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The magnetic induction equation is solved numerically in a sphere for a variety 
of prescribed fluid flows. The models considered are the so-called ‘ a w  dynamos’, 
in which both small-scale turbulence and large-scale shearing play a significant 
role. Solutions are obtained by marching the finite-difference equations forward 
in time from some initial field. For a critical value of the magnetic Reynolds 
number R, solutions which neither grow nor decay are found. 

Further calculations are performed with a ‘cut-off effect’ in which an attempt 
is made to simulate the effect of the Lorentz forces on the turbulence. For super- 
critical values of R, the magnetic field now stabilizes a t  a finite value instead of 
increasing indefinitely. The form of the final field is compared with that produced 
at critical R,, in the a,bsence of the cut-off effect. 

1. Introduction 
The study of the dynamo problem grew out of a desire to explain the 

mechanism by which the magnetic fields of the earth and sun are maintained. 
The problem consists of obtaining solutions of the magnetic induction equation 
and the equation of motion of the fluid material involved such that the magnetic 
field does not tend to zero with increasing time. Ideally the resulting magnetic 
fields should mimic those of the naturally occurring dynamos, both in spatial 
structure and variation with time. The fields of the earth and sun are similar in 
that they both resemble that of a dipole, but they differ in the nature of their 
time dependence. The magnetic field of the sun is oscillatory with a period of 
22 years, whereas that of the earth remains virtually constant for periods of 
several thousands of years, interrupted by sudden, apparently random, reversals. 

A n  additional feature of the solar field is the migration of the sunspot zones 
towards the equator in the course of each 11 year half-cycle. This phenomenon 
has been portrayed in the celebrated Butterfly Diagram of Maunder (1922). The 
sunspots are accompanied by magnetic fields of several thousand gauss, com- 
pared with a few gauss for the dipole field, revealing the presence of powerful 
azimuthal fields which predominate over the dipole component in the interior of 
the sun. This leads to the conclusion that the migration of the sunspot zones 
towards the equator is reflected in a similar migration of the zones in which the 
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azimuthal fields are strongest. The models considered herein offer an explanation 
for the time-dependent behaviour of the solar field, but give little insight into the 
nature of the geomagnetic reversals. 

The two governing equations are coupled, a Lorentz term involving the 
magnetic field appearing in the equation of motion, and an induction term 
depending on the fluid velocity in the equation for the magnetic field. If a small 
magnetic field is assumed, however, the Lorentz force, being quadratic in the 
magnetic field strength, may be ignored. The equations then uncouple to the 
extent that the equation of motion can be solved first, and the solution substi- 
tuted in the induction equation. The subsequent investigation of this latter 
equation has given rise to the so-called kinematic dynamo problem. It is in this 
direction that most of the existing work on dynamo theory has been directed, 
since the governing equation has the advantage of being linear. 

In  fact, the kinematic dynamo problem can be regarded as one of linear 
stability, the object being to determine the conditions under which the state of 
zero magnetic field becomes unstable. Once such a state is reached, however, any 
small initial magnetic field will rapidly grow until the original small field assump- 
tion is invalidated. It may then be argued that in practice the ignored Eorentz 
force must modify the velocity field, reducing its capacity to regenerate the 
magnetic field, until at a certain magnetic field strength a balance is reached, the 
field just being maintained against ohmic losses. 

The full fluid-mechanical problem is nonlinear, and has received compara- 
tively little attention in view of the difficulties experienced with the apparently 
far simpler kinematic case. These difficulties are highlighted by the presence of 
non-existence theorems, which prohibit the existence of dynamos possessing 
convenient symmetrical structures. The most far reaching of these results was 
proved by Cowling (1933), and precludes the possibility of an axially symmetric 
magnetic field sustained by dynamo action. Any model put forward as a possible 
dynamo must therefore be fully three-dimensional. Attempts to solve the 
kinematic problem in a sphere for non-axisymmetric velocities produced a series 
of models all of which proved incapable of sustaining a magnetic field. An 
account of these may be found in papers by Bullard & Gellman (1954), Lilley 
(1970) and Gibson & Roberts (1969). Success has, however, been achieved by 
Gubbins (1972), who chose axisymmetric velocities. The magnetic fields 
generated by the Gubbins model are not, however, axisymmetric, since Cowling’s 
theorem would then preclude dynamo action. Unfortunately the possibility of 
formulating a fully magnetohydrodynamic model in which the velocity field is 
axisymmetric must be ruled out, as only a particularly fortuitous choice of body 
force could enable the axial symmetry of the flow field to be maintained against 
the necessarily asymmetric Lorentz forces. 

A major development in dynamo theory was made by Steenbeck, Krause & 
Radler (1966), a translation of which together with later work by the same 
authors has been prepared by Roberts & Stix (1971). By considering the 
statistical properties of turbulent motion, they argued that turbulence in which 
there was a lack of mirror symmetry had the effect of inducing a large-scale 
electric current parallel to the applied magnetic field. This phenomenon, termed 
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the a-effect, simplifies the problem considerably, since the large-scale fields can 
be assumed to be axisymmetric. There is now no question of Cowling’s theorem 
precluding dynamo action, since the small-scale fields are non-axisymmetric. In  
the case of the earth or sun, the requisite lack of mirror symmetry is provided by 
the rotation of these bodies, which induces a similar lack of symmetry, or 
‘helicity’, into the turbulence via the Coriolis forces. The models considered in 
the present paper will all make use of the a-effect. 

The task of determining the criterion for marginal stability in the kinematic 
case is an eigenvalue problem, in which various eigenvalues of the magnetic 
Reynolds number correspond to different eigenfunctions for the magnetic field. 
The eigenfunction corresponding to the smallest eigenvalue represents the most 
easily excited dynamo mode. The method of solving this problem in the past has 
been to use a combination of orthogonal-function expansions and finite-difference 
methods to reduce it to a matrix eigenvalue problem, which can then be solved 
numerically. Here we use a different technique in which the unsteady form of the 
induction equation is represented by finite differences and marched forward in 
time from some initial condition. This method, which enables the development 
of the magnetic field from the initial ‘seed’ field to be followed, allows nonlinear 
effects of the type described below to be incorporated into the model. It was also 
anticipated that it would largely forestall the convergence problems which have 
sometimes arisen with the eigenvalue problem. 

The effect of Lorentz forces for situations in which the magnetic Reynolds 
number exceeds its critical value will be modelled in the following way. As with 
kinematic models of turbulent dynamos, the distribution of the a-effect and the 
large-scale flow will be prescribed. Instead of the a-effect a t  a fixed point remaining 
constant, however, we shall take it to be a function of the magnetic field strength 
a t  that point. For the field strength to stabilize as in naturally occurring dynamos, 
we must choose a decreasing function here. The choice of a suitable function is 
discussed further in $ 5 .  The actual effect of the Lorentz forces is, of course, far 
more complicated, and may be expected to modify the large-scale flow field as 
well as the turbulence. The marching technique described here could, in principle, 
be extended to include such a phenomenon, although the exact nature of this 
effect is not known. A more sophisticated formulation must await further 
developments in the field of turbulent magnetohydrodynamics. 

2. The governing equations 
The models investigated in this paper assume a sphere of homogeneous 

electrically conducting fluid surrounded by an insulating medium which extends 
to infinity. The governing equation for the large-scale magnetic field B inside 
this sphere is 

aB/at = R, curl (U x B) + R, curl (aB) + V2B, (2.1) 

where U is the large-scale fluid velocity. The second term on the right-hand side 
represents the contribution to the field due to the a-effect. In  the above equation 

. the variables representing the velocity and a-effect have been non-dimensional- 
40-2 
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ized with respect to typical magnitudes U* and a* of these quantities. Distance 
is measured in units of L, the radius of the sphere. The dimensionless parameters 

R, = U"L/?,I, €2, = ~*L/? , I  

are magnetic Reynolds numbers based on the large-scale motion and a-effect 
respectively, where 7 is the magnetic diffusivity. t is measured in units of a typical 
diffusion time L2/r.  

It will be assumed throughout that, with the exception of the small-scale 
turbulent motions, the system is axisymmetric. The magnetic and velocity fields 
can then each be written as the sum of an azimuthal (toroidal) and meridional 
(poloidal) part. Thus 

(2.2) B = bl, + curl (al,), 

U = ul,+curl (vl,). (2.3) 

The meridional and azimuthal parts of (2.1) can then be equated separately 
(see Steenbeck & Krause 1969) to yield 

(2.4) (aalat) 1, = R, (curlvl$ x curlal,) + R,abl+ + Vz(al,), 

(ab/at)l,  = R,curl(ul,x curlal,+curlwl~x bl$)+Vz(bl,). (2.5) 

Here the creation of toroidal flux by the a-effect has been ignored. As mentioned 
in the introduction, there is evidence that in the case of the solar field the toroidal 
component is far stronger than the poloidal. The same may possibly be true of 
the earth. This suggests that differential rotation is the dominant mechanism in 
the creation of toroidal flux and is the basis for the above approximation. 

Introducing a system of spherical co-ordinates (2.4) and (2.5) become 

aa/at = (E + F )  a + R,ab, 

abjat = (E - 3') b + R,,Ga,, 

(2.6) 

(2.7) 

where E and G areIthejinear operators 

and F is given by (2.10) 

Although the physical magnitude of the toroidal magnetic fie1d:is far greater 
than that of the meridional component, it is computationally convenient for the 
variables representing them to have the same order of magnitude. To this end 
we make the transformation 

a = (R,/R,)ia', b = (R,/R,)*b'. (2.11) 
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EquaOions (2.6) and (2.7) then become 

anflat = (E+F)a'+R,ab', (2.12) 

where 

abf/at = ( E  - F )  bf  + R,Ga', 

R, = (R, R,)J, 

(2.13) 

In  the absence of meriodional circulation (w = 0 ) ,  only one dimensionless 
parameter appears, the magnetic Reynolds number RnL. In  future, use of the 
transformed variables will be assumed, and the primes omitted. - 

Outside the sphere we have 
curl2 (al& = 0. (2.14) 

In  spherical polar co-ordinates this becomes 

a2a 2 a a  1 a2a cotBaa a 
ar2 r ar r2ao2 r2 30 r2sin2e - O .  
-++-+--+----- (2.15) 

The boundary condition a t  the surface r = 1 can be shown to reduce to 

[a] = [aalar] = [b] = 0, (2.16) 

where square brackets denote the jump in the enclosed quantity. At infinity the 
absence of external sources of magnetic field requires that 

a+O as r+m. (2.17) 

Equations (2.12), (2.13) and (2.15), together with boundary conditions (2.16) 
and (2.17), form the mathematical model whose numerical solution is described 
below. 

3. Numerical techniques 
Since (2.12) and (2.13) are parabolic, they may be solved numerically by 

marching forward in time from a set of initial conditions. A spatial grid is intro- 
duced so that the derivatives of the dependent variables can be expressed in 
finite-difference form. Since we are dealing throughout with an axisymmetric 
situation, it is only necessary to consider a grid in the r,  O plane. 

It is physically realistic to assume that the large-scale velocity field has mirror 
symmetry about the equatorial plane. This implies that u is an even function of 
latitude, while ZI is an odd function. I n  addition the a-effect is taken to be an odd 
function of latitude. This last assumption is justified in the geophysical and 
astrophysical context, since the Coriolis forces which give rise to the lack of 
mirror symmetry in the turbulence, and hence to the a-effect, change sign a t  the 
equator. 

Under these conditions an examination of the symmetry of the problem reveals 
that solutions for the magnetic field break down into two quite separate families, 
as has been noted by Roberts (1972). For one of these a is an even function of 
latitude and b an odd function. Such a field is said to have dipole symmetry. The 
second type has a odd and b even, and is said to have quadrupole symmetry. 
If the symmetry of the solution to be sought is decided in advance, it is only 
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Dipole: aa/aO = b = 0 
Quadrupole: a = ab/t3B = 0 

FIGURE 1. The region in which the governing equations (2.12), (2.13) and (2.15) are to be 
solved, showing the relevant boundary conditions. 

necessary to consider the quadrant 0 < B < Q;., The nature of the required solu- 
tion then determines the form of the boundary condition to be applied a t  0 = in. 

The domains in which the governing equations are to be solved, together with 
the relevant boundary conditions, are shown in figure I .  The conditions a t  the 
boundaries r = 0 and 8 = 0 arise from the fact that a and b were originally the 
norms of azimuthal vectors. If they are to be both single valued and axisymmetric 
such vectors must vanish on the axis of symmetry. 

For the numerical integration the scheme of Du Fort & Frankel (1953) was 
employed. Since this scheme involves three levels in time a simple forward- 
difference scheme was required to initiate the integration from a single set of 
initial conditions. 

Of the boundary conditions shown in figure 1, the only one which presents any 
difficulty in the numericaI solution of (2.12) and (2.13) is that which matches the 
internal and external values of a across the boundary r = I. We are faced with 
the problem of simultaneously solving the parabolic equation (2.12), and (2.15), 
which is elliptic, in such a way that this condition is satisfied for all time. 

A further complication arises from the fact that (2.15) has to be solved in an 
infinite domain. This latter obstacle can be removed by inversion. We write 
p(r )  = a( l / r ) .  Equation (2.15) then becomes 
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which must now be solved on the inside of the sphere, enabling the same finite- 
difference mesh to be used as for the other two equations. The condition on a a t  
infinity inverts to give the requirement that p be non-singular at the origin. The 
condition a t  r = 1 becomes 

aalar = - aplar, a = p .  ( 3 4  

Using a three-point backward-difference approximation for the derivatives then 
yields the relation 

p (  1) = ${a( 1 - Ar) +p( 1 - AY)} - +{a( 1 - 24r)  + p (  1 - ~ A Y ) } .  (3.3) 

An early version of the computer program achieved the simultaneous solution 
of (3.1) and (2.12) by carrying out the following series of operations a t  each time 
step. First of all the finite-difference forms of (2.12) and (2.13) were employed to 
find the values of a and b a t  all interior points a t  the next time level. Equation 
(3.1) was then solved iteratively, using a successive over-relaxation technique, to 
givep are all interior points. Relation (3.3) was used to recalculate the boundary 
values of p after each iteration. When sufficient convergence had been obtained, 
the values of a on r = 1 were set equal to those of p in readiness for the next time 
step. 

I n  later versions of the program a more efficient method was employed. The 
external field is of no interest in itself; it  is merely used to find the boundary 
values of a, which then appear in the finite-difference expression for the interior 
values a t  the next time step. Denote the vector whose components are the values 
of a at boundary points by a,, and the vector consisting of the values of a a t  the 
two rows of points immediately inside the boundary by a,. The iterative pro- 
cedure outlined above calculates the boundary values aB given a,. Since aB is 
a linear function of a,, there exists a mat,rix M such that 

Ma, = aB. (3.4) 

It is only necessary to  calculate M once at the start of the calculation. The 
boundary values of a can then be found a t  any subsequent time by means of 
a simple matrix multiplication. This latter method resulted in a reduction in 
computing time, in some cases by as much as a factor of three. The concept of 
using matrix multiplication to find the boundary values was suggested by a 
similar technique used by R.Thirlby (unpublished work) to apply the same 
boundary condition to a non-turbulent fluid-mechanical dynamo. 

In  practice a separate program was used to calculate M, and output its 
elements on punched cards. The matrix was calculated column by column, using 
the fact that, if the iterative procedure described above is performed with the 
nth component of a, unity and all the other components zero, then the boundary 
values obtained consist of the nth column of the matrix M. 

For the nonlinear calculations, in which a is a function of B, one further opera- 
tion was carried out a t  each time step; the new distribution of a based on the 
current magnetic field was calculated. This distribution was then used for the 
next time step. 

The calculations were performed on an ICL 1905E computer a t  the University 
of East Anglia. This machine has 64K words of 1 . 8 p  store of which 21K are 



632 X. A .  Jepps 

available to the user. When using a spatial mesh of 10 x 10 intervals, and calcu- 
lating the boundary values by the matrix multiplication method, the computer 
time necessary to advance one time step was approximately 0-4s. In addition 
several short 1Gmm cine films of the solutions were made using an SC4020 
graphics unit driven by an ICL 1906A at the Atlas Computing Laboratory, 
Didcot. 

4. Linear models 
The technique described above enables the development of the magnetic field 

to be investigated for any given choice of velocity field and a-effect distribution. 
Attention has been confined, however, to three models which have been put 
forward by previous authors as exhibiting the basic features of naturally occur- 
ring dynamos. All three models feature a differential rotation in which the angular 
velocity is a function of depth alone, a rotation rate increasing with depth being 
anticipated from elementary considerations of angular-momentum conservation. 
There is evidence in the sun for a slight variation of angular velocity with latitude 
also, but it is doubtful whether this affects the basic dynamo action. 

In  this section the solutions for the linear case, that is, for a independent of B, 
are described and compared with the results obtained previously using the 
eigenvalue-problem approach. The effects of introducing nonlinearities into the 
models by making a a function of B are described in the next section. As a check 
on the accuracy of the integration scheme, an example of the induction of a 
toroidal magnetic field by the action of a differential rotation on a poloidal field 
was examined. A time-step length of 0.001 was used and ten grid points were 
taken in the r and 8 directions. The calculated magnetic field was plotted when 
the toroidal field strength was a t  its maximum, and a comparison with the 
analytic solution made. The discrepancy was barely discernible, suggesting that 
there would be little point in using a finer grid, except possibly for models with 
a complex spatial structure. 

Model 1 
The velocity field is specified by 

(4.1 a)  
(4.1 b )  

(4.1 c )  

The eigenvalue problem for this model has been investigated by Roberts (1972). 
The constants have been chosen in such a way as to ensure that the absolute 
values of a and the toroidal shearing w' = a(u/r sin O)/ar have unit maxima. The 
negative sign in (4.1 b )  corresponds to positive w' and vice versa. Reference to 
the governing equations (2.12) and (2.13) reveals that the system is unchanged if 
the signs of the a-effect, differential rotation, and either part of the magnetic field 
are reversed simultaneously. The situation alters, however, if the sign of the 
product aw' is reversed. Solutions of dipole and quadrupole type were sought for 
both positive and negative ad. In  order that the magnitude of the solution should 
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Sign of DLW’ Symmetry R m  Frequency 

+ Dipole 255 63.7 (66.4) 

+ Quadrupole 210 46.5 (49.7) 
- Quadrupole 255 62.8 (64.4) 

- Dipole 210 47.4 (47.4) 

TABLE 1 

remain fairly constant throughout the integration, values of R, close to the 
eigenvalues obtained by Roberts were used. The initial fields for this and the two 
subsequent models were taken to be the slowest decaying poloidal modes having 
the appropriate symmetry. This choice was arbitrary; there seems to be no 
reason to suspect that the subsequent development is particularly sensitive to 
the initial field distribution. As the integration proceeded the solutions rapidly 
settled down to give oacilIatory ‘dynamo wave’ patterns similar to those pre- 
dicted by the eigenvalue-problem approach. The frequency of these oscillations 
was estimated by counting the number of time steps needed to complete one 
cycle. The results are shown in table 1, with the values obtained by Roberts in 
parentheses. 

It should be emphasized that for these calculations the magnetic Reynolds 
number R, is a quantity to be prescribed in advance, rather than a result of the 
calculation. The long-term behaviour of the solution then indicates whether the 
specified value of R,, was above or below critical. In  all cases the solutions for this 
model exhibited a gradual increase in intensity with time, demonstrating that 
the specified magnetic Reynolds numbers were slightly supercritical. No attempt 
was made to ascertain the exact critical value. 

The evolution of the magnetic field for the two preferred modes, namely the 
dipole for aw‘ < 0 and the quadrupole for awl > 0, is shown in figures 2 and 3 
respectively. 

Model 2 

We now consider a model of the solar dynamo which was put forward by 
Steenbeck & Krause (1969). Both the differential rotation and a-effect are con- 
fined to thin layers, their distributions being given by 

a = +{1+ erf [ ( r  - r2) /d] }  cos 8, 

u = i r (1 -  erf [ ( r  - r l ) / d ] )  sin 8, 

( 4 . 2 ~ )  

(4.2 b )  

2, = 0. (4.2 c) 

The shear layer in which the differential rotation takes place is centred at  r = rl ,  
here taken to be 0.7, and the a-effect is only significant outside a shell of radius rp,  
taken to be 0.9. A value of 0.075 was used for d, a measure of the layer thickness. 
Steenbeck & Krause pursued the effect of making the layers thinner. In view of 
the difficulties inherent in applying finite-difference methods to models in which 
thin layers occur, attention was confined to the model as described above. 
Despite this, the mesh used for model 1 could hardly have been expected to yield 
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I = 0.030 t = 0.045 t = 0.060 

t =0.075 f = 0.090 2=0~105 I =0.120 

FIGURE 2. Evolution of the solution of dipole symmetry for model 1 with aw' < 0. Each 
section shows contours of toroidal field strength on the left and poloidal field lines on the 
right. Here and in subsequent diagrams of this type, the first four pictures show the 
starting transient. The lower row represents approximately one half-cycle of the oscil- 
lation which repeats itself indefinitely for subsequent times. The migration of the field 
pattern from the poles to the equator is clearly discernible. 

t=0~015 I = 0.030 t =0,045 

t=0,075 t=0,090 f=0~105 r=0.120 

FIGURE 3. Evolution of the solution of quadrupole symmetry for model 1 with aw' > 0. 
In  this solution the direction of migration is from the equator to the poles. See also caption 
to figure 2. 

accurate results, as the spacing between grid points is of the same order as the 
layer thickness. The number of grid points in the r direction was therefore 
increased to 20. 

The evolution of the field having dipole symmetry is shown in figure 4. 
Steenbeck & Krause's eigenvalue of 144 was used as the magnetic Reynolds 
number. As with model 1, the solution rapidly attained a regular oscillatory state. 
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t = 0,050 t=0,075 2 =0.100 

t=0.125 t=0.150 t=0.175 t = 0.200 

FIGURE 4. Evolution of the magnetic field for model 2 in the linear case with a d  < 0. The 
direction of migration of the magnetic fields is from the poles to the equator. See also 
caption to figure 2. 

The frequency of the oscillations was estimated a t  32.2, which compares with 
the value of 31-8 obtained by Steenbecb & Krause. A more recent study of this 
model by Roberts & Stix (1972), using an alternative integration scheme, yielded 
a frequency of 31-6. One trial calculation for the quadrupole case, using the same 
value of R,, was performed, the rapidly decaying solution confirming that the 
preferred solution does indeed possess dipole symmetry. 

Figure 5 shows the butterfly diagram for this model. It is, in fact, a contour 
diagram of the toroidal field strength b a t  a radial distance r = 0.9, lines of 
constant b being plotted in the t ,  0 plane. This diagram clearly illustrates the 
rapid adjustment of the solution from the initial state of zero toroidal field to the 
regular oscillatory state with zones of maximum toroidal field migrating from 
the poles to the equator. The steady growth in the amplitude of the oscillations 
indicates that the prescribed magnetic Reynolds number was slightly super- 
critical. 

Model 3 

Model 3 differs from the previous two in that large-scale meridional circulations 
are present as well as differential rotation. It is defined by 

(4.3 a )  

u =  +$x3kr(i-r2)2sinO, (4.3 b )  

(4.3 c )  

cc = 24x 3 t r y i  -r)2cosOsinzB, 

v = ?;$ x 24 m~5(  1 - r)2 cos 8 sin 8. 

This model was put forward originally by Braginskii (1964) as representing the 
liquid core of the earth. Further calculations have been performed by Roberts, 
whose normalization we use here. As with model I ,  the maxima of the azimuthal 
shearing and a-effect are chosen to  be unity, as is a typical meridional flow speed. 
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n l  I 
0 0.6 

t 

FIGURE 5. The butterfly diagram for the solution shown in figure 4. The curves are contours 
of constant toroidal field strength at  r = 0.9. The migration towards the equator is clearly 
shown, while the gradual increase in field intensity with time indicates that the magnetic 
Reynolds number is slightly supercritical. 

Frequency 

Sign of a d  Symmetry R,  10 x 10 grid 20 x 20 grid 

+ Dipole 113 80.6 89-2 (93.34) 
- Dipole 95 76.2 76.3 (77.35) 

- Quadrupole 113 88.2 89-8 (93.54) 
+ Quadrupole 95 69.9 73.9 (77.57) 

TABLE 2 

In the absence of meridional circulation (m = 0) this model produces an oscil- 
latory magnetic field qualitatively similar to that of model 1. Numerical results 
for this model are shown in table 2. 

Some of the results obtained using the 10 x 10 grid of model I differ consider- 
ably from Roberts’ (shown in parentheses). This is probably because a t  fre- 
quencies of oscillation approaching 100 the electromagnetic skin depth is of 
the same order as the grid spacing. The calculations were therefore repeated 
using a 20 x 20 mesh, which produced more acceptable agreement. The solutions 
for this model in the case rn = 0 are qualitatively similar to those of the previous 
two, in that the preferred solution is an oscillatory dipole when o l d  is negative, 
corresponding to the positive sign in (4.3 b) ,  and an oscillatory quadrupole when 
ao’ is positive. 

0 is fundamentally different. Roberts was able to show 
that for \ml sufficiently large the preferred solution was always steady. This 

The situation for m 
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t =0.015 /=0.030 (/I) / = 0.045 / = 0.060 

FIGURE 6. Evolution of the solutions of (a )  dipole and ( 6 )  quadrupole symmetry for model 3 
in the linear case. The sign of a d  is positive in the dipole case ; negative for the quadrupole. 
The meridional circulation is characterized by m = - 0.15 and m = 0.19 respectively. The 
solutions are apparently tending towards the steady states found by Roberts (1972). 

steady mode has the opposite symmetry to the corresponding oscillatory mode, 
a quadrupole now forming the preferred solution when aw‘ is negative, and a 
dipole when ao’ is positive. There was in each case a value of m for which the 
dynamo was most efficient, the magnetic fields in these cases having a particularly 
simple spatial structure. These two cases were examined using the time-stepping 
technique. Figure 6 shows the evolution of these non-oscillatory solutions from 
the initial decay-mode field for values of m of -0.15 and 0.19 for solutions of 
dipole and quadrupole symmetry respectively. The magnetic Reynolds number 
was specified as 43. The fields are apparently tending towards the steady-state 
solutions portrayed in Roberts (1972, figures 6 b, f). 

5. Nonlinear models 
Having established that for linear models the time-stepping technique gives 

results in general agreement with those obtained from the eigenvalue problem, it 
was next decided to explore the possibility of making a depend on the magnetic 
field strength. This was accomplished by introducing a revised measure of the 
a-effect denoted by & and defined by 

This choice of cut-off law was not based on any analysis of the turbulence, and 
was chosen merely for simplicity. The use of the toroidal field strength ib[ rather 
than the total field strength IBI simplifies the computation and is compatible 
with the assumption made earlier that the magnetic field is predominantly 
toroidal. The quantity P gives a measure of the degree to which the magnetic 
Reynolds number is supercritical, the critical case corresponding to P = 1. 

Models 2 and 3 of the previous section were investigated in this way. 

q r ,  e, tq = pap, e ) p  + pp). (5.1) 
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FIGURE 7.  Frequency of oscillation plotted against the factor P by which the magnetic 
Reynolds number is supercritical for model 2 using Stix’s cut-off law. 

Model 2 

Three values for the parameter n in (5.1) were considered for this model, namely 
1, 3 and the limiting case n-+ 00. The value n = 1 is suggested by the fact that in 
many examples of classical magnetohydrodynamics, for example flow through 
a duct with an applied transverse magnetic field, the flow speed is inversely 
proportional to the magnetic field strength for large magnetic fields. It is slightly 
unrealistic for small fields, however, since it yields a cut-off law with discon- 
tinuous slope a t  b = 0. In  one of the few papers to consider the full fluid- 
mechanical dynamo problem, Moffatt (1972) obtained the relation a w M-8 for 
a certain choice of velocity field, where M is the magnetic energy. It was this 
result which prompted the investigation of the case n = 3. Finally, the limit 
n+oo corresponds to the cut-off law used by Stix (1972)) in which the a-effect is 
constant for field strengths less than some critical value, which may be taken to 
be unity, and zero for stronger fields. 

Stix’s investigations were confined to solutions of the induction equation 
which are functions of a single Cartesian co-ordinate only. Calculations for our 
spherical model were performed for a range of values of P from I to 10. Figure 7 
shows the dependence of the oscillation frequency on the magnetic Reynolds 
number. The general agreement with Stix’s results, in particular the reproduction 
of the minimum in the oscillation frequency near P = 7, appeared encouraging. 
Since the completion of these calculations, however, it  has been asserted by Stix 
(private communication) that the position of this minimum is dependent on the 
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FIGURE 8. Evolution of the magnetic field for model 2 using Stix’s cut-off law with P = 7. 
The distortion caused by the sharp cut-off of the a-effect is evident, c f .  figure 4. 
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FIGURE 9. The butterfly diagram for the solution shown in figure 8. The migration towards 
the equator is less pronounced than for the linear model, cf. figure 5. 

number of grid points taken. The author has not been able to determine whether 
or not his calculations for the spherical model also exhibit this property. If such 
were indeed the case one would be forced to conclude that the numerical scheme 
used, though satisfactory for linear models, does not adequately represent the 
governing equations in the nonlinear case. Solutions were attempted for P > 10, 
but the resulting fields failed to exhibit a regular time-dependent behaviour. 

I n  contrast to the above results, the solutions for the case n = 1 remained 
regular for large P, a range of values up to P = 100 being considered. Figure 10 
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FIGURE 10. Frequency of oscillation plotted against the factor P by which the magnetic 
Reynolds number is supercritical for model 2 in the case n = 1. 
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FIGURE 11. Evolution of the magnetic field for model 2 in the case n = I, P = 10. The 
gradual cut-off of the a-effect causes far less distortion of the solution predicted by linear 
theory than does the abrupt cut-off law of Stix, cf. figures 4 and 8. 

shows how the oscillation frequency is virtually independent of P for highly 
supercritical dynamos. The solution for P = 10 is shown in figure 11. A com- 
parison with figure 4 indicates that the solution is similar to that predicted by the 
linear theory. 

Finally, the solutions for n = 3 were calculated. For P < 10 the solutions were 
not greatly different from those obtained for the linear problem. For more highly 
supercritical magnetic Reynolds numbers, however, the solutions exhibited a new 
feature not observed for the other two values of n. At the beginning of the integra- 
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FIGURE 12. Frequency of oscillation plotted against the factor P by which the magnetic 
Reynolds number is supercritical for model 2 in the case n = 3. For high values of P 
t-i transition from a low frequency mode (broken curve) to a high frequency (solid curve) 
occurs after a few cycles. 

tion, the solution assumed an oscillatory form with a frequency considerably 
below that of the linear model. The dynamo oscillated in this mode for a few 
cycles only, however. There then followed a transition to a mode of oscillation 
with a frequency higher than that of the linear model. This complete sequence of 
events can be observed in figure 13, which shows the butterfly diagram for the 
case P = 100. The difference between the frequencies of the two modes increases 
with P as may be seen from figure 12. 

The use of an arbitrary cut-off law such as that defined by (5.1) leaves much to 
be desired. Ideally the dependence of the a-effect on the magnetic field strength 
should be derived first, and then used in the computational model to attempt to 
predict the form of the solar magnetic field. In  the absence of the magneto- 
hydrodynamic turbulence theory necessary to derive the true cut-off law, we 
may reverse the process, and by trying a variety of possible relations, obtain some 
insight into the form of the actual cut-off law which applies in the sun by 
comparing the resulting solutions with the observed solar field. 

In the linear case this model reproduces well the migration of the sunspot zones 
portrayed in Maunder’s original butterfly diagram. The two more abrupt cut-off 
laws, those with n = 3 and n-tw, give considerable distortion of this pattern, 
especially when P is highly supercritical. We may therefore deduce that the 
actual process by which the a-effect is reduced by the increasing Lorentz forces 
is a fairly gradual one, and is more closely modelled by n = 1. 

41 F L M  67 
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FIGURE 13. Butterfly diagram for model 2 for the case n = 3, P = 100, showing the 
transition between low and high frequency modes of oscillation. 

The sharp cut-off used by Stix is probably more appropriate to a non-rotating 
system, in which transition from a turbulent to a laminar flow regime may be 
expected as the magnetic field increases. In  a rapidly rotating system, in which 
the Coriolis and Lorentz forces act in opposition, a different situation arises. The 
Coriolis forces tend to suppress turbulence, but are opposed in this by the Lorentz 
forces. It is therefore probable that the intensity of the turbulence actually 
increases with increasing magnetic field strength. However, since it is the 
Coriolis forces which give rise to helicity in the turbulence, the counteracting 
Lorentz forces can nevertheless bring about a reduction in the helicity, and hence 
in the a-effect, as the magnetic field increases. 

Model 3 

The results for model 2 showed that for the most gradual cut-off of the a-effect, 
corresponding to the case n = I, the effect of the nonlinearities was to stabilize 
the magnetic field in a form similar to that predicted by linear theory, even a t  
very highly supercritical magnetic Reynolds numbers. Model 3 was investigated 
for the case n = I to determine whether this result carried over to dynamos with 
meridional circulation. Attention was confined to the two cases m = - 0.15 and 
m = 0.19, for which steady modes are most easily excited. At P = 10 it was 
found that there was now a fundamental difference between the solutions of 
dipole and quadrupole type. As might have been anticipated, the solution with 
dipole symmetry eventually assumed a form similar to the steady solution 
predicted by the linear theory. Somewhat unexpected, however, was the fact 
that in growing from a weak initial ' seed ' field, the solution passed through an 
oscillatory phase, performing several oscillations before making the transition to 
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FIGURE 14. Butterfly diagram for the dipole-type solution of model 3 with .n = 1, P = 10, 
m = - 0.15 and aw’ > 0. A transition from an oscillatory to a steady solution occurs after 
a few cycles of oscillation. 
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FIGURE 15. Butterfly diagram for the quadrupole-type solution of model 3 with 12. = 1, 
p = 10, rn = 0.19 and a w ‘  < 0. In  contrast to the dipole-type solution (see figure 14) the 
oscillations apparently continue indefinitely. 

a steady state. This behaviour is best illustrated by means of the butterfly 
diagram for this model, which is shown in figure 14. 

For the quadrupole case, the solution also went into an oscillatory state 
initially. In  this case, however, there was no transition to a steady state, the 
OsciIlations apparentIy continuing indefinitely. The butterfly diagram for this 
model is shown in figure 15. 

An explanation for this behaviour can be found in the layer dynamo investi- 
gated analytically by Parker (1971). For a steady mode it was found that, as the 
magnetic Reynolds number is increased past its critical value, the growth rate at  
first grows towards a positive maximum, and then declines, eventually becoming 
negative. For the steady mode to be preferred in Parker’s model the layer thick- 
ness has to be large, in which case it is difficult to envisage the model being 
distorted into a sphere. However, if one is prepared to accept that meridional 
circulation is equivalent to a large layer thickness to the extent that it causes the 
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FIGLTE 16. Variation of the poloidal flux threading the equator with time for 
model 2 with n = 3, P = 100. 

steady mode to be preferred, then the explanation for the initial oscillatory 
behaviour of model 3 becomes clear. The prescribed magnetic Reynolds number 
is initially so far above the critical value that the steady mode is suppressed, and 
an oscillatory mode excited instead. As this solution grows, the nonlinear effects 
become important, reducing the magnitude of the a-effect. In  some respects this 
is equivalent to a reduction in R,. Such a reduction would bring the system back 
into a regime in which the steady mode would be preferred, thus explaining the 
transition to a steady solution observed in the dipole case. The parallel is not 
exact, however, since the reduction in the a-effect due to the Lorentz forces is 
a function of position, whereas lowering the magnetic Reynolds number reduces 
the a-effect by the same factor everywhere. This probably accounts for the failure 
of the quadrupole solution to make the transition to a steady state. 

6. Conclusion 
The technique pursued in this paper, of treating the dynamo problem as an 

initial-value problem, has served two main purposes. It has confirmed that the 
marginally stable modes obtained by solution of the associated eigenvalue 
problem do indeed occur when the system is perturbed by an arbitrary magnetic 
field. It has also enabled nonlinear models to be investigated for the first time in 
a spherical geometry. It appears that under suitable conditions the solution of 
the nonlinear problem is closely approximated by the linear solution, even a t  
highly supercritical magnetic Reynolds numbers. This fact should inspire confi- 
dence in the value of investigating linear kinematic dynamo models. 

In  some cases, however, the nonlinear models have exhibited features in their 
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behaviour not observed for linear models. A disappointing but not altogether 
unexpected shortcoming of these solutions is their failure to give any clue as to 
the nature of the geomagnetic reversals. The first part of the butterfly diagram 
for model 2 with n = 3 and P = 100, shown in figure 13, appears hopeful at  first 
glance, as reversals of the toroidal field occur over a time small compared with 
the total oscillation period. Unfortunately, this effect is not reflected in the 
poloidal field, whose time dependence is portrayed in figure 16. Here the value of 
a at the point (1 ,  in-) has been used as a measure of the poloidal field. This is 
a different quantity from the dipole moment, which determines the appearance 
of the external field at  large distances. It does, however, give a reasonably good 
indication of the bulk behaviour of the poloidal field, being proportional to the 
total magnetic flux threading the equator. 

In all the nonlinear models considered, any distortion of the sinusoidal time 
dependence of the poloidal field predicted by linear theory has been towards 
a ‘spiked’ rather than a flattened wave form. It seems almost certain that a full 
magnetohydrodynamic model involving the effects of the Lorentz forces on the 
large-scale velocity as well as on the turbulence will be necessary if a realistic 
model of the earth’s dynamo is to be formulated. 

The work described in this paper was submitted in partial fulfilment of the 
requirements for a Ph.D. degree at  the University of East Anglia. The author 
would like to express his gratitude to his research supervisor, Prof. M. B. Glauert, 
for his helpful advice throughout the course of the work. Thanks are also due to 
Prof. P. H. Roberts for suggesting the investigation of nonlinear models. The 
work was financed by an S.R.C. research studentship. 
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