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ABSTRACT 
 

In the theory of gravity wave of general relativity, the metric of gravitational field was written as 

g G h    .It was proved that as long as h  was a small quantity of first order under weak 

condition, by using four harmonic coordinate conditions, the Einstein's gravitational field equation in 

vacuum can be transformed into a linear wave equation
2 0h  , thus predicting the existence of 

gravitational waves. It is proved in this paper that there are many serious problems in the theory of 
gravity wave of general relativity. 1. The gravitational wave metric used in the theory and the 
detection of gravitational wave is not a direct result by solving the gravitational field equation of 
general relativity, but a hypothesis that has not been proved in mathematics and physics. 2. This 

gravitational wave metric does not satisfy the gravitational field equation 0R  in vacuum under 

weak condition. Therefore, the Einstein's equations of gravitational field can not be reduced to 
linear wave equations, and general relativity does not and can not predict the existence of 
gravitational waves. 3. The four harmonic coordinate conditions were used to derive the linear wave 
equation of gravitational wave in general relativity, but they are not tenable. This is the main reason 
why the gravitational wave metric does not satisfy the motion equation of general relativity. 4. The 
harmonious coordinate conditions can be satisfied by transforming them to other coordinate 
systems. But in this case, the metric tensors of gravitational wave become constants, meaning that 
the gravitational field disappears, let alone the gravitational waves. 5. The present gravitational 
wave detection was regarded to involve the extremely strong field of black hole collision in which 
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h  was not a small quantity without wave solutions. However, general relativity still used linear 

wave equations to describe gravitational waves generated by the collision of black holes. The 
gravitational wave theory of general relativity contradicts itself. 6. The gravitational wave delayed 
radiation formula of general relativity is also untenable due to the chaotic calculations and wrong 
coordinate transformations. 7. This paper also discusses the existence of gravitational wave based 
on the revised Newton's theory of gravitation by introducing magneto-like gravitational component. 
8. Finally, Chen Yongming's formula of electric-like gravitational wave radiation based on the 
Newton's theory of gravity is introduced. The theory is used to calculate the gravitational radiation of 
pulsar binary PSR1913+16, and the result is that the gravitational radiation reduces the distance of 
binary by 3.12 mm per period. Taylor and Hulls observed a decrease of 3.0951 mm per cycle, a 
difference of less than 1% comparing with the calculation by the Chen Yongming's formula. So the 
conclusion of this paper is that general relativity does not prove the existence of gravitational 
waves. We can describe gravitational radiation in terms of the revised Newtonian gravity theory in 
flat space-time, the Einstein's gravity theory of curved space-time is unnecessary. 

 

 
Keywords: General relativity; linear wave equations; gravitational wave radiation; harmonic coordinate 

conditions; magnetic dipole radiation; electric quadrupole radiation; pulsed binary 
psr1913+16; chen yongming’s gravitational radiation formula. 

 

1. INTRODUCTION 
 
Since LIGO announced to detect gravitational 
wave signals from the collision of two black holes 
in February 2016 [1], the theoretical and 
experimental researches on gravitational wave 
have formed an upsurge in the world. More than 
50 gravitational-wave events have been reported 
so far by LIGO and Virgo collaboration, the 
observations of gravitational wave bursts have 
become norm events. Physicists even declared 
that the era of gravitational-wave astronomy has 
arrived. But is this really the case?. 
 
The current theoretical research and the 
experimental detection of gravitational waves 
were based on general relativity. The discovery 
of gravitational waves was considered to make 
up the last piece of general relativity. The 
Einstein's gravity theory of curved space-time 
obtained the final and perfect verification.  
 
However, as we all know, the Einstein's equa-
tions of gravitational fields were highly nonlinear 
ones and generally have no linear wave solutions. 
In fact, Einstein thought that gravitational waves 
did not exist at his early age and even wrote a 
paper with Nathan Rosen and substituted it to 
Physical Review. The reviewer wrote a 10-page 
response, pointed out the errors and rejected the 
paper [2]. It was not until 1936 that Einstein 
changed his mind and published a paper to 
accept the existence of gravitational waves. 
 
In 2017, J.-F. Pommaret in Ecole des Ponts 
Paris Tech published an paper in Journal of 

Modern Physics titled "Why Gravitational            
Waves can not exist" [3]. The paper reexamines 
the mathematical foundations of general  
relativity and gauge theory by using modern 
methods of nonlinear differential equations and 
partial differential equations, giving some 
mathematical constraints on the solutions of 
Einstein's gravity equations and proving that 
gravitational waves do not exist from 
mathematical angle.  
 
The method of Pommaret's paper was to identify 
the differential indeterminates of Ritt and Kolchin 
with the jet coordinates of Spencer, in order to 
study Differential Duality by using only linear 
differential operators with coefficients in a 
differential field K. In particular, the linearized 
second order Einstein operator and the                
formal adjoint of the Ricci operator are both 
parametrizing the 4 first order Cauchy stress 

equations but themselves can not be 

parametrized. In the framework of Homological 
algebra, this result is not coherent with the 
vanishing of a certain second extension              
module and leads to question the                       
proper origin and existence of gravitational 
waves.  
 
Pommaret's papers was highly mathematical 
abstract and difficult to understand for non-
mathematical professionals. In addition, the weak 
field condition was not considered in the paper. 
So what we need to study in further is whether 
the Einstein's equations of gravitational fields 
have linear wave solutions under weak field 
condition. 
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This paper discusses this problem in detail in the 
angle of theoretical physics. It is pointed out that 
even under the weak field condition, the 
gravitational wave metric used in the theory                
and the experiments of general relativity does not 
satisfy the Einstein's equation of gravitational 
field. So general relativity can not predict the 
existence of gravitational waves. Even the  
experiments really detected gravitational             
waves, they are unrelated to general        
relativity. 
 
In general relativity, the metric tensor of gravity 
field was written as [4]: 
 

g G h                                             (1) 

 

Where G  is the Minkowski metric of flat space 

-time, h and its derivatives are small quantities. 

Besides, there are no other restrictions.                
Based on Eq.(1), general relativity proved that 
Einstein's equations of gravity field in vacuum 
can be transformed into following linear wave 
equation under the condition of weak field                  
[4]. 
 

2
2 2

2 2

1
0h h

c t
 

 
    

 
               (2) 

 
Thus the existence of gravitational waves was 
predicted. 
 
At present, general relativity uses following 
metric to describe gravity wave [5] 
 

2 2 2 2 2 2

11 22(1 ) (1 )ds c dt h dx h dy dz       (3)                                            

 
Suppose that gravity wave propagates along the 
z axis, we take [5]  
 

11 1 cos( )h h t kz 
 

 

22 2 cos( z)h h t k 
                            

     (4) 

 

Let / c k  , Eq.(4) satisfies the linear wave 

equation (2).  

 
It should be noted that general relativity did                 
not obtain the metric of Eq.(4) by solving the 
Einstein's equations of gravitational field, but 
directly assumed that the metric of gravitational 

waves should be in the forms of Eqs.(3) and (4). 
By the detailed calculation, this paper reveals 
following three points: 
 

1. Whether or not the weak field approxi-
mation is considered, the metric tensor of 
Eq.(4) does not satisfy the Einstein's 

gravitational field equation 0R   in 

vacuum and therefore it is not the solution 
of motion equation of general relativity. In 
other words, although Eq.(4) can satisfy 

2 0h  , it does not describe the gravity 

waves of general relativity in curved space-
time. 

 
2. The metric tensor of Eq.(4) can not satisfy 

the harmonic coordinate condition, or they 
can not make the harmonic coordinate 
condition equal to zero, results in that the 
metric of gravitational wave does not 
satisfy the gravitational field equation. 

 
3. By transforming the harmonic coordinate 

conditions to another frame of reference, 
they can be equal to zero. However, in the 
new coordinate system, the metric tensors 
of Eq.(4) becomes constants, meaning that 
the gravitational field disappears, not to 
mention gravitational waves. 

 

In addition, the generation of gravitational waves 
was thought to be physical phenomenon under 
extreme conditions, requiring extremely strong 
gravitational interactions. In particular, it was 
impossible to obtain the linear wave equation of 
Eq.(2) for gravitational waves generated by so-
called black-hole collisions. But it is strange that 
according to the derivation of general relativity, 
gravitational waves can only be generated under 
the condition of weak field, and will not be 
generated under the condition of strong field. So 
the gravitational wave theory of general relativity 
contradicts itself. The wave equation (2)                
can not be used in the process of black hole 
collisions. 
 
It is also proved that the gravitational delayed 
radiation formula of general relativity can not hold. 
This formula used the so-called quadrupole 

moment i kx x  to describe energy momentum 

tensor ikT . The gravitational wave radiation 

formula obtained was proportional to i kx x  

which was independent of the derivative of 
coordinates with respect to time. However, in the 
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concrete calculation, it was transformed to the 
follow coordinate system, in which the radiation 

formula was related to the derivative ix  of space 

coordinate. This is obviously violates the basic 
principle of mathematical transformation, 
resulting in the invalid of gravitational wave 
radiation formula. 
 
It is pointed out that the linear wave equation of 
gravity wave can be obtained by introducing 
magnetic-like gravity component into the 
Newton's theory of gravity, and the existence of 
gravitational wave can also be predicted by the 
revised Newton's theory of gravity. If gravitational 
waves can be detected in experiments, they           
can only be the gravitational waves of the 
modified Newton's theory, not the gravitational 
waves of Einstein's theory of curved space-       
time. 
 
Finally, the Chen Yongming's formula of electro-
like gravitational wave radiation is introduced. 
The formula is used to calculate the gravitational 
radiation of PSR1913+16. The result is that 
gravitational radiation reduced the distance 
between the binary star by 3.12 millimeters per 
cycle. Taylor and Hulls observed a decrease of 
3.0951 mm per cycle, a difference of less than 1% 
comparing with the calculation of Chen 
Yongming's formula. So we can describe 
gravitational radiation in terms of the Newtonian 
gravity theory in flat space-time, the Einstein's 
gravity theory of curved of space-time is 
unnecessary.  
 
Therefore, the conclusion of this paper is that  
the Einstein's equations of gravitational field can 
not be transformed into linear wave equations 
under both weak or strong field conditions. 
General relativity can not predict the existence of 
gravitational waves, its theory of gravity                   
waves was wrong. We can describe gravity 
radiation with the revised Newtonian theory of 
gravity by introducing magnetic-like gravity in flat 
space-time, the Einstein's gravity theory of 
curved space-time is unnecessary. 
  

2. REVISED NEWTONIAN THEORY OF 
GRAVITY AND RADIATION FORMULA 

 
As we known that the Newtonian formula of 
gravity is exactly the same in form as the 
electrostatic force formula of classical electro-
magnetic theory. Assume that the charges are 

1q  and 2q  for two objects with rest mass 1m  and 

2m  respectively, electrostatic force and 

gravitation between them are: 
 

1 2

3

04
e

q q r
F

r
        1 2

3eg

Gm m r
F

r
              (5) 

As long as to let 01/ 4 G  , 1 1q m  and 

2 2q m , we have
e gF F .  

 
However, classical electromagnetic theory has a 
magnetic component, but the Newtonian theory 
of gravity does not have a magnetic-like 
component. In the Newton's time, experimental 
conditions were limited and it was impossible to 
discover the magnetic component of gravity. The 
reason is that the ratio of magnetic component to 

electric component is / /m eF F V c . Because 

electrons generally move at high speeds, 
magnetic component was easy to be founded. 
But in the age of Newton, physics studied objects 
moving much less than the speed of light, the 
magnetic-like component of gravity was hard to 
be founded, but they may exist really. The many 
so-called post-Newtonian effects of general 
relativity were actually the magnetic effects of 
Newtonian gravity. 
 
It is therefore natural to assume that gravity has 
a magnetic-like component. Many people in 
history had proposed the concept of magnetic-
like component of gravity [6]. Assuming that the 
gravitational magnetic-like component can also 
be written in the form of magnetic component in 
electromagnetism with 
 

1 2

3

( )

4

g g g

mg

J J r
F

r





 
                          (6) 

 

Where g  is the permeability-like of gravity, and 

giJ  is the mass flow density. Suppose that the 

intensity of magnetic-like gravitational field 

generated by the mass flow density at point r  is 

gB  with 

 

34

g gi

gi

J r
B

r






                                        (7) 

 
Similarly, the propagation speed of gravity can 
be obtained 
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1
g

g g

c
 

                                           (8) 

 

According to general relativity, gravity travels at 
the speed of light, but the speed of gravity needs 
to be determined experimentally, and so far no 

experiments have proved 
gc c . Many scholars 

believed that gravity should travel much faster 
than light. Because the speed of light is too small 
in the cosmic scale. The propagation speed of 
gravity being equal to the speed of light will even 
cause the instability of planetary motion orbits in 
the solar system and many other problems in 
cosmology [7]. 
 

According to above definition, we get: 
 

1

4
g

G



   

2

4
g

g

G

c


                         (9) 

 

Thus, the motion equation set of the Newton's 
gravitational field can be obtained, which are 
completely consistent with the classical 
electromagnetic field equations in following               
form 
 

( , )
g

g

g

E x t



   ( , ) 0gB x t    

 

g

g

B
E

t


  


 

g

g g g g g

E
B J

t
  


  


                   (10) 

 

A particle with gravitational mass gm  moving at 

speed V  in the gravitational field generated by a 

particle with gravitational mass gm  moving at 

speed V , the Lorentz formula of gravity can also 

be written as 
 

( )g g g gF m E V B                               (11) 

 

By introducing the concept of gravity magnetic 

potential ）ggg iAA  ,(


 , the relationships 

between gravity field strength and gravity 
magnetic potential are also defined as 
 

g

g g

A
E

t



  


   g gB A           (12) 

The wave equations of gravity field expressed by 
gravity magnetic potential can be                   
obtained 
 

2
2

2 2

1
( , ) ( , )g g gA x t J x t

c t


 
  

 
  

 
2

2

2 2

0

( , )1
( , )

g

g

x t
x t

c t






 
  

 
          (13) 

 
In the free space far away from the field source 

with 0gJ   and 0g  , the gravitational 

magnetic potentials satisfy the linear wave 
equation, thus proving the existence of 
gravitational waves. The dipole radiation of 
electric-like gravitational waves is: 
 

3( ) ( ')
4

ikR

g

g g

e
A r J r d r

R




                     (14) 

 
The radiation formula of magnetic-like dipole 
moment and the electric-like quadrupole moment 
of gravitational waves is: 
 

3( ) ( )( )
4

ikR

g

g g

k e
A r J r n r d r

R






        (15) 

 

Because electromagnetic potential ( , )A A i   

are not the physical quantities that can be 
measured directly, actually measurable physical 

quantities are electromagnetic field intensity E  

and B , which are defined as 
 

1 A
E

c t



  


 B A                   (16) 

 
By introducing the gauge transformation [6]: 
 

A A    
1

c t
  


 


                (17) 

 
and substituting Eq.(17) in Eq.(16), the forms of 

E  and B  are proved unchanged. Therefore, 
electromagnetic potentials have a certain 
arbitrariness, and the following Lorenz gauge 
condition can be introduced to simplify the 
motion equations of electromagnetic fields. 
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1
0A

c t



 


                                  (18) 

 

3. THE PROOF OF GENERAL 
RELATIVITY TO EXIST GRAVITIONAL 
WAVE  

 

3.1 The Coordinate Condition of Motion 
Equation of General Relativity 

 
In the derivation of the linear wave equation of 
gravitational waves of general relativity,             
besides weak field condition, so-called 
coordinate conditions are needed to be                 
used to eliminate some terms that do not              
satisfy linear equation. If the coordinate 
conditions are not used, linear wave equation 
can not be obtained. Before discussing 
gravitational waves of general relativity, we          
need to clarify the concept of coordinate 
conditions. 
 
Cosmological constants do not need to be 
considered in gravity wave theory. The Einstein's 
equation of gravity field is 
 

1

2
R g R kT                                  (19) 

 

Multiply Eq.(19) by g 
and contract the index, 

let R R

  , T T

   and considering 

4g g

  , we get R kT . By substituting 

them in Eq.(19), the equation of gravitational field 
can be written in another form 
 

1

2
R k T g T  

 
   

 
                       (20) 

 

Where R  is the Ricci tensor, T  is the energy 

momentum tensor, constant 
48 /G c  . R  

is symmetric tensor with 10 components                 
in the four dimensional space-time. The                

metric tensor g  has 10 components. In 

principle, as long as T  are known, we can 

determine the space-time metric 
2ds g dx dx 

  of gravitational field by solving 

Eq.(19) or (20). 
 

On the other hand, from the Bianchi identity of 
Riemann curvature tensor, following four 

relations about Einstein tensor G  are obtained: 

,

,

1
0

2
G R R  

   




 

   
 

                    (21) 

 
So there are only 6 independent Ricci tensors, 
not enough to determine 10 metric tensors 
according to the Einstein’s equations of the 
gravitational field. In order to be able to uniquely 

determine the metric tensor g , four constraint 

conditions are need. There are several ways to 
get them. 
 

1. Directly specify the values of four metric 

tensors. For example, taking  2010 gg

04030  gg , remaining 6 g which can 

be obtained by solving the Einstein's 
equations of gravitational field [8]. In fact, in 
general relativity, we usually do that. For 
example, for the equation of gravitational 
field in vacuum with spherically symmetry, it 

is assumed 0g   when   , that is 

the precise solution called as the Schwarzs -
child metric obtained from the Einstein 
gravitational field equation. 

 
2. By introducing four the deDonder relation,     

also called as the harmonic coordinate 
conditions, to eliminate the arbitrariness of 

g  [8] 

 

1
( ) 0gg

xg






 


           (22) 

 

It is important to note that in this condition, 

we must assume that all 10 g  are not 

equal to zero, otherwise there may be too 
many equations of gravitational field, 
leading to contradictory results. In addition, 
the constraint conditions introduced in 
Eq.(22) can not contradict the equations of 
gravitational field, otherwise the 
coordinate conditions adopted are 
inappropriate. For example, if you get 

11 00 21g g g   from the equation of 

gravitational field, the coordinate condition 

11 00 21g g g  is inappropriate. 
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3. Another useful coordinate condition is         
[8] 

 

, 0g g

                                       （23） 

 
It should be noted that the coordinate            
conditions are not coordinate transformations, 
but used to delete some quantities in this 
coordinate system. It just like the Lorentz 
condition of electromagnetic theory, which is not 
a coordinate transformation, but used to 
eliminate the degree of freedom of 
electromagnetic potential in this coordinate 
system.  
 
Some textbooks describe the coordinate 
conditions of general relativity as coordinate 
transformation, declaring that if the coordinate 
conditions are not valid in some coordinate 
systems, they can be transformed to another 
coordinate system to make the coordinate 
conditions valid [9]. 

 
However, the truth is that the coordinate 
condition itself does not involve the new 
coordinate system, and all quantities are            
defined in the original coordinate system. In 
addition, in the original coordinate system,                   
if it is impossible to make the linear                 
wave equation and coordinate conditions                  
valid at the same time, when it is transformed to 
new coordinate system, generally speaking, it is 
also impossible to make the linear wave  
equation and coordinate conditions hold 
simultaneously. 

 
In classic electromagnetic field theory, it is 
physically permissible to eliminate the 
arbitrariness of electromagnetic potential by 
means of the Lorentz gauge condition (18). The 
reason is that electromagnetic potential is not a 
physical quantity that can be measured directly. 
However, the metric of general relativity 
describes the length of space and the interval of 
time. It is a physical quantity that can be 
measured directly.  

 
Transforming to another coordinate system 
means that time and space are changed,                
which can be measured directly. Gravity is 
thought as the curvature of space-time in   
general relativity, so the change of metric tensor 
means the change of gravitational field, meaning 
that the gravitational field is no longer original 
one. 
 

3.2 The Derivation of Gravitational Wave 
Equations of General Relativity 

 

Under the approximation condition of weak field, 
the metric tensor of gravitational field is written 

as Eq.(1). Where G  is the Minkowski flat 

space-time metric, h  and its derivatives are 

small quantities of first order. Beyond that, there 

are no other restrictions for h . General 

relativity takes Eq.(1) as the starting point and 

derives that h  satisfies the linear wave 

equation. The following is a brief description of 
deriving. Under the approximation condition of 
weak field with [4] . 
 

( )h g h G h h G h    

         (24) 

 

( )h g h G h h G h   

       (25) 

 

The higher order terms h h

  and h h

  are 

ignored in Eqs.(24) and (25). Also, by             
ignoring the higher order terms, the Christopher 
symbols are written as: 
 

, , ,

1
( )

2
G h h h 

               （26） 

 

, , ,

1
( )

2
G h h h 

                 （27） 

 
The Ricci tensors are simplified as 

 

, , , ,R        

                       (28) 

 

Let     
1

2
h h  

                                    （29） 

 
1

2
h G h                               （30） 

 
By means of formulas above, the Ricci tensor 
can finally be simplified as [4] 
 

2

, ,

1 1 1

2 2 2
R h  

                  （31） 

 

Then to introduce four harmonic coordinate 
conditions 
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2 1
( )x gg

xg

 




  


  

 

0))(
1

) ,, 


 vv ghG
g

hG  （（

   (32) 
 

By taking the approximate calculation of Eq.(32), 
the result is  
 





 hhGg

2

1
1 ）（            （33） 

 
Substituting Eq.(33) in Eq.(32) and ignoring 
higher order terms, we get 
 

2

, ,

1
0

2
v vx h G h                       （34） 

 
By considering Eq.(34), it can be obtained from 
Eq.(29) 
 

, , , ,

1 1
0

2 2
vh h h h

x



   

     





    


（35） 

 
Eq.(35) is considered to be equivalent to the 
Lorenz gauge condition in classical electromag- 
netic theory. Substitute this result in Eq.(30) and 
obtain 
 

21

2
R h         

21

2
R R h

        （36） 

 
Substituting Eq.(36) in Eq.(19), the result is  
 

2 21 1

2 4
h G h kT                       （37） 

 
By considering Eq.(30), Eq.(37) can be written as 
 

2 2 ( ) 2G h kT                 （38） 

 
According to Eq.(19), in a vacuum, energy 

momentum tensor 0T   as well as 0T  . 

The equation of gravitational field is 0R  . 

According to Eq.(36), the wave equation (2) is 

obtained. Therefore, h satisfies the linear wave 

equation under the condition of weak field.                  
In this way, it was considered that general 

relativity predicted the existence of gravitational 
waves.  
 

4. GRAVITATIONAL WAVE METRIC OF 
GENERAL RELATIVITY DOES NOT 
SATISFY EINSTEIN'S EQUATIONS OF 
GRAVITATIONAL FIELD  

 

4.1 Gravitational Wave Metric of General 
Relativity does not Satisfy Einstein's 
Equations of Gravitational Field under 
the Condition of Weak Field 

 

At present, the gravitational wave detection uses 
Eq.(2) to describe the gravitational wave 
generated by the collision of two black holes, and 
the solution of the equation was written as [4] 
  

 
ik x

h A e




                                     （39） 

 
According to the theory of gravity wave in 
general relativity, only six of ten components of 

h  were independent, in which only two were 

meaningful. So Eq.(39) can be written as the 
form of Eq.(2). For simplification, we take 

1 2h h h   in Eq.(2) without affecting the 

results of this paper to let  
 

 11 cos( )h h t kz    

 

22 cos( )h h t kz                            （40） 

 

We have 11 22h h , and the others are zero. 

Eq.(40) indicates that gravitational wave is a 
transverse wave, propagating along z-axis and 
causing space contraction or extension in the x-
axis and the y-axis directions. The metric tensors 

00 1g  , 11 11(1 )g h    , 22 22(1 )g h   and 

33 1g   , the others are zero. 

 

 11 22[1, (1 ), (1 ), 1]g h h        （41） 

 

It is proved below that whether or not the weak 
field conditions are considered, the metrics (40) 
and (41) do not satisfy the Einstein's gravitational 

field equation 0R  in vacuum. So even if the 

existing experiments really detect gravitational 
waves, they are not that of Einstein's theory.  
 

According to the Riemannian geometry, the 
Christopherian symbols are defined as [4] 
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



































x

g

x

g

x

g
g

2

1

       (42) 
 
Where  

 
100 g

           11

11

1

1

h
g




  

22

22

1

1

h
g




   
133 g

                     (43) 
 
The others are zero. Based on Eqs.(40) and (43), 
there are 12 Christopherian symbols which are 
not equal to zero.  
 

2

,110

11

th


      2

,220

22

th


    2

,113

11

zh


 

2

,223

22

zh


     
)12 11

,111

01

1

10
h

h t



（

 

)12 22

,222

20

2

02
h

h t



（

     

)1(2 11

,111

31

1

13
h

h z




     

)1(2 22

,222

32

2

23
h

h z




                            (44) 
 
Where  
 

）kzth
ctc

h
h t 




 


sin(11

,11

    

）kzth
ctc

h
h t 




 


sin(22

,22

  

）zsin(11
,11 kthk

z

h
h z 




 

     

）kzthk
z

h
h 




 sin(22

z,22

                (45) 
 

By considering Eqs.(28), (44) and (45), as well 

as 2211 hh 
, the non-zero components of Ricci 

tensor are. 
 














 0000,000,000 R

    
2

02

2

20

1

01

1

10

2

0,02

1

0,01 
 

2
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2

,11,1111
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)()1(

h

hhh ttt


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

（
 

2

22
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h
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
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2
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)14
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

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2
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,11,1111

)12
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h

hhh ttt





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 
22

2

)]zcos(1[

)cos()cos(1

kthc

kztkzthh


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
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0
)]zcos(1[2

)(sin
22
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

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
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
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             (46) 
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1
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3
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0
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2
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1
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












 2222,222,222 R

      
0

22

2

02

3

3,22

0

0,22 
            
0

22

1

01

3

22

1

31

2

23

3

22 
            

)1(4

)

22 22

2

,22zz,22,22

h

hhh ttt



（

 

)14)14)14

)(

22

,22,11

11

,22,11

22

2

,22

h

hh

h

hh

h

h ttzzz










（（（
 

0
2

)cos()/( 222





kzthkc 

       (48)    
 














 3333,333,333 R

    
2

32

2

23

1

31

1

13

2

3,32

1

3,31 
      

2

11

2

,11,1111

)1(2

)()1(

h

hhh zzz






 



 
 
 
 

Xiaochun; IAARJ, 4(2): 26-45, 2022; Article no.IAARJ.85198 
 

 

 
35 

 

2

22

2

,22,2222

)1(2

)()1(

h

hhh zzz






 

)14

)(

)14

)(

22

2

,22

11

2

z,11

h

h

h

h z







（（
 

2

11

2

,11,1111

)1(2

)()1(2

h

hhh zzz





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2

2
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)cos()cos(1

kth

kztkzthhk







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0
)]zcos(1[2

)(sin
2

222







kth

kzthk





                   (49) 
 

Under the weak field condition, the terms 

containing 
2h  are ignored, 11R

and 22R
 are 

unchanged, 00R
 and 33R

 are still not equal to 
zero with 
 

0
)cos(

2

2

00 



c

kzth
R



   

0)cos(2

33  kzthkR 
                  (50) 

 

The overall result is 
0R

 in general. By 

considering kc / , we get 3300 RR 
 and 

2211 RR 
. Under the weak field approximation 

condition, we have 22113300 RRRR 
. 

The metric tensors of Eqs.(40) and (41) do not 
satisfy the Einstein's equation of gravitational 
field and do not describe gravitational waves of 
general relativity. 
 

4.2 The Metric of Gravitational Waves 
Does Not Satisfy the Harmonic 
Coordinate Condition 

 
Considering the importance of harmonic 
coordinate conditions in the process of deriving 
gravitational wave equation, it is necessary to 
calculate whether the metric of Eq.(40) meets the 
coordinate conditions. We have  
 

22

22

11

11 hGhGhGhh  


  

00

0 h
         

03

3 h
   

)cos(2

2

1

1 kzthhh  
  

 
)cos(2 kzthh  

                             (51) 

According to Eq.(35), we get 
2/0,,0 hh 

 , 

2/1,,1 hh 
 ，

2/2,,2 hh 
 and 

2/2,,3 hh 
 . 

According to Eq.(51), we get  
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2

2,0

1
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0,3,3  hhhhh  

0)sin(
2
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





 kzt

c

h
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h
h 



  

01, 





x

h
h

     

02, 





y

h
h

    

0)sin(23, 



 kzthk

z

h
h 

        (52) 
 

We have 
2/0,,0 hh 

  and 
2/3,,3 hh 

 , the 
metric tensors of Eq.(40) can not satisfy the 
coordinate condition (35), resulting in that the 
equation of gravitational field can not be the form 
of linear wave equation as show in Eq.(2).  
 

4.3 Problems Caused by Transform-ing 
Harmonic Coordinate Condi-tion to 
Other Coordinate Systems 

According to Eq.(52), if 0,h
and 3,h

which are not 
equal to zero are transformed to another 

coordinate system
),( tx 


and make them equal 

to zero, we have 
0)sin(  zkt

 or 

 nzkt  . The metric tensors of gravity 

wave becomes 
 )cos(2211 xkthhh 

 

 hnh cos constants in the new 
coordinate system. It means that there is no 
gravitational field, not mention gravitational 
waves. Therefore, it is impossible to transform 
the gravitational field equation of general 
relativity into the linear wave equation through 
coordinate transformation. 
More generally, Eq.(35) is not equal zero in the 

original frame of reference, or 
2/,, 


 hh 

. It is 
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impossible to make them becoming equal by 
transforming them into any frame of reference. 
For example, in one frame of reference, we have 

21 . It is impossible for it becoming 21  by 
transform it into another frame of reference, 
otherwise the human mathematical system would 
collapse. Moreover, when general relativity 
derives the wave equation of gravitational field, 
the coordinate system used is already arbitrary, 
and there is no need to transform it to other 
reference system. 
 

4.4 The Metrics of Gravity Waves Can Not 
Be Simplified If Coordinate Condition 
Are Used 

 
As discussed in Section 3.1, if some metric 
tensors are predetermined, the coordinate 
conditions are unnecessary and can not be used, 
otherwise contradictions will be caused. However, 
general relativity does not follow this principle in 
the derivation of gravitational wave equations. 
General relativity assumes that the metric 
tensors of gravitational waves have the form of 

Eq.(3). That means that except 
111 g

 and 

122 g
, the other g

 are equal to 1. In this 
case, the coordinate condition can not be used 
again. Otherwise it means artificially to remove 
certain terms from the equation of motion and 
may cause inconsistencies. 
 
We take the Schwarzschild metric as an example 
to illustrate this problem with 
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)sin( 2222  ddr 
                            (53) 

 
According to the definition of Eq.(1), we have 
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222 sin,,1,1 rrG 
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When 1/ r , we have 
100 h

 as well as 

1
/1

1
111 




r
h

                               (56) 
  

In order to solve the equations of gravity field, 

general relativity assume 
000 h

，
011 h
，

other
0h

 in advance. This means that the 
forms of the metric tensor has been restricted, so 
that there is no need to use the coordinate 
conditions. If coordinate conditions are still used, 
contradictory results will be caused. According to 
Eq.(55), we have: 
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                               (60) 
 
Therefore, we get 
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                         (62) 
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1
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
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                           (63) 
 
According to Eqs.(35), (62) and (53), we 
have 
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From Eq.(64), the result is  
 

11

2











r



     or  

i
r

1


                (65) 
 

In this case, r/  becomes a complex number! 
Substituting it in Eq.(39), not only does the 
Schwarzschild metric change its original form, 
turning curved space-time into flat space-time, 
but also became an complex space-time, 
completely meaningless! 
 

4.5 Equations of Gravity Field After 
Harmonic Coordinate Conditions Are 
Considered 

 
If the harmonic coordinate conditions are taken 
into account, we can not do any simplification for 
the metric tensors. For the gravity field in vacuum, 
the arc element of four dimension space-time 
should  
 

2
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2

00

22 )1()1 dxhdthcds  （
  

2

33

2

22 )1()1( dzhdyh 
  

dtdyhcdtdxhc )1()1( 0201 
  

2

2202 )1()1( dyhdtdyhc 
  

dxdyhdtdzh )1()1( 1203 
  

dydzhdxdzh )1()1( 2313 
                (66) 

Here each h
 is the function of coordinate 

tzyx ,,,
，the equations of gravity fields are  

 

0
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2
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2
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


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





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 h

y
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x
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tc         (67) 
 
There are 6 independent equations, adding the 
restrictions of 4 harmonic coordinate conditions 
as shown in Eq.(24) with  
 

3

3,

2

2,

1

1,

0

0,

 hhhh 
   

）（ 3,

3

2,

2

1,

1

0,

0

2

1
hGhGhGhG  

  (68) 
 

Since Eq.(68) is related to the first partial 

derivative of h
with respect to space-time 

coordinates, it is equivalent to introduce the first 

partial derivative of h
into Eq.(67). It is difficult 

to guarantee the solutions of Eq.(67) having the 
simple form of Eq.(40). 
 

4.6 The Gravity Field Equation Has No 
Wave Solution Under Strong Field 
Condition 

 
The generation of gravity waves is thought to be 
a physical phenomenon under extreme 
conditions, requiring extremely strong gravity 
interactions. In the strong field case, the higher-
order terms must be considered, the 
simplification of Eq.(1) does not hold, especially 
in the so-called black hole collision processes to 

generate gravity wave. Because of 1~/ r  in 
this case, using the weak field metric is 
completely unreasonable. If the higher order 
terms are taken into account, Eqs.(20) ~ (24) will 

contain the terms hh
, the equations of 

gravity field have complicated forms without 
linear wave solutions.  

 
 

Fig. 1. The original graph of gravitational 
wave from LIGO’s paper on GW151226 

 
However, we know that electromagnetic wave 
radiation exists in both strong and weak fields. 
According to general relativity, gravity waves 
were produced under weak field conditions, but 
would not be produced under strong field 
conditions. This is too strange to be unaccepted. 
The current gravitational wave detection based 
on general relativity did not consider these 
problems at all. The wave equation obtained in 
weak field was directly used to describe the 
gravitational waves generated by black hole 
collisions. In the gravity wave detection of 
GW151226 by LIGO, it was said that two black 
holes of 36 and 29 solar masses respectively 
merged into a black hole of 62 solar masses, and 
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3 solar masses were transformed into 
gravitational waves and radiated into space. At 
the final moment of two black hole’s merger 
(about 0.3 seconds), the peak of gravitational 
wave radiation was more than 10 times stronger 
than the electromagnetic radiation intensity of the 
entire observable universe, which can be said to 
be the most tragic cosmic phenomenon. But 
curiously, LIGO’s term used the metric of 
sinusoidal oscillation waveform to describe the 
gravitational waves generated at the final 
moment as shown in Fig.1. 
 

4.7 The Gravity Waves of the Revised 
Newtonian Theory 

 
In fact, with the introduction of magnetic -like 
gravity components, the Newton's theory of 
gravity can also lead to the existence of 
gravitational aves. If general relativity was correct, 
it would be the modification of Newton's theory of 
gravity. The lowest order radiation of Newtonian 
gravity is dipole radiation, the lowest order 
radiation of general relativity is quadrupole 
moment radiation, which is much smaller than 
the dipole radiation. For the problem of 
gravitational waves, general relativity is not a 
correction of the Newtonian gravity so it can not 
cover the Newtonian gravity and can not be 
correct. 
 
To sum up, the Einstein's gravitational field 
equation is a nonlinear equation and can not 
have a linear wave solution. general relativity can 
not predict the existence of gravitational waves. 
Based on general relativity, gravitational waves 
can not be found. 
 

5  THE PROBLEMS IN GRAVITY 
DELAYED RADIATION FORM-ULA OF 
GENERAL RELATIVITY 

 

5.1 The Gravity Delayed Radiation 
Formula of General Relativity 

 
The general solution of Eq.(38) is the super-
position of a linear wave solution and a special 
solution. The linear wave solution is shown in 
Eq.(40). Hilbert proved that when the harmonic 
coordinate condition was used, the special 
solution of Eq.(38) was [4]  
 

dV
r

crtrT





)/,(

2










                     (69) 
 

Eq.(69) described the delayed solution of gravity 
radiation in weak field condition. However, it is 
known from the previous discussion that the 
coordinate condition did not hold, so Eq.(69) is 
also invalid.  

If this problem is not considered, when T
 is 

distributed in a limited region and the observation 
point is far away from the field source, Eq.(69) 
can be written as 
 

dVT
R 

 










2                                  (70) 
 

The asterisk represents the delayed quantity. 
The theoretical calculation and the observation 
condition of above formula is that the observer is 
in a stationary coordinate system, far away from 
the source material. The source material moves 
in the region near the original point of coordinate 
system. The energy momentum tensor of system 
contains the velocity and acceleration of material. 
According to the field equation (38) and the 
harmonic coordinate condition (30), it can be 

calculated with 
0, 

T
, or 

 

00
0,,  k

i
ik TT

     
00

0,0,0 TT i
i                 (71) 

 
Multiply the first equation of Eq.(71) by space 

coordinate 
jx and integrate it with respect to 

whole space. Considering that the coordinates of 
time and space in energy momentum tensor are 

independent, that is, 
jx and 

0x  are unrelated to 

each other, or 0/ 0  xx j
 and get [3]  
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
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dV
x
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i
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k  




)(

                           (72) 
 

Applying the Gauss's theorem and the infinite 
boundary conditions, the second term on the 
right-hand side of Eq.(72) is zero. Decrease the 
upper index of above formula and take into 
account symmetry, it can be obtained 
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dVxTxT
x

dVT kjjkkj  



 )(

2

1
000

    （73) 

Multiply Eq.(71) by
jk xx , considering that space 

coordinates 
jk xx , have nothing to do with time 

coordinate 
0x , a similar result for Eq.(72) can be 

obtained by using the same method 
 

dVxxT
x

jk


000

  

dVxTxT kjjk  )( 00

                           (74) 
From Eq.(73) and (74), it can be obtained 
 

dVxxT
x

dVT jkkj  


 0020 )(2

1

                (75) 
 

Substituting 
2

000 ),( cxxT k
 and 

ctx 0  in 
Eq.(75), the result is 
 

dVxxtx
t

dVT jkkkj  


 ),(

2

1
2



 

dVxxtx jkk ),(
2

1


                              (76) 
 

Since tensor kjT
 has six independent component, 

involving velocity and acceleration of matter, it is 
difficult to understand its details in general 
physical processes. After expressed by Eq.(76), 
we only need to know the relationship between 

the component 00T
 and time, thus the difficulty of 

problem is decreased.  
Based on it, quadrupole moment is introduced 
with 

dVxxxxQ jkkkj  ),( 0

                           (77) 
 

The tensor of quadrupole moment is defined as   
 

 iikjkjkj QQD  3
                                    (78) 

 
Eq.(70) is rewritten as  
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The energy momentum tensor of gravitational 
field is expressed by the form of Landau-Lifshitz, 
and the radiation intensity of gravity waves in the 

solid angle along the direction of z axis is 
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After the statistical average over all space direc-
tions, the radiation power of energy is obtained 
as follows 
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                              (81) 
 

5.2  Problems in Radiation Formula of 
Gravity in General Relativity 

 
According to Eq.(76), the quadratic and cubic 
partial derivatives of quadrupole moments with 
respect to time are only for the energy density in 
Eq.(77), i.e. 

dVxxtxQ jkkkj  ),(

        

dVxxtxQ jkkkj  ),(

                        (82) 
 
Therefore, the quadratic and cubic partial 
derivatives of quadrupole moment tensors with 
respect to time in Eqs.(80) and (81) are only for 
energy density, and the radiated power is 
independent of the derivative of space 
coordinates with respect to time. But general 
relativity does not works as that. Alternatively, 
the radiated power was made related to the 
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derivative of spatial coordinates with respect to 
time, completely violates the original formula and 
results in serious inconsistencies. 
For this purpose, general relativity introduces the 
coordinate transformations [4] 
 

txtxx  sincos 211


  tt    
txtxx  cossin 212


 33 xx 

            (83) 
 

Where 
txk
 ,
are called the following coordinates. 

The above transformations are actually the 
Galilean transformation in the Newtonian 
mechanics, in which the Jacobian determinant is 
equal to 1 and the volume element is a constant. 
Besides, general relativity needs to assume that 

the density of matter be a constant with 0 
, 

invariant under the transformations of space-time 
coordinates. Then the spindle coordinate system 
is adopted and the moment of inertia is written as. 
 

VdxxI jkij
  0
                                      (84) 

 

Assume that the rotational axis 3x
 is one 

principal axis of inertia ellipsoid sphere, and the 

other two principal axes are 1x  and 2x
. Thus, 

Eq.(77) is rewritten as [4]  
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Similarly 
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tIItQ 2sin)(
2

1
)( 221112 

                     (87) 
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)()( 3333 tItQ 
           (88) 

 

The calculation results are 
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Substituting them in Eq.(81), the last formula of 
radiation power is obtained  
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Here 2211 III 
is the moment of inertia about 

the 3x
axis in the following coordinate system, 

IIIe /)( 2211 
 is the equatorial ellipticity of a 

rotating body. In this way, several problems are 
caused as shown below. 
 
1. This is a process of stealing concepts to    
change Eq.(82) into Eqs.(89) ~ (93). In Eq.(82), 
the derivative of time is only with respected to 
material (energy) density and not to space 
coordinates. But in Eqs.(89) ~ (93), the density of 
material (energy) is treated as a constant. The 
derivative of mass density with respect to time 
becomes the derivative of space coordinates with 
respect to time, which completely violates the 
basic rules of mathematical transformation.  
 
2. If we had to transform to the following 
coordinate system, the correct method would be 
as follows. Assume that the energy density is 

),( txk
 in the stationary frame of reference, in 

the new frame of reference, the energy density 

becomes 
),(),( txtx kk
 

. According to the 
transformation of Eq.(83), the results should be 
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  ),()(22 txtQ k
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Let  
),(),( txtx kk
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，as well as 
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For example, in the statics reference frame with 
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According to Eq.(83), in the new coordinate 

system, 
),( tx
 becomes 
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2
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So in following coordinate system, the derivative 
of quadrupole moment tensor with respect to 
time also involves only the energy density, not for 
the quadrupole moment coordinates. The results 
should be  
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 Substituting them in Eq.(81), we obtain  
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Where 1F
 and 2F

 are very complex functions. 
So Eq.(106) is completely different from Eq.(94) 
which actually has nothing to do with general 
relativity. Even if it is true, it does not prove that 
the gravitational radiation theory of general 
relativity is correct. 
 
3.As mentioned earlier, in a stationary reference 
frame, the motion of source matter is already 
taken into account when Eq.(81) is derived. 
Gravitational radiation can be generated if the 
third derivative of source material density with 
respect to time is not zero. Observers can 
observe gravitational radiation in the stationary 
reference frame. It is unnecessary to transform to 
the following coordinate system. The reason why 
general relativity had to transform Eq. (81) to the 
following coordinate system is that based on 
Eq.(81), no correct result can be obtained.  
 
4.There are two explanations for the 
transformation of Eq.(83). One is that the 
observer does not move but the material system 
rotates. The other is that the material system 
does not move and the observer rotates. The 
derivation of Eq.(74) actually takes into account 

the motion of material system, otherwise 
0

and there would be no gravity radiations. 
Therefore, it is unnecessary for us to consider 
the rotation of material system. Eqs.(95) ~ (98) 
only represent the rotation of observer.  
 
5. If the material system is stationary in the frame 

of reference  with
0),( txk

and
0),( txQ kjk


, 

then the gravitational wave radiation should be 
equals zero. Such as 
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According to Eq.(76), there is no gravitational 
wave radiation. However, after transformed to 
the following reference system, according to 

Eq.(83), we have 
0),(  tx


, then there are 

gravitational wave radiation. Since Eq.(83) 
represents the observer changing from a 
stationary reference frame to another moving 
reference frame, it means that gravitational 
radiations are caused by the observer motions. 
This is absurd in physics. 
 

6.The principle of general relativity declares that 
the laws of physics are independent of the choice 
of reference frame. But in this case, the 
description of gravitational radiation is clearly 
related to the choice of reference frame. This is a 
contradictory. 
 

5.3 The Influence On Measurement of 
Gravity radiation of General 
Relativity 

 

For these reasons, general relativity using Eq.(94) 
to calculate gravitational radiation, the obtained 
results are invalid. 
 
I ) For a particle (sphere) uniformly moving in 
a circle around the center of gravity field 
 

Let 
rx 1 ， 032  xx ，we have 

2
1 MrII 

 

,
 0

constant, the ellipticity 1e , substitute 
them in Eq.(94) and get 
 

426

545

32
rM

c

G

dt

dE


                          (108) 
 

For example, for Jupiter moving around the sun, 

the mass of Jupiter is 
KgM 271090.1 

, the 

orbital radius is mr 111078.7  , the angular 

velocity is s/1068.1 8 . Substituting them 

inEq.(108),the  result is sJdtdE /1023.5/ 3 . 
The mechanical energy of Jupiter around the sun 

is J3510 . It will take 
2410  years to radiate all its 

energy, so Jupiter's gravitational radiation is 
minimal. 
 

However, according to the original definition 
Eq.(81), Eq.(77) apply only to the continuous 
distribution of matter, not to the motion of a 
single particle. So the gravitational radiation 
formula (108) can not be reduced to Eq.(81) and 
can not be considered as a result of general 
relativity. 

II) For the circular motion of two stars around 
each other 
 

Assume that the circumferential radius of a pair 
of stars orbiting each other is the same as that of 
a single particle moving in a circle. According to 
the original understanding of Eq.(81), the 
gravitational radiation intensity is zero. However, 
according to the current understanding of general 
relativity, we have  

 

3

212 )(

R

MMG 


    

2

21

21 R
MM

MM
I




   1e                           (109) 
 

Where R  is the distance of double stars. By 
substituting them into Eq.(94), it can be obtained 
 

55
21

2
2

2
1

4

5

)(32

Rc

MMMMG

dt

dE 


             (110) 
 

For the elliptical motion, the radiation frequency 
is not single. The radiation formula should be 
changed to 
 

)(
5

)(32
55

21
2
2

2
1

4

ef
Rc

MMMMG

dt

dE 


    (111) 
 

Where 
)(ef

 is a function related to eccentricity 

and R  is the length of major axis of elliptical 
orbit. 
In 1978, Taylor and Hulse announced the 
observation results of radio pulsar PSR1913+16 
for four years and pointed out that the change of 
the period of pulsar orbit was consistent with the 
energy loss of gravitational radiation, which 
meant that gravitational radiation were indirectly 
observed. However, the error between 
observation and theoretical prediction reached to 
20%, and the theoretical calculation depended 
on the selection of orbital parameters of 
PSR1913+16. Subsequent studies found that the 
theoretical calculation was consistent with the 
observation, with an error of less than 0.4% 
[10,11]. 
 

The result was recognized by the scientific 
community as confirming the gravitational 
radiation theory of general relativity, and Taylor 
and Hulse were awarded the 1993 Nobel Prize in 
Physics. The binary pulsar PSRJ0737-3039A/B, 
discovered in 2003, was also considered to 
conform to the radiation formula of general 
relativity [12,13]. 



 
 
 
 

Xiaochun; IAARJ, 4(2): 26-45, 2022; Article no.IAARJ.85198 
 

 

 
43 

 

 

However, as discussed above, Eq.(111) is not a 
result of general relativity, because it can not be 
reduced to Eq.(81). If the observations of pulsar 
binaries PSR1913+16 and PSRJ0377-3039 A/B 
are correct, it means that the results of general 
relativity are wrong. Eq.(111) was actually a 
patchwork, or rather, it was the result that 
general relativity simulated classical electromag-
netic radiation theory. Because both have 
completely theoretical basis, the gravitational 
radiation formula of general relativity is neither 
fish nor fowl. 
 

6. QUASI-ELECTRIC QUADRU-POLE 
MOMENT RADIATION FORMULA OF 

REVISED NEWTONIAN’S THEORY OF 

GRAVITY 
 

The following briefly introduces Chinese scholar 
Chen Yongming's theory of gravitational like-
electric quadrupole moment radiation [14]. Chen 
published a paper entitled“Mass-electric 
Qquivalent and Gravitational Wave” in China 
Basic Science in 2008. He proposed the 
Newton's electric-like quadrupole moment 
radiation formula and calculated gravitational 
radiation of pulsar binary star PSR1913+16 in 
detail. The results were very consistent with the 
actual observations.  
 

Chen introduced the analogical equivalent 

quantity 
G04 

 for mass and electricity, let 

11 mq  ， 22 mq 
, the quasi-electric dipole 

moment of binary star system was equal to zero, 
and the quasi-magnetic dipole moment was 
equal to a constant. The system performed 
quasi-electric quadrupole moment radiation, and 
the quasi-electric quadrupole moment tensor  
was 
 

 












 xx eeq
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2cos31

2
)( 22

1

2

2
1

2

  





 )2)2cos31( zzyy eeee




                  (112) 

In Eq.(112), r and


represents the space 
coordinates of charge or particle, and the 
differential with respect to time describes the 
speed of charge or particle. According to the 
gravity theory of flat space, in a stationary 
coordinate system, the spatial coordinates in the 
quasi-electric quadrupole moment tensor are the 
functions of time. Considering the time derivative 

of quasi-electric quadrupole moment tensor, the 
radiation formula of gravitational waves can be 
obtained. Let the three-dimensional magnetic 
potential of magnetic-like force be 

2

2
0

2
),(

dt

Dd
n

cr
trA









                            (113) 
 
The intensity of gravity field and the Boynting 
vector of gravitational radiation is 
 

),(),( trAtrB



   

nBctrE


),(
   

HEtrS
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),(
                                        (114) 

 
The energy of gravitational radiation when a 
binary star system moves for a period is 
 





ddr

d
SW sin2

  











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       (115) 
 

The elliptical orbits of pulsar binary PSR1913+16 

are very similar with parameters 01 387.1 Mm 
, 

02 441.1 Mm 
, in which 

KgM 30
0 10989.1 

 is 

the solar mass, perihelion 
mr 8

1 104460.7 
and 

aphelion
mr 9

2 101536.3 
, period 

sT 4107907.2  and eccentricity 617131.0e . 
By a complicated calculation, Chen Yongming 
obtained the following result 
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
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 q
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qW
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J
r

h 28

6

0

5

10429.5
)8835.0(

0857.7


             (116) 
 

Where 
sradmrh /106077.3 22

0
4  

. When two 
stars moves a period, the period time decreases 

sT 81065.7  and the distance between two 

stars decreases mmr 12.3 . Taylor and Hulse 
found that the distance between two stars 

decreased mmr 0951.3 . Chen's calculation is 
less than 1% comparing with Taylor's and 
Hulse's observations and can be considered in 
good agreement. 
 

So gravitational radiation can be explained by the 
revised Newtonian theory of gravity in flat space. 
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The Einstein's gravity theory of curved space-
time is unnecessarily. Gravitational waves can 
not be predicted based on general relativity and 
the gravity radiation formula should be Eq.(116) 
instead of Eq. (94). 
 

7.  CONCLUSIONS 
 

In May, 2021, the author published a paper 
proving that the calculation of constant terms in 
the planetary motion equation of general relativity 
was wrong. By the strict calculation, the constant 
term should be equal to zero. It means that 
general relativity can only describe the parabolic 
orbital motions (with minor corrections) of objects 
in the solar system, it can not describe the 
elliptical and hyperbolic orbital motions [15]. So 
general relativity's calculation result of 43 second 
a century on the Mercury's perihelion procession 
is meaningless. 
 

It is also proved that the time-independent  
orbital equation of light of general relativity is 
wrong. The reason is that a constant term is 
missing from the equation, so the light’s 

deflection angle 1.75  in the solar gravitational 

field predicted by general relativity is also wrong 
[15]. According to the time-dependent equation 
of motion of general relativity, the deflection 
angle of light in the solar gravitational field is only 

a slight correction of 0.875  with the magnitude 

order of 
510
 predicted by the Newton's theory of 

gravity. The time dependent motion equation  
and the time independent motion equation of 
light in general relativity contradict each other. 
 

Since Eddington's observations in 1919, there 
had been more than a dozen astronomical 
measurements, all of them had unanimously 
claimed to confirm the predictions of general 
relativity, including the deflection of quasar radio 
waves in the sun's gravitational field after 1970. 
How can astronomers observe phenomena 
which general relativity wrongly predicts and do 
not actually exist in nature? 
 

In August, 2021, the author and Huang Zhixun 
published a paper pointing out that Eddington et 
al. 's measurements of gravitational deflection of 
light was invalid [16]. The reason is that this kind 
of measurement does not consider the influence 
of solar surface gas and other factors. It also 
needs to introduce several fitting parameters in 
the experimental data processing and uses the 
least square method and other very complex 
statistical methods to make the measured data 
consistent with the prediction of general relativity. 
In fact, by using these methods, we can also 

reconcile the measurements with the predictions 
of the Newtonian gravity, negating general relativity. 
 

The theoretical and experimental errors of 
general relativity concerning the deflection of 
light is repeated in the problems of gravitational 
waves. By writing the metric of gravitational field 

in the form g G h    and using the 

harmonic coordinate conditions in general 
relativity, it was proved that the vacuum 

gravitational field equation 0R   can be 

transformed into the linear wave equation 
2 0h   to predict the existence of gravity 

waves under the condition of weak field.  
 

On this basis, without solving the equations of 
gravitational field, the metric of Eqs.(3) and (4) 
were used to describe gravitational waves in 
theory and detect gravitational waves in 
experiments. 
 

In this paper, it is proved by detailed calculations 
that the metric of Eq.(4) can not satisfy the 
vacuum Einstein gravitational field equation, 
whether or not the approximation condition of 
weak field is adopted. Therefore, it is impossible 
for the Einstein's gravity field equation to be 
transformed into linear wave equation and 
predict the existence of gravitational waves 
under the weak field condition. 
 

The reason is that the metric of Eq.(4) does not 
satisfy the four harmonic coordinate conditions to 
make them be equal to zero. Even if the 
harmonic coordinate condition is transformed to 
another coordinate system so that it can be equal 
to zero, in the new coordinate system, the metric 
tensors of space-time becomes constants so that 
the gravitational field disappears, let alone the 
gravitational waves. 
 
This paper also discusses the use of coordinate 
conditions to simplify the motion equation. General 
relativity has not correctly used it, resulting in 
contradictory results. The gravity wave prediction 
of general relativity is a result of faulty use of 
mathematical condition, not a real existence. 
 

In addition, what the current gravitational wave 
detection discusses was the extremely strong 
field condition of black hole collision, in which 

h  was not a small quantity. It was impossible 

to get the linear wave equation of gravitational 
wave in general situations.  However, linear 
wave equation was still used to describe the 
gravity waves generated by black hole collisions. 
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The gravity wave theory of general relativity was 
contradictory. 
 

At the same time, it is proved that the 
gravitational delayed radiation formula of general 
relativity is also untenable. The derivation 
process of this formula has some problems of 
chaotic calculation and wrong coordinate 
transformation, leading to the invalidity of this 
formula. 
 

This paper also discusses the like- electromag-
netic gravity theory based on the modified 
Newton's gravity theory and the gravity radiation 
formula obtained by Chen Yongming. Using this 
formula to calculate the gravity radiation of pulsar 
binary PSR1913+ 16, the result is only 1% 
different from Taylor  and Hulse's observations. 
Therefore, we can describe gravity wave and its 
radiation in flat space-time, the Einstein's gravity 
theory of curved space-time is unnecessary. 
 

The problems existing in the current gravitational 
wave detection experiments will be discussed in 
the following paper. 
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