THE INERTIAL MASS DEFINED IN THE GENERAL THEORY OF
RELATIVITY HAS NO PHYSICAL MEANING

V.I. Denisov and A. A, Logunov

It is shown that the inertial mass introduced in the general theory of relativity depends on
the choice of the three-dimensional coordinate system, so that it can take arbitrary
values. This means that the inertial mass in Einstein’s theory is devoid of any physical
meaning. In addition, the expression for the inertial mass in Einstein’s theory in the
general case of an arbitrary three-dimensional coordinate system does not have a
classical Newtonian 1imit, so that the general theory of relativity does not satisfy the
principle of correspondence with Newton’s theory.

Introduction

It is currently assumed that in the general theory of relativity the gravitational mass of a system is
equal to its inertial mass. This assertion goes back to the studies of Einstein [1], Eddington [2], Tolman [3],
and Weyl [4]. Subsequently, this theorem was "proved" with various modifications by a number of other
authors [5-7]. Nevertheless, we feel it is necessary to return to this apparently resolved question and make
a more detailed investigation,

1. The Gravitational Mass in the

General Theory of Relativity

The gravitational mass M of an arbitrary physical system in rest as a whole relative to a Schwarzs-
child coordinate system Galilean at infinity was defined by Einstein ([1], p.660) as the quantity which multiplies
the term -2G/c T in the asymptotic expressxon (r — =) for the component 00 of the metric tensor of
Riemannian space—time: g, =1 — (2G/c’r)

A somewhat different definition of the gravitational mass was given by Tolman [3]:
2
M= »—"—j ReT—gdv. @

it follows directly from these definitions that the gravitational mass does not change under transforma-
tions of the three-dimensional coordinates, since both the component R of the Ricci tensor and the component
oo of the metric tensor transform in this case as scalars.

In the case of static systems, the definitions of the gravitational mass given by Einstein and Tolman
are equivalent, To see this, we write the component R in the form

R~—g[

]
a Fo: n I’nin_.f_l‘“mr‘m"n_r‘_mnro"m] .

After identical transformations, we obtain from this
1 1 ag™ 1

Ry’ ———~-——[V—gg“"1‘ “]—g°'~—rn. — =T —— +—————-——--[V—gg°"I‘ L1 @)
T az° 2 9z V—g 82°

Since the last three terms can be ignored for static systems, it follows from the expression {1) that
¢ e
M=—\dS,.V—g g"Te." )
4nG -f g%

Since the metric sufficiently far from a static system must be described with given accuracy by the Schwarzs-
child metric, the expression (3) becomes
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Since the integrand in (1) is a scalar under all transformations of the three-dimensional coordinate system,
the gravitational mass M will also be independent of the choice of the coordinates. In Schwarzschild
coordinates, we obtain from the expression (4)

¢ ] ct ] 2G

M=——1'm[r“—— ]=——1' [ﬁ-—(fl.—w— )] _

2G oul or S heya ,I_,n; ar c’r M
Thus, in accordance with Tolman’s definition, the gravitational mass of a static system is the factor multi-
plying the term ~2G/c2r in the asymptotic expression for the component &0 of the metric tensor of the
Riemannian space—time. Therefore, the definitions of the gravitational mass given by Einstein and Tolman
are equal for static systems.

2. Inertial Mass in the General Relativity

The concept of the inertial mass of a physical system in the general theory of relativity was intimately
related by Einstein to the concept of energy of the system ([1], p.660): "...the quantity that we have inter-
preted as the energy also plays the role of inertial mass in accordance with the special theory of relativity.”
However, in the general theory of relativity it is not possible to introduce the concept of the energy of a
system consisting of matter and the gravitational field, since in Einstein’s theory matter and the gravitational
field are characterized by quantities of different dimension: the physical characteristic of the gravitational
field is the curvature tensor, i.e., a tensor of fourth rank, while the matter is characterized by the energy~
momentum tensor, i.e., a tensor of second rank. Because of the difference between the ranks, general
relativity does not in principle contain any conservation laws (apart from the Einstein equations themselves)
linking the matter and the gravitational field [8]. Thus, the general theory of relativity was constructed at
the price of giving up the energy—momentum conservation laws for the matter and the gravitational field
taken together,

Following the book of Landau and Lifshitz [5], who use more modern notation, let us consider the
manner in which the concept of the energy of a system was introduced in the general theory of relativity by
Einstein {[1], p.528) and other authors [2-7, 9-11].

If Einstein’s equations ([5], §96) are written in the form

¢ 1 .
_ gl m—— R] ——gT™, ()
8nG g[ St & g
then the left~hand side can be split in 2 noncovariant manner into two terms:
ct 1 d .
_ i apl g (6}
SnGg[R 2 ¢ B] gzt BT

where 1=t is the energy—momentum pseudotensor of the gravitational field, and A™=h¥=-p" ig the

spin pseudotensor:
&

W = e [e (g7 g g™ ] )
Substituting (6) in (5), we obtain
; . 3 )
—g[T*g]= 0_1 Xt 8
X

By virtue of the identity §°k™/dz*3z'=0 , the Einstein equations (8) yield the differential conservation law
a o
— [—g (T™++"*) ]=0. {9}
dx*
Integrating this relation over a sufficiently large volume and assuming there are no "energy"® {luxes through
the surface bounding the volume of integration, an integral "energy—momentum conservation law for the

system" is usually obtained from the expression (9):

d )
— [ Catrteerav—o. o)
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From this there follow four quantities that do not depend on the time:
R | o s
p: =—j (~g) [TP+7*1dV. 11
4
By means of the Einstein equations 8), Eq. {11) can be rewritten in the form
pot $roeds.. 12)

In Einstein's opinion ([1], p.652), the four quantities P? represent the energy (i = 0) and momentum

(i =1, 2, 3) of the physical system. It is usually asserted (see [5], p.283): "The quantities P?¢ (the 4~
momentum of field plus matter) have a completely definite meaning and are independent of the choice of the
reference system to just the extent that is necessary on the basis of physical considerations."

On the basis of such a definition of the "energy and momentum" of the system consisting of matter and
the gravitational field, the concept of the inertial mass m of the system is introduced in the general theory of
relativity:

— i 0 1 00 20
m=—Pp _zz—j (—g) [T +°]V. 13)

To calculate the inertial mass of the system, the Schwarzschild solution is generally used,

In isotropic Cartesian coordinates, the metric of the Riemannian space—time can be written in this

case in the form
rg 1¢
e AR (S VR

where r=yz*+y*+7°, r,=2GM/c*. These coordinates are asymptotically Galilean, since in the limit r — =

gu=1+0 (—:—) : g,,a=—6,,ﬁ[ 140 (-:-—)] . (15)

Using the covariant components (14) of the metric, we obtain from the expression (7)

ck
— af
= 16nGa o7 [8ugngag™].

00

Substituting this expression in (12), noting that
dS.=— 2% 1 5in 8d0de, (16)
r

and integrating over an infinitely distant surface, we obtain

3

= T6nG 127 J Yy [—gugzzgug““]sin 8d8dg. @

Thus, the component P’ does not depend on the component 8 of the metric tensor of the Riemannian space—~
time. Substituting the expressions (14) in Eq. (17) and noting that

5 Za 6
ﬁf(r)=——r-—5—r-f(r), To2®=—1, (18)

we obtain
P°=c-“rg/2G=Mc. (19)

it was this equality of the "inertial mass” to the gravitational mass whxch led to the assertion that they are
equal in the general theory of relativity ([5], p.334): ... Pe =0, P = Mec, a result which was naturally to
be expected. It is an expression of the equality of "gravxtatlonal " and "inertial™ mass ("gravitational" mass
is the mass that determines the gravitational field produced by the body, the same mass that appears in

the metric tensor in a gravitational field, or, in particular, in Newton’s law; "inertial" mass is the mass
that determines the ratio of energy and momentum of the body; in particular, the rest energy of the body is
equal to this mass multiplied by ¢ Gn

However, this assertion of Einstein ([1], p.660) and other authors [2-7, 9-11]
is incorrect. As will be shown below, the "energy" (11) of the system and,
therefore, its "inertial mass" have no physical meaning, since their value
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depends even on the choice of the three-dimensional coordinate system,

The general theory of relativity does not in principle admit the introduction of a concept of inertial
mass, since in Einstein’s theory there are no integrals of the motion linking the matter and the gravitational
field (characterized by the curvature tensor). The only formal conservation law [8] in the general theory of
relativity is provided by the Einstein equations themselves, which lead to integrals of the motion identically
equal to zero, which precludes the introduction of an inertial mass.

3. The Concept of Inertial Mass is

Meaningless in the General Theory of Relativity

An elementary requirement which a definition of inertial mass must satisfy is the condition thag iis
value should be independent of the choice of the three-dimensional coordinate system, which is the case in
any physical theory. However, in the general theory of relativity the definition (13) of the inertial mass does
not satisfy this requirement.

We show, for example, that in the case of the Schwarzschild solution the inertial mass (13} may take
all values depending on the choice of the system of spatial coordinates. For this, we go over from the three-
dimensional Cartesian coordinates x¢ to other coordinates xf}, which are related to the old coordinates by

zr=z[1+f (e} ], 20}

where ry=Yz.2+y«’+z<’, f(rs) is an arbitrary nonsingular function satisfying the conditions

f(re)=0, lim f(ra)=0, limrs— . f(r,) =0, (21}
It is readily seen that the transformation (20) corresponds to a change in the arithmetization of the points of-
three-dimensional space along the radius: ro=rs[1-+f(r=)]. If the transformation (20) is to have an inverse
and be a one-to-one transformation, it is necessary and sufficient that the condition ar./dra=1+f+raf>{,
where f=0af(ra)/8r: , hold. Then the Jacobian of the transformation is nonvanishing:

0z are

“—-(1-!-]‘)2——~#=0

J—-det"

In particular, all the imposed requirements are satisfied by the function

i =o Y 22H (1-experna, @2

where a and & are arbitrary nonvanishing numbers.

Since in the given case

or. 8GM 1 1 1
gre=tte = [ () (o],

f(r=) is a monotonic function of ry. It is readily seen that f(r.) is a non-negative nonsingular function in the
whole of space. The Jacobian of the transformation in this case is strictly greater than unity: J={4+f)28r,f
or.>1. Therefore, the transformation (20) with the function f(r.) defined by the expression {22) has an
inverse and is one-to-one,

It is obvious that under the transformation (20) the value of the gravitational mass (1) does not change.

We now calculate the value of the Mnertial mass® (13) in the new coordinates xf§. Using the trans-
formation law of the metric tensor,

giha"_""_.‘ ks glm (-Tc (za)), (23)
.

we find the components of the Schwarzschild metric in the new coordinates. As a result, we obiain

Tg

gao=[1»mﬁ]z/[ HEZT—H)-]Z; gap=r[1+m}k{—6aa(i+f)z——xm5zf[»(j’)z+£—f’(i+j)]}. (24)

The determinant of the metric tensor (24) has the form
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£==Fn [1 + ]!2(14—]‘)"[ 1+ r2 () 2raf (1) 1. (25)

4r (H—f)
1t should be noted especially that the metric (24) is asymptotically Galilean:

lim goo=1; lim gop=—"04s.

o
o TH—)oa

In the special case when the function f(r.) is defined by (22) and 1y — «, the metric of the Riemannian
space—time will have the asymptotic behavior

1
goo=1+0 (‘*) N ga5=‘6a§+0( i ) (26)

Tn u
For the contravariant components of the metric (24), we have

g"=1/go; g*=—8"A+z,52.'B, @7
where we have introduced the notation

A=(1+f)-2[1+m]_‘;

B=[r(f')*+2f (1+])]{rn [1+ ] (1+.f)2[(1+f)2+r,,2(f’)2+2r,,f’(H—j)]}: .

4r (1+f)
Substituting the expressions 27) and (25) in (12), we obtain

3

L : 2 ;_Cf 9 Y L£y2 Te ) H z(§)2 4
P —~16nt§1—2& j‘ra 79—5::"{ 8P (1+1) {1 +———-4rﬂ(1+f)] LD Hr® (f ) +2raf (41 I+
ZTg* x, re r s
(11 1 m] [n () 2t (1411}
By virtue of the relations (18),
0.._{_ : 3(§\2 2 L 's _____rl____ ’
P rl:ﬂ{ra () (44 [1+ B(1+f)] Fr (1) (1+f+raf)[ T ] } (28)
Using the asymptotic expression 21) for f, we finally obtain
P= —255 iii {retr (F)2). (29)

Thus, the "inertial mass" depends on the rate at which f " tends to zero as Ty — «. In particular, choosing
the function f(r,) in the form (22), we obtain for the "inertial mass" from the expression (29)

m=M (1+a*). 80)

It follows that for the "inertial mass" (13) of the system consisting of
matter and the gravitational field in the general theory of relativity we can,
because the value of @ is arbitrary, obtain any preassigned number m =M
depending on the choice of the spatial coordinates, although the gravitational mass M (1)
of this system and, therefore, all three effects in general relativity remain unchanged. We note also that
under more general transformations of the spatial coordinates that leave the metric asymptotically Galilean
the "inertial mass" (13) of the system may take all preassigned values, both positive and negative.

Thus, we see that in the general theory of relativity the "inertial massg"
which was first introduced by Einstein and subsequently taken over by many
authors [2-7, 9-11], depends on the choice of the three-dimensional coordinate
system, and it therefore has no physical meaning. Therefore, the assertion that the
inertial and gravitational masses are equal in Einstein’s theory is also devoid of physical meaning. Such
equality holds only in a small class of three-dimensional coordinate systems, and since the "inertial” (13)
and gravitational (1) masses have different transformation laws, they are no longer equal after transition to
different three-dimensional coordinate systems. In addition, the definition (13) of the inertial
mass in the general theory of relativity does not satisfy the principle of corre-
spondence with Newton’s theory. Indeed, since the inertial mass m in Einstein’s
theory depends on the choice of the three-dimensional coordinate system, its
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expression in the general case of an arbitrary three-dimensional coordinate
system does not go over into the corresponding expression of Newton’s theory,
in which the inertial mass does not depend on the choiece of the spatial coordi-
nates. Thus, in the general theory of relativity there is no classical Newtonian
limit and, therefore, it does not satisfy the correspondence principle.

This leads us to ask why the meaninglessness of the definition (11) of the "energy and momentum"
of a system and its "inertial" mass in the general theory of relativity has remained obscured until now.

This can only be explained by the fact that usually all ealculations of the "energy, momentum, and
inertial mass" have been made in a small class of three-dimensional coordinate systems in which the
"inertial" and the gravitational mass are equal. *

In the same class of coordinate systems, the expression (13} for the inertial mass in the Newtonian
approximation is equal to the corresponding expression in Newton’s theory, which created the illusion that
the general theory of relativity has a classical Newtonian limit. It was then apparently regarded as super-
fluous to consider the physical meaning of the inertial mass (13) introduced in the general theory of relativity.

We are very grateful to A, A. Vlasov, S. S, Gershtein, and A. N. Tavkhelidze for discussing the
work.
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matter and therefore failed to draw the appropriate conclusions, namely, that the inertial mass has no
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