of shrinking cubes with faces 
parallel to the coordinate planes. The same approach works in any coordi­
nates by considering rectangular boxes whose sides are parallel to the local 
basis vectors qi,q2,q3. Let P be a point with Q coordinates (01,02,03), 
and, for sufficiently small a > 0, consider a rectangular box with vertices at 
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the points with the Q coordinates {c\ ± (a/2),C2 ± (a/2),c3 ± (a/2)). The 
volume of this box is approximately a3|r'1(0) • (r2(0) x r3(0)) | = a3hih2h3; 
draw a picture and see equations (3.1.35). By (3.1.36) and (3.1.38), The 
basis vector qk is normal to two of the faces so that the area of each of 
those faces is approximately a2hmhn, where k ^ m ^ n. Consider a 
continuously differentiable vector field F written in the Q coordinates as 

F(qi,Q2,q3) = Fi(qi,q2,q3)q1 + ^2(91,92,93)92 +-^3(91,92,93) <Z3-
 T n e n 

the flux of this vector field through the pair of faces with the normal vector 
q1 is approximately 

a2(h2(ci + (a/2),C2,c3)h3(ci + (a/2),c2,c3)F1(a + (a/2),c2 ,c3) 

-h2(ci - (a/2),C2,c3)/i3(c1 - (a/2),c2 ,c3)Fi(ci - (a/2),c2 ,c3)J 

3d(/i2/t3Fi) 

09l 

with the approximation getting better as a —> 0. Similar expressions hold 
for the fluxes across the other two pairs of faces. Summing up all the fluxes, 
dividing by the volume of the box, and passing to the limit a —> 0, we get 
the formula for the divergence of F in Q coordinates: 

a y * 1 = n h r ( d { h t F l ) + d{htF2) + d{htF*]) • (3-1-43) 
hih2h3 V OQi 9q2 093 / 

EXERCISE 3.1.30.B (a) Verify (3.1.43)- (b) Verify that, in cylindrical coor­
dinates, 

d i v F = i ( ^ ) + ^ + ^ } 
r \ dr 89 dz 

(c) Verify that, in spherical coordinates, 

1 (d{r2smyFx) d{rF2) , d ( r s in^F 3 ) 
oiv r = —z—; I 1 — h 

r2siii(p \ dr 09 dtp 

Recall that the Laplacian V 2 / of a scalar field / is defined in every 
coordinate system as V 2 / = div(grad/). Let / = 7(91,92,93) be a scalar 
field defined in an orthogonal coordinate system Q. 

EXERCISE 3.1.31. (a)B Using (3.142) and (3.143) verify that 

v 2 / = 1 / d (h2h3 df_ \ + _9_/Mi3 df\ + _d_fhih2 3 / \ \ 
hih2h3 \dqi\ hi dqi) dq2\ h2 dq2) dq3\ h3 dq3))' 
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(b) Verify that, in cylindrical coordinates, 

w - i ^ V i S + g . ("•«> r dr \ dr ) r2 d62 dz2 ' 

and use the result to provide an alternative proof that V 2 l n r = 0 in R2. 
(c)c Verify that, in spherical coordinates, 

2 \<9r dr J r2 sin2 <pd92 r2sin<p d<p \ dip 

and use the result to provide an alternative proof that V 2 r _ 1 = 0 in R3. 

Next, we derive the formula for the CURL using (3.1.26). Consider a 
continuously differentiable vector field F written in the Q coordinates as 
F(qi,q2,qs) = Fi(q1,q2,q3)q1 + F2(q1,q2,q3) q2 + F3(q1,q2,q3) q3- Let us 
compute cur lF(P) • q1: where the point P has Q-coordinates (c\, c2,c3). 
For a sufficiently small a > 0, consider a rectangle spanned by the vectors 
ar'k(0), k = 2,3, so that P is at the center of the rectangle. The vertices 
of the rectangle have the Q coordinates (ci,C2 ± (a/2),c3 ± (a/2)) and 
the area of this rectangle is approximately a2h2h3; draw a picture and see 
equations (3.1.35). The line integral of F along the two sides parallel to q2 

is approximately 

a[h2(ci,c2,c3 - (a/2))F2(ci,C2,c3 - (a/2)) 

- h2(ci, c2, c3 + (a/2))F2 [cu c2, c3 + (a/2))J 

^ n2d(h2F2) 

with the quality of approximation improving as a —> 0. The line integral 
over the remaining two sides is approximately a2d(h3F3)/dq2. Dividing by 
the area of the rectangle and passing to the limit a —> 0, we find that 

i i r / m - 1 fd(h3F3) d(h2F2)\ u curlF(P) • 9 l = - ^ - ^ - fti 

The other two components, curl F(P) • q2 and cur lF(P) • q3 are computed 
similarly, and then we get the representation of the curl as a symbolic 
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determinant similar to (3.1.27): 

curl F 
1 

hih2h3 

hiqx h2q2 h3q3 

dqi dq2 dqz 

hxFx h2F2 h3F3 

(3.1.46) 

EXERCISE 3.1.32. A (a) Verify (3.1.46). (b) Use (3.1.46) in spherical 
coordinates to show that curl(g(r) r) = 0 in R3. 

We conclude this section with a brief discussion of INTEGRATION 
in curvilinear coordinates. As before, let X be the cartesian coordi­
nates x\,x2,X3 and Q, some other coordinates qi,q2,qz so that Xk = 
Xk(qi,q2,qs), k — 1,2,3; we no longer assume that the Q coordinates are 
orthogonal. At a non-special point P, consider the three vectors r'fc(0), 
k = 1,2,3, defined in (3.1.35), and assume that 

» - i ( 0 ) - ( r ' 2 ( 0 ) x ^ ( 0 ) ) ^ 0 . 

EXERCISE 3.1.33.B Verify that 

r i (0) - ( r ' 2 (0)xr^(0) ) = 

(3.1.47) 

dx\ 
dqi 

dxi 
dq2 

dxi 
dqz 

dX2 
dqi 

dX2 

dq2 

9X2 

9qz 

9xz 
dqi 

9X3 

9q2 

9X3 

9q3 

(3.1.48) 

Hint: we have cartesian coordinates in (3.1.35). 

The determinant in (3.1.48) is called the Jacobian, after the Ger­
man mathematician CARL GUSTAV JACOB JACOBI (1804-1851), who, 
in 1841, published a paper containing a detailed study of such determi­
nants. The Jacobian (3.1.48) is denoted either by J — J(qi,q2,q3) or by 
9{xi,x2,xs)/d(qi,q2,q3); similarly, we either call it the Jacobian of the 
system of functions Xi>X2iX3 o r the Jacobian of the transformation from 
the X coordinates to the Q coordinates. It was one of the results in the 
original paper by Jacobi that the change of variables is one-to-one if J ^ 0. 

EXERCISE 3.1.34. (a)A We know that, in orthogonal coordinates, 
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J(liiQ2,Q3) = hihzha. Try to derive this equality directly by expand­

ing the determinant in (3.1.48) and using the orthogonality conditions 

(3.1.38). (b)c Verify that J(r,6,z) = r (cylindrical coordinates) and 

J(r,6,<p) = r2 simp (spherical coordinates). 

Let G be a measurable domain in M3 with cartesian coordinates 3£, and 

let / = f{xi,X2,X3) be a continuous scalar field on G. A change of coor­

dinates % = (\k(xi,X2,xs), k = 1,2,3, maps every point (xi,X2,£3) to a 

point (91,92,93), which is also in M3. Under this map, 

• The domain G transforms into another domain G (of course, there are 

certain conditions on the functions c\k to ensure tha t the image of a domain 

is again a domain); 

• A small box with sides a,b,c around a point P = (xi,:r2,:E3) becomes a 

small curvilinear box around the image of P ; by (3.1.47), the volume of this 

box is approximately abc\J(qi, 92,93)!, with approximation getting better 

as max(a, 6, c) —> 0; 

• The function / becomes / = / (9i ,92,92) so tha t / (9 i ,92,93) = 

/ ( x i ( 9 i , 92,93), X2(9i, 92,93), X3(9i, 92,93))-

Using the general definition of the Riemann integral (3.1.13), we get the 
following change of v a r i a b l e s fo rmula f o r t h e volume i n t e g r a l : 

f(xux2,x3)dV(X) = ^ y " / ( 9 i , 9 2 , 9 3 ) | J ( 9 i , 92,93) W Q ) -

G G 

(3.1.49) 

Notice tha t the change of coordinates from X to Q is given by the functions 

qfc, k — 1,2,3, whereas, to compute the Jacobian and to find the function 

/ , we need the functions Xk defining the change in the opposite direction. 

A result similar to (3.1.49) holds for area integrals, if we write 9fc = 

(\k(^i,x2), k = 1,2, and 93 = £3. 

E X E R C I S E 3.1.35? (a) Verify (3.1.49). (b) Write the analogs of (3.1.47) and 

(3.1.49) in two dimensions. Hint: r[(0) x r ^ O ) = J{qi,q2)(t- (c) Interpret 

the vector parametric representation r = r(u, v), (u, v) G G, of a surface S 

as a map from G to S and derive the familiar formula for the surface area 

m(S) = / / \\ru x rv\\dA(u,v). 

G 

Hint: show that a small rectangle with sides a,b in G becomes a curvilinear figure 

on S with area approximately equal to ab\\ru x rv\\. Compare this with Exercise 

3.1.15 on page 134. 

/ / / 
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3.2 T h e Three Integral Theorems of Vector Analysis 

The theorems of Green, Gauss, and Stokes are usually the high point of 
a multi-variable calculus class. We will use these theorems to derive the 
equations of electromagnetic theory. 

3.2.1 Green's Theorem 

Theorem 3.2.1 In the space R2 with cartesian coordinates, consider a 
domain G whose boundary dG consists of finitely many simple closed piece-
wise smooth curves. Let P = P(x, y), Q = Q(x, y) be two functions having 
continuous first-order partial derivatives in an open domain containing G. 
Assume that the orientation of dG is positive (G stays to the left as you 
walk around dG). Then 

G 

If the boundary of G consists of several pieces, then the integral on the left 
is the sum of the corresponding integrals over each piece. 

This result is known as Green's theorem, after the English scientist 
GEORGE GREEN (1793-1841), who published it in 1828 as a part of an 
essay on electricity and magnetism. The essay was self-published for pri­
vate distribution and did not receive much attention at the time. Green 
did all his major scientific work while managing the family mill and bak­
ing business, with about two years of elementary school as his only formal 
education. Later, he quit the family business and, in 1837, got an under­
graduate degree from Cambridge University. 

EXERCISE 3.2.1. B Prove Green's theorem. Hint: Consider the vector field 
F = Pi + Qj + Ok and verify that V x F = (Qx — Pv)it. Then break G into 
small pieces Gk and note that, by (3.1.26), (Qx — Py)m(Gk) ~ fgG Pdx + Qdy, 
where m(Gfc) is the area of Gk, and dGk is the boundary of Gk with the suitable 
orientation. Now sum over all the small pieces and note that the line integrals 
over the interior pieces cancel one another. Finally, pass to the limit m(Gfc) —• 0. 

An interesting application of (3.2.1) is computing areas by line integrals: 

m(G) = I dA= <p xdy = — d> ydx = - i xdy — ydx. (3.2.2) 
J J JdG JdG 2 JdG 
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E X E R C I S E 3 .2 .2 . B (a) Verify all equalities in (3.2.2). (b) Verify that, in 

polar coordinates x = r cos 6, y = r sin 6, we have 

m(G) = \ i 
A Jd 

r2d9. 
dG 

Hint: verify that, in polar coordinates, xdy — ydx = r2dd. 

F O R E X A M P L E , let us compute the area under one arc of the c y c l o i d , 

the trajectory of a point on the rim of a wheel rolling without slippage 

along a straight line. If a is the radius of the wheel, and the wheel is rolling 

to the right so tha t , at t ime t = 0, the point on the rim is at the origin, 

then the vector parametr ic equation of the cycloid is 

r(t) = a{t - sin t)i + a(l - cos t) j . (3.2.3) 

One revolution of the wheel corresponds to t = 2n. The region G under 

one arc is bounded by the x-axis on the bot tom and the arc on the top. By 

(3.2.2), keeping in mind the orientation of the boundary, the area of the 

region is m(G) = - §dG ydx — - fQ* Odx - a2 / 2 7 r ( l - cost)2dt = Sna' 
On the arc, x'(t) = a(l — cost), y(t) = a ( l — cost) , and, of the three 

possible formulas for the area, the one involving only ydx results in the 

easiest expression to integrate. 

E X E R C I S E 3.2.3. B (a) Verify that (3.2.3) is indeed a vector parametric 

equation of the trajectory of the point on the rim of a rolling wheel. Hint: 

consider 0 < t < ir. Denote by A the point on the rim, A', the current point of 

contact between the wheel and the ground, and C, the center of the wheel. Then 

r(t) = OA'+A'C+CA, \OA'\ = at, and the angle between CA' and CA is t; draw 

the picture, (b) Draw the picture of the cycloid and verify the integration. 

There is a hardware device, called p l a n i m e t e r , which implements the 

formula tn(G) = (1/2) §dG xdy — ydx and measures the area of a planar fig­

ure by traversing the perimeter. The Swiss mathematician J A C O B A M S L E R 

(1823-1912) is credited with the invention of a mechanical planimeter in 

1854. Today, both mechanical and electronic planimeters are in use. 

3 .2 .2 The Divergence Theorem of Gauss 

Depending on the source, the following result is known as G a u s s ' s 

theorem, the G a u s s - O s t r o g r a d s k y theorem, or the d i v e r g e n c e theorem. 

This theorem can be motivated by the following physical argument. Let v 
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and p be the velocity field and the density of a fluid in a region G. In our 
discussion of divergence, we saw that div(pv) is the time rate of change of 
the amount fluid in G per unit volume. Therefore, fff div(pv)dV is the 

G 
time rate of change of the amount of fluid in G, and must be equal to the 
total flux across the boundary dG of G: 

flJdiv(pv)dV= Ijpvdc 

G dG 

This is the essential meaning of the divergence theorem, which holds for 
every continuously differentiable vector field F as stated below. 

Theo rem 3.2.2 Consider a bounded domain G in R3 whose boundary 
dG consists of finitely many piece-wise smooth orientable surfaces. Let F 
be a vector field so that, for every unit vector u, the scalar field F • u has 
a continuous gradient in an open set containing G. Then 

ffF-dtr= fffdivFdV, (3.2.4) 

dG G 

where the normal vector to dG is pointing outside of G; if the boundary of 
G consists of several pieces, then the integral on the left is the sum of the 
corresponding integrals over all those pieces. 

The great German mathematician CARL FRIEDRICH GAUSS (1777-
1855) discovered this result in 1813 while studying the laws of electrostatics. 
As with many other his discoveries, he was not in a hurry to publish it; the 
exact year is known from the detailed mathematical diary Gauss kept all his 
adult life. Based on the entries in that diary, many believe that Gauss could 
have advanced 19th century mathematics by another 50 years or more, had 
he published all his results promptly. The Russian mathematician MIKHAIL 

VASIL'EVICH OSTROGRADSKY (1801-1862) made an independent discovery 
of (3.2.4) and published it around 1830. 

EXERCISE 3.2.4? (a) Prove Gauss's Theorem. Hint: the argument is the same 
as in the proof of Green's Theorem, but using (3.1.23). (b) Let F = r/r3 = r/r2 

(see page 140). Let S be a piece-wise smooth closed surface so that the origin 
O of the frame is not on the surface. Show that 

II F.d<r = C' S e n d ° S e S t h G ° r i g i n ' (3.2.5) 
I 0, S does not enclose the origin. 
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Hint: Note that d i v F = V 2 ( l / r ) = 0 ifr ^ 0. If S encloses the origin, then there 

exists a small sphere centered at the origin and lying inside the domain enclosed 

by S. Show that the flux through S is equal to the flux through the sphere; then see 

Exercise 3.1.23 on page HO. (c) Let dG be an orientable piece-wise smooth 

surface enclosing a domain G, and let F be a vector field, continuously 

differentiable in an open set containing G. Show that 

I FxnGda = - fff curl F dV, (3.2.6) 

dG G 

where fie is the outside normal vector to dG. Hint: the left- and right-hand 
sides of (3.2.6) are vectors; denote them by v and w, respectively. The claim is 
that v-b = w -b for every constant vector b; in cartesian coordinates, it is enough 
to verify this equality for only three vectors, i,J,k instead of every b. By the 
properties of the scalar triple product, b • (F x HG) = —(F x b) • HG- By Gauss's 
Theorem, 

ff{F xb)nada = fff div(F x b) dV, 

dG G 

and by (3.1.30), div(F x b) = b • cu r lF . 

We will now use Gauss's Theorem to derive the basic equation of fluid 

flow, called the E Q U A T I O N O F C O N T I N U I T Y . Assume tha t the space M3 is 

filled with a continuum of point masses (particles). This continuum can 

represent, for example, liquid, gas, or electric charges; accordingly, "mass" 

represents the appropriate characteristic of tha t continuum, such as the 

mass of mat ter or electric charge. Denote by v = v(P, t) the velocity of the 

point mass at the point P and t ime t, and by p = p(P,t), the density of 

the point masses at the point P and t ime t. By definition, 

where AV is the volume of a region containing the point P, AM is the mass 

of tha t region, and limit is assumed to exist at every point P. We also allow 

the existence of sources and sinks, tha t is, in some areas of the space, the 

particles can be injected into the space (source) or removed from the space 

(sink). The density of the sources and sinks is described by a continuous 

scalar field v = v(P, t) so tha t the net mass per unit time, injected into and 
removed from G due to sources and sinks is fff pvdV. We also assume 

G 
t ha t the functions p, u, v are continuously differentiable as many time as 
necessary. Since the total mass M of the particles in G also changes due to 
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the flux across dG, we have 

dM 
dt 

HIpudV - ifpv-da; (3.2.7) 
G 8G 

recall that the positive direction of the flux is out of G, which reduces 
the mass. On the other hand, M = fffp dV. Assuming that we can 

G 
differentiate under the integral, dM/dt = JJf(dp/dt) dV. If the functions 

G 
p and v are continuously differentiable, then, by Gauss's Theorem (3.2.4), 
Jfpv-dcT = fff div(pv)dV. As a result, (3.2.7) implies 
dG G 

/ / / ( 
-£ + div(pv) - pi> ) dV = 0. 

Given a point in space, this equality holds for every domain G containing 
that point, and we therefore conclude that the equation of con t inu i ty 

-£+div(pv)=pu (3.2.8) 

holds at every point of the space. Conversely, after integration, (3.2.8) 
implies (3.2.7). 

EXERCISE 3.2 .5 . C (a) Convince yourself that (3.2.7) implies (3.2.8). Hint: 
assume that the left-hand side of (3.2.8) is bigger than up at one point. By conti­
nuity, the inequality will hold in some neighborhood of that point. Integrate over 
that neighborhood and get a contradiction, (b) Verify that (3.2.8) is equivalent 
to 

-?-+pdivv = up. (3.2.9) 
dt 

Hint: Consider a trajectory r = r(t) of a moving particle so that v = r ' and 
p = p(r(t),t). Then dp/dt = Vp • v + dp/dt. On the other hand, by (3.1.30), 
div(pu) = Vp • v + p divv. 

A continuum is called incompressible if the density p does not change 
in time and space: p(t, x) = const. For an incompressible continuum, equa­
tion (3.2.8) becomes divw = u; the velocity v of an incompressible contin­
uum without sources or sinks satisfies divt; = 0. 

We can also state Gauss's Theorem in a two dimensional domain G. 
Let the functions P, Q and the domain G satisfy the conditions of Green's 
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Theorem. Define the vector field F — Pi + Qj + 0k and consider the 
outside unit normal vector no to dG; since the unit tangent vector UQ 
to dG exists at all but finitely many points of dG, so does no, being, by 
definition, a unit vector perpendicular to UG- Then, by Gauss's Theorem, 

i F • nG ds = / / d i v F d A . (3.2.10) 
JdG J J 

G 

EXERCISE 3.2.6.c Derive (3.2.10) from Green's Theorem. Hint: ifr(t) = 
x(t) i + y(t) j is the parametrization of dG, then r' = x' t + y' j is tangent to dG; 

the vector y' i — x'j is therefore perpendicular to r' and points outside (verify 

this). Then F • na ds = -Qdx + Pdy. Note that div J1 = Px + Qv. 

3.2.3 Stokes's Theorem 

The following result is known as S tokes ' s Theorem, after the English 
mathematician GEORGE GABRIEL STOKES (1819-1903). 

Theorem 3.2.3 Let S be a piece-wise smooth orientable surface whose 
boundary OS consists of finitely many simple closed piece-wise smooth 
curves so that the orientations of S and dS agree (see page 135). Let 
F be a vector field, continuously differentiable in a domain containing S. 
Then 

I F • dr = 17 cur lF • dtr; (3.2.11) 
JdS J J 

s 
if the boundary of S consists of several closed curves, then the integral on 
the left is the sum of the corresponding integrals over all those curves. 

According to some accounts, the first statement of this theorem ap­
peared in a letter to Stokes, written in 1850 by another English scientist, 
Sir WILLIAM THOMSON (1824-1907), also known as LORD KELVIN. 

EXERCISE 3.2.7. (a)c Verify that Stokes's Theorem implies Green's theo­
rem. (b)B Prove Stokes's Theorem (the arguments are similar to the proof 
of Greens Theorem). 

The following result should be familiar from a course in multi-variable 
calculus; Stokes's Theorem provides a key component for the proof. 

Theorem 3.2.4 Let F be a continuous vector field in a simply connected 
domain G, and assume that, for every unit vector n, the scalar field F • ri 
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has a continuous gradient in G. Then the following three conditions are 
equivalent: 
(i) The field F has the path independence property: §c F • dr = 0 for every 
simple closed piece-wise smooth curve C in G. 
(ii) The field F has a potential: there exists a function f so that F = V / 
everywhere in G. 
(Hi) The field F is irrotational: curl F = 0 everywhere in G. 

EXERCISE 3.2.8. (a)c Prove the theorem. Hint: for (i) => (ii), see Theorem 
3.1.1. For (ii) =>• (Hi), use (3.1.30). For (Hi) =>• (i) use Stokes's Theorem. (b)B 

Verify that the vector field F(x, y, z) = (-y/(x2+y2))i+(x/(x2+y2))j+OK 
is irrotational in the domain {(x, y, z) : x2+y2 > 0} (direct computation) but 
does not have the path independence property there (integrate over a unit circle 
in the (I, j) plane, centered at the origin). Explain why the result is consistent 
with the above theorem (note that the function is not defined anywhere on the 
z axis). 

Assume that the vector field F satisfies the conditions of Stoke's Theo­
rem everywhere in M3. Then, by (3.2.11), the value of J J cur lF • dcr does 

S 
not depend on the particular surface S, as long as the boundary of S is 
the given simple closed piece-wise smooth curve C. This conclusion is con­
sistent with Gauss's Theorem. Indeed, let S\ and 5*2 be two orientable 
piece-wise smooth surfaces with the same boundary C and no other points 
in common, and denote by G the region enclosed by Si and S2 (draw a 
picture). The boundary dG of G is the union of S\ and S2. If the vec­
tor field F is sufficiently smooth so that cur lF satisfies the conditions of 
Gauss's Theorem, then, by (3.2.11), ff curl F-dcr = J / /d iv(cur lF)dV = 0, 

dG G 

where the last equality follows from (3.1.30) on page 139, and therefore 
/ / curl F -dcr = JJ curl F • da, if the orientations of both Si and S2 agree 
Si S2 

with the orientation of C. 

By now we have seen enough connections between Green's, Gauss's, and 
Stokes's Theorems to suspect that there should be a way to unify the three 
into one formula. Such a formula does indeed exist: 

/ UJ= I duj, (3.2.12) 
JdM JM 

where dM is the boundary of the set M, and du is a certain derivative 
of the expression u> being integrated on the left-hand side. Making a pre-
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rise meaning of this formula and demonstrating that (3.2.1), (3.2.4), and 
(3.2.11) all follow as particular cases requires a higher level of abstraction 
and is done in differential geometry, where (3.2.12) is known as Stokes's 
Theorem. The details are beyond the scope of this book and can be found 
in most books on differential geometry, for example, in Section 8.2 of the 
book Differentiable Manifolds: A First Course by L. Conlon, 1993. 

The following exercise provides yet another application of Stokes's The­
orem. One of the results, namely, (3.2.14), will be used later in the analysis 
of the magnetic dipole. 

EXERCISE 3.2.9. c Let S be piece-wise smooth orientable surface and its 
boundary OS, a simple closed piece-wise smooth curve. Assume that the 
orientations of S and dS agree. Denote by n the field of unit normal 
vectors on S, and by u, the field of unit tangent vectors on dS. (a) Show 
that, for every continuously differentiable scalar function f, 

/ / g r a d / x nda = - I fuds. (3.2.13) 

s ds 

Hint: the left- and right-hand sides of (3.2.13) are vectors; denote them by v and 
w, respectively. The claim is that v • b = w -b for every constant vector b; in the 
cartesian coordinates, it is enough to verify this equality for only three vectors, 
i,j,K instead of b. Note that, by Stokes's Theorem, w = f/(curl(/6)) -nda. 

' s 
By (3.1.30), curl(/6) = grad/ x b. Then use the properties of the scalar triple 
product, (b) Taking f = TQ • r in (3.2.13), where TQ is a constant vector 
and r is the vector field defined on page HO, and using (3.1.34), show that 

(p(ro • r)uds =—ro x nda. (3.2.14) 

as s 

3.2.4 Laplace's and Poisson's Equations 

This section is a very brief introduction to potential theory and harmonic 
functions. Gauss's Theorem will be the main tool in the investigation. 

A scalar function / is called harmonic in a domain G if / is twice con­
tinuously differentiable in G and V 2 / = 0. Recall that V 2 / = div(grad/), 
so that, in cartesian coordinates, V 2 / = fxx + fyy in M2 and V 2 / = 
fxx + fyy + fzz in K3. Similar expression exist in every M", n > 3. While 
we restrict our discussion to M3, all the results of this section are valid in 
every Mn, n > 2. 
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The equation 

V 2 / - g, (3.2.15) 

where g is a known continuous function, is called P o i s s o n ' s e q u a t i o n , 

after the French mathematician S I M E O N D E N I S P O I S S O N (1781-1840). The 

particular case of the Poisson equation, 

V 2 / = 0, (3.2.16) 

is important enough to have its own name, and is called L a p l a c e ' s 

e q u a t i o n , after the French mathematician P I E R R E - S I M O N LAPLACE 

(1749-1827). P o t e n t i a l t h e o r y is the branch of mathematics studying 

these two equations; the large number of problems in both mathematics 

and physics tha t are reduced to either (3.2.15) or (3.2.16) justifies the allo­

cation of a whole branch of mathematics to the study of just two equations. 

This section provides the most basic introduction to potential theory. While 

the results we discuss are t rue in both two and three dimensions, our pre­

sentation will be in R 3 , both for the sake of concreteness, and because in K2 

complex numbers provide a much more efficient method to study Laplace's 

and Poisson's equations; see Theorem 4.2.6 on page 205 below. 

Let / be a continuously differentiable function in a domain G in E 3 , 

and S, a closed orientable piece-wise smooth surface. Denote by ris = 

ns{P) the outside uni t normal vector to S a t the point P. The normal 

d e r i v a t i v e of / a t P is, by definition, 

^ • ( P ) = V / ( P ) • ns(P); where V / = g r a d / . (3.2.17) 
an 

E X E R C I S E S^.IO.*^ Assume that f is a harmonic function in a domain G 

and S, a closed orientable piece-wise smooth surface in G. Assume that the 

domain enclosed by S is a subset of G. (a) Show that 

-i-da = 0. (3.2.18) 
an 

s 

Hint: Apply Gauss's Theorem to F = V / . (b) Show that (3.2.18) can fail 

if the domain enclosed by S contains points that are not in G. Hint: take 

/ = r _ 1 and G, the unit ball around the origin with the center removed. 

The following result is the analog of the integration-by-parts formula 

from the one-variable calculus. 

/ / 
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Theorem 3.2.5 Let G be a domain in R3. Assume that the boundary dG 
of G consists of finitely many closed piece-wise smooth orientable surfaces. 
As usual, we choose the orientation of dG so that every unit normal vector 
to dG points outside of G. Let f, g be two scalar fields defined in an open 
set G\ containing G. 
(a) If f is continuously differentiable in G\ and g is twice continuously 
differentiable, then 

HI (V2<?) fdV = - HI Vf-VgdV + Hf^ da. (3.2.19) 
G G dG 

(b) If both f and g are twice continuously differentiable in G\, then 

/ / / ( / V ^ - 9 W ) ^ = / / ( / | - 9 i ) * . (3.2,0) 
G dG 

EXERCISE 3.2.11.c (a) Prove (3.2.19). Hint: apply Gauss's Theorem to the 
vector field fVg. (b) Prove (3.2.20). Hint: in (3.2.19), switch f and g, then 
take the difference of the two resulting identities. 

Equalities (3.2.19) and (3.2.20) are known as Green's f i r s t and 
second formulas (or identities). 

EXERCISE 3.2.12? State and prove the two-dimensional versions of (3.2.18), 
(3.2.19), and (3.2.20). Hint: you just have to replace triple integrals with 
double, and surface integrals with line. For example, (3.2.19) becomes 

II W2gdA = - II Vf -VgdA + j f ^da. (3.2.21) 
G G dG 

Laplace's and Poisson's equations are examples of partial differential 
equations. While there exist many different methods for finding explicit so­
lutions of ordinary differential equations, most partial differential equations 
are not explicitly solvable. As a result, theorems that ensure existence and 
uniqueness of solutions of such equations are very useful. Below, we discuss 
uniqueness of solution for the Poisson equation. 

Theorem 3.2.6 Let S be a closed orientable piece-wise smooth surface. 
Consider two functions fi, fi that are continuously differentiable in an open 
set containing S and are harmonic everywhere in the domain Gs enclosed 
byS. 

(a) If fi = /2 on S, then f\ = fi everywhere in Gs-
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(b) If dfi/dn = dfi/dn on S then there exists a real number c so that 
/ i — fi = c everywhere in Gs-

EXERCISE 3.2.13.c Prove Theorem 3.2.6. Hint: consider the function f = 
/ i — fi and apply (3.2.19) with g = f to conclude that V / = 0 everywhere in Gs-
Therefore f must be constant (Exercise 3.1.3 on page 125); in part (a), f = 0 on 
S, so the constant must be zero. 

Let G be a bounded domain whose boundary dG is a closed orientable 
piece-wise smooth surface. Let g be a continuous function in G, and h, 
a function continuous in some domain containing dG. The D i r i ch l e t , or 
f i r s t , boundary value problem for the Poisson equation (3.2.15) in G is 
to find a function / that is twice continuously differentiable in an open 
set containing G, satisfies equation (3.2.15) everywhere in G, and / = h 
on dG. The Neumann, or second, boundary value problem for the Poisson 
equation is to find a function / that is twice continuously differentiable in 
an open set containing G, satisfies equation (3.2.15) everywhere in G, and 
df/dn — h on dG. With some additional constructions, a formulation of 
both problems is possible by considering the function / only in the closure 
of G, that is, without using an open set containing G 

EXERCISE 3.2.14. c (a) Show that the Dirichlet problem for the Poisson 
equation can have at most one solution. Hint: use the first part of Theorem 
3.2.6; the difference of two solutions is a harmonic function, (b) Show that 
every two solutions of the Neumann problem differ by a constant. Hint: use 
the second part of Theorem 3.2.6. (c) Show that the Neumann problem for the 
Laplace equation has no solutions unless J J hda = 0. Hint: use (3.2.18). 

dG 

The difference between the Dirichlet and Neumann problems is the 
boundary condi t ions imposed on the function / : in the first case, we 
prescribe the values on the boundary of G to the function itself, and in the 
second case, to the normal derivative of the function. A combination of the 
two is possible and is called the Robin boundary value problem, when we 
prescribe the values on dG to the expression af + (df/dn), where a is a 
known function defined on dG. Finally, there is an oblique de r iva t ive 
problem, when the values on dG are prescribed to the expression V / • u, 
where ix is a continuous unit vector field on dG. We only mention these 
boundary conditions to illustrate the numerous problems that can be stud­
ied for the Poisson and Laplace equations. 

While the Dirichlet problem is named after the German mathemati-
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cian J.P.G.L. Dirichlet, who did pioneering work in potential theory, the 
origins of the other two names, Neumann and Robin, are less clear. Most 
probably, the Neumann problem is named after the German mathematician 
CARL GOTTFRIED NEUMANN (1832-1925) for his contributions to poten­
tial theory. His father FRANZ ERNST NEUMANN (1798-1895) worked in 
mathematical physics and could have contributed to the subject as well. 

We conclude this section by establishing the Dirichlet principle for the 
Poisson equation. As before, let G be a bounded domain whose boundary 
dG is a closed orientable piece-wise smooth surface. Let g be a continuous 
function on G, and h, a function continuous on some domain containing 
dG. We assume that all functions are real-valued. 

Denote by U the set of functions so that every function 
in U is twice continuously differentiable in an open set 
containing G and is equal to h on dG. 

For every l igM, define the number 

I{u) = Jjj (±\\Vu\\2+g^dV. 

In mathematics, a rule that assigns a number to a function is called a 
funct ional ; thus, 7 is a functional defined on the set U. 

Theorem 3.2.7 (Di r i ch le t p r i n c i p l e ) If f is a function in U and 
V 2 / = g in G, then 

I{f)= mm I(u). (3.2.22) 

Conversely, if the function f in U satisfies (3.2.22), then V 2 / = g in G. 

Proof. Assume that / is a function in U and V 2 / = g in G. Then 

o = / / / ( v 2 / -g)(f- u)dv = fJJ v2/ (/ - u)dv - JJfgU ~ u)dv 
G G G 

(3.2.23) 
for every u £U. Being elements of the set U, both / and u are equal to h 
on dG. Therefore, / - u = 0 on dG, and we find from (3.2.19) that 

HI V2/ (/ - u)dV = - HI || V/||2 dV + JJIV/ • VudV. (3.2.24) 
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Combining (3.2.23) and (3.2.24) yields 

/ / / ( " V / " 2 + f9) dV = / / / ( V / ' VU + 9U) ^ ( 3 - 2 - 2 5 ) 

G G 

By the definition of the dot product, | V / • Vu| < | |V/ | | ||Vu||. Also, for 
every two non-negative numbers a, b, 0 < (a — b)2 = a2 + b2 — 2ab, which 
means that ab < (a2 + b2)/2. Therefore, (3.2.25) implies 

///(ll V/||2 + fg) dV<\ JJJ \\Vf\\2dV + jJj(\\\Vu\\2 + s«) dV. 
G G G 

Hence, / ( / ) < I(u), which is equivalent to (3.2.22). 
Conversely, assume that / satisfies (3.2.22). Take any function v that 

is twice continuously differentiable in G and is equal to zero outside of an 
open set contained in G. For this function v define the function F = F(t) 
by F(t) = I(f + tv). By assumption, t = 0 is a local minimum of F. Direct 
computations show that F = F(t) is differentiable and 

F'(0) = [[[{Vf • Vv + gv) dV. (3.2.26) 

G 

From the one-variable calculus we know that F'(0) must be equal to zero. 
Applying (3.2.19) and keeping in mind that, by assumption, v = 0 on dG, 
we conclude that 

/ / / 
(~Vzf + g)vdV = Q. (3.2.27) 

G 

Since the function v is arbitrary, this implies V 2 / = g in G and completes 
the proof of the theorem. • 

EXERCISE 3.2.15.5 (a) Verify (3.2.26). Hint: replace u in the definition of I 
with f + tv and expanding the squares; note that, by construction, f + tv €U for 
every v and t. (b) Verify that (3.2.27) indeed implies V 2 / — g in G. Hint-
assume that V 2 / > g at some point P in G. Argue that the same inequality must 
then hold in some open ball centered at P and lying completely in G. Then take 
a function v that is equal to one in that ball — there is still some space between 
the boundary of the ball and the boundary of G where v can come down to zero 
— and come to a contradiction with (3.2.27). 

Theorem 3.2.7 holds also in M2, and, in fact, in every Rn , n > 2. 
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3.3 Maxwell's Equations and Electromagnetic Theory 

Electromagnetic theory, or electromagnetism, is the branch of physics that 
studies electric and magnetic fields. Numerous experiments have shown 
that these two fields are physically related. Maxwell's equations provide a 
mathematical model that establishes the precise relation between the elec­
tric and magnetic fields. The original publication in 1864 by the Scottish 
mathematician and physicist JAMES CLERK MAXWELL (1831-1879) con­
tained 20 equations in 20 unknowns. Later, in the 1880s, J. W. Gibbs and 
O. Heaviside put the equations in a more compact vector form, which we 
will present below. On the basic physical level, Maxwell's equations gener­
alize a number of experimental facts; there are some physicists these days 
who believe that one cannot derive Maxwell's equations, although Maxwell 
himself would probably disagree. On the mathematical level, these equa­
tions admit numerous derivations, for different models and on various levels 
of abstraction, and we discuss some of these derivations below. 

If an equation describes a physical law, the particular form of the equa­
tion often depends on the units used to measure the corresponding phys­
ical quantities. In our discussion of electromagnetism, we will use the 
I n t e r n a t i o n a l System of Units (SI). Some of the units in SI are Am­
pere (A) for electric current, Coulomb (C) for electric charge, meter (m) 
for length, Newton (N) for force, second (s) for time. 

3.3.1 Maxwell's Equations in Vacuum 

In vacuum, the electric and magnetic fields are described mathematically 
by the vectors E and B, respectively. A possible interpretation of these 
vectors is through the force F exerted by the fields on a point charge q 
moving with velocity v. 

F = q{E + vxB). (3.3.1) 

The charges generating the fields can be stationary or moving; moving 
charges constitute an electric current. Denote by p the density per unit 
volume of free stationary charges, and by J , the density, per unit area, of 
electric currents. In general, E, B, p, and J are time-dependent. Maxwell's 
equations establish the connection between E, B, p, and J. We begin by 
stating the equation, and then show how to derive them by combining 
the basic empirical laws of electricity and magnetism with the theorems of 
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divE = 

d ivB = 

curl E = 

P_ 
£o 

0; 

= -

1 

dB 
dt 

Gauss and Stokes from vector analysis. 
In the International System of Units (SI), Maxwell's equations are 

(3.3.2) 

(3.3.3) 

(3.3.4) 

dE 
cmlB = /j,0J + fJ.oSo-Kr- (3.3.5) 

The positive numbers Mo = 47T • 10"7 N/A2 , s0 = 8.85 • 10 - 1 2 C/(N-m2) are 
called the magnetic permeabi l i ty and e l e c t r i c a l p e r m i t t i v i t y of the 
free space, respectively; the relation 

c2 = — (3.3.6) 
Mo£o 

holds, where c is the speed of light in vacuum. 

The starting point in the derivation of (3.3.2) is Coulomb's Law, discov­
ered experimentally in 1785 by the French physicist CHARLES AUGUSTIN 

DE COULOMB (1736-1806). Originally stated as the inverse-square law for 
the force between two charges, the result also provides the electric field E 
produced by a point charge q: if q is located at the point O, then, for every 
point P ^ O, 

E{p) = ^\oPJ = ^^- (3-3-7) 

Let S be closed piece-wise smooth surface enclosing the point O. Then 
E(P) is denned at all points P on S. According to (3.2.5), page 152, / / E • 

s 
da = q/eo. By linearity, if there are finitely many point charges qi,-.-,qn 

inside S, and E is the total electric field produced by these charges, then 

f f E • dtr = (l/e0)f29k- (3-3.8) 

s fc=1 

Now assume that there is a continuum of charges in the domain G enclosed 
by S, and a small region GB around a point B G G has the approximate 
charge /j(B)m(Gs), where p is a continuous density function and m(Gg) is 
the volume of GB ', the smaller the region GB , the better this approximation 
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of the charge. Then (3.3.8) becomes 

S G 

and equation (3.3.2) follows from Gauss's Theorem (see Theorem 3.2.2). 

EXERCISE 3.3.l.c Verify that (3.3.9) indeed implies (3.3.2). 

Equation (3.3.9) is important in its own right and is known as Gauss's 
Law of E l e c t r i c Flux. 

Equation (3.3.3) is the analog of (3.3.2) for the magnetic field and re­
flects the experimental fact that there are no single magnetic charges, or 
monopoles. 

The starting point in the derivation of (3.3.4) is Faraday' s Law, discov­
ered experimentally in 1831 by the English physicist and chemist MICHAEL 

FARADAY (1791-1867): a change in time of a magnetic field B induces 
an electric field E. This law is the underlying principle of electricity gen­
eration: the electric field E produces an electric current in a conductor. 
Mathematically, if S is a piece-wise smooth orientable surface with a closed 
piece-wise smooth boundary dS so that the orientations of S and dS agree, 
then 

/ „ * • * — / / £ •"• <3-3io> 
s 

Equation (3.3.4) now follows from Stake's Theorem (Theorem 3.2.3). Note 
that §QS E • dr = V is the voltage drop along dS. For a coil without a 
ferromagnetic core, electric current I through the coil produces magnetic 
field B whose flux is proportional to / : — JJ B • da = LI, where L is 

s 
the inductance of the coil. Then (3.3.10) becomes V = Ldl/dt, which is a 
fundamental relation in the theory of electrical circuits. 

EXERCISE 3.3.2.c Verify that (3.3.10) indeed implies (3.3.4). 

The starting point in the derivation of (3.3.5) is an experimental fact 
that a steady electric current produces a magnetic field. In 1820, the Danish 
physicist HANS CHRISTIAN 0RSTED (1777-1851) observed that a steady 
electric current deflects a compass needle. The French scientist ANDRE-
MARIE AMPERE (1775-1836) learned about this discovery on September 
11, 1820; one week later, he presented a paper to the French Academy with 
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a detailed explantation and generalizations of this phenomenon. In 1827, 
he gave a mathematical formulation, connecting the steady electric current 
with the induced magnetic field. In modern terms, the formulation is as 
follows Let 5 be a piece-wise smooth orientable surface with a piece-wise 
smooth boundary OS so that the orientations of S and dS agree. If J is the 
density, per unit area, of the stationary (that is, time-independent) electric 
current, then the induced magnetic field B satisfies £„„ B-dr = fio JJ J-dcr; 

s 
see also Exercise 3.3.11 on page 170 below. By Stokes's Theorem, this 
implies Ampere' s Law 

curlB = /xoJ; (3.3.11) 

Maxwell used the equation of continuity (3.2.8) and his first equation (3.3.2) 
to extend (3.3.11) to time-varying currents in the form (3.3.5). Recall that 
div (curl F) = 0 for every twice continuously differentiable vector field F. 
Then, assuming B is twice continuously differentiable, we get from (3.3.11) 
that div J = 0. On the other hand, if p is the density, per unit volume, of 
the charges moving with velocity v, then J = pv, and, by the equation of 
continuity with no sources and sinks, 

^ + d i v J = 0, (3.3.12) 

or div J = —dp/dt. For a stationary current, dp/dt = 0, which is consistent 
with div(curlJB) = 0. For time-varying currents, we use (3.3.2) to find 
dp/dt = e0div(dE/dt) so that div ( J + e0dE/dt) = 0. To ensure the 
equality div(curlB) = 0, we therefore replace (3.3.11) with (3.3.5). 

EXERCISE 3 .3 .3 . B GO over the above arguments and verify that the diver­
gence of the right-hand side of (3.3.5) is indeed equal to zero. 

Equations (3.3.4) and (3.3.5) express the observed interdependence be­
tween B and E, leading to the single theory of electromagnetism. This 
is a striking example of the power of mathematical modelling in describ­
ing physical phenomena. A successful model can also predict new physical 
phenomena, and we will see later how Maxwell's equations lead to the pre­
diction of electromagnetic waves (see page 348 below). 

We conclude this section by establishing the connection between a sta­
tionary electromagnetic field and the Poisson equation. We start with the 
stationary electric field. Recall that grad(l/r) — —r/r3. Equation (3.3.7) 
therefore implies that the electric field E produced by a single point charge 
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is potential: E(P) = - W ( P ) , where U(P) = q/(4ne0 \OP\), P ^ O. By 
linearity, the electric field at the point P, produced by n point charges is 

E(P) = -VU(P), U(P) = J2A
qk H 1 „, (3-3.13) 

> 
where r^ = OOk, k = l,...,n, are the position vectors of the point charges, 
rp = OP is the position vector of P, and we assume P ^ Ok for all k (draw 
a picture). 

EXERCISE 3.3.4.c Verify (3.3.13). 

Now assume that there is a continuum of charges in K3 with density p 
so that the charge of a small region GQ around a point Q € M3 is approxi­
mately P(Q)TTI(GQ), where p is a twice continuously differentiable function 
in R3 and ^.(GQ) is the volume of GQ; the approximation becomes better as 
the volume of GQ becomes smaller. We assume that p — 0 outside of some 
bounded domain. This continuum of charges produces an electric field E 
at every point P e K3. Using (3.3.13) and the result of Exercise 3.1.24, 

E(P) = - W(P), U(P) = J L Jff jW dV, (3.3.14) 
R3 

with integration over the points Q £ M3 where p(Q) is not zero. 

EXERCISE S.S.S.*7 Verify (3.3.14). Hint: by assumption on p, the integral in 
(3.3.14) is actually over a bounded domain. 

Equalities (3.3.13) and (3.3.14) show that the stationary electric field 
E, produced either by finitely many point charges or by a continuum of 
distributed charges, is a potential vector field: E = —'VU. The solutions 
of the vector differential equation r(t) = E(r(t)) for all possible initial 
conditions are called l i n e s of force, and the surfaces { P e R 3 : U(P) = 
c}, for all possible values of c, are called equ ipo ten t i a l surfaces . 

EXERCISE 3.3.6? (a) Show that lines of forces are orthogonal to the equipo­
tential surfaces. Hint: VZ7 gives the normal direction to the surface, and, be­
cause E = — Vf7, also given the tangential direction for the line of force. (b) 
Verify that the lines of force for a point charge are straight lines and the 
equipotential surfaces are spheres with the charge at the center. Hint: for 
a suitable f = f(t) and every unit vector u, the function r(t) = uf{t) satisfies 
r(t) = cr(t)/\\r(t)f. 
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By (3.3.2), div.E = p/e0. The first equality in (3.3.14) then implies 

V2 t / = - —, (3.3.15) 
£o 

that is, the potential of the electric field satisfies the Poisson equation 
(3.3.15) in K3. Our arguments also suggest that the second equality (3.3.14) 
gives a solution of (3.3.15); see Problem 4.2 on page 427 for the precise 
statement and proof of the corresponding result. 

EXERCISE 3.3.7. (a)c Verify that (3.3.15) follows from (3.3.2). (b)B 

Taking for granted that the function U defined in (3.3.14) is twice con­
tinuously differentiable in M.3, use (3.3.15) to show that U is a harmonic 
function outside of some bounded domain. Hint: recall that we assume that 
p = 0 outside of some bounded domain. 

The analogs of (3.3.2), (3.3.14), and (3.3.15) exist for every central, 
inverse-square field, such as the gravitational field. 

EXERCISE 3.3.8.c Let E = E{P), P e M3, be the g r a v i t a t i o n a l f i e l d 
i n t e n s i t y vector , so that F = mE(P) is the force acting on a point 
mass m placed at the point P. Verify that 

E = - V V and V2V = 4TTGP, (3.3.16) 

where G is the universal gravitational constant (see page 45) and p is the 
density, per unit volume, of the mass producing the gravitational field. Hint: 
for a point mass M at the origin, E{P) = —MGr~2r = MGV(l / r ) . Then re­
peat the arguments that lead from (3.3.7) to (3.3.9) and from (3.3.13) to (3.3.15). 

Let us now consider the magnetic field. By Maxwell's equation (3.3.4), 
the vector field B is solenoidal, that is, has zero divergence. The condition 
div B — 0 is satisfied if 

B = cm\A (3.3.17) 

for some vector field A; if we can find A, then we can find B. This field 
A is called a vector p o t e n t i a l of B. Note that, if it exists, A is not 
unique: for every sufficiently smooth scalar field / , A\ = A + grad / is 
also a vector potential of B, because curl(grad/) = 0. On the other hand, 
div A\ = div A + V 2 / ; with a suitable choice of / we can ensure that the 
vector potential satisfies 

div^4 = 0. (3.3.18) 
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This choice of A corresponds to Coulomb's gauge; for more about gauging 

see page 351. 

Assume tha t the current density J and the corresponding electric field 

E do not depend on time. Then Maxwell's equation (3.3.5) becomes the 

original Ampere's Law (3.3.11). 

E X E R C I S E 3 . 3 . 9 . B Verify that (3.3.11), (3.3.17), and (3.3.18) imply 

V 2 A = -HQJ. (3.3.19) 

Hint: see (3.1.32) on page 139. 

Let us assume tha t the vector field J is twice continuously differentiable 

and is equal to 0 outside of a bounded domain. By analogy with (3.3.14) 

and (3.3.15) (see also Problem 4.2 on page 427), we write the solution of 

the vector Poisson equation (3.3.19) as 

R3 

with integration over the points Q g R 3 where J is not zero. 

E X E R C I S E 3.3.10.c Assuming that differentiation under the integral sign is 

justified, verify that (3.3.17) and (3.3.20) imply 

R3 

Hint: Note that, for the purpose of differentiating the expression under the integral 

in (3.3.20), the point Q is fixed and the point P is variable. Accordingly, place the 

origin at the point Q; then you need to compute curl(J/r), where J is a constant 

vector. Recall that V ( l / r ) = —r/r3 and use a suitable formula from the collection 

(3.1.30) on page 139. 

Formula (3.3.21) is the three-dimensional version of the B i o t - S a v a r t 

Law, discovered experimentally in 1820 by the French physicists J E A N B A P -

T I S T E B I O T (1774-1862) and F E L I X SAVART (1791-1841); in its original 

form, the law states tha t the magnetic field produced by a constant current 

/ in an infinitesimally thin straight wire of infinite length is 

B{P)-^^PQf' (3-3-22) 
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where u is the unit vector along the wire in the direction of the current, 
Q is the point on the wire closest to P, and J is the current measured in 
amperes. In particular, the magnitude of B is inversely proportional to the 
distance from the wire. 

EXERCISE 3.3.11. (a)B Draw a picture illustrating (3.3.22) and derive 
(3.3.22) from (3.3.21). Hint: consider a uniform cylindrical wire of small ra­
dius. (b)c Let C be a circle of radius R in the plane perpendicular to the 
wire and center the wire. Show that (3.3.22) implies § B • dr = fi0I- (c)B 

C 
Show that the result of part (b) is true for every simple closed piece-wise 
smooth curve enclosing the wire. 

EXERCISE 3.3.12^ LetC be a simple piece-wise smooth curve representing an 
infinitesimally thin conducting wire with current I (measured in amperes); 
the value of the current does not depend on time but can be different at 
different points of the wire. Assume that orientation ofC is in the direction 
of the current. Use (3.3.21) to show that the resulting magnetic field B and 
the corresponding vector potential A at a point P not in C are 

where Q is a (varying) point on C and u is the unit tangent vector to C. 
Hint: assume that the wire has a small radius a and is bent as C. Then ira2J = Iu 
andfff(---)dV = f(-.-)Tra2ds. 

3.3.2 The Electric and Magnetic Dipoles 

As an example illustrating some of the general discussions from the previous 
section, we will consider electric and magnetic dipoles. In the following 
section, these dipoles will help us to study the electromagnetic field in 
material media. 

An e l e c t r i c dipole is a pair of point charges q and — q, q > 0, with 
equal magnitude and opposite signs, placed at a fixed distance from each 
other. Let O be a reference point in R3, and let the position vectors of the 
charges q, -q be r\ and r 2 , respectively. By (3.3.13), the potential U of 
the resulting electric field at the point with position vector r is 

U(r) = -?- ( l - 1 ) . (3.3.24) 
47TE0 V l k - ^ l l l \\r-rA) 

Let ro = {r\ + T2)/2 be the position vector of the midpoint of the line 
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segment connecting q and —q. In what follows, we will find the approximate 
value of U at the points that are far away from both q and —q, that is, when 
\\r — ro|| is much bigger than the distance | |ri — T*2|| between the point 
charges. In Problem 4.3, page 429, we discuss the lines of force for the 
dipole, that is, the solutions of the differential equation r(t) = —Vf/(r). 

To simplify the computations, define x = r — ro and 1*12 = r\ — TI. 
Then 

U{r) = i ( | | t - ( l / 2 ) r 1 2 | | ~ ||t + ( l / 2 ) r 1 2 | | ) " ( 3- 3- 2 5 ) 

EXERCISE 3.3.13.C Draw a picture and verify (3.3.25). 

For every two vectors u,v, we have ||u — v\\2 = (u — v) • (u — v) = 
\\u\\2 + \\v\\2 — 2u • v. If ||u|| >• ||v|| (that is, ||u|| is much larger than 
jj«||), then ||« - v\\2 « | |u| |2(l - (2u • •u/||w||2)). Applying the linear 
approximation to the function f(x) = (1 - x)~1/2 at the point x = 0, we 
find that f(x) « 1 + (x/2) and 

1 1 + T-^\ HI»NI- (3-3-26) 
\\u — v\\ \\u 

For the exact expansion of l/||tt—v\\ in the powers of ||u||/| |u||, see Problem 
4.4, page 430. Applying this approximation to (3.3.25) with u = x = r — r0 

and v = ± r i2 /2 , we find 

I / ( r ) « - g - ( r ~ r o ) ^ 1 2 , | | r - r 0 | | » | | r 1 2 | | . (3.3.27) 
ATTEQ \\r - ro\\6 

EXERCISE 3.3.14. B (a) Verify (3.3.27) and show that the approximation 
error is of order (||T"I — T,2||/||r — T"o||)2. (b) Using the relation E = —VC/, 
verify that 

(i) by computing the gradient of the approximate value U from (3.3.27); 
(ii) by computing the gradient of the exact value of U from (3.3.25) and 
then approximating the result. 

E(r) * -Z- ( ^ r ^ - S ) • IkH » lkia(l, (3-3.28) 

The vector d — qr 12, pointing from the negative charge to the positive 
charge, is called the dipole moment of the electric dipole. Taking the limit 
as T"i2 —> 0 and q —• 00 so that the vector d stays constant, we get the 
point e l e c t r i c dipole . For the point electric dipole at the origin, we 
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have the potential and the electric field at every point with position vector 
r as follows: 

U(r) = ~ ^ r ^ E(r) = ^ - ( ^ - ^ - £ ) . (3.3.29) 
1 dr „ , . 1 (Z(d-r)r d 

5-, E(r) = ' — 
47T£o r d 47T£o 

EXERCISE 3.3.15. (a)B Verify that V2(d • r/r3) = 0, r ^ 0, and ex­
plain how the result is connected with Maxwell's equation (3.3.2). Hint: use 
(3.1.33) on page 140, as well as suitable relations from the collection (3.1.30) 
on page 139; note that grad(d • r) = d. (b)A Consider a point electric dipole 
with moment d in an external electric field E and assume the electric field 
is uniform, that is, has the same magnitude and direction at every point 
in space: E(P) = E, where E is a constant vector. Show that the total 
force acting on the dipole by the field is zero and the torque is T = d x E. 
Thus, the external field will tend to align the dipole with the field. Draw the 
picture illustrating the stable orientation of the dipole relative to the field. 

MAGNETIC DIPOLE. Since currents produce magnetic fields, we define 
a magnetic d ipole as an infinitesimally thin closed circular wire in the 
shape of a simple smooth closed curve C, carrying a constant current / . By 
(3.3.23) on page 170, the vector potential characterizing the magnetic field 
of this current is 

where u is the unit tangent vector to C in the direction of the current, and 
Q is a (varying) point on C. Denote by O the center of the circle C. Then 
\PQ\ = \\OP — OQ||, and OQ is perpendicular to the tangent vector at the 
point Q. As with the electric dipole, we want to get an approximation of 
A at the point P that is far away from C, that is, when |OP| is much larger 
than the radius \OQ\ of the circle (draw a picture!) Using (3.3.26), we find 

1 1 / OP-OQ\ 
' 1+ ' \PQ\ \OP\ \ \OP\2 J ' 

Then (3.3.30) becomes 

A(P)*4^(£"+|wH (3331) 
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Denote by n the unit vector in the direction of OQ x u, and by a, the 

radius of the circle. 

E X E R C I S E 3 . 3 . 1 6 . B (a) Verify that the direction of n is the same for every 

point Q of the circle. How should a small bar magnet be placed to produce 

the same magnetic field as the magnetic dipole? Hint: draw a picture; ifC is 

a circle in the (i, j) plane and is oriented counterclockwise, then n = k. (b) 

Verify that (3.3.31) can be written as 

Hint: to show that fcuds = 0, use cartesian coordinates so that C is a circle in 

the (i, j) plane and is oriented counterclockwise. Then u = — s in t i + cost j and 

ds = adt, 0 < t < 2-7T. For the second integral, use (3.2.14) on page 157 with 

ro = OP, r = OQ, and S, the disk enclosed by C. 

Similar to the electric dipole, we define the d i p o l e moment of the mag­

netic dipole as the vector m = -Ka2In. In the limit a —> 0 and I —> oo 

so tha t the vector m stays the same, we get the p o i n t m a g n e t i c d i p o l e . 

If a point magnetic dipole is placed at the origin, then the corresponding 

vector potential is 

EXERCISE 3.3.17? Find the magnetic field B of the point magnetic dipole. 

3 .3 .3 Maxwell's Equations in Material Media 

In conductors, such as metals and electrolytes, there are charged particles 

tha t can move when an external electric field E is applied. In metals, these 

particles are free electrons, and in electrolytes, ions. By Ohm's Law, the 

resulting current density J is proportional to the external field E: 

J = aE, (3.3.34) 

where a is the conductivity of the material. Similar to other laws of elec­

tricity and magnetism, relation (3.3.34) is a mathematical expression of 

empirical observations and was originally published in 1827 by the German 

physicist G E O R G S I M O N O H M (1789-1854). Today, (3.3.34) is known as 

the microscopic form of Ohm's Law, as opposite to the more familiar macro-



174 Maxwell's Equations 

scopic, or averaged-out, version V = IR, where V is the voltage measured 
in volts, / is the current in amperes, and R is the resistance in ohms. 

If an insulated conductor is placed in an external electric field, then the 
induced electric current redistributes the charged particles on the surface 
of the conductor so that, in equilibrium, the total electric field inside the 
conductor is zero: if there were non-zero field inside the conductor, then, 
by Ohm's Law, there would be a non-zero current, which is impossible 
for an isolated conductor in equilibrium. The force lines of the electric 
field are therefore normal to the surface of the conductor; otherwise, the 
tangential component would produce a surface current. There is no charge 
accumulations inside the conductor either, as such accumulations would 
produce electric current. Thus, a closed conducting surface isolates the 
interior from the exterior electric field. For that reason, delicate micro­
chips and electronic equipment are often stored and shipped in aluminum 
foil or other conducting cover. 

In dielectrics, such as glass, plastics, and rubber, there is little or no 
free motion of charged particles when an external electric field is applied. 
Instead, the external field penetrates the material, causing polarization of 
molecules in the substance and producing numerous point electric dipoles. 
In biological materials, cell membranes are good insulators against ion flux, 
and ions form dipoles near the surface of cell membranes. Protein molecules 
form dipoles by ionization of the amino-acid chains. 

Denote by P the resulting density of dipole moments per unit volume 
in the dielectric material. Recall that a point dipole has zero net charge; 
direct computations show that the flux of the corresponding electric field E 
(see (3.3.29) through every closed piece-wise smooth surface is zero, as long 
as the dipole is not on the surface. Accordingly, instead of looking at the 
flux of E, we will look at the flux of P. Note that P has the dimension of 
charge per unit area, and so the divergence div P of P has the dimension 
of charge per unit volume. Recall that the direction of the dipole moment 
is from the negative charge to the positive. It is then natural to define the 
scalar field pb so that pb = — div P. With this definition, if G is any part 
of the dielectric, then / / / ( d i v P — pb) dV = 0, which is consistent with 

G 
the idea that there is no movement of charges inside the dielectric. The 
scalar field pb is called the dens i ty of bound charges. It is also possible 
that some free charges are present inside the dielectric, with density per 
unit volume pf. By Gauss's Law of Electric Flux (3.3.9), a region in free 
space with density pb + p/ of charges per unit volume produces the electric 
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field E so that div E = (pb + pf)/so- In the dielectric material, we have 
Pb = — d i v P so that div(eo E + P) = pf. It is then natural to define the 
vector D = eo E + P, called the e l e c t r i c displacement. We get the 
following modification of (3.3.2): 

d ivD = p / . (3.3.35) 

Dielectric material is called linear if P is proportional to the external 
field E: 

P = eoXeE, D = e0E + e0XeE = eE, (3.3.36) 

where Xe is called the s u s c e p t i b i l i t y and e = £o(l -I- Xe), the 
p e r m i t t i v i t y of the dielectric material; K = 1+Xe is called the d i e l e c t r i c 
constant or r e l a t i v e p e r m i t t i v i t y . In general, e (as well as Xe and K) 
is a t ensor f i e l d and the value of e depends on both the location and 
the direction. For time-dependent E, the value of e can also depend on 
the frequency of E. In homogeneous isotropic materials, e is a constant 
number so that (3.3.35) becomes div.E = Pf/£-

AMPERE'S LAW FOR MAGNETIZED MATERIALS. In material media, 
there exists an internal magnetic field created by the motion of electrons 
around the atoms. At distances much larger than the size of an atom, 
the magnetic field produced by an electron moving around an atom is well 
approximated by the field of a point magnetic dipole. These magnetic 
dipoles affect the overall magnetic field in the material, just as the bound 
charges in dielectrics affect the electric field. 

Denote by M the density, per unit volume, of the point magnetic dipoles 
in the material; this density is called magnetization. According to (3.3.33), 
the overall vector potential A of the resulting magnetic field is 

G 

where G is the region in space occupied by the material, Q is a point in Q 
and P is the point in M3 at which the magnetic field is computed. We now 
treat P as a fixed point and Q, as variable. Then 

^(wod-mr (3-3-38) 
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and (3.3.37) becomes 

A(P) = g fjj M(Q) x grad (j^j dV. (3.3.39) 

G 

EXERCISE 3.3.18.5 Verify (3.3.38). Hint: use (3.1.33) on page UO, taking P 
as the origin of the frame. 

By (3.1.30) on page 139, 

M(Q) x grad ( ^ ) = ^ curl A*(Q) - curl ( ^ M ) , (3.3.40) 

and then we use relation (3.2.6) on page 153 to write (3.3.39) as 

A{P) = £ \IIIwQ\cmlMiQ)dV + IIwQ\M{Q) X HGda) ' 
\ G dG J 

(3.3.41) 
where dG is the boundary of G, which we assume to be piece-wise smooth, 
closed, and orientable, and n g is the outside unit normal to dG. We 
call Jb = curliW the bound current , and Kb = M x no, the surface 
dens i ty of the bound current . Recall that a magnetic dipole is mod­
elled by a circular movement of electric charges, and the vector J& can be 
interpreted as the total current produced by the charge movement in all 
the point magnetic dipoles in G. 
EXERCISE 3.3.19. (a)c Verify that (3.3.41) indeed follows from (3.3.39), 
(3.3.40), and (3.2.6). (b)B Find the magnetic field corresponding to the 
potential (3.3.41). Hint: recall that the magnetic field is curl A; in the resulting 
computations, you now treat P as a variable and Q as fixed. 

Suppose that the material has non-zero conductivity and there is a 
steady current Je flowing in the material due to an external source of 
electric field, for example, two electrodes embedded in the material and 
connected to an external battery. The total current density in the material 
is then J = J\, + Je = curliVT + Je. We assume the the system is in 
equilibrium so that both J\, and Je do not depend on time. By the original 
Ampere's Law (3.3.11) on page 166, the resulting magnetic field B satisfies 
curlB = /x0(curlM + Je) or curl (B//xo — M ) = J e . We therefore define 
the net magnetic field H, also called the magnetic f i e l d s t rength , as 

H = B/fio - M, (3.3.42) 



Equations in Material Media 177 

so that Ampere's Law in material media becomes 

cur lH = J e . (3.3.43) 

EXERCISE 3.3.20. B Verify that, in material media, Maxwell's equation 
(3.3.5) becomes 

cm\H = Je + ^ - . (3.3.44) 
at 

Hint: use the same arguments as in the derivation of (3.3.5). 

In paramagnetic materials, the magnetic dipoles are aligned so that the 
induced magnetic field B is stronger than in vacuum; the vector M has, on 
average, the same direction as H: Jff(M • H) dV > 0. In diamagnetic 

G 
materials, the magnetic dipoles are aligned so that the induced magnetic 
field B is weaker than in vacuum; the directions of M and H are, on the 
average, opposite: JJf(M • H) dV < 0. 

G 
A material is called linear if magnetization M depends linearly on H, 

that is, M = XmH, where Xm is called the magnetic s u s c e p t i b i l i t y of 
the material. This linear relation holds for most materials when \\H\\ is 
sufficiently small. By (3.3.42), 

B = ii H, where /x = fi0(l + Xm) 

is called the permeabi l i ty of the material. In vacuum, Xm — 0 and fi = 
I/O- Similar to (electric) permittivity, permeability is, in general, a tensor 
field and the value of /i depends on both the location and the direction. 
For time-varying magnetic fields, the value of \i can also depend on the 
frequency of the field. The value of it usually depends also on temperature 
and density. In linear homogeneous isotropic materials, /x is a number and 
(3.3.43) becomes 

V x B = i i J e , (3.3.45) 

which is the same as (3.3.11), but with \i instead of \i§. 

EXERCISE 3.3.21. c Assuming the frequencies of B and E are constant, 
verify that, in a linear homogeneous isotropic material, equation (3.3-44) 
becomes 

dE 
cmlB = nJe + /j,e~. (3.3.46) 

Hint: use (3.3.36). 
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For most linear materials, \xm\ ls close to zero. In linear homogeneous 
isotropic paramagnetic materials, Xm > 0 and fj, > IIQ. For example, alu­
minum has Xm « 2 x 10 - 5 . In linear homogeneous isotropic diamagnetic 
materials, Xm < 0 and fi < HQ. For example, both copper and water have 
Xm ^ —10~5 (we write « rather than = because the precise values are 
sensitive to the temperature of the materials and the frequency of the field; 
the above values correspond to room temperature and a time-homogeneous 
field). 

The main examples of nonlinear materials are ferromagnetics and 
superconductors. In ferromagnetics, the induced magnetic field is much 
stronger than in vacuum. In superconductors the induced magnetic field is 
essentially zero. 

Let us summarize Maxwell's equations in material media: 

(3.3.47) 

(3.3.48) 

(3.3.49) 

(3.3.50) 

where pf is the density, per unit volume, of the free electric charges, and Je 

is the density, per unit area, of the externally produced electric currents. 
These equations describe the electromagnetic field at distances much larger 
than atomic size (atomic size is usually taken as 10 - 1 0 meters.) In Section 
6.3.4, we further investigate Maxwell's equations for some simple models, 
both in vacuum and in material media. 

At sub-atomic distances, of the order of e2/(4nemec2) « 2.8 • 
10~17m, Maxwell's equations are no longer applicable, and quantum 
electrodynamics takes over. A quantum-theoretic analog of Maxwell's 
equations was suggested in 1954 by two American physicists, CHEN-NING 

YANG (b. 1922) and ROBERT L. MILLS (1927-1999). Mathematical anal­
ysis of these Yang-Mills equations is mostly an open problem and is 
outside the scope of our discussion. In fact, this analysis is literally a 
million-dollar question, being one of the seven Millennium Problems an­
nounced by the Clay Mathematics Institute in 2000; for details, see the 
book The Millennium Problems by K. Devlin, 2002. 

d\vD = 

divB = 

curlJ3 = 

curl i f : 

:P/; 
0; 

dB 
at 

= Je + 

) 

dD 
dt' 



Chapter 4 

Elements of Complex Analysis 

4.1 The Algebra of Complex N u m b e r s 

4.1.1 Basic Definitions 

Complex numbers occur naturally in several areas of physics and engineer­
ing, for example, in the study of Fourier series and transforms and related 
applications to signal processing and wave propagation. They also appear 
in the mathematical models of quantum mechanics. Still, the original moti­
vation to introduce complex numbers was the study of roots of polynomials. 

A polynomial p = p(x) in the va r i ab le x is an expression 

anx
n + an-ix

n~x H aix + a0. 

The numbers a,j are called the coe f f i c i en t s of the polynomial; if an ^ 0, 
then n is called the degree of the polynomial. A polynomial equation 
is p(x) = 0, and a root of p is, by definition, a solution of this equation. 

So far, our underlying assumption was that the reader has some ba­
sic familiarity with the construction of the real numbers. At this point, 
though, we will go back to the foundations of the theory of real numbers. 
In the late 1800's, German mathematicians GEORG FERDINAND LUDWIG 

PHILIPP CANTOR (1845-1918) and JULIUS WILHELM RICHARD DEDEKIND 

(1831-1916) put the construction of the real number system on a precise 
mathematical foundation by combining, in a rather sophisticated way, set 
theory and analysis. A modern approach that we will outline next, is more 
algebraic and leads to the complex numbers in a natural way. The remark 

God made the integers and all the rest is the work of man, 

attributed to the German mathematician LEOPOLD KRONECKER (1823-
1891), suggests the set N = {1,2,3, . . .} of positive integers as the starting 
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point of the construction. 
The set N is naturally equipped with two binary operations, addition 

(a,b) I—> a + b, and multiplication (a,b) >—> ab. These operations are 
associative: 

(a + b) + c = a + (b + c), (ab)c = a(bc), 

and distr ibutive: 

a(b + c) = ab + ac. 

To solve the linear equation x + a = b for every a, b G N the set of 
positive integers is extended to the set Z = {0, ± 1 , ±2 , . . . } of all integers 
by introducing the special number 0 so that a + 0 = a for all a and adjoining 
to every non-zero a G N the additive inverse —a so that a + (—a) = 0. 

To solve the linear equation ax = b for every a, b G Z, the set of integers 
is extended to the set Q of rational numbers, that is, expressions of the 
form p/q = pq_1, where p, q G Z and q ^ 0. For every non-zero p/q G Q, 
the element q/p satisfies {p/q)(q/p) — 1 and is called the m u l t i p l i c a t i v e 
inverse of p/q. 

To solve the quadratic equation x2 — 2 = 0 and other general polynomial 
equations with coefficients in Q, the set of rational numbers is extended 
by creating and including the algebraic irrational numbers, that is, the 
numbers such as \/2 or v^4, that can be roots of polynomial equations with 
coefficients in Q. The result is the algebraic closure of Q. 

It turns out there are other irrational real numbers that are not alge­
braic, that is, are not roots of any polynomial with rational coefficients. 
These irrational numbers are called t ranscendenta l . To put it differently, 
the ordered set of algebraic numbers contains many holes, and these holes 
are filled with transcendental numbers. It was only in 1844 that the French 
mathematician JOSEPH LIOUVILLE (1809-1882) showed the existence of 
such numbers by explicitly constructing a few. Later, it was proved that 
the two familiar numbers, n and e, are also transcendental. Together, the 
algebraic and transcendental numbers make up the r e a l numbers. The 
rigorous definition of a real number is necessary to put calculus on a sound 
basis. 

Cantor defined a real number as the limit of a sequence of rational num­
bers. The operations of addition, subtraction, multiplication, and division 
are introduced on the set of real numbers in an obvious way as the limits 
of the corresponding sequences; the non-trivial part is the proof that the 
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definitions do not depend on the approximating sequences. The set of real 
numbers is denoted by R. Geometrically, we represent E as points on a 
one-dimensional continuum, known as the real line. The construction of 
Cantor ensures that the set of real numbers, also known as the real line, 
does not contain any holes. 

Finally, to solve equation x2 + 1 = 0 and other similar polynomial 
equations with real coefficients but without real solutions, the set of real 
numbers is extended by adjoining to M an element i (also denoted by j 
in some engineering books) such that i2 = - 1 . This element is called 
the imaginary un i t . The resulting extension is denoted by C and is the 
collection of the expressions x + iy, where x, y € M.. The elements of C 
are called complex numbers. As far as solving polynomial equations, we 
are all set now: the Fundamental Theorem of Algebra states that every 
polynomial with coefficients in C has at least one root in C; in other words, 
the set C is algebraically closed. 

If z = x + iy G C, and i , i / £ l , then x, denoted by 3?z, is called the 
r e a l pa r t of z. Also, y = 9z is called the imaginary pa r t of z, and 
~z = a — hi, the complex conjugate of z. By definition, 

(a + bi) + (c + di) = (a + c) + (b + d)i, (a + bi)(c+di) = (ac — bd) + (ad + bc)i, 

where the multiplication rule follows naturally from the distributive law 
and the equality i2 = —1. 

EXERCISE 4.1.l.c (a) Verify that "Siz = (z + z)/2, Sz = (z - z)/(2i). 
(b) Verify that the complex conjugate of the sum, difference, product, and 
ratio of two complex numbers is equal to the sum, difference, product, and 
ratio, respectively, of the corresponding complex conjugates: for example, 
z\Z2 = z\Z2- (c) Verify that if P = P(z) is a polynomial with real coeffi­
cients, then P(z) = P(z), and therefore the non-real roots of this polynomial 
come in complex conjugate pairs, (d) Conclude that a polynomial of odd 
degree and with real coefficients has at least one real root. 

Complex numbers appear naturally in computations involving square 
roots of negative numbers. Some records indicate that such computa­
tions can be traced to the Greek mathematician and inventor HERON OF 
ALEXANDRIA (c.10 - c.70 AD). In 1545, the Italian mathematician G E R O -

LAMO CARDANO (1501-1576) published the general solutions to the cubic 
(degree three) and quartic (degree four) equations. The publication boosted 
the interest in the complex numbers, because the corresponding formulas 
required manipulations with square roots of negative numbers, even when 
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the final result was a real number; for one example of this kind, see Exer­
cise 4.1.5 on page 185 below. It still took some time to get used to the new 
concept, and to develop the corresponding theory. In fact, the term "imag­
inary" in connection with the complex numbers was introduced around 
1630 by Descartes, who intended the term to be derogatory. In 1777, Euler 
suggested the symbol i for y/— 1, and the complex numbers started to get 
the respect they deserve. The foundations of modern complex analysis were 
laid during the first half of the 19th century. By the end of the 19th cen­
tury, it was already impossible to imagine mathematics without complex 
numbers. Part of the reason could be that, as the French mathematician 
JACQUES SALOMON HADAMARD (1865-1963) put it, the shortest path be­
tween two truths in the real domain passes through the complex domain. 
In the following sections, we will see plenty of examples illustrating this 
statement. 

Since solving polynomial equations was the main motivation for the 
introduction of complex numbers, let us say a bit more about these equa­
tions. Given a polynomial, the objective is to find an algebraic formula 
for the roots, that is, an expression involving a finite number of additions, 
subtractions, multiplications, divisions, and root extractions, performed on 
the coefficients of the polynomial. The formula x = (—b± \/b2 — 4ac)/(2a) 
for the roots of the quadratic equation ax2 + bx + c = 0 was apparently 
known to ancient Babylonians some 4000 years ago. The formulas of Car-
dano for equations of degree three and four are much more complicated but 
still algebraic. Ever since the discovery of those formulas, various mathe­
maticians tried to extend the results to equations of degree five or higher, 
until, around 1820, the Norwegian mathematician NIELS HENRIK ABEL 
(1802-1829) proved the non-existence of such algebraic representations for 
the solutions of a general fifth-degree equation. In 1829, the French math­
ematician EVARISTE GALOIS (1811-1832) resolved the issue completely by 
proving the non-existence of an algebraic formula for the solution of a gen­
eral polynomial equation of degree five or higher, and also describing all 
the equations for which such a formula does exist. Note that both Abel 
and Galois were under 20 years of age when they made their discoveries. 

The solutions of a polynomial equation can exist even without an alge­
braic formula to compute them; the fundamental theorem of algebra ensures 
that a polynomial of degree n and with coefficients in C has exactly n roots 
in C, and there are many ways to represent the roots using infinitely many 
operations of addition, subtraction, multiplication, and division, performed 
on the coefficients. Such representations lead to various numerical methods 
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of solving the polynomial equations, but these topics fall outside the scope 
of our discussions. For more on the history of complex numbers, see the 
book An Imaginary Tale: The Story of \/—I by P. J. Nahin, 1998. 

4.1.2 The Complex Plane 

The field C can be represented geometrically as a set of points in the plane, 
with the real part along the horizontal axis, and the imaginary part along 
the vertical axis. This representation identifies a complex number z = x+iy 
with either the point (x,y) or the vector r — xi + yj in the Euclidean 
space R2; see Figure 4.1.1. The upper (lower) half-plane contains complex 
numbers with positive (negative) imaginary part. Similarly, the r i g h t or 
l e f t half-plane refers to complex numbers with positive or negative real 
parts, respectively. 

z — x + iy xi + yj 

Fig. 4.1.1 Complex plane and K2 

In polar coordinates, 

z = r(cos# + ism0), (4.1.1) 

where r = y/x2 + y2 = \z\ is the modulus or absolute value of z, and 
9 = arg(z) is the argument of z. Similar to the polar angle at the origin, 
the argument is not defined for z = 0. 

Note that if 9 is the argument of z, so is 9 + 2nk for every integer k. 
Accordingly, the p r i n c i p a l value of the argument Arg(z) is defined as 
the value of argz in the interval (—n, w]. 

EXERCISE 4.1.2? Verify the following formula for the principal value of the 
argument: 

Arg(z) = -

tan 1(y/x), 

7T + ta,n~1(y/x), 

—TT + t&n~1(y/x) 

x>0,y^0; 

x<0,y>0; 

x < 0, y < 0. 

(4.1.2) 
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EXERCISE 4.1 .3 . C Using the suitable trigonometric identities, verify that if 
z\ = n (cos #1 + i sin 6\) and z2 = r2(cos 82 4- i sin 62), then 

z\Z2 = rir2(cos(0j + 02) + ism(9i + 02)), 

^ = rM cos(0! - B2) + i sin(0i - 92)) • ( 4 ' L 3 ) 

z2 r2\ > 

Some sources call the left picture in Figure 4.1.1 the Argand diagram, 
in honor of the Swiss-born non-professional mathematician JEAN-ROBERT 

ARGAND (1768-1822), who published the idea of the geometric interpre­
tation of complex numbers in 1806, while managing a bookstore in Paris. 
Mathematical formulas are neither copyrightable nor patentable, and the 
names of those formulas are often assigned in an unpredictable way. Ar-
gand's diagram is one such example: in 1685, when complex number were 
much less popular, a similar idea appeared in a book by the English math­
ematician JOHN WALLIS (1616-1703). 

The following result is known as E u l e r ' s formula: 

cos6 + isin0 = ei9. (4.1.4) 

In this case, the name is true to the fact: the result was first published 
by L. Euler in 1748. At this point, we will take (4.1.4) for granted and 
only mention that (4.1.4) is consistent with (4.1.3); later on, we will prove 
(4.1.4) using power series. A particular case of (4.1.4), em + 1 = 0, collects 
the five most important numbers in mathematics, 0,1, e, n, i, in one simple 
equality. 

An immediate consequence of (4.1.4) is that multiplication of a complex 
number z by el$ is equivalent to a rotation of z in the complex plane by 0 
radians counterclockwise. Note also that e%e = e

l(s+2n). As a result, a time-
varying periodic quantity A is conveniently represented as A(t) = AoeluJt, 
where AQ is the amplitude, and u is the angular frequency (so that 27r/w 
is the period). Below, we will use such representations in the analysis of 
electrical circuits and planar electromagnetic waves. 

EXERCISE 4.1.4? Let z\ = x\ +iyi, 22 = ^2 +iy2 be two complex numbers, 
and ri = xii + yij, r2 = X2 i + 2/2 J, the corresponding vectors, (a) Verify 
that Z1Z2 = (7*1 • rg) + i((ri x r 2 ) • k), where, as usual, k = i x j . (b) 
Express the angle between the vectors r\ and r2 in terms of Arg(z\) and 
Arg[z,2)- Hint: draw a picture; the angle is always between 0 and n. 

One application of (4.1.4) is computing roo t s of complex numbers. 
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Writing 

z = | z | e ( A r S W + 2 - f c ) \ 

we find 

z l M = | z | l /m c(ArgW/m+2Wfc/m)i ) fc = 0 , . . . , m - l . (4.1.5) 

Thus, the m- th roots of a complex number have exactly m distinct values. 

On the complex plane, these values are at the vertices of a regular m-gon. 

F O R E X A M P L E , taking z = 1 and m = 3 so tha t Arg(z) = 0, we find the 

three values of \/l: 1, ( - 1 + iy/3)/2, ( - 1 - iy/Z)/2. 

E X E R C I S E 4.1.5. (a)c Find all the values of \/&i and \/64i and draw them 

in the complex plane. (b)A Find all the values of y 1 + iy/3 + y 1 — iy/i. 

Hint: one of them is \/6-' simply square the expression. 

Another application of (4.1.4) is deriving certain trigonometric identi­
ties. By taking the n- th power on both sides, we get de Moiv re ' s formula : 

(cos# + ism8)n = cosn8 + isinn8; (4.1.6) 

of course, the French mathematician A B R A H A M D E M O I V R E (1667-1754), 

who published (4.1.6) in 1722, did not use (4.1.4) in his derivations. 

By equating the real and imaginary par ts of (4.1.6), we get the expres­

sions for cos nQ and sin nO in terms of the products of sin 6 and cos 6. F O R 

E X A M P L E , n = 2 yields the familiar results: cos 28 = cos28 — sin2 8, sin 28 = 

2 sin 6 cos 8. 

E X E R C I S E 4.1.6.B Find similar expressions for cos3$ and sin 3^. 

Yet another application of (4.1.4) is illustrated by the following exercise. 

E X E R C I S E 4 .1 .7 . c Evaluate the indefinite integral f e~ 3 x cos 2x dx without 

integration by parts. Hint: note that the integrand is di(e<-~3+2^x). Integrate 

the complex exponential as if it were real, and them compute the real part of the 

result. 

We conclude this section with a few definitions related to sets in the 

complex plane; these definitions are identical to those on page 121. As 

with ordinary points in the plane, \z\ — z<z\ is the distance between z\ and 

Z2, and the set {z : \z—ZQ\ < r} is an open d i s k with center at z0 and radius 

r > 0; similarly, {z :\z — ZQ\ < r} is a c l o s e d d i s k . A ne ighborhood of a 

point z is an open disk centered at z. A point in a set is called i n t e r i o r if 
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there exists a neighborhood of the point that lies entirely in the set. F O R 
EXAMPLE, the center of the disk (open or closed) is an interior point of the 
disk. 

A point P is called a boundary point of a set if every neighborhood of 
the point contains at least one point that is not in the set, and at least one 
point that belongs to the set and is different from P. FOR EXAMPLE, the 
boundary points of the set {z : [̂r — 2r0| < r} are exactly the points of the 
circle {z :\z — ZQ\ = r}. 

A point P is called an i s o l a t e d point of a set if there exists a neighbor­
hood of P in which P is the only point belonging to the set. FOR EXAMPLE, 
the set {z : z = a + ib} in the complex plane, where a, b are real integers, 
consists entirely of isolated points. 

A set is called 

• Bounded, if it lies entirely inside an open disk of sufficiently large radius. 
• Closed, if it contains all its boundary points. 
• Connected, if every two points in the set can be connected with a 

continuous curve lying completely in the set. 
• Open, if every point belongs to the set together with some neighborhood. 

In other words, all points of an open set are interior points. 
• Domain, if it is open and connected. 
• Simply connected, if it has no holes. More precisely, consider a simple, 

closed, continuous curve that lies entirely in the set (see page 25); such 
a curve encloses a domain (recall that we take for granted the Jordan 
curve theorem, see page 123). The set is simply connected if this domain 
lies entirely in the set. 

The c losure of a se t is the set together with all its boundary points. 
The complement of a set are all the points that are not in the set. 

FOR EXAMPLE, the closure of an open disk {z : \z\ < 1} is the closed disk 
{z : \z\ < 1}, and the complement of that open disk is the set {z : \z\ > 1}. 
Every disk, open or closed, is both connected and simply connected, while 
the set {z : 0 < \z\ < 1} is open, connected, but not simply connected 
because the point z = 0 is missing from the set. 

EXERCISE 4.1.8.c Give an example of a set in C that is not bounded, is 
neither open nor closed, is not connected, but is simply connected. 
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4.1.3 Applications to Analysis of AC Circuits 

In this section, we continue to use i as the notation for the imaginary unit. 
The basic components of an alternating current (AC) circuit are the resistor 
R, the capacitor C, and the inductor L; see Figure 4.1.2. The main facts 
about electric circuits are summarized in Section 8.4 in Appendix. If A is 
a quantity, such as current or voltage, changing periodically in time with 
period T = l/v, then we represent this quantity as A(t) = Aoe%^tJr^a\ 
where 4>o is the initial phase, and u> is the underlying angular frequency, 
related to the usual frequency v by w = 2nv (a household outlet in the US 
has v = 60 Hz or 60 cycles per second; in Europe, the standard is / = 50 
Hz). Since taking the real part of A(t) brings us back to physical reality and 
can be done at any moment, we will work only with complex currents and 
voltages. 

Denote by Iy and Vy the current through and the voltage across the 
element Y, respectively, with Y being a resistor R, a capacitor C, or an 
inductor L. We assume that all the elements are linear, so that 
• by Ohm's Law, see page 173, IR — VR/R; 
• by the definition of the capacitance, C = qc/Vc, where qc{t) = 
JQ Ic(s)ds is the charge; thus, Ic = CdVc/dt; 
• by Faraday's Law, see page 165, VL = Ldli,{t)/dt. 

EXERCISE 4.1.9. c Taking I(t) - I0e
i"t+i4'0, verify that (a) The current 

through the resistor is in phase with the voltage; (b) The current though 
the capacitor is ahead of, or leads, the voltage by the phase n/2; (c) The 
current through the inductor is behind, or lags, the voltage by the phase 
7T/2. Hint: i = e i7 r /2. 

Consider the series circuit on the left-hand side of Figure 4.1.2, with 
E(t) = Eoei<-UJt+'t'0K All the elements of the circuit have the same cur­
rent I(t) passing through them; we take I(t) = Joe""'*. Then we have 
VR(£) = I{t)R (the voltage across R is in phase with the current), 
Vc(t) = (l/wC)I(t)e~in/2 (the voltage across C is behind the current by 
7r/2), and Vi(t) = Lu>I(t)en/2 (the voltage across L is ahead of the cur­
rent by 7r/2). The vector diagram corresponds to time t = 0; for t > 0 
the diagram rotates counterclockwise with angular speed u> = 2-KV; lin­
ear frequency v = 60 Hz, corresponds to 60 full turns per second. Since 
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"VL 

E = VR + Vc + VL 

Vc 

•+J • — 

VR I 

Series 

L 

Ic 

IR E 
•+T *— 

II 

I = IR + IC + IL 

Parallel 

Fig. 4.1.2 RCL Circuits 

VR + VC + VL = E, we have E(t) = (R+l/(iu}C) + iuL)I(t), and therefore 

E0 
h 

^/R2 + ^L2__i_7y 
-., tan^>o = ^ - . (4.1.7) 

EXERCISE 4.1.10.B (a) Verify (4-1.7). Hint: Write (R+l/(iwC) + iu>L) in 
the complex exponential form; keep in mind that \/i = —i. (b) Verify that, for 
every input E(t), the current I(t) in the series circuit satisfies 

LI"(t) + RI'{t) + I(t)/C = E'(t). (4.1.8) 

Substitute E(t) = E0e
i{"t+'t'o) and I(t) = I0e

iuJt to recover (4.1.7). Hint: if 
q is the charge, then E = EL + ER + EC = Lq" + Rq' + q/C; I = q'. 

For fixed Eo, the largest value of IQ = EQ/R is achieved at the reso­
nance frequency U>Q — \/\/LC; the corresponding phase shift <po at this res­
onance frequency is zero. According to (4.1.8), a series circuit is a damped 
harmonic o s c i l l a t o r , with damping proportional to R. The "ideal" series 
circuit with R = 0 is a pure harmonic oscillator and has infinite current at 
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the resonance frequency wo = l/VLC. 

Now let us consider the parallel RCL circuit on the right-hand side of 
Figure 4.1.2. This time, the voltage E(t) is the same across all compo­
nents; we take E(t) = EoeluJt. For the currents, we have / R ( £ ) = E(t)/R 
(in phase with E), Ic{t) = E(t)uiCein^2 (ahead of E by TT/2), IL(t) = 
(E(t)/(wL))e~™/2 (behind E by 7r/2). The vector diagram corresponds to 
t = 0; for t > 0, the diagram rotates counterclockwise with angular speed 
w. The total current is I = IR + Ic + IL = (1/-R + iwC + l/{iuL))E{t). 
Taking J(t) = / 0 e i ( a " + * o ) , we conclude that 

1 ( „ 1 N 2 

R2 + \wC- — ) E0, tan^o = fl(wC - l/(wL)). (4.1.9) 

EXERCISE 4.1.11. 5 (a,) Ven/i/ (4.1.9). (b) Verify that, for every input 
voltage E{t), the current I(t) in the parallel circuit satisfies 

CE"(t) + E'(t)/R + E(t)/L = / '(*). (4.1.10) 

Substitute E(t) = £ 0 e i M ) and I{t) = I^^+M to recover (4.1.9). 

Unlike the series circuit, the resonance frequency a>o = l/y/LC now cor­
responds to the smallest absolute value IQ = EQ/R of the current for given 
EQ\ the corresponding phase shift <j>o at the resonance frequency is zero. Ac­
cording to (4.1.10), a parallel circuit is a damped harmonic o s c i l l a t o r 
with damping proportional to 1/R. The "ideal" parallel circuit with R = oo 
is a pure harmonic oscillator and has zero total current at the resonance 
frequency OJQ = 1/y/LC. 

The above analysis also demonstrates that the effective resistance, 
called reactance, of the capacitor and the inductor is, respectively, 
Xc = l/(iuiC) and XL = iu>L. The usual laws for series or par­
allel connection apply: the total effective resistance Z, known as the 
complex impedance, satisfies Z = R + Xc + X^ in the series circuit and 
1/Z = (1/R) + (l/Xc) + (l/XL) in the parallel circuit. 

EXERCISE 4.1.12.3 Sketch the graph of \Z\ as a function of w for 
(i) the series circuit; (ii) the parallel circuit. 
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4.2 Funct ions of a Complex Variable 

4.2.1 Continuity and Differentiability 

The study of functions of a complex variable is called complex ana lys i s . 
As in the usual calculus, we define a complex function, that is, function 
/ = f(z) of a complex variable z as a rule that assigns to every complex 
number z at most one complex number f(z). This definition is especially 
important to keep in mind: rules that assign several values to the same com­
plex number z also appear in complex analysis and are called mul t i -valued 
func t ions . 

A polynomial function p — p(x) = X3fc=o akxk °f a r e a l variable x 
easily extends to the complex plane by replacing a; with z and allowing the 
coefficients afc to be complex numbers. Similarly, a r a t i o n a l function, 
that is, a ratio of two polynomial functions, extends to the complex plane 
except at the points where the denominator vanishes. For other functions of 
the real variable, the replacement of x with z is not as straightforward, and 
a special theory of the functions of a complex variable must be developed. 

Definition 4.1 A function / = f(z) is continuous at ZQ if / is defined 
in some neighborhood of ZQ and 

lim f(z0 + z) = f(z0). 
\z\—>0 

A function / = f(z) is d i f f e r e n t i a b l e at ZQ if / is defined in some neigh­
borhood of ZQ and there exists a complex number, denoted by f'(zo), so 
that 

lim /(«> + * ) - / ( « > ) = f{zo). 

EXERCISE 4 . 2 . 1 . C Verify that a function differentiable at ZQ is continuous 
at ZQ. 

EXERCISE 4.2.2? Which of the following functions are differentiable at zero: 
f(z) = z\f{z) = Z(z)J(z) = \z\J(z) = \z\2? 

EXERCISE 4 .2 .3. c Verify that if f(z) = zk for a positive integer k, then 
f'{z) = kzk-1. 

Definition 4.2 A function is called ana ly t i c a t a point if it is differ­
entiable in some neighborhood of the point. A function is called ana ly t i c 
in a domain if it is analytic at every point of the domain. In general, we 
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say that a function is ana ly t i c if it is analytic somewhere. An e n t i r e 
function is a function that is analytic everywhere in the complex plane. 

Remark 4.1 Sometimes, the word holomorphic is used instead of ana­
lytic. 

EXERCISE 4.2.4? (a) Convince yourself that a function is analytic at a point 
if and only if the function is analytic in some neighborhood of the point. 
Hint: a neighborhood of a point is an open set; see page 186. (b) Verify that 
a polynomial is an entire function, (c) Verify that a rational funct ion 
f(z) = P(z)/Q(z), where P,Q are polynomials, is analytic everywhere ex­
cept at the roots ofQ(z). 

4.2.2 Cauchy-Riemann Equations 

Let / = f(z), z = x + iy, be a function of a complex variable. Being a 
complex number itself, f(z) can be written as 

f(z)=u(x,y) + iv(x,y) (4.2.1) 

for some real functions u, v of two real variables x, y. F O R EXAMPLE, if 
f(z) = z2, then/(,z) = (x+iy)2 = (x2~y2) + 2ixy, so that u(x,y) = x2-y2 

and v(x, y) = 2xy. 

EXERCISE 4.2.5.C Find the functions u,v if f(z) = z3. 

The objective of this section is to investigate the connection between 
differentiability of the complex function / and differentiability of the func­
tions u, v. The motivation for this investigation comes from the following 
exercise, showing that differentiability of a function of a complex variable 
requires more than mere differentiability of the real and imaginary parts. 

EXERCISE 4.2.6.C (a) Show that the function f(z) = u(x,y) + iv(x,y) is 
continuous at the point ZQ = XQ + iyo, in the sense of Definition 4-1, if and 
only if both functions u,v are continuous at (xo,yo), as real functions of 
two variables, (b) Show that if the function f = f(z) is differentiable, then 
the corresponding functions u, v are also differentiable, as functions of x 
and y. (c) Show that the function f{z) — x is not differentiable anywhere, 
in the sense of Definition 4-1-

To understand what is going on, let us assume that / = f(z) is dif­
ferentiable at ZQ SO that, according to Definition 4.1, we have f(zo + 
z) - /(*>) = */'(*>) + e(z), where \e(z)\/\z\ - • 0, \z\ - • 0. Writing 
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e(z) = E\(x,y) + ie2(x,y), f'(zo) = A + iB, r = \z\, we find that, for 
all x, y sufficiently close to zero, 

(u(x0 + x,y0 + y) -u(x0,yo)) + i(v(x0 + x,y0 + y) -v(x0,y0)) 

= {x + iy)(A + IB) + ei(x,y) + ie2(x,y), 

where \ek(x,y)/r\ —> 0, r —* 0, for k = 1,2. 

EXERCISE 4.2.7. c By comparing the real and imaginary parts in the 
last equality, convince yourself that the functions u, v are difjerentiahle at 
{xo,yo) and the following equalities hold: 

A = —{x0,y0) = —(x0,y0), B = - — (x0,y0) = ~(x0,y0). 

We now state the main result of this section. 

Theorem 4.2.1 A function f = f(z) is difjerentiahle at the point ZQ = 
^o + iya if and only if the functions u = 3?/, v = S / are difjerentiahle at 
the point (xo,yo) and the equalities 

dx dy' dy dx 

hold at the point (xo,yo). 

Equalities (4.2.2) are known as the Cauchy-Riemann equations. Riemann 
introduce many key concepts of complex analysis in 1851 in his Ph.D. dis­
sertation; his advisor was Gauss. And, as we mentioned earlier in connec­
tion with the Cauchy-Bunyakovky-Schwartz inequality, one should not be 
surprised to see the name of Cauchy attached to an important result. 

EXERCISE 4.2.8. (a)B Prove the above theorem. Hint: You already have 
the proof in one direction, and you reverse the arguments to get the other direc­
tion. (b)c Verify that the derivative f'(z) can be written in one of the four 
equivalent ways: 

,. . _ du .dv _ dv .du du .du dv .dv 
dx dx dy dy dx dy dy dx' 

(c)B Verify that if the function f is analytic in the domain G, then each 
of the following implies that f is constant in G: (i) f'(z) = 0 in G; (ii) 
Either 3?/ or 9 / is constant in G; (Hi) \f(z)\ is constant in G. 

We will see later that if a function / = f(z) is differentiable (analytic) 
in a domain, then it is infinitely differentiable there. Then the functions u 
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and v have continuous partial derivatives of every order. Recall that the 
alternative notation for the partial derivative du/dx is ux, and when the 
second-order partial derivatives are continuous, we have uxy = uyx. Then 
from (4.2.2) we find uxx = vyx and 
Similarly, vxx + vyy = 0, that is, both u and v are harmonic functions. 
Two harmonic functions that satisfy (4.2.2) are called conjugate. We 
conclude that a function f = f(z) is analytic in a domain G if and only if 
the real and imaginary parts of f are conjugate harmonic functions. This 
remarkable connection between analytic and harmonic functions leads to 
numerous applications of complex analysis in problems such as the study 
of two-dimensional electrostatic fields and two-dimensional flows of heat 
and fluids. We discuss mathematical foundations of these applications in 
Problem 5.3 on page 433. The lack of a three-dimensional analog of complex 
numbers is one of the reasons why the corresponding problems in three 
dimensions are much more difficult. 

If u and v are conjugate harmonic functions, then, because of (4.2.2), 
one of the functions uniquely determines the other up to an additive con­
stant. Similarly, either the real part u or the imaginary part v specify 
the corresponding analytic function / = u + iv uniquely up to an addi­
tive constant. F O R EXAMPLE, if u(x,y) = xy, then, by the first equal­
ity in (4.2.2), ux = y = vy, so that v(x,y) = y2/2 + h(x) and hence 
vx = h'(x). By the second equality in (4.2.2), vx = —uy = —x, that is, 
h'{x) = —x and v(x, y) = (y2 — x2)/2 + c, where c is a real number. Note 
that vxx + vyy = —1 + 1 = 0, as it should; this is a useful computation to 
ensure that the computations leading to the formula for v are correct. With 
z = x + iy, the corresponding function f(z) is recovered from the equality 

f(z) = u((z + z)/2, (z - z)/2i) + iv({z + 2)/2, (z - z)/2i), 

which in this case results in f(z) = —iz2/2 + ic, where c is a real number. 
This answer is easy to check: f(z) = —iz2/2 + ic = xy + i(y2 — x2)/2 = 
u(x,y) + iv(x,y). 

EXERCISE 4.2.9F Find all functions f = f(z) that are differentiable for all 
z and have 9 / (z ) = x2 — xy — y2. Check that your answer is correct. 

If we write z = r(cos6 + isin#) in polar coordinates, then f(z) = 
u(r,9) +iv(r,6). 

EXERCISE 4.2.10.B (a) Verify that in polar coordinates equations (4-2.2) 
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imply 

ur = r~1ve, vr = -r~1ue, (4.2.3) 

and conversely, (4-2.3) imply (4-2.2). (b) Verify that each of the following 
functions satisfies (4-2.3): (i) f(z) = raelaS, a a real number; (ii) f{z) = 
lnr + i6 

The usual rules of differentiation (for the sum, difference, product, ratio, 
and composition (chain rule) of two functions, and for the inverse of a 
function) hold for the functions of complex variable just as for the functions 
of real variable. If the function / = f(x) is differentiable, the chances 
are good that the corresponding function / = f(z) is analytic, and to 
compute the derivative of f(z), you treat z the same way as you would 
treat x. The functions f{z) that contain z, $tz, $Sz, arg(z), and \z\ require 
special attention because they do not have clear analogs in the real domain. 
Analyticity of such functions must be studied using the Cauchy-Rieman 
equations. F O R EXAMPLE, the function f(z) = z is not analytic anywhere, 
because for this function ux = 1, vy = — 1, and so ux ^ vy. 

EXERCISE 4.2.11.c Check whether the following functions f are analytic. 
If the function is analytic, find the derivative, (a) f(z) = (z)2, (b) f(z) = 
3z/3fcz, (c) f{z) = 8fcz3 - iSz3, (d) f(z) = z2/(l - z2). 

4.2.3 The Integral Theorem and Formula of Cauchy 

In this section, we study integrals of analytic functions and establish two 
results from which many of the properties of the analytic functions follow. 

We start with integration in the complex plain. Consider a curve C in 
R2 denned by the vector-valued function r(t) = x(t)i + y(t)j, a < t < 
b. Equivalently, we can define this curve using a complex-valued function 
z = z(t), t £ [a, b], by setting z(t) ~ x(t) + iy(t). As usual, we write 
z(t) = x(t) + iy(t), provided the derivatives of x and y exist. 

Assume that the curve C is piece-wise smooth, that is, consists of finitely 
many smooth pieces; see page 28 for details. Let / = f(z) be a function, 
continuous in some domain containing the curve C. We define the integral 
Jc f(z)dz of / along C by 

/ f(z)dz = f f(z(t))z(t)dt. (4.2.4) 
JC Ja 

In what follows, we consider only piece-wise smooth curves. The line inte-
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gral over a closed curve C (that is, a curve for which r(a) = r(b)) is often 
denoted by §c . The letter z is not the only possible notation for the variable 
of integration; in particular, we will often use the Greek letter ( when z is 
being used for other purposes. 

EXERCISE 4.2 .12. C (a) Writing f(z) = u(x,y) + iv(x,y), verify that 

/ f(z)dz = / (udx - vdy) + i / (vdx + udy). (4.2.5) 

In particular, by (3.1.17) on page 131, change of orientation of the curve 
C reverses the sign of fc f(z)dz. (b) Verify that the length of the curve can 
be written as fc \dz\. 

EXERCISE 4.2.13? Let f(z) = (z — z0)
n, where ZQ is a fixed complex number 

and n, an integer: n = 0, ± 1 , ± 2 , . . . . Let C be a circle with radius p, 
center at z§, and orientation counterclockwise. Verify that §c f(z)dz = 2-ni 
if n = — 1 and fc f(z)dz = 0 otherwise. Hint: z(t) = zo + peu, 0 < t < 2TT. 

In other words, you show in Exercise 4.2.13 that 

Jf -dz ={—' U h (4.2.6) 
z-z0\=p (z ~ zo)n [0, n = 0 , - 1 , ±2, ± 3 , . . . . 

Recall that, for a real-valued continuous function h = h(x), we have 
| fa h(x)dx\ < (b — a) maxx£[a]f,] |/i(:r)|, and the easiest way to prove this 
inequality is to apply the triangle inequality to the approximation of the 
integral according to the rectangular rule and then pass to the limit. We 
will now derive a similar inequality for the complex integral (4.2.4). 

By the left-point rectangular rule, we have 

/ 
J a 

b " - 1 

f(z(t))z{t)dt= lim y]/(z(tfc))i(*fc)(tfc+i-tfc), (4.2.7) 
fc=0 

where a = to < h < ... < tn — b. Note that |i(£fc)| = ll^(*fc)|| where 
r = r(t) is the vector function that defines the curve, and we saw on page 
29 that 

n - l -fe 

lim y ) | | r ( t f c ) | | ( t f c + i - t f e )= / ||r(t)||dt = Lc(a,6), 
m a x l t f c + i - t f c H O j ^ Ja 

the length of the curve C. We then apply the triangle inequality on the 
right-hand side of (4.2.7) and denote by max z ec \f{z)\ the maximal value 
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of |/(.z)| on the curve C. The result is the following inequality for the 
integral (4.2.4): 

L f(z)dz < Lc(a,b) max\f(z)\. (4.2.8) 

Note that maxz ec \f(z)\ = maxa<t<b \f(z(t))\; since the functions / = f(z) 
and z = z(t) are both continuous and the interval [a, b] is closed and 
bounded, a theorem from the one-variable calculus ensures that the maxi­
mal value indeed exists. If you remember that the curve C is only piece-wise 
smooth, and insist on complete rigor, apply the above argument to each 
smooth piece of the curve separately and then add the results. 

We will now look more closely at the line integrals along closed curves. 
Recall (page 25) that a curve C, defined by a vector-valued function r = 
r(t), a < t < b, is called simple closed if the equality r(ti) = rfa) holds for 
h = a, i2 = b and for no other £1,̂ 2 € [a, b\. By default, the orientation of 
such a curve is counterclockwise: as you walk along the curve, the domain 
enclosed by the curve stays on your left. 

EXERCISE 4.2.14? Let f be a function, analytic in a domain G, and letC be 
a simple, closed, piece-wise smooth curve in G so that the domain enclosed 
by C lies entirely in G. Assuming that the derivative / ' of f is continuous 
in G, show that §c f(z)dz = 0. Hint: use Green's formula to evaluate the line 
integrals in (4-2.5), then use the Cauchy-Riemann equations (4-2.2). 

As with line integrals of real-valued vector functions, we say that the 
function / = f(z) has the path independence property in a domain G 
of the complex plane if / is continuous in G and §c f(z)dz = 0 for every 
simple closed curve C in G (recall that we always assume that C is piece-wise 
smooth). 

EXERCISE 4.2.15.c Show that if the function f has the path independence 
property in G and C\, C2 are two curves in G with a common starting point 
and with a common ending point, then L f(z)dz — Jc f(z)dz. Hint: make 
a closed curve by combining C\ and C2. 

EXERCISE 4 .2 .16 . C Verify that the function f(z) = 1 has the path indepen­
dence property in every domain, and therefore Jc,z z ,dz = Z2 — z\, where 
C(.z\iz2) is a curve that starts at z\ and ends at Z2- Hint: use (4-2.5) and 
the result about path independence from vector analysis. 

We will show next that a continuous function with the path indepen-
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dence property in a simply connected domain has an anti- derivative there. 

Theorem 4.2.2 Assume that a continuous function f = f(z) has the 
path independence property in a domain G, and assume that the domain G 
is simply connected (see page 186). Then there exists an analytic function 
F = F(z) such that F'(z) = f(z) in G. 

Proof. Define the function F(z) = Jc,z z* /(()d£, where C(zo, z) is a curve 
in G, starting at a fixed point ZQ £ G and ending at z £ G. By Exercise 
4.2.15 this function is well defined, because the integral depends only on 
the points ZQ,Z and not on the particular curve. Define the number A = 
A(z, Az) by 

A_Fi,+££-m_m (4.2.9) 

We need to show that limA2-+o A = 0 for every z £ G, which is equivalent 
to proving that F'(z) = f(z). The result will also imply that F is analytic 
inG. 

Let C = C(z, z + Az) be any curve that starts at z and ends at z + Az. 
Using the result of Exercise 4.2.16, we have f(z) = f(z)(l/Az) fcd£ = 
(1/Az) fc f(z)dC, because f(z) is constant on C. Therefore, 

^ z JC(z,z+Az) 

and, by (4.2.8), \A\ < (Lc/\Az\)max(£c |/(C) - f(z)\- Since we are free to 
choose the curve C(z, z + Az), let it be the line segment from the point z 
to the point z + Az. Then Lc = \Az\. Since / is continuous at z, for every 
e > 0, there exists a 6 > 0 so that \Az\ < 6 implies |/(C) — f(z)\ < e for all 
C, £ C. As a result, for those Az, \A\ < e, which completes the proof. • 

We will now state the first main result of this section, the Integral Theo­
rem of Cauchy, which says that the functions having the path independence 
property in a simply connected domain are exactly the analytic functions. 

Theorem 4.2.3 (The Integral Theorem of Cauchy) A continuous 
function f has the path independence property in a simply connected domain 
G if and only if f is analytic in G. 

In Exercise 4.2.14, you already proved this theorem in one direction 
(analyticity implies path independence) under an additional assumption 
that / ' is continuous; this is exactly what Cauchy did in 1825. This is not 
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the best proof, because the definition of an analytic function requires only 
the existence of the derivative. 

In 1900, the French mathematician EDOUARD GOURSAT (1858-1936) 
produced a proof that does not rely on the continuity of / ' . He published 
the result in 1900 in the very first issue of the Transactions of the American 
Mathematical Society (Volume 1, No. 1, pages 14-16; the paper is in 
French, though). Goursat's proof is too technical to discuss here and is 
more suitable for a graduate-level course in complex analysis. 

The converse statement (path independence implies analyticity) was 
proved by the Italian mathematician GIACINTO MORERA (1856-1909). We 
almost have the proof of this result too: with Theorem 4.2.2 at our disposal, 
all we need is the infinite differentiability of analytic functions, which we 
will establish later in this section. 

Remark 4.2 Assume that the function f is continuous in the closure 
of G (that is, f is defined on the boundary of G and, for every ZQ on the 
boundary of G, f{z) —> f(zo) as z —> ZQ, Z 6 G.) If f is analytic in G 
and G is simply connected and bounded with a piece-wise smooth boundary 
Co, then §c f{z)dz = 0. Indeed, continuity of f implies that, for every 
e > 0, there exists a simple, closed, piece-wise smooth path Ce lying inside 
of G such that | §c f(z)dz — §c f{z)dz\ < s. By the Integral Theorem of 
Cauchy, §c f{z)dz — 0. 

The Integral Theorem of Cauchy says nothing about domains that are 
not simply connected; Exercise 4.2.13, in which G is the disk with the center 
removed, shows that anything can happen in those domains. If the holes 
in G are sufficiently nice, then we can be more specific. 

Theorem 4.2.4 Assume that the boundary of G consists ofn+1 closed, 
simple, piece-wise smooth curves CQ, ... ,Cn so that C\,... ,Cn do not have 
points in common and are all inside the domain enclosed by CQ. Assume 
that f is a function analytic in G and is continuous in the closure of G. 
Then 

I f(z)dz + J2(£ f(z)dz = 0, (4.2.10) 
J Co k=1 JCk 

where the curve CQ is oriented counterclockwise, and all other curves, clock­
wise, so that, if you walk in the direction of the orientation, the domain G 
is always on the left. 
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Proof. Remember that the change of the orientation reverses the sign of 
the line integral; see Exercise 4.2.12, page 195. Connect the curves Cfc, 
k = 1 , . . . ,n to Co with smooth curves (for example, line segments), and 
apply the Integral Theorem of Cauchy to the resulting simply connected 
domain (draw a picture). Then note that the integrals over the connecting 
curves vanish (you get two for each, with opposite signs due to opposite 
orientations), and you are left with (4.2.10). • 

EXERCISE 4.2.17? Use (4.2.10) to show that if f is analytic in G andCi,C2 

are two simple closed curves in G with the same orientation (both clockwise 
or both counterclockwise) so that Ci is in the domain enclosed by C\, then 
§c f(z)dz = §c f(z)dz. Note that G does not have to be simply connected. 
Hint: consider the domain G\ that lies in between C\ and C2. 

We now use the "analyticity implies path independence" part of the In­
tegral Theorem of Cauchy to establish the I n t e g r a l Formula of Cauchy. 

Theorem 4.2.5 (Integral Formula of Cauchy) Let f = f(z) be an 
analytic function in a simply connected domain G, and C, a simple closed 
curve in G, oriented counterclockwise. Then the equality 

i^-hfM* < 4 ' 2 1 1 » 
holds for every point z inside the domain bounded by C. 

Proof. Step 1. Fix the curve C and the point z. Since / is analytic in 
G, the function /(£) = /(C)/(C — z) is analytic in the domain G with the 
point z removed. Let Cp be a circle with center at z and radius p small 
enough so that Cp lies completely inside the domain bounded by C. We 
orient the circle counterclockwise and use the result of Exercise 4.2.17 to 
conclude that §c f{QdC, = §Cp f(()d(. 

Step 2. By (4.2.6), f{z) = (1/2TTJ) JC (f(z)/{C, - z))d( (keep in mind 
that the variable of integration is (, whereas z is fixed). Combining this 
with the result of Step 1, we find: 

^iP^dC- m = -L / /«>-/(*>«. (4.2.12) 
2-Ki Jc C - z S M ; 2ni JCp C-z V ; 

Step 3. Note that the left-hand side of (4.2.12) does not depend on p. 
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To complete the proof of (4.2.11), it is therefore enough to show that 

/(C) - /(*) lira d> 
P-O 2m JCo 

<-z 
-dC = 0, 

and the argument is very similar to the proof of Theorem 4.2.2; see the 
discussion following equation (4.2.9). Indeed, the continuity of / implies 
that, for every e > 0, we can find p > 0 so that \f(z) — /(C)| < £ as long as 
|C ~ z\ < P- Using inequality (4.2.8) and keeping in mind that LQP = 2-Kp 
and |C — z\ = p when £ G Cp, we find: 

2m Jc 

/(C) ~ f(z) ,r 
— 7 "C < e, (4.2.13) 

which completes the proof. • 

Similar to Remark 4.2, if the domain G is bounded and has a piece-wise 
smooth boundary CQ, and the function / is analytic in G and is continuous 
in the closure of G, then, for every z £ G, we have 

' ("-55jL^* (4'2-14) 

EXERCISE 4.2.18. (a)B Fill in the details leading to inequality (4.2.13). 
(b)c What is the value of the integral on the right-hand side of (4-2.11) if 
the point z does not belong to the closure of the domain enclosed by C. 
Hint: 0 by the Integral Theorem of Cauchy. 

EXERCISE 4.2.19. A (a) Use the Integral Formula of Cauchy to prove 
the mean-value proper ty of the analytic functions: if f is analytic in 
a domain G (not necessarily simply connected), ZQ is a point in G, and 
{z : \z — zo\ < p} is a closed disk lying completely inside G, then 

1 /"27r 

/ ( Z ° ) = 2 W / (*0+P e " ) d *- (4-2-15) 

Hint: Use (4-2.14) in the closed disk; ( = z0 + pezt. (b) In (4-2.15, can you 
replace the average over the circle with the average over the disk? Hint: yes. 

An almost direct consequence of representation (4.2.11) is that an an­
alytic function is differentiable infinitely many times. More precisely, if 
/ = fiz) is analytic in a domain G (not necessarily simply connected), the 
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n-th order derivative / ( " ) of / exists at every point in G and 

as long as the closed disk {z : \z - (\ < p] lies entirely in G; recall tha t 

0! = 1 and, for a positive integer k, k\ = 1 • 2 • . . . • k. Using the result of 

Exercise 4.2.17, we can replace the circle of radius p in (4.2.16) with any 

simple, closed, piece-wise smooth curve, as long as the domain bounded by 

tha t curve contains the point z and lies entirely in G. 

An informal way to derive (4.2.16) from (4.2.11) is to differentiate 

(4.2.11) n times, bring the derivative inside the integral, and observe tha t 

dn(Q - z)~l/dzn = n!(C - z)~n~l. A rigorous argument could go by induc­

tion, with both the basis and induction step computations similar to the 

proof of (4.2.11). This proof is rather lengthy and does not introduce any­

thing new to our discussion; we leave the details to the interested reader. 

Later, we will discuss an alternative rigorous derivation of (4.2.16) using 

power series; see Exercise 4.3.8(c) on page 211 below. 

The consequences of (4.2.16) are far-reaching indeed, as demonstrated 

by the following results. The best par t is, you can now easily prove all of 

them yourself. 

E X E R C I S E 4.2.20. (a)B Complete the proof of the Cauchy Integral Theo­

rem by showing that a continuous function that has the path-independence 

property in a simply connected domain is analytic there. Hint: by Theorem 

4-2.2, there exists an analytic function F so that F'(z) = f(z) for all z in G. By 

(4-2.16), all derivatives of F are continuous in G, and you have f'{z) = F"(z). 

(bf Use (4.2.16) to prove Cauchy ' s I n e q u a l i t y : 7 / 1 / ( 0 1 < M when 

\Q — z\ = p, then 

\fin\z)\ < ^ 1 . (4.2.17) 
pn 

Hint: use (4-2.8). Also note that since the function f is continuous, such a 

number M always exists. (c)B Now use (4-2.17) to prove L i o u v i l l e ' s 

Theorem: A bounded entire function is constant. (That is, if a function is 

analytic everywhere in the complex plain and is bounded, then the function 

must be constant.) Hint: Taking n = 1 and p arbitrarily large, you conclude 

that f'(z) = 0 for all z. Then recall part (c) of Exercise 4-2.8- (d)B Finally, 

use Liouville's Theorem to prove the Fundamental Theorem of A l g e b r a : 

every polynomial of degree n > 1 with complex coefficients has at least one 
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root. Hint: if the polynomial P = P(z) has no roots, then l/P(z) is a bounded 
entire function, hence constant — a contradiction. 

The Liouville theorem is due to the same Joseph Liouville who discov­
ered transcendental numbers; he has one more famous theorem, related 
to Hamiltonian mechanics. The first proof of the fundamental theorem of 
algebra appeared in 1799 in Gauss's Doctoral dissertation; as with other 
important theorems, there had been numerous unsuccessful attempts at the 
proof prior to that. 

EXERCISE 4.2.21."4 Let us say that a function f = f{z) is analytic at the 
point z = oo if and only if h(z) — f(l/z) is analytic at z = 0. Prove that 
if an entire function is analytic at z = oo, then the function is everywhere 
constant. 

4.2.4 Conformal Mappings 

No discussion of analytic functions is complete without mentioning confor­
mal mappings. 

As the name suggests, a conformal mapping is a mapping that preserves 
(local) form, or, more precisely, angles. We will see that an analytic function 
with non-zero derivative defines a conformal mapping. Before giving the 
precise definitions, let us recall how to compute the angle between two 
curves in M2. 

As a set of points, a curve in M2 is defined in one of the two ways: (a) by 
a vector-valued function r(t) = x(t) i + y(t) j ; (b) as a level set of a function 
F = F(x,y), that is, a set {(x,y) : F(x,y) = const.}. If r\ = ri(t) and 
**2 = T"2(«) define two smooth curves and ri(£0) = rz(so), then the angle 9 
between the curves at the point of intersection is defined by cos 8 =\u\ (to) • 
U2{sa)\: it is either the angle between the unit tangent vectors or n minus 
that angle, whichever is smaller. If the differentiable functions F = F(x, y) 
and G = G(x,y) define two curves so that F(x0,yo) — G(xo,yo) and the 
point (xo,j/o) is n ° t critical for F and G, then the angle 0 between the 
curves at the point of intersection satisfies 

a \VF{xo,yo)-VG{x0,yo)\ 

\\VF(x0,y0)\\\\VG(x0,yo)W 

EXERCISE 4.2.22? Show that conjugate harmonic functions have orthogonal 
level sets. In other words, let u, v be two differentiable functions satisfying 
the Cauchy-Riemann equations (4-2.2) oft page 192, dndCiif CVf two curves 
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corresponding to some level sets of u and v. Show that, at every point of 
intersection, the angle between Cu and Cv is TT/2. Hint: use (4.2.2) on page 
192. 

In the complex plane, the vector representation of a smooth curve is 
equivalent to denning a continuously differentiable complex-valued function 
z = z(t) of a real variable t, so that z(t) ^ 0; the tangent vector to the 
curve is represented by the function z(t). Using the properties of complex 
numbers, we conclude that if z\ — z\(€) and z2 = z2(s) represent two 
smooth curves and zi(to) = z2(s0), then, according to Exercise 4.1.4 on 
page 184, the angle 8 between the curves is 

6 = min (|Arg(ii(t0)) - Arg(i2(s0))|,7r - |Arg(ii(t0)) - Arg(i2(s0))|). 
(4.2.18) 

We will now see that an analytic function / — f(z) with non-zero deriva­
tive does not change the angle between two curves. Indeed, let z\ — z\(t) 
and z2 = Z2(s) represent two smooth curves. The function / maps these 
curves to wi(t) = f{z\(t)) and w2(s) = f(z2(s)). By the chain rule, 
Mt) = f'(zi(t))zi(t), w2(s) = f'(z2(s))z2(s). If z* = Zl(t0) = z2(s0) 
is the point of intersection of the original curves, then f(z*) is the point of 
intersection of the images of these curves under / . By Exercise 4.1.4, the 
argument of the product of two non-zero complex numbers is equal to the 
sum of the arguments, so that, under the mapping / , all smooth curves that 
pass through the point z* are mapped onto curves w(t) = f(z(t)), which 
are turned by the same angle Arg(/'(z*)). Then relation (4.2.18) implies 
that the angle between the original curves at the point z* is the same as the 
angle between the images at the point f(z*). Note that the above calcula­
tions do not go through if f'(z*) — 0, because in that case the argument of 
f'(z*) is not defined. 

EXERCISE 4.2.23? The derivative of the analytic function f(z) = z2 is equal 
to zero when z = 0. By considering two lines passing through the origin, 
show that this function doubles angles between curves at z = 0. Hint: a line 
through the origin is defined by Arg(z) = const, and Arg(z2) = 2Arg(z). 

Recall that, to every mapping from R2 to E2 , we associate the Jacobian, 
the function describing how the areas change locally at every point (see page 
148 for a three-dimensional version). If written f{z) = u(x,y) + iv(x,y), 
every function of a complex variable defines a mapping from E 2 to E 2 by 
sending a point (x,y) to the point (u(x,y),v(x,y)). 
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EXERCISE 4.2.24. B Using the Cauchy-Riemann equations (4-2.2), verify 
that the Jacobian of the mapping defined by an analytic function f = f(z) 
is equal to \f'(z)\2. 

Beside the conservation of angles, another important property of the 
mapping defined by an analytic function with non-zero derivative is the 
uniform sca l ing at every point, that is, the linear dimensions near every 
point z are changed by the same factor | / ' (z ) | near w = f{z) in all direc­
tions. This property is the consequence of the definition of the derivative: 
if wo = f(zo), u> = f(z), Az = z~ ZQ, AW = w — wo, then, for \Az\ close to 
zero, we have (Aw/Az) « f'(zo) or \Aw\ « |/ '(^o)| |Az|, and the direction 
from ZQ to z or from WQ to w does not matter. 

By definition, a mapping is called conformal at a point if it preserves 
angles and has uniform scaling at that point. We just saw that an analytic 
function defines a conformal mapping at all points where the derivative of 
the function is non-zero. 

EXERCISE 4.2.25.B Let f = f(z) be an analytic function in a domain G 
and f'{z) ^ 0 in G. (a) Denoting by G the image of G under f, verify that 
the area of G is Jf \f'(z)\2dA. (b) Denoting by C the image under f of a 

G 
piece-wise smooth curve C in G, show that the length of C is J \f'(z)\ \dz\. 

c 
Figuring out how a particular function / transforms a certain domain or 

a curve is usually a matter of straightforward computations. In doing these 
calculations, one should keep in mind that, while a conformal mapping pre­
serves the local geometry, the global geometry can change quite dramatically. 
F O R EXAMPLE, let us see what the mapping f(z) = 1/z, which is confor­
mal everywhere except z = 0, does to the family of circles \z — ic\2 = c2, 
where c > 0 is a real number. It is convenient to consider two different 
complex planes: where the function / is defined, and where the function / 
takes its values. Since z = x + iy denotes the generic complex number in 
the complex plane where / is denned, it is convenient to introduce a differ­
ent letter, w, to denote the generic complex number in the complex plane 
where / takes its values. The equation of the circle is x2 + y2 — 2cy = 0. 
The relation between z and w is w = 1/z = (x — iy)/(x2 + y2). When z 
is on the circle, we have x2 + y2 = 2cy, and then w = x/(2cy) — i/(2c). 
In other words, if a point z is on the circle \z — ic\2 = c2, then the point 
w = 1/z satisfies Sw = —l/(2c); you should convince yourself that, as we 
take different points z on the circle, we can get all possible values of the 
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real part of w. Since the collection of all w with the same imaginary part 
is a line parallel to the real axis, we conclude that the function f(z) = \jz 
maps a circle \z — ic\2 — c2 to the line {w : Q(w) = - l / ( 2 c ) } . 

EXERCISE 4.2.26F (a) Verify that the family of circles \z - c\2 = c2, c> 0, 
c ^ 0 is orthogonal to the family of circles \z — ic\2 = c2, c £ WL, c > 0 
(draw a picture), (b) Verify that the function f(z) = \/z maps a circle 
\z — c\2 = c2 to the line line 3?w = l/(2c). Again, draw a picture and 
convince yourself that all the right angles stayed right, (c) What happens if 
we allow c < 0 ? 

For more examples of conformal mappings, see Problem 5.4, page 434. 

The following theorem is one of the main tools in the application of 
complex analysis to the study of Laplace's equation in two dimensions. 

Theorem 4.2.6 Let G and G be two domains in M2 and let f(z) — 
u(x, y) + iv(x, y) be a conformal mapping of G onto G. IfU = U(£, n) is a 
harmonic function in G, then the function U(x,y) = U(u(x,y), v(x, y)) is 
a harmonic function in G. 

The domain G is often either the upper half-plane or the unit disk with 
center at the origin. Note the direction of the mapping: for example, to 
find a harmonic function in a domain G given a harmonic function in the 
unit disk, we need a conformal mapping of the domain G onto the unit disk. 

EXERCISE 4.2.27? (a) Prove Theorem 4-2.6 in two ways: (i) by interpreting 
U as the real part of analytic function F{f{z)), where F is an analytic 
function with real part U; (b) by showing, with the help of the Cauchy-
Riemann equations, that 

uxx + um = (UK + £/„„) (u2 + u2
y). 

(b) Suppose you can solve the Dirichlet problem V2U = 0, U\dD = 9, for 
every continuous function g when D is the unit disk. Let G be a bounded 
domain with a smooth boundary dG, and f : G —» D, a conformal mapping 
of G onto D. How to solve the Dirichlet problem V2V = 0, V\QG = h, for 
a given continuous function h ? 
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4.3 Power Series and Analytic Functions 

4.3.1 Series of Complex Numbers 

A series of complex numbers ck, k > 0 is the infinite sum Co + c\ + c-i +... = 
^fc>0Cfc. The sum ]Cfc=icfc' n ^ 1, is called the n-th partial sum of 
the series. The series is called convergent if the sequence of its partial 
sums converges, that is, if there exists a complex number C such that 
linin^oo \C — X f̂e=oCfcl = 0- The series is called absolu te ly convergent 
if the series ^fc>olcfcl converges. A series that converges but does not 
converge absolutely is said to converge condi t iona l ly . Note that the 
sequence Yjk=i \ck\: n > 1, of the partial sums of the series ^2k>0\ck\ 
is non-decreasing and therefore converges if and only if Y^k=i lcfcl — C 
for some number C independent of n. As a result, we often indicate the 
convergence of Ylk>o \c^\ bY writing £ f e > 0 lcfcl < °°. 

EXERCISE 4 . 3 . 1 . C Show that (a) the condition limn^oo \cn\ —> 0 is neces­
sary but not sufficient for convergence of the series ^Zk>0 ck; (b) absolute 
convergence implies convergence, but not conversely. 

Recall that, for a sequence of real numbers an, n>0, the upper l i m i t 
is denned by 

l i m s u p a n = lim supofc, 
n n-*°°k>n 

where sup means the least upper bound. Since the sequence An = 
supfc>n ak, n > 0, is non-increasing, the upper limit either exists or is equal 
to +oo. For a convergent sequence, the upper limit is equal to the limit of 
the sequence. Similarly, the lower l imi t liminf„a„ = linin^oo inffc>nafc, 
where inf is the greatest lower bound, is a limit of a non-decreasing se­
quence; this limit is either —oo or a finite number, and, for a convergent 
sequence, is equal to the limit of the sequence. 

EXERCISE 4.3.2. Verify that, for every sequence {an, n > 0} of real 
numbers, (a) the sequence {An, n > 0}, defined by An = supfc>nafc is non-
increasing, that is, An+i < An for all n > 0; (b) the sequence {Bn, n > 0}, 
defined by Bn = inf k>n f̂c is non-decreasing, that is, Bn+\ > Bn for all 
n > 0. Hint. Use the following argument: if you remove a number from a finite 
collection, then the largest of the remaining numbers will be as large as or smaller 
than the largest number in the original collection; the smallest number will be as 
small as or larger. 
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The following result is known as the r a t i o t e s t for convergence. 

Theorem 4.3.1 Define 

„ ,. Icn+l| T v • c lc«+ll 
K = hm sup ^-j—j-, L — hm inf ——p. 

n j C n | n | C n | 

Then the series J2k>o Cfc 

• Converges absolutely if K < 1; 
• Diverges if L > 1; 
• Can either converge or diverge, if K > 1 or L < 1. 

Proof. If K < 1, then, by the definition of limsup, there exists a q G (K, 1) 
and a positive integer N so that | c n + 1 | < q\cn\ for all n > AT. Then 
|c;v+fc| < qk\cN\, k>l, and 

A T - l J V - l , , 

fc>o fe=o fc>i fc=o q 

If L > 1, then, by the definition of liminf, there exists a q € (1,L) and 
a positive integer N so that |cn+i| > q\cn\ for all n > N. Therefore, 
limn^oo \cn\ ^ 0, and the series diverges. 

The following exercise completes the proof of the theorem. • 

EXERCISE 4.3.3. B Construct three sequences J2k>ock > 3 — 1>2,3, so 

t/iai 2Zfc>o cfe converges absolutely, X]fc>o cfc converges conditionally, and 

Sfc>o cfc diverges, while the ratio test in all three cases gives K = 2 and 

L = 0. 

The following result is known as the root t e s t . 

Theorem 4.3.2 Define 

M = limsup | c n | 1 / n . 
n 

Then the series J2k>0 ck 

• Converges absolutely if M < 1; 
• Diverges if M > 1; 
• Can either converge or diverge, if M = 1. 
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Proof. If M < 1, then, by the definition of limsup, there exists a g e (M, 1) 
and a positive integer N so that Icnl1/™ < q, that is, \cn\ < qn for all n> N. 
Then 

N-l N-l N 

E M ^ E M + E <zfc = E M + rr^ < °°-
fc>0 fc=0 fe>JV fc=0 V 

If M > 1, then, by the definition of limsup, there exists a q £ (1,K) so 
that \cn\ > qn for infinitely many n. Then limn_>oo \cn\ ^ 0 and the series 
diverges. 

The following exercise completes the proof of the theorem. • 

EXERCISE 4.3.4. B Construct three sequences Ylk>ock > 3 ~ 1)2,3, so 

that X3fc>o cfc converges absolutely, Ylk>o ck converges conditionally, and 

/Cfc>o cfc diverges, while the root test in all three cases gives M = 1. 

4.3.2 Convergence of Power Series 

In this section, we will see that analytic functions are exactly the functions 
that can be represented by convergent power series. We start with the 
general properties of power series. 

A power s e r i e s around (or at) point ZQ £ C is a series 

^ak(z- z0)
k = a0 + ai(z - zQ) + a2{z - z0)

2 H , (4.3.1) E 
fc>0 

where ak,k > 0, are complex numbers. The following result about the 
convergence of power series is usually attributed to Cauchy and Hadamard. 

Theorem 4.3.3 For the power series (4-3.1), define the number R by 

R = \ „ . , (4.3.2) 
hm sup J a „ I1/" ' > 

with the convention 1/ + oo = 0 and 1/0 = +oo. If R = 0, then (4-3.1) 
converges only for z = ZQ. If R = +oo, then (4-3.1) converges for all 
z e C . If 0 < R < +oo, then (4-3.1) converges absolutely for \z — zo\ < R 
and diverges for \z — ZQ\ > R. 

An alternative representation for R is 

JR = l i m s u p r ^ - r (4.3.3) 
n |a«+i| 
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Proof. Define z = z — ZQ. For z ^ 0, apply the root test to the resulting 
series (4.3.1): 

K = limsup \anz
n\^n = \z\ limsup |a„ | 1 / n = \z\/R. 

n n 

If R = 0, then K — +oo for all z ^ 0, which means that the series diverges 
for z 7̂  0. If R = +oo, then K = 0 for all 5, which means that the series 
converges for all z. If 0 < R < +oo, then K < 1 for |z| < R and if > 1 for 
\z\ > i?, so that the result again follows from the root test. 

Representation (4.3.3) follows in the same way from the ratio test. • 

EXERCISE 4.3.5.C Verify representation (4.3.3). 

Definition 4.3 The number R introduced in Theorem 4.3.3 is called 
the rad ius of convergence of the power series (4.3.1), and the set {z : 
\z — zo| < R} is called the disk of convergence. 

EXERCISE 4.3.6. c (a) Verify that the power series X)fc>o a*zk and 
^ f e > 0 ka\iz

k have the same radius of convergence, (b) Give an example 
of a power series that converges at one point on the boundary of the disk of 
convergence, and diverges at another point. Explain why the convergence 
in this example is necessarily conditional (in other words, explain why the 
absolute convergence at one point on the boundary implies absolute conver­
gence at all points of the boundary). 

In practice, it is more convenient to compute the radius of convergence 
of a given series by directly applying the ratio test or the root test, rather 
than by formulas (4.3.2) or (4.3.3). F O R EXAMPLE, to find the radius of 
convergence of the power series 

( - l ) "z 3 " + 1 n! 

n>l 

f- l l"z3 n + 1n' 
we write c„ = •*—fan)" L anc* 

(2n)n (4.3.4) 

where we used limn_>00(l + n-1)™ = e. The ratio test guarantees conver­
gence if |z|3/(2e) < 1 or \z\ < \/2e. Therefore, the radius of convergence is 
\/2e. Direct application of either (4.3.2) or (4.3.3) is difficult because many 
of the coefficients an in the series (4.3.4) are equal to zero. 
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EXERCISE 4.3.7.c Find the radius of convergence of the power series 

7.2n+1(dnV 
E ( 5 + ( _ l n « 
fc>l 

Let us now state and prove the main result of this section. 

Theorem 4.3.4 A function f = f{z) is analytic at the point ZQ if and 
only if there exists a power series Ylk>oak(z ~ z°)k vy^1 some radius of 
convergence R > 0 so that f(z) = ^2k>0 ak{z — zo)k for all \z — zo\ < R. 

Proof. Step 1. Let us show that an analytic function can be written as a 
convergent power series. Recall that, by definition, / = / (z) is analytic at 
ZQ if and only if / has a derivative in some neighborhood of ZQ. Therefore, 
there exists an R > 0 so that / is analytic in the open disk GR = {z : 
\z — zo\ < R}. Take z G GR and find a number p so that \z — zo| < P < R-
Then the circle Cp with center at ZQ and radius p encloses z and lies entirely 
in GR (draw a picture). By the Cauchy Integral Formula, 

Next, we note that \z — ZQ\ < |£ — ZQ\ = p for C, € Cp and use the formula 
for the geometric series to write 

(z - Z0) 

We now plug the result into (4.3.5) and find 

z0)
k dC (4.3.7) 

Finally, let us assume for the moment that we can integrate term-by-term 
in (4.3.7), that is, first do the integration and then, summation; this is 
certainly true for sums with a finite number of terms, but must be justified 
for (4.3.7), and we will do the justification later. Then the term-by-term 
integration results in the equality 

/(z) = J> f e(z - z0)
fe, (4.3.8) 

fc>0 
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where 

By (4.3.6), the radius of convergence of the power series in (4.3.8) is at least 
p. This shows that an analytic function can be represented by a convergent 
power series. 

Step 2. Let us show that a convergent power series defines a continuous 
function. Define g(z) = J2k>oak(z ~ zo)k, \z — ZQ\ < R. We will show 
that the function g is continuous for \z — ZQ\ < R, that is, for every z\ in 
the disk of convergence and for every e > 0, there exits a S > 0 so that 
\g(zi) — g(z)\ < E as long as \z\ — z\ < S and \z — ZQ\ < R; the interested 
reader can then use similar arguments to prove that g is analytic. To prove 
the continuity of g, fix a z\ with \z\ — ZQ\ < R and an e > 0. Next, let 
us define r = (R+\z\ — zo\)/2 and find TV so that J2k>N+i \ak\rk < e /4 -
Such an N exists because r < R and the power series converges absolutely 
inside the disk of convergence. Now consider gN(z) = J2k=i akZk- Being a 
polynomial, gN(z) is a continuous function at z\, and therefore there exists 
a <5i > 0 so that \gw(z\) — g(z)\ < e/2 as long as \z — z\\ < 6\. Finally, 
define S as the minimum of Si and (R — \z\ — ZQ\)/A. By construction, if 
l^i — z\ < S, then \ZQ — z\ < r (draw a picture). Now let us look at the 
value of \g{zi) — g(z)\ for \z — z\\ < 6. By the triangle inequality, 

\g(zi)-g(z)\<\gN(z1)-gN(z)\+ ^ \ak\ \zi-zQ\k+ ] T \ak\ \z-zQ\k; 
k>N+l k>N+l 

(4.3.10) 
by the choice of N and J, |gjv(zi) — 9JV(Z)| < e/2, and, by the choice of r, 

X ) \ak\\zi-z0\
k+ ] T \ak\\z-zQ\k < 2 J2 \ak\rk<e/2. 

k>N+l k>N+l k>N+l 

As a result, \g(zi) — g(z)\ < e, which proves the continuity of g. 
The following exercise completes the proof of the theorem. • 

EXERCISE 4.3.8/1 (a) Use the same arguments as in Step 2 above to show 
that g(z) = J2k>o °fe(z ~ z°)k l s differentiable for \z — z0 | < R and g'{z) = 
Sfc>o kak{z—zo)k~l • Thus, g is indeed an analytic function for \z—ZQ\ < R. 
Hints: (i) you can differentiate the polynomials; (ii) by Exercise 4-3.6, the power 
series ̂ 2k>0 fcafcZ*-1 has the radius of convergence equal to R. (b) Use the same 
arguments to justify the switch of summation and integration in (4-3.7). 
Hints: (i) you can do this switching when the number of terms is finite, (ii) 
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The value of \z — zo|/|z — C| is constant for all £ on Cp and is less than one, 
which allows you to make the sum ^2k>N arbitrarily small, (c) Show that the 
n-th derivative g^ of g(z) = 2fc>oafc(z — z°)k ea;*s*s inside the disk of 
convergence and satisfies g^(zo) = n)an. Then use (4-3.8) and (4-3.9) to 
give the rigorous proof of (4-2.16) on page 201. Hint: part (a) of this exercise 
shows that you can differentiate the power series term-by-term as many times as 
you want. 

Corollary 4.1 Uniqueness of power s e r i e s . (a) Assume that the 
two power series Y^T=o ak(z ~ zo)k, Sfclo bk(z — zo)k converge in the some 
neighborhood of ZQ and Y?kLoak(z ~ zo)k = J2T=o^k(z — zo)k for a^ z *n 

that neighborhood. Then a^ = b^ for all k > 0. 
(b) If f is analytic at ZQ, then 

f(z) = f(zo) + f ; ^ - ^ - (z - z0)
k (4.3.11) 

fc=i 

for all z in some neighborhood of ZQ. Therefore, if a function has a power 
series representation at a point ZQ, this power series is necessarily (4-3.11). 

EXERCISE 4.3.9;A Prove both parts of Corollary 4-1-

As in the ordinary calculus, the series in (4.3.11) is called the Taylor 
s e r i e s for / at ZQ\ when z§ = 0, we also call it the Maclaurin s e r i e s . 
It appears, though, that the original idea to represent real functions by a 
power series belongs to neither Taylor nor Maclaurin and can be traced back 
to Newton. The English mathematician BROOK TAYLOR (1685-1731) and 
the Scottish mathematician COLIN MACLAURIN (1698-1746) were the first 
to make this idea clear enough and spread it around, and thus got their 
names attached to this power series representation, even in the complex 
domain. 

The methods for finding the power series expansion of a particular com­
plex function are the same as for the real functions. With these methods, 
you never compute the derivatives of the function. One of the key relations 
is the sum of the geometric series: 

r ^ = E 2 * - w <:L- (4-3-12) 
fc>o 

F O R EXAMPLE, let us find the Taylor series for f(z) = 1/z2 at point z0 = 1-
We have f(z) = -g'(z), where g{z) = 1/z. Now, 1/z - 1/(1 + (z -
1)) = Efe>o(_1) fc(z ~ 1)fc> w h e r e w e u s e d (4-3.12) with -(z - 1) instead 
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of z. Differentiating term-by-term the power series for g gives f{z) = 

Ek>i(-l)k+lk(z ~ 1)k~1 = E fc>o(-1) fe( fc + 1)(* - !) fc. w h e r e i n the last 
equality we changed the summation index to start from zero. The series 
converges for \z — 1| < 1. 

EXERCISE 4.3.10. c Find the power series expansions of the following 
functions at the given points, and find the radius of convergence: (a) 
f(z) — z + z + l at ZQ = i. Hint: put z = i+(z — i) and simplify. Alternatively, 
put w = z — i so that z = w + i, and find the expansion of the resulting function in 
powers of w; then replace w with (z — i). (b) f(z) = l/(z + 1z + 2) at ZQ = 0 
Hint: use partial fractions: z2 + 2z + 2 = (z + l)2 + 1 = (z + 1 — i)(z + 1 + i), 
f(z) = A/(z + 1 - i) + B/(z + l + i). 

Given an analytic function, you usually do not need the explicit form of 
its Taylor series to find the radius of convergence of the series. Indeed, 
by Theorem 4.3.4, the radius must be the distance from ZQ to the closest 
point at which / is not analytic (think about it...). F O R EXAMPLE, the 
function f(z) = l / (z 2 + 2z + 2) is not analytic only at points z = l±i, and 
both points are y/2 away from the origin. As a result, the Maclaurin series 
for / has the radius of convergence equal to \pl. 

EXERCISE 4 .3.11. c Consider the function f(z) = ( . 2w2_5s at the point 
ZQ = 1 + 2i. (a) Without computing the series expansion, find the radius of 
convergence of the Taylor series of f at ZQ. (b) Find the series expansion 
and verify that it has the same radius of convergence as you computed in 
part (a). 

4.3.3 The Exponential Function 

For z e C, we define 

ez = Zw^ = E[-Tdrw>C0SZ = ̂ (kr- (4-3-13) 
fc>0 fc>0 V ' fe>0 V ' 

EXERCISE 4.3.12. (a)c Verify that all three series in (4-3.13) converge 
for every z € C. (b)B Verify the two main properties of the exponential 
function: 

ezi+z* =e'ie*2t ( e « y = = e * ) 
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E u l e r ' s formula 

eie = cos6 + ism6, (4.3.14) 

and the relations 

eiz — e~*z eiz 4- e~iz 

s i n z = — , c o s z = . (4.3.15) 
2i 2 

We use the Euler formula to evaluate the complex exponentials: it fol­
lows from (4.3.14) that, for z = x + iy, 

ez = ex(cosy + isiny), \ez\ — ex. (4.3.16) 

Relation (4.3.16) shows that, as a function of complex variable, ez can take 
all complex values except zero and is a periodic function with period 2m. 
Similarly, (4.3.15) implies that sinz and cosz can take all complex values. 
In particular, the familiar inequalities ex > 0, |sinx| < 1, |cosa;| < 1 that 
are true for real x, no longer hold in the complex domain. 

EXERCISE 4 . 3 .13 . B (a) Verify that the mapping defined by the exponential 
function f(z) = ez is conformal everywhere in the complex plane. (b)Find 
the image of the set {z : Uz > 0, 0 < Sz < 7r} under this mapping. 

Two other related functions are the hyperbolic s ine sinh and 
hyperbolic cosine cosh: 

ez — e~z ez -\- e~z 

sinhz = , coshz = . (4.3.17) 

EXERCISE 4.3.14.B (a) Verify that 

z2k+l z2k 

sinh z — > 7— -77, cosh z = > -^rm • 

(b) Verify that 

sin(a; + iy) = sin x cosh y + i cos x sinh y, sinh(,z) = —i sin(iz), 

cos(a: + iy) = cos a; coshy — isinx sinh y, cosh(z) = cos(iz). 

The n a t u r a l logarithm In z of z ^= 0 is defined as the number whose 
exponential is equal to z. If a = In z, then, because of (4.3.14), a+2ni is also 
a natural logarithm of z. In other words, In z has infinitely many values, 
and, since z — \z\elaTe^z\ we have lnz = ln|z| +iaxg(z). The p r i n c i p a l 
value of the natural logarithm is defined by Ln z = In \z\ + i Arg(z), which 
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is specified by the condition Lnl = 0. More generally, by fixing the value 
of ln z at one point ZQ ̂  0, we define a branch of the natural logarithm. 
For example, condition ln l = 2m results in a different branch / = f(z) of 
ln z, such that f(i) = (5ir/2)i. The values of different branches at the same 
point vary by an integer multiple of 27ri. 

EXERCISE 4 .3 .15.C (a) Use the Cauchy-Riemann equations in polar coordi­
nates to verify that the derivative of Ln z (and, in fact, of every branch of 
the natural logarithm) is 1/z. (b) Verify that —Ln(l — z) = Y^k>\ zk/k- (If 
everything else fails, just integrate term-by-term the expansion of 1/(1 — z).) 

Using the exponential and the natural logarithm, we define the complex 
power of a complex number: 

zw = ewlnz. (4.3.18) 

While the natural logarithm Inz has infinitely many different values, the 
power can have one, finitely many, or infinitely many values, depending on 
w. Quite surprisingly, a complex power of a complex number can be real: 

jt = ei(ni/2+2*ki) = e-^/2-27Tfc) k = Q ) ± 1 ) ± 2 ) . . . f 

which was first noticed by Euler in 1746. By selecting a branch of the nat­
ural logarithm, we select the corresponding branch of the complex power. 
For example il — e - 7 r /2 corresponds to the principal value of the natural 
logarithm. What is the value of il if we take ln 1 = —2-KI>. 

EXERCISE 4.3.16. (a)c Verify that if m is an integer, and w = 1/m, 
then the above definition of zw is consistent with (4-1.5), page 185. (b)B 

For what complex numbers w does the expression zw have finitely many 
different values? Hint: recall that the exponential function is periodic with period 
2m. (c)A Assume that in (4-3.18) we take the principal value of the natural 
logarithm. Verify that, for every complex number w, the corresponding 
function f(z) = zw is analytic at every point z / 0 , and f'(z) = wzw~1 • 
Convince yourself that this is true for every branch of the complex power. 

4.4 Singularities of Complex Functions 

4.4.1 Laurent Series 

We know that a function analytic at a point ZQ can be written as a Taylor 
series that converges to the values of the function in some neighborhood 
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of ZQ. The proof of this series representation essentially relies on the fact 
that a neighborhood of a point is a simply connected set. It turns out 
that a somewhat similar expansion exists in domains that are not simply 
connected. This expansion is known as the Laurent series, the study of 
which is the main goal of this section. The French mathematician PIERRE 
ALPHONSE LAURENT (1813-1854) published the result in 1843. 

Before we state the result, let us make a simple yet important observa­
tion that will be an essential part of many computations to follow. 

Recall that the geometric series formula 
.. oo 

fc=0 

is true for \z\ < 1. On the other hand, writing 

1 1 

1-z * ( l - i ) 

and replacing z with 1/z in (4.4.1), we can write 

1 - Z ~ £" Zk+l ' 
fc=0 

which is now true for \z\ > 1. Therefore, we have two representations for 
1/(1 — z), one, for small \z\, and the other, for large. 

We will now state and prove the main result of this section. Recall that 
the Taylor series is written in an open disk {z : \z — ZQ\ < R}, which is the 
basic example of a simply connected domain; we allow R = oo to include 
the whole plane. Similarly, the basic domain that is not simply connected 
is an annulus, a set of the type {z : R\ < \z — ZQ\ < R}, where ZQ is a fixed 
complex number and, for consistency, we allow i?i = 0 and/or R = oo; the 
Latin words anulus and anus mean "a ring". The Laurent series expansion 
is written in an annulus. 

Theo rem 4.4.1 Laurent s e r i e s expansion. If a function f = f (z) is 
analytic in the annulus G = {z : R\ < \z — ZQ\ < R}, then, for all z £ G, 

oo 

f(z)= J2 ^(z-z0)
k 

k= — oo 

7 r^ + 7 r + c0 + ci(z - z0) + c2(z - zQ)2 + ..., 
(Z - Z0y (2 - Zo) 

(4.4.2) 
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where 

Ck = :ti(f '» ' -^fc+idC, fc = 0 , ± l , ± 2 , . . . , (4.4.3) 27r i J C o (C-z 0 ) f e + 1 ' 

and Cp is a circle with center at ZQ and radius p so that Ri < p < \z — zo\; 
the circle is oriented counterclockwise. Representation (4-4-%) *s unique: 
if f(z) = EfeL-oo ck(z ~ zo)k = Efcl-oo ak(z ~ zo)k in G, then ak = ck for 
all k. 

Proof. We present the main steps of the proof. The details are in the 
exercise below. 

Step 1. Fix the point z. Let Cr be a circle with center ZQ and radius 
r so that p < r < R and \z — ZQ\ < r (draw a picture). Combining the 
proof of Theorem 4.2.4, page 198, with the Integral Formula of Cauchy, we 
conclude that 

with both Cr and Cp oriented counterclockwise. 
Step 2. We already know that 

h i ^-C - J>(. - »)>, * - JL £ j^JC (4.4.5) 
see the proof of Theorem 4.3.4, page 210. 

Step 3. By Exercise 4.2.17, page 199, we conclude that 

2™ Jr 
/(C) ,r i / /(C) ,, r 

Tcr (C - zo)k+1 * 2ni JCp (C - zo) f c + 1 

Step 4- Let us show that 

h I {&« - t ( 7 ^ - — Si £'<«« - *>"«• 
(4.4.6) 

fc=i 

Once again, in (4.4.6) we have positive integer k. 
To establish (4.4.6), we write 

1 1 
C - z z-zQ-{Q-z0) ( 2 _ ZQ) ^ _ c ^ 

_ y (C-*o)fc _f>(C-*o)fc-1 
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Then 

_m = f /(OK-*)*-1
 (447) 

and it remains to integrate this equality. 
Step 5. We combine the results of the above steps to get both (4.4.2) 

and (4.4.3). Note that any simple, closed, piece-wise smooth curve can be 
used instead of Cp in (4.4.3), as long as the curve is completely inside G, 
the closed disk {z : \z — ZQ\ < R\\ is inside the domain enclosed by the 
curve, and the point z is outside that domain. 

Step 6. To prove the uniqueness, we multiply the equality 
'E'kL-occi*(z-zo)k = T,'kL-ooak(z-zo)k by (z-zo)-™-1 for some integer 
m and integrate both sums term-by-term over the circle Cp. By (4.2.6), page 
195, all integrals become zero except for those corresponding to k = m, and 
we get cm = am. • 

EXERCISE 4.4.1. A (a) Verify (4-4-4)• Hint: connect the circles Cr and Cp 

•with a line segment that does not pass through the point z and write the Integral 
Theorem of Cauchy in the resulting simply connected domain. Then simplify the 
result, keeping in mind that you integrate along the line segment twice, but in 
opposite directions, and that the orientation of Cp is clockwise. (b) Justify 
the term-by-term integration in (4-4-V- Hint: note that, for £ e Cp, we have 
|(C — zo)/(z — zo)\ — p/\z — zo\ < 1. Then use the same argument as in the 
proof of Theorem 4-3-4, Page 210. (c) Fill in the details in the proof of the 
uniqueness of the expansion. Hint: once again, the key step is justifying the 
term-by-term integration, and once again, you use the same arguments as in the 
previous similar cases. 

Note that if, in the above theorem, the function is analytic for all z 
satisfying \z — ZQ\ = Ri, then we can decrease R\. Similarly, we can increase 
R if / is analytic for all z satisfying \z — ZQ\ = R (make sure you understand 
this). In other words, with no loss of generality, we will always assume 
that the annulus Ri < \z — zo\ < R is maximal, that is, each of the sets 
|z — 2o| = Ri and \z — z§\ = R (assuming R < oo) contains at least one 
point where the function / is not analytic. There are several types of such 
points. 

Definition 4.4 A point ZQ € C is called an i s o l a t e d s ingu la r point 
or an i s o l a t e d s i n g u l a r i t y of a function / if the function / is not ana-
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lytic at ZQ and there exists a S > 0 so that the function / is analytic in the 
region {z : 0 < \z — ZQ\ < 6}. 

An isolated singular point ZQ is called 

• removable, if the function can be defined at zo so that the result is an 
analytic function at ZQ. 

• a pole of order k, if k is the smallest value of the positive integer 
power n with the property that function (z — zo)nf(z) has a removable 
singularity at ZQ. 

• an e s s e n t i a l s i ngu l a r i t y , if it is neither a removable singularity nor 
a pole. 

A pole of order 1 is called simple. 

Without going into the details, let us mention that the point z = 0 is not an 
isolated singularity of f(z) = z1//2 in the sense of the above definition, but 
rather a branching point of order two. The reason is that the square root 
yfz has two different values in every neighborhood of z = 0. As a result, 
in any neighborhood of zero, there is no unique number assigned to z1^2 

and f(z) = z1/2 is not a function in the sense of our definition. Similarly, 
z = 0 is a branching point of order three for the function f{z) = z - 1 / 3 

(the fact that / is unbounded near z = 0 is not as important as the three 
different values of yfz in every neighborhood of z = 0), and z — 0 is a 
branching point of infinite order for the function f(z) = \nz. The study 
of branching points and the related topics (multi-valued analytic functions, 
Riemann surfaces, etc.) is beyond the scope of our discussions. 

Note that the closed disk {z : \z — ZQ\ < Ri} can contain several 
points where / is not analytic, and ZQ is not necessarily one of them. 
In the special case of the Laurent series with R\ — 0, ZQ is an isolated 
singular point of the function / , with no other singular points in the do­
main {z : 0 < \z — ZQ\ < R} for some R > 0. The corresponding Lau­
rent series is called the expansion of / a t (or around) the i s o l a t e d 
s ingu la r point ZQ. This expansion has two distinct parts: the regu la r 
pa r t , consisting of the terms with non-negative k, J2k>ock(z ~~ zo)k, and 
the p r i n c i p a l pa r t , consisting of the terms with the negative values of k, 
2fc<o Ck(z ~ zo)k- As the names suggest, the regular part is a function that 
is analytic at ZQ (this follows from Theorem 4.3.4), and the principal part 
determines the type of the singularity at ZQ (this follows from the exercise 
below). 
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EXERCISE 4 . 4 . 2 . C (a) Let ZQ be an isolated singular point of the function 
f = f(z), and consider the corresponding Laurent series Y^'kL-oo ck(z—zo)k 

converging for 0 < \z — zo\ < R. Verify that ZQ is 
(i) a removable singularity if and only if Ck = 0 for allk < 0 Hint: this pretty 
much follows from Theorem 4-3.4- Equivalently, ZQ is a removable singularity 
if and only if there exists a 6 > 0 so that the function f(z) is analytic and 
bounded for 0 < \z — ZQ\ < S. 
(ii) a pole of order N if and only C-N ^ 0 and Ck = 0 for all k < —(N + 1) 
Hint: for the proof in one direction, multiply the Laurent series by (z — zo)N; for 
the proof in another direction, multiply f by (z — zo)N and use Theorem 4-3-4-
(Hi) an essential singularity if and only if Ck ^ 0 for infinitely many k < 0. 
Hint: by definition, the essential singularity is the only remaining option. 

(b) Verify that the point ZQ = 0 is 
(i) a removable singularity for the functions f(z) = sin z/z, 
f(z) = (ez — 1)2/(1 — cosz) and f(z) — (zcosz — sin z)/(z sin z); 
(ii) a second-order pole for the function f(z) = (1 — cosz)/(ez - l ) 4 ; 
(Hi) an essential singularity for the function f(z) — e1//z; 
(iv) not an isolated singularity for the function f(z) — l / s in ( l / z ) . 

As with the Taylor series, we usually do not use the formula (4.4.3) to 
find the coefficients of the Laurent series, and use other methods instead. 
F O R EXAMPLE, consider the function 

««) — ( I ^ I ) -

This function is analytic everywhere except at the point ZQ = 1. Let us find 
the Laurent series for / at ZQ. We have z/(z — 1) = (z - 1 + l ) / (z — 1) = 
1 + (z — 1 ) _ 1 and so 

f(z) = sin(l + (z-l)-1) = s i n l cos((2 - 1)_ 1) + sin((z - l ) - 1 ) cosl, 

where we use the formula for the sine of the sum. Then we use the standard 
Taylor expansions for the sine and cosine to conclude that 

f{Z) = Sln ' go <* - W*) ' + C°S %tz~ D^(2 f c + 1)!; 

one could write this as a single series, but it will not add anything essential 
to the final answer. We therefore conclude that ZQ — 1 is an essential 
singularity of / . 
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EXERCISE 4.4.3.c Find the Laurent series for the function 

(2z + 5\ 
f(z) = cos JK ' \z + 2 J 

around the point ZQ = —2. What is the type of the singularity of f at ZQ? 

When writing the Laurent series expansion, one should pay attention to 
the domain in which this expansion should hold. Recall that the expansion 
is written in an annulus {z : Ri < \z — ZQ\ < R}, where ZQ is a fixed complex 
number, and none of the singular points of / should be inside this annulus. 
The expansion in such an annulus has the form Y^kL-oo ck(z ~ zo)k- The 
point ZQ does not have to be a singular point of f, but at least one singular 
point of f must be in the set {z : \z — ZQ\ = Ri}, and, unless R is infinite, at 
least one singular point of f must be in the set {z : \z — ZQ\ = R} (otherwise, 
we are able to expand the annulus). The Laurent series that converges in 
the disk {z : \z — ZQ\ < R} is the same as the Taylor series at ZQ. As a result, 
the same function can have different expansions in different domains, even 
when the point ZQ is the same: recall that (1 - z)~l = Ylk>o zk ^or \z\ < 1 
and (1 - z)-1 = Efc^o* - * - 1 for \z\ > 1. 

As A DIFFERENT EXAMPLE, consider the function 

The Laurent series of this function at ZQ = 0 is f(z) = (2z)~1 + 
Ylk>o 2~k~2zk (check it), and ZQ is a simple pole (a pole of order one). 
The expansion is true for 0 < \z\ < 2. Similarly, the Laurent series in the 
domain {z : 2 < \z — 2|} is computed as follows: 1/z = (z — 2 + 2)""1 = 
(z - 2 ) - x ( l + 2/(z - 2))- 1 , and so 

!{Z) = _ 2(1^2) +^0(z- 2)fc+! = W=Y) + g (z - 2)*+i • ( 4 A 9 ) 

EXERCISE 4.4.4.C Find the Laurent series of the function f from (4-4-8) in 
the domain {z : 0 < \z — 2| < 2}. 

It follows from (4.4.8) that ZQ = 2 is a pole of order one; this is also 
what you should conclude from the previous exercise. On the other hand, 
the expansion in (4.4.9) contains infinitely many negative powers of (z — 2). 
Should we conclude from (4.4.9) that ZQ = 2 is an essential singularity of / , 
and how do we reconcile these seemingly contradictory conclusions? After 
looking more closely at (4.4.8), we realize that (4.4.8) is not a Laurent series 
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of / at zo = 2; the Laurent series at the point ZQ = 2 must converge when 
0 < \z — 21 < R for some R, and that is the series you compute in Exercise 
4.4.4. 

Finally, let us emphasize once again that a Laurent series does not have 
to be around a singular point. We go back to the equality (1 — z ) _ 1 = 
Sfc>o •2~1_fc, which is true for \z\ > 1. Even though we have infinitely many 
negative powers of z, zero is not an essential singularity of f(z) = 1/(1 — z), 
because, for f(z) — 1/(1 — z), the point ZQ = 0 is not a singularity at all! 

EXERCISE 4.4.5.G Find the expansion of the function from (4-4-8) in the 
domain {z : 1 < \z + 1| < 3}. Hint: use geometric series; your answer should 
be Xlfcl-oo ak(z + 1) for suitable numbers ak-

EXERCISE 4.4.6^ We say that the point z = oo is an isolated singular point 
of the function f = f(z) if and only if the point z = 0 is an isolated singular 
point of the function h(z) = f(l/z). Show that z = oo is (a) a removable 
singularity of a rational function P(z)/Q(z) if the degree of P is less than 
or equal to the degree of Q; (b) A pole of order n for a polynomial of degree 
n; (c) an essential singularity for f(z) = sin 2. 

4.4.2 Residue Integration 

Let ZQ be an isolated singular point of the function / = f(z) and let 

oo 

f{z)= Y, ck(z-z0)
k (4.4.10) 

fc= —oo 

be the corresponding Laurent series expansion of / at ZQ. The coefficient 
c_i in this expansion is called the res idue of the function / = f(z) at the 
point zo and is denoted by Kesf(z). As we saw in the previous section, 

Z = ZQ 

there could be several different expansions of / in powers of (z — ZQ); the 
expansion we use in (4.4.10) is around the point z§ and must converge when 
0 < \z — ZQ\ < R for some R. 

The Latin word residuus means "left behind," and we will see next that 
c_i is the only coefficient in the expansion (4.4.10) that contributes to the 
integral of / along a closed curve around ZQ. 

Recall that 

I dz |2*i, n = l , 
Jc(z0) (* - zo)n [0, n = 0 , - 1 , ± 2 , ± 3 , . . . , 
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where C(zo) is a simple, closed, piece-wise smooth curve enclosing the point 
zo and oriented counterclockwise; see Exercises 4.2.13 and 4.2.17. Term-
by-term integration of (4.4.10) over the curve C(ZQ) then results in 

<p f(z)dz = 2iric-1=2iri Ties f(z). (4.4.12) 
JC{z0)

 z=z° 

Note also that we get (4.4.12) after setting k = — 1 in formula (4.4.3) for 
the coefficients Cfc (remember that, for our integration purposes, the curve 
C(ZQ) can be replaced with a circle centered at ZQ). Consequently, c_i is the 
only coefficient in the Laurent series expansion contributing to the integral 
over a closed curve around the singular point. 

The more general result is as follows. 

Theorem 4.4.2 Let G be a simply connected domain. Assume that the 
function f = f(z) is analytic at all points in G except finitely many points 
z\,..., zn. If a simple, closed, piece-wise smooth curve C in G encloses the 
points z\,..., zn and is oriented counterclockwise, then 

I f(z)dz = 2m V Res f(z). (4.4.13) 
Jc fiz=Zk 

EXERCISE 4.4.7. (a)B Prove the above theorem. Hint: surround each zk 

with a small circle that stays inside the domain bounded by C, then apply Theorem 
4-2-4, page 198, in the (not simply connected) domain bounded by C and the n 
circles around z\,..., z„. (b)c Explain why both the Cauchy Integral Formula 
(4-2.11), page 199, and formula (4-2.16), page 201, are particular cases of 
(4-4-13). Hint: for (4-2.16), write the Taylor expansion and integrate term-by-
term. 

The idea of the residue integration is to find the residues of a function 
without computing any integrals, and then use the above theorem to evalu­
ate the integrals of the function over different closed curves. Let us mention 
that if the curve does not enclose any singular points of the function, then 
the integral along the curve is zero by the Integral Theorem of Cauchy. 
If the curve passes through a singular point, then, in general, the integral 
along such a curve is not defined (remember that, to define the integral, we 
require the function to be continuous at all points on the curve). 

COMPUTING THE RESIDUES. The residue is a certain coefficient in the 
Laurent series expansion at an isolated singular point, and there are three 
types of isolated singular points: removable singularity, pole, and essential 
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singularity. Computation of the residue at a removable singularity or a pole 
does not require the explicit knowledge of the Laurent series expansion. 

If ZQ is a removable singularity, then, according to Exercise 4.4.2, c_i = 
Oand Res/(z) = 0. 

2 = 2 0 

If ZQ is a simple pole of / , then 

Res/(z) = lim ((* - z0)f(z)), (4.4.14) 

because the Laurent series around a simple pole is 

oo 
C - l f(z) = ^^ + J2cn(z-z0)

k. 
Z — Zn 

U k=0 

An immediate consequence of (4.4.14) is the following result. 

EXERCISE 4.4.8F Assume that f(z) = h(z)/g(z), where h,g are analytic at 
ZQ, h(zo) ^ 0, g(z0) = 0, g'(zo) / 0. Show that 

Res/(z) = ^ . (4-4.15) 

Hint: use (4-4-14) and note that g'(zo) = limz_»z0(<?(z) — g(zo))/(z — zo) = 
\imz^zo g(z)/(z - z0). 

Usually, formula (4.4.15) is easier to use than (4.4.14). F O R EXAMPLE, 
if f(z) = (z + 5)/(z3-z), then 

2S e - s
1 ^=^ iL= 6 / 2 - 3 -

If z0 is a pole of order N > 1, then the function (z — z0)
N f(z) has a 

removable singularity at ZQ and 

(z - z0)
Nf(z) = J2 ck(z - z0)

k+N = C-N + C-N+1(z - zo) 
k=-N 

+ ... + c_2(z - z0)
N-2 + d(z - zo)"-1 + -.. 

We differentiate this equality N - 1 times with respect to z, so that all the 
terms on the right that are before c_i(z — ZQ)N~X disappear, while the term 
c-i(z — ZQ)N~X becomes (N — l )!c_i . We then set z = ZQ so that all the 
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terms after (TV — l)!c_i disappear as well. As a result, 

1 / dN~l \ 

In particular, if f(z) = g(z)(z — ZQ)~N, where the function g is analytic at 
ZQ and g(zo) ^ 0, then 

£s /^=(]^i)!^' 1 )^ ) - (4-417) 

FOR EXAMPLE, if / (z) = (z6 + 3z4 + 2z - \)/{z - l ) 3 , then TV = 3 and 

Res/(z) = - (6 • 5z4 + 3 • 4 • 3z 2 ) | 2 = 1 = 33. 
z=i 2 

If z — ZQ is an essential singularity, then the computation of the residue 
usually requires the computation of the corresponding terms in the Laurent 
series. F O R EXAMPLE, if f(z) = 22sin(l/,z), then f(z) = z2(l/z-l/(6z3) + 
l/(120z5) - . . . ) and so Res/(z) = - 1 / 6 . 

z=0 

EXERCISE 4.4.9.C Taking C = {z : \z - 5i| = 5}, verify that 

£ -dz = 87T2. 
ic ez + 1 

Hint: how many poles are enclosed by C? 

One of the most elegant applications of residue integration is evaluation 
of real integrals. In what follows, we describe several classes of real integrals 
that can be evaluated using residues. 

The easiest class is integrals involving rational expressions (sums, dif­
ferences, products, and ratios) of simp and cos<p, integrated from 0 to 2n: 

j H(cos ip, sin (p) dip. 
Jo 

Such integrals are immediately reduced to complex integrals over the unit 
circle. Indeed, writing z = el,p, we have z going around the unit circle 
counterclockwise; dz = iet<pdip, so that dip = dz/(iz); also, by the Euler 
formula, cos<p = (z + z~1)/2, simp = (z — z~1)/(2i). As a result, 

/ H(cos ip, simp) dip = / H I 
Jo J\z\=i \ 

z2 + 1 z2 - 1 \ dz 

2z 2iz I iz 
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assuming that the integral on the left is well-defined. Then integration 
is reduced to computing the residues inside the unit disk for the modified 
integrand; the computations can be rather brutal, even for seemingly simple 
functions H. 

F O R EXAMPLE, let us evaluate the integral 

-I 
2* 2 + COSI/5 , 

• ;—7T~.—dip . 4 + 3sinv? ^ 

Step 1. We write z = eitfi, cosip = (z2 + l)/(2z), simp = (z2 - l)/(2iz), 
dip = dz/(iz), and so 

J\z\ = l 

z2 + 4z + 1 
Ay 

z(3z2 + 8iz - 3) 

Step 2. The function/(z) = (z 2+4z+l) / (z(3z 2+8iz-3)) we are integrating 
has three simple poles: ZQ = 0, zi, and Z2, where zi,2 are the solutions of 
3z2 + 8iz - 3 = 0. By the quadratic formula, zi,2 = (-4i ± V-16 + 9)/3 = 
i(—4± V7)/3; only z\ = i(—4 + v /7)/3 has \zi\ < 1 and therefore lies inside 
the unit circle. As a result, 

I = 2ni R e s / ( z ) + R e s / ( z ) 
1 z = 0 z=zi 

Step 3. We compute the residue at zero by formula (4.4.14): 

1 
Res/(z) - (z / (z) ) | z = 0 
z=zo O 

We compute the residue at Z\ by formula (4.4.15). It is more convenient to 
compute the derivative of the denominator by the product rule: 
(z(3z2 + 8iz - 3))' = (3z2 + 8iz - 3 ) + z(6z + 8i), because the first term on 
the right vanishes at z\. As a result, 

z2 + 4zi + 1 - 4 + V7 . 
Res Hz) — -—; —, where z\ = 1. 
*=ziK ' 2z i (3z i+4 i ) ' 3 
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We simplify the expression as follows: 

,2 , A7 , , ~ (16 -8> /7 + 7 ) + i l 2 ( - 4 + > / 7 ) + 9 
z1 + 4zi + 1 = 

_ - 1 4 + 8^7 (-A + V7) 
— ~ —r~ *& „ j 

2z1(3zi+4i) = - 2 ^ 7 - 4 + v
/ 7 \ -14 + 8 ^ 

As a result, 

Res/(z) = - - 2 t - = . 
z=zi 3 ^/7 

5£ep 4- We now get the final answer: 

7 = 2 ^ 1 - - + - - ^ 47T 

77 

EXERCISE 4.4.10.C ' W%/IOM£ using a computer, verify that 

/•27I- 1 + 2 sin co , 2-K 
aw = — . 

0 5 + 4 cos (p 3 

/f 
\ ,» 

-R 0 

y 

Cfl^vX. 

— • • 1 x 

R -R ~P O 
(a) (b) 

Fig. 4.4.1 Computing Real Integrals 

R 

Next, we consider integrals of the type 

P(x) L -00 Q(x) 
dx, (4.4.18) 

where P, Q are polynomials with real coefficients and no common roots, the 
polynomial Q has no real roots, and the degree of Q is at least two units 
higher than the degree of P (to ensure the convergence of the integral). In 
particular, the degree of Q must be even; think about it. 
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Such integrals are evaluated by integrating the function P(z)/Q(z) over 
the curve CR on Figure 4.4.1(a), and then passing to the limit R —> oo. The 
integral over CR is determined by the residues of P(z)/Q(z) at the roots of 
Q that have positive imaginary part, and the difference of degrees of P and 
Q ensures that the integral over the semi-circle tends to zero as R increases. 
If R is sufficiently large, then the curve CR encloses all the roots of Q with 
positive real part. 

Compared to the integration of the trigonometric expressions, we have 
more complicated theoretical considerations, such as passing to the limit as 
R —> oo, but often much easier computations of the residues. 

F O R EXAMPLE, consider the integral 

/= r ± 
J_00(2 + 2x + x*)Z-

Step 1. We consider the complex integral 

dz IR = 
Jc "CR(2 + 2Z + Z2) 2 \ 2 ' 

where the curve CR is from Figure 4.4.1(a), and R is sufficiently large. 
Step 2. The function f(z) = (2 + 2z + z2)~2 we are integrating has 

two second-order poles zit2 at the roots of the polynomial z2 + 2z + 2 = 
(z + l ) 2 + 1, and these roots are z\ = — 1 + i, z2 = —\ — i. The root in the 
upper half-plane is z\ = — 1 + i, and z\ is also inside the domain enclosed 
by CR if R > y/2. As a result, 

IR = 2ni Res f(z), z\ — — 1 + i. 

Step 3. We notice that f(z) = (z - z{)~2{z - z<i)~2 and then find the 
residue at z\ by formula (4.4.17) with N = 2 : 

d(z - z2)-
2 

Res f(z) 
dz 

= -2(zi - z2)~
3 = -2(2i)~A = - t / 4 ; 

recall that i _ 1 = —i. Accordingly, IR = n/2 for all R > y/2. 
Step 4- We have IR = lR,r + lR,c, where IR^ is the integral over the real 

axis from —R to R, and lRth is the integral over the circular arc. Then / = 
limfi-,00 lRtT. As for i# iC, we note that \z\ = Ron the arc, and, for R > 10, 
we have \z2 + 2z + 2| > \z\2 - 2\z\ -2 = R2-2R-2> R{R - 4) > R2/2. 
Since the length of the arc is nR, inequality (4.2.8) on page 196 implies 

ATTR 

\IRA < -^4- -» 0, R - oo. 
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As a result, 

lim IR = 
R—+00 

EXERCISE 4A.11F (a) Without using a computer, verify that 

dx wy/3 I _00 (4 + 2x + x2)3 72 ' 

(b) Convince yourself that a computation of (4-4-18) using a mirror image 
of the curve CR in the lower half-plane leads to the same final answer. Hint: 
the reason is that the roots of Q come in complex conjugate pairs. 

The same method applies to the computation of integrals 

f ° ° P(x) f ° ° P(x) 
/ cos(a:r) dx and / sinfaa;) , dx, (4.4.19) 

7-oo Q{x) 7-oo Q(x) 
where a is a real number, P, Q are polynomials without common roots, the 
degree of Q is at least two units bigger than the degree of P, and Q has no 
real roots. Assuming that a > 0, you evaluate the integral 

/ 

OO 

Aax W)dx (4A20) 

using the steps described above, and then take the real or imaginary part 
of the result. The integral in (4.4.20) can exist even when the degree of Q 
is only one unit bigger than the degree of P , see Problem 5.8 on page 436. 

EXERCISE 4.4.12.c (a) Evaluation of the integrals in (4-4-19) will not go 
through if, instead of eiaz you try to work directly with cos az or sin ax. 
What goes wrong? Hint: look carefully at cosaz and sin az when \z\ = R. (b) 
How should you change the integral in (4-4-20) if you want to evaluate 
(4-4-19) with a > 0 by integrating over a semi-circle with Sz < 0? Hint: 
you should go with e~iax. (c) Without using a computer, verify that 

f 
J — t 

COS X IT 

dx = —. 1+x2 

Then ask your computer algebra system to evaluate this integral. 

Some real integrals are evaluated using residues and integration over the 
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curve CR^ in Figure 4.4.1(b). FOR EXAMPLE, let us evaluate the integral 

cos (3a;) — cos a; 

Jo 
dx. (4.4.21) 

Step 0. EXERCISE 4.4.13. c Verify that the integral converges. Hint: 
f?° dx/x2 for every 5 > 0, and, for x near 0, cos(ax) = 1 — a x / 2 + . . . . 

Step 1. By the Integral Theorem of Cauchy, we have 

JCR,P Z 

Step 2. The integrals over the parts of CR,P on the real axis result in 

f — p pSix cix pR -Zix „ix 

/

—p e 3iz _ eix r 
dx 

P
 x* 

rR / „3ix i „-3tx pix I p-ix\ 

= / f^—£r J J <fa - 2f, P -> o, i t -> oo. 

Step 3. The integral over the semi-circle of radius R tends to zero as 
R —> oo. All you need to notice is that, for z — R(cos8 + ism8), we have 
\piaz\ __ p — aRs'm& < i 

Step 4- The integral over the semi-circle of radius p tends to — 2n as 
p —> 0. Indeed, the Taylor expansion shows that, near z = 0, we have 
z~2{e3lz —elz) = 2iz~l +g(z), where g(z) is analytic at z = 0. The integral 
of g will then tend to zero, and the integral of 2 iz - 1 , once you take into 
account only half of the circle, the clock-wise orientation and the factors of 
i, produces 27r. 

Step 5. By combining the results of the above steps, we conclude that 

f 
Jo 

cos(3a;) — cos x , 
T ax = —n. 

EXERCISE 4.4.14. (a)A Provide the details in the steps 3-5 above. (b)G Is 
it possible to evaluate (4-4-&1) by integrating (cos(3;z) — cosz)/,?2 over the 
curve in Figure 4-4-l(a)? 

With all these new techniques of integration, we should never forget the 
basic rules related to symmetry. First and foremost, the integral of an odd 
function (that is, a function / = f(x) satisfying f(x) = —f(—x)) over a 
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symmetric interval is zero. F O R EXAMPLE, 

./_«, 1 + 2x6 + 5x8 

even though some computer algebra systems do not recognize this. Second, 
if the original integral is not over the region we want, but otherwise is of the 
suitable type, we can try and use symmetry to extend the integration to 
the large interval. One basic example is /0°° F(x)dx = (1/2) J^° F(x)dx, 
if the function F is even, that is, F(x) = F(—x). Still, as (4.4.21) shows, 
sometimes it is better to keep the original interval. More subtle symmetry 
can happen with trigonometric functions. F O R EXAMPLE, verify that 

F* 1 — cos <p 1 r2v 1 — cos <p •K 

J0 5 + 3cos<^ V ~ 2 JQ 5 + 3cosy> ^ ~~ 3 ' 

There exist many other classes of real integrals that are evaluated using 
residues, but most of the examples include roots and natural logarithms. 
Evaluation of such integrals relies on the theory of multi-valued analytic 
functions and is discussed in a special Complex Analysis course. 

4.4.3 Power Series and Ordinary Differential Equations 

Many problems in mathematics, physics, engineering, and other sciences 
are reduced to a linear second-order ordinary differential equation (ODE) 

A(x)y"(x) + B(x)y'(x) + C(x)y(x) = 0. (4.4.22) 

Even though the solution of such equations is usually not expressed in terms 
of elementary functions, a rather comprehensive theory exists describing 
various properties of the solution. This theory is based on power series and 
was developed in the second half of the 19th century by the German math­
ematicians LAZARUS FUCHS (1833-1902) and GEORG FROBENIUS (1849-
1917). In what follows, we will outlines the main ideas of the theory; we 
will need the results later in the study of partial differential equations. 

We assume that the functions A, B, C can be extended to the complex 
plane, and, instead of (4.4.22), we consider the equation in the complex 
domain 

w"{z) + p(z)w'(z) + q(z)w(z) = 0 (4.4.23) 

for the unknown function w of the complex variable z, where p(z) = 
B{z)/A(z), q(z) = C(z)/A(z). 
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To proceed, we need the following two equalities: 

oo oo 

£ ak(z - z0)
k = Y, °n+N(z - z0)

n+N, N>1, (4.4.24) 
fc=JV n=0 

and 

( oo \ / oo \ oo / fc \ 

] T ak(z - z0)
k I ] T h{z - z0)

k I = S 1 S a™6*-™ I (z - zo)h-
k=0 J \k=0 J k=0 \m=0 ) 

(4.4.25) 
EXERCISE 4.4.15? (a) Verify (4.4.24). Hint: set n = k-N, so that k = n+N. 
(b) Verify (4-4-25). Hint: to get the idea, look at the first few terms by writing 
(a0 + ai(z — zo) + a2(z - z$) + .. .)(6o + b\(z - z0) + bi(z — z%) + ...) and then 
multiplying through. 

If the functions p, q are analytic in a neighborhood of a point ZQ, then 
the point z$ is called regula r for equation (4.4.23), and it is natural to 
expect that all solutions of (4.4.23) are also analytic functions in some 
neighborhood of ZQ. Indeed, writing 

00 00 00 

P(z) = ^2pk(z- z0)
k, q(z) = ^qk(z-z0)

k, w(z) = ^wk{z - z0)
k 

fc=0 k=0 k=0 

and substituting into (4.4.23), we find: 

w"(z) + p(z)w'(z) + q(z)w(z) 
00 / 00 \ / 00 \ 

= J2 Kk - l)wk(z - z0)
k-2 + £>*(* ~ z^ E kw^z ~ 2°)fc_1 

fc=2 \fc=0 / \fc=l / 

+ £ > ( * - * > ) * $> f c (z-z 0 ) f c ) =^((k + l)(k + 2)wk+2 
U=0 / \k=0 J k=0 V 
fc+1 k \ 

+ ^ mwmpk+i-m + ^ wmqk-m J (z - z0)
k = 0, 

m = l m=0 / 

(4.4.26) 

where the last equality follows from (4.4.24) and (4.4.25). 

EXERCISE 4.4.16.B Verify (4.4.26). 

By Corollary 4.1 on page 212, we conclude that the coefficients wk are 
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computed recursively by 

Wk+2 = ~(k + l)(k + 2) ( ^ mwmPk+i-m + Yl w™qk-m J (4.4.27) 

for k = 0,1, 2, — The values of Wfc, fc > 2, are uniquely determined by the 
given initial conditions wo = W(ZQ) and w\ = W'(ZQ). These computations 
suggest that the following statement is true. 

Theo rem 4.4.3 Assume that the functions p = p{z) and q — q(z) are 
analytic in some domain G of the complex plain, and ZQ € G. Then, given 
u>o and w\, equation (4-4-23) with the initial conditions W(ZQ) = wo and 
w'(zo) = w\ has a unique solution w = w(z), and the function w = w(z) is 
analytic in the domain G. 

The proof of this theorem is beyond the scope of our discussion; for 
proofs and extensions of this and many other results in this section, an 
interested reader can consult, for example, Chapter 4 of the book Theory 
of Ordinary Differential Equations by E. A. Coddington and N. Levinson, 
1955. 

EXERCISE 4.4.IIP Write the expressions for W2,wz, and w± without using 
the Y^j sign. 

Next, we will study the solutions of equation (4.4.23) near a s ingula r 
point , that is, a point where at least one of the functions p, q is not analytic. 
As the original equation (4.4.22) suggests, singular points often correspond 
to zeroes of the function A = A(z). A singular point ZQ is called a regu la r 
s ingu la r point of equation (4.4.23) if the functions (z — zo)p(z) and (z — 
zo)2q(z) are both analytic at ZQ. In other words, the point ZQ is a regular 
singular point of (4.4.23) if and only if p(z) — B(z)/(z — ZQ) and q(z) = 
C(z)/(z — ZQ)2 for some functions B,C that are analytic at ZQ. 

Accordingly, we now consider the equation 

(z - z0)
2w"(z) + (z- z0)B(z)w'(z) + C(z)w(z) = 0, (4.4.28) 

and assume that the point ZQ is a regular singular point of this equation. 
Being a linear second-order equation, (4.4.28) has the general solution 

w(z) = AiWi{z) + A2W2(z), (4.4.29) 

where Ai,A2 are arbitrary complex numbers, and W\, W2 are two linearly 
independent solutions of (4.4.28); see Exercise 8.2.1, page 455. In what 
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follows, we will compute W\ and W2 using power series. While in the 
regular case both W\ and W2 are analytic at ZQ, for equation (4.4.28) we 
usually have at most one of the functions W\, W2 analytic at the point ZQ. 

We start by looking for a solution of (4.4.28) in the form 

00 

w(z) = J2wk(z - z0)
k+,i, (4.4.30) 

fc=0 

where fi and u>k, k > 0, are unknown complex numbers and WQ ^ 0. In 
other words, we choose (J, so that the function (z — zo)~^"w(z) is analytic 
and non-vanishing at z = ZQ. 

Similar to (4.4.26), we write B(z) = ££L 0 M-2 - *o)k, C(z) = 
X^fcLocfc(z — zo)h, a n d substitute into (4.4.28) to conclude that 

00 

(z - zoY Y, ((k + n)(k + fi- l)iufe 

k
 fc=° (4-4.31) 

+ ^ ((m + /x)6fc_m + ck-m)wmj (z - z0)
k = 0. 

m=0 

EXERCISE 4.4.18.c Verify (44.31). 

Similar to (4.4.27), we get a recursive system to find Wk'. 
k 

{k + n){k + fx- l)wk +^2{(m + n)bk-m + ck-m)wm = 0, (4.4.32) 
m=0 

k = 0 ,1 ,2, . . . . For k = 0, (4.4.32) yields (/i(/x - 1) + fib0 + c0)w0 = 0, or, 
since we assumed that wo ^ 0, 

fj,2 + (b0 - l)/x + co = 0. (4.4.33) 

Equation (4.4.33) is called the i n d i c i a l equation of the differential equa­
tion (4.4.28). We will see that the indicial equation indicates the general 
solution of (4.4.28) by providing the roots (i. Equation (4.4.33) has two so­
lutions m,H2, a n d there are two main possibilities to consider: (a) /J,\ — ^2 
is not an integer; (b) \x\ — /i2 is an integer; this includes the possible double 
root Hi = /i2 = (1 — bo)/2. The reason for this distinction is that, for k > 1, 
equation (4.4.32) is ((/x + k)2 + (b0 - l)(fx + k) + c0)uik = Fk(w0,. •• ,Wk-\) 
for some function Fk- As a result, if (fi + k)2 + (bo — l)(n + k) + Co j= 0 
for every k > 1, then, starting with WQ = 1 and two different values of /J,, 
we can get two different sets of the coefficients Wk, and the two linearly 
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independent solutions W i , ^ , both in the form (4.4.30). If we have two 
identical values of fi or if (fi + N)2 + (b0 — 1)(M + N) + c0 = 0 for some 
integer N > 1, then only one of the functions Wi,W^ will be of the form 
(4.4.30), and extra effort is necessary to find the other function. 

IF THE ROOTS MliM2 OF (4.4.33) DO NOT DIFFER BY AN INTEGER, 
then the two linearly independent solutions W\,W2 of (4.4.28) are 

oo 

Wn(z) = (z-zor«Y,Wk'«(z-Zo^> n=1>2, (4.4.34) 
fc=0 

where Wfc,„, k > 1, n = 1,2, are determined recursively from (4.4.32) with 
wo,n = 1. Note that this is the case when &o>co a r e rea-l a n d MiiA^ are 
complex so that Mi = M2-

I F THE ROOTS MI>M2 OF (4.4.33) SATISFY MI - /z2 = N > 0, where AT 
is an integer, then one solution of (4.4.28) is 

00 

Wi(z) = (z - z0)Ml 5 > f c ( z - z0)fc, (4.4.35) 
fc=0 

where Mi is the larger root of the indicial equation (4.4.33) and Wk, k > 1, 
are determined from (4.4.32) with M = Mi and u>o = 1. To find W2, we use 
L i o u v i l l e ' s formula: 

Wx(z) W2(z) 
W{(z) W^z) V Jc(zi,z 

e x p | - / -W-dz), (4.4.36) 
z) -2 - ZQ J 

where the left-hand side is a two-by-two determinant, z\ is a fixed point 
in the neighborhood of ZQ, and and C(zi,z) is a piece-wise smooth path 
from z\ to z so that ZQ is not on C{z\,z). For the proof of this formula, 
see an ODE textbook, such as Theory of Ordinary Differential Equations 
by E. A. Coddington, and N. Levinson, 1955. By assumption, the function 
B(z)/(z — ZQ) is analytic away from z§, and so the value of the integral 
does not depend on the particular path. After some computations, (4.4.36) 
yields 

J H(z)dz,H(z) = w^-)exvl- J 

Z2,Z) \ C{zltz] 

W2(z) = W1(z) J H(z)dz,H(z) = w~-)exp\- j -j^-dz 

C(z2,z) \ C(zi,z) / 
(4.4.37) 
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EXERCISE 4.4.19/4 Verify (44.37). Hint: the determinant in (4-4-36) can be 

written as the square ofWi(z) times the derivative of W2(z) /W\{z); C(z2,z) is a 
path similar to C{z\,z), starting at zi-

By assumption, B{z)/(z - z0) = b0/(z - z0) + b\ + b2(z - z0) + •.., so 
that 

/ — — dz = B0 ln(z - ZQ) + ip(z), 
J Z- ZQ 

C(zuz) 

where In z is some branch of the natural logarithm, and the function <p is 
analytic at ZQ. Recalling that W\ (z) = {Z — ZQ)'11 (1+U>IZ + . ..), we conclude 
that 
H(z) = (z - zo)~^2,il+bo^ip(z), where the function ip is analytic at z0 and 
ip(z0) ^ 0. By assumption, \i\ — fi2 = N, while equation (4.4.33) implies 
Ml + A*2 = 1 - bo. Therefore, 2/ix + b0 = 1 + N. Writing 

oo 

i>(z) = Y,Mz-zo)k (4.4.38) 
fc=0 

and integrating (4.4.37), we conclude that 

W2(z) = (z- z0)^h(z) + VJV WI(Z) ln(z - z0), (4.4.39) 

where the function h is analytic at z0, and ipN is the coefficient of zN in 
the expansion (4.4.38). Note that 

• ipo ^ 0, while, for N > 0, ipN = 0 is a possibility. 
• If N > 0, then h(z0) =ipo^0. 

In particular, if the indicial equation (4-4-33) has a double root, then one 
of the solutions of (4-4-28) always has a logarithmic term. 

EXERCISE 4.4.20. (a)A Verify (44.39). 
Hint: H(z) = X ^ o ^(z — zo) ~~ ~ , and ipN is the coefficient of {z — zo)~x. 

(b)c Consider Bes se l ' s d i f f e r e n t i a l equation 

z2w"{z) + zw'(z) + (z2 - q)w(z) = 0, (4.4.40) 

where q is complex number; the equation is named after the German as­
tronomer and mathematician FRIEDRICH WILHELM BESSEL (1784-1846). 
Verify that this equation has a solution that does not have a singularity 
at ZQ = 0 if and only if q = N2 for some non-negative integer N, and, 
if it exists, this non-singular solution is unique up to a constant multiple. 
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Hint: the inidicial equation is p.2 — q = 0; if fi = s + it for some real s, t, then 
2M = zszu = zseitlnz = z3(cos(t\nz) + isin(£ln.z)), see page 215. Then use 
(44.34), (4-4.35), and (44.39). 

EXERCISE 4 . 4 . 2 1 . C Let w = w(z) be a solution of (44.23). Show that the 
function <p(z) = w(l/z) is a solution of 

<p"(z) + (2Z-1 - z-2p(l/z))<f'(z) + z-4q{l/z)<p(z) = 0. (4.4.41) 

By definition, the point ZQ = 00 is a r egu la r s ingu la r point of equa­
tion (4.4.23) if and only if the point ZQ = 0 is a regular singular point of 
equation (4.4.41). 

EXERCISE 4.4.22.B Verify that equation 

z(l - z)w"(z) + [c- (a + b+l)z]w'(z) - abw(z) = 0, a,b,c€C, (4.4.42) 

has exactly three regular singular points at ZQ = 0,1,00. 

Equation (4.4.42) is called the hypergeometric d i f f e r e n t i a l 
equation, and has a special significance: for many second-order linear 
ordinary differential equations with at most three regular singular points, 
including, if necessary, ZQ = 00, and no other singular points, the solution 
is expressed in terms of the solutions of (4.4.42). 

We now list some other particular equations of the type (4.4.23) or 
(4.4.28); all of them arise in many mathematical, physical, and engineer­
ing problems, and we will encounter some of the equations later in our 
discussion of partial differential equations: 

(1 - z2)w"(z) + (fi + uz) w'(z) + X w{z) = 0, (4.4.43) 

z2w"(z) + vzw'(z) + \w(z) = 0, (4.4.44) 

w"(z) + vzw'(z) + X w{z) = 0, (4.4.45) 

w"{z) - {z2 + X)w{z) = 0, (4.4.46) 

z w"(z) + {v- z)w'{z) + X w(z), (4.4.47) 

w"(z) + vzw{z) = Q, (4.4.48) 

w"(z) + w'(z) + (z + X)w{z) = 0, (4.4.49) 

w"(z) + (X- z2n)w(z) = 0, (4.4.50) 

w"(z) + {v cos(z) + X)w(z) = 0, (4.4.51) 
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(z2 - a2)(z2 - b2)w"(z) + z(2z2 -b2- c2)w'(z) 

- ({n(n + \)z2 - (b2 + c2)p))w{z) = 0, (4.4.52) 

w"(z) + w'(z) + (nz-1 + vz-2)w{z) = 0, (4.4.53) 

\sur(a;z) cos2 (ax) ) 

*""(*) ~ (-7JT-, + X, , + A) W(Z) = 0. (4.4.55) 
\sinh (az) cosh (az) J 

In these equations, n is a non-negative integer, a,b,c,p are real numbers, 
fi, v, A are complex numbers. For each equation, the reader is encouraged to 
do the following: (a) find all singular points (the point ZQ = oo must always 
be investigated), (b) find the first few terms in the expansion of the two 
linearly independent solutions, around ZQ = 0 and around all other finite 
regular singular points, if any. 

For certain values of the parameters, the above equations can have espe­
cially interesting properties. FOR EXAMPLE, consider (4.4.47) with positive 
integer v = m + 1 and non-negative integer A = n; m, n = 0,1, 2, Writ­
ing w(z) = X̂ fcLo wkzk a n d substituting into the equation, we find that 

wk+i = {(k - n)/(k + l)(fc + m + l))wk 

(verify this!). Then wn+i — 0 and therefore u>k = 0 for all k > n. In 
other words, a solution of (4.4.47) is a POLYNOMIAL. This remarkable fact 
certainly deserves special recognition, and (4.4.47) with v = m + 1 and 
A = n is called Laguerre ' s d i f f e r e n t i a l equation, after the French 
mathematician EDMOND LAGUERRE (1834-1894); the polynomial solution 
of (4.4.47) with v — 1, A = n, and WQ — 1 is called Laguerre ' s polynomial 
of degree n and denoted by Ln(z). 

EXERCISE 4.4.23. c Verify that if Ln(z) satisfies zw" + (1 - z)w' + nw = 0, 
then the k-th derivative L„ (z) of Ln(z), k < n, satisfies 
zw" + {k + 1 - z)w' + (n - k)w = 0. 

EXERCISE 4.4.24. (a)c Find the Laguerre polynomials Ln for n = 
0,1,2,3,4. (b)B The Laguerre differential equation has another solution 
with a singularity at ZQ = 0. Find the type of this singularity for different 
m and n. (c)A Verify that equation (4-4-43) has a polynomial solution for 
the following values of /x, v, and X: 
(i) n = 0, v = —1, A = n2: Chebyshev's d i f f e r e n t i a l equation of the 
first kind, after the Russian mathematician PAFNUTI L'VOVICH CHEBY-

file:///sinh
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SHEV (1821-1894), see also Problem 6.3 on page 439; 

(ii) /! = 0, v = —2, A = n(n+ 1) : L e g e n d r e ' s d i f f e r e n t i a l e q u a t i o n , 

after the French mathematician A D R I E N M A R I E L E G E N D R E (1752-1833); 

(Hi) /i = 0, v = - 3 , A = n ( n + 2) : Chebyshev ' s d i f f e r e n t i a l e q u a t i o n 

of the second kind; 

(iv) /j, = b — a, v = —(a + 6 + 2), A = n(n + a + b + 1): J a c o b i ' s 

d i f f e r e n t i a l e q u a t i o n , after C. G. J. Jacobi. Note that this includes 

the previous three equations as particular cases. 

(d)A Verify that equation (4-4-45) with u — — 2 and A = 2n, known 

as H e r m i t e ' s d i f f e r e n t i a l e q u a t i o n , after the French mathematician 

C H A R L E S H E R M I T E (1822-1901), has a polynomial solution. 

Some equations have several names. For example, (4.4.47) with 

general complex v and A is known as the c o n f l u e n t h y p e r g e o m e t r i c 

d i f f e r e n t i a l e q u a t i o n , and, with real v and real negative A, as Kummer' s 

d i f f e r e n t i a l e q u a t i o n , after the German mathematician E R N S T E D -

UARD K U M M E R (1810-1893). By the general terminology, an XYZ func­

tion or an XYZ polynomial is a certain solution of the XYZ equation. The 

book Orthogonal Polynomials by G. Szego, re-published by the AMS in 

2003, and the Handbook of Differential Equations by D. Zwillinger, 1997, 

provide more information on the subject. Keep in mind that the notations 

and terminology can vary from source to source. 

To conclude this section, we note tha t the power series method can work 

for linear equations of any order. FOR EXAMPLE, consider the equation 

w'"{z) = zw(z), with initial conditions w(0) = w'(0) = 0, w"(0) = 12. The 

reader is encouraged to verify tha t w(z) = 6z 2 + z6/20 + z 1 0 /14400 + 

How will the answer change if w'(l) = 5 rather than w'(0) = 0? 

For certain NONLINEAR EQUATIONS, the power series method can still 

be used, because the product of two power series is again a power series. Of 

course, there is no longer any hope of getting nice recursive relations of the 

type (4.4.27). The following analog of Theorem 4.4.3 holds; see Theorem 

6 in Section 11, Chapter 3, of the book Ordinary Differential Equations by 

G. Birkhoff and G.-C. Rota , 1969. 

T h e o r e m 4 .4 .4 If F — F(w, z) is a function of two complex variables, 

analytic at (u>o, ZQ), then there exists a neighborhood of the point ZQ in which 

the solution w = w(z) of the initial value problem w'(z) — F(w(z),z), 

W(ZQ) — ZQ, exists, is unique, and is an analytic function of z. 

Even if the function F is analytic everywhere, the solution of w'(z) — 
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F(w(z), z) may fail to be analytic everywhere. F O R EXAMPLE, the solution 
of the equation w'{z) = w2, w(0) = 1, is w(z) = 1/(1 — z). The reader is 
encouraged to derive this representation of w using power series. 



Chapter 5 

Elements of Fourier Analysis 

5.1 Fourier Series 

In mathematics, we often represent general functions and other objects 
using elementary building blocks; the number of these blocks can be finite 
or infinite. For example, we write vectors in R3 as a linear combinations 
of three unit basis vectors i, j , K, and we use Taylor series to represent 
analytic functions as an infinite linear combination of powers of (z — ZQ). 

Similar to powers, sines and cosines can serve as elementary building 
blocks of functions, and the Fourier series in sines and cosines provides 
the corresponding representation for many functions. This representation 
has both theoretical and practical benefits: we will see that, on a bounded 
interval, the class of functions that can be represented by a Fourier series 
is much larger than the class of functions that can be represented by a 
Taylor series, which leads to numerous applications in signal processing, 
communications, and other ares. 

While the representation of certain functions using sines and cosines 
was known to many eighteenth-century mathematicians, it was the French 
mathematician JEAN-BAPTISTE JOSEPH FOURIER (1768-1830) who, in the 
early 1800s, developed a general method for solving partial differential equa­
tions using what we now know as Fourier series and Fourier transforms. 
The practical importance of this ground-breaking method more than out­
weighed the lack of rigor on the part of Fourier. The first rigorous result 
about the convergence of Fourier series appeared only in 1828 and was due 
to Dirichlet. 

241 
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5.1.1 Fourier Coefficients 

A tr igonometr ic polynomial of degree N on the interval [—n, TT] is an ex­
pression PN(X) = a>o+Ylk=i(ak c o s kx+bk sin kx), where a,k, k = 0 , . . . , N, 
and bk, k = 1 , . . . , N, are real numbers. Using complex numbers, we can 
both simplify and generalize this expression as follows. Recall that, by 
the Euler formula (4.3.14), page 214, cos kx = {elkx + e~lkx)/2, sin kx = 
(elkx — e~lkx)/(2i). Then the expression for the trigonometric polynomial 
becomes PN(X) = J2k=~N ckelkx, where c0 = a0, Ck = (flfe - ibk)/2 for 
k > 0, and c/t = (a* + ibk)/2 for A; < 0. It is therefore natural to consider 
trigonometric polynomials of the form 

N 

PN(x)= £ Cke
ikx (5.1.1) 

fe=-JV 

with complex coefficients Cfc. Thus, P/v becomes a complex-valued function 
of a real variable x. 

The following or thogonal i ty r e l a t i o n will be essential in many com­
putations to follow. 

EXERCISE 5.1.1.c Verify that 

£ eikxdx=r' k = ° (5.1.2) 
0, fc = ± l , ± 2 , . . . . 

EXERCISE 5.1.2F (a) Verify that all values of PN{X) are real if and only if 
C-k = Cfc for aU k; recall that Ck is the complex conjugate of Ck- Hint: we 
already proved the "if" part; for the "only if" part, write P(x) = P(x), multiply 
by etkx and integrate from — 7r to TT, using (5.1.2). (b) Verify that 

I \PN(x)\2dx = 2n Y, \°k\2- (5-1.3) 
•*—" k=-N 

Hint: use (5.1.2) and the equality \PN(X)\2 = PN(X)PN(X); remember that the 
complex conjugate of elkx is e~%kx. 

In what follows, we show that the Fourier coefficients of the function / 
are the coefncients of the trigonometric polynomial that is the best mean-
square approximation of / . 

Let / be a reasonably good function defined on [—IT, n], for example, 
bounded and (Riemann) integrable; it can take complex values. How should 
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we choose the coefficients Ck of P/v so that PAT is the best approximation 
of / ? Of course, with many different ways to measure the quality of the 
approximation, we must specify what "best" means in our case, and relative 
simplicity of equality (5.1.3) suggests that we use the mean-square error. 
In other words, we want to find the numbers Ck so that the value of 
Jin \f(x) ~ PN{X)\2<IX is as small as possible. 

To find the corresponding numbers Ck, we write 

r \f(x)-pN(X)\2dx= r \f(X)\2dx 
J— 7T «/—7T 

- J ( / ( z ) P ^ ) + PN{x)W)) dx + J* \PN(x)\2dx, 

and define, for k = —N,... ,N, the numbers 

<*(/) = ^ f f(x)e-ikxdx; (5.1.4) 
271" J-K 

the numbers Ck(f) are called the Fourier coe f f i c i en t s of / . Then 
algebraic manipulations show that 

^ \f(x)-PN(x)\2dx = r \f(x)\2dx-2n JT \ck(f)f 
J-Tt J-n k=-N 

N 

+ 27T J2 \Ck(f)-Ck\
2. 

(5.1.5) 

EXERCISE 5.1.3.C Verify (5.1.5). Hint: you work, back and forth, with the 
equality \z~w\ = \z\ +\w\ —zw — wz; keep in mind that, for complex numbers, 
(z - w)2 ± \z - w\2. 

An immediate consequence of (5.1.5) is that f* \f(x) — P^(x)\2dx is 
minimal when the coefficients of Pjv are the Fourier coefficients of / : Ck = 
Ck(f) for all k = —N,..., N, with Cfe(/) defined in (5.1.4). Accordingly, we 
define a special trigonometric polynomial, 

N 

k=-N 

and call it the iV-th p a r t i a l sum of the Fourier series for / . Using (5.1.5) 



244 Fourier Series 

with Cfc = Cfc(/) and PN = 5/,JV, we get 

f | / ( i ) - SNJ(x)\2dx = f | /(x)|2dx - 2TT £ |c fe(/)|2. (5.1.6) 

Since the left-hand side of this equality is always non-negative, we conclude 
that, for every N, 2irY^k=-N M / ) l 2 < S-* \f{x)\2dx. Thus, if we start 
with a bounded integrable function / and, for each k ~ 0, ± 1 , ± 2 , . . . , define 
the numbers Ck{f) according to (5.1.4), then the series X^fcl-oo lcfc(/)l2 

converges and, in fact, 

E M/)l2 ^ T- / I/Ml2***- (5-1-7) 

Inequality (5.1.7) implies that the Fourier coefficients of / tend to zero: 

lira | c f e ( / ) |=0 . (5.1.8) 

Inequality (5.1.7) is (a particular case of) B e s s e l ' s inequa l i ty , named 
after W. F. Bessel. Equality (5.1.8) is (a particular case of) the 
Riemann-Lebesgue Theorem. As we saw earlier, the Ph.D. dissertation 
of Riemann was a major contribution to complex analysis. His other dis­
sertation (Habi l i t a t ion) , was a major contribution to Fourier analysis. 
Written in 1854, it also introduced what we now know as the Riemann 
integral. The French mathematician HENRI LEON LEBESQUE (1875-1941) 
developed a generalization of the Riemann integral, which allowed him to 
generalize Riemann's results about Fourier series. What we now know as 
the Lebesgue integral was introduced by Lebesgue in 1902 in his Ph.D. dis­
sertation. Both (5.1.7) and (5.1.8) are extendable to the Lebesgue integral, 
but this is beyond the scope of our discussion. 

The next natural question is whether we can have the equality in (5.1.7), 
and the answer, for sufficiently nice functions f, is positive: if / is bounded 
and integrable on [—7r,7r], then 

E M/)l2 = ; r / l/WI2^- (5-L9) 

This equality is known as Pa r seva l ' s i den t i t y , after the French math­
ematician MARC-ANTOINE PARSEVAL DES CHENES (1755-1836), even 
though his original result was not directly connected with Fourier series. 
The proof of (5.1.9) is not at all trivial and is too technical to discuss 
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here; we will take the result for granted. Below (see page 256), we discuss 
the physical interpretation of Parseval's identity in the context of signal 
processing. With this interpretation, (5.1.9) means conservation of energy. 

Definition 5.1 The Fourier ser ies Sf of a bounded, Riemann inte­
g r a t e function / = f(x) on the interval [—IT, IT] is 

Sf(x) = Y, ck(f)e
ikx, where ck(f) = — / f(x)e~ikxdx. (5.1.10) 

At this point, we do not know whether Sf(x) = f(x); in fact, it is not 
even clear in what sense the infinite sum in (5.1.10) is defined (keep in 
mind that convergence of ^2k

xL_00 |cfc(/)|2 does not imply convergence of 
Sfcl-oo lcfc(/)D- What is certainly true is that, because of the Parseval 
identity, the Fourier series converges to / in the mean square: because 
of (5.1.6) and (5.1.9), 

lim / \f(x)-SfN(x)\2dx = 0. 
N 

Unfortunately, this mean-square convergence has nothing to do with 
the convergence of Sf}N{x) to f(x) for individual values of x. Indeed, 
one can construct a sequence of functions gi, Qi,--- on (0,1) so that 
limw-xjo J0 \gN{x)\2dx = 0 but lim./v->oo 9N(^) does not exists for all 
x e (0,1), see Problem 6.1, page 437. 

EXERCISE 5.1.4? Show that the Fourier series of f is unique: if ak, k > 1, 

is a collection of complex numbers with the property lim;v^oo /_ \f{x) — 

Efc=-iv akelkx\2dx = 0, then ak = ck(f) for all k. Hint: use (5.1.5). 

For some functions, the equality S/(x) = f{x) is easy to prove. Indeed, 
if / is a trigonometric polynomial of degree N, then 5/,jv(a;) = f(x) for all 
x, because in this case ck(f) = 0 for \k\ > TV. Another example is discussed 
in the following exercise. 

EXERCISE 5.1.5. B Let F = F(z) be a function, analytic in an annulus 
G = {z : ri < \z\ < r2), where 0 < rj. < 1, T2 > 1, and define the function 
f(cp) = F(eltp). Show that if F{z) = J2k

X=-ooCkZ'C *s ^ e L a u r e n " t ser ies 
expansion of F in G, then ck = ck(f) for all k and Sf(ip) = X f̂cL-oo ck&lkip 

for all ip € [0, 2TT], and so in this case we have f(ip) = Sf(ip). Hint: use 
formula (4-4-3) on page 217 for the coefficients of the Laurent series, with «o = 0 
and p = 1. After changing the variable of integration £ = ellp in (4-4-3), you will 
get 5.1.4-



246 Fourier Series 

From the practical point of view, neither trigonometric polynomials nor 
analytic functions are very interesting to expand in a Fourier series, but 
fortunately the class of functions that can be represented by a Fourier 
series is much larger. We will see in the next section that, if one can draw 
the graph of the function / = f(x), then S/(x) is well-defined for all x and 
Sf(x) = f(x) for all x where / is continuous. In other words, the equality 
Sf(x) = f(x) holds for most reasonable functions / . Note that the graphs 
that can be drawn must be smooth at all but finitely many points, simply 
because of the finite thickness of the line. 

We conclude this section with an alternative form of the Fourier series 
for the REAL-VALUED FUNCTIONS. For such functions, it is natural to write 

oo 

Sf(x) = ao + /J(afc cos kx + bk sin kx). (5.1.11) 

EXERCISE 5.1.6P (a) Verify that, in (5.1.11), we have 

i r i r 
oo = — / f(x) dx, afc = — / f(x) cos kxdx, k = 1,2,.. .; 

2 n U , r
 W - (5.1-12) 

bk = — / f(x) sin kx dx, k = 1,2, 

(b) Verify that, for real-valued functions, Parseval's identity (5.1.9) becomes 

2a2
0 + J2(4 + bl) = - f(x)dx, (5.1.13) 

fc=i * " J - * 

with ak, bk from (5.1.12). 

EXERCISE 5.1.7.c Verify the following o r thogonal i ty r e l a t i o n s for the 
trigonometric functions, with integer m,n>l: 

f A r • . , JTT, m = n, 
/ cos nx cos mx ax = I sin nx sin mx dx = < 

J 
J — 1 

cos nx sin mxdx = 0. 

Hint: you have at least three options: (1) trigonometric identities; (2) sines 

and cosines as complex exponentials; (3) equality e
mx

e-
mx

 = ( c o s m a ; _|_ 

i sin mx) (cos nx — i sin nx) followed by (5.1.2) on page 242. Treat the cases m = n 

and m ^ n separately. 
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5.1.2 Point-wise and Uniform, Convergence 

Using formulas (5.1.4) or (5.1.12), we can compute the Fourier series for 
specific functions / denned on [—7r, n]. Still, the computations will be much 
more efficient, and also make much more sense, once we understand when, 
and in what sense, Sf = f. 

The aim of the present section is to develop the theory that justifies 
all the computations we will perform in the following section, and this 
development requires more than the usual number of theorems and proofs; 
those who do not like that can move on to the next section: after all, people 
have been computing the Fourier series well before the necessary theory was 
developed. On the other hand, those who want a more detailed account 
of the uniform convergence should consult a book such as Principles of 
Mathematical Analysis by W. Rudin, 1976, or Introduction to Analysis by 
A. Mattuck, 1998. 

But why should one study the point-wise convergence of the Fourier 
series? Indeed, Fourier himself believed that the equality Sf (x) = f(x) 
was always true, although he did not provide any proofs. It was only in 
1828 that Dirichlet published the first rigorous result about the point-wise 
convergence of Fourier series (something along the lines of Theorem 5.1.5 
below), which put certain restrictions on the function / . After this result, 
Dirichlet and many others started to believe that the equality Sf (x) = f(x) 
should hold for all continuous functions / ; then, in 1873, PAUL DAVID GUS-

TAV Du BoiS-REYMOND (1831-1889) constructed a continuous function for 
which the Fourier series diverges at one point, causing many to suspect that 
there could be continuous functions with an everywhere divergent Fourier 
series. In the early 1920s, A. N. Kolmogorov, who was not yet 20 year old, 
and who had just changed his major from history to mathematics, con­
structed a function for which the Fourier series diverges everywhere, but the 
function is not continuous. The question was finally settled in 1964, when 
the Swedish mathematician LENNART CARLESON (b. 1928) proved that 
the Fourier series of a continuous function converges almost everywhere. It 
is a mathematically precise statement; see his paper On convergence and 
growth of partial sums of Fourier series in Acta Mathematica, Vol. 116 
(1966), pages 137-157. The proof of this result is considered by many to 
be one of the hardest in all of analysis. 

To summarize, the question of point-wise convergence of Fourier series 
is very nontrivial, and our discussion below provides only the most basic 
ideas. We will use the complex version of the Fourier series (5.1.10). 
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For fixed x, the Fourier series Sf(x) is a numerical series; see Section 
4.3.1, page 206. Note that \ck(f)elkx\ = \ck(f)\, so the Fourier series will 
converge absolutely for all x if ^fcl-oo lcfc(/)l < °°- ^n fact> t n e series in 
this case also converges uniformly, which is a special type of convergence 
we define next. 

Definition 5.2 A sequence of functions f\, fa, • •. on an interval I of the 
real line converges uniformly to the function / if, for every e > 0, there 
exists an m > 1 such that, for all n > m and all x in the interval I, we 
have \fn(x) - f(x)\ < e. 

A series ]CfcLi fk(x) converges uniformly if the sequence of partial sums 
Sfc=i fk(x) converges uniformly; for the series J2k^=-oo fk(x)> we consider 
partial sums of the form ^22=-n fk(x)-

The same definition applies to functions of a complex variable, defined 
in a complex domain instead of a real interval. 

Recall that a sequence of functions f\, fa,... converges to / at every 
point of the interval if for every e > 0, and for every x in the interval, there 
exists an m > 1 such that, for all n > m we have \fn(x) — f{x)\ < e. The 
difference from uniform convergence is therefore in the possible dependence 
of m on x. In other words, a uniformly convergent sequence converges 
point-wise, but a point-wise convergent sequence does not need to converge 
uniformly. FOR EXAMPLE, the sequence fn(x) = x/n converges uniformly 
to zero on every bounded interval, while the sequence fn(

x) = x™ converges 
to zero on [0,1) point-wise, but not uniformly; the same sequence fn(x) = 
xn does converge uniformly on [0, a] for every a < 1. 

EXERCISE 5.1.8.B Verify that if a Fourier series converges uniformly on 
[—7T, 7r], then the series converges uniformly on K. Hint: use periodicity. 

One reason for considering uniform convergence is that the limit of a 
uniformly convergent sequence inherits many properties of the individual 
functions in the sequence. 

Theorem 5.1.1 Assume that a sequence of functions / i , / 2 , ••• on a 
closed bounded interval I of the real line converges uniformly to some func­
tion f. 

(1) If each fn is continuous on I, then f is continuous on I and 
limn^oo Jr fn(x)dx = Jj f(x)dx. 

(2) If each fn is differentiable on I and each fn is continuous on I, and 
the sequence of derivatives f[, f2,... converges uniformly on I to some 
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function g, then f is also differentiable on I and f = g. 

We essentially proved this theorem in the special case of power series, 
see Theorem 4.3.4, page 210; an interested reader can easily adjust the 
arguments for the general case. The key in the proof is that, by taking n 
sufficiently large, we can make the difference \fn(x) — f{x)\ as small as we 
want for all x £ I at once. 

EXERCISE 5.1 .9 . S (a) State the analog of the above theorem for a series of 
functions, (b) Show that if the sequence / i , / 2 , . . . of continuous functions 
converges uniformly to f on the closed bounded interval [a,b], then, for all 
sufficiently large n, the graph of fn resembles the graph of f. In other words, 
show that limn_0O max^e^ ] \fn{x) - f(x)\ = 0. Hint: let max^,; ,] \fn{x) -
f(x)\ = \fn(xn) - f(xn)\. 

The main test for uniform convergence for a series of functions is 
known as Weie r s t r a s s ' s M-test, in honor of the German mathemati­
cian KARL THEODOR WILHELM WEIERSTRASS (1815-1897), who was one 
of the founders of modern analysis (both real and complex). 

Theorem 5.1.2 WEIERSTRASS'S M-TEST. // \fn(x)\ < Mn for all x in 
closed bounded interval I, and if the series of numbers Yln°=i Mn converges, 
then the series X^^=i fn{%) converges uniformly in I. 

EXERCISE 5.1.10.c (a) Show that if \fn(x)\ < an for all x in the interval, 
and the sequence a\,a,2, • • • converges to zero, then the sequence / i , /2, • • • 
converges to zero uniformly, (b) By considering the sequence Yl'kLnfki 
n — 1,2,..., prove the Weierstrass M-test. (c) Convince yourself that if 
Sfe=-oo lcfc(/)l < °°> then the Fourier series converges uniformly on K and 
Sf is a continuous function on the whole real line, (d) Consider the power 
series Yl'kLo ak(z ~~ zo)k with the radius of convergence R > 0. By taking 
Mn = \an\r

n, r < R, convince yourself that the power series converges 
uniformly inside the closed disk {z : \z — ZQ\ < r}. 

We can now establish a rather general result about the convergence of 
Fourier series. 

Theorem 5.1.3 Assume that the function f is continuous on [—TT,TT], 
/(7r) = /(~"")) and the Fourier series Sf converges uniformly on [—IT,TT}. 
Then Sf(x) = f(x) for all x G [—TT,TT]. 

Proof. Let us pass to the limit iV —» oo in equality (5.1.6) on page 244. By 
assumption, the sequence {SftN, N > 1} converges uniformly to Sf. Then, 
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by Theorem 5.1.1 we have 

lim /"" |/(z) - SNJ(x)\2dx = P \f(x) - Sf(x)\2dx. (5.1.15) 

On the other hand, (5.1.6) and Parseval's identity (5.1.9) imply that 
the left-hand side of (5.1.15) is equal to zero. As a result, f* \f(x) — 
Sf(x)\2dx = 0, and since both / and Sf are continuous, we conclude that 
f(x) = Sf(x) for all x e [-TT, n}. • 

Note that the function Sf necessarily satisfies Sf(ir) = Sf(—n), because 

elfcir _ e-jfe7r for ajj fc j n £ac t ) gj j s a function with period 2ir. As a result, 
the statement of the theorem cannot hold without the assumption / (u) = 
/(—7r). This assumption implies that the function / can be extended to 
the whole real line so that the extension has period 2n and is continuous 
everywhere. 

Sometimes, it is possible to establish the equality Sf(x) = f(x) without 
computing the coefficients Ck(f). We can easily prove the following result. 

Theorem 5.1.4 Assume that f(iv) = /(—7r) and the function f is differ-
entiable on (—7r, n) and f is bounded and Riemann integrable. Then the 
series Ylk^-oo lcfc(/)l converges and Sf(x) = f(x) for all x G [—7r,7r]. 

Proof. Denote by dk the Fourier coefficients of / ' . Then we integrate by 
parts to find 

dk f f'{x)e-ikxdx = f{x)eikxX7T +ik[ f{x)e~ikxdx. 
J—tr x=—w J_7T 

By assumption, the first term on the right-hand side of the last equality is 
equal to zero, because f(—ir)e~nk = f(n)emk. As a result, \dk\ = \kck{f)\-
Then the Cauchy-Schwartz inequality (1.2.14) on page 17 implies 

oo oo / oo \ oo 

E M/)I = M/)I + E M*AI< E i^n E k~2 • 
k=-oo fc=-oo \fe=-oo / fc=-oo 

fc#0 \ fe^O / 

Since ]£fcl-oo \dk\2 converges by the Bessel inequality (5.1.7), and 

J2 fc-2 = 2^AT2<oo, 
fc=-oo fc=l 

fe^O 
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we conclude that ^2%L_ao |cfc(/)| < oo. This implies uniform convergence of 
the Fourier series, and, together with Theorem 5.1.3, completes the proof. 

D 

To proceed, let us recall the definitions of the one-sided limits of a 
function at a point: the limit from the right / ( a + ) , also denoted by 
limx_>a+ f{x), is defined by 

f(a+)= l i m / ( a + e). 
e—>0,e>0 

Similarly, the limit from the left f(a~), also denoted by lim^^Q- f(x), is 
defined by 

f(a~) = lim / ( a - e ) . 
e—>0,£>0 

If one can physically draw the graph of a function, then the function must 
be piece-wise smooth: it is impossible to draw infinitely many cusps or 
discontinuities just because of the finite thickness of the line. In particular, 
f{x+) and f(x~) must exist at every point. These are the functions we 
encounter in every-day life. The functions can have jump-discontinuities, 
that is, points where f(x+) ^ f(x~). The following result shows that we 
can represent such functions using a Fourier series. I T IS ALSO THE MAIN 

RESULT OF THIS SECTION. 

Theorem 5.1.5 Let f be a function with period 2n and assume that, on 
every interval of length 2ir, the function has a continuous derivative except 
at a finite number of points. Also assume that there exists a number M so 
that \f'(x)\ < M for all x where f exists. Then 

Sf(x) = ( / ( X ) ' i f f iS c o n t i n u o u s a t * (5.1.16) 
1 {f{x+) + f{x )) /2, if / is not continuous at x. 

Moreover, if f is continuous everywhere, then the Fourier series converges 
to f uniformly on R. 

Note that conditions of the theorem imply that, on every bounded in­
terval, there exist finitely many numbers X\ < Xi < ... < xn such that 
the function / is bounded and continuously differentiable on every interval 
(xk,Xk+i); this, in particular, implies the existence of f(x+) and f(x~) for 
every x. The proof of this theorem is rather long; an interested reader will 
find the main steps in Problem 6.2 on page 437. 
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The next result shows that many convergent Fourier series can be inte­
grated term-by-term even without uniform convergence, and the resulting 
integrated sequence will always converge uniformly. 

Theorem 5.1.6 Assume that the function f satisfies the conditions of 
Theorem 5.1.5 and, in addition, f* f{x)dx = 0. Then the Fourier series 
for f can be integrated term-by-term, and the result converges uniformly. 
More precisely, if F(x) = f£ f{t)dt, then the Fourier series SF converges 
to F uniformly on M. and 

k= — oo k= — oo 
fe^O fe^O 

where Ck(f), k — ±1 , ± 2 , . . . , are the Fourier coefficients of f. 

Proof. We outline the main steps; the details are in the Exercise below. 
Step 1. By assumption, co(/) = 0. Integrating by parts for k ^ 0, we 

find 

/

"• , / ft-ikx\ x=n rv p-ikx 

Since both / and / ' are bounded, there exists a positive number A so that 
|cfe(/)| < A/\k\ for all k = ± 1 , ± 2 , . . . . 

Step 2. Recall that, for x < 0, f* f(t)dt = - f~x f(t)dt. Denote by 
Cfc, k = 0, ± 1 , ± 2 , . . . the Fourier coefficients of F. Then 

For k ^ 0, we integrate by parts and use / * f(x)dx = F(n) — F(—n) = 0 
to conclude that Ck = —ick{f)/k. In particular, |Cfc| < A/k2, and so the 
Fourier series of F converges uniformly by Weierstrass's M-test on page 
249. Continuity of F implies SF(x) = £fci-oo C^ikx = F(x) for all x. In 
particular, SF{0) = EfcL-oo ck = F{0) = 0, and so 

OO OO / j>\ 

k=—oo A:=—oo 

which completes the proof. • 
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EXERCISE 5.1.11.5 Fill in the details in the above proof. In particular, (a) 
Verify that condition f* f(x)dx = 0 implies co(f) = 0 and also implies that 
the function F is periodic with period 2TT. (b) Verify that F is continuous 
everywhere. Hint: for y>x, \F(y) - F(x)\ < f£ \f(t)\dt < A\x - y\. (c) Carry 
out the calculations in Step 2 to conclude that Ck = —ick(f)/k. (d) Verify 
that SF{X) is indeed the result of the term-by-term integration of Sf(x). 
Hint: for k^O, /Q

x eiktdt = (eikx - l)/(ik) = i ( l - eikx)/k. 

Let us emphasize that the construction of the Fourier series 5 / depends 
only on the behavior of the function / on the interval (—7r,7r); it does not 
even matter how / is denned at the end points of the interval. The Fourier 
series S/, if it converges, is a 27r-periodic function and represents the 2-n-
periodic extension of / rather than / itself. As a result, the convergence 
of the Fourier series depends on the behavior of this extension of / , and 
not on the behavior of original / . In particular, even if / is continuous on 
[—7r, 7r] and is infinitely differentiable on (—ir, re), the Fourier series will not 
converge uniformly unless /(—n+) — f(ir~), that is, unless the periodic 
extension of / is continuous. In general, the more derivatives the periodic 
extension of / has, the faster the Fourier series converges to / ; the rate of 
convergence is determined by the rate at which the coefficients Ck (/) tend 
to zero. 

EXERCISE 5 .1 .12 . C (a) Convince yourself that if the periodic extension of 
f is not continuous, then the Fourier series cannot converge uniformly on 
[—7r,7r]. Hint: if it did converge uniformly, the result would be a continuous 

function, which it is not. (b) Assume that the periodic extension of f has N 
continuous derivatives. Show that there exists a positive number A so that, 
for all k, | c fc( / ) | < A/ ( | fc | + 1 ) ^ . Hint: integrate by parts N times and observe 

that the derivatives of the periodic extension, if exist, are also periodic. 

The non-uniform convergence of Fourier series can be visualized. Con­
sider the 27r-periodic function g = g{x) so that g(x) = x for |x| < TT, 
<7(±7T) = 0; this one is known as the sawtooth function. The function g 
is not continuous at the points n + 2nn and therefore the Fourier series 
does not converge uniformly. At points 7r and — 7r, the Fourier series of g 
converges to (g(7r+) +g(ir~))/2 = 0. Let us investigate what happens near 
the point •K. 

EXERCISE 5.1.13? (a) Verify that Sg(x) = 2 £ £ l 1 ( - l ) f c + l 2 i ^ . Hint: you 
have to integrate by parts. 

(b) Writing Sg,N{x) = 2Y^=l{-l)k+ls^^, use a computer algebra 
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system to plot the graph of S9IN on the interval [—TT, TT] for N = 10,50,100. 

(c) Verify that limjv—oo £g,./v (7r(l - 1/iV)) = 2 /^(sin x/x) dx. 
(d) Show that 2 J* (sin x/x) dx > 1.177T. Hint: first try it analytically us­

ing the power series expansion of sin x/x at zero; if not successful, try a computer 
algebra system. 

In other words, even though limjv-KX) Sgtpf(TT — e) — TT — e for every 
e £ (0, TT], the maximal value of S3IN(X) on the interval [0, IT], being achieved 
at different points, does not converge to IT, the supremum of g on the interval 
[0,7r]; by Exercise 5.1.9, this could not have happened had S3,N converged 
uniformly. 

In applications, we cannot sum infinitely many terms and approximate a 
function / with the trigonometric polynomial SfiN(x) = ^2k^_N Ck(f)elkx. 
If the periodic extension of the function / is not continuous, then the max­
imal value of the approximation error will not converge to zero. This effect 
was first observed in 1898 for the sawtooth function g by A. A. Michelson, 
of the Michelson-Morley experiment, who made a machine to recover the 
function from the Fourier coefficients. Since it was J. W. Gibbs who pro­
vided the mathematical explanation in 1899, the effect is now known as the 
Gibbs phenomenon. 

EXERCISE 5.1.14^ Investigate the Gibbs phenomenon for the the 2n-periodic 
square wave function h = h{x), defined for x G {—IT, TT] by 

, if 0 < x < IT; h(x) = { , 
if - TT < X < 0. 

5.1.3 Computing the Fourier Series 

So far, we considered functions / defined on the interval [—TT, TT], and that is 
sufficient from the theoretical point of view: if a function / = f(y) is defined 
on the interval [— L, L], then the function F(x) = /(xL/w) is denned on the 
interval [—TT, TT], and so f(y) = F(yTr/L), Sf(x) — SF{XTT/L). In practice, 
it can be useful to have the explicit formulas for the Fourier coefficients and 
the Fourier series of / : 

oo 

Sf(y) = Y, Ck(fykvy/L, where 
fe=-°° (5.1.17) 

ck{f) = ^f_ f(xLMe-ik* dx=±JL f{y)e-ik^L dx. 
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Similarly, for real-valued functions / , we have C-k(f) = Cfc(/) and formulas 
(5.1.11), (5.1.12), and (5.1.13) become 

(X) 

Sf(y) = a0 + 2__,iak cos(Ttky/L) + bk sm(ivky/L), where 
fc=i 

-L 

ao = ^l f{y)dy,ak = - f(y) cos(nky/L)dy, fc = 1,2,...; 

1 fL 
bk = Z / ^ sm(-Kky/L) dy, k = 1,2,.. .; 

2a2
0 + J2(at+bl) = ~ f{y)dy. 

L _ ,
 L J-L fc=l 

(5.1.18) 

As in the case L = w, if / is piece-wise continuously differentiable then 
Sf(y) = f(y) at the points y where the 2L-periodic extension of / is con­
tinuous; the convergence is uniform if this extension of / is continuous 
everywhere on R. 

EXERCISE 5.1.15.5 Show that if the function f is extended with period 1L 
on M., then all the integrals J_L in (5.1.18) can be replaced with integrals 

fa_L for an arbitrary a S M. Hint: if a function g satisfies g(x) = g(x + 2L) 
for all x € R, then f^_L g(x)dx — f_Lg(x)dx + f£ g(x)dx — /^~ g{x)dx; 
IL+L 9(x)dx = fa_~L

L g(y + 2L)dy = fa_~L
L g{y)dy. 

If the function / is even (f(x) = f(—x)), then bk = 0 for all k and the 
Fourier series contains only cosines; if the function is odd (f(x) = —f(—x)), 
then dfc = 0 for all k and the Fourier series contains only sines. 

If the function is defined on the interval [0,L], then there are three 
possibilities for constructing the Fourier series of / : 

(1) Extend / on R with period L: f(x + nL) = f(x), x e (0, L); the Fourier 
series will, in general, include cos (2itkx/L) and sin(27rfcx/L). 

(2) Extend / in an odd way onto (—L,0): f(—x) — —f(x), x e (0,L); 
then consider the 2L-periodic extension of the result; the Fourier series 
will include only sm(Trkx/L) and is sometimes called the odd half-range 
expansion. 

(3) Extend / in an even way onto (—L,0): f{—x) = f(x), x e (0,L); then 
consider the 2L-periodic extension of the result; the Fourier series will 
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include only cos{-Kkx/L) and is sometimes called the even half-range 
expansion. 

If there is a possibility of choice, then the selection is dictated by Exer­
cise 5.1.12: the more derivatives the periodic extension has, the better the 
convergence of the Fourier series. For a generic continuous function / , the 
even extension is guaranteed continuous and is therefore the best choice. 

EXERCISE 5.1.16. (a)c Verify that the even extension of a continuous 
function is always continuous everywhere on M.. (b)B Give an example of 
a function for which the odd extension is the best choice. (c)c Is there an 
example of a function on [0, L] for which the L-periodic extension is the 
best? Hint: drawing pictures helps in answering each of these questions. 

Let us briefly discuss the CONNECTION BETWEEN FOURIER SERIES AND 
SIGNAL PROCESSING. In signal processing, both the period 2L and the 
argument of / are measured in units of time, while the function / = f(x) 
and each of the Fourier coefficients ck(f) are measured in volts. Then each 
u>k = kn/L becomes a frequency. The collection of all u>k corresponding 
to Cfc(/) ^ 0 is called the (frequency) spectrum of the signal / , and it 
is essential to allow both positive and negative values of the frequencies. 
Since k is an integer, a periodic signal has a discrete spectrum. Once 
the spectrum of the signal is available, signal processing is carried out by 
removing or otherwise modifying the individual numbers Ck{f)eWkt. Since 
J-L\ck(f)eiu,kt\2dt = 2L\ck(f)\

2, the value 2L\ck{f)\2 is proportional to 
the energy of the A;-th frequency component over one period of the signal; 
the collection of numbers (w^, |c^(/)|2) is called the power spectrum of 
/ . The physical interpretation of the Parseval identity, J_L |/(:r)|2d:r = 
2£Sfcl-oo lcfc(/)|2' is therefore that the total energy of the signal over the 
period is equal to the sum of the energies of all the spectral components. 
From this point of view, Parseval's identity makes perfect sense without 
any proofs: it just states the conservation of energy. 

Sometimes, the Fourier series expansion of one function can be used 
to derive the expansions of several other functions. Along the way, we 
can also evaluate certain infinite sums using the Parseval identity and the 
results about the point-wise convergence of Fourier series. F O R EXAMPLE, 

consider the 27r-periodic function / defined by f(x) = 1, 0 < x < it and 
f(x) = 0, —7r < x < 0. This is an example of a rec tangula r wave; see 
Figure 5.1.1(a). 

We have c0(/) = 1/2 and, for k ^ 0, ck(f) = (27T)"1 / w e~ikxdx = 
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Fig. 5.1.1 Two Rectangular Waves 

(X - e-
lk7r)/(2nki). Then, since eikv = e~lkw for all k, 

SfW = l + Y, 
fc=i 

1 pikir \ ikx „—ikx 

nk 2i 

1 v-^ 1 — C0s(7!"fc) . ., . 

= o + E ^r-1 sin(fc*)-
fc=i 

nk 

We note that 1 — cos(/c7r) = 0 for even k and 1 — cos(fc7r) = 2 for odd k, 
and so 

*/W-5 + ; E 
sin(2n + l)x 

2 7T ^ 2n + 1 
71=0 

(5.1.19) 

By Theorem 5.1.5, we have Sf{x) = f(x) for x ^ n + 2-nk, and 
5/(TT + 2TTA;) = 1/2. 

To continue our EXAMPLE, consider another rectangular wave g = g(x) 
with period 4, so that g(x) = 1 for — 1 < x < 1, g(x) = 0 for — 2 < x < - 1 
and 1 < x < 2; see Figure 5.1.1(b). Then g is a result of horizontal shift 
and dilation of / : shift x —> x + 7r/2 makes the function / even, and then 
dilation x —-> 7ra;/2 makes the period equal to 4. In other words, 

*(*)=/(f*+f) 
(verify this!) and therefore 

ssM = s,(f* + !K + i£ST<«0 + 1 »* ) ' 
n=0 

As a bonus, we can evaluate the following two infinite sums: 
J X 0 ( - l ) n / ( 2 n + 1) and £,T=o V ( 2 n + x?• Indeed, by Theorem 5.1.5, 
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S9(0) = g(0) or 1 = 1/2 + (2/TT) £ ~ = 0 ( - l ) n / ( 2 n + 1), which means 

(~ l ) n * 
^(2n+l) 4 ' 
n=0 v ' 

By Parseval's identity (see (5.1.18)), 

(5.1.20) 

<0*+^5 (̂ irH/>><<*='• 
which means 

oo 1 

2^1 Or, 4-
n = 0 

( 2 n + l ) 2 8 ' 
(5.1.21) 

EXERCISE 5.1.17? Use the Fourier series expansion (5.1.19) of the function 
f from Figure 5.1.1(a), to derive (5.1.20) and (5.1.21). 

To complete the EXAMPLE, let us consider the 27r-periodic function h = 
h(x) so that h(x) = \x\ for |a;| < n; see Figure 5.1.2(b). 

u(x) = 

1 

— •K 

2/(x) - 1 

i i i i 

•IT 2n 3TT X 

(a) 

h(x) = 

, * V 7T 

— TV 

f*u(t)dt 

7T 2n 

(b) 

1 N 
3TT X 

Fig. 5.1.2 Rectangle and Triangle 

Verify that h(x) = Jo(2f(t) - l)dt, where / = f{x) from Figure 5.1.1(a) 
is the original rectangular wave that started our example. By Theorem 
5.1.6 about term-by-term integration of Fourier series (see page 252), we 
conclude that 

cos (2rc + l)a; 

(2n + l ) 2 ' Sh(x)= / (2Sf(t)-l)dt = ^ f o I n 2 - - E : 

Jo " t ^ ^ + V n^o 

Even if we did not compute the value of the sum £ ^ 1 0 l/(2n + l ) 2 before, 
we know that 

4 > f i i i r , . w i r , TT 
— / T^ TT? — ao = ;r~ / h(x)dx = — xdx = —, 
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and so 

cos (2n + l)x *w-?-ii: T T ^ ; (2n + l ) 2 ' 

It is true that using these computational tricks requires some experience. 
It is also true that using these tricks is much more efficient than computing 
the Fourier coefficients of the function h using formulas (5.1.12) on page 
246. 

EXERCISE 5.1.18? Using Parseval's identity and the formula for Sh, verify 
that 

£ 7T4 

n (2n + l ) 4 96 
n=0 x ' 

EXERCISE 5.1.19.c For the function f{x) = x, x G [0,1], write the three 
possible Fourier series expansions (for the extension with period one, and 
for the even and odd extensions with period two.) Which expansion con­
verges uniformly, and how can you figure it out without computing the 
corresponding Fourier coefficients? Suggestion: use the results of the above 
example as much as possible; in particular, try to limit your integration to com­
puting f1xsm(Tmx)dx only. 

We finish this section by briefly discussing the APPLICATION OF 

FOURIER SERIES TO THE STUDY OF ORDINARY DIFFERENTIAL EQUATIONS. 

Consider the linear second-order equation y(t) + w%y{t) = 0, where u> > 0 
is a real number and y(t) denotes the second derivative of y with respect 
to t. For example, equation (4.1.8) on page 188, describing the current 
in a series AC circuit with R = 0 and time-independent E has this form 
and wo = 1/y/LC. Recall that the general solution of this equation is 
y(t) — Aeiulot + Be~iuot, and the numbers A, B are determined by the 
initial conditions; computations are often easier if we use complex expo­
nentials rather than sines and cosines. This equation models a harmonic 
o s c i l l a t o r , that is, a system whose free motion (motion without out­
side forcing) is undamped (non-diminishing) oscillations; UJQ represents the 
proper frequency of the system. 

If an outside forcing / = f(t) is applied to the system, then the corre­
sponding equation becomes y(t) +Woy(t) = f(t). For periodic function / , 
we can find the general solution of this equation by expanding / in a Fourier 
series and considering each term of the expansion separately. Indeed, if / 
is periodic with period T = 2TT/W, then f(t) = YX=-oockU)^ikt,T = 
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SfcL-oo ck(f)elkoJt- If ku> ^ (Jo for all k > 0, then, for every k, a particular 
solution of y(t) + u0y(t) = exkujt has the form y(t) = Cke%kuJt, which, after 
substitution, results in Cfc(—k2u>2 + u>2) = 1 or Cfc = 1/(WQ _ fc2w2). By 
linearity of the equation, the general solution of y(t) + u>Qy(t) = f(t) is 
therefore 

y(t) = Aei«°t + Be-i"°t+ £ - ^ - - e ^ . 
fe=—oo 

Note that the series on the right-hand side converges uniformly even if the 
Fourier series for / does not converge uniformly. Note also that y(t) stays 
bounded for all t. 

EXERCISE 5 .1 .20 . C Find the solution of y(t) + 4y(t) = h(t), where h(t) is 
the function shown on Figure 5.1.2, and y(0) = 2/(0) = 0. 

If uio = ku> for some k, then we get a resonance and an unbounded 
solution: the particular solution of y(t) + u)ay(t) = e%Uot has the form 
y(t) = Ctelu'°t. In practical terms, the system can break down if subjected 
to the external resonant forcing for sufficiently long time. As a result, 
knowledge of the Fourier series expansion of the external forcing is crucial 
to ensuring the stability of the system. 

EXERCISE 5.1.21.3 Find the solution of y(t) + 9y(t) = h(t), where h(t) is 
the function shown on Figure 5.1.2(b), and y(0) = j)(0) = 0. 

Sometimes we know for sure that a given external periodic force will be 
acting on the system (example could be a train moving on a bridge and 
jumping on the rail joints). There are two ways to ensure that the system 
does not break down under this forcing: 

• Adjust the proper frequency U>Q of the system so that wo is not a mul­
tiple of u>. 

• Introduce damping (friction or other energy loss) into the system. 

A damped system is described by the equation y(t) + a?y{t) +u>oy{t) = 
f(t), where a > 0; the larger the a, the stronger the damping. In a series 
AC circuit, the source of damping is the resistor R; see equation (4.1.8) on 
page 4.1.8. For small a, the free motion of the system, that is, the general 
solution of y(t) +a2y(t)+cJoy(t) = 0, is exponentially decaying oscillations; 
for sufficiently large a, the free motion of the system has no oscillations at 
all. 
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EXERCISE 5.1.22.'4 Verify that all solutions of y(t) + a2y(t) + 9y{t) = h{t), 
where h(t) is the function shown on Figure 5.1.2, remain bounded. How 
does the bound depend on a? Hint: the computations are easier with complex 
exponentials rather than with sines and cosines; see Section 4.1.3, page 187. 

This completes our discussion of the Fourier series. We will revisit the 
topic in the following chapter, where we use Fourier series to solve certain 
partial differential equations. 

5.2 Fourier Transform 

5.2.1 From Sums to Integrals 

The Fourier series represents a function that is periodic. Is there a similar 
representation for functions that are not periodic? The following exercise 
provides a clue. 

EXERCISE 5.2.1.° For L > 1, consider a 2L-periodic function f = f(x) so 
that f(x) - 1, \x\ < 1 and \f{x)\ = 0 for 1 < \x\ < L. Verify that 

co(/) = 5 I ; c f c ( / ) = ~ - ± 7 f i , f e = ± l , ± 2 , . . . 

are the Fourier coefficients of f. For three different values of L (L = 
5,10, 50,), use a computer algebra system to plot the numbers 2Lck(f) versus 
irk/L, k = 0, ± 1 , . . . ± 5L (try not to connect the points on your plots, and 
do not forget to multiply Ck{f) by 2L). Compare your plots with the graph 
of the function g(x) = sinx/x, |a;| < 57r. 

If you indeed do the above exercise (you do not even need a computer 
to get the main idea), you will notice that, as L increases, the suitably 
re-scaled graph of the Fourier coefficients approaches a continuous curve. 
In other words, as we increase the period of the function, the discreteness 
of the spectrum becomes less and less visible, and, in the limit, we get the 
curve sinx/x, which could be called the continuous spectrum of the non-
periodic function f(x) — 1, |a;| < 1, f(x) = 0, \x\ > 1. In what follows, we 
will try to formalize this observation. 

Let / = f{x) be a function denned on (—00,00) and let / L ( ^ ) be the 
restriction of f(x) to the finite interval [-L, L). We assume that, for every 
L > 0, the function fi satisfies the conditions of Theorem 5.1.5 on page 251, 
so that the Fourier series S/L(x) of /z,(:r) converges. We rewrite formula 
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(5.1.17) on page 254 as follows: 

/tW= £ [i;fL
fL®e~i™/Ldt)el knx/L "^_. 

the equality holds at all points x where the 2L-periodic extension of //, is 
continuous. Let ujk = kTr/L and Aaife = ujk+i — f̂e = TT/L. Then 

fdx)= f; (^ J^fL^e-^dtj eiUkX • ^k. 

Let us define the function Cx = Cx(u), w € K, by 

C L M = ^ | _ f(t)e~iutdt, (5.2.1) 

and also the function FL(UJ,X) — C£,(w)elu;x. Then 

!L{X)= ^2 FL(uk,x)Aujk= ^2 FL(ujk,x)Au;k + eNtL(x), (5.2.2) 
fc=—oo k=—N 

where, for every x and L, €N,L{X) —> 0 as TV —> oo. Note that, for each x, 
the right-hand side of (5.2.2) is a Riemann sum, and it is natural to pass 
to the limit and turn this sum into an integral. This passage to the limit 
requires decreasing Awfc = n/L, that is, increasing L. As L —* oo, the 
value of Cx(w) will converge to C(w) = (l/27r) J^° f(t)e~lwtdt, provided 
IT 1/(0\dt exists. As a result, existence of this integral is the necessary 
additional assumption about the function / . With this assumption in place, 
we can now expect from (5.2.2) that, for each fixed TV and x, 

N 

lim fL(x)= lim Y^ FL(cjk,x)AuJk + lim eNiL{x) 
L—»oo L—»oo z—' L—>oo 

k=-N 

I 
N 

F(u),x)du + Ejv(a;) 
N 

So far, the only questionable step in our argument is our assumption that 
limL-»oo £N,L(X) exists. In fact, we need to go even further and assume that, 
similar to EN,L(X), we have limjv->oo£;v(£) = 0 for all x. A more careful 
analysis shows that we can ensure these properties of e, for example, with 
an additional condition J^ \F(w,x)\dw < C with C independent of x. 
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Then, allowing N —> oo, we conclude that f{x) = f_ F(cj,x)du> or 

f{x) = J" (± f°° f(t)e-iutdt) e^'du. (5.2.3) 

By analogy with Theorem 5.1.5 on page 251, we have the following result. 

Theorem 5.2.1 Assume that the function f = f(t) is continuous and 
has a continuous bounded derivative everywhere on M except for a finite 
number of points. Also assume that J_ \f(t)\dx < oo. Then the function 

if{t)=/i ( ^ r f{s)e~iwsds) ei"tdw- (5-2-4) 
is defined for all t € R and 

If(t) = { m if / is continuous at i ^ ^ 

[ ( / ( i + ) + / (* ))/2, if / is not continuous at t. 

The proof is somewhat similar to the proof of Theorem 5.1.5, and we 
omit it. Notice that we do not have to assume that J_ \F(uj)\dw < oo. 

The function / / from (5.2.4) is called the Fourier i n t e g r a l of / . The 
Fourier transform of / , denoted either by / or by -F[/], is 

~ 1 r°° 
f(w) = .F[ / ]M = - 4 = / f(t)e-^dt. (5.2.6) 

The inverse Fourier transform of / , denoted either by / or by JF - 1[ / ] , 
i s 

/ M = T-X{f\{w) = - = / fity^dt. (5.2.7) 

The condition f™ \f(x)\dx < oo is sufficient for the existence of both / 

and / , because \f{t)e~iujt\ = \f{t)eibJt\ = \f{t)\ for all u. 

With the above definitions, 3r~1[J:'[f]}{t) = If(t); under the conditions 

of Theorem 5.2.1, we have ^""M^I/IK*) = /(*)> o r 

i r00 ~ 
f(t) = -j= J f(u)e^dw, 

if / is continuous at t. 
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The reader should keep in mind that other scientific disciplines might 
use other d e f i n i t i o n s of the Fourier transform. For example, the 
following version of (5.2.4) is popular in engineering: 

If{t)= f I T f{s)e-i2-K,JSd^\ei2^tdu. (5.2.8) 

The following exercise provides an explanation. 

EXERCISE 5.2.2.C Given real numbers A > 0 and B ^ 0, define 

~ i r00 

fA,B(y) = Jj j~iBxvdx. 

(a) Show that, under the assumptions of Theorem 5.2.20, we have 

m = ^rfjAMy)eiBxydy 
if f is continuous at x. (b) Verify that (5.2.8) corresponds to A = 1, 
B = 2TT. 

Another definition is related to the class of functions for which the 
Fourier transform is denned. We say that / is abso lu te ly in tegrab le 
on K, and write / G L\(R), if f^° \f(x)\dx < oo. More generally, for a 
real number p satisfying 1 < p < oo, the set LP(M) is the collection of all 
functions / defined on K so that f_ \f(x)\pdx < oo. To summarize, 

LP{R) = l f : I \f{x)\pdx<oo\, l<p<oo. 

Strictly speaking, the integrals in these definitions are the Lebesgue inte­
grals, as are all the integrals in this and the following two sections, but 
this should not stop the reader from proceeding, as the precise definition 
of either the Riemann or the Lebesgue integral is not necessary for under­
standing the presentation. 

The results of the following exercise are useful to keep in mind, even if 
you do not do the exercise. 

EXERCISE 5.2.3.^ (a) Give an example of a function f from LP(M) so that 
lim|x|_(00 |/(a:)| ¥" 0- Hint: let your function be zero everywhere except short 
intervals Ik around the points Xk = k, k = 2, 3,4,..., where the function is equal 
to 1 (draw a picture). For every p, the value of the integral f_ \f(x)\pdx is then 
J2k>2 1-̂*1) the sum of the lengths of the intervals. Choose \Ik\ so that the sum is 
finite, (b) Give an example of a function from L\(R) that is not in L2OR). 
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Hint: think \j\fx for 0 < x < 1. (c) Give an example of a function from 
Z/2(K) that is not in Li(R). Hint: think 1/x for x > 1. 

We now combine Theorem 5.2.1 with Theorem 5.1.5 on page 251 
about the convergence of the Fourier series to prove the Nyquist-Shannon 
sampling theorem. The theorem shows that a band-l imited signal / can 
be exactly recovered from its samples at equally spaces time moments; by 
definition, the signal / is called band-limited if there exists an fi > 0 such 
that the Fourier transform / of / satisfies f{u>) = 0 for \ui\ > fi. 

Theorem 5.2.2 If the Fourier transform f = f(uj) of a function f = f(t) 
exists and is equal to zero for \w\ > Q, and if both f and f are continuous 
everywhere and have continuous derivatives everywhere except at finitely 
many points, then 

~ sin (il(t - kAt)) „ , 7T 

/W = £ ndkAt) f{hAt)> where At = n- (5-2'9) 

fc=-oo 

Proof. By Theorem 5.2.1 applied to / , with ir/fl — At, 

f(t) = ~ [ fMe^dw, (5.2.10) 
V27T J-Q 

because, by assumption, | /(w)| = 0 for \u)\ > fi. By Theorem 5.1.5 applied 
t o / , 

ku/At 

(5.2.11) 

where the second equality follows from (5.2.10) with t = —kAt. Sub­
stituting (5.2.11) in (5.2.10) and exchanging the order of summation and 
integration, we get 

/(*) = Yl I 4 ; / eifcu,At+iwtdw ) f{-kAt). (5.2.12) 
fc=-oo \mJ-n J 

It remains to evaluate the integral in (5.2.12) and change the summation 
index from k to — k. • 

file:///j/fx
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EXERCISE 5.2.4.c Verify that one can take At < TT/Q. and still have the 
result of the theorem. Hint: if |/(w)| = 0 for |w| > fi and Q,\ = {ir/At) > fi, 
then \f{uj)\ = 0 for \u\ > n : . 

In 1927, the Swedish-born American scientist HARRY NYQUIST (1889-
1976) discovered that, to recover a continuous-time signal from equally-
spaced samples, the sampling frequency 2ir/At should be equal to twice 
the bandwidth fl of the signal (that is, At — 27r/(2fi)). In 1948, the Amer­
ican scientist CLAUDE ELWOOD SHANNON (1916-2001) put communication 
theory, including the result of Nyquist, on a firm mathematical basis. 

Practical implementation of the sampling theorem is not straightfor­
ward, because no signal lasts infinitely long, while a signal that is zero 
outside of a bounded interval is not band-limited; see Exercise 5.2.12(a) on 
page 271. We discuss some of the related questions on page 277. 

We conclude this section with a connection between the samples of a 
function and the samples of its Fourier transform. Take a continuously 
differentiable function / £ Li(M.) and a real number L > 0, and assume 
that, for every x, the function g(x) = X)^L_oc, f(x + 2Ln) is defined and 
is also continuously differentiable. This is true, for example, if there exists 
an R > 0 so that f(x) = 0 for |x| > R, because in this case the sum 
that defines g contains only finitely many non-zero terms. Note that g is 
periodic with period 2L, and therefore, by (5.1.17) on page 254, g(x) = 
Er=-ooCfc(<?)ei,rfcx/L, where 

i rL °° 
C^9)=2L S f(x + 2Ln)e-™k*/Ldx 

~L n = —oo 

1 oo „ 2 L ( n + l ) 

= *7 T, f{x)e-i'kx'Ldx (5.2.13) 
2 1 y n = - o o - / 2 i n 

= ^ J°° f(x)e-^Ldx = ^Lfak/L). 

Since #(0) = Y^'kL-oo c&(ff)> w e conclude that 

J2 f(2Ln) = ^ r £ /(Trfc/L). (5.2.14) 
k=—oo 

Equality (5.2.14) is called Po i sson ' s Summation Formula, after 
S. D. Poisson. 
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EXERCISE 5.2.5. A (a) Verify the computations in (5.2.13). (b) Taking 
f(x) = e~x , t > 0, verify the ^-formula: 

oo , 0 0 
V ^ e-4tir2n 

n=-oo v "" k=-oo 
— V e~fc2/(4t). 
/2tk^ 

Then explain how to use such a formula for computing approximately the 
value o / ^^ = _ O Q e~ak for various a > 0; the problem of approximating this 
sum arises, for example, in statistics. Hint: how does the value a > 0 control 
the rate of convergence of the sequence e~an , n > 1, to zero? 

5.2.2 Properties of the Fourier Transform 

As in our discussion of Fourier series, we will study the general properties 
of the Fourier transform before doing any particular computations. To 
begin, let us mention those properties of the Fourier transform that have 
counterparts for the Fourier series; while the proofs are beyond the scope 
of our discussion, the results are believable given what we know about the 
Fourier series and the Fourier transform. 
• The Riemann-Lebesgue theorem: If / G £i(I&), then / is continuous on 
R a n d lim |/(w)| = 0. 

|w|—*oo 

• P a r s e v a l ' s i d e n t i t y : If / belongs to both Li(M) and Z/2(R), then 
fe L2(R) and 

/

OO /*OG 

\f(t)\2dt= \f{w)\2du>. (5.2.15) 
-oo J — oo 

Equality (5.2.15) is also known as P l a n c h e r e l ' s Theorem, after the Swiss 
mathematician MICHEL PLANCHEREL (1885-1967), who was the first to 
establish it. 
EXERCISE 5.2.6.A Verify that (5.2.15) implies 

/•OO /-OO 

/ f(x)g(x)dx= F[f}{w)F[g){u)dLJ (5.2.16) 

for all functions f,g from Z/2(K). As usual, a is the complex conjugate of 
the number a. Hint: Apply (5.2.15) with f + g instead of f to show that the real 
parts of the two sides of (5.2.16) are the same; then use f + ig to establish the 
equality of the imaginary parts; the key relations are \a + b\ = \a\ +\b\ +25R(ab); 
\a + ib\2 = \a\2 + \b\2 — 2i SJ(o6), which you should verify too. 



268 Fourier Transform 

If / represents a time signal, then / is the spec t r a l dens i ty of / , 
the continuous analog of the discrete spectrum we considered for periodic 
signals, see page 256. The values of | /(w)|2 describe the distribution of 
energy among the different frequencies of the signal; Parseval's identity 
(5.2.15) represents conservation of energy. 

The next property shows that the Fourier transform reduces differenti­
ation to multiplication: if / is continuous and differentiable so that both / 
and / ' are in Li(R) and lim| t |_00 \f(t)\ = 0, then 

•F[/'](w)=iw.F[/](a,). (5.2.17) 

This follows after integration by parts: 

1 r°° 1 

V27T J-oo V27T 

- ^ J°° f(t)e-^dt = ^.Hf]M. 

EXERCISE 5.2.7.c Assume that f has two derivatives so that / , / ' , / " all 
belong to Li(R), and also l imi^on | / ( i ) | = l imi^oo \f'{t)\ = 0. Show that 

T[f"}{w) = -u,2.F[/](u;). (5.2.18) 

Hint: apply (5.2.17). 

There is another operation, called convolution, that the Fourier trans­
form reduces to multiplication. For two functions / , g from Li(R), we define 
their convolution f * g so that 

/

oo 

f(x - y)g{y)dy. (5.2.19) 
-00 

EXERCISE 5.2.8.c Verify that (f * g)(x) = J^ g(x - y)f{y)dy. 

It is easy to show that f * g belongs to Lj(IR): 

00 00 

J \(f*g)(x)\dx< J j \f(x-y)\\g(y)\dydx 

-oo —00 

0 0 / 0 0 \ / o o \ / oo \ 

/ ( I \f(x-y)\dx\ \g(y)\dy=l J \f{x)\dx\ I J \g{y)\dy\ 

- 0 0 \ — 00 



Properties 269 

Similar arguments show that if either / or g is bounded, then so is / * g. 
Using an advanced trick called interpolation, one can then prove that, for / 
from Lp(M) and g from L9(R), the convolution f*g is denned and belongs to 
L r(K), where (1/p) + (l/<z) = 1 + (1/V)- The arguments, strictly speaking, 
work only with the Lebesgue integral; for an example how things can go 
bad with the Riemann integral, see Example C6 on p. 570 in the book 
Fourier Analysis by T. W. Korner, 1988. 

The Fourier transform of the convolution is, up to a constant factor, the 
product of the Fourier transforms: if / , g belong to Li(R), then 

f*g = V^Jg. (5.2.20) 

Indeed, 

I /»0O rOO 

/ * g(w) = -f=\ / f(s)9(x - s)e-^dsdx 
y Air J-oo J-oo 

-l /"OO /*00 

= - = / / f(s)g(y)e^y+^dyds 
\JITT J-oo J-oo 

\^f°° f(s)e-^ds^ (J™ g(y)e-^ydy^ = yfa f(u>) g(w). 

The next three properties of the Fourier transform are verified by direct 
computation. 
LINEARITY OF THE FOURIER TRANSFORM. If f,g belong to Li(R) and 
a, b are real numbers, then 

F[af + bg] = aF[f\ + br\9]. (5.2.21) 

T H E SHIFT FORMULA. If / belongs to L\{ 

g(t) = f{t~a), then 

?M 7M-
T H E DILATION FORMULA. If / belongs to £i( 
and h(t) = f{at), then 

Mw) = -f(v/a). 

a is a real number, and 

(5.2.22) 

), a > 0 is a real number, 

(5.2.23) 

EXERCISE 5.2.9. (a)c Verify the relations (5.2.21), (5.2.22), and (5.2.23). 
(b)A Can we allow complex values of a in (5.2.22) and (5.2.23)? 
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The next collection of equalities is as simple as it is useful: 

^- X [ / ]M = .F[/](-w) = -H/1M, ?[f] = I (5-2-24) 

where f(x) = f(—x). All equalities in (5.2.24) follow directly from the 
definitions (5.2.6) and (5.2.7) after changing the sign of the variable of 
integration. 

EXERCISE 5.2.10? Verify all equalities in (5.2.24). 

Together with the relation ^ r_1[^ r[/]] = / , equalities (5.2.24) have two 
practical benefits: 
• Two Fourier transforms for the price of one: 

if h(u) = f(u), then h(u) = / ( - w ) (5.2.25) 

(verify this!) Once the definition of the Fourier transform is modified ac­
cordingly, the second equality will hold even if h is not absolutely integrable. 
• Two properties for the price of one: every property of the Fourier trans­
form has a dual property after the inverse Fourier transform is applied to 
both sides. 

In particular, the dual property of (5.2.20) is 

fS=^f*9, (5-2.26) 

assuming fg e L\(M). Indeed, by taking the inverse Fourier transform on 
both sides of (5.2.20), we get / * g = y/2nJ:~'l[f'g]. Now replace / , g with 
/ , <7, respectively, and use (5.2.24) to get 

(f*g)(x) = y/2^T-l[fg](x) = y/toF[fg]{-x) = y/toF[fg](x). 

Similarly, the dual property of (5.2.17) is 

£ / ( w ) = -iF\g](u>), where g(x) = xf(x). (5.2.27) 

EXERCISE 5.2.11. Assuming 
thatjToo \xf(x)\dx < oo, verify (5.2.18) in 

two different ways: (i) By differentiating (5.2.6) and moving the derivative 
under the integral sign; (ii) By applying the inverse Fourier transform to 
both sides of (5.2.17). 
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5.2.3 Computing the Fourier Transform 

As the first EXAMPLE, let us compute the Fourier transform of the 
rectangular pulse 

nL(t) = ft ' * ' < * ' (5.2.28) 
10, \t\>L, 

where L > 0 is a real number; the definition of n ^ for \t\ = L is not 
important. We have 

2 sin u>L 

n u y/2n J-L V2^ ™ V 7r 

By Theorem 5.2.1, 

K J-oo w 

Notice that the integral on the right-hand side exists even though / does not 
belong to Li(R), and, for t = ±L, the value of the integral is 1/2. Setting 

t = 0, we find / dw = IT for all L > 0. Using Parseval's identity 
J-oo " 

/

OO / • r \ 2 

I J dw = LTT. 

EXERCISE 5.2.12. (a,)B Explain why a signal that is zero outside of a 
bounded time interval cannot be band-limited. Hint: if f(t) = /(i)Ili(t) for 
some L > 0, then f{u>) is connected to the convolution of f(u>) and sla^L. Can 
this convolution be zero outside of a bounded interval in ui ? (b)c Verify that if 
f(x) = e _ ' x ' , then /(w) = \/2/(\/7r(l + u>2)). Hint: this is straightforward 
integration and complex number manipulation; do not try to find any connection 
with the rectangular pulse. (c)c Use (5.2.27) to conclude that the Fourier 
transform ofte~W is 2iy/2/n w/(l + w2)2 . 

For the next EXAMPLE, consider the function f(t) = e~* I2. Turns out, 
the Fourier transform does not change this function: 

/(w) = e-"2 /2 . (5.2.29) 

The rigorous computation is somewhat long and uses complex integration; 
see Problem 5.7 on page 436. Here, we will give a more intuitive explana-
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tion. The key is the relation 

>o 

e-
x2'2dx = V2^. 

/

oo 

-oo 

Indeed, writing I = J^° e x l2dx, we have I2 = j ^ J^ e (x +v ^2dxdy, 

and, after changing to polar coordinates, I2 = 2ir /Q°° e~r ^2rdr = 2n. As 
a result, 

f 
J —( 

e-(x-a) /2dx = ^ (5.2.30) 

for every real a. On the other hand, 

/(W) = -±= / e~^+2i^'2dt, 
\Z2TT J-OO 

and t2 + 2ioJt = (t + iuj)2 + w2. Equality (5.2.29) follows immediately, if 
we assume that (5.2.30) holds for all complex numbers a (we should be 
more careful here because we are actually computing the integral in the 
complex plane; see Problem 5.7 for details). In any case, the result (5.2.29) 
is certainly worth remembering. 

EXERCISE 5.2.13. c Verify that if f(x) = e~ax2, a > 0, then f(w) = 
(2a)-1 /2e"2 /(4 a). Hint: use (5.2.23). 

To conclude this section, let us discuss the real, as opposed to complex, 
form of the Fourier i n t eg ra l . On the right-hand side of (5.2.4), page 
263, we rename one of the variables of integration from t to s and use the 
Euler formula for the complex exponential: 

-1 / *00 /*00 

If{t)=2^joc]J
{s)e~iU,{S~t)dsdW 

~ o~ / / f(s)l cos (w(s — t)) —ism(u)(s — t)))dsdu}. 

If /(£) is real, then the imaginary part of the last expression must be zero. 
Therefore, If(t) — (l/27r) f_oo J_oo f(s) cosu>(s — t) dsdu. Since cosw(s — t) 
is an even function of u>, 

1 />oo /«oo 

•TK*) = — / / f (s) cos UJ(S — t) dsdio. 
7T Jo J-oo 

file:///Z2tt
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Using the identity cos (ui(s-t)) = cos u>t cosws + sin wt sin us, we get the 
real form of the Fourier integral: 

,00 / 1 ,00 x 

f(t) = I — / / (s ) cos ws ds 1 cos wt dio 
JO V71" J-00 / (KO-i-W 

+ / I — / / (s) sin us ds I sin wt du. 
JO \7T i_oo / 

For a function / on the half-line (0,oo), define the Fourier cosine 
transform 

•^c[/](w) = A M = y f / / (*) c o s us ds> (5-2-32) 

and the Fourier s ine transform 

•F.I/1M = A M = \jl [ / ( s ) s i n ws ds- (5.2.33) 

If / is an even function, then f(s) sinws is an odd function of s and the 
second term in (5.2.31) is zero. Hence, for even / , 

f°° I~2 -If(t) = / \ -fc{u)coswtduj = Fc{fc}(t). (5.2.34) 
Jo V 7T 

Thus, T~x = Tc-, and, for functions defined on (0,oo), the Fourier cosine 
transform represents the even extension of the function / to M. 

If f(s) is an odd function, then f(t) = J0°° y/2/n fs(u>)sm ut du = 
Ts[fs](t)- Thus, T~x = Ts, and, for functions defined on (0,00), the Fourier 
sine transform represents the odd extension of the function / to R. Other 
conditions being equal, the choice between the even and odd extensions is 
determined by the smoothness properties of the result: the smoother the 
extension, the better. 

Similar to (5.2.17), we have the following rules for transforms of deriva­
tives; the reader is encouraged to verify these rules using integration by 

/"OO 

parts. Assume that / is continuous and / \f(x)\dx < 00. Also assume 
Jo 

that lim^^oo |/(a;)| = 0 and that, on every bounded interval, the function / 
has a bounded derivative everywhere except at finitely many points. Then 

Fc[f] = toTslf] - V
/ 2 A / ( 0 ) , F.[f] = - w ^ c [ / ] . 

If, in addition, the function / ' has the same properties as / , then 

Fc[f"] = -u2Tc[f] - y/2frf'(0), Fslf"} = -u2Ts[f] + # w / ( 0 ) . 
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These results can be used to compute transforms without integration. 
F O R EXAMPLE, let us compute Fc[f\ for f(t) = e~at, where a > 0. Since 
f'(t) = -ae~at and / " = a2f, we have a2Fc[f) = -w2Tc[f\ + ay/2/^ or 

EXERCISE 5.2.14. (a)B Use similar arguments to verify that, for 
f(t) = e~at, F,\f](u>) = V2w/(y/^(a2+LJ2)). (b)A Compare the results 
with Exercise 5.2.12. Why can't we use the same trick to compute the 
Fourier transform of f using (5.2.18)? Hint: If you simply allow x to be neg­
ative, then f £ Li(R); on the other hand neither the even nor the odd extension 
of f is differentiable twice. 

As a final comment, we mention that the Fourier transforms of rational 
functions can often be computed using residue integration, see page 229. 

5.3 Discrete Fourier Transform 

5.3.1 Discrete Functions 

Looking back at our study of Fourier series and transforms, we realize that 
we have two parallel theories. One is for periodic functions represented by 
the Fourier series. The other is for integrable functions on M represented 
by the Fourier integral. Mathematics tries to avoid such separations as 
much as possible and aims at a unified theory. How, then, can we com­
bine the Fourier series and Fourier integral? Clearly, a periodic function is 
characterized by a countable number of Fourier coefficients, and an Li(R) 
function, by its Fourier transform / , which is a function of a continuous 
variable a;. In general, there is little hope to represent a general function 
by a countably many values, and we therefore should try the other way and 
represent the discrete collection of the Fourier coefficients as a function of 
a continuous variable. 

Given an integrable periodic function / = f(t) with period 2L, the 
collection {c/t(/), k = 0, ± 1 , ±2 , . . . } of the Fourier coefficients is a discrete 
function defined only for u) = kn/L. How to define this collection as a 
function of the continuous argument w? The obvious definition, f(oj) = 
c/t(/) if w = nk/L, and f(u>) = 0 otherwise, is not adequate, because 
any attempt to integrate the function / will produce 0. An alternative 
definition, setting f(w) = ck{f) for ir{k - 1/2)/L < w < 7r(fc + 1/2)/L, is 
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nicely integrable, but looses the main spirit of the discrete signal: we expect 
/ to be zero everywhere except UJ = nk/L. To reconcile these seemingly 
irreconcilable objectives, take an integer n > 1 and define the function 

\x\ < l/(2n) 1 1 / v ' (5.3.1) 
|x| > l /(2n). 

For large n, we have fln(a;) = 0 everywhere except in a small neighborhood 
of zero. On the other hand, J^° Un(x)dx = n ( l / n ) = 1 for all n. It would 
be nice to pass to the limit as n —> oo, but the limit, which should be equal 
to oo when x = 0 and zero otherwise, does not look like a function. 

Let us try a different approach and consider the sequence of integrals 
/„ = / f(x)fln(x)dx. If n is sufficiently large and / is continuous at 
zero, then, by the mean-value theorem for integrals (or a version of the 
rectangular rule), we get In « /(0), and, in fact, 

/

oo _ 

f{x)Un(x)dx = /(0) . (5.3.2) 
•oo 

EXERCISE 5.3.1. c Verify (5.3.2) for every function that is integrable on 
[—1,1] and is continuous at zero. Hint: /(0) = f^° f(0)ti„(x)dx, and, by 
continuity, for every e > 0, there exists an N so that, for all n > N, \f(x) — 
/ ( 0 ) | < e i / | ; r | < l / ( 2 n ) . 

We can now use (5.3.2) to define linin-joo n „ as a "black box" (or a 
rule) that takes a continuous function as an input, and produce the value 
of that function at zero as the output. In mathematics, a rule that makes 
a number out of a function is called a funct ional . Thus, the limit of 
fln(a;), as n —> oo, is an functional. This functional is called D i r a c ' s 
d e l t a function, in honor of the British physicist PAUL ADRIEN MAURICE 

DlRAC (1902-1984), and is denoted by 5(x). Given what we know about 
the functions f[n , we have the following intuitive description of the delta 
function: 

/

oo 

S(x)d: 
•OO 

\x = l. 

The expression 

/

oo 

5{x)f{x)dx = /(0) (5.3.3) 
•OO 
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is both more precise and more convenient for calculations. Similarly, for a 
real number a, 6a(x) = 5(x — a) is a functional that takes in a continuous 
function and produces the value of the function at the point a: 

f f{x)5(x - a)dx = / ( a ) . (5.3.4) 

EXERCISE 5.3.2. (a)A Assume that the argument of the delta function is 
measured in some physical units, such as time or distance. Show that the 
delta function must then be measured in the reciprocal of the corresponding 
units. Hint: this follows directly from (5.3.3). (b)c We can use (5.3.2) to 
compute the Fourier transform of the delta function. Verify that 

T[S\{w) = -—. (5.3.5) 

TT,*(y-2jr)= E^feL- (*-™) 

(c)B Verify that 

L / - " V L J 
k——oo k=—oo 

Hint: treat both sides as functionals, multiply by a function f = f(y) and in­
tegrate. Each term on the left will produce f(2nk/L); each term on the right, 
y/2irf(—kL). Then use the Poisson summation formula (5.2.14) on page 266. 

Coming back to the sequence of the Fourier coefficients Cfc(/) of a peri­
odic function / , let 

00 

/(w) = VfcF Yl ck(f)6{u-kir/L). 
fc=—oo 

Then f(u) ^ 0 only when ui = hir/L for some k, and, by (5.3.4), 

- = / f(w)ei»t<kj= ] T ck(f)e
itk"/L = Sf(t), 

the Fourier series of / (that was the reason for introducing the extra factor 
\/27r in the definition of f(w); recall that if / is the Fourier transform of / , 
then the right-hand side of the above equality is If, the Fourier integral of 
/ ) . In other words, this function / is the right choice. 

To summarize, the natural representation for a discrete function of a 
continuous argument is a linear combination of Dirac's delta functions. 
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The resulting computat ional benefits by far outweigh the need to work 

with functionals. 

Next, we will look at the spectrum of a discrete signal. Consider a 

continuous-time signal / = f(t), sampled at equally spaced points tk = 

kAt, k = 0, ± 1 , ± 2 , The corresponding discrete signal is 

fd(t) = At J2 f(tk)S(t-tk), (5.3.7) 
fc=—oo 

where the factor At is introduced to preserve the dimension (units of mea­

surement) of / ; see Exercise 5.3.2. 

E X E R C I S E 5 . 3 . 3 . B Verify that 

OO OO / 

i — ~ > i — \ fe=-oo fc = — OO 

2 7 T £ A 

~At) 
(5.3.8) 

where f is the Fourier transform of f. Hint: the first equality follows imme­
diately from (5.3.4). Then write 

Y, f{^)e-iut"= Y }{t)e-iut5{t-tk)dt 
k= — oo fe= — oo 

and use (5.3.6) with L = 2n/ At; feel free to exchange summation and integration. 

fit) 

Fig. 5.3.1 Continuous and Discrete Signals 
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Equality (5.3.8) shows that the spectrum of the discrete signal is a pe­
riodic function with period 2n/At, obtained by the periodic repetition of 
the original spectrum; see Figure 5.3.1. Recall that the Nyquist-Shannon 
sampling theorem on page 265 provides an example of this effect, where 
the samples of a signal with bounded spectrum represented the periodic 
extension of the spectrum; with the special selection of the sampling fre­
quency, the extension had no overlaps. Exact recovery of the spectrum of / 
from the spectrum of fd leads to exact recovery of / from fd. If the function 
/ = / ( w ) does not vanish outside of a bounded interval, or if the sampling 
frequency is not high enough, then the periodic extension of / contains 
overlaps, and the exact recovery of / from fd by the Nyquist-Shannon sam­
pling theorem is not possible. The error of recovery of / from fd that is 
due to this spectral overlapping is called the a l i a s i n g er ror . 

5.3.2 Fast Fourier Transform (FFT) 

We derived the Fourier series expansion of a periodic function by comput­
ing the best mean-square approximation of the function by a trigonometric 
polynomial. Now let us formulate and solve a similar approximation prob­
lem for a discrete periodic function. Let /o, • • •, /AT-I> with fk = f(2Lk/N), 
be N samples of a 2L-periodic function / . In discrete time, it is natural 
to replace the best mean-square approximation with the best trigonometric 
interpolation: find a trigonometric polynomial P/v(£) = Y^k=o c^emktlL so 
that PN(2LTI/N) = fn, n = 0 , . . . , N — 1. Our objective is therefore to find 
N numbers Co,... , CAT_I from N relations 

N-l 

£ Ckei**kn/N = / m n = o , . . . , AT - 1. (5.3.9) 
fc=0 

To proceed, we take a hint from relation (5.1.2), page 242. 

EXERCISE 5.3.4. c (a) Verify the following d i s c r e t e or thogonal i ty 
r e l a t i o n 

y^e-i2,n(rn-k)/N=\N, m = k + IN, I = 0, ± 1 , ± 2 , . . . ( 5 3 i o ) 

^ 0 lo , otherwise. 

Hint: e~l 2™£N = 1 for all n, (.; otherwise, you are summing N terms of a geo­
metric series with the first term equal to one, and the ratio equal to e-'

2n(rn-k'>/N
 j 
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so use the formula for the sum. (b) Conclude that cm = Fm, where 

1 W _ 1 

Fm = N S fne~i27Tnm/N, (5.3.11) 
n=0 

and also 

J V - l 

/ „ = ^ i?fcei21rnfc/JV) n = 0 , . . . , J V - l . (5.3.12) 

fc=0 

i7ini: to dehue (5.3.11), multiply both sides of (5.3.9) by e-
i2^mn/N

; s u m o w r 

n, and use (5.3.10); (5.3.12) is the same as (5.3.9). 

The collection of numbers Fn, n = 0 , . . . , N — 1, is called the d i s c r e t e 
Fourier transform or d i s c r e t e Fourier coeff i c i e n t s of the collection 
fn,n = 0,...,N-l. 

Let us investigate the connection between the discrete Fourier transform 
and the Fourier series. Recall that the Fourier coefficients of / are ck (/) = 

we assume that the function / is equal to its 
Fourier series for all t, then 

oo 

fn = f{2Ln/N)= J2 ck(f)e
i2"kn/N. (5.3.13) 

k= — oo 

Substituting (5.3.13) in (5.3.11), we find 

1 oo JV —1 oo 
Fm = jj E c*(/ ) E e- '2*<m- f cW" = 2 W M / ) , (5-3-14) 

fc= —OO 71=0 (= — oo 

where the second equality follows from (5.3.10). If N is even and / is 
band-l imited, that is, Cfc(/) = 0 for \k\ > N/2, then (5.3.14) implies the 
following relation between Fm and c m ( / ) : 

Cm{f), 7Tl = 0, . . . , f - 1 , 

C-(N-m)(f), m=%,...,N-l. 
(5.3.15) 

If c/t(/) ^ 0 for infinitely many k, then the exact recovery of Ck(f) from 
Fn is impossible due to the same a l i a s i n g e r ro r we discussed earlier in 
connection with the Nyquist-Shannon sampling theorem. 

Let us now discuss the computational aspects of formula (5.3.11). 
Straightforward computation of all N numbers Fn according to (5.3.11) 
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requires N multiplications and additions of complex numbers to compute 
each of the N coefficients. The total operation count is therefore AT2 com­
plex flops (floating point operations), with one complex f lop being one 
complex multiplication followed by one complex addition; in many applica­
tions this number of operations is inadmissibly large. The Fast Fourier 
Transform, or FFT, is a special algorithm that computes Fn in fewer than 
N2 operations. There are many versions of FFT, but all of them rely on 
the same main idea; we will describe this idea next. 

Introduce the following notation for the complex exponentials: 

Wkn = e-i2irkn/N _ (5.3.16) 

Note that, on both sides of (5.3.16), kn denotes the product of k and n. 
Assume that iV is a composite number so that N = N\N2 with integer 
Ni,N2 > 1. Then we write 

k = Nxk2 + ki, ki=0,...,Ni-l, k2 = 0 , . . . , N2 - 1, 

n = JV2ni + n2, ni = 0 , . . . , iVi — 1, n2 = 0 , . . . , N2 - 1, 

and, using the properties of the exponential function, 

Ufkn _ Tj/(-'Vifc2+fci)(Ar2n1+n2) 

= W%k2niW%lk2n2W%2kiniWftn2 = Wfcn2Wk\niWfcn2. 

(5.3.17) 

(5.3.18) 

EXERCISE 5.3.5.c Verify all the equalities in (5.3.18). Hint: W%lk2n2 = 
Wk\n2, etc. 

Using (5.3.18), we now find 

JV-I 1 JV1-1 /N2-i \ 
F- = 77 E fkWNn = N E E M f e 2 + f c l<r KTK1"12-

fc=0 fci=0 Vfe2=0 / 

(5.3.19) 
For each n, computing the inside sum in the last expression requires N2 
complex flops; the sum is then multiplied by W^711, which results in less 
than Â2 + 1 complex flops (no addition involved). Finally, computation of 
the outside sum requires N\ complex flops. With N coefficients to compute, 
the total number M of complex flops involved is M < N(Ni+N2 + l) < N2. 
The reduction is noticeable even for moderate values of TV. For example, if 
N = 11 • 13, then M < 3575, while TV2 = 20449, that is, N2/M > 5.72. In 
other words, when N = 11-13, the above method results in a nearly six-fold 
reduction of the number of operations. If iVi or iVa is also composite, then 
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a repeated application of this method results in even larger reduction of the 
number of operations. With a more careful analysis, one can show that if 
N — 2™, then the above FFT requires {N/2) log2 N complex multiplications 
and N log2 N complex additions. 

Formula (5.3.19) was known to Gauss, who used it in the early 1800s to 
simplify some of his astronomical computations. Somehow, the result was 
only published in Latin in 1865, and did not get much attention. A century 
later, as the advances in electronic computing prompted the development 
of digital signal processing, American mathematicians JAMES W. COOLEY 

(b. 1926) and JOHN W. TUKEY (1915-2000) re-discovered (5.3.19); see 

their paper An algorithm for the machine calculation of complex Fourier 
series in the journal Mathematics of Computation, Vol. 19, pages 297-301 
(1965). 

5.4 Laplace Transform 

Recall that the Fourier transform is defined for absolutely integrable func­
tions. For non-integrable functions, for example, those that are positive 
increasing, it is often impossible to define the Fourier transform, and the 
Laplace transform is used instead. 

5.4.1 Definition and Properties 

Let f{x) be a real-valued function defined on —oo < x < oo and suppose 

f{x) = 0 for x < 0. (5.4.1) 

Suppose further that, for some real value Sf > 0 , 

\e-"'xf(x)\dx < oo. (5.4.2) 
Jo 

Then f£° \e sx f{x)\dx < oo for every complex number s with 3?s > Sf. 

Definition 5.3 The Laplace transform of / is the function F = F{s) 
of the complex variable s defined for !Rs > Sf by the formula 

F{s] = / e-sxf{x)dx. (5.4.3) 
Jo 
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In what follows, we will usually use a lower-case letter to denote a function, 
and the corresponding upper-case letter to denote the Laplace transform. 
Sometimes, we will also write C[f](s) for the Laplace transform of / . 

EXERCISE 5.4.1. c Verify that the Laplace transform is an analytic function 
in the half-plane {s : Sfts > Sf}. 

The reader might be familiar with the Laplace transform from a course 
in ordinary differential equations. Even though the transform bears the 
name of P.-S. Laplace, it was Oliver Heaviside, co-inventor of vector analy­
sis, who developed the application of this transform to the study of differ­
ential equations; this application is known as the operational, or Heaviside, 
calculus. 

One reason to mention Laplace transform in our discussion is the connec­
tion with Fourier transform. Indeed, if the function / = f(x) is zero for x < 
0 and Sf < 0, then the Fourier transform f(tj) = (27r)-1/2 J^° f(x)e~iuJXdx 
of / is denned and 

F(s) = V^f(-is), / H = - ^ = F ( i w ) . (5.4.4) 

Note that for every function / satisfying (5.4.1) and (5.4.2), and for every 
real number so > Sf, the function /o(a;) = f(x)e~s°x' has s/0 < 0. As 
a result, for functions / = f(x) that are equal to zero when x < 0, the 
Laplace transform is a generalization of the Fourier transform. 

Below are the main properties of the Laplace transform. 

£[afi + bf2] = aFi +bF2, a,be C; (5.4.5) 

£{f'}(s) = sF(s) - f(0+), C[xf\(s) = -F'(8); (5.4.6) 

£[/<">](«) = snF(s) - (j2 s""fc-1/(fc)(0+)) ; (5.4.7) 
\fc=o / 

C[xnf](8) = {-l)nFW(s); (5.4.8) 

If g{x) - / X f(y)dy then G(s) = ^ ; (5.4.9) 
Jo s 

If g(x) = f{ax), a > 0, then G{s) = -F(s/a); (5.4.10) 

If g(x) = f(x - x0), x0 > 0, then G(s) = e-
x°sF{s); (5.4.11) 
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-f 
JO 

If h(x) = f(x- y)g(y)dy, then H(s) = F(s)G(s) (5.4.12) 
Jo 

If/'(a;o) exists and a> Sf, then 

1 ra+iL (5.4.13) 
/ ( i o ) - ^ r - lim / F(s)e9X°ds. 

2nr L-oo Ja_iL 

In the above properties, all the functions involved must satisfy (5.4.1) 
and (5.4.2). Note that, to invert the Laplace transform according to 
(5.4.13), we can integrate along any vertical line in the half-plane {s : 
5fts > Sf}. Two more properties of the Laplace transform are discussed in 
Problem 6.6, page 440. 

EXERCISE 5.4.2. B Verify (54.5)-(54.13). Hint: (54.5)-(54.12) are best 
verified directly by definition, (54-13), by using (544) and the inversion formula 
for the Fourier transform. 

EXERCISE 5.4.3.c (a) Let h = h(x) be Heavis ide ' s function h(x) = 1, 
x > 0, h(x) = 0, x < 0. Show that H{s) = l/s, Us > 0. (b) Let F(x) = 
e~ax, a g R. Show that F(s) = l / ( s + a), Us > -a. 

We review the operational calculus by an EXAMPLE. Let us solve the 
equation y" — 2y' + y = ex, with initial conditions y(0) = 1, y'(Q) = —1. We 
have by (5.4.5) and (5.4.7): s2Y(s)-s+l-2{sY(s)-l) + Y(s) = ( s - 1 ) " 1 , 
Y(s) = ( s - l ) - 3 + ( s - 3 ) ( s - l ) ~ 2 . Consider the function F(s) = (s-1)-1. 
We know that this is the Laplace transform of f(x) = ex. We also notice 
that F'(s) = - ( s - 1 ) " 2 and F"(s) = 2 ( s - 1 ) - 3 . Then the property (5.4.8) 
implies that (s — l ) - 3 is the Laplace transform of (x2/2)ex. Next, 

s - 3 s - 1 2 1 2 

( s - 1 ) 2 ( s - 1 ) 2 ( s - 1 ) 2 s - 1 ( s - 1 ) 2 ' 

and we conclude from the above calculations that (s — 3)(s — 1)~2 is the 
Laplace transform of ex — 2xex. Then the solution of the equation is 

V(x) =[-z--2x+l)e 

EXERCISE 5.4.4. A Try to solve the following equation using the Laplace 
transform: y" + x2y = e~x, y(0) = y'(0) = 0. Hint: do not be surprised if 
you do not succeed, but try to understand the reason. 
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The two-sided Laplace transform Mf(s) = $^°00f{x)e~sxdx can 
also be defined. In the theory of probability, this transform is known 
as the moment generat ing function, and the Fourier transform, as the 
c h a r a c t e r i s t i c function. 

EXERCISE 5.4.5.B Compute Mf(s) if f(x) = e~x2/2. Hint: see page 272. 

Let us now look at the discrete version of the Laplace transform, known 
as the Z-transf orm. 

Given the samples f(kAt), k = 0 , 1 , . . . , of a continuous signal / = /(£), 
t > 0, we construct a discrete signal fd similar to (5.3.4) on page 277: 

oo 

fd(t) = At £ f(kAt)S(t - kAt), (5.4.14) 
fc=o 

where 5 is the Dirac delta function (5.3.5); recall that in this section we 
always assume f(t) = 0 for t < 0. Taking the Laplace transform on both 
sides of (5.4.14) results in 

oo 

Fd(s) = AtYlf(tk)e-skAt. (5.4.15) 
fc=0 

Similar to (5.3.8), we have 

Fd{s)= J2 W s - i _ ) . (5.4.16) 
fc=-oo ^ ' 

That is, Fd(s) is a periodic function with a purely imaginary period i2n/At. 

EXERCISE 5.4.6.B Verify (5.4-16). Hint: the same arguments as for (5.3.8); 
since f(t) < 0 for t < 0, integration and summation can start at —oo, when 
necessary. 

Take a real number a> Sf and write s = a—iuj. For fixed a, the function 
H(u>) = Fd(a — iuj) is periodic with period 2-7r/At. Equality (5.4.15), which 
can be written as 

H(LJ) = At^Tf(kAt)e-akAtel AkujAt 
I \KIAL)H C 

fc=0 

becomes a Fourier series expansion of H. Then 

Atf(kAt)e-akAt = ^ ^ H(oj)e-ik"Atdu, 
27r J-n/At 
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and, after some algebra, we get 

ra+iir/At 

f(kAt) 
1 ra-t-lT!/ l±l 

- / Fd(s)eskAtds. (5.4.17) 
1X1 Ja-iTt/At 

EXERCISE 5.4.7s Verify (5.4.17). 

Let us introduce a new variable z = e s A t . Then the line segment (a — 
in/At,a + in/At] becomes the circle Ca with center 0 and radius eaAt. 
Also dz = AtesAtds. We now define the sequence x = x{k),k > 0, by 
x(k) = f(kAt) and the function X = X(z) so that X(z) = Fd(s) when 
z = esAt. Then equalities (5.4.15) and (5.4.17) become 

oo . 

X(z) = AtY^x{k)z~k, x{k) = -A— <j> X(z)zk-1dz. (5.4.18) 

We call the function X = X(z) the Z-transform of the sequence x. By 
construction, the Z-transform is defined only for those sequences x that 
satisfy x(k) = 0, k < 0, and, in some definitions, At is taken to be I. 

EXERCISE 5.4 .8 .B Verify that the circle Ca encloses all singularities of the 
function X(z)zk~1 for every k. 

The following property of the Z-transform is useful in the study of finite-
differece equations: if y(k) = x(k — m) for some fixed number m, then 
Y(z) = z~mX(z). Indeed, keeping in mind that x(k) — 0 for k < 0, 
Y(z) = EZoy(k)z~k = EZo<k-m)z-k = EZm^ - m)Z-k = 
Y,V=ox(k)z~{k+m) = z-mX{z). 

We conclude this section with the connection between the Z-transform 
and the Discrete Fourier Transform. Let x = x(k), k = 0 , . . . , N — 1, be 
a finite sequence. Denote by X = X(z) the Z-transform of this sequence, 
and by Xk, k — 0,...,N — 1, the coefficients (5.3.11) on page 279 of the 
Discrete Fourier Transform. The the definitions imply 

X re
i27rfe/JV) = NXk. (5.4.19) 

EXERCISE 5.4.9.B Verify (5.4.19). 

5.4.2 Applications to System Theory 

In this section, we will discuss the applications of the Laplace transform 
to the analysis of linear autonomous dynamical systems. A l inear system 
produces a linear combination of outputs given the corresponding linear 
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combination of inputs. A autonomous system does not explicitly involve 
the time variable. 

A continuous-time autonomous dynamical system connects the input 
signal x = x(t) with the output signal y = y(t) via a relation 

f(x(t),x(t),x(t),..., x^(t), y(t), y(t),y(t), • • •, 2/(n) (*)) = 0. (5.4.20) 

As usual, x denotes the first derivative with respect to t, and x^k\ the 
derivative of order k. Given the input signal x(t), t > 0, we can use (5.4.20) 
to find the output signal y(t), t > 0, as long as the function / is reasonably 
good and we know the initial conditions 1/(0) = (2/(0),y(0),... ,yn"1(0)). 
A phys ica l ly implementable system has n > m. In particular, neither 
the perfect amplification y(t) = kx(t) nor differentiation y(t) = x(t) is 
implementable, even though both have theoretical interest, and can be im­
plemented approximately. Roughly speaking, condition n> m means that 
the output at time t depends only on the input up to time t. At the end of 
this section we will use the discrete-time analog of (5.4.20) to demonstrate 
the necessity of this condition. 

The natural assumption about (5.4.20) is that zero input and zero initial 
conditions produce zero output, that is, / ( 0 , . . . , 0) = 0. Thus, the system 
has an equilibrium point at ( 0 , . . . , 0). If we further assume that the function 
/ = f(xo,..., xm, 2/0, • • •, Vn) has two continuous partial derivatives at zero, 
then we have a l i n e a r i z a t i o n of (5.4.20) as follows: 

a0x(t) + a i i ( t ) + a2x(t) + ... + anx
{m)(t) 

(5.4.21) 
= boy(t) + hy(t) + b2y(t) + ... + bny^(t), 

where a^ = fXk(Q, • • •, 0), 6fc = _/y fc(0, • • •, 0) (recall that fx is another no­
tation for the partial derivative df/dx). The system (5.4.21) is autonomous 
if and only if all the coefficients a^, bk do not depend on t. If bn ^ 0, then 
y is uniquely determined from (5.4.21) given the input and the initial con­
ditions. 

EXERCISE 5.4.10. B Using the Taylor series expansion, verify that 
(5.4-21) is an approximation of (54-20) when \x(t)\, \x(t)\,..., |a; (m '(i)|, 
\y{t)\, \y(t)\,..., |t/n)(£)| are all sufficiently small. 

In what follows, we consider the linear autonomous systems of the type 
(5.4.21), and assume that bn ^ 0. Note that the non-homogenous n-order 
linear differential equation with constant coefficients corresponds to ao = 1, 
oi = . . . = am = 0. Taking the Laplace transform of (5.4.21) and assuming 
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that xW{0) = 0 and y(*>(0) = 0 for all k, we find X(s) XT=o akSk = 

WELcAAor 

Y(s) = W(s)X(s), where W(s) = ^ " ^ V (5.4.22) 

The function W = W(s) is called the t r a n s f e r funct ion of the linear 
system (5.4.21). In general, cancelling similar factors in the fraction (5.4.22) 
changes the transfer function and is therefore not allowed. Often, a linear 
system is identified with its transfer function, as in "consider the system 
W." 

Definition 5.4 The free motion of system (5.4.21) is the solution 
y = y(t) of the differential equation YJk=obky^'(t) = 0 with some initial 
condition (y(0), y(0),..., 2/n_1(0)). The system is called s t a b l e if every free 
motion eventually dies out: lim^oo \y(t)\ = 0 for every initial condition. 

EXERCISE 5.4.11. (a)B Verify that (54.21) is stable if and only if, for 
every bounded function x = x(t) and all initial conditions, the solution 
°f YJk=o°ky^(t) = x(t) stays bounded for all t > 0. (b)c Verify that 
(5.4.21) is stable if and only if all the roots of the equation X)fc=o bkSk = 0 
have negative real parts. Hint (works for both parts): recall that the free motion 
of the system is a linear combination of the functions t£eSkt, where Sk is a root 
of the above equation, £ = 0,...,£k, and tk is the multiplicity of Sk • 

In other words, the system is stable if and only if all the poles of the 
transfer function are in the (complex) left half-plane. There are criteria of 
the stability of the system in terms of the coefficient bo,...,bn, which fall 
outside the scope of our discussion. We only mention that the necessary 
condition for stability is either 60 > 0 , . . . , bn > 0 or 60 < 0 , . . . , bn < 0 (that 
is, all coefficients must be non-zero and have the same sign). Although not 
desirable, unstable systems can be used as long as the input signal and the 
initial conditions are periodically re-set to zero. 

System (5.4.21) is the basic building block in the construction of more 
complicated linear systems. There are two main ways to connect two sys­
tem: cascade and c losed- loop. In the CASCADE CONNECTION, the out­
put yi(t) of one system of the type (5.4.21) is the input X2(t) of another, 
see the left side of Figure 5.4.1. In terms of the transfer functions, we have 
Y2(s) = ^2(5)^2(5) = W2{s)Y1{s) = W2(s)W1(s)X1(s), that is, the trans­
fer function of the cascade system is the product of the individual transfer 
functions. One can certainly have a cascade of more than two systems. 
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EXERCISE 5 .4 .12 . c Verify that the cascade system is stable if and only if 
each of the individual systems is stable. Hint: use the result of the previous 
exercise. 

T*& 

Xl 
Wx 

2/1 = x2 
W2 2/2 

?\ t. 
9 x 

r xp 

Vc 

wp 

wc 

y = 

Cascade Closed-loop 

Fig. 5.4.1 Cascade and Closed-Loop Connections 

In the c losed-loop or feed-back connection, the two components are 
often called the p lant , with transfer function Wp(s), and the con t ro l l e r , 
with transfer function Wc, see the right side of Figure 5.4.1. The output 
y = yp of the plant is the input of the controller; the junction 0 combines 
the output yc of the controller with the input x of the system to produce 
the input xp of the plant. 

If the signals x and yc are added so that xp = x + yc, then 
Y(s) = Wp(s){X(s) + Y(s)Wc(s)) and W{s) = Y(s)/X{s) = Wp(s)/(1 -
Wp(s)Wc(s)) is the transfer function of the system. If the signals are sub-

2/c, then tracted so that xp = x 

W(s) = 
Wp(s) 

1 + Wp(s)Wc(s) 
(5.4.23) 

(verify this). Notice that the signs of Wp and Ws do make a difference. For 
example, when the signals x and yc are subtracted, changing the sign of Wc 

produces the transfer function Wp(s)/(1 — Wp(s)Wc(s)). Unlike the cas­
cade system, individual stability of the components provides no information 
about the stability of the closed-loop system. 

A closed-loop connection can approximate certain individual systems 
that are not physically implementable, that is, systems of the type (5.4.21) 
with n < m. For example, if in (5.4.23) we take Wp(s) = K/(l + s), and 
Wc{s) = 1/(1 + s), then, as K -> oo, we get W(s) « 1 + s. 

EXERCISE 5 .4 .13 . C (a) Give an example of an unstable closed-loop system 
with stable plant and controller, (b) Verify that ifWp(s) — 1/(1 + 2s) and 
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Wc = 1/(1 +p), then the real parts of the poles ofW are - 3 / 4 . In other 
words, the closed-loop system in this example is more stable than the plant 
itself. This is the idea behind negative feedback. 

The following table summarizes the common types of controllers. 

Type 

P 

I 
D 
PI 
PID 

Transfer Function Wc{s) 

K0 

Kts-1 

Kds 
K0 + KiS~

l 

K0 + Kds + KiS'1 

K0,Ki, Kd are positive real numbers. Not surprisingly, the letters P,I,D, 
come from "proportional," "integral," and "derivative", respectively. 

EXERCISE 5.4.14. B Let x = x(t) be the input of a PID controller and 
y = y(t), the output. Assuming x(0) = y(0) — 0, find the relation between 
x and y. 

We conclude this section with a few words about discrete-time systems. 
The discrete analog of (5.4.21) is 

M - l N 

y(k) = YL a™x(k ~ m) + X] b™y(k - m)- (5.4.24) 

This system is always physically implementable: the input sequence 
x(k), k > 0, and the initial conditions y (0) , . . . , y(N — 1) define the unique 
output sequence y(k), k > N. An example of a system that is not physically 
implementable is at the end of this section. 

Taking the z-transform on both sides of (5.4.24) and assuming that 
x(k) = y{k) = 0 for k < 0, we find Y(z) = X(z) E m Jo a™z~m + 
Y(z)ZZ=ibmz-m, or 

Y{z) = W{z)X(z), where W{z) = ^m=° m——-. (5.4.25) 

We say that (5.4.24) is s t ab le if, for every bounded input sequence x 
and for all initial conditions, the output sequence y stays bounded for all 
k > 0. Similar to continuous-time signals, one can show that (5.4.24) is 
stable if and only if all poles of the transfer function W are in the unit 
disk {z : \z\ < 1}. An unstable system can still be used if the input and 
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initial conditions are periodically reset to zero. As an EXAMPLE, consider 
the d i g i t a l i n t e g r a t o r y(k) = x(k) + y(k - 1). It is unstable (if x(0) = 
y(0) = 0 and x{k) = 1, k > 1, then y(k) = k), and its corresponding 
transfer function W(z) = 1/(1 - z - 1 ) has a simple pole at z = 1. Still, a 
computer program implementing this system will work just fine as long as 
k is not allowed to get very large. 

EXERCISE 5.4 .15.S Verify that if all bm = 0, then (5.4.25) is stable. 

Given a function W = W(z), the corresponding system that has W 
as the transfer function is physically implementable if the number of zeros 
of W is less than or equal to the number of poles (both poles and zeros 
are counted according to their multiplicities). F O R EXAMPLE, if W(z) = 
z — 2, then the corresponding difference equation (5.4.24) is y(k) = x(k + 
1) — 2x(k). This system is not implementable, because at time k, only 
the values of x(0),..., x(k) are available. On the other hand, the transfer 
function W(z) = 1 — 2z _ 1 corresponds to the difference equation y(k) = 
x(k) — 2x(k — 1) and is implementable. 



Chapter 6 

Partial Differential Equations of 
Mathematical Physics 

A p a r t i a l d i f f e r e n t i a l equation (PDE) describes a scalar or vector 
field using various operations of differentiation. Once a particular coordi­
nate system is specified, the differentiation operations are expressed in term 
of the partial derivatives of the unknown field. We have already encoun­
tered several such equations: the equation of continuity (3.2.8) on page 
154 for the scalar field p, the Poisson equation (3.2.15) on page 158 for 
the scalar field / , Maxwell's equations in vacuum (3.3.2)-(3.3.5) on page 
164 for the vector fields E, B, and Maxwell's equations in material media 
(3.3.47)-(3.3.50) for the vector fields E,D,B,H. The objective of this 
chapter is to study these and other similar equations. We will only work 
with c l a s s i c a l so lu t ions of partial differential equations, that is, func­
tions that have continuous derivatives required by the equation and satisfy 
the equation at every point. We intend our discussion to be the most basic 
introduction to partial differential equations; accordingly, for every equa­
tion, we will focus our attention on the following two questions: (a) where 
does the equation come from? (b) how to find a solution of the equation? 

6.1 Basic Equations and Solution Methods 

6.1.1 Transport Equation 

In this section, we investigate one of the simplest partial differential equa­
tions and get familiar with two fundamental methods of solving partial 
differential equation: the method of characteristics and the method of vari­
ation of parameters. 

Consider a continuum of point masses (particles) in W1, where n = 1, 
n = 2, or n = 3. Let u = u(t, P) be the density of these particles at time 
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t and point P e l " . If v = v(t, P) is the velocity of the particle at point 
P and time t, and if there are no sources or sinks, then, according to the 
equation of continuity (3.2.8) on page 154, with p replaced by it, we have 

ut + div(uv) = 0, (6.1.1) 

where ut is the partial derivative of u with respect to t. 

EXERCISE 6.1.1.° Show that, ifv is a constant vector (that is, v does not 
depend on t and P), then (6.1.1) becomes 

Ut + v • gradu = 0. (6.1.2) 

Hint: use a suitable identity from the collection (3.1.30) on page 139. 

Equation (6.1.2) is called the t r anspor t equation. Treating the vari­
able t as time, it is natural to specify the density / ( P ) = w(0, P ) at time 
t = 0 and then use (6.1.2) to find u for all t > 0. This is called the i n i t i a l 
value problem, or Cauchy problem, for (6.1.2). 

Definition 6.1 Given a continuous scalar field / and a fixed vector v, a 
c l a s s i c a l so lu t ion of the initial value problem for (6.1.2) is a function 
u = u(t,P), t > 0, P € R", with the following properties: (a) u is con­
tinuous for t > 0, P £ R"; (b) u is continuously differentiable for t > 0, 
P E R"; (c) ut + v- gradu = 0 for t > 0, P S Rn; (d) u{0, P) = f(P) for 
all P e Rn . 

To solve the initial value problem, we assume that the function f is 
continuously differentiable. 

Given the reference point O in R™, denote by r = OP the corresponding 
position vector of the point P . A point mass that, at time t — 0, is at the 
point P , has the trajectory R(t) = r 4- tv, t > 0. By (3.2.9) on page 154 
(or by direct computation), 

— u(t,r + tv) = 0 , t>0. (6.1.3) 
at 

EXERCISE 6.1.2.C Verify that (6.1.3) follows from (6.1.2). 

It follows from (6.1.3) that, given the initial position vector r , the value 
of u(t, r + tv) does not depend on t; by continuity, we conclude that 
limt_»0+ u(t,r + tv) = u(0,r) = f(r). Therefore, the function 

u(t,r) = f(r-tv) (6.1.4) 
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is a solution of (6.1.2). For every line R(i) ~ TQ + tv, the value of the 
solution is the same at each point of the line and is equal to the value of 
the initial condition / at the point T*O- This line is called a c h a r a c t e r i s t i c 
of equation (6.1.2). Note also that the solution function (6.1.4) is defined 
and is continuously differentiable for all t g t . 

EXERCISE 6.1.3. Verify that the function u(t,r) = f(r — tv) satisfies 
(6.1.2) by computingut andv-gr&du. Hint: by the chainrule, gradu = grad/, 
ut = —v • grad /. 

Even though the computations so far implicitly assumed a three-
dimensional space, the transport equation can be studied in one and two 
dimensions as well. In one dimension, v = b, a real number, so that (6.1.2) 
becomes 

ut + bux = 0. (6.1.5) 

Given the initial density / = f(x), the solution of (6.1.5) is u(t,x) = 
f(x — bt), so that u(t,x) = u(0,x — bt). If b > 0, then the initial density 
profile f{x) moves to the right with speed b; see Figure 6.1.1. Physically, 
the fluid mass is transported to the right with speed ||v|| = b. 

u(0,x) u(t,x) 
, . 

X 

t=0 t>0 

Fig. 6.1.1 Solution of the Transport Equation in One Dimension 

EXERCISE 6.1.4. Let f = f(x) be a continuously differentiable function 
of x, b = b(t), a continuous function of t, and B{t) = J0 b(s)ds. Verify 
that the function u(t,x) = f(x — B(t)) solves the initial value problem 
ut + b(t)ux — 0, u(0,x) = f{x). Generalize the result to the equation 
(6.1.2). 

Let us now consider the equation 

ut + v -gradu = ft, u(0,P) = / ( P ) , (6.1.6) 

where / = f{P) and h = h(t, P) are known functions; in terms of the origi­
nal equation of continuity (3.2.8) on page 154, the function h represents the 



294 Basic Examples 

density of sources and sinks. We assume that both / and h are continuously 
differentiate. Similar to (6.1.3), 

— u(t,r + tv) = h(t,r + tv), t > 0, (6.1.7) 

and therefore 

u(t,r) = f(r-tv)+ h(s,r + (s-t)v)ds (6.1.8) 
Jo 

is a solution of (6.1.6). Representation (6.1.8) is an example of the 
v a r i a t i o n of parameters formula. 

EXERCISE 6.1.5. (af Verify that (6.1.8) follows from (6.1.7). (b)B Verify 
that the function u = u(t, x) defined by (6.1.8) is a solution of (6.1.6). (c)A 

Let v = v(t) and a = a(t) be continuous functions. Find a solution of the 
initial value problem Ut + v(t) • gradu + a(t)u — h, u(0,P) = f(P). Hint: 
solve the equation satisfied by the function U(t,P) = u(t,P)exp(f0 a(s)ds). 

6.1.2 Heat Equation 

In this section, we investigate the heat, or diffusion, equation, and introduce 
two other methods of solving partial differential equations: the Fourier 
transform method and the method of separation of variables. 

We again start with the equation of continuity (6.1.1) without sources 
or sinks, describing the density u of moving particles. Consider the flux 
density J = u v of the flow. It is an experimental fact that, without sources 
or sinks, the particles flow from the high-density regions to the low-density 
regions, that is, the direction of the flow is opposite to the direction of the 
density gradient. This type of flow is called d i f fus ion and is described 
mathematically by the relation 

J = — ogradw, (6.1.9) 

where a > 0 is the di f fus ion coef f ic ien t of the medium. Relation 
(6.1.9) is known as F i c k ' s Law of Diffusion, after the German scientist 
ADOLF EUGEN FICK (1829-1901), who introduced it in 1855 to describe 

the diffusion of gas through a fluid membrane. In 1905 A. Einstein derived 
(6.1.9) from a one-dimensional random walk model, with particles moving 
at random to the left or to the right. For general media, the value of a 
depends on the location and direction. In a homogeneous isotropic medium, 
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a is a constant number, so that, by combining (6.1.9) with the continuity 
equation ut + div J = 0, we get the di f fus ion equation 

ut = aV2u, (6.1.10) 

where V2u = div(gradu) is the Laplacian of u. 

The diffusion equation (6.1.10) also describes HEAT FLOW. Let us con­
sider a heated three-dimensional region. By the Second Law of Thermo­
dynamics, heat flows in the direction of the decrease of temperature: if 
u denotes the temperature of the material, and J , the heat flux density 
(measured in joules per unit area per unit time, Jm~2 s _ 1 ) , then 

J = —cgradu, (6.1.11) 

where c is the thermal conductivity of the material; for nonlinear materials, 
c can depend on temperature. We will measure the temperature relative to 
some reference value that is not absolute zero, so that the values of u can 
be both positive and negative. By Gauss's Theorem on page 152, for every 
region G of the material, 

J-nda = - ifJ div(cgra,du)dV. (6.1.12) 

dG G 

On the other hand, heat flow out of the region changes the temperature 
of the region, with positive flow outside reducing the temperature inside; 
without external sources of heat, the heat flux through the boundary of a 
small region of volume AV is equal to — cspAV ut, where cs is the specific 
heat of the material, and p is the volume density (mass per unit volume). 
Thus, integration over G yields 

J ndcr = - csputdV. (6.1.13) 

dG G 

For linear homogeneous isotropic materials, the values of c,cs, p are con­
stant, and, by equating the right-hand sides of (6.1.12) and (6.1.13), we con­
clude that the temperature u satisfies equation (6.1.10) with a = c/{csp). 
As a result, equation (6.1.10) is often called the heat equation. Similar 
equations describe heat flow in one and two dimensions. 

Another useful result related to heat transfer is Newton's Law of 
Cooling: the rate of change of an object's temperature is proportional to 
the difference between the temperature of the object and the temperature of 

/ / 

/ / 
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the surrounding medium. Despite the name, the same law applies to both 
heating and cooling. Without going into the details, we mention that cer­
tain physical conditions must hold for this law to apply; in our discussions, 
we will always assume that these conditions do indeed hold. 

EXERCISE 6.1.6.^ Verify that, for a homogeneous isotropic material, equa­
tions (6.1.12) and (6.1.13) imply (6.1.10). Hint: since G is an arbitrary part 
of the material, the equality of the integrals implies the equality of integrands; as 
always, we assume that all the functions involved are continuous. The argument 
is similar to the derivation of (3.2.8) on page 154; see Exercise 3.2.5. 

In the early 1780s, the French scientist ANTOINE-LAURENT DE 
LAVOISIER (1743-1794) introduced a model in which heat was a special 
liquid called ca lo r i c (from Latin calor, meaning "heat") that could be 
neither produced nor destroyed. In the early 1840s, the English physicist 
JAMES PRESCOTT JOULE (1818-1889) demonstrated experimentally the 
equivalence between heat and mechanical work and suggested the mod­
ern heat transfer model based on molecular interaction, thus refuting the 
caloric model. It is interesting that both models result in the same equa­
tion (6.1.10). In fact, the wrong idea of caloric led to many correct (and 
important) results in thermodynamics, such as the mathematical theory of 
heat engine. The importance of caloric and J. P. Joule in the development 
of thermodynamics has been recognized in the names of the two units to 
measure energy; one c a l o r i e is approximately 4.2 joules. 

EXERCISE 6.1.7? The above derivation of the heat equation inside a region 
G of material assumed no heat loss due to contact with the outside, that 
is, the material was perfectly insulated. Now assume that the insulation is 
not perfect, and Ue is the temperature of the outside. Show that the heat 
equation (6.1.10) becomes 

ut = aV2u - Ce(u - Ue). (6.1.14) 

Hint: use Newton's Law of Cooling on page 295; note that Ce = 0 corresponds to 

perfect insulation, and, in general, Ce can be a function oft and x. 

Let us now solve the INITIAL VALUE PROBLEM FOR THE HEAT EQUATION 

ON THE LINE: 

ut(t,x) = auxx(t,x), t > 0, i £ l , u(0,x) = f(x), (6.1.15) 

where / is a bounded continuous function. Equation (6.1.15) mathemat­
ically models the temperature at time t and point a; in a straight thin 
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homogeneous rod or wire of infinite length and constant cross section, with 

no heat loss through the lateral surface; the function / defines the initial 

temperature at all points of the wire. 

D e f i n i t i o n 6.2 A c l a s s i c a l s o l u t i o n of (6.1.15) is a function u — 

u(t, x) with the following properties: (i) u is continuous for t G [0, +oo) , x G 

R, (ii) u has one continuous derivative in t and two continuous derivatives 

in x for t G (0, +oo) , i £ l , (hi) ut — auxx for all t G (0, +oo) , i £ l , (iv) 

limt_>0+ u(t, x) = f(x) for all i £ l . 

To solve (6.1.15), we carry out a p r i o r i a n a l y s i s of the equation: we 

assume tha t a solution exists and has all the additional properties we might 

need, and then derive a representation formula for this solution in terms of 

the function / . 

Suppose tha t , for every t > 0, the Fourier transforms of u, ut, and uxx 

exist in the variable x: 

1 f°° 
u(t,u>) = —= \ u{t,x)e~lulxdx. 

V27T J-oo 

Using property (5.2.18), page 268, of the Fourier transform of the deriva­

tives, we apply the transform to (6.1.15) and get 

ut{t,w) = -auj2u(t,Lj), t > 0, U(0,LJ) = f~(u). (6.1.16) 

For each w, (6.1.16) is a first-order linear ordinary differential equation for 

u as a function of t\ the solution of this equation is 

u( t ,w) = / ( w ) e - t o " 2 . (6.1.17) 

(Recall tha t the ordinary differential equation y'(x) = Ay(x),y(0) = C, 

where A, C are real numbers, has the solution y(x) = CeAx). Using various 

properties of the Fourier transform and its inverse, we get the representation 

of u: 

1 f°° 
u(t,x) = -== e-(*-y?/^f{y)dy. (6.1.18) 

y/4irat J-oc 

EXERCISE 6.1.8. (a)c Verify (6.1.18). Hint: use (5.2.23) on page 269 and 

(5.2.29) on page 271 to conclude that the inverse Fourier transform of e~tauJ 

is (2at)~1/2e~x /(-Aat\ Then recall that the product of Fourier transforms cor­

responds to the convolution of the original functions; see (5.2.20) on page 269. 

(b)B Let h = h(t, x) be a bounded continuous function. Using the Fourier 
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transform, show that if 

ut{t,x) = auxx(t,x) + h(t,x), t > 0, i £ l , u(0,x) = f(x), (6.1.19) 

then the solution is computed by the variation of parameters formula 

1 P°° 
u(t,x) = - = = / e-(«-») / ( 4 a t ) / ( j / ) % 

r* i / • » a
 ( 6 - L 2 0 ) 

+ / , \ s / e - (*-" ) a / (M*- . ) ) / l ( s > j / ) d y d a . 

The function 

K(t, x) = -^=e-x2KAat\ t > 0, i £ R , (6.1.21) 
V47rat 

is called the (one-dimensional) heat kernel, or fundamental solution of 
the heat equation on the line. Note that this function is not defined for 
t<0. 

EXERCISE 6.I.9.'4 (a) Verify that, for every t>0, 

K(t,x)dx = l. f 
(b) Verify that, for every t > 0, the function K has infinitely many contin­
uous derivatives with respect to t and x, and Kt = aKxx. (c) Verify that 
limt_^0+ K(t,x) = S(x), where S is the delta-function; see page 275. Hint: 
the arguments are the same as in the proof of (5.3.2) on page 275. (d) Using the 

results of parts (a)-(c), verify that, for every continuous bounded function 
f, the function u defined in (6.1.18) is indeed a solution of (6.1.15), that 
is, Ut — auxx for t > 0 and x £ K, and limt_>0+ u(t,x) = f(x). Hint: it is 
OK to differentiate under the integral sign in (6.1.18). 

Let us summarize the two main steps in the above arguments: (a) We 
assumed that, for the given bounded continuous function f, a solution of 
(6.1.15) exists and has all the properties we need; then, using the Fourier 
transform, we showed that such a solution must have the form (6.1.18); 
(b) The reader who completed Exercise 6.1.9, verified that, conversely, for 
every bounded continuous function f, formula (6.1.18) defines a solution 
of (6.1.15); the reader who skipped the exercise, should at least pause and 
realize that this second step is indeed necessary. We will follow these steps 
while analyzing many other equations, but will concentrate on the first step: 
we will derive a representation formula for the solution by assuming that 
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the solution exists and has all the properties necessary for the derivation; 
we will call this step a p r i o r i ana lys i s of the equation. As a rule, we 
will take for granted the converse, that is, given an equation, the function 
denned by the corresponding representation formula is indeed a solution 
of the equation. As both Exercise 6.1.9 and common sense suggest, the 
converse should be true, but a separate proof is required. 

With Definition 6.1 and Definition 6.2 in mind, we will no longer pro­
vide similar definitions for other equations. 

As a rule, the integral in (6.1.18) cannot be expressed using elementary 
functions, but there is a family of initial conditions for which integration in 
(6.1.18) is possible: 

f(x) = e-bx\ for some b > 0. (6.1.22) 

EXERCISE 6.1.10.c Verify that the solution of (6.1.15) with the initial 
condition (6.1.22) is 

u(t,x) = 1
 P-bx2/(4abt+l) f > Q 

Hint: use (6.1.17) together with the result of Exercise 5.2.13 on page 272. 

Many important properties of the heat equation and its solution follow 
directly from formula (6.1.20). F O R EXAMPLE, the heat equation has the 
i n f i n i t e propagation speed and the instantaneous smoothing prop­
erty. To illustrate these properties, let f(x) = sin(a;) for \x\ < n and 
f{x) = 0 for |a;| > TV. Thus, the initial temperature is non-zero only for 
jrr:| < n. Also, / is continuous for all x, but is not differentiable at the 
points x = ±7r. For the solution u we have 

u(t,x) = -jL= f e-^x-y^^4athmydy. (6.1.23) 

In particular, u(t, x) > 0 for all x £ M and all t > 0, that is, the non­
zero initial temperature immediately spreads to the whole line, although 
this non-zero value of u for |a;| > •n is very small for small t. Also, u{t,x) 
is infinitely differentiable, as a function of x, for all t > 0, that is, the 
temperature profile immediately becomes smooth. The reader who is not 
convinced that the function u is indeed smooth as a function of x, should 
change the variables in the integral (to get sin(x — y)), and then use the 
appropriate trigonometric identity, together with the fundamental theorem 
of calculus. 
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EXERCISE 6.1.11? Assume that the initial condition f satisfies 0 < f(x) < 1 
and J_OQ f(x)dx = 1. Verify that the corresponding solution u = u(t,x) of 
the heat equation satisfies 0 < u(t,x) < 1 and f™ u(t,x)dx = 1 for all 
t>0. °° 

Without going into the details, we mention that, with obvious modifi­
cations, formula (6.1.18) holds in all dimensions of the space variable x: if 
ut = aV2u, t > 0, and u(0,x) = f{x), x G M", n > 2, where / = f(x) is a 
bounded continuous function, then 

" f t * ) = (A \n/2 [ e-lx-vl2/iiat)f(y)dy (6-1.24) 
(47rat)™/2 JRn 

is a c l a s s i c a l so lu t ion of the equation. 

Let us now consider a quite different problem of describing the temper­
ature at time t and point a; in a straight thin homogeneous wire of finite 
length L and constant cross section, with initial temperature given by the 
function / = f(x), x S [0,L]. We assume that the end points of the wire 
are kept at a constant temperature, equal to zero, and the wire is perfectly 
insolated, that is, there is no heat loss through the lateral surface of the 
wire. In other words, we consider the INITIAL-BOUNDARY VALUE PROBLEM 

FOR THE HEAT EQUATION ON THE INTERVAL [0, L\. 

ut = auxx, t > 0, 0 < x < L; 
(6.1.25) 

u(0, x) = f(x), 0<x<L; u(t, 0) = u(t, L) = 0, t > 0. 

We assume that the function / is continuously differentiable on [0, L], and 
/(0) = f(L) = 0. 

To solve the equation, we use a method called separa t ion of 
va r i ab le s , that is, we look for a solution in the form u(t,x) = 
SfcLi Gk(t)Hk(x) for suitable functions Gfe,fffc. Note that we cannot use 
Fourier transform on a bounded interval; Fourier series, on the other hand, 
could be an option, and the suggested form of the solution is indeed a 
series. Still, it is not completely clear why the solution should be of this 
particular form, and we will address the question later, when we discuss sep­
aration of variables in a general setting. For now, we start with the follow­
ing superpos i t ion p r i n c i p l e : if the functions u\ — U\(t,x),... ,Ujv = 
ujv(i, x) satisfy the heat equation ut = auxx and the boundary condi t ions 
u(t, 0) = u(t, L) = 0, then so does the sum u\-\ + u^\ boundary condi­
tions that allow this superposition are called homogeneous. We also hope 
that the superposition principle holds for sums of infinitely many solutions, 



Heat Equation 301 

as long as the sum converges in the right sense. The elementary solu­
tions Uk{t,x) = Gk(t)Hk(x), with Hk(0) = Hk(L) = 0, are the easiest to 
study; once we have sufficiently many elementary solution, we will choose 
the functions Gk to satisfy the i n i t i a l condi t ion u(0,x) = f(x). 

Accordingly, we start by looking for a solution of the heat equation 
ut = auxx in the form u(t,x) = G(t)H(x), where 

H{0) = H{L) = 0. (6.1.26) 

To satisfy the equation, we must have G'(t)H(x) = aG(t)H"(x), or, as­
suming that neither G nor H is zero, 

^ y = W ' t > 0 , *6(0'L)- (6-L27) 

Note that G'(t)/(aG(t)) depends only on t, while H"(x)/H(x) depends 
only on x. Since t and x vary independently of each other, the only way to 
satisfy (6.1.27) is to have 

G"lt) H"(x) 

aG{t) H(x) 

for some real constant r. The two ordinary differential equations in (6.1.28) 
are easily solvable, and we will start with the equation for H. Assume that 
r > 0, that is, r = p2. The general solution of the equation H"(x) — 
p2H(x) = 0 is H(x) = AePx + Be~px; by (6.1.26), we must have 

A + B = 0, AepL + Be~pL = 0. (6.1.29) 

which implies A = B = 0. In other words, if r > 0, then the only solution of 
H"(x) =rH(x) satisfying H{0) = H(L) = 0 is H(x) = 0 for all x G [0, L]; 
this is not a solution we want. 

EXERCISE 6.1.12.c Verify that (6.1.29) implies A = B = 0. 

Now assume that r = 0. Then H"(x) = 0 and H{x) = Ax + B. To find 
A and B, we again use (6.1.26): H{0) = B = 0, and H(L) = AL + B = 0, 
that is, A = B = 0. Once again, the only solution of H"{x) = 0 satisfying 
H(0) = H(L) = 0 is H(x) = 0 for all x £ [0,1/]; this is not a solution we 
want. 

Finally, assume that r < 0, that is r = —A2 for some A > 0. The general 
solution of the equation H"(x) + X2H(x) = 0 is H(x) = A cos Xx+B sin \x; 
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by (6.1.26), we must have 

A = 0, BsinXL = 0. (6.1.30) 

To have H not equal to zero identically, we need B ^ 0; with no other 
restrictions on B, we take B = 1 for simplicity. Then 

A = ^ , fc = 1,2,3, . . . , (6.1.31) 

are the possible values of A, and 

Hk(x) = sin(irkx/L), k = 1, 2 , 3 , . . . , (6.1.32) 

are solutions of H"(x) = rH(x), r < 0, that are not identical zero and 
satisfy (6.1.26). 

EXERCISE 6.1.13.C Verify that (6.1.30) andB^O imply (6.1.31). 

We now return to (6.1.28), with r = — (nk/L)2, and find the correspond­
ing function G: 

Gk(t) = Gfc(0)e-a^fc/L>2t, k = 1 ,2,3, . . . ; (6.1.33) 

recall that our plan is to satisfy the initial condition with a special choice 
of Gfc(i); apparently, it is the initial conditions Gfc(0) that will allow us to 
achieve that. 

EXERCISE 6.1.14.c Verify (6.1.33). 

By combining (6.1.32) and (6.1.33), we find the corresponding elemen­
tary solution 

uk(t, x) = Gfc(0)e-a('rfe/L)2t sm(Trkx/L), fc = 1,2,3 

A possible solution of the original equation (6.1.25) is then 

oo oo 

u(t,x) = ^uk(t,x) = YJGk{0)e-a{*k,L)2t sm{nkx/ L). 
fc=i fc=i 

Setting t = 0, 

/(:r) = £Gfc(0)sin(7r/ca;/L), 
fc=i 

which is the Fourier series expansion for the odd extension of / . Therefore, 
we define f0(x) by f0{x) = f(x), x G [0, L]; f0(x) = -f{-x), -L < x < 0, 
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and use formulas (5.1.18) on page 255 to conclude that 

1 fL 

Gfc(O) = j / f0(x)sm(irkx/L)dx 
J-f (6.1.34) 

2 f 
= — / /(a:) sin(7rfcr/L)Gfo, fc = 1,2, 

^ Jo 
The final formula for the solution of (6.1.25) does not look extremely at­
tractive, but we present it for the sake of completeness: 

u(t,x) = £ f | J)(y) sin ( Z £ v ) c J e-W* sin ( ^ x ) . (6.1.35) 

EXERCISE 6.1.15. (a)c Find the appropriate formula in (5.1.18) and verify 
(6.1.34). (b)B Verify that if f is continuously differentiable on (0,L) and 
/(0) = f(L) = 0, then the series in (6.1.35) converges uniformly for t > 0 
and x £ [0, L\. Hint: use the same arguments as in the proof of Theorem 5.1.4 on 
page 250 to conclude that Y^T=i lGfc(°)l < °°- Then note that ° < e_(7rfc/L)2' < 1 
for allt>0 and use the M-test of Weierstrass; see page 249. (c)B Assume that 
the function f is bounded and Riemann integrable on (0,L). Let to > 0 be 
fixed. Verify that the series in (6.1.35) converges uniformly for t > to > 0 
and x € [Q,L]. Hint: if \f\ < A, then \ f£ f(x)sin(nkx/L)dx\ < AL. (d)A 

What conditions on f ensure that the function u defined by (6.1.35) is 
continuously differentiable in t and twice continuously differentiable in x 
for t > 0 and x G (0, L) ? Hint. Infinitely many derivatives exist even if f is 
not continuous; having Ĵ fcLi k2|Gk(0)| < oo ensures that the first derivatives are 
uniformly bounded. 

Similar to the infinite line, the heat equation on the interval has the 
infinite propagation speed and the instantaneous smoothing property. F O R 
EXAMPLE, assume that L = IT, f(x) = 1 for 7r/4 < x < 37r/4 and f(x) = 0 
otherwise. Then 

\[™ 
irk \ 2 

sin ( —y J dy = —r(cos(nk/4) — cos(37rA;/4)). 

The reader who is comfortable with uniform convergence will notice that the 
corresponding function u define by (6.1.35) has infinitely many derivatives 
in x for every t > 0. 

While it is intuitively clear that the temperature will never drop below 
zero, because f(x) > 0, it is somewhat counterintuitive to expect the wire to 
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heat up immediately at all points outside the interval (IT/4, 37r/4). Nonethe­
less, it is possible to show that u(t, x) > 0 for all t > 0 and 0 < x < IT, but 
the proof requires a lot of extra work; this proof does not rely on (6.1.35) 
and is beyond the scope of our discussion. We therefore conclude that an 
explicit solution formula does not always provide all the answers, and is not 
always the ultimate prize in the study of partial differential equations. As 
an application of (6.1.35), we encourage the reader to use a computer and 
plot the graphs of the corresponding partial sums 

N 2 
y ^ — (cos(7rA;/4) - cos(37rfc/4))e_aA: * sin fez, x € [0,n], 

fc=i 7r 

as functions of x for various values of a, t, and N. 

EXERCISE 6.1.16^ In the above example, we chose a discontinuous function 
f for the initial distribution of the temperature to simplify the computation 
of the Fourier coefficients of f. What is the value o/lim t_0+ u(t, x) ? Hint: 
u(0+,x) 7̂  f(x) at the points of discontinuity of f; see Theorem 5.1.5 on page 
251. Similarly, one can consider initial conditions so that / (0) ^ 0 and/or 
f(L) 7̂  0. The corresponding function u, as defined by (6.1.35), still sat­
isfies ut — auxx for all t > 0 and x £ (0,L), but u = u(t,x) is no longer 
continuous for t > 0, x € [0,1/], and u(0,x) might not be equal to f(x) for 
all x € [0, L]. Therefore, u is not a classical solution, and it is natural to 
call it a genera l ized so lu t ion of (6.1.25). One can extend the idea of 
the generalized solution even further and allow some flexibility not only in 
satisfying the initial condition, but in satisfying the equation itself. As with 
many other interesting topics, generalized solutions fall outside the scope of 
our discussion, even though we will encounter these solutions again in the 
section on the wave equation. 

Let us now summarize the main steps in the derivation of (6.1.35). The 
goal is to find a solution of (6.1.25) in the form u(t, x) — Y^h=i Gk(t)Hk(x). 

Step 1. We want each function Uk(t,x) — Gk(t)Hk(x) to satisfy the heat 
equation ut = auxx, and this leads to two ordinary differential equations 
(6.1.28). 
Step 2. We want each function Hk to satisfy the boundary conditions 
•fffc(O) = Hk(L) = 0, but not to vanish for all x, and this leads to the special 
values of the constant r in (6.1.28) — see (6.1.31), and the corresponding 
functions Hk — see (6.1.32). 
Step 3. We go back to (6.1.28) to find the corresponding functions Gk — 
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see (6.1.33). 
Step 4- We determine the values of Gk(0) from the initial condition u(0, x). 
Step 5. We write the answer as (6.1.35). 

We conclude this section with a discussion of other possible boundary 
conditions. Assume that the temperature of the end points is not equal to 
zero: u(t, 0) = Uo, u(t, L) = U\\ for the initial temperature, we also assume 
that /(0) = UQ, f(L) = U\. To solve the corresponding problem (6.1.25), 
we look for the temperature distribution u — u(t, x) in the form u(t, x) = 
v(t, x) + ax+b, where vt = vxx, v(t,0) = v(t,L) = 0, v(0,x) = f(x)-ax-b. 
We only need to find the numbers a, b to satisfy the boundary conditions; 
note that we have two unknown numbers and two boundary conditions, 
while the function g(t, x) — ax + b satisfies gt — gXx = 0 for all a, b. For 
x = 0, b = UQ; for x = L, aL + b = U\ or a = {U\ — UQ)/L. 

EXERCISE 6.1.17. (a)c Verify that the above function u satisfies the initial 
and boundary conditions, and write an explicit formula for u(t, x) similar 
to (6.1.35). (b)B Verify that 

hm u(t, x) = Uo H = x, 
t—>oo L 

that is, g{t,x) = Uo + *^ Q x is the s t e ady - s t a t e so lu t ion or steady-
state temperature distribution. Note thatg(t,x) = Uo ifUo — Ui=0, which 
is physically meaningful, because, with both ends kept at the same tempera­
ture, there should be no temperature gradient in equilibrium. (c)c Explain 
why we cannot follow directly the same procedure as for equation (6.1.25) 
and look for the solution in the form u{t,x) = ^£=1Gk{t)Hk{x) for suitable 
functions Gk,Hk- Hint. The boundary conditions are no loner homogeneous: 
ifui(t,0) = U0, u2(t,0) = U0, and U0 + 0, then ui(t,0) + u2(t,0) / U0. (d)A 

Give a formal definition of a homogeneous boundary condi t ion . 

Next, let us look more closely at the heat loss through the end points. 
Denote by Ue the outside temperature. By Newton's Law of Cooling, see 
page 295, applied at the point x = 0, ut(t,0) = c\(u(t,0) — Ue), c\ > 0, 
with c\ = 0 corresponding to perfect insulation. Since the heat flux in one 
dimension is a scalar, we use equality (6.1.13) to rewrite Newton's Law of 
Cooling as J(t, 0) = — C2(u(t,0) — Ue). Similarly, equality (6.1.11) at the 
point x = 0 becomes J(t,0) = —C3Ux(t,0), a > 0. Repeating the same 
arguments for the right end x = L, we conclude that 

ux(t,0) = C0(u(t,0)-Ue), ux{t,L) = Ci(Ue-u(t,L)) (6.1.36) 
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for some non-negative numbers CQ,C\. Pe r fec t ly insu la t ed ends corre­
spond to Co = C\ = 0 and the boundary conditions ux(t,0) = ux(t,L) = 
0, t > 0. 

EXERCISE 6 . 1 . 1 8 . B (a) Verify (6.1.36). (b) Verify that the boundary con­
ditions (6.1.36) are homogeneous if either Ue = 0 or Co = C\ = 0. (c) 
Assume that the temperature at the end points is always equal to Ue, the 
outside temperature. By (6.1.36), we will have ux(t,0) = ux(x,L) = 0. 
Explain why the correct choice of boundary conditions in this case is 
u(t,0) = u(t,L) — Ue. Hint: in this case, ux(t,0) = ux(x,L) = 0 is just a 
consequence of the boundary conditions u(t, 0) = u(t,L) = Ue. 

EXERCISE 6.1.19.B Consider the i n i t i a l -bounda ry value problem de­
scribing the temperature in a fully insulated wire: 

ut = auxx, t > 0, 0 < x < L; 
fry -i Or?\ 

u(0,x) = f(x), 0<x<L; ux(t,0) = ux(t,L) = 0, t>0. 

(a) Derive a formula similar to (6.1.35) for the solution and show that 
limj^oo u(t, x) = (1/L) L f(x)dx. Hint. Follow the same steps as in the 
derivation of (6.1.35); this time, Hk{x) = cos(irkx/L), k — 0,1,2,..., and we 
take the even extension of f. (b) Let L = •n, a = 1, and f(x) = 1 for 
7r/4 < x < 37r/4, f(x) = 0 otherwise. Use a computer algebra system, to 
plot the corresponding solution for t = 0.01,0.1,1. Can you predict this 
behavior of the solution theoretically by analyzing the Fourier series? (c) 
Define ao = (1/L) fQ f(x)dx, afc = (2/L) fQ f(x)cos(-Kkx/L)dx, k > 1. 
Verify that, for every t>0, 

M \u(t,x)\2dx = 2Lat + Lj24e~2aWL)2t- (6-1-38) 
*'0 fc=i 

Hint: the easiest way is to interpret the formula for the solution as a Fourier 
series and to use Parseval's identity. (d) Conclude that the heat equation 
is d i s s i p a t i v e , that is, the energy of the solution, represented by the left-
hand side of (6.1.38), is decreasing in time even if there are no physical 
reasons for heat loss. 

EXERCISE 6.1.20.5 Assume that the wire is losing heat through the lateral 
surface, and the outside temperature is equal to Ue. By (6.1.14), page 296, 
the temperature u = u(t,x) of the wire satisfies Ut = uxx — Ce(u — Ue). 
Find u if L = IT, u(t, 0) = u(t, n) = Ue, and u(0,x) = Ue + sin7r:r. Hint-
consider the function v(t, x) = (u — Ue)e

ct for a suitable c. 
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Other initial-boundary value problems for the heat equation on the in­
terval are possible; see Problem 7.2 on page 440. 

Let us now summarize the three main properties of the heat equation: 
• Infinite propagation speed; see page 299. 
• Instantaneous smoothing; see page 299. 
• Dissipation of energy; see page 306. 

6.1.3 Wave Equation in One Dimension 

Both the transport equation and the heat equation are first-order in time, 
that is, contain only the first-order partial derivative of the unknown func­
tion with respect to the time variable. There are no immediate analogs of 
these equations for finite systems of points: by the Second Law of New­
ton, the ordinary differential equations we encounter in classical mechanics 
usually contain second-order time derivatives. 

The wave equation arises when the Second Law of Newton is applied to 
a continuum of points. A rigid body, see Section 2.2.3, page 79, is a contin­
uum of points, but, because of the rigidity condition, we are able to describe 
the motion of this continuum using a finite system of ordinary differential 
equations. In a non-rigid continuum of points, the distances between the 
points can change, and each point requires a separate second-order ordi­
nary differential equation. Such an infinite-dimensional dynamical system 
is described by a partial differential equation; a natural conjecture is that, 
when applied to a continuum of points, the Second Law of Newton leads to 
a partial differential equation that is second-order in time. 

As an example of a non-rigid continuum of points described by the wave 
equation, consider a VIBRATING STRING under the following assumptions: 
• The string always stays in the same plane; accordingly, we place the 
string horizontally along the x-axis, and denote by u(t, x) the displacement 
of the string in the vertical ^-direction at the point x and time t. 
• The vibrations are transverse: no parts of the string have a displacement 
along the x-axis. 
• The motion of the string is smooth, that is, the function u is twice con­
tinuously differentiable in t and x. 
• The vibrations are small, that is, both |t/(i, x)| and |ux(i, ar)| are small 
for all t, x. 
• The string is perfectly elastic, that is, there is no bending moment (re­
sistance to bending) and so the tension vector at every point is tangent to 
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the string. 
• The magnitude T of the tension vector is the same at all times and at 
all points of the string; this is a reasonable assumption when the vibrations 
are small. 
• The string is homogeneous, that is, the mass p per unit length is con­
stant. 

Let us now consider the tension forces acting on a small piece of the 
string, see Figure 6.1.2. 

P 

x x + Ax 

Fig. 6.1.2 Vibrating String 

Since the vibrations are assumed transverse, we only need the forces 
in the vertical direction. Take two neighboring points on the string, P 
with coordinates (x, u(t, x)) and Q with coordinates (x + Ax, u(t,x + Ax)). 
Under the assumptions that the tension is tangent to the string and is 
constant in magnitude, we see from the picture that the vertical components 
of the tension at the points P and Q are — Ts ina and Tsin/3, respectively. 
If F = F(t, x) is the external vertical force, per unit length, acting on 
the string, and if Ax is sufficiently small, then the total vertical force 
acting on the PQ segment is T(sin/3 — sina) + f* x F(t,y)dy. We assume 
that the function F is continuous; in general, F can depend on u. The 
linear momentum of the segment PQ is, by definition, Jx x put{t,y)dy. 
Applying the Second Law of Newton and differentiating under the integral 
sign, we find 

/ putt(t,y)dy = T(sin/3-sin a) + / F(t,y)dy, 
Jx Jx 

and then, by the the mean-value theorem for the integrals, 

putt(t, xx)Ax = T(sinf3 - sin a) + F(t, x2)Ax, (6.1.39) 

where a;i,X2 are in the interval [x,x + Ax}. 
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EXERCISE 6.1.21? Verify (6.1.39). 

On the other hand, t a n a = ux(t,x) and tan/3 = ux(t,x + Ax) are 
the slopes of the string at the points P and Q. Since the vibrations are 
small, the angles a and (5 are small enough to allow the approximations 
t a n a « sin a and tan/3 « sin/3. Replacing in (6.1.39) sines with tangents 
yields 

puu(t, xi) Ax = T(ux(t, x + Ax) — ux(t, x)) + F(t, X2)Ax. 

Dividing by Ax and passing to the limit as Ax —> 0, we get 

putt(t, x) = Tuxx{t, x) + F(t, x). 

Finally, we define c2 = T/p (so that c has the dimension of speed — verify 
this), and h(t, x) = F(t, x)/p, and conclude that the vibrations of the string 
are described by the one-dimensional wave equation 

utt(t, x) = c2uxx(t, x) + h(t, x). (6.1.40) 

While equation (6.1.40) is an interesting mathematical object to study 
in its own right, one would need experimental data to support the use of 
this equation as a modelling tool. Similar to other equations describing 
oscillations, (6.1.40) describes only small vibrations of the string, which 
leads to an approximation in the derivation. Fortunately, the experimen­
tal evidence is in favor of the equation as a good approximation to real 
vibrations. 

Let us solve the WAVE EQUATION ON THE LINE, which corresponds to 
vibrations of an infinitely long string. By analogy with point-mass dynam­
ics, the initial displacement u(0,x) and the initial velocity ut(0,x) of the 
string should determine the position u(t, x) for all t > 0. To begin, we 
assume that there are no external forces acting on the string: h = 0. Thus, 
we want to solve the i n i t i a l value problem 

utt(t,x) = c2uxx{t,x), t > 0, x e E; 
(6.1.41) 

w(0,x) = f(x), ut(0,x) = g(x),x £ E, 

for some functions / , g. Similar to the heat equation on the line, we will 
carry out an a p r i o r i ana lys i s of (6.1.41) using the Fourier transform; 
recall that in this analysis we assume that all computations we want to 
perform can indeed be performed. To proceed, the reader should review 
the corresponding computations on page 297. 
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EXERCISE 6.1.22. c By applying the Fourier transform to (6.I.4I) with 
respect to x, show that the Fourier transform u = u(t, w) of u satisfies 

utt = -c2w2w, t > 0; U(0,UJ) = f(uj), ut(Q,oj) = p(o>). 

Conclude that 

u(t,w) = J(UJ) cos{ajt) + ^ - sin(cu>i). (6.1.42) 

Hint: ify"(t) = ~b2y(t), b>0, then y(t) = Acosbt + Bsinbt. 

To recover the solution u from (6.1.42), we note that, by the Euler for­
mula (more precisely, by (4.3.15) on page 214), cos(ewt) = (elcuJt+e~lc"t)/2. 
Then, by the shift property of the Fourier transform (5.2.22) on page 
269, we conclude that the inverse Fourier transform of /(w) cos(cwt) is 
(f(x - ct) + f(x + ct))/2. Next, by (5.2.17) on page 268, the Fourier trans­
form of the antiderivative f0 g(s)ds of g is <j(w)/(ia>). Then, after replacing 
sin(cw£) by the Euler formula and using (5.2.22), we conclude that the in­
verse Fourier transform of (JJ(UI) / (cw)) sin(cwt) is (2c)_1 f^_^t g(s)ds. As 
a result, 

, . fix - ct) + fix + ct) 1 fx+ct , , , 
u(t,x) = i± i—il L + / g(s)ds. (6.1.43) 

I LC Jx^ct 

Formula (6.1.43) is called d 'Alembert ' s so lu t ion of the wave equa­
tion, after the French mathematician JEAN L E ROND D'ALEMBERT (1717-
1783), who published the result in 1747. 

EXERCISE 6.1.23^ (a) Verify that (6.142) and the properties of the Fourier 
transform imply (6.1-43). (b) Verify that if f has two continuous deriva­
tives, and g has one continuous derivative, then u is a classical solution 
of (6.I.4I). For non-differentiate functions f,g, the corresponding u is a 
genera l ized so lu t ion of the wave equation; see also Exercise 6.1.16. (c) 
Let the functions u = u(t, x) and v = v(t, x) satisfy the system of equa­
tions ut — cux — v, Vt + cvx = 0 with initial conditions u(0, x) = f(x), 
v(0,x) — g(x) — cf'(x). Verify that u has the representation (6.143). 
Hint: use formulas (6.1.4) on page 292 and (6.1.8) on page 294- (d) Accord­
ing to part (c), we can write the wave equation as D+(D-u) = 0, where 
D+ — d/dt + cd/dx, D- — d/dt — cd/dx. What system corresponds to an 
equivalent representation D-(D+u) = 0? 

Unlike the heat equation, the wave equation has no smoothing property 
and has finite propagation speed. Indeed, assume that g(x) — 0. Then 
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(6.1.43) becomes u(t,x) = (f(x — ct) + f(x + ct))/2 ( t r a v e l l i n g wave 
solut ion) and u has continuous partial derivatives of order k if and only 
if / = f(x) n a s continuous ordinary derivatives of order k. The finite 
propagation speed is illustrated by the following observation: if f(x) = 0 
for \x\ > 1, then u(t, 11) = 0 for 0 < t < 10/c. In general, the travelling 
wave solution consists of two waves, moving to the left f(x + ct) and to the 
right f(x — ct) with the same speed c. Let us emphasize that the individual 
points on the string do not move to the right or to the left, and move 
only up and down; it is the disturbance that travels along the string. This 
propagation of disturbance is characteristic of all wave motions. 

EXERCISE 6.1.24.C Consider the t r i a n g u l a r pulse function 

fo(x) 

(a) Assume that, in problem (6.1.41), c = 1, f{x) = fo{x), and g(x) = 0. 
Using your favorite programming language or a computer algebra system, 
write a program that plots the solution u(t, x) of the wave equation, given 
by (6.1-43), as a function of x for a fixed t > 0. Plot the solution for 
x e [—5,5] and t = 0,0.5,1,2,3. (b) Repeat part (a) with c = 1, f(x) = 0, 
and g(x) = fo(x). Instead of a travelling wave, you will observe wave 
d i f fus ion: for every XQ € R, there exists a to > 0 so that u(t,xo) > 0 for 
all t > to; in this particular example, you will have u(t,xo) = 1/2 for all 
sufficiently large t. 

EXERCISE 6.1.25/4 Verify that the solution of the problem 

utt = c2uxx + h(t,x), « > 0 , i 6 l , w(0,x) = ut(0,x) = 0, (6.1.44) 

is 

1 tl f rx+c^t-s) \ 
u(t,x) = - / / h(s,y)dy)ds. (6.1.45) 

l c Jo \Jx-c(t-s) ) 

Assume the necessary smoothness of the function h. This is yet another 
example of the v a r i a t i o n of parameters. 

We now consider a more realistic model, corresponding to a string of 
finite length L and fixed end points. In this case, we want to solve the 
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i n i t i a l -bounda ry value problem 

utt(t,x) = c2uxx, t>0, x G (0,L); 

u(0,x) = f{x), ut(0,x) = g{x), x € [0,L}; (6.1.46) 

u(t, 0) = u(i, L) = 0, t > 0. 

VFe assume that the functions / , g are continuous on [0, L] and /(0) = 

/ ( £ ) = 0. 

EXERCISE 6.1.26. c . Assume that g{x) = 0 for all x. it is physically 
reasonable to define the energy of the s t r i n g as 

£(t) = \ t {u2
t{t,x) + c2ul(t,x))dx; (6.1.47) 

2 Jo 

the terms u2 and (?ux represent the kinetic and potential energy, respec­
tively. Show that d£(t)/dt = 0, that is, the energy is conserved, and, unlike 
the heat equation, the wave equation has no intrinsic dissipation of energy. 
Hint: differentiate under the integral sign to get ututt+c2uxutx, integrate by parts 
to transform the second term to —c2uxxut, and then use the equality utt = c2uxx. 

Similar to the heat equation on the line, we will carry out an a p r i o r i 
ana lys i s of (6.1.46) using separa t ion of va r i ab l e s and following the 
steps on page 304. To proceed, the reader should review the corresponding 
computations on page 302. 

We note that the boundary conditions in (6.1.46) are homogeneous, 
and therefore we should look for a solution in the form u(t, x) = 
]Cfcli Gk(t)Hk(x), with each function Uk(t,x) = Gk{t)Hk{x) satisfying the 
wave equation and Hk(0) = Hk(L) = 0. 
Step 1. We conclude that 

G'fc'(i) = rc2Gk(t), H'Hx) = rHk(x), (6.1.48) 

for some real number r. 
Step 2. We want each function Hk to satisfy the boundary conditions 
Hk(0) = Hk{L) = 0, but to be non-zero for some x 6 (0,L), and this leads 
to the special values of the number r: 

r = -(n/L)2k2, k = 1,2,.. . , (6.1.49) 

and the corresponding functions Hk: 

Hk{%) = sin(irkx/L), k = 1,2, (6.1.50) 
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Step 3. We go back to (6.1.48) to find the corresponding functions Gk'-

Gk(t) = Ak cos(cnkt/L) + Bk sin(c7rkt/L). (6.1.51) 

Step 4- We determine the values of Ak,Bk from the initial conditionx 
u(0,x), ut{0,x): 

" " ' ' ' "six 
2 f 

Ak = -j \ f(x) sm(irkx/L)di 
L Jo 

2 fL 

Bk = —.— / g{x) sm(irkx/L)dx, k = 1,2,. 
CkTT J0 

(6.1.52) 

Step 5. We write the final answer: 

t ) sin I — x 
v-^ I 2 f fnk\ \ (cnk 

u(t,x) = Y; ( 1 J f(v) sin( — j / Jdy l c o s ( — 

+ £ ( i / 9(V) Sin (~y) dy) sin ( ^ i ) sin ( £ , ) 

(6.1.53) 

EXERCISE 6.1.27.C Veri/j/ t/ie equalities (6.148)-(6.1.53). 

An elementary solution 

Mfc(i, a;) = (Afc cos(cnkt/L) + Sfc sin(c7rA;i/L)) sin(7rfca:/L) 

has three special names, depending on the area of applications: the normal 
mode of the string, the standing wave, and the s t a t i o n a r y wave. The 
fundamental mode corresponds to k = 1; all other normal modes are called 
overtones. An overtone corresponding to k = n has n — 1 nodes, the points 
xt = (L/n)l, £ = 1 , . . . , n — 1, that are not the end points and where the 
string is not moving. The existence of the nodes is a characteristic feature 
of a stationary or standing wave; it is the fixed nodes that make a standing 
wave different from a travelling wave. The motion of the string in time 
produces sound vibrations, and c/(2L) is the vibration frequency of the 
fundamental mode. Recalling that c = y/T/p, where T is the tension and 
p is the mass per unit length, we see that, to increase the frequency of the 
sound produced, one has to increase T and to decrease p and L. Physical 
constraints prevent large variations in T: the string has to be tight enough 
for the wave equation to apply, while very large T will break the string. 
Accordingly, changing T corresponds to tuning, or small adjustments of 
the frequency, while the actual range of a string instrument is determined 
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by the size of the string: going from double-bass to cello to viola to violin, 
we observe strings getting lighter and shorter. 

Unlike the Fourier series solution (6.1.35), page 303, of the heat equa­
tion, formula (6.1.53) can be simplified and reduced to a form similar to 
(6.1.43). Indeed, denote by f0 = f0(x) the odd extension of the function 
f(x) to the interval (—L,0), that is, f0{x) = —f(—x) for x e (—L,0). 

EXERCISE 6.1.28.B Verify that 

£ (! /f{y) sin (TV) dy)cos (cr\ irk 
sin | —x 

(6.1.54) 
Sfo(x + ct) + Sfo(x-ct) 

2 
where Sf0 is the Fourier series of f0. Hint: use the trigonometric identity 
2 sin a cos/? = sin(a + P) + sin(a — P) with a = irkx/L and P — cnkt/L. Then 
see page 255. 

Next, define the function G(x) = J* g(y)dy, x e [0, L\. Let Ge be the 
even extension of G to (—L,0), that is, Ge{x) = G(—x) for x e (—L,0). 

EXERCISE 6.1.29.A (a) Verify that 

g(y) sin ( —y) dy J sin ( —t) sin f — x 

_ SGe(x + ct) - SGa(x - ct) 
2c 

where SG,, is the Fourier series of Ge. Hint: integrate by parts to conclude 
that 

2 fL 2 fL 

— g(y)sm(irky/L)dy = -— G(y)cos(7tky/L)dy. 
Then use the trigonometric identity —2 sin a sin /3 = cos(a + P) — cos(a — p) with 
a = nkx/L and P = cnkt/L. (b) Verify that G(x) can be replaced with 
J*0 g(v)dy for an arbitrary x0 G [0,L\. 

By combining (6.1.53), (6.1.54), and (6.1.55), we get an alternative rep­
resentation formula for the solution of (6.1.46): 

,. , Sfo(x + ct) + Sfo(x-ct) SGc(x + ct) - SGe(x - ct) 
u(t,x) = + — , (6.1.56) 

t > 0, x € [0, L]. Thus, the superposition of infinitely many standing waves 
in (6.1.53) can be represented as a sum of four travelling waves. 
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EXERCISE 6.1.30."4 Given a continuous function h — h(t,x), consider the 
wave equation Uu = c2uxx + h, t > 0, x 6 (0,L), with zero initial and 
boundary conditions u(0,x) = Ut(0,x) = 0, u(t, 0) = u(t,L) = 0. Derive 
the following analog of the v a r i a t i o n of parameters formula (6.1.45) for 
the solution: 

u(t, x) = Yc[ (sHe (x + c{t - s)) - SHe (x - c(t - s))ys, (6.1.57) 

where He is the even extension to (—L,0) of an antiderivative of h. Hint: 
Look for a solution in the form u(t,x) = Y^'kLi Gk(t)sin(irkx/L), substitute the 
sum in the equation, multiply by sin(-Kkx/L) for some fixed n and integrate from 
0 to L. You get G'n(t) + {cnn/L)2Gn{t) = hn(i) for suitable functions h„. Note 
that the solution of the equation y"{t) + a2y(t) = f{i) with a > 0 and initial 
conditions y(0) = y'(0) = 0 is y(t) = (1/a) /0 sin(o(t — s))f(s)ds. 

Now assume that the function / is continuously differentiable on [0, L] 
and /(0) = f(L) = 0. Denote by f0 the odd periodic extension of/ (that is, 
the 2L-periodic extension of the function f0 to the whole line). Similarly, 
assume that the function g is continuous on [0, L] and denote by Ge the 
even periodic extension of an anti-derivative of g (that is, the 2L-periodic 
extension of the function Ge to the whole line.) By Theorem 5.1.5, page 
251, we can then re-write (6.1.56) in a simpler form similar to (6.1.43) on 
page 310: 

/, N _ fo(x + ct) + f0{x-ct) Ge(x + ct) - Ge(x - ct) , , 
U[l,X) — 1 — . ^O.l.DOJ 

EXERCISE 6.1.31.B (a) Verify that Sf0(x) = fo if f is continuously dif­
ferentiable on [0,L] and /(0) = f(L) = 0. (b) Verify that Sce{x) = Ge if 
g is continuous on [0,Li\. (c) Verify that if g is continuous on [0,L] and 
g(0) = g(L) = 0, then Ge is the anti-derivative of the odd extension of g. 

EXERCISE 6.1.32.c Assume that c = 1, L = 2, f(x) = 1 - \x - 1|, and 
g(x) = 0 , 0 < x < 2. (a) Write a computer program that plots the graph of 
the solution u = u(t,x), defined by (6.1.58), as a function of x for different 
fixed values oft. (b) Note that, for fixed XQ, the function u(t, XQ) is periodic 
in t. What is the period? Does the period depend on XQ ? 

EXERCISE 6.1.33/4 Note that the right-hand side of (6.1.56) is defined for 
all functions f,g that are Riemann integrable on [0,L]. For such f,g, it is 
natural to call the right-hand side of (6.1.56) a genera l ized so lu t ion of 
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(6.1.46), see also Exercise 6.1.16 on page 304- Find the conditions on the 
functions f,g ensuring that (6.1.56) is a c l a s s i c a l solution of (6.1.46). 
Hint: these conditions are much stronger than those leading to (6.1.58), so you 
can work with (6.1.58) from the beginning. 

Let us now summarize the three main properties of the wave equation: 
• Finite propagation speed; see page 310. 
• No smoothing; see page 310. 
• Conservation of energy; see page 312. 

6.2 Elements of the General Theory of PDEs 

6.2.1 Classification of Equations and Characteristics 

We start by classifying the partial differential equations (PDEs) according 
to the order of the derivatives in the equation. To simplify the presentation, 
we consider only two independent variables, which we denote by x and y, 
x, y £ M. The unknown function in the equation is then u = u(x,y). All 
the definitions in this section can be stated for an arbitrary number of 
independent variables; the names of the variables can also be different, for 
example, t, x instead of x, y. 

To state the definitions, we assume that the function u has continuous 
partial derivatives of every order. A part ia l de r iva t ive of order k > 1 
of the function u = u(x, y) is an expression 

Dku = QxkiQ fcj, ki > 0, fc2 > 0, h + k2 = k; 

by convention, D°u = u. 

EXERCISE 6.2.1. A Given k > 1, what is the largest possible number of 
distinct partial derivatives of order k for a smooth function u = u(x, y) ? 
Hint: remember that dku/{dxkldyk2) = dku/(dyk2dxkl). 

A part ia l d i f f erent ia l equation of order TV is an expression 
F(x, y, u, Du, D2u,..., DNu) = 0, where F is a given function. In other 
words, a partial differential equation has order N if N is the highest or­
der of the partial derivative of the unknown function appearing in the 
equation. The word appearing is essential and ensures that, for example, 
0 • uxxx + Ux + Ut — 0 is a first-order equation. Of course, not all possi­
ble partial derivatives of order N need to appear in the equation of order 
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N. F O R EXAMPLE, equations ux = uy and ux + uuy = 0 are first-order, 
equations ux = uyy and ux x + uyy = 1 are second-order, and equation 
ux + uuy + uyyy = 0 is third-order. 

Next, we classify the partial differential equations according to the type 
of nonlinearity. Again, for simplicity, we consider only two independent 
variables. A l i n e a r partial differential equation of order N has the form 

m,n>0 
m+n<N 

where at least one function amn with m + n = N is not equal to zero 
identically. The functions amn are called coe f f i c i en t s of the equation. 
This linear equation is called homogeneous if the function / is identically 
equal to zero; otherwise, the equation is l i n e a r inhomogeneous . A partial 
differential equation that does not have the form (6.2.1) is called nonlinear . 
F O R EXAMPLE, equations ux = uy and linear homogeneous, 
uxx + uyy — 1 is linear inhomogeneous, and equations ux + uuy = 0,ux + 
uuy-\-Uyyy = I + xy &re nonWne&r. Sometimes, a nonlinear equation becomes 
linear after a special change of the unknown function. 

EXERCISE 6.2.2^ Let u = u(t, x) satisfy the equation ut = uxx — v?x. Define 
w(t,x) = e~u^'x\ Verify that w satisfies the heat equation Wt = wxx. 

Among the nonlinear equations, we distinguish between semi-linear, 
quasi-linear, and fully nonlinear. A semi- l inear equation of order N 
has the form 

£ a^n(x,y)° gx^'n
V) + F0(x,y,u,Du,D2u,... ,DN~1u) = 0-, 

m,n>0 

(6.2.2) 
in other words, all the partial derivatives of the highest order N appear 
linearly. A q u a s i - l i n e a r equation of order N has the form 

£ fmn(x,y,u,Du,D\,...,D»-\)d-^g^ 
m,n>0 " (6.2.3) 

m+n=N v ' 

+F0{x, y, u, Du, D2u,..., DN~xu) = 0; 

in other words, all the partial derivatives of the highest order N can be 
multiplied by functions depending on the partial derivatives of lower order. 
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An equation is fu l l y nonl inear if it cannot be represented in any of the 
forms (6.2.1), (6.2.2), (6.2.3). FOR EXAMPLE, ux +uuy + uyvy = 0 is semi-
linear, ux + uuy = 0 is quasi-linear, and ux + \uy\ = 0 is fully nonlinear. 

Let us now look more closely at LINEAR HOMOGENEOUS FIRST-ORDER 
EQUATIONS. Using a method called the method of c h a r a c t e r i s t i c s , 
these equations are reduced to a system of ordinary differential equations. 
We illustrate the method for two independent variables x and y and equa­
tions of the type 

a(x, y)ux(x, y) + b(x, y)uv(x, y) = 0, (6.2.4) 

where a = a(x, y) and b = b(x, y) are known continuous functions. Consider 
the system of ordinary differential equations for the unknown functions 
x = x(t) and y = y(t): 

x(t) = a(x(t),y(t)), y(t) = b(x(t),y(t)). (6.2.5) 

Recall that x denotes the derivative of x with respect to t. This system 
is called the c h a r a c t e r i s t i c system for equation (6.2.4). If the func­
tions x(t),y(t) satisfy (6.2.5), then the curve in R2 defined by the vector 
parametric equation r(t) — x(t) i + y(t)j is called a c h a r a c t e r i s t i c or a 
c h a r a c t e r i s t i c curve of equation (6.2.4). 

EXERCISE 6.2.3? Define the function g(t) = u(x(t), y(t)), where u = u(x, y) 
satisfies (6.2.4) and (x(t), y{t)) satisfy (6.2.5). (a) Show that g(t) is identi­
cally equal to zero. Hint: use the chain rule, (b) Conclude that u(x(t), y(t)) is 
constant, that is, the solution is constant on a characteristic curve.. 

The detailed analysis of the method of characteristics is outside the 
scope of our discussion, and we simply state the result for equation (6.2.4): 
/ / the characteristic curves can be written as the level sets f(x, y) = c of 
some function f, then every solution of (6.2.4) has the form u(x,y) — 
F(f(x,y)), where F = F(t) is a continuously differentiable function of 
one variable. For EXAMPLE, consider the equation yux + xuy = 0, with 
an extra condition u(x,0) = x2. The corresponding characteristic system 
x — y, y = x can be written as d(x2 — y2)/dt = 0 (verify this!) and there­
fore the characteristic curves are hyperbolas x2 — y2 = c. Therefore, the 
general solution of the equation is u(x, y) — F(x2 — y2) for a continuously 
differentiable function F of one variable. Since u(x,Q) = F(x2) = x2, we 
conclude that u(x, y) — x2 — y2. More generally, the function F can be iden-
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tified from the values of the solution u on some curve in the (x, y)-pl&ne, 
as long as the curve is not of the form x2 — y2 = c. In particular, there 
is no solution of the equation yux + xuy = 0, satisfying u(x,x) = x. For 
more on the method of characteristics for the first-order partial differential 
equations, see Section 3.2 of the book Partial Differential Equations by L. 
C. Evans, 1998. 

EXERCISE 6.2.4. (a)c Solve the equation xux - yuy = 0, u(l,y) — y2 

using the method of characteristics. Hint: the characteristic equation implies 
xy = c, so the solution is u(x,y) = x2y2. (b)c Solve the transport equation 
Ut + bux — 0, where b is a real number, using the method of characteristics, 
and show that the result coincides with formula (6.1.4) on page 292. (c)A 

Prove that every solution of yux + xuy = 0 can be written as u(x, y) = 
F(x2 — y2) for a continuously differentiable function F. Hint: it is obvious 
that u(x, y) = F(x2 — y2) is a solution; the non-trivial part is showing that if 
u = u(t,x) satisfies yux + xuy = 0, then there exists a continuously differentiable 
function F such that u(x,y) = F(x2 — y2). (d)A Verify that specifying the 
value of the solution on a characteristic curve makes it impossible to find 
a unique solution of equation (6.2.4). Hint: either you get more than one 
solution or no solutions at all. 

To conclude this section, we look more closely at SEMI-LINEAR SECOND-
ORDER EQUATIONS IN TWO VARIABLES: 

A{x, y)uxx + 2B{x, y)uxy + C{x, y)uyy + F(x, y, u, ux, uy) = 0, (6.2.6) 

where A,B,C,F are known functions. Consider the function 

K{x,y) 
A(x,y) B{x,y) 
B(x,y) C{x,y) 

= A(x,y)C(x,y) - B2(x,y). (6.2.7) 

The sign of the function K determines the type of the equation as follows. 
Equation (6.2.6) is called e l l i p t i c at the point (x0,yo) if K(xo,yo) > 0; 
equation (6.2.6) is called hyperbolic at the point (xo,yo) if K(XQ, yo) < 0; 
equation (6.2.6) is called parabol ic at the point (xo,yo) if K(xo,yo) = 0. 
We say that the equation is elliptic (hyperbolic, parabolic) in a set G C E 2 

if the equation is elliptic (hyperbolic, parabolic) at every point of the set. 

EXERCISE 6.2.5.c (a) Verify that the equations uxx + uyy — 0, Utt = Uxx, 
and ut = uxx are elliptic, hyperbolic, and parabolic, respectively, everywhere 
in R2. (b) Determine the type of the equation yuxx + uyy = 0. 
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The ordinary differential equation for the unknown function y = y(x), 

A(x,y(x))(y'(x))2 - 2B(x,y(x))y'(x) + C(x,y(x)) = 0, (6.2.8) 

is called the c h a r a c t e r i s t i c equation for (6.2.6), and, for hyperbolic 
equations, can often be used to solve (6.2.6). F O R EXAMPLE, consider the 
equation x2uxx — y2uyy = 0. This equation is hyperbolic everywhere in K2, 
and the corresponding characteristic equation x2(y'(x))2 — y2 = 0 becomes 
y'(x) = ±y/x. The solution of y'(x) = y/x is y(x) = c\x for some real c\\ 
the solution of y'(x) = —y/x is y(x) = c^/x for some other real number C2. 
Accordingly, we introduce new variables £, T] by £(x, y) = y/x, r](x, y) = xy 
and define a new function v(£,TJ) so that v(^(x,y),r](x,y)) = u(x,y). By 
the chain rule, ux = v^x + vvr)x = —yv^/x2 + yvv, uy = v^/x + xvn, 

= (y /x ) u « - {2y2/x2)viLr) + y2vm, Uyy = (l/x^v^ + 2vin + x2u 
(verify the last three equalities!) The original equation x2uxx — y2uyy = 0 
becomes - 4 y 2 u ^ = 0, or u ^ = 0. Computing the anti-derivatives with 
respect to £ and r), we conclude that v(£, rj) — F(£) + G{rj), where F, G are 
twice continuously differentiable functions of one variable. Now we recall 
that £(x, y) = y/x, rj(x, y) = xy, and so the general solution of the equation 
x2uxx - y2uvv = 0 is u(x, y) = F{y/x) + G(xy). The functions F, G can 
be identified from suitable initial conditions; we leave it to the reader to 
work out the details. 

We can now summarize the method of characteristics for second-order 
equations in two independent variables. If equation (6.2.6) is hyperbolic 
everywhere in M2, then the characteristic equation (6.2.8) has two families 
of solutions, which we write as £(x,y) = c\, r](x,y) — c%. As a rule, the 
change of variables (x, y) —> (£, rj) is such that we can solve the equations 
<?i = £{x,y),q2 = v(x,y) f° r (x,y) in terms of (g i ,^ ) - Then we introduce 
a new function v(£,r)) so that v(£(x,y),r)(x,y)) = u(x,y), and substitute 
this v into the original equation (6.2.6). After a fairly long computation, 
in which even a slight error can ruin everything, we transform (6.2.6) to 
V£V = F(£, r), v, v$, vv) for some function F. If the computations are carried 
out correctly, then the partial derivatives v^ and vvn cancel out, and v^ 
is the only second-order partial derivative that stays: the characteristic 
equation (6.2.8) ensures this cancellation of v^ and vm for every hyperbolic 
equation! If the new equation is v^ = 0, then v(£, rj) = F(£) + G{rj) for 
two functions F, G, and so u(x, y) = F(£(x, y)) + G(r}(x, y)) is the general 
solution of the original equation (6.2.6). Of course, v^v = 0 is not the 
only equation that can be easily solved. For example, if the transformed 
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equation is v^ + v^ = 0, then t>(£, 77) = F(£)e~'n+ G(r]). Note the similarity 
between the two arbitrary functions F, G and the two arbitrary real numbers 
C\, C2 that appear in the general solution of a linear second-order ordinary 
differential equation. 

EXERCISE 6.2.6. (a)c For the wave equation utt = c2uxx, verify 
that £{t,x) = x — ct, T](t,x) = x + ct, and so the general solution is 
u(t,x) = F(x — ct) + G(x + ct). Determine the functions F,G from the 
initial conditions u(0,x) — f(x), ut(0,x) - g(x) and verify that the re­
sult agrees with formula (6.1.43) on page 310. (b)A Find the general solu­
tion of the equation 2x2uxx — 3xyuxy — 2y2uyy + 2xux — 2yuy. Hint: it is 
u(x,y) = F(y/s/x) + G(x2y). (c)A+ What initial conditions on the solution 
will make it possible to determine the functions F, G uniquely for the equa­
tion in part (b) Hint: similar to the first-order equations, consider a curve in 
the (x, y) plane, on which you prescribe the values of u and Vw • n for a given 
continuous vector field n of unit vectors. 

If equation (6.2.6) is parabolic everywhere in IR2, then equation (6.2.8) 
has only one family of solutions £{x,y) = c. The change of variables 
(x, y) —> (x,£) and the new function v(x,£) so that v(x,t;(x, y)) = u(x,y) 
transform the equation to vxx = F(x,^,v,vx,v^). Unlike the hyperbolic 
case, this equation is usually not easily solvable, except for the (not very 
interesting) trivial C&S6 VXx = 0. In particular, the method of character­
istics does not lead to an alternative solution of the heat equation (verify 
this!) 

/ / equation (6.2.6) is elliptic everywhere in R2, then equation (6.2.8) 
has no real-valued solutions, and so we cannot solve elliptic equations using 
the method of characteristics. The method of characteristics also does not 
work for equations that are of different types in different parts ofM.2, or for 
second-order equations in more than two independent variables. 

6.2.2 Variation of Parameters 

The objective of this section is to formulate the variation of parameters 
formula for general evolution equations. The level of abstraction in this 
section is somewhat higher than usual. 

Formula (6.1.8) on page 294 for the solution of the inhomogeneous trans­
port equation, formula (6.1.20) on page 298 for the solution of the inhomo­
geneous heat equation, and formula (6.1.45) on page 311 for the solution of 
the inhomogeneous wave equation suggest the existence of a general method 
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of finding the solution of an inhomogeneous linear equation from the solu­
tion of the corresponding homogenous equation. To describe this general 
method we need several new notions that would allow us to create a unified 
framework for the analysis of different equations. For simplicity, we only 
consider equations in two independent variables, t and x, with t > 0 playing 
the role of time. 

An operator A is a rule that transforms a function u into another 
function A[u}. The operation of differentiation is an example of an operator. 
The Fourier transform and the Laplace transform are also operators. 

Given a function u = u(t,x), we define a differential operator A so that 

A[u}(t,x) = £ Ak(x)^^-, (6.2.9) 
fe=0 

where Ak = Ak(x) are bounded continuous functions. Note that if / = 
f{x), then A[f] is a function of x only, and A[f]{x) — ^2k=0 Ak{x)f(k\x), 
where f^ denotes k-th derivative of / . 

EXERCISE 6.2.7.B Verify that if g = g(t) is a function depending only on t, 
then A[g](t, x) = AQ{X). 

A homogeneous linear evolut ion equation is a partial differential 
equation of the form 

ut(t,x) = A[u](t,x). (6.2.10) 

Notice that both the transport equation ut + bux = 0 and the heat equation 
ut = auxx can be written in the form (6.2.10), with A[u](t, x) = —bux(t,x) 
and ,4[u](£, x) = auxx(t,x), respectively. 

Suppose that, for sufficiently many functions / = f(x), equation (6.2.10) 
with initial condition u(0, x) — f(x) has a unique classical solution u = 
u(t, x). Then we define another operator, $, called the so lu t ion operator 
for equation (6.2.10). This operator takes the initial condition / = f(x) 
and transforms it into the corresponding solution u = u(t, x): 

$[f\(t,x) = u(t,x). (6.2.11) 

In other words, 

mfJ'X) = •*[*[/]](*. x), $[/](0+, x) = f{x). (6.2.12) 

For the transport equation ut+bux = 0, the solution operator is $[/](i, x) = 
f(x — bt); for the heat equation on the line Ut = auxx, $[/](£,x) = 
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J^KtyfX — y)f(y)dy, where K is the heat kernel (6.1.21), defined on 
page 298. As the example of the heat equation shows, it might not always 
be possible to simply set t = 0 in the formula for $ . The uniqueness of the 
solution of (6.2.10), which we always assume but never prove, implies the 
semi-group proper ty of the operator $: 

$[/](* + s,x) =*[*[ / ] (* , •)](*,x). (6.2.13) 

That is, for every t, s > 0, the solution at time t + s with initial condition 
/ is equal to the solution at time t with the initial condition equal to the 
solution at time s. 

Now consider the inhomogeneous linear evolution equation 

ut(t, x) = A[u](t, x) + h(t, x), (6.2.14) 

with zero initial condition, that is, u(0, x) = 0. Under certain assumptions 
on h, the function 

u(t,x)= f $[h(s,-)](t-s,x)ds (6.2.15) 
Jo 

is a classical solution of (6.2.14). Formula (6.2.15) is the general v a r i a t i o n 
of parameters formula. 

Recall that, by definition, the operator $ acts on functions that depend 
only on x. The dot in the notation h(s,-) indicates that we keep s fixed and 
consider A as a function of x only. In other words, for every fixed s > 0, 
the function v(t,x) — $[h(s, •)](£, x), t > s, is the solution of the i n i t i a l 
value problem vt(t, x) = A[v](t, x), t > s, v(s,x) = h(s,x). For example, 
if $[/](<, x) = f(x - bt), then $[h(s, •)](*, x) = h(s, x - bt). 

Here is an intuitive reason why (6.2.15) is true under some technical 
assumptions. Let us differentiate (6.2.15) with respect to t and apply the 
Fundamental Theorem of Calculus: 

ut{t, x) = f ^[h(s, •)](* - s, x)ds + $[h{t, -)](0+, x). 

On the other hand, (6.2.12), (6.2.15), and (6.2.9) imply 

rt JV /•* Q ft •'v gk 
/ —$[h(s,-)](t-s,x)ds= ^Ak(x)-^g;${h(s,-)}(t-s,x)ds 

N dk f* 
= Y, A^x)Q—k J ^ t ^ ' OK* - s> x)ds = Alu}{t, x); 
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the technical conditions ensure that we can take the partial derivative with 
respect to x outside the time integral. Also, by (6.2.12), $[h(t, -)](0+,a;) = 
h(t, x), and therefore ut = A[u] + h, as desired. 

EXERCISE 6.2.8. B Verify that formula (6.1.8) on page 294 and formula 
(6.1.20) on page 298 are particular cases of (6.2.15). 

EXERCISE 6.2.9.A A more general operator A has the functions Ak depend­
ing on both t and x: A[u](t,x) = Y^k=o-A-k{t,x)dku(t,x)/dxk. Derive an 
analog of (6.2.15) for the corresponding evolution equation ut = A[u]. Hint-
Again, consider the i n i t i a l value problem vt = A[v], t > s, v(s,x) = h(s,x). 
The solution of this problem should now be written as &[h(s, -)](t,s,x) 

For equations with homogeneous boundary condi t ions, the boundary 
conditions are incorporated into the definition of the operator A. For ex­
ample, if we consider the evolution equation ut = A[u] on the interval (0, L) 
with boundary conditions u(t, 0) = u(t, L) = 0, then we define the operator 
A as the rule (6.2.9) that applies only to the functions u that satisfy the 
boundary conditions u(t, 0) = u(t, L) = 0. Thus, different boundary condi­
tions result in different operators A and in different solution operators $, 
even if the rule (6.2.9) stays the same. 

EXERCISE 6 .2 .10 . B Write (6.2.15) for the solution of the heat equation on 
[0,L] with zero boundary conditions u(t,0) — u(t,L) — 0. 

The wave equation Uu = c2uxx, with initial conditions u(0,x) = f(x), 
ut(0,x) = g(x), is second-order in time and can be reduced to (6.2.10) if 
we allow vector-valued unknown functions and matrix operators. Indeed, 
introduce the new unknown function v = ut- Then the wave equation 
becomes 

(ut(t,x)\ (0 1 \ (u(t,x)\ fu(0,x)\_ff(x)\ 
\vt(t,x)J \A 0j\v(t,x))' \v(0,x)J \g(x))' [°^W) 

where -4[u](t, x) — c2uxx; for the sake of concreteness, we consider the 
equation on the whole line. The solution operator $ [ / , g] takes the initial 
conditions u(0, x) = f(x), v(0, x) = g{x), and makes the solution u — u(t, x) 
of the equation according to formula (6.1.43) on page 310. By (6.2.15), the 
solution of the corresponding inhomogeneous equation 

U y U o){vj + {h(t,x))' 
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with zero initial conditions, is 

u(t,x)= I $[0,h{s,-)]{t-s,x)ds. (6.2.17) 
Jo 

EXERCISE 6.2.11.3 (a) Verify that (6.2.17) coincides with formula (6.145) 
on page 311. (b) Verify that, for the wave equation on the interval with 
zero boundary conditions, (6.2.17) coincides with formula (6.1.57) on page 
315. 

Formulas (6.2.15) and (6.2.17) apply to ordinary differential equations 
as well; the operator A in this case is multiplication by a real number or, 
for equations of second or higher order, by a matrix; the initial conditions 
are numbers. The reader can verify that, for the equation y'(t) = ay(t) + 
h(t), j/(0) = 0, formula (6.2.15) gives y(t) = f0 ea^-^h{s)ds; similarly, for 
the equation y"(t) +a2y(t) = h(t), y(0) = j/'(0) = 0, formula (6.2.17) gives 
y(t) = (l/a) fQ sin(a(£ — s))h(s)ds. 

6.2.3 Separation of Variables 

In the elementary interpretation, separation of variables is a method for 
finding a solution of some partial differential equations. F O R EXAMPLE, 
consider the equation ux + y(y — l)uy = 0 for the unknown function u = 
u(x,y). To find a solution, we write u(x,y) = F(x)G(y) and substitute in 
the equation to find F'(x)G(y) + y(y - l)F(x)G'(y) = 0 or F'(x)/F(x) = 
—y(y — l)G'(y)/G(y) = c for some real number c. Then F' = cF or F(x) = 
F0e

cx and G'/G = - c ( l / ( j / - l ) - l / j / ) , so that G(y) = G0{y/(y-l))c. As a 
result, for every real numbers A, c, the function u(x, y) = Aecx(y/(y — l ) ) c 

satisfies the equation ux + y(y — l)uy = 0. 

EXERCISE 6.2.12? (a) What happens if we allow c to be complex, say, c = i? 
Hint: you get more solutions, (b) Many other solutions of this equation do not 
have the form u(x,y) = F(x)G(y), for example, u(x,y) — ln(j/ — 1)— lny — x 
oru(x,y) = yex/(y — l) + y2e2x/(y— l ) 2 . Can you see where these solutions 
come from? 

Notice that, at a certain step in the process, we get the equality of 
two expressions, each depending on only one variable. From this equal­
ity, we conclude that both expressions must be equal to the same num­
ber; we call this number the separa t ion constant . In all our exam­
ples, the separation constant will be a real number. It can happen that 
the form of the solution depends on the separation constant. For exam-
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pie, consider the equation uxx + uyy = 0. Writing u(x,y) = F(x)G(y), 
we find F"{x)/F{x) = -G"(y)/G(y) = c. If c = a2 > 0, then 
F"(x) - o?F{x) = 0, G"(y) + a2G{y) = 0, so that F(x) = Aeax + Be~ax, 
G(y) = Csin(ax) + Dcos(ax) for some real numbers A,B,C,D, and 
u(x, y) = (Aeax + Be~ax){Csin(ai) + D cos(bx)) is the corresponding solu­
tion. Verify that choosing the separation constant c — —a2, a > 0, results 
in the solution u(x,y) = (Asm(ax) + B cos(ax))(Ceay + De-ay). What 
solution do you get if c = 0? 

With all the variety of choices, we certainly did not find all the solutions 
of uxx + Uyy — 0: for example, u(x, y) = x2 — y2 satisfies the equation, but 
cannot be written in the form F(x)G(y). 

EXERCISE 6.2.13.C Find a solution of each of the following equations using 
separation of variables: (a) y2ux — x2uy = 0, (b) ux + uy = (x + y)u, 
(c) xuxy + 2yu — 0. For each equation, match your answer to one of 
the expressions below: u(x,y) = Aec(x~y)+(x +y ' /2 , u(x, y) = Aec^x +y \ 
u(x, y) = Axce~y 1°; in all cases, c is the separation constant. 

There are other ways to separate the variables. F O R EXAMPLE, we can 
look for the solution of the equation uxx + uyy = 0 in the form u(x,y) = 
F(x) + G(y), which leads to F"(x) + G"{y) = 0 or F"(x) = c, G"{y) = -c, 
or u(x, y) = A(x2 — y2) for every real number A. 

The examples of the heat and wave equations on an interval (see pages 
301 and 312) show that sometimes separation of variables can yield the gen­
eral solution of the equation. This observation leads to a more sophisticated 
and a much more interesting interpretation of the method. To proceed with 
this interpretation, we need an abstract version of the Fourier series expan­
sion, and for that we need some additional concepts. These concepts will 
also be used in our discussion of quantum mechanics and the Schrodinger 
equation in Section 6.4 

A (complex) vector space H is a collection of objects, called vectors, 
with operations of addition and multiplication by a complex scalar so that 
the usual laws of arithmetic hold: for every / , g, h G H and every a, (3 £ C 
we have af + pg = 0g + af £ M, a(f + g) = af + ag, (a + 0)f = af + pf, 
{a(3)f = a{(3f), lf = f,f+(g + h) = (f + g) + h. Also, there is a special 
element 0 G H so that / + 0 = / and aO = 0 (compare this with Definition 
1.1 on page 6.) An alternative name for H i s a l i n e a r space over the 
f i e l d of complex numbers. The complex numbers in this setting are 
called s ca l a r s . 
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A vector space H is called an inner product space if, for every 
/ , g £ H, there exists a unique complex number (/, g) with the follow­
ing properties: (i) (/, / ) > 0, with (/, / ) = 0 if and only if / = 0, (ii) 
(/,<?) = JgJ), (hi) (af,g) = a(f,g), and (iv) ( / + g,h) = (f,h) + (g,h); 
as usual, z means the complex conjugate of the complex number z. A 
knowledgeable reader will recognize that this is almost a Hi lber t space, 
sometimes called a pre-Hilbert space, but we do not want to complicate the 
presentation any further. The number (/, g) is called the inner product 
of / and g; the number (/, / ) , which is real by assumption, will be denoted 
by | | / | |2 . The elements / ,g of H are called orthogonal if (/,g) = 0. 

EXERCISE 6.2.14. c Verify that each of the following is an inner prod­
uct space: (a) the collection of complex-valued functions on an inter­
val (a,b) so that Ja \f(x)\2dx < oo, with (f,g) = / f(x)g(x)dx; (b) 
the collection of complex-valued functions on a domain G C M2 so that 
JJ\f(P)\2dA < oo, with (f,g) = JJf(P)gJP)dA; (c) the collection of 
G G 

complex-valued functions on a domain G C K3 so that JJJ \f(P)\2dV < oo, 
G 

with (f,g) = JJf f(P)g(P)dV. As usual, g is the complex conjugate of g. 
G 

EXERCISE 6.2.15. B Consider the collection M of sequences of complex 
numbers so that a sequence z = {zi,Z2, • • •} belongs to M if and only if 
X^fcli \zk\2 < oo- By definition, az = {az\,az2, • ••}, z+w = (zi + wi,z2 + 
W2, • • •)• Verify that M is an inner product space, with (z, w) = Y^'kLi zkWk-

The notion of the inner product space allows us to forget about certain 
features of the problem, such as the number of spatial dimensions. 

EXERCISE 6.2.16.A Prove the Cauchy-Schwartz i nequa l i t y : 

\(f,9)\< 11/11 \\9\\ (6-2-18) 

for every f, g in an inner product space H. Hint: use the same arguments as 
in the proof of (1.2.12) on page 15. 

A l i n e a r operator A on a, complex vector space Hi is a rule that, to 
every element / e l , assigns a unique element A[f], also from H, so that 
A[af + fig] = aA[f] + 0A[g] for all / , j e H and for all complex numbers 
a, (5. A linear operator A on an inner product space H is called 

• symmetric (or Hermitian) if (A[f],g) = (/, A[g}); 
• p o s i t i v e if (A[f],f) > 0 for all / ^ 0. 
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EXERCISE 6.2.17. (a)c Let HI = R™ with the usual inner product (see pages 
7 and 14). Verify that an operator A on H is symmetric if and only if the 
representation of this operator in every orthonormal basis is a symmetric 
matrix. 
(b)B Let H be an n-dimensional vector space over the field of complex num­
bers, (i) Define the inner product in EI. (ii) Verify that an operator A 
on H is Hermitian if and only if the representation of this operator in ev­
ery orthonormal basis is a Hermitian matrix,A, that is, the entries of the 
transpose of the matrix are complex conjugates of the entries of the original 
matrix: AT = A. 

EXERCISE 6.2.18? LetM. be the collection of twice continuously differentiable 
functions on (0,1) such that /(0) = / ( l ) = 0 and (f,g) = f0 f(x)g(x)dx. 
(a) Verify that the operator A defined by A[f](x) = —f"(x) is positive 
and symmetric on H. (b) Verify that the operator A defined by A[f] — f 
is linear, but is neither positive nor symmetric on H. (c) Verify that the 
operator A defined by A[f](x) = f(x) + sin(7r:r) is not a linear operator on 
H. 

A collection ^ — {cpk, k > 1} of elements of the inner product space H 
is called an orthonormal system if ||< f̂c|| = 1 for all k > 1 and (<fk, <pm) = 0 
for all k ^ m. An orthonormal system is called complete (or t o t a l ) if, for 
every / € H, 

oo 

ii/n2 = E i ( /<^) i 2 - (6-2-19) 

EXERCISE 6.2.19.C Consider the space H from Exercise 6.2.18. Verify that 
\& = {\f2sm.(nkx), k > 1} is a complete orthonormal system in H. Hint: 
consider the odd extension of the functions from M and use Parseval's identity to 
verify (6.2.19). 

Let $ = {</jfc, k > 1} be a complete orthonormal system in the inner 
product space M. A genera l ized Fourier s e r i e s of / G H relative to \I> 
is the series Sf = Y^T=i(f'<Pk)<Pk-

EXERCISE 6.2.20.5 (a) For N > 1, define SN,f = Y,k=i(f^k)v>k- Show 
that l i m ^ o o | | / - 5JV,/ | |2 = 0. Hint: \\f - SNJ\\

2 = | | / f - 2(f,SNJ) + 
\\SN,ff = l l / | | 2 - 2 E r = 1 l ( / , ^ ) | 2 + Ef= 1 l(/.¥*)l2- P>) Show that the gener­
alized Fourier series of f is unique: if ak, k>l, is a collection of complex 
numbers such that limjv-»oo 11/ _ Sfc=i akfk\\2 — 0> then ak = (/, Vfc) for 
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all k. Hint: derive an analog of equality (5.1.5) on page 243. 

We now connect the notions of linear operator and orthonormal system. 
Let A be a linear operator on a vector space H. An eigenfunction, or 
eigenvector, of A is an element <p € HI such that ip ^ 0 and there exists 
a complex number A with the property A[<p] = A ip; this number A is called 
an eigenvalue of A corresponding to p. Conversely, we can say that ip is 
the eigenfunction of A corresponding to the eigenvalue A. The collection 
of all eigenvalues of A is called the point spectrum of A; in Latin, the 
word spectrum means "appearance," and, while we will only work with the 
point spectrum, there are also other types of spectrum. Notice that if (p 
is an eigenfunction corresponding to the eigenvalue A, then so is a p for 
every complex number a. Accordingly, we can always normalize p> to have 

IMI = i-
The following result connects linear operators with orthonormal sys­

tems. 

Theorem 6.2.1 Let A be a symmetric linear operator on an inner prod­
uct space H. Then all the eigenvalues of A are real and the eigenfunctions 
corresponding to different eigenvalues are orthogonal. 

Proof. Both statements follow by direct computation using the definition 
of the symmetric operator and the properties of the inner product. For the 
first statement, 

AIMI2 = (A[<p],<p) = (¥>, AM) = [fp,\<p) = ( A ^ ) = A |M|2 ; 

since \\ip\\ ^ 0, we conclude that A = A, that is, A G R. 

EXERCISE 6.2.21.C Show that if Ai ^ A2, then (ipi,tp2) = 0. Hint: note that 
AI(</JI,V?2) = (A<pi,<p2) = (<pi,Aip2) = A2(<pi, <p2). 

• 

EXERCISE 6.2.22. B Verify that all eigenvalues of a positive operator are 
positive. 

The eigenvalue Afe is called simple if every two eigenfunctions cor­
responding to A are linearly dependent, that is, scalar multiples of each 
other. If two or more linearly independent eigenfunctions correspond to 
the same eigenvalue, the eigenvalue is called mul t ip le ; the m u l t i p l i c i t y 
of an eigenvalue is the number of linearly independent eigenfunctions 
corresponding to this eigenvalue. F O R EXAMPLE, consider the operator 
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A denned by .4[/](:r) = —f"(x) on the collection H of twice continu­
ously differentiable functions / on (—7r,7r) satisfying /(71-) = /(—n) and 
/'(?r) = / ' ( - T T ) ; (f,g) = Jlnf(x)g{x)dx (verify that the operator is sym­
metric!) Then, for k ^ 0, both etkx and e~

%kx are eigenfunctions of A 
corresponding to the eigenvalue k2. So the zero eigenvalue is simple and all 
others have multiplicity two. Notice that all eigenfunctions in this example 
are mutually orthogonal. 

In general, let <p and ip be two linearly independent eigenfunctions cor­
responding to the same eigenvalue A (that is A[<p] = Xip, A[ip] = Xtp, 
and f ^ a if) for every complex number a.) Then the functions ip and 
ijj— [(ip,ip)/\\ip\\2)) ip are orthogonal and are also eigenfunctions of A corre­
sponding to the same eigenvalue X (verify this!) A similar orthogonalization 
procedure applies if there are more than two linearly independent eigenfunc­
tions corresponding to the same eigenvalue. Thus, the eigenfunctions of a 
symmetric operator can be chosen to form an orthonormal system. 

A much more difficult question is whether the eigenfunctions of a sym­
metric operator form a complete orthonormal system. The following result 
shows that that the answer is positive for the D i r i ch l e t Laplacian, that 
is, the Laplace operator A = V2 on a bounded domain with zero bound­
ary conditions, including the one-dimensional analog „4[/](a:) = f"(x) on a 
bounded interval. The proof is by far outside the scope of our discussion. 
In fact, there is hardly a single reference containing a complete proof. 

Theorem 6.2.2 Let G be either a bounded interval (a, b) in M or a 
bounded domain in R™, n = 2,3, with a piece-wise smooth boundary dG. 
Let HI be the collection of functions f that are twice continuously differen­
tiable in G, continuously differentiable in the closure of G, and are equal 
to zero on the boundary dG of G; for n = 1 this last condition means 
f(a) = f(b) = 0. Define the inner product in M as in Exercise 6.2.14-
Consider the operator A = V2 on M, or, for n = 1, X[/](a;) = f"(x). 

Then 

(1) Each eigenvalue A& of A has finite multiplicity. Moreover, the eigenval­
ues can be arranged so that 0 > Ai > A2 > . • • and limfc^oo \Xk\k~2^n = 
C, where C > 0 depends only on the domain G c i ™ and the dimension 
n of the space R". 

(2) The corresponding eigenfunctions <pk, k > 1, are infinitely differen­
tiable in G, can be chosen real-valued, and can be chosen to form a 
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complete orthonormal system in H. 
(3) For every function f G H, the series J2T=i(f''-Pk)'Pk converges to f 

absolutely and uniformly in the closure of G. 

EXERCISE 6.2.23. (a)c State the above theorem for G = (0,L) and 
convince yourself that all the conclusions are indeed true. (b)A Verify that, 
in the above theorem, the operator —A is positive and symmetric. Hint: For 
n = 2,3 use Theorem 3.2.5 on page 159, to show that —(Af,f) = | |grad/||2 = 
-(f,Af). 

The conclusions of the above theorem hold for a more general operator 
A[f\ = div(p grad / ) + <? / in a domain G with boundary conditions a / + 
bdf/dn = 0 on the boundary of G, where a,b,p,q are sufficiently smooth 
functions and df/dn is the normal derivative of / on dG; for n = 1, the 
normal derivative on the boundary is replaced with the usual first-order 
derivative at the end points of the interval. The reader can verify that, 
for p > 0 and q < 0, the operator —A is symmetric and positive; see also 
Problem 7.7 on page 443. 

W e n o w d e s c r i b e t h e GENERAL METHOD OF SEPARATION OF VARIABLES 

for the abstract evolution equation 

du 
-^ = Au + h(t), t > 0; u\t=0 = / , (6.2.20) 

where A is a linear operator on an inner product space H, h(t) G IH for all 
t > 0, / £ H, and we think of the unknown function u = u{t) as having 
values in HI for each t > 0. In many examples, the operator ~A is symmetric 
and positive. 
Step I. Find the eigenvalues A& and eigenfunctions <fk of A and verify that 
$ = {< f̂el k > 1} is a complete orthonormal system in H and Afc < 0 for all 
sufficiently large k. 
Step II. Expand the initial condition / and the right hand side h into the 
generalized Fourier series relative to the system $: / = X^fcli /fcVfci h(t) = 

SfcLi hk{t)fk- We also suppose that the solution u has the expansion 
u = Efeli uk(t)(pk-
Step III. Substitute the series expansions into the equation to find 

oo oo oo 

J2u'k(t)ifk = Y^uk(t)A<Pk] + ^hk{t)<pk, 
fe=l fe=l fc=l 
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or, using A[<fik] = ^kfk and combining the terms, 

oo 

X^ ' f cW ~ xkUk(t) - hk(t))tpk = 0; 
fc=i 

during this analysis we assume that we can manipulate the sums as if the 
number of terms were finite. Uniqueness of the generalized Fourier series 
implies that each term in the last series must be zero: 

u'k(t) - AfcUfc(t) - hk(t) = 0 , k = 1,2,. . . . 

Step IV. Solve each ordinary differential equation with the corresponding 
initial condition Ufc(0) = fk to conclude that 

uib(t) = fkeXkt + [ eXkit-a)hk{s)ds. (6.2.21) 
Jo 

The result u = Y^k=\ uk(t)y>k is called a genera l ized so lu t ion of equa­
tion (6.2.20). The assumptions / , h(t) € M and Xk < 0 for all sufficiently 
large k imply that J2T=i lufc(*)l2 < °° f° r all £ > 0 (verify this!) With 
additional information about the operator A and results such as Theorem 
6.2.2, we can then investigate whether u is a classical solution. 

EXERCISE 6.2.24. (a)c Convince yourself that the above procedure, when 
applied to the initial-boundary value problem (6.1.25) for the heat equation 
on page 300, results in (6.1.35). (b)B Modify the above procedure to make it 
applicable to the initial-boundary value problem (6.1.46) for the wave equa­
tion on page 312, and verify that the result is (6.1.53). (c)B Verify that 
for both the heat and wave equations in a bounded region G in R n with zero 
boundary conditions the above procedure results in the eigenvalue problem 
V2u = Xu in G, u = 0 on dG. (d)A Notice that equation (6.2.20) is in-
homogeneous, and, by following the above procedure, we solve the equation 
directly. Find the solution operator $ for the corresponding homogeneous 
equation and verify that the alternative method using the variation of pa­
rameters formula (6.2.15) produces the same solution of (6.2.20). 

As an example, in Section 6.3.2, we will compute the eigenvalues and 
eigenfunctions of the Dirichlet Laplacian in a rectangle and in a disk. 



Telegraph Equation 333 

6.3 Some Classical Partial Differential Equations 

We now turn to the study of the main partial differential equations of 
mathematical physics and engineering. 

6.3.1 Telegraph Equation 

The objective of this section is to derive the equation for a voltage signal 
propagating in a long homogenous wire, or cable, of uniform cross-section. 
The current in the cable can be time-dependent, and the cable can be 
placed in a conducting medium. Accordingly, beside the usual Ohm's Law 
for resistance, we need to take into account the self-inductance of the cable 
and current leakage due to imperfect insulation. We introduce the following 
notations: V = V{t,x), the voltage in the cable at time t and point x; 
I = I(t,x), the current along the cable; j = j(t,x), the current per unit 
length leaking outside due to imperfect insulation; L, the self-inductance 
of the cable per unit length; rc, the resistance of the cable, per unit length; 
r0, the resistance of the insulation, per unit length; c0, the capacitance of 
the insulation, per unit length. We assume that the cable is uniform and 
homogenous, and is surrounded by an isotropic homogeneous medium, so 
that the values of L,rc,r0, and c0 are all constants and do not depend 
on t and x; with obvious modifications, the following derivation also holds 
without this homogeneity assumption. 

Consider a small segment [x, x + Ax) of the cable. We approximate 
this segment by a lumped electric circuit, see Section 8.4, page 463, in 
Appendix: the resistance rc Ax and the inductance LAx of the segment, as 
well as the capacitance c0Ax and the resistance r0Ax of the corresponding 
segment of the insulation, are assumed to be concentrated at the point x. 
The resulting discrete collection of these lumped circuits approximates the 
behavior of the cable as Ax —> 0. The voltage drop across the segment 
[x, x 4- Ax] is then 

V{t,x) - V(t,x + Ax) = rcI(t,x)Ax + L dI^x^ Ax, (6.3.1) 

where the first term on the right is Ohm's Law for voltage drop across a 
resistor, and the second is Faraday's Law for the voltage drop across an 
inductor (see Section 8.4 in Appendix). Dividing by Ax and passing to the 
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limit Ax —> 0, we conclude from (6.3.1) that 

m&.-r^.j!^. ( , ,2) 

The leakage current at x is the sum of the currents through the lumped 
parallel circuit of the resistance and capacitance of the insulation between 
x and x + Ax. Denoting the leakage current per unit length by j , we find 

/ XA V(t,x) A 8V(t,x) A 

j(t, x)Ax = v 'Ax + c0 — j r ^ - A x , 

or, after dividing by Ax, 

j(t,I) = r & £ ) + c „ q t £ ) . (6.3.3) 
T0 Ot 

To derive the relation between the currents / and j , we write the conser­
vation of charge equality, also known as Kirchhoff's Current Law, for the 
currents entering and leaving the lumped circuit: 

I(t, x + Ax) = I(t, x) - j(t, x)Ax. 

After dividing by Aa; and passing to the limit Ace —> 0, 

j{t,x) = -dJ^l. (6.3.4) 

We now use (6.3.3) and (6.3.4) to eliminate / from (6.3.2). Differentiation 
of (6.3.4) with respect to t yields jt = —Ixt- Differentiation of (6.3.2) with 
respect to x yields Vxx = —rcIx — LIxt = rcj + Ljt. Differentiation of 
(6.3.3) with respect to t yields j t = (Vt/r0) + c0Vtt. Then we use (6.3.3) to 
express j in terms of V, and get the te legraph equation for the voltage 
V = V(t,x): 

Vxx = Lc0 Vtt + (rcc0 + (L/r0))Vt + (rc/r0)V. (6.3.5) 

EXERCISE 6.3.1.C (a) Verify that (6.3.2), (6.3.3), and (6.3.4) indeed imply 
(6.3.5). (b) Find the equation satisfied by I. Hint: it is the same as for V. 

To study the transmission of a voltage signal over a long cable, equation 
(6.3.5) is solved for t > 0, x > 0, with zero initial conditions V(0,x) = 
Vt(0, x) = 0 (meaning no signal at time t = 0) and the boundary condition 
V(t, 0) = f(t), where / = f(t) is the signal at the transmitting end x = 0. 
Then V(t,x) describes the signal being received at time t at point x. We 
will consider two special situations, the ideal cable and underwater cable, 
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when equation (6.3.5) becomes the wave equation and the heat equation, 
respectively. 

T H E IDEAL (LOSSLESS) CABLE corresponds to r0 = oo (perfect insula­

tion) and rc = 0 (zero resistance in the cable). Define c2 = l/(Lc0). Then 
the voltage V satisfies the following in i t i a l -boundary value problem: 

Vtt = c2Vxx, t > 0, x > 0; V(0,a:) = Vt(0,x) = 0, V(t,0) = f(t). (6.3.6) 

We solve this problem using the method of r e f l e c t i o n by considering the 
odd extension of V to the whole line. Define the function u = u(t, x),t>0, 
x e M, so that u(t, x) — V(t, x) - f(t) for x > 0 and u(t, x) = -u(t, -x) 
for x < 0. We also assume that the function f = f(t) is twice continuously 
differentiable and /(0) = / '(0) = 0. Then direct computations show that 

utt = c2uxx - /"(t)sign(a;), t > 0, x€W; u(0,x) = ut(0,x) = 0, (6.3.7) 

where the function sign(a:) is defined by sign(x) — l,x > 0, sign(0) = 0, 
sign(a;) = - 1 , x < 0. Using formula (6.1.45) on page 311 and simplifying 
the corresponding integrals, we conclude that the solution of (6.3.6) is 

V(t,x)= { \ c)1 (6.3.8) 
X > Ct. 

EXERCISE 6.3.2. (a)c Verify the transformation of (6.3.6) to (6.3.7). 
(b)A Derive (6.3.8) from (6.1-45). 

Formula (6.3.8) shows that a signal in the ideal cable propagates with 
speed c = \/\/Lc0 without changing shape: if at the point x = 0 a message 
is generated that lasts r units of time, then the message will reach the 
recipient at the point x = I > 0 in £/c units of time, and will take the same 
T units of time to receive; see Figure 6.3.1. 

(t,0) 

A 
r 

(a) 

Fig. 6.3.1 

V{ t,i) = V(t-(£/c),0) 

A 
t i , t i 

(b) c 

Signal in Ideal Cable 

T H E UNDERWATER CABLE corresponds to r0 = oo (perfect insula­
tion) and Lc0Vu <C rcc0Vt (effects of self-induction are small compared 
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to the resistance), so that the terms Lc0Vtt and (rc/r0)V in (6.3.5) can 
be omitted. Define a = l/(rcc0). Then the voltage V solves the following 
in i t i a l -bounda ry value problem: 

Vt = aVxx, t>0, x>0; V(0,x) = 0, V(t,0) = /(£). (6.3.9) 

Notice that this is the heat (diffusion) equation. This time the method of 
reflection transforms (6.3.9) to 

ut = auxx — /'(t)sign(a;), t > 0, i £ l ; u(0,x) = 0, (6.3.10) 

so that V(t, x) = u(t, x) + f(t) for x > 0. By formula (6.1.20) on page 298, 

' ^ = 1 » - ' « • « - » / ( » ) „ (6.3.11) 

EXERCISE 6.3.3. (a)c Verify that the method of reflection transforms 
(6.3.9) to (6.3.10). (b)A Derive (6.3.11) from (6.1.20). Hint: if K(t,x) 
is the heat kernel (6.1.21), then one of the integrands in (6.3.11) is —2aKx{t — 
s,x) = —af*xKxx{t — s,y)dy = f*x(dK(t — s,y)/ds)dy. Follow this chain of 
equalities backwards after transforming (6.1.20). (c) + Derive (6.3.11) using 
the Laplace transform. 

Formula (6.3.11) shows that the propagation of a signal in an underwater 
cable is very different from (6.3.8). Indeed, assume that the initial signal 
V(t,0) = f(t) is non-negative and lasts r time units; see Figure 6.3.1(a). 
It follows from (6.3.11) that V(t,x) > 0 for all t > 0,x > 0. Moreover, we 
have V(t, x) < C/x2 for some number C. Indeed, consider the function 

ff(j/)=2^e"1/(2y)'y>0-

This function is positive and bounded: supy>0H(y) < CH for some real 
number CH, and limy_,.o+ H{y) = limy_,+00 H(y) = 0. For t > r , we can 
write (6.3.11) as 

fT 2a 
V(t,x)= -1H(2a(t-s)/x2)f{s)ds, 

Jo x 

because f(s) — 0 for s > r, and conclude that if 0 < f(t) < Cf, then 

2flT 
0<V(t,x)<CfCH — ; (6.3.12) 

of course, this bound is interesting only for large x: it shows that the signal 
decays significantly at large x. 

V(t,x)= I 
Jo 
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EXERCISE 6.3.4? (a) Verify (6.3.12). (b) WithV{t,0) as in Figure 6.3.1(a), 
denote by T*(X) the time during which the signal V(t,x) stays above half 
its maximal value; the quantity T*(X) characterizes the time necessary to 
receive the original signal at x. Verify that, for x much larger than \far, 
T*(X) is proportional to x2/a and does not actually depend on r . 

We conclude that, far away from the source, that is, for x much larger 
than y/ar, the signal in the underwater cable is small and not localized in 
time at all, see Figure 6.3.2 where the original signal at x = 0 is a pulse of 
width T. 

v(t,o) v(t,e) 

t^> s/b~T 

t ^—• ~^^t 
(a) (b) 

Fig. 6.3.2 Signal in Underwater Cable Far From The Source 

As a result, reliable reception is possible only at distances that are small 
compared to y/ar, where a = l/(rcco) and r is the characteristic time of the 
signal (the higher the frequency of the signal, the smaller the r.) With small 
a, transmission over long distances will take a prohibitively long time. The 
first transatlantic cable between the UK and the US, completed in 1858, 
had fairly high resistance rc. The resulting small value of a required more 
than 16 hours to transmit a 99-word greeting from Queen Victoria to the 
then-president James Buchanan. Needless to say, very few other messages 
were transmitted over that cable. 

With little control over the insulation capacitance c0, the only way to 
ensure high quality transmission at long distances was to increase a by de­
creasing rc, the resistance of the cable material. This decrease was achieved 
by using better conducting material (copper of very high purity) and mak­
ing a thicker cable. In the second transatlantic cable, completed in 1866, 
low rc allowed transmission of about 10 words per minute; this cable earned 
£ 1000 during the first day of operation. Modern cables use amplifiers 
placed along the cable to overcome the signal decay. 

Equation (6.3.9) for the underwater cable is sometimes called Kelvin's 
cable equation and was first derived by Sir WILLIAM THOMSON (LORD 
KELVIN), who also was a principal consultant for the second transatlantic 
cable project. You can read more about the history and mathematics of 

A 
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the transatlantic cable in Sections 62-66 of the book Fourier Analysis by 
T. W. Korner, 1988, where the interested reader can also find alternative 
derivations of formulas (6.3.8) and (6.3.11). 

Beside the voltage in the underwater cable, equation (6.3.9) also models 
the conduction of nerve pulses (action potentials) along a passive nerve 
fiber. There are even molecular ion channels along a nerve fiber to overcome 
signal decay. For more on this topic, see the book Theoretical Neurobiology, 
Volume 1: Cable Theory by H. Tuckwell, 1988. 

6.3.2 Helmholtz's Equation 

Helmholtz 's equation, so named after the German scientist HERMANN 

LUDWIG FERDINAND VON HELMHOLTZ (1821-1894), is the equation for 
the eigenvalues and eigenfunctions of the Laplacian: V2tt = Xu. Notice 
that this equation contains two unknown objects, u and A, and the goal is 
to find the functions u that satisfy this equation and are not equal to zero 
somewhere, and such solutions can only exist for certain, a priori unknown, 
values of A. 

We will consider the D i r i ch l e t Laplacian, that is, the Laplace opera­
tor with zero boundary conditions. The complete statement of the problem 
becomes as follows: given a bounded domain G with a piece-wise smooth 
boundary dG, find a function u and a number A so that 

V2w = AM in G, u = 0 on dG,u^O somewhere in G. (6.3.13) 

Recall that this problem arises when we do separation of variables for the 
heat and wave equations; see Exercise 6.2.24 on page 332. 

By Theorem 6.2.2 on page 330, we know, in particular, that (6.3.13) 
has infinitely many solutions (A,u), that each A is real and negative, and 
that u is infinitely differentiable in G and is real-valued. In what follows, 
we will find A and u when G is either a rectangle or a disk. 

PROBLEM (6.3.13) IN A RECTANGLE WITH SIDES a AND b; a = b 
IS A POSSIBILITY. Introduce the cartesian coordinates (x, y) so that two 
opposite vertices of the rectangle are the points (0,0) and (a, b) (draw a 
picture!) Then u = u(x,y) and, by (3.1.31) on page 139, V2u(x, y) = 
uxx + uyy. As a result, (6.3.13) becomes 

uxx(x, y) + uyy(x, y) = Xu(x, y), 0 < x < a, 0 < y < b; 

u(0, y) = u(x, 0) = u{a, y) = u(x, b) = 0, 
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and u(xo, j/o) ^ 0 for some point 0 < xo < a, 0 < yo < b. 
We solve (6.3.14) by separa t ion of va r i ab le s . With u(x,y) = 

v(x)w(y), 

v"(x) w"(v) 
- ~ = A f^-, v(0) = v(a) = u;(0) = w(b) = 0, v(x0) ^ 0, w(y0) ^ 0. 
v[x) w\y) 

(6.3.15) 
EXERCISE 6.3.5.C Verify (6.3.15). 

The left-hand side of the equation in (6.3.15) depends only on x, and 
the right-hand side, only on y. Therefore, 

v"(x) w"(y) 
—r-T- = A — = q (6.3.16) 
v(x) w(y) 

for some real number q. 

EXERCISE 6.3.6.c Verify that conditions v"(x) = qv(x), 0 < x < a, v(0) = 
v(a) = 0, V(XQ) i=- 0 for some xo G (0, a), imply 

q = — (nm/a)2, vm(x) — sm(nmx/a), m = l , 2 , 3 , (6.3.17) 

Hint: use the same arguments as for the heat equation on page 301. 

It follows from (6.3.15), (6.3.16), and (6.3.17) that w"(y) = (X-q)w(y), 
w(0) = w(b) = 0, w(yo) / 0, so that 

A+(Trm/a)2 = - (TTTI /6 ) 2 , n = 1 ,2 ,3 , . . . , wn(y) = sm(imy/b). (6.3.18) 

Combining (6.3.17) and (6.3.18), we get the eigenvalues and eigenfunctions 
of the D i r i ch l e t Laplacian in a rectangle: 

o (rr? n2\ , . /irmx\ . /"nny\ , . 
Am,n = -7T I ~ + j ^ " ) > um,n{x> V) = S l n { J S l n \~T~) ' (6-3-19) 

m,n = 1,2, We can enumerate the ordered pairs (m,n) by assign­
ing a unique positive integer k — k(m,n) to every pair. For example, 
fc(l, 1) = 1, k(l, 2) = 2, k(2,1) = 3, k(2,2) = 4, A;(3,1) = 4, etc. Of course, 
there are many different enumerations. Similarly, we can enumerate the 
eigenvalues Am)n, but now, depending on a and b, different pairs of (m,n) 
can correspond to the same Xm>n- F O R EXAMPLE, let a = b = 1. Then 
Al,2 = A2,l = —57T2. 

EXERCISE 6.3.7. A For a function f = f(x,y), define its nodal l ine as 
the zero-level set: {{x,y) : f{x,y) = 0. Let a — b = 1 and let u\ be an 
eigenfunction of the Dirichlet Laplacian in the square, corresponding to the 
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eigenvalue A. Describe all the possible nodal lines of u\ when (i) A = — 5n2; 

(H) A = -657T2. Hint: 5 = 22 + l 2 , 65 = l 2 + 82 = 42 + 72, so that there are 

many possible functions U\. 

E X E R C I S E 6.3 .8^+ (a) Find a general rule for enumerating the ordered pairs 

(m, n), m,n = 1 , 2 , . . . . You need two formulas: (i) for computing k(m, n) 

and (ii) for computing m,n given k. (b) Assume a = b = 1, arrange |Am j„ | 

in increasing order: 2TT2 < 5TT2 < 87r2 < 107T2 < 137r2 < . . . , and denote the 

resulting sequence by /ifc,fc > 1- Find limfc_>_(-00(/ifc//c) (by Theorem 6.2.2 

on page 330, we know that the limit exists and is not equal to zero). Can 

you find this limit for the general rectangle with sides a and b? Hint: for 

the general rectangle, the limit is 4n/(ab). 

For given a, b,ifr = (m/a)2 + (n/b)2, then the eigenvalue Am,„ is simple 

if and only if the equation {x/a)2 + {y/b)2 = r has a unique solution (x, y) 

with positive integer x, y (verify this!) The question about multiplicity of 

a particular eigenvalue \m,n therefore leads to a number-theoretic question 

about representing a positive integer as a sum of two squares. The following 

exercise is relatively simple. 

EXERCISE 6.3.9? Find the necessary and sufficient conditions on a, b so that 

all eigenvalues Xm,n ars simple. Hint: first reduce the problem to b = 1. Then 

note thatm2+a2n2 = m\+a2n\ implies a2 = (mi—m)(mi+m)/((n—ni)(n+ni)) . 

Then note that m\ —m and m\ + m are both odd or both even, and so are n — m, 

n + ni. 

Analysis of multiple eigenvalues of the Dirichlet Laplacian in a rectangle 

leads us deeper into number theory. A theorem of C. G. J. Jacobi, pub­

lished in 1829, describes the number of points nr with i n t e g e r ( p o s i t i v e , 

n e g a t i v e , o r z e r o ) c o o r d i n a t e s on t h e c i r c l e x2 + y2 = r for a pos­

itive integer r: if N\ and N3 are the number of divisors of r in the form 

4fc + 1 and Ak + 3, respectively, k = 0 , 1 , 2 , . . . , then nr = 4(iVi — JV3). FOR 

E X A M P L E , for r = 45, we find N\ — 4 (the divisors of the form 4k + 1 

are 1,5,9,45), N3 = 2 (the divisors of the form 4fe + 3 are 3,15), and 

so ri45 = 4 • (4 — 2) = 8; all eight points come from the representation 

45 = 3 2 + 62 . To get a bet ter understanding, verify the theorem for r = 25 

and r = 65; for the proof, see the book An Introduction to the Theory of 

Numbers by G. H. Hardy and E. M. Wright, 1979. Note tha t , to use this 

theorem, you always include 1 in the list of the divisors of the form Ak + 1; 

the number r should also be included in one of the lists if r is of the form 

Ak + 1 or Ak + 3. 
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EXERCISE 6.3.10.^+ Let a,b be such that the eigenvalue Xm,n can be mul­
tiple, and define r = (m/a)2 + (n/b)2. Denote by M(r) the multiplic­
ity of the eigenvalue Xm,n — —7r2r. Find a function g = g(r) so that 
0 < lim supT._00 M(r)/g(r) < oo. Can you choose the function g so that 
limsup^QQ M(r)/g(r) = 1 ? Hint: start with a = 6 = 1 and use the Jacobi the­
orem, keeping in mind that, of all the integer points (k, I) on the circle x2 +y2 = r 
you only need those satisfying k, I > 0. 

If you found the above discussion interesting, try to analyze the eigen­
values of the Dirichlet Laplacian in a rectangular box in three or more 
dimensions. 

PROBLEM (6.3.13) IN A DISK OF RADIUS R. Introduce polar co­
ordinates (r,0) with the origin at the center of the disk: x = rcosO, 
y = rsmO. Then u = u(r,9) and by (3.1.44) on page 147, V2u(r,9) = 
urr(r,9) + r _ 1 w r ( r , 9) -\-r~2ugg{r,9). As a result, (6.3.13) becomes 

urr(r, 9) + - ur(r, 9) + -^ ueg(r, 9) = Xu(r, 9), 0 < r < R, 0 < 9 < 2TT, 

u(R, 9) = 0, u(r0,0O) ¥= 0 for some 0 < r0 < R, 0 < 90 < 2TT. 
(6.3.20) 

Before we proceed, note that r = 0, corresponding to the center of the disk, 
is a special point for the polar coordinate system, which means that some 
solutions of (6.3.20) might have a singularity for r = 0. On the other hand, 
the center of the disk is not a special point for the original problem (6.3.13), 
and we therefore add one more condition on the solutions of (6.3.20): 

u = u(r, 9) is infinitely differentiable for 0 < r < R. (6.3.21) 

We now solve (6.3.20) by separa t ion of va r i ab les . With u(r,9) = 
v(r)w(9), 

r2v"(r)+rv'(r) 2 w"{9) 
r X = ±£ (6.3.22) 

v(r) w{9) 

EXERCISE 6.3.11.C Verify (6.3.22). 

The left-hand side of (6.3.22) depends only on r, and the right-hand 
side, only on 9. Therefore, both sides must equal a constant q and 

r2v"(r) + rv'(r) - (Xr2 + q)v(r) = 0, v(R) = 0 , 

w"{9)+qw{9)=0. [ ' ' 
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EXERCISE 6.3.12.c (a) Verify (6.3.23). (b) Introduce a new variable s = 
y/\X\r and the corresponding function V(s) = v(s/y/\X\). Keeping in mind 
that A is negative, that is, A = — (\/|A|)2, verify that 

s2V"{s) + sV'(s) + (s2 - q)V(s) = 0. (6.3.24) 

By (6.3.21), the function V = V(s) must have all derivatives at s — 0, 
and, by Exercise 4.4.20(b) on page 236, such a solution of (6.3.24) exists if 
and only if 

q = N2, N = 0 ,1 ,2 , . . . . (6.3.25) 

We now use power series to solve the resulting B e s s e l ' s d i f f e r e n t i a l 
equation 

s2V"(s) + sV'(s) + (s2 - N2)V(s) = 0. (6.3.26) 

EXERCISE 6.3.13.c For N = 1,2,.. . , and a complex variable z define the 
function 

^W = E H ^ J T ( 5 ) • <6-3-27> 
(a) Verify that this function is analytic everywhere. Hint: use the ratio test 
on page 207 to verify that the series on the right converges absolutely for all z. 
(b) Verify that this function satisfies 

z2J&(z) + zJ'N{z) + (z2 - N2)JN(z) = 0. 

Hint: just plug the power series in the equation and collect the similar terms. 

The function Jjv is called Besse l ' s function of the first kind of order 
N; all in all, there are two kinds of Bessel's functions of a given order, and 
Bessel's function of the second kind of order N is one of the solutions of 
(6.3.26) with a singularity at zero. 

It is known that, for each iV, the equation JN{Z) = 0 has infinitely many 
positive solutions: 

JN{aiN)) = 0 with 0 < a[N) <a{
2
N) <.... (6.3.28) 

For a proof of this and other properties of the Bessel functions, see Problem 
7.5 on page 441. 
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Recall that v(r) = V(ry|A|) = JN(rV|A|) and v(R) = 0. By 
(6.3.28), we conclude that A = -(a{

n
N)/R)2. Also, by (6.3.23) and (6.3.28), 

w(6) = cos(N6) or w(6) = sin(N6). As a result, we get the eigenvalues and 
eigenfunctions of the Dirichlet Laplacian in a disk of radius R: 

( (N)\2 

Ajv,n = - ( ~ - J ; «o,n(r, 9) = Ma^r/R), 

« $ „ M ) = JN(aWr/R) cos(iV0), u%]n(r,0) = JN{a^r/R) sm(NO), 

N = 0,l,2,..., n = l , 2 , . . . . 

(6.3.29) 

EXERCISE 6.3.14. (a)c What is the multiplicity O/AJV,«? Hint: it is 
either one or two. (b)B Verify the following o r thogonal i ty r e l a t i o n for 
the Bessel functions: 

[ JN(a<n
N\/R)jN(a<£)r/R)rdr = 0 

Jo 

for m ^ n and N = 0 ,1 ,2 . . . . Hint: since V2 is a symmetric operator, by 

Theorem 6.2.1 on page 329, (v$ ,u(Hm) = °: write the 

inner product in polar 
coordinates. (c)A Describe the possible nodal l i n e s of the eigenfunctions, 
that is, the set of points where u = 0. Hint: keep in mind that, if N > 0, then, 
for every real a, b, au(

N'n + bu(
N'n is an eigenfunction corresponding to \N,TI-

6.3.3 Wave Equation in Two and Three Dimensions 

We begin with an abstract derivation of the wave equation. This derivation 
applies in R, R2, and R3. Deformation of an elastic material is described 
by the stress and strain tensor fields. For a linear isotropic material, these 
two tensor fields are connected by Hooke's law F = 1\xD + AD", see page 
462 in Appendix. We make two additional assumptions: 
• all points of the material are displaced in the direction of a fixed unit 
vector u; 
• A = 0. 
Denote by u = u(t, P) the displacement of the point P at time t in the 
direction u; for a two-dimensional membrane, such as a drumhead hit by 
a drumstick, this direction would be perpendicular to the surface of the 
membrane. For such displacements, the stress tensor field becomes a stress 
vector field F, see Exercise 8.3.15(b) on page 462 in Appendix. 
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For the sake of concreteness, we carry out the derivation in a three-
dimensional setting. Let Q be a point in the elastic material and consider a 
small region GQ of the material containing the point P. The s t r e s s vector 
field F, that is, force per unit area, stretches or compresses the material in 
GQ. Thus, the force acting on GQ is the flux of F through the boundary 
BGQ of GQ. If p is the density of the material, then the linear momentum 
of the region GQ is fff p(P)utt{t, P)dV. Then the Second Law of Newton 

yields 

fff p(P)utt(t, P)dV = ~ If F(t, P) • nda, 
GQ 8GQ 

or, by Gauss's Theorem on page 152, Jff(puu + divF) dV = 0. Since the 
G 

last equality holds around every point Q of the material, we conclude that 

p{Q) utt(t, Q) + div F(t, Q) = 0. (6.3.30) 

In a linear homogeneous isotropic material, the density p is independent 
of x, and, by Hooke's Law (see Exercise 8.3.15(b)), F = —agradu, where 
o > 0 is a constant. Then (6.3.30) becomes the wave equation utt = c2V2u, 
with c2 = a/p. 

EXERCISE 6.3.15. (a)B Carry out the above derivation for a homoge­
neous isotropic membrane and verify that c2 — T/p, where T is the tension 
of the membrane and p is the mass per unit area; now T is measured in 
units of force per unit length. (b)A Reconcile the above derivation with the 
derivation of the one-dimensional wave equation for the string. 

Consider the i n i t i a l value problem for the wave equation in R2 or 

Utt(t,P) = c2v2u(t,P), t > o, P e r , 3 

u(0,P) = / ( P ) , ut(0,P) = g(P). 

If n = 2, then the solution of (6.3.31) is 

«(*,P) = J - II MQ)+/(Q)+grad/(Q).PQ 
V ; 27TC* J J ^cH2 - \PQ\ V ' V ' 

D(P,ct) 

where D(P,ct) is the disk with center at the point P and radius ct: 
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D(P, ct) = { Q e t 2 : \PQ\ < ct}. If n = 3, then the solution of (6.3.31) is 

«(*, P) = j ^ 2 / / ( ^ ( Q ) + / (Q) + grad/(Q) • PQ) da(Q), (6.3.33) 

S(P,ct) 

where S(P, ct) is the surface of the sphere with center at the point P and 
radius ct: S(P,ct) = {Q G R3 : \PQ\ — ct}. The uniqueness of solution 
for the wave equation is known as Huygens's p r i nc ip l e : once the initial 
wave disturbance reaches a particular point, the point becomes the source 
of secondary waves. Mathematically, Huygens principle means that the 
solution operator $ for equation (6.3.30) satisfies the semi-group property 
(6.2.13) on page 323. 

The interested reader can find the derivations of (6.3.32) and (6.3.33) 
in Section 2.4.1 of the book Partial Differential Equations by L. C. Evans, 
1998. The derivation is rather ingenious: first, one shows that, if n = 3, 
then, for fixed P, the function U(t,r;P) = -^ JJ u(t,Q)da(Q), as a 

S(P,r) 

function of t and r satisfies the one-dimensional wave equation on the half-
line with zero boundary condition; the initial conditions for U are computed 
from the initial conditions for u. After solving this equation, the solution u 
of (6.3.31) is recovered from U by u(t,P) = \imr-ioU(t,r;P)/r, resulting 
in formula (6.3.33). Then (6.3.32) is derived from (6.3.33) by artificially 
introducing the third dimension and then transforming the integrals over 
the sphere into integrals over the disk. 

Formula (6.3.32) describes planar waves, such as ripples on the surface of 
the water. Formula (6.3.33) describes spatial waves, such as sound or radio. 
Figure 6.3.3 illustrates the radically different way the waves propagate in 
two and three dimensions. Suppose that the initial conditions u(0,P) = 
f{P), Ut(0,P) = g{P) are non-zero inside a bounded region G and are 
equal to zero outside of G. Let us look at the solution u(t, Po) at some 
fixed point Po n ° t in G so that u(t,Po) is the disturbance produced by 
the initial displacement / and velocity g. The solution will be zero for 
t < t\ — \PQPI\/C, that is, until the initial disturbance reaches the point. 
After that, in two dimensions the disk of integration will be covering the 
region for all t > tx, and the disturbance at the point Po will be dying out 
for infinitely long time; in three dimensions, the surface of the sphere of 
integration will eventually stop intersecting the region and the disturbance 
at the point Po will stop completely after a finite time ti = |PoP2|/c; see 
Figure 6.3.3. 
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EXERCISE 6.3.16. How does the initial disturbance propagate when n = 1? 
Hint: use (6.1.43) on page 310; the pictures are different, depending on whether 
the initial velocity is zero or non-zero. 

Note that the circles on Figure 6.3.3 are not wave fronts; instead, they 
represent the regions of integration: disks in formula (6.3.32) and spherical 
surfaces in formula (6.3.33). 

t>ti 

u(t,P0) u(t,P0) 

(a) Planar Wave (b) Spatial Wave 

Fig. 6.3.3 Wave Propagation 

We conclude this section with a brief discussion of the two-dimensional 
wave equation in a piece-wise smooth bounded region G in R2: 

utt(t,P) = c2V2u(t,P), t > 0, PeG, (6.3.34) 

with initial conditions u(0,P) = f(P), ut(0,P) = g(P) and zero boundary 
condition u(t, P) = 0 if P G dG. This is a mathematical model of vibrations 
of a drum shaped as the region G. 

Let ipk, k > 1, be the eigenfunctions of the Dirichlet Laplacian in G with 



Maxwell's Equations 347 

zero boundary conditions, and \k, k > 1, the corresponding eigenvalues: 
V <pk = ^kfk, (PkldG = 0. Recall that Xk < 0 and we can choose <pk to 
satisfy ffifk Vm dA = 0 for m ^ k. Following the steps on page 331, we 

G 
conclude that 

oo 

u(t,P) = Y, (Afccos(y/mct) + Bk sm{<J\\k~\ct))<pk(P), (6.3.35) 
fe=i 

where 

JJf(P)<pk(P)dA JJg(P)ipk(P)dA 
Ak = G r r , / „ M , . , , , Bk

 G 

JJ\MP)\2dA ' y/\^\cJJ\ipk(PWdA' 
G G 

EXERCISE 6.3.17. (a)c Verify (6.3.35). (a)B Write the expressions for 
Ak,Bk when G is (i) a rectangle with sides a,b, a = b is a possibility; 
(ii) a disk of radius R (here, you can use the result of Problem 7.5(d) on 
page 441 to simplify some of the formulas). (c)A Under what conditions on 
the functions f and g does (6.3.35) define a classical solution of (6.3.34)? 
(d)A+ Can you tell the shape of the drum from its sound (assuming you 
have perfect pitch) ? Hint: Since, for the given material and tension of the drum, 
the time frequencies are determined by -\/\\k\, you need to investigate whether 
there exist two different regions Gi, Gi, for which the corresponding collections 
of eigenvalues Xk, k > 1, are the same. 

6.3.4 Maxwell's Equations 

In this section, we will study Maxwell' s equations in R3 by reducing them 
to a system of wave equations. By doing so, we will predict mathematically 
the existence of electromagnetic waves, just as Maxwell himself predicted 
in the early 1860s, nearly 20 years before such waves were discovered. This 
is a major example of the predictive power of mathematical models. In our 
derivations, we assume that the electric field E and the magnetic field B 
are functions of time and space, and have all the continuous derivatives we 
might need. 

To begin, we consider the equations in vacuum, see page 164. With no 
currents or charges, these equations become 

f)j3 BE 
divE = 0, d ivB = 0, curlE = - — , curlB = fiQ£0-^-. (6.3.36) 
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According to equality (3.1.32) on page 139, curl(curl.E) = grad(div£) — 
V2E = -V2£7, because div.E = 0. Taking the curl on both sides of the 
third equation in (6.3.36) and then using the fourth equation, we get a 
system of three wave equations, one for each component of E: 

~ = c2V2E, (6.3.37) 

where c = 1/\/JIQ£Q is the propagation speed. Substitution of 
the numerical values for permittivity of vacuum eo = 8.85 • 10~12 

Coulombs/(Newton-meter2) and permeability of vacuum no = A-K • 1 0 - 7 

Newtons/ampere2 shows that c is the speed of light in vacuum: c « 3 • 108 

meters per second. This value was known before Maxwell derived (6.3.37) 
in 1864: from 1849 to 1862, J. B. L. FOUCAULT, of the Foucault pendulum 
fame, together with another French physicist ARMAND HlPPOLYTE LOUIS 

FIZEAU (1819-1896), conducted numerous experiments on the propagation 
of light. In 1862, Foucault computed the value c = 2.98 • 108 meters per 
second, less than 0.6% off the currently accepted c = 299,792,458 meters 
per second. Because of the appearance of c in equation (6.3.37), Maxwell 
suggested light to be an electromagnetic wave. While the wave theory of 
light goes back to a 1678 work "Traite de la lumiere" by C. HUYGENS, the 
notion of the electromagnetic wave was quite revolutionary, as it was only 
in the late 1880s that the German physicist HEINRICH RUDOLF HERTZ 

(1857-1894) actually generated the first electro-magnetic wave, a wave in 
the radio frequency spectrum generated by accelerated electric charges; 
Hertz also demonstrated that these waves have many properties of light. 
Later experiments showed that every form of electromagnetic radiation — 
radio waves, infra-red radiation, visible light, ultra-violet radiation, X-rays, 
and gamma radiation — is produced by accelerated electric charges and 
travels in vacuum at the same speed c. 

Incidentally, the particle theory of light has been around for a while as 
well, first proposed in 1669 by I. Newton, and in 1905 became a part of 
Einstein's theory of the photo-electric effect. Quantum mechanics and the 
theory of relativity provide a connection between particle and matter waves 
theories via the relation hv = mc2, where v is the frequency of the wave, m 
is the mass of the corresponding particle, and h = 6.62 • 10~34 joule-seconds 
is P lanck ' s constant; see page 360 below. 

A simple change of variables shows that the one-dimensional version of 
equation (6.3.37) is invariant under the Lorentz t ransformat ion but is 
not invariant under the Galilean transformation; see Problem 7.9 on page 
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446 for details. This invariance was crucial for the development of special 
relativity. 

EXERCISE 6.3.18.c Verify that the magnetic field B also satisfies (6.3.37). 
Hint: start by taking the curl of the last equation in (6.3.36). 

Thus, both B and E behave as waves, and the term "electromagnetic 
wave" is aptly chosen. 

Let us now look for a solution of (6.3.37) in the form of a p lana r , or 
p lane , wave 

E(t,P) = E0e
i{k-r-"t), (6.3.38) 

where r — OP is the position vector of the point P relative to some fixed 
reference point O, EQ is a constant vector, i is the imaginary unit: i = ^ / ^ I , 
fc is a constant vector, called the wave vector, and w i s a real number, 
representing a frequency in time. Note that E is a complex-valued vector 
and, to recover the physical electric field, we can take the real part of E. 
However, we can apply all operations and derivations to both the real and 
imaginary parts, and all equations remain valid. 

EXERCISE 6.3.19. c (a) Verify that grad(fc • r ) = fc. Hint: use cartesian 
coordinates, (b) Verify that, for E defined in (6.3.38), we have 

d\vE = ik-E, -—i- = -uj2E, V2E = -l|fc||2.E, curlE = ik x E. 
at2 

(6.3.39) 

Hint: use suitable formulas on page 139. 

Prom (6.3.39) it follows that 

• E in (6.3.38) satisfies (6.3.37) if and only if ||fe|| = w/c. 
• Em (6.3.38) satisfies (6.3.36) if and only if fc _L E(t, P) for all t, P. 
• With a suitable choice of the initial condition for B we have 

B(t,P) = -kx E{t,P), (6.3.40) 
CO 

so that, for all t, P, the vector E(t, P) x B(t, P) has the same direction 
as fc and B(t, P) L E(t, P) ± k (draw a picture!) 

EXERCISE 6.3.20. c (a) Verify that if E is given by (6.3.38), then B = 
k x E/co. Hint: dB/dt = - cu r lE = -ik x E0e

i(-kr~u't), then integrate in 
time, (b) Assuming that EQ is a real vector, find the real parts of E(t,P) 
and B(t, P) and note the term cos(fe • r — ut) in both cases. 
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If we select the coordinate system so that k = k k for some k > 0, then 
E becomes a travelling wave along the z-axis, E = E^k{z-ct) (recall that 
kc = u>). The same is true for B. Therefore, the planar electromagnetic 
wave (6.3.38), (6.3.40) propagates in the direction of the vector k. For 
fixed t = to, a wavefront through a point PQ = (xo,yo, ZQ), that is, the set 
of points P = (x,y,z) at which the E(to,P) = E(to,Po) and B(to,P) = 
B(to,P0), satisfies z = ZQ, which is a plane through Po, perpendicular to 
k. This observation explains the term "planar wave". As functions of time 
for fixed r, the complex vectors E and B rotate around k clockwise, as 
seen from the tip of k. This direction of rotation defines the p o l a r i z a t i o n 
of the wave. If E{t,P) = Eoe~i(k'r~UJt'>, the result will be a similar plane 
wave, but with opposite polarization. A directional dish antenna produces 
a nearly planar wave. 

If v = UJ/(2TT) is the l i n e a r frequency of the wave, measured in 
Hertz (1Hz = 1/second), then \\k\\ = 2-K/X, where A = cjv is the wave 
length of the wave in meters. To generate and to receive a wave with 
wavelength A, the corresponding emitting or receiving antenna must have 
the size of the order of A. Note that we have v\ — c « 3 • 108 m/s. The 
spectrum of the electromagnetic r a d i a t i o n is characterized by v or 
A of the wave. In particular, 

RADIO WAVES have frequency v from about 3 • 103 to 3 • 1 0 n Hz, with the 
corresponding A from about 105 to about 10~3 meters (100 km to 1 mm). 
For example, radio AM wave of frequency v « 106 Hz (such as broadcast 
of the AM1070 station) has wavelength A « 300 m and a radio FM wave 
of frequency v « 108 Hz (such as broadcast of the FM105.1 station) has 
wavelength A « 3 m; 
INFRA-RED RADIATION has v from about 3 • 1011 to 4 • 1014 Hz and the 
corresponding A from about 10~3 to about 7.5 • 10~7 meters; 
VISIBLE LIGHT has u from 3.75 • 1014 Hz (red) to 7.5 • 1014 Hz (violet) and 
the corresponding A from about 8 • 1 0 - 7 to about 4 • 10~7 meters; 
ULTRA-VIOLET RADIATION has v from about 7.5 • 1014 to about 7.5 • 1016 

Hz and the corresponding A from about 4 • 1 0 - 7 to about 4 • 10~9 meters; 
X-RAYS have v from about 3-1016 to about 3-1019 Hz and the corresponding 
A from about 10~8 to about 1 0 ~ n meters; 

GAMMA-RADIATION has v at least 3 • 1018 Hz and the corresponding A at 
most 10 - 1 0 meters, which is about the diameter of the hydrogen atom in 
the ground state. 

Let us now consider Maxwell's equations with sources, either in vacuum 
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or in material medium. We assume that the medium is homogeneous (has 
the same properties at every point), isotropic (has the same properties in 
every direction), and linear (D depends linearly on E, B depends linearly 
on H). We also disregard the possible dependence of the properties of 
the medium on the frequency of the electric and magnetic fields. Under 
these assumptions, we have D = e E and H = B/fx for some positive real 
numbers e and p,, so that we can write equations (3.3.47)-(3.3.50) on page 
178 using only the vectors E and B as the unknowns: 

d i v £ = ^ - , divB = 0, cm\E = -—, curlB = p,Je +ps—. (6.3.41) 
c (JL L/C 

The free charge density pf and the external current Je are assumed to be 
known; see pages 175 and 177 for more details. Notice that equation in 
vacuum are a particular case of (6.3.41) with e = £o and p = po-

To study (6.3.41), we introduce the vector p o t e n t i a l A = A(t,P) 
such that B — curl .4 and the second equation in (6.3.41) is automatically 
satisfied; see (3.1.30) on page 139. The third equation then yields 

curl(JS + dA/dt) = 0. (6.3.42) 

Accordingly, we introduce the sca la r p o t e n t i a l <p = <p(t,P) such that 
E + dA/dt = — grad</? and (6.3.42) is automatically satisfied; once again, 
see (3.1.30). By convention, this definition of <p has the minus sign in front 
of the gradient. As a result, we know E and B if we know A and ip. 

EXERCISE 6.3.21.5 Verify that the values of E and B do not change if we 
take a sufficiently smooth scalar field tp and change the values of A, ip as 
follows: 

A -> A + grad^, tp -> <p - ~ . (6.3.43) 

The function ip is an example of a gauge. Choosing a particu­
lar V is called gauge f ixing, and (6.3.43) is an example of a gauge 
transform. The study of gauge transforms for the Yang-Mills equations 
(the quantum-theoretical analogues of Maxwell's equations, see page 178) 
is an exciting area of research in both mathematics and physics. 

It follows from the fourth equation in (6.3.41) that 

curl(curl A) = curl B = pJe + / i £ — = p, Je + p,e— (- — - grad <p \ . 
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On the other hand, according to equality (3.1.32) on page 139, 
curl(curl A) = grad(div A) — V2A, so that 

div A +/j,e-^ )+tie~gp- = V2A+ fi Je. (6.3.44) 

Given a particular choice of A and ip, we can always choose ip in (6.3.43) 
so that 

divA + M £ - ^ = 0 . (6.3.45) 

This choice of ip is called Lorenz' s gauge, after the Danish physicist LUD-
WIG LORENZ (1829-1891), who has no connection to the Lorentz trans­
form. Another popular choice of ip ensures that div(A) = 0, and is called 
Coulomb's gauge; we used Coulomb's gauge before, see page 168. 

EXERCISE 6.3.22.c Verify that (6.3.45) is achieved if ip satisfies 

As a result, with no loss of generality we assume that (6.3.45) holds, 
and then (6.3.44) becomes an inhomogeneous wave equation for the vector 
potential A: 

^=ciV*A + ^ , (6.3.46) 

where the propagation speed cm = 1/y/iJI. In a material medium, e > EQ 
and n > no, so that cm < c. 

EXERCISE 6.3.23.B Verify that, under assumption (6.3-45), the scalar po­
tential ip satisfies 

^)2 2 

•QJJ -Cm V <p+—j~, (6.3.47) 

Hint: from the definition of<p, V2y? = — div E — d(div A)/dt. Then use (6.3.45) 
and the first equation in (6.3.41). 

Since B = curl .A and E = —dA/dt — grad<£>, it follows that B and 
E also satisfy inhomogeneous wave equations with the same propagation 
speed. 



Equations of Fluid Mechanics 353 

EXERCISE 6.3.24.C Define a scalar field W and a vector field S as follows: 

W = I (e\\E\\2 + JL5LV S = -(ExB). (6.3.48) 
2 \ p, J p 

(a) Verify that W has the units of energy per unit volume, that is, 
joule/meter3. Hint: see Section 8.5, page 465, in Appendix, (b) Verify that 

dW 
— + dWS = -E-Je. (6.3.49) 

Hint: use the last two equations in (6.3.41). 

Equation (6.3.49) describes the balance of energy in an electromagnetic 
wave and is known as the Poynting Theorem, after the English physicist 
JOHN HENRY POYNTING (1852-1914), who published the result in 1884. 
The scalar field W is the energy of the electromagnetic field per unit volume 
and the vector S, known as the Poynting vector, describes the flow of 
the energy in the electromagnetic wave. Notice a certain analogy between 
(6.3.49) and the equation of continuity (3.2.8) on page 154 or (3.3.12) on 
page 166. 

6.3.5 Equations of Fluid Mechanics 

The objective of this section is to introduce the main equations describing 
the motion of fluids; in what follows, "fluid" means any continuous medium, 
usually liquid or gas. There is also a good reason for placing this topic at 
the very end of the section on classical equations: with all the advances of 
modern science, and despite the long history of research on the equations, 
many types of fluid flows remain essentially a mystery, at least as far as the 
mathematical theory of the corresponding equations is concerned. 

We already know one such equation, the equation of continuity; without 
sources or sinks (which we assume everywhere in this section), this equation 
is 

pt + div(pu) = 0, (6.3.50) 

where p is the density of the medium and u is the corresponding velocity 
field, see page 154. For three-dimensional flows, there are, in general, four 
unknowns in this equation: the density function p and the three components 
of the velocity vector u. As a result, more equations are necessary to 
describe the flow. These equations come from the analysis of the dynamics 
of the fluid flow. 
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To derive some of these equations, we consider a particle in the medium 
with position vector r = r(t). By assumption, r'(t) = u(t,r(t)), and then, 
by (3.1.10) on page 126, 

r"(t) = ^ M + (f,(t). V)u{tMt)) = ^ M + {u . v)«(*,r(*)). 

The Second Law of Newton now yields 

p(t, P) (^f1- + (« • V)u(t, P)) = F(t, P) (6.3.51) 

at every point P of the medium, where F is the total force density per 
unit volume. There are two main sources of the force F, internal (for 
example, internal pressure and viscosity) and external (for example, outside 
pumping). 

EXERCISE 6.3.25^ Show that the pressure p = p(t, P) in the fluid results in 
the volume density of the force equal to — Vp, the negative gradient of the 
pressure. 

For a three-dimensional flow, (6.3.51) and the equation of continuity 
(6.3.50) are four coupled partial differential equations. Along with the 
density p and the three components of the velocity u, the pressure p is 
often an unknown quantity as well, and the thermodynamical equation of 
the state is then necessary to close the system. For ideal gases, the equation 
is p = Kp1 for some known real numbers K and 7. Below, we discuss some 
particular cases of (6.3.51). 

IDEAL, OR INVISCID, FLUID HAS NO VISCOSITY. The flow of an ideal 
fluid is described by the equation 

«t + ( « - V ) « = - ^ . (6.3.52) 
P 

T H E FLOW OF A VISCOUS FLUID dissipates energy at the molecular level; 
the larger the viscosity of the fluid, the higher the dissipation. Without 
going into the details, we postulate that, for many fluids, this dissipation 
is described mathematically by the force term v V 2u, where v is a positive 
number called the coefficient of viscosity. The resulting equation is then 

ut + (u • V ) u = v V2u -. (6.3.53) 
P 

T H E FLOW OF AN INCOMPRESSIBLE FLUID has density p(t,P) con­
stant for all time and all points in space; with no loss of generality, we 
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assume that p = 1. Prom the equation of continuity we then conclude that 
V • u = 0, which is another equation for u. While the density p is no 
longer unknown, the pressure p = p(t, P), sustaining the flow and ensuring 
the incompress ib i l i ty condit ion, is another unknown function in the 
resulting system of equations. For an ideal fluid, the system is 

ut + (u • V ) u — - gradp, divu = 0. (6.3.54) 

For a viscous fluid, the system is 

ut + {u- V)u = v V2u -Vp, V • u = 0. (6.3.55) 

Equations (6.3.52) and (6.3.53), both with Vp = 0, are often referred 
to as Burgers equations, after the Dutch physicist JOHANNES MARTINUS 

BURGERS (1895-1981), who, in the 1920s, introduced and studied the one-
dimensional versions u t + uux = 0 and ut + uux = vuxx. System (6.3.54) 
is E u l e r ' s equations; Leonhard Euler published major works on fluid 
mechanics in the 1750s. System (6.3.55) is one of the most famous in all 
of mathematics, and is known as the Navier-Stokes equat ions . The 
French civil engineer CLAUDE LOUIS MARIE HENRI NAVIER (1785-1836) 
proposed (6.3.55) in 1822 as a model of fluid flow; in the late 1840s and 
early 1850s, George Gabriel Stokes provided a rigorous derivation. 

Note that if the velocity field u of an incompressible fluid has a potential 
V, that is, u = W , then V • u — 0 implies that V is a harmonic function: 
V 2 F = 0. By taking different harmonic functions V, letting u = VV, and 
computing the resulting pressure from (6.3.54) or (6.3.55), one can model 
various flows. With the help of complex numbers and analytic functions, 
this approach is especially efficient in two dimensions, see Problem 5.3 on 
page 433. Problem 7.10 on page 447 presents some other basic techniques 
used in the study of the Euler and Navier-Stokes equations. For yet another 
interesting equation related to fluids, see Problem 7.11 on page 448. 

EXERCISE 6.3.26.A (a) Assume that u = W . Verify that 2(ti • V)u = 
V(| |u | | 2 ) . Hint: use the results of Exercise 3.1.19, page 139. (b) Assume that 
u = W and u satisfies (6.3.52) Show that Vt + (l/2)| |u| |2 = F for some 
time-dependent scalar field F and find F. (c) Assume that u = W and 
V 2 y = 0. (i) Find the pressure p if u satisfies (6.3.54). (H) Find the 
pressure p if u satisfies (6.3.55). 

The nonlinear term (u • V)u , present in all four equations (6.3.52)-
(6.3.55), makes the mathematical analysis both interesting and hard. This 
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analysis is especially hard in R3, and many basic problems related to fluid 
flows in three spatial dimensions remain open. In fact, existence of a clas­
sical solution for the Navier-Stokes equations (6.3.55) in M3 is literally a 
million-dollar question, being one of the seven Millennium Problems, an­
nounced by the Clay Mathematics Institute in 2000; for details, see the 
book The Millennium Problems by K. Devlin, 2002. Existence of a clas­
sical solution for the Navier-Stokes equations in R2 is known; Problem 
7.10(c), page 447, shows why analysis in two dimensions is easier than in 
three dimensions. 

EXERCISE 6.3.27. (a)c Let u = ui(t,x,y,z)i + u2(t,x,y,z)j + 
Us(t,x,y, z) K. Write (6.3.55) as four scalar equations. Hint: the first equa­
tion is (Ul)t + Ul(ui)x + U2(Ul)j/ + U3(ui)z = v((ui)Xx + (Ul)yy + {Ul)zz) - px. 
(b)A Use the result of Exercise 6.2.2 on page 317 to solve the one-
dimensional Burgers equation Ut + uux = uxx with initial condition 
u(0,x) = f{x). Hint: ifvt + v% = vxx, then u(t,x) = 2vx(t,x). 

6.4 Equations of Quantum Mechanics 

6.4.1 Schrodinger's Equation 

Schrodinger's equation is the fundamental equation in quantum mechanics. 
Unlike all the other partial differential equations we have encountered so far, 
Schrodinger's equation is not derived but rather postulated. Furthermore, 
unlike other fundamental equations, such as Newton's Second Law, it is 
much harder to argue that Schrodinger's equation is a generalization of the 
experimental facts. However, we will present a motivating example later. 

We start by simply writing down one particular case of the equation 
and carrying out a basic mathematical analysis. Next, we briefly discuss 
the physical background, and finally, solve the equation for two particular 
physical models: the quantum oscillator and the hydrogen atom. 

Mathematically, Schrodinger ' s equation is usually written as 

iut + V2u + Vu = 0, (6.4.1) 

where i = y/—l is the imaginary unit and V is a known function, usually 
called a potential. When V = 0, the equation can be solved using the 
Fourier transform similar to the solution of the heat equation; see page 
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297. Indeed, consider the i n i t i a l va lue problem 

iut(t, x) + uxx = 0, t > 0, x € K; u(0, a;) = f(x), (6.4.2) 

and assume tha t f_ \f(x)\dx < oo. Then direct computations show tha t 

I /-OO 

u{t,x) = - = S*-vriMf(y)dv. (6.4.3) 
V47rit y-oo 

EXERCISE 6.4.1. fa,)*7 Ven/j/ (6.4-3). Hint: repeat the computations leading 

to (6.1.18) on page 297. (b)c Let U(t, x) be a solution ofUt(t, x) = Uxx(t, x) 

and define u(t,x) = U(it,x). Verify that u is a solution of iut(t,x) + 

uxx(t,x) = 0. (c)B Assume that J^° \f(x)\pdx < oo for p = 1,2. Show 

that 

/

oo />oo 

\u(t,x)\2dx= / | /(:r) |2d:r. (6.4.4) 
-oo J ~ oo 

Hint: writing (x—y) = x2—2xy+y2, interpret u in (6.4-3) as a Fourier transform 

of some function, and then use Parseval's identity (5.2.16) on page 267. 

Similar to formula (6.1.24) on page 300, formula (6.4.3) can be extended 

to any number of spatial dimensions. The main difference from the heat 

equation is tha t Schrodinger's equation is t i m e - r e v e r s i b l e and the heat 

equation is not. 

E X E R C I S E 6.4.2.B Verify that formula (6.4-3) makes sense for both t > 0 

and t < 0 with the same function / , while formula (6.1.18) on page 297 

usually makes sense only for t > 0. Hint: \eix / ' | = 1 for allt^O and e~x /l 

grows very fast for t < 0. 

In physics, (6.4.1) is the fundamental equation of quantum mechanics, 

and is usually writ ten as 

**7 i r = - ; r - V 2 V > + ^ > (6-4-5) 
ot 2m 

where ip = ip(t,r) is called a wave f u n c t i o n , h = 1.05 • 10 ~ 3 4 joule • seconds 
is the reduced P l a n c k ' s cons tant , and m has the dimension of mass. 

E X E R C I S E 6.4.3. c Let the function t/j = ip(t,x) be a solution of ihtpt = 

— (h?/(2m))ipxx. Find real numbers a,b so that the function u(t,x) = 

ip(at,bx) is a solution ofiut +uxx — 0. 

To explain the physical significance of all the components in (6.4.5), we 
review some relevant history and physics. Classical Newtonian mechan-
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ics, as embodied in Newton's Laws, especially his Second Law (see (2.1.1) 
on page 40) serves as an accurate mathematical model of the motions of 
physical systems in which particles or bodies move at speeds much smaller 
than the speed of light. For systems in which particles move at speeds near 
the speed of light, Newtonian mechanics must be replaced by Einstein's 
mechanics of special relativity, in which Newton's Second Law is replaced 
by equation (2.4.15) on page 102. We note that (2.4.15) approaches (2.1.1) 
in the limit as c —* oo. Recall that special relativity holds only in a fam­
ily of inertial frames moving with constant relative velocities, for example, 
with respect to the non-rotating frame of the fixed stars. For accelerating 
frames, for example those which rotate relative to the fixed stars, one must 
use a third model, the mechanics of general relativity (see (2.4.22) on page 
107). This more general model is based on a non-Euclidean geometry. Still, 
the underlying mathematics of these three models is founded on the con­
tinuum of the real numbers. Quantities like energy are allowed to take on 
a continuum of real values. Furthermore, these three models of mechanics 
are usually applied to physical systems in which the motions take place on 
a macroscopic scale, say on the Earth's surface or in the solar system. 

The mechanics of systems that operate on an atomic, or smaller, scale 
is not accurately described by any of these three models of mechanics. In 
various experiments on atomic structure involving electrons, neutrons and 
other particles moving on a sub-microscopic scale, it was discovered that 
physical quantities such as energy occur in discrete amounts, or quanta, 
rather than taking on the continuum of real number values. A new math­
ematical model of the mechanics of such sub-atomic particles is required. 
It is called quantum mechanics, in recognition of the discrete nature of 
key physical properties of systems of sub-atomic particles. However, this 
discrete nature is only one of the distinguishing characteristics of quantum 
mechanics. 

Another, and more important, distinguishing characteristic is the aban­
donment of the deterministic mathematics inherent in the differential equa­
tions of the other three models and the adoption of a probability-based 
mathematics. This leads to a physical interpretation of mechanics in which 
quantities such as position and velocity can only be determined within a 
probability interval. This agrees with a phenomenon encountered in exper­
iments and enunciated in the Heisenberg Uncertainty Principle formulated 
in 1927 by the German physicist W E R N E R KARL HEISENBERG (1901-1976): 
It is not possible to determine simultaneously both position x and velocity 
v, of a particle with arbitrarily small errors Ace and Av. In terms of the 
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momentum p = mv, the uncertainty principle is often stated as the in­
equality ||Aaj||||Ap|| > h, where h is the reduced Planck's constant. This 
uncertainty is not the result of the ordinary errors in measurement that oc­
cur with probability distributions in the deterministic models of mechanics. 
In those models, the physical quantities like position and velocity are, in 
principle, determined exactly, with zero error, by the equations of motion. 
In quantum mechanics, these quantities cannot ever be determined simul­
taneously with zero error, even theoretically. They can only be determined 
within computed probability bounds. The interesting mathematical feature 
is that these probabilities are specified by a partial differential equation — 
the Schrodinger equation. Elsewhere in this chapter, we saw how a par­
tial differential equation, a continuum-based concept, is used to construct 
classical electromagnetic theory, fluid mechanics, and elasticity theory of 
continuous media. We will now show that a partial differential equation is 
also the basic mathematical tool for modelling the quantum mechanics of 
subatomic phenomena. 

The discrete character of quantum mechanics originated in the famous 
1901 paper by the German physicist MAX KARL ERNST LUDWIG PLANCK 

(1858-1947) on black-body radiation. In the paper he proposed that the 
energy radiation at a frequency v in a heated black body occurs in discrete 
quantities, which are integer multiples of an energy quantum hi/, where 
h is a physical constant, now called Planck ' s constant . Incidentally, 
the Latin word quantus means "how much." By experiments, the value 
h — 6.626 • 10 - 3 4 Joule-seconds has been determined; the reduced Planck's 
constant h = h/{2ix). Einstein, in his 1905 paper on the photoelectric ef­
fect, proposed that the energy quantum can be viewed as a particle, now 
called a photon, which is emitted as the basic constituent of light. Einstein 
proposed further that light propagates as bundles of moving discrete pho­
tons rather than as continuous travelling waves, the electromagnetic waves 
implied by Maxwell's equations based on the real continuum; see page 348. 

Furthermore, spectroscopic experiments on hydrogen gas that is made 
to glow in a discharge tube by applying an electric field detected spectral 
lines only in a discrete light spectrum. In 1913, the Danish physicist NIELS 

HENRIK DAVID BOHR (1885-1962) proposed a model of the hydrogen atom 
in which only a discrete, that is, countable, number of energy states are 
possible, since a transition between the different energy states results in 
an emission or absorption of a photon with energy E = hv; see the book 
Introductory Quantum Mechanics by R. Liboff, 2002, for more details. 

In 1922, Einstein's photon theory of electromagnetic radiation received 
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another experimental confirmation by the American physicist ARTHUR 
HOLLY COMPTON (1892-1962), who observed what is now known as the 
Compton effect: an increase in frequency of X-rays after their scattering by 
electrons. The Compton effect is consistent with the photon theory rather 
than the wave theory of X-rays. However, light passing through a double slit 
in a barrier and impinging on a screen exhibits patterns on the screen that 
are characteristic of the interference of two waves passing through the slits 
rather than of two bundles of photon particles. In other words, a number 
of experiments, when analyzed by methods of classical mechanics combined 
with the photon particle model, do not yield compatible results. To resolve 
the conflict between the photon and wave theories, it was suggested that 
photons, which behave as particles, may also be capable of some wave-like 
behavior. In fact, in 1923, the French physicist Louis-VICTOR P IERRE 

RAYMOND DE BROGLIE (1892-1987) conjectured that that even material 
particles in motion are capable of wave-like behavior, with the wave length 
depending on the particle's momentum p = mv. 

To see how such matter waves might be possible consider the photon 
as a particle obeying special relativity mechanics. By (2.4.13) on page 102, 
a particle of relativistic mass m has total energy £ = mc2. A photon has 
speed ||v|| = c and a finite energy £ = hi/. The relativistic momentum 
of a particle is p = mv. Thus, for a photon, we get £ = \\p\\c = hi/ or 
v = c||p||//i. For every wave, the wave length A, the frequency v, and the 
propagation speed v are connected by the basic relation A = v/v. Applying 
this relation to the photon with v = c and v — c\\p\\/h, we find A = ft/||p||. 
de Broglie made the bold conjecture that the relation A = /i/| |p| | holds more 
generally for any particle of mass m moving with velocity v and having 
momentum p = mv, that is, there is a particle wave length \db — h/\\p\\, 
called the de Broglie wave Length, which suggests that there are matter 
waves of length Xdb associated with moving material particles. This equa­
tion has been verified by experiments on the diffraction of atomic particles 
by crystals. In 1925, the American physicists CLINTON JOSEPH DAVISSON 

(1881-1958) and LESTER HALBERT GERMER (1896-1971) demonstrated 
that beams of electrons are diffracted like classical light waves when they 
are scattered by the arrays of atoms in a crystal. Their results support 
the de Broglie wave length formula and, thereby, the implied existence of 
matter waves. 

What is the nature of the matter waves predicted by de Broglie? Re­
call that in 1867 Maxwell predicted the existence of electromagnetic waves 
in which the electric and magnetic fields are the observable varying mag-
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nitudes in the waves. These waves are generated by accelerated electric 
charges, as was first done by Hertz (1880) and as is now routinely done by 
moving charges in an antenna. In sound waves, the air pressure varies in 
space and time. What observable physical quantity varies in particle matter 
waves? The rather unusual answer is that there is no such physical quan­
tity. Instead, the theory of quantum mechanics postulates the existence of 
a rather abstract complex-valued functions ip(r,t), called a wave function, 
which varies with the position r of a moving particle at time t and somehow 
embodies the state of both the matter and the matter wave of the parti­
cle. However, since position and velocity of atomic particles are subject to 
the uncertainty principle, ip can only provide a probabilistic estimate of the 
state at time t. Furthermore, since ip can have negative and complex values, 
it cannot serve as a probability function. In 1927, the German-born British 
physicist MAX BORN (1882-1970) suggested that \ip\2 = 'ipip should be pro­
portional to the probability of finding the particle at position r at time t. 
This turned out to be the correct interpretation of ip. In quantum mechan­
ics, the motion of a particle under the influence of external forces is governed 
by its wave function ip. In the mathematical model of quantum mechanics, 
it is postulated that ip is a single-valued and sufficiently smooth function. 
To qualify as a probability density function, {ip]2 must satisfy the usual 
integral relation for a probability density, JG \ip\2(r,t)dV = 1, where G is 
the region in which the particle moves. It is further postulated that ip{r,t) 
satisfies the partial differential equation (6.4.5), first proposed in 1924 by 
the Austrian physicist ERWIN RUDOLF JOSEF ALEXANDER SCHRODINGER 

(1887-1961). Like Newton's Laws, Schrodinger's equation has been sub­
stantiated by many experiments. To give some insight into the equation, 
we consider the one-dimensional motion of a photon of frequency v and 
wave length A. We assume that the wave function ip — ip(t, x) of this pho­
ton is a plane wave ip(t,x) = Ae~27rt(ut~x/X} (compare this with equation 
(6.3.38) on page 349). Writing v = E/h, where E is the energy of the 
photon, and A = h/p, where p is the momentum of the photon, we get 
ip(t,x) =Ae-2n^Et-px^h. 

EXERCISE 6.4.4? Verify that ipt = (-iE/h) ip and ipxx = -(p2/h2) ip, where 
h=h/(2n). 

We now forget that the photon is a relativistic particle and write its 
energy E as the sum of the kinetic and potential energy, E = (p2/(2m)) + V. 
Multiplying by ip, we get Eip = (p2/(2m))ip + Vip. On the other hand, 
results of Exercise 6.4.4 suggest that Exp = ihipt and p2ip = —K2ipxx, that 
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is, itpt — —{h/{2m))tpxx + Vip, which is the one-dimensional version of 
equation (6.4.5) on page 357. Note that, even though we started with a 
function V describing a planar wave, the equation satisfied by V1 is not a 
wave equation. 

Beside forgetting that photon is a relativistic particle, in the above 
computations we also ignored that \ip\ = \A\ is a constant, which means that 
J-oo lV(*i x)\2dx = oo and \tp{t, x)\ cannot be a probability density function 
on the real line. Nonetheless, the computations do provide a heuristic 
connection between waves and Schrodinger's equation. 

Similar to classical mechanics, mathematical model of quantum mechan­
ics is impossible without a set of first principles, known as axioms or postu­
lates. These postulates of quantum mechanics were introduced in various 
forms in the late 1920s and early 1930s by the physicist P . A. M. DlRAC 
and two mathematicians, German HERMANN W E Y L (1885-1955) and 
Hungarian-American JOHN VON NEUMANN (1903-1957). In this section, 
we consider non-relativistic quantum mechanics, that is, quantum systems 
in which the particles move at speeds much smaller than the speed of light. 

To state the postulates, we consider an inner product space HI over the 
complex numbers; see our previous discussions on page 327. In quantum 
mechanics, the elements of this space correspond to the wave functions 
ip. These elements are denoted by |-). If we think of \tp) as a column 
vector with complex components, then (V>| corresponds to the row vector 
with complex conjugate components, and the inner product of two ele­
ments |Vi), IV'2) is natural to denote by (V'IIV^)- For example, we can 
have (V1IV2) = ftpiipidV. In physics, (-| and |-) are known as D i rac ' s 
bra-ke t no ta t ions . 

POSTULATES OF QUANTUM MECHANICS. 

(1) A state of a quantum mechanical system is an element |V>) of a com­
plex inner product space H, with (VIV) = 1> such an element is called a 
s t a t e vector . The states satisfy the superpos i t ion p r i n c i p l e : if |Vi) 
and IV'2) are two possible state vectors, then so is ^12) = ci|Vi) + C2|V"2) 
for all complex numbers Ci,C2 such that (V12IV12) = 1-
(2) To every observable physical quantity characterizing a quantum me­
chanical system (position, momentum, energy, etc.) there corresponds a 
linear operator on H with a complete orthonormal system of eigenvectors 
in H and the symmetry property (f\A\g) = (g\A\f), where denotes 
complex conjugation and | / ) , \g) are arbitrary elements of H. 

(3) Let |V>) be the state vector of a quantum mechanical system, and A, 
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the operator corresponding to some observable physical quantity A. Then 
the observable values of A are the eigenvalues a^ of A, and the probabil­
ity of observing A = au is equal to |(cKfcl^)|2, where a:*; is the normalized 
eigenvector of A corresponding to a^: A\ctk) = a,k\otk), and (ak\ctk) — 1. 
In other words, the act of measurement randomly forces the system into a 
state having a state vector equal to one of the eigenvectors of A; we call such 
a state a de tec tab le s t a t e , an observable s t a t e , or an e igens ta te . 
(4) The time evolution of every state vector of a quantum mechanical sys­
tem is described by Schrodinger ' s equation 

ih-\^)=H\^), (6.4.6) 

where i = \/—l" is the imaginary unit, h = h/(2n) is reduced Planck's 
constant, and H is a symmetric operator, called the Hamiltonian of the 
system; see page 328 for the definition of symmetric operator. 

EXERCISE 6.4.5. c Identify the space H and the operator TC for equation 
(64.5) on page 357. 

Postulate 1 means that a state \ijj) of a quantum mechanical system is a 
unit vector in H. This is consistent with the interpretation of \ip\2 — {tp\tp) 
as a probability density function. Without going into the details, we men­
tion that Postulates (2) and (3) allow the possibility of uncountably many 
eigenfunctions of A and a continuous spectrum. In all our examples, we 
will have operators with a discrete (in fact, point) spectrum and countably 
many eigenvalues and eigenfunctions, all with finite multiplicity. While we 
can only observe the system in one of its eigenstates, that is, the states 
corresponding to the eigenfunctions of the observation operator, the super­
position principle suggests that the system can also be in a combination of 
these eigenstates states. The inevitable philosophical difficulty is resolved 
by concluding that the act of observing randomly forces the system into 
one of its eigenstates Of course, the reality is much more complicated and 
superposition of states is a phenomenon without a clear physical interpreta­
tion; quantum mechanics does not explain superposition but rather employs 
it as a useful mathematical concept. 

Superposition of states suggests very effective ways to represent and 
manipulate information: if a classical n-bit computer can only be in one 
of the 2" states at a time, a corresponding quantum computer can be si­
multaneously in all of these states (you might have to think about it for 
a moment). As a result, a quantum computer can achieve an exponen-
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tial increase in speed over a classical computer on certain computations. 
The problem with the implementation of such a computer is the difficulty 
in maintaining the quantum superposition of states, because the slightest 
disturbance from the outside, such as a stray photon, is interpreted as a 
measurement and sets the system into one of its eigenstates; this break­
down of quantum state structure due to outside influence is often referred 
to as decoherence. We take a closer look at quantum computing in Section 
6.4.3 below. 

If the Hamiltonian of the system does not depend on time, then we can 
look for a solution of (6.4.6) in the form 

\il>)=e-iEt/h\V), (6.4.7) 

where E is a real number and \$) is a stationary state, that is, d\^)/dt = 0. 
The following exercise shows that each stationary state is an eigenvector of 
the operator H, corresponding to the eigenvalue E; by Theorem 6.2.1 on 
page 329, we know that all eigenvalues of a symmetric operator are real. 
Accordingly, the first step in the study of a quantum system is to find the 
eigenvalues of the system Hamiltonian, as these eigenvalues correspond to 
the possible energy levels, or energy spectrum, of the system. 

EXERCISE 6.4.6. c (a) Verify that if \ip) has the form (6.4.7) and sat­
isfies (6.4.6), then |$) satisfies the s t a t i ona ry or t ime-independent 
Schrbdinger equation 

W| t f )=£ | t f ) . (6.4.8) 

(b) Conversely, verify that (6.4.8) and (6.4-7) imply (6.4.6). The other 
postulates of quantum mechanics then suggest that equation (6-4-6) is rea­
sonable to postulate as well. 

In many quantum mechanical systems, the space H is a collection of 
suitable scalar functions on R", n = 1,2,3 such that (f\g) = JRn fgdm. 
From Theorem 2.3.1 on page 94 we know that the Hamiltonian of a point 
mass is the total (kinetic plus potential) energy of the point, £K + U. 
We also know that for a non-relativistic particle, the kinetic energy £# = 
||p||2/(2m), where p is the momentum. Both momentum and kinetic energy 
are observable physical quantities. It is postulated in quantum mechanics 
that the operator corresponding to momentum is —iftV, and — (h/(2m))V2 

is the operator corresponding to the kinetic energy; our heuristic discussion 
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of a photon on page 361 suggests that these postulates are reasonable. Then 

n\f) = ~^V2f + Uf, (6.4.9) 

and (6.4.6) becomes (6.4.5) on page 357. Accordingly, much of the math­
ematical analysis of the Schrodinger equation is about finding conditions 
on the potential U so that the operator A[u] = — V2u + Uu has a discrete 
spectrum. Even in one space dimension, many open problems remain. 

EXERCISE 6.4.7.B Let H be the collection of complex valued functions de­
fined on the interval [0,1] so that every function from M is continuously 
differentiable on the interval and is equal to zero at the end points. Set 
(f: d) = Jo f(x)g(x)dx. Verify that the operator A[f] = —if'(x) is sym­
metric on H. Hint: integrate by parts and remember that we are working with 
complex numbers. 

We now consider two physical systems for which the Schrodinger equa­
tion can be solved explicitly: the linear quantum oscillator and the hydrogen 
atom. The explicit solutions are important for experimental validation of 
the quantum theory. In our analysis, we will encounter some of the equa­
tions from page 237. We leave it to the reader to fill in the details of most 
computations. 

LINEAR QUANTUM OSCILLATOR. In classical mechanics, we encountered 
a harmonic o s c i l l a t o r in the study of the simple rigid pendulum (see 
(2.1.10) on page 42). Without external forces and no energy losses, such an 
oscillator is described by the second-order ordinary differential equation 

x (t) 4- uj2x(t) = 0, (6.4.10) 

where x = x(t) represents the position of the particle. Another classical 
example is the oscillations of a point mass m attached to massless spring. 
If x = x(t) is the displacement of m from the equilibrium position of the 
spring, then Newton's Second Law F = mx(t) with Hooke' s Law F = —Kx 
yields (6.4.10) with w = K/m. Note also that V = Kx2/2 = mu)2x2/2 is 
the potential energy of the spring. 

To motivate the quantum-mechanical analog of a harmonic oscillator, we 
note that (6.4.10) implies d(x2(t) + J1 x2(i))/'dt = 0. After integrating this 
equality in time and multiplying by ra/2, we conclude that H = (mx2/2) + 
(muj2x2)/2 does not depend on time. With p = mx, (mx2/2) = p2/(2m) is 
the kinetic energy, and V = (mw2x2)/2 is the potential energy. Therefore, 
H is the total energy of the oscillator. 
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For a quantum oscillator, the total energy H becomes a time-
independent Hamiltonian H, and, according to (6.4.9), the operator H 
should be defined by 

W) = ~f{x) + ^-f(x), xe R, 

where, similar to the classical has the dimension of space, m, mass, 
and to, frequency (inverse time). The corresponding eigenvalue problem 
(6.4.8) becomes 

-^*»(x) + T?^V(x)=EV(x). (6.4.11) 

Note that a = y/h/(mui) has the dimension of the space and is the char­
acteristic scale of the problem. Similarly, huj/2 is the characteristic energy. 
These quantities appear naturally as we write the original equation using 
a dimensionless independent variable z = x/a. More precisely, a series of 
substitutions transforms (6.4.11) to 

u"(z) - 2zu'(z) + (A - 1) u{z) = 0, (6.4.12) 

where z is dimensionless (we can allow z to be complex, if we want), and 

E = ^ A , V(x) = e~*2/(2a2) U ( a ; / a ) > a = J A . (6.4.13) 

EXERCISE 6.4.8.° (a) Verify the transformation of (6.4.11) to (64.12). 
Hint: go step by step. First set ^{x) = v(x/a) and verify that v"(z) — z2v(z) + 
Xv(z) = 0. Then set v(z) = e~z2/2u(z). (b) Verify that if u(z) = YX=oukZk:, 
then 

2 / c - ( A - l ) ,„,,.s 
Uk+2=(k + l)(k + 2)Uk- ( 6 A 1 4 ) 

Notice that (6.4.12) is a particular case of equation (4.4.45) on page 237. 
By Theorem 4.4.3 on page 233, we know that all solutions of (6.4.12) are 
analytic functions of z. Still, because of the connection between u and the 
wave function \Er, we can only use those solutions of (6.4.12) that satisfy 

/

oo 
e-°

2K^)\u(s/a)\2ds < 00. (6.4.15) 
-00 

EXERCISE 6.4.9.A (a) Verify that a solution u = u{z) of (6.4.12) satisfies 
(6.4-15) if and only if u = u(z) is a polynomial of degree N, which, in 
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particular, implies that 

A = 2iV + l, N = 0 ,1 ,2 , . . . . (6.4.16) 

Hint: by (6.4-14), if A ^ 2iV + 1 so #ia£ u is not a polynomial, then, for large k, 
Uk+2 ~ 2Uk/k. 

By combining (6.4.16) and (6.4.13), we conclude that the admissible 
energies of the linear quantum oscillator are E^ = hu(N +1/2). In partic­
ular, the lowest energy level is EQ = HLJ/2. The corresponding normalized 
polynomial solutions UJV of (6.4.13) are 

. , (-1)" Z2 dN _z2 
UNKZ) = , = e -—fj e z , 

and are known as Hermite polynomials. The normalizing factor is chosen 
so that UN(Z) = OLNZN + . . . , with a^ > 0, and the corresponding wave 
function ^N(X) from (6.4.13) satisfies J™ \^^(x)\2dx = 1. The reader 
who likes detailed computations can verify these properties of *AT. 

According to Bohr' s correspondence p r i n c i p l e , a result obtained in 
quantum mechanics must converge to its classical counterpart in the limit as 
h —> 0. For the quantum oscillator, this correspondence can be established 
rigorously; see the book Introduction to Quantum Mechanics by R. Liboff, 
2002. 

THE HYDROGEN ATOM. In this system we have one electron with charge 
—e < 0 moving around one proton with charge e > 0. Since the proton is 
more that 1800 times heavier than the electron, we will assume that the 
proton is not moving; for a more realistic and general setting, see Problem 
7.8 on page 446. We also consider only the electrostatic interaction of 
the particles, so that the potential energy of the electron in the electric 
field produced by the proton is U = —e2/(4neor), where r is the distance 
between the particles. Finally, we assume that the speed of the electron is 
much smaller than the speed of light so that non-relativistic mechanics can 
be applied; we will verify this assumption later; see (6.4.33), page 373. 

Then the Hamiltonian operator is 

n\f) = -~y2f--^—f. 
2m Aireor 

Note that the space now is three-dimensional. The corresponding eigenvalue 
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problem (6.4.8) becomes 

t 2 2 

— V 2 # + - - ^ — * = - J 5 * . (6.4.17) 
2 m 47T£o?'' 

Similar to the linear oscillator, equation (6.4.17) contains a characteristic 
scale ao and energy EQ of the problem, which appear when we transform 
(6.4.17) into a mathematical form with dimensionless independent vari­
ables. 

EXERCISE 6.4.10.c Define the quantities 

4ne0h
2 h2 me4 

a o = ^ ^ ' Eo==~2^~~2hHAneor
 { ' 

ao is known as the Bohr rad ius of the hydrogen atom in the ground state, 
and EQ is the energy of the electron in this ground state. The numeri­
cal values of the physical constants are as follows: h = 1.05 • 10 - 3 4 J-s 
(joule • second); m = 0.91 • 10 - 3 0 kg, mass of the electron; e = 1.6 • 10~19 C 
(coulomb), the charge of the electron; eo = 8.85-10-12 C 2/(J-m), electrical 
permittivity of free space. Using these values, verify that ao has the dimen­
sion of length, EQ has the dimension of energy, and ao = 0.53 • 10 - 1 0 m, 
E0 = -13.6 eV, where one e l e c t ron -vo l t (eV) is 1.60-10 -19 jow/es. Hint: 
one joule is one kg • m 2/s 2. 

Given the spherical symmetry of the system, we introduce the spherical 
coordinates (r,6,<p) so that x = rcos#sin<£, y = rsin#sin<^, z = r cos <p. 
Note that in the physics literature the role of the angles 9 and ip is often 
switched. Then * = *(r, 9, ip) and (6.4.17) becomes 

h2 ( 2 1 cos <p 1 
— * r r + -tfr + a Vee + 2 . fry + - 2 * w 

2m \ r Hsin <p rzsmip r* 
e2 

+ - * + £ * = 0; 
4neor 

(6.4.19) 

see formula (3.1.45) on page 147. We solve (6.4.19) by separa t ion of 
va r i ab le s . 

EXERCISE 6.4.11.c Verify that setting ^(r,9,ip) = F(r)Q(9)$(<p) and mul-
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tiplying through by 2mr2/h2 transforms (6.4-19) into 

r2F"{r) + 2rF'{r) 9 " (0) $ " (tp) + cot tp $ ' (<p) 
+ . , * ' + s inV ©(^) $(¥>) (6.4.20) 

2r £• r2 

ao -to «o 

wftere ao,£^o a r e /rom (6-4-18). 

By the usual separation argument, it follows from (6.4.20) that 

r2F"(r)+2rF'(r) 2r Er2 

F + T ~ W 7? = /3 ' (6.4.21) 
b ao bj0 a0 

9"(g) , <i>"(y>)+cot^'(y) 

smV ew + *w = ~p' (6'4-22) 

where /? is a constant. We start with equation (6.4.22). 

EXERCISE 6.4.12.c Argue that, for (6.4-22) to hold, it is necessary to have 
9"(0)/9(0) = a for some number a (real or complex). 

To proceed, we use some physical considerations. The spherical sym­
metry of the problem suggests that the wave function \& must be rotation-
invariant, that is, V(r,0,tp) = $(r,0-t-27r,¥> + 27r). Then 9(0) = 9 ( 0 + 2TT), 
and therefore 9"(0) = —n2Q(9) for some integer n (positive, negative, or 
zero; if n = 0, then we take 9(0) equal to a constant). As a result, 

9(0) = c\ cosn0 + C2 sinri0, ci,C2€ER, 

and, with no loss of generality, we can take c\ + c\ = \. In fact, it is actually 
more convenient to write 0 as a complex exponential 

9(0) = e i"fl. (6.4.23) 

Coming back to (6.4.22), we find 

$"(¥>) + cot <p&((p) = f - \ - - p) $(<p). (6.4.24) 
\sin <p J 

EXERCISE 6.4.13. (a)B Let v = v(z) be a function such that v(costp) = 
$(tp). Verify that 

(1 - z2)v"{z) - 2zv'{z) = ( j ^ i - P) v(z). (6.4.25) 



370 Quantum Mechanics 

(b)B Let w = w(z) be a Junction such that v(z) = (1 — z2)n/2w(z). Verify 
that 

(1 - z2)w"(z) - 2(rc + l)zw'(z) + (/3- n(n + l))w{z) = 0. (6.4.26) 

(c)A Note that (64.26) is a particular case of equation (4-4-43) on page 
237. Using the power series method on page 233, verify that Legendre' s 
d i f f e r e n t i a l equation (6-4-26) has a solution without a singularity at 
ZQ = ±1 if and only if 

0 = £(£ + 1) for some non — negative integer t > \n\, 

and in that case w = w(z) is a polynomial, called a (generalized) Legendre 
polynomial and denoted by PetH(z). For n = 0, P^o is usually denoted 
by Pe and is called the (usual) Legenedre polynomial. (d)A Verify that, for 
n > 0, P(,trl{z) = P^Q(Z), the n-th derivative of Pi$, and we can take 
Pe,oiz) = ^((l — zi)t)/dzl. For more about the Legendre polynomials P(t0 

see Problem 4-4 on page 430. 

Once again, the physical content of the problem suggests that the wave 
function \I> should not have any singularities away from r = 0, because 
otherwise the spherical symmetry of the problem would imply too many 
singularities. Therefore, the function $(</?) should not have any singularities 
at all. The reader who followed all three parts of the last exercise can now 
understand that, to avoid the singularities of $ when (p = 0, IT, we must 
take /? = €(£+ 1) in (6.4.22), and then 

$(V?) = smn<pPttn(cas<p). (6.4.27) 

Finally, we consider equation (6.4.21). Once again, several substitutions 

are in order, and we can allow the dimensionless variable z = r/oo to be 

complex. We also define 

where EQ < 0 is from (6.4.18); since the electron is trapped near the proton 
and cannot fly away, we should expect the admissible energy values E to 
be negative. 

EXERCISE 6A.U.A (a) Let F(r) = (r/aQ)ee-Xr/a°u(2\r/a0) where a0,E0 

are from (6-4-18) and A = y/E/Eo- Keeping in mind that (3 = £(£ + 1), 
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verify that the function u = u(z) satisfies 

z u"(z) + (2i + 2 - z)u'(z) + ((1/A) -(£+ l))u(z) = 0. (6.4.28) 

Hint: a multi-step procedure can simplify computations. For example, F(r) = 
f(r/b), f{z) = zeV(z), V(z) = e-XzW(z), W{z) = u{2\z). In particular, you 
should get zV" + 2(£ + l)V + (2 - X2z)V = 0 and zW" + (2{e + 1) - 2\z)W + 
(2-2(^ + l)A)W = 0. 
(b) Equation (6.4-28) is a particular case of (4-4-4V- Verify that (6.4-28) 
has a solution satisfying J*0°° |u(2As)|2e~2Asds < oo if and only if 1/A = N 
for some positive integer number N. Verify that the corresponding solution 
u is a polynomial and can be taken to be LrN+i (z), see Exercise 4-4-23, 
page 238. Hint: if u(z) — Yl^=oUkZk and V^ *s no* a positive integer, then, 
withA=(l/\)-(£+l), 

k — A Uk 
Uk+1 = (k + i)(k + 2e + 2)Uk ~ jfe + i ' k~" ° ° ' 

and so u{s) ~ e". Note that LN+l (z) is indeed the (2£ + l)-st derivative of 
LN+I-

Keeping in mind that the wave function must satisfy 

r2ir 

/ / / \V(r,0,<p)\2r2drd0smtpd<p 
Jo Jo Jo 

< oo, 

we conclude that the function F must satisfy J"0°°r2\F(r)\2dr < oo. The 
reader who followed both parts of the last exercise now understands that, to 
satisfy this integrability condition, we must take A = I/AT for some positive 
integer N, and with that, we actually complete the solution of the problem! 
Indeed, with A2 = E/E$ and EQ defined in (6.4.18), the admissible energy 
levels are 

£" = f —S^JISI- < 6 A 2 9 » 
In general, there are several wave funct ions \P = ^(r, 6, <p), corresponding 
to the energy level N: 

*(r,0,¥>) - CAu,„e i^sinTVP«,n(cos¥>) Q V ^ ^ L ^ 
2r 

Ka0N, 
(6.4.30) 

where i = y/— 1, and, for fixed positive integer N, we have £ = 0,1,... ,N — 
1, n = 0, ± 1 , . . . , ±£; the numbers CN,e,n are chosen to normalize the wave 
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function in a certain way, for example, so that 

/»OC /-2lV />7T 

/ / / \V{t,6,tp)\2 smipdtpd6r2dr = l. (6.4.31) 
Jo Jo Jo 

The state of the hydrogen atom is therefore determined by three numbers: 
the p r i n c i p a l quantum number N, the azimuthal number or o r b i t a l 
number £, and the magnetic number n. In fact, these numbers are 
used to describe the state of all atoms, making quantum mechanics and 
Schrodinger's equation a fundamental part of atomic physics and physical 
chemistry. The azimuthal number determines the shape of the electron or­
bit and is often denoted by a letter, with s corresponding to 0, p, to 1, d, 
to 2, / to 3, etc. For a multi-electron atom, the notation 5s2px means that, 
at the energy level N = 5, there are three electrons, two with £ = 0 and 
one, with £ = 1. The magnetic number determines the orientation of the 
orbit in space. 

By the uncertainty principle, the location of the moving electron can 
never be known exactly, and, strictly speaking, there is no such thing 
as the radius of the atom. Bohr 's model appeared in 1913, well before 
Schrodinger's equation and the uncertainty principle, and was much more 
simplified. According to Bohr's model, the electron stays at a fixed distance 
ajv = N2ao from the nucleus to achieve the energy level E^; Bohr was able 
to deduce the formula (6.4.29) for the energy by analyzing the experimental 
data for the hydrogen spectrum. The value ajv, known as the 7V-th Bohr 
radius or the radius of the iV-th Bohr o rb i t , provides a general measure 
of the distance between the electron and the proton at the energy level 
N. The corresponding wave function can be rather complicated. For more 
about the hydrogen and other atoms, see the book Concepts of Modern 
Physics by A. Beiser, 2002, for more details. 

EXERCISE 6.4.15. (a)c By combining (64.23), (64.27), and the results of 
Exercise (64-14), verify the representation (64-30) of the wave function. 
(b)A Given the value of N > 1, how many different states are there? (c)B 

Verify that the ground state , corresponding to n = £ = 0, N = 1, and 
satisfying (64-31), has the wave function 

yo{r,0,<p) = ^=a-me-Tla\ (6.4.32) 

(d)A Find the expected value of r in the ground state, that is, 

Jo°° Jo^ loA^it^iV)? sin <pd<p d9 r2dr. Hint: it is 3a0/2. 
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EXERCISE 6.4.16.A (a) Energy EQ in the ground state corresponds to the 
sum of the potential energy —e2/(4neoao) and the kinetic energy mvg/2 of 
the electron. Verify that 

C2 ~ (47T£0C/i)2 ~ 1372- ^ °0> 

The dimensionless number a = e2/(47re0c?i) « 1/137 is called the f ine 
structure constant, (b) Verify that the speed v^-i of the electron on 
the N-th Bohr orbit is WJV-I = VQ/N, N = 1,2,... and conclude that the 
non-relativistic treatment of the problem is justified, (c) Relation (6.4-33), 
can be derived without solving the Schrodinger equation. Indeed, let a be 
the distance from the electron to the nucleus and p, the momentum of the 
electron. By the uncertainty principle, pa ~ h. Then write p — h/a 
and E(a) = (p2/(2m)) — e2/(47rea) to deduce that mina>o-E(a) = E0 = 
E(ao), from which (6.4-33) follows. Since the ~ symbol in the uncertainty 
principle should be interpreted up to a constant factor (for example, taking 
pa = 2-nh is just as reasonable), this approach leads only to an estimate 
of the type (6.4-33), and this a priori estimate is enough to conclude that 
non-relativistic theory can be applied. 

6.4.2 Dirac's Equation of Relativistic Quantum Mechanics 

In this section we introduce Dirac's equation for an electron moving freely 
in space at speeds comparable with the speed of light. The presentation 
is intended as a very basic introduction to the subject, barely scratching 
the surface. To make the reading worthwhile, and to leave the reader with 
some sense of accomplishment, we compensate for this lack of breadth and 
depth by letting the reader carry out many of the computations. 

We start by noting that Schrodinger's equation is first-order in time and 
second-order in space. As a result, it cannot be invariant under the Lorentz 
transformation and cannot account for relativistic effects. 

EXERCISE 6.4.17? Verify that Schrodinger's equation (6.4-5) is not invari­
ant under the Lorentz transformation. Hint: consider the one-dimensional 
case. 

Next, we outline the main idea of the derivation of Dirac's equation for a 
free relativistic quantum mechanics particle in three-dimensional Euclidean 
space. First of all, we re-name the usual cartesian coordinates (x, y, z) so 
that x = x\, y = X2, z = xz- The goal is to obtain an equation that 
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is first-order in time and looks like ih(dijj/dt) = Hip, where H is now a 
relativistic Hamiltonian operator of the particle. Recall (page 103) that 
the total energy £ of a free relativistic particle with rest mass mo satisfies 
£2 = m\cA + c2 | |p||2, where p is the relativistic momentum. We still want 
H to represent the total energy and we want to continue using the operator 
—ihd/dxk in connection with the component Pk of the momentum. This 
would lead to a somewhat strange expression for H: 

H 
3 d2 

, ^ - f t V g ^ . 

Even if we could make sense out of the square root, the result would still 
not provide equal treatment of the time and space variables. 

Dirac's idea was to generalize the formula for the relativistic energy to 
the form £ = m0c

2 ao + cp • a, where ao is a scalar and a is a vector to 
be determined to obtain Lorentz invariance. This leads to the relativistic 
Hamiltonian operator in the form 

3 „ 

H = m0c
2cto + ihcy^ ak -z— 

tx dxk 

and a choice of ao, ak so that two applications of H result in 

3 g2 

k=l K 

EXERCISE 6.4.18. (a)c Verify that ao,ak must satisfy 

al = a\ = 1, afcao + a0ak = 0, fc = 1,2,3; afca„ + anak = 0, n^k; 
(6.4.34) 

the reason for writing the conditions in this form will become clear soon. 
Hint: replace d/dxk with real numbers bk- (b)B Verify that there are no real 
or complex numbers ao, ak that satisfy (6.4-34)- Hint: for numbers, multipli­
cation is commutative: ao«i = ctiao, etc. 

With no numbers ao,afe to produce the desired Hamiltonian, the only 
hope is to try higher dimensions and make ao,atk square matrices. Then 
conditions (6.4.34) become 

a\ - a\ = I[N], otkOto + aQak = 0[N], UkUn + anak - 0[N\, (6.4.35) 
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for n,k = 1,2,3 and n ^ k, where JJJV] is the NxN identity matrix and 
Ojjv] is the NxN zero matrix. The elements of the matrices can be complex 
numbers. 

EXERCISE 6.4.19. (a)c Verify that the matrices ao,ak must all be Her-
mitian (a^ = ceo, etc.) Hint: the Hamiltonian must be a Hermitian operator. 
(b)A Verify that conditions (6.4-35) cannot hold if N < A. 

If N = 4, then a possible choice of the matrices ao, ak, k = 1,2,3, is 

ao = 

/ l 0 0 0 \ 

0 1 0 0 

0 0 - 1 0 
, a i = 

/o o o i\ 
0 0 1 0 

0 1 0 0 
, a2 = 

/0 0 0 -i\ 

0 0 i 0 

0 -i 0 0 
, a 3 = 

/ o o I o \ 
0 0 0 - 1 

1 0 0 0 

\ 0 0 0 - 1 / \ 1 0 0 0 / \ » 0 0 0 / \ 0 - 1 0 0 / 

(6.4.36) 
EXERCISE 6 . 4 .20 . C (a) Verify that the matrices ao and ak can be written 
in the block form 

ao = f o 2 ] ° f ) , ^ = ( ° m " k ) , k = 1,2,3, (6.4.37) 
\0[2] -i[2]j \o-k o[2]y 

where Ip] *s *^e 2 x 2 identity matrix, Opj is i/ie 2 x 2 zero matrix, and 

'0-i 
CTl = 

0 1 
10 

0-2 — 
i 0 , 0"3 

1 0 
0 - 1 

(b) Verify that the matrices ak have the following properties: 

det(o-fc) = - 1 , ak = I[2], k - 1,2,3; akan = -anak, k ^ n; 

CT1CT2 = i&3, (T3CT1 = io~2, 0~2Oj, = iO\. 

(c) Conclude that conditions (6.4-35) hold with N = 4. 
(d) Verify that, for any real numbers bo,b\,b2,b3, 

(6.4.38) 

(6.4.39) 

bo + Yl 6fc I h^ = ( 6o a 0 + ^ 6fe afc j 
V. fc=i / \ fc=i / 

(6.4.40) 

The reader who followed the preceding discussion will now see that 
Dirac ' s equation is written as follows: 

..dij>(t,x) 2 , . tv~* dil>(t,x) 
ih y ' =a0m0c

2ip{t,x)-ih2^ak y ' ', 
at oxk 

(6.4.41) 

file:///0-10
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where x = {xi,xz,xz), with £1,2:2,0:3 playing the role of x,y,z of the 
usual cartesian coordinates in ffi3; if} = i/j(t,x) is the column vector 
(ipo{t, x), ipi(t, x),ip2(t, x),ips(t, x))T, representing the unknown wave func­
tion; m0 is the r e s t mass of the electron; h is the reduced Planck's con­
stant; i = y/—l is the complex unit; c is the speed of light in vacuum; ao 
and a t , k = 1,2,3, are the matrices from (6.4.36). Note that conditions 
(6.4.35) force the wave function to be four-dimensional, which is consistent 
with the theory of special relativity. 

EXERCISE 6.4.21^+ (a) Verify that equation (6.4-41) ^ invariant under the 
Lorentz transformation, (b) Show that, for N = 4, the choice (6.4-36) of 
the matrices is essentially unique (understanding the meaning of the word 
"essentially" is part of the question), (c) Can conditions (6.4-35) hold for 
N>4? 

Matrices <7fc defined in (6.4.36) are called the Pauli matr ices , so named 
after their creator, physicist WOLFGANG ERNST PAULI (1900-1958), who 
was born in Austria, became a US citizen in 1946, and later moved to 
Switzerland; his godfather was ERNST MACH, whence the middle name. 
These matrices first appeared in the study of the spin or i n t r i n s i c 
magnetic moment of the electron; the matrices iak also represent an in­
finitesimal rotation of three-dimensional space. The details, which lead to 
the theory of Lie groups and algebras, are beyond the scope of our discus­
sion. Appearance of the Pauli matrices in a seemingly unrelated Dirac's 
equation further illustrates the power and beauty of abstract mathematical 
models. 

The idea of electron spin originated from the efforts to explain the mul­
tiple splitting of spectral lines when a source of radiation is placed in a 
uniform and constant magnetic field. This splitting is known as the Zeeman 
ef fec t and was first observed in 1896 by the Dutch physicist P IETER ZEE-

MAN (1865-1943). The Zeeman effect suggests that the electron has an in­
trinsic magnetic moment, in addition to its orbital moment, and the study 
of the splitting of the spectral lines makes it possible to estimate the value 
of this moment. A classical interpretation of spin considers the electron as 
a solid sphere rotating around one of its axes; since the sphere is charged, 
the rotation makes the electron a magnetic dipole with some magnetic mo­
ment. There are at least three problems with this interpretation: (a) by 
the uncertainty principle, we cannot think of the electron as a solid sphere; 
(b) if we indeed could imagine the electron as a rotating sphere, the speed 
of the rotation required to produce the observed magnetic moment would 
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make some points on the surface of the sphere move with speeds much 
higher than the speed of light; (c) unlike classical angular momentum or 
magnetic moment, the spin is a purely discrete quantity: for the electron, 
the observed value of the projection of the spin on every line in R3 can take 
only two distinct values. 

The discrete nature of spin was demonstrated in a 1922 experiment by 
two German physicists, O T T O STERN (1888-1969) and WALTER GERLACH 

(1889-1979). In this Stern-Gerlach experiment, a beam of heated silver 
atoms with their spinning outer electrons was made to pass through an 
appropriately oriented magnetic field JB. This field was strongly increasing 
in one direction, usually referred to as the z direction. The interaction 
between B and the magnetic dipoles of the spinning charges deflected the 
beam so that it hit a screen at different points in the z direction. While the 
classical theory predicts a continuous line of hits, the beam was essentially 
split into two, one up and one down, demonstrating that, once measured, 
the spin of the electron has only two possible values. The two values of the 
corresponding magnetic moment can be computed from the two observed 
deflections of the beam. The observable values of the electron spin s are 
taken to be ±1/2 (non-dimensional). 

We will now show that Dirac's equation is consistent with the idea of 
the spin, and, in fact, puts the idea on a solid mathematical basis. We 
will also show how the equation leads to the prediction of the existence of 
anti-matter, that is, particles with the same mass as atomic particles but 
with opposite electric charge. 

Let us forget the probabilistic interpretation of the wave function and 
simply look for a solution of equation (6.4.41) in the form of a plane wave 

ip(t,x) = * e(^3-iEt)/ft> (6.4.42) 

with both \& and p independent of t and x. This solution should correspond 
to a free electron moving in R3 in the direction of the z axis and having 
constant momentum p k and energy E. 

EXERCISE 6.4.22.c (a) Verify that the function ip from (6.4-4%) satisfies 

(6-4-41) if and onty if 

(m0c
2a0 + pca3)& = E^f. (6.4.43) 

(b) Treating (6.4-43) as an eigenvalue problem, verify that there are two 
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eigenvalues, 

E± = ± \ / ^ + p V , 

each of multiplicity two. With K = y^m^c4 + p2c2 — m^c2, verify that 
the corresponding eigenvectors are (pc,0,K,0)T, (0,pc,0,—K)T for E+; 
(-K, 0,pc, 0)T, (0, K, 0,pc) for E-. In the non-relativistic limit as c —> 00, 
we have K =p /(2mo), the kinetic energy of the electron. 

The above eigenvalues and eigenvectors have a deep physical meaning. 
In particular, the negative energy levels E- suggest the existence of the 
pos i t ron , a particle with the same mass as the electron, but with the 
opposite electric charge. Positrons were detected in cosmic radiation by 
the American physicist CARL DAVID ANDERSON (1905-1991) in 1932, soon 
after the prediction was made using Dirac's equation. The two eigenvectors 
at the given energy level correspond to the two possible observable values 
(eigenstates) of the spin of the electron (or positron). 

For more details, including the discussion of the spins of other particles, 
see the books Introductory Quantum Mechanics by R. Liboff (2002) and 
The Dirac Equation by B. Thaller (1992). 

EXERCISE 6.4.23^+ (a) Write Dirac's equations when the space is one- and 
two-dimensional, (b) For each equation, find a particular solution in the 
form similar to (6.4-42)-

Recall that, in our derivation of (6.4.41), we wanted the equation to be 
first-order in time, and this requires us to work with the relativistic energy 
E — y'rngC4 + ||p||2c2. Working with £2, that is, taking a formal square 
of operators on both sides of (6.4.41), leads to the operator -£-•§& on the 
left-hand side and results in an equation 

V ^ c V V - ^ V * , (6.4.44) 

known as the Klein-Gordon equation, so named after the Swedish math­
ematician OSKAR KLEIN (1894-1977) and the German physicist WALTER 

GORDON (1893-1940). Note that (6.4.44) is second-order in time and 
space and the matrices cto,ctk no longer appear. The unknown function ip 
in (6.4.44) can be a scalar or a vector. Every solution of Dirac's equation 
(6.4.41) is necessarily a solution of (6.4.44), but not conversely. This fact 
is helpful in studying (6.4.41. Note that, for a photon or any other particle 
with zero rest mass, (6.4.44) is the usual wave equation. 
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EXERCISE 6.4.24r Show that (6.4-44) is invariant under the Lorentz trans­
formation. Hint: see Problem 7.9 on page 446. 

Now that we have discussed classical, relativistic, and quantum me­
chanics, we can take a broader view of the subject. Classical Newtonian 
mechanics fails at small distances (of the order of 10 - 1 0 meters) and/or at 
high speeds (approaching the speed of light in vacuum.) Quantum mechan­
ics fixes many failures of classical mechanics at small distances. Similarly, 
the theory of special relativity fixes many failures of classical mechanics 
at high speeds. Still, there is no quantum theory of gravitation, no ana­
log of general relativity for forces other than gravitation, and numerous 
unanswered questions at distances that are much smaller than 10 ~10 me­
ters. Note in particular that, while analyzing the hydrogen atom, we used 
quantum mechanics but classical electrodynamics (Coulomb's Law, etc.) 
Quantum electrodynamics, or QED, takes over at much smaller distances, 
of the order of e2/(4nemec

2) « 2.8 • 10_17m; see also a brief discussion of 
the subject on page 178. One of the objectives of the recently formulated 
s t r i n g theory is to create a unified framework that would cover all nat­
ural phenomena at all distances and all speeds; possible references on the 
subject of string theory are the books [Johnson (2003)] and [Szabo (2004)]. 

6.4.3 Introduction to Quantum Computing 

The time evolution of a non-relativistic quantum system is governed by the 
Schrodinger equation (6.4.5) on page 357. Then, setting up a a quantum 
system and measuring its state at a certain time should be equivalent to 
solving the corresponding Schrodinger's equation. Roughly speaking, this 
is the idea of the quantum computer, as suggested in 1981 by the American 
physicist RICHARD PHILLIPS FEYNMANN (1918-1988) in his talk at the 
First Conference on The Physics of Computation. 

In this section, we discuss the basic mathematical questions related to 
quantum computing. We define the quantum computer with n quantum 
bits (or qubits) as a collection of n non-interacting, non-relativistic particles 
that evolve according to the laws of quantum mechanics. We also assume 
that each particle can be detected, or observed, in one of only two possible 
states. An example is n electrons, each having spin 1/2 or —1/2. In what 
follows, we discuss the main properties of such a collection and how it may 
be possible to use these properties to perform computations. 

We start with the easiest possible collection, consisting of a single parti-
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cle. Denote the two detectable states of the particle by |0) and |1); we also 
call these states observable s t a t e s or e igens ta t e s . Let us emphasize 
the importance of these words in relation to the states: by the super­
position principle, the number of possible states is much larger. We always 
assume that the eigenstates are orthonormal, that is, (1|1) = (0|0) = 1, 
<0|1>=0. 

EXERCISE 6 .4 .25 . C (a) Verify that, by the superposition principle, the col­
lection of all possible states of the particle is a\0) + P\l), where a, (3 are 
complex numbers so that \a\2 + |/?|2 = 1. (b) Verify that an equivalent de­
scription of the possible states of the particle is cos6\0)+el,p sin#|l), that is, 
only two real numbers 6 and ip are necessary for the complete description. 

Recall that a quantum mechanical system can modelled in an inner 
product space M. The preceding exercise shows that, for a single particle 
with two observable states, this space is a two-dimensional vector space 
over the field of complex numbers. Recall that a two-dimensional space 
over the reals is denoted by M2. Similarly, the two-dimensional space over 
the complex numbers is denoted by C2 . The basis vectors |0) and |1) are the 
eigenstates of the particle and represent the two detectable states. A qubit 
(short for quantum bit) is a unit vector in HI describing a possible state of 
the particle. It is important to keep in mind that a qubit is different from 
an eigenstate. The quantum computer operates on qubits. The following 
simple exercise shows how a single qubit computer can be more efficient 
than a classical computer. 

EXERCISE 6 .4 .26 . C Assume that the state |0) represents the number 0 and 
the state |1) represents the number 1. Let f be a linear function. How to 
use superposition to determine whether /(0) is equal to / ( l ) with only one 
function evaluation? Hint: compute f for the qubit (|1) - |0))/\/2. 

A classical computer, no matter how sophisticated, would need to com­
pute separately the values of /(0) and / ( l ) to determine whether /(0) 
is equal to / ( l ) . As a result, for this particular problem, the quantum 
computer reduces the number of operations by a factor of two. Later on, 
we will discuss practical implementations of the above idea, as well as its 
generalization, known as the Deutsch-Jozsa algorithm. 

By the superposition principle and the product rule for probabilities, 
the corresponding inner product space H for a system of n non-interacting 
particles must be the collection of all linear combinations with complex 
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coefficients of formal products of the vectors \i/jk) e Hfc. In algebra, this 
space H is known as the tensor product, over the field of complex numbers, 
of the spaces H^: 

M = Mn(g)M„_1<g)---®Mi, (6.4.45) 

where Hfc is the space for particle number k. For a product vector in H, 
we use Dirac's notation and write \ipn ... V>i) = \tpn) ® • • • ® |^ i ) . A natural 
orthonormal basis in this space is the set of all the product vectors of the 
form |e„e„_i . . .e\) — \en) ® |e„_i) ® • • -® |ei), where |efc) is one of the two 
eigenstates of particle number k. This basis has 2" product vectors. Thus, 
H has dimension 2 n . By definition of the tensor product, any vector in HI 
is a linear combination of these basis vectors. 

Before we proceed, let us note that no t all un i t vectors from HI 
can be written in the form \tpn) <g> • • • <g) \ipi) with |?/>fc) E Hfc. In 
quantum mechanics, the vectors that cannot be written as a tensor product 
are said to represent entangled s t a t e s . Particles in an entangled state 
"feel" one another even without actual physical interaction — yet another 
counter-intuitive consequence of the superposition principle. Note also the 
order in which the tensor product of spaces is taken. For example, the 
space Hi ® H2 is different from H2 ® Hi, even though there is a natural 
one-to-one correspondence between the elements of these spaces. 

EXERCISE 6.4.27? Let n = 2. Denote by |0)fc, |l)fc an orthonormal basis in 
Mk, k = 1,2. (a) Verify that the product vectors 

|00) - |0)2 ® |0)i, |10) = |1>2 ® |0)i, |01) = |0)2 ® | l ) i , |H) = |1)2 ® |l)i 

form an orthonormal basis in EI = H2 ® Hi. (b) Let \ipk) = ak\tyk+ Pk\l)k 
be an element ofMk, k = 1,2. Show that the algebra of the tensor product 
gives 

\ih) ® |"0x> = a2ai |00) + a2Pi\01) + P2a1\10) + /?2/?i|ll). 

(c) Show that the vector |00) + |11) cannot be written as \tjj2) ® IV'i) for 
any \ij)\) S Hi, ^2) £ H2. Hint: write ipk = ak\0)k + Pk\l)k, then conclude 
that a.\^2 = f5\Q.2 = 0, a\oti = P1P2 = 1, which is impossible. Keep in mind that 
101)^110). 

Tensor product of spaces has some other important properties, which 
we investigate in the following exercise. 

file:///tjj2
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EXERCISE 6.4.28. (a)A Show that C2<g>C2 is not the same as C4 . Hint: look 
at how the vectors are added in each space, (b) Similar to the single particle 
case, describe the vectors in M from (6.4-45) that correspond to states of the 
system. (c)c Define the inner product on the tensor product space. Hint: 
by definition, the vectors \e„) g> • • • <g> |ei), with |e/c) = |0) or \eu) = |1), form an 
orthonormal basis in M. 

Next, we discuss the types of computations that are possible on a quan­
tum computer. Recall the time evolution of every state \i/s(t)) °^ a quantum 
system is described by Schrodinger's equation 

ihjtm)) = nm)), (6.4.46) 

where H is a Hermitian operator on the corresponding inner product space 
M; see page 363. For our n-qubit quantum computer, the space 1HI is a 
finite-dimensional vector space; once the basis in the space is fixed, every 
symmetric operator becomes a Hermitian matrix (see Exercise 6.2.17(b) 
on page 328) and a partial differential equation for tp becomes a system 
of 2 n ordinary differential equations for the components of ip. We denote 
by H the matrix corresponding to the Hamiltonian H. Recall that H is 
a Hermitian matrix if and only if HT = H, where H is the matrix whose 
entries are complex conjugates of the corresponding entries of H. The 
following exercise shows that a q u a n t u m compute r can only perform 
a unitary transformation of the state vector. 

EXERCISE 6.4.29? Let H be a Hermitian matrix, (a) Show that the matrix 
U = e~%H is un i ta ry , that is, t / _ 1 = U . Hint: see (8.1-4) on page 454 in 
Appendix, (b) Verify that the solution of the finite-dimensional Schrddinger 
equation ih£\ip(t)) = H\ip{t)) is \ip(t)} = e~iH/h\ij(Q)). 

To proceed, let us first review the main facts about the classical com­
puter. In today's computers and digital communication devices, informa­
tion is represented by strings (finite sequences) of bits. Mathematically, a 
b i t is a binary digit, that is, a 0 or a 1. A string of n bits can be regarded 
as a vector with n components, each having value 0 or 1. 

A bit string can encode numbers or other data. A byte is a string 
of eight bits and can encode alphanumeric characters (letters A-Z, punc­
tuation and decimal numerals 0-9). For numerical computation, num­
bers can be represented as bit strings interpreted in binary (base 2) no­
tation. For example, the bit string 1101 represents the decimal number 
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1 x 23 + 1 x 22 + 0 x 21 + 1 x 2° = 13. 
A computation is a sequence of operations on bit strings. The operations 

can be arithmetic in base 2 or Boolean. An operation, often in hardware 
implementation, performed by a computer, classical or quantum, is often 
called a gate. A gate is called r e v e r s i b l e if the corresponding operation 
is a b i sec t ion , that is, a one-to-one and onto correspondence between 
the sets of inputs and outputs. The mathematical fact that the solution 
operator of the finite-dimensional Schrodinger equation is unitary implies 
that all quantum gates are unitary and therefore are linear and reversible. 

In classical computer hardware, a bit is physically implemented in one 
of several ways, for example, as 
(1) the state of magnetization of a small area of a magnetic disc (hard 
drive); 
(2) the state of electric charge of a capacitor in a cell on a random access 
memory chip (RAM); 
(3) the state of a bistable transistor circuit known as a flip-flop on a static 
random access memory chip (SRAM); 
(4) the state of connectivity of the oxide layers in a transistor on a read-only 
memory chip (ROM). 

In a hard drive, bit strings are arranged as successive bits in tracks 
on the rotating disc. They remain in their state of magnetization unless 
changed by the magnetic read-write head scanning the disc tracks. In RAM, 
a bit string is arranged in a circuit connecting the cells on a memory chip 
and read out by a memory address system. Since charge leaks, the cells 
must be refreshed periodically. RAM memory is called volatile, and bits 
are not preserved when the power is turned off. In SRAM, the flip-flop 
state is maintained until changed by voltage inputs, but the stored bit is 
lost when power is turned off. In ROM, the transistor state is hard-wired, 
and the bits are permanent. 

RAM, SRAM, and ROM are examples of memory chips. Besides the 
memory chips, there are other chips in a computer which perform the op­
erations in a computation. A chip is fabricated as an integrated circuit of 
resistors, capacitors, and transistors formed on a wafer of layers of silicon 
semiconductors and metal oxides. The semiconductor circuit elements can 
be made to function either as resistors, capacitors, or transistors. Metal­
lic contacts between circuit elements are made by photoetching a metallic 
layer using an appropriate mask. By improved miniaturization techniques 
in the manufacturing process it is now feasible to fabricate chips having 
many millions of circuit elements on a single chip. 
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The smaller a circuit element, the faster its switching time, that is, the 
time for executing Boolean operations on bits. With today's technology, the 
minimum size of a circuit element is limited by the wavelength of the light 
in the photo-lithography process used to form the wafer layers. Ultra-violet 
radiation can have a wavelength as small as 4-10~9 meters and therefore can 
be used to produce elements smaller than one micron, or 10~6 meters, in 
size. Today's circuit elements are sub-micron in size, sometimes as small as 
0.1 microns or 1 0 - 7 meters. So 1 0 - 7 meters can be taken as an approximate 
size of a bit on a chip. 

In 1965, the American semi-conductor engineer GORDON EARL MOORE 

(born 1929), who later co-founded the Intel Corporation, made a prediction 
about the number of components on a silicon chip; this prediction became 
known as Moore' s Law. One of the formulations of this law, which held 
remarkably accurate over the years, is that the number of transistors on a 
square inch of a silicon chip doubles every 1.5 years. If this trend continues, 
then, by the year 2040, the basic component of the chip will reach the size 
of 10~10 meters. At those scales, the laws of quantum mechanics must be 
taken into account even for a classical computer. 

To conclude our review of classical computers, let us briefly review some 
classical logical gates, also known as l o g i c a l , or Boolean, operat ions , 
defined on single bits or pairs of bits: 

• NOT: x I—> ->x = 1 — x, tha t is, ->x = 1 if x = 0 and ->x = 0 if x = 1. 

• AND: (x,y) H-> xAy = min(x,y), that is, xAy = 1 if and only if x = y = 1. 
• OR: (x, y) i-> x V y = max(:r, y), t ha t is, x V y = 0 if and only if x — y — 0. 

• X0R: (x,y) i-^ x @ y = x + y (mod2), that is, x ® y — 0 if and only if 
x = y. 
• NAND: (x, y) i—> -i(a; A y). 

• NOR: (x,y) i-» n ( iV i / ) . 

There is one other basic operation that is present in the classical com­
puter: the operation COPY, or duplication of input. This operation takes 
one logical variable x as an input and produces two identical variables x as 
an output x i—> (x, x). 

We say that a gate is m x n if there are m input and n output vari­
ables. Of the above operations, only the NOT operation is reversible: for 
all others, the number of inputs is different from the number of outputs. 
The operations NOT, AND, OR, and COPY are enough to generate every 
Boolean function, that is, a function / = f(x\,..., xn) depending on n log­
ical variables, for some arbitrary but fixed n, and taking only two possible 
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values, 0 and 1. Accordingly, we call a gate un ive r sa l if one or more of 
such gates can re-produce each of the operations NOT, AND, OR, COPY. 

EXERCISE 6.4.30/1 (a) Show that the operations NOT, AND, OR, COPY 
are enough to generate every Boolean function. Hint: consider only the strings 
xn---x\ on which f is equal to 1. (b) Explain where in the implementation 
the operation COPY is required. 

EXERCISE 6.4.31. (a)c Verify that the 2 x 2 NAND/NOT gate FN/N : 
(x,y) *-* (-a;, -i(a; A j/)) is universal but not reversible. Hint: for example, 
FN/N(FN/N(X,1)) = (x,x) provides the copy operation. (b)B Verify that the 
2 x 2 XOR gate (x, y) i—> (x, ®y) is reversible but not universal. (c)A Show 
that there is no 2 x 2 classical gate that is both reversible and universal. 
Hint: a universal 2 x 2 gate cannot be reversible. 

An example of a classical 3 x 3 universal and reversible gate is the 
Toffoli gate: 

(x,y,z) H-» (x,y,z®{xAy)). 

This gate was first suggested by TOMMASO TOFFOLI in a 1980 MIT Tech­
nical Report; as of 2005, T. Toffoli is at the Electrical and Computer En­
gineering Department of Boston University. 

EXERCISE 6.4.32. A Verify that the Toffoli gate is both universal and re­
versible. 

Let us now consider several basic quantum gates. Recall that a qubit is 
a two-dimensional vector, being an element of the space C2 . Accordingly, 
we write |1) = (1,0)T and think of this state as a quantum analog of the 
logical value 1. Similarly, |0) = (0,1)T is the quantum analog of the logical 
value 0. A gate is then represented by a unitary matrix of appropriate size. 

First, we look at the Hadamard gate, denned by the unitary matrix 

EXERCISE 6.4.33. (a)c Verify that UH is a unitary (in fact, orthogonal) 
matrix: U^1 = U%. (b)c Verify that UH\Q) = (|1> - |0»/ \ /2 and UH\l) = 
(|1) + |0})/\/2. (c)B Explain how to use the results of part (b) to carry out 
the computation in Exercise 6.4-26 on page 380. 

The Hadamard gate is named after the French mathematician J.S. 
Hadamard, who certainly had nothing to do with quantum computers. The 



386 Quantum Mechanics 

reason for the name is that UH is, up to the factor of 1/V%, a Hadamard 
matrix, that is, a square matrix whose entries are either 1 or —1 and whose 
rows are mutually orthogonal. The Hadamard matrices have a number of 
remarkable properties and are used in many areas of mathematics and en­
gineering. In q u a n t u m comput ing , t h e H a d a m a r d ga te is used to 
crea te superpos i t ion of s ta tes ; see Exercise 6.4.33. 

EXERCISE 6.4.34.-14 Verify that if H is a Hadamrd matrix of order n, then 

(r„) 
is a Hadamrd matrix of order In. 

Next, consider the Pauli matrix o\, 

CTl = ( i o ) ' 

and define the matrix 

Rl(0) = eie<T\ 

where 6 is a real number. 

EXERCISE 6.4.35. (a)c Verify that, for a qubit \x), the operation 

\x) H-> o~i\x) 

corresponds to the classical NOT operation. (b)B Verify that Ri{6) = 
cos 6 i[2] + i sin 0 u\, where I\2] is the 2 x 2 identity matrix. Hint: a\ = ipj. 
(c)A Verify that if 0 is not a rational multiple ofir, that is, 9 ^ np/q for 
any integer p,q, then limjv-»oo -Ri(N8/2) = RI(TT/2) = io\. 

The quantum analog of the Toffoli gate is the Deutsch gate: 

(|a:>, |i/>, |^» ^- (|a:>, |y>, |S», 

where \z) = —iRi{6/2)\z) if |:r) = \y) = |1) and \z) = \z) otherwise; the 
real number 6 is taken to be not a rational multiple of -K. This gate was 
first introduced by the British physicist DAVID DEUTSCH (born in 1953), 
who, as of 2005, is at the Center for Quantum Computation, Clarendon 
Laboratory, Oxford University. 

EXERCISE 6.4.36. (a)c Explain how the Deutsch gate makes it possible to 
simulate a classical computer on a quantum computer. Hint: use the results 
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of the previous exercise to get a Toffoli gate, (b) Explain why we do not take 
6 = ir/2 in the construction of the Deutsch gate. (c)A In a suitable basis in 
H ® H ® H, the Deutsch gate is represented by the unitary matrix, written 
in the block form as 

~ V0[2,6] D ) ' W n e r C U ~ Vsin(7r^/2) i co s ( ^ /2 ) 

J[4] is a 6 x 6 identity matrix, and 0[n,k} is annx k zero matrix. Find the 
corresponding basis in H <g> M <8) H and verify that this matrix representation 
of the Deutsch gate is equivalent to its logical definition. 

This completes our discussion of quantum gates, and we move on to 
QUANTUM ALGORITHMS. A quantum algorithm has several important dif­
ferences from a classical algorithm. In particular, there are usually no 
IF/THEN commands, because it is impossible to determine the state of the 
quantum system without destroying the superposition of states: remember 
that a measurement randomly forces the system into one of the eigenstates. 
Also, the output of a quantum algorithm is typically random, although the 
correct answer has a higher probability than any other answer. As a result, 
a computation on a quantum computer can require several independent 
realizations. 

Let us summarize three main quantum algorithms: the Deutsch-Jozsa 
algorithm, Grover's Search Algorithm, and Shor's Factorization Algorithm. 

The Deutsch-Jozsa algorithm was proposed in 1992 by D. Deutsch 
and his fellow British-man, a computer scientist RICHARD JOZSA from the 
University of Bristol. This is a quantum algorithm with a deterministic 
output, that is, always produces the correct answer. 

The algorithm solves the following problem. Consider a Boolean func­
tion / = f(x\,..., xn) of n binary inputs and two possible binary outputs. 
The function is known to be of one of two types: either it is constant (pro­
duces the same output for all inputs) or it is balanced (produces the two 
possible outputs, 0 and 1 on an equal number of inputs.) The problem is to 
determine the type of the function using as few evaluations of / as possible. 

EXERCISE 6A.37.A How many function evaluations would a classical com­
puter require to solve this problem? 

The Deutsch-Jozsa algorithm generalizes the idea from Exercise 6.4.26 
on page 380 and solves the problem with only one function evaluation. A 
curious reader can try and discover the algorithm independently or check 
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pages 34-36 in the book Quantum Computation and Quantum Information 
by M. A. Nielsen and I. L. Chuang, 2000. 

Grover 's Search Algorithm was proposed in 1996 by Lov KUMAR 
GROVER, a physicist at Bell Labs. The algorithm solves the following prob­
lem. Consider a Boolean function / = f(xi,... ,xn) of n binary inputs and 
two possible binary outputs. It is known that / = 1 only on one bit string, 
and the problem is to find that string; this problem is also known as search­
ing an unsorted database. Grover's Search Algorithm solves this problem 
in about \ /n steps and the probability to get a wrong answer after one real­
ization of the algorithm is of order 1/n; for one particular implementation 
of the algorithm, one can show that limn-,^ N(n)/y/n = 7r/4, where N(n) 
is the number of steps. For a detailed description of the algorithm, see the 
paper From Schrodinger's Equation to Quantum Search Algorithm by L. 
K. Grover in the American Journal of Physics, 69(7): 769-777. Similar to 
the Deutsch-Jozsa algorithm, Grover's Search Algorithm is an example of 
a provable advantage of a quantum computer over the classical computer: 
one can rigorously prove that every algorithm for searching an unsorted 
database on a classical computer requires more steps than Grover's algo­
rithm. 

EXERCISE QA.ZSF On average, how many steps are required to search an 
unsorted database on a classical computer? Hint: you need anywhere from 1 
to n steps, depending on how lucky you are, and each number of steps is equally 
likely. 

Shor ' s Fac to r i za t ion Algorithm was proposed in 1994 by P E T E R 
WILLISTON SHOR, then a researcher at Bell Labs and now a Professor of 
Applied Mathematics at MIT. This algorithm allows fast factorization of 
integers, so fast, in fact, that, with its help, one can easily break most 
public encryption systems currently in use. As a result, the algorithm 
sparked the current interest in quantum computing outside the physics 
community. Originally published in 1994 in the Proceedings of the 35th 
Annual Symposium on Foundations of Computer Science, a more expanded 
description of the algorithm is in the paper Polynomial-time algorithms 
for prime factorization and discrete logarithms on a quantum computer, 
published in SIAM Journal on Computing, 26(5):1484-1509, 1997. 

Just as most quantum algorithms, Shor's algorithm is probabilistic, that 
is, provides a correct answer with high probability. This probability can be 
further increased by running the algorithm several times. The algorithm 
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has a component that can be implemented on a classical computer. The 
number of steps required to factor an rc-digit number using a modification 
of the original version of Shor's algorithm is of order n2 Inn; the number 
of steps for the best known fully deterministic algorithm on a classical 
computer is of order e v n l n n

) although there is no proof that this bound 
cannot be improved. Note that, in estimating the number of steps in the 
factorization algorithm, the base in which the number is written does not 
matter. Also note that if K is a positive integer, then the number of digits 
of this number in any base is of order In K. 

EXERCISE 6.4.39.C (a) How many digits in decimal representation does an 
n-bit binary number have? (b) Let n — 256, that is, consider the problem 
of factoring a 256-digit number. Evaluate n2\nn and e^"1"". 

At this point, no problem is known that is solvable on a quantum com­
puter but is not solvable on a classical computer; the only existing advan­
tage of a quantum computer is (theoretically) higher efficiency for certain 
problems. 

We conclude this section with a brief discussion of implementation prob­
lems for a quantum computer. HARDWARE IMPLEMENTATION of quantum 
computers is still in an experimental phase. There are several branches of 
quantum physics addressing this issue. One approach is based on Nuclear 
Magnetic Resonance (NMR). In a liquid-based NMR device, a qubit is im­
plemented by the nuclear spin of an atom or a molecule of a liquid. The 
spin can be aligned or anti-aligned with an applied magnetic field B. The 
orientation of spins can be changed by applying a short magnetic pulse, 
and the final result can be read out using the same method as in the Stern-
Gerlach experiment (see page 377). Different shapes of the pulse result 
in different unitary transformations performed on the system of the spins. 
A quantum algorithm on an NMR device is thus a sequence of magnetic 
pulses. 

So far, the liquid NMR technology was responsible for the main successes 
of practical quantum computing. In 1998, a 3-qubit computer implemented 
Grover's Search Algorithm; this was a collaborative effort of scientists at 
MIT, UC Berkeley, and Stanford University. In 2001, a 7-qubit computer 
implemented Shor's Factorization Algorithm to find the factors of the num­
ber 15; this was a collaborative effort of scientists at the IBM Almaden 
Research Center and Stanford University. 

Other possible implementations of a quantum computer include solid-
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state NMR, superconductors, ions in electromagnetic traps, and optical 
devices. 

Every implementation of a quantum computer must deal with the effects 
of decoherence, that is, loss of superposition due to the outside factors. 
These effects can limit the number of usable qubits. For example, a liquid 
NMR-based quantum computer at room temperatures can have about 10 
usable qubits. 

Mathematically, decoherence means that the system's Hamiltonian in 
the Schrodinger equation (6.4.46) is replaced with a different, and often 
unknown, operator describing not only the system but the interaction be­
tween the system and the environment; this uncontrolled change of the 
Hamiltonian inevitably leads to computation errors. The effects of de-
coherence can be minimized using quantum error-correcting codes and/or 
decoherence-free states. A quantum error-correcting code reduces the prob­
ability of error by introducing redundancy through additional qubits; see, 
for example, the paper Good Quantum Error-Correcting Codes Exist by 
A. R. Calderbank and P. W. Shor in the Physical Reviews A, 54(2):1098-
1106, 1996. The increase of the required number of qubits can be rather 
dramatic. For example, direct factorization of a 1000-bit number using 
Shor's algorithm would require slightly over 2000 qubits; with quantum 
error-correcting codes, the required number of qubits becomes somewhere 
between 1012 and 1018. Alternatively, one could try to identify and use the 
decoherence-free subspaces, that is, states that are not affected by the inter­
action with the environment; see, for example, the paper Decoherence-Free 
Subspaces and Subsystems by D. A. Lidar and K. B. Whaley, in volume 622 
of the Springer Lecture Notes in Physics, 2003. 

The book Quantum Computation and Quantum Information by M. A. 
Nielsen and I. L. Chuang, 2000, is considered by many a standard general 
reference on all subjects related to quantum computing. Another good 
reference is the book Classical and Quantum Computing by Y. Hardy and 
W. H. Steeb, 2002. 

6.5 Numerical Solution of Partial Differential Equations 

Given the transport equation (6.1.2), we can easily compute the solution 
at every point in space and time from the initial condition using formula 
(6.1.4); see page 292. The solution formulas for the wave equation (6.1.43) 
on page 310 and (6.1.58) on page 315 require the antiderivative of the 
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function g and are therefore less computation-friendly. The integrals ap­
pearing in the solution formulas for the heat equation (6.1.18) on page 297 
or (6.1.35) on page 303 make the formulas even harder to use for compu­
tational purposes. Most other partial differential equation do not have any 
solution formula at all, making numerical approximation of the solution the 
only option. In what follows, we discuss the basic numerical methods of 
approximating the solution of a partial differential equation without using 
solution formulas. 

6.5.1 General Concepts in Numerical Methods 

In this section we introduce several basic notions of numerical analysis: the 
local and global approximation errors, the explicit and implicit methods, 
and numerical stability. We start with the approximation error and illus­
trate it with the numerical quadrature problem, that is, approximate 
numerical evaluation of the integral I = J f(t)dt for a continuous function 

/• 
The basic methods of solving the numerical quadrature problem should 

be familiar from a one-variable calculus class. We will be interested in 
three particular methods: the left-point rule, the right-point rule, and the 
trapezoidal rule. If the interval [a, b] is divided into M equal intervals 
of length T = (b — a)/M and tm = rm, m = 0 , . . . , M, then the three 
approximations of / are 

J a 
f(t)dt : 

!r = E ! = 0 f(tm) T 
>tf 

(left — point rule) 

h = E " = i /(*m) r ( r i e n t - P o i n t r u l e ) 
h = Em=i (/(*m) + / ( i m _ i ) ) r / 2 (trapezoidal rule) 

(6.5.1) 
EXERCISE 6.5.1. c (a) Draw three pictures illustrating each of the three 

rules, (b) Assume that the function f has two continuous derivatives on 
\a,b\. Define 

•*r,m 

pirn pirn 

/ f(t)dt-f(tm.i)T, ei,m= / f{t)dt-f(tm) 

/ / ( t ) d t - ( / ( t m _ i ) + / ( t m ) )T/2 
Jim.-i 

(6.5.2) 
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Show that there exists a number C independent of r and n so that 

< CT2, ePtm < CT3. (6.5.3) 

Hint: for er,n and e j | n use the Taylor formula at tm-\; for ePl„, add the Taylor 

formulas at tm-\ and tm. (c) In the notations of (6.5.1), show that there 
exists a number C\ independent of r and n so that 

\I - Ir\ < CIT, \I-Ii\< CIT, \I - Ip\ < CIT2. (6.5.4) 

Hint: \I — Ir\ < NeT,m = {b — a)er,m/T. 

Formulas (6.5.2) give the one-step, or loca l , error of each method, 
while (6.5.4) gives the mul t i - s t ep , or global , error. The number of steps 
is proportional to 1/r, which leads to the loss of one power of r in the 
global error bound, as compared to the local error. This observation does 
not rely on the particular nature of the numerical method and suggests the 
following general relation between the local error e and global error E for 
all multi-step numerical procedures with step r: if e < CT1 for some 7 > 1, 
then E < C I T 7 - 1 ; this relation does indeed hold for all the procedures we 
are going to study. 

Next, we consider some numerical methods for ordinary differential 
equation to introduce the notions of explicit method, implicit method, and 
stability. Consider the equation y'(t) = f(t,y(t)),t > 0, y(0) = yo, where 
the functions y and / can be vectors. We assume the function / satisfies 
the conditions that ensure the existence and uniqueness of the solution on 
every time interval, see Section 8.2 in Appendix. To find an approximation 
of this solution on an interval [0, T], we select the time s tep r = T/M for 
some positive integer M and d i s c r e t i z e the interval [0,T] by introduc­
ing the g r id po in t s tm = rm, m = 0 , . . . , M . The approximate solution 
ym, m = 0 , . . . , M, is computed at the grid points tm. Since the exact solu­
tion y = y(t) satisfies y(tm+\) = y(tm) + ft

 m + 1 f(s, y(s))ds, we see that the 
approximation ym can be constructed using a suitable approximation of the 
definite integral. In particular, the left-point rule results in the e x p l i c i t 
Euler scheme (or method) 

y{o] = yo, £}+i = y$ + f(tm,y^)r, (6.5.5) 

the right-point rule, in the impl i c i t Euler scheme 

y0
2) = yo, Vm+i = Vm) + /(Wi>ym+i)T> (6-5-6) 
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and the trapezoidal rule, in 

^ 3 ) = 2/0, £]
+1 = y£] + ^ ( / ( W i - l f f i - i ) + f(tm,y^))r. (6.5.7) 

Formulas (6.5.4) suggest the following global error bounds: 

max \\y(tm) - yU)(tm)\\ < C^r, j = 1,2; 
0<m <M 

m a x J y ( t m ) - y ^ ( t m ) \ \ < C ^ r i ; 
0<m<M 

(6.5.8) 

recall that y can be a vector. The rigorous proof of (6.5.8) relies on the 
Taylor expansion and can be carried out by the interested reader. Note 
that both (6.5.6) and (6.5.7) are implicit methods, because ym+i is not 
expressed explicitly in terms of ym and must be computed by solving a 
certain equation. Even when /(£, y) = Ay for a constant matrix A, this 
solution is usually computed numerically. The notion of stability explains 
the reason for using the implicit methods despite this added difficulty. 

In general, stability of a numeral procedure characterizes the propaga­
tion, from one step to the next, of numerical errors that cannot be con­
trolled, such as round-off errors. There are many different definitions of 
stability, so that the same method can be stable according to one definition 
and not stable according to another. The details are outside the scope of 
our discussion; see, for example, Chapter I, Section 5.1 of the the book Fi­
nite Difference Methods for Partial Differential Equations by G. Forsythe 
and W. Wasow, 2004. We will use a very special definition of stability 
under an additional assumption that the exact solution y(t) stays bounded 
for all t > 0, that is, there exists a number Co > 0 independent of t so 
that \y(t)\ < CQ. In this situation, we say that a multi-step procedure with 
a fixed step T is s t a b l e if there exits a number C\ independent of m so 
that \ym\ < C\ for all m > 0. In particular, our definition does not apply 
to equation y'(t) = y(t). On the other hand, the following exercise shows 
that, for equation y'(t) = —ay(t), a > 0, both implicit procedures (6.5.6) 
and (6.5.7) are always stable, while the explicit procedure (6.5.5) can be 
unstable. 

EXERCISE 6.5.2.c Consider the equation y'(t) = -ay(t), y(0) = 1, a > 0. 
(a) Verify that, for m > 0, y^ = (1 - ar)m, y%} = (1 + ar)"" 1 , and 
ym = ((2 — ar)/(2 + ar))™. (b) Verify that \ym\ stays bounded for all 
m > 0 if and only if 0 < r < 2/a, while \ym\ < 1 and \ym\ < 1 for all 
m > 0 and all r > 0. 
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To illustrate how stability affects computations, consider the equation 
y'(t) = — 1000y(t). One criterion for choosing the step r is the accuracy 
of approximation, so let us assume that r = 0.1 achieves the required 
accuracy. The previous exercise shows that this time step is admissible 
for an implicit method, but the explicit method would require r less than 
0.002. In other words, computations with the explicit method would require 
at least 50 times as many steps as with the implicit method (for the sake 
of the argument, we ignore the fact that y(0.1) = e~100 is equal to zero for 
all practical purposes). As a rule, all explicit methods have a s t a b i l i t y 
condit ion, and satisfying this condition often requires a much smaller 
time step than would be needed for global error control. The resulting 
increase in computational complexity can be especially dramatic for partial 
differential equations, making explicit methods impractical. The implicit 
methods, on the other hand, are often unconditionally stable, and the extra 
computations related to solving the equation for ym+i can be carried out 
without compromising the overall effectiveness of the method. 

An alternative interpretation of (6.5.5)-(6.5.7) is the f i n i t e 
d i f ference approximation of the first derivative: 

>/. N ̂  y(tm+l) - yjtrn) ^ Vm+1 ~ Vm _ p 
mi 

where Fm is a suitable approximation of f{tm,y(tm)). In our analysis of 
partial differential equations, we will also need the finite difference approx­
imation of the second derivative: 

y»(t)« v« + r)-Mt) + y{t-T)^ 

EXERCISE 6 .5 .3 . C Assume that the function y — y(t) has four continuous 
derivatives on the interval [0,T]. Show that 

sup 
T<t<T-T 

y'\t) - y(t + r)-2y{t) + y(t-r) < ̂  ( g ,. 1 ( ) ) 

for some number C independent of T. Hint: add the Taylor expansions at the 
point t for y(t + r) and y(t — r) . 

There are many other methods of numerical quadrature beside (6.5.1), 
and there are many other numerical methods for solving ordinary differen­
tial equations beside (6.5.5)-(6.5.7), but the discussion of these methods is 
outside the scope of these notes. 
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6.5.2 One-Dimensional Heat Equation 

In this section, we discuss the basic finite difference methods for the one-
dimensional heat equation on an interval with zero boundary conditions: 

Ut{t,x) — auxx(t,x), 0 < t < T, 0 < x < L,a > 0; 

u(0,x) = f(x), u(t,0) = u(t, L) = 0. 
(6.5.11) 

We start by introducing the grid points in space: xn = nh, n = 0 , . . . , N, 
where TV = L/h. Denote by U„(t) an approximation of u(t, xn). By (6.5.9), 
we should expect 

UXx\t, Xn) 
Un+ljt) ~ 2Un (t) + [/„-! (t) 

h2 (6.5.12) 

and so it is natural to define the Un(t) as the solutions of the system of 
ordinary differential equation 

dUn(t) a (Un+1(t)-2Un(t) + Un-1(t)), (6.5.13) 
dt h2 

n= 1,.. .,N — 1, 0 < t <T. The initial and boundary conditions imply 

Un(0) = f{xn), n = 1 , . . . , TV - 1, U0(t) = UN(t) = 0. (6.5.14) 

EXERCISE 6.5.4.c (a) Let U(t) be the column-vector (Uo{t),..., UN)T; see 
page 12. For an integer number K and real numbers a, (3, define the matrix 
Aft ' as a square KxK matrix with the number a along the main diagonal, 
the number (3 just above and below the diagonal, and zeros everywhere else: 

i K 0 ] _ 

(a 0 0 • 
P a P 0-

0 ' • • ' • • 

0 

p 

(6.5.15) 

\ 0 Op a) 

Verify that equations (6.5.13) can be written in the matrix-vector form 

dU(t) _ a [_2,i 

dt 
= -gA^Uit), 0<t<T. (6.5.16) 

(b) Let U = (F(XQ), . . . , F(XN))T be a column vector consisting of the sam­
ples of the function F(x) = bx(x — L) for some real number b. Verify 
that A^'^U = 2bh2(l,..., 1)T . Since F"(x) — 2b, we see that the matrix 
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\—1 11 ^jv+i results in an exact d i s c r e t i z a t i o n for the quadratic polynomials 
satisfying the boundary conditions. 

A numerical solution of (6.5.16) will give us a numerical approximation 
of u(t,x). Accordingly, let us discretize the time interval with step T by 
setting tm — rnr, m = 0 , . . . , M, with M = T/T, and let 

r = ^ - (6-5.17) 

By applying (6.5.5) to (6.5.16), we get the e x p l i c i t Euler scheme for the 
heat equation: 

u ( 1 ) ( m + 1) = u (1)(m) + 2rAl~l'i]u<-1)(m). (6.5.18) 

By applying (6.5.6) to (6.5.16), we get the imp l i c i t Euler scheme for the 
heat equation: 

u<2>(m+ 1) = u ( 2 V ) + 2rA[~l'l]u^(m+ 1). (6.5.19) 

By applying (6.5.7) to (6.5.16), we get the Crank-Nicolson scheme for the 
heat equation: 

u& (m + 1) = u^(m) + r ^ k + i ' u ^ M + A[^]u^(m + 1)). (6.5.20) 

This scheme was proposed in 1947 by the British physicists JOHN CRANK 

(b. 1916) and PHYLLIS NICOLSON (1917-1968). For each of the three 
schemes, the initial condition is u^'(0) = (7(0). 

EXERCISE 6.5.5.c (a) Note that each u^(m) is a vector with components 
Un{m), n = 1,...,JV—. 1. Write (6.5.18)-(6.5.19) in component forms. 
Hint: for example, it„ (m + 1) = 2rB„+1(m) + (1 — 4r)Un (m) + 2™„_1(m), with 

u'o'Hm) ~ u<^'>+1(m) = 0. (b) Verify that (6.5.20) can be written as 

A[^'-r]u^(m + 1) = Al^'r]u^(m). (6.5.21) 

To study the accuracy of the approximations tjM, assume that the odd 
2L-periodic extension of the initial condition / = /(0) is twice continuously 
differentiable everywhere on the real line. Under this assumption, one can 
show that u = u(t, x) is twice continuously differentiable with respect to x 
for all 0 < t < T and sup 0 < t < T ) 0<X<L \uxx(t,x)\ < oo; see Exercise 6.1.15 
on page 303. Then inequality (6.5.10) suggests that 

max \u(t,xn) -UJt)\ < Ch2 (6.5.22) 
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for some positive number C independent of h. After that, inequalities 
(6.5.8) make the following error bounds believable: 

(6.5.23) 
o<m<^aoX<n<iv | u ( t m ' X n ) ~ " " ( m ) l ^ C i " T + ^ ' * = X ' 2 ; 

0<m<M, 0<n<N 

The real numbers CJ do not depend on r and /i, but depend on T and L. 
Being an explicit scheme, (6.5.18) has a s t a b i l i t y condit ion: r < 1/4 

or 

r < g ; (6.5.24) 

see Problem 7.12 on page 448 for the proof. In particular, the larger the 
a, the smaller the time step. Also, to improve the resolution in space by a 
factor of q > 1 (that is, to reduce h by a factor of q), one has to increase 
the number of time steps by the factor of q2. 

On the other hand, both (6.5.19) and (6.5.20) are implicit and do not 
require any restrictions on r. Still, as (6.5.23) shows, if one reduces h by 
a factor of q > 1 in the implicit Euler scheme, then the time step must 
be reduced by the factor q2 to achieve the g2-fold reduction of the overall 
approximation error. For fixed T, the resulting increase of the number of 
steps in time is comparable to the explicit scheme. 

What makes the Crank-Nicolson scheme special is a combination of 
three features: relative simplicity, unconditional stability, and quadratic 
accuracy in both time and space. For this scheme, a g-fold increase in the 
number of grid points in space and, with fixed T, a g-fold increase in the 
number of time steps, reduce the approximation error by the factor of q~2. 

While we have good reasons to believe that implicit methods (6.5.19), 
(6.5.20) should have no stability condition and that the error bounds 
(6.5.23) must be true, all these statements require proofs. Some of these 
proofs are outlined in Problem 7.12 on page 448. 

EXERCISE 6.5.6. B Write a computer program implementing the Crank-
Nicolson scheme for the heat equation ut = auxx + H(t,x), 0 < t < T, 
0 < x < L, with initial condition u(0,x) = f(x) and the boundary con­
ditions biu(t,0) + b2Ux(t,0) — hi(t), cm(t,L) + C2Ux(t,L) = h2(t), where 
Oil °2) ci> c2 are real numbers and h\,h2,H are known functions. Test your 
program with a = 0.25, L = 1, T = 1, b\ = ci = 1, 62 = C2 = 0, 
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h1{t) = h2(t) = H(t,x) = 0, 

/20a:, 0 < x < 1/2, 
f(x) = \ 

(20(1 -x), 1 / 2 < X < 1 , 

by comparing the approximate solution with the exact solution (6.1.35) on 
page 303. To use (6.1.35), compute the Fourier sine coefficients of f with­
out using a computer, and take sufficiently many (say, 100) terms in the 
expansion. Hint: for general boundary conditions, values uo(m) and ujv(m) are 
no longer zero. For the test problem, the exact solution tends to zero with time, 
and therefore you should expect the approximation error to decrease in time as 
well. 

6.5.3 One-Dimensional Wave Equation 

Our goal in this section is to study numerical approximation for solutions 
of the wave equation 

utt(t, x) = c2uxx, 0 < t < T, x e (0, L); 
(6.5.25) 

u(0,x) = f(x), ut(0,a;) = g(x), u(t,0) = u(t,L) = 0. 

The explicit formula (6.1.56) on page 314 makes this study especially use­
ful, as we can easily compare the exact and approximate solutions. The 
corresponding numerical schemes extend to more complicated hyperbolic 
equations which do not have explicit solutions. 

There are three ways to solve (6.5.25) numerically using finite differ­
ences: (a) by discretizing the equation directly; (b) by writing the wave 
equation as an abstract evolution equation, see (6.2.16) on page 324, and 
then applying the same methods as for the heat equation; (c) writing the 
wave equation as a system of two transport equations 

vt + cvx = 0, uit — cwx — 0 (6.5.26) 

and then discretizing the system. 

EXERCISE 6 .5 .7 . C Verify that (6.5.26) is equivalent to utt — c2uxx. What 
are the corresponding initial and boundary conditions for v, w, and how do 
you recover u from v,w? Hint: set v = ut — cux and w = ut + cux-

We restrict our discussion to the direct discretization of the wave equa­
tion. While not the easiest to generalize, this approach best serves our 
immediate goal of solving (6.5.26) numerically. The reader can then verify 
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that many, but not all, of the resulting schemes can be obtained by dis-
cretizing the corresponding evolution system (6.2.16). For a discussion of 
hyperbolic systems in general and of (6.5.26) in particular, see Section 4.4 
in the book The Finite Difference Method in Partial Differential Equations 
by A. R. Mitchell and D. F. Griffiths, 1980. 

We start by discretizing the time and space intervals [0, T] and [0, L] 
with steps T = T/M and h = L/N, respectively. Next, denote by un(m) 
the approximation of u(mT, nh), n = 0 , . . . , JV, m = 0 , . . . , M. Following 
(6.5.9) on page 394, we write 

. , . un(m + 1) -2un(m) +un(m- 1) 
Utt(mT,nh) w — - 2 , 

, x „_ T x - / x (6.5.27) 
un+i(m) - 2un(m) + u„_i(m) 

uxx(mT,nh) « - ^ . 

Consider the matrix A ^ + j as defined in (6.5.15) and introduce the col­
umn vector u(m) = (uo(m),..., wjv(m))r; from the boundary conditions, 
uo(m) = UN{iri) — 0. Since the equation is second-order in time, our ap­
proximation scheme can connect three vectors u{m — 1), u(m), and u(m+l) 
in a symmetrical way using (6.5.27) as follows: 

u(m + 1) - 2u(m) + u(m - 1) = r2 (fj.A^l'^u(m + 1) 

+(1 - 2n)Al-l'S(m) + nA[-™]u(m - 1)), 

where r = cr/h, and /x € [0,1/2] is a parameter of the scheme. The three 
popular choices for /x are 0,1/4, and 1/2. If fj, = 0, then (6.5.28) becomes 

u ( 1 )(m + 1) - A%l;r2)'r2]uW(m) - u^(m - 1), (6.5.29) 

which is an explicit method with the stability condition r < 1 or 

T < h/c. (6.5.30) 

Unlike the corresponding condition for the heat equation (6.5.17), condi­
tion (6.5.30) requires r to decrease linearly with h. Still, for large values of 
c, the required value of T may result in a prohibitively large number M of 
time steps. Formula (6.5.30) is known as the Courant-Friedrichs-Lewy 
condi t ion and was derived for a more general equation by three Ger­
man mathematicians RICHARD COURANT (1888-1972), KURT O T T O 

FRIEDRICHS (1901-1982), and HANS LEWY (1904-1988); all three authors 
settled in the US by the end of the 1930s. The original paper with the re­
sult was in German and appeared in 1928. For a discussion of (6.5.30), see 
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Chapter 4 of the book The Finite Difference Method in Partial Differential 
Equations by A. R. Mitchell and D. F. Griffiths, 1980, or Sections 4.5 and 
4.6 of the book Finite Difference Methods for Partial Differential Equations 
by G. E. Forsythe and W. R. Wasow, 2004. 

EXERCISE 6.5.8. B Assume that r = 1 so that h = cr. Verify that in 
this case (6.5.29) is an exact d i s c r e t i z a t i o n of the wave equation: if 

u = u(t,x) is the exact solution and un (0) = u(0,nh), un (1) = u(r,nh), 
then un (m) = u(m,T,nh) for allm>2. Explain why this observation does 
not necessarily make this particular scheme the best for solving the wave 
equation. Hint: notice that 

S™(m + 1) = « « , ( m ) + u£> t (m) - i#>(m - 1) 

and use induction on m; recall that the exact solution is u(t, x) = F(x+ct)+G(x— 
ct) for suitable functions F,G. Can you achieve the equality u„ (1) = u(r,nh) 
in practice? 

If (i = 1/4, then (6.5.28) becomes 

^ • ^ f i P U m + 1) = A ^ ^ \ ^ ( m ) - A^-r2'2^\m - 1), 
(6.5.31) 

which is an implicit method, stable for all values of r > 0. 
If fi = 1/2, then (6.5.28) becomes 

AN
{Hr2)'-r\W(m + 1) = 4u^(m) - A^f^u^im - 1). (6.5.32) 

which is also an implicit method, stable for all values of r > 0; the matrix 
Aft ' is defined in (6.5.15). While computations in (6.5.31) and (6.5.32) 
require a solution of a linear system at each time step, the structure of the 
matrix A^ results in relatively easy computations. For more complicated 
equations, the extra computations required by the implicit methods are still 
more efficient than satisfying the stability condition of the explicit method. 

The initial conditions Un (0) and u„ (1), required in all these schemes, 
are computed as follows. For m = 0, we have u„> (0) = u(0,nh) = f(nh), 
which is obvious. For m = 1, the ideal choice is u„'(1) = u{r,nh), but these 
values are unknown. On the other hand, we have U(T, nh) w u(0, nh) + 
TUt(0, nh) = f(nh) + rg(nh), and therefore we can take 

fiW(l) = f(nh) + rg(nh). (6.5.33) 

If the function / is sufficiently smooth, we can improve the quality of 
the approximation by observing that u(r,nh) ~ u(0,nh) + TUt(0,nh) + 
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(T2/2)utt(0,nh). Using the wave equation uu{0,nh) — c2uxx(0,nh) = 
c2f"(nh), we have an alternative choice 

2 

<*>(1) = f(nh)+Tg(nh)+j(/((n+l)/i)-2/(n/l)+/((n-l)/l)). (6.5.34) 

Inequality (6.5.10) on page 394 suggests that, for sufficiently smooth 
initial conditions / , g, the error bounds are 

max \u(tm,xn) - u^(m)\ < C^(r2 + h2), i = 1,2,3; (6.5.35) 
0<m<M, 0<n<N 

the proof of these error bounds is beyond the scope of our discussion. 

EXERCISE 6.5.9. (af Verify that (6.5.29), (6.5.31), and (6.5.32) are 
particular cases of (6.5.28). (b)c Write (6.5.29), (6.5.31), and (6.5.32) 
in component form. Hint: for example, ti£\m + 1) = r2u£}.i{m) + 2(1 — 
r2)u„(m) + r2fi^.1(m) - v£\m - 1). (c)A Write a computer program 
implementing (6.5-28) with fi 6 [0>l/2] for the wave equation utt = 
auxx+H(t, x),0<t<T,0<x<L, with initial conditions u(0, x) = f{x), 
Ut(0,x) = g(x) and the boundary conditions b\u(t,0) + b2Ux(t,0) = hi(t), 
c\u(t,L) + c2Ux(t,L) = h2(t), where 61,62,01,02 are real numbers and 
h\,h2,H are known functions. Test your program with c = 2, L = 1, 
T = 2, 61 = ci = 1, 62 = c2 = 0, hi(t) = h2(t) = H(t,x) = 0, g(x) = 0, 
and with two initial displacements f\, /2, where fi(x) = x(l — x) and 

. , , /20a;, 0 < x < 1/2, 

[20(1 -x), l / 2 < a ; < l . 

Compare the approximate solution corresponding to /z — 1/2 with the exact 
solution (6.1.56) on page 314- In each case try two different values ofu(l), 
according to (6.5.33) and (6.5.34). Other conditions being equal, which 
selection results in smaller approximation error? 

6.5.4 The Poisson Equation in a Rectangle 

The objective of this section is to study numerical approximation for the 
solutions of the Dirichlet problem in the square: 

uxx(x,y) + uyy(x, y) = 0, 0 < x, y < L, (6.5.36) 

with the boundary conditions u(x,0) = fi(x), u(0,y) == gi(y), u(x,L) = 
f2(x), u(L,y) = </2(y)j where fi,fc,gi,g2 are known continuously differen-
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tiable functions on [0,L], and 

/i(0) = 31 (0), h(L) = g2(0), /2(0) = 9l(L), /2(L) = g2(L). (6.5.37) 

EXERCISE 6.5.10? What is the meaning of conditions (6.5.37)? Hint: draw 
a picture. 

We now construct an approximate solution of (6.5.36) using finite dif­
ferences. For a positive integer N, define the mesh size h = L/N and 
the mesh points (xm,yn) = (mh,nh), m,n = 0,...,N. Denote by 
um>n the approximation of u(mh,nh). Following (6.5.9) on page 394, 
we write uxx(mh,nh) « (wm+i,n - 2um ,n 4- «m-i, ra)//i2, uyy(mh,nh) « 
(um i„+ i — 2um>n + um<n-i)/h

2, and then, after multiplying by h2, use 
(6.5.36) to get a system of linear equations 

«m+l,Ti + Um-l,n + fim.n+i + Um,n-1 ~ 4u m , „ = 0, m,n = 1, . . . N — 1. 
(6.5.38) 

Note that this system is not homogeneous, because 47V of the values um,n 

are given by the boundary conditions: 

4 , o = fi(mh), umtN = f2(mh), u0,n = gi(nh), uN>n = g2(mh). (6.5.39) 

For example, the very first equation in the system, corresponding to m = 
n — 1, is 

-4«i , i + u2,i + «i,2 = -f{h) - gi(h). 

As a result, we can write (6.5.38) as an inhomogeneous system of linear 
(N — l ) 2 equations in (N — l ) 2 unknowns U = (um>n, m,n= 1 , . . . , N — 1): 

A U = b, with the matrix A = 

(B I 
I B 

0 / 

U--

0-
I • 

B 

•• 0 \ 

• • 0 

/ : 

IB) 

(6.5.40) 

where each matrix B is equal to ^4jV_'1 , see (6.5.15) on page 395, and 

I = ^ ^ i is the (N - 1) x (N - 1) identity matrix. 

EXERCISE 6.5.11.C (a) Describe the components Uk, k = 1 , . . . , (N - l ) 2 of 
the vector U, that is, describe the rule that assigns um,n to the particular 
Uk • (b) Describe the components of the vector b. 
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EXERCISE 6.5.12.A (a) For what functions does the matrix A provide an 
exact d iscret izat ion, similar to part (b) of Exercise 6.5-4? (b) Us­
ing the methods and results of Problem 7.12 on page 44$, verify that the 
(N — l ) 2 eigenvalues of the matrix A are Am:„ = —4(sin2(7rm/(2iV)) + 

sin (nn/(2N))J, m,n = 1 , . . . , JV — 1, and the components of the eigenvec­

tor xmtn corresponding to ATO]„ are xm,n(k,l) = sin(kTrm/N) sin(lnn/N), 

k,l = 1 , . . . , J V - 1 . 

Unlike the heat and wave equations, there are no steps in time, as there 
is no time variable. As a result, there are no explicit or implicit methods 
and no stability issues that would have analogues in the previous two sec­
tions. Still, explicit and implicit methods and the questions of numerical 
stability appear in the process of solving numerically the system of equa­
tions (6.5.40). Solving (6.5.40) numerically, especially for large N, relies 
on advanced programming skills and numerical linear algebra; important 
as they are, these topics are beyond the scope of our discussion. 

Inequality (6.5.10) on page 394 suggests that, if the exact solution u = 
u(x, y) is sufficiently smooth, then 

^2 \um,n - u(xm,yn)\ < Ch2. (6.5.41) 
0<m,n<N 

As with other error bounds, the proof is outside the scope of our discussion. 

6.5.5 The Finite Element Method 

For partial differential equations, there are two main types of numerical 
methods: finite difference and finite element. In the finite difference meth­
ods, we replace all the partial derivatives in the equation with the corre­
sponding finite differences and get a finite difference equation for the ap­
proximation. The numerical schemes we have studied so far are all based on 
the finite difference method. In the finite element method, we approximate 
the solution by a finite linear combination of some known functions, and 
then use the equation to determine the optimal, in a certain sense, values 
of the coefficients in this linear combination. 

In this section, we will briefly discuss the general ideas of the finite ele­
ment method. There are two possible interpretations of the method, using 
either weighted residuals or a variational formulation. Both interpretations 
are best described for an abstract equation Ax — f, where A is a linear 
operator on an inner product space H, / e H is a known element of H, and 
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x is the unknown element; see pages 327-329 for the definitions. 

According to the method of weighted r e s idua l s , we look for an ap­
proximate solution x of the equation Ax = f in the form x = Ylk=i aklPk, 
where ak are real or complex numbers to be determined, and ipk are known 
and fixed elements of H. These elements are not necessarily a part of an 
orthonormal system in H. We call x a f i n i t e element approximation of 
the solution, based on the f i n i t e elements (fk- In applications, the func­
tions <pk are often equal to zero outside of a small bounded region, whence 
the name "finite element." 

By definition, the r e s i d u a l is R(a) = Ax — f, and then the coefficients 
afc are computed from the condition (R(a),ipk) = 0, A; = 1 , . . . ,7V, where 
ipk, k ~ 1 , . . . , N, are known and fixed elements of H, called weights, and 
(•,•) is the inner product in H. For linear operator A, this leads to a 
system of TV linear equations with n unknowns. The hope is that, as N —» 
oo, the resulting approximation Ylk=i ak<4>k will converge to the solution 
of the equation. Of course, the proof of this convergence is impossible 
without additional assumptions about the space H, the operator A, the 
finite elements <fk and the weights ipk- Note also that, in general, the 
computation of ak is not recursive: a different value of N will require new 
computations for all values of Ofc, k = 1 , . . . , N. 

Gale rk in ' s method, suggested in 1915 by the Russian engineer BORIS 
GRIGORIEVICH GALERKIN (1871-1945), is a particular case of weighted 
residuals with a special selection of weights: ipk = <fik f° r all k. The 
idea of this method can be formulated alternatively as follows: if XQ = 
X^m=i amfm is the exact solution of Ax = / , then 

(Ax0,tpk) = I ^ amAtpm,<Pk J = (f,fk) 

for all k > 1. Then a natural approximation of xo is computed by truncating 
the above system. 

EXERCISE 6.5.13? (a) Using the Galerkin method, write the system of equa­
tions for the coefficients ak in the matrix-vector form. Hint: in components, 
Yl!=i(-A<Pm,ipk)am = (/,Vfe)- (b) How will the system simplify if <pk form 
an orthonormal system and are eigenfunctions of the operator A? Hint: it 
becomes diagonal. 

There is an alternative approach to solving the equation Ax = f, called 
the v a r i a t i o n a l approach, when we interpret the solution XQ of the equa-
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tion as the extremal point of some functional. A funct ional is a mapping 
from H to K; an extremal point of a functional J is an element x £ H 
where J has a local minimum or maximum. Note that the element XQ is a 
solution of the equation Ax = f if and only if | | ^xo - / | | = 0, where || • || is 
the norm in the space H. In other words, the functional J{x) = \\Ax — f\\2 

achieves its minimal value when x = XQ; for computational purposes, it is 
better to consider the square of the norm rather than the norm itself, and, 
since J(x) > 0 for all x, zero is indeed the minimal value of J. There can 
be other functionals whose extremal points correspond to the solution of 
the equation; for example, the Dirichlet principle on page 161, provides an 
alternative functional for the Poisson equation. For many equations, nu­
merical computation of the extremal points of a corresponding functional 
is more efficient than solving the equation directly. 

The variational approach leads to a different interpretation of the finite 
element method. Let the solution XQ of the equation Ax — f be the ex­
tremal point of a functional J. As before, we look for an approximate solu­
tion in the form x = Ylk=\ akVk, where <pi,..., (p^ are the finite elements, 
that is, fixed elements of H. Define the function F(ai,... ,a^) = J(x). 
Then F is a real-valued function of N variables, and a natural condi­
tion for choosing a^ is dF/dak = 0, k — 1 , . . . , N. In other words, the 
hope is that if (a*, . . . ,a*N) is a point of local minimum or maximum of 
F, then J2k=i a^fc is close to an extremal point of J . This method of 
solving the (infinite-dimensional) variational problems is sometimes called 
the Rayleigh-Ritz method, after the British physicist JOHN WILLIAM 

STRUTT, LORD RAYLEIGH (1842-1919) and the Swiss physicist WALTER 

RITZ (1878-1909), who published papers on the subject in 1870 and 1908, 
respectively. As with the weighted residuals, the computations of a*k are 
usually not recursive (any change in the number of finite elements requires 
a complete recalculation of all coefficients ak), and any proof of convergence 
requires additional assumptions about the space H, the operator A, and the 
finite elements (pk-

The next exercise shows the connection between the weighted residual 
and the variation interpretations of the finite element method. 

EXERCISE 6.5.14. B Consider the equation Ax = f in an inner product 
space H, and let x = £3fc=i akfk be an approximate solution, (a) Using 
the weighted residuals method with weights f/'fc = A<pk, write the system of 
equations for the coefficients ak • (b) Consider the function F{a\,..., a^) = 
||^4x — / | | 2 . Verify that the system of equations dF/dak = 0, k = 1,... ,N, 
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is the same as the one you obtained in part (a). 

EXERCISE 6.5.15.A According to the D i r i ch l e t p r i n c i p l e on page 161, 
the solution of the Poisson equation V2u = g in G C K™, u = h on dG 
minimizes the functional I(v) = (1/2) / G ( | | Vt;||2 +gv) dm, where dm = dA 
or dm = dV, depending on whether n = 2 or n = 3. Write the system 
of linear equations for the coefficients in the corresponding finite element 
approximation of the solution. Hint: the number of spatial dimensions makes 
no difference, as long as you use the notation (u,v) = Jauvdm. Note that, for 
given <pi,..., tpN, the function F(ai,..., ajv) = / ( JZifcLi afcVfc ) *s quadratic in 
the ak-

The finite element methods applies also to evolution equations, such 
as u(t) = UQ + fQ Au(s)ds. The weighted residual method is the typical 
interpretation in this setting, with the following modifications: (a) The 
coefficients ak in the representation u — J2k akfk are functions of time; 
(b) The residual R(t) = £Zfc=1 ak(t)tpk - u0 - J2k=i Jo afc(s)-/Vfc ds is also 
a function of time; (c) The condition is (R(t),ipk) = 0 for A; = 1 , . . . , JV 
and t > 0. As a result, the functions ak = ak{t) satisfy a system of 
ordinary differential equations. F O R EXAMPLE, consider Galerkin's method 
applied to the equation u(t) = «o + / 0 Au(s)ds under the assumption that 
(fk, k = 1 , . . . , N, form an orthonormal system, that is ((fk, <pm) = 0, k ^ 
m, (<pk,<Pk) = 1- The reader can verify that the corresponding ordinary 
differential equations for ak are 

JV 

a'fc(*) = ] C (• /4 (^"" Vfe)fflm(*). * > °> k = l,...,N, Ofc(0) = (u0, fk)-
m=l 

What happens if, in this setting, A<fk = ^kfk for all k? 

A popular choice of finite elements is piece-wise linear functions: these 
are the easiest continuous functions. Since such functions have at most one 
derivative, some extra tricks must be used. We illustrate the idea on the 
easiest example, the Poisson equation on an interval 

-u"(x) = f{x), x G (0,1), u(0) = «(1) = 0; (6.5.42) 

for more examples, see Problem 7.14 on page 449. Let Xk = k/(N + 1) = 
kh, k = 0 , . . . , TV + 1, be a uniform partition of (0,1). Let ip(x) be the 
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"triangular" piecewise linear function 

f l - l ' 
tp(x) = { ' "" '"' " "' (6.5.43) 

Stretching the definition of the derivative a little, we say that 

<p'(x) = < 

- 1 , 0 < x < 1; 

1, - l < a ; < 0 ; 

0, otherwise. 

Then define <fk(x) = tp((x — Xk)/h), k = 1 , . . . , N. 

EXERCISE 6.5.16.° (a) Draw the graphs of<pk(x) when N+ 1 = 5. (b) Pre­

tending that each ipk has two derivatives, show that — JQ <p%(x)<pm(x)dx = 

Jo (Pk(x)'Pm(x)dx for allm,k = 1 , . . . , N. (c) With part (b) in mind, verify 

that the Galerkin approximation ^2k=i ukfk{x) for (6.5-42) satisfies 

N -1 .1 

V u f c / <pk(x)<p'm(x)dx = / f(x)tp'm(x)dx, m = l,...,N. (6.5.44) 
fc=i Jo Jo 

(d) Verify that (6.5.44) can be written as a system of linear equations 
Aft ' 'U = b, where U = (u\,... ,UM)T and the matrix A^ ' is defined 
in (6.5.15) on page 395. Identify the vector b. Note that the same matrix 
A appears in the finite difference approximation of (6.5.42). (e) Write a 
program implementing this finite element approximation and test it with 
N + 1 = 21 and f(x) = n2 sin(7ra;). Compare the result with both the exact 
solution u(x) = shi7rx and a finite difference approximation. 

The above example shows that implementation of a finite element meth­
ods is much more time consuming and labor-intensive than the implemen­
tation of a finite difference method. On the other hand, finite element 
methods are more flexible, and can be easily adjusted to various domain 
shapes and operators. A standard reference on the subject is the book An 
Analysis of the Finite Element Method by G. Strang and G. Fix, 1973. 
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Chapter 7 

Further Developments and Special 
Topics 

This chapter presents further development of certain subjects discussed in 
previous chapters. The material in this chapter is either of a more advanced 
nature or somewhat tangential to the main line of the earlier development, 
or else covers new material that could not be conveniently included earlier. 
We present this material in the form of problems with the aid provided 
here or in earlier chapters. We hope that some of the problems will have 
an element of fun. 

7.1 Geomet ry and Vectors 

This section collects problems related to Euclidean geometry, vector alge­
bra, and spatial curves. Some problems are rather standard: Problem 1.2 
is about using unit vectors to derive some trigonometric identities, Problem 
1.6 is about skewed lines, and Problem 1.11 is about a practical way to com­
pute torsion and curvature of a curve. Problems 1.10, 1.12, 1.13 address 
some other curve-related questions. Problems 1.3, 1.4, and 1.5 provide a 
deeper look into the cross product. Problem 1.7 is necessary given our 
discussion of linear dependence in various places throughout these notes. 
Problem 1.8 discusses alternative ways to measure distance in Rn. Problem 
1.9 might be helpful in understanding the mathematical meaning of a rigid 
motion. The geometric Problem 1.1 is just for fun. 

PROBLEM 1.1. Because of the round shape of the Earth, we cannot see 
objects on the surface arbitrarily far away, even in the ocean and even 
with a spy-glass. Let L be the longest distance from which one can see 
an object of height H on the surface of the Earth from hight h above the 
Earth. Drive an approximate formula for L assuming that H and h are 

409 
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much smaller than the radius R of the Earth. How high above Honolulu 
must one get to see the California coast? 

PROBLEM 1.2. Let u = coscni + sin a j and v = cos/3£ + sin.0j, where 
0 < a < 0 < 2TT. 

(a) Verify that u and v are unit vectors. 
(b) Compute u • v. 
(c) Plot the position vectors u and v, interpreting a and 0 as the angles 

they make with the x axis. What is the angle between u and v? 
(d) Derive the trigonometric formula for cos(/3 — a). Then take a < 0 < 

0 and derive the formula for cos(a 4- 0)-

PROBLEM 1.3. Complete the proof of Theorem 1.2.2 on page 20. Hint: 
Equations (1.2.16) imply property (C2), that is, w • u = 0 and w • v = 0. Also, 
•with wi,W2,u>2 as in (1.2.16), property (C4) follows. Finally, calculate \\w\\2 = 
w\ +W2+W3 and establish property (CI), that is, \\w\\2 = ||it||2||v||2(i —cos2 6), 
where cosO = (u • w)/(||t*||||w||). 

PROBLEM 1.4. (a) Prove Lagrange' s I d e n t i t y 

(r x u) • (v x w) = (r • v)(u • w) — (r • w)(u • v). 

Hint: By (1.2.30), r • (u x v) = v • (r x u). Replace v by v x w in this equality 
to get r • (w x (v x w)) = (v x w) • (r x u). Now, apply r- to (1.2.27). 

(b) Prove that (r x u) x (v x w) = (r,u,w)v — (r,u,v)w, where (r,u,v) 
is the scalar triple product. Hint: In (1.2.27), replace u by r x u. 

PROBLEM 1.5. An alternative notation for the cross product u x v is [u, v]. 
With this notation, equality (1.2.26) becomes 

[u, [v, w] ] + [v, [to, u] ] + [to, [u, v]} = 0. (7.1.1) 

There exist other operations [•, •] with a similar property. For example, for 
two n x n matrices A, B, define [A, B] = AB — BA. Verify that, for every 
three such matrices A, B, C, 

[A, [B, C\ ] + [B, [C, A] ] + [C, [A, B]} = Q[n], (7.1.2) 

where 0[n] is the zero matrix. 
(a) Can you find another example of such an operation? 
(b) Is it true that every operation with property (7.1.2) must satisfy 

[x,y] = -\y,x]7 
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PROBLEM 1.6. Two lines in R3 are called skewed if they are neither parallel 
nor intersecting. Let ri(t) = rXo + t d\ and r^s) = r2o + s d<i be two lines 
inR 3 . 

(a) Find the condition in terms of roi, 7"o2, d\ and di for these lines to 
be skewed. 

(b) Find the equation of the line that is perpendicular to both skewed 
lines and intersects them. 

(c) Find the distance between two skewed lines. 
(d) Given two skewed lines, there are two parallel planes, each containing 

one line. Find the equations of those planes. 

PROBLEM 1.7. We say that the vectors t t i , . . . ,Ufc in Rn are linearly de­
pendent if there exist real numbers x\,..., Xk so that at least one of these 
numbers is not zero and xi U\ + • • • + Xk Uk = 0. 

(a) Verify that if at least one of the vectors u\,..., Uk is the zero vector, 
then the vectors are linearly dependent. 

(b) Verify that every four vectors in R3 are linearly dependent. Possible 
hint: choose a cartesian coordinate system, and write the corresponding condition 
for linear dependence using the components of the vectors. How many equations 
are there? How many unknowns are there? 

(c) Verify that n + 1 vectors in Rn are always linearly dependent. 
(d) Verify that, if a vector space has n linearly independent vectors, but 

n+1 vectors are always linearly dependent, then the space is n-dimensional. 
Hint: those n linearly independent vectors can be taken as a basis. 

PROBLEM 1.8. Define a norm in R" as a function 9t that, to every element 
x in Rn , assigns a non-negative number 9t(a:) so that 9t(a:) = 0 if and only 
if x = 0, and also 0^(x + y) < 91(a;) + O^y) and yi(ax) = |a|9t(a:) for every 
x,y € Rn and every real number a. 

(a) Fix a basis m,..., un, and, for x — ]Cfc=i xk uk and P > 1, define 

( \ I /P 
YJk=i \xk\p) ; IMIoo = maxi<fc<„ \xk\. Verify that || • ||p and 

|| • ||oo are norms. 
(b) Let 1 < p, q < oo be numbers so that (l/p) + (l/q) = 1 (for example, 

if p = 1, then q = oo). Show that, for all x,y from Rn , we have \x • y\ < 

I M I P I I V I I , . 
(c) For 1 < p < r < oo, find positive numbers c and C, possibly 

depending on p, r, and n, so that c||x||r < ||a;||p < C||cc||r for all x e R". Is 
it possible to have c and/or C independent of n? 

(d) Let 9li and 912 be two norms on Rn . Show that there exist two 
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positive numbers c, C, possibly depending on n, so that 

cOli(as) <W 2 (x) < C 0 l i ( x ) 

for all a; G Mn ffini: /or euen/ norm 91, the set {x G Rn : 9?(x) < 1} is closed 

and bounded; every continuous function on such a set achieves its minimal and 

maximal values. 

(e) The norm || • ||2 can be denned using an inner product; see formula 
(1.2.9) on page 14. Can other ||-||p norms be defined using an inner product? 

PROBLEM 1.9. Show that every isometry is an orthogonal transformation 
followed by a parallel translation. Below is an outline of a possible proof. 
Step 1. Denote the isometry transform by A and let XQ = A{0). Define the 
transform S by S{x) = X + XQ. Then S is the required parallel translation. 
Step 2. Define the transform U by U(x) = A(x) — x0. 
Step 3. By construction, U is an isometry and 1/(0) = 0. Use this to show 
that U preserves the norm: \\Ux\\ = \\x\\, and then use the parallelogram 
law (1.2.10), page 15, to show that U preserves the dot product. 
Step 4- Show that U is linear by verifying that \\U(x+y)-U(x)-U(y)\\2 — 
Oand | |£/(Aa:)-A[/(a;)| |2 = 0. 

PROBLEM 1.10. Let C : r(t), - 1 < t < 1, be a curve for which r'(t) exists 
for all t. Does this mean that C is rectifiable? Give a proof or provide a 
counterexample. 

PROBLEM 1.11. Let C be a curve denned by the vector-valued function 
r = r(t) that is at least three times continuously differentiable in t. Refer 
to page 31 and verify the following equalities: 

r'(t) u'(t) 

<t)=\\r'(i)-r''(t)\\iT(t)_ ( r ' , r ' ' , r ' ' ' ) 

PROBLEM 1.12. Show that the torsion of a planar curve is identically zero. 
Is the converse true as well? 

PROBLEM 1.13. Similar to the osculating plane (page 32), one can define 
the oscu la t ing c i r c l e as the circle that comes closest to the curve at a 
given point. In particular, the radius of this circle is the reciprocal of the 
curvature. Complete the definition of the osculating circle, and describe 
the set of points made by the centers of the osculating circles for the right-
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handed circular helix (1.3.13) on page 30. 

7.2 Kinematics and Dynamics 

The problems on kinematics and dynamics can easily fill several large vol­
umes, even without solutions. In what follows, we present problems we 
believe are closely connected with the topics we discuss in the main text. 
In particular, Problem 2.1 suggests a rather comprehensive study of the mo­
tion in a central force field, with emphasis on the attracting inverse-square 
law. Problem 2.2 presents an extension of Problem 2.1, including the fa­
mous general relativity correction to the perihelion precession of Mercury. 
Problem 2.3 suggests a closer look at the nonlinear oscillator, leading to an 
elliptic integral representation of the solution. The next three problems are 
rather standard: Problem 2.4 is about the Parallel Axis Theorem, which 
provides an effective method to compute the moment of inertia; Problem 
2.5 is about describing the orientation of a rigid body in space using the 
Euler angles; Problem 2.6 is about the kinetic energy of a rotating object. 
Problems 2.7 and 2.8 illustrate our discussion of a rigid body motion, for a 
rolling cylinder and a tumbling box, respectively; the tumbling box problem 
suggests a very easy and effective in-class demonstration. Finally, Problem 
2.9, completes the study of a bead sliding on a helical wire; the study starts 
on page 90. 

PROBLEM 2.1. MOTION IN A CENTRAL FORCE FIELD. 

Consider a planar motion in polar coordinates under an attracting cen­
tral force field. Gravity and electrostatic attraction are examples of central 
force fields. Choose polar coordinates in the plane of motion, and let the 
unit vector K. complete the couple (r, 8) to a right-handed triad. Then ev­
ery central force acts radially toward the origin O at every point (r, 9) and 
therefore has the form F = —f(r)f for some positive function / = f(r). 
Assume that the frame 0(f, 8, K) is inertial. 

(a) Using formulas (1.3.26) on page 36, obtain the equations of motion 
of a point mass m acted on by F: 

r(t) - r(t)62(t) = -f/m (radial part); (7.2.1) 

r{t)0{t) + 2f(t)9(t) = 0 (angular part.) (7.2.2) 

(b) Apply formula (2.1.4) on page 40 and formula (1.3.24) on page 35, 
to compute the angular momentum LQ of the point mass about O. Hint: 
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Lo = mr r x rui 0 = mr2w k. 
(c) Prove that the angular momentum is conserved, that is, Lo{t) is a 

constant vector, independent of time. Hint: show that dLo(t)/dt = 0. 
(d) Multiply (7.2.2) by r(t) and show that r2(t)u>(t) = a, where u(t) = 

9{t) and a is a number independent of t. Then re-write (7.2.1) as 

a2 f 
f - - 5 - = - - = - / i . (7.2.3) 

(e) In (7.2.3), set r(t) = l/u{6(t)) and show that 

a V ( 0 ) ( « " ( 0 ) + u ( 0 ) ) = / i . (7.2.4) 

.ffini: r = —adu/dO, r = —a2u2d2u/d02. 
(f) Let e be a non-negative number, and I, a positive number. Consider 

the following curve in polar coordinates: 

r ( l - e c o s 0 ) = ^ , (7.2.5) 

What curve is this and what are the geometric interpretations of e and £? 
Hint: The curve is a conic section, e = 0 corresponds to a circle, e £ (0,1), to an 
ellipse, e = 1, to a parabola, and e > 1, to a hyperbola. 

(h) Now, suppose that F is an inverse square law field: f(r) = C/r2, 
C > 0. Prove that the trajectory of m is a conic section and find the 
corresponding e,£ in terms of m, a, and C. Hint. In (7.2.4), you get f\ = 
c\u2. Then solve the resulting equation to find r = r(6) and use the results of 
part (f). 

(i) Conversely, suppose the central force field F is such that the corre­
sponding trajectories are conic sections. Prove that F must be an inverse 
square law field. Hint: Writing u = 1/r, use (7.2.5) to find d2u/d02 + u, and 
then plug the result into (7.2.4). 

(j) Derive Kepler's Laws, stated on page 44. Hint: For the second law, 
note that dA = (l/2)r dO is the area swept out by the radius vector rr moving 
through an angle d9; dA/dt = —r w. By part (b), this is \\Lo\\/m, and therefore 
constant. 

(k) Describe the possible trajectories in the central field F(r) = —r-1? 
for all real 7 ^ 0 . What makes the value 7 = 2 special? What trajectories 
do you get if the force is repelling rather than attractive? 

PROBLEM 2.2. PERTURBED MOTION IN THE CENTRAL FIELD. 
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According to (7.2.4), the motion of a single planet around the Sun is 
described by equation 

u"{9) + u(6) = A0 (7.2.6) 

for some positive real number A0, where u(6(t)) = l/r(t) and / i is an 
inverse-square force. 

(a) For a planet in the Solar System, the gravitational attraction by the 
other planets is a small perturbation. As an example, consider the motion 
of planet Mercury perturbed by the Earth. 

Assume that the Earth moves in a circular orbit with the Sun at the 
center, and consider only the radial (along the Mercury-Sun line) compo­
nent of Earth's gravitational tug on Mercury. This changes the value of / i 
to / i + / in equation (7.2.3) and in the subsequent equations. Find the 
value of / and solve the resulting ordinary differential equation numerically 
using a suitable software package, for example, the MATLAB ode45 solver. 
The trajectory should change to a sequence of loops, each close to an el­
lipse, with the per ihe l ion , the point of the closest approach to the Sun, 
changing location after each revolution. This is the classical p e r i h e l i o n 
precession, or sh i f t . If you do not observe this picture right away, in­
crease the value of / , which will now simulate the gravitational tugs from 
other planets. The observed value of this precession for Mercury is about 
575" (575/3600 degrees) per century. The computed value of this precession 
using Newtonian mechanics, with the most careful account of all perturba­
tions from all the planets is 532" per century. This discrepancy can only 
be explained by general relativity mechanics. 

(b) General relativity leads to the following modification of equation 
(7.2.6): 

u"{6) + u{6) = A0 + ^ y V ( 0 ) , (7.2.7) 

where R0 is the Schwarzschild radius of the Sun (about 3km, see (2.4.36) 
on page 113.) For the derivation of (7.2.7) see page 116. If u = u{6) 
is a solution of (7.2.6), then (3R0/2)u2(9) is very small compared to the 
number AQ. Thus, we can treat the term (3ilo/2)u2 in (7.2.7) as a small 
perturbation of (7.2.6). Accordingly, we look for a solution of (7.2.7) in the 
form u{6) = u(d) + w(0), where u solves (7.2.6) and w is a small correction, 
(i) Verify that 

w"{6) + w{0) = (3R0/2)(u{6) + w{9))2. (7.2.8) 
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(ii) Neglecting the non-linear term (3R0/2)w2, verify that the linear ap­
proximation to (7.2.8) is w"{6) + (1 - 3Rou(9))w(0) = (3R0/2)u2(9), or, 
with u(6) = (1 + ecos9)/£ being the solution of (7.2.6), 

w"{9) + (ncos6 + \)w(6) = | ^ ( 1 + ecosfl)2. (7.2.9) 

This is an inhomogeneous, second-order linear ordinary differential equation 
with variable coefficients. Take the values of I and e corresponding to 
Mercury's orbit(see below in part (hi)), and R0 = 2.95 km, solve this 
equation numerically using a suitable software package and observe the 
same changes of the trajectory as in part (a). 
(iii) For R0/£ much smaller than 1, we can neglect the terms of order 
(R0/£)2 and higher. Look for an approximate solution of equation (7.2.7) 
in the form u{6) = ( l + e c o s ( ( l - £ ) 0 ) W with 8 of order R0/£, and verify 
that this leads to the following value of 5: 

S ~ ~ . (7-2.10) 

To simplify computations, disregard the term of order e2 compared with e; 
for Mercury, e « 0.2056. Then 2TT5 is the general relativity correction to 
the perihelion precession in radians per revolution of the planet around the 
Sun. The reader can plug in the numbers for Mercury (T = 88 Earth-days 
for the period of revolution around the Sun; a = 0.579 • 108 km for the semi-
major axis) and verify that the resulting number is about 43" per century; 
keep in mind that t = a(l — e2) and use R0 = 2.95 km. This value of this 
number is exact to within the measurement error and was first computed 
in 1916 by A. Einstein. The computation provided the first validation of 
general relativity. 

(c) Discussion, (i) The reason why Mercury is used in the analysis is 
that, for other planets in the Solar System, the perihelion precession is 
slower (the planets are further from the Sun, which decreases the general 
relativity perturbation) and harder to observe (the planets themselves move 
more slowly ). For the Earth, general relativity predicts the perihelion pre­
cession of about 5" per century. For more on the subject, see the book The 
Physical Foundations of General Relativity by D. W. Sciama, 1969. 
(ii) The homogenous version of (7.2.9), which is exactly (4.4.51) on page 
237, is known as Mathieu's d i f f e r e n t i a l equation, after the French 
mathematician CLAUDE LOUIS MATHIEU (1783-1875), who used this equa­
tion in his astronomical studies well before the advent of general relativity. 
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An interested reader can follow Mathieu's reasoning by replacing the usual 
inverse square law with / i ( r ) = c\r~2 +c2r~4 and noticing that the corre­
sponding equation of motion is of the form (7.2.7), but with some unknown 
number in place of R0. This approach does not really explain anything, 
because there is no justification of the formula for / i and no way of com­
puting the value of C2; the best one can do is to fit the model to the data 
by estimating ci from the observations. It is the general relativity that 
justifies the model. 

PROBLEM 2.3. T H E SIMPLE RIGID PENDULUM. 

Consider equation (2.1.9), page 42, of the simple rigid pendulum and 
assume there is no damping: c = 0. The equation becomes 9 + (g/£) sin9 = 
0. We will see that this equation is integrable by quadratures. 

(i) Set u = 9. Verify that w— + — sin# = 0. Hint: chain rule for w(6(t)). 

(ii) Verify that the time t as a function of 9 is expressed using the 
e l l i p t i c i n t e g r a l : 

u 1 -,d0. 
lg0 y/g COS 9 + K0l 

where K0 = (w§/2) - (g/£)cos(90) and 90 = 9(0). Hint: from (i), u2/2 = 
(g/£)cos6 + K0 = (l/2)(d6{t)/dtf. 

(iii) Assuming that 0(0) = 0O, 0(0) = 0, and \9(t)\ is small for all t, 
derive the familiar formula 6(t) = #ocos(o;o£), where UJQ = \/g/(, from the 
elliptic integral representation of the solution. 

PROBLEM 2.4. (a) Prove the P a r a l l e l Axis Theorem for the moment of 
inertia, / , of a mass M about an axis I parallel to an axis through the center 
of mass and distance s between the two axes: I = ICM + S2M, where ICM is 
the moment of inertia about the center of mass. Hint Choose an appropriate 
coordinate system (i, j , it) with K along the axis £ and such that x^M+yQM — s2. 

Then I = j f(x2 + y2)pdV, and ICM = j j j \ix ~ XCM)2 + (y - ycM)2]pdV, 
V, K 

where p = p(x, y, z) is the density. 
(b) Use the result to give an alternative derivation of equation (2.2.45), 

page 83, for the distributed pendulum by considering rotation about the 
suspension point O rather than about the center of mass; see Figure 2.2.1, 
page 82. Hint: work in the cartesian basis (i, j , k.) at O. The moment of inertia 
Izz about k is I*z + M(£/2)2, the angular momentum around O is IZz9, the torque 
around O is —(Mg£/2)sm9k. 
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The Parallel Axis Theorem is also known as the Huygens-Steiner 
theorem, after C. Huygens and the Swiss mathematician JAKOB STEINER 

(1796-1863). 

PROBLEM 2.5. T H E EULER ANGLES. 

Consider the trihedron system 5 = (u, p, b) fixed on the airplane as 
described on page 32. Let So — (i, J, k) be a cartesian coordinate system 
with the same origin O as S, but with orientation fixed in space. Assume 
that, at first, the corresponding basis vectors of S and So are aligned. 
During the flight, the orientation of S relative to So changes due to roll, 
yaw, and pitch of the airplane. One way to obtain this new orientation is to 
specify the Euler angles (<f>, 9,ip) by three rotations Ri,B.2, R3 as follows. 
Starting from the aligned position, first Ri rotates S about k through an 
angle (f>. Then, R2 rotates S about the new position of u through an angle 
9. Finally, R3 rotates S about the new position of b through an angle ip. 

(a) Verify the following matrix representation of each rotation: 

Ri = 

coscj) sin</> 0" 

- sin <j> cos <f> 0 

0 0 1. 
, R2 = 

cos 6*0 
0 1 

sin0 0 

— sin 9' 
0 

COS0 
) -R3 = 

COST/; sinijj 0 

— sin ip cos iji 0 
0 0 1 

(b) Prove that if a point P$ has coordinates (a;o, yo, 20) in 5o and coor­
dinates (x, y, z) in S, then 

X\ I XQ 

y = R3R2R1 h /o I • 
z) \zo 

(7.2.11) 

(c) Let w be the rotation vector of 5 relative to SQ. Prove that 

w = 4>k + 6p0 + ipb = wi it + w2 p + 0J3 b, (7.2.12) 

where pQ is the unit vector making angle ip with the final position of p. 
Show that 

Po = - sin# 
b x k = cos tp p + sin ip u, 

k = — cos i[> sin 8 u + sin ip sin 6 p + cos 9 b. 

Substituting in (7.2.12) above, show that 

wi = Co sin tp — 4> cos ip sin 9, W2 = w cos tjj + cf> sin if> sin 9, W3 = IJJ cos 9 + ip. 
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(d) There are other choices for the Euler angles. For example, (f>,0,ip 
can be the roll, pitch, and yaw angles. Find the corresponding rotation 
matrices Ri,B,2,R3 and establish the analog of (7.2.11). 

(e) How many different choices for the Euler angles are there? 

PROBLEM 2.6. KINETIC ENERGY AND MOMENT OF INERTIA. 

(a) A point mass m moving with speed v has kinetic energy EK = 
(mv2/2). Assume that m is moving in the (z, j) plane around a circle 
of radius r with angular speed u; see (1.3.28), page 36. (i) Show that 
EK — (oj2/2)mr2 = Iu>2/2. (ii) Show that the angular momentum of m is 
L = mr2u> k — Iu)k. (iii) Conclude that EK = ||£||w/2. 

(b) Now consider a system S of n masses m*, i = 1 , . . . , n. If Vi is the 
speed of m*, then the kinetic energy of the system is EK — I^r=i(v?/2)"it-
(i) Verify that if each raj is rotating about the same fixed axis with angular 
speed w at a distance r* from the axis, then 4 S ) = (^2/2) EI = i m « r i — 

Iw2 /2 . (ii) Conclude that 

S^ = (l/2)QTICM^ = ( l / 2 ) n r £ C M , (7.2.13) 

where ICM is the moment of inertia matrix in some basis (z, j , k) (see 
(2.2.32), page 76), ft is the column-vector (wx, u>y, uz) of components in 
(i, j , k) of the corresponding rotation vector u: (u; = wx i+u>yj+Ljz k), and 
CCM is the column-vector of components of LCM in (*> 3, &)• Hint: choose 
(i, j , k) so that k = UJ/OJ. Then u}& = LJV = 0 and LCMX = — wIXz, LCMV = 
—u>Iyz, LCMZ = wlzz. Hence, ii1CCM — w • LCM — w2hz = w2/. On the other 
hand, the value of the dot product w • LCM does not depend on the coordinate 
system. 

(c) Extend (7.2.13) to rigid bodies and to general rotations (that is, not 
necessarily around a fixed axis). 

PROBLEM 2.7. ROLLING CYLINDER. 

Suppose a homogeneous solid, circular cylinder of radius R and mass m 
is placed on an inclined plane. Let a be the angle of incline. Figure 7.2.1 
shows a side view of the plane and the cylinder. 

(a) Show that the moment of inertia of the cylinder about its axis is 
J = mR2/2. 

(b) Choose an inertial coordinate system (i, j), fixed to the plane and 
non-inertial system (Ii, jx) fixed to the cylinder and rotating with it. Let 
6{i) be the angle between z and zi at time t. The center of mass is at x(t) i + 
Rj, and the position of the cylinder at time t is specified by (x(t),9{t)). 
Assume that rolling occurs without slipping: rr(0) — x{t) = R6(t), t > 0. 
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Fig. 7.2.1 Rolling Cylinder 

Denote by W the weight of the cylinder, and by F, N, the tangential and 
the normal components of the reaction force of the plane in response to W. 
Recall that | |W|| = mg, where g « 9.8 meters/second2 is the acceleration 
of free fall near the surface of the Earth, (i) Verify that the Second Law 
of Newton in (i, j) yields m x(t) = \\F\\ — mgsma, \\N\\ = mgcosa. (ii) 
Verify that the first two of the Euler equations in (2.2.35), page 79 result in 
0 = 0, and the third, in (mR2/2)0 = R \\F\\. (iii) Verify that the no-slippage 
condition implies x = —R6. (iv) Conclude that | |F | | = (l/3)mgsma and 

x = ( -2 /3)ss ina , 6 = (2/(3R))gsma. (7.2.14) 

(v) By definition, the magnitude of the frication force in the direction of 
i is A*||iV||, where /x is the f r i c t i o n coef f ic ien t . Conclude that \\F\\ < 
fi\\N\\, or n > (1/3) t a n a means no slipping, (vi) Find to so that x(to) = 
0, that is, the cylinder reaches the bottom of the plane (remember that 
x(0) = xQ). 

(c) Verify that the kinetic energy £x and the potential energy V of the 
rolling cylinder are £K = (mv2 /2) + (ILJ2 /2), V = —mg(xo-x) sin a, where 
w — 8, v = x, and XQ — x = R6. Ignoring heat loss due to friction, conser­
vation of energy implies that the total energy H = £K + V is constant in 
time. Differentiate H with respect to time to obtain an equation consistent 
with (7.2.14). 

(d) Find the moment of inertia and derive the above equations of motion 
for a hollow cylinder with outer radius R and inner radius r, where 0 < r < 
R. For what r will the cylinder roll the fastest? 

PROBLEM 2.8. T H E TUMBLING B O X 

Consider the free motion of an object with three different values of the 
principal moments of inertia I*x, I* , I*z\ see page 79. To simplify the 
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notations, set I*x = a, I*y = b, I*z = c. 
(a) Verify that the system of the Euler equations (2.2.35), page 79, 

becomes 

atbx = (b- c)w*yu>*z, bw*y = (c - a ) w X . ccj* = (a - 6)w*w;, (7.2.15) 

Hint: free motion means TCM = 0. 
(b) For the sake of concreteness, let a = 1, 6 = 2, c = 3. (i) Verify 

that (w*(t))2 + 4(w*(i))2 + 9(w*(i))2 = L for some number L > 0 inde­
pendent of t. (ii) Taking L = 1, verify that the points A± = (±1,0,0), 
B± = (0, ±1/2,0), C± = (0,0, ±1/3) are the only critical points of the 
system (7.2.15). Hint: the only way for the right-hand side of (7.2.15) to vanish 
is to have two out of three omegas equal to zero; the remaining one must satisfy 
the equality from (i). (iii) Linearizing the system around each critical point, 
verify that A± are centers, B± are saddles, and C± are centers. Conclude 
that, for the original nonlinear system, the points A± and C± are stable, 
while B± are unstable. Hint: for A+, the linearization is w^ = 0, w* = w*, 
oi* = — wJ/3, which is a center in the (wj,w*) plane. Then notice from the last 
two equations in (7.2.15) that (w*(t))2 + 3(w*(t))2 does not depend on time, so 
the nonlinear system still has a center. A saddle always stays a saddle, as it 
is structurally stable, see, for example, Section 4-1 of the book Differential 
Equation and Dynamical System by L. Perko, 1991. (iv) Visualize the conclu­
sion of part (iii) by tossing up an object such as an empty cereal box, a 
tennis racquet, or your least favorite book (with the front and back covers 
taped together to prevent the book from opening). Observe the rotation 
wobbling when you spin the object around one of the axes, (v) What will 
happen if two of the sides of the box are the same? Hint: nothing interesting. 
(v) For a more detailed discussion and graphical illustrations, see the article 
The Tumbling Box by S. J. Colley in the American Mathematical Monthly, 
Vol. 94, pp. 62-68. 

PROBLEM 2.9. Consider the example in Section 2.3.2 of a bead of mass m 
sliding down a frictionless helical wire given by the equation, 

r(q) = acosqi. + bsinqj + cqk, (7.2.16) 

in an inertial frame. Let N = Nx i + Nv j + N3 K be the unknown reaction 
force exerted by the wire on m and let F = —mg k be the force of gravity. 
Newton's equations are 

mx = Nx, my = Ny, mz=-mg + Nz, (7.2.17) 
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which with the constraint (7.2.16) give five equations for the six unknowns 
x,y,z,Nx,Ny,Nz. A sixth constraint equation is 

r • N = 0, (7.2.18) 

since there is no friction along the wire. 
(a) Compute r(q) from (7.2.16) and express x,y,'z in terms of q,q,q. 

Then use (7.2.17) and (7.2.18) to get 

mix + myy + mz(z + g) = 0. (7.2.19) 

Finally, substitute the expressions for x, y, z obtained in (7.2.19) to get the 
equation of motion. 

(b) Show that equations (2.3.40), (2.3.41) reduce to the equation 

q(a2 sin2 q + b2cos2 q + c2) + q2(a2 - b2) cosqsm.q + eg = 0. (7.2.20) 

which is the same as the equation of motion obtained in part (a). 
(c) Equation (7.2.20) is a nonlinear ordinary differential equation 

(ODE). Use a numerical ODE solver to solve the equation with the initial 
conditions ^(0), q(0), corresponding to r(0) = bj+ (n/2)k and r(0) = 0, 
taking a= l,b=2, c= 1. 

(d) In the special case a = b of a circular helix, equation (7.2.20) becomes 

q\a2 + c2) + eg = 0. (7.2.21) 

Solve this equation analytically with initial conditions r(0) = bj+ {IT/2) k 
and r(0) = 0, taking a = c = 1. Then solve (7.2.21) using an ODE solver 
and compare the results. 

7.3 Special Relativity 

The main part of this section, Problem 3.3, is the analysis of the Michelson-
Morley experiment. Two shorter problems, Problem 3.1 and Problem 3.2, 
discuss the basic equations of relativistic kinematics and dynamics. 

PROBLEM 3.1. RELATIVISTIC KINEMATICS. 

Consider two frames O and Oi, with 0\ moving along the rc-axis with 
constant velocity v relative to O; see Figure 2.4.1 on page 99. Let us write 
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the Lorentz transformation as 

x = a(xi +vti), y = yi, z = zi, 
(7.3.1) 

t = a(ti +bxi), where a= (l - (v2/c2)) 2, b = v/c2; 

see page 100. Let x = dx/dt and x\ = dx\ /dt\ be the velocities of a point 
mass m relative to O and 0\ respectively. Let dy/dt = dz/dt = 0. Thus, 
m moves parallel to the x and xi axes. 

(a) In Newtonian kinematics the velocities would be related by the 
Gal i lean r e l a t i v i t y relation x = x\ + v. Show that in special relativity 
kinematics 

x = p±±. (7.3.2) 
l + b±i K ' 

Hint: use (7.3.1) above to compute dt/dti = a(l + bxi), x = a{x\ + v)(dti/dt) = 
(x\ + v) 
1 + bxi ' 

(b) Use (7.3.2) to prove that 

! (±/c)2 _ 1 (1 ~ (*i/c)2) ( 7 3 3 ) 

(c) Prove that 

Xi 

a ^ l + ftxi)3' 

where x — d2x/dt2 and x\ = d2xi/dt2. 

(7.3.4) 

PROBLEM 3.2. RELATIVISTIC DYNAMICS. 

If the point mass m moves along the ?-axis in the frame O, then, in the 
frame O, equation (2.4.15) becomes 

F = m 0 ^- — r- (7-3.5) 
dt (l - (i/c)2)? V ' 

(a) Prove that (7.3.5) also holds in the frame Ox, that is, 

d ±i% 
F = m o - r . 

* i ( l - ( i i / c ) 2 ) 5 

ffint: show t/iat dp/dt = dp\/dt\, where p\ = (moi;i/(l — (xi/c)2)^), 

dp ( x (x/c)2x \ „ moil 
dt V (1 - ( i /C)*) l / a ( 1 _ ( i / c ) 2 )3 /> ; ( 1 _ (i/c)2)3/2 
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(b) Use (7.3.3) and (7.3.4) to prove 

dp _ mpxii a3(l + b±i)3 _ dpi 
It ~~ a3(l + 6±i)3 ' (1 - ( i i / c ) 2 ) 3 / 2 = AT" 

This proves that the relativistic form (7.3.5) of Newton's Second Law 
is invariant under the Lorentz transformation, that is, (7.3.5) holds in all 
relativistic inertial frames (moving with constant relative velocity). 

(c) Verify that the corresponding non-relativistic equation (2.1.1) on 
page 40 is invariant under the Galilean transformation x = x\ + vt, t = ti. 
Hint: x = x\ + v implies x = x\. 

PROBLEM 3.3. T H E MICHELSON-MORLEY EXPERIMENT. 

(a) Recall (page 95) that the original intent of the Michelson-Morley 
experiment was to study the properties of aether (or ether), a hypothetical 
medium supposedly representing Newtonian absolute space in which the 
Earth moved with an "absolute" speed v and through which the electro­
magnetic waves were thought to be propagating. The idea going back to 
Maxwell is that this speed v can be determined experimentally using elec­
tromagnetic waves, such as light. To better understand this idea, let us 
first consider the propagation of sound waves. 

Consider two frames, O and 0\. Frame O is filled with still air, the 
analog of the aether. Let 0\ move with speed v relative to O, say to the 
right along the x-axis of O. At a distance d from 0\ we fix a sound receiver, 
R, to the £i-axis. So R also moves to the right, away from O with speed 
v (draw a picture!) At time zero, suppose O and 0\ coincide and a bell 
placed at 0\ is rung. Let vs be the speed of sound in air. 
(i) Calculate the time T it takes the sound wave front to reach R. 
Hint: vaT = (d + vT). 
(ii) Show that the relative propagation speed measured by an observer in 
frame 0\ is vSl = d/T = vs — v. 
(iii) Now, suppose that R moves toward O with speed v (i.e. in a frame 
Oi moving to the left). Show that T = (d- vT)/vs, and an observer in Oi 
measures the relative propagation speed to be vS2 = d/T = vs + v. We can 
then determine v from vSl and vS2, because v = (vS2 — vSl)/2. 
(iv) Let R be on the 2/1-axis at distance d from Oi. Consider the same 
experiment as in part (i). Show that the relative propagation speed in 
Oi is vS3 = (1 — v2/v^y/2 v„, and express v in terms of vS3 and vsi. The 
expression of v in terms of vS3 and va\ is the main idea behind the Michelson-
Morley experiment, and, as we mentioned earlier, goes back to Maxwell. 
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Hint: vS3 = d/T, and, by the Pythagorean Theorem, v2T2 = d2 + v2T2. 

(b) Now let us go back to the Michelson-Morley experiment. In this 

part of the problem, we assume that the aether exists, so that, with light 

instead of sound, aether is the analog of air. The frame 0\ is the Earth 

moving with velocity v through the assumed aether, and the "absolute" 

frame O is assumed to be fixed. The x\ axis is taken parallel to v. The 

propagation speed of light in O is c = 3 x 108 m/sec. In the experiment, 

a light beam is sent in the assumed direction of v to a reflecting mirror 

placed on the x\ axis at distance d\ from 0\. Call this the "direct" beam. 

By another mirror at Oi the direct beam is split into two, the second, or 

"transverse", beam being made to travel in a direction perpendicular to v 

to another reflecting mirror placed on the y\ axis at distance d2 from 0\. 

Thus, the two beams make round-trips from 0\ and back (draw a picture!) 

(i) Show that the round-trip times T\ for the direct beam and T2 for the 

transverse beam are 

d\ di 2cdi 2 2 \ - i /2 
T\ = H •— = -= o ' T2 = 2d2(c z - t r ) l/z. 

c — v c + v c1 — v1 

(ii) Define Al\ = T^irect ""-^transverse = ^i ~-^2- Verify that the predicted 
value of this time difference is 

2 ( d x - d 2 ( l - ^ / c 2 ) ^ ) 
1 c(l - v2/c2) 

This time difference can be measured by observing the fringe pattern in an 

interferometer placed at 0\, since the reflected direct beam will arrive later 

at 0\, interfering with the earlier arriving reflected transverse beam, 

(iii) Interchange the two beams by rotating the experimental apparatus 

through 90° and repeat the experiment. Show that the corresponding time 

difference is now 

= 2 ( d 1 ( l - i , 2 / c 2 ) 1 / 2 - ^ ) 
2 c(l - v2/^) 

(iv) Define the second difference A2T = ATi - AT2 and show that 

2 (d 1 + r f 2 ) ( l - ( l - t , 2 / c 2 ) i / 2 ) 

c(l - v2/c2) 

Verify that the values d\ = d2 = lm used in the experiment and v = 

30km/s (Earth's orbital speed) predict a value A2T w 10~16s. In the 
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actual experiment, the observed value of A2T, measured using an interfer­
ometer, was from about 1/10 to about 1/4 the predicted value. 

(c) Verify that the theory of special relativity, including the non­
existence of aether, is consistent with the null result A 2 T = 0 of the 
Michelson-Morley experiment. Hint: use the Lorentz transformation; you 
should get the exact equality A2T = 0. 

7.4 Vector Calculus 

Of all the numerous possible problems related to vector calculus, we suggest 
two standard problems, Problem 4.1 about the multi-dimensional Taylor 
formula, and Problem 4.2 about the rigorous proof of the representation 
formula for the solution of the Poisson equation; the solutions to these 
problems can be found in many books, although many of those books are 
graduate level. Problem 4.3 leads the reader through the derivation of 
the equation describing the lines of force of the electric dipole; the reader 
has probably seen the picture in a physics book and now gets a chance 
to understand the origin of that picture. Finally, Problem 4.4 shows how 
Legendre polynomials can appear in a somewhat unexpected setting. 

PROBLEM 4.1. TAYLOR FORMULA FOR SCALAR FIELDS 

Recall from one variable calculus that if g = g(t) is a function having 
two continuous derivatives at t = to, then g(t) w g(to) + g'(to)(t - to) + 
(l/2)g"(to)(t - t0)

2. If t0 is a critical point of g, that is, g'(t0) = 0, and 
9"(to) ¥" 0 ) t n e n the sign of the second derivative determines the type of the 
critical point: local minimum if g"{to) > 0, local maximum if g"(to) < 0. 
In what follows, we will briefly discuss how a similar analysis is carried out 
for scalar fields. 

The role of the second derivative for a twice continuously differentiable 
scalar field / is played by a linear transformation Ap (see page 17), such 
that, for all points B sufficiently close to P, 

Vf(B)*Vf(P) + AP(PB), (7.4.1) 

and 

f(B) « f(P) + V / ( P ) • PB + \AP{P~B) • PB; (7.4.2) 

in other words, the linear transformation Ap is the derivative of V / at the 
point P. The point P0 is called c r i t i c a l for the scalar function / if V / ( P Q ) 
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is either equal to 0 or is not denned. For a twice continuously differentiable 
function / , approximation (7.4.2) near the critical point becomes 

f(B)*f(P0) + APo(PB)-PB. 

We say that a linear operator A is non-negative definite if A(v) • v > 0 
for every non-zero vector v. As a result, the critical point PQ is a local 
minimum of / if Ap is non-negative definite. 

(a) Verify that in R2 with cartesian coordinates, (7.4.2) becomes 

f(x0 + x,yo + y) = f(x0,yo) + Vf(xo,yo)-(x,y)T + -(x,y)H(x0,y0)(x,y)T, 

(7.4.3) 
where (x,y)T denotes the column vector (see page 12), and 

H{x0,y0)=(f^^\ f;y^y°\\, (7.4.4) 
V fyx{xo,yo) fyy{xo,yo) ) 

The matrix H(xo,yo) is called the Hessian matrix, after the German 
mathematician LUDWIG O T T O HESSE (1811-1874). Use (7.4.3) to establish 
the second p a r t i a l s t e s t : the point (xo,yo) is a local minimum of / if 
V/(x0,2/o) = 0, fxx(x0,y0) > 0, and fxx(x0,y0)fvv(x0,y0) - f%y(x0,yo) > 
0. Hint: apply the Taylor expansion to the function g(t) = f(xo + tx, yo + ty) at 
t = 0. 

(b) Using the Hessian matrix, define the directions of the fastest and 
slowest growth of the function at the point of local minimum. Hint: if 
fxx = 4, fyy = 6, and fxy = 0, then the fastest growth is along the y axis, and 
the slowest growth is along the x axis. 

(c) What does the Hessian matrix look like in K3? What are the anal­
ogous conditions for the local minimum? 

(d) How to write the Taylor expansion of order three and higher? 

PROBLEM 4.2. SOLVING THE POISSON EQUATION 

Recall that our study of Maxwell's equations led us to a reasonable sus­
picion that the function U denned by (3.3.14) on page 167 solves the Pois­
son equation (3.3.15). In what follows, the interested reader will produce 
a rigorous proof of this statement and (once again) observe the difference 
between a physical suspicion and a mathematical proof. 

In this problem, we fix a cartesian coordinate system in M3 and 
adopt somewhat more standard notations in advanced mathematics: 
x = (^1,2:2,2:3) or y — (2/1,2/2,2/3) will denote a point in R3, |a;| = 



428 Further Developments 

\J(xi)2 + (X2)2 + (X3)2; a single integral J will denote the volume inte­
gral, and, depending on the variable of integration, dx or dy will denote the 
volume differential dV. For simplicity, we omit the constant eo-

Let p — p(x) be a twice continuously differentiable function in K3 and 
assume that there exists a positive number R so that p(x) = 0 for all 
\x\ > R. Define the function U by 

4?r JR3 \X - y\ 

(a) Verify that the function U is twice continuously differentiable every­

where in M3 and 

where g(x) = V2p(x). Hint: after a change of variables, U(x) = 
~bi /R3 \v\ V' Then verify directly that, in computing \im.e-t0(U(xi+£,x%, £3) — 
U(xi,X2,X3))/e and similar limits, it is possible to take the limit under the in­
tegral; remember, that by assumption on p, the integration is carried out over a 
bounded region. 

(b) Verify that V2U(x) = —p(x) in R3 following these steps. 
Step 1. Given an a > 0, we write R3 as the union of the two sets: 

Gfl = { x £ l 3 : \x\ < a} and Ga = {x€R3 : \x\ > a}; 
Step 2. Write the integral in (7.4.6) as a sum Aa + Ba, where Aa,Ba 

are the integrals over Ga and ( j a , respectively. 
Step 3. By assumption, the function g is bounded. Use Exercise 3.1.24 

on page 140 to conclude that lima_o Aa = 0. 
Step 4. Use Green's Formula (3.2.19) on page 159 with f{x) = l/(47r|i|) 

to write Ba = Ia + Ja, where Ia is the resulting surface integral over dGa. 
Note that there is no other surface integral because p{x) — 0 for large \x\. 

Step 5. Use Exercise 3.1.23, together with the assumed boundedness of 
||Vp|| to conclude that lima_»o-^o = 0. 

Step 6. Rewrite J a again using (3.2.19). Since V 2 ( l / |x | ) = 0 in Ga, 
only the surface integral over dGa remains; using continuity of p, show that 
this surface integral tends to p(x) as a —> 0. 

Step 7. Combine the above steps to conclude the proof. 
(c) State and prove the analogs of (a) and (b) in M2. Hint: instead of 

l/(47r|x|), use (-l/(27r))ln|aj|. 
(d) Can you relax the regularity assumptions about p? For example, 

can you prove the statements in (a) and (b) assuming that p is only once 
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continuously differentiable? Hint: it is possible to prove (a) and (b) under even 
weaker assumptions on p. 

PROBLEM 4.3. LINES OF FORCE OF THE ELECTRIC DIPOLE. 

Recall (page 167) that the lines of force of an electric field E are the 
collection of the solutions of the differential equation r(t) = E(r(t)) for 
all possible initial conditions. An equivalent form of the equation is r(t) — 
—Vf/(r(t)), where U is the potential of the field. For the electric dipole, the 
potential is given by (3.3.24), page 170. We introduce a cartesian coordinate 
system (i, j , K) SO that the coordinates of the positive and negative charges 
are (a, 0,0) and ( -a , 0,0) respectively. 

(a) Convince yourself that the electric field of the dipole has cylindrical 
symmetry, that is, does not change when rotated by any angle about the 
x-axis, on which the charges lie. As a result, it is enough to find the lines 
of force in the (i, j) plane. Hint: 

E{r) = _ J _ ( r~ri r-r2 \ 
K ' 4ne0 \\\r-ri\\3 | | r - r a | | V 

(b) Following part (a), we set r — xi 4- yj, r i = ai, r 2 = —ai. (i) Verify 
that the corresponding equations for the lines of force in the (i, j) plane is 

dx(t) q I x(t) — a 

dt ~ 47T£0 \((x(t)-a)2+y2(t)) 

dy(£L = qy(?)_( 1 

dt 4TT£O \ ((a:(t) - a)a + y2(t)) 

(ii) S e t u = (x + a)/y, v = (x-a)/y to get (du/dv) = ((l + u2)/(l + v2))'i/2. 
Hint: compare the expressions for dy/dx obtained from the above equations and 
by direct differentiation of x = a(u + v)/(u — v), y = 2a(u — v). (iii) Conclude 
that the force lines are defined as the level curves by the following equation: 

(x + a) y/(x - a)2 + y2 - (x - a) y/(x + a)2 + y2 

= C^((x-a)2+y2)((x + a)2 + y2) 

where C is real number. Hint: J ds/(l + s2)3/2 = s/\/\ + s2. (iv) Plot several 
lines of force using a computer algebra system. Note that the points (—a, 0) 
and (a, 0) are always on a line of force, as follows from the equation, but not 
all computer systems will recognize it. Also, the selected range of values 
for x, y can make a big difference in the quality of the picture. 

x(t) + a 

((X(t)+a)2 + y2(t)f\ 

x(t) + a 

Ux{t)+a)2+y2(t)f'\ 
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PROBLEM 4.4. In (3.3.26) on page 171, we approximated l / | | u — v|| when 
||i;||/||u|| is small. In what follows, we get the exact expansion for 1/||M — I>|| 
in powers of s = ||v||/| |ti| |, which holds for all s < 1. 

(a) For |i| < 1 and n > 1, define the functions Pn = Pn(t) so that 

-. OO 

h „, ^ 2 = E p « w * n > N ̂ 1 (7-4-7) 
V1 — 2tx + ar „ 

(i) Convince yourself that each Pn{t) is a polynomial in *. 
(ii) Verify that (n + l)P„+i(*) = (2n + 1)*P„(*) - nP„_i(t) . 
(iii) Verify that (1 - t2)P%(t) - 2tP^(t) + n(n + l)P„(t) = 0. 

(b) Verify that 

1 1 ° ° 

Ti ii = F l E Pn(cos0) sn, 
\\u-v\\ | | « | | ^ 

where s — | |v||/| |ti| | < 1 and cos6 — u • «/( | |u | | | |v||). Hint: \\u - v\\2 = 
\\u\\2(\-2scos6 + s2). 

(c) Discussion. The polynomials P„, n > 0, are called Legendre's 
polynomials. These polynomials appear in the analysis of the Laplace 
operator in spherical coordinates, see page 370. Also, see Exercise 4.4.24, 
page 238. 

7.5 Complex Analysis 

For many readers, the presentation in this book could be the first sys­
tematic treatment of complex numbers. Accordingly, in Problem 5.1 we 
discuss some algebraic and number-theoretic ideas used in the construc­
tion of complex numbers; an interested reader is encouraged to check with 
an abstract algebra textbook for basic definitions. Problem 5.2 discusses 
quaternions, which were the only graduate-level mathematical topic stud­
ied in American Universities in the 1880s, but now are all but forgotten. 
Problem 5.3 discusses a connection between vector fields in the plane and 
analytic functions; this connection is the foundation of numerous appli­
cations of complex numbers in the study of two-dimensional electrostatic 
fields and two-dimensional fluid flows. Problem 5.4 is an addition to the 
topic of conformal mappings. Problem 5.5 discusses one useful method of 
computing a power series expansion. Problem 5.6 introduces the subject 
of zeros of an analytic function. Problem 5.7 leads the reader through a 
rigorous computation of the Fourier transform of the normal probability 
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density; a non-rigorous computation is on page 272. Finally, Problem 5.8 
introduces a standard but somewhat advanced tool in residue integration, 
known as Jordan's Lemma. 

PROBLEM 5.1. SOME ALGEBRA AND NUMBER THEORY. 

(a) A rational number can be represented using an eventually periodic 
decimal fraction. For example, 1/3 = 0.333..., which we will denote by 
0.(3). Indeed, 0.(3) = 0 . 3 i X o 1 0 _ f c = 0.3/(1 - 0.1) = 0.3/0.9 = 1/3, 
where we used the formula for the sum of the geometric series. Note that 
the same argument yields 0.(9) = 1, therefore, by convention, we avoid 
infinite tails of nines, and use tails of zeros instead. 

Find and verify the decimal expansions for 1/6 and 1/7. 
(b) Use the division algorithm to prove that every rational number has 

a decimal expansion that is eventually periodic. 
(c) Use the formula for the sum of the geometric series to show that 

every eventually periodic decimal fraction represents a rational number. 
(d) Prove that v 2 is not rational. Hint: go by contradiction. If y/2 = m/n 

in the lowest terms, then m = In and both m and n must be multiples of 2. 
(e) Define the set Q[\/2] as the collection of real numbers of the form 

a + y/2b, where a, b are rational numbers. Verify that this set is a field (that 
is, every element has an additive inverse, and every nonzero element has a 
multiplicative inverse; consult an algebra textbook for the precise definition 
of the field). Hint: at some point, you have to use the result of part (d) to make 

sure everything works out as it should. 

(f) Fix a non-zero integer d, positive or negative, so that d is not divisible 
by a square, that is, n2 does not divide d for every integer n. Consider the 
numbers a + \[d b with integer a, b; the collection of all these numbers is 
denoted by Z\\fd\. Show that Z[y/d\ is a ring, that is, the numbers a+Vdb 
can be added, subtracted, and multiplied just as the ordinary integers; check 
an algebra book for the precise definition. 

(g) Consider the ring Z\\fd] from part (f). An element u in Z[y/d] is 
called a un i t or an i n v e r t i b l e element if uv = 1 for some v € rL\\fd\. 
Verify that V2 ± 1,±1 are units in Z[\/2]. Are there any other units in 
Z[>/2]? 

(h) Once again consider the ring l\\fd\. Note that all ordinary integers 
are in Z[y/d] and some of them can be factored in unusual ways. For 
example, in Z[y/2] we have 2 = (2 - \/2)(2 + ^2 ) . Still, since 2 ± y/2 = 
V2(y/2 ± 1), and, as we saw in part (g), sjl ± 1 are units in Z[\/2], the 
number 2 cannot actually be factored in a way different from 2 = 2 - 1 . 
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(Even in Z, you could write 2 = 2- (—1) • (—1), but you would not consider 
it a different factorization of the number 2.) On the other hand, 7 = 
(3 - \/2)(3 + V2) is a non-trivial factorization that is not available in Z. 
Show that if we do not count the extra factorizations involving units, then 
every element of Z[\/2] has a unique f ac to r i za t i on , up to a permutation 
of factors. 

(i) For some d, certain elements of 1\yd] have more than one distinct 
factorization. For example, 9 = 3 • 3 = (2 + i\/5)(2 — iy/5) in Z[i\/5] = 
1>\\f—5] (the only units in Z[i\/5] are ±1 . Find another example of non-
unique factorization with a different d. Can you find a condition on d to 
ensure unique factorization in Z[vd]? Hint: the last question is hard, and 
the complete answer is not known. For the background, see the books Algebra by 
M. Artin, 1991, and Algebraic Number Theory by E. Weiss, 1998 

PROBLEM 5.2. MULTIPLICATION AND DIVISION IN HIGHER DIMENSIONS. 

Multiplication and division are well defined for the real numbers, and 
the complex numbers extend these operations to the Euclidean space 
R2: (xi,yi)(x2,V2) = (xix2 - yiV2,x1y2 + yix2), (xi,yi)/(x2,y2) = 
(xi>yi){x2, — J/2)/(^l + vVl- This multiplication is both associative and 
commutative. 

Can one define multiplication and division in M" for n > 2? The answer 
is "no" for all n except n = 4 and n = 8. 

For n = 4, the multiplication is defined as follows: 

(xi,x2,x3,xi)(y1,y2,y3,yi) = {zi,z2,z3,z4), 

z\ — xiyi - x2y2 - x3ys - x42/4, z2 = xxy2 + x2y\ + x3y4 - x4y3, (7.5.1) 

zz = 2:12/3 - X2J/4 + X32/1 + x4y2, z4 = xiy4 + x2y3 - x3y2 + x4y\. 

By analogy with complex numbers, we write X = x\ + ix2 + jx3 + kx4 for 
suitable i,j,k; the corresponding object X is called a quaternion. Verify 
the following statements: 

(a) The multiplication defined by (7.5.1) is consistent with the product 
XY of quaternions, computed using the usual distributive laws and the 
following multiplication table: 

i 

3 
k 

i 

- 1 
-jfe 

3 

3 
k 

1—
1 

1 

—i 

k 

-3 
i 

- 1 
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The first term in the product comes from the left-most column, the second, 
from the top row. For example, ij = k, ji = —k, kj = —i. In particular, 
multiplication of quaternions is non-commutative. 

(b) Multiplication is associative: (XY)Z = X(YZ). 
(c) If we define \X\ = y/x'f + x'i. +xj +xj, then \XY\ = \X\ \Y\. 
(d) If we define X = x\ - 1x2 - JX3 - kx^, then XX = XX = \X\2. As 

a result, the definition of division for quaternions is X/Y = XY/\Y\2. 
Discussion. In K8, the corresponding objects are called octonions; mul­

tiplication of octonions is both non-commutative and non-associative. For 
more details, see the book On Quaternions and Octonions by J. H. Conway 
and D. A. Smith, 2003. Quaternions were discovered by W. R. Hamilton 
on October 16, 1843, after some 15 years of intensive work. The formu­
las i2 = j 2 = k2 = ijk = — 1 he carved that day in the stone of Broome 
(or Brougham) Bridge across the Royal Canal in Dublin might still be 
there. Octanions were discovered shortly after, on December 26, 1843, by 
Hamilton's friend JOHN T. GRAVES (1806-1870). Still, the British mathe­
matician ARTHUR CAYLEY (1821-1895) re-discovered octanions on his own 
and published the first paper on the subject in 1845. As a result, octanions 
are sometimes called the Cayley numbers or Cayley algebra. 

PROBLEM 5.3. VECTOR FIELDS IN THE PLANE. 

Let F = P(x, y) i + Q(x, y) j be a continuously differentiable vector field 
in R2, defined in cartesian coordinates. In applications, F usually repre­
sents the velocity v of moving fluid or the intensity E of electrostatic field. 
We introduce the following objects: 
• the divergence of F, as a scalar field div.F = Px + Qy; 
• the v o r t i c i t y of F, as a scalar field wp = Qx — Py] 
• a s t reamline of F, as a curve x = x(t), y = y(t) satisfying the system of 
ordinary differential equations x'(t) — P(x(t),y(t)), y'(t) = Q(x(t),y(t)); 
• a critical, or stationary, point of F, as a point (£0,2/0) such that 
F(xo,yo) = 0. 

A vector field F is called 
• so lenoidal , if d i v F = 0; 
• i r r o t a t i o n a l , if up = 0; 
• harmonic, if it is both solenoidal and irrotational. 

Note that, if we consider a vector field F in M3 defined by F(x, y, z) — 
F(x,y) + 0 k, then curl.F = (OJF) k. Note also that a streamline is a 
trajectory of a point mass m moving in the plane so that the velocity of m 
at point (x,y) is F(x,y). 
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(a) Let G be a simply connected domain. Verify that div F = 0 in G if 
and only if there exists a scalar field U, called the stream function of F, 
so that every streamline of F in G is a level set of U. 

(b) Let G be a simply connected domain. Verify that UJF = 0 in G if 
and only if there exists a scalar field V, called the v e l o c i t y p o t e n t i a l of 
F so that F = grad V in G. A level set of the velocity potential is called 
an equ ipo ten t i a l l i n e of the field F. 

(c) Assume that F is a harmonic vector field in a simply connected 
domain G. (i) Show that F has both a stream function and a velocity 
potential, (ii) Let U and V be a stream function and a velocity potential 
of F, respectively. Show that U and V are conjugate harmonic functions. 
The analytic function f(x + iy) = V(x, y) + iU(x, y) is called the complex 
p o t e n t i a l of the harmonic vector field F. (iii) Verify that if / = f(z) is a 
complex potential of a harmonic vector field F = Pi + Qj, then F — / ' , 
in the sense that P = 3?/' and Q = - 9 / ' . 

(d) Assume that (xo, yo) is a critical point of a harmonic vector field F. 
Show that there exist a positive integer number n, a positive real number 
S, and a function g = g(z) so that g is analytic at 0, g(0) = ZQ = XQ + iyo, 
g'(0) ^ 0, and the complex potential / of F satisfies f(g(z)) = f(z0) + zn 

for \z\ < S. 
(e) According to part (c), every harmonic vector field is completely 

characterized by its vector potential, and conversely, every analytic function 
is a vector potential of a harmonic vector field. For each of the following 
analytic functions, find the corresponding vector field and sketch a few 
of its streamlines and equipotential lines, (i) f(z) = Az, where A is a 
complex number, (ii) f(z) = z2; explain why the corresponding vector 
field can model fluid flow around a corner, (iii) f(z) = clnz, where c 
is a real number; explain why the corresponding vector field can model a 
source if c > 0 and a sink if c < 0. (iv) f(z) = iclnz, where c is a real 
number; explain why the corresponding vector field can model a vortex, 
(v) f(z) = A\nz, where A is a complex number. What can this vector 
field model? (vi) f(z) = c/z, where c is a real number; explain why the 
corresponding vector field can model the electric field of a point dipole. 
What complex potential can model the electric field of a regular (non-
point) dipole? (vii) f(z) = z + z~l; explain why the corresponding vector 
field can model fluid flow around a cylinder of radius 1. How would you 
model flow around a cylinder of radius Rl 

PROBLEM 5.4. M O R E ON CONFORMAL MAPPINGS. 
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(a) The function w(z) = (az + b)/(cz + d) is called l i n e a r - f r a c t i o n a l . 
Verify that if ad - be > 0 and c ^ 0, then (i) the mapping denned by w is 
conformal everywhere except ZQ = —d/c\ (ii) the image of a line or a circle 
is a line or a circle (line can become a circle and a circle, a line). 

(b) Consider the function w(z) = - I z -I— I. (i) Verify that it defines a 

conformal mapping for all z ^ ± 1 . (ii) Show that this function maps a circle 
\z\ = a, a ^ 1, to an ellipse with foci at ±1 and an opposite orientation; 
(iii) Show that this function maps a line arg(z) = a to a hyperbola with 
foci at ±1 . (iv) Let C\ be circle with center at z\ = i/8 and passing through 
the points ±1 . Let C2 be a circle of radius y / l T ( l / 3 2 ) so that C\ touches 
C2 from the inside at the point —1 (draw a picture). Find the images of C\ 
and C2 under w. Hint: the image of C\ has empty interior. 

(c) Discussion. The function w in (a) defines the Mobius 
t ransformation, after A. F. MOBIUS. The collection of these transforms 
is a group, and is widely used in algebraic geometry and related areas of 
mathematics. The function w in (b) is called Zhukovsky's function, af­
ter the Russian mathematician NIKOLAI YEGOROVICH ZHUKO-VSKY (1847-
1921), who used it to calculate the lift of an airplane wing. The image of the 
circle C2 in part (iv) does resemble the profile of a wing and is sometimes 
called Zhukovsky' s a i r f o i l . 

PROBLEM 5.5. Consider a function g(z) = !Cfc>o ak(z ~ zo)k a n d assume 
that the power series converges for \z — zo\ < R for some R > 0. Let 
C{ZQ,Z\) be a piece-wise smooth curve starting at ZQ, ending at z\, and 
always staying inside the disk \z — ZQ\ < R. Using the same arguments as 
in Step 2 of the proof of Theorem 4.3.4, page 211, show that 

/ 9(z)dz = Y.^-M-^)k+l-

Since the function g is analytic, the integral does not depend on the par­
ticular choice of the curve C{ZQ, z{). 

Use the result to find the power series expansion of 

JcQ,z C 

at ZQ = 0. 

PROBLEM 5.6. (a) Let z*,z\,Z2,... be complex numbers in a domain G 
of the complex plane so that limn^oo zn = z* and let f be & function 
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analytic in G so that f{zn) = 0 for all n > 1. Prove that f(z) = 0 in some 
neighborhood of the point z„. Hint: by continuity, f(z*) = 0. Then consider 
the Taylor series of f at z». (b) Consider the function f(z) = sin(l/,z) 
which is analytic for all z ^ 0 and is equal to zero for zn = l/{im). Is this 
a contradiction of the statement of part (a)? 

PROBLEM 5.7. Verify that J = X!^exp (-^- - ixuj\ dx = v ^ e - " 2 / 2 , 

when w is a real number. Here is a possible argument to follow. 
Step 0. |e-*a/2-fa<-| = e-x 2 /2 ) a n d | ° ° o e -x 2 / 2 = ^/2 (known from 

calculus, or see page 272). This means / exists. 
Step 1. x2+i2xu = (x + icu)2+uj2, so I = e~w2/2limyi-.00 Jc e~z2/2dz, 

where CA is the line segment from the point z\ = —A + iuj to z-i = A + iu, 
parallel to the real axis. 

Step 2. Consider the boundary CA,I of the rectangle with vertices at the 
points ±A and ±A + iu so that the orientation of CA,I is consistent with 
the orientation of CA (draw a picture). Then §c e~z l2dz = 0 for every 
A. 

Step 3. Show that the integrals of e~z l2dz along the vertical sides of 
CA,I tend to zero as A —> oo. 

Step 4- Conclude that lim^^oo / c e _ z /2dz = / ^ e~x I2 = ^K/2. 

PROBLEM 5.8. JORDAN'S LEMMA. 

(a) The following result, known as Jordan ' s Lemma, allows evaluation 
of integrals of the type (4.4.20), page 229, using residue integration when 
the degree of Q is only one unit bigger than the degree of P. 

Consider a function g = g{z) and the semi-circle CR = {z : \z\ = 
R, Qz > 0}. Assume that g is continuous for 9z > 0 and lim max |<?(.z)| = 

R—>oo Z&CR 

0. Show that lim / g(z)elazdz = 0 for every a > 0. 
R—»oo Jc 

Hint: \eiaz\ = e-
aRsin* 0n CR, and simp > 2ip/-rr for0<<p< TT/2. 

(b) Use the result to show that J^xsinx/il + x2)dx = ir/e. Note 
that the integral does not converge without the since factor. 

7.6 Fourier Analysis 

The main part of this section is Problem 6.2, which outlines the proof of the 
theorem about point-wise convergence of the Fourier series; the details can 
be found in several sections of the book [Korner (1989)]. An almost imme­
diate consequence of the theorem is the possibility to approximate a contin-



Fourier Analysis 437 

uous function with polynomials, which the reader can establish by solving 

Problem 6.3. Problem 6.1 presents a s tandard construction illustrating no 

connection between mean-square and point-wise convergence. Problem 6.4 

discusses some fine points related to the uniform convergence of Fourier se­

ries. Problem 6.5 is about a useful characterization of Dirac's delta function. 

Problem 6.6 presents two interesting properties of the Laplace transform. 

P R O B L E M 6.1. For n > k > 1 define function fn,k = fn,k{x) s o t n a t 

fn,k(x) = < n n 
I 0, otherwise. 

For N > 1, define gN(x) = fn,k{x) XN= (n(n - l ) / 2 ) + k. 

(a) Verify t h a t the sequence {gN,N > 1} coincides with the sequence 

{/ l , l ) /2 , l , /2 ,2, /3 , l ! /3 ,2, /3 ,3) }• 

(b) Draw the graph of gx for 1 < N < 6. (c) Show tha t 

lini;v—>oo Jn 9%(x)dx = 0. Hint: the value of the integral is 1/n. (d) Show tha t 

if 0 < xo < 1, then lim^-too 9N{%O) does not exist. Hint: for every n > 1, 

there exists at least one k so that 1 < k < n and fn,k{xo) = 1- (e) Consider 

the sequence hn(x) = y/n, 0 < x < 1/n; hn(x) = 0 for 1/n < x < 1. Show 

tha t l i m ^ o o hn(x) = 0 for all x G (0,1) , but limx_>00 J0 \hn(x)\2dx = 1. 

P R O B L E M 6.2. Prove Theorem 5.1.5 on page 251 by following the steps 

below. 

Step 1. Verify t ha t / + = / ( : r + ) and / _ = f(x~) indeed exist for all x. 

Hint: you only need to worry about points where f is not continuous, If XQ is such 

a point, then there exist numbers a, b so that a < xo < b and f has a continuous 

bounded derivative on (a,xo) and on (xo, b). Use the mean-value theorem and the 

Cauchy criterion for the existence of the limit to show that, for every sequence of 

positive number e„ —> 0 as n —> oo, the limits of f(xo + £n) and f(xo —£n) exist. 

Step 2. Show tha t |c/t| < J4 / ( | /C | + 1) for all k. Hint: we did it in the proof 

of Theorem 5.1.6. 

Step 3. Introduce the following notations: 

N 1 N 

Sf,N{x)= Yl cfceifcx> af,N = jrriY,sf<kW-
k=-N k=0 

Show that if / is continuous at x, then limjv_*oo ^ / , A T ( ^ ) = f(x), and the 
convergence is uniform if / is continuous everywhere (this is the key step 
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in the whole proof). Hint: show that 

1 r 
<?f,N{x) = 7^ f(y)KN(x - y)dy, 

where 

, w _ f N + l-\k\ ikx_ 1 /sin((Af + l W 2 ) \ 2 

TTien s/iotu that (1/2TT) J"* KN{X)CLX = 1 /or a£Z iV, w/ii/e limjv-.oo KN(X) = 0 
uniformly on the set 8 < \x\ < -K for every 8 > 0. As a result, if f is continuous 
at x, then, for large N, 

hf_ f^KN(x-y^dy-w = hf{f{y)~KX»KN(X-y^dy*°-
The function KN is called the F e j 6 r k e r n e l , after the Hungarian mathe­

matician L I P O T F E J E R (1880-1959), who, in 1900, showed tha t a continu­

ous function can always be reconstructed from its Fourier coefficients using 
af,N-

Step 4. For integer M > N > 0, define 

<rf,N,M(x) = M_N(iM+l)aM,i{x) - (N+l)aNJ(x)). 

Show tha t if / is continuous at x, then, for every fixed positive integer k, 

we have 

Jim o-ftkNXk+1)N(x) = f(x), 

and the convergence is uniform if / is continuous everywhere. Hint: this is 

easy; just use the result of the previous step. 

Step 5. Show tha t there exists a positive number B such tha t , for all 

x and for all positive integer k, M, N satisfying kN < M < (k + l)N, we 

have 

k/,fcjv,(fc+i)iv(z) - <S/,M| < B/k. 

Hint: first show that \o-flkN,(k+i)N{x) -SftM\ < Y,kN<i<(k+i)N \c'\> and tflen use 

M < A / ( | J | + 1). 

Step 6. By combining the results of Steps 4 and 5, show tha t Sf{x) = 

f{x) if / is continuous at x, and the Fourier series converges to / uniformly 

if / is continuous everywhere. This takes care of convergence a t the points 

of continuity of / . 
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The idea now is to verify the theorem for a special discontinuous func­
tion, and then use the result to handle the general case. 

Step 7. Consider the 27r-periodic function g so that g(x) = x for |a;| < TT; 
it does not matter how you define g at the points ±TT, for example, put g 
equal to zero. Then g is continuous everywhere on K except the points 
x = IT + 27m, n = 0, ± 1 , ± 2 , . . . (draw a picture). The result of Step 6 
implies Sg(x) = g(x) for all x ^ IT + 2nn, and direct computations show 
that Sg(iT) = 0 = (g(iT+)+g(TT~))/2. In other words, the complete theorem 
holds for the function g. 

Step 8. Assume that / is not continuous at x = IT. Define the func­
tion F so that F(TT) = ( / (TT+) + / ( T T - ) ) / 2 and F(x) = f(x) + (/(TT+) -
f(ir~))g(x)/(2iT), where g is from the previous step. Show that F is con­
tinuous at TT, that is, F(TT+) = F(TT~) = F(TT) (keep in mind that, by 
periodicity, F(TT+) = F(—TT+)). Then use the results of Steps 6 and 7 to 
conclude that 5/(TT) = (/(TT+) + / ( T T - ) ) / 2 -

Step 9. Finally, modify the arguments in Step 8 to consider a point 
other than TT. 

PROBLEM 6.3. APPROXIMATION BY POLYNOMIALS. 

(a) Show that, for every continuously differentiable function / = f{x) 
on a bounded interval [a, 6] and for every e > 0, there exists a polynomial 
P = P(x) such that maxa<x<t | /(x) — P(x)\ < e. Hint: Consider the Fourier 
series for the function g(t) = /(a* cos t + 6*), —TT < t < TT, where a* = (b — a)/2, 
b* = (a + b)/2; note that g(—Tr) = gin) = f(a). Then prove by induction that 
cos(ni) = Tn(cost) for some polynomial Tn of degree n. 

(b) Next, use Step 4 from the previous problem to show that, for every 
CONTINUOUS function / = f(x) on a bounded interval [a, b] and for every 
e > 0, there exists a polynomial P = P(x) such that maxa<x<t \f(x) — 
P{x) | < e. That is, extend the result of part (a) to functions that are only 
continuous on [a, b]. 

(c) Discussion. The polynomials Tn, n > 1 from part (a) satisfy 
Tn+\{x) = 2xTn(x) — Tn-i(x). They are the Chebyshev polynomials 
of the first kind, and, for each n > 0, Tn is the polynomial solution of the 
differential equation (1 — z2)w"(z) — zw'(z) + n2w(z) = 0, that is, equation 
(4.4.43), page 237, with n = 0, v = -1, \ = n2. The result of part (b) is 
known as We ie r s t r a s s ' s polynomial approximation theorem. 

PROBLEM 6.4. Consider the 27r-periodic function g = g(x) so that g(x) = 
x, \x\ < TT and g(±Tr) = 0. The Fourier series for g does not converge 
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uniformly to g on [—n, TT], because otherwise Sg would be a continuous 
function. Does the Fourier series for g converge uniformly on (—7r,7r)? 
Hint: no, for, if it did, the convergence at the points ±n would imply uniform 

convergence on [—7r,7r]. Try to understand why. 

PROBLEM 6.5. Let <p = <p(x) be a function with the following properties: 
(a) f^° <p(x)dx = 1; (b) lim|a.|_00 ip{x) = 0. Show that l i m n - ^ nip(nx) = 
6(x), the Dirac delta function; see page 275. In other words, show that, for 
every continuous function / = f(x) that is equal to zero for all sufficiently 
large |x|, limn—a, n / ^ f(x)<p(nx)dx = /(0) . 

PROBLEM 6.6. Assume that / = /(£) is a bounded continuous function on 
[0, +oo) and liniz—oo f(t) = A. Denote by F = F(s) the Laplace transform 
of / . Show that lim sF(s) = A, lim sF{s) = / (0) . 

s—>0,s>0 s—>oo 

7.7 Par t i a l Differential Equat ions 

Three problems in this section are of a fundamental nature: Problem 7.5 
discusses Bessel's functions in some detail; Problem 7.7 gives a fairly com­
plete account of the Sturm-Liouville problem; Problem 7.14 introduces fi­
nite elements in two dimensions. There are two more problems related 
to numerical methods that are rather comprehensive: Problem 7.12 out­
lines the stability analysis of finite difference schemes, and Problem 7.13 
connects the finite difference schemes with the Fast Fourier Transform. 
Problem 7.9 establishes the invariance of Maxwell's equations under the 
Lorentz transformation and also introduces the subject of electromagnetic 
radiation. Problems 7.1, 7.2, 7.3, 7.4, 7.6, and 7.8 are extensions of the 
examples discussed in the main text, although these extensions are not al­
ways easy. Problem 7.10 discusses some basic methods used in the analysis 
of the Euler and Navier-Stokes equations. Problem 7.11, although related 
to a deep and complicated subject, is mostly for fun. 

PROBLEM 7.1. Derive the equation describing the temperature u = u(t, x) 
in a homogenous thin wire of constant cross-section if the lateral surface 
is not insulated. Hint: if U0 = U0{t,x) is the outside temperature, then ut = 
auxx + C(u — U0). 

PROBLEM 7.2. Use separation of variables to find a solution of the following 
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initial-boundary value problem: 

ut = uxx, t > 0, 0 < x < L; u(0,x) = f(x), 0 < x < L; 

au(t,0) + bux(t,0) = A(t), cu(t,L) + dux(t,L) = B(t), t>0, 

where a, b, c, d are real numbers so that a2 + b2 > 0, c2 + d2 > 0, and 
A = A(t), B = B(t) are known continuous functions. 

PROBLEM 7.3. Find a solution of the initial-boundary value problem 

utt — c2uxx, t>0, 0 < x < L; 

u(0,x) = ut(0,x) =0, 0<x< L; (7.7.2) 

u(t, 0) = F(t), u(t, L) = 0, t > 0, 

Is a standing wave possible? 
Note that (7.7.2) models a string with one end fixed and the other 

moving up and down according to F(t). 

PROBLEM 7.4. Consider the telegraph equation 

Uxx(t, x) = aUtt(t, x) + bUt(t, x) + cU(t, x), t > 0, 

with positive real numbers a,b,c, and initial conditions U(0,x) = f(x), 
Ut(0,x) — g(x) (see page 334. Find the formula for U when 
(a) i £ l ; 
(b) x 6 (0,+oo) with boundary condition U(t, 0) = F(t); 
(c) x G (0,L) with boundary conditions U(t,0) = Fi(t), U(t,L) = F2(t). 

PROBLEM 7.5. BESSEL'S FUNCTIONS. 

(a) Let V = V(s) be a solution of (6.3.26) on page 342, with q = N2. 
Verify that the function F(s) = y/sV(s) satisfies 

F"(s)+(l-q~(l/4AF(s)=0. (7.7.3) 

Use this result to conclude that the Bessel function JM has infinitely many 
positive zeroes and that limx-xx, \J^{x)\ — 0. Hint: JN(S) = F{s)/y/s. 

(b) Use the power series representation of JN (see (6.3.27) on page 342) 
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to verify the following equalities: 

JN(-z) = (-l)NJN(z), 

(Z
nJN(z))' = zNJN^(z), (z-NJN(z))' = -z-NJN+1(z), 

zJ'N(z) = NJN(z) - zJN+1(z) = -NJN{z) + zJN-!(z), (7-7.4) 

/ CNJN-i(C)dC = ZNJN(Z), C(0, Z) is a path from 0 to z. 
JC(0,z) 

(c) Verify that 
(i) all zeroes of JN are real; 
(ii) JN{X) = 0 if and only if J/v(—x) = 0; 
(iii) For N > 0, JN has a zero of multiplicity N at x = 0; 
(iv) If JN(x) = 0 and x ̂  0, then J'N(x) ^ 0 and JM(x) ± 0 for all M ^ N. 

(d) Let ak be a positive zero of Jjy. Verify that 

£ (jN{aiN\/R))2rdr = ^ ^ + 1 ( a ^ ) . (7.7.5) 

(e) Show that 

i r 
JN(x) = - / cos(./V0-:rsin6>)d6> (7.7.6) 

7T Jo 

and use the result to show that lim^i^oo \JN(X)\ = 0. Hint: for (7.7.6) with 
N = 0, consider / ^ eixsined6 and note that / ^ sin2fc Wfl = (27r(2fc)!)/(2fcfc!)2. 

(f) All other solutions of equation (6.3.26) on page 342 have a singularity 
at zero. What is the type of the singularity for different TV? Hint: start with 
(4-4-39) on page 236. 

PROBLEM 7.6. (a) Find the eigenvalues and eigenfunctions of the Dirich-
let Laplacian in a ball of radius R; see (6.3.13) on page 338. Find the 
multiplicity of each eigenvalue. 

(b) What sound is produced by a hollow sphere? In other words, solve 
utt = V2u with u = u(t, 9, tp), 6 G [0, 2TT], <p G [0, n] in spherical coordinates. 
How does your answer depend on the radius of the sphere? 

(c) What sound is produced by a solid ball of radius Rl In other words, 
solve utt = V2u with u = u(t, r, 8, <p) in spherical coordinates 0 < r < 
R, 9 G [0,2ir],ip G [0,7r]. HOW does your answer depend on the radius of 
the ball? 

Hint: for each problem, review the computations related to the hydrogen atom 
starting on page 368. See also Section 17 of the book Boundary Value Problems 
and Orthogonal Expansions by C. R. MacCluer, 1994-
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P R O B L E M 7.7. T H E S T U R M - L I O U V I L L E P R O B L E M IN O N E D I M E N S I O N . 

Each of the following three eigenvalue problems is known as the 

S t u r m - L i o u v i l l e problem, after the French mathematicians JACQUES 

C H A R L E S FRANgois S T U R M (1803-1855) and J. Liouville, who pioneered 

the work on the subject in the 1830s: 

^ (p(x)u'(x))' + q(x)u(x) = Xu(x), (7.7.7) 

P(x)u"{x) + Q(x)u'{x) + R(x)u(x) = X u(x), (7.7.8) 

-u"{x) + V(x)u(x) = Xu(x). (7.7.9) 

In each case, we assume tha t a; is in a bounded interval (a, b), the real-valued 

functions w,p,p', q, P, Q, R, V are continuous on (a, b), the functions w,p, P 

satisfy w(x) > 0, 0 < p(x) < C, 0 < P(x) < C for all x e (a, b) and some 

C > 0, and the real-valued function u satisfies the boundary conditions 

ci u(a) + C2 v!(a) — 0, C3 u(b) + C4 u'(b) — 0; (7.7.10) 

we will see tha t sometimes, instead of one or both boundary conditions, 

it is enough to require only the boundedness of the solution u near the 

corresponding end point. The real numbers c\, 02,03, C4 satisfy c\ + c\> 0, 

c§ + c\ > 0, and are sometimes chosen as Ci = sina,C2 — cos a, C3 = 

sin/3, C4 = cos/3. 

(a) Equivalence of the three equations (7.7.7)-(7.7.9). 

(i) Verify tha t (7.7.7) is a particular case of (7.7.8). (ii) Let u be a solution 

of (7.7.8) satisfying both boundary conditions (7.7.10). Assume tha t the 

functions P, Q are continuously differentiable on (a, b) and define A{x) = 

f*o(Q(t)/P{t))dt, where x0 £ [a,b]. Show tha t v{x) = eA^l2u{x) satisfies 

(7.7.7) and find the corresponding functions w,p, q. W h a t are the boundary 

conditions satisfied by v? Can it happen tha t one or both of those conditions 

disappear? Hint: start by dividing by P in (7.7.8), and then do the substitution 

u = ve~A/2. (hi) Let u"(x) + (£(1) + Xr(x))u(x) = 0 and assume tha t 

the function r = r(x) is twice continuously differentiable and positive on 

[a, b]. Define T(X) = fx y/r(t) dt, and let the function v = v(x) be such that 

u(x) = v(T(x))r~1^4(x). Verify tha t v satisfies (7.7.9), t ha t is, under certain 

conditions, we have the equivalence between (7.7.8) and (7.7.9). W h a t are 

the boundary conditions for v if u satisfies both boundary conditions in 

(7.7.10)? 

(b) Properties of eigenvalues and eigenfunctions. 

(i) Let K = K(X) be a we igh t f u n c t i o n on (a, b), t ha t is, K is continuous 
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on (a, b) and satisfies K{X) > 0, x £ (a,b). Let HK be the collection of 
real-valued functions / that are twice continuously differentiable on [a, b] 
and satisfy Ja \f(x)\2K(x)dx < oo together with the boundary conditions 
(7.7.10). Verify that if, for f,g £ MK, we define 

(/>s)* = / f{x)g(x)K(x)dx, 
Ja 

then MK becomes an inner product space, (ii) Show that if we take 
the weight function K(X) = w(x), then the operator A\ defined by 
(7.7.7) is symmetric on MK. More precisely, denote by ^i[u](x) the left-
hand side of (7.7.7) and verify that (v,Ai[u])K — (Ai[v],u)K (that is, 
/ w(x)v(x)Ai[u](x)dx = Ja w(x)u(x)Ai[v](x)dx) for every u,v £ M.K. 
Note that no boundary condition is necessary at a and/or b if p van­
ishes at a and/or b. Hint: as you integrate by parts with a non-vanishing 
p, note that (c\,C2) is a nontrivial solution of the system c\u{a) + C2u'(a) = 
0, dv{a) + C2v'(a) = 0, which means u(a)v'(a) = u'(a)v(a). (iii) Denote by 
.42[w](z) the left-hand side of (7.7.8) and define 

w{x) = ^)exp{Lx
0m

dt)' xo€[a'b]- (7-7-n) 

Verify that if we take the weight function K(X) = W(x), then A2 is a sym­
metric operator on MK. Give three examples when one or both boundary 
conditions (7.7.10) can be avoided (in each example, you must provide three 
specific functions P,Q,R). (iv) Verify that if we take the weight function 
K(X) = 1 for all x £ (a,b), then the corresponding operator in (7.7.9) is 
symmetric on MK. (v) Conclude that, for each of the three problems, the 
eigenvalues are real and the eigenfunctions corresponding to different eigen­
values are orthogonal in the appropriate space HK. Hint: see Theorem 6.2.1 on 
page 329. (vi) Show that if at least one of the boundary conditions (7.7.10) 
is necessary for the symmetry of the corresponding operator A, then each 
eigenvalue is simple, that is, any two eigenfunctions corresponding the same 
eigenvalue are multiples of each other. Hint: if two linearly independent eigen­
functions correspond to the one eigenvalue, then all solution of the corresponding 
second-order equation must satisfy this condition. Still, there are should be solu­
tions that do not satisfy this condition, (vii) For each of the three equations, 
find sufficient conditions to have all eigenvalues negative. Hint: go over the 
integration by parts; for (7.7.7), you need w(x)q(x) < - c < 0. (viii) For each of 
the three equations, determine when the per iod ic boundary condi t ions 
u(a) = ±u(b), u'{a) = ±u'(b) (you take either + or - in both equalities) 
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result in a symmetric operator. Hint: go over the integration by parts; for 
(7.1-7), you needp(a) =p(b). Show that, with periodic boundary conditions, 
eigenvalues can be multiple, but the multiplicity is at most two. 

(c) Particular examples. Consider equations (4.4.40) and (4.4.43)-
(4.4.47); see page 236. Write each equation in the form (7.7.7); you can 
assume that everything is real-valued. 

(d) Discussion. A Sturm-Liouville problem is called r egu la r if 
• in (7.7.7), the functions w,p,q are bounded on [a, b] and p(x) > c > 0, 
w(x) > c > 0; 
• in (7.7.8), the functions R, W are bounded on [a,b] and W(x) > c > 0, 
where W is from (7.7.11); 
• in (7.7.9), $b

a\V{x)\dx<oo. 
In most other cases, including the unbounded interval (a, b) or vanishing of 
the functions p and/or w in (7.7.7), the problem is called s ingular . For 
the regular problem, the conclusions of Theorem 6.2.2 on page 330 hold. 
Thus, every twice continuously differentiable function satisfying either the 
boundary conditions (7.7.10) or the periodic boundary conditions, is repre­
sented by a generalized Fourier series of the eigenfunctions Uk of the regular 
Sturm-Liuoville problem, and the series converges uniformly on [a, b]. For 
example, for (7.7.7), the series expansion is 

_ faw(x)f(x)uk{x)dx 
f(x) = Y/fkUk(x), fk = 

k=l Ja W(x)ul{x)dx 

This property of the regular Sturm-Liuoville problem is known as 
S tek lov ' s Theorem, after the Russian mathematician VLADIMIR A N -

DREEVICH STEKLOV (1864-1926), who made major contributions to the 
subject in the early 1900s. The proof of Steklov's Theorem can be found in 
many advanced text books that cover ordinary and/or partial differential 
equations; see, for example, [Levitan and Sargsjan (1991)] or [Shu (1987)]. 
More generally, if the function / is piece-vice continuously differentiable on 
[a, b], then the sum of the Sturm-Liouville eigenfunction expansion of / co­
incides on (a, b) with the sum of the Fourier series for / . While an analog of 
Steklov's Theorem holds for many singular problems, the statement and the 
proof must usually be carried out on a case-by-case basis. The book Sturm-
Liouville and Dirac Operators by B. M. Levitan and I. S. Sargsjan, 1991, 
provides more information about the Sturm-Liouville problem (7.7.9), both 
regular and singular. Numerous versions of the Sturm-Liouville problem on 
(0, +oo) and (—oo, +oo) are presented as problems in the book Linear Op-
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erator, Part II: Spectral Theory, by N. Dunford and J. Schwartz, see pages 
1551-1576 in Wiley Classic Library Publication of 1988. 

PROBLEM 7.8. A GENERALIZATION OF THE HYDROGEN ATOM MODEL. 

Consider a charged particle A moving around a charged particle B. 
Assume that the charge of the particle A is — e < 0, and of particle B, Ze 
for some Z > 0. Also assume that the mass of the particles is rriA and TUB, 
respectively. Considering only electrostatic force between the particles, and 
no relativistic effects, find the admissible energy levels of the particle A and 
the corresponding wave functions. Hint: computations are almost identical to 
the analysis of the hydrogen atom; see page 368. There are two changes: (a) m 
is replaced with m* = m-Ams/imA + TUB); (b) the potential U = — Ze2 /(Airear). 
As a result, EN = -Z2m*eA/{2{A-Ke0)'

2h2N2). 

PROBLEM 7.9. MAXWELL'S EQUATIONS AND THE LORENTZ TRANSFOR­

MATION. 

(a) We saw that Maxwell's equations in vacuum can be reduced to a 
system of wave equations with the propagation speed c equal to the speed 
of light in vacuum; see, for example, (6.3.37) on page 348. In what follows, 
we will see that the one-dimensional wave equation wtt = c2uxx, which is a 
special case of (6.3.37), is invariant under the Lorentz transformation, but 
is not invariant under the Galilean transformation, (i) Consider the wave 
equation Uu = c2uxx, t > 0, x G K. Define new variables t\,x\ so that 
t = a(ti + bx\), x = a(x\ + vt\), where a — (1 - u 2 / c 2 ) - 1 / 2 , b — v/c2, 
and v is a positive real number; this is the Lorentz transformation, see page 
100. Let u{ti,x\) = u(t(ti,xi),x(ti,xi)). Show that utltx = c2uXlXl. Hint-
use the chain rule, starting with u^ = Ut(dt/dt\) + ux(dx/dti) = aut + avux, 
etc. (ii) Define new variables t\,xi so that x = x\ + vt, t = t\\ this is the 
Galilean transformation, which is the Lorentz transformation with c = oo. 
Let u(t\,x{) = u(t(t\,xi),x(t\,X\)). Find the equation satisfied by u. 

(b) Consider an inertial frame O and a frame 0\ moving relative to 
O along the ^-direction with speed v; see Figure 2.4.1 on page 99. Let 
E = E^ i + £ w j + £ ( z ) « and B = B& i + B^ j + B^ k be the electric 
and magnetic fields as measured by an observer in frame O. Similarly, let 
251 and 2?i be the same fields as measured by an observer in frame 0\. 
(i) Find the relation between E,B and Ei,B\. Hint apply Theorem 8.3.2 
on page 460 to the tensor Flk = gtjgkeFje; see page 461. For example, you get 
£(*) = E(x)> E(y) = a(E(y) _ uB(2)) ; etCi where a = (i _ (v/c)2)-1/2. (ii) 

Verify that the vectors E\ and B\ satisfy Maxwell's equations in frame 
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0\. Hint: you also need to apply the Lorentz transformation to the space and 
time coordinates and to the quantities p, J. To transform p and J, apply Theorem 
8.3.2 to the type (1,0) tensor J = (J,p). 

(c) Once again, consider two frames, O and 0\, from Figure 2.4.1. As­
sume that a point charge q is fixed at the origin of frame 0\. (i) Verify that 
the electric field E(t, x, y, z) produced by this moving charge, as measured 
by an observer in O at point (x, y, z) and time t, is 

qa (x — vt)i + yj + zk 
47T£0 (Q2(a; _ vt)2 + y2 + ^a)3 /2 ' 

where a = (1 — {v/c)2)~1^2. Hint: use the results of part (b). Note that 
Ei = (g/(47re0))(a;iti + yiJi + zik1)/{x\ + y\ + -z?)3/2, xi = a(x - vt) and 
B\ = 0. (ii) Find the magnetic field JB produced by this moving charge, 
as measured by an observer in O at point (x, y, z) and time t. (iii) For a 
fixed point (x*,y*,z*) and various values of v, plot ||.E7(i,a;*,2/*,z*)|| and 
\\B(t, x*,y*, z*)\\ as functions oft. You can use a computer algebra system. 
What do you observe as v approaches c? 

(d) Discussion. Results of part (c) show that an electric charge moving 
with constant velocity generates electromagnetic radiation, but not in the 
form of a planar wave as discussed on page 349. A planar wave, or a good 
approximation of it, is produced by accelerating charges. For more details 
on the subject of electromagnetic radiation see the book Electromagnetism 
by G. Pollack and D. Strump, 2002. 

PROBLEM 7.10. ANALYZING THE EULER AND NAVIER-STOKES EQUA­

TIONS. 

In this problem, we discuss some methods of studying equations (6.3.54) 
and (6.3.55) on page 355. We always assume the incompressibility condition 
V - u = 0. 

(a) Verify that if u satisfies either (6.3.54) and (6.3.55), then 

V 2 p = - d i v ( ( u - V ) « ) . 

Explain how this result can be used to eliminate pressure from either 
(6.3.54) or (6.3.55). 

(b) Define u> — curl it. (i) Verify that if u satisfies (6.3.54), then OJ 
satisfies 

(jjt + (u • V ) <jj = (ui • V ) u. 

(ii) Find the corresponding relation for a; if u satisfies (6.3.55). 
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(c) In this part of the problem we consider equations (6.3.54) and 
(6.3.55) in R2. If u is a vector field in a plane, then we write u) = wfe, 
where u> is the v o r t i c i t y of u and fc is a unit vector perpendicular to the 
plane. This leads to a significant simplification of relations from part (b). 
(i) Verify that if u satisfies (6.3.54), then u> satisfies 

wt + (u • V) w = 0. 

(ii) Find the corresponding relation for w if u satisfies (6.3.55). 

PROBLEM 7.11. K D V EQUATION AND SOLITONS. 

The equation 

ut(t, x) + uxxx(t, x) + 6u(t, x)ux(t, x) = 0 (7.7.12) 

is known as the Korteweg-de Vries, or KdV, equation, after the Dutch 
mathematicians DIEDERIK JOHANNES KORTEWEG (1848-1941) and Gus-
TAV DE VRIES (1866-1934), who proposed the equation in 1895 as a model 
of propagation of long surface waves in a narrow and shallow channel. This 
equation was part of de Vries's doctoral dissertation, supervised by Ko­
rteweg. Note that (7.7.12) contains the uux term, characteristic of many 
other equations describing fluids. 

(a) Verify that if v = v(t, x) satisfies vt(t, x) + vxxx(t,x) + 
av(t,x)vx(t,x) = 0 for some real number a =fi 0, then u = (a/6)v satis­
fies (7.7.12). 

(b) Verify that (7.7.12) has a solution 

u(c)(i,:r) = - sech2 ( v ^ z - ct)/2), 

where c > 0 is a real number and sech(s) = 1/ cosh(s) = 2/(e9 + e~s). Hint: 
if u(t,x) = f(x — ct) is a solution of (7.7.12), then 3 / 2 + / " — cf = b for some 
real number b. 

The function U(cj is an example of a so l i ton , a single travelling wave 
with many interesting and unusual properties. For example, the propaga­
tion speed c of U(cj is proportional to the amplitude. 

PROBLEM 7.12. STABILITY OF FINITE DIFFERENCE APPROXIMATIONS. 

(a) Consider the matrix A[
K ' J, that is, a tri-diagonal K x K matrix 

with —2 along the main diagonal and 1 above and below the diagonal; see 
(6.5.15) on page 395. Verify that the eigenvalues of the matrix are 

Af ) = - 2 ( l - c o s ^ ) = -4sin2(^ f c/2), 6k = - ^ - , k = l,...,K. 
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Hint: if (xi,... ,XK)T is an eigenvector, then we need a nontrivial solution of 

Xm+x + (A — 2)xm + xm-i = 0. Try xm = el9m, with i = if-\., to conclude that 

A = 2(1 — cos 0), sm.(K + 1)0 = 0, and xm = sin(m0). 

(b) Prove the stability condition (6.5.24) on page 397 for the explicit 

Euler scheme (6.5.18). Hint: (6.5.18) means u ( 1 ) ( m + 1) = Al^2r]uw{m), 

and the eigenvalues of the matrix A^^' r' are l+2r\k ~ , (6.5.24) is equivalent 

to | l + 2 r A ^ + 1 ) | < 1 for all k. 

(c) Prove tha t the implicit Euler scheme (6.5.19) and the Crank-Nicolson 

scheme (6.5.20) on page 396 are stable for all r > 0. Hint: look at the 

eigenvalues of the matrices [A^^^'- r'\ and (^4.^+1^ ) ^kr+i • 

(d) Prove tha t the numerical scheme (6.5.28) on page 399 for the wave 

equation is stable if and only if /x > 1/4. Hint: reduce the scheme to the second-

order finite difference equation axn+i + bxn + cxn-i, where a, b, c are eigenvalues 

of the suitable matrices; see parts (a) and (b). The solution of this equation stays 

bounded if and only if both roots of the equation ax2 + bx + c = 0 satisfy \x\ < 1; 

complex roots are allowed. 

P R O B L E M 7.13. N U M E R I C A L M E T H O D S AND F A S T F O U R I E R T R A N S F O R M . 

(a) Consider the explicit Euler scheme for the heat equation; see (6.5.18) 

on page 396. Verify tha t the solution vector {^^(m) at step m can be 

writ ten as 

N 

fc=0 

Once you find the numbers Wk,n, which are connected to the eigenvectors of 

the mat r ix A^ ' , you will see how u^ can be computed using the F F T . 

Hint: start by looking for the solution in the form un (m) = 5Zfc=i Vk,mu>k,n-

(b) Extend this approach to other numerical methods for the heat, wave, 

and Poisson equations. 

P R O B L E M 7.14. M O R E A B O U T F I N I T E E L E M E N T S . 

(a) Use the results of Exercise 6.5.16, page 407, to solve the heat equa­

tion from Exercise 6.5.6, page 397, using the Galerkin method with piece-

vise linear functions <pk-

(b) In two dimensions, an analog of the function ip from (6.5.43) on page 

407 is constructed as follows. Let G be the hexagon in K2 with vertices 

(0, ± 1 ) , (±1 ,0 ) , (1, —1), (—1,1) (draw a picture), and let ip = <p(x,y) be 

the function such tha t z = ip(x,y) is the graph of the pyramid with base 
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Go, one vertex at (0,0,1), and six faces. In particular, <p(x,y) = 0 if the 
point (x, y) is not in G. Find the formula for cp = ip(x, y) when (x, y) £ G. 
Hint: you need six formulas, one for each face of the pyramid, and, for each face, 
(p(x, y) = l + ax + by with suitable a, b. For example, for the face with vertices at 
(0,0,1), (1,0,0), (0,1,0), we have <p(x,y) = \-x-y. 

(c) Consider the Poisson equation — V2u(x, y) = f(x,y) in a square 
(0,1) x (0,1) with zero boundary conditions. Let mm = mh = m/N, yn = 
nh = n/N, m, n = 0 , . . . , N, be a grid and, using the hexagon function <p 
from part (b), define the functions 

<Pm,n{x,y) = <p((x-xm)/h,(y-yn)/h), m,n = 1 , . . . , N - 1. 

Let Gm,n be the hexagon on which tpm,n ^ 0. Note that Gm ,n and Gk,i 
overlap if and only if m = k,n = I ± 1 or m = k ± l , n = I, and the 
overlap region in each case is a parallelogram of area h2. (i) For N = 6, 
draw the picture of the square divided into the hexagons Gm,„ and observe 
how different hexagons overlap, (ii) Verify that the Galerkin approximation 
using the functions (pk<m leads to a system of linear equations AU = b with 
the same matric A as for the finite difference approximation (6.5.40) on 
page 402. Identify the corresponding vector b (it is different from the one 
in (6.5.40)). 



Chapter 8 

Appendix 

8.1 Linear Algebra and Matrices 

While the reader is expected to know the basic definitions from linear al­
gebra, we review the main points below for the sake of completeness. For 
a more detailed account of the material in this section, see a linear algebra 
text book, for example, [Mirsky (1990)]. 

An m x n matrix is a rectangular array of numbers with m rows and 
n columns. In the notations of matrices, A — (a,ij) means that atj is the 
element in row number i and column number j \ AT is the t ranspose of A, 
that is, rows of A are columns of AT: AT = (a,ji). A square matrix has the 
same number of rows and columns. A matrix A is called symmetric if A = 
AT; a symmetric matrix is necessarily square. A diagonal matrix A = 
(aij) is a square matrix with zeroes everywhere except on the main diagonal, 
that is, a^ = 0 for i ^ j . A row vector is an 1 x m matrix ( x i , . . . , xm); 
a column vector is an n x 1 matrix {x\,..., xn)

T. The elements of M.n, 
n > 2, are usually considered column vectors. The i d e n t i t y matrix / is 
a square matrix that has ones on the main diagonal and zeros everywhere 
else. For 3 x 3 square matrices, 

«2i a22 a23 j , AT = J ai2 a22 a32 j , I = I 0 1 0 J . (8.1.1) 
a.31 a32 ^ 3 3 / \ai3 2̂3 ^33/ \0 0 1 / 

The sum of two matrices of the same size is defined componentwise: if 
C = A + B, then Cjj = a,j + bij. The product of two matrices C = AB 
is denned by Cij = XTfcLi aikbkj\ in particular, the number of columns in A 
must be the same as the number of rows in B. For example, if both A and 
B are 3 x 3 , then the element of AB in the second row and first column is 
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«2i&ii + 022&21 + 023&31. If x, y are column vectors of the same size n, then 
x • y = xTy and, for every n x n matrix, (Ax) • y = x • (ATy). In general, 
AB =£ BA even for square matrices. All other rules of multiplication hold, 
as long as the product is defined. In particular, for every three n x n 
matrices A, B, C, we have (AB)C = A(BC) and (A + B)C = AC + BC. 
If the elements of the matrix A are differentiable functions of t, then we 
define the matrix dA/dt by differentiating each element of the matrix A. 

The determinant \A\ of a 2 x 2 matrix A is defined by follows: 

a n oi2 
021 022 

— On022 — 012021. 

For example, 

12 = 1 - 4 - 2 - 3 = 4 - 6 = - 2 . 

For a 3 x 3 matrix, the determinant is 

Oil O12 Oi3 

021 022 023 

«31 032 033 

= 011 
022 023 

O32 O33 
-012 

O21 O23 

031 033 
+ Ol3 

021 O22 

031 032 

EXERCISE 8.1.1. Verify that 

1 2 3 
4 5 6 
7 8 9 

= 0. (8.1.2) 

By induction, the determinant can be defined for every square n x n 
matrix. Both \A\ and det A are used to denote the determinant of the 
matrix A. The main facts about the determinant are (a) the determinant 
of the product of two square matrices of the same size is the product of 
determinants: det(AB) = (detA)(detB); (b) det,4T = detA; (c) de tA = 0 
if and only if the columns of the matrix A are linearly dependent as column 
vectors. Note that in (8.1.2) the middle column is half the sum of the other 
two. 

The inverse of a square matrix A is the matrix A~x satisfying AA~l = 
A-1 A = I; such a matrix exists, and is necessarily unique, if and only if 
the determinant of A is not equal to zero. A square matrix A is called 
nonsingular if A - 1 exists. 
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EXERCISE 8.1.2.c (a) Verify that (AT)T = A and (AB)T = BTAT. (b) 
Verify that A is a non-singular matric if and only if Ax ^ 0 for ev­
ery vector x ^ 0. (c) Assume that the entries of the matrices A, B 
are differentiable functions of t. Verify that d(AT)/dt = (dA/dt)T and 
d{AB)/dt = (dA/dt)B + A{dB/dt). 

Definition 8.1 A square matrix A is called orthogonal if 

ATA = AAT = I. (8.1.3) 

If A is an orthogonal matrix, then equality (8.1.3) implies the following 
properties of A: 

• A-1 = AT. 
• The columns vectors of A are an orthonormal set and so are the row 

vectors. 
• The matrix A preserves the inner product and the norm: (Au) • {Av) = 

u • (ATAv) =uv, \\Ar\\ = ||r||. 
• The determinant of A is either 1 or —1. 

In particular, an orthogonal matrix represents an orthogonal transformation 
of R3. 

EXERCISE 8.1.3. Verify the above properties of the orthogonal matrix. 

Let il = (u\,... ,un) be a basis in M™. A column vector x = 
(x\,..., i „ ) is called a r ep re sen ta t i on of x £ M" in the basis il if 
x = J2k-i xkuk- Note that the same element x has, in general, differ­
ent representations in different bases; by the inevitable abuse of notation, 
we use the same symbol for the vector and its representation in a basis. A 
matrix A is a r ep re sen ta t i on of a linear transformation A of M™ in the 
basis il if A(x) = A (x\,..., xn)

T for every i £ l " . 

EXERCISE 8.1.4. c (a) Show that the square matrix A = (a^) is a 
representation of a linear transformation A in a basis il if and only if 
A{uk) = YM=I aikuii i = 1,. • • ,n. In particular, every n x n matrix is a 
representation of a linear transformation o/M™ in some basis, and if the ba­
sis il is orthonormal, that is, ut • Uj = 1 for i = j and u , • Uj = 0 for i =£ j , 
then ajk = (A(uk)) • Uj. (b) Let A and A be the representations of the same 
linear transformation in the bases il and il with the same origin, (i) Show 
that there exists an invertible matrix B so that A = B_1AB. (ii) Describe 
the matrix B. (Hi) Show that B is orthogonal if both il and il are orthonor­
mal. Hint: A(uk) = ^2mamkurn, A(uk) = I]m2mfcWm; if Uk = J2m

bmkUm' 
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then J^k bikakj — £]fc atkbkj for all i,j. 

An eigenvalue of a square matrix A is a complex number A so that the 
equation Ax = \x has a solution x that is not a zero vector; this solution is 
called an eigenvector corresponding to the eigenvalue A. All n eigenvalues 
of an n x n matrix are roots of the degree n equation det{A — XI) — 0, where 
det is the determinant of the matrix. As a result, A and AT have the same 
eigenvalues. 

EXERCISE 8.1.5.c (a) Verify that if A = AT, then all eigenvalues of A are 
real and eigenvectors corresponding to different eigenvalues are orthogonal, 
(b) Assume that A^1 exists. Verify that A is an eigenvalue of A if and 
only if 1/A is an eigenvalue of A-1. (c) Verify that all eigenvalues of an 
orthogonal matrix satisfy |A| = 1. Hint: keep in mind that complex eigenvalues 
of a real matrix come in complex-conjugate pairs, (d) Let B = ( x i , . . . , xn) be 
the matrix whose columns Xk are normalized eigenvectors of a symmetric 
matrix A, that is, Xk • x/t = 1, Xk • xm = 0, k ^ m. Show that the 
matrix BTAB is diagonal, with eigenvalues of A along the diagonal. In 
other words, A SYMMETRIC MATRIX IS DIAGONAL IN THE BASIS OF ITS 

EIGENVECTORS. 

Let / = f(z) be a function of a complex variable that is analytic for all 
z, so that f(z) = 2fc>o akzk a n d the power series converges for all \z\ < oo. 
One can then show that, for every square matrix A, the series Ylk>o akAk 

converges to some square matrix (convergence of this series means that 
each elements of the matrix Ylk=o akAk converges to a limit as N —> oo). 
Accordingly, for a square matrix A, we define f{A) = ^2k>0a,kAk, where 
A0 = I, the identity matrix. For example, 

0 0 A k 

fc=i K-

EXERCISE 8.1.6. (a)c Assume that A = B~1DB, where B is an invertible 
matrix. Verify that f(A) = B~1f{D)B. (b)A Verify that if AB = BA, then 
eA+B = eAeB. Is the converse true? (c)B Verify that, for a symmetric 
matrix A, 

where I is the identity matrix of the same size as A. (d)A Does the result 
of part (c) hold for an arbitrary square matrix A ? 
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8.2 Ordinary Differential Equations 

An initial value (Cauchy) problem for the system of n first-order ordinary 
differential equations y'(t) = f{t,y(t)), t0 < t < T, y(t0) = y0, has a 
unique solution if each of the n component of / is a continuous function 
of n + 1 variables, and there exists a number C so that, for all t0 < t < 
T and all x,y in Kn, we have | | / ( t ,x ) | | < C(l + ||a:||) and \\f(t,x) -
f(t, y)\\ < C\\x - y\\. An equation y<»>(t) = F(t, y(t), y'(t),..., y ' " - ^ ) ) 
of order n can be written as a system n first-order equation by setting 
tfiW = V(t), 1/2(*) = y'(t), -.., y^^Ht) = yn(t), so that y'k(t) = yk+1(t), 
k = 1 , . . . , n — 1, and y'n(t) = F(t, y\,..., yn). A system of equations is 
called l i n e a r if f(t,x) = A(t)x for some matrix A = A(t). A linear 
ordinary differential equation of order n can be written as a linear system 
of n first-order ordinary differential equations. 

EXERCISE 8.2.1. c A LINEAR SYSTEM OF ORDER n HAS A BASIS OF n 
LINEARLY INDEPENDENT SOLUTIONS. 

Consider a linear system ofn equations y'(t) = A(t)y(t), t > to; y(to) = 
y0- Let y0 — Y^k=i ak uk where u±,...,un is a basis in M". Show that the 
solution of the system is y(t) = X)fc=i ak l/fc(*)> where yk(t) solves 
»fc(*) = A(t)Vk{t)> * > to; Vk(io) = Uk-

In particular, a linear second-order equation has two linearly indepen­
dent solutions, and the general solution is an arbitrary linear combination 
of those two solutions. The general solution of the second-order linear equa­
tion with constant coefficients y"{t) + by'(t) + cy(t) = 0 is 
(1) y(t) = Aerit + Ber2t, if r\,r% are distinct real roots of x2 + bx + c = 0; 
(2) y(t) = (A + Bt)ert, if r is a double root: x2 + bx + c = (x - r ) 2 ; 
(3) y(t) = ert(Acosu}t + Bsmu)t), iir±iw are the complex conjugate roots 
of x2 + bx + c = 0. 
In particular, the solution of y"(t) — b2y(t) = 0 can be written either as 
y(t) = Aebx + Be~bx or as y(t) = A\ sinh&x + B\ coshbx. 

8.3 Tensors 

Mathematical models of physics and engineering at an advanced level are 
impossible without tensors, and many problems discussed in this book have 
reached this level. We first encounter tensors in our study of classical 
mechanics (tensor of inertia, page 76). We rely heavily on tensors in our 
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study of general relativity, starting with the metric tensor; see page 105; the 
main equation (2.4.22) of general relativity is written in terms of tensors. 
In our study of electromagnetism, we mentioned that both the dielectric 
constant and (magnetic) permeability are, in general, tensor fields. In what 
follows, we give the general definition of a tensor and show that it is a 
generalization of vectors and linear transformations. The main new idea is 
to define how a change of coordinates changes the look of a tensor. 

Our presentation will be in R" for an arbitrary n, and this R n 

is not necessarily a Euclidean space in the sense that we do not 
assume that the distance between two points is measured ac­
cording to the usual Euclidean metric. We will use E i n s t e i n ' s 
summation convention, which means summation over an in­
dex from 1 to n if the index appears twice in a product or single 
expression. For example, B\ = £™ = 1 #j , aijx

ixj = £ " j = i Oy-xV. Of­
ten, one of the repeated indices appears as a subscript, and the other, as a 
superscript. 

Consider two coordinate systems in 1 " , X — (x1,... ,xn), X = 
(x1,... ,xn), and assume that there exists a one-to-one and onto trans­
formation between the two coordinate systems. More precisely, we assume 
that there exist n smooth functions x% = xl(xl,... ,xn), i = 1 , . . . ,n, and n 
smooth functions x-3 = x?(x1,..., xn), j = 1 , . . . , n, with the following prop­
erty: if a point P € K" has coordinates ( a 1 , . . . , an) in X and (6 1 , . . . , bn) 
in X, then a1 = xl(bl,... ,bn), i = l , . . . , n , and & = x^a1,... ,a") , 
j = l,...,n. 

Let us emphasize that Mn in our presentation is not the usual Euclidean 
space: it is a collection of points and not vectors, with no postulates of 
Euclid to rely on. The coordinates X and X are, in general, curvilinear. 
The only reason we use the notation Kn is not to complicate the presen­
tation further with a more advanced mathematical notion of a manifold. 
Similar to our discussion of orthogonal curvilinear coordinates on page 141, 
we allow existence of some special points, where the functions x1 and xJ 

might be undefined or non-smooth. Unlike our discussion of curvilinear co­
ordinates, we now use the same letters to denote both the coordinates and 
the corresponding functions of the transformation between the coordinate 
systems. As a result, the reader should not be confused by expressions such 
as dx% /dxk, which is the partial derivative of the function xl (expressing 
the i-th X coordinate of a point in terms of its X coordinates) with respect 
to fc-th variable. 
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EXERCISE 8.3.1? Verify that 

dx?_ dx^ = dx?_ dx^_ = t = (1, i = j ; 

da:fc 0x» d£fe dx> i _ \ o , i^j, 

where #j is the Kronecker symbol; see also page 107. Hint: by definition, 

Jit \ JU \ JU • » • • * JU ) ^ • • • ^ JU I ^0 » • • » ^ •A' / J -'— w 5 

xltfix1,..., xn),..., xn{x\ .. .,xn)) = xj. 

Definition 8.2 A tensor of type (p, q) at a point P in M™ is an object 
T, which can be denned without any reference to coordinate systems in such 
a way that, in every coordinate system, T is represented by np+q numbers 
Tjl'-'-'-j"> where each upper index ik and each lower index je independently 
varies from 1 to n. Moreover, if T*1 "*p, T*1'"'" are representations of T 

' Jl Jq ' J l " Jq r 

in two coordinate systems X = (x1,... ,xn), X= (x1,..., xn), respectively, 
then, with the summation convention in force, 

f i i - i p = T f c i - f c p ^ . d^dx^_ <3aA 
ji-jq ti-e, Qxkx ' • ' dxkv dx^ ' dxi«' K ' ' ' 

The number p is called the cont ravar ian t valence of the tensor, and 
q, its covariant valence. A tensor f i e l d of type (p, q) is a collection 
(P,T(P)), where P is a point in Rn and T(P) is a tensor of type (p,q) 
defined at the point P. A sum of two tensors T, S of the same type (p, q) 
is, by definition, a tensor of type (p, q) with components T.-1

1...,-p + Sj\.../• 

EXERCISE 8 . 3 . 2 . C Let n = 2, p + q = 2, J 1 = 2a;1 + 3a;2, x2 = x1 - a;2. 

Write the corresponding four equalities in (8.3.2) when (i) p = 2, g = 0; 
(ii) p = q = l; (Hi) p = 0, q = 2. Hint: in (i), you get fn = Tn • 2 • 2 + T12 • 
2 • 3 + T21 • 3 • 2 + T22 -3-3, etc. For (ii) and (Hi), you first need to express xl,x2 

in terms ofx1, x2. 
The following exercise motivates the above definition of a tensor by 

showing that many familiar objects are particular cases of tensors. 

EXERCISE 8.3.3.c (a) Verify that the gradient of a scalar field is a ten­
sor of type (0,1) and compare (8.3.2) with formula (3.1.42) on page 145. 
Hint: / ( x \ . . . ,1°) = f(x1(x1,...,xn),...,xn(x1,...,xn)); by the chain rule, 
df/dxl = {df/dxk)(dxk/dxl). (b) Verify that a tangent vector to a curve is 
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a tensor of type (1, 0). Hint: if xk = xk(t), k = l,...,n, is a parametric equa­
tion of the curve in X and x = x (t), k = 1,. . . ,n, is a parametric equation of 
the curve in X, then a tangent vector satisfies dxk(t)/dt = (dxt(t)/dt)(dxk/dx'i). 
(c) Verify that the Kronecker symbol 6j is a tensor of type (1,1). Hint: use 
(8.3.1). 

We will now establish a connection between tensors and linear transfor­
mations of Rn . For that, we need to assume that R n is a linear space. Let 
it = ( u i , . . . , un) be a basis in Rn of n linearly independent column vectors 
Ufc, k = 1 , . . . , n. In R3, the variables x, y, z correspond to the basis vectors 
i, j , k, respectively. Accordingly, let us introduce a coordinate system X 
corresponding to the basis il so that x% corresponds to «*: for every scalar 
field / on R", define the function F = F(x1,..., xn) such that, if P is a 
point in R" and OP = £ £ = 1 xk uk, then f(P) = Fix1,..., xn). 

EXERCISE 8.3A.C Verify that the function F is well defined. Hint: a point 
P is characterized by a unique combination of numbers x1,... ,xn. 

Recall (see Exercise 8.1.4 on page 453) that a linear transformation A 
of R™ is represented in the basis il by an n x n matrix (aij, i, j = 1 , . . . , n). 
Note that when we work with a linear transformation, we require M.n to be 
a linear space and allow only a linear change of variables. 

Theorem 8.3.1 Let il be a basis in the linear space R n with origin O, 
and X, the corresponding coordinate system. Let A be a tensor of type 
(1,1) at the point O whose components in X are real numbers Axy Define 
the matrix A = (a^-, i,j = 1 , . . . ,n) , so that aij = Alj. Then the matrix A 
is a representation in il of a linear transformation o/Rra. 

The proof is outlined in the following exercise; remember that we are 
using the summation convention. 

EXERCISE 8.3.5? (a) LetU. = {ui,..., un} be a different basis in R™. Verify 

that if Uj = 6* Ui for some real numbers M, i,j = l,...,n, and &*• are real 

numbers satisfying b\bk = bl
kb

k. — 5j, then xl = b^x? and x? = bJ
kx

k, so 

that b\ = dxl/dxe and bk = dxk j&x?. (b) The definition of a tensor of type 

(1,1) implies the relation Alj — Ae
kb

l
eb

k. To complete the proof, set a^ = A) 

and use the results of Exercise 8.1.4(b) on page 453. 

EXERCISE 8.3.6. A+ Let il be a basis in R" with origin O, and X, the 
corresponding coordinate system. Consider a tensor T of type (0,2) at the 
point O. Denote by T{j the components ofT in X. What does the matrix 
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(Tij,i,j = 1 , . . . ,n) represent? Then answer the same question for a tensor 
of type (2,0). Hint: (Ty, i, j = 1, . . . , n) is a matrix of a quadratic form. 

Next, we discuss the metric tensor. 

Definition 8.3 A metric tensor g in Rn is a tensor field of type (0,2) 
so that its components g^ = fltj(P) at every point P in every coordinate 
system X have the following properties: (i) jjf, = gjf, (ii) the determinant 
of the matrix (gij, i,j = l , . . . , n ) is non-zero; (iii) the l i n e element ds 
at P in X coordinates is 

(ds)2 = gij{P)dxidxj. (8.3.3) 

EXERCISE 8.3.7. (a)c Verify that (8.3.3) implies that g is a tensor of 
type (0,2). Hint: gijdxidxj = (fly(da;*/dxk)(dxi/dxe))dxkdxe = gkedSkdxi. 
(b)B Verify that if g~~l is a tensor whose components glj in every X satisfy 
9tk3kj = $}, then jT 1 is a tensor of type (2,0). (c)A Let C be a smooth 
curve defined in X coordinates by x% = xl(t), i = 1 , . . . , n, a < t < b. Use 
(8.3.3) to define the length of the curve and verify that the length does not 
depend on the coordinate system. Hint: use (2.4-19) on page 104 as a starting 
point. 

If a metric tensor g is defined on M.n, then, for every tensor T of type 
(1,1) in Rn we can define two other tensors, 
• Tij = flifcTJ5 (operation of lowering an index); 
• Tx* = g%kTl (operation of raising an index). 
Note that both operations can be defined only if there is a metric in R". 

EXERCISE 8.3.8^ (a) Define the operation of lowering an index for a general 
tensor of type {p,q) withp > 1. (b) Define the operation of rasing an index 
for a general tensor of type (p,q) with q > 1. (c) Verify that if g^ is 
the usual Euclidean metric, then the operations of raising and lowering 
an index do not change a tensor. Thus, there is no distinction between 
covariant (lower) and contravariant (upper) indices, and, by convention, all 
tensors on a Euclidean space are of type (0,q). Hint: in cartesian coordinates, 
Sij = S%3 — 1 if i = j , and all other components of Qij, g'3 are equal to zero. 

Next, we will discuss three applications of tensors: in special relativity, 
in electromagnetism, and in theory of elasticity. We begin with Lorenz 
transformation in special relativity, see page 100. Consider an inertial frame 
O and a frame Oi moving relative to O in the i-direction with speed v; 
see Figure 2.4.1 on page 99. Consider the relativistic space-time with the 
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coordinate system (a;1, a:2, a;3, a:4) in frame O, where x1 — x, x2 = y, x3 = 
z represent the usual cartesian coordinates, and x4 = t represents time. 
Define the numbers A*-, i, j = 1 , . . . , 4, as follows: 

Aj = K\ = a, A2, = A3, = 1, A4 = -vac'2, A\ = -va, (8.3.4) 

and AJ = 0 otherwise, where a = (1 — (v /c ) 2 ) - 1 / 2 . 

Theo rem 8.3.2 (a) Let T be a type (1,0) tensor with components 
Tl, i = 1 , . . . ,4 in frame O. Then the components Tl of the same ten­
sor in frame 0\ are given by Tl = AJTJ'. (b) Let T be a type (2,0) tensor 
with components T'J, i,j = l,...,4,in frame O. Then the components T y 

of the same tensor in frame Oi are given by Tlj = Al
kA

3
eT

ke. 

EXERCISE 8.3.9.B Prove the above theorem. Hint: part (a) is a re-statement 
of relation (2.4-11)- Part (b) follows from part (a). 

Let us now discuss some applications of tensors in the study of electro­
magnetic fields in vacuum. We will see how tensors lead to a more compact 
form of many equations and help to connect electromagnetism with special 
relativity. We continue to work in the relativistic space-time with the stan­
dard coordinate system (x1, x2,x3, x4). We combine the vector potential A 
and the scalar potential <p into a single tensor A1, i = 1 , . . . , 4, of type (1,0) 
as follows: A = (A, <p/c2), that is, A = A1 i + A2 k + A3 k and AA = f/c2; 
see page 351 and remember that we are now using e = £o and p = p0 so 
that ep = c - 2 , where c is the speed of light in vacuum. We also combine 
the current density J = Je and the charge density p = Pf into a single 
tensor J1, i = 1 , . . . , 4, in a similar way: J = ( J , p). Next, we define the 
tensor operator Dj = d/dxl, i = 1 , . . . ,4. This tensor is of type (0,1) and 
combines the time and space derivatives. 

EXERCISE 8.3.10.c Verify that the Lorenz gauge relation (6.3.45) on page 
352 becomes DiA

i = 0. 

As in the theory of special relativity, consider the metric tensor g^ ,i,j = 
1 , . . . , 4, with 0n = 022 = 033 = 1, 044 = ~c2, and gy = 0 otherwise (see 
page 104). Similarly, the inverse tensor Q1? has components g11 = g22 = 
g33 = 1, g44 = - c - 2 , and Qlj = 0 otherwise. We use this metric to raise 
and lower indices of tensors. In particular, we define Dl = g^Dj. 

EXERCISE 8.3.11. c (a) Verify that Di = d/dx\ i = 1,2,3, and 
D4 = —c~2d/dt. (b) Verify that the tensor relation DiD'tA^ = —p^ji, 
j — 1,.. . ,4, combines the wave equations (6.3.46) and (6.3.47); see page 
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352. (c) Verify that DiJ% = 0 is the equation of continuity (3.3.12) on page 
166. 

Our next objective is to find a tensor form of Maxwell's equations. For 
that, define a tensor Fik, i, k = 1 , . . . , 4, of type (0,2) as follows: 

F - d A k 9Ai (R*V 

where Ak = QkmAm. 

EXERCISE 8.3.12. c Write the components of Fik. Hint: Fik = -Fki, in 
particular, Fu = F22 = F33 = F44 = 0. Also, F12 is the k-component of the 
magnetic field B, F14 is the i-component of the electric field E, etc. 

To proceed, we define the permutation symbol 

^ijkm — * 

1, if (ijkm) is an even permutation of (1234); 

— 1 if (ijkm) is an odd permutation of (1234); 

0 otherwise. 

Recall that a permutation is even if it is a composition of an even number of 
transpositions (exchanges of two numbers). For example (2143) and (4321) 
are even permutation, each being a composition of two transposition, while 
(2134) and (3421) are odd. Using the permutation symbol and the inverse 
metric tensor, we define the tensor Fl3 by 

EXERCISE 8.3.13. (a)B Find the components of the tensor F*. (b)A Verify 
that Maxwell's equations (3.3.2)—(3.3.5) on page 164 can be written as 

DiFik = -n0J
k, D{Fik = 0, fc=l,...,4, (8.3.6) 

where Ftk = 0y ' f lwF^. 

We conclude our discussion of tensors with the stress and strain tensors 
in the THEORY OF ELASTICITY. Consider an elastic solid material which 
occupies a region G in M3. Suppose G is subjected to external forces which 
deform it. Choose a cartesian coordinate system and let a small part of G 
be a rectangular box having a vertex at point P = (x1, x2, x3) and edges of 
lengths dx1,dx2,dx3 in the coordinate directions. As a consequence of the 
elastic properties of G the neighboring parts of G will transmit stress to 
the box at point P. Let Fu be the tensile stress acting in the xx direction. 



462 Appendix 

On the three faces that contain P there are shear, or twisting, stresses. 
On the face with sides dx2, dx3 there is a shear stress that is resolved into 
two components, F12 in the x2 direction and F13 in the x3 direction. On 
face dx1,dx3, there are shear stresses F2i in x1 direction and F23 in the x3 

direction. On face dxl,dx2, there are shear stresses F31 in x1 direction and 
F32 in the x2 direction. The nine numbers Fy represent the stress tensor 
F at P. 

The strain, or deformation, tensor D = (Dij) is denned as follows. 
Assume that point P = (a:1, a;2, a;3) is displaced to point P', and PP' = 
y1i + y23 + y3k. Then Dit = dy'/dx', i = 1,2,3, and D4?- = (drf/dx?) + 
(dyj/dxl), i j= 3. We call D^ the shear strain in the (a;*,a;-') plane. We 
also define the tensor D" with components 

D„ = (Dn+D22 + D33, if i = j ; 
ij [0, i f i ^ j . 

EXERCISE 8.3.14.* (a) Let {ds)2 = (dx1)2 + (dx2)2 + (dx3)2 be the line 
element in the non-deformed region. Show that (ds1)2 = D^dx'dx^ is the 
line element in the deformed region (imagine a rubber ruler that is twisted 
and stretched.) (b) Verify that both F and D are symmetric tensor fields 
of type (0,2). 

In a linear material, the stress and strain tensors are connected by 
Fij = EijkiDki, where E^i is a tensor of type (0,4). This relation is 
known as Hooke' s Law, after the English scientist ROBERT HOOKE (1635-
1703). For a linear homogenous isotropic material, the stress and strain 
tensors are related by F = 2fiD + \D", where n, A are positive constants, 
characterizing the elastic properties of the material. For more details, see 
the books Theory of Elasticity by L. D. Landau and E. M. Lifschitz, 1986, 
and A Treatise on the Mathematical Theory of Elasticity by A. E. H. Love, 
1988. The book by Love, a classic first published at the end of the 19th 
century, also contains a detailed account of the history of the subject. 

EXERCISE 8.3.15? (a) Find the components of the tensor E^i for a linear 
homogeneous isotropic material, (b) Verify that Hooke's Law is invariant 
under a coordinate transformation, (c) Assume that A = 0 and the region 
G is deformed so that, for every point P = (xx,x2,x3) in the region, the 
displacement vector PP' is equal to ui for some function u = u(xl,x2,x3). 
(i) Show that the stress tensor F can be characterized by the vector F = 
Fn i+ F213 + F31 k and F = 2/xgradu. (ii) Let G be a spring of length L, 
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placed along the x1 axis, with one end fixed at point (0,0,0) and the other 
moved from (L,0,0) to (L + x,0,0). Show that u(x*, x2, x3) = (x/tyx1 and 
derive the elementary Hooke's Law F = —Kx, where k > 0 is a constant 
and F is the force of the spring; note that F is acting in the direction 
opposite to the displacement. 

8.4 Lumped Electric Circuits 

Maxwell's equations model electromagnetic phenomena in a region of a 
three-dimensional space; such a region is a continuum of points. An al­
ternative mathematical model is obtained by discretising this continuum 
and replacing it by a finite collection of lumped components, connected 
by idealized zero-resistance wires. The resulting lumped circuit has passive 
elements (resistors, capacitors, and inductors) and active components (bat­
teries, generators, etc.) In this section we present the main facts about the 
passive elements. 

Conductors. In conductors, the free charges (usually electrons) move 
in an external electric field to create an electric current. Suppose an electric 
field E — — V£7 is applied to a conductor, where U is a potential. The 
force acting on a free charge e is eE. If m is the mass of the charge, it 
is accelerated by the amount eE/m in a time interval r before colliding 
with another particle. As a result, the charge reaches the drift velocity 
v = (re/m) E. For copper, r = 3 • 10~14 seconds. 

Now let the conductor be a small cylinder of length L and cross-section 
a. Let V > 0 be the voltage difference across L. Then ||25|| = || VC/|| = V/L, 
and ||v|| = TeV/(Lm). Denote by d the number of electrons per unit 
volume. Then the flux of charge across a is J = aed||u|| = (a/L)(V/p), 
where p = m/(re2c!) is called the r e s i s t i v i t y of the conductor. The 
quantity R = pL/a is called the resistance of the cylinder. Therefore, we 
obtain Ohm's Law: V = RI. The SI units for V, R, I are volt (V), ohm (ft), 
and ampere (A), respectively. The units for p are ft-m; for copper under 
room temperature, p = 1.7 • 10~8 ft-m. 

In a lumped circuit, an ideal resistor R is assumed to be concentrated 
at a point. If a voltage V(t) is changed by amount AV in an interval At at 
one end of a real resistor of length L, it takes time Ati = L/c to propagate 
to the other end, where c is the speed of light. Since Ati is usually much 
smaller than At, the current I(t) = V(t)/R in a real resistor can be assumed 
to change instantaneously, that is, without delay, from one end to the other. 
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Since the time r is also much smaller than At, the drift velocity of the free 
charges is reached almost instantaneously, and it is reasonable to assume 
that p is constant throughout the resistor. 

Capaci tors . Consider two isolated conductors in a finite region of 
space, one having a charge q and the other a charge — q. In a typical 
example, the conductors can be two parallel metal plates separated by 
a thin layer of dielectric material. In the steady state, the charges dis­
tribute themselves over the surface of the conductors so that the potential 
due to the charges is constant throughout each conductor. By Coulomb's 
Law, the charges produce an electric field E. Writing E = —Vf/, we find 
— JC(A B-.E-dr = U(B) — U(A) = V, where A, B are two points on the two 
conductors, C(A, B) is a simple smooth curve connecting A and B, and V is 
the potential difference. By Coulomb's Law, \\E\\ is proportional to q, and 
then V is also proportional to q, so that we write V — q/C, where C is a 
constant called the capacitance of the configuration of the two conductors. 
This configuration is called a capacitor. The SI units for V, q, and C are 
volt, coulomb, and farad, respectively. 

If the field E changes in time, this change will cause charges to flow 
from the external region into one of the conductors and out of the other 
conductor. This flow will change V and produce a current I(t) = dq(t)/dt = 
C dV(t)/dt. If the capacitor is confined to a small region, the capacitor can 
be modelled as a lumped capacitor at a point of a circuit. 

Inductors . By Faraday's Law, a changing current in a conductor in­
duces a voltage difference V given by 

V ( « , - ^ . 

where L is a constant called the inductance. If the conductor is small and 
has a particular shape, for example, a coil of wire, then it can be modelled 
as a lumped inductor at a point in a circuit. 

To analyze complex lumped circuits, two Kirchoff's Laws are used: 
• The sum of voltage drops across the elements in a closed loop is zero 
(voltage law). 
• The sum of the currents entering and leaving a point in a circuit is zero 
(current law). 
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8.5 Physical Units and Constants 

BASIC SI UNITS: distance, meter [m]; electric current, ampere [A]; mass, 

kilogram [kg]; time, second [s]; temperature, kelvin [K]. Two other unit, not 

used in this book, are candela [cd] to measure luminosity, and mole [mol] 

to measure atomic weight. 

DERIVED UNITS: 

Quanti ty 

frequency 

force 

energy 

power 

electric charge 

electric potential 

electric resistance 

electric capacitance 

magnetic flux 

inductance 

electric field E 

magnetic field B 

Unit 

Hertz [Hz]=[l/s] 

Newton [N] = [kg-m/s2] 

joule [J]-[N.m] = [kg-m2/s2] 

watt [W] = [J/s] = [kg.m2/s3] 

Coulomb [C] = [A-s] 

volt [V]=[J/C]=[kg-m2 /(s3-A)] 

Ohm [fi]=[V/A]=[kg-m2 /(s3-A2)] 

Farad [F]=[C/V]=[A2-s4 / (kg-m2)] 

weber [Wb]=[kg-m2/(s2-A)] 

henry [H]=[Wb/A] = [kg-m2/(s2-A2)] 

[V/m]=[N/C]=[kg.m/(s 3-A)] 

[Wb/m2] = [kg/(s2-A)] 

EXERCISE 8.5.1.C Verify the following relations: 

[F-H] = [S
2], [V-A]=[W], [n-F] = [s]. 

PHYSICAL CONSTANTS: 

Name 

electron's charge 
electron's mass 

gravitational constant 
permeability of vacuum 
permittivity of vacuum 

Planck's constant 

speed of light 

notation 

e 
m e 

G 
Mo 
£o 
h 

h = /I/(2TT) 

c 

approximate value 

- 1 . 6 - l O " 1 9 

0.91 • 1CT30 

6.67- 1 0 _ n 

1.26 • 10 - 6 

8.85- 10"12 

6.626 • 1CT34 

1.05 • 10~34 

3-108 

units 

[C] 

[kg] 
[N-m2/kg2] 

[N/A2] 
[C2/(N-m2) 

[J-s] 
[J-s] 

[m/s] 



This page is intentionally left blank 



Bibliography 

Artin, M. (1991). Algebra. Prentice Hall. 
Beiser, A. (2002). Concepts of Modern Physics. 6th ed. McGraw-Hill. 
Berman, G. P., Doolen, G. D., Mainieri, R. and Tsifrinovich, V. I. (1998). Intro­

duction to Quantum Computing. World Scientific. 
Birkhoff, G. and Rota, G.-C. (1989). Ordinary Differential Equations, 4th ed. 

Wiley. 
Blum, E. K. (1972). Numerical Analysis and Computation: Theory and Practice. 

Addison-Wesley. 
Bunge, M. (1967). Foundations of Physics. Springer. 
Carleson, L. (1966). On convergence and growth of partial sums of Fourier series. 

Acta Mathematica, 116, pp. 137-157. 
Carrier, G. and Pearson, C. (1988). Partial Differential Equations: Theory and 

Technique, 2nd ed. Academic Press. 
Coddington, E. A. and Levinson, N. (1955). Theory of Ordinary Differential 

Equations. McGraw-Hill. 
Conway, J. H. and Smith, D. A. (2003). On Quaternions and Octonions. A.K. Pe­

ters, Natick, MA. 
Colley, S. J. (1987). The Tumbling Box. American Mathematical Monthly, 94(1), 

pp. 62-68. 
Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation 

of complex Fourier series. Mathematics of Computation, 19, pp. 297-301. 
Devlin, K. (2002). The Millenium Problems. Basic Books, N.Y. 
Dunford, N. and Schwartz, J. (1988). Linear Operator, Part II: Spectral Theory. 

Wiley. 
Eddington, A. S. (2005). Nature of the Physical World. Kessinger Publishing, 

Whitefish, MT. 
Evans, L. C. (1998). Partial Differential Equations. American Mathematical So­

ciety. 
Feynman, R. P., Leighton, R. B. and Sands, M. (2005). The Feynman Lectures 

on Physics, Vol. 1, Addison - Wesley. 
Forsythe, G. and Wasow, W. (2004). Finite Difference Methods for Partial Dif­

ferential Equations. Dover. 

467 



468 Bibliography 

Greenberg, M. J. (1993). Euclidean and Non-Euclidean Geometries: Development 
and History, 3rd ed. W.H. Freeman. 

Griffiths, D. (1998). Introduction to Electrodynamics, 3rd ed. Prentice Hall. 
Hardy, G. H. and Wright, E. M. (1979). An Introduction to the Theory of 

Numbers, 5th ed. Clarendon Press. 
Hofstadter, D. R. (1999). Godel, Escher, Bach: An Eternal Golden Braid, 20th 

ed. Basic Books, N.Y. 
Holton, J. R. (2004). An Introduction to Dynamic Meteorology, 4th ed. Academic 

Press. 
Hardy, Y. and Steeb, W. H. (2001). Classical and Quantum Computing. 

Birkhauser, 2002. 
Johnson, C. V. (2003). D-Branes. Cambridge University Press. 
Kellogg, O. D. (1969). Foundations of Potential Theory. Dover. 
Kincaid, D. and Cheney, W. (1996). Numerical Analysis: Mathematics of Scien­

tific Computing, 2nd ed. Brooks/Cole Publishing Co. 
Knabner, P. and Angermann, L. (2003). Numerical Methods for Elliptic and 

Parabolic Partial Differential Equations. Springer. 
Korner, T. W. (1989). Fourier Analysis. Cambridge University Press. 
Kreyszig, E. (2006). Advanced Engineering Mathematics, 9th ed. Wiley. 
Landau, L. D. and Lifschitz, E. M. (1986). Theory of Elasticity, Butterworth. 
Levitan, B. M. and Sargsjan, I. S. (1991). Sturm-Liouville and Dirac Operators. 

Kluwer. 
Liboff, R. L. (2002). Introductory Quantum Mechanics. Addison-Wesley. 
Lorenz, E. N. (1967). The Nature And Theory of The General Circulation of The 

Atmosphere. World Meteorological Organization. 
Love, A. E. H. (1988). A Treatise on the Mathematical Theory of Elasticity. Dover. 
MacCluer C. R. (1994). Boundary Value Problems and Orthogonal Expansions. 

IEEE Press. 
Margenau, H. and Lindsay, R. B. (1957). Foundation of Physics. Dover. 
Mattuck, A. (1998). Introduction to Analysis. Prentice Hall. 
Mirsky, L. (1990). An Introduction to Linear Algebra. Dover. 
Mitchell, A. R. and Griffiths, D. F. (1980). The Finite Difference Method in 

Partial Differential Equations. Wiley. 
Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics, part I. 

McGraw-Hill. 
Moulton, F. R. (1984). An Introduction to Celestial Mechanics. Dover. 
Nahin, P. J. (1998). An Imaginary Tale: The Story of \/ — 1. Princeton University 

Press. 
Nielsen, M. A. and Chuang, I. L. (2000). Qunatum Computation and Quantum 

Information. Cambridge University Press. 
Pauli, W. (1981). Theory of Relativity, Dover. 
Perko, L. (1991). Differential Equations and Dynamical Systems. Springer. 
Pollack, G. and Stump, D. (2002). Electromagnetism. Addison Wesley. 
Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill. 
Shu, S-S. (1987). Boundary Value Problems of Linear Partial Differential Equa­

tions for Engineers and Scientists. World Scientific. 



Bibliography 469 

Schwartz, L. (1966). Mathematics for the Physical Sciences. Addison-Wesley. 
Sciama, D. (1969). The Physical Foundations of General Relativity. Doubleday, 

N.Y. 
Strang, G. and Fix, G. (1973). An Analysis of the Finite Element Method. Pren­

tice Hall. 
Synge, J. L. and Griffith, B. (1949). Principles of Mechanics, 2nd ed. McGraw-

Hill. 
Szabo, R. J. (2004). An Introduction to String Theory and D-Brane Dynamics. 

World Scientific. 
Szego, G. (1975). Orthogonal Polynomials. American Mathematical Society. 
Taylor, E. F. and Wheeler, J. A. (1992). Spacetime Physics, 2nd ed. W.H. Free­

man. 
Thaller, B. (1992). The Dirac Equation. Springer. 
Tuckwell, H. (1988). Theoretical Neurobiology, Volume 1: Cable Theory. Cam­

bridge University Press. 
Weiss, E. (1998). Algebraic Number Theory. Dover. 
Weinberger, H. (1995). A First Course in Partial Differential Equations With 

Complex Variables and Transform Methods. Dover. 
Woodhouse, N. M. J. (2005). Introduction to Analytical Dynamics. Oxford Uni­

versity Press. 
Zwillinger, D. (1997). Handbook of Differential Equations, 3rd ed. Academic Press. 



This page is intentionally left blank 



List of Notations 

R, R3, 2 
II • II, 3 
R n , 7 
v, 9 
a.b, 9 

« 1 , 11 
AT, xT, 12, 451 
det A, 19, 452 
II • II, 1 5 , 4 1 1 
C, 25 
u(t), 27 
s, 29, 104 

G (gravit. const.), 45 
w, 51 
u(t), 63 
c (speed of light), 98, 348 

dG, 122 
£>«/, 123 
V / , g rad / , 124 
( F - V ) G , 126 
dm, 130 
m(G), 130 

/ ( r ( 0 ) , 131 
F(r(t)), 131 
a c 135 
d i v F , 137 
curl-F, 138 
V F, V x F, 139 
V 2 / , 139 
r , r, 140 

d//dn, 158 

5R, 181 
3 , 181 
C, 181 
«, 181 
arg, 183 
Arg, 183 
limsupn , liminfn, 206 
Res/(z) , 222 

cfc(/), 243 
Sf,N, 243 
5 / , 245 
/ (o+) , U m ^ „ + / (x ) , 251 
/ ( a " ) , l i m x ^ a - / (x ) , 251 

/ , ^ [ / ] , 263 
Li(R), LP(K), 264 
/ * 0, 268 
<S(x), 275 

ft (Planck's const.), 357 
fly, 107 
g m r \ 107 
y l^" 1 , 395 



This page is intentionally left blank 



Index 

a priori analysis, 297, 299, 309, 312 
ABEL, N.H., 182 

absolutely integrable, 264 
acceleration, 33 

angular, radial, 36 
centripetal, 35 
normal, 34 
tangential, 34 

D'ALEMBERT, J., 310 

aliasing error, 278, 279 
Ampere's Law, 166 
AMPERE, A-M, 165 

AMSLER, J., 151 

analytic function, 190 
ANDERSON, C D . , 378 

annulus, 216 
approximation error 

local vs. global, 392 
arc length, 29 
area element, 133 
ARGAND, J-R., 184 

Argand diagram, 184 
atmospheric winds, 59 
average value, 130 
azimuthal number, 372 

BALLOT, C.H.D.B., 59 

band-limited, 265, 279 
basis, 7 
BERKELEY, G., 3, 43, 97 

BESSEL, F.W., 236 

Bessel's differential equation, 236, c 

Bessel's function, 342, 441 
Bessel's inequality, 244 
bijection, 383 
binary star, 72 
BlOT, J.B., 169 
Biot-Savart Law, 169 
BIRKHOFF, G.D., 115 

black hole, 115 
BOHR, N.H.D., 359 

Bohr orbit, 372 
Bohr radius, 368 
Bohr's correspondence principle, 367 
Bohr's model, 372 
Boolean operations, 384 
BORN, M., 361 

bound current, 176 
boundary conditions, 160, 300 
boundary value problem, 160 
BRAHE, T., 44 

branch, 215 
branching point, 219 
DE BROGLIE, L-V.P.R., 360 

BUNYAKOVSKY, V.YA., 16 

BURGERS, J.M., 355 

Burgers equations, 355 

caloric, 296 
calorie, 296 
CANTOR, G.F.L.P., 179 

CARDANO, G., 181 

CARLESON, L., 247 

cartesian basis, 7 

473 



474 Index 

CAUCHY, A.L., 16 

Cauchy problem, 292 
Cauchy's Inequality, 201 
Cauchy-Riemann equations, 192 
Cauchy-Schwartz inequality, 15, 327 
CAVENDISH, H., 45 

CAYLEY, A., 433 

center of mass, 66, 80 
change of variables, 144, 149 
characteristic, 293 
characteristic curve, 318 
characteristic equation, 320 
characteristic function, 284 
characteristic system, 318 
CHEBYSHEV, P.L., 239 

Chebyshev's differential equation, 238 
CHRISTOFFEL, E.B., 109 

Christoffel symbol, 109 
CLAIRAUT, A.C., 126 

Clairaut's theorem, 126 
classical solution, 291, 292, 297, 300, 

316 
column vector, 12, 451 
complete orthonormal system, 328 
complex analysis, 190 
complex flop, 280 
complex function, 190 
complex impedance, 189 
complex potential, 434 
complex power, 215 
component, 11 
COMPTON, A.H., 360 

computer algebra system, 28 
confluent hypergeometric differential 

equation, 239 
conformal, 204 
conjugate harmonic, 193 
conservative field, 131 
continuous 

complex function, 190 
curve, 25 
scalar field, 123 
vector field, 123 
vector function, 25 

contravariant valence, 457 
controller, 288 

convergence 
absolute, conditional, 206 
mean-square, 245 
uniform, 248 

convolution, 268 
COOLEY, J.W., 281 
coordinate curve, 142 
COPERNICUS, N., 44 

COPY, 384 
DE CORIOLIS, G - G . , 49 
Coriolis acceleration, 52 
cosmological red shift, 119 
DE COULOMB, C.A., 164 

Coulomb's gauge, 169, 352 
Coulomb's Law, 164 
COURANT, R., 399 

Courant-Friedrichs-Lewy condition, 
399 

covariant valence, 457 
CRANK, J., 396 

Crank-Nicolson scheme, 396, 397 
critical point, 129 

numerical computation, 129 
cross product, 17 
curl, 138 
curvature 

curve, 30, 412 
Ricci, 109 
scalar, 109 

curve, 25 
canonical parametrization, 30 
closed, 25 
continuous, 25 
Jourdan,123 
piece-wise smooth, 28 
planar, 32 
rectifiable, 28 
representations of, 127 
simple, 25 

cylindrical coordinates, 141 

d'Alembert's solution, 310 
damping, 188, 260 
DAVISSON, C.L., 360 

de Broglie wave Length, 360 
de Moivre's formula, 185 



Index 475 

decoherence, 364, 390 
DEDEKIND, J.W.R., 179 
delta function, 275 
DESCARTES, R., 182 

DESCARTES, R., 7 

detectable state, 363 
determinant, 452 
Deutsch gate, 386 
Deutsch-Jozsa algorithm, 380, 387 
diagonal matrix, 451 
diamagnetic, 177 
DICKE, R.H., 46 

dielectric constant, 175 
differentiable 

complex function, 190 
field, 124 
vector function, 25 

differentiation formulas, 26, 125, 139, 
140 

diffusion equation, 295 
dipole moment, 171, 173 
DlRAC, P.A.M., 275 
Dirac's bra-ket notations, 362 
Dirac's equation, 375 
direction vector of a line, 8, 127 
directional derivative, 123 
DIRICHLET, J.P.G.L., 121, 241 
Dirichlet Laplacian, 330, 338-343 
Dirichlet principle, 406 
Dirichlet's principle, 161 
disk of convergence, 209 
dissipative, 306 
divergence, 137 
divergence theorem, 151 
dot product, 10 
Du BOIS-REYMOND, P.D.G., 247 
dynamics, 39 

EDDINGTON, A.S., 117 

eigenfunction, 329 
eigenstate, 363 
eigenstates, 380 
eigenvalue, 329 
eigenvector, 329 
EINSTEIN, A., 3, 98, 107-119, 294, 

416 

Einstein's summation convention, 
107, 456 

Einstein's tensor, 110 
electric dipole, 170, 429 
electric displacement, 175 
electrical permittivity, 164 
electron-volt, 368 
elliptic equation, 319 
elliptic integral, 417 
energy of the string, 312 
entangled states, 381 
entire function, 191 
enumerating 

finite rectangular array, 280 
infinite rectangular array, 339 
infinite triangular array, 437 

EOTVOS, R., 46 

equation of continuity, 154 
equipotential line, 434 
EUCLID, 1 

Euclid's postulates, 1 
Euclidean geometry, 1 
EULER, L., 79, 84, 182, 355 

Euler's angles, 418 
Euler's equations 

fluids, 355 
rigid system, 79 

Euler's formula, 184, 214 
Euler-Lagrange equations, 112 
evolution equation, 322 
exact discretization, 396, 400, 403 
explicit Euler scheme, 392, 396 

FARADAY, M., 165 

Faraday's Law, 165 
Fast Fourier Transform (FFT), 280, 

449 
F E J E R , L., 438 

Fejer kernel, 438 
FERREL, W., 59 

ferromagnetics, 178 
FlCK, A.E., 294 
Fick's Law of Diffusion, 294 
field 

conservative, potential, 131, 156 
irrotational, 141, 156, 433 



476 Index 

salar, vector, 121 
smooth, 124 
solenoidal, 137, 433 

fine structure constant, 373 
finite difference approximation, 394, 

448 
finite element approximation, 404 
finite elements vs. finite differences, 

406-407 
FIZEAU, A.H.L., 348 
flat Minkowski metric, 105, 113 
flux, 134 
force, 43 

central, 46, 413 
centrifugal, 49, 53, 66 
conservative, 88 
Coriolis, 49, 53-61, 66 
inertial, 47 

FOUCAULT, J.B.L., 57, 348 
Foucault pendulum, 57 
FOURIER, J-B.J., 241 
Fourier coefficients 

continuous, 243 
discrete, 279 

Fourier cosine transform, 273 
Fourier integral, 263, 272 
Fourier series, 245 
Fourier sine transform, 273 
Fourier transform, 263 

other definitions, 264 
frame, 4 

accelerating, 61 
inertial, 43, 46 
primary inertial, 43 
principal axes, 77 

free motion, 287 
FRENET, J .F. , 31 

Frenet's formulas, 31 
Frenet's trihedron, 32 
friction coefficient, 420 
FRIEDRICHS, K.O., 399 

FROBENIUS, G., 231 

FUCHS, L., 231 

fully nonlinear equation, 318 
function, 121 
functional, 111, 161, 275, 405 

fundamental mode, 313 
fundamental solution 

heat equation, 298 
Fundamental Theorem of Algebra, 

181, 201 

GALERKIN, B.G., 404 

Galerkin's method, 404, 449 
Galilean transformation, 96 
GALILEI, G., 42, 45, 101 

Galileo's Principle, 40 
GALOIS, E., 182 

gate, 383 
gauge, 351 
gauge fixing, 351 
gauge transform, 351 
GAUSS, C.F., 152, 192, 281 

generalized cylindrical coordinates, 
135 

generalized Fourier series, 328 
generalized polar coordinates, 133 
generalized solution, 304, 310, 315 
generalized spherical coordinates, 135 
geodesic, 110 
GERLACH, W., 377 

GERMER, L.H., 360 

GIBBS, J.W., 3, 163, 254 

Gibbs phenomenon, 254 
GORDON, W., 378 

GOURSAT, E, 198 

gradient, 124 
GRAVES, J.T., 433 

gravitational deflection of light, 117 
gravitational red shift, 117 
GREEN, G., 150 

Green's formulas, 159 
ground state, 372 
GROVER, L.K., 388 

Grover's Search Algorithm, 388 

Habilitation, 131 
HADAMARD, J.S., 182, 385 

Hadamard gate, 385 
Hadamard matrix, 386 
half-range expansion, 255 
HAMILTON, W.R., 84, 433 



Index 477 

Hamilton's equations, 94 
Hamiltonian, 94, 363 
harmonic function, 157, 193 
harmonic oscillator, 188, 259-261, 365 
harmonic vector field, 433 
heat kernel, 298 
HEAVISIDE, O., 4, 163, 282 

Heaviside's function, 283 
HEISENBERG, W.K., 358 

VON HELMHOLTZ, H.L.F., 338 
HERMITE, C , 239 

Hermite's differential equation, 239 
Hermitian matrix, 328, 382 
Hermitian operator, 328 
HERON OF ALEXANDRIA, 181 

HERSCHEL, W., 73 

HERTS, H.R., 348 

HESSE, L.O., 427 

Hessian matrix, 427 
Hilbert space, 327 
homogeneous 

boundary conditions, 300, 324 
equation, 317 
space, medium, 1 

HOOKE, R., 462 
Hooke's Law, 365, 462 
HUBBLE, E.P, 119 

HUYGENS, C , 42, 348, 418 

Huygens's principle, 345 
Huygens-Steiner theorem, 418 
hydrogen atom, 367-373, 446 
hyperbolic equation, 319 
hypergeometric differential equation, 

237 

ideal cable, 335 
identity matrix, 451 
implicit Euler scheme, 392, 396 
incompressibility condition, 355 
indicial equation, 234 
infinite propagation speed, 299 
initial value problem, 292, 296, 309, 

323, 324, 344, 357 
initial-boundary value problem, 300, 

306, 312, 335, 336 
inner product, 9, 327 

inner product space, 327 
instantaneous smoothing, 299 
integers on a circle, 340 
Integral Formula of Cauchy, 199 
Integral Theorem of Cauchy, 197 
International System of Units, 163 
inverse Fourier transform, 263 
isometry, 17, 412 
isotropic 

space, medium, 1 

JACOBI, C.G.J., viii, 148 
Jacobi's differential equation, 239 
Jacobian, 148, 203 
Jordan curve, 123 
Jordan's Lemma, 436 
JOULE, J .P. , 296 

JOURDAN, M.E.C., 123 
JOZSA, R., 387 

KdV equation, 448 
KEPLER, J., 44 

Kepler's Laws, 44 
kinematics, 39 
KLEIN, O., 378 

Klein-Gordon equation, 378 
KOLMOGOROV, A.N., viii, 247 
KORTEWEG, D.J., 448 

KRONECKER, L., 179 

Kronecker symbol, 107, 457 
KUMMER, E.E., 239 

Kummer's differential equation, 239 

LAGRANGE, J-L., 84 

Lagrange's equations, 87 
Lagrange's Identity, 410 
Lagrangian, 89 
LAQUERRE, E., 238 

Laguerre's polynomial, 238 
LANDAU, L.D., viii 
LAPLACE, P-S., 158 

Laplace transform, 281 
Laplace's equation, 158 
Laplacian, 139, 338 
LAURENT, P.A., 216 

Laurent series expansion, 216, 245 



478 Index 

DE LAVOISIER, A-L., 296 

Law of Inertia, 40 
LEBESQUE, H.L., 244 

LEGENDRE, A.M., 239 

Legendre polynomial, 370 
Legendre polynomials, 370, 430 
Legendre's differential equation, 239, 

370 
length, 14 
level set, 126 
LEVI-CIVITA, T., 109 

LEWY, H., 399 

line element, 29, 105, 107, 144, 459 
line integral, 131 
linear operator, 328 
linear-fractional function, 435 
lines of force, 167, 429 
LIOUVILLE, J., 180, 443 

Liouville's formula, 235 
Liouville's Theorem, 201 
logical operations, 384 
LORENTZ, H.A., 101 

LORENZ, E.N, 61 

LORENZ, L., 352 

Lorenz's gauge, 352 
lower limit, 206 

MOBIUS, A.F., 435 

Mobius strip, 136 
MACH, E., 3, 376 

MACLAURIN, C , 212 

Maclaurin series, 212 
magnetic field strength, 176 
magnetic number, 372 
magnetic permeability, 164 
magnetic susceptibility, 177 
mass 

gravitational, 45 
inertial, 45 
relativistic, 102 
rest, 101 

MATHIEU, C.L., 416 

Mathieu's differential equation, 416 
matrix, 451 
MAXWELL, J.C., 163 

Maxwell's equations, 164, 178, 347, 
446 

mean-square convergence, 245 
mean-value property, 200 
method of characteristics, 318-321 
method of reflection, 335 
method of steepest descent, 129 
method of weighted residuals, 404 
metric, 2, 105 

flat, 105 
flat Minkowski, 105 

metric tensor, 105, 106 
MICHELSON, A.A., 97, 254 

Michelson-Morley experiment, 97, 424 
Millennium Problems, 178, 356 
MILLS, R.L., 178 

MINKOWSKI, H., 105 

Minkowski space, 105 
DE MOIVRE, A., 185 

moment arm, 19 
moment generating function, 284 
momentum 

angular, 40, 68, 70 
generalized, 93 
linear, 40, 68 
relativistic, 102 

MOORE, G.E., 384 

Moore's Law, 384 
MORERA, G., 198 

MORLEY, E.W., 97 

multiple eigenvalue, 329 
multiplicity of an eigenvalue, 329 

NAND, 384 
natural logarithm, 214 
NAVIER, C.L.M.H., 355 
Navier-Stokes equations., 355 
neighborhood, 121 
VON NEUMANN, J., 362 

NEUMANN, C.G., 161 

NEUMANN, F.E, 161 

NEWTON, I., 3, 40, 97 

Newton's Law of Cooling, 295, 305 
Newton's Law of Gravitation, 45 
Newton's Laws of Motion, 39 
NICOLSON, P., 396 



Index 479 

nodal line, 339, 343 
nodes, 313 
non-Euclidean geometry, 2 
NOR, 384 
norm, 14, 411 
normal derivative, 158 
normal line, 127 
normal mode, 313 
normal vector of the plane, 13 
numbers, 180-183 
numerical quadrature, 391 
NYQUIST, H., 266 

Nyquist-Shannon sampling theorem, 
265, 278 

observable state, 363 
observable states, 380 
ODE, ordinary differential equation, 

231, 259 
OHM, G.S., 173 
Ohm's Law, 173, 463 
open ball, 121 
open disk, 121 
operational calculus, 282, 283 
operator, 322 
orbital number, 372 
0RSTED, H.C., 165 
orthogonal elements, 327 
orthogonal projection, 11 
orthogonality 

Bessel's functions, 343 
continuous, 242, 246 
discrete, 278 

orthonormal basis, 10, 15, 453 
orthonormal set, 10 
orthonormal system, 328 
osculating circle, 412 
OSTROGRADSKY, M.V. , 152 
overtones, 313 

parabolic equation, 319 
Parallel Axis Theorem, 417 
parallelogram law, 15 
paramagnetic, 177 
PARSEVAL DES CHENES, M-A., 244 

Parseval's identity, 244, 267 

partial derivative, 125, 316 
partial sum, 243 
PAULI, W.E., 376 

Pauli matrices, 376 
PDE, 291 
pendulum, 41, 57, 82 
perfect insulation, 306 
perihelion, 415 
perihelion precession, 415 
periodic extension, 255 
permeability, 177 
permittivity, 175 
permutation symbol, 461 
photon, 359 
pitching, 32 
planar wave, 349 
PLANCHEREL, M., 267 

Plancherel's Theorem,, 267 
PLANCK, M.K.E., 359 
Planck's constant, 348, 359 
plane 

binormal, 32 
equation of, 13 
normal, 32 
normal vector, 13, 128 
osculating, 32 
rectifying, 32 
tangent, 128 

planimeter, 151 
point at infinity, 202, 222, 237 
point dipole 

elect ic, 172 
magnetic, 173 

point mass, 24 
points 

co-planar, 24 
collinear, 22 

POISSON, S.D., 158 

Poisson's equation, 158, 168, 427 
Poisson's Summation Formula, 266 
polarization, 350 
polynomial, 179 
positive operator, 328 
positive orientation, 135 
positron, 378 
potential, 89 



480 Index 

potential energy, 132 
potential field, 131 
Pound-Rebka-Snider experiment, 118 
power series, 208 

uniqueness, 212 
POYNTING, J.H., 353 

Poynting Theorem, 353 
Poynting vector, 353 
principal quantum number, 372 
principal unit normal vector, 31 
principal value of the argument, 183 
pseudo-Riemannian geometry, 105 

quantum, 359 
quantum computer, 363, 379 
quantum electrodynamics, 178, 379 
quantum mechanics, 358 
quantum oscillator, 365-367 
quasi-linear equation, 317 
quaternion, 432 
qubit, 380 

radius of convergence, 209, 213 
ratio test, 207 
rational function, 190, 191 
RAYLEIGH (J.W. STRUTT) , 405 

Rayleigh-Ritz method, 405 
reactance, 189 
rectangular pulse, 271 
rectangular wave, 256 
reduced Planck's constant, 357 
regular singular point, 233, 237 
relative permittivity, 175 
relativistic space-time, 103 
relativity 

dynamics, 423 
general, 45, 105, 415 
special, 109 

residual, 404 
residue, 222 
resistivity, 463 
resonance, 260 
rest mass, 376 
reversible gate, 383 
RICCI-CURBASTRO, G., 109 

Ricci curvature tensor, 109 

RIEMANN, G.F.B., 131, 192, 244 

Riemann integral, 130-131 
Riemann-Lebesgue Theorem, 244 
right-handed circular helix, 30 
right-handed triad, 18 
rigid pendulum 

distributed, 82 
simple, 41 

RlTZ, W., 405 
rolling, 32 
rolling cylinder, 419 
root test, 207 
roots of complex numbers, 184 
rotation vector, 51, 63, 74 
row vector, 12, 451 

SAVART, F., 169 

scalar, 5 
scalar field, 121 
scalar potential, 351 
scalar product, 10 
scalar triple product, 23 
SCHRODINGER, E.R.J.A., 361 
Schrodinger's equation, 356, 363 

stationary, 364 
SCHWARZ, H.A., 16 

SCHWARZSCHILD, K., 113 

Schwarzschild radius, 113, 415 
Schwarzschild's metric, 113 
Schwarzschild's solution, 113 
second partials test, 427 
semi-linear equation, 317 
separation constant, 325 
separation of variables, 300, 312, 331, 

339, 341, 368 
SERRET, J.A., 31 

sets in R2, K3, 121, 186 
SHANNON, C.E., 266 

shape of the drum, 347 
SHOR, P.W., 388 

Shor's Factorization Algorithm, 388 
simple eigenvalue, 329 
simple pole, 219 
singularity, 219 
skewed lines, 411 
smooth function, 124 



Index 481 

solenoid, 137 
soliton, 448 
solution operator, 322 
space-time, 99 
spectrum 

electromagnetic radiation, 350 
of a signal, 256, 268 
of an operator, 329 

speed, 33 
angular, radial, 36 
of light, 98, 164, 348 

spherical coordinates, 142 
spin, 376 
stability condition, 397, 448 
stable dynamical system, 287, 289 
stable numerical method, 393 
standing wave, 313 
stationary wave, 313 
steady-state solution, 305 
STEINER, J., 418 

STERN, O., 377 

Stern-Gerlach experiment, 377 
STOKES, G.G., 155 

stream function, 434 
streamline, 433 
stress, 344 
stress-energy tensor, 108 
string theory, 379 
STURM, J .C.F. , 443 
Sturm-Liouville problem, 443-446 
superconductors, 178 
superposition principle, 300, 362 
surface 

orientable, 133 
piece-wise smooth, 133 
representations of, 127 
simple, 123 

surface area element, 134 
susceptibility, 175 
symmetric operator, 328 

tangent line, 28 
tangent plane, 128 
TAYLOR, B., 212 

Taylor formula in Rn , 426 
Taylor series, 212 

telegraph equation, 334 
tensor field, 175, 457 
tensor of inertia, 76, 81 
tensor of type (p, q), 457 
THOMSON, W. (LORD KELVIN), 155, 

337 
time-reversible, 357 
TOFFOLI, T., 385 
Toffoli gate, 385 
torque, 19, 41 
torsion, 31, 412 
transformation, 17 

Galilean, 101 
linear, 17 
Lorentz, 101, 348, 423, 446 
Mobius, 435 
orthogonal, 17, 412 

transport equation, 292 
travelling wave solution, 311 
triangle inequality, 15 
triangular pulse, 311 
trigonometric polynomial, 242 
TUKEY, J.W., 281 

tumbling box, 420 
tuning, 313 
Twin Paradox, 103 
two-sided Laplace transform, 284 

uncertainty principle, 358, 373 
underwater cable, 335-338 
uniform rotation, 48 
unique factorization, 432 
uniqueness 

Fourier series, 245 
power series, 212 

unit binormal vector, 31 
unit tangent vector, 27 
unit vector, 9 
unitary matrix, 382 
universal gate, 385 
universal gravitational constant (G), 

45 
upper limit, 206 

vacuum field equations, 113 
vacuum solutions, 112 



482 Index 

variation of parameters, 294, 298, ZHUKOVSKY, N.Y., 435 
311, 315, 323 Zhukovsky's airfoil, 435 

variational approach, 404 Zhukovsky's function, 435 
VEBLEN, O., 123 

vector, 3, 6 
vector algebra, 3 
vector analysis, 3 
vector calculus, 3 
vector field, 121 
vector fields and analytic functions, 

433 
vector potential, 168, 351 
vector product, 17 
vector space, 6, 326 
vectors 

linearly dependent, 411 
linearly independent, 7 
orthogonal, 10 
perpendicular, 10 

velocity, 33 
velocity potential, 434 
volume element, 135 
vorticity, 433, 448 
DE VRIES, G., 448 

WALLIS, J., 184 

wave diffusion, 311 
wave function, 357, 371 
wave vector, 349 
WEIERSTRASS, K.T.W., 249 
Weierstrass's M-test, 249 
Weierstrass's polynomial 

approximation theorem, 439 
weight function, 443 
W E Y L , H., 362 

world line, 103 

XOR, 384 

YANG, C-N., 178 

Yang-Mills equations, 178, 351 
yawing, 32 

Z-transform, 284, 285 
ZEEMAN, P., 376 

Zeeman effect, 376 



MATHEMATICS OF 
PHYSICS AND 

ENGINEERING 
Aimed at scientists and engineers, this book is an excit ing 

intel lectual journey through the mathematical worlds of 

Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac. 

Whi le similar books present the required mathematics in a 

piecemeal manner with tangential references to the relevant 

physics and engineering, this textbook serves the inter­

d isc ip l inary needs of engineers, scientists and appl ied 

mathematicians by unifying the mathematics and physics into 

a single systematic body of knowledge but preserving the 

rigorous logical development of the mathematics. 

The authors take an unconventional approach by integrating 

the mathematics with its motivating physical phenomena and, 

conversely, by showing how the mathematical models predict 

new physical phenomena. 

/orld Scientific 

www.worldscientitic.com 

http://www.worldscientitic.com

	Contents���������������
	Preface��������������
	1 Euclidean Geometry and Vectors���������������������������������������
	1.1 Euclidean Geometry�����������������������������
	1.1.1 The Postulates of Euclid�������������������������������������
	1.1.2 Relative Position and Position Vectors���������������������������������������������������
	1.1.3 Euclidean Space as a Linear Space����������������������������������������������

	1.2 Vector Operations����������������������������
	1.2.1 Inner Product��������������������������
	1.2.2 Cross Product��������������������������
	1.2.3 Scalar Triple Product����������������������������������

	1.3 Curves in Space��������������������������
	1.3.1 Vector-Valued Functions of a Scalar Variable���������������������������������������������������������
	1.3.2 The Tangent Vector and Arc Length����������������������������������������������
	1.3.3 Frenet's Formulas������������������������������
	1.3.4 Velocity and Acceleration��������������������������������������


	2 Vector Analysis and Classical and Relativistic Mechanics�����������������������������������������������������������������
	2.1 Kinematics and Dynamics of a Point Mass��������������������������������������������������
	2.1.1 Newton's Laws of Motion and Gravitation����������������������������������������������������
	2.1.2 Parallel Translation of Frames�������������������������������������������
	2.1.3 Uniform Rotation of Frames���������������������������������������
	2.1.4 General Accelerating Frames����������������������������������������

	2.2 Systems of Point Masses����������������������������������
	2.2.1 Non-Rigid Systems of Points����������������������������������������
	2.2.2 Rigid Systems of Points������������������������������������
	2.2.3 Rigid Bodies�������������������������

	2.3 The Lagrange-Hamilton Method���������������������������������������
	2.3.1 Lagrange's Equations���������������������������������
	2.3.2 An Example of Lagrange's Method��������������������������������������������
	2.3.3 Hamilton's Equations���������������������������������

	2.4 Elements of the Theory of Relativity�����������������������������������������������
	2.4.1 Historical Background����������������������������������
	2.4.2 The Lorentz Transformation and Special Relativity��������������������������������������������������������������
	2.4.3 Einstein's Field Equations and General Relativity��������������������������������������������������������������


	3 Vector Analysis and Classical Electromagnetic Theory�������������������������������������������������������������
	3.1 Functions of Several Variables�����������������������������������������
	3.1.1 Functions Sets and the Gradient��������������������������������������������
	3.1.2 Integration and Differentiation��������������������������������������������
	3.1.3 Curvilinear Coordinate Systems�������������������������������������������

	3.2 The Three Integral Theorems of Vector Analysis���������������������������������������������������������
	3.2.1 Green's Theorem����������������������������
	3.2.2 The Divergence Theorem of Gauss��������������������������������������������
	3.2.3 Stokes's Theorem�����������������������������
	3.2.4 Laplace's and Poisson's Equations����������������������������������������������

	3.3 Maxwell's Equations and Electromagnetic Theory���������������������������������������������������������
	3.3.1 Maxwell's Equations in Vacuum������������������������������������������
	3.3.2 The Electric and Magnetic Dipoles����������������������������������������������
	3.3.3 Maxwell's Equations in Material Media��������������������������������������������������


	4 Elements of Complex Analysis�������������������������������������
	4.1 The Algebra of Complex Numbers�����������������������������������������
	4.1.1 Basic Definitions������������������������������
	4.1.2 The Complex Plane������������������������������
	4.1.3 Applications to Analysis of AC Circuits����������������������������������������������������

	4.2 Functions of a Complex Variable������������������������������������������
	4.2.1 Continuity and Differentiability���������������������������������������������
	4.2.2 Cauchy-Riemann Equations�������������������������������������
	4.2.3 The Integral Theorem and Formula of Cauchy�������������������������������������������������������
	4.2.4 Conformal Mappings�������������������������������

	4.3 Power Series and Analytic Functions����������������������������������������������
	4.3.1 Series of Complex Numbers��������������������������������������
	4.3.2 Convergence of Power Series����������������������������������������
	4.3.3 The Exponential Function�������������������������������������

	4.4 Singularities of Complex Functions���������������������������������������������
	4.4.1 Laurent Series���������������������������
	4.4.2 Residue Integration��������������������������������
	4.4.3 Power Series and Ordinary Differential Equations�������������������������������������������������������������


	5 Elements of Fourier Analysis�������������������������������������
	5.1 Fourier Series�������������������������
	5.1.1 Fourier Coefficients���������������������������������
	5.1.2 Point-wise and Uniform Convergence�����������������������������������������������
	5.1.3 Computing the Fourier Series�����������������������������������������

	5.2 Fourier Transform����������������������������
	5.2.1 From Sums to Integrals�����������������������������������
	5.2.2 Properties of the Fourier Transform������������������������������������������������
	5.2.3 Computing the Fourier Transform��������������������������������������������

	5.3 Discrete Fourier Transform�������������������������������������
	5.3.1 Discrete Functions�������������������������������
	5.3.2 Fast Fourier Transform (FFT)�����������������������������������������

	5.4 Laplace Transform����������������������������
	5.4.1 Definition and Properties��������������������������������������
	5.4.2 Applications to System Theory������������������������������������������


	6 Partial Differential Equations of Mathematical Physics���������������������������������������������������������������
	6.1 Basic Equations and Solution Methods�����������������������������������������������
	6.1.1 Transport Equation�������������������������������
	6.1.2 Heat Equation��������������������������
	6.1.3 Wave Equation in One Dimension�������������������������������������������

	6.2 Elements of the General Theory of PDEs�������������������������������������������������
	6.2.1 Classification of Equations and Characteristics������������������������������������������������������������
	6.2.2 Variation of Parameters������������������������������������
	6.2.3 Separation of Variables������������������������������������

	6.3 Some Classical Partial Differential Equations��������������������������������������������������������
	6.3.1 Telegraph Equation�������������������������������
	6.3.2 Helmholtz's Equation���������������������������������
	6.3.3 Wave Equation in Two and Three Dimensions������������������������������������������������������
	6.3.4 Maxwell's Equations��������������������������������
	6.3.5 Equations of Fluid Mechanics�����������������������������������������

	6.4 Equations of Quantum Mechanics�����������������������������������������
	6.4.1 Schrodinger's Equation�����������������������������������
	6.4.2 Dirac's Equation of Relativistic Quantum Mechanics���������������������������������������������������������������
	6.4.3 Introduction to Quantum Computing����������������������������������������������

	6.5 Numerical Solution of Partial Differential Equations���������������������������������������������������������������
	6.5.1 General Concepts in Numerical Methods��������������������������������������������������
	6.5.2 One-Dimensional Heat Equation������������������������������������������
	6.5.3 One-Dimensional Wave Equation������������������������������������������
	6.5.4 The Poisson Equation in a Rectangle������������������������������������������������
	6.5.5 The Finite Element Method��������������������������������������


	7 Further Developments and Special Topics������������������������������������������������
	7.1 Geometry and Vectors�������������������������������
	7.2 Kinematics and Dynamics����������������������������������
	7.3 Special Relativity�����������������������������
	7.4 Vector Calculus��������������������������
	7.5 Complex Analysis���������������������������
	7.6 Fourier Analysis���������������������������
	7.7 Partial Differential Equations�����������������������������������������

	8 Appendix�����������������
	8.1 Linear Algebra and Matrices��������������������������������������
	8.2 Ordinary Differential Equations������������������������������������������
	8.3 Tensors������������������
	8.4 Lumped Electric Circuits�����������������������������������
	8.5 Physical Units and Constants���������������������������������������

	Bibliography�������������������
	List of Notations������������������������
	Index������������

