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PREFACE

This book has pleasant associations with the group of physicists
who were working at Manchester from 1953 to 1955. When Dr.
Uwmrzawa arrived in Manchester he brought with him a small Japanese
book which he had written ; the many formulae and names of European
physicists printed in Roman type were sufficient clues to the contents:
it was clearly a textbook of quantum electrodynamics. Umezawa
himself was full of that subject, but for some time his conversation
was very much like his book to us, with the added obstacle that the
names of the European physicists had to be recognised by ear rather
than by sight! This tantalising situation was much relieved in the
first place by UmMEzAWA’s rapid improvement in the mastery of: the
English language, but also by his more specific proposal to prepare
an English translation of his book. Everybody was at once willing
to assist in the carrying out of this project. UMEZAWA took it in his
stride as a minor part of his impressive activity. He mustered colla-
borators around him, kept up a scientific correspondence with his
Japanese colleagues, and almost at the same rate as the pages of the
translation were produced other pages were coming forth containing
the results of the investigations he was concurrently pursuing.

With great eagerness the sueccessive chapters of the translation
were read and discussed among the group as they came, rather untidy
I must say, from the stencil roller. The stencils were also producec
by collective effort in the Common Room, to which the bustle o
people in shirt sleeves gave a suspiciously experimental air. In thi:
process he gave us most, but he also received from us some con
structive criticism. At any rate his book in its present form is rathe
different from the original Japanese, and one may say that it ha
passed a rather searching test of its suitability as an introductior
into the various aspects of the subject, starting from the first begin
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nings and leading up to the latest developments. Among these I am
pleased to single out the elegant exposition of the theory of propagators
which was developed in our Department by Umezawa and ViscoNt:
and could be incorporated in the last revision of the translation.
I have no doubt the book will prove as useful to all readers as it has
been to us, although they will miss the charm which the author’s
personality added to its teachings as it gradually took shape under

our eyes.

L. ROSENFELD
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CHAPTER I
HISTORICAL INTRODUCTION

§ 1. The Search for a Theory of Elementary Particles

It is convenient to classify the various forms of matter according
to the physical laws which are applicable to them. Thus it is that we
distinguish between the solid, liquid and gaseous states of matter in
bulk. In our present subject a classification that depends on the scale
of the phenomens considered is appropriate and familiar; thus we
distinguish between nebula, heavenly bodies, matter on the laboratory
scale, atoms, nuclei and elementary particles. These levels, or strata,
are not, however, independent — atoms are constituted of nuclei, nuclei
of elementary particles.

The laws that govern the motion of matter are not the same at all
levels; on the laboratory scale the laws of Newtonian mechanics are
valid—on the atomic scale quantum mechanics is valid. And we can
say that the object of the theory of elementary particles is the codi-
fication of the laws of this hitherto unknown stratum.

Our only approach to the theory of elementary particles is to
attenpt to base it on a suitable modification of the laws of the pre-
ceding level, Although serious contradictions with the first theory are
certain to arise in this process, usually it is just these contradictions
that provide the key to the new theory. A classical example is the
contradiction between the Bohr quantum condition and Newtonian
mechanics, which eventually led to the new quantum mechanics.

The limits of applicability of a theory define the boundaries of the
corresponding level. However there are some smooth transitions from
one level to the next in the sense that certain results of one theory
correspond with certain results of the other—this is the corre-
spondence principle. For example, quantum mechanics and relativity
are respectively characterised by the constants %» and C and, when
h and (1/C) are taken as vanishingly small, the results of these
theories are identical with those of Newtonian mechasuies.

We shall consider the history of the theory of elementary particles
from this point of view. Although the essential features of the
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behaviour of elementary particles are not yet contained in the present
theory, many important advances in this direction have been made.
For example, the recent discovery o: several new elementary particles
has made it possible to discuss fundamental problems in a more general
way. Of great importance is the progress made in the development of
meson theory.

Many of the fundamental difficulties concerning the structure of
elementary particles were present even in the classical Lorentz theory
of the electron. However, they were disregarded, unsolved, in the
discovery of quantum: mechanics and the provisional formulation of
the theory of elementary particles is an extension of quantum mechanics
(ef. Ch. VI). Certain approximate results of the latter theory are in
excellent agreement with experimental observations of electrons and
the electromagnetic field; nonetheless it has long been known that
the theory can make no exact prediction because of the effects of the
so-called proper fields, which appear more closely bound up with the
difficulties of the classical theory of electrons. These difficulties, it
might be said, are the fundamental problem which an accurate theory
of elementary particles must solve.

It is natural to ask how the present theory can be applied to
electrons and electromagnetic fields and, to a certain approximation,
be successful in spite of the fundamental difficulties involved. This
question is strictly that of the limits of applicability of the present
theory of elementary particles.

At first the problems presented by the proper fields were regarded
as academic ones, although a satisfactory solution of the general
problem depends on an investigation of the associated physical effects.
The first important step towards this solution was the Tomonaga—
Schwinger renormalisation of quantum electrodynamics, which suc-
ceeded in explaining certain real physical properties of the proper
fields of electrodynamices.

In the following paragraph we shall outline the history of these
problems —the discovery of the various elementary particles and the
demonstration that the physical effects of the proper fields are real.
We shall also discuss the limits of applicability of the present theory.

§ 2. Theory of Elementary Particles

We define elementary particles as being those that, as far as we
know, have no internal structure. The most familiar are the electron



CH. I, §2] THEORY OF ELEMENTARY PARTICLES 3

and the photon, which played an important part in the discovery of
quantum mechanics. For this reason the present theory of elementary
particles has been developed as an extension of quantum mechanics
(ef. Ch. VI).

The first hints of the existence of electrons were provided by the
experimental data of electro-chemistry, which indicated that the
electric charges on ions are always integral multiples of some elementary
charge e. By means of his experiments on cathode rays Thomson
proved the existence of a particle with a negative and elementary
electric charge —the electron. The elementary nature of the electrie
charge is a characteristic property of elementary particles.

The electron has an intrinsic angular momentum or spin. The spin
angular momentum is not zero even when the electron is at rest.
The value %/2 of the electron spin that it was necessary to assume in
order to explain the fine-structure of atomic spectra and the anomalous
Zeeman effects of alkali atoms was accounted for by Dirac’s relativistie
quantun: theory of the electron.

Since every atomnic muass is approximately equal to the mass of the
hydrogen atom multiplied by some integer, we may surmise that the
proton is a unit of which nuclei are made (¢f. Prour’s Hypothesis,
[1815]). However, we cannot conclude that ngiclei are made of protons
alone because, for example, the deuteron, which has a mass twice
that of the hydrogen atom, has only a charge ¢ (and not Z2e).

Furthermore, even though the electron mass is negligibly small in
comparison with the proton mass, the deuteron cannot be made of
two protons and one electron (i.e. three particles with spin #/2),
because this assumption would imply a half-integer spin for the
deuteron, in eonflict with the experimental value #.

This difficulty was resolved by the discovery of the neutron in
1932. Jorxor Curir [1931, 1932] found that a neutral radiation was
produced in the artificial disintegration of Be nuclei, and that this
could transfer considerable emergies to hydrogen nuclei on collision
with them. CmEapwick [1932] demonstrated that the radiation
consisted of neutral particles with roughly the same mass as that of
the proton.

As early as 1920 RurrerrFORD had postulated the existence of a
neutral particle of mass roughly the same as that of the proton; he
supposed it to be constituted of one proton and one electron and to
penetrate matter easily because of its absence of charge. Nevertheless
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Grasson [1921] and RoBErTs [1922] failed to find such a particle in
electrical discharges in hydrogen and, in this way, to demonstrate
the truth of Rutherford’s hypothesis. But the hypothesis was not
rejected. And it was not surprising that Chadwick, who has worked
with Rutherford at the Cavendish Laboratory, should discover the
neutron — indeed. CEADWICK’s second paper [1932] refers to Ruther-
ford’s predictions.

On the basis of this discovery IWANENEO [1932] suggested that all
nuclei are constituted of protons and neutrons. Independently
HeisenBERG [1932] made a detailed investigation of the various
properties of nuclei with the obhject of accounting for the inter-
relationship. Ever since the neutron and proton have been regarded
as different states of the same particle —the nucleon (cf. Example 10,
Ch. VII). This doctrine became the foundation of the theory of nuclei
and, on the other hand, led to difficulties which stimulated the
formulation of meson theory.

Experimental information on nuclear structure was enormously
increased with the development of a high energy accelerator by
Cocrerorr and WarroN at the Cavendish Laboratory [1932]. Many
nuclei could be disintegrated at will by means of this machine. Progress
in the field of high energy accelerators has been marked by the devel-
opment of the eyclotron by LawreNcE [1930], the high voltage static
electric generator by Van de Graaf, the synclotron by McMrrrax
[1946] and VExXSLER [1945], and the betatron by Kzmmsr [1941].
Recently machines have been built with energies sufficiently high to
produce some elementary particles artificially.

Because the proton-neutron theory of nuclear structure does not
allow for the existence of electrons in nueclei, it is necessary to interpret
the B-disintegration of nuclei as the production of electrons by nuclei.
The fact that the energies of the electrons produced should be con-
tinuously distributed in spite of the exact differences of energy
between the parent and ddaughter nuclei seems, at first sight, in-
compatible with the energy conservation law. In a lecture at Pasadena
in 1931 Pavrix showed that the requirement of the conservation of
energy would be fulfilled if it were postulated that a neutral particle
of very small mass (called the neutrino) iz emitted at the same time
as the electron. This idea, which was discussed at the 7th Sorvay
CoxarEss [1933], is substantiated by the fact that the greatest energy
with which an electron can be emitted in f-decay is roughly equal to
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the difference between the energies of the parent and daughter nuclei
(Brris and Morr, [1933]). In 1934 a theory of g-disintegration based
on the neutrino hypothesis was developed (Fermz [1934]) and this,
as will be shown later, prepared the way for the meson theory.

The pesitron now enters the picture. The relativistic quantum
theory (Dimac [1928a, b]) involved serious difficulties in the inter-
pretation of negative energy states (Krrix {1929]). For this reason
Dirac put forward the so-called hole theory, which introduced a
particle of mass equal to that of the electron and of positive charge
{Dmac, [1931a, b]). This particle wag called the positron and could
be identified with that discovered independently by Anderson in
Wilson’s cloud chamber experiments on cosmic rays. (ANDERSON
[1932]; also Brackerr, CEaDWICK and OccHrarini [1934]). Dirac’s
theory treats electrons and positrons symmetrically 1), and is thus
the prototype of later quantum field theories of charged particles,
which are always assumed to exist in positive and negative form {cf.
Ch. IX). On these grounds we would anticipate the existence of a
particle of mass equal to that of the proton and of opposite and equal
charge. Although there are some experimental data which suggest
that such a particle does exist, this cannot be affirmed or denied. The
resolution of this matter would indicate whether or not the proton
was amenable to the present theory of elementary particles.

§ 3. Mesons

The existence of the electromagnetic and gravitational forces
between material objects was established a long time ago. The former
can be derived from quantum electrodynamics. In fact, the present
quantum field theory always gives a force between elementary particles
(e.g. electrons) which is mediated by other elementary particles (e.g.
the photons) when both types of particle (e.g. the electrons and the
photons) interact with each other. We ghall leave out of consideration
the gravitational force ?), because it is not yet clear if its effects can
be properly described by the elementary particles formalism; in any

1) The 1947 Congress of the International Union of Physics agreed to name
electrons and positrons negatorns and positens respectively, and to reserve the
name eleciron for the generic reference to particles of both signs. In this book we
shall adhere to this convention.

7) Therefore, throughout this book the special relativity is simply called
the relativity.
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case the coupling constant of the gravitational to other fields is known
to be very small in comparison with other known coupling constants.
The forces between nucleons cannot be purely electromagnetic
because neutrons have no electric charge, and because nuclear forces
are experimentally known to be about 100 times stronger than
electromagnetic forces (cf. Example 11 of Ch. VII).

Since Heisenberg published his theory of nuclear structure, people
have tried to develop nuclear theory in two ways: by formulating
phienomenological nueclear forces, and by applying the theory of
elementary particles to nuclei. Many authors have developed pheno-
menological theories of nuclear forces in which the theoretical results
derived from the various assumed potentials were compared with
the experimental data. They studied the stationary states of light
nuclei, especially the deuteron, and nucleon-nucleon scattering, and
then applied the nuclear forces obtained from these experimental
data to derive properties of heavier nuclei.

Heavy nuclei exhibit a characteristic feature, the so-called saturation
property. If all nucleons in a nucleus (of mass rumber n) interacted
with each other by ordinary two-body forces, the binding energies
would be proportional to n2, not to » as is found experimentally. This
suggests a similarity with the valences of chemical bonds. Each particle
seems to select a small number of particles with which to interact.
Taking into account this analogy, Heisenberg introduced exchange
forces in his phenomenological investigations of nuclear forces. The
range of the force between two nucleons given by the phenomenological
investigations is a~ 2 x 107'® cm, much smaller than that of the
electromagnetic interaction. )

As explained above, nuclear forces cannot be reduced to an electro-
magnetic interaction. The other elementary particles (known two
decades ago) which could interact with nucleons were electrons and
neutrinos. IwANENKO [1934] and Tamwm [1934] estimated the nuclear
force due to the electron-neutrino interaction with nucleons (i.e.
B-interaction). We shall show later that in the present quantum field
theory the magnetic moment of each elementary particle must include
a contribution from the interaction with other elementary particles.
Therefore, if nuclear forces could be interpreted as due to the S-inter-
action, this would also be responsible for the nueleon magnetic
moments. WIck [1935] and Wxrzsacger [1938] investigated if
this assumption could give the experimental values (2.8 /2 MC,
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—1.9 e%/2 MC; M is the nucleon mass) of the magnetic moments
of the proton and the neutron. However, the nuclear force and
anomalous parts of the magnetic moments given by the j-interaction
were too small compared with the experimental data. At that time
no other elementary particles had been observed experimentally, and
the question arose of whether nuclear forces could be derived from
quantum field theory.

However, this difficulty was resolved by a very simple idea, which
can be confirmed only by reliable experimental data. In the present
quantum field theory we can show (Wick [1938]) by means of the
uncertainty principle alone (cf. Ch. XII) that the mass x» of the
elementary particles responsible for a force of range r must be
x=(hjrC). Substituting in this formula the value of r given by the
phenomenological investigations of the nueclear forces, we see that
the nuclear force is due to elementary particles of rest mass x ~ 200 m
(m electron mass). This particle, the meson, was introduced theo-
retically by Yurawa [1935]. Furthermore, from meson theory one
can derive the exchange forces in a sensible way. However, exchange
forces have not yet given a complete solution of the problem of
saturation of nuclear forces. As pointed out above, the problems of
nuclear forces and anomalous magnetic moments of nucleons are
intimately connected. We shall discuss later the calculations of the
anomalous magnetic moments of nucleons from meson theory. In
1936, ANDERSON and NEDDERMEYER discovered a particle of rest
mass ~ 200 m in his cloud chamber observations of cosmic rays!) and
OPPENHEIMER. STUECKELBERG [1937] and Yurawa [1937] pointed
out that this new particle could be Yukawa’s meson. This stimulated
a renewed interest in elementary particle theory, and provided
confidence in the quantum field formalism which was an extension
of quantum elestrodynamies.

§ 4. Short Review of the known Elementary Particles

After the discovery of the meson, the existence of many sorts of
elementary particle was reported.

Cosmic radiation consists of two components ~the hard component
(which can penetrate 10 cm in lead) and the soft component (which
is absorbed by 10 cm of lead). The first of these consists mainly of
mesons. Experimental observations show that the cosmic ray meson

1) Kuwnzr had reported the existence of a particle like the meson in 1932,
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decays. into an electron and neutral particles in a very short time
(~ 10-% gec.). This decay process was observed by Wiitams and
RoBErTs [1940], in Wilson cloud chambers. The above value for the
lifetime had been suggested by various phenomena observed in cosmic
radiation. Rasertr [1940] and Maze [1941] succeeded in measuring
the lifetime for each decay process directly. On account of the energy
conservation law we must expect that neutral particles are produced
together with decay electrons.

The decay process of the meson was also taken into account in
Yukawa’s theory, which assumed that §-disintegration is not a direct
transmutation of nucleons with the emission of electrons and neu-
trinos, but that mesons decaying into electrons and neutrinos occur
as an intermediate stage. Since the magnitude of the nucleon-meson
interaction and of the nucleon-electron indirect interaction could be
estimated from the experimental data on nuclear forces and g-dis-
integrations respectively, the magnitude of the direct meson-electron
interaction, and therefore of the lifetime of the mesons, could be
estimated. However, these estimates give a lifetime 10—® sec., which
is smaller than the observed lifetime by a factor 10-2 (BETHE and
NorpEEmM [1940], Yurawa, SavaTa, KoBavaser and TARETANI
[1938]). .

Since mesons decay naturally into electrons, we cannot avoid the
assumption that all observed cosmic ray mesons are produced near
the earth. Moreover, the fact that the main part of the primary
cosmic radiation approaching the earth consists of protons (ScHEIN,
JEssE and Worrax [1940]) shows that the observed mesons must be
produced by collisions of these protons with atoms of the atmospheric
gases. The meson-nucleon interaction must therefore be strong
enough to explain the production rate of observed mesons. In fact,
in Yukawa's theory, this interaction is strong enough to give the right
nuclear force. However, this fact seemed to be incompatible with the
fact that cosmic ray mesons have a small cross-section for interaction
with matter (Wirsox [19397).

These difficulties were made obvious by the cosmic ray experiments
of the Rome group. (CoNversi, PanNcixt and Procront [1947]).
Previously, Tomonsgs and ArAXI [1940] had pointed out that in
Yukawa’s theory almost all negatively charged mesons must be
captured by nueclei on account of the attractive Coulomb force and
the meson-nucleon interaction. However, the experiments of the
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Rome group showed that an appreciable proportion of the negatively
charged mesons are not absorbed in carbon but decay into electrons.
The detailed calculations of Fermi, TELiER and WEISSKOPF [1947]
showed that the theoretical and experimental capture cross-sections
differ by a factor ~~ 1012

Since this difficulty seemed too serious to be settled by any im-
provement of the calculations, it led people to a “two meson theory”,
in which it was assumed that the cosmic ray mesons observed near
gea level are not Yukawa’s nuclear mesons, but are produced as
secondary particles in the decay of the latter, and interact only
weakly with matter. Various attempts to resolve this difficulty were
made. For example, WEISSEOPF [1947] considered an interesting
possibility based on the “meson-pregnant states of nucleons”. These
two attempts had in common the separation of the meson absorption
process from the meson production process. In 1942, the two mesons
theory was presented by Saxara, Tanikawa and INOUE. MARSHAK
and BrraE [1947] independently presented the two mesons theory.

The two mesons theory was experimentally confirmed by the
Bristol Group (LarreEs, Occmiarin: and Powrrn, [1947]). They
showed that the heavier mesons produced in nuclear interactions
decay into lighter mesons in the emulsions. The emulsion technique
has, since then. made a brilliant contribution to our knowledge of
the properties of the new elementary particles.

In the two mesons theory we have the following interaction scheme:
the nuclear meson (which is called a z-meson since the Bristol Group
experiments) interacts strongly with nucleons to give the nuclear
force. Since it is juss equivalent to the particle introduced by Yukawa,
we may say that the conclusive identification of the Yukawa meson
was given by the Bristol group experiments. As shown previously, the
cosmic ray mesons observed near sea level interact weakly with
nucleons and decay naturally into electrons with a lifetime ~ 10-% sec.
They are now called u-mesons. Many authors (e.g. L=eIGHTON,
AxDErsoN and SERIFF [1949]) have shown experimentally that
the number of neutral particles produced in the decay process of a
p-meson is more than two. The 7-mesons decay naturally into u-mesons
with a lifetime =~ 10—® sec. A precise measurement of the m-meson
lifetime was made by RicHARDSON [1948] using artificially produced
mesons. The energy conservation law requires that a neutral particle
of very small mass accompanies the u-meson in the above decay
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process. Thus we see that the protons of the primary cosmic radiation
produce s-mesons by collisions with atoms of the atmospheric gases,
and these z-mesons decay into u-mesons which in their turn decay
into electrons. There still remain various possibilities for the detailed
structure of the interaction scheme for the nucleons, »- and x-mesons
and electrons; e.g. both of the direct interactions between the nucleon
and the electron and the coexistence of (w-nucleon)—and (n-electron)
—interactions can lead to the f-disintegration of nuclei. Much work
has been done (e.g. Tromwo and WEEELER [1949], TAKETANI,
NARaMURA and Sasari [1949], Yurawa [1949]) to examine which
scheme gives results nearest to the experimental values (cf. Example
11, Ch. VII). From this the conclusion is that the B-interaction is
not completely mediated by =-mesons.

In 1948 m-mesons were produeed artificially for the first time by
bombardment of a target with x-particles accelerated in the Berkeley
cyclotron. Great progress has been made in meson physics by means
of artificially produced mesons. In particular, it has been shown
(MarsHAR [1951], CrESTON [1951], DURBIN, LOAR and STEINBERGER
[1951], Crark, RoBERTS and WiLsoN [1951]) that the spin of the
z-meson is zero and moreover, the z-meson seems to be of the pseudo-
scalar type (cf. Example 6 of Ch. X).

We cannot observe directly tracks of neutral mesons in Wilson
chambers or emulsions. However, experimental data on nuclear
forces have suggested the existence of neutral nuclear mesons (which
are now called »%mesons). The fact (BrEIT ef al. [1939]) that cross-
sections for low energy nucleon-nucleon scattering do not depend on
the charge state of nucleons (except for the Coulomb force acting in
pp scattering) shows that there must be a contribution of the neutral
nuclear mesons to the nuclear forces. (FromricE, HrITLER and
KemmMeEr [1938], Yurawa, Sarats, KoBaYasET and TAKETANI
[1938]). In 1940 Sakata and Tanikawa pointed out that according
to the present quantum field theory the neutral nuclear meson must
decay quickly into photons (cf. Example 3, Ch. XIII); it decays into
two or three photons, if its spin is zero or one respectively. This led
observers to expect that photons produced in the decay of neutral
mesons should contribute considerably to the soft component of cosmic
radiation. The so-called air showers observed in cosmic radiation
also suggested the existence of photons produeced in the decay of the
neutral ‘mesons. Furthermore, emulsion experiments at altitudes of
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100,000 feet (Karrow, PETER and BraDT, [1949]) had given photo-
graphs which seemed to show the decay of neutral mesons into
photons. In 1950, the Berkeley group succeeded in producing arti-
ficially the neutral meson, which decayed into two photons, by
bombarding the nuclei in a Be target with accelerated protons.
(BJORKLUND et al., [1950]). According to the present quantum field
theory, we may say that the spin of the neutral meson is zero (ef.
Example 2, Ch. XIII).

In 1947, RocHESTER and BUTLER found new positively charged
and neutral particles of masses a~ 1000 m. Many observations of
new elementary particles have been reported since then. They are
called A, 8, 7, y and x-particles ete. {cf. § 5, Ch. IV), In the present
quantum field theory they are assumed to have definite spins, masses
and charges.

The assumption that all these particles are quanta of really distinct
fields is, probably, a provisional one, valid only under some restrictions
(e.g. in the region of not very high energies, not very strong couplings
etc.) such that the structure of particles can be neglected. But still
one can hope, in this way, to aim at understanding their mutual
relations and finally construeting a synthetic theory for them.

The problem of the structure of particles has been often discussed
in connection with the fundamental difficulties inherent to the present
quantum field theory. We shall describe this problem in the following
paragraphs.

§ 5. The Quantum Field Theory and its Difficulties

As pointed out above, the transmutations are & characteristic
feature of elementary particles. The present quantum field theory
was formulated (HEISENBERG and Pavurr [1929]) by extending quan-
tum mechanics so as to satisfy the relativity requirements and to
treat the various transmutations.

Quantum mechanics, as originally formulated, was restricted to
problems in which the number of particles remained constant and
their velocities were low enough for a non-relativistic approximation
to be valid. Its first extension, the relativistic quantum mechanics of
particles, was given by Dirac [1928] and this led us to the theory of
positions #xorder to settle the difficulties of the negative energy states
introduced by the theory (Dmac [1931]). In the latter theory we have
transmutations between electrons and photons, and we know now



12 HISTORICAL INTRODUCTION fcm.1, §5

that this is equivalent to the quantum theory of the electron field
(Kramers [1937], Iwanexgo and Sororow [1937]).

The electromagnetic field requires a more direct introduction of the
guantum field theory. In this case we have the Maxwell theory which
is covariant in form, and the radiation phenomena of electromagnetic
waves can be regarded as the classical form of the transmutations of
elementary particles (electrons and photons): — in the quantum field
theory, the radiation and absorption of electromagnetic waves are
regarded as the creation and annihilation of photons, respectively.

We can roughly express the feature of the quantum field theory as
follows: The state of fields at a certain time can be determined by
observations at all points at this time. In order that such a state can
be unique® determined, it is necessary that the observations of two
points at the same time do not disturb each other. This requirement
can be automatically satisfied by the relativity requirement, because
the propagation velocity of the disturbances must be smaller than
the light velocity. A photon of large energy (> 2 m : m the electron
mass) induces a change of the state of the electron field--the pair
production of a negaton and a positon—in the matter. The state
vector can be treated according to the same argument (e.g. the super-
position law, the time change according to the Schrédinger equation
ete.) as in guantum mechanics.

The quantum electrodynamies has been based on some experimental
features of the quantum properties of the system of the electron and
electromagnetic fields (¢f. Ch. VI) and has achieved some brilliant
successes, e.g. the cascade showers. By 1932 it was olear that the
penetrability of cosmic rays in lead was stronger than that calculated
by taking into account the radiation and ionization losses. In 1933,
Brack®Err and OccHiarani discovered phenomena in which many
charged particles were produced simultaneously, i.e. the showers.
These phenomena were explained by the cascade theory (Carisow
and OppENHEIMER [1936], BEABHA and HErrrLer [1936]) as the
repetition of electron pair production by photons and the radiation
of photons by the high energy electrons. This shows that quantum
electrodynamics can be successful even in the region of very high
energies. However there remained unexplained a part of the highly
penetrable cosmjc rays, ie. the hard gomponent discussed in § 3
and § 4.

In 1936 Dirac extended his relativistic theory of the electron to
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the case of general spin. This theory was investigated in detail by
Frerz and Pavrr [1939], (cf. Ch. IV). The theory of the case of zero
gpin was developed already in 1934 by PavuLr and WEIssKopF. Pavix
[1940] clarified the general relation hetween the spins and the statistics;
the elementary particles of the half-integer spins (e.g. the electrons,
nucleons, etc.) must obey Fermi statistics and those of the integer
spins (e.g. the photons) Bose statistics (cf. Ch. VIII). General kinds
of relativistic wave equations will be discussed in Ch. V.

These theories of elementary particles of general types found their
application in meson theory. YAamawa, SararTa, TaxrErant and
Kosavasar [1938], KemmER [1938] and BEABHA [1938] investigated
the meson theory assuming various types of mesons. Speaking
theoretically, it is to be expected at present that all kinds of elementary
particles given by the general theory of relativistic wave equations
may exist in nature. Therefore, it is an interesting question to ask
how the particles realised in nature can be selected from the general
framework.

To answer this question seems to require a clarification of the
structure of the elementary particles. The latter problem has been
investigated by many authors in connection with the serious difficulties
of the present theory of elementary particles. However, since this
problem has been very academic, more fruitful results have arisen
from the more concrete problem, the determination of the mutual
interactions of the elementary particles realized in nature. We may
mention that the latter problem is expected to change the more
academic problem into a practical one.

An example of the difficulties which arose in connection with the
structure of elementary particles is to be found in the Lorentz classical
theory of the electrom. In the classical electromagnetic theory the
concentration into a point of a finite charge with a definite sign
requires an infinite energy on account of the Coulomb repulsive force.
According to the well known Einstein relation connecting energy
and mass, such an electron has an infinite mass and will explode
quickly. In the Lorentz theory of the electron, any eléctron is under
the following force (besides a possible external force)

F=—&n£x+gz£x+
di® 3 O3 ds®

The first term corresponds to the above-mentioned increase in
energy due to the proper fieldyuisen-the electromagnetic field induced
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by the electron itself. In fact, since it is proportional to the acceleration,
it gives the change dm in the mass. The second term comes from the
damping effect, i.e. the decrease in energy due to radiation. The
remaining terms (....) depend on the charge -listribution inside the
electron 1). '

The effects given by (F) are called the reactions of the proper
field. Since dm oc 1l/a (a : the electron radius) the mass becomes
infinite as the electron contracts to a point.

In order to avoid this difficulty, many attempts have been made
to introduce suitable extended models of the electron. However, the
problem has been too purely theoretical to give a conclusive answer.
It seems to be better to search for the experimental effects of the
proper fleld which gives rise to the difficulty.

Attempts to settle the difficulty of the infinite mass of the electron
were made by many authors (Borx and INnrrLD [1934], Borp [1940],
Dirac [1938], ete.). Bopp succeeded in obtaining a stable electron
by introducing an energy, the sign of which is opposite to that of the
infinite electromagnetic energy of the electron. This method may be
regarded as an example of the method of the cohesive field, in which
a field giving an attractive force between charges of the same sign is
introdueed to cancel the Coulomb repulsive force to give a stable
electron. The concept of the cohesive field was introduced by PomNcar®
[1905]. A detailed investigation of the cohesive field in the classical
theory was given by STUECKELBERG [1939], who showed that a
consistent theory of the electron can be obtained by introducing a
cohesive field of the neutral scalar type.

This idea was examined in the quantum field theory of electrons
by SagaTA [1947] and Pats [1947] independently. They showed that
a cohesive field of the neutral scalar type is able to eliminate the
difficulties of the infinite mass. This cohesive field is called the C-meson
or f-field, and their theory. is called the mixture theory or the com-
pensation theory.

Since the cohesive field can be treated in & similar way to that used
in guantum electrodynamics, it can be easily applied to various
problems and can yield consequences which can be claimed to be true
independently of any assumption involved in the introduction of a

1} The Dirac classical theory of the electron [19838] is formulated to be
covariant and its higher terms (= 3) of (F) are zero. His “new classical theory
of the electron’ was presented in 1952.
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cohesive field (SaxaTa [1947]). Therefore we may construct a consistent
theory without using any cohesive field by abstracting the latter
features from a cohesive field theory. Sakata called this method that
of ““the concrete and the abstract”.

In -any theory of the structure of elemuntary particles. we have to
take into account their internal degrees of freedom. In the mixture
theory we may say that the various spins and wnasses of the cohesive
frelds correspond to these degrees. There have been many attempts
to introduce internal degrees of freedom in connection with internal
motions (UareNBECK and GoubsMiDpT model {1925], WEsseL [1938],
Honr [1938], H6NL and ParaPETrROU [1938]). In these theories, we
have an energy of internal motion instead of an energy due to the
interaction with the cohesive field. If we assume the angular momen-
tum mav of a rotating electron with an angular velocity v/a (v: velocivy
of points on the circumference of the electron, a: the electron radius)
to be equal to the spin (1/2)k, we obtain a=(1/2)(h/mv). Since » < C
(C: Iight veloaity), we see that the electron radius is not much smaller
than the Compton wave length (2/mC). On the other hand, taking
the rest mass mC? to be equal to the electromagnetic energy, we have
a ~ (e2/mC2)=(1/137)(A/mC), which is incompatible with the above
result when we assume » <X €. This argument seems to show the
necegsity of introducing a different energy from the electromagnetic
one (BorN and ScErRODINGER [1935]).

Just as the electron carries its electromagnetic field, any electro-
magnetic field is accompanied by an infinite number of electrons,
whose effects are called those of vacuum polarisation. According to
the quamtam field theory the latter effects appear to be infinite in
various problems. To these problems the idea of the mixture theory
has been ‘applied (Ravskr [1948], Umezawa, YorRawa and Yamapa
{1848]). As an abstract theory corresponding to the mixture theory,
we have-the regularization theory ), presented by PavuLr and ViLrLARS
{1949], where no cohesive fields are assumed to exist.

When an extended model of the electron is used, the electron and
the electromagnetic field interact not at a point but over an extended
region. Such an interaction is called non-local. Various characteristics

1)  The regularization conditons assumed in this theory can be derived from
a Sermalistic mixbure theory. (Pais and UrLeNBECK [1950]). In their discussion
Pais and Uhlenbeck pointed out the impertant featur of the ‘“‘propagation
character”.



16 HISTORICAL INTRODUGCTION [om.1, §8

of non-local interactions have been clarified by many authors
(e.g. WaTacIN [1934], Borpr [1946], Brocm [1950], KRISTENSEN and
MorrLgr [1952], Pavir [1953], Cmr¥riEN and Pmisris [1953],
Unmezawa and Taramasst [1953], KaTavama [1953], Havasmx [1954]
ete.). YUrRAwA [1950] developed a non-local theory, where the fields
have a non-local character even when there are no interactions. This
theory has been also investigated by many authors (e.g. YENNIE
[1950], Rayskx [1951], Hara and Smmmazv [1951], Toxuora and
Karavama [1951] ete.). These theories automatically give various
gtates of mass and spin (Frerz [1950], Ravskr [1953]). Yukawa
discussed the mass spectrum by connecting the theory of the non-local
field with that of the non-loeal interaction.

An extended model of the electron has frequently involved the
principle of eausality; the usual formulation of the prindiple of
causality may not hold inside the electron. Indeed, STUECKELBERG
[1950] showed that the requirement of causality leads to the Dyson
S-matrix given by the present quantum field theory of the structureless
elementary particle (c¢f. Ch. XIII). HEISENBERG [1850] presented a
theory 1) in which all particles are constructed of a fundamental field
of spin 1/2. HerseNBer¢ and FrErz [1950] discussed this theory in
connection with the problem of causality to show that in this theory,
though it eliminated some difficulties of infinities, the usual causality
cannot hold in a region near the elementary particles. For example,
using the usual interpretations we have curious processes (in a “‘very
short timme”), in which some particles annihilate (from a state where
they do not exist) and after that they are created (not the creation
and then annihilation!). Therefore we must first find a consistent
interpretation of these mathematical results.

In almost all of the theories discussed in this section we find some
relations between the masses of elementary particles which is one of
the problems of mutual relations of elementary particles.

§ 6. Real Effects of Proper Fields

It is impossible to obtain definite conclusions from the above
theories on account of their academie character. Since the difficulties
come from the effects of the proper fields, we may expect that the
ohserved effects of the proper fields in the behaviour of many known

%) Tt is not possible to construct any particle of half-integer spin by means of
particles of ixiteger spin.
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elementary particles give a real footing for the study of the problems
of the structure of elementary particles.

The observed effects of the proper fields may also give important
contributions to the problem of the applicability of the present
quantum field theory. In other words, we expect that they may throw
some light on the question of why quantum electrodynamics based
on some approximations, (in which the effects of the proper fields are
not taken into account) has shown excellent agreement with the
experimental results.

In the present quantum field theory, we have a probability of
observing all particles which are distributed like clouds in a region
immediately around their source particle, and this source particle
and the cloud (i.e. the proper field) are observed as a particle (cf.
Ch. XII). For example, every electron forms its cloud of the electro-
magnetic field. Furthermore, the proper fields interact with their
source particle to give the so-called reaction of proper fields. The
densities of high energy particles of the proper fields are larger at
points near the origin and so give various difficulties of infinities, e.g.
the infinite mass.

The cloud of charged particles carried by an electromagnetic field
_give the effects of the so-called vacuum polarization, in which, for
example, the observed value of the charge ¢’ includes the contribution
de of the charged particles of the cloud. However, the actual calculations
give an infinite value for de (cf. Example 6, Ch. XTII}.

The contact of the cloud of an elementary particle with ancther
particle gives rise to interactions between them. This is the quantum
theoretical expression of the contact interaections (cf. Ch. XIT)., The
cloud of a proper field (the mass x) extends mainly in a region of a
radius 7= (k/xC) around its source particle (Wicx [1938]). The main
part of the nuclear force is given by the cloud of the meson field
around the nucleon.

The particles together with their proper fields move differently
from bare particles and have, consequently, different angular momenta.
Moreover, the proper fields themselves have angular momenta.
Therefore, the particles with their proper fields show “different mag-
netic moments from those which are without. For example, we can
expect on theoretical grounds, a small anomalous magnetic moment
of the electron (i.e. a deviation from the proper magnetic moment,
—fie/2mC) due to the electromagnetic proper field, and since the
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interaction between the nucleons and the mesons are stronger than
the electromagnetic interaction, we may expect easily observable
effects of the mesonic proper field: e.g. the main part of the observed
anomalous magnetic moments of the nucleons may be given by their
mesonic proper fields. However, the theoretical answers are again
infinite.

Since 1936 Heisenberg has analysed the applicability of the quantum
field theory in connection with the actual effects of the proper fields
and the strange successes of the quantum electrodynamics (HEISEN-
BERG [1936, 1938, 1939]).

Since the effects of the proper fields are intimately connected with
the structure of elementary particles, it may be natural to expect
that the applicability of quantum field thescry depends on whether
the proper fields have significani effects or not. and that when these
effects are too great for this theory to be applicable the phenomena
should depend en the structure of the elementary particles. In quantum
electrodynamies the effects of proper fields may be regarded as small
perturbation effects on account of the weak interaction of the proper
fields. HEISENBERG [1939] began his analysis by a classification of
interactions into two classes, viz. the interactions of the 1st and 2nd
kinds. In the first case, quantum field theory shows that the density
of particles of the proper field does not depend essentially on their
energies, in contrast with the second case, in which the density
strongly increases with the energies of particles of the proper field.

The mathematical expression of this classification is given in terms
of the dimensions of the interaction constants. In general, the inter-
action constants have dimensions [I.”] with various % ([L]: the
dimension of length). Then, interactions of the 1lst and 2nd kinds
have n < 0 and %> 0 respectively (cf. Ch. XV). Heisenberg expected
that the interactions of the lst and 2nd kinds are within and without
the range of applicability of the quantum field theory, respectively.
Since this applicability condition was examined in detail by OpPEN-
HEMMER et al. [1940] it has been called the Heisenberg-Oppenheimer
condition.

In additfon Heisenberg gave a suggestion for the theory beyond
the region of applicability based on a fundamental constant 7, of the
dimension of length, the existence of which was expected on account
of the following reasons: The proper fields characterise the properties
of regions near the elementary particles in the present quantum field
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theory. Sinee the infinity difficulties come from the contributions of
the high energy particles of the proper fields, their properties given
by the present quantum field theory should be maédified in a future
theory. Thus it appears necessary to introduce a constant ry= (BC/E,)
discriminating the two regions of low and high energies in such a way
that the above-mentioned high energy region corresponds to energies
larger than E,. In the same way that the high energy radiations, which
give rise to a difficulty pointed out by Rayleigh, are cut off by means
of the Planck constant % in the Planck theory, r, may play the role
of cutting off the high energy region of the proper fields. The infinities
would appear when the present quantum field theory was applied
unrestrictedly without taking into zccount the effects depending
on 7,. In the case of particles with wave lengths much greater than r,,
the effects of the proper fields may be expected to be contained only
in constants, i.e. the masses and charges. On the other hand, in
phenomena concerning particles with short wave lengths (< 7y), the-
proper fields show dynamical effects.

That the high energy region of the proper field should be cut off
seems to be especially necessary for interactions of the second kind
because the probability distributions of high energy particles cor-
respond to a much greater density than those for interactions of the
first kind.

The other veason for introducing r, is that in a theory, which
explains the mass spectra, we must have such a constant, because
it is impossible to make any constant of the dimension of mass by
using only % and C. However, the characteristic features depending
on ry have not yet been clarified, since no definite value of 7, is known,
and we do not know how r, can be measured. The interactions of the
2nd kind may give phenomena depending strongly on the properties
of the proper fields. As an example of the latter phenomena Heisenberg
discussed the multiple production of particles. If, in the iesonic
proper field of a nucleon, there are many high energy mesons, these
mesons might escape from the nucleon under the influence of an
external field. Such a theory of the multiple production of mesons
was discussed by Lewis, OPPENHEIMER and WOUTHUYSEN [1948] (of.
Ch. XIT). HEISENBERG [1949, 1952] discussed multiple production in
analogy with the theory of turbulence. There has been another theory
of multiple production based on an analogy with black body radiation.
This theory was suggested by HriseNBrG [1939] and was developed
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by Frrvx [1950]. In this theory the multiple production phenon.ena
do not show the properties of the meson proper field, because the
collision energy is distributed quickly over the meson cloud to give
new states of equilibrium, from which the mesons are produced.
Recently, multiple production phenomensa have been observed in
photographic-emulsion experiments (Bristol group). Although it
has not yet been decided whether the meson-nucleon interaction be-
longs to the 2nd kind or not, multiple production phenomena are
expected to give some new features of the theory of elementary
particles.

According to the above analysis of Heisenberg’s, the' experimental
success of quantum electrodynamics are explained by the fact that
the interaction between electrons and electromagnetic fields belongs
to the lst kind. However, this explanation seemed to be incomplete
because the infinities appear in quantum electrodynamics despite
ite supposed mnteraction of the first kind. On the other hand, Waragi~
{1934 presented the so-called Heisenberg- Watagin applicability
condition which says that all the high energy (> E;) phenomena are
out of the range of applicability of the quantum field theory in-
dependently of the types of interactions. However, this condition
cannot explain the successes of the quantum electrodynamics. As
discussed later, the reason for this contradiction has been partly
clarified by the “renormalisation theory’ in connection with the real
effects of the electromagnetic proper fields.

We have previously had some indication of the reality of the
effects of the electromagnetic proper field. For example a calculation
which does not take into account the effects of the proper fields, gives
an infinite probability for the scattering of an electron by an external
force (the infra red catastrophe). In 1937, BrocE and Normpsirck
showed that this infinity disappears if we take into account the
contributions of the low emergy photons of the proper field (cf.
Example 4, Ch. XIIT) 1). However, it is not consistent to include the
low energy photons and then to neglect the effects of the high energy
photons. The high energy photons give rise to another infinity (the
ultra violet catastrophy). This difficulty, which was discussed in detail
by PAvir and Fierz [1938], prevents our obtaining a definite answer
regarding the effects of the proper field in the scattering problem.

1} The Lewis, Oppenheimer and Wouthuysen theory of the multiple pro-
duction of mesons discussed above is also based on the Bloch-Nordsieck method.
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A more definite demonstration of the effects of the proper field was
given by the analysis of the atomic spectra. As is well known, one of
the successes of Dirac’s relativistic theory of electrons was to explain
the fine-structure of energy levels of atomic electrons. However. in
these calculations the effects of the proper fields were not taken into
ascount. More detailed investigations to examine the results of the
Dirac theory had been vrevented by Doppler effects and the collisions
of atoms which broaden the spectrum lines (ef. Ch. XVI). However,
the fact that there is a few 9/, difference between the theoretical and
experimental results had been noticed by many investigators. In
particular, PAsTERN1CE [1938] pointed out that the 2§ level of
the hydrogen atom is larger than the theoretical result by about
0.03 cm—1.

Using the 3 cm microwave techniques, LamMs and RETHERFORD
[1947] succeeded in measuring the precise value of the 225, ,-level of
the hydrogen atom by means of the following method: The hydrogen
is excited from the ground-state to the 228, ,-state by electron bom-
bardment. The 228, ,-state, which is metastable (lifetime 0.15 sec.),
can be quickly changed into the 22P,,-state by means of electro-
magnetic microwave radiation (wave length about 3 cm), and the
22P, ,-state decays quickly (lifetime 1.6 x 10~® gec.) into the 18-state.
The precise value of the wave length corresponding to the energy
differente between the 22P,- and 228,,-states can be measured on
account of the resonance effect.

The results indicated that, contrary to the Dirac theory but in
essential agreement with Pasternack’s expectation, the 22§, ,-state
is higher than the 22P,, by about 160C Me/sec. (i.e. about 0.033 cm—1).
This level shift is called the Lamb shift.

Thus, a calculation disregarding the effects of the proper field fails
even in quantum electrodynamics. Previously, many authors attempted
to explain the deviation of the energy level of the atomic electron from
the result of the Dirac theory by modifying the Coulomb potential
near the proton. (KeMBLE and PrRESENT [1933], PASTERNACK {1938],
FrorLicH, HEITLER and Kaaw [1939]). On the other hand, Urnring
[1935] calculated the contribution of the electron proper field alone
(i.e. the vacuum polarizétion effect) induced by the electromagnetic
field due to the proton, to the energy level of the electron in the
hydrogen atom. This idea could not succeed on account of the incorrect
sign of its result.
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§ 7. Development of the Renormalisation Theory

In 1947, BETHE gave a clear discussion of the Lamb shift in terms
of the effects of the electromagnetic proper field. The contribution of
the proper field to the electron mass must be included in the observed
value of the electron mass, although this contribution is infinite.
Therefore, we can expect that the Lamb shift can be calculated as
the difference between the contributions of the proper field to the
electron energy in the free state and in the Coulomb field of the
proton. It may be possible that, although the contributions of the
proper field are infinite, the above difference is finite. According to
this idea, Bethe succeeded in obtaining a level shift which is about
the same as the experimental result. However, since there was no
consistent formulation suitable for this idea, he used a non-relativistic
calculation and a technical management of the infinity.

Thus, we have the question of whether the infinity appearing in
the contribution of the electromagnetic proper field of the electron
camr be included in the electron mass independently of the state of
the electron.

The electromagnetic radiative reactions involved in various electron
phenomena have been calculated by many authors. In 1939, Daxcorr
stimulated by the Bloch~Nordsieck and Pauli-Fierz results (discussed
in the last paragraph) calculated the cross-section of the electron
scattering by an external field by taking into account the effects of
the proper field. However, his calculations contained some mistakes;
these were corrected by Iro, KoBa and Tomowaca [1947], [1948].
After the Bethe theory, many authors made a calculation of the
scattering problem. (ITo, KoBa and Tomoxaca [1948], LEwis [1948],
ErsTEIN [1948], Umszawa, Yurawa and Yamapa [1948]). These
investigations show that the infinity due to the electromagnetic
proper field can be included completely in the observed value of the
electron mass independently of the state of the electron and, moreover,
the infinity due to the vacuum polarization effects can be included
in the observed value of the charge at least in the 4th order approxi-
mation of the perturbation calculation. Thus we obtain a quantum
electrodynamics, in which the proper fields give finite effects, by
“renormalising” the observed values of the mass and charge to include
their effects. Such a renormalisation theory was fast given a covariant
formulation by the super-many-time theory, which was presented by
Tomonaea [1943]. This covariant renormalisation theory gave the
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Lamb shift, showing excellent agreement with the experimental
result. (ScEwiNgER [1948], Furupa, Mrvamoro and ToMONAGA
[1949]) (cf. Example 2 of Ch. XIV). Tomonaga, Koba and Ito attacked
this problem in connection with the discussion of the effectiveness of
the C-meson theory in this problem.

In the last paragraph we discussed the anomalous magnetic moment
of the electron given by the electromagnetic proper field. In 1947 the
Columbia group (Nare, NELsoN and Rasr [1947]) investigated the
fine structure of the ground states of electrons in hydrogen, deuterium,
sodium and potassium atoms, to find the anomalous magnetic moment
of the electron, which is about 0.1 ¢/, of the proper magnetic moment.
This experimental result agrees with the magnetic moment given by
the renormalisation theory (cf. Example 2 of Ch. XIV).

These successes of the renormalisation theory seem to show that
the electromagnetic proper fields have real effects which cannot be
disregarded. It is easily seen from the Bloch-Nordsieck theory,
discussed in the last paragraph, that there is no infra-red catastrophe
in the renormalisation theory of quantum electrodynamics on account
of the effects of low energy photons in the proper field. Tomonaga
pointed out that the renormalisation theory can be regarded as the
continuation of the Bloch~Nordsieck and Pauli-Fierz investigations.

The super-many-time theory is the completely covariant reformula-
tion of the quantum field theory, and was obtained by extending the
Jordan and Pauli covariant theory [1928] of free fields and the
Dirac many-time theory [1932a, b]. Its physical content is equivalent
to the Heisenberg and Pauli quantum field theory. However, the
covariance has not been shown explicitly in spite of its covariant
content. It is obviously important to make theories consistent, from
the beginning, with such fundamental principles as those of special
relativity. In fact, we can remember the important part played by
the canonical formulation of classical mechanics in the discovery of
the quantum mechanics.

A similar formulation was developed also by ScEwINGER [1948],
and by FEvNMAN [1949] starting from a different standpoint. This
covariant quantum field theory has been applied not only to the
problems of quantum electrodynamics, but also to most problems of
elementary particles in connection with the renormalisation method.
This has led to remarkable progress in the theory of elementary
particles.
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In 1949, Dysox proved that the perturbation calculations of the
renormalisation theory in quantum electrodynamics have no infinities
in any order of approximation.

In 1948, WrLTON showed that the Lamb shift calculated by the
renormalisation theory may be obtained by using an intuitive image
of an electron moving in its proper field (cf. Example 1 of Ch. XIV),
and a caloulation of the anomalous magnetic moment of the electron
was given by Kosa [1949] by improving Welton’s method. Thus the
problem of the applicability of the quantum field theory has changed
into that of the renormalisation theory. Furthermore, we can show
theoretically that the present renormalisation procedure can give a
closed theory for interactions of the lst kind, but not for those of
the 2nd kind (cf. Ch. XV). Thus, we see that the Heisenberg—Oppen-
heimer applicability condition is just the one for the renormalisation
theory (SakaTa, UmezaAwa and KamerucHr [1952]).

Then, we have an important question: do all interactions realized
in nature belong to the 1st kind or not? If there exist interactions of
the 2nd kind in nature, it would be difficult to understand the successes
of quantum electrodynamics because the electron and electromagnetic
fields . interact also with other fields having interactions of the 2nd
kind in the higher order terms of the perturbation approximation
according to the present quantum field theory. For example, the
p-interactions seem to belong to the interactions of the 2nd kind 1).

Many attempts have been made to investigate the properties of
the mesonic proper field. They have shown that the meson-nucleon
interaction is much stronger than the electromagnetic one and have
sometimes suggested the existence of an excited state of nucleons.
Thus, since the perturbation procedure cannot be applied, many
attempts have been made in meson theory since 1951 without using
any approximation. One of the most important results of these
investigations is the determination of the spin of the s-meson’ (cf.
Example 6, Ch. X). Observations on the high energy nucleon-
nucleon scattering has also suggested various possible features of the
meson field. In particular, they have suggested the existence of a
strong repulsive force with a short range (1/3 of that of the nuclear
force). Although it is not yet clear whether this repulsive force comes
from the heavy particles discovered recently, or from the higher

1) See Tanxawa [1053], UMezawa [1952], Tanaxa and ITo [1953] on the
wbtempts to explain the f-interactions only by using interactions of the ist kind.
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order radiative corrections of the meson field, it may be intimately
connected with the structure of nucleons.

The renormalisation theory discussed above was formulated in
terms of perturbation expansions. Thus even in cases of interactions
of the first kind there remain many problems, e.g. we must examine
the convergence of the perturbation series and find a formulation of
renormalisation theory without being based on perturbation expan-
sions (¢f. Ch. XIV). A simple model of interacting fields which is
renormalisable and which may be solved completely was presented by
Lrr [1954]. The application of the renormalisation method to this
model leads to a new difficulty which will be discussed in Ch. XVIIL.
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Note added in proof

Since this chapter was written, great progresses have been made in problems
of the renormalisation theory and of the meson-nutleon phenomena. They wilt
be discussed in Note added in proof in Ch.XVIII, which can be read as the
continuation of the historical discussions in the present chapter,



CHAPTER II
RELATIVISTIC WAVE EQUATION

§ 1. Relativistic Wave Equation

In the preceding Chapter we have enumerated the various particles
whose existence has been demonstrated experimentally and which,
provisionally, we shall assume to be elementary. Because interactions
give rise to transmutation processes, the number of these particles
will not remain constant in time. For this reason it is necessary that
the state of a system of partidles at a particular time is defined by
the specification of the observables—e.g. energy, momentum, number
of particles—whose values are determined by observations made
throughout space. Such a definition may be compared with that of
an electromagnetic field at a particular time by the specification of
the values of the electromagnetic field strength throughout space.

These considerations lead to the eoncept of a field state—one whose
definition at a particular time depends on the values of certain
quantities at all points of space. We shall assume that the state of
elementary particles is a field state and shall denote the various field
components by Q.(x) with «=1, 2, ete. .... For example, the electro-
magnetic field will be described by the four components 4,(x) of the
vector potential (u=1, 2, 3, 4).

A quantum field theory is obtained from a classical field theory
by means of the customary quantisation procedure. Thus the c¢-
numbers which represent the classical field components in the classical
field equations (e.g. the Maxwell equation of the electrodynamics)
are replaced by g-numbers. This substitution would seem to be
justified by the correspondence principle. Nevertheless, it cannot
yield quantum field equations associated with particles—electrons,
for example, —for which no classical field theory exists.

In such a case we adopt following procedure. When the number of
partieles is constant, the quantum state of a particle is deseribed by
a wave function which satisfies a wave equation. In the quantum
field theory, which admits of the creation and annihilation of particles,
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it is postulated that the wave functions are certain g-numbers Qa(x)
and that the wave equations are those which the @u(x) satisfy.

Briefly, this postulate is necessary in order that the results of the
quantum field theory should agree with those of the quantum
mechanics of particles when the effects of creation and annihilation
may be disregarded.

In addition, the field equations must fulfill the requirements of
the principle of special relativity, which we must needs regard as a
general principle of nature. Wave equations of such kind are called

relativistic wave equations.

§ 2. The Free Field

Because the time and space derivatives do not appear in a sym-
metrical way, the wave equation of the customary non-relativistic
quantum mechanics are not of Lorentz invariant form. Indeed such
equations which describe free particles are derived from the mnon-
relativistic equation Kg=(1/2x)&.k; which refers to the energy X, and
the momentum k; (i=1, 2, 83). These quantities are interpreted as
the operators

ky = —$3;.

It is well known that the fundamental relation (2.1) embodies the
connection between the wave and particle aspect of a field in that,
by its means, the energy and momentum of a particle are related to
the frequency and wave number of a wave. It would seem that the
use of (2.1) in the derivation of relativistic wave equations is justified.
Now the relativistic relation between energy K, and mementum £%; is

K§ =k, + 2 (2.2)
Accordingly, making use of (2.1), the wave equation
(O—2?) @a(x)=0 (2.32)

is obtained. This is known as the Klein—Gordon equation.

For this reason we assume that field quantities of any quantum
field theory must satisfy the following condition—K.G. Coudition.
The field quantities @u(x) corresponding to free elementary partictes mest
satisfy equation (2.3a¢). A familiar illustration is provided by the
components Au(x) of the eleotromagnetic field. It must be remarked
that if the field components @.(z) correspond to a set of particles with
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various masses (%, ..., %,), their equation (2.3a) must be replaced by

n

H (0 — #2) Qu(z) = 0. (2.3b)
However, we shall not often be concerned with this generalisation.

A difference between (2.3a) and the non-relativistic wave equation
is that (2.3a) contains the second power of the time-derivative
operator. It is well known that any differential equation can be
transformed into a system of first order equations by increasing the
number of variables. The latter set of variables has an important
physical meaning. Indeed, the fact that the non-relativistic wave
equation is linear in the time derivation operator, is essential for
quantum mechanics in the canonical formalism, in which the canonical
invariance of the theory ensures the conservation of probability. In
order to preserve the latter conservation law, we adopt the canonical
formalism in the quantum field theory. Then, the wave equations
must lead to a set of canonical equations (see (7.27)), which are of
first order differential equations. Thus, the canonical theory of
quantum fields are based on field guantities, satisfying first order
differential equations. As shown in Ch. IX, the canonical theory can
always be applied to the quantisation of fields, when they satisfy
the K.G. condition.

A well known example of field equations being first order in the
derivatives, is found in electromagnetism. The Maxwell equations
are a system of first order differential equations for the four com-
ponents of the vector potential 4, and the six components of the
field strength F, =23,4,—3.4, which satisfy (2.3a). We give another
example in a case of a scalar field U satisfying (2.3a). We can convert
equation

(O—#*)U(x)=0 (2.4)

into the system of first order differential equations
Ufz) =2, U(x) )
3, Uylx) = x2 U(x) §

by introducing five components (U, Uy).
In general, the relativistic wave equation for wave functions
@a (=1, ..., n} hasg the form:

Aap(d) Qpl)=0. (2.6)

(2.8)
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K.G. condition limits this wave equation because it requires the
existence of a derivation operator d.s(d) which satisfies the relation

]
dap(d) Apo(d)= (0 —2*)0me (2.7)
and is a function of the d.'s:
d) = [Aup(d)] = x40, Dt oee F 0 1y Vpsy woe Dyt (2.8)

The coefficients x, xy, ... are matrices of dimension ». We denote the
highest order of the derivation operators in (2.8) by b&.

Opy . =0 for I>b. (2.9)

The relativistic wave equation, as a set of first order differential
equations, can be written in the form

(@udu+ #P) Q(2) =0, (2.10)
where g, and § are certain matrices of » dimension and ¢ is the one
column matrix [@«(z)]. By substituting (2.8) with

AR) = [Aupd)] =0du + 5
into (2.7), we have
xnoeff = —n2l, (2.11)

Here, I is the identity matrix of dimension n. The relation (2.11)
shows that § cannot be singular and therefore its inverse matrix g1
must exist. By multiplying (2.10) by 5~! we have

(Bwdp+x) Q(x)=0, (212)
where
Bu = B "eu. (2.13)

Since, inversely, we can derive (2.10) from (2.12), we see that (2.10)
and (2.12) give an equivalent theory. Therefore, we can always write
the relativistic wave equation in the form of (2.12) without any loss
of gemerality under K.G. condition.

When d(3) is a first order differential operator:

A(d) = o+ oudp (2.14)
(ie. b=1 in (2.9)), (2.7) with A = —(B.2,+#) leads to
— (o4 06udp) (Bpdp+x)= (0 —2*)1.



om. o, §2] FREE FIELD 33

From this we obtain
o= x2T
s+ xfu=0 (2.18)

%uPe+ crfly = —~ 20
which leads to
aQ) = "(ﬂ#a#“”) (2.162)

,B;zﬁv - ﬂvﬁp = 26‘¢y. (2.16b)

As is shown in Ch. V, the number b appearing in (2.9) is equal to 2f
where f is the maximum value of the spin of fields described by @a.
In the case of (2.14), b=1 and therefore the spin of the field Q. is }.
Thus, (2.12) is the equation of the field with spin %, when g, satisfies
the relation (2.16b). By means of a similar consideration, we shall
derive, in Ch. V, the field equations of the general spin.



CHAPTER III
THE DIRAC EQUATION

§ 1. The Equation
In this Chapter we shall explore the consequences of the wave
equation appropriate to particles of spin }. This equation may be
written in the form 1)
Yp2u+2)yp=0, (3.1)

where x is the mass of the particle and the quantities y: satisfy th
commutation relationships

ViV +VsVu=204 (3.2)

on account of (2.16a, b).
It follows from (3.1} and (3.2) that

(O —»¥p=0. (3.3)

Accordingly, it is clear that the K.G. condition of the previous Chapter
is fulfilled by the theory based on the Dirac equation.

It is a consequence of (3.2) that any algebraic function X of the
quantities p, may be rewritten as a linear form

X =cip4, (3.4)
The quantities y4 are defined as
I,
Y1 Voo V32 Voo
y4=C{1Ys¥s 1¥s¥1 V1V 1V1Ve TV2Ve 1V3Vs (3.5)

TY1Ye Y8 1P1V2Ve EVaV1Ve tVaVs Ve
Vs ="V1V27aVs-

The sequence of 16 quantities in this array is taken to be that of the
y4 as A runs from 1 to 16. The occurrence of the imaginary factor 2
ensures that all the y4 satisfy the relation

(A2 =1. (3.6)

1) See Drmac [1928]. The original form of the equation was that of (3.45a).
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The quantities y4, which are so far unspecified in kind, can be
represented by matrices. The traces. or spurs, of the representative
matrices, are important, and may be calculated by means of the
general matrix relation

Sp(x- ) =Sp(8- ). (3.7)

For example, the spin of the matrix representing y; is zero, because

Sp(y:) = Sp(Myeye) = —Sp(veyiys)
= —Sp(y;) =0.

In general,
Sp(y*) =0 if pt =l

3.8
and Sp(p49®) =0 if A =B (3.8)

Tt can also be shown that the spur of the product of any odd number
of matrices representing y, is zero — a useful property in practice.

We shall now show that the matrices representing the quantities
y4 are linearly independent of each other in the sense that there
cannot be a non-trivial relation of the form

ciyt=0. (3.9)
For such a relation implies that

ScAyiyP +cB=0 for all B.

A+=B

On taking the spurs of these matrices and using (3.8), it follows that
F=0 (B=1, ..., 16). (3.10)

This means that the y4 are linearly independent of each other. They
are also a complete set in that any algebraic function of 44 can be
expressed in the form (3.4).

All the representations of the y“ by matrices that are irreducible
are also equivalent to each other. For if a matrix X commutes with
the representation of all the y4, then (3.4) can be used to show that
X is a multiple of the unit matrix 7 with a c-number, or of the form

X=cl. (3.11)

Since the number of independent quantities ¢4 is sixteen, this repre-
sentation must be in terms of four-dimensional matrices. In these
terms, @ is represented by a four-dimensional column matrix.
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The complex conjugate of a c-number and the hermitian conjugate
of a g-number will both be indicated by an asterisk. For example,
the hermitian conjugate of a matrix 4 = [a,] is denoted by
A*=[a},], where aj, is the complex conjugate of ag,.

Different representations of the y,, say y, and y, are related to
each other by transformation by non-singular matrices. Thus

v, =818, (3.12)

where S is some non-singular matrix. At least one of these repre-
sentations consists of hermitian matrices. For the quantities y, and
—y, form a finite group of order 32, which can be represented by
unitary matrices. But such a representation, say y,, is also hermitian.
For

yii=1 and yy.¥=1 (no summation)

and therefore
7ﬂ=yu*‘
Different hermitian representations are obtained by transformation

with unitary matrices.

If y, is a set of matrices satisfying (3.2), the sets y; and y (where
% denotes the transposed matrix of y,) also satisfy (3.2). Therefore
there must be matrices A and B such that

=My, 41, (3.13)
vi=DBy, B (3.14)
In the following discussion we shall assume, unless otherwise

stated, that the y, are represented by a definite set of hermitian
matrices, so that, in (3.13), A=1. Moreover, B can be chosen to be

unitary or

B*=B-1, (3.15)
We shall now prove the important property (Pavrr [1936]),
BT = —B. (3.18)

Equation (3.14) is transposed to read
Y= (BT YE(BT).
Substituting (3.14) and using (3.11), it follows that
BT=¢B. 1)
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Substituting the value of B given by the transposed equation of (i)
we conclude that c2=1 and, therefore, that

e=+1. (ii)

Now we can exclude the value c=1. For this would imply the
existence of no less than ten independent matrices that change sign
on being transposed (namely, the products of B with the elements of
the third and fourth lines of (3.8) — ©Bygys, ..., 1.Bysys; 1 ByPaya,
..., 1 Bygysy,). In other words, there would be ten linearly independent
elements that are anti-symmetric about the principal diagonals. This
cannot be, for it is known that the number of anti-symmetric linearly
independent quantities in four-dimensional space is six — an anti-
symmetric tensor in four-dimensional space has six compcnents.

On the other hand, the value of ¢ = —1 is acceptable in that it
implies.that there are but six anti-symmetrical matrices — B, By,
By,, Bys, By, and By;. Because there is nothing in the preceding
argument that depends on the special assumption that the y, are
hermitian, we can conclude that the result (3.16) is of general validity.

§ 2. The y-Matrices Under Lorentz Transformation
We turn to a consideration of the Lorentz invariance of (3.1).
We shall assume that two sets of coordinate , and 'z, are con-
nected by a Lorentz transformation
,x[.l = &, Ty, (3. 17&)
with

a.‘,,a‘,= 6“1. (3.176)

Further, we shall assume that y is transformed linearly according to
"p= Ay, (3.18)

where /A is a four-dimensional matrix. Substituting (3.18) into (3.1),
the necessary and sufficient condition for the Lorentz invariance of
(3.1) is found to be

Ay, A=a,y,. (3.19)

(A more detailed discussion of such points is given in Ch. IV). Nothing
prevents the assumption that A is normalised so that

|det A]=1. (3.20)
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An infinitesimal Lorentz transformation is expressed by

Q= 0, + 10, (3-21a)
with

010, = — dw,,. (3.21d)
(The second equation is a consequence of the orthogonality relations
(3.17b) and the infinitesimal character of the éw,). Now, with the

neglect of powers of éw,,, A can be expanded in the form

A=118, dw,, (3.22a)
where
‘Syv = “Sv,u' (3.22b)

Further properties of the matrix S, can be discovered by substituting
(8.22a4) and (3.21a) into (8.19) to obtain

[7/1: ‘S).v} = bl,uyr - 5:*;4}’1‘ (323)
Taking account of (3.2), S, can be written as
S,,»=:1£(Vy7»"%}’y)~ (3'24)

¥rom the facts that dw, are imaginary and 6w, real (k,: = 4), it
follows that
A*=n A"1y,. (3.25)

These results indicate that any quantity that commutes with all
the y, can be added to S, without affecting the validity of (3.23).
According to (3.11), such a quantity must have the form 4,71, and
must lead to the addition of a term 4= (1/2)4,06w,I in the
expression (3.22a) for 4. Because the (a,,, a,,) are imaginary and the
{23, a3;) are real, (3.19) and its hermitian conjugate relations

AFpp A*F = agy; — gy,
Ay A¥ = — gy, 4 Qyyy,

require that A*= +y,4-1y,. But the negative sign would contradict
(3.25), and must therefore be excluded. It follows that 4 is imaginary
and, from (3.18), that the imaginary infinitesimal quantity in A has
no other effect than a change of the phase of . But since this phase
can be arbitrarily assigned, we can always make 4 =0 (and so 4,,=0).
Therefore §,, can be given the form (3.24).

The class of infinitesimal transformations described above does
not include those that have the properties of reflections in the time
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and space coordinates. A discussion of such transformations is given
in §9 — it can be verified, however, that (3.19) is satisfied by the
following forms of

A=1y, for 'w,= —z;, 'z,=xz,, (3.26)
A=yyygy, for 'z,=z,, ‘z;= —2z, (3.27)
A=ty; for 'r,= —z,. (3.28)

The replacement of 4y, by y, in (3.26), and of yyyv; by Ty, In
(3.27) is also consistent with (38.19).

It is convenient to collect together certain special properties of A
in the statement:—
s +7v; for infinitesimal Lorentz transformation )

-1 —
A7ys4 { —v;s for space or time reflection ((3.26), (3.27)).

(3.29)

It will be shown in Ch. IV that any Lorentz transformation can
be regarded as a continued product of infinitesimal transformations
of the form (3.21a) together with the reflections (3.26), (3.27) and
(3.28). If there are two Lorentz transformations z — 'z and 'z — "z
defined by

Tu=a,, X,
"2, =b,'z,,
and if A° and A® correspond to a, and b,, then (A4°A4°%) corresponds
to the repeated transformation b,4a,,. For
bpv Ay Y2 = (Aa)-—l b;n Yy (Aa) = (AbAa)-—l Yu (AbAa)’
which shows that (3.19) is satisfied by these quantities. Further, (3.20)

is satisfied by virtue of the rules for the multiplication of determinants.
Now the repeated transformation entails that

v "p= Ay (3.30)
with
A=A40, (3.31)
§ 3. The Wave Function under Lorentz Transformation. Charge
Conjugation
Introducing a row matrix ¥ by the definition
P=y*y, (3.32)
it is found that ¢ satisfies the equation

0 pyu—xp=0. (3.33)
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It is not a difficult matter to discover the properties of ¢ under
Lorentz transformations of the form (8.17a). In the first place, there

is the transformation

"P=Pr. A%y, (3.34)

Moreover, from (3.25), (3.26) and (3.27) it; follows that

‘p=4pA-1 for an infinitesimal transformation (3.22«)
or the space reflection, (3.35)
"p= —pA" for the time reflection.

Therefore @y changes sign under the time reflection. However, it will
be shown in Ch. VIIT that a8 far as quantum field theories are con-
cerned, it is permissible t¢ regara Py as a scalar under time reflection
by making a simultaneous transformation of the field state vector.

We shall apply similar considerations to the quantities 4y and
pysdy where 4 is some matrix. By (3.29), these quantities become
—PA 1A Ay and Py A—24 Ay respectively under the time reflection,
and PA14Ay and —PysA—1AAy respectively under the space-
reflection. In particular, under the time reflection ¢y changes sign,
while Py;p remains unchanged; under space reflection ¥y and Pyp
are scalar and pseudoscalar respectively !). On the other hand, in
quantum field theory Pysp changes sign under time-reflection while

Py does not,
We now introduce a matrix C in terms of the matrix B of (8.14) by
C=y B, (3.36)
It follows that
yE=~CY,C (3.37)
and that
= —C. (3.38)

1) A quantity, say o, which is invariant under any infinitesimal Lorentz
transformation is either a scalar or a pseudoscalar; the two categories are
distinguished from each other by their properties under space-reflection. Thus

if > @, ais a scalar,
@ > —a, a i8 a pseudoscalar.
Bimilarly, if quantities a, transform vectorially under infinitesimal Lorentz
transformations, they constitute either a vector or a pssudovector; indeed, for
the space-reflection,
if ap + — a3, 0, > @,, a, is a vector,

{

G ~> O G — 0, a, 088 pesudovector.
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Since B is unitary (when the p, are hermitian), then
O*C'=1. (3.39)

The matrix C has an important physical significance which can be
demonstrated by using (3.37). Let 3'(z) and ¢'(z) be defined by thé
transformations

¥'(2) =09 (), 7' (2) =(C (). (3-40)

It is apparent that ¢’ satisfies the wave equation (3.1) and that ¢
satisfies the wave equation (8.33). However, it will be shown later
that in the presence of an electromagnetic field, v and ¢’ satisfy the
wave-equation of particles of charge e¢ and —e respectively. For
example, when y represents the negaton of mass x and charge —e,
v’ represents the positon of mass x and charge +e. For this reason
the equation (3.40) is called the charge conjugation transformation.

If  and ¢’ are assumed to have the same properties under Lorentz
transformation then, by means of (3.34), the condition for the invari-
ance of (3.40) is found to be

CAT*C =y, Ay, (3.41)

But we have already remarked that it would have been possible to
take A=y, and iyy,y; in (3.26) and (3.27) respectively; it is now
evident that such a choice would be inconsistent with (3.41). In
other words, if ¢ and y' are to behave similarly under Lorentz trans-
formation, A must be chosen in the way indicated in (3.26) and
(8.27) (see Racam [1937]).

We can now derive an important property of the quantities y4
(Paurx [1936]). If X is an arbitrary four-dimensional matrix, then

(ef. (3.4))
X =cAy4 (8.42)
where ¢4 (4=1, ...,16) are ordinary c¢-numbers. From (3.6) and
(3.8) it follows that

Sp (Xy®)=4c® (B=1, ..., 16). (3.43)
This leads to

Xop =1 X vigvas-

If the matrix elements of X are such that X,, # 0 and all others

vanigh, then
Sue O30 = 3 75 Vi (3.44a)
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Then, if F and G are two arbitrary four-cimensional matrices,

F oG =F, 8, 85 Ggp

=175 (Fv* Q)ape

An example of the application of (3.44b) is provided by Example 8,
Ch. VII.

(3.44b)

§ 4. The Wave-Function of a Free Electron

It is now convenient to write the wave-equation (3.1) in the form

(2dg+ o2+ i) =0, (3.45a)
with
%=1 Ys% (3.45)
B =y,

If the y, are hermitian, so are the matrices o and B.
Let y have the form of a plane wave, or

w=ue %, (3.46)
where %, are the components of a four vector. Substituting in (3.45a),
it follows that

kou—_— (“iki + xﬁ)u. (3.450)
This indicates that the energy %, is the eigenvalue of the hermitian

operator H=(1/)x,3-- %8, where H is the Hamiltonian of a free
particle. It follows from (8.3) that k%=4ik%,+»2, so that

K,
ko= ) — K, (3.47)
where
Ko == ]/ k‘ k{ + %2 . (3.48)

We now define spin matrices o, by

Oy = —1IYgys = — 100y, ?
Oy = —iygy = —iongm, S (3.49)
Oy = —iyryy = —i040y
If e is a unit vector parallel to the vector with components k,, k,
and k,, it is easily shown that (o-e) commutes with H, or that

[H, (c-e)]=0. {8.50)
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Moreover
(o-e)>=(e-e)=1. (3.51)
Therefore (o-e) has eigenvalues + 1.
The eigenvectors of H (each compouent of an eigenvector is a
function) can be clussified in terms of the values of %, and (o-e).
Thus we have four eigenvectors ul, etc., such that

ul: k=K, (c-e)ul=ul

w2 kozKo, (a-e) u2= —uZ
w3 ky=—K,, (c-e) ud=1u? S (3.52)
ut: ky= —K,, (o-e)ut= —ut

The components of %!, etc. will be indicated by Greek suffixes, e.g.,
u;. Since the eigenvectors ° are normalised and are orthogonal to
each other, it follows that

* —
’ll% ’ll:g— 690‘:2

- (3.53)
ug uﬁ = 6aﬁ' S

The second of these conditions is a consequence of the fact that the
matrix [4¢] (x and p d=signate row and column respeciively) is unitary.
Tt will be remarked that negative values of the energy are possible,
and that the absolute difference between associated positive and
negative values of the emergy is at least 2.

The physical significance of ¢, ean be understood by deriving the
relation

[(rad+ga H|=0, (3.54)

where © is the three-dimensional vector 2,3, 3;. Since H is the
Hamiltonian of the particle, it follows that the total angular momen-
tum, (1/i)ra 8+4(1/2)a is a constant of the motion. Spin angular
momentum (1/2)s is an intrinsic property in the sense that it is not
zero even when the particle is at rest. Moreover, equation (3.54)
remains valid for a particle that is not free, but subject to central
forces — (a more general discussion of angular momentum in quantum
field theory appears in Example 1 in Ch. VIT and Example 5 in
Ch. IX).

It is apparent from (8.52) that for a particle described by the Dirac
equation (3.1) the energy can be + K, and the component of the spin
angular momentum in the direction of the vector e can be + i.
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That the quantity (1/2)c has the properties of angular momentum
can, indeed, be shown by other means. From (3.49) and (3.2) it
follows that

[30,, }61=t}0, (k, 1, m=cycl. (1,2, 3)). (3.55)

This is just the relation that is typical of angular momentum (see
D1rac, Principles of Quantum Mechanics). From (3.55) it follows that
(1/2)0; has eigenvalues of + } corresponding to the two orientations
of spin angular momentum. The result (3.51) is a particular instance
of this in which the component of o in the direction of the vector e
is taken.

It is clear from (3.52) that the function g refers to electrons of
positive energy when g is 1 or 2 and to electrons of negative energy
when g is 3 or 4. For many practical purposes it is necessary to select
the projection vector on the vector-manifold referring to electrons
whose energy has a particular sign. This may be accomplished by
means of the operators

1
For it follows from (3.45¢) and (3.47) that
for p=1,2
A ue =t Tore=1 3.57
#(k) {0 for p=3,4 ( )
Ague =30 fore=1L2 % (3.58)

{ue for o=3,4.

In other words, 4, and A_ are projection operators which act on
state vectors u to yield the components of positive and negative
energy respectively.

These projection operators have the further useful property that
they may be used to calculate the expectation values of a matrix,
say A, in states of positive or negative energy. This can be accom-
plished without using the actual form of the function «! and 42 (or
u3 and «%). For

z”‘u”A ul = ut* A A, ut=S8p(4.A4,). (3.59)
e=1.
The last quantity may be calculated easily by using the fact (3.4)
that 44, can be written as a linear combination of 4.
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The velocity of a free particle may be calculated as

L x=ix H-a (3.60)
Since «; has eigenvalues + 1, it would seem that the speed of the
particle is always equal to that of light. This result, however, has no
direct interpretation in that we are, in the real world, concerned with
the average over a short time of the velocity of a particle whose
energy is positive. This value is different from the velocity of light, for

k

- % (3.61)

S e - Sple, .00
0=1,2

Indeed, it is apparent that the classical relation between velocity

and momentum is still valid.

§ 5. Foldy-Wouthuysen-Tani Transformation

It may be convenient to illustrate the preceding paragraph by an
example of the methods by which practical calculations are made.
For this purpose we shall describe the Foldy-Wouthuysen~Tani
transformation, (Forpy and WourHaUYsEN [1950]; Tawz [1951])
which provides a convenient method of caleculating the effect of
Dirac opegators on states of definite energy.

The transformation is defined by

. vy —> ¢=C8yp
with
S___ﬂ(a'k)'*'ﬂ(xo'*‘“) S-1— (“‘k)'*'ﬁ(Ko'*"‘)‘B
{2K,(Ky+ =) /2 {2K(Ky+x) /2 7°

The Hamiltonian of a free particle may be transformed according to
H' = 8HS-1=8((a- k) +=£)81= Kp.

It is convenient to choose the representation in which g is diagonal
and of the form

1 0 0 0

0 1 0 0
‘ﬁ—o 0-1 of

0 0 0-1

It is then clear that one pair of functions (¢,, ¢,) refers to positive
values of the energy, and another (g, @,) to negative values.
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The transformation S8 transforms a matrix 4 according to
A’ =848-1,

If the matrix 4’ has elements which connect only states with energies
of the same (different) sign it is called even (odd). It is easy to show
that g and o, are even and that oy is odd.

Table I collects together the expression for certain operators after
transformation to the ¢ representation.

TABLE I

, .1 if(a-K)k—[cAKk]k
x—>x=x——zmﬂa+ KK, A F
k—>k=k

H>H =K,

r_ _£ — (d-k)k
a=>a _a+Koﬂ Ko{ Ko+ %)
re L e (a
B~ =5 (xf—(@-K)

c — c’=c+—é;ﬂ[a/\k}—[-zl-;ﬁ%i}§gj]-.

We shall use the transformation to calculate a value for the operator
Ba referring to nucleon states of positive energy only. This operator
is sometimes assumed to be a factor in that part of the Hamiltonian,
which represents the interaction for the f-decay, and to express the
effect of transition between nucleon states. Transformation S leads to

1
T IR, (K, +x) [—{(Ko+2x)2+Ek} af+2k2af

+ 2k f(e-K) + 20(K,+) [k A o]].

Spa §-1

Since states of negative energy are irrelevant, odd matrices may be
omitted from this expression. If terms of order two or more in (k/x)
are neglected (x is the nucleon mass), there results the expression

Ba— Spa St ~ Lk o]

In this matter of f-decay, k in this equation is interpreted as the
average momentum of a nucleon (Amrons and FrinBERG [1952]).

It is of interest that if y is a function with properties akin to those
of a delta-function, ¢ is written as an integral over a region whose
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dimension is of the order of the Compton wavelength (1/x). This is a
consequence of the appearance of the space derivation operator k in 8.

This method has been extended to deal successfully with particles
in external fields (FoLpy and WovuTHUYSEN [1950]).

§ 6. Charged Particles in an Electromagnetic Field. Hole Theory

The form of the wave equation of a charged particle in an electro-
magnetic field (of potential 4,) is determined by the requirements
of gauge invariance. A detailed discussion is given in Ch. VII, and
leads to the equation

{(yu 2—ieA, (x))+x}p(x)=0. (3.62a)
The charge conjugation transformation of (3.40) transforms this to
{(vu 2+ ied, (x)) + 2}y (x)=0. (3.62b)

It is now apparent that ¢’ and v, related to each other hy the charge
conjugation transformation, refer to particles of opposite charge.
Further, when v is a state of positive energy, v’ is a state of negative
energy. Indeed, if ¢ is a state of positive energy, v =4 (Kk)yp; trans-
forming this by charge conjugation and using (3.36) and (3.14) there
is obtained the result

A (=K = A (~K)ysp, A, (K) B p*=A, (—k)A_(—K)ysy, B ly*=0.

In other words, the charge conjugation provides a correspondence
between states of negative energy of particles with charge —e and
states of positive energy of particles with charge +¢ (and the same
mass).

The existence of states of negative energy results in a considerable
physical difficulty, which may be illustrated by the so-called Klein
Paradox (Kreix [19297]).

A
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In the real world electrons always have positive energy, and such
states must be stable, However, a simple argument can lead to a
contradictory result. The electrostatic potential ¢y(z) of Fig. 3.1 is
such that this potential energy edy(x) has the properties

B+ edy(z)>m for z<a
m>E-+edyz)>—m for a<z<b ;- (3.63)
—m>E -+ edy(x) for z>b

It is supposed that an electron of total energy £ moves in the positive
direction of x. According to classical mechanics the electron can
never be found in the region a <x<b because its momentum,
()= [(E +edy(x))2~m?]? is imaginary there. Thus, according to
classical theory, an electron initially in the region x <a can never find
itself in the region #>b. However, quantum theory does not forbid
this transition — it may occur by a process which is analogous to the
tunnel effect. Thus it would appear that an electron in a state of
positive energy need not necessarily remain in such a state inde-
finitely.

An escape from this difficulty is provided by the hole theory of
electrons (Dirac [1931]). It is postulated that a vacuum is not empty
of electrons — that in a vacuum all states of positive energy are
unoccupied and all states of negative energy, on the other hand, are
fully occupied. (According to Pauli’s exclusion principle, a state of
given momentum is fully occupied by two electrons of opposite spin).
Dirac’s theory supposes that the sea of electrons of negative energy
cannot be observed; further, it is supposed that this sea of electrons
becomes apparent only when an external source provides an amount
of energy greater than 2 m and causes an electron of negative energy
to make a transition to a state of positive energy. When this happens
the sea of electrons is characterised by the absence of an electron
from some states of negative energy, or by a “hole”, By such means
the Klein Paradox is resolved — it is not possible for an electron of
positive energy to appear in a state of negative energy because all
such states are fully occupied under normal conditions. Only when a,
hole is present can a transition to a state of negative energy take place.

A hole in this basic sea of negatively charged particles will have
the properties of a particle of positive charge and the mass of an
electron. In general this particle is called an “antiparticle”. The
transition of an electron (of negative charge) from a state of negative
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energy o one of positive energy can then be interpreted as the creation
of a pair of particles — a negaton and a positon. In fact the.prediction
of the creation of suck pairs was the most striking success of the
hole theory.

That feature of Dirac’s theory that predicts the appearance of
electrons in, and the disappearance from, an infinity of states is also
required of a quantum field theory. In such a theory, however, the
creation of a negaton—positon pair is interpreted not as the transition
of an electron from a state of negative energy to one of positive
energy, but as the creation of both a negatively charged and a
positively charged particle. Antiparticles can still be described by
wave-functions ¢’ that are related to y by charge conjugation. The
stability of electrons is ensured, given a suitable definition of the
vacuum, by the fact tlréit they are made subject to Fermi statistics —
a consequence of the commutation relationships that are applied
(see Ch. IX).

Although the hole theory resolves the Klein Paradox, it is not
itself free from similar difficulties. Thus an external electromagnetic
field can polarise the infinite number of electrons that are present in
the vacuum in such a way that some electrons appear in states of
positive energy. The current induced by such means is infinite in
intensity (cf. Example 6, Ch. XTII).

§ 7. Majorana’s Theory of Particles of Spin 1/2

The relationship between particles and antiparticles appears in an
especially simple way in Majorana’s theory (Majorawa [1937]). This
is a theory of particles of spin 1/2, but is not the most general theory

of such particles.
The four-vectors ' and y® are introduced, in terms of the charge-

conjugate pair v and y’, by the equation

pt ——V:(wﬂv)

(3.64)
P =G (v — ¥
This implies that
1 .
¥ == @7 +iy®)
V2 (3.65)

PR SO
() VE("’ 1),
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Equation (3.32) is used to introduce the vectors ¢! and ¢'® defined as

1 -
1) == qp(L)* — e {10 ’
PH =9y, ],-2(w+w) )

3.66
I NP (3.66)
Pr= BTy, = u@‘"” P').
Then (3.40) gives
A — (O~ yINT = GO Y = ( GUT — )
P = (C71 )T = g0, y Cy P, ) (3.67)

1;,(2)’ = (0-‘1 w(ﬂ))T —_ w(2)’ w(2)’ = 0@(2)1’ —_ w(2). 5

which shows that p*! and ¢ are invariant under charge conjugation.
It will be remarked that if v® =0, then y=1y’ by (3.64). This must be
interpreted to mean that the particles described by such wave-
functions are neutral particles. Majorana’s theory is concerned with
particles of this kind — ¢® is assumed to be zero.

Thus, in Majorana’s scheme, not only are the particles neutral but
there is no logical distinction between a particle and the antiparticle.
This has important consequences that may be illustrated by the
process of spontaneous neutron decay. If the neutrino, », and anti-
neutrino can be distingnished and the neutron, N, can create not the
antineutrino but neutrino;

N >Ptety
v+ N - P+e (¥'; antineutrino)

then it follows that in the double f-decay two neutrinos must be
produced
N+N-—+>N+Ptet+tv—~>P+Ptetetv+r.

On the other hand, Majorana’s theory, in which there is no distinetion
between neutrino and antineutrino, can lead to the scheme (Furry

[1939])
N+N-—>N+Ptet+y—>P+Ptete.

The neutrino emitted by one neutron may be assumed to be absorbed,
in its role of antineutrino, by the second decaying neutron. Study of
double f-decay therefore provides a means of testing the validity of
the application of Majorana’s theory to neutrinos !). Unfortunately

1) Saxara {1955] and Mappox (private discussion) independently suggested
the existence of f-interactions, in cases of which the study of double f-decay
cannot decide whether or not the neutrino is of the Majorana type.
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the available experimental results (see McCarTRY [1953], FIREMAN
and ScEWARZER [1952]) are not sufficiently accurate to be valuable
in this context.

§ 8. Spinors

Under Lorentz transformation y behaves in a rather special way,
and to take advantage of this we shall now introduce certain quantities
called spinors,

If 0, are the spin matrices (3.49), a hermitian representation of
the y, is provided by

Vo= =2 Ya=0u  @3= —V1ViVa¥a (3.68)
a=[o 7 =3 "] a=[s %] H=[F o] 389
1=[o 1] a=[i o] w=[2 7] =6 1] ©0

It is easily shown that the matrices y, of (3.68) satisfy the com-
mutation relationship (3.2). (For practical purposes it is sometimes
more convenient to choose the representation y;, = — X9, and y,=g,).
If (3.68) is substituted into (3.24)

0 .
Se=1Z Zi=3[7 .| G hi=oyd (1,23)

0
Sp=%200= § gk_ak]-

The last equations show that under infinitesimal Lorentz trans-
formation of the form (3.18) and (3.22a) the pairs of components
v; and y,, v, and y, transform according to

[]=(+5i3 wnom+ioma)["] @19

cycl

(8.71)

and
Tws] _ K] i Vs
[%] == (J + 2WZCL Owys 0y 3 dwy, a,,) ['p‘] . (3.78)
In these formulae
% Owyy0y == Swyy0y + Ouwiyy05+ Owg O,

It is apparent that the transformations (3.72) and (3.73) are uni-
modular (the determinant of the coefficients of the transformation
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is unity); this is consequently true of all transformations of the
continuous Lorentz group (i.e. all transformations that are products
of infinitesimal transformations).

Binary row or column matrices whose infinitesimal Lorentz trans-
formations are unimodular are called spinors. If the transformation
is of the form (3.73), the spinor is said to be contravariant and we shall
denote such spinors by superscripts. Thus the elements y; and y, in
(8.78) will be written ' and ® and, in general, the elements of a
contravariant spinor, . A covariant spinor is a binary row of elements
a, such that q,b" is invariant under Lorentz transformation. It follows
that the spinor transforms aeccording to

/((Zl, az) = (avl, az) (I - % zcl 6?1723 01 + '% awk‘ ak) (3.74)
cycl.

under infinitesimal transformation.

The column formed of the complex conjugates of the elements of a
covariant spinor (a row) is also a spinor, called the complex conjugate:
spinor. The transformation properties of such a column are those of
(8.72), because dw,, and dwy; in that equation are imaginary and real
respectively. In general the elements of a spinor having such properties
will be written as b,; for this reason the components ¢, and vy, of v will
be written as y; and y;. Evidently spinors with elements o' exist
such that o'b, is invariant.

It is easy to see that from a covariant spinor @, can be deduced a
contravariant spinor a® by putting

al=a, , a’=—a, (3.75a)
Similarly the spinor (a row) with elements af given by
al=a; , af = — a; (3.75b)

is such that dfa, is invariant.

Under spatial rotations, 4" and vy, transform in the same way — this
is seen by putting duwy,=0 in (3.72) and (3.73). The same equations
also show that y" and y, transform independently under continuous
Lorentz transformations,

The last property does not obtain utider spatial reflections. Indeed,
in the sénse of (3.26) a spatial reflection is characterised by the matrix

[0 I
4=if7 o] (3.76)
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This has the effect of interchanging ¢ and v, (apart from the factor 2).
Time reflection, on the other hand, is characterised by the matrix

.—I O
A= z[ . I] (3.77)
leading to the transformation
P> =iy, Yy (3.78)

In general, when dealing with transformations that contain spatial
reflections, it is not possible to regard y as divided into two spinors;
the complete vector (y, ¢,) is called an undor (BrLINraANTE [1939]).

In terms of the spinors y, and " the wave equation takes the form

— (T2, + 10, %) l:::]=x[::

(T2 — i 0y 2y) [Z:J: xl_:;:l

This may be further simplified by introducing the quantities

(3.79)

O = [O4l s

(277 = [Gk]ﬂ (3.80)
g = — i[l]u
Oy M=y [I]n‘ /

Here {0.],, and [I],, denote the (rs) components of the matrix ¢, and I.
Putting
Opp = nits By ) (3.81)

f2 - st
¥ =g, ",,
the wave equation becomes

Wy, = ixy’ g (3.82)
O Y = Y.

Since the wave equation is invariant under Lorentz transformation
and y* and y, are spinors, it is clear that d, and »* have the trans-
formation properties of spinors of the appropriate type in virtue of
each index — they are said to be spinors of the second degree. Similarly,
(3.81) is evidence that the quantities o0,.,, and ¢, transform as four-
vectors in virtue of the index x and as spinors in virtue of the indices
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# and s. Inspection of o,.;, and the other element related to this shows
that
Cuits = Ougp 2 (3.83)
O-“fs — O.’Lsf. ’
Here 0,.,; and 0, are the quantities derived from ¢, and g,,.,, according
to (3.75a, b). It can be seen from (3.81) that ¢,.,, and ¢, transform
four vectors into spinors of the second degree by contraction of the
suffix w.

§ 9. Pseudo Spiners

As shown in § 1, the Dirac functions transform in four different
ways under space reflections, namely

[ iyay (4)

, S —iysp  (B)
( vap  (C)
—vay- (D)
Transformation (4) is described in detail by (3.26). We have seen in
§ 3 that y and ¢’ have different transformation properties for the
space reflections that give (C) or (D). In other words, ' obeys (C)
or (D) when v obeys (D) or (C) respectively and 3’ obeys (4) or (B)
when yp obeys (4) or (B) respectively. Since in the Majorana theory
a linear combination of ¢ and ¢’ is used, the Lorentz invariance of
the theory requires that ¢ and g’ should have the same transformation
properties under a Lorentz transformation. Therefore ¢ must obey
{4) or (B) in the Majorana theory. As we shall show later, the physical
quantities comtain o and 9 in pairs of the form (3#°Oy®) where O
1s a product of y,’s. Equation (3.84) shows that when ¢* and ¢*
describe the same kind of particle (2=5), there is no difference
between the types (4), (B), (C), and (D). On the other hand, when
3 and y® describe different kinds of particle (a +# b), the four types
in (3.84) give different results, because y° and y* may have different
transformation properties under space reflection. We shall denote
the wave function of fields of the types (4), (B), (C), and (D) by
Y Y¥u Yo and y,. Wave functions yp, y, y, are called pseudo-
spinors, while y, is a spinor.l) (Yane and Tiomxo [1950]). Then
9.0ys and §Oyp transform differently from §,0p, under space

(3.84)

1) Some authors call y, spinor and y,, v, vy pseudospinors.
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reflection. It is easily seen that time reflections give similar results.
We shall now illustrate the physical importance of pseudospinors
by the example of f-disintegration.
The interactions relevant to S-disintegration are described in detail
in Example 8, Ch. VII. In the present example we consider only the
scalar coupling - '

(@) (7Y) (3.85a)

where y*, ¥, v and y* are the wave functions of a proton, neutron,
electron and neutrino respectively.

If »?, y¥, y* and ¢’ are of the same type in the sense of (3.84), then
(3.85a) is invariant under space reflection. On the other hand, if
»?, »¥, and y* belong to type 4 and y” belongs to type. B, we cannot
take (3.85a) as a Lorentz invariant interaction. Then we can take
the following Lorentz invariant interaction instead of (3.85a):—

(YY) (Pysy)- (3.85b)

This shows that interactions of pseudospinor fields are different from
the usual ones,
If the B-disintegration scheme were

N > P+e+tv (3.86)
then the inverse process would be

P> N+e' 49 (3.87)

Here ¢ and »' denote the positon and antineutrino respectively.
Since the mass of the neutron is larger than that of the proton, (3.87)
is forbidden by the energy conservation law. However, the process
(3.87) could be induced by an external field. The positon emission of
nuclei is an example of such a process.

We now consider the process

P—>N'+e'+9 (N': antineutron). (3.88)

This induces the process P+ N — ¢’ 4-+' and would imply the instability
of nuclei. On the other hand (3.87) induces P+ N’ — ¢’ ++', which
is not jncompatible with the stability of nuclei because in nuclei we
have N and not N’. Therefore we must reject (3.88).

If we want to have (3.87) and not (3.88), we can proceed as follows.
Choose y¥ of type (C) or type (D), then ¢¥ and »¥ obey different
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transformation laws under space reflection, and therefore we can
have an interaction that allows (3.87) and forbids (3.88) ). We see
that the trarsformation properties of spinors under space and time
inversion provide a wide framework in which can be explained
simultaneously various transmutation processes. |
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CHAPTER IV
THE GENERAL RELATIVISTIC WAVE EQUATION (I)

§ 1. Spinors

In the last Chapter we introduced the spinors a,, @', b, b". We
shall now discuss their general characteristics (VAN DER WARRDEN
[1929], LarorTe and UHLENBECK [1931]). The rules (3.75az) and
(8.75b) may be written in the form

a"=¢e"a,, a,=e,,a',§ (4.1)
bt =eMa,, b, =¢,at,
with

[ = [#] = — [e.] = — [l = _S ¢ ]- (4.2)

It follows that
& = — g, e,.,=—e,,:, M=, ey=—ty, (4.3a)
gy = Op, EMey=— 04, (4.3b)
e =g 6 =0, MM = g6, =0y (4.3¢)
M =g, E,=0.,0,;— 0,104 (4.34d)
As shown in Ch. III, a.e’" and b6 arve invariant under continuous

Lorentz transformations. i
From (4.1) it follows that

a*b,=—a,b', atb,=—a;b (4.4)

and therefore that
ata, = 0. (4.5)

From (4.3d) it follows that
a'b, e, + a,byc® + @b, = APV 0¥ (6 Epy + By By + Ew &) = 0. (4.6)
The relations (4.5) and (4.6) remain valid when the undotted suffices
and superfices are replaced by dotted suffices and superfices respec-

tively. As is shown in Ch. III the complex conjugate of a spinor can
be obtained by dotting undotted suffices and superfices and removing

the dots from the others.
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Quantities o that have the same properties under continuous
Lorentz transformation as the products (a"a‘... b.b,...) are called
spinors of degree n, where » is the sum of the numbers of suffices and
superfices. Suffices can be raised and lowered according to the rule
(4.1), e.g.

a'? = .t = — a'.

Since af;: has the same transformation properties as (@"a* ... b3 b, ...),
and a,a’ is an invariant, the degree of a spinor can be reduced by
contraction. For example the product a@,b* can be reduced to a
second degree spinor by forming the sum

a,br = ¢, (4.6)

Since, as shown in Ch. III, o7 has the spinor property for super-
fices (r$), they can be lowered according to the rules (4.1) to give
O 0,8 and o, .

A vector @, can be derived from a 2nd-degree spinor a2 by means
of the o, as follows:

a,=%0,lar (4.7a)
because o, ! has the vector property for suffix x. In detail, (4.7a) is

. 1
=3 (a5 + a3),

1
Gy =32 (a3 — aia), (4.75)
a3 =3 (a5 — as),
ay=3 (a3 + az)-

In general, a tensor of degree n can be derived from a spinor of
degree 2n in the following way:

n

Qpypy = I__E (3 Gu‘.s,") a::::::: (4.8a)
i=

= (_‘ 1)" 1—.! (i’ G[J:ﬁ‘) s, sty 8y 0 (4'86)

From (3.80) we can derive the relations

O'p.:* 0’,’,' == Oy g O'raf = SP(O',: O',.) =2 61» 3 (4'90’)
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0,0, 00 =—(0,0,40,0,)p=— 20,0, (4.95)
Cpur O + 0, 40 =— 20,04, (4.9¢)
and
Curs Opyurs = O'ufs G#u'u) =2 (arw aus - 67& 61“17): (4"9d)
where

5 _\1 for r=s,
"Tlo  for rss.

The relation (+£.9d) leads to

™ ww b
o6, + 0”0, =0, (4.10a)
Ours Opuw + Opus Oprs = 0, (4.10b)
Ops O’ + 0,0 0,0 =0 ) (4.10c)

and
T P __ 7Y ~PW
O'y. $ Gu,u = 2¢ e¥ (O-y..vs G/A,uw)

= 287 &) (O Ous — Ous Oues)

= 2™V ¥, — 2™ e (4.10d)
=2 arz) Oy — 2 (617.7 Ous — Oy Opa)
=26, 0,

because of (4.3¢c) and (4.3d).
Using (4.8) and (4.10d) we can derive a spinor of degree 2n from a
tensor of degree n as follows

n
agin = }_I (0,3 @y - (4.11)
=1

From (4.9¢) and (4.11) we have

Ay @77 = 0, 4, 6,7 O, @,
= % (oy,ﬁr O'»Ib' + Oy, ur o."u'Jr) a’u a, (4.12&) *
= —a, 0,0
and
a® ay = —a,a, 0. (4.12b)
In particular
bm- B’Z" = D 61;,1, (4.120)
b" a” - D 6". ¢ (4.12d)
The skewsymmetric spinor o™ (a™ = — a*) has only the one in-

dependent component
= —g?=1%al, (4.13a)
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which can be written on account of (4.1) as
k¢ - % Iy azz_ (4‘131))

Equation (4.13b) shows that a” is invariant under continuous Lorentz

transformation.
From two spinors a, and a' that are symmetric and of degree 2

there can be derived a skew-symmetric tensor by the expression
O = — 2 [0,.¥ 0,1" Cpy — 00, 0,11 07 (4.140)
The tensor a,, is seen to be skew-symmetric if account is taken of
(4.4). Equation (4.14a) implies that
— t
s 30 %o i (4.14b)
Y= é‘ Gy,i‘v Gr a’yv
—because using (4.9a, b) it follows:—
'& .t Ty, u a,, =
- '} [Gﬂ.ﬁ Gv.ﬁt Uym O'v,sd Apg — O’y‘n O'v.ut Gp.wv Urwl aﬂ]
= Gy + %} 04 51 0400 A7
= Oy + % (U[l.ﬂ Ty, up + Ou.to Gy.ul) a%
= am .

Transformation (4.14b) may be illustrated by the effect on the
skew-symmetrie tensor

A, =20,a,—3,0,. (4.15a)
Equation (4.14b) gives

ap =+ (D41 a5t + g1 a4) [(4.155)
vt of ot W0 AT
a’" = % (b af + D a' ),

where a,’ is the spinor derived from the veetor a, by means of (4.11).
When a,' satisfies the relations

Oy Byt = Dyy !
bvf a't — bti a"v s (4'16)

(4.15b) leads to

gy, = aﬁ aat
a% = 3% n . (4.17)
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From (4.1) and (4.16) the following relation can be derived

" oyt
¥l =y e a,t = gy ™ )

= — d &Y @t = — B, @,
This leads to
dpa’t = 0, (4.18a)
which is equivalent to
2@, =0 (4.18b)

by (4.9a) and (4.11). From (4.12¢,d) and (4.17) we obtain

bm‘dm:"mau” g

(4.19)
dp @ =—Jar.

§ 2. Lorentz Transformation

A Lorentz transformation is a linear transformation nnder which
the expression
:L'#x“ = xk:l:k -_ tz

is invariant. The Lorentz transformations form & group (WiaNer
[1939]). It follows that a linear transformation

‘2, =a,x, {4.19)
must have the properties

ia‘,l =41, (4.20a)

@y Qs = Oy, (4.20b)

if it is to be a Lorentz transformation. In particular, for »=o0=4,
Oy 2y = 1. (4.20c)

Since a, and a,, are imaginary and real respectively, (4¢.20c) shows that-

age =1
g0 that either

ay, =1 (4.21a)
or

By < — 1 (4.21b)

We see from (4.20a) that the transformations are of two different
kinds. It is impossible to find transformations characterised by the
positive sign that are arbitrarily close to a given transformation



62 RELATIVISTIC WAVE EQUATION I [cH. TV, §

characterised by a negative sign. The same is true of the two cases in
(4.21a, b). We therefore say that the Lorentz group of transformations
consists of four disconnected parts, namely

L+ g L ag=1, la,l=1,
: \ ( Lt a44<"‘1= laﬂl’l: 1,
Lorentz transtormation
L =1 la.|=-1,
R :
Lz ay<-—1,la,l=-—-L

The first part consists of elements which are continuously connected
with the identity element, and form a group; it i3 usually called the
continuous Lorentz group, or the L group. The product of every
elem.nt of LT and any particular element of L*, L or L= generates
L%, Ly and L respectively. Space reflections and time reflections
belong to LT and L= respectively. Totai inversion, the product of space
and time reflection, beloags to L*. It follows, for example, that an
element of L is"equivalent to the product of a space reflection and
some element of L}. The combination of L} with any of the other
parts is also a group

A Lorentz invariant theory of elementary particles is obtained if
each kind of elementary particle is described by an irreducible
quantity in the Lorentz group. A reducible quantity is regarded as
an assembly of several kinds of elementary particle. For example,
vectors and scalars are both irreducible quantities under Lorentz
transformations. On the other hand the transverse wave and the
longitudinal wave of a vector field are mixed by a Lorentz trans-
formation and therefore cannot describe two elementary particles.

We now introduce the following products of (k+1-—2) degree
spinors: —

B

PED
e Vmik—m)! Vn' G—n)'

o< m<hk-1, 0<n<<I-1.

These have (k) components. Group themy (WieNeEr [1939]) shows
that linear combinations of these components give the irreducible
representations of the continuous Lorentz Group. By mtroducing
the rule that the dotted and undotted suffices in P%? are to be replaced
by undotted and dotted suffices (according to (3.76)) respectively in
the case of space reflections, we can include the L7 Lorentz group.
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Similarly, LT and LZ Lorentz transformations can be included by
using the transformation property (38.78) for each spinor suffix in
the case of time reflection, because total reflection is equivalent to
the product of space and time reflections. Thus we can assume that
the states of elementary particles are described by linear combinations
of P,, that are denoted by U(k, 1) (= a,,, P%P). For example, the
wave functions are U(1, 1) for a scalar field, U(2, 1) and U(1, 2) for
a first degree spinor field, and U(2, 2) for a vector field.

If g is the number of linearly independent components of U(k, 1)
for an elementary particle at rest with non-vanishing mass », we
can define the spin 8 of this particle as follows:

g=28-+1. (4.22)

Equation (4.22) shows that there are (28 + 1) states for the elementary
particle at rest. We shall show in Ch. VII that these states correspond
to the different eigenvalues (S, S—1, ..., —8) of a specified component
of an angular momentum operator, the spin angular momentum, and
that a conservation law ean be established for the sum of orbital
and spin angular momenta. A special example of this was given in
§ 4 of Ch. IIT for an elementary particle with spin }.

ExaMPLE. THE WAVE EQUATION FOR A PARTICLE WITH SPEN 1
We shall consider the wave equation
F,,=D,, 0,—», U,,,
D“Fﬂ,-—xz U,,-——-:O,

where U, is a vector and x is a constant. This is the Proca equation
(Proca. [1936]). The equation (4.23a) i8 equivalent to

(D;zf)—(],a= Og (4.235)
I

(4.23a)

Thus, we see that x denotes the mass of the particle. Thé second
equation in (4.23b) shows that, in the rest system, U7,=0. Therefore,
the number of indépendent components, g, is 3, and the spin, S=1.
Comparing (4.23az) and (4 23b) with (4.15a), (4.18D) and (4. 19) wé
obtain:

Vpy P’ =1 % Ypu»

afé Xiw=12 % ¢1':‘:
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where U, F,,, ¢ and y., correspond to a,, a,,, a;° and (1/ix) a,,
respectively. These are the equations for the particle with spin 1 in
the spinor representation. With x=0, (4.23) reads:

F#,=D”A,—~0,A”} (4.240)
2 Fu= 0.
These equations with the Lorentz condition

24, =0 (4.24b)

are the Maxwell equations. One essential difference between the
theories with » 0 and with »=10 is that, in the latter case (4.245)
cannot be derived from (4.24e). Equations (4.24¢) and (4.24b) are
equivalent to

4, =01 (4.24¢)
2, 4, =0.]
The Maxwell equations are invariant under the transformation
A, > A, =4,+0, 4, (4.25)
where / is a scalar function satisfying the relation
7A4=0.

This is called the gauge transformation.

We have seen that the particle of spin 1 can be described by a
spinor of degree 2. In the next paragraph we shall show that the
particle of spin § may be described by a spinor of degrec 28.

§ 3. General Relativistic Wave Equations
We shall derive the equations for elementary particles of general
kind by extending the spinor equation (3.82), referring to spin }, to
refer to any spin.
Kquations (3.82) can be extended to the general case of a spinor
of degree n, @7, i~
T iy Q"sfi.'-. =% x&f{:f. l (4.26)
k= in g
(see Drrac [1936], Figrz [1939], Frerz and Pauvrx [1939]). From
{4.26) and (4.12¢,d) we have

(D - xﬂ) <P”fi.’.'. =0 } (4 27)
(O =2z = 0. '
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We see that the K.G. Condition of Ch. I for relativistic wave
equations is satisfied.

We now show if ¢~ and yf: are symmetric spinors of degree n.
they then describe particles of spin (n/2). For the particle with non-
vanishing mass (x 7 0) we can take the Lorentz frame in which the
particle is at rest and rewrite (3.81) in the form

Dpy = = 2 Gy

by wusing 3, — 0, 3; — (1/i)». Thus in the rest systeml

I

2 e tes
P4

(pr't‘
which leads to
PN = = e = 9
In other words, ¢ is symmetric with respect to dotted and undotted
indices.

In the rest system the continuvus Lorentz transformations are
reduced to the space rotations. Thus in this case it is unnecessary to
diserintinate between dotted and undotted indices; we can regard
P as ¢l

Since each suffix and sguperfix can take 2 values (1 and 2), the
number of independent components is

i+ 2—1 O

("3 ) = 2(nf2) + 1. (4.28)
Equations (4.22) and (4.28) show that (4.23) corresponds to particles
with spin S=mn/2.

If the numbers of dotted and undotted suffices in qf,’%;_‘ are k—1
and I—1 respectively, (where k-+~1—2=mn), those in x4 are k and
1—2 respectively. By taking k=1, 2, ..., n, we obtain »{=2F) possible
theories for elementary pa.rticles with spin S. Let us denote y, , and

@ (@
@, E=n,1=2) by x and (p respectively and introduce (;’ ,)

(g=1, ..., n) as follows:

@, b
(P -—¢+1 ’71-----.-bih—-a+l n—-g41 (p n—¢+'1 oty
ERE Y TieTy—g41
4.29)
@ {g—~1)
xtr—‘(-f-‘z oby = (p ‘n—qJ-'.l ‘,:
frgt1 t. "n-—r-'-l

) (@ (1)
Then we can see that all (;, z) satisfy (4.23) if (g, x) does so. In
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other words, » theories (g=1, ..., n) are equivalent to each other.

g )
However, as is shown in § 2, under space reflection (p, y) are replaced
m—q+1) (r—g+1) . (@) (n—gq+1) {@ (n—e+D)
by( %z , ¢ ). Thuswemusttakeintoaccount(p, x ,% ¢

@ @
in a general Lorentz transformation. The quantities (¢, y) and

~a+1) m—g+1) ) .
" ;H), " qqa 1) are equivalent to each other for half integer spin S,

if ¢=(n+1)/2. We see that there are § (for S=integer) or (S+4) (for

8§ =half-integer) theories of elementary particles with spin S.
B) @) $+1) (§+1)
If 8 is an integer we can use (p,%, @ , %

) s+1) (8 (4'30)

¥ = xtx---‘s X=@.

(63 . (S+1) ot ot
== ~eolg = SRR i 7Y
? q’fil..,ﬁs ’ ¢ ¢131...1'&_g_1 ? }
ity g °

5) S+1 . )
Since 7, and @ - are symmetrical with respect to the suffices

(#1) and superfices (vt) respectively, it can be transformed, according
to (4.14a) and (4.8a), into a tensor Fy,,,, ., Which is antisymmetrical
with respect to the suffices (4, »). Taking into account the fact that
(4.17) has the same forms as (4.26) with respect to the suffices (Fu)
and the superfices (vf) we can see that (4.26) can be rewritten as
tensor equations similar to (4.15¢) and (4.18b), namely

o U#ﬂ:-..llg - b,u Uvu,...;ls = F[v,,u]p,...us ’ (4:.310:)
3 Upyooog = 0. (4.32)
Since (4.27) leads to
(O=2?) U, =0 (4.33)
we have
O Frypispins = % Uty + (4.31b)

The quantity U, , is a symmetric tensor, because (Pf':.-.-tzs is a
symmetric spinor. Moreover, using (4.i0c}) we have

U 0. (4.31¢)

Bty

On the other hand, it is easily proved that (4.26) can be derived from
(4.31a, b, ¢) by using (4.9). Thus we see that (4.31a, b, ¢) give a theory
equivalent to that of (4.26) and therefore one of elementary particles
with spin 8. This fact may also be proved by counting the number of
independent eqmponents of U ‘in the rest system,

#...Bg
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Equations (4.31a, b, ¢) are equivalent to

(E] - "2) U,u,...ys =0
Ay U##:---#s =0 }

U = 0.

BBps... Hg

(4.34)

In particular, for spin S=1, (4.31¢) becomes meaningless and
(4.31a, b) become

2T, F ) .50

) Fp—2n2U, =0,
where F, ,; has been denoted by F,,. With §=1, (4.34) also becomes

(s U,,=0}

(4.35b)
2% U, =0.

) ®)
We have seen that the wave equations (4.26) for (@, x) can be

written in terms of the tensors (U, ., Fy. uip,.u,) o0d take the form
(4.31a, b, ¢c). On the other hand, (4.15), (4.17) and (4.29) show that
(§—1) (§-1)
the spinors ( ¢ , x ) correspond to tensors
(F[F-I‘] Hy..-1ig * F[';.l‘;].[":.l‘:] I‘a---l‘s)'
The last tensor is defined by
F[’l- vy, 9] tha.. .oy 1

=, F 92, Bslptatis.ois — Otia Fiy v B J (4.37)

= gt F[’:- wp g
where

bﬁ”:l" = B# 6.“/,“—3,, 6”,# - (4-38)

In this way, we can show that, cerresponding to 8 possible formu-
@ @ (2g+D (A—g+D) ;
lations based on (p, x, @ , x ) for the theory of an integer

spin S, we have the same number of possible tensor theories, which
are derived from each other by means of the operator d,,,,
We shall use cp’i::";k and x,";l-_-_-i for the case of half integer spin
8 =k+} and non-vanishing mass (x # 0). We introduce the quantities
N k

_ ot
Yooty = ;El; € X: i:h) ‘P’fi.’i,,

: (4.39)
Y = ;-EII (3 ™) X%,
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whete v, , and y,.,  , are tensors ol degree & with respect to
suffices u;. and spinors of degree 1 with respect to suffices (s, 7). We
shall denote them by v, , of the form

11
Vus iy
o

llp;l‘l 133
Vi e J

..1)02:#, Py

Wﬂ-x---llk -

PR

(4.40)

If & = 0, this i< equivalent to a ¢ of spin 4. In general, representation
by %, ,, i3 the so-valled Rarita~Schwinger formalism (Ragrrra and
ScawiNxGeR [1941]) The tensor y, , is symmetric with respect to

suffices py ... g
The wave equation (4.26) may be written in the form

(‘})l-' By “+ x) 1'0#1”_#: === 4}, (4.41)
The ;, are the matrices with four rows and columns that satisfy the
relation {3.2). Since ¢'h- is a symmetric spinor, (4.5) gives

gl = 0. (4.42)

From this, (3.68) and (3.80) we can derive:

Yo Yupy iy = 0. (4'43)
On the other hand we ecan show that (4.26) can be derived from
(4.41) and (4.43). Therefore (4.41) and (4.43) provide a theory for
spin §=k+}.

From (4.41) and (4.43) ¢an be derived

(:j - xz) Yoreopsy, = 0, (4'44)
By (f’m‘.-.-#; = 0, (4'45)
Vsstsgny = 0- (4.46)

We now consider the elementary particle with zero mass (x=0).
The wave equation (4.34) gives for x=0:

2, 4 =0 (4.47)

Bl by

D A}lx...#s = 0 }

4 0,

Ky by T
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where 4, , is a symmetric tensor of degree S. Equation (4.47) is
equivalent to:

F . ity .ty = O Am&....ug - Av/l,...ug

Dr F[i,p]#....llg = 0 (4.48)
b,u Am&,...#g = 0
A 0.

Bpgs..g =

One essential difference between the theories with x s 0 and with
»=0 is that, in the latter case, the third equation of (4.48) cannot
be derived from the others.

Putting S=1 in (4.48) we obtain Maxwell equations. The third
equation of (4.48) gives the Lorentz condition:

F,=2,4,-34,
} (4.49)

LA F,=0
3,4,=0  (Lorentz condition).

Since there is no rest system when » =0, we cannot use the definition
of spin given in § 2. Therefore, for » =0, we shall define the spin as
the magnitude of highest eigenvalue of the spin angular momentum,
which will be introduced in Example 1 of Ch. VII. It can be shown
that the spin thus defined is equal to the degree § of the tensor.

We now introduce the symmetric tensor &, , of the degree §—
namely

N =0 Cpotig + 9 Crp g + oo + 0y O gy {4:50)

My...pg

Here C, . , forms a symmetric tensor of degree (S—1) satisfying
the equation (4.47). We then see that the wave equations (4.47) are
invariant under transformation

4 =>4 ag= Ay u T N, pg (4.51)

1. M8

This is called a gauge transformation, Thus the theory of an elementary
particle with vanishing mass (»x = 0) ig invariant under a gauge trans-
formation. This is not so for particles with » # 0. Since the repre-
sentations connected by a gauge transformation are physically
equivalent to each other, the number of independent components of
the wave functions is decreased by the number of independent

components of N, .
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We shall consider the plane wave with propagation vector k,= (0, 0,
k, ik) and progressing in the zj-direction. Then the second equation
in (4.47) gives

( A4Fa g T Aau,...us . (452)

Since 4, ,, is a symmetric tensor, the number of independent
relations given by (4.52) is

S—1+4— 1)
( S—1 '
On the other hand, it is easily seen that in the third equation of (4.47),
the number of relations that are independent of (4.52) is

(S —2+3— 1)
§—1 ’
Thus, taking into account the fact that 4, , is a symmetric tensor,

we obtain the following formula for the number of independent
compohents of

SRR NANCE

Then, the number of independent components of 0, . i82(S—1)+1,
for O, ., _, 8lso satisfies the equation (4.47). Since the representations
connected by a gauge transformation (4.51) are physically equivalent
to each other, the number of irdependent states is given as 2 by
subtracting the number of independent components of C, from
(4.53):

1. Bg—1

(28+1)—(28—1) = 2. (4.54)

This is true also for the cases of half integer spin.

An example of a theory with »=0 is the electromagnetic field. In
this ca8é the Maxwell equations are invariant under the gauge trans-
formation

A“—>A“=A”+DI‘A} (4:55)

d4=0.
It is easily seen that (4.55) is a particular case of (4.51). Moreover, as

is well known, electromagnetic waves are transverse waves with two
components. This fact agrees with (4.54).
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Thus we have seen that the equations (4.26) are reasonable general
wave equations, which include the Dirac and Maxwell equations as
special cases. However. since they are derived by a formal extensgion
of the Dirac equation, it is necessary to discuss the theoretical basis
of the latter. We shall give a more detailed discussion of relativistic
wave equations in Ch. V.,

Exampre. RARITA-SCHWINGER FORMALISM FOR SPIN 3/2
The wave equations for y, given by (4.41) and (4.43), are
(Y du+2) 1y, = 0

, (4.56a)
Y YPu= U }

It follows that
(D - x2) Yu = 07
= 0.

It can be shown that the equations (4.56az) are equivalent to
= [e %+ #) 8,0 — F(¥u D + 7, 0) + 3 7ulye 2. — %) 1] Wl = 0. (4.56D)
In fact, multiplying by y, or 3, on the left side of (4.566) we have

g 9, ¥y — %‘z V¥ = 0, (4"560)
and
* au Yu T ap Yau (% bv Yy — % %Yy ‘Wr) = 0: (4'56‘1)

respectively. (4.56a) can be derived from (4.56b), (4.56¢) and (4.56d).
Substituting

A,uv(b) = [(79 be -+ %) 6;19’ - % (ylz B, + Yy a,u) + %‘ Yu (YQ ae - %) 79]
and (2.8) into (2.7), we obtain d,(3) namely,

1
d,u.v(b) = (”9 39 - H) [6”,, - § YuV»

2
 3m (ud — 1 0 + 33 %] (4.56¢)
1 o ‘
+ Sl (D - ?{‘) [(ylu O — Yy bﬂ) T (yg DQ - 7-{) Yu y’]

{(TarkausasHT and UnEzawa [1953]).

§ 4. Half-Integer Spin and Negative Energy

As shown in § 2 and § 3. the wave functions for the cases of integer
and half-integer spins are U(k, [) with (k+1) even and odd respectively,
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‘We first consider the case with (% --1) even, and introduce the following
symbols:

(4.57)

Uk, 1) = {U" for even k,l;

U+ for odd %,1.

It is easily seen by use of the Clebsch-Gordon theorem that
Ulk,1) x UK',U) can be represented by a linear combination of
UE", 1") with

B =k+¥ -1, b+k -3, ...,1k-—k}+1} (4.58)
V=l+0~1, 1+1'-38, ..., [I-V]+1.
It follows that
+ [+ =~ U-== U+
UU:UU.U; (4.59)
Ut U-=U-,

where == means the same type with respect to (+). The relation (4.53)
shows that the even degree tensors are of the U+*-type, since they
transform like a product of an even number of vectors U(2,2) == U,
Similarly, the odd degree tensors belong to the U—-type. In particular,

a vector 3, is of the U—-type.
When we write the relativistic wave equations as differential

equations of the first degree (cf. Ch. II), they take the form
WUr=U-, »U-=UH, (4.60)
where the relations (4.59) have been taken into account. In (4.60),
d means the derivation operator d,. It is easily seen that (4.60) is
invariant under the transformation
dp—> — 0y
U+— U+ }
U-—» — U~
Tt must be noted that the first transformation in (4.61) is equivalent
to a total inversion of the axes. Under this transformation, odd
degree tensors change sign, even degree tensors do not. Thus we see
that odd degree tensors composed of wave functions of integer spin
cannot have a definite sign. Current density which will be introduced
in Ch. VII is an example of an odd degree tensor.
In the case of h‘a,lf integer spin we introduce the symbols
U¥ k=o0dd, | =even
U~ k=even, = odd. }

(4.61)

Uk, ) = { (4.62)
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By using (4.58) we have

U+ U*“% U~ U == U+} (4.63)
U+ U~ =U-
where U# is defined in (4.57). Equation (4.63) gives the wave equations
PUT = U_'} (4.64)
AU = U’
It is easily seen that (4.64) is invariant under the transtérmation
o, —>—3,
U+ - U } (4.65)°
U~ > —i U~

The imaginary factor ¢+ appears in (4.65) because (4.62) shows that
the complex conjugate of U+’ is U, so that we cannot take U+’ — U+,
U~ - —U—.

We can see from (4.63) that the even degree tensor U+ and the
odd degree temsor U- have the structures (U+'U+, U-'U-') and
(U+'U-") respectively. Since the former changes sign under (4.65) and
the latter does not, even degree tensors made of wave functions of
half integer spin have no definite sign. Since the energy which we
shall introduce in Ch. VII is the space integral of 7'y,, we obtain the
following important theorem:-—

The energy of elemeniary particles with half integer spin has no
defintte sign (Pauvrr [1939]). The megative energy stale in the ease of
spin § is an example of this theorem.

We must therefore adopt the hole theory in any case of half-integer
gpin in order to avoid the Klein paradox. This fect requires that
elementary particles with half-integer spin should obey Fermi-Dirae
statistics. This requirement is further discussed in the quantum field
theory in Ch. VL

§ 5. The Properties of Known Elementary Particles

The particles whose properties are well known are tabulated
below 1).

The determination of the spins of the =~ and n%mesons is discussed
in Ch. X and Ch. XIIT. It is not certain that the proton obeys the Dirac

1) Bince the experimental information on elementary particles is increasing
rapidly, the mass values in this table must be regarded as provisional.



74 RELATIVISTIC WAVE EQUATION I {cH. XV, §5

TABLE I
S } h Elec- | Proton ! Neu- Neu- - - n®-
QP oton tron e P ltron N trmo meson | meson | meson
Charge { 0 + e + e ‘ 0 0 + e 4 e 0
. i half-
Spin po1 £ 3 i mteger 0 3 0
Mass oo m 1836m | 1838m| <€ m 276 m | 215m | 266 m

equation (3.1). One difficulty is that a negative proton has not been
discovered. The n%-meson decay supports, but not conclusively, the
uge of the Dirac equation for protons (ef. Example 2 in Ch. XIII).
The mutual interactions between the above elementary particles are
discussed in Ch. VII.

Neutrons, z-mesons, u-mesons and n’-mesons decay naturally
according to the following schemes, and with the lifetimes indicated : —

N—>P+ e+, ~ 12 minutes
m — 4 + (light neutral particle), ~ 1078 gec.
u — e + (light neutral particles, the

number of which is > 2), ~ 10-8 sec.
=y + y, < 107 gec.

There is a high probability for the absorption of negative sz-mesons
in heavy nuclei (¢f. Example 1 in Ch. VII). This provides a convenient
method for determining the sign of the charge of m-meson. The
interesting fact that there is a slight difference, i.e. 2.47 m, between
the masses of the proton and the neutron is shown in the above Table.
The proton and the neutron are treated as different states of the same
particle, i.e. the nucleon (cf. Example 10 in Ch. VII). On this view-
point it is an interesting problem to explain the P— N mass difference.
Sinee, as is shown in Ch. XIII, the electromagnetic field around the
proton makes a contribution to the proton mass, it seems to be
natural that the electromagnetic effect is the origin of P— N mass
difference. However, since the present quantum field theory gives an
infinite result for this mass difference, it cannot give any conclusive
answer to this problem 1).

') C-meson theory gives a mass difference, but its conclusion is still not
deflnite. (SagaTa and Umzezawa [1950], KawaBE and Umezawa [1949],
Exavsu [1951], Pars [1947].

Recently a new approach to this problem has been given by WriskorF [1954],
FeEYNMaN and Seeismax [1954] and PETerMaNN [1654].
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Recently many new particles have been discovered and they are
called A, 6, k, v particles, etc. Their mass and decay schemes are
given in the following table (see, for example, PoweLL [1952a],

[1952b] Report of the Fifth Rochester Conference [1955]).

TABLE II

Mass Decay scheme Natural lifetime
g ~ 960 m at + a2~ ~ 1.5 X 10-10 gec.
T+ ~ 930 m ntf +nt 4+ n- ~5 X 107 sec.
Eup ~ 960 m n+? ~ 108 sec.
koo ~ 960 m nt 4+ no ~ 10-9 sec.
kyy ~ 960 m p+?+2? ~ 10~% gec.
kg ~ 960 m e+ 94+ 1 ~ 108 gec.
A9 2190 + 10m Pi+a— ~ 3 x 10— gec.

+
+ n+4n ~ ~10

xz ~ 2325 m 3P+n° 5 X 10-19 sec.
z- 2570 m A9+ ~ 10~19 gec.

The symbols 0, + and — mean that the particle is neutral, positively
charged and negatively charged respeetively; ‘!’ means that the
properties of the neutral particles have not yet been clarified. More-
over, it is possible that many as yet undiscovered particles exist in
nature. For example, some particles have not yet been observed
because of their short lifetimes. At any rate we can see that the
relation between the elementary particles in nature is not simple.
Thus, we are faced with many questions: How many sorts of elemen-
tary particles are there in nature? Why are they selected from the
infinitely wide framework of elementary particles given by the present
quantum field theory ? How can we find the relations between and the
synthetic aspects of the elementary particles? These are questions
which must be answered by the theory of elementary particles; in
fact the investigation of these questions may lead us to the theory.
It was the investigation of the inherent relations between the atoms

which led to the discovery of their structure and of quantum
mechanics.
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Discussions in § 5 will be supplemented by Note added in proof in Ch. XVIII.
Here it is noted only that the Berkeley group (1956) succeeded to establish
the existence of the negative proton.



CHAPTER V
THE GENERAL RELATIVISTIC WAVE EQUATION (H)

§ 1. The General Relativistic Wave Equation

In the previous Chapter we obtained relativistic wave equations
(4.26) by extending the Dirac equaticns of the spinor form (3.82),
We shall now discuss in detail the general relativistic equation by
means of discussions given in Ch. II. This has provided a theoretical
basis for the Dirac equation. The Duffin~Kemmer-Petiau theory for
particles of spin 0 or 1 will also be seen to be a particular example of
the general equations; this theory is discussed in § 2.

As shown in Ch. II the relativistic feld equation can be written
in the form:

(Budu+%)p=0. (58.1)

We assume that under the Lorentz transformation
‘T, =a,x, (5.2)
v is linearly transformed according to
‘p=Ay. (5.3)

We can see by a discussion analogous to that in Ch. III that the
Lorentz invariance of equation (5.1) requires the following relations
for B,:

A7, A=a,p,. (5.4)
In particular, for the infinitesimal Lorentz transformations
Cy = Oy + Ot (5.5)
dw,, = — dw,,

the matrix 4 has the form
A=1+38,6w,, (5.5b)
with
8,.= —8,. (5.5¢)
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By substituting (5.56) and (5.5a) into (5.4), we obtain
[BusSa] = 02u By — 0 Ba- (5.6)

In general, every tensor in p-algebra can be written as a product
of the 8, and §,, (HarisE-CHANDRA [1947]). Since (5.6) shows that
S,, is a 2nd degree tensor, we obtain from (5.4)

A28, A =ty By S - (5.7)
Substituting (5.5a¢) and (5.5b) into (5.7) we have:
[Spv’ Sga] = 6/49 Sw:r + 6v9 Sycr + 6;10‘ Svg - 61’17 Sﬂe - (58)

It can be proved (HEpNER [1951]) that there is only one S,, which
satisfies (5.8) and (5.8). In fact, (5.6) shows that the quantity
t,=80—82, in which 85 and 83 satisfy (5.6) and (5.8), commutes
with every f, and so with all quantities in f§,-algebra. Thus we have

(S, W] — [8®, 827 = [8Y, t,,] + [£,,, S&] = 0.

v >

On the other hand, (5.8) gives
[S%, S — (82, 521 = — 2.,

w

which shows that ¢,; = 0 so that S& =82 It is easily seen by calculation
that the S, for spin }, (equation (3.24)) satisfy (5.8).

Since spur (8, f,) has the same transformation properties as
the tensor with suffices (u, ... y,), it must be constituted of 4,,. It is
impossible to obtain odd degree tensors constituted by combining
6,, and therefore the spur of the product of an odd number of 8,’s is
zero, that is,

Sp (ﬁul e ﬂ,ug,,_l_l) =0 (5.9a)
(Har1sE-CHANDRA [1947]). In particular,
Sp(B,)=0. (5.9b)

We have found an example of this general theorem for spin 1/2 in
Ch. III.

We now introduce spin matrices oy (k=1, 2, 3) by means of
oy = —iSy, (k, 1, m=cyel. (1, 2, 3)). (5.10)
Then, (5.8) gives

[oy, o]=t6,, (k,1, m=cycl. (1, 2, 3)). (5.11)
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An example ) of (5.11) is provided by (3.55) which is valid for spin 1/2.

Equation (5,11) is just the commutation relation of the angular
momentum matrices. Therefore, o, have the properties of the angular
momentum matrix, and have eigenvalues (f, f—1, ..., —f), where {is
an integer or half-integer (Dirac [1947]). Thus, the characteristic
equation of o is:

(or—f) (o —f+1) ... (6. +f)=0. (5.12)

In general, representations of the angular momentum matrices
oy, satisfying (5.12) can be decomposed into irreducible representations

Dy, Dy, ... of the three-dimensional rotation group; (VAN DER
WaErDEN [1932]); these irreducible representations correspond to
the values |f],|f—1|,... of the angular momentum. Since, in an

irreducible representation D), the wave function v has (21+1)
independent components corresponding to various directions of the
angular momentum, (4.22) shows that y describes a state of a particle
with the spin S=I. Thus, we see that the wave function y in (5.1)
describes states of particles with spin |f], [f—1|, .... This angular
momentum is an intrinsic property of particles, because it does not
vanish even when particles are at rest. However, (5.6) and (5.8) are
not sufficient to determine completely the g-algebra. We now give
two important cases of the relativistic wave equations.

Case I
The wave function y satisfies the Klein—Gordon equation (2.3a)

(O—=2)p=0 (6.13)
and therefore describes states of a particle with unique mass ». Then,
a8 shown in Ch. II, there must exist a derivation operator matrix
d(d)=[d,,(d)] which satisfies the relation

A@) d@)=(0—»*1, (5.14)
AQR) = ~ (B2 +x). (5.15)
Here I is the unit matrix. The quantity d(d) has the form given in

(2.8) and (2.9). By substituting (2.8) into (5.14) we obtain the recur-
rence relation

1) It must be noted that the definitions of g3 in (3.48) and (5.11) differ by
8 factor (%).
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a=xl

cfy+ %o, =0

(Bu oty + By %) + 2% by = — 24,

Z® (B 0 — Kb, ) =0  for 1>2

(5.18)

where X® indicates a summation over terms given by taking all
possible permutations of the suffices.
Equation (5.18) may be solved to give

x=nl
5=,
== 3 18—} (B B+ B, 5] (8.17)
S = () 5 TP By B By — By Bl for 1>2.
‘Thus, we have
A@) = I — B, =2 [0~ BB 221+ ...

+ (—',—})H (B +ov Bug T3 = B -+ By Dy D) Dy wev D — woe 6.180)

=l = B, 0 = 2 [[J = (B, %)% + ...
—1

(G @ - G2 B2

b4

(UmMrzawa and VisconTr [1954]).
Equation (2.9) leads to?)

ZP B i B [Buyinss — By Byl = 0 (5.18)

on asccount of (5.17) (Umezawa and Viscowt: [1955]).

This is the equation that the matrices 8, must satisfy for a finite
integer b in order that (2.3a) can be derived from the wave equation
(5.1).

We shall now prove an important theorem concerning the properties
of d(?d) (Umezawa {1952]).

The order of the differential operator d(2), called b is given by

b=2f, if % # 0, (5.19)

1) This equation was obtained by Harisu-CEANDRA [1947] in a different
way. See also BHABEA [1949].
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where f is the maximum value of the spm of the various fields described
by the field quantities y (see (5.12)).

Under continuous Lorentz transformations the operator d,s()
transforms i the same way as y, x ;. Since the quantities y, deseribe
fields with the maximum spin f, they form an invariant space for a
representation of the 3-dimensional rotation group, which breaks up
into irreducible representations D;, D;_,, ... (cf. (5.12)). Therefore
that representation whose basis is given by the direct product y,y,
can be decomposed into Dy, Dy, ... {Clebsch—Gordon theorem).
Analogously, 3, ..., corresponds to a set of representations
Dy, D, 4, ... unless some of the d, build up the scalar operator (7.
Thus, &, , %, --- 9y in (2.9) can appear only in the form

1~21
Opy g Opy ove Oy == &y, .uw(D) 2 Oy e Uy,

when [ is larger than 2f. This relation shows that o, , is zero if

l-2f(>0) is odd. Then the recurrence formula (5.18) shows that

o is mero for even positive I— 2f:

o™

& =0, for I > 2f,

L W ]

which is equivalent to (5.19).
From (5.18b) with b=2f we have the characteristic equation for
B, namely

pE-1(p2 —1) = 0. (5.20)

where summation over the suffix x is not carried out.

It can be shown that g, cannot be hermitian if 2f >2 (i.e. the
highest spin f>1). In fact, if 8, was hermitian, there would be a
representation in which B, was diagonal, and therefore had eigen-
values + 1,0 on account of (5.20). Such a matrix g, could satisfy a
relation:

Bu(8i—1)=0.

This shows that (5.20) cannot be the characteristic equation when
b>2.

Harisa—-CHANDRA [1947] pointed out that (5.18b) does not generate
a finite algebra for b>1 (1e. f > 1). Some other stronger condition
(on the quantities 5,) compatible with (5.18b) is necessary to make
the algebra finite.
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For spin S=1/2 (i.e. f=1/2) (5.18)) leads to

Bubs+ BoBu=20,, (5.21)
which is just the relation (3.2) in the Dirac theory. Here d(2) is
d(2) = — (B2, —%). (5.22)
For spin S=1 or 0 (i.e. f=1), (5.18) gives
Z® BB, Bs — 8,0) = 0. (5.23a)
This can be rewritten as
Z®B, B, Bs+ Bo By By — Bu b4 — BoOs) = 0 (5.23b)

and d(?) is given by (5.18a) as follows:—
40) =~ [; (0= +Bu%— 55 Bubo+ B.8)20] (5:29)

(Tagamasar and Umezawa [1953]).

Casg IT

When we require that (2.35) should be derivable from the wave
equation (5.1), and therefore, that p should describe states of particles
with various masses (xy, %, ...) the matrices §, satisfy relations other
than (5.185). An example of this is provided by assuming that S,
contain no term that is a product of more than two matrices. Then,
since 8, is an antisymmetric tensor made up of the 8,’s, it must
have the form

8y =g (BuBy— BB (5.25)

where g i8 a constant e-number (see Bramma [1945, 1949]).
By substituting (5.25) into (5.6),

BubsB = BuBo B — i Bot B, B1Bu=3 43 B~ 3 8 B (5.260)
In partionlar,
BB +BB—288.B, =58 forusktr  (5.260)

where summation over the suffix u is not taken.
On the other hand, from (5.6) and (5.25) we have

aztﬂba ﬂl] = 1‘0‘,., [Uh’ ﬁl] = iﬁau [ﬂh 0‘;] = iﬁm (5.27)
for k,1,m = cyol. (1, 2, 3),

Byl =18 by Bl=ihw [P ]=4p, for ¥=1,2,3, (5.28)
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where
a? =g, (5.29)
& = —i8g (k=1,2,3), (5.30)
These commutation relations show that af, and §, have also eigen-
values (f, f—1, ..., —f), a8 o, does (HEpNER [1951]). Consequently 1)
(@Bu—1) (@B, —f+1) ... (aBu+f)=0. (5.31)

In this way we can derive the fundamental relations for 8, for various
spins from (5.31).
We now show that the wave function y satisfies the equation

(0-%5) (O-735) - (@ —a*)p=0 for integer f, (5.32a)

(o-%) (o~ <fa-’-"”1')*> =k %’2% ¥ ? 0 e (5.325)
integer f.
In fact, from (5.31) . nteger |

(@842~ (@ Ba2)* — (f— 1)*%]) ... (6 B 20*— %) (@B 2) p=0
for an integer f. In the reference system of & particle at rest, we have

D = 3%,
ﬂ =ﬁ 045
and therefore weT

(P - (aﬁnbp)z) - (O- (aﬁﬂap)’) (aﬂnbu) p=0

This relation must hold in any reference system om account of the
Lorentz invariance of the theory. Equation (5.32a) can be obtained
by putting (—=x) into $,3, on account of the wave equation (5.1).
A gimilar proof can also be given for half-integer f.

Equation (5.32a, &) shows that the wave function p, for spin
8>1 (ie. f>1) satisfies not the Klein—Gordon equation but the
equation of a type of (2.3b). In other words, in the theory based on
(5.1) and (5.25), the rest mass of particles with higher spin f>1 can

1) This relation can also be derived by a slight extension of (5.14}. In general,
the relation for the matrices §, can be derived for a given mass spectrum, by
deriving d(d) from

d) AQ) =TI(O—PI (2309
3

and by using (5.19) in a similar way to Case I. (UmMEzawa and VisconTt
{195517).
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take various vglues, namely (ax/f), ..., ax for an integer spin f and
(ax[f), ... 2ax for a half-integer spin f.
However, in this book we shall limit our discussion to Case I. It

must be remarked that, for lower spins 8=1, }, 0, the theory based
on (5.1) and (5.25) is included in Case I, because then equations
(5.32a, b) are just the Klein—Gordon ones. In fact, by putting f=$}
(ie. 8=%) in (5.31),

(a’ﬂy—%) (aﬂ#+%)=0'

From this we find:
@i =}

where summation over the suffix x is not taken.
We ean normalise 52 without loss of generality in such a way that

fi=1, a=3%, g=4% (5.33)
Then (5.26b) and (5.33) give
BB+ BB, =20,

Thus we have rgegvered the Dirac theory.

It can be seen that the right-hand side of (5.25) is the 8,, (3.24)
of the Dirac theory.

We next consider sping 1 and 0. Substituting f=1 into (5.31)

we obtain
a?fi=p,. (5.34)

Multiplying (5.26b) by g, on both sides, we obtain
1\ »
2688 =(5)Bub B forvsu
Multiplying again by £, on both sides, we derive

2
?ﬁpﬁvﬁpz zﬁyﬂﬁ for ‘V#tu

and therefore
B.BB.=0  for v # u. (5.35)

On the other hand, (5.26a) gives

ﬂyﬂlﬂr+ﬁvﬂlﬁ#=ﬁyﬁvﬁl+ﬁzﬁvﬂp forﬂ#”:”#l,ll#l-
Therefore, multiplying by g% on the right, we have

Buby BatBafBu=0  for u#v,v 24 A=u
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because of (5.26b). Thus (8,8,8:1+8:5,,) which is symmetric with
respect to suffices u, A must have the form

ﬂ;& ﬂr ﬂ).'f'ﬁl ﬂv ﬂp=‘xp 697.'*_0‘7. 6w+“; 63;4-
Equations (5.35) and (5.34) show that

Thus, by taking ¢=1 we have
BB BatBaBo Bu=8u0a+br 6s- (5.36)

Equation (5.36) is compatible with (5.23b) in Case I. The matrix d(?)
is given by (5.24). Equations (5.1) and (5.36) give the theory proposed
by Duffin, Kemmer and Petiau, which will be discussed in detail in § 2.

§ 2. Duffin-Kemmer-Petiau Theory

The fundamental equations in the Duffin—-Kemmer-Petiau theory

for spins 1 and 0 are
(Bu+ %) w=0 (5.37)

ﬂ» B, Br+8:. 8, ﬂﬂzﬂﬂ Su+ B 5“, (5.38)
(Durpx {1938], Kemmer [1939], Prriavu [1936]).
From (5.25) and (5.29) we have
Sw=ﬂu ﬂr""ﬂr ﬂu' (5.39)
Equation (5.38) gives

\(1 ”ﬂ?) ﬁ s HFEY
Pubi=) B ’ n=v
“oo (5.40)
BB =5 B
ﬁy .Bv ﬁ[t=ﬁu 5;0
where summation over the suffix yx is omitted.
Then, for the matrices 7, defined by
.= 20—1, (5.41)
we can derive the relations
=1 2
N ="y Nu (5.42)
ﬂunv= "'7]'.3;4 (fOl‘ B —*A”)S
ﬁu=ﬂp Nu=MNp ﬂu'
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Again summation over the suffix u is omitted.

In the end of this Chapter we shall find a representation in
which every f§, is hermitian. We shall assume this property in the
following discussion, It follows that 7, is also hermitian.

We define ¥ by

P=p*n, (5.43)
It is easily seen that ¥ satisfies the wave equation:
2B —xP=0. (5.44)

Equations (5.5b) and (5.39) show that, under an infinitesimal Lorentz
transformation, ¢ becomes

P = "P="y*p=p*A¥n=$47, (5.45)

because dwy, and dwy in (5.5a) are real and imaginary respectively.
For space reflection (5.4) is satisfied by

A =} g (5'46)

A detailed discussion of the two signs (+) will be given later.
Multiplying (5.37) by the d(?) of (5.24) there is obtained the Klein—

Gordon equation:
(O—) p=0. (5.47)

As we have seen in § 1, this theory corresponds to the cases of
spin 1 and 0. We can therefore separate wave functions of spin 1
and 0 as follows (Fusrwara [1953]).

To select the wave function for spin 0, we introduce an operator

P = % p% 5 5%, (5.48a)
P,=P3,. (5.48b)

Then
P,B,=Pd, (5.49)

because of (5.40). This leads to
PS,,=P(8,,—B,B,)=0
and so, under an infinitesimal Lorentz transformation, we have
PAy=Py. {6.50)
Similarly, for the space reflection (5.46), we have, using
Pry=p3 B3 B3 281 — D) =BL P2 B3 B =P, (5.51)
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the result

PAyp=

—P for (- f (5.
v or (—) type of (5.46) g (5.52)

+ Py for (+) type of (5.46).

Equation (5.52) shows that Py is scalar or pseudoscalar according
to whether the (+) or (—) sign in (5.46) is taken, On the other hand,
under the Lorentz transformations (5.5¢) and (5.48) we have, by
using {5.42),

seudovector for (—) t of (5.46
(P (—) type of ( ); (5.53)

Py = { vector for (+) type of (5.48).

If we introduce the notations Py=U and P,p=U,, the wave
equations
2, U,=—uxU
g g (5.54)

U =—xU,

can be deduced from (5.37) on account of (5.48b) and (5.49). We can
see that (5.54) are the equations for spin 0, and that (U, U,) describes
the scalar or pseudoscalar field corresponding to the 4+ or — signs in
(5.46). Similarly we can pick out the wave function for spin 1 by
introducing the operators

“ﬂ%ﬁ%ﬁgﬁﬂﬁl ou=1’2, 3:

E=l mmma-m w=1 (5.58)
R,=R,p,. (5.56)

These equations show that 1)
E.=—-R, (5.57)
R, B,B:=0, R,— 8y, R,. (5.58)
By using (5.58) it can be shown that S, satisfies the relations
R,8S,=R,(8,8—B8,8)=0,, R,—d, R, (5.59)

which lead to
R, A=a, R,

1) We have, for example
B+ Ry = "‘ﬁ%ﬁ.ﬁeﬁ% (B1B4Bs + BaBeBy) = O
because of (5.38).
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for the infinitesimal Lorentz transformation (5.5a, b). On the other
hand we have

R, for p=1,2,3
By e = % —~R, for u=4 (5.60)
because of (5.42).
It follows that
vector for (—) type of (5.46) )
Ry = ‘ (5.61)
pseudovector for (+) type of (5.46).

If we introduce U, and F,, by means of
Byp=2U,,  Bpy=7F,,
from (5.37), (5.57) and (5.58) we can derive the wave equations
09 F,,—»*U,=0

Fo=2,U,~3,U,\" (5.62)

The last is the wave equation (4.23) for spin 1.

Thus we have proved that the Duffin~Kemmer-Petiau theory is
equivalent to the theories of spin 1 and 0. The general wave functions
in this theory are the following superpositions:

(pseudoscalar particle + vector particle) for (—) type
of (5.46)

(scalar particle + pseudovector particle) for (+) type
of (5.46)

(5.63)

We now introduce a special representation for f§,, in which two
sets of suffices « and &’ (x, a’=1, 2, 3, 4) are used. We shall denote’
quantities belonging to these two spaces by undashed and dashed
symbols respectively. Using y, and y, which separately satisfy the
relation (3.2), and unit matrices I and I, we can show that the
fandamental relation (5.38) is satisfied by the matrices

Bui=t . I'+y. D) . (5.64)

(KEMMER [1939]). Since (5.64) has four rows and four columns for
both primed and unprimed quantities, » has 16 components. In
particular, in the spinor representation (3.68) of y,, % can be
decomposed into the second degree spinors Pun WS s ¥ (r=1, 2;
8=1, 2) where we adopt the notation (1, 2) for a=(1, 2) and (1, 2)



cH. Vv, §2] DUFFIN-KEMMERB—PETIAU THEORY 89

for x=(3, 4). In this representation the wave equation (5.37) can be
written as second degree spinor equations.

As was shown in Ch. IV, (5.54) and (5.62) give the irredueible
representations for spins 0 and 1. Since they have 5 and 10 components
respectively, we must find one more in ‘order to obtain the 16 com-
ponents of p. This one component constitutes an irreducible repre-
sentation, so that it must be a gealar quantity satisfying a first order
differential equation, However, it is impossible to find such an
equation for one scalar component which must also satisfy the second
order Klein—Gordon equation, unless this scalar component is equal
to zero. Usually it is calléd the trivial component. If P, is the operator
picking out the trivial component from  we have

Py=0. (5.65)

We can give a more concrete representation of the ahove discussion
by means of the spinor representation.

Since there are three irreducible representations of which one is
of the first, one of the fifth, and one of the tenth degree, the number
of linearly independent matrices is (1)®+ (5)2+(10)2=126. We pan
prove, by using (5.38) that all products of 8,’s must be expressed as
linear combinations of the following 126 matrices:

Number of
independent
matrices

I 1,

B, 4,

8.8, 12,

8.8, 8, 12,

BB, B, Bs 6,

) 4,

n b, 12, (5.66)

1, By By 24,

Nu B, ﬂg Be 12,

Ny Ty 6,

7y T By 12,

N Ty By B 13,

N s Ty 4,

Ny Mg Bs 4.

Nl _ b
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The non-zero spurs of the matrices of (5.66) are:

Spin 1 Spin 0 trivial

Sp I 10 5 1
Sp 7, 2 ~1 -1

Sp mum, -2 1 1 (5.67)
Sp 7. 7, -2 3 -1

SP 7 1 e s 2 -3 1 /

The spurs of matrices which occur in (5.66) but not in (5.67) are zero.
We now give a matrix representation for the §,.

Trivial case: fy=f,=PFs=F,=0.

Spin 0:
0 0
1 0
0 0
b= 01 Ba= 11,
L0 0
0100:0 0010:0
$ 0 —i
‘o 0
0 0
Pa= i0 4, Be= 0 }.
R . 0
0001:0 i 000 0
Bpin 1:
. e
0 0 0 0
RPI T
07070
0 0 00 —1{ 0
Sl I B 01 0
RN e
0 x 0 01 0 0
________ {0 —1 0 '
—1 006 o : o 0_
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CHAPTER VI

PRELIMINARIES TO QUANTISATIGN

§ 1. Quantum Electrodynamics

The usual quantum field theory has been constructed as an extension
of the quantum theory of eleetrgn and electromagnetic fields or
quantum electredynamics. Therefore it is an important preblem to
see if present theory js gnceessful when applied ta systems other than
systems of electron and electromagnetic field. For many other
elementary particles are now known (cf. Ch. I).

On the other hand, althqugh the present quantum field theory is a
very consistent formalism for free fields, there are still many funda-
mental difficulties for interacting fields. Such difficulties appear even
in guantum electrodynamics. Therefore it would seem curjous that
guantum electrodynamics should have been so successful in explaining
experimental facts. In Ch. XIV, XV and XVIII we shall discuss how
the present theory has attacked these difficulties and clarified them.

In the present Chapter, we shall provide a basis for the general
quantum field theory by seeking the fundamental charactersistics
of quantum electrodynamics.

Although the quantum properties of photons emphasised in
Planck’s theory of black body radiation and Einstein’s theory of
light quanta played an important role in the discovery of quantum
mechanics, the non-relativistic quantum mechanics of ‘““particles”
was developed before the establishment of the relativistic quantum
theory of the electromagnetic “field”’. However, as shown in Ch. III,
Dirac’s relativistic wave equation derived as an extension of nop-
relativistic quantum mechaniecs leads ws to the hole theory. This
implies the existence of an infinite number of particles. We shall see
in Ch. VIII and IX that this latter theory is equivalent to the quantum
theory of flelds with spin 1/2 (IwaNENkKO and SogoLow [1937],
Kravers [1937]).

The electromagnetic field can be described by the vector potential
A, which depends on continuous parameters (for example, space-time
coordinate z, or Fourier amplitudes A4,). Thus an electromagnetic
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field is a system of infinitely many degrees of freedom. Einstein’s
theory of light quanta shows that the state of the free electromagnetic
field can be described by the numbers of light quanta in the various
states. The emission and absorption of electromagnetic waves can be
treated as a change in the numbers of quanta.

Planck’s theory of black body radiation implies that a free electro-
magnetic field can be described as an assembly of simple harmonic
oscillators. The energy of a simple harmonic oscillator of frequency »
has the eigenvalues 2xz(n -+ })#iv. Here n is a positive integer (0, 1, 2, ...)
and can be interpreted as the number of quanta with energy (2nfiv).
Then the emission of one quantum corresponds to the transition
from a (n)-state to a (n-+1)-state. As is well known, the quantum
theory of simple harmonic oscillations can be developed by using a
canonical formalism. (See for example, Dirac {1947].) In the latter
the energy of a simple harmonic oscillator in its lowest energy state
(n=0) is not zero but §(2xfiv) (zero-point energy). Therefore the free
electromagnetic field, in its lowest energy state (i.e. the state in which
there is no quanta), has energy!)

= v3

Eq =2fo d"’?g’—(&;@)'

This shows that the vacuum must not be defined as a state of zero
energy; we shall define it as the state of lowest energy. Such a
definition, of course, means that the vacuum has infinite energy.
This strange consequence can be avoided by the so called “‘subtraction
of the vacuum” device, which implies that observable effects are
merely the differences between the total effects predicted by the
theory and the unobservable vacuum effects. This subtraction is
customary not only in calculation of the energy, but also in every
other calculation. Nevertheless, it sometimes happens that the results
obtained in this way are still infinite.

§ 2. Quantum Theory of General Fields

Maxwell’s equations and Dirac’s equation can be derived from
appropriate Lagrangians by a variational method. We shall assume

1) It is well known from the theory of thermal radiation that the number of
oscillators with interval (v, » - dv) is (87¥%/0%)dy. The factor 2 sppears on
account of the two possible independent; states of polarization of a transverse
wave,
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that this is true for general fields @a(z) (x=1, 2, ...); that is, we shall
assume that the relativistic field equation for Q.{z) can be derived
from a suitable Lagrangian. This Lagrangian must be a scalar and
@~ must be an irreducible representation of the Lorentz group on
account of the Lorentz invariance of the theory. For these reasons
Q. obeys the relativistic wave equation given in preceding Chapters.

As shown in Ch. IV for fields with half integer spin, the Klein
paradox arises from the existence of negative energy states, so it is
necessary that the particles should obey Fermi statistics if the paradox
is not to have absurd consequences.

The exact relationship between spin and statistics for particles of
general kind will be discussed in Ch. VIIL

To extend the discussion of quantum electrodynamics given in
§ 1, we shall quantise free fields by regarding them as a system of
simple harmonic oscillators. If the Qa(z) satisfy the Klein—Gordon
equation (2.3), then quantisation may be carried out. Indeed, each
Fourier component defined by

Qu(@) = | &k Qu(k, t) e—&®

satisfies the equation appropriate to a simple harmonic oscillator,
namely

—%Qulk, t)=(k;Fe; + %) Qa(k, £). (6.1)

It will be shown in Ch. VIII that the energy of a free field is
equivalent to a sum of energies of particles of mass x». This exhibits
the relationship between fields and their quanta.

The state ¥[o,] of a field at a given time is determined by obser-
vations on the three dimensional world, i.e. a space-like flat surface
0, 1). However, this description is not relativistic because the concept
of “‘same time” is not Lorentz invariant. Since the concept ‘‘space-
like” is relativistic, we shall consider a state of a field on a space-like
surface ¢. This state can be determined by independent observations
at all the points of g, because disturbances due to observation cannot
propagate faster than light. Then ¥[o] is a functional of the surface o.
We shall assume that the usual state vector properties of quantum
mechanics (e.g. principle of superposition, etc.) apply also to ¥{c].

In the usual quantum mechanics the Schrodinger equation describes

1) A surface is called space-like when any pair of points on it define a space-
like interval.
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the behaviour of the state vector in time. Extending this fact to
quantum field theory, we shall assume that the change of state from
surface to surface in a time-like direction is described by a Schrédinger
equation for ¥{o].

Now we shall introduce (ToMoNaga [1946], SCHWINGER [1949]) a
vector de, normal to the surface o and with a length equal to the area
of surface element of ¢; given by

dow = (deydaydt, daydagdt, dayduys, + deydades). (6.2)

It follows that when o, is replaced by o, the volume integration [ d3x
ig replaced by ¢ [ do.!). Occasionally we shall use a unit vector
7 (Rumy = —1) normal to o.

The functional derivative of a functional F[s] is defined by

8F[c] . = Flo(x)]— F[d]
ba(zy ug)l_l; dw

(6.3)

where dw={ d*xr is the “volume™ of the -feur-dimensional domain
between o and a surface o(x) which differs infinitesimally from ¢ in
a small region about a point x (cf. Fig. 6.1). Since (6.3) is a Lorentz
invariant definition, we can use it in the covariant Schrédinger
equation.

a’x)

T~

Fig. 6.1

We shall give now some important theorems on functional deriva
tives.
When the functional Flo¢] cam be written as a surface integral

Fulo] = [, dol.F () (6.4,
of the differentiable point function F(z) on o, we can :derive from
Green’s theorem the relation

Ja(a:) Folo]= li)’fq[.fu(z) — [l da, F(z')jdw =3, P(x). (6.5a)

1) d*xr and dfz mean
d*z = dada,da,
dz = dzdzdzydt.
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Therefore, for the functional
Flo] = , doj Fu(z')

with the differentiable point function F.(z'), we obtain the relation

J—a% Flo] =, F (). (6.5b)

Thus we have the following theorem:—

F[o] is independent of the surface o when F(z) satisfies the con-
tinuity equation d,Fu(z)=01).

If Flz, o] depends explicitly on o, (6.5a) can be extended to give

Fulo} = |, doy Flz', o], (6.6a)
5oz; Ful0l = 2, Fls, o] + [, 4o, 5o Fl2, o, (6.60)

where d/d0 signifies derivation with respect to arguments explicitly
dependent on ¢ and 8/do(x) signifies the total variation resulting from
the deformation of the surface o.

REFERENCES
Dirac, P. A. M. (1947). The Principies of Quentum Mechanics. Third
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1) When o is a flat surface g, (6.4) is Flo,] = —1 [ d*zF(z). As is well
known, ¥w,] is time-independent when F,(x) satisfies a continuity equation:
3, F (%) =0. The above theorem is a covariant expression of this fact.



CHAPTER VII
RELATIVISTIC QUANTUM FIELD THEORY

§ 1. Relativistic Quantum Field Theory

We shall congider fields described by the quantities @ (z)(x=1,2,...)
We assume that the Lagrangian, which is hermitic and invarian
under the Lorentz transformation, neither contains x, explicitly no
contains derivatives higher than those of first order. The forme
assumption ensures that the field represents a conservative system
the latter is made in this Chapter alone. Then the Lagrangian densit}
can be written as L(Q,, Q..,), where @, .z} =,0.(z).

The wave equation for @,(z) is derived from the variation principle

8f e L(Q. Qi) =0 (7.1

For the variation @, - @,+ 6@, subject to 6@,=0 on the three dimen-
sional boundary of the region of integration, (7.1) gives the wave
equation

AL oL .
52~ (5007) = © .2

The (K.G.)-condition in Ch. II for the equation of the free field
restricts the form of the free field terra L° in Lagrangian density.
From (7.2) we have the following continuity equation:

3,7, =0 (7.3a)
with
AL
T = = sp Quin + L. (7.3b)

The tensor 7', is known as the canonical energy-momentum tensor,
in terms of which the energy-momentum vector T, is defined by

T, = —if,do/T,(«'). (1.4)

Here W =T, and G} =T, (k=1, 2, 3) are respectively the total
energy and the total momentum of the field on the surface o. From
(6.5b) and (7.3a) it follows that

é
do(z)

T, = 0. (7.5)
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This is the eovariant form for the conservation law of energy-
momentum.

The various field quantities, for example the angular momentum
and the charge, arise naturally by considering the invariance of the
theory (Paurx [1939], [1941]).

We shall first consider the Lorentz invariance of the theory. In an
infinitesimal transformation

’
z, > v, =a,1,=2,+ 0z,

where
8z, = dw,,z,, dw,, = —ow,, (7.6a)
@y =08,y + 610,,, (7.6b)
Q.(z) is transformed (cf. Chapter V) according to
Qul(®) > 'Qu("7) = Qu(@) + 8Q.(z) = Aug Qp(x), (1.7a)
aQa(x)=iS[’:ﬂﬂ Qﬁ(z)awyn (7'7b)
A = [A,p5]=14+18,,6w0,. (7.7¢)
Here 8,, is a matrix with (xf)-element S, .,; and satisfies
8, = —8,,. (7.8)

From (5.8) we have!)
(8 Seal = — 8,805 + 8 Sug + 845 S — 80 S (7.9)
When 38@,(x) denotes a change of Q.(z) in which dz, is neglected,

that is, when
3Q.(x) = 'Q.(x) - Qu.(z), (7.10a)

by using the Taylor expansion of ‘@('z) we obtain
8Q.(z) = 'Qu'z) — 2,Qu(2) bz, — Qu(x)
= 3§Q.(x) — 2, Q.(x) bz,. (7.106)
Equations (7.6a), (7.76) and (7.10b) then give
8Qu(x) = 3 dw,, (2,Qus(2) — 2,Qu @) + Bo.0p Qpl2)).  (7.11)

u<y

From (7.11) and (7.3b) we can derive the relations

S%E— 3Q, + Loz, = 3 M,,, 0w, (7.12)
*.¢ <y

1) Tt must be noted that in (5.8) we have used only the assumption of the
Lorentz invariance of theory.
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where
M, =T, —z,T,+ (w 50=) Simsat @ (7.18!

It must be remarked that M, , is antisymmetric with respect to u

and ».
We shall denote the transformed Lagrangian density by L'('z).
Since the Lagrangian is invariant under the transformation (7.6a, b),

8L = L'("z)~ L(x)=0.,
Taking the Taylor expansion of L'('z), namely
L'{'x)=L'(x)+>, L(x)dz,,

we have
8L +2,(Léz,) =0, (7.14)

where JL is defined by
8L = L'(x) — L{x)

L 3L g, _ (7.15)
= 5z 5@ + 5= 80 =2, )
This follows from (7.2). From (7.14) and (7.15),
2 (aQ 5Q. + Léz,) = 0 (7.16)
Then we find, by using (7.12)
¥ M, ,=0. (7.17)

The quantity M, . is called the angular momentum tensor in terms
of which the total angular momentum P, of the field on ¢ is defined by

P,=—P,=~ifds, M,,. (7.18)
Equations (7.17) and (8.5b) give
4
3o P, =0. (7.19)

This is the covariant form of the conservation law for angular

momentum.
We can also write M,,, in the form

-Mpv.a = T, Tpa — &, Tﬂ: - IH.” + f'.w’ (7'20)
where f, ., is

oL J}L
fp.m = *[" S—Q—,; Sw:aﬁQp b—Q: op: aﬂQﬁ + 55— BQ w:\xﬂ Qp] . (7.21)
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From (7.21) and (7.8)

fu.w == fp,m

dL

fuve — o 1o =' — (m) Sm:apr : (7.22)

We shall now introduce a symmetric energy-momentum tensor 6,, by
means of /, ... The symmetric energy-momentum tensor is defined
as a symmetric tensor that satisfies the equation

—3fsdo, 8,(2)="T,. (7.23)

Then (7.23), (7.5) and (6.5b) give
3,8,,=0. (7.24)
We shall show that the symmetric temsor satisfying (7.28) is given by
b =Ty ~ 35 o - (7.25)

(BeLIwFANTE [1939], RosSENFELD [1940]).
The right-hand side of this equation is symmetric with respect to
the suffices p, »; for the substitution of (7.20) into (7.17) gives

Tp - Trp - aa fu.‘.’v + ba fv.lw‘ =0
on gccount of (7.3a). Since f,,, is antisymmetric with respect to
y and a,
3y Ay f.u.w = 0.
Then, (6.5b) shows that f, do,(6,,—7T,,) is independent of the surface
¢ chosen. Moreover, since f, ,=0, we have, by using the partsal
integratiaon,
i .ra do’, dg f,u.w = .‘-dsx 00 f.u.'l.d = J‘dam ¥ fu.'a =0

when the space-like surface o is flat. Thus, we see that {, do,(0,—7T,,)
is zero for any space-like surface o, and therefore that the condition

(7.23) is satisfied.
In the same manner we can prove that

fo @6, (2,0, — 2,8, + M, .} = 0.
It follows that
P, =1(,do, (x,0,, — x,0,) (7.26)

on account of (7.18). This is the familiar relation between the angular
momentum and the energy-momentum tensors.
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The main problems of the quantisation of fields are those of deriving
commutation relations for the g-numbers @, (x) and of rewriting the
wave equations (7.2) as the canonical equations:

=3, F(@)=[F(@), T,]. (7.27)

Here F(z) is arpitrary functional of @.(x).

This canonical formulation will be discussed in detail in following
Chapters. Equation (7.27) shows that 7, is the displacement operator
in the z,-direction.

The quantisation due to HErsENBERG and Pauri [1929a] and
[1929b] is an example of such a procedure. The quantities P,(x) that
are conjugate to @,(x) are introduced as P,(z) = (—1)2L/3€,., and the
canonical commutation relationships )

[Qu(x, 8), Pp(x', 1)]=18,58(x—X)
are assumed to hold. The @,., can be eliminated in favour of P,, and
then the Hamiltonian H= [ d3%(iPQ,.,—L) is identical with the T,
of equation (7.27). In the following pages we shall adopt a procedure
that is different from this.

In the preseﬁ't Chapter we shall assume that (7.27) has been derived
by a suitable quantisation process, Then (7.3a), (7.24) and (7.17) give

[Gﬂi‘(x)> Tv] = [T,,,(Z), Tr] =0, (728)
[M,, (), Ts] = 0. (7.29)

These equations are the quantum theoretical expressions of the
conservation laws of energy-momentum and angular momentum.
We shall now consider the Schrédinger equation describing a
change of state. Each point on o has a different time coordinate
t=t(z,) (k=1, 2, 3), which is the equation determining the three
dimengional curved surface ¢. Then the surface g(z), which deviates
infinitesimally from o only in the immediate neighbourhood of a
point z, is determined by equation f=t (z,)+ 6t{z;) where di(z;) is an
infinitesimal quantity in the neighbourhood of the point x. Taking
into account the fact that observations at different points on ¢ do not
influence each other, we can rewrite the functional derivative (6.3)
for Yo} as:
é . Ylt(xg) + Ot(xx)] — Ptz
m T[O’] —= UEGI?Z) [ ( k)J‘_}’_J‘ dgxk‘)sg(rk) [ ( k)] ) (7‘30)

and

T

1) S(x—x') = 8z; —a7) O(zy —x3) Olzy—a;).
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Since, in the Heisenberg representation, the state vector is time
independent, we take the covariant Schrodinger equation suggested
by (7.30), namely

0¥Ta]

ot = O (7.31)
The wave equation (7.2) or (7.27) for ¢,, the commutation relations
for @, and the Schrédinger equation are the foundations of quantum

field theory.

§ 2. Complex Fields and Charged Fields

In general, the field quantities @, (x) that appear in the Lagrangian
are components of various fields, some of which are complex. We call
a field a real field or a complex field according to whether its field
quantities are real or complex.

We shall suppose that there is a group of n complex fields described
by n sets of field quantities (@Y, @¥*;j=1,...,n) and that the
Lagrangian is invariant under the phase transformation of all field

quantities belonging to this group; that is, that
Q@ > Qper 232
QU* > QU* g~ (7.
Here j=1, 2 to » and y is a constant. We call such a group the phase
invariant set. If 4 is infinitesimal, the invariance of the Lagrangian
leads to 1)

AL AL :
8L =iy QY + 9 Lok —Qu* =0 (7.33)
[an an ap WQIF “ ang;]

where we sum over j. This equation yields the eontinuity equation

S, N® =0 (7.34a)
i=1
where the ‘““j-field current operator” NJ is defined by
AL
N(’) = — ’I:'(DQ@, Q(J) Q(ﬂ* Q()‘)t) (7.350,)

Here we do not sum ower j.
Taking into account (6.50), we have, from (7.34a),

LI
__21 5o VO =0, (7.36a)

3 QU means not O,QF* but d,QP*).
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where
N% = [, do, N (7.37)

Equation (7.36) shows that XN is constant in time. We shall show
in Ch. VIII that the eigenvalues of N are the differences of numbers
of particles and antiparticles belonging to the j-field.

As an example, we shall consider the Lagrangian which represents

an interaction _
PryxUa (7.38)

Here p, and yy are complex quantities describing the proton and
neutron fields and U, the charged z-meson field. Since this interaction
is invariant under the phase transformation of nucleon fields (y,, ¥y),
(7.86) leads to the conservation of difference of numbers of nucleons
and their antiparticles in any transmutation process induced by this
interaotion. This is called the nucleon conservation.

One of the most important phase invariant sets is that which
consists of all charged fields @¥ (c=1, 2, ...). We postulate that the
Lagrangian is invariant under phase transformation for all charged
fields— that is, that

(c) (¢
Qo Qe g (7.325)

QU — Qe oo

Here ¢ is the elementary electric charge. We define the electric current
J(z) of Q¥-field

J, = — ieN®
o e (7.35b)
= (30(6) Q( ) — Q( " aQ(c);) 2

where we do not sum over (c). Equations (7.34a) and (7.36a) give, in
the present case,

3% JO =0, (7.34b)
d
5o o = O (7.36b)
where the “total charge operator” e, is
e,=Y f,do,J5. (7.36¢)

Eigenvalues of ¢, are interpreted in the value of the total electric
charge on the surface g. Equation (7.36b) expresses the law of charge
conservation.
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In the interaction (7.38), there are two charged fields @,, U,, and
(7.38) is invariant under their phase transformation. Thus, we see
that total electric charge of the fields of protons and z-mesons is
conserved in transmutation processes induced by the interaction (7.38).

We saw in the theory of electron (Ch. III) that the charges of a
particle and its antiparticle are of opposite sign. We shall show in
Ch. VIII that this is generally true. Therefore, we see that the con-
servation of difference of numbers of charged particles and their
antiparticles is equivalent to the conservation of total charge.

When @, is real, J,, (7.34b), is zero. In other words real wave
functions describe neutral fields. The Majorana theory is an example
of a theory of a real neutral field. Well known neutral particles
described by real quantities are the photon and the neutral m-meson.
However, it must be noted that the wave functions of neutral fields
are not always real; neutrons provide an example of this.

§ 3. Examples

We shall close this Chapter by applying the preceding arguments to
some special examples.

ExamprE 1. §,, AND SPIN ANGULAR MOMENTUM
As shown in Ch. IIT and V, the §,, of (7.7¢) are

t Vs — V) Spin %
Bu B> — BB, Duffin-Kemmer Theory (spin 1.0)
[84s 8,y — 8y 05e]  Vector or pseudovector ?)

0 scalar or pseudosecalar

From (7.9) we have
[ =S, —iSg]=1(—18s) etbe.

These commutation relations show that the (—:S8;) (3, k, = eycl.
(1, 2, 8)) satisfy the commutation relations of angular momentum
and therefore have eigenvalues (S,S8—1, ..., —8), where S assumes
integer or half-integer values. Since each particle has (28 + 1) intrinsic
degrees of freedom, we see from (4.22) that § is the spin and the
(28 +1) intrinsic states correspond to the various directions of spin
angular momentum.

1} For the vector or pseudovector field U, (7.7a) reads

Uy = gy Up= Uy + 8w, Uy = U, + 3 (850, — 8,5 8y) O Ue

Thus we have the third line of (7.39).

w = [Sm:aq] = (7'3£
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The total angular momentum P,, is composed of two parts, viz.

P, =PY, + P5, (7.40)
P, =i [,do, (2, Tye — 2, Tp), (7.41)
PS5 = —i [, do, (icgl“—g) 8yip Qs (7.42)

The quantity P4, has the familiar form of an orbital angular momen-
tum, while P%, is interpreted as the spin angular momentum. We
shall show in Example 5, Ch. IX, that PJ, and P35, represent the sum
of the orbital angular momentum and the spin angular momentum
of the particles respectively.
Exavere 2. FREE SCALAR OR PSEUDOSCALAR FIELDS U(x)
The wave equation of U(z) is given in Ch. IV as
(O —#?) Ux)=0. (7.43)

This equation can be derived from the Lagrangian
L= —3U*-3,U—x2U*U. (7.44)
It follows that the canonical energy-momentum tensor and electric
current are given by
T, =23,U* - 3,U + 3,U* -2,U + Ld,, (7,45)
J,=1e(@,U*.-U~-U*-3,U). (7.46)
In this case T,, itself can be taken as the symmetrical energy-

momentum tensor. We can formulate this theory in terms of real
quantities (U?, U®) defined as

Uz) = Vi.z. (UD(z) — i U(z)),
A _ (7.47)
U*(z) = 7 (UN@) + i US(z)).
Then, (7.44), (7.45) and (7.46) are
L= — 3{(,UP)2 + Q,U®)2} — § 22 (U®2 4 U22), (7.48)
T,, =2,0%9 .0, +,U% .2,U® + L3, (7.49q)
J, = e@,U®. U® —,U® . Um), (7.49b)

The theory of the real (and therefore neutral) field with spin 0 can
be derived from the above system of equations by putting U®=0.
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ExampLE 3. FREE ELECTROMAGNETIC FIELD A ()
The wave equation of the free electromagmetic field is (cf. Ch. IV)

O4,(x)=0. (7.50)

This can be derived from the Lagrangian density
L= —éva F,uv_%(bp A_u)a, (7.51)
F,=23,4,-3 A4, (7.52)

Here F, is called the strength of the electromagnetic field. As shown
in Ch. IV, this theory is invariant under the gauge transformation

A (x) — A () +2,4(z), (7.53)
A(z)=0 (7.54)
where A(x) is c-number. Consequently the electromagnetic wave is &
transverse wave with two independent components (i.e. two states
of polarization).
Equation (7.50) can be written in the form
LA an - 3,00, A.ﬂ) =0. (7.55)

As shown in Ch. IV, the vector potential 4, must also satisfy the
Lorentz condition d,4,=0 which ensures that the theory is based
on an irreducible representation of spin 11). However, it will be
shown in Ch. VIIT that this condition is incompatible with tem-
mutation reldtion of A,. Therefore, instead of 3,4,=0, we shall
impose as the Lorentz condition, the auxiliary condition on the state
vector given by

P.4)¥% =0 Lorentz condition. (7.56)

(See Fermx [1932]).

The 45t equation implies that only states in which the eigenvalue
of 2,4, is 0 occur in nature. We shall now prove that (7.56) is compat-
ible with the wave equation When on a flat surface o, with time ¢,

the conditions
(b,, A“ (x, 1)) ¥ =0 /

(a2, 4, (x, ) =0\
are satisfied, then we can prove, by the repeated use of (7.50), that
()" (0, A, £)¥F=0. (7.58)

(7.57)

1) When this Equation is abandoned, & negative energy field with spin 0 is
mixed with positive enérgy field with spin 1 in the electromagnetic field.
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Indeed, (7.57) leads to
™0, A, (X, ) ¥ = (— 1)™ (2 %)™ 0, A, (%, 8) Y=0
and
P10, A, (X, 1) T = (— 1™ (3 0%)™ 032, 4, (%, H) ¥ = 0.

On the other hand, 3,4,(%,t') on the surface o/ of time #', can be
written as a series expansion
< @
0 A4, (x, ) = zo_’—"!_ (e (. 4, (x, 1)),
e

Thus we have
2,4,(x,t)¥=0. (7.59)

This shows that Lorentz condition is satisfied throughout the universe
as long as the initial condition (7.57) is satisfied. Therefore we can
impose the Lorentz condition by ensuring that the state function
satisfies the initial condition (7.57).
From (7.56) we have
23,4, F=0, (7.60)
which gives
2, F¥=0. (7.61)
This equation has a form similar to the classical Maxwell equations
and shows that Maxwell theory is valid in the states realized in nature.
The canonical energy-momentum tensor 7', derived from Lagrangian
(7.51) is '
TW=%(FMF70‘+ Fvano') - iFgaFocap'l'bvo'BpAv

% (7.62)
"‘&‘(aaAa)z 5,,,-1'- '}(Fw'boA#*'baA# : Fw)'

The symmetric energy-momentum tensor can be obtained by using
(7.25) and (7.62). Using (7.62), (7.56) and (7.4) we find the total
energy of the free electromagnetic field on a flat surface o, to be

Y*T, ¥ =4¥*[d°2[E*+ H2]¥ (7.63)
where E and H are the electric and magnetic strengths given by
E=i(~F14’ FM’ F34), H=(Fw, F31’ Fm). (7.64)

Then (7.63) has the familiar form of the energy of the classical Maxwell
field.
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ExaMPLE 4. INTERACTION BETWEEN ELECTROMAGNETIC FIELD AND
CHARGED FIELDS
The Lagrangian for an electromagnetic field and a charged field in
interaction is made up of three parts—the Lagrangian L¢ (see (7.51))
of the free electromagnetic field, the Lagrangian L¢ of the free charged
field, and an interaction term L’. Thus

L=ILt+ L+ L. (7.65)

The electromagnetic interaction term L’ must be constructed so that
the total Lagrangian L is invariant under the gauge transformation

; - Gauge transformation °
ied(z) &
Qa(x) - Qa(x) e ’ Q:(x) -—>Q:(.’E) g~ iedl ), of the first kind

. (7.66)
4,(2) > 4,@) +, Aw).  Cpuge trevsfomation \
Here /(x) is a real c-number satisfying the equation
O A(z)=0. (7.67)

A pauge transformation of the first kind is an extension of the
phase transformation (7.32b) to the case of & A(x) which is not con-
stant. A gauge transformation of the second kind is identical with the
transforriation (7.53). Therefore L¢ is invariant under the trans-
formation (7.66). The following changes are induced by (7.66) in L¢: —

2% Qn > (2 Qs + ie (3, ) QY ) (7.68)

2 Q%> (2,08 — ie (3, A) @2y et | '
The changes induced by (7.68) in L°+ L’ must be cancelled by the
contribution from the second kind gauge transformation in L’. Since
L is invariant under phase transformation (7.32b), L+ L' must be
derivable from L* by the followihg procedures:

(i) 2,2, and 3,Q, in L° are replaced according to
b;‘ Qa - (a# - 2:6 A;‘) Qa 2 (7.69)
2@ > Q. +1ed,) @)

(ii) Any terms which contain* 4, in the form F, can be added.

We shall call the interaction terms derived from (i) and (ii) the 4,
type and F,-type interactions respectively 1).

1) Moreover we can add the terms containing derivatives in the form of the
right hand side of (7.69).
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Tt is easily seen from (7.69) that the electric current (7.355) can be
written, for the A,-type interactions L’ as

oL
Iy =5 (7.70)

When L’ contains the F,,-type interaction. we extend the definition
of the electric current by

J,=JP + JP, (7.71)
AL
JU o &

AL’

{2y ———
JG ~23,(2%0).5
Since F,, is an anti-symmetric tensor, J? satisfies the continuity
equation

d, JB=0. (7.73)
From (7.345) and (7.73) we obtain the continuity equation of the total
current,
d,J,=0. (7.74)
We can rewrite (7.71) into
oL/
Ju =31 (1.75)
where 8L'[dA, is defined by
L,
34, =34, Al

Taking into account the wave equation (7.2) and the fact that L* and
J, are defined by (7.51) and (7.75) respectively, we can easily prove
that
O4,=—J,. (7.76)
This shows that (7.75) is a reasonable definition of the electric current.
Since the wave equation (7.76) differs from that of the free field,
we must reestablish the compatibility between the Lorentz condition
(7.56) and wave equation. This proof is obtained in a similar way to
the free field proof (cf. (7.57), (7.58), (7.59)), because we can derive
again (7.58) from (7.57) by using
0. 4,=-2,J,=0. (7.97)
From (7.56) and (7.78) we have
Q. F.)¥=-JY. (7.78)
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The last equation has the familiar form of the classical Maxwell
equation.

We shall now consider a charged field interacting with a magnetic
field H constant in space and time. To the approximation in which
second and higher powers of H are negleeted, the magnetic moment
is defined by the space-vector m given by

H-m)= [, d%zL'. (7.79)

Here L’ is the interaction Lagrangian ). Then from (7.70) when the
F-type interaction is zero %),

f,d%J, A, ~ (H-m). (7.80)

On the other hand, as is well known, we can take the gauge in the
case of constant magnetic field such that

A=3}[Hax], 4,=0. (7.81)
Substituting (7.81) into (7.80),
m=4% [, d% {x A J]. (7.82)

In the case of a charged field of spin 0 (i.e. a scalar or pseudoscalar
field), the Lagrangian given by method (i) is

L=—(Q,+ied,)U*-(3,—1ed, ) U—~x2U*U+ L* (7.83)

which gives the electric current
J,= —1e(d,U*-U—U*-3,U)—2e*4,U*U (7.84)
on account of (7.35b). This can also be derived directly from (7.70).

ExampPLE 5. VECTOR OR PSEUDOVECTOR FIELDS U, (x)
As shown in Ch. IV, the wave equations for U,(x) are

3,U,,+#2U,=0, (7.85a)
U,=3U,-3U, (7.85b)

Equations (7.85a) and (7.85b) lead to
3, U,=0. (7.86)

1) As shown in Ch. X, to the present approximation, L' is equal to (— H') :
L' ~ — H', where H' is the mteraction energy.

2} Where the symbol ~ means the neglect of second order and higher
powers of ¢H.
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Now (7.85a) can be derived from the Lagrangian

Le=—-3ULU, —x2ULU,. (7.87)
Here U}, and U}, are defined by
U= (U}, Us, U, iU = Uz, Ug, U3, — UY) and U}, =3, U} =3, UL

Discussions in § 2 remain to be valid even when we replace * by t.
The Lagrangian (7.87) leads to the canonical energy-momentum
tensor given as

Tp=Ul -3, U, +3,U}-U,, + L 6,,. (7.88)
The tensor (7.88) is not symmetric; symmetric energy-momentum
tensor is obtained by using (7.21), (7.25) and (7.39) to give
6!” = T#v = (U:Q Un + U;‘ U,(,)
=Ul, U, +ULU,+=2ULU, +UU,) (7.89)
— 0 (3 Uge Uy + 22 UL U,).
The A,-type current derivéed by method (i) in Example 4 is
JP =ie (UL U, -~ U U,)
—~e2(24,UU,-A,ULU, - 4,0l U),).
According to method (ii) in Example 4 we can add the F,-type
Interaction Lagrangian

Py(ULU,~USU)F, (7.91)

(7.90)

where y is a real constant. This equation gives the electric current J, as
JP =iyd, (UL U, -~ Ul U,). (7.92)

Since (7.91) has the form of (7.79) for constant magnetic field, we
see that the contribution of (7.91) to the magnetic moment is

miP =iey [z (Ut U, — UL U)  (k,1,m = cycl. (1, 2, 3)).

On the other hand, the magnetic moment m® due to the current
JP is given by (7.90) as

md =§ [d3z{xA JV] d%

~ B Bz, (UL, U, — UL U,) — 20 (UL U, — UL Uy,
(k, I, m = cycl. (1, 2,3))

where the symbol ~ means the neglect of second order and higher
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powers of e. This m{P can be rewritten (on account of (7.855) and
(7.88)) as
mP ~ —te[dx (U U, - UL U)
—tefd2 UtL, U,
- %a J &2 {20, (UL U, — ULU,) — 200, (U} Uy — UL UY)],
(k, 1, m = cyel. (1, 2, 3)).
Here L, is the orbital angular momentum operator of the particle,

namely
le =2 bm — Ty Bl.

For particles of low energy the second term is negligibly small
(@U, ~ 0) because of the orbital angular momentum operator L,,.
The third term can also be neglected, because (7.85a) leads to

U, ~ -’%6434 U,= —;‘1—23437, U, ~0.
Thus, we have
mP~ —de[dx (Ul U, — U}, U), (k, I, m = cyel. (1, 2, 3))
and therefore, the total magnetic moment
miP + mP ~ —te(l — ) [P (U U, — UL U,

for particles of Iow energy. In other words, the current J@ affects
the magnetic moment of particles of low energy by the factor (1—y).
For a real wave function U, (x) (ie. a neutral field) we have 1)

L=-3}U,U,~%aU,U, (7.93)
T = U2, U, + L, . (7.94)
b = Uy U + 22U, U,

(7.95)
—8,(3Up Up+ 122U, U,).

ExAmMPLE 6. STUECKELBERG FORMALISM FOR THE VECTOR FIELD

In this formalism (STvECcRELBERG {1938]) the theory of the vector
field takes on a form very similar to that of the electromagnetic field.

In this theory the vector field is described by the 5 components
of a vector 4,(x) and a scalar B(z). Therefore, we must introduce a
new auxiliary condition in order to eliminate the redundant com-
ponent. This condition can be written in a form similar to the Lorentz
condition.

1) It must be noted thai, for the real vector field, the real field quantities
are (Uy, U,, U, Ug) and therefore U, = iU, is imaginary.
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The Lagrangian in this theory is?)
L=-3A4}-3, 4, —x* A, A, -3, B"-3,B—x*B'B, (7.96)
which gives the wave equations
— 2 -
(O - 4,x) = 0 -
(O—#*)B(z) =0
The initial conditions on a flat surface ¢, at time ¢ are
(4, +xB)¥ =0
(AL +xBY¥P =0
20,4, +2B)¥ =0
2R 4L +xBNYWV =0.

(7.98)

When these are satisfied, we can easily prove, by using (7.97), that
at the same time ¢,

o) (2, 4, + xB)'If=O€
P (. AL +xBY¥ =0

(see (7.58)). By the same discussion as that used in quantum electro-
dynamics, (see (7.59)), it can be proved that the wave equations
(7.97) are compatible with the auxiliary conditions

(0,4, +xB)¥W =0
@uAL +x B ¥ =0.

Under the initial condition (7.98) the equations (7.99) can be writtén as
.U)¥P=0, 0, U)¥=0, (7.99)

1 1
Uy = .A# -+ = oy .B, UL = AL + p 3“ Bt. (7.100)

(7.99)

This shows that the relation 3,U,=0 in the usual theory of vector
fields (cf. (4.23b)) is valid for the states realized by nature.
It is easily seen that this theory is invariant under the trans-
formation
A,—~A4,+3,4, B>B—xAd
(O-»)4=0

This ensures that the redundant component has no physical effect.
Since the transformation for 4, in (7.101) has the same form as the

(7.101)

1) Al = (A}, A}, A%, 4D, Bt = B*.
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gauge transformation for the electromagnetic field, we shall call it
by that name.

For a real field (4,, B) (ie. a neutral field) the Lagrangian and the
auxiliary condition are

L=—%@.4,-3,4, +%*4,4,) — (3, B -3,B + »*B?) (7.102)
and
(.4, +B)¥=0 (7.103)
respectively.
We shall discuss the detailed relationship between this neutral
vector field and the electromagnetic field in Ch. XI.

Exampre 7. DurrIN-KEMMER-PETIAU THEORY ()
In the Duffin-Kemmer theory for spin (0, 1) the wave equation is

(Budu+#)p=0 (7.104)
{ef. Ch. V).
This equation can be derived from the Lagrangian
L= —3(B2,+x)w. (7.105)

Whence the canonical energy-momentum tensor and the electric

current are
Tw=980v, (7.106)
Jy=1epf,p. (7.107)

From (7.21), (7.39) and (5.38)
fﬂ.vu = % 'p {ﬂa [:3;4: ;31'] + ;37 [ﬁa: ﬁp] - ﬂ.u [ﬂw ﬁu]} Y g (7.108&)
= 1/—) (ﬁd ,By ﬂv - ,Ba 61’;‘) ¥

g fp.va = baﬁﬂaﬁpﬂvw + @ﬂdﬂpﬂvbaw - "pﬂaau'paw;c - bu";ﬂa’lpaw 2
= ’“7’,5;4/3#’ - i)ﬁvﬂyﬂaaaw + @ﬁ,b,,'tp - b,iﬁﬂ,wéw (7.108b)
= h (P (BBt BuBY — 00 BV} + DB )

Thus the symmetric energy-momentum tensor is

6;«7 == {ﬁ (ﬂ[lﬂv + ﬁv ﬂu) p— ,uv"/.”/)}' (7'1090)
In particular, the energy of the field is
W = — 0y =2p*y (7.109b)

(cf. (5.43)).
The electromagnetic interaction can be derived by using (i) and (ii)
of Example 4.
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ExamPLE 8. SPINOR FIELD ()
The wave equations for p are
(Vuau"*"‘)’l’ =0 (7'110)
WPyu—xPp =0,
which can be derived from the Lagrangian
L=—%(ﬁ)’pbu’l’—buﬁ'hw)-%ﬁw- (7.111)
This gives
Tpv=%(¢%3ﬂl’ —Duﬁ‘%’l’): (7'112)
fu.w =759 {yo' [y;n Vo] + ¥y [V 7;4] — Vu [ Yol
+ Ve %1 Ve + o ¥l ¥ = 70 Vel vi}w
= }ﬁ(‘}’a?p‘}’v —yaapv '—7766;4 + Yu 500)1/”
ao‘f,u.vo‘ = i(ﬁ}’,bﬂ‘lp -ﬁwbvw) - i‘(b,,‘lﬁ Y — %P yﬂw)’
O =3F 7%yt P2.0y) — i(bu“? vyt Y- VMP)~ (7.113)
The electromagnetic interaction may be obtained by methods (i)
and (ii) of Example 4, and is

, - e 1 -
L =ze¢?’u’/’A.u+'8',%91/)(7;:?’»‘"?’"7#)1/)‘2?;‘” (7.114)

with a constant g. The first and second terms are 4 ,-type and F,,-type
interactions respectively. Since the latter term has the form of (7.79)
in a constant magnetic field H, it gives rise to an intrinsic magnetic
moment. The electric current derived from (7.114) is

I, =JP 4T, (7.115a)
JP =iefgy,p, (7.1156)
IP = - 0e2,{P vurs — 72 v) ¥} (7.1160)

Using (3.2) and the field equation (7.110), we can rewrite the current
J3 due to the A4,-type interaction as

ie

TP = = 220 {F s — %7 ¥}

+ 3 QPP — P2y
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The last term is usually called the convection current. The magnetie
moment due to JP is:

m =} §, d5 [x 2 J¥],

= = e P F (= Ym )V

+ P (v — P L ¥) (7.115d)
— 12 [ P2 (B (P Vm 74 ¥) — T % (F 7174 )}
(k,1, m = eycl. (1, 2, 8))
where
le = 270, — xmb;.
On the other hand, the magnetic moment due to J#® is
m = ::_f; Q.fdsx Pt Ym — Vm YDy (k. l,m = cycl' (1,2,3).)

{cf. (7.79)). The second term in {7.115d) is negligibly small on account
of the orbital angular momentum operator L, for the particles of
low energy (0y a 0). Furthermore, the third term in (7.115d) con-
tributes a negligibly small quantity to the expectation value of the
magnetic moment of a low energy state (k ~ 0) of the particle. For
we have
k02 (PVuyew) kx0) = (k0 |- Py Qe +2)p +
TV — %) P vaylk=0)
=2xik~0|y*o,y ks 0)=2xik, /Ky~ 0

on account of (8.81). Thus the total magnetic moment of the low
energy particle is
kr~0|myka0)=(a~0{mdP+mZ k~0)
- (1=0) (K~ 0] F (1 ym — vm ) ¥ K~ 0)
(k, I, m = cyecl. (1, 2. 3)).

In other words, the current J? affects the magnetic moment of the

low energy particle by a factor (1—p).

The scalar interaction (coupling constant f) and the vector inter-
action (coupling constant g) between a real (and therefore neutral)
scalar field U and a spinor field y is

L'=fgpU-+igpy,vd,U. (7.116)
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The pseudoscalar interaction (coupling constant f) and the pseudo-
vector interaction (coupling constant g) between a real (and so neutral)
pseudoscalar field U and a spinor field ¢ is

L=ifpyspU+igPysv.vd.U. (7.117)

The vector interaction between a real (and so neutral) vector field
U, and a spinor field y is

L'=ifgy,pU, (7.118)

The pseudovector interaction between a real (and so neutral) pseudo-
vector field U, and a spinor field v is
L' =i pyspuap U (1.119)
We shall explain how these interactions are derived by considering
the particular case (7.118).
(i) The form §y,yp U, is adopted for reasons of Lorentz invariance.
(ii) Since the hermitean conjugate operator of $y,pU, is — Py, »U,,
an imaginary factor ¢ is introduced in (7.118) because of the
hermitean property of the Lagrangian. Thus we obtain (7.118).
Other interactions can be derived by the same procedure.
We ghall now consider the interactions between four spinor fields
y° v, y°, v°. The linearly independent interactions that contain no
derivatives are given by (3.5) as

L% (a, b, c, d) = g (§* y* ¢*) (§° y* ¥°) + hoc.
=g 5(1?" ) (§° v?) + h.c. (scalar type, S)

L? (a, b, ¢, d) =4§29‘W 74 %) (F° p4 y%) + hc. ,
=g(@ 7. ¥) (F v ¥°) + ho.  (vector type, V)
11
L® (a, by, d) =4§89(¢“ YA P (F v yP) + hee.

== 319w »IV) (F[vw 7,1 ¥) + hec.
g (tensor type, 7T) (7.121)

15
Ia,by0,d) = 3 (@ 4 P) (7 v4 vP) + he.

== g(P Vs 7u V) (P V574 ¥*) + hec.
(axialvector type, 4)
L®(a, b, ¢, d) = g(§° y'® ¢) (F ¥ ) + h.c.
=g(P 75 V") (¥ s ¥) + hec.
(pseudoscalas type, P)
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2

where “Ah.c.” means ‘“hermitean conjugate’’. These interactions are
obviously invariant under Lorentz transformations.

Any Lorentz invariant interaction containing no derivatives can be
written as a linear combination of the five interactions in (7.121).
In particular, if O is some product of the y,, the interaction

0 v*) (7°0°)
in which the order of (a, b, ¢, d) is interchanged can be written as such

a linear combination. For example, we can show that the scalar
interaction L% (e, d, ¢, b) can be written as

5
L®(a,d, c,b) = g(p*¢*) (7 y*) = } 3 L¥(a, b, ¢c,d). (7.122a)
E=1
In fact, using (3.44a) we have

(V) V) =t Ry R v ve
which agrees with (7.122e). Quite generally, we have (Frerz [1936])

L% (a,d, ¢, b) = a¥* L® (a, b, ¢, d) (7.122b)
with
t 1t t %
1-3 0 3 -1
[@¥]=]4 0-% 0 4 (7.123)
1 3 0-3 -1
Lt -+ t-%1 #%

As an example we shall calculate @?. From (3.44b) we obtain

G P W) (Fvu¥®) = 2 (@ V4 °) (P vu v2 yu ¥®) = LP(a, b, ¢, d)
— 3 L®(a,b,¢,d) + 3 L9 (a, b, c,d) — L®(a, b, ¢, d).

on account of the relation

4 for 4=1
-2 for 4A=2,...,5
VYu¥ Yu= 0 for A=86, ...,11

2 for 4=12,...,15
—4 for A=16
When one of the wave functions ¢, yb, v°, ¢? is a pseudospinor,

Lorentz invariance requires the interactions different from (7.12la)
(cf. § 9 of Ch. III).
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As shown by (7.122b), the classifieation into the types S, V,T, 4, P
depends on the order of the suffixes @, b, ¢, d. In the theory of g-dis-
integration we usually adopt the order a, b, ¢, d in which y* denotes
a proton, y® a neutron, y° an electron and y* a neutrino.

Experimental information on these f-interactions is provided by
the energy spectrum of electrons, life time of f-decay, spins and
energy levels of parent and daughter nuclei, etc. In recent years, the
experimental investigation of the energy distribution of the §-spectra
from either allowed or forbidden transitions and the classification of
the comparative half-lives of the various fS-active substances yield
substantial agreement with interactions in (7.121). (See FrmaorD
[1951]). Moreover, they support the existence of 7' and select a linear
combination of (8,7, P) ag being the most promising interaction.
(See Wu {1952].) However, it is not known whether g-disintegrations
are induced by the direct interactions between four spinor fields or
by intermediate fields of integer spin (ef. Ch. XV).

ExampLE 9. RARITA-SCEWINGER THEORY FOR SPIN 3/2 FIELD vy,
The wave equation of p,, namely

(7030 + ")v# - %(7#3’ +}’»b,‘)fl’y + %7# (70% —")%?P. =0
can be derived from the Lagrangian

L = {ij“(ya b@ + x) 'I’u - %ﬁ#(y# B' + ?’v Dﬁl) 1#' + (7.124)
+%¢uyn('yebo —")%'/’v}-

Exampre 10. Isororic sPIN

Since the transmutation from a proton to a neutron is accompanied
by the creation of a n*-meson or the annihilation of a z—-meson, it
must be induced by the interaction

FPO0p® U* = §07_p U* (7.125)

a 0
p= [“’m = [ °]. (7.1264)
Y 1 0

Here y™ and ¢® are the wave functions of a proton and a neutron
respectively, and @ is a certain product of the y,. In (7.125) the spin
of the n-meson field is assumed to be zero (cf. Example 6 of Ch. X),
_ to be a matrix with 2 rows and 2 columns, in whizh all matrix
elements axcept the (21) element (i.e. P — N transmutation), which

with
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is 1, are zero. Therefore, the hermitian conjugate matrix 7, of 7_
induces the transmutation N — P. The total interaction is obtained
from the sum of (7.125) and its hermitian conjugate term 1)

L={p0t_pU*+ f§pO01 9 U, (7.127)
where 7, is
01
= . 7.126b
o (0 0) ( :

Using the matrices 7, (k=1, 2, 8) given by

0 1 0 —1 1 0
Ty = , To = s = , 7.128
' [1 o:' 2 [z 0] * [0 «1] (7-128)

7, and 7_ may be written as

T.=%(r; £+ 7,). {7.129)
The matrices 7; satisfy the commutation relations
[37s, 37 ] =137, k, 1, m=cyel. (1, 2, 3). (7.130)

This shows that (1/2)z;, has the same properties as the angular momen-

tum (1/2)o, (see (3.55)). It is seen from (7.128) that the two eigen-

values +(1/2), —(1/2) of the matrix (1/2)z, correspond to proton and

neutron states respectively. In this formulation proton and neutron

are regarded as different states of the same particle, i.e. a nucleon. The

matrix 7, are usually called the isotopic spin of the nucleon.
From (7.47) we have

U+ U%)=V2 3 7, U® (7.131)
k=1

Thus, by (7.127), the interaction between a charged field U%® (k=1, 2)
and a nucleon is

2
L=V2f3 301, 9 U%. (7.182)
k=1

On the other hand the interaction between real (and therefore neutral}
scalar fields U®, U® and a nucleon has in general the form

L,=V2 f §0ryp UP +-9 0y UW. (7.138)

We shall now introduce the meson field operators *
L, = (—i) ,UA V) (7.134)
Lio]l=1f,do,L,, (7.133)

) We can always construct O to satisfy the relation fO =f*y,0%*y, by
adjusting the phase factor of the constent f.
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where U means the three dimensional vector with components
U%(k=1, 2, 3) and symbol o denotes a vector product. From (7.49b)
we see that el;[o] is equivalent to the total charge operator e{™ of
the meson field, namely

e =elg[o]. (7.136a)

The total charge operator ¢/ for the nucleon field is given by (7.37)
and (7.1155) as

e =ief,do, Py, 3 (L+ 79y
' pEE : (7.1365)

= 5 (ra[o] + I[0]).

Here the quantity 7,[c] is the third component of the three dimensional
vector t[o] defined by

tlol=if,do, Py, Ty
and Ifo] is

Iloe]l=1if,do, Py.y.

Comparing this with (7.35a), we see that eigenvalues of I{o] are just
numbers of nucleons. Introducing the operator J given by

Jlo]=4x[o]+L[o], (7.137a)

ey=ef® +-efM=e{J3[0]+31[c]} (7.187b)

is the total charge operator of the meson-nucleon system. This
operator 48 time independent because of the charge conservation law.
The operators J{o], (1/2)t[s¢] and L[c] are called the total isotopic
spin, nucleon isotopic spin and meson isotopic spin operators respec-
tively.

We introduce a rotation by an angle « around the unit vector e
in a three dimensional space, i.e. isotopic space. Under this rotation
U% and $07,y are required tolbe transformed as two three-dimensional
vectors according to

we find that

s = q, UD (7.138a)
P05, p=ayPOny (7.138b)

where [a,,] is the well-known transformation matrix for a three dimen-
sional vector under this rotation. The operator ¢ is also linearly
transformed by

w=Ry. (7.138¢)
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From (7.1385) and (7.138¢) we have
iy R=oaym,. (7.139)
This equation is solved by the R given by

R=exp{-‘i%(r'e)} (7.140a)

o

& . .
=cos§+z(r-e)sm2

In particular, for an infinitesimal rotation, namely

Qg = Oy + Sy
6w7d= bl 5'w,1,
the equation (7.139) is solved by the R given by
with .
m=tmu—un) = '21: Tms (b, I, m = cycl. (1, 2, 3)).

On the other hand, by using the commutation relations given in
Example 1 of Ch. VIII, we can derive the relations !)

[¥(2), Tulo(@)]]=T1p(2) (7.141a)
U® for m =k
[U™(2), Ly[o(x)]]=<{—U® for m =1 (7.141b)

0 form#k m=l.
Here, the quantities 7,[0] and L;[o] are defined by

4
talo] = % 7a{o]

Lulo] =t La[o]

and o(x) is a space-like surface passing through the point 2. Since the
field operators yp(x) and U®(2’) with x and 2’ on a space-like surface,
commute with each other, we have

[Trilo(®)], U™(z)]=[Lulo(2)], p(x)]=0.

(k, I, m = cyol. (1, 2, 3))

1)y For example,
(UD(2), Lyglo(2)]] = © fo) 9075, [TV (), 2,UD(z") - UB(2') — 3, U (z). UD(2')]
= — [t 407, 3, A& —2")- UD(2') = [ d*' §(x' — x) UB(') = UB(=z).
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Thus. (7.138a) and (7.138¢) can be rewritten

‘p(x) = R~1p(x)R (7.142a
'U®(z)=RIUB(z)R. (7.1428
Here the operator R is defined by
R=I+4{Jylo]dwy (7.143a
with
Julo]l =iJd,[o] . (7.143b

= i{} tu[0] + Lulol}, (k. I, m = cycl. (1, 2, 3)).
The relation (7.142a) can be proved as follows:

R1y(x)R=y(x) + } [Julol, w(x)] dwy
=y(x) + $11 dwy w(T)
= Ry(z)="y ().

The relation (7.1436) can be proved in the same way. We see, from
(7.143a, b), that a given field quantity F(z) is transformed into 'F(x
under the infinitesimal rotation, acecording to

'F(z)=R-1F (2)R. (7.144

This with (7.143a) shows that the total isotopic spin J[o] is the
generating operator of the rotation, and commutes with any quantity
that is invariant under the rotation in the three-dimensional r-space.
The theory is said to be charge independent when its interaction
Lagrangian is invariant under the rotations in the isotopic space. In
the charge independent theory, J{o] commutes with the interaction
Lagrangian and is therefore time independent;—eigenvalues for
magnitude and the third components of J[¢] are good quantum
numbers.

Since the vector J[o] is the generating operator of the rotation, its
components satisfy the commutation relations for angular momenta,
that is:

[Jilol, Jifo]]l=id,[0] (%, 1, m=cycl. (1, 2, 8)). (7.145a)

This leads to

[37:[0], dnlo]]l=%v,l0] (k, I, m=cycl. (1, 2, 3)) (7.145b)
[Llo], Llo]l=il,[o] (k,1, m=cyecl. (1, 2, 3)). (7.145¢)

These relations can also be derived from (7.130), (7.141a) and (7.1415).
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Thercfure, (1/2)7,,[6] and L,,[o] have the eigenvalues (8, S—1, ... —8),
where 8 assumes integer or half-integer values.

Niviee the one nucleon or nne m-meson states have two or three charge
states respectively, 8= 1/2 for (1/2)r[~] and S=1 for L[o] respectively.
Iu other words, the magnitude of isoropic spin is 1/2 for the nueleon,
and 1 for the n-meson. Since els[o] and (¢/2) (L[o]+7;3[0]) are charge
operators for the m-meson and nucleon respectively, we obtain

Lol ojw (o) = eo(ax) (7.146a)

\4—1 for o= +
7 = 0 for =0
?

—1 for o= —
3(F{o]+75[0)) o(P)=w(P) (7.146b)
3 [e]+73{c]) w(V)=0. (7.146¢)

Here w (+), w(—) and  (0) are the state vectors for the =+, z— and
n%-mesons, respectively, and w(P) and (V) for the proton and
neutron, respectively. Furthermore, since I[o] is equal to the number
operator N for the nucleon (see (7.37)) its eigenvalues are the dif-
ferences of numbers of nucleons and antinucleons. Thus we have:

1[o] o(P)=w(P) (7.147a)
Ifo] wo(N)==w(V). (7.147b)

The following relations can be obtained from (7.1466,¢) and

(7.147a, b):
$I[o]—5[0]) w(P)=0 (7.1480)

(I [o}—13[0]) (V) =w(N). (7.148b)

As the projection operators of the three charge states of the ome
m-meson, we can adopt the operators n+, n—, n® given by 1)

nt=4{L3[o] + (Ls[0])%} (7.149a)
n~=}{— Llo]+ (L[o])%} (7.1490)
n® =3(L[o]- L[o])—(Ls[o])* or
n?=1—(L4[0]) (7.149c¢)
10 (8) =0,z (x, 8=+, —,0) (7.149d)

(see Warson [1950]). On the other hand, the projection operators

1) In (7.148¢c) the eigenvalue of (L[o]. L[o]) i8 S(S+1) for isotopic
angular momentum S.
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for the one proton state and the one neutron state, respectively, are

written as
n* = H(I[0]+7[0]) (7.150a)

n¥ =}(I{o] —5{a]) (7.1500)
by using (7.146b, ¢) and (7.148a, b).
The interchange of proton and neutron (the so-called 7'-trans-

formation) is represented by
' =Ty (7.151a)

o1
T=L1 O:I—-'L'l.

Py =epny, (g =1),

with

Since

1 for k=1

_ V=1 for k=2
°= —1 for k=3
1 for k=4,

the interactions (7.132) and (7.133) are invariant under the T'-trans-
formation as long as U® is transformed as

U = 4, UO (7.151b)
1 o0 0o 0
_{0—-1 0 0
0 0 0o 1

We call this the 7'-transformation of the U-field. A theory which is
invariant under the 7-transformation is called charge symmetric.

In particular, if f=# and g=0 in (7.132) and (7.133), the theory is
charge symmetric and charge independent because of (7.138a, b).
However, since the electromagnetic interaction is not invariant
under the T-transformation or rotation in r-space, we can have an
approximately charge symmetrical or independent theories by
neglecting the powers of (e/f), but only when f > e. The mass difference
between the proton and the neutron also destroys the charge sym-
metry and independence (cf. § 5 of Ch. IV). However, it is possible
that this mass difference arises just from the electromagnetic inter-
actions.
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As an example of the application of the isotopic spin conservation
law, we now consider the production of z-mesons by collisions of two
nucleons. The processes concerned are

P LtPsatt+ D (7.152q)
N+ P-s>a+ D (7.152b)

The isotopic spin of a (P+ P)-system is 1. Since the state of the
deuteron is 3§ (orbital angular momentum !=0, spin S=1), its
isotopic spin must be zero (because of Pauli’s exlusion principle). Thus
the isotopic spin cf the (z+ D) system is 1. On the other hand, the
isotopic spin of the (N + P) system has two eigenvalues, 1 and 0, which
correspond to the symmetric part (1/V2)(wy(P)w,(N)+w, (N)w, (P))
and the antisymmetric part (1f V_2-)(w1(P)w2(N)—w1(N)w2(P)) of the
wave function respectively. Since isotopic spin is conserved in the
charge independent theory, the (N + P) state with isotopic spin 0
malkes no contribution to process (7.1525) above. Since the transition
matrix elements of the two processes (7.152a,b) are equivalent
because of the charge independence, the cross sections of these two
processes are related by

o(P+P —» xt+D)=20(N+P — 7%+ D) (7.153)

(M=ess1AH [1952]). Experimental results 1) on the angular distributions
of the two processes N+ P — 2%+ D and at+.D > P+ P (the inverse
process of (7.152a)) in the centre of gravity system show good agree-
ment with (7.153). This fact lends support to the charge independence
of the theory of the z-meson-nucleon system.

Quite generally the isotopic angular momentum vector of any
field is defined as the operator generating the transformation of the
field quantity @Q* under rotations in the three dimensional isotopic
space.

In the charge independent theory the third component of the total
isotopic spin gives a good quantum number. Consider a state with
numbers n(t=1, ...) of particles 2). The suffices signify the kinds of
particles. It follows from (7.1375) that the total charge e, is given by

e;=edg[c]+teN (7.187¢)

N=En¢ Ci' (7.137d)

1) Proceeding of the Third Annual Rochester Conference on High Energy
Physics. Dec. (1952).
%) The number of the antiparticle is counted with a negative sign.

with
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In (7.187¢) J5[o] is the third component of the total isotopie spin due
to all particles in the state. The C, is defined such that (eC,/2) is
the average value (or the charge centre) of charges in all possible
charge-states of the (¢)-particle. The conservation of the total
electric charge together with the conservation of the third component
of the ‘total isotopic spin leads to the law of conservation of N
appearing in (7.187¢). For the nucleon-meson system, N is equal to
the number of nucleons, and therefore is conserved in all known
transmutation processes in this system.

As an example of the selection rule given by the conservation of N,
we shall consider the process

7+ P —> A++ B~

Here 4 and B have charge states ¢, o, —e (isotopic spin 1) and
—e, o (isotopic spin 1/2), respectively. This process cannot be induced
by charge independent interactions, because N=1 and —1 for the
left and right hand sides of the above process respectively. By assuming
that 6° and K+ are two states of the G-particle and that K— is the
antiparticle of K+, we obtain the charge centre of 8 to be ¢/2. This
leads to C;=1 for the J-particle. It must be noted that the conservation
of N can be slightly affected by the electromagnetic gnd other weak
interactions, which are not charge independent 1).

ExaMPLE 11. INTERACTIONS BETWEEN EKNOWN PARTICLES

The coupling constants of the interactions between known particles
can be estimated from the experimental data on their mutual trans-
formations, (see § 5 of Ch. IV).

*Since, for the purposes of the present example, we require only a
rough estimate of the coupling constants, we shall write the inter-
actions L’ as the products of wave functions without taking into
account the detailed structure of the interactions (FErm1 [1950]).
As shown in Ch. XIII the probability per unit time of a process is, to
the lowest order of the power series in the coupling constants, (cf.

(13.6)).

e T (7.154a)
with

8 = [ d*x L'(x). (7.154b)

1) Ineffect the conservation law of I was used in the GELL-MANN, NARKANO and
Nisarymma theory [1853] for the nucleon, %, 6, A particle system (cf. § 5 in Ch.IV).
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Here g is the density of fihal states per unit energy. For the present
we can interpret (7.154a) as the natural extension of thé perturbation
caloulation in quantum mechanics. In the interaction L', the matrix
element of the wave function @ for a creation or annihilation of a
particle (mass x) with small enérgy-momentum (k, &,) can be roughly
approximated by
Q) ~

V12 g£ik-x~kot) for spin 1/2

—~1/2 ptdlkex—kol) : (7.155a)
(22 V)12 g+tlex=kd for gpin O.

Here + or — signs in the exponential factors correspond to the
annihilation or creation processes, respectively. The symbol ¥ denotes
the volume eof the integration domain in (7.154b). A derivation of
(7.155a) will be given in Ch. IX (cf. (9.43) and (9.78)). While postponing
proofs of (7.154a) and (7.155a) to the following Chapters, we shall use
them for the present rough estimmdtion of the coupling constants.
Sitice we are only interested in processes, through which the total
energy and momentum conserve, we can replace @(z) in L’ by

y-i2 for spin 1/2

Uz) ~ (2zV)~¥2 for spin 0

(7.155b)
without taking care about exponential factors in (7.155a).

In the present Chapter we shall denote the wave function 6f the
fields by the same symbols as are used for the particles themselves.
The mass of & particle “4” will be denoted by x(4), unless A is not
the electron whose mass will be denoted by m.

The electromagnetic coupling constant, i.e. the elementary electric
charge e, has been accurately determined as efVdm=1/V137. As is
well known, all charged particles so far observed have the same
charge e. This fact is expressed in the theory of all charged fields in
the presence of an eleetromagnetic field, by its gauge-invariance t).
In fact, it is shown in Ch. IX (e.g. see (9.81)) that the chdrge con-
servation derived by using gauge-invirifince is equivalent to the
conservation of the difference Between the numbers of positively and
negatively charged particles. This means that each charged particle

"(antiparticle) carries the same charge e(—e).
1) On the other hand, if there were a field y(n) with charge ne (n not neces-

sarily an integer), chatge conservation requires that the gauge transformation
would have t& be changed as follows:

p(n) = y(n) exp {in A(z)}.
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The coupling constant g7 of the m-meson—nucleon interaction can
be estimated from a knowledge of nuclear forces. But its accurate
value is not yet known because of various difficulties in the theoretical
analysis of the z-meson. The values obtained by various analyses fall
between the limits 0.1 ~ 20.

The coupling constant g7 of the interaction between the z-meson
and the p-meson fields can be estimated from the life time t, =2 x 108
sec. of n—u decay. For the 7n—u interaction S has the form S =g7 [ dxmuu®,
where u° denotes a light neutral particle created in the m—u decay
(cf. § 3 of Ch. IV). Since the spin of the nm-meson is 0, we can replace
7 in S by (2x(x)V)~'2. Similarly, when we assume that both spins of
the u and u° fields are 4, x and u® in § can be replaced by (V)—/2
because of (7.155b). Thus S is approximately equal to g7/ Vou(m)V.
In the centre of gravity system, for which k+k’=0 (k and k’ are the
momenta of u and u®), the number of states in the energy region
(Z,E+dE) is1)

Vdk _ RV dk Vi

0dll = dn k? @7 ~ 2% dE = 27 (v, +vu0)

di.

Here k = |k|, and v, and v, are the velocities of x and u° respectively.
Since experimental analysis shows that the u® mass is very small,
we can take v} to be the velocity of light C (=1). When we adopt
#(m) =276 m and »(u)=210m, % can be calculated by means of the
energy conservation law:

276 m = V%% + (210 m)2+ .

Thus, we have k=58 m %), and so
By = e
® VB dn)?
By using this value, we obtain the result

dw
5 = L2 x1om(gme,

= 0.22,

Since the life time 7, is equal to (dw/dt)~!, we obtain
g% ~ 0.2 x 106=2.4 x 10~% (¢/V4x). \7.157)

dr d
Y g = g7 VEFRR) + VIR0 = vutvge.

%) In the unit system of E=C=1, m is m = 0.26 X 10Mem=1 = 0,78 x 10?21
sec™1,
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The coupling constant g; of the interaction between nucleon and
electron fields can be estimated from the life-time 7,=12 x 60 sec.
of the natural decay of a neutron. When we simply write the inter-
action as g, [d®c NPey, by (7.155b) S can be replaced by g;V-1. The
relation (7.154b) shows that the dimension of § is that of energy,
that 1s 1)

[8]=[L].
Thus g; has the dimension
[gs]1=[81[V]=[L]~
Estimating g in the same way as g7 we obtain
gz=2 x 10712 {(4/3)r} erg. cm? (7.158a)

where r,=e?/m the classical electron radius. Therefore we may call
(47/3)r3 the classical electron volume. The units in which the classical
electron volume is 1 are called relativistic units (or simply r.u.). Thus
gs 18

9s=2 x 10712 erg. ru.=1.3eV ru. (7.158b)
Equation (7.158b) shows that the gs-interaction is roughly equivalent
to a square well potential of height 1.3 ¢V and width r,. Thus we can
see that the gs-interaction is much weaker than the nuclear force
which is roughly represented by a square well potential of height
20 x 10%eV and width =~ r,.

In a similar way we can estimate the coupling constant g of the
ifiteraction between the electron field and the u-meson field from the
lifetime 7,=2.15 x 10~? sec. of the natural decay of a u-meson. Using
the interactioh g¢¢[d®ruevv, where it is assumed that the two light
neutral particles in the final state are neutrinos (v), we have:

g, ~ 3 x T0 2 erg. r.u. = g (7.159)

Although ¢ =~ g5, a heutron has a longer life time than a u-meson
becguse of thé snallness of the mass difference between the proton
and neutron.

The coupling constant between the proton and u-meson fields is
estimated from the cdpture process P+ u~—> N+» of 4 negatively
charged u-meson by nuclei. The experimental results show that the
probability of this capture process in nuclei of atomic number Z=11
is about equivalent to that of the u—e decay process (VALLEY [1947]),

1) [IL*] means dimensions of the nth power of the length.
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ie, i/7,(=0.5 x 108 sec~1), Since the total time before a x~-meson of
several Mev is slowed down and captured into the lowest Bohr orbit
(i.e. K-orbit) is much smaller than the decay life-time (FErRMI and
TrrLrEr [1947]), we can assume that all u-mesons are first captured
in K-orbits and then captured by the nucleus. The radius of the
K-orbit, a’, is
@ = 30 =2.5X10"/Z cm, {7.160)
where a is the Bohr radius of an electron in a Hydrogen atom. This
shows that the larger Z is, the smaller the radius must be, and so the
wave functions of the u—-mesons and the nuclei overlap to a great
extent. Thus, the capture probability increases with Z and is equal
to the decay probability at Z=11.
We can estimate the probability of the capture of a u~-meson by
a proton in a nucleus by means of the simple interaction L'=gZPNpuy.
Then we have

‘fi_';’ = 11400 (g2)2 m?¥/V, (7.161)

In this calculation, the wave function P of a proton must be taken as
(V)2 inside the K-orbit and zerg outside. Thus we have, for the
volume of the domain of the interaction, ¥V = 4ra'3/3. The capture
probability of a p—~-meson by the nucleus is (7.161) multiplied by
Z, because all protons in the nuclei can capture the p—-meson.
Thus we can see that the capture probability by a nucleus is roughly
proportional to Z% This fact is consistent with the experimental
regults. A proton cannot make a transition to an occupied neutron
state because of the Pauli exclusion principle. This effect makes the
capture probability by the nuclei even smaller, because the main part
of the energy of the x—-meson is taken up by the neutral particles ».
Estimating roughly this effect (FeRrMI [1950]), we obtain the following
capture probability of a x—-meson by a nucleus:

dw 1\8
B ~ 5000 (gfy2 me 74 (KL 2, (1.162)
Comparing (7.162) for Z=11 with 1/z, we have

gr ~ 102 erg. ru. ~ g, ~ g;. (7.163)

The above interaction scheme is represented graphically in Fig. 7.1.
¥ it were assumed that the electron and the nucleon fields interact
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via the m-meson field, we could estimate the coupling constant ~f
the interaction between the electron and the m-meson fields from
g% and g;. Such an estimate leads to the conclusion that most z-mesons
would decay not into u-mesons, but into electrons. This conclusion
is not compatible with the experimental results, which show that
not more than one z*-meson in 1400 decays into a positon.
(FriepMAN and RamwwaTer [1951]). Thus we conclude that the
p-interaction is not mediated by the n-meson field. On the other
hand the assumption that gf-interaction is mediated by the z-meson
field has some advantage. For, if the z-meson and the u-meson fields
did not interact directly but through the agency of the nucleon field,
then, because the mass of the electron is smaller than that of the
u-meson, n—¢ decay would take place. Such a situation can be avoided
by assuming suitable forms for the gf-interactions and the g%-inter-
actions. This is represented by Fig. 7.1, in

(R{V) which (P, N) and p are ceonnected by a
dotted line.
% g,’}\\g; An interesting symmetry is apparent in
x N Fig. 7.1. The particles (P, N), (e,v) and u
g\ on the vertices of the triangle have the same
\ spin 1/2 and the coupling constants g, g,
e % « gk of their interactions are strikingly similar.

This symmetry was first noticed by O. KLEIN
[1948] (see also TroMx0 and WHEELER [1949]).
Although the significance of this symmetry is not yet understood, it
may well be more than coincidental. Extending this symmetry, many
attempts have been made to examine the possibility that the inter-
actions between all Dirac particles are of the same type. This
interaction is termed the universal Fermi interaction. The first work
on the symmetrical interactions between P, N, e and v was made by
CarrroarTELD and WIGNER, [1941]. They showed 1) that there is no
interaction which is completely symmetric between Dirac fields, and
only one completely antisymmetric interaction #). The latter inter-
action is equivalent to the linear combination (scalar)+ (axialvector) —
(pseudoscalar). However, this interaction is not compatible with the
experimental results which show the existence of a f-interaction of the

Fig. 7.1

1) See also CHRITCHFIELD [1843].
2) More generally, PrYoE [1952] investigated the irreducible representations

of the permutation group for four spinors.
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Tensor-type (cf. Example 8). The assumption of the symmetry between
charged 'states of the nucleon field and between charged states of the
electron field leads us to two linear combinations (DE GroOT| and
TorHOEK [1950]), namely (SAP) or (T'V), which are also incom-
patible with the experimental jresults that exclude the existence of V.
Many attempts have been made to improve the theory of the universal
Fermi interaction by taking into account (P, N, e, v, u) and pseudo-
spinors (MrcueL [1950], Caranierro [1951]). However, there is the
further uncertainty arising from the necessity of deciding which
particles play corresponding roles in their processes. The electron
spectrum of the u—e decay provides important information on the types
of the linear combination in the g%-interaction (MrcHeL [1949, 1950]).

The coupling constants of known interactions may be divided into
four classes. The first consists of strong interactions having coupling
constants of about the same order as g». The experimental results
for the A-production phenomens have suggested that the /4-nucleon
interaction also belongs to this class!). Many experiments on =-
nucleon phenomena have shown their charge independence. If the
strong A-nucleon interaction were not charge independent, it would
disturb the charge independence of z-nucleon phenomena. Thus the
strong A-nucleon interaction seems to be charge independent. The
interaction of the second class is the electromagnetic one. In the third
class we have weak interactions between Bose- and Fermi-particles,
the coupling constants of which are about the same as g7 (Ocawa,
Oxroxoer and Owepa [1954]). The fourth class is made up of weak
interactions between Fermi particles with coupling constants ~ g;.
It is hoped that experimental information on the interactions realized
in nature will suggest the natural law which selects them from the
wide range of possible interaction types in the present quantum field
theory.

!} The long life-time of the A-decay process seems incompatible with the
existence of a strong /-nucleon interaction. There have been some attempts $0
find selection rules based on the charge independence of strong interactions in
order to make the probability of the /-decay process small. (Pars, [1953],
Nzxaxo and Nismirima [1953], Gerr-Maxx [19531.)
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Note added in proof

Rough estimations being based on (7.154) and (7.1558) show that voupling
constants of interactions for decay processes of =,Z, A-particles and those
for decay processes of K4, K q-particles belong to the third and fourth classes,
respectively. Furthermore, interactions between Bose particles, i.e., interactions
for decay processes of 8, K ,, T-particles, also seem to belong to the third class;
their coupling constants are about the same as g.



CHAPTER VIIL
QUANTUM THEORY OF FREE FIELDS (I)
COMMUTATION RELATIONS

§ 1. Quantum Theory of Free Fields

The commutation relations between the wave functions at different
times are not simple for interacting fields because of the non-
linearity of their wave equations. On the other hand, when the wave
functions of the free fields obey the Klein—~Gordon equation we can
construct their covariant commutation relations by means of the
quantum mechanics of the simple harmonic oscillator.

We first consider a field described by complex quantities @,(x) and
their Hermitian conjugate quantities @%(z). The wave equation and
the Schrédinger equation for a free field in the Heisenberg represen-

tation are
dL° L
3‘_2: -—b# (aQa:y) = O, * (8.10)
é
mz—) T[O’} = 0. (S-Ib)

Here L° is the Lagrangian of the free field.
We can write the linear differential equation (8.1a) as

A5(3) Qpx) =0 (8.2a)

where A,5(3) is an operator. This can be derived from the Lagrangian
Lo == [ @tz @ () 4,5(3) Qu(x). (8.3a)

Here == means equivalence except for a surface integral over the

boundary of the volume of integration arising from the partial inte-
gration and (,(z) is connected with Q%(z) by means of a matrix 5

according to _
Qul) = Q()ya- (8.3b)

The matrix » must be non-singular. Indeed, the variation Q% — Q%+ Q7
in the Lagrangian leads to the squation

Aes0)Qs(z)=0 (8.2b)
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where
AQR) = pAE) (8.4)
with
A) = [A40)]. AR) = [A,40)].

This eqaation eonld not give (8.2), if the matrix » were singular. An
example of {8.36) has been given by (3.32) for the Dirac theory,
where g2y,

According to IC.G. condition of Ch. IT, field quantities must satisfy
the Klein {i{oidon eqnation

(O—#%) Qu(z)=0.

Since the comnmtation relation between @,(z) and ¢4(z’) must be
independent of any Lorentz frame, it depends on (z, ') through
(x—2x') alone, and is of the form 1)

[Qu(2), Qplz")] s =Auplz—~2"). (8.5)

Indeed, any function of z, 2’ can be written as a function of
(x—z’, x4+ x’') and only z—=a’ is invariant under the transformation
r—>zxz+a, ¥ > 2 +a.

Under the LI, L7 Lorentz transformation, (cf. §2 of Ch. IV),
A,4(x) transforms in the same way as @, x @,. It satisfies the equation

(O —#*) d.5(x)=0. (8.6)

The property of commutation relations under the time reflection
requires special consideration. We shall postpone it to Example 3.

As ghown later, the (—) and (+) types correspond to fields of the
integer and the half-integer spins.

On the other hand, there is another requirement for A4, Since the
velocity of the signal cannot be greater than that of light, the field
quantities at two points that are space-like with respect to each other
can be independently determined by the observations. This means
that 4,,x—=z') in the commutation relation (8.5) is zero where
and 2’ are space-like with respect to each other, i.e.

A p(x)=0 for a space-like vector z,. (8.7)

1}y The subseripts (1) mean:
[A4, B], = AB + BA, [A, B]_ =[4,B] =AB — BA.
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From (8.6) it follows that the Fourier expansion of 4,(x) has the
form 1)
Aop(z) = [ d% e%u% 8 (k, kb, + 2) Ays (). (8.8)

Invariance under LI, L; Lorentz transformations requires that
A.4(k) is given by %)
Aug(l) = F o5(ik) (a+be(k)) (8.9)

where F,s(tk) is a quantity whieh transforms in the same way as
Q. x Qs under the Lorentz transformation and o and b are two
constants. The symbol £(z) (where z is a vector z,) is defined as

+1 2 >0

e(z) =3 1 (8.10)

2o < 0.
Thus 4,5(x) can be written as a linear combination of the two “in-
variant delta functions” 4 and A® differentiated by an operator
F,5(2), where 4 and 4™ are

A(2) = — o [ A4k &% 8y ko + %) o (B) (8.11a)
- 2.2.%)_5 [ d3k e®im (1)2 K ) (6K — g ~Est), (8.11b)
A® (2) = (2;), [ A8k e%uma §(k, ko, + ). (8.12)

Here
K, = V(kk,+=?).

However, since, as we shall show later, A is not zero for a space-
like vector z, we must take a=0 in (8.9) and therefore (8.5) has a form

[Qu(@), Ppl2") ] =1 F 5(d)A(x—2"), (8.13a)

where F,(3) is a differential operator with the same Lorentz trans-
formation properties as @, x Qp.

As shown in Ch. II, there exists a derivation operator d(d) == [d.s(d)]
which satisfies the relation (2.7), namely

d(2)A() = (] — ). (8.13b)

1) dék = dkydkydk,dky, dik = dk = dk,dkysdk,

%) Tt is easily seen that &(k,k, + »?)e(k) is invariant under LY, L7 trans-
formations, because its value in the upper and lower parts of the light cone are
O(k ke, + »%) and ~0&(k,k, + %) respectively.
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We shall prove in the next Chapter that F,,(2) must be identical
with d,;(3) in (8.13b), and also that Q.(x) (Q.(z)) and Qs(z") (Qﬂ(x'))
commute with each other (Taramasnr and Umrzawa [1953], Rivier
[1953]). Thus we have !)

[Qa (@), Qs (2)]s = 3d5(2) 4 (2 — 2)
[Qa(2), @p(2")]s = [@u(®), @p(a)]s = 0.

When @,(x) are real field: operators, the commutation relations are

(8.14a)

[Qu(x), Qp(x")]+ =1d.s(2) A(x—2'). (8.145)
it must be remarked that we can derive
AR dR)=(O—=2)I (8.13¢)
from (8.13b). Indeed, (8.13b) leads to
d(2) A@)=(J—»*)I (8.13d)
where
d(d) = d(d) nL. (8.13¢)

Since the Lagrangian is a real quantity, 4(3) is hermitian on account
of (8.3a). Thus, we see that d(?) is hermitian too, and therefore that
AR)E)=(O—=2)I.

This relation leads to (8.13¢).

In (8.13b) it must be noted that A(d) is completely defined, even
to the extent of sign and a constant factor derived from the Lagrangian
L% Thus, we can obtain 4() and d(d) from the given Lagrangian L°
by using (8.1a) and (8.13b). The operator d(d) for various fields has
been given in Ch. III, IV and V.

The wave equations (8.2a), the Schrédinger equation (8.15) and
the commutation relations %) (8.14a, b) are the fundamental equations

1) The commutation relations for fields that have many mass states and
therefore satisfy (2.3b), can also be written in the form of (8.14a), (8.14b).
In such a case d(d) and 4 can be obtained from relations

de)A(e) =IO — ), T (O—) Az)=0.

For example, for the commutation relations of the Bhabha field, (cf. § 1,
Ch. V) d{e) was given by Umezawa and ViscoNTI [1955]. General features of
fields with various mass states have been discussed in detail by Pais and
UrrenBECK [1950].

?) Recently, an interesting theory of the derivation of the covariant commu-
tation relations has been givén by Prrmris, [1952]. See also M. Cnt [1952].
Their results agree with (8. 14a, b) in the case of free fields.
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for the covariant quantum theory of free fields in the Heisenberg
representation. As shown in the next Chapter, (8.22) can be written
in terms of the energy-momentum vector T of the free field as

=3, F(x)=[F(z), T7], (8.15)

where F(z) is any functional of @, ().

§ 2. The Invariant Delta Functions, the Green’s Functions and the
Causality Condition
We shall now collect together the important properties of the

invariant delta functions.
From (8.11b) we have

Alz) = —A(—x)
A(x, z) = —A(x, —z,) (8.16)
A(X, 134)=A(—X, .’E4)

That is A(zx) does not change in sign under a space reflection but does
so under the time reflection. Moreover, (8.11a) and (8.11b) give )

(O—%*)4(x)=0, (8.17)
(34 (@)),_, = —8(x). " (8.18)
From (8.16) we have
A(x, 0)=0, (8.19)
(02 4(x, Z))mo=0 for k=1, 2, 3, (8.195)
(4(X, Z))xnp=0 for k=1, 2, 3. (8.19¢)
From equations (8.18) and (8.19a, b), we obtain the relations 2)
Que(@)4(x)=0 (8.20a)
(2,6(2)) (2, 4(2)) = 28,46,,8) (8.206)
by using the relation 3)
D,8(x) = —2i8(2)0,. (8.20¢)

1) 3(x) = () O(xz) O(xy).
) Ox) = 8(zy) O(w,) O(a) ().
%) From (8.10) we obtain

)
pel{x)=0 (k=1,2,3), ff_' dt S-ts(:v)=2,
for any positive value of g. These relations lead to (8.20c). -
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From (8.20q, b) we have:

(Qudue(@)) - A(z) = —(d,8(2))(d,4()), (8.204)

(O —#%) (e(x) d(z)) =28%x). (8.20¢e)

The function 4(z) can be written in terms of the Bessel function
J, as

113
A@) =55 Fn0), r=(xxp" (8.21a)
g Jo(#(t2—1r2)42)  for t >r
F(r,t) = 0 for —r<t<r (8.21b)
Z —Jo(x(—r?)"®) for t< —r. S

(See Drrac, [1934]). In the particular case of mass »==0, we have
1
A(X)eao = g {0(r —8) = 3(r + 1)} (8.22)

{(JorpaN and Pavurmi, [1928]).

Equation (8.216) shows that A(z) vanishes outside the light cone
with vertex at =0 (i.e. in a space-like region). Since F(r, t) varies
discontinuously over the light cone, 4(x) has a é-function-like singu-
larity on the light cone.

The function A®(x) is a scalar satisfying the relation

{(03—#%) 49(z) =0, (8.23)
AD(z) = AD(—g), (8.24)
AD (z) = Zl{i _,17;.;1_ F(r, 1), (8.25q)

. SNo(x(tz—rZ)l’Z) fort>rort<—r 8.925b

1 (7, 8) = { —iHY (ix(r2 —12)42) for r>t> —r. (8.25b)
Here N,, H¥ are the Neumann funetion and the Hankel function of
the first kind, respectively. In the particular case of »=0
1 1

A(l) (x)’t—o = (2,,): 3z (8'26)
Equation (8.26b) shows that 4% (z) is not zero even outside the light

cone,
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We shall now introduce several functions that will appear frequently
in the following discussion (ScEWINGER [1949]). These are

A(z) = —}e(x)d(z), (8.27a)
Ap(z) = AV (x)— 2iA(x), (8.27b)

4Yx) = —$(1+e(x))A(z)
= A(z)—$d(=), . (8.27¢)

A% (z) = (1 —e(x))A(x)
= A(z)+34(=). (8.27d)
The funtion A(x) has the Fourier representation

3@ = gz )‘de‘tke W s kiw, (8.28)

where P means that the value of the intergrand of (8.28), at its pole,
is defined by the principal value (SCHWINGER [1948]).
From (8.27a) and (8.28),

1 - 1
A(x)=——2 S(x)WPJd4kek#ﬂ m. (8.29)
On the other hand we have 1)
+la) = j ﬁ ,_,_N 2ni(a+1€) (8.30a)
T Sm (P e (fl'))

where £ is an infinitesimal positive number.
The quantity &_(a) that is the complex conjugate of 48 .(a) is

b.(a) =5 fR dB e = - [0 df &

(8.305)
=l sy = 5 (P + i8(@).
Therefare
3.+(a) + 6_(a) = (a) (8.31a)
84 (a)—b_(a) =~ P2 (8.31b)

-1
1y & 1 afres _
) 1) = lim g 7 dpe = I
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Equations (8 28) and (8.12) then can be rewritten as

A(2) = — i § d¥% e (8., (o by + #7) —O_ (K, o, + 40} / 5.2
y

2@.(2,;)4 [®oo dB [ dik £(B) eBUukut i +ilkyzy)

A% (z) = (_2;)_4 [P0 dB [ dbk e ukp+ s +stey2,), (8.33)

By using (8.12), (8.27b) and (8.28), 4 can be written as

1

Ap(z) _—.@——);_[d% e”‘u‘ﬂ{27z5(k p o+ #%) = 20P 1 k = ,} (8.34)
= (2 )‘ hm_[d“k e%pc m. (835)
As shown by (8.28) and (8.35), the
h=-EK,+5e€ Fouriér amplitudes of 4 and Ag(z) have
X poles at ky, = & V(kk+x?) (cf. Fig. 8.1).
X The two poles of (8.35) at ky = + K, and
k=E,—j€ — K, deviate from the real axis by — (i&/2)
and + (€/2) respectively and the limiting
Fig. 8.1 process € — 0 is carried out after the

integration d%.

From (8.27a, b, ¢, d) and (8.20¢)

(O~ x2)d(z) = — =), (8.36)
— %) Ap(z) = 216%z), (8.37)
(O—)4(@) = — 8¥a), (8.38)
(O—2R) A (z) = — (). (8.39)

It now follows from (8.13b) that the Green’s functions of (8.2) involve
d{3), and are given by

G (z) = —d(d)d(z), (8.40a)
Ge(z) = —$id(2)d (), (8.40B)
Gx) = —d(d)4™=x), (8.40¢)
G (z) = —d(2)4%(z), (8.40d)
AR) G(z) = 64=)I. (8.41)

Here GQ(x) denotes any one of the Green’s funetions defined in
{8.40a, b, ¢, d). In general, when "4,(z) satisfies the relation

(O—#Mdg(x) = 64(=),
d(d)dg(x) is the Green’s funotion satisfying (8.41).
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The physical significance of the Green’s functions in (8.40c, @) may
be understood by a consideration of equations (8.27¢) and (8.27d).
From these it follows that

Gz —2')=0 for o(x)<oa(z’), (8.42)
¥ (x—2')=0 for o{z)>c(z'), (8.43)

where o(z) denotes a space-like surface through a point z and
o{x)> o(z') means that g(z2) is a surface posterior to o(z'). The last
equations show that, at the pointw, G** and G** contain contributions
from anterior points 2’ and posterior points 2’ (i.e. the retarded effects
or the advanced effects) respectively. Thus, G* and G*" are, respect-
ively, Green’s functions when initial states and final states are specified.

The physical meaning of G'» may be understood by separating
A(z) into parts of “‘positive’’ and “megative” frequency A*(z)
(ScawrvgER [1949]). Thus

A(x) =A%(x)+ A—(x), (8.44)
where

1 &
. A* (@) = 5= o, A(@—er) E.

The contour of integration C (C_) goes from —oco to + co (from
+ coto — oc) and below (above) the singular point =0 in the complex
7-plane (cf. Fig. 8.2). The argument x— v is an abbreviation of the
vector symbol z,—€,r where €, is a time-like unit vector satisfying
the relation

& (=—15)>0. (8.45)

Cr C—
Fig. 8.2
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Using the formulae:
—w e sdr (1l for —k,e,>0

pE&uT — =

T {0 for —k,e, <0 (8.46a)

1
%J‘(@e

1 — erde (O for —k,e,>0
eyl é K 1——= 8.466
T o WouT — | for —k, e, <0, ( )

we obtain from (8.44) and (8.11a) the equation

47 (z) = é;;})'a J--k',s”>o d*k o (ky ky + x%?) e¥uu e
: (8.47)
47 (z) = + @37?53 f—k#e#>0 dsk 5(15# k,, + 2#2) e~ % u®y, S

Here integrations are taken over the domain (—k,g,> 0). It must be
remarked that the condition —%,e,> 0 does not depend on the special
vector €, and is imvariant under LI, L; Lorentz transformations.
Indeed, we have

—k e, =k (1~ %‘.:_'")

which leads to
k(= —1iky)>0 for —k,e,>0, (8.48)

because k, and ¢, are time-like vectors and, consequently, satisfy the
relation

(k-€)
ko€o

[k||€]
< 1.
LAY

The inequality (8.48) does mot depend on the vector €, and is invariant
under LI, L;-transformations. Equation (8.47) shows explicitly that
A% and A- are the positive and negative frequency parts. Moreover,
A* satisfy the relations

(O—#*)4%(z)=0, (8.49a)
A—(z) = — A+ (—z). (8.495)

The relations (8.47) show that A+(2) is the complex conjugate of
A4=(x). We have, from (8.47) and (8.12),

AN (x) =i{d+(x)— 4~ (x)}. (8.50)
Equations (8.27b), (8.44) and (8.50) lead to

234% (2 —2') for o(z) > o(z')

—244- (x —2') for o(z) < o(z').) (8:51)

dp(x —a') =
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We now introduce the function

. hadT(x-x) for o(x) > o(z)
M(x’x)”eb 4= (@ — ) for o(x) < a(x’),

where a and b do not contain z and 2'. Since 4*(x—2') are super-
positions of plane waves of the form

exp tE{(v,x—X') F (t—=#)}, (v=Kk/Ky)

with positive and negative frequencies, the effect of a point z’ (in the
present) on a point z in the future or from the past is represented, in
M(z, z'), by a diverging wave f((t—{)—(v,x—x’)) or a converging
wave f((t—t')+ (v, x—x')). That this should be so is in accord with
the principle of causality, which requires that the present state should
depend only on events in the past, and can only influence events in
the future. When the theory is formulated in such a way that the
initial and final states are involved symmetrically, we must have

Mz, «)=M@' ).
This leads to
a= —b

on account of (8.495). This is just the condition satisfied by 4 (z—=x’).
Thus, we see that the propagation of influences between any two
points are described by Gy(x—z') in the formulation of the -causal
theory, in which the initial and final states are treated symmetrically
(StvecrRELBERG and GREEN [1951}) This will be demonstrated
explicitly in Ch. XTII.

§ 3. Commutation Relationship and Spin

The commutation relationships of the field quantities are intimately
connected with the spin of the particles which the field represents.
This section is devoted to an exploration of this connection.

We first consider a field of integer spin. As shown in Ch. IV, the
wave functions may now be chosen as a set of tensors. We shall
suppose that the commutation relations are of (+)-type. Then, for
@. and @ (with the same suffix «), we have

[Qa(x)a Q:(x’)]+ = izua(a )A (x - x’)

with no summastion over «. Since {, and @Q* are tensors of the same
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degree, d,.,(?) is a tensor of even degree made up of é,, and 3,. Thus,

we have
Eaa( - a) = Eaa(a)'

By exchanging ' and 2’ in this commutation relationship,

[Qu(z'), @2(2)]s =idua( — D)4 (2’ — )
= —1d,,(d)4(xz—x)

on account of (8.16). Adding both commutation relat onships we
obtain '

[Qu(), @2(z)]s + [Qul='), @2(x)], =0,

which leads to?)
[Q.(z), @2(x)]1,=0.

This shows that
Qa = Q: =0.

To avoid this triviality we are forced to the conclusion that, for a
field of integral spin, the commutation relationship in (8.14e2) and
(8.14b) must be of the (—)-type (Pavrx [1940]).

On the other hand, we have already shown that if the Klein Paradox
is to be avoided, particles of half integer spin must obey Fermi
statistics. We shall show in the next chapter that this is tantamount
to the requirement that particles of half integer spin should be
associated with commutation relationships of the (+ )-type.

We have derived, in Ch. V, an important theorem concerning the
properties of d(d) (Umrzawa [1952]).

The order of the differential operator d(d), called b, is given by

b®=28 1f »x % 0 (8.52a)

where S is the maximum value of the spin of the various fields described
by the field quantities @,. (It will berecalled that, in general, the quantities
Q. belong to a reducible representation and represent a set of fields).

When the mass of the field is zero, this argument cannot be carried
through. In general, dimensional considerations imply that high
derivatives in d(d) can only be introduced as products of (3,/x). If »
is zero, it follows that derivatives of higher order cannot be introduced
in d(3). The consequence of this may be that the commutation
relationship may not be compatible with all the field equations. This

1) In general, the matrix equation [4, 4*], =0 leads to 4 = 4* = 0.
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is the case, in fact, of the electromagnetic field (7.50). If AQ)=7,
d(®)=1, the field equation

AQR)4 ,(x)=0
does not include the Lorentz condition
3,4 ,(x)=0.

This situation is in complete contrast to that of the vector field
U, with non-zero mass . There the equation d,U,= 0 is not independent
of the field equation (7.85a). It is for reasons of such a kind that in
Example 3, Ch. VII, we found it expedient to replace the Lorentz
condition, a restriction on the field quantities 4,(x), by the condition
(cf. (7.56))

3, A, (x)¥=0,

a restriction on the state vector W.
In general, for zero-mass fields (x=0) with higher spins §>1/2,
the field equations consist of the two sets

Aap(?) Qp(x)=0, (8.53)
A%5(3) Qp(x)=0. (8.54)

As shown in § 3 of Ch. IV, although the field has spin § the number
of its independent components is reduced to 2 on account of the
gauge invariance of the theory. Like the Lorentz condition, the
subsidiary condition (8.54) is required for this reduction of the
number of independent states. The third equation in (4.48) is an
example of such a subsidiary condition. We shall regard (8.53) as the
complete field equations and shall derive the commutation relations
from (8.53), {8.14a), (8.14b) and (8.13b) (without taking (8.54) into
account). These commuftation relations will not be compatible with
the subsidiary condition (8.54). Therefore, we shall replace (8.54) by

A25() Qplz) P=0. (8.55)

This condition is a restriction not of the field quantities @, but of
the state vector ¥, and ensures that the redundant components do
not appear in states realised in nature. Thus, for »=0, only two
components are susceptible to observation. For example, in quantum
electrodynamics, the Lorentz condition (7.56) leads to two observable
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states (i.e. two polarization states) of the electromagnetic plane wave.
A more detailed discussion of this point will be given in Example 2
of Ch. IX.

In the case of the integer spin field 4, ., (8.53) is given by the
first line in (4.47). Thus we have

AQR)=011,
which leads to
d@@)=1.

The equation (8.53) for the half-integer spin field y, , (S=k+1%)
is given by (4.41) with »=0. Thus

AR)Y= —y2,

and
aQ) = — .,

Then, we obtain

SO for the integer spin field 4, ,..,x =0 2

BS —
(1 for the half-integer spin field v, ,,* =0. )

(8.52b)

§ 4. Examples
Examrrr 1. CoOMMUTATION RELATIONS OF VARIOUS FIELDS
We shall now list the commutation relations of the various fields
(cf. (8.13a) and (8.14a, b)). The operators A(d) are derived by com-
paring (8.3a) with the Lagrangians L° given in Ch. VII.
We obtain 1)
[ (O—=3)1 for the charged scalar or pseu-
doscalar fields (U, U¥)

[([3—#2)8, )@, b=1, 2) for the charged scalar or pseu-
doscalar flelds (U®, U®)

4Q) = oI “for the electromagnetic field 4,
02,2, — ({0 —#%)6,,] for the charged vector or pseu-
dovector fields (U,, U})
— (Y0t %) for the spinor fields (y, ).

N, —(O—»d,}U,=3F,—xU,
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Now d(d) may be found by using (8.135), and leads to the commutation
relations
[U(=), UMx')].=id(z—z') ?
[UD(x), UN')]_= [UP(=), US(x')]_=1d (x—=') (8.56)
[U%z), UP(z')].=0 s

for the scalar or pseudoscalar fields,

[4,(x), A,(z')]_=16,, A(@x—a') (x=0) (8.57)
for the electromagnetic field,
[Uu@), U] =i (80— z2,0) A@—2)  (8.88)
for the vestor or pseudovector fields,
[%(2), #(@)]s =+ S (2 ~2) (8.59)
Sx—a') = (y,—x) d(x—~2z') (8.595)

for the spinor fields.

Commutation velations for real (and therefore neutral) fields are
obtained by omitting the stars in (8.56) and (8.58) or by putting
U®=0 in (8.56). It is easily seen that (8.57) is not compatible with
the equation p,4,=0. It is for this reason that the Lorentz condition
(7.56) is adopted in Example 3 of Ch. VIL

The commutation relations of a vector field in the Stueckelberg
formalism are

[Ap(x)’ Al(x')]- =1‘éur A(a"‘z’) 2
[B(z), B'(z)] =3 A(z—a') - (8.60)
[4,(z), BX(z')]_=[4}(z), B(z')].=0 S

The commutation relations of a real (and therefore neutral) field are
given by omitting the daggers in (8.60).
Examprir 2. Durrin—~KEMMER-PETIAU THEORY
From the Lagrangian (7.105) we obtain
AQR) = —(0u+x).

Since a field described by this theory has spin 1 or 0, we can see from
(8.52a) that b =2. The operator d(d) has been given already by
(5.24), and is

d(d) = — {'}‘ (O ~=* + ﬂ#a#_ %; (:3#:31 + /3'/3#) b/tb"} . (8.61)
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Whence

I

[9(@). 3@V =7 2 (O =)+ v~ g (Bubet BB 2,2, ) A(z —2)

1
Zl 1 \ (8.62)
=37 tﬂ#al“ g(ﬂyﬂv-*'ﬂvﬂy) prr; A(:27 —x').

t /

(Tagamasar and Umezawa [1953]). It must be noted that term
({0 —#?) does not contribute to the commutation relation (8.62) but
rather te the Green’s functions G(x).
ExavpLE 3. RARITA-SCHWINGER THEORY (SPIN 3/2)

From the Lagrangian (7.124) we obtain
A @) == {(Pe %+ #) 00 —F (¥ud, + 1.0,) + 17, (%% —%) .} (8.63)
Equation (8.52a) gives 5 =3. The operator d,(d) has already been
given by (4.56¢) and is

1 2
d‘ut (b) = — (ye be—x) {6”, - %7";'}’7 + 5" (7’;;3’"773;,) - ‘3"’?,' Bpa’} (8 64)
1 .
+ aﬁ (D - ”2) {('}’pbr - 7v3y) + (7932 - M) Yu 7’}

(Tarkamasar and Umezawa [1953]). The commutation relation is
%), §,(z")]=1d,,0) d(z—='). (8.65)
ExamrrLk 4. GENERAL CASES
We now considet the general field equation (5.15):—
AQ) = ~ (B2, +). (8.66)
By (5.18a), d(3) is
4@) = I —B,2, — 2 [0 — (B3] + ...
—1\25—-1
+(F) 10— B2IP (B2

E4

(8.67)

Here S denotes the spin of the field. The commutation relation is

then )
[y(z), ()], =id(d) Az —=") (8.68)

(Umezawa and Visconrtr [1855]).

1) The commutation relation of the Dirac-Fierz field (cf. § 3 of Ch. IV) has
been given by Frirz [1939] and Ummzawa [1852].
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ExampLE 5. TIME REFLECTION AND DETAILED BALANCE !)

As shown in § 3 of Ch. 111, the Lagrangian of the Dirac field (7.111),
which may be regarded as a c-number, changes under time reflec-
tion 2). On the other hand, the Lagrangian of the scalar field (7.44)
is invariant. For time reflection in general, we can prove that

%odd scalar for fields of half-integer spin

o Jdy I0(z) =
[Ze diz L0 () = scalar for fields of integer spin.
It now follows from (7.3) and (7.4) that

geven vector for the half-integer spin fields)
" =

odd vector for the integer spin fields ) (8.69)

for the time reflection, because do, is transformed as an odd vector
(ef. (6.2)). In other words, for the time reflection

x— "z
Q(x) > 'Q('7) = 4Q(2))
the energy-momentum vector transforms according to
TiQ#)]=—-oTi[4Q(x)] (k=1.2,3)
Q)] = o T3 [ AQ(2)]
where the constant ¢ is given by

_ §-1 for fields of half-integer spin ) (8.718)
{ +1 for fields of integer spin. ) '

(8.70)

(8.71a)

(22

Since 3, is always transformed as an even vector under time
reflection, the transformation of (8.71a) seems to be incompatible with
the canonical equation (cf. (8.15))

_hon(x) = [Qa(z): Tg]' (8'72)

However, this conclusion is premature, because we have not taken
account of the transformation of the state vector,

VY~ 'W=P* (8.73)

Indeed, because of the change of sign of the time, there is necessarily
a change of phase of the state-vector ¥. Equation (8.73) may be

1) See Paurr and BELINFANTE [1940], WATANABE [1951] [1955], SCHWINGER
[1951], LupErs [1952], UmMmzawa, KamerucHr and Tanaka [1954].
) 'We have seen, for exarple, that xfiy changes its sign under time reflection.
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interpreted as the transformation conmecting two different worlds.
If there is a transition from a state of n particles to one of m particles
in one world, this will be removed by a transition from a state of m
particles to one of % partieles in the other world. In addition, there
may be, for example, associated changes of charge and spin of the
particles. It follows that the field operators @, and @F must be trans-
formed into linear combination of their transposed operators Q% and
@3". Thus, denoting the field quantities after time reflection by
‘@ (') and 'Q@¥('x) we must have

Qu () = @ug "QF (‘%) + bag "G5 (2), (8.74)
where [a,3] and [b,;] are, at present, unknown matrices. The last
equation may be rewritten as

Qu (%) = A 7 'QF (%) + AG £, 'Q37 ('), (8.75)
Here [r,5] and [t,;] are unitary matrices which must be determined
by the invariance of the theory under time reflection.
From (8.72) and (8.71) we have 1)
=, 'Qu('z) = o ['Qu('2), T0.[r 'Q% ("2) + £ 'Q* ('2)F].  (8.76)

The invariance of the theory under time reflection requires that
(8.76) must be identical with the relation

~ 2,/ Qu(2)=['Qu'x), T} [Q(7)]]. (8.77)
That is, that
T QT('x) +t' Q¥ ('x) [T = 6T% ['Q('x)] + c-number. (8.78)
As shown in Ch. VII, T [@(z)] has the form
TS (@)1= d®z QF(x) £,45(2) Qp(), (8.79)
where ,.5(3) is a differential operator.
The condition (8.78) can be written, by using (8.79),
Q) (rt Q)Y Q')+ Q¥ ('w) (¢ 2u(2)t) 'Q("x) 2
+'Q('z) (-1 (V)" Q)+ @* (=) (r ,L('b)t)T'Q*('w)s (8.80)
=0'Q*("z) 2,('d) 'Q('x)+c-number.

There are two solutions, (i) and (ii), of this equation.

1}  For the derivation of (8.76) we make use of the relation
{4, BY = —([4T, BT},
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They are:—
(i) If r satisfies
4 r1 2,0)r=19,07) (8.81a
an
£=0, (8.818)

and the commutation relations are of
(+)-type for the half-integer spin ﬁelds%
(—)-type for the integer spin fields,

{8.80) is solved (see (8.71d)).

In this case the intimate relationship between the spins and the

commutation relations subsists. Equation (8.81a) is solved by

r=11). Moreover, in the case of a field of spin  and zero mass
(%=0) it is easily seen from (7.111) that 7 =y; is another solution

(8.82)

of (8.81a).
(ii) Equation (8.80) is also solved if
r=0, (8.83)
i1 2,0t =0of%(3). (8.84)
In this case we have no restriction on the type of the commutation
relationships.

We can prove that the matrix ¢ of (8.84) is equal to the product of
the r of (8.81a) and the charge conjugation matrix. As an example,
we shall consider the field ¢ of spin 1/2 with non-zero mass (» # 0),
for which (8.81a) gave r=1, and £2,(3) is 2,(3)=7y(Y1de+ %)

From (8.84) and (8.716) %) we have

£ g i t=(y4 ¥2)%

tlygt=—v].
These relations lead to
yi=—t1yt
i=t1yt,
which lead to
pr=—C1yC

1}y We can take r as complex c-number of the absolute value 1 and 4+ 1
for the complex and real fields, respectively. However, this arbitrariness of the
phase factors can be absorbed into those of 4.

T) On account of space integration in (8.79), we can take

A = — e
This corresponds to taking the partial integration.
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for the matrix C=tyI. Comparing this relation with (8.37) we see
that ¢ is the matrix connecting y with ¢'* under the charge conjugation
transformation (cf. (3.40))

p=0pT=Cyiy*T =typ'>T.

Thus we can see that the transformation in the standpoint (i) is
equivalent to a product of the transformation of the standpoint (ii)
and the charge conjugation.

We shall now compare a physical quantity F{Q(x)] with the trans-
formed quantity F{'@('z)]. Since F[@(x)] must be hermitian, every
eigenvalue of this operator must be real, so that

FIQ(2) ¥ =f¥. (8.85)

Here ¥ is the eigenvector with the eigenvalue f. By making the
transformation (8.73), we have

FlQ)]" 'P=f"P.
Thus, by introducing a sign constant ¢= L+ 1 defined by

F'Q(x)]=cF[Qx)), (8.86)
we see that F['Q(’z)] has eigenvalue &f, because
FIQ(z) ¥ =ef P. (8.87)
Equation (8.86) may also be written, using (8.75) as
Fr2AQ (z) = F[Q(z) for the standpoint (i)

F[Q*(x) A %] =cF[Q2)T for the standpoint (ii).

Equation (8.87) shows that £ defines parities of the physical quantities
with respect to the time reflection. Table 1 shows these parities for
the various quantities of the Dirac fields.

We shall consider the component ),y of the current as an example,
The condition (8.87) requires that

(@)’ =y AT 1y, Tt AyT

on the standpoint (i). By using the commutation relationship for ¢*
and y, and by taking r=1 and A=y (cf. (3.27)) we have

w* A=Yyt AT =97 9T 97 p*T + constant c-number
= (Pyp)’ + constant c-number.
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This leads to £ = 1, because the constant c-number may be amalgamated
into the zero-point current. On the other hand, on the standpoint (ii),
(8.87) requires that

& (Pyp)" = (1 AyT) yo (p*F A714).
By taking t=Cy! and A=yy,y; We obtain
(AT pay (P AT =t ATy T AT M =
= =Ty 9™ = — (B119)”
by using (3.37). This leads to e = —1.

TABLE I
Type gin (i) £ in (i)
Py + 1 +1
._ e +1 -1
Wru¥ 4 -1 +1
. ik + 1 -1
WY uYSY o 1 +1
WPygy -1 —- 1
. k —~1 —1
PPy 4 +1 +1
_ ik —1 +1
“P?s’)’y?ﬂ’ 47 + i | 1

i

Table I shows that many physical quantities change their sign
under time reflections. Table II, which can be easily derived from
Table I, gives the relationship between the states of particles in worlds
which are reciprocal to each other. The symbols (—) and (+) indicate
that a physical quantity does, or does not, change its sign?).

For example, a negaton of momentum k and spin o is represented
in the reciprocal world by a positon or a negaton with momentum
—k and spin —o from the standpoints (i) and (ii) respectively.

The symbol ¢ has an important significance in the discussion of
detailed balance;—the principle that the probability of a transition

1) The parities of the electromagnetic field 4 » can be determined by re-
quiring the invariance of the mteraction Lagrangian §y ¥4, under time reflection.
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TABLE II

(1) (ii)

charge J, . . . . . . . - L0 o0 — +
current Jp . . . . .. . 0L L0 o000 e e + —_
momentum T3 . . . . . . . ... .. . — -
spin ¢
orbital §
energy Ty o . .« .« . . o . oo

angular momentum. . . . . . . . . . . ... — —

+
vector potential A; of el. mag. field . . . . . . . . . . + —
scalar potential A, of el. mag. fleld . . . . . . . . .. - +

A — B is equal to that of the transition B — A. The discussion above
shows that the principle of detailed balance must be modified in
such a way that the probability of a transition 4 — B is equal to
that of a transition B’ — 4’, where 4’ and B’ are the states of the
reciprocal world corresponding to 4 and B and determined by Table II.
We shall show in Ch. X that requirements of time reflection some-
times restrict forms of interaction, and these restrictions are different
according to the standpoints (i) and (ii) which is chosen.

ExaMpLE 6. TRUE ORDER OF DIFFERENTIAL OPERATORS

The theorem (8.52) restricts 5%, the order of the differential
operators d(2). We shall now discuss the greatest order of the dif-
ferential operators that appear in the commutation relations for
D(2)Q,(x); namely:

[D@)Qu(x), DO)Qs(")]=iDE)DR")ds(2)A (2 ~2").  (8.88)

Here D(?) is a differential operator and the @,’s describe a field of
non-zero mass x *). When the highest order of the differential operators
in DR)DQR)Q) is (b* 4 2t) we call ¢ the true order of D(2) (SARATA,
UMmrezawa and Kamervcnr [1952]). There are some cases in which ¢
is not the same as the highest order of the derivation operators in
D(3). The following discussion will show that these exceptions arise
from the requirement that an elementary particle must be described
by wave functions constituting an irreducible representation of the
Lorentz group.

Since, as shown in Ch. IV, (Uyl__.,,s, th-"ﬂ to. ng) and (F[,,P,L]FZ sg?

1) For simplimaty the spinor or tensor suffixes of D(d) are ornitted.



158 COMMUTATION RELATIONS [cH. viiI, §4

Fiy viiugraiug. ug) (iven by (4. 37)) can describe a state of the same

integer spin field, (8.52) implies that the 5% appearing in the com-
mutation relations are, in each case, the same. In other words, the

true order of 3,4, (cf. (4.38)) operating on U sy g 1S ZETO. A similar
(@) (a)

situation obtains for fields of half-integer spin. Since every (g, z)
(@=1, ...) (cf. (4.29)) can describe the same field, the true order of
o™ operating on @, - is zero. Thus o'® is the sum of the orders of all
the differential operators in D(?) except for those of 2., and d7.

We give an example of the fact that the true order of 2., is
zero. As shown in Example 1, the commutation relations of vector

fields include the factors R(u,v) given by
R(9) = 8,0 — 25 2,2, (8.89)

It follows that
Q- u’ Ogo: i R(p', 4") =0 Vgo:ur (8.90)

Equation (8.90) shows that the true order of d,.,- is zero.
The concept of the true order will be used in Ch. XV.
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CHAPTER IX

QUANTUM THEORY OF FREE FIELDS
FIELDS AND PARTICLES

§ 1. Quantisation

We shall now prove that the commutation relations (8.14¢) and
(8.14b) lead to a covariant quantum field theory in which the states
of fields represent assemblies of Klein~-Gordon fields quantized in
accordance with a canonical theory (TaAkaHASHI and UMEzZAWA [1953],
Umezawa and ViscoNTi [1955]).

We start from a charged field described by a set of field quantities
@.(x) (x =1, ...,n) and their hermitian conjugates @¥(x). Since the
differential operators 1)

AR)=n4() and d@)=dQ)y? (cf. (8.4), (8.13¢))

ate hermitian, there exists a unitary matrix s =[s,(2)] which trans-
forms A(3) and d(?) into diagonal matrices given by

AQR)=81AQR) s=[A(r : 2)b,] (9.1a)
dQ)=s"1dQ) s=[d(r : 3)5,] (9.19)

8E (D) 8,5(0) =6, {9.1¢c)

Sxg(2) 835(3) = Oup (9.1d)

Ar o d)d(r :d)=[1—=#2 (9.2)

In (9.2) the suffix » runs from 1 to % and is not summed. The operators
AMr : ) and d(r : ) are real so that

d¥(r :d)=d(r : =2, (9.3)

on account of the fact that 3, corresponds to ¢k, in the momentum
space.

1) Differential operator f(3) may be defined in terras of functions f(k) by
means of the Fourier representation
FRVF () = | A% f(ik) F(k)e¥ua,
Here F{z) is an arbitrary function whose Fourier expansion is
F(x)= [ d*k F(k)e®uu
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The matrix s transforms the field equations (8.25) into #» independent

equations,
Ar :2) g (x)=0. (9.4)

Here summation over r is omitted and g,(z) is
2.(®) = 55} (0)Qu(). (9.5)
The Lagrangian (8.3a¢) can be rewritten as
Lr=={ dhw g (@) Mr 1 ) gi(a) (9.6)

on account of (9.5) and (9.1a). Indeed, (9.6) is just the Lagrangian
which gives the equations (9.4).
By rewriting g, (x) as

g{x)=(d(r : 2))” u(x), (9.7)

we obtain, from (9.2) and (9.6),
0= | dt 4, (x) ((J—#?) ulz) (9.8a)
= —[ d%[d,4, () - dulx) + %2d, (x) u,(x)]. (9.8b)

The 4, is defined by gX(z) = (d(r: —2))" @, (z).
On the other hand, because of (9.3), the commutation relations
(814a) are transformed by (9.13) into

[¢.(x), ¢ ()] = 1d(r:d) A (x — ') by )

(9, (%), ¢, (z")]s = [gF (2), ¢¥ (z")], = O. (9.9)
Equation (9.9) is satisfied if
[4,(2), 4,(2")] =14 (2 —2) b, ) 0.10)

[t(2), %, (2)]s = [4, (@), % (2)]s = 0. §
These equations lead, for a time #, to the commutation relations
[P, (x, t), u (X', ] = 16 (x —x') 4,
[, (x, 1), @ (x', £)] . = O (8.11)
[ (%, t), %, (X', )] & = [%, (%, 2), % (X', )], = O

where
P(x) = —1i3,4,(z). (9.12)

Since the Klein-Gordon equation is the second order differential
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equation, (9.11) required at a time ¢ can determine uniquely the
commutation relations between u,(z) and u¥(z’) for any time difference
t—t’; namely (9.10).

Now P,(x) is just the operator canonically conjugate u,(x) and can
be derived from the Lagrangian (9.86) (cf. § 1 of Ch. VII). Thus we
see that according to the canonical theory of Klein—Gordon fields,
the set of commutation relations (9.11} is necessary.

Since, for spin 8, each plane wave solution of the field equations
is a linear combination of (28+ 1) linearly independent components
(cf. (4.22)), only (28+1) of the ¢,(k) (The Fourier amplitudes of
¢,(x) with % given by k.,k,+ »*>=0) are not zero. Then, (9.7) shows that
only (28 +1) of the d(r:ik) (r=1, ..., ») are not zero, when k satisfies
the relation %,k,+»*=0. In other words the rank of the matrix d (k)
is 2841 for kk +#2=0,

Since u,(x) satisﬁes the Klein-Gordon equation

(O —»*%) u (x)=0, (9.13)
u,, 4, can be expanded as?)

u,(z) = (_2.‘;_)1 § (2K, V)1 {u} (K) %=~

% (9.14a)
+ u; (K) e—i(k'x—xoﬂ}’

@ () = (2 7 [ BE2K V)12 {eul *(K) e&-x—%d

g (9.14b)
+ u;_k— (K) e"‘“"*'x")}.

Here ¢ is 1(—1) for the —(+) type of (9.10). The V is given by
V = lim [ d3z ef®-® (9.15)

p—0
and may be interpreted as the volume of the accessible world. If this
volume ¥V is taken to be a cube, with volume ¥V = L? the wave numbers
of the standing waves have discrete values (27n/L), where = is an
integer. If it is assumed that the continuous energy spectrum of
particles may be obtained by the limting process L — oo (i.e.
(27/L)® — d%k) the summation symbols must be replaced according to

lim 23> (2”),; dok. (9.16)

1) K, = (b ks by 1K), Ko =V (k-k +2%).
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By substituting (8.116) and (9.14) into the commutation relations
(9.10), we have )

[uj (K), u¥~ (K")] s = 0, Ogx’
[uf (K), ut(K)], =0 S
[ur* (K), ut* (K)] 4 = O.

As will be shown in Examples in § 8 «** (w)~) is not w** (u,”*), the
hermitian conjugate of ' (u;").

Equations (9.17) are the well-known commutation relations of the
qusntum mechanics (see DIRac [1947]). In the representation in
which the matrices u}~(K)u*(K) and u; (K)u*+(K) are diagonal, it
follows ‘that

(nF + 1w (K)|n}) = (n} |4} (K)|n} +1)=(n} + 1)1/2§ o1
(n7 + 1u (K)| ;) = (07 |u?* (B) | n7 + 1) = (n7 + 1) (9.18)

[+ (K), u7 (B)]s = 6, axxlé
(9.17)

and all the other matrix elements are zero, for commutation relations
of (—)-type, and that all matrix elements except

(nF =0]ut (¥ nt =1), (n} =1|u}(K)|n} =0), ;
(nr =0 |up+ (K)| m7 = 1), (7 =1]u (B)|ny =0), § *19

are zero for commutation relations of (+)-type. In (9.18) and (9.19),
n; and n_ are the eigenvalues of the ‘“‘number’’ operators

N# (E) = uf~ () w* (K) 9

N (K) = vy (K) u* (K). § (9.20)

They can be the positive integers (0, 1, 2, ...) and the two integers
(0,1) for (—) and (+) type commutation relations respectively.

We shall interpret ;% and n, as the number of particles in a (par-
tiole, r, K,)- and (antiparticle, », K, )-state. Then we see that (9.18)
and (9.19) correspond to Bose statistics and Fermi statistios re-
spectively. Taking into account the relation between commutation
relations and spins (of. § 3 of Ch. VIII), we can conclude that
particles of integer and of half-integer spin obey Bose and Fermi
statistics respectively. This conclusion is compatible with the fact that
electrons andnucleons obey Fermi statistics and photons Bose statistics.

 for K, =K,

J) 6KK’ = Y
{ 0 for K, %K,
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According to (9.5), (9.7) and (9.14), @,(x) and Q,(x) can be written as

Qu(®) = s S PR Ko V) 8,,0) @ (7:2))2 €

(9.21)
{u; (K) ¢x-&d 4 o~ (K) e~ $kx-Eob}
Q L4 —1/2 g ]
Q. (z) = P J d3R(2 K V)~ 82(2) (d(r:—2))*? ﬂﬁ“% .22
{u’:-(K) e il x—&et) o eu;”'(K) e‘(k'x-xoﬁ}'

These equations show that '(K) and u;(K) (u}*(K) and u}—(K))
correspond to the Fourier amplitudes of the positive and negative
parts of Q. (x) (@,(x)) respectively.

‘We shall denote positive and negative frequency parts of @,(z) (@.(x))
by Q@i (x) and Q7 (z) (@) (x) and @ (x)), so that

Qul@) =QJ (@) + Q7 (@) (9.23a)
Qulx) = Q2 (2)+ Q5 () (9.23)
(O—) Q&(x)=(O—»*) @ (x) = o. (9.24)

These separations may be carried out directly by means of the method
used to obtain (8.44), when

Q@) = 5 Jo, Qulz —€1) Z

Q@) =5z fo_Quz—en) Z
Qs (2) = o Jo, Bulz—en)E

G @) =g fo_uto—en &

(9.25)

From the commutation relations (8.14a) we have
[QF (), Qp(2)] s = 1dus(3) 4 (x — &),
By using (8.48a,b) we can prove that
d — r h,
fo, @ T fo, e 5 =0
whence we can obtain

[Q= (2), @F ()] 4 = idos(3) 4™ (m ~2)
[QF (2), @5 ()]s = ids(3) 4+ (z — ).
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If the field quantities @, are real, (9.21) can still be derived, but
(9.17) must be replaced by
[t (K), u; (K') . = O Oz
[uf (K), g (K. = [u7 (K), % (K) ] = 0.

The commutation relation (8.14b) follows from this.

(9.26)

§ 2. Enpergy-Momentum Vector and Definition of Vacuum
Since the canonical energy-momentum vector T, (7.4), is a bilinear
functional of Q* and @, and is independent of time?l), it can be
written as a superposition of contributions from each plane wave
solution Q,(k, z) = Q,(k) exp (ik,x,) of the field equation (8.2a).
Thus, using (7.3b), we can write 2)
ALk, z) LA (K, z)
= 3 [ do, {5y Q) + Q2:u(®) S G -
—1 [ da, LO(k, T)gures (K% RS + »* = Q)

where LO(k, z) is the Lagrangian density obtained by the substitution

Q.(x) > Qu(k, x) in (8.3a).
By using the transformation (9.5) and the equation (9.4) we have

- Lk, x) dgr:v(k,x)
@zz.rd {ag' ,(k w) BQ“ ’(k w) Q“"l(ki x)

» ogf, (k) VL (k) o
T Q% ulk 2) 50 ) 3%, (ko) %,‘_,,, #J dou Lok, Do

=i 33 [ do, (G 7 () 8es(B) G, )

QLS (k,
+ gk, ) st (B) 57 M—‘@j‘—;) ~ gt e, ) 2(r2) g, (k, 2)), _,

AL (k, AL (R,
=i2' 3 [do, 5 ((kzzz) @il @) + Ga(kr 2) bq:,((k-xw))

~ gt (b, 2) A(r:2) go (@) |,

1}  Such & functional has the form
T”=_f d* Q;‘(k) .O,“p(k) Qp(k)

where @, (X) is the Fourier amplitude of @,(x).
%) Ix caleulations of Lagrangian we must not restrict the energy-momentum
k, into kS(EJRS + x* = 0).
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where X’ means that the summation with respect 2 the suffix r is
taken over only the (284 1) non-zero component of g (k% ). By
making the transformation (9.7) and by using (9.5},

ALO(k,x) LAk, v

Ty=i 3 31 40y iy eon (o 2+ T 1) 200

+ 1, (ky ) (o Ryt 93) 2, (B, )|
=1 }':’g_[da, {8y, (K, Z) thy; (K, 2)+ Gy (K, ) (B &) foeps
Taking the Fourier expansion of u7(x) as ulk, )
T,=—i 3 fdo, {u}5 (@) utu(@) + 05 () w5 @)

‘ (9.27)
+ukt (@) w7, @)+ eurh(w) u (@)t

which leads to
T,=—iY 3K, (N}(K) + N7 (K))+ constant ¢c-pumber (9.28)
r k .

on account of (9.20).

Equation (9.28) implies that the total energy and momentum of
the field are the sums of the energies and the momenta of all particles.
This exhibits the intimate relation between particles and fields.

The vacuum is defined as a state in which there are no partioles
(nx =0). Then, (9.28) shows that the vacuum is the state of lowest
energy, which is equal to the c-number (i.e. zero point energy) in
(9.28) (cf. §1 of Ch. VI).

From (9.28), (9.17) and (9.20), we have

[uE(K), T,]= + (—iK,)u*(K) (9.29)
[uf(K), T]= & (—3K)u*(K). (9.30)
which lead to
[Q.(2), T} = —3,&a(x) (9.31)
[Qu(@), T,] = —2,@u() ' (9.32)

on account of (9.21) and (9.22). The canunical equations {3.15) may
be derived from (9.31) and (9.32).
From (9.29) we obtain

Wur (K)¥ = (W' —wyu (K)¥ (9.33)
Wur+(K)¥ = (W’ —w)yu~(K)¥P, (9.34)

where
wW=T, w=K, ' (9.36)
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and ¥ is an eigenfunction of the energy operator W with eigenvalue
W’'. Equations (9.33) and (9.34) show that «}*(K)¥ and u}(K)¥ are
also eigenfunctions of W with the eigenvalue (W’ —~w). In other words
u} (K) and uf+(K) are operators that decrease the energy by w. In a
gimilar way we can prove that u; (K) and u;—(X) are operators that
increase the field energy by w. These properties of u#(K) and u;*(K)
are compatibele with the interpretation of §1, ie. u}(K) (uf*(K))
and u,  (K) (uf—(K)) are the annihilation and creation operators of
the particles (antiparticles) of the field.

Since the vacuum @, is the state of the lowest energy, we have
(ScEwiNGER [1949])

ut (K)Py=u;H(K)Py=0 (9.36)
Dyu; (K)=Dgu;~(K)=0, (9.37)
which gives
QF (#) By=P5 @z (2)=0

@ (2) Dy =05 Qs (x)=0. (9.38)

This is the mathematical expression of the definition of the vacuum.

In these terms, the zero point energy of the electron field corresponds
to the energy of the vacuum electrons of the old “hole” theory. Since
the vacnum in quantum field theory affects many real processes, it is
necessary to subtract its effects from the calculations (the sub-
traction of vacuum effects). To this extent, theoretical predictions
depend on the definition of the vacuum 1).

We now give some formulae dependent on the definition of the
vacuum. Introducing Q% (x) as:

QP (@) =1 {QF (0)~Q5 (@)} =5 P [Tw@ulz—c1) Z, (9.39)
‘we obtain
[Qu (2), @p(2)]= = —7 [QP (2), @ ()]
+2(Qx (z) Bp(a) T @p(2) Q3 (2)).
It folows that
((Qx (@), Qa(=")]z)o= — i ([QL (), s(z")] Do (9.41)

(9:40)

1} However, the definition (9.38) of the vacuum has the defect that &,, an
eigenstate of the energy operator of the-free field, is not stationary in the case
of interacting fields. So far there is no complete theory of the vacuum of inter-
acting fields. We shall touch this problem m Ch. XVIII.
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where ( ), denotes an expectation value in the vacuum state. From
{8.50) and (9.39) we have

([Qa(2), @5(2)])o=dup () 4® (z—2") (9.42)
where we must take () or (+) on the left hand side, according to
whether commutation relations (8.14a,b) are of (+) or (—) type.
§ 3. Examples

ExampLE 1. SCALAR OR PSEUDOSCALAR FIELDS U(z)
For such fields (9.21) and (9.22) can be written as

U(x)= z (2K, V)12 (ut (K) eEs®u+u~ (K) e~ uy),

K

U* @)= 3 (2K, V)2 (u** (K) eEuou+u*~ (K) e~*Eu®s), ; (9.43)
K

because (see Example 1 of Ch. VIII)
a(d)=1.
The commutation relations (9.17) lead to

[u* (K), w*~ (K')]=dgx g
[u** (K), v (K')]=0gg-

From (9.28) we have

TF=—igK“{u*‘(K) ut (K)+#** (K)u~ (K)}, (9.45)

(9.44)

which we can also derive frcm the Lagrangian (7.44) by using (7.4)
The total electric charge is given by (7.46) as

e=e¢ Y (u*~ (K) u* (K)—u~ (K)u**+ (K))+c-number constant
K
=¢ ;ﬁl\” (K)— N~ (K))+c-number constant g (9.46)

N (K)y=u*"(K)u*(K), N~ (K)=u"(K)u*"(K). (9.47)

Here the c-number constant is the vacuum expectation value of
¢' i.e., the zero-point charge. The total charge ¢’ can be written, by
using U™ and U® of Example 2, in Ch. VII, as

Py e E {u(l)-(- (K) u‘(2)— (K)__u(2)+ (_K) p- (K) +
K

4
+ constant ¢c-number (9.48)
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From (9.42) we have
([U(@), U*(@')]4)o =4 (@ —2'). (9.49)

ExamprE 2. THE ELECTROMAGNETIC FIELD 4,
From (9.21) we have
4,@)=2 2K, V)2 (a} (K) eZss+a; (K) e™En), (9.50)
X

because d(?)=1.
The commutation relations (9.17) lead to

[a;f (K), a7 (K')]=0xg 0. (9.51)

However the Lorentz condition implies that af ¥ (I=1, 2, 3) and
af¥ are not independent but connected with each other by the
relation

{(K-a* (K))— K, af (K)} ¥=0

{(K'a" (K))_Ko ag (K)} Y, (9‘52)

Here a*(K) and a—(K) denote the three dimensional vectors ;" (K)
and a7 (K) (I=1, 2, 3) respectively.

It is usual to take A4, as hermitean, and so 4,=14, as non-hermi-
tian. Then ¢} and a; are not the same as the matrices (9.18), because
they are not hermitian conjugate to each other. On the other hand,
from (9.51)

(a5 (K), ag (K')]=0gg.. (9.53)

Since a; and af are hermitian conjugate to each other, (9.53) shows
that a; and af (not a¢f and ;) are the annihilation and creation
operators. Therefore Ny(K)=ag (K)ug (K) has the integral eigenvalues
(0,1, 2,...). Since the number operator N (K)=a; (K)a}(K) of the
(K, 4)-photons is

§

N(K) = —(No(K)+1),

N, (K) has negative integral eigenvalues (—1, —2,...) and leads to
the energy (—iK )N (K)= —KyN,(K)+1). In other words, (X, 0)-
photons have negative energy — K,. The relation (9.38) implies that
from the vacuum it is impossible to create (not annihilate !) any
(K, 0)-photon. In other words, this vacuum is the state of maximum
number of (K, 0)-photons. The (XK, 0)-photons are usually called
scalar photens. Since the (K, 0)-photons have negative energies, this
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vacuum is the lowest energy state. This definition of the vacuum has
other difficulties, in that it is not compatible with the second equation
of the Lorentz condition (9.52). In fact, as will be shown later, af ¥,
in which ¥ satisfies the second equation of (9.52), cannot be zero.
This contradiction can also be seen in the relation, derived from (9.42),

(2,4 (=), 4,(2')]4)o=20,4V(x —2"). (9.54)

The right hand side must be zero on account of the Lorentz condition,
in contrast with the non-zero left-hand side.

We shall now consider the physical content of this difficulty.
Using the coordinate system in which K,=(0, 0, K,, 1K), the state
vector ¥ can be expanded as

Y= EO(n, m) D (n, m), (9.55)

where @(n, m) are state vectors in which the numbers of the (X, 3)-
photons (longitudinal photons) and (X, 0)-photons are n and m
respectively. Substituting (9.55) into (9.52) we obtain the recurrence

formulae (see (9.18))

Vn+1C(n,m)=Vm+1C(n+1, m—1),
Va C(n, m)=VYm C{n—1, m—1),

which give
C(n, m)=_copy,. (9.56)

The constant ¢ must be determined by the normalization 1) of the
state vector. From (9.55) and (9.56) we have

V=c > DP(n,n) (9.57)
n=0

which implies that the vacuum state has infinitely many longitudinal
and scalar photons; but ‘their energies cancel out and they do not

produce (for free fields) any observable effects.
Thus we can see that aj ¥ cannot be zero for a state satisfying the
Lorentz condition. For fields in interaction, the effects of the longi-
tudinal and scalar photons do not cancel each other but give the

coulomb potential.

1} Equatiens (9.55) and (9.56) show t .a1, if ¢ 1, fimite PP . mfingte and ¥
cannot be a vecrtor i Hilbert space
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Thus we must modify the definition of the vacuum for the electro-
magnetic field, and use

(e -a* (K)) By=0

[(K-a* (K))— Ky ag (K)] §y=0 (9.58)

where e (r=1, 2) are three dimensional unit vectors satisfying
(e(r)’ K) =0, (e(f), e(l)) == 61‘3'

The second equation in (9.58) is the Lorentz condition. These equations
are not covariant in form, because the special unit vector e appears
in it.

We shall now show that we can use (9.38) instead of (9.58) for the
particular calculation of the transition probability between the
infinitely past (0 = — oo) and infinitely future (o= + oc) states, (i.e.
the S-matrix, e¢f. Ch. XIII). From (9.38) we have

A (2) By=0 (9.59)
([Au (), 4, ()] +)o=0, 4V (x—2'). (9.60)
On the other hand, from (9.58),
([(e”-a~ (K)), (e-a* (K))]4+)o="0-
This can be extended into the four dimensional expression
([o (K), & (K)]+)o=0w+ K, K, ¢(K) (9.61)

on account of Lorentz invariance. Here ¢(K) is a Fourier amplitude
of a scalar function. The relation (9.61) leads to

([A”(z), Av (x’)]+)0=6m 4o (x'_xl) + B,, bv d’ (z"’xl)- (9'62)

On the other hand, in the calculation of the transition matrix,
[4,.(x), 4,(2")], appear in the form

J‘a_oco d“x J'o_<>°° d4w’ KW (27, xr) [A‘,(Z), Av (27’)] + (9'63)

in virtue of Lorentz invariance. Taking into account gauge-invariance,
we have

0, K, (2, 2')=2, K, (x, ") =0, (9.64)
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Indeed, the gauge-invariance (see (7.66)) requires that

P dt [P0 dtx’ K, (%, ") [4,(x), 4,(x")] +
= [P dix [Xd%’ K, (x, 2") [A,(x) 4+, A(x), 4,(z")+3, A(z)] »
= [P d% [ d%’ K, (x,2) [4,(x), 4,(x)]
—2 [ diz [P di’ 3, K, (%, 2") A(x) A,(x)
—2 [P d% [P diz’ 0, K, (2, ') 4, (x) A(x')
+2 (%, di (O, diz’ 3,0, K, (%, ') A(x) A(z").

This leads to (9.64). The equation (9.64) shows that the second term
of (9.62) does not contribute to the matrix elements, in which [4,, 4,],
in (9.63) appears to be ([4,, 4,],),- Thus, we can use (9.60) instead
of (9.62) (Dysox [1950]).

However, in order to carry out covariant calculations in more
general problems than that of the S-matrix, it is necessary to formulate
a covariant definition of the vacuum. For this purpose we shall go
back to (9.59). Then the A must be annihilation operators, in order
that there should be no particle in the vacuum defined by (9.59). This
requires that A, should be hermitian and A4, anti-hermitian. Then
(9.51) shows that N (K) has integral eigenvalues (0,1, 2,...) and
that there is no particle in the vacuum defined by (9.59), which is
the lowest energy state. Since we have seen that (9.59) is not consistent
with the Lorentz condition (9.52), we shall now modify the Lorentz
condition, writing it as

A  ()F=0. (9.65¢2)

Since (9.65a) gives only the first equation of (9.52), it is compatible
with the definition of the vacuum (9.59). This condition is also
compatible with (9.54). Indeed, by (9.59) the right hand side of the
relation (9.54) can be rewritten as

Q.45 (x)- A7 (@) + 45 (") - 2,4, (=)o

This is not zero, but equal to 3,44 (x—=z") if we use (9.652). When we
deal with interacting fields, we cannot divide A, into two parts,
corresponding to positive and negative frequency, because the 4, do
not satisfy the Klein—Gordon equation. However, we can still prove
that 3,4, satisfies the Klein—Gordon equation

0 A4,(x) = — . u(x)=0. (9.66)
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Sinc; it is thus always possible to divide 3,4, into parts of positive
and negative frequency 3,4%, we can adopt (9.65a) as the modified
Lorentz condition (Guera [1950], Breurer [1950]). By a method
similar to that of Examples 8 and 4, Ch. VII, it can be proved that
(9.65a) is compatible with wave equations (7.50). We now show that,
if there are no longitudinal or scalar photons at the time ¢, there are

no such photons at any time.
In fact, if there are no longitudinal and scalar photons at a time ¢,

RAF(x, YF =0
Al (x, 5)¥P=0.
Then (9.65a) gives
34AT (X, )Y = —, 47 (x, HF =0
whence, by using the wave equations (7.50), it follows that

WAF(x, H¥F=0.
Therefore, for an arbitrary time ¢,

’ -1 ,, OV
A} (2, t) Y= zﬂ;ﬁ(t 1) {(ﬁ) 44(x,0) ] ¥=0.
which gives
2, A (x, ) =0.
Then (9.65a) gives
At (x, ) =0.

Thus we see that, because of the Lorentz condition (9.65a), if there
are no longitudinal and scalar photons at one given time, there cannot
be any other time. We may therefore assume that there are no
longitudinal and scalar photons in the states occurring in nature.

In this theory (9.60) can be established.

We shall now introduce the operator n and the state vector ¥* by

n*=n71, nd,=4Awn, nd = ~Agm, *=1, (9.672)
Pt Wity (9.67b)
Taking into account the fact that A, is hermitian and z, is imaginary,

we obtain from (9.66a)
Wy, A7 (z)=0. (9.656)
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Equations (9.65a) and (9.650) yield
YR,A4,(x)¥=0. (9.65¢)

Equation (9.65¢) shows that the usual Lorentz condition can be
established for the expectation value of 3,4, if we define the expec-
tation value of an operator # not by Y*F¥ but by Y'F¥. This fact
exhibits the correspondence between the classical Maxwell theory
and the present theory, the expectation values of g-numbers replacing
the quantities of the classical theory.

In the representation in which N, is diagonall), # is given by
(—1)¥4 Then ¥'¥ is not always positive. For this reason the theory
is called that of the indefinite metric. However, for the states realised
in nature, =1 and therefore Y'¥=¥*¥ for N;=N,=0. Thus it is
that calculations may be carried out in a covariant manner by using
conditions (9.59), (9.60) and (9.65) and the initial conditions Ny=N,=0.

Exavpre 3. VECTOR OR PSEUDOVECTOE FIELDS

From (8.58) we have

d(ik) = [d(ik)] = [6 + @2, ]
with
a,=k,|x.
It is easily seen that d has two eigen values
A=1 and Ai=1+4a.a,.
For
det| Al —d(ik)| =(A—1}(A—1—a.a,). (9.68)

Since 2) 1+a,a,=0 for k,= K, the rank of the matrix d (for k,=K,)
is 3, which agrees with the number 28+1=3 of the independent
components of U,.

Using the coordinate system in which k,=(0, 0, k, ik,), we can
transform the hermitian matrix d(ik) into the diagonal form by
means of the matrix given by

1 0 0 0
01 0 0 1

s==14 o —a, a5 | @t (9.69)
0 0 Gy Gy

1) Since A, is an operator which changes the number of scalar photons by
one, we have: (—1)¥ 4, = —A4,(—1)"s,
3) K, K, +x*=0.
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Then, for U,=s,U,,

“

Ul K) =1 K, U,=0 (9.70)

because of (7.86). This shows that the three independent components
are Uj(K) (I=1, 2, 3). Using (9.21) we obtain

Uz)=(2V)"12 z [{(Ko)—-:/z s e(’)u+(K)+ es u+(K){e1K” ”2
) - 1112 (8.71a)
+ {(Ko)—llz z e u- (K) 4_5;“_’_(33 ug (K)} A EuTu S

Uy(2)=cis 3 (2Ko) 2 K| {ugf (K) eututug (K) 5%, (9.710)

where e (r=1, 2) are the unit vectors that are mutually orthogonal
and orthogonal to K, and e® is the unit vector in the direction of K.
In other words, e’ are transverse directions and e® is a longitudinal
direction.

From (9.17),

[wf (K), uy~ (K)]=0, 0gx: (r;8=1,2,3). (9.72)

The number operators N*(K) of the positively and negatively charged
particles are respectively

N (BE)=v~ (K) uf (K), N7 (K)=u, (K)u'™" (K).

The total energy-momentum 7', and the total charge ¢' of the
field are

Tu=—i3 3 K ANZ(K)+N-(K)+1) /

r=1,2,8
dme 3 3 (NF(E)-N: (KD} yo e
K r=1.2
ExampLE 4. SPINOR FIELD y(x)
In this case the transformation (9.5) and (9.7) can be written as 1)
'P: (K)=2K0 V1/2 ¢1+ (K) a’m(K) %

o (B)=2K, V' g (K) b, (K), (9.74)

1} & corresponds to four components of y and » takes two values (1, 2)
corresponding to the two directions of the spin angular momentum.
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where a,, and b, satisfy the relations
1
(l,..L afﬁ:ﬁ—; (KO+ [ %} ki+x/3)aﬁ (9.75)

1
b,.“ b::ﬁ='?:§—o (Ko——oc, ki‘—xﬁ),ﬂ. (9.76)

It must be noted that (9.75) and (9.76) agree with the projection
operators A, (cf. (3.56)) that select the positive and negative energy
states.

From (9.17)

- K’ :— K’ “—"‘(5,.3(5 !
[ (K), @7~ (K] KK % (9.77)

(ot (K), o7 (K')]4 =0, Oxx-.
Equations (9.21) and (9.22) give
¥u(@)= V72 S {gf (K) a,u (K) €567+ g7 (K) by (K) €™ Futu}
¥E(@)= V% F{gr* (K) b (K) 6%uut @7~ (K) oy, e~ Fuvul. g (9.78)

From (9.42) we have

([9x(2)- P (@] -)o= — S5 (z—2") g

S (@—~2') = (y,0,—%)ug AV (x~2). (9.79)

From (7.112) the total energy-momentum vector is obtained as
w= —75%'221{#{4’?‘"(1{) @F (K)+ o7 (K) ¢f 7 (K)—1}  (9.80)

(see (9.28)). The zero point energy in (9.80) has a negative value
which is the same as the total energy of the vacuum electrons in the
hole theory.

The last equatiori shows that the difficulties due to the negative
energy states in the c-number theory of the Dirac particles can be
avoided by use of commutation relations of the (+) type, i.e. the
use of the Pauli exclusion principle in the quantum theory ainece
{T',— (zero point energy)} given by (9.80) is positive.

The total charge of the Dirac field is

et=e g S {NH(EY--N7(K)}, (9.81)
r=1.2

where
NY(K)y=¢; (K) of (K), N7 (K)=o; (K) ¢}t (K). (9.82)
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ExampLy 5. ANGULAR MOMENTUM AND MAGNETIC MOMENT

First, we shall show that the expectation value of the orbital
anpgular momentum PY,, (7.41), and the spin angular momentum
P35, (7.42), can be written as the sum of those of the particles.

The space component of the orbital angular momentum of a vector
field is

P?k=j'ds:l: {UI: (:v, Bk"—xk 37) UQ+(x,bk"—xk Bf) U;' UQ} (9.83)

becuase of (7.41) and (7.88). Substituting (9.71a, b) into (9.88), we
obtain the expectation value of PJ with respect to the state in which
there are particles of momentum K,

(Phx~i(z Ky—nK) 3 (NF (K)+N; (K)-1).  (9.89)

This is the sum of the orbital angular momenta of the particles.
The space component of the spin angular momentwmn is

Ph=[d%c{UL U+ Ul Uy— Ul U;— U} Uy} (9.85)

because of (7.39) and (7.42). The expectation value of P% for a particle

at rest (K=0) is obtained, by substituting (9.71a, b) into (9.85)
(Ph)g=o= —{(w~ (K) u (K)—wuz~ (K) 4" (K)) (9.86)
+ (7 (K) up* (B) = (K) u* (B))gmo, ”

where we use the coordinate system with e® (r=1, 2, 8) as basis

vectors.
The last equation can be written as

1 (PE)g=o=(Ni+N;—-Nt~-N-) (9.87)
where
Ny=u,ur*, Nr=ul"u} (s8=+,~) (9.88)
and #% is defined by
uh = (uf ~iut)
. _ {9.89)
ut = -V—E(u;* +iug)
(WexNTzEL [1943]). Using (9.72) we obtain

{u:+’ u;;] =au' s [u;i_» '"’:'—] = Oggrs (9.80)
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Since (9.90) shows that the possible eigenvalues of N7 are (0, 1, 2, ...),
we can regard these as the numbers of particles in the (r, s)-state.
Equation (9.89) shows that the superscript  signifies the charge state
similar to the (+) in N*, (9.20). Regarding the values of the suffices
as labelling the gpin states, we see that (9.87) gives the sum of the
spin angular momenta (= 1,0) of the particles.

From (9.85) we have

()2 (P PRS2 = (9.91)

¢ =%
K=0

where the superscript (+) signifies the positive charge state, for
which the expectation value iz calculated. This shows that the
magnitude of the spin angular momentum is S(S+1)=2.

We shall now consider the magnetic moment of low energy (K, » x)
particles. Since U, ~ 0 for the vector particles of low energy (cf.
Example in § 2 of Ch. 1IV), 6, given by (7.89) is

07“ R U;Q'b4 UQ+D4 UZ' Uk@'
This leads to

(6)% = £ % (Ul Up— U} Upp)t = F = e (Jy)*
on account of (7.90). Thus, we have
(T* ~ £ 2 (0,)*. (9.92)

Here, following Example 4, Ch. VII, we have omitted the e*-term in
the calculation of the magnetic moment. The space component of the
magnetic moment can be obtained from (7.82), and is

(M)~ + o (Pa)*. (9.93)

because of (7.26). This reflects the intimate relationship between the
magnetic moment and the angular momentum of the low energy
particles. Since we can neglect the orbital magnetic moment of the
low energy particles, we have from (9.87) and (9.93),

(ma)* ~ + o (N3 —N2). (9.94)

This shows that a low energy particle of positive (negative) charge
has a magnetic moment ¢/2x, the direction of which is the same as
(opposite to) thab of the spin angular momentum. The quantity e/2x
is ealled a magneton. As shown in Example 5 of Ch. VII, the F,-type
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interaction (7.91) changes this magnetic moment into (e/2x) (1—y).

In the case of the electromagnetic field we cannot use the rest
system of a photon. Introducing af in terms of ¢ (r=1, 2j by means
of the transformation similar to (9.89),

(Phlk=—~t(N,—~N_). (9.95) 1)

Here the coordinate system, whose third axis is in the direction of K,
is vsed. The last equation shows that the components of the spin
angular momentiim of a photon in the direction of K are 4 1. The
numbers N, or N_ may be interpreted as the number of photons
whose spin angular momenta are parallel or antiparallel to K
respectively.
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CHAPTER X
QUANTUM THEORY OF INTERACTING FIELDS

§ 1. -Interaction Representation

In this Chapter we shall present the canonical formulation of the
quantum theory of interacting fields. We shall use the representation
in which the field quantities satisfy the wave equation for free ficlds
and the commutation relations (8.14az) and (8.14%) (i.e. the inter-
action representation). (Tomowaca [1946], SCEWINGER [1945]). In
such terms the states of the interacting fields can be interpreted as
those of an assembly of simple harmonic oscillators which change
from time to time.

We shall represent the unitary transformation connecting the
states W[o] and @ of the interaction and Heisenberg representations
respectively by

Plo]=8[c]P. (10.1)

In this Chapter we use bold and ordinary type to denote quantities
in the Heisenberg and interaction representations respectively.

Since, as shown in Ch, IV, the @,(z) generally involve not only the
independent components but also the dependent components of the
field, we cannot determine S[c] as the transformation connecting
N(z) and Q.(z).

The quantities ¢,(z) derived by the transformation (9.5) are a set
of indlependent components. Therefore they must be connected with
the indeyendent components q,(x) in the Heisenberg representation
by the umitary transformation S[o]:

q,(x) = (8" [o]g,(2) S[6])aso- (10.2)

Here z/o indicates that the point = lies on the surface o. However,
gince a Lorentz covariant formulation is desired, (10.2) must be
rewritten so as to contain covariant quantities.

For this purpose, use is made of the auxiliary quantities

Qulx, 0] = 8~+[c] 5,.(2) g.() S[o], (10.3)
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where s,,(2) is the matrix of derivation operator in (9.5) (TARKAHASHI
and Umezawa [1953]). It must be noted that Q,[z, ¢] is a function of
the point x and a functional of the surface ¢, and that  and ¢ are
independent of each other. From (10.3) and (9.5) we have

Q.[z, 6] = 8[c]@.(x)S[o]. (10.4a)
Now gq,(z) can be derived from @,[z, o] by
qr(x) = (S;I(D)Qa[x’ G])mlu‘ (10-4b)

Here we must take « to be a point on ¢ after operating on @,[z, o]
with ¢;1(3). It is apparent that complete information about q.(x) can
be obtained from @,[z; ¢] and, therefore, that (10.4a) can b8 regarded
as the covariant relation corresponding to (10.2). In the next section
we shall use (10.4a) to determiine Sfo]. From (10.4a), (8.2a) and
(8.14a) we tan show that differential equations and commutation
relations for @,[x, o] are the same as those for ¢ (), viz.

Ao5(0)@pl, 0]=0 (10.5)
[Qulz, 0], Qpl’, 011 =idypd(z—2"). (10.6)

Here Q,[z, o] (cf. (8.3b}) is -
Qul, 0] = QF[x, 61 =5"2[0]Q(2)S[0]. (10.7)

It must be noted that, in (10.6), the arguments ¢ of @, and @, are
the same,

Since we wish the field quantities Q.(x) to be functions of the
independent components g.(x) (at the same point z), the quantities
Q,[x, 0] can be determined by requiring thatl): (i) they satisfy
(10.5) and (10.6), and (ii) they give Q,(x) as function of the q,(z),
which are related with Q,[z, 6] by (10.4b).

The unitary transformation S[o, ¢'] connecting @,.[z, ¢] and
@Q.[%, 6'] according to

@[z, 6]1=8"{0; 0']Q.[x, ¢'18[0, 0’] (10.8)
is given by
Slo, '1=8{c181[0']. (10.9)

1) If we have two @,[x,0] satisfying these requirements, they lead to two
¢anonical theories. Howéver, since these two theories have the same number of
independent components ¢,, they are also connected by a unitary transformatien ;
i.e. they are different representations of the same theory.
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The interaction Hamiltonian H'{z : n] is defined (cf. (6.3)) by the

functional derivative equation
S

; 60([;’1 — H'[z:n]S[a]. (10.10)

It will be shown below that in general H'[z : n] depends on the

vector n,(x), the unit normal to ¢ at the point z (of. §2, Ch. VI).

The interaction Hamiltonian must also satisfy the integrability

condition which implies that S[c] must be determined wniquely in

term of (10.10) and qpeciﬁed initial conditions This means that

)
Salr) 6a(z Slol = 6a(x)6cr(7, Slel,

where z, 2" are two points on o (ToMonaca [19463).
Equation (10.10) can be rewritten as

—i[H[x:n], H[x:n]] = Hi2z':n]— H'lx:n], (10.11)

Da( Z) Dcr(x )

where />0 signifies derivation with respect to those arguments
depending explicitly on o (cf. § 2 of Ch. VI). The quantities introduced
here are fundamental to the following discussion.
The integrability condition (10.11) contains the term
(?o(x’)) Hlx : nl.
For practical purposes the calcwlation of this term is facilitated by
certain important formula for the normal vector =,(x). These are

derived below.
First, we shall prove that

n (e, (x) = — [dod,d(x—x'), (10.12)
'b 6 g I I
S50 {nz) n(x)} = — 300 Jodoyd, d{(x—2') = 3,3, d(xz—x'). (10.13)

If the surface ¢ is flat, the left hand side of (10.12) is equal to —§,,0,,
on account of (8.18). Since n,n, is the covariant form of — 4,0,
(10.12) follows. Then (10.13) can be derived ') from (10.12) by using (6.56).

1)  We can show that the right hand side of (10.12) is symmetric with respect
to the suffices g and . In fact, il is symmetric when the surface ¢ is flat, or
Jadd, 0, A(c—2") — [,dad, 4 (x—2') = 0.

This relation nrust hold for any space-like surface, because the left hand side
does not depend on the form of suiface ¢. Indeed,

P , ) , ,
W{fudg d,A(c ~2") — [ do,A(x—z')}

= —3,34@—r") + 3, A(z—a") =0,

lt
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From (10.12) we can derive:
(@), () = — [dod0,4(x—2").
On the other hand, we have
Jdodd,4(x — ") — [ dad,3,4(x—2")=0. (10.14)

This is true when ¢ is the flat surface because, then, each term is zero
on account of (8.17) and (8.18). We can show that (10.14) is valid for
any space-like surface by showing that the left hand side of (10.14)
is independent of the surface:

Sy {1020 4 @ =) — [, 42,0 4 (5 =)}
=—23,2%%4@—2")+33,34(x—2)=0.
By using (10.14), (10.12) and (10.13) we obtain
2 (mu() n(T)) = — 52,0, 4 (x— ') da,
-~ [dd, s @ ). | )

The equation (10.15) can be generalised to give
, 0
3 () () <o 1y () = — [ doy 55 (1 (%) ... My, (2)). (10.16)

This devends on the well-known distributive law for derivation
operators.
We shall now give a useful lemma, namely, that
‘s ? ’ ’ ’
5@ Jo Fup (@) (@) oo my, (2 ) da,,
= (bq Fﬂl #M(M)) n[ll(x) e nzu(x)

—Fu (@) fs da, 35%:_’) {nu () ... M, (%)}

4 ’ a ’ ’
+ [odo, F,, ,, () ) {n(®) .. myy ()}

(10.17)

This can be proved easily by means of (6.6b) and (10.16). As a special
case (n=1), (10.17) leads to
6 ’ ' 7 r
m .'.tr dag F#v(x ) n#(a: )nv(x )
= (3 Fu()) - n () n(2x) — F () [, do] -5;%75 {n, (=) n(x)} > (10.18)
’ ' b ' ’
+ [odoy F o (x") ) {nz') n(z')}.
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Another important relation is:
F(zyn,(r)n,(z) = —4fde" F(z')(.e(x—2"))(d,4(x—=")). {10.19)

This can be proved by rewriting (10.19), for a flat surface (»,=(0, 0,
0,4)) in & covariant form (cf. (8.200)).

§ 2. Derivation of the Interaction Hamiltonian

The wave equations of the Heisenberg and intevaction representa-
tions are 1)

A,5(0)Q5(x) = J(2) (10.20a)
Aus(d)@s(2) =0 (10.205)
where
_ _ M=) L' (x)
J®) = — 55t s (10.21)
Here L’ is the interaction Lagrangian.
From (10.20a) and (10.20b) we have
0.(2) = Quia) + [ &' {D;,G.p (= &)} - I
Here D, and j,., are quantities whose components are
D, =(1,2,) (10.22a)
. _ A (=) L' (x)
Gueal@) = (— T~ ag,.,‘.(x))' (10.22b)

The symbol Da’ denotes Da constituted of derivation operators d:
Dy = (1,3,).

The function G{zx—2') is a Green’s function satisfying (8.41).
Different Green’s functions lead to the various interaction representa-
tions. However, since these interaction representations must be
connected by unitary transformations, we shall adopt the particular
one F*z—=x') (cf. (8.40¢)). Thus we have

Qu() = Q) + [ d%' {D, G (z — %)} - Jpol2’).  (10.23)

1) Wae shall restrict the present discussions to the case in which L’ has deri-
vation operators of lower degree than those of the free Lagrangian L°. For the
investigation of quantization theory in the mcre general case, see references
Pavwr [1953], Umzmzawa and Taxamassr [1953], Katavama [1953], Havasm
[1953], Ravsgr [1952].
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Furthermore, we can show that the quantities
Qulz, 6] = Qu() + [ A%’ { D, d g (3) A — 2)} - Jp.a(2’) (10.24)

satisfy the relations (10.5). In (10.24) the point x is not necessarily
on the surface o. By using (10.4b) to derive g,(z), it will be shown
later that the field quantities Q,(z) can be written as functions of
G(x). Therefore, we may assume that Q.[z, ¢] is given by (10.24).
This assumption can be justified if there exists the unmitary trans-
formation S[c] connecting @,{z) with (10.24). For, in such a case,
(10.24) satisfies (10.6). In the following discussion we shall deduce
the condition 1) for the existence of the unitary transformation which
transforms @Q,(z) into (10.24). It is apparent from (10 10) that :this
condition is equivalent to that for the existence of the interaction
Hamiltonian (ie. (10.29)).
Now (10.23) and (10.24) yield (¢f. (8.10), (8.27¢))

Qu(z) = Qul2/0] + 3 [ &% jp o(2") [D; dop(2). £(x—2)] A (2 —2"). (10.25)

Here @,[z/c] means @,[z, ¢] at a point z lying on o.
The equation (10.24) also shows that

Qulz, — oc]=Q.(=)
and therefore, on account of (10.8), that
S8{c]=8[o, — o<].
From (10.10} we have

i 5a0)[Q,), Hiw ]IS (1027)

On the other hand, (10.2%4) gives

> 6 ot 4y 1] ' Ve ,
i %o[(“;)a] =1Jp o(2") {D; ds(2) Az — ') }. (10.28)

Comparing this with (10.27), we obtain
[Qu(x), H 2" :n]] =1 86l jg o(a") { D} dup(d) Alx— ")} S ol (10.29)

) When the mteraction Lagrangian contains flelds of hugher spin (= 3,2)
0: differentiar operators of higher order (= 2), 1t may sometines happen that
1his condition (and therefore (10.29}) cannot be satisfied. For an extension of the
formuiacon ginin i this chapter to such a case, see UnMEzaw 4 and TARKAHASET
[1933], Ratavamy [19853], Hara . 1,953]
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This 15 the fundamental equation by which the interaction, Hamilioran
H'{x . n] must be determined (Taxksmasnl and Umrzawa [L953]).
The umtary transformation S[¢] connecting the Heisenberg and
mteraction representations can be obtained by (10.10).

From (10 29), H'[z - n] can be expressed as a power series in the
coupling constants by rewriting js ,(x') in terms of @,[z, c]. This
can be done by means of the formula

ME) u(=) = (ME) Qulz, oo (10.30)
+ 4 [ a4y o(2) - [MQ) Dy degd), e (w—2")] Az —2) )~
which is derived from (10.23) and (10.24). Here M(d) is any given
dufferential operator.
From (10.4b), we deduce
520) Qu(@) = Qu(x) +1 [ d" Jp o(z") [821(2) Dy dug(d), e(x—2")] A(2— ).
This leads to.

M) Qu(z) = M) 5.,(0) 4:(%)
+ § M) 5.,(3) [ a4 g o{2") [57(0) Dg dug(2)- e(z—2")] A(x—2')-

The second term depends only on z, on account of the relation
(8.20a, b). Therefore the second term is a function of the field quantities
Q.(z) (at the point z). By iteration we can therefore express Q,(x)
as a series expansion, each term being a function of q,(x). Thus, we
gee that the requirement (ii) for @,[x, o] (cf. § 1), is satisfied.

We shall now prove that the interaction Hamiltonian H'[z : n]
derived from (10.29) satisfies the integrability oondition (10.11).

Since the right hand side of (10.28) is not a functional of the surface,

we have

5
3ot ot el® o1 = 0.

This with (10.27) leads to
[Qute). 18 (220, H'[2":0]] + 4 [Qule), 5505 H'I&/:n]] = 0,
which can be rewritten as
Qux) H'[x :n] H'[2":n] + H'[2":n] H'[2":n] Q=)
+1 [Q,(a:), 3&—%5,7 H'[a:':n]:]
~{H'[2":n] Q) H'[2":n] + H'[2":0] Qu(x) H'[z':n]} = 0.

(10.31)
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By subtracting from (10.31) the relation obtained by exchanging
z' and z'’ in it we deduce

[Qa(w): ['Hl[w’:'n’]s H’[Q?”, 'n']] bo’(a:’)H [SU n] F 3 ( ) H’[Q? n]] 0.

The right hand term in the brackets must be a c-number. This
c-number must be zero because H'{z : =] is a sum of products of at
least two field quantities. The integrability condition (10.11) can
now be derived.

The canonical energy-momentum vector T, is defined by

T, = — i 8-1[c] f, do} (T%(z") — H'[x":n] 8,,) - S[0] (10.32)
= 8-[o] (T + i [, do}, H'[2":n]) S[o], )

where 7%, and 7'} are the energy-momentum tensor and vector for
free fields. The last equation shows that the total energy is the sum
of the interaction energy and the energy of the free fields. We shall
define the total energy-momentum vector 7', for the interaction
representation as

T, =8[c]T, 8 o] =T +i[,do, H'[x : n]. (10.83)

Although, as shown later, T, is constant in time, 7', does not have
this property. However, since 7', and T, are connected by a unitary
transformation, they have the same eigenvalues. The eigenvalues
&, of an eigenstate W(E) of T,:

T,%(E)=E, ¥ (E) (10.34)

give the total energy and momentum of the interacting fields. More-
over, ¥(E) is independent of o as T, is. Then S[c]¥(¥) is an eigen-
state of 7', for the same eigenvalue E,:

T,8[c]¥(E) = E,S[c]¥ (). (10.35)
We now prove that T, satisfies the equations (7.5) and (7.27), namely
LY R (10.36)
=, F(x)=[F(=), T,]. (10.37)
Since H'[z : »] is a scalar quantity, it has the form
H'[g:n] = g Pony... gy () Ty (2) <. 0y, ()
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where the h, ,, = arve functionals of the tield quantities Q,(x). From
(8.15) we have

[T, H'[x:n]] = 20, by . (%) 0, (Z) ... 2gp().
n

Then, (10.32), (10.17) and (10.10) give

oT . , o |
ag(:)' = — 8-1[q] f do;, ’ [H'|z:2|, H'[& :n]] - aa(: )n]
. DH“I’.n]
— i ) Slol.

This is equivalent to (10.36) because of the integrability condition
(10.11). It must be noted that this proof of the conservation of T, is
based on the integrability condition alone. Since we can construct
various Hamiltonians H'[z : 2] satisfyving the integrability condition,
the conservation law for the energy-momentum vector is not sufficient
to determine T, uniquely. However. (10.32) with (10.29) determines
T, uniquely.

We shall now show that (10.37) is valid. Since, as shown by (10.36),
T, does not depend on the form of the surface ¢, we choose a flat
surface o(x)=o(t) at a specified time ¢ (i.c. #,=0, 0, 0, ¢}. Then. (10.32)
leads to

T, =8~ o) (T2 [oad®cH'[2' : n]8,)S[o10)]. (10.38)

On the other hand, since s{x—=2z') changes its value oniy when 2’
passes through the surface #{z), contributions to the second term in
(10.25) arise when z=2" in the integrand (ef. 8.20))). Thus, we can
write Q. in the form

Q.(x) =5"o{z) [{Q.(z) +g.[x : n]} Siolx)l (10.39)
This gives
3y Qul(®) = 87 [o(t)] {3, Qul®) + ,
+ Eby Ts ty . g (T) P (2) -y, (3)} STa(E)] . (10.40)

— 87a(t)] forn B2 [Qu(x) + gula:n ] H'{2": 03] 5[0(t)] 8,4
Here g,[z : n] has the form

Ful®in] = X 0o u o0 DI PRUTITE
My i ”
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and the relation

12 8[o(t)] = Jup & H'[z ] (10.41)

has been used. The relation (10.41) can be derived from (10.1D).
Moreover, (10.40) can be rewriften .as

2, Qu() = — 872[0(t)] [Qu(®) + gul2: 0], T} + fou d% H'fa’n]8,,] S[a(?)]

on account of (8.15). This with (10.38) leads to (10.37).
Equations (10.22b) and (10.29) show that the interaction Hamil-

tonian H’[z : n] has the form
H'z . n]= —L'(x)+ W (x)n(x)n(x)+ ... (10.42)

where L'(x) is obtained from the interaction Lagrangian L'(z) by
replacing 0, by Q..

Since the g,[z : #] contains only #exms of degree 2 1.in the coupling
constant ¢, then all terms exvept —.L'(x) .n (10.40) have degree
(= 2) in g. It must be noted that, when W, (x) contains a term of the
form w(x)é,,, the second term in (10.42) gives —w(x) which is inde-
pendent of the surface o.

§ 3. Relation with the Usual Canonical Theory

In the last paragraph, we developed the canonical theory of the
quantum field theory by using the canenicsl variables g, implicitly.
Now, we shall show the relation between this formalism and that of
Heisenberg and Pauli in which the canonical ;properties are exhibited
explicitly.

In general, the @,’s are made up of two sets of field quantities,
Q.. (a'=1, ..., f) whose canonically eonjugate quantities

P,, = (—iPL2Q. ,

are not zero; for other components, i.e. @,, (&"=f+1, ...),

3 JLO
sao= 0 505 =0 (10.43)

In other words, @,., P,, gives the independent canonical components
and @, are the dependent components. Therefore, by the unitary
transformation S[c], @,, and P,, are connected with the independent
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canonical components Q,, and P,. (P,, = (—1)0L/3Q,, ,) in the Heisen-
berg representation, namely
— (§-1 g
Q.(#) = (501 Qu() S[0De (10.44)
P (x) = (87 [0] Pul) S[0])as6-
On the other hand, the differences between Q,, and (S1[¢1@..S[0]).s

are not zero but give the term S—![o]g..[x : 2]S[¢] 1n (10.39). We
shall illustrate this m Example 3.

§ 4. Fundamental Equations
From (10.1) and (10.10) we can show that the Schrodinger equation

in the interaction representation is

60(:1:) ¥Plo] = H'[z:n] ¥[o]. (10.45)

This equation, the commutation relations (8.14a, b) and the field
equation (10.20b) are the fundamental equations for the quantum
field theory in the interaction representation.

The solutions of (10.43) can be written as

¥lo]=S8[o, 6] ¥loy]=8[c] ¥[— 0], (10.46)
where S[o, 0,] satisfies
Sfo, 0,1= H'[x.n] 8{o, 0,] for 6 >0,

Sloy, o71=1 (initial condition).

66(x> (10.47)

When an initial state W[ — oo] is given, we can obtain the expectation
value of any quantity F(z) by means of

P*(o] F(x) Plo]=P*[— o] 82[c] F(zx) S{o] ¥[— ool.
We write this as
(F(2))e= (S [c]F(z)S[0]) - o) (10.48)

where { ), denotes the expectation value with respect to the state
¥io].
The probability amplitude of finding a state a on ¢ when ¥[o,]
is a state b, is
Y3¥(o]=¥38[0, 0,1, = (@|8[o, 6;]]]). (10.49)
Now (10.47) can be written as the integral equation
S[o, oy]=1—1 [ d*’ H'[z' : n] 8[o(x’), 0] (10.50)
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where the integration is taken over the region between two surfaces
¢ and o;. The integrability condition (10.11) ensures that S[o, 6]
does not depend on the order of the integration in (10.50).

The transition matrix S[cc] between the states corresponding to
t= —oo and f= + oo is called the scattering matrix or S-matrix.

§ 5. The Schrodinger Representation

- We shall now derive the relations between the interaction and
Schrédinger representations for flat surfaces o=o(f) at times ¢. The
Schrodinger equation (10.45) can be written as

i < Plo(t)] = H'[o(+)] Plo(t)] (10.51)
with
H'[o(t)] == [oy @ H'[z : 1] (10.52)

on account of (10.41}.
From (8.15) we have

2ry=0. (10.53)

Introducing F(z) given by -
F(z) = exp (—1iTY%) F(z) exp (iT5), (10.54)

where F(z) is an operator in the interaction representation, (8.15)
and (10.53) lead to

D =

B—t F (Z) =0.
This shows that F(x) is an operator in the Schrodinger representation
and that exp (:7%) is the unitary transformation connecting the inter-
action and Schridinger representations. From (10.54) we see that

the energy operators in both representations agree with each other,
or that

79 =19, (10.55)
The wave functions ¢(f) in the Schrédinger representation, i.e.
9(t) = ewp (—iT%) P[o(2)] (10.56)

satisfy the Schrédinger equation

i 2 lt) = (HO + H') o). (10.57)
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Here A’ and H° are the interaction Hamiltonian and the free energy
operator 7% respectively in the Schrédinger representation, that is
H' = exp (—:T%) H'[o(t)] exp (:T%) (10.58)

H® =T%. (10,569)

Although we have used the flat surface o(f) in the present para-
graph, this theory of the Schrédinger representation is Lorentz

invariant because it has been derived from the covariant formalism
of the interaction representation.

§ 6. Examples
Examprre 1. VARIOUS INTERACTION HAMILTONIANS

‘We shall first consider the vector interaction between a real (neutral)
scalar field and a Dirac field. The interaction Lagrangian was given
in (7.116) as

L’ =igQy,d-,U. (10.60)

Equation (10.29) shows that the interaction Hamiltonian can be
determined by means of the relation

[U(@), B'[z'n]] = gS[] 3, (B(=) 7, $(a") §-2[0] A~ g 10.61)
[p(2), B[z :n]] = ~ ig,806] $(2) -2}, U=') §-2[o] S(z— ).

From (10.30) we have?)

U(e) = Ulzjo] — 59 [ 4% B() 3, $(&') [2,, (@ —2)] A(z—=") $<1°-62“>
= Ulz/d]
$(z) = p[/c] (10.626)

3, U(x) = (2, U=, 61)eso
- 195 d B(@)y, @) [2,2, e(z—2)] A(z—2) ; (10.63)
= (3, U=, ol)oo + 19 ¥[x[0] 7, p[x/0] n,(2) NWf(2),
where (10.19), (8.20a), (8.20b) and (8.20¢) are used.

) D, e(x—z)] 4 (x—z') = (e(x—z") 4 (x —z')) —e(x—z') D d(x—z ) =
=4 (z—2') 2,e(x —z")=0 (cf. (8.20a)).
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Substituting (10.62a, b) and (10.63) into (10.61) we have
[U(z), H'lz":n]] = g 9, ($(2) yu p(@) d(z—2')  (10.640)

lo(@), B[z :n]] = — i gy, pi') - 2, U(&) - S@—=) ) (10.645)
+ P2y la) - (B) y, yl@)) S(2—2) n(z) mfa’) §
which gives
H'[z :n]= —igp@)y,p@),U () - 3@ @)y ,p@m, @) (10.65)
We now give the interaction Hamiltonians that are derived from
the interaction Lagrangians given in Example 8 of Ch. VII by the

same method. The scalar and vector interaction between a real
(neutral) scalar field and a Dirac field is

H'lz : n]= —fppU —igpy, w0, U — 3% Py pm,)>. (10.66)

The pseudoscalar and pseudovector interaction between a real
(neutral) pseudoscalar field and a Dirac fleld is

H'[z : n] = —iffyspU —igPysy,pd,U — 3% (Prsvaym,)®.  (10.67)

The vector interaction between a real (neutral) vector field and a
Dirac field is

, o 1 o, .
H'[z:n] = —szy,,y;U,,—-mﬁ(zpy#ym#)“. (10.68)

The pseudovector interaction between a real (neutral) pseudo-
vector field and a Dirac field is

' L 1 _ o
Hzin]=—ifPysy,pUu—55 P(@rsvayn)®  (10.69)

Examrre 2. ELECTROMAGNETIC INTERACTIONS IN CHARGED FIELDS
OF GENERAL KIND

We shall consider the 4,-type of interactions of general charged
fields @Q.(x).

The interaction Lagrangian does not contain any differential
operators that acts on 4, (cf. Example 4 of Ch. VII), and d,(3) for
the electromagnetic field A4, is 4, (cf. (8.57)). Therefore, (10.30)
gives 1)

Afz) = (8ol 40 S[oDe )

(10.70)
a[l A#(Z) = (S—l[a] 3"A#(x) S[G])m/d . 5

) [ slx—z')]14 (@—z') = 0.
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The fundamental equation (10.29) gives
pawxﬂﬁvmn=—wa<r—xmﬂﬂ§fSﬂw1 I
= —id,(z — ") 8[o] J(=') 81[c]. |
The symbol A4, means the A-functions for the photon field. In (10.71)
J. is the electric current vector (7.70). The electric current J MEE

in the interaction representation is defined in terms of J, by the
unitary transformation

(10.71)

Julz : n]=(8{o] Ju(x) 87 [0])ss- (10.72)
Thus we have, from (10.71),
[du(x), H'{z' : n]] = —id (x—2")] [z : n]. (10.73)

Taking into account the commutation relations (8.57) for 4,, we
obtain, from (10.73), the important relation

J ' in] = H'[x:n]. (10.74)

BA 2(x)
For simplicity, we assume that H'{z : n} has the form

Hfx:n] = —ej(x) A, (2) — e, [r:n] 4, (2) 4,(z). (10.75)
Here j, and j,, do not contain 4,. This assumption can be established

by practical calculations in cases of charged fields of low spin (§ < 1).
The last equation shows that

jwle s nl=j,x : nl. (10.76)
Then (10.74) gives the current
J [ : n]=ej (x)+ e, [z : n]4,(x). (10.77)

Moreover (10.42) shows that j, has the form of the electric current
for free charged fields, and therefore satisfies:

dJu(x)=0.
We now prove the theorem (Umezawa [1952]).
fuwl® 2 nIn,(x)=0. (10.78a)

Equation (7.35b) gives

oL
JF = (39“ M sz Q: 30, )
which leads to

. AL oL
J,,[x:n]n“————w(ng :BQ )n
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on account of (10.43) and (10.44). Since the Lagrangian L in the
interaction representation (i.e. the Lagrangian for free charged fields)
contains no field quantities A,(z), we have

b;—: (J,[z:n]n,} = 0.

Comparing this with (10.77), and taking into account (10.76), we
obtain (10.78z). From (10.78a) we obtain the relation

8[o(x)]1],(x)S [o(z) In,(2) =5, (2)7 (%) (10.78b)
We shall now obtain the analogue of the continuity equation (7.345),
BFJ“(IZ?) =0,

in the interaction representation.

From (10.72) we have
é p ’ ) ; ’
5otz Jo 89, T (&) = 874(6] {57735 Jo do. Tl 1] 10.79)
— 1 [ do, [J [x':7n], H’[x:n]]} S[e].

By applying the formulae (6.6b) and (10.17) to (10.79), we obtain
: ,
3FJ“(KE) = S—l[o'] {3‘“]“[15:7)/] — .ru da,‘ WJ#[x:n] 2
I a 4
+ L,do,,s-;(?)J“[z 1n]
— i [y do, [J [z :n], H'[x:n]]} S[o]. S
On the other hand, the integrability condition (10.11) leads to )
i ) ’ ’
i[5z Bl B0l = ba(x') S @ Hz:nl,
[H’[z n], 57 (x)H’[x n]] w) ST (w H’[x ],

(10.80)

1) By operating 0/04 ,(x) on (10.11) we obtain

—1 [Wi(}—) H'[z:n], H’[.z:’:n]] — 1 [H'[x:n], 3_237;:_ H’[:c':n]]

2 s 2 D ;
= %o 54 (:c)H[ ~ 5o o, m e

On the other hand,

bAb( )H’[a: m)] =0

because x and &’ are two different points. Thus we have

. 2 oo rpad o . 2 2 s
Lo e B e | = sy, e
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where r and 2’ are two different points on the space-like surface o.
By adding both relations and taking (10.76) into account,

i[J [x:n], H' [z :n]] = &%75 Julein] — g{%ﬁ;J#[x’:n]
— i [H'[x:n], J fx’ :n]].
This is obviously valid even when z agrees with &'. Substituting this
into (10.80) we have
2, (@) =810, J [z : n]—ifdo,[J, [z : n], H'[z' - n]]}S8[c]
which leads to
d e s nl=ifdo [ Je c n], H'[x' : n]l. (10.81)

Here the derivation operator >, operates on the field quantities in J [z : n]
but not on the normal vector n,.

Substituting (10.75) and (10.76) into (10.81), 4nid comparing the
terms of the same power of 4, in both sides of (10.8§), we obtain

Quju="0 (10.82a)
fdol[5,(@), 7. )J4s(@") = 10,02 : n]4,(2)) (10.825)
S0, [§,2)s o’ : n]ld,(z")A4,(z'}=0 (10.82¢)

(Umurzawa [1952]).

Here x and 2’ are on the same surface and the derivation dperator
d, does not operate on the normal vector =, in j,[z : n]. Equations
(10.82) and (10.78a) lead to the general properties of the electric
current expressed by 1)

1) [5u(%), 7,(2")] = ¢ N (Z) ¥ (Ju[: ] - 3, Az —2")) (10.83a)
7, 1, [Ju(2), Jo(z")] = 0 (10.835)
0, [7,(%), 5 [2": B]] = O. (10.83¢)

1} Binte no specific property of 4, was used for deriving the continuity
equation, any function, f(z) can replace 4,(z) in (10.82b,c): —
Jodoplie), 1,20 f(z") =12, (fulz:n] f(z)].
By taking d,4(x—=z")(=176(x—x")) at a given point z”, on o as f(z),
we obtain
—1 [ s (@), 7,(@)] 0 (" —27) = id,(f n[x: 0] 3, 4 (" ~z*)).
This leads to
Falz)s 7, (@] =13,(f [ :0] -3 4 (&' —2")).
From this (10.83a) can be obtained. By taking # = 4 in (10.83a), we cari deduce
(10.83b%).
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Here z and z' are in space-like positions with respect to each other,
and the derivation operator d, does not operate on the normal vector
n, in j,. These relations will be used in the next chapter.

We shall now rewrite the Lorentz condition as a relation in the
interaction representation. From (10.30), (10.72), (10.78a), (10.19)
and (8.20d), we obtain

2,9, 4,(z) = (8[6]3, 3, Ay () 87 [0])e
+1 8%’ §10] Je) 8] - 9, e(@=2)] A=) 10 00
= (8[0] 3, 3, Ay(x) 8701 )oso — € Ju(®) M(2) 7()
= (S8[6]2,3, Au(2)S~{0])sie + € [od0, (2" 2, A (2" — ).

Here z is on ¢. On the other hand we have the formula
2 A,(2) = [; doj { A (z—2") 23, A, (') — ¥, A2’ - 3, Ay(z—2")} (10.85)

where z is nof necessarily on o. We prove (10.85) by showing that the
functional derivation 8/8c of the right hand side is zero, so that
(10.85) is independent of ¢. On the other hand, (10.85) is easily
established for the flat surface through the point z.

The conditions (7.569) and (7.60);—

% Au(x) @ =0 } (10.86a)
3,0, A (x)® =0,
lead to
3, A, (%) Po] = [,do, A (x—2") 2,3, A, (x') P[6] (10.86b)
on account of the relations (10.85) and (10.70). In (10.86b), = is not

necessarily on ¢. Substituting (10.84) into (10.865) and using (10.86a)
we have

3, A, (x) Plo] = e[, do] [, da, §(x") A (x—x") ¥, A, (x"—2") P[o]
which gives
[2.4,(x)—efda.j (2 )A,(x—2')]P[o]=0. (10.87)
Here x is not necessarily on ¢. In the derivation of (10.87), we have
used the relation
JowndoA@—2')0,4(x" —2')=A(x~=z")

(cf. (8.18), (8.198)).
.Equation (10.87) is the Lorentz condition in the interaction

representation.
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Regarding (9.65¢) as the Lorentz condition in the Heisenberg
representation, the Lorentz condition in the interaction representation

becomes
2,4, (%) —ef,doyj (2 ) A} (x—2")]P[o]=0. (10.88)

ExampPLE 3. ELECTROMAGNETIC INTERACTION IN DUrFIN-KEMMER-—
PETIAU FORMALISM

We shall consider the electromagnetic interaction of a field of spin
(1 or 0) in the Duffin-Kemmer—Petiau theory.
The interaction Lagrangian is, by (7.105) and (7.69),

L' =iePB,PA,. (10.89)
From (8.61) and (10.25) we have
A (z) = A4,[z[d] (10.90)
$(@) = ple/o] + 5 e ] 4" B P(@') Au) [4), e(z—=")] |
= yle/o] + L e(L+ (B, %)) B, Aulzfd] plzfo),
if the formula

(10.91)

(L+ (8081 + (Bine)?) =0 (10.92)
is used. Then, (10.29) can be written as
[p(z), H'[2':n]] = — e d(2) A(z—=') S[o] b A(z") Y(z) 8~{c]
= — ed(2) Az—2") B, Af2) {1+ Z e (1 + (B,1,)%) f, 4,(=") | p(2).
This gives the interaction Hamiltonian
Hilpin] = —icifupd, + 5 P81+ (Bm)) foy 4,4, (10.99

(Tagamasar and Ummzawa [1953]).
It must be noted that (10.93) has a e2-term which is independent

of n, (cf. §2).

ExAMPLE 4. RESTRICTIONS ON COMMUTATION RELATIONS ABRISING
FROM INTERACTIONS
We shall now show that condition (10.29), which is satisfied by
interaction Hamiltoniahs, restricts the possible type of the com-
mutation relations.
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It is easily seen that (10.29) can be written as

P .« dH'[x':n] , )
[Qa(x): H [.E 'n]] = LB(D; Q:(w,)) ddﬁ(b) Da A(x £ ) /\
dH [z :n] &
UD, Qula)

v (10.94)
= [Qu(z), D; u(@')]

From (10.94) we have: (ONEDA and UMmezawa [1953], UMEzZAWa,

Poporanskr and OxEpA [1955], KmvosHITA [1954]):

Theorem (i): Every term of the interaction H’[z - n] must contamn
an even number of field operators @V, ..., @ for which

[QV(x, 1), X(x'. )], =0.

Here X is an arbitrarily chosen field and x and x" are two different

points. ‘
To prove this theorem, we separate the field quantities appearing
in the given term of H’'[z :#] into two categories (@Y, ..., @™),

(@m+Y, ...) which satisfy
Q¥ t), X(x', )], =0 for i< m
[Q9(x, t), X(x',t)]-=0 for i>m

(x and x’ are two different points). If m is an odd number m=2n+1,
then

[X, QU ... Qen+D Qen+a) | ]_
={[X, QY] Q® ...} — {QW [X, Q®], Q¥ })
+ e —{QW ... Qur—D [X, QEm], QEnY L} (10.95)
+ {Q(I) Ve Q(Z‘n) [X’ Q(2n+1)]_ Q(2n+2) ".}
+ Q(l) e Q(25+1) [X’ Q(2n+2) “.]__ .
The appearance of [X, @®+V]_ in (10.95) implies that an interaction
of this kind cannot satisfy (10.94).
Since all transmutation processes are induced by interactions
satisfying Theorem (i), we have

Theorem (ii): In every transmutation process there must be an even
number of fields (@Y, ..., @), for which [@¥(x,?), X(x', t)],.=0.
Here X is an arbitrarily chosen field and x and x’ are two different
points.

Since there exists the bremsstrahlung process:

Pie—P+e+y,
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it follows from the theorem (i1) that 4, must commute with any other
field.

We shall now assume that the proton field y, and the neutron field
yy are both Fermi fields. and that the charged m-meson field ¢, is a
Bose field. Tn other words, we assume that

[%(Xa t): ¢P(xlz t)]-rz (I,U_V(X, t)’ -N(x,: t)]+= [(Pn(x’ t)a (]);(X', t)]_==0

(for two different points x, x').
Then, by theorem (ii), because of the existence of the transmutation
process P+P — P+ N -a*, il follows that either

fve, pyl+ =0 } (10.96)

e Pal— = [, @a]- =0
or

[vp, wx]- =0 i (10.97)
['(PI" (p:zl-%- = [Q/)N’ q;z]-*}- = O-f

It must be noted that not all of the commutators

[V’P? TPN]— ’ ["/’Ps %-:]— H [WN’ (pn]—

can simultaneously vanish. The process P+ P — P+ P+a® implies
that the neutral m-meson (7% must commute with all other fields
(say X);

[P, X} = 0. (10.98a)
For example,
[@mr Pl =0 } (10.985)
[y)}U ¢ﬂ° - = [y’N; q’:x' - = O.

Therefore, if we assume that the charged »-meson and the neutral
a-meson have the same type of commutation relation, (10.97) is
forbidden and (10.96) must obtain. This result seems to support the
view that the proton and neutron are two different states of one
particle, (i.e. the nucleon).

Thus, we see that the existence of various processes restricts the
possible types of commutation relations.

Exavpre 5. THE INTERACTION AND TIME REFLECTION

A detailed discussion of time reflection in quantum field theory has
been given in Example § of Ch. VIII. We shall now give some examples
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of some interactions that are excluded by the requirement that the
theory should be invariant under time reflection.
From (10.45) we obtain, by using (8.73),
6P ’ ’
@—6-&(—,%-] — (H'[z:2])F "P[o]. (10.99)
Therefore the invariance of the Schridinger equation (10.45) implies
that the interaction Hamiltonian must satisfy the condition

H'['Qu('z)]=(H'[@x(x)]). (10.100)

Here H'[Q,] means the H'[z : n] made up of the field operators 4,.
The condition (10.100) requires that the interaction Hamiltonian
must have positive parity under time reflection (cf. (8.86)).

We can now prove, if we accept standpoint (ii) of Example 5,
Ch. VIII, that linear combinations of scalar interactions and a vector
interaction cannot represent the true interaction between a Dirac
field v and a real (and therefore neutral) scalar field U. In fact, as
shown by the Table I in Example 5 of Ch. VIII, the invariances of
ppU and $y,p0,U lead to the impossible result that, under this trans-
formation, U and »,U must be even scalar and odd vector respectively.

With the same premises we can prove that a linear combination
of a pseudotensor interaction and a pseudovector interaction between
a Dirac field and a real pseudovector field is impossible (LUDERS
[1952]).

In the case of interactions between complex Bose fields and Dirac
fields, or of B-interactions, the coupling constants are complex and
we find, accepting standpoint (ii) that their phases are restricted by
the requirement of invariance under time reflection (UMEzAwa,
KamervcHr and Tawaxa [1954]). We shall denote the determinant
of the matrix A for x-field under the time reflection by p,; its absolute
value |o.| must be 1 (cf. (3.20)). Further p, must be real for a real
field. It may, however, be complex for complex fields.

For the interactions between complex Boson fields and a neutral
spinor field ¢* or a charged spinor field y* we have

frPU + frpPyU* (scalar interaction) (10.101a)
[ yspP U — fgPygp>U* (pseudoscalar interaction) (10.1015)
oy P U — PPy U (vector interaction) (10.101¢)

sy WU —if*PPysy,p”UL  (pseudovector interaction)  (10.101d)



CH. X, § 6} EXAMPLES 201

Because of the invariance under the time reflection (from standpoint
(ii)), we obtain the conditions

fexoso=1*. (10.102)

From the same standpoint, the five j-interactions (7.121) under
time reflection provide the simpie condition

JO10100a=g*. (10.103)

When we assume that all phase factors g, ..., g; are 1, this condition
requires that the coupling constant g of the f-interaction is real.

ExavMpPLE 8 SPIN OF CHARGED 7-MESON

When the interaction is invariant under time reflection, the dis-
cussions of Example 5, Ch. VIITI and the last example show that the
matrix element of the S-matrix of a process (0-state, f-state) is equiv-
alent to that of the inverse process (f-state, O-state) after taking the
average value with respect to states of quantities of negative parity,
under the time reflection. Therefore, the ratio of the transition
probability dw,. , and dw,._, of these processes per unit time and unit
energy of the final states is

Bwrco _ 0 (10.104)
dwy_; eg,

where gg, and gy, are the number of final states per unit energy of
the respective processes.

We shall consider a case in which 0- and f-states are those of a
system of a n*+-meson and a deuteron D and a system of two protons
(P + P) respectively. Then, dw,., and dw,.; correspond to the absorp-
tion of a n*t-meson by a deuteron and the production of a z-meson
and a deuteron by the collision of two protons, respectively. Denoting
the momentum and energy of the proton and the n-meson by (p, Z,)
and (k, ¢,) respectively we have, in the centre of mass system,

2
= nE dQ,,
Or; ;2,,)3 ?1 ? s (10-105)
or, = LN b ed 2.

Here S is the spin of a #+-meson and (28 + 1) is the number of i)ossible
spin states of z+-mesons. The factor 3 appears because the deuteron
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is in a 3S-state, and d€2, and dQ, are the small solid angles in which
protons and z+-mesons of the final states are scattered. Therefore,
the ratio of the transition probability/unit time/unit solid angle/unit
energy is (MarsEAK [1951], CHEsTON [1951])

dwieo /dw0<-_f N _L_)_ 1 pE,

ao, | Td2, T 3081 ke (10.106)

In fact, the spin of the at-meson has been determined as zero by
comparing (10.106) with experimental data (DurBIN, LoArR and
STEINBERGER [1951], CLARK, RoBERTS and WiLsoN [1951]). Conse-
quently if the n~ and nt-meson are different charge states of a field,
the spin of the z—-meson must be also zero. Further, experimental
data on the absorption of z—-mesons by deuterium seem to suggest
that the charged sm—-meson is a pseudoscalar field.
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CHAPTER XI
MISCELLANEOUS THEOREMS

§ 1. Gauge invariance
Quantum field theory in the Heisenberg representation has a form
invariant under the gauge transformation (7.66). However, when this
transformation is applied to the quantities of the interaction repre-
sentation, it induces a factor exp (ted(x) —ied(x’)) in the commutation
relation (8.14a), for charged fields. Therefore, we rewrite the gauge-
transformation in the interaction representation in the form (Kona,
TaTi and ToMoNAGa [1947], ScEWINGER [1948]):
A,—>4,=4,+3,4, JA=0 2
Yol — ¥'o]l=U1[c]¥][c] : (11.1)
Ulo]=exp [ —1tef,do,j.(z")A). S
We can now prove that quantum field theory is invariant under
the transformation (11.1) (Umezawa [1952]). Using (10.78a), (10.82a),
(10. 83a) and (10. 83b) we have

U-l[aJ m) Ulo] = &, 5 T € O (42) A())
5 e? f, dal, [7("), (%)) A(z') 3, A(=z)
+ 31-! &3 [, o, [, doy [§,(2), [7u"), j,(@)]] A(x") A(z') 3, A(z)

+ . . . . . . . . . . . . . (11.2)
i 3—&% + ej.(%)3d, A(x) — eEaj',,du",/l(a:’) 3, A(2) -0y {Joul' : m]- D, A2’ —2)}

+ 3 8§, dd o doj, A(z") A(@') - 3, ()3 {[7d@), o2 :2]] -2, A ~2)}

6a(x)+e:’l‘(x)b A(x) + €2 j,.[z:m] 3, Ax) - D, A(%).

on account of the general formula
d
exp [~ F] 5~ exp [F]
=_-[1—F+—1—F———1—F+ e {1+F+ sF+g Pt
+ @ —114, 61+ 5[4, [4,61] - ..
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with
G = dF/do.
On the other hand, by using (10.75), (10.78a), (10.83a) and (10.83b)
we obtain
U-1[o] H'[z:n] Ule] = — e 7,(2) A,(2) — } e julz:n] 4,(2) 4,(z)
—ie jd dO’,‘ [7#( ) ],(Z)] A(zl) Av( )
-3 6 jﬂ de D' ) jw[m n]]A( ,) #(:l:) Ao‘(z) +
=~eay( ) A, (@) — } €2, [2: 1] A,(2) A (@) — €2, [x:n] 3, A(x)- A, (z) p (11.3)

=— e]',‘(w)A ( )
— } e, [z n] {Ay(x) + 3, A@)}H{A(2) + 3, A(x)}
+ }e?j,[z:n] d, A(z) - 3, A(x).

Since the Schrodinger equation can be written as
U~1[a]{ 5otz )—H’[x n]j Ule] ¥'[o] = 0,
we obtain
. 6 - ’ e ’ ’ 14
{1 5ot — € @) Aul@) — 3 R u[z:n] Ayz) A)z) | ¥'[o] = 0. (11.4)

This equation and (10.75) exhibit the invariance of the Schrédinger
equation under the gauge transformation (11.1).
Further, using (10.8356) we have

U-[o][2,4,(x)—efAo] »(z—2")1U[o]
=,4,( x)—-ej,do,‘yﬂ x )A,,(x—x )
=2,4,(x)—efdo,j.(z)A,(x—2).

We see from these relations that the Lorentz condition (10.87) is
invariant under the transformation (11.1).

§ 2. The Relation between a Real Vector Field U, and the Electro-
magnetic Field

We shall now prove that the quantum field theory of the electro-
magnetic interaction can be derived as the limiting case (x — 0) of
the theory of the vector interaction of a real (neutral) vector field
U, (mass x) (GLAUBER [1953], UMEzAawA [1952]).

We shall call the interaction derived from the free Lagrangian of
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a charged field @, a vector interaction, if it can be obtained by the
substitution 1)

DuQa g (bu - ifUu)Qw buQ: —> (bu+ szu)Q: (11-5)

Here f is a coupling constant.
In contrast with the result A (x)=A,{x/s] of Example 2, Ch. X
(cf. (10.70)), we now have

U, (2) = 801 { Uu) + 3 1 1o(2) no(2) m(2) | Slo],  (11.6a)
where z is on o. In fact, (10.25) gives
U2) = U,lzfo] — 3 = [ d%' J(a") [3, 3, e(@—a)] A(z—a'), (11.6b)

where the current J, is defined by
1. =L’ pU,

and therefore, can be obtained by (7.35z) (cf. (11.5)). In other words,
J. is just the electric current (7.35b) without the charge e. Thus, J,
satisfies the continuity equation

2,J.(x)=0. (11.7)
The second term in (11.65) can be calculated by means of the relation
[2.2,, e(x—2'Y]d(x—2')
=d2,(e(x—2')-A(x— ")) — e(x— 2')d 0, 4(x — ')
=d08(@x—~z') Az —x')+ de(x—2') 3, 4(x—2')
+e@—a)-2,d(z—2'),
which, on account of (8.20d), is equal to
de(x—x'y-d,4(x—x).
By using (10.19), we have
U,(z) = Ulxfo] + 5 1 J(2) m(z) n(2).
On the other hand, we can show that
8[o(2)]].(x)S [o(@)In,(x) = j,(x)n,(z)

by the same method as that used to obtain (10.78b). Thus (11.6a) is
established.

1) In this Chapter we use bold and ordinary type to denote quantities in the
Heisenberg and interaction representation respectively.
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Corresponding to (10.75), we assume the interaction Hamiltonian

to be
H'[z:n] = —fh(-’v) Ulz) — % P jwlz.n] Ulz) Ulz)

+ 53 12 (7(2) me() 2.
In fact, (11.8a) can be justified for charged fields of low spin (S < 1)

The last term of (11.8) comes from the last term in (11.6a).
In the Stueckelberg formalism (cf. Example 6, Ch. VII) in which

U, (@) = A() + 3 %, B(a),

(11.8a2) can be written as

B'fain] = — 15, (4, + 22, B) { (11.8b)

1 . 1 1 1 .
__é.jzj”y(A# -+ ; B“B) (A., =+ ;D,B) + ﬁfz(?l‘ n”)Z_ S
Moreover, we have the conditions
{2,A,(x) 4+ xB(x)}¥ =0 (11.9)

(11.8a)

(cf. (7.103)).
Field equations for A, and B can be obtained from (7.102) and

(11.5) as
(]:]——xz)A“(z) = —pr(x)
(D—xa)By(z) = _fbﬂJﬂ(x) =0.
By using (10.30), we have
M(2)B(x)=(S[c]1M(2)B(x)S~*[6])ys -

In particular,
B(x)=(S[c]B(@)8[0])eso (11.6c)

2, B(@) = (S[e ]2, B(x)S [0])y- (11.64d)
From (10.30), and commutation relations (8.60), we obtain (cf. (10.84))
A(x) = (8[o] A=) S[0])yos
2, A(x) = (8[0] 3, A () S7[o])so
+ 553 1 %' 8[0) J(z') 8-1[0] [3,, s (z—2")] A(z—")
= (8o] 3, 4.(x) S [6])so»
3,9, A,,(:c) (S[o] 3, 3, A(x) 82[0])se
fId‘x S[G] Ju(«’) 7ol [3, 3y, e(x—x")] A(x—2") p (11.6f)
~ (S (0] 3 3, A () 87 6])yyo + | Jo da, ju(2') 3, A(%'—2).
These relations will be used to obtain the Lorentz condition.

(11.6¢)
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Introducing the unitary transformation
¥[o] » ¥'[0] = U[o] ¥[o],
Ulo] = exp (% 1], o} ju(=) B(z")),
we can rewrite the Schrddinger equation as,
U-(c] {4
which leads to
{1 5oz — F1u(@) 4u(@) = } 2 junl@:m] 4,(@) A(@) } ¥'[0] = 0. (1L.11)

This can be obtained by using the relations

(11.10)

(W) — H'[z: n]} Ulo] ¥'[o] = 0,

i U'l[cr] 5oz UL0] = {6 50 — 5 17,(@) 2 B(@)
+ 5 12 Tl 2] 3 B(a) 3, B(a) }
+ 25 f2 126, j(z") 1,(2) [B(x') . B()] (11.10a)

= { - 60’(:6) f?,,(m) 3, B(z) + 55 2,,2 12 Juw[x 0] 2, B(z) 2, B(x)

= £ Gu2) o)
and
U-[o] H'[w:n] Ulo] = {~1 () (4,(@) + 3 2% B(@))
— P[] (4,2) + 3 %, B®) (4,2) + 5 3, B(2)
+35 P lwlmin] 3, B(@) - (4,) + 3 3 B(®))
+ 35 12 w2 7] (4,(2) + 1 3, B(@)) 3, B(2))
5 12 (o) m(@)? + 5 12§, do, (&) i) [B(), 3, B()]
~{—1iu@) (4uf) + 5 2 B@))
3 Fiwl@:n] (4,() + 5 % B@)) (4,(2) + £ 3 B@))
+ g5 P hulmin] 3 B(2) - (442) + 3 % B(@)
+i feilzin] (4,(@) + 3, B(@) - 3, B(a)]
— 53 12 (@) (@)
instead of (11.2), (11.3) (cf. (8.60)).

(11.108)
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T;’le terms in the first brackets in (11.10a) and (11.106) may be
obtained by replacing eA(z) and A,(z), in (11.2) and (11.3), by

(—f/=)B(x)
and
A, () + (1 /%) B(z),

respectively. The last terms in (11.10a) and (11.105) are the contri-
butions due to the g-number properties of B(x) and the last term
in (11.8b).

On the other hand we can show that

2,4 (2) = [ Ao {A(x—2')0,;0,4,(x') 3,4 ,(z) - 3, 4{x — x")}
B(z)=[da{Az—=z')d,B(x’) — B(z")s,4(x — ')}
by the same method as that used to obtain (10.85). Then, conditions
(11.9) lead to (cf. (11.6¢,4d, ¢, f))
[2, 4,(x)+x B(x)—f [, do, [ da, Az~ 2x’) j(x') 3, A(x"—z')] P[] =0
on account of (11.6¢c,d, ¢, f). Thus we obtain
R,4,.(x)+xB(x)— f[doj.(x)A(x—2") ]P[c]=0. (11.12)

Here z is not necessarily on o.

We see that, in the limit x — 0, (11.12) and (11.11) are equivalent
to the Lorentz condition (10.87) and the Schrédinger equation in
quantum electrodynamics. Moreover, (11.11) shows that the B
component in the vector interaction gives no contribution to the
change of the state vector.

§ 3. The Vector Interaction of a Real Scalar Field

Equation (11.11) shows that the state vector ¥[o] is a constant
when A4,=0. In this case, the vector interaction in the last paragraph
agrees with that between a real scalar field U(=B) and the charged
fields @,, and the substitution (11.5) can be written as

3, 0, —> (by—-i-f; %) 0., 2,0~ (a,,+i.£ %0) 0r. (11.13)

Thus we see that the vector interaction of a real scalar field has no
physical effect.
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§ 4. Equivalence Theorem

A theorem analogous to that of §3 can be established approx-
imately ') for the charge independent interactions between fields
U@ (i=1, 2, 3), whose spin and isotopic spin are 0 and 1 respectively,
and the Dirac fields y of the isotopic spin 1/2 (cf. Example 10 of
Ch. VII).

We denote the masses of the U®- and y fields by « and u« respectively.

For the vector interaction of the scalar field U®, we have (cf.
(10.66)),

H'[z: n]-_~z< )zpyﬂ‘t p o, U®
—m(wnrw 1) (P Ve Ta 9 M)-

(11.14)

Now, although we omit the proof, it is possible to establish the
theorem:

In the approximation in whick the higher order terms ¢g" (n > 8) of
the power of g can be neglected, the vector interaction (11.14) kas the same
physical effect as that of the interaction

z (2”)29 ?F%{T U(L)B Ue_.pey L‘““}lp; (11.15)

(1,2 3

here > means that the summanon is laken over suffices (i, k,1)
1,2,8)
which run cyclically over the numbers (1, 2, 8).

For the pseudoscalar field U%, we consider the pseudoscalar (PS)
and pseudovector (PV) interactions (cf. (10.69))

H'z : n] = —ifpyrpU® for (PS) (11.16)
H'zin)=~L §ysp,mpd, UY ) am
: .
e (Frsvamm) (Brsverpmy) for (BV). |

Then we can prove the theorem:

In the approximation in which the higher order terms f* (n = 3) can

1y The approximate property of this theorem is due to the fact that sore
charges of the Bose field can be converted into those of the Dirac field, so that
the electric current of the Dirac field cannot satisfy the continuity equation
which was used in § 1, 2 and 3.
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be neglected, the pseudoscalar interaction has the same physical effect
as that of the interactions

; _ 1 1 - o
e F Vs Va T ® % U = 55 PR B Ps Vu TP ) (B Ve T 9 )
2u 2(2p)

+_2% Gy UO UW (11.18)

+(1.22'3)1: _(_2_:"_72 ]!2 ,lp Vs {Tz (L'f(k) Dv LT(I) . U(l) . b’ U(k))} w.

The proofs of these equivalence theorems are made in a way similar
to the discussions of §1. § 2 and § 3, i.e. by using a unitary trans-
formation depending only on a surface ¢ (DRELL and HENLEY [1952]).

Theorem (11.15) shows that if the mz-meson were a charged scalar
field, its vector interaction would have no effect on the nuclear force
in the g%-approximation. On the other hand, as shown by (11.17) and
(11.18), if the z-meson is the charged pseudoscalar field, its pseudo-
vector interaction has the same effect on the nuelear force as that of
the pseudoscalar interaction, the coupling constant of which is
f= —2ug/x (NELsoN [1941], Dysox [1948], Casr [1949]). In these
theorems we have assumed the equivalence of the masses of two
spinor particles (e.g. the proton and the neutron). Therefore, the
accuracy of the equivalence theorems may be slightly impaired in the
cage of interaction between the z-meson and the nucleon fields on
account of the mass difference of the proton and the neutron. The
third and fourth terms in (11.17) make contributions to the scattering
probability of the m-meson and the nucleon.

REFERENCES

Casg, K. M. (1949). Phys. Rev., 76, 14. . . . . . . . . . . . . . . (3 4)
Drery, 8. R. and E. F. HENLEY, (1952). Phys. Rev., 88, 1053. . . . . (§4)
Dyson, F. J. (1948). Phys. Rev., 73, 928 . . . . . . . . . . . . . (84
GravBER, R. J. (1953). Prog. Theor. Phys., 9, 295 . . . . . . . . (§ 2)
Kona, Z., T. Tati, and S. TomoNaca, (1947). Prog. Theor. Phys., 2, 101,

108 & v v v e e e e e e e e e e e L
Nersox, E. C. {1941). Phys. Rev., 60,830 . . . . . . . . . . . .. (§ 4)
ScEWINGER, J. (1948). Phys. Rev., 74, 1439 . . . . . . . . . . . . (§ 1)

Umrzawa, H. (1952). Prog. Theor. Phys., 7,561 . . . . . . . . (§1,2)



CHAPTER XII

QUANTUM FIELD THEORY IN HEISENBERG REPRESENTATION

§ 1. Proper Field around a Source

In the interaction representation states of fields are represented
by assembly of free particles, and these states change from time to
time on account of the interaction Hamiltonian in the Schridinger
equation. In the Heisenberg representation, the interaction effects
are included in the field quantities; this property also obtains in
classical field theory. Taking account of this fact, HEisENBERG [1931]
presented a theory of radiation in the Heisenberg representation, in
which the radiation intensity was calculated as the expectation value
of the number operator of photons. The electromagnetic field around
an electron changes from time to time due to its movement. The high
energy photons can escape and lead to the Bremsstrahlung phenom-
enon, and the low energy photons, which cannot escape, give rise
to the proper field (i.e. bound photons) of the electron.

In this Chapter we shall present this theory in a covariant formu-
lation for general fields @,(z). All operators, in this Chapter, belong
to the Heisenberg representation.

The wave equations in the Heisenberg representation are (cf.
(10.20a)) :

A (2)Qp(@) = (). (12:1)

We shall now suppose that an incoming wave @Q")(z) comes into
interaction at a time that is in the infinite past, so that

Q.(x) = Q™ (x) for o(z) = — oo. (12.2)
Therefore, the Qi™(z) satisfy the wave equations of free fields
A )QP) =0. (12.3)

Then it is easily seen that, in the discussion of Ch. X, we can replace
the field operators in the interaction representation by the @i(zr) in

the Heisenberg representation.
We shall use the same notation with suffixes (in) for the quantities
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in which the field operators in the interaction representation are

replaced by Qi (x).
The commutation relations of @ (x) are

[Qi(z), Q4(2')] = i dup (3) A(z—2") (12.4)
Moreover, @,(z) can be written as (cf. (10.23)):
Qu(x) = QI(=) — [ A2’ dog(d) Dy Az —2") fp o). (12.5)
Using a unitary transformation S[o] satisfying the equation

i 3}1(’;53[0] — H'®[z: 2] 8[o], (12.6)

we introduce @,[r, o] as (cf. (10.4a)):

Qulz, 01=87o] @5 (@)S[o] (12.7)
(Yana and Frromax [1950]). We therefore have
A,50)Qpl2, 0]=0. (12.8)

The commutation relations of @,[x, ¢] are given by (10.6). Then
we can write @, (x) as (cf. (10.25)):

Qufz) = Qulx/o] + } [ 4% {[D; dup(?), e(@—2')] AMx—2')} Jp o2"). (12.9)

The second term of (12.9), which depends only on the field operators
on the surface g, is zero when the ¢, (z) are independent canonical
components (cf. (10.44)). Therefore, we can interpret (12.9) in the
following way: if we could make the interaction vanish on o, the
particles, which were bound to the source by the interaction, would
escape as free particles and their states would be described by the
free field Q,[z, o].

Since the @,[z, ¢] satisfy the wave equations of a free field, they
van be separated into parts of positive and negative frequency;
that is,

Q.[z, o] = Q7 [=, o] + Q7 [2, o], (12.10a)
Qi(x) = Q¥ (%) + @E¥ (), (12.100)
QZ [z, o] = 8-[0] Q5" *() S[a]. (12.11)

Using the Fourier expansion of @%[x, ¢] and @@ *(z) given by (9.21),

we have
ux{k, o]=8"1[oJul™=(k)S[o]. (12.12)
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The quantities #{™*(k,) can be regarded as annihilation and creation
operators of a free particles with energy-momentum k,.
Since the vacuum @, is the lowest energy state, we can derive (cf.

(9.36))
Q@ [x, 0] Dyla]=0, (12.13)

where

D,{0] = S{o]P,.

Using (9.20), we introduce the number operators N,[k, o] of the
free fields @£[z, o]. Thus N,[%, o] gives the number of (k, r)-particles
on the surface o (Umezawa, Taxamasar and KammrvcHr [1952]).
If Ni=(k) are the number operators of the free fields @{(x), we have

N, [k, 6]=8"1o] N®(k)S[o], (12.14a)
N() = yfdm*= (k) a0+ (k). (12.14b)
The expectation value of the number of the (k, r)-particles on ¢ is
(N [k, 0))o=*N [k, c]¥=¥"*[c] N™(k)¥'[c], (12.15)

where ¥'[o] is (cf. (10.1)):
¥'{a] = S[s]P. (12.16)

§ 2. Examples

Firgt, we shall consider the scalar interaction L’=fppU between a
scalar field U(x) and a Dirac field y(x). We have

Ulz, 6] = U z) — ffo. a4 Az — =" Yp(=" Yp(x'), (12.17a)
which leads to
Utlz, ¢]=U% ()~ f[7 d%' At (x—z') - (' Yp(x’).  (12.17D)
The number operator of the scalar particles on o is

N[o] = 2. (U*[=, 61)* 3, U*[z, o] do,. (12.18)

It is easily seen by using (9.43), that the Fourier amplitude of (12.18)
agrees with (12.14a).
Now (12.17a) can be written as

O(k)
Ko(Ko— ko)

where O(k) is the Fourier amplitude in
P(2) p(x) = [ d*k O(k) e%u®s, (12.20a)

U+, o] = U +(2) + L | &% Kz + Ea=Rig) | (12.19)
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and i, is the time of ¢, which we take to be a flat surface. In (12.19),
K, has the value
K, = V(kk;+ %)

and the four dimensional vector K, is defined by K, = (k, K,).
It is apparent from (12.19) and (12.20a) that %, and k are the change
of the energy and momentum of the spinor particle due to the reaction
of the scalar field.

When we can assume that the velocity v of the source spinor
particle does not change appreciably, and that O(k) can be treated

as a c-number;
1

0(]0) Y (?7;5-3- 6(]00) (12.20b)
we have
+ 7o+ =_f, 1_. 3 _1_ '7”!2
U+{z/c] — U™+ (z) 2(2n)sfdkK§e e .
1,1 _,. :
=gmlre™
where r is }/(x;z;). Here we have made use of the formula
1 eik,z; 1 1 .

T [ d% AT mr (12.22)

Since it follows from (12.20a) that §(z)y(z) oo 4(x), the origin of the
coordinate system is the position of the source particle and r is the
distance from this origin,

Equation (12.21) is the proper field of the source particle, i.e. the
scalar field, induced by its interaction with the source particle. There-
fore the N[o] of this scalar field gives the number of scalar particles
of the proper field. This proper field has a space distribution e~*/r
and therefore its range a is ~ 1/x.

This fact can be understood physically as follows (Wiox [1938]):

A free particle cannot radiate scalar particles on account of energy-
momentum conservation law. However, when the energy is ill-defined
on account of the uncertainty principle, some low energy particles
can be radiated. We shall consider an experiment in which scalar
particles radiated by the source particle are caught at the point .
Since this observation is made in the time interval ~ r/v (v is the
velocity of a scalar particle), the energy is uncertain by the amount ?)

AE = (hv[ry<hC|r. (12.23)

1) O is the light velocity.
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Therefore, the radiation of n scalar particles is possible if

nxhC < AE < hCJr,
that is, if
1

r<-—. (12.24)
Thus we see that the probability of observing n scalar particles is
very small in the region r>1/nx. The region in which we can find at
least one scalar particle, is defined by r<1/x. In other words, the
range of the proper field is a=(1/x).

We see from the preceding discussion that if we do not use the
approximation (12.20b), n scalar particles give terms of the form
e~™*_ Moreover, the pair creation of Dirac particles gives the proper
Dirac field of the source particle, in which m pairs will give terms of
the form e—2™ (y is the mass of the Dirac particle). Equation (12.24)
shows that there are large numbers of high energy particles infini-
tesimally close to the source particle. These high energy particles give
rise to infinite values of various physical quantities (e.g. total energy,
total charge of the fields, ete.). The infinite energy of the field gives
rise to the so-called self-energy divergence. We shall discuss this
problem. in the following chapters.

When two Dirac particles y(z), p(x’) approach each other, one
particle y(z’) interacts with the scalar field U[z'/c] around the other
partiele u(z), the interaction being — f@{a")w(z’) Ulx'/c]. This, as
shown by (12.21), implies that the interaction potential between the

two particles is

VX, x) =& 23 e (12.25)

Here r is the distance between z and z’. If we assume that these two
particles and the scalar field are nucleons and the zm-meson field
respectively, V(z, 2’) is the nuclear potential.

Applying a similar dis¢ussion to the system of two electrons and
the electromagnetic field, (12.25) gives the electromagnetic potential
between two electrons. In the latter case, V(x, x’) depends on r like
1/r and has an infinite range because »=0. This is a well-known
property of the Coulomb potential. Thus, we see that the proper
fields aet as intermediate for the interaction and, at the same time,
give rise to the difficulties of divergence.

This picture of the proper fields has been confirmed by the recent
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spccess of the predictiong of quantum electrodynamies. Thus. we can
expect that a search for further observable effects of the proper fields
wonld provide valuable help in the formulation of a correet theory
of elementary particles.
Substituting (12.19) into (12.18), we obtain the number of particles
in the proper field as
K¥lal)= [ &% N(k),

N () = T, = (") O4)-

If. we can assume that the velocity of the source particle remains
approximately constant, we can take k, ~ (k:-v) for the energy
transfer of the source particle 1).

We can apply the above results to quantum electrodymamics by
replacing O(k) by O,(k) defined by

P(x) v p(x) = [ d*k 0,(k) e¥uTy, (12.27)

We shall now appiy these results to the problem of the Brems-
strahlung of low energy photons by low energy elegtrons. We shall
use a simplified argument, but the same results can be copfirmed by
a more correct method (Brocrm and Norbpsieck [1937], UMEZAWA,
TaranasHT and KamerucHI [1952], THmriNG and TouscHER [19517).
As shown by (12.27), O, may be regarded, jn the non-relativistic
approximation, as

(12.26)

0, ~ v, (vg == 1). (12.28)
On the other hand (10.24) gives

Az, 0)= AP H(z) + 5 [ D & (‘}’i‘,‘(f"’_’ oy Ot ik, (12.20)

The electromagnetic field 44} [x, o] radiated by the electron is given
by the difference between the electromagnetic fields before and after
the scattering of the electron, and is

A A’; [xﬁ a] == 'g J" dak KO-TAK;O—-—"LK%—V'S‘} ei{xﬂzy—(xl"‘k')tg}'

Here A0, is the change of the quantity O, due to the scattering of
the electron.

1) If p is the momentum of the incoming particle, we obtain

— N ™ P CRI __(p-k) = (v .
ky = V{lp—k[*+x%} — V{|p| TR} e = (V0 B),
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The number of photons of the electromagnetic field is given by
(12.26), and is
e? A0, (k)2
AN(k,) =“§1”m!1'<;__(1‘ii7;>‘;5- (12.30)
We can derive the expression of the cross-section for the creation
of n photons expressed in the form in which photons are created by
iteration of single productions for a very short time theoretically by
successive changes of the electron states. Since the created photons
have low cnergies, the reaction of each creation on the electron state
is small and each creation can be regarded as a process independent
of all others. In other words, the prohability for creation of n photons
has approxitaately the form of the Poisson distribution. Then, (12.30)
can be regarded as the probability of the creation of a photon (%,),
and the probability of the creation of », photons of energy-momentum
(k®, k*+dk*) (a=1,2,...) is

dw = e-"U’H‘[ [ (4 N (k) dok]. (12.31)

Here | V|? is the probability of scattering of the electron in the external

potential and @ is
= [ d3%k AN (k). (12.32)

The domain of integration in (12.32) is determined by the energy-
momentum conservation law.

By performing the integration in (12.31) we obtain the sensible
result that the probability w for scattering of the electron accom-
panying the production of any photon agrees with the scattering
probability of the electron, namely

=V} [ng;j—!e—i-ﬁn} =|V |2 (12.33)

These results will be applied to the problem of the infrared cata-
strophy in Example 4 of Ch. XIII. The same method has been applied
to the multiple production of mesons (Lrwis, OPPENHEIMER and

WourHUYSEN [1948]).
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CHAPTER XIII
PERTURBATION THEORY

§ 1. Perturbation Theory

Perturbation theory is the name given to those approximation
methods in which the ehanges of state of a system are expressed as a
combination of those induced by a series of small perturbation effects,
only the terms of low order being taken into account for comparison
with experiment. Such methods are widely used in physics.

In the quantum field theory various approximation methods have
been used fo solve the Schrédinger equations, because the g-number
character of the interaction Hamiltonian makes it difficult to solve
them completely. The most commonly used approximation is the
perturbation theory of ‘“weak coupling”, in which the interaction
Hamiltonian H'[z : n] perturbs the &ystem of free fields, (i.s. un-
perturbed system). The present Chapter is devoted to the perturbation
theory of weak coupling in the interaction representation. This
theory can be applied only when the contribution of lower order
terms in the power series of the interaction Hamiltonian quickly
approaches a definite result. However, interactions may exist for
which this condition canmnot be valid. For example, as shown in
Example 11 of Ch. V1II, the coupling constant of the interaction between
the m-meson and the nucleon does not seem to be sufficiently small
for this condition t0 be satisfied. Moreover, even in quantum electro-
dynamies, it is very strange that the results given by the lower
approximations of perturbation theory have been experimentally
confirmed because, as pointed out in the example of the last Chapter,
the proper fields induce terms of infinité value in the higher perturba-
tion power series. We shall see the reason for this strange fact in
following Chapters.

The state vector ¥[¢} and the expectation value of the operator
F(z) on the surface ¢ are determined by S[o] in the way shown by
(10.46) and (10.48). Calculated by the method of successive approxi-
mations applied to (10.50), S[s, ¢'] is

S[o, e']= S 8™[q, o'], (13.1)

m=0
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89, o'} =1 !

c 1 O 7 ; ( 13.2
8™ g, o’]=(—-i)’"fﬂ,d4x1} :’d"a:z...fm ‘A, H'[xy:n)... H [zm:n],)( )

where o¢,, denotes the space-like surface o(z,) (through a point z,,).
Relations (13.1) and (13.2) lead to

S-1[o(x), &'] F(z) 8[o@), 0']= 3 ()" A
mn=0 .14 o’ a’
[H'[2,: 0], [H [@g-1:n], [...[H [z, 0], F(2)]]...].

By taking ¢/ = — oo in (13.1) and (13.3) we obtain S[¢] and
8-[o] F(z) §[c]

(13.5)

respectively.
The transition probability w(f, ) between two states ¥; and ¥, is
given by (10.49), and is

w(f, 1) = (f8*[c1l%) (f|S[ol}?).
When o is a fat surface with time #, we can calculate the transition
probability per unit time by writing

it 9 = (1|3 81a1]d) (F110119) + (1810l (7 g STe] ) (13.)

By assuming that, in (18.2), ¢ is a flat surface at the time {, we see
that the matrix element of S[o] has the form

(F1S[o(®1}9) = S(E,, B,) | b gy
—Q
Here f and ¢ denote eigenstates of the free energy operator 7' with
eigenvalues E, and E;. Using (8.30b) we obtain
(1{S[o()1{?) = 27 S(E,. E,) &2t 5_( B, — E;). (13.5a)
Taking the limit { — oo we obtain the S-matrix
(f|SToo]|t) = 218(B,, B,)(E,—E,). (13.50)
Equations (13.52) and (13.4) provide us with the probability per
unit time of the transition from the state ¢ to the state f (with energy
E; in the range (E,, B;+AE). Indeed
d
5 Wy, By) = 27 [,5|S(E, B)? {6 _(B—~E,)+0,(E—E)}eg dE
= 2n [z |S(E, B,)[* (E—E,) ¢5 dE
where gzdFE is the number of states in the energy interval (£;, B, +dE).

The perturbed energy W of the system can be calculated from
the relation

(13.6)

8W = (48-1[6] T, S[c]—T3s), (13.7)
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where the state ¢ is the unperturbed state @,, an eigenstate of 7%
T, = E.D,.

In the next section we shall rewrite the relation (13.7) in the form
s 1 . , .
6W=m_12=o Py (7]8%*[6] [, d?x H'[z:n] 8™[c]|7). (13.8)

The perturbed energy can now be calculated from (13.8) by using
Sia].

§ 2. Non-Covariant Formulae

In this paragraph we shall assume ) that each o, is a flat surface
o(t,) at certain times ?,, and that the interaction is introduced
adiabatically from the infinite past. In accordance with the last
assumption, we shall replace the interaction H’[z : ] in (13.2) by
H’[x : n] exp (—€lt]) and proceed to the limit € — 0 at the end of
ealculation.

Carrying out the time integrations in (13.2) the mth order term of
S(E;, E;) is given by (cf. (10.52))

§7E,, B) = 3 . THIH @) m=1))

(m—1|H's®))|m~2) (1|HTo(®]]i) S
(Em~1 — By) (B, —Ey)

(see HerTLeEr [1935]).
We shall derive equation (13.8). From (13.3), (8.15) and (10.50),

we have
8~[e] T¢ S[o] — T3
=m§ i [* dom gty [* ey g(ts) . [T @ () T [ ], oo [H [0, 7).

(18.9)

=3 i”'“r_wd“xlg(tl)...ft_":d%mg(tm) [H' [ 2], [..[H [2g: 7], 3, H'[2y:0]]-..]

=~ [ dbo; gt S o(t)] (3, H'lwy:]) Slo(ty)]
= —g(t) 87 [a(?)] H'[x:n] S[a(?)]
+ 1 a2 0, 9t) S 0(t)] B'[2: %] Slo(ty)]
—t f '_w a4z, (9(t))® f oy P2 87 0] 8 [2y: 0], H'[z:0]] So(ty)]-

%) Thus, n, is the constant vector (0, 0, 0, 2).
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Here g(t) 1s
gty =e~¢ >0, (13.10)

The last term is zero!) on account of the integrability condition
(10.11).
Thus we have

8017 80]~T]=[Loo d*z'Qug(t' NS o(t') 1H [’ : n]S[a(¢')]

on account of (10.32). Since 8™[¢] is proportional to (g(¢))™:
8™ {a(d)] = (g(t)) P_{% S™a(t)],

we have
3~1[¢] T, S[o] ~ T"
= 3 ' aw’ e ) (g lim (SO (o(e)] HIo'i1] S [o(a)])

m,l1=0
o

o d4 m+i+1 hm Seir* H' S|
zom+l+1 [ a(e)) (89*[o(z")] H'[+':n] S 10(2")])

m.l

= 3 o GO lim ($U[o@) [ % H ] SWIo(@)))

et | 8 (@)™ lim (9% [o(a')] B[] S[o(a)])]

m, =0

However, the last term does not contribute to éW, because
('ilb,F‘i) = (¥, E,) (‘ilFl":)‘—" 0
for any regular operator . Thus we have, by taking the limit € — 0,
(41873(0] T S[o)— T35)

=m:§°_jo g G189%[0] f, P B (0] 8={]]).

This leads to (13.8).
By substituting (13.9) into (13.8), we have

oW = (| H o] ~ 3 g Gl

. ) (13.11)
£33 (i[HTo}|2) (2|HToll]) (1 {HTo]|d)
1 2 (EBy—B,) (B, —~

5y [ dizy [dee {M?xl) H'lz:n] —

H[z: n) }

bcr(x)
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The only matrix elements of H'[¢] that do not vanish are those
connecting states of the same total momentum; the space integration
ensures this. In other words the conservation law of momentum
obtaing for virtual states. However there is no conservation law for
the energies E; of the virtual states. This is a consequence of the
uncertainty principle applied to energy and time. In faet, in (13.2),
Slo(t)] is constructed ag a sum of the dontributions of the states of
various times #' (' <t) and the energy of the states ¥[s(#')] are
uncertain by (2a#/AT), where AT is the difference of the time ¢’ and
the time at whieh the interaction is introduced. It is for the same
reasoni that proper fields had to be accounted for in §2, Ch. XII.
Indeed, the effects of proper fields are represented by the contri-
butions of virtual states to the terms of higher order in the perturbation
expansion of the S-matrix. The difficulties of infinities induced by
the proper fields appear as contributions of virtual states of very
high energy. However, the uncertainty in the energy disappears as
t — oo, as shown by (13.56).

§ 3. Covariant Perturbation Theory

In the last paragraph the non-covariant form of the perturbation
theory was discussed in order to clarify some details of the physical
picture on which this theory is based. However, in practical calculation
it is more advantageous to write each stage of the calculations in an
explicitly covariant form.

The matrix element of S[o, — o¢] connecting the state ¥[¢} on o
{any space-like surface) and P[— oo] must be written as

(F1S[a. —o01]4) = BF{QE(K™) .. @ (k"™)}

'

FED o B B L ™) {Qf (R --r @7 (Rs)} By -

Here (o ... ,.) and (5 ... B,) represent the states (spin, charge etc.)
of particles with momenta (¥'® ... ¥®?) and (k' ... ¥*) mn the states
Yo] and P[— o] respectively, and @&, denotes the vacuum state.

By separating ¢}, into parts of positive and negative frequency,
and by using the commutation relations (8.14a, b) and the vacuum
expectation values (9.42), we can ‘write f(...) as covariant integrals
of products of A(zx), 4¥(x) and their derivatives.

(13.12)

§ 4. Method of P-Symbol
Equation (13.2) is such that & and ¢’ appear in an unsymmetncal
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way. It can be rewritten in a symmetrical form (with respect to o
and ¢’) by using the P-symbol introduced by Dyson [1949].

We first introduce a set {o;} of space-like surfaces between ¢ and ¢’
in such a way that for any point #; between o and ¢’ there is only one
surface ¢; that contains z,; then we construct a functional of the
quantities F;fx; : n] written as

P[F [z : m], ..., Fplry, : 0]l (13.13)

in which the P-symbol means that the quantities F;[z, : n] in the
bracket occur from right to left in order of time (from past to future).
Since P[H'[z, : =] ... H'[%,, : n]] is symmetrical with respect to points
(@10 <oes Tip)s

{2, dzy ... fo dx,, P[H'[2;: 7], ..., H [7,:n]]

is equal, apart from a factor m! to the integral of [H'[x, :n]...H [z, : n]]
over the region between o and ¢’ under the condition ¢, > 0,>...> gy,

Thus (13.1) can be written as
S[o, 0’} = zo(—i)’”,—nL'fg,dxl...fg,dme[H’[xl:n],...,H’[xm:n]], (13.14)
which has a symmetrical form with respect to ¢ and o’. Then S[c¢] is
obtained by putting ¢’ = — oo,

In scattering problems the eigenstates of the free fields are usually
represented as ¥[oo] and ¥[— oo], by assuming that the interaction
is adiabatically switched on and off in past and future. It was pointed
out in § 2 that this assumption can be expressed mathematically by
replacing the coupling constant g by a time dependent quantity g(¢).
There, we adopted g exp (—e€lt|) as g(t). Here, in order to facilitate
the calculation, we shall assume g(t) to be given by

g(t) = lim £ ¢ da o= (13.15a)
e-»p <€
R R R
= }1_1:1010 35 (T —e™'T) (T'=1/e) (13.150)

and, as the last stage of the calculation, we shall carry out the limiting
process € — 0.

Since this procedure normally gives the same result as constant g
does, we shall usually take g to be a constant. However, in Example 5
we shall show that ¢ cannot always be taken as a constant, but must
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be of the form (13.15a2). However, (13.15a) is not the most general
from of g(t). More generally, we can write
() = 2m+1gj‘ dae-ttg (m=0)  (13.15¢)

2 Zm 1
0 for [>T )
g for [|<L7T.)

It will appear that, in some circumstance, we must use (13.15¢) (with
m>0) instead of (13.15a).

When the interaction Hamiltonian consists of two terms, i.e.
H'{z :w]+V[z:n], (18.14) can be written as

(13.15d)

Sloya'l= 3 (=i s fodoy .. J2 e, (13.16)

Lm=0

P[V[xl'n] V[x n] H[ 'm+1 77’]’ °--9HI[$m+l:n]' b

We shall now introduce a quantity FX4[z : n] for every F[x : n] which
has the form

F¥[z : n] = S[cc]S—o(@)]Flz : n]S[o(x)]
=8[co, o(z)1F[z : n]S{e(x), —o0]. (13.17)

Using (13.16) we have

TM[z:n) = z z m, i (O™ G A - 5l A [7% A1 - [X% ATy
P[F[x n, H'[#;:n], ..., H [ i 7]] (13.18)
z (—)m ——j°? dxy ... [P dt,, P[F[®:0], H'[2,:n], ..., H'[z,:n]].

The relation
P*[glF[z : n]¥P[o]=F*[cc]F¥ [z : n]¥[— o] (13.19)

shows that the expectation values of F for given initial and final
states are best calculated from the expectation values of F¥, Since
the state vectors of both sides of F¥[x :n] in (13.19) belong to
different representations, F¥[z : n] is called a quantity in the “mixed
representation” (Dysoxn [1949]). A remarkable feature of the quantities
in the mixed representation is that they have a symmetric form with
respect to the direction of time.

We proceed to the calculation of (18.14). The quantity (13.18) can



226 PERTURBATION THEORY [enm. x111, § 4

be calculated by the same method. For simplicity we shall assume
that the interaction between an integer spin field U,(x) and a half-
integer spin field y,(x) is

H'[z : n]=C(oBy) Pu(@)ys(z) U, ()
where the C(«By) are constants. The matrix S[¢] contains a term
H'[zy :n]... Hz, : 0], ;,>06,> ... >0,, (18.20)

in which some aperators y,, U, (i.e. external operators) play the role
of creation operators for the particles in the final state or annihilation
operators for the incoming particles, and other operators (i.e. internal
operators) contribute to f(...) in (13.12). Since the internal operators
play the role of creation or annihilation operators of particles in
virtual states, they may be grouped in pairs

(Uz(k), Uz k), (i (%), Pz (&), (F3 (k), w5 (%))

of annihilation and creation operators for the same particles. The two
operators of each pair can be written in succession only by inter-
changes among the operators of particles in different states. Since
these exchanges give rise merely to the factor &(= + 1), (13.20)
(without the factors C(xfBy)) can be written as

£ (P[Ua‘(xﬂ)’ Ua'l(xr’l)] )0 (P[Ua,(xr.)’ Ua’,(xr’,)])o b

% (13.21)
(e (81, 87) Plup (), Ppr(Tsr)1)o --- % [external operators}

where z(a, b) is

+1 for o(x,) > ofx,)

€@ ) =e(@—m) =] | o(z,) < ol(y).

£ (13.22)

The operators in each P-bracket in (13.21) are those of each pair.

As shown by (13.20), for any external operator y(z,), there exists
an operator ¥(z,). When (z,) is an internal operator, there is an
operator y(z,,) which is in the same P-bracket in (13.21). Then, we
can always find ¢(z,), and so on. By repeating this process along the
path z, >z, — ... >;, we find an external operator ¢%(x;). We
then shall arrange the external operators ¢(z;) and y(z,) in the order
P(xg) p(x,) in (13.21), by taking account of the sign constant e. On
the other hand, since the external operators of U, satisfy commutation
relations of the (—)-type, their order is immaterial.
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The sign constant ¢ can be expressed as?!)
e=(—1), (13.23)

where @ is the number of interchanges of field operators y, ¢ when
we change them from the order in (13.20) into the order (cf. (13.21),
(13.22)) %)

U, (@,) Uy (2,0, --. 95,(2,) Pp,(2s,) ... [external operators].

Here the orders of external operators are the same as those in (13.21).
The above calculation can be performed in a more intuitive way
by means of the Feynman diagrams (FEyNMAN [1949]). As shown
o in Fig. 13.1, we fix m points y, ..., z,,
between two lines corresponding to
the initial and final surfaces ¢’ and
o, and associate with each line con-
necting two points a pair of internal
operators (U(,),Ulz,)) or (), p(,);
these lines are called internal lines.
Then we associate, with each line
connecting a point with ¢" or ¢, an
external annihilation or creation oper-
o’ ator; these lines are called external
lines. The lines of different types (e.g.
¥ solid lines, dotted lines, wavy lines,
e etc.) are used for different fields. The
U arrows corresponding to the lines of
Fig. 13.1 the half-integer spin point from
to . By means of the Feynman diagrams the calculation of (13.14)
can be carried out according to the following prescription:

X

&

(I) write down all possible Feynman diagrams corresponding to
the given process, except the diagrams containing isolated
graphs without external lines. These must be omitted because
we must caleulate the transition probability relative to that

1) Constant ¢ is connected with the sign constant &’ defined by Dysox [1949]
by & = (—1)%¢', where b is the number of internal lines.
2) Take into account the relation

wﬂ(xg) y-’ﬂl(xg') for o’(x‘) > O'($31)

oz Zo) PLogn), Pprlme)l = { — Ppzy) Po(z,) for ofz,) < o(z,).
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of the transition between vacuum states, which is given by all
diagrams without external lines.

(II) construct the products, corresponding to internal lines (x; z;),
of the terms

(PLU (), Uglz,)1)o for the lines of the field U

g (13.24a)
(e(2, §) Plya(2.), $arlz,)])o for the arrows of the field y.

When the mteraction Hamiltonian contains derivation opera-
tors D¥ operating on the field operatars U,(x,), .(z,) or %.(x;),
the rule (13.242) must be changed as follows:

(P[DOU (), DOU ,.(x,)])y fortheinternallines of the field I/

13.24b
(e(,7) P[D® w,(x,), DEp,Ax,)]), for the arrow ofthe field ¢ % ( )

(IIT) construct the products of external operators U,, §,, v, (more
generally, D,U,, Dy,, D.p,), corresponding to the external
lines.

(IV) arrange these factors in the order of the points on the lines.

(V) multiply by the sign constant e and the factor (—:)*/m! (cf.
(13.14)).

(VI) sum the contributions of all different diagrams obtained by all
possible permutations of points (z, ..., x,) within a diagram.
The diagrams which are topologically identical are called
equivalent (Wick [1950]). For example, in Fig. 13.2, the
diagrams (a) and (b) are equivalent bat the «diagrams (c) and
(d) are not equivalent.

This rule (VI) can be expressed as follows: When there are

B ]
Xy

@y x

Xy Xy

Xy

(a) (b) ) “@)
Fig. 13.2
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g diagrams equivalent to a given one (e.g. g=2 for (2) in
Fig. 13.2), multiply the contribution of this diagram ) by m!/g.
(VII) sum the contributions of all possible Feynman diagrams
obtained without taking into aceount the permutation of points
(% ---» Tm) and perform the integrations with respect to
(dzy, - ., dz,). A set of connected y-lines {with two external
lines) is called an open polygon, and a diagram with no externzl
y-lines is called a closed loop. The points xy, ..., 2, are called
the vertices.
It can be proved that
e=(—-1) {13.25)
where a is the numbers of the closed loops of the felds (cf. {13.23)).
According to the definition of the P-symbol, we have

(PLU.(=1), Ul = § {1+ 5 (1, 2)} (Uulzs) Uplzalo % (13.260)
+ 3 {1—e(1, 2} (Uplzy) Ualwy))o-
Then (8.14) and (9.42) give
(PLU 1), Up(x2)])o
= 3{d,(00) ANz, —z,) ~ie (1, 2) dg(dV) Al —29)} g (13.26b0)
= 3 dop(d0) A (e, ~g)

2 == d/x,.

with

In a similar way we have

(e (L, 2) Plya(), Ps(@a)])o = 3 dap(d™) dpli—x5).  (13.27)
In (13.260) and (13.27), d,4(3) mean the derivation operators d.(2)
acting on AL and A but not on ¢ (1, 2) in A;. The Ag’s in (13.26b) and
(18.27) are Ap-functions of U and y-fields respectively.

§ 5. Method of P*-Symbol

The calculation of S[c¢] can be simplified using the fundamental
condition (10.29) on the interaction Hamiltonian.

For simplicity we shall consider the second order approximation
in the coupling constant g. Equivalence to this approximation will be
denoted by =~ . Equations (10.42), (13.14) and (13.24%) give

8[o, ') ~ — } 2 A%y [2 dizy PIL'(zy), I'(z)]

. (13.28)
— 4 oAtz W (x) n,n,

1) For the determination of g, see CorsTERr [1951].
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= — } [ d'zy [G d*y P[DJ Q,(w1), D Qp(ws)] Ja:al®1) T5:0(%5)

‘ (13.29)
—¢ [ dbx W, (x) n,m,

where D' and D® are the derivation operators, defined by (10.22a),
with respect to 2, and z, respectively. In this equation, a matrix
element of S[o] corresponding to a process in which j,., and j;., play
the role of external operators is considered. Then, the vacuum
expectation value, must be taken for the P-bracket in the first term.
From (8.40b) and (13.26),

(PLDY Qulwn), D Qglay)])o = )

i DY D@ G'Faﬂ('xl—xz) + % [(1, 2), d,s(3W) DP DP] A(xy—7,). g (13.30)

On the other hand, selecting the g2-term in both sides of (10.29) and
taking into account (10.30), we have

[9u(2), Wo(@)] my(ar) mi(a)
= 5 p?) D, A(@— ') [S*[0] jp.a(a’) S[o] — fj.o(a")] (13.31)
:’»: ’ o 31'5_,,(1:') » ’nt ) )
8(37 —Z )] A(x —Z )77:o(x )
This is derived from the consideration that the g2-term comes' from
the difference between D,Q, (in j;.,) and S-[¢]D,Q,(z)S[o].
From (13.31) we can derive the relation

§ a5’ W,o(") (') (") )

aam s e s Ty s , . t1s.39
= —}[J d% B2 j,.o(") jp.(2") [(x' "), D, Dy d,p(2")] A(z'~2")
by means of the relation (cf. (10.22b))
S . Hep (13.33)

WD @)~ ADa@p) - D5 Q) 3 DaQp)”

Substituting (13.30) and (13.32) into (18.29) we obtain (UMEZAWA
and TagamasHr [1953])

Slo, ') & — § [0 32, 9 A%y ucal@y) Fp:o(@a) DY DP G poglary — 2,). (13.39)

From this S[cc] can be obtained by substituting 0= co and ¢’ = — oo
into (138.34). Comparing (13.34) with (13.29) we have

Slee]= 2 P [P B ... [ db,, PYL(2y), ..., L'(z,)], (18.35)
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where the P*-symbol corresponds to the same rules of calculation,
{@), .... (VII), except for the following modification of (XI):
{II)’ comstruct the products of the Green functions

? GFm;(xi — )

corresponding to the internal lines (z;, z,).

More generally, as shown by (13.34), when the interaction contains dif-
ferential operators (of. (13.24)), the quantities P [{(D#Q, (x,), D{'Q,.(%;)]
appearing in the P-symbol method must be replaced in the P*-symbol
method by tDPDPG gl — ;).

An essential advantage of (13.835) is that S[o] can be calculated
directly by using the interaction Lagrangian. This suggests the
possibility of extending (13.35) to cases where there is no canonical
theory and therefore no interaction Hamiltonian. It must be noted
that (13.34) does not depend explicitly on the form of any surface
o; between o and o’ (6>0,>0’'). This is reasonable (Kosa [1950])
because the interaction Hamiltonian satisfies the integrability con-
dition.

The rule II” of the P*-symbol method is just what we anticipated
in § 2 of Ch. VIII; the propagation of influences between two points
are described by Gp(x—=z') in the formulation of the causal theory
in which the initial and final states are treated symmetrically. Indeed,
Stueckelberg (STUECKELBERG and GREEN [1951]) derived a theory
of the S-matrix, equivalent to the Dyson’s theory by using the
causality requirement. There remains some arbitrariness in the
S-matrix determined by the requirement of the causality, because
this requirement determines only the propagation of effects between
two points and does not determine point functions. Therefore, we
can expect that it may be possible to introduce arbitrary local inter-
actions so as to eliminate the infinite effects of the proper fields.
Stueckelberg has shown that this method corresponds to the renor-
malisation theory which will be discussed in the next Chapter.

§ 6. Examples

Examprr 1. DISPLACED POLE AND INTERFERENCE EFFECT

Relation (8.34) shows that the %, satisfying k,k,+»*=0 contributes
a term d(k,k,+ %) to the Founer amp}ftude of Ag(z). The relation
kk,+»2=0 1mphes that %, is the energy-momentum vector of a free
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particle. For example, in the scattering process of a Neutron (&) and
a Photon (y) through intermediate virtual states with a proton (P},
an electron (e) and a neutrino (») (a Feynman
diagram of this process is given in Fig. 13.3), a
free proton, electron and neutrino can appear
in the virtual states on account of the natural
A decay (cf. § 5 of Ch. IV) of a neutron. The contri-
TN N e bution of these free particles to the S-matrix
‘\___|"*--- is given by the &(kk,+»?)-terms in the A,-
N functions corresponding to the lines P, » and e.
However, these poles of the 4p-function give
N ¥ rise to no difficulties because they deviate from
the real axis by ¢e, as shown by (8.35) (cf.
Fig. 8.1). .

For clarity’s sake, we shall consider the simple example of the
scattering process (I) of two particles (1) and (2) (with the same mass x,
spin 0 and energy-momentum P§' =P, P = —P®? in the centre of
mass system), in which there is a virtual state in which two other
particles (3) and (4) with masses »' and spin 0 exist. If

PP 4 PO = 2Y/ (K4 #2) = 2x' (13.36)

the process (II): (1) +(2) — (8)+ (4) (final state) becomes also possible,
and the process (I) is disturbed by the process (II). In (13.36) k is
the momentum (in the centre of mass system) of the particle (3) in
the final state. The value of (P4 P@) for which the eguality holds
in the right hand side of (13.36) is called the inferference threshold
of the two competing processes (Epen [1952]).

In the transition matrix for the process (I) the A p-functions of the
particles (3) and (4) in the virtual state provides the integral

=
2

Fig. 13.3

lim F(P, €)

>0 1 (13.37)
= Hm é
= ._,Df d% (b b, +%"3~1€) {(PD+PR -k, PO+ PPk )+x—1€}, §

because the energy-momentum vectors of the particles (3) and (4)
are k, and P+ Pk, respectively.
The integrand of (13.37) has the four poles

ko = £ (VI +x?)—ie) =k (&)

% (13.38)
PP+PR + (V&EF %2 —i€) = K ().
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While k3(4) is symmetric with respect to the origin, kj(+) appears
only on the same side of the imaginary axis when the condition

P 4+ PO > V(k2+ %?) (13.39)

is satisfied. In this case we shall call £3(+) displaced poles (cf. Fig. 13.4).

Moreover, when k satisfies
(13.36), K3(—) and k3(+) appear
symmetrically with respect to the .
real axis. Therefore, it is not f("(-) f(g{*“;
possible to deform the contour
without cv*ting these singularities.
This is & feature of the inter-
ference threshold.

We shall define the value of
F(P, €) at €=0 by using the ana- Fig. 13.4
lytic continuation of F(P, €) for
5>0. Then we can expect that the interference effect due to the
process (II) increases continously from zero, since it is zero at energies
lower than the interference threshold.

In fact, the d*-integration of (13.37) gives (EpEN [1952])

A(P)+ B(P) {(P{+ PP)—4x2—4ie}?

(PP + PP+ V(PP + PP —4x2 —die
(PP +PY)— V(PP + PRV —4x% —die)

X X
K8+ kbt

X log

where A(P) and B(P) are analytic functions of P. The second term
corresponds to the interference effect due to the process (II), since
it comes from the effect of the poles k(< ).
We see that this term is zero at the inter-
ference threshold. The second term also

shows that at the interference threshold 0z
the S-matrix integrals have branching
points. 0,

s

Exampir 2. FURRY’S THEOREM

We shall consider a transition matrix
element wvorresponding to a Feynman
diagram consisting of a closed loop of a Fig. 13.5
Dirac field y interaeting with a field U
of integer spin (cf. Fig. 13.5). The interaction Hamiltonians at the

23

—
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points z{i=1, ..., n) are assumed to be $0pU respectively 1), where
O, is a product of the matrices y,. Then, the transition matrix
element contains the factor 2)

M = 8p(0 8p(zy—25) Oy Sp(x2—25) D5 ... Op (20— 1)) (13.40)

Sp—2) = 2(s(@—2') Plyp(), $(=")])o

(18.41)
= — (y,3,—x) Ap(x—2’).

Since the spur of any product of an odd number of the matrices
v, is zero, M is invariant under the substitution y, - —y,. Under
this substitution the matrix O, transforms into

0,=(-1)%0; (13.42)

where a, is the number of the matrices y, in 0;. Since (13.41) shows
that Sp(z,—x,) > Sp(z;—x;) under the substitution y, > —y,, we
have

M =(~1)4 Sp(0; Sp(@y—z1) Oy Splx3—25) Oy ... O, 8x(a;~1,)), (15.41a
where

A= q. (13.43b)

Using the formula Sp(yy ... y)=8p(ys ... ¥,7:) We have
M= (— 1) Sp(Sp(xy~2,) Q, ... O3 Sp(xg—23) O Sp(z,—;) O7). (13.44)
Here B is defined by

B=A+3b=7 (a+h), (13.450)
4=l i=1
with b, defined by
O;=(-1)%0,, (13.45b)

where O] is a product of the matrices y, in the opposite order to
that in which they appear in O,.

Equation (18.44) shows that (— 1)2M is equivalent to the transition
matrix M’ corresponding to the Feynman diagram obtained from

1) The following results are also valid even when the interaction Hamiltoniansg
contain derivatives operating on U.

) The present definition of Sg(z) is equivalent to that —S8 p(—2) used by
Dyson [19521.
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Fig. 13.5 by rearranging the points z,, ..., z, in the opposite order.
Thus, we have

M+ M =M'{(—1)F+1)=0 for odd B. (13.46)

.Since a positon line is obtained from a negaton line simply by changing
the direction of the arrow, the last equation shows that the contri-
bution of the negatons and the positons cancel each other when B
is odd.

For example, any closed loop made up of an odd number of vertices
of the electromagnetic interaction ¢y, 4,y (2,=1, b,=0) makes no
contribution to the S-matrix. This fact was first established by
Forry [1937].

Using (13.46), we can generalise Furry’s theorem as follows: Any
closed loop for which B is odd muakes no contribution to the S-matriz.

When -O; are members of (I, y,, s, 7o — VsV, ---)» We have, for
every O;,

s even for 1, ys, . s

a,; + bi ==
 0dd fOr ¥, Yu Vo= Vo ¥5(¥u To— 0 Vi)

(13.47)

(cf. (3.5)). Therefore B is equal to the number of vertices of O;=y
(Yyyv - 7’»7“) and 75(7’1‘?1 - y:J’pz) .

As an example of the application of this theorem we shall consider
the determination of the spin of the #%-meson (SAxATA and TaXIEAWA
[19401). If the =%-meson were a vector field interacting with the
proton by the vector coupling, the above theorem shows that it would
decay not into two photons but three, hecause the Feynman diagram
of the process #° — 2y is given by Fig. 13.5 with O;=y,, O,=y,,
O;=7v,. However, experiments show that the n%-meson decays into
two photons with a very short life time. Moreover it can be proved
by a more general discussion (Yaxa {1950]) that if the n'-meson
bad spin 1, it could not decay into two photons. On the other hand
there is no such selection rule for the z%-meson of spin 0 deeaying into
two photons.

u

ExawrPLE 3. RELATIVE SELECTION RULES

We have theorems analogous to Furry’s theorem for interactions
between nucleon p and integer spin fields U (Fukupa and Mivamoro
[1950], Nismwma [1951], Pais and Jost [1952]). This theorem
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depends on the charge symmetry ) of the theory (cf. Example 10 of
Ch. VII). However, charge symmetry cannot be valid when the
electromagnetic interaction is taken into account, because the electro-
magnetic field interacts with the proton but not with the neutrom.
Therefore, the selection rules given in the present example can be
valid only when the electromagnetic interaction and the mass dif-
ference between proton and neutron can be neglected. They are called
relative selection rules.

We assume, here, that the Lagrangian is invariant under the
T-transformation (cf. Example 10 of Ch. VII), i.e., is charge symmetric.
On the other hand, under the charge conjugation transformation of
the Dirac field p — ¢’ =CgT (cf. (3.40), (3.38)) we have

PRY=C ) RCF=—¢TC2CF (13.480)
=e§ly
with
e LT Q=y, ¥ =7 VsVu V=7 Vi)s T
(+1 for =1, y5, yu75 71, Ts-
The charge conjugation transformation U - U’ of the Bose field is
defined by %)
U=U* U*=U (13.48b)
or
UD=U®, '@ = _U®, (13.48¢)

because, under this transformation, the electric current changes its
sign (cf. (7.46)).

Then, the interaction Lagrangian gpQz, vD(d)U,, (i=1, 2, 3, 4;
D(d) denotes differential operators) is invariant under the charge
conjugation transformation, when the signs of the coupling constants
referring to the interactions with Q=v,, v, — %V Vs(Vulv—¥Vu)
are changed. We call latter coupling constants ‘“odd coupling con-
stants”, and the charge conjugation transformation with change of
the sign of odd coupling constants the C-transformation.

Then, under the CT-transformation (the product of the C and the

1} Here, we omit the tensor suffices for Boson fields. Charge symmetry
should not be confused with charge independence.
3) UM and U® are defined by the same relations as (7.47).
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T transformations) U*® must transform according to

U¥ — g UR, (13.49a)

—1 for k=3
= 1 otherwise, (13.490)
{see (7.151b)).

We consider a term S of the transition matrix corresponding to a
Feynman diagram for a given process in which only particles of the
integer spin fields U® exist in the initial and final states. Then S is a
product of coupling constants, external operators of the field quantities
U® and Gp-functions?) corresponding to internal operators. It
follows that, under the CT-transformation, 8§ — 8’ given by

S = (_ l)n(f.)+n(v)+n(t)+n(pt) S.

Here n(z), n(v), n(t) and n(pt) are the total numbers of vertices with
Ty Y VuVs—¥¥s) 80d y5(yuy,—¥,y.) (in the Feynman diagram)
respectively. The numbers n(v), n(t) and n(pt) appear because of the
change of sign of odd coupling constants, while n(z,) is introduced by
the transformation (13.49a).

8§ and 8’ correspond to the same transition process because, as
shown by (13.492), U% and U™ are invariant and therefore, the
charge states of the Bose fields do not change under the CT-trans-
formation.

Since the Lagrangian is invariant under the C7T'-transformation in
charge symmetric theory, the S-matrix must be also invariant.

Thus we obtain the selection rule

S=0 for n(z,)+n(v) +n(t) + n(pt) =odd. (13.50)

As an example we shall consider the process B+ — =t 4z where
Bt is a positively charged scalar particle with scalar interaction and
n+ and #° are pseudoscalar w-mesons with pseudoscalar interaction;
when =9 ig described by U® (not U*® in (7.151b)) according to (13.50),
this process is forbidden.

If all the particles in the initial and final states are described by
real wave functions U®, U% of integer spin, the S-matrix element

1) Particles and their antiparticles have the same G'p-functions because they
satisfy the same field equations in the interaction representation. Proton and
neutron also have the same G p-function, i.e. Sy in the approximation neglecting
their mass difference.
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§° corresponds to the same process after the 7T-transformation. When
the Lagrangian is invariant under the T-transformation, the S-matrix
element must be also invariant, and we conclude (cf. {7.1515)) that

88=0 for =n(r,;) odd. - (13.51)
In this case, using (13.50), we also find

0= 0 for | ™Ts) = even and | (13.52)
{ n(v) + n(t) +n(pt) = odd. s

ExAMPLE 4. BREMSSTRAHLUNG AND THE INFRA-RED CATASTROPHE

We shall consider the bremsstrahlung of a photon by an electron
scattered by an interaction Hamiltonian, i.e. —ieﬁy,ﬂpAf;, where A, is
the vector potential of an external electromagnetic field. The energy-
momentum vectors of the electron in the initial and final states are
denoted by p,, g, respectively; the photon is denoted by %, (cf.
Fig. 13.6).

An iu
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Fig. 13.6

The term S8® of the S-matrix which corresponds to this process in
eZ-approximation, is

2
8® = % § R0 8%y [C o0 B8, P(T5) 7, Sp(@g—24) v, A5 (1) 9(21) A () )

z (13.53)
G e oy [ 2 @y (), L) Sileyzy) pp(en) A, (), |

because =1 and g=1.
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In this and the following examples, Sy and 4y correspond to the
electron and the photon respectively. If, as in (13.5b), we put

(9> Ku[S®|pu) = 27 6(1y + Do~ o~ Ko)»
we have from (9.50) and (9.78)

. de * R [ikn +qus Yu)—2%] . _
=V (@) 7’4{(Y e) (ky+qy.kﬂ+q”)+x,_i‘y,,A,(q+k P)

e m [— ¢ (b — Dus Yu) — *]
+Ag+k—p) 7 (Pu—bou, Pu—Fu)+#* —te

(13.54)

(Y-€) ) a,(p).

Here A:(l) is a Fourier amplitude of A4:(x) defined by

1 .
As(z) = B g [l A(l) exp (i ], ),
and e is a unit vector in the direction of the polarisation of the photon.
The symbol y denotes the three dimensional vector (yy, s, y;3). The

transition probability dw/dt per unit time is given by (13.8) and is
d
5= 2| M| dg,, (13.55)
where the final state density dp, is
1
do; = By lq] |k|* E,dQ2,d02, V2. (13.56)

Here E, (= (q®+ »%)'?) is the energy of the electron in the final state,
and dQ, and d@, are the solid angles in which the electron and the
photon are ejected in the final state. We shall define the “cross-
section” d¢ to be

=22 (13.57)

where v is the velocity of the incident electron, namely
v=[p|/By E, = (p"+»")'%

The last equation shows that d¢ does not depend on the volume V
of the world and its dimensions are of the second power of length.
Speaking intuitively, d¢ is a transition probability when one electron
enters in unit time through a unit surface, because the factor
d¢/(dw[dt) can be interpreted as a change of the normalisation of the
wave function of the incoming electron with this result that the
electron is not contained in a volume ¥V but in a volume », so that
one electron crosses a unit surface in unit time.
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Integrating (13.57) with respect to df2,, we obtain the cross-section
#.dk for the radiation of a photon of the energy k. The energy loss
(—dE,[dz) of the electron per unit range by bremsstrahlung in the
coulomb potentials of the atoms in the matter traversed can be
calculated from

fo”"‘kgbk dk,

where we consider an electron moving in the z-direction. The upper
limit E_ —x of the integration is the maximum energy of a radiated
photon because of the energy conservation law. IV is the number of
atoms in unit volume. For electrons of extremely high energy movmg
through matter constituted of atoms of atomic number Z, we have
(HerrLer [1935])

222(1-)2Eq B+ E: 2} {Zlong”E”—-l}

137 E,, E; 3 xk

and

dE 2 22
~ %2 =4NE,(log 2-?—9?23_7(%) .

This theoretical calculation of bremsstrahlung has successfully
predicted experimental results for high energy electrons. In particular
the cascade shower phenomena in cosmic rays, which at first seemed
to indicate a failure of quantum electrodynamics in the high energy
region, was theoretically explained as a repetition of the production
of photons by bremsstrahlung and the transmutations of photons
into electrons (i.e. the cascade theory) (CaARLsOoN and OPPENHEIMER
[1936], BEaBEA and HerrLEr [1936]). Nevertheless, we have seen in
the preceding chapters that quantum electrodynamics has the serious
defects concerning the appearance of infinities. We shall set out on
an analysis of these difficulties by considering the infra-red catastrophy.

When the energy k£ of a photon is infinitesimally small, (13.54)
can be written as

Ma\,»__‘."*_ . P
s @@ e+ k-pam) (-5 e). (13.580)

This equation is obtained by using the formula (cf. (3.33), (3.1)
4 (9)ya(ig.y, + %) =0

(ipﬂy# + x) a’a(p) =0
99, = PPy = — "2:
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and the commutation relations (3.2) for the y-matrices. Subst:tuting
(13.58a) into (13.55) and integrating with respect to dk. we obtam &
factor fdk/k in the transition probability. This has the strange con-
sequence that the transition probability has a logarithmic infinity
for infinitesimally small .. Such is called the infra-red catastraphe.

However, it would be premature to conclude that the infra-red
catastrophe was a difficulty inherent in quantum field theory, because
elastic scattering of the electron can compete with the bremsstrahlung
of a photon of zero energy. .

The Feynman diagrams of the elastic scatteribiy in the «2-approxi-
mation are (a), (b), (c), {(d) of Fig. 13.7. The virtual state denuted by
the intersected line in (b) has the same energy as the initial state
when k=0. Therefore, this elastic scattering competes with the
bremsstrahlung of a zero energy photon, which is also observed as
the elastic scattering. Denoting the matrix-element of the S-matrix,
which corresponds to the Feynman diagrams (a), (b), (¢} and (d)
respectively, by M,, M,, M, and M, respectively, we can write
the transition probability dw/dt of the elastic scattering as

LY o S {| Myt Myt M4 My | M+ M) (13.59)

Here M, and M, are the contributions due to the first and second
diagrams in Fig. 13.6, respectively:—

lim M=M,+M,.

k-0

In other words,
= — ]I .....E.z....... * e . _(_g_‘f_)_ 1
Ml I]c-l-ino Vé—lk—-l— (a’r (Q) Ve Vs AN(Q'*’ k p) C&,(p)) E ( 3‘586)

My=lim gt (@2(@) 747, A5(@-+ B—p) a(p) 27 *” (1.580)

As shown by Fig. 13.9, the terms M; M,, M} M, eto. in (13.59)
can be written graphically by connecting the graphs (5) and (a*),
{(¢c) and (a*) etc. respectively. Symbols (a*), (5*)... mean that the
relevant diagrams are mirror images with respect to right and left
of the diagrams (a), (b) ..., respectively. As an example (a*) is shown
in Fig. 13.8. Each intersected line in Fig. 13.9 indicates the connecting
point of two diagrams in the way referred to nnder each diagram.
It cdn be shown that all the diagrams of Fig. 13.9 (with the photon
line of zero energy) give finite contributions to dw/dt, so that the
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infra-red catastrophe disappears. This fact stems from a simple
relation (ITo [1951], KmNosarTA [1950], BETHE and OPPENHEIMER
[1946]) —we shall consider the (M 3,) term corresponding to the
first diagramof Fig. 13.9 as an example. The chain (M{ M,) in the
M,-part shows that M, has virtual states of the same energy as the

A° A4°

1 H
} !
: [}
| i
H i
H
H

7 P 9 wp .

4
k| ;
A4° A4° E
: i i
H : i
: i :
H |
T~ T f
p 7
© ) @
Fig. 13.7 Fig. 13.8

initial state. We shall denote the singular term of M} 3, (at k =0)
due to the above virtual states by wyey, (M7 M,). In a similar way,
in the same diagram, the M§ M,-term is singular (at k=0), on account
of the virtual state denoted by the chain M} M,. We shall denote
this singular term by wyey (M3M,). Then we can prove by actual
caleulation that t

Warta, (M7 M) + waggn, (M3 M) = 0. (13.60)

In fact, the S-matrix element, corresponding to the diagram (b) in
Fig. 13.7, is

- 9; JZ oo B4y [Zoo 0425 [ © 00 45 P(X5) ¥ S p(%52) v, AL2g) S p(Ta=21) v, 9(2)
(P [Ag(‘”s)’ A,u(xl)] )0 -

The zero energy photons contribute to (P[A4,(xs), 4,(x;)]) through

im Gen [l e@s—2) o ay  1—€@s—D) ioi—zy| _ jipn ou
,]cl_z,% 2kV 2 € + 2 € }—,31_1_% 2kV
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(ef. {18.26a)). Then, the singular term of M, (due to the zero energy
photon) can be calculated as
{9(gs — Fou, yu) — %}
_k: qﬂ_ﬂk‘s.}_,‘z_i‘ vy 439 — 1)
{—i(fy ~ Pre» Vi) — 2}
Bu— T Pa—Fp) + 2 — i a(p)
(g-¢)  (p-e)
(guky) (Puku)

. e .
,1133 577 4 (@) Ya7e @

= = lim 5 (a2(9) 747, A3~ P) a(p))

li e (q-e)
ko V2IR[V (quky) %"

Ae Ae Ae Ae
H
1
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:
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Fig. 13.9

On the other hand, it is apparent from Fig. 13.7 that
M, = —ear(q) v, v, 43¢ —p) a,(p).
Thus, zero energy photons contribute to M} M, through
. . 2
wiae, (M7 M) = lim (25 oL (@2a) a7, 4309 —7) @, 0)" M.

This is equal to —MT M,, and leads to (13.60). We have the similar
situation for each diagram of Fig. 13.8.

Thus we see that the infra-red catastrophe is eliminated by taking
into account the contributions of the diagram (a), (b), (¢) and (d) in
Fig. 13.7.
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This situation can be understood intuitively by means of (12.31)
in § 2 of Ch. XII. Since, as shown by (12.30) and (12.32), at £ — 0, 7
(i.e. the number of the photons of the infinitesimally small energies)
diverges logarithmically, we see from (12.31) that the probability
of a finite number of photons of zero energy is zero, and therefore
that the infra-red catastrophe disappears. Since, as shown by {12.33)
the probability of the scattering of a radiating electron is not zero,
the scattered electron must radiate an infinite number of photons of
infinitesimally small energy. This proof of the disappearance of the
infra-red catastrophe was given by BrocrE and Norbpsreck [1937].

Thus we see that the infra-red catastrophe disappears when the
effects of the proper fields are taken into account. However, the
proper field also has many high energy photons, which frequently
give rise to difficulties connected with infinities of the kind discussed
in the last Chapter. These difficulties are called the ultra-violet cata-
strophies. If we eliminated them by disregarding the effects of proper
fields, we would be faced with an infra-red catastrophe. Clearly we
must seek another escape.

ExampLE 5. ULTRA-VIOLET CATASTROPHE

In the last example only the effects of the low energy photons in
the proper field were considered. We shall now consider the contri-
bution of all the photons of the proper field to the elastic scattering
of an electron by an external electromagnetic field A:(z) in the
e3-approximation. The Feynman diagrams of this process are shown
in Fig. 13.10.

First we shall consider the Feynman diagram in Fig. 13.11, in
which we shall assume that the operators #(z,) and y(z,) corresponding
to the external lines do not always satisfy the wave equations ((3.1),
(3.33)) of the free electron.

In the S-matrix Fig. 13.11 leads to the term

J diz §(z) 2° ()

= & d%,  dta, @) 7, Selms—23) 9, plar) Apla—azy). | 1361

By actual calculation, using two infinite constants 4° and B°,
we can write 20 as

0= —i{A%4+ B (y,2,+%)+ ...}, (13.62)
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where ... denotes the fnite terms containing the factor (0 -+ )2
This can be regarded as a power expansion in (iy,p, -») (p, is the
energy-momentum vector of the electron) in the momentum repre-
sentation. We shall now show that the infinities introduced by eacl.
diagram can only appear as the coefficients of terms of low or ler in
(¢y,p.+=). For an increase of the power of (iy,p,+x) by unity neans
that the power n of the dimension [L]* of the coefficient increases
by one, and therefore that the degree of the infinity of the co-
efficient decreases by one. This situation can be seen clearly as follows.
By substituting (13.41) and (8.35) into (13.61a) we have

[ &%z p(x) 20 p(z) = (
{2(Vu> Pu—Fu) — x}

e? - 1 (13.615)
W_fd"'pfd“kw(-p) 7’9{(1,”_ Fous Pa— Ko) FoE— 1€} (Rplep— 1) Vo (D). s

Here ¢(p) and y(p) are Fourier amplitudes of $(x) and y(z) given by

1
P@) = Gom [ @*p w(p) euu

Pl) = @:774 [ dipp(p) 7 st
Integration, [d*k, in (13.61b), leads to infinite coefficients in (13.62).
The integrand in (13.61b) is a function of p,—k, and 4,. 1t 1s easily
seen that each differentiation d/dp operating on (13.614) reduces the
maximum order of the infinity by one. Since the highest powers of
k, in the numerator and denominator, in the integrand in (13.61d),
are one and four, respectively, the order of infinity in 4° cannot be
larger than 1. Thus, the order of the infinity in B° is at most loga-
rithmic, and the remaining terms (...) in (13.62) are finite,

We shall now rewrite (13.615) in the form of {13.62). By using the

formula
e %t = [ldu (au+b (1 —u))2,

we obtain
Jd*k Pa—Fom pﬂff};ﬁ).{-xﬁ——ie} ) (k,‘k,,l—-it)
=Jd% [o du s i(fkl)PnPu+u"z""i‘}2
= Jd% [y du {l”l”+u(l—-f(zi;:2+"”2—i‘}”’
where

L=k, —up,.
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Thus, we have

142 P(z) 2° p(=)

= o [ du [ & [V By, e ) = vi) (13,614

(1—w) (Yupy)
(2,,)af%duf d'p J &P~ P) 7o {_;(1 u)p”;,‘“iwzﬁh}z Ve ¥(D)-

We now write

l -
{ulatu(l—u) pupp+urt—ie}

1 w{l—wu)
= Y S 2 7 TE7els (py .'P,,.+%2)+...
ulp+ % €} {lulu+ ux ¥
1 u(l—u .
=7 ) a_,“az"‘“"“"“%“i‘;il_‘;;(t)’”p“-k%)-l-....
{,‘l[_,-}-u fad } {lyzp"f" }

Since
7@{1:(1 - "’) (7#?#) - 'u’}ya = - 2( 1-—- u) (’57;‘.'!7,; + %) - 2( 1+ u)xa

we can derive

{—2(1 —u) (Pupu)—=x} _ 2(1+u)x
Ve Tt u(l— ) puppt+ or—iep e = [Liat WP —iel
2(1—w) w(l—~u?) .
+ o 8% o) (vt ) +

By substituting this into (13.61c), we obtain (13.62), where

—tel 2(1+
4%= (2:)3‘f fd4l Tl ﬁ(uuz,::)_’f“}z (13.61d)

In order to calculate this integral, we use the fact that

gy 1 i
fd ¢ {lulu+ udn—ie)® fdal fdlo (B—P—ux? 4 ie)?

-—27!21.{ dll m, (ZE]ID,

1 3n?i [ 1
[ g = =5 [, 9 e

These formulae can be obtained by calculating the residuals of the
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integrands st their poles l,= + {(I2+ u®¢?)—iec}. After the integration
over du, we now have

2(14+u)x 1 1
[lau [ a1 i s = tint [Ral (gt + 5 — o)
1 w w?
=2m2%f dw{1+w+2(1+w)“2(1+w)’}

=617mx { log (w+1)-—-}

2
W—+ 00

where the new integration variable w is
w= ;25 {12_|_ 1(12 4 x2)12},

It can be shown that this integration variable w has the physical
significance of the four dimensional scalar product of the energy-
momenta (1, E;; 1, I) of electrons and photons in virtual states (in
the centre-of mass system) and, therefore, that it is a Lorentz invariant
variable:

w——-—{l ) +1E;}.

It sometimes happens that taking integration variables, which are
Lorentz invariant, simplifies calculations (Pavir and Rose [1936],
Umezawa and Kaware [1949a]). From (13.61d) it follows that

A°—-:;-:%(M){ log (w+1) — 3

(WEISSgOPF [1939]). When the external operators ¢, y satisfy the
wave equation of the free electron, we obtain

[a42p(@) Zoy(z) = —idodte §(z) p(a). (13.64)
This is just the contribution of interaction Lagrangian — A%p(x)y(x)
to the S-matrix in the e?-approximation (cf. (7.111)). Thus, we see
that the diagram of Fig. 18.10 gives the change of electron mass
induced by the proper field as A° (i.e. x —» 2+ A°). It is usual to call
A° the self-mass. The interaction Lagrangian —A%py corresponds to
the interaction Hamiltonian A°py. By using this interaction Hamil-
tonian, we can calculate the perturbed energy (13.10), due to the self-
mass term. For a free electron of energy-momentum (p, £;) (cf.
(9.75), (9.78)), we have, in the e?-approximation *),

AE =3 A%aX D)y a,(p)) = A %/ E,= A°(d[ox)E,,. (13.65)

1} The factor 1/2 in (18.65) is introduced to give the average value with
respect to the two directions of the spin angular momentum.

(13.63)

}w-»co
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This change AF of.the energy due to the effects of the proper field is
called the self-energy. As shown by (13.85), 4F corresponds to the
change (in the e?-approximation) of the electron mass obtained by
the substitution » — x-+ 4%

# #
' f
i '
; 2
x x5 &
@
*
4
;
X H a2 j,.m\\
(b = 2
Fig. 13.10 Fig. 13.11

However, the difficulty arises that the self-energy is not a small
correction but infinite, becanse the electron must have finite mass.
Equations (10.1) and (10.10) show that the interaction (13.64) leads
to a phase factor exp (i4Et) (f — oo) in (Ple]=8[c] P[— o])gaco-
Since 4F is the change of the energy, this result is easily understood
in terms of the usual quantum mechanics. Fig. 13.11 is called the self-
energy graph of an electron.

In the case of the elementary particles which decay naturally into
other elementary particles (e.g. n-mesons) with finite life times, we
find the complex self-energies 4E =AE,+i(1/2). Then the real and
complex parts of 4E give the factors exp (14E,t) and exp (— I'/2)¢
respectively. The former factor shows that AF, is the change of
energy and the latter factor shows that the probability amplitude of
the state in which a particle exists decreases exponentially with the
time. This behaviour is called the damping effect. The decrease of
the probability amplitude corresponds to the natural decay of an
elementary particle with the life time (1/I).

We shall now consider the Feynman diagrams of Fig. 13.10. The
matrix element of the S-matrix given by the diagram on the right
hand side of Fig. 13.10(a) can be written, by using (13.61a), as

3 [ d%, [ d*§(z;) 20 8 5(z,—2) v, p(@) 4 (). (13.66)
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Substituting (13.62) into (13.86), we have
= 5 A° [ d'z, | d% §(z;) Sx(@;—2) v, p(x) Aze)

5 (18.67)
— 5 B[ d% §(2) y, p(x) A5().

The second term of (18.67) comes from the term
M =3 B°[ di, [ d% §(2y) (v, %+ %) Splay—) v, p(a) A5(). (13.68)
It must be noted that (13.68) would yield
M = —ieBofdie §(z) y,p(x) Axz)
if we used the formula
(Y0, + %) Sp(x) = —2:8(x).

However, we would find M =0 if we used integration by parts for
3% and the wave equation (3.33). The second term of (13.67) is equal
to the mean value of these two results for M. In fact, we can derive
this result for M consistently as follows (Ltrpers [19521): Substituting
e(t) (defined by (13.15e)) into e (appearing in B% we have
. iBo ‘o,
M=~ lim ﬁ. oo [Seda [¥ da’ [ di, [ d% [ dip
—1at, : - ’ —iat, 1
e 1/!(931) (7’ Yu pﬂ Ve & +x) e (iy,‘p,‘—y‘a’——y‘a+x) Yu
BT —@)Hilatan) =1

A=)

Since the higher order (> 2) terms of @ and o’ can be neglected,

we have

- - r’ 1
P(D) EYuPu—raa’ +%) (iy D=y’ —p a+x)

= » By D=9 @ —y,a—2x) = a’
= 9(z) 7,0 2ip (@ +a) = %(p) ata

where ¢ satisfies the equations of the free electron, namely

P(p) (lyp+2%)=0.

Now, we can obtain M =

. - 1 4 7 ! —{a+a’, 7y, e
—te lim Bo{ J“_tda © da 372—1:3 gHat "}fd‘x P(x) ¥, p(x) AiWx)

€ &0 dee —e

= — 323 B | diz () v, w().
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Thus we obtain the second term of (13.67). In the next chaptor we
shall show that this result is also obtained by requiring that the
S-matrix be unitary. The third term (...} in (13.62) gives no contri-
bution to (13.67) on account of the field equation (3.33).

The contribution of the diagram Fig. 13.10(b) to the S-matrix
element can be written as

ie BT d' $(x) y, p(x) 4j(z) + 4, (13.69a)

where A is (ScHWINGER [1949])
o? % 11 .
A= - g (log +57) fdadrav D 4
2\ 1 - c Qe 13.

+ 5o m) 5 B B =77 YRu A5~ Ag) ( (13:690)

+ ...
Here B is an infinite constant, while (...) denotes the finite terms
containing'higher derivatives (of order > 3) operating on 4%,. Equation
(13.69h) can be derived by mesns of the power series expansion with
respect to the momentum change of the external field 4%. We have
assumed in (13.68b) that the energies k of photons in virtual states
have a minimum value %, (k£ = %). In the limit k, — 0, (13.695) gives
the infra-red catastrophe. However, since, as shown in the last
example, this is not the essential difficulty, we ean -continue our

discussion without touching on this point.
By calculation we can show that

B°=B. (13.70)
Therefore, the S-matrix element given by Fig. 13.10(a), (b) is
3 A° [ dtoy 4% {§(@;) Sx(@y—2) 7, v() 45(%) s (18.71)
+ P(@y) Y Splay— ) p(x) Ai(z)} + A.

We shall now counsider Fig. 13.13 (ie. the self-energy graph of a

photon). The S-matrix element given by this diagram can be written as
i [ dbw A,(z) ITS, A,(x)

N fdie, [do s (13.72)

="3 1J 8423 Bp(8r(2y — q) ¥, Sp(wa — 1) ¥,) A,(21) 4,(zp),

because £¢= —1land g=2 (ef. (13.25)). By expanding as a power
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series of terms that are powers of the momentum of the photon
we have

1_ CEREY

II‘?,=%{D6M,+OO[:6#,—-mamza‘wﬁ—...,

where ... is a finite term containing a factor []3, and D and O° are
quadratically and logarithmically diverging constants (Dimac [1934],
HerseNBERG [1934], PrIERLS [1934]).

X X

Fig. 13.12 Fig. 13.13

By using a similar discussion to that employed for the electron
self-energy, we can see that D is the self-energy of a photon due to
the proper electron field around the photon. However, a non-zero D
is not compatible with the fact that the photon mass is zero. Moreover,
since the first term of (13.73) gives the non-gauge invariant term in
(18.72), a non-zero D seems to be incompatible with the requirement
of gauge-invariance. However, we obtain various results (distributed
from zero to infinity) for D by using different methods of calculation.
Moreover, even if we want to use the method of calculation which
gives D=0, this method gives contradictory results when it is applied
to other calculations (Karavama [1950], Furupa and KmNosHITA
[1950]) 1). It is for this reason that the problem of the self-energy
of the photon has been discussed by so many authors. We shall take
up this problem in the next example.

Since the photon mass must be zero (D=0) and the results must
be gauge-invariant, the best method of approach in problems that
can be separated from the problem of the self-energy of the photon
-seems to be to assume provisionally that D =0.

The difficulties occasioned by the infinite values of D and C° are
called those of vacuum polarisation. By calculation we can show
that (cf. next example)

2 e P
O = — (log 7],

3ndn

+ finite constant. (13.74)
o

R ad

1) See also TaxamasHr [1954].
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The contribution of the vacuum polarisation to the S-matrix is
given by Fig. 13.12 as

ie f d4x1 f d4x 1?(2:) yy 'P(z) AF(I-—Z]_) H;?v Aﬁ(%)
= — ¢ C° [ d*z P(z) y, Aj(x) p(2) (18.75)
+ i = [ 0 () 7, p(@) O Ag(e) + oo

because £ = —1 and g=1. In (13.75) ... is a finite term containing a
factor [J% operating on A¢. This shows that an electron in an external
field is observed as a charged particle with the charge ¢ (1+C?%). The
quantity eC? is called the self-charge. The difficulty of the concept
of self-charge is illustrated by the fact that C° is infinity. As shown by
(13.74), the effect of the electric charge is weakened by the negative
self-charge C° This fact can be intuitively understood from hole
theory. In hole theory we must consider an electron in polarisable
matter, i.e. in an ocean of vacuum electrons and, therefore, the
effect of the electric charge of the electrons must be weakened on
account of the Lenz law. Since this explanation does not .depend on
the spin of the charged particle, we may expect that the self-charge
de of any charged particle due to the vacuum polarisation effect is
negative. In fact we can prove this fact without using the perturbation
approximation (Umrzawa and KamerucHI [1951]) 1).

Thus, we have seen that the infinities due to the effects of the
proper field of an electron appear in the self-mass and self-charge.

When the momenta of the electron in its initial and final states are
not large,

Pl <= g >« (13.76)

we can obtain non-relativistic results for A (cf. (13.695)) by neglecting
the higher degree (> 3) terms of |P| and |q|. Thus

4= 3,;24,,' 198 g + 53] | 4% p*(2) 4 $(2) p(@)
(13.77)

- EZE z.;fd"xw Ve W(T) 2 p(2).

1} However, when the order of infinity of de is high, its values depend on the
method of caleulation and sometimes give results which are incompatible with
the general proof, In fact, we can obtain positive de of a charged vector particle
by using a special calculation method (Karavama [19497, McConNELL [19517.
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Here we have assumed a static potential 4(z) instead of 4%
(i.e. we have taken 4% as (0,0, 0, ¢¢) in (13.69b)).

ExamMpPLE 6. VACUUM POLARISATION

We shall consider the current 6, induced by an external eleciro
magnetic field 4% in the e?-approximation. From (10.77) and (13.3)
we have
6']”(3“) = ie2 .‘-?-(:g)o d4xl ([]u(x)7f’v(x,)])0Az(x,) + 62 (jpv[“':n])l)A:("u)- (1378)
where ( ), indicates vacuum expectation values.

By calculation we can obtain

8J (x) = — [di’ {DA(x") 4+ C° (O’ 8, — 3, 3;) e () {

+HO) (O 6, —2.%)) i)} Sz —~2). )

Now (10.74) shows that the first term of (13.79) can be regarded as
the current derived from the interaction Lagrangian L' = — () DA 4:.

Since the Lagrangian L+ L’, where L is the free Lagrangian (7.51)
of the electromagnetic field, leads to the equation

D' may be regarded as the self-mass of the photon. The gauge-

invariance of the theory requires that éJ, should be invariant under
the transformation 4, — 4,+3,4, ie. that

D=0. (13.80)

We can express this requirement of gauge-invariance in another
way. Equation (13.78) must be written in the form

8J (7) = —4e2[dta’ K, (x—z') A,(z') (13.81)

(13.79)

on account of the Lorentz invariance. Gauge-invariance requires that

K,, should satisfy the equation
3, K p(z)=0. (13.82a)
Comparing (13.79) and (13.81), we have
0K o(x) = D0, 6(). (13.82b)

Calculation gives the following K, for various charged fields:—

K:t?_': - i{byz ° bfA(l) + D,Z : D”Au)'— Z ) pr,Au)

o 2 oul _ 1 (13.83)
— A9 3,0, 4 + 8, (AY U4 + A [ AV — 252 AV A)}



254 PERTURBATION THEORY for. X111, § 6

for the charged field of spin zero,
K =0, 4-0,A9 43, 4-3,4%— 8, (3,4-2, AV + 2 A4V (13.83f)
for spin 1/2,
K9 =—3{2,43,4Y13,4-2,4V —~4-3,2, 4V~ 4V .3, 3,4
+8,(AV O + 4040 ~ 22247 4)}
- -2-1,;{%3”4‘”- 4 + J4%-23,0,4 —3,3,4%.3,3,4
- b,qu‘l’-b#BeZ + 6#7(30 B‘,Am-be 3,4]——— DA(I)‘DZ)}

(13.830)

for spin 1, where 4%- and 4. -functions are those for the charged fields
(FELDMAN [1949]). From these relations we can derive (PavLr and
ViLragrs [1949], SakaTa and UmMezawa [1950])

3, K, (2) = 3 8() 2, AV(z), (13.84a)
with
'\ 1 for spin 0 /
n=<:—2 for spin } (13.84b)
3 for spin 1.3
As shown by (8.25a), 4™ has a strong singularity near the light cone.
Indeed,

1
2n¥(x x,)

ANz) = + log[ z, 2,)| + 4%,

where Af) is a regular function of (z,x,). From this, we have

A‘l’(x)—_.____z“____]__’f__f!‘__,_2z A(l)
7 (zpxy)®  4nPz,z, L d(:z: z,)
This leads to
n x n 32
Bp K/w(x) = - § ﬂ_ﬁ(—éﬁm 5(1:) + 2 47[2 (Z x” 6(2:) (13.85)

which is quite indefinite. Indeed, practical calculation shows that D
is not always zero, but depends on the method of calculation (WENTZEL
(1948]). This difficulty is called the problem of the self-energy of the
photon. Equation (13.825) and (13.85) show that the self-mass of the
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photon is made up of two terms?!); one is proportional to =, the
other to no?.

We shall assume that there exist k& charged fields U .. U* of
spin 0, [ charged fields ¢! ... ¢* of spin %, and m charged fields UL ... U7
of spin 1 with masses (% ... "), (1" ... ={"), (" ...%"); also that

k—2l4+3m=0
Z(,{(a))z_z Z(%m +3Z(,.v)2_0

i=1 i=0
Then, (13.85) shows that the self-energy of the photon becomes zero
without any ambiguity due to the method of calculation (RAYsE:
[1948], Umezawa, YURawa and Yamapa [1948]). Indeed, (13.85)
leads to
3, K, (x)=0

However, there is not universal agreement about these assumptions.
Pavrr and Viczars [1949] have developed a formalistic mixture
theory, the regularisation theory, from a wider viewpoint. There,
some of fields U, y¢, U?, are temporarily regarded as auxiliary fields
whose masses must be taken to be infinite at the end of the calculations
in order to make them inaccessible to experimental observation.

For C° and f({]) in (13.79) we obtain (FELDMAN [1949], UMEzZAWA
and KawaBE [1949b])

C0 = [t dv G(v)

e? 1 2v 1

e {._ 35 log =S+ mL for the scalar type

1y, s . (13.86)
={= {« 52 log = + ﬁ}v_.eo for the spinor type S

€

£ {__ 1 x2 + = log ] e for the vector type, |

F:1 6z 2

1) This fact can be understood intuitively as follows: the energies of the
vacuum particles in an external field 4% (x) can be roughly written as

s ] P L{p—e A%+ ) — 45).

Expanding this as a power series in ¢, we find the zero point energies of the
vacuum as the first term and (D/2) ]A’l” as the second term. The latter term may
be regarded as the self-energy term of the photon. In fact the coefficient D in this
term, which is proportional to n, just agrees with D in (13.79). It must be noted
that the factor n in D comes from the weights of the various charged particles
in the zero point energy.
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1—22
f(O) = 4,,1J. dv G(v ]-:':—D_—(';—"*
e 0
1——{ 120“", 1630nx‘+ } for the scalar type
et = . (13.87)
e {—m-— Toaat } for the spinor type
T e 20 71 }
in [ {12m¢’ % 3607ty
1680n Tesomm L T - ] for the vector type
where
e? vt
— T B (I for the scalar type
e? 3 v .
Gv) =( — pvgery s (1 — -5-') for the spinor type » (13.88)
e? vt . 2ot
-= {2“(1_1,2) + 5o —wmi for the vector type.

These results can be obtained by substituting (8.32) and (8.33)
into (13.83),, (13.88);, (13.83), and changing the variables of inte-
gration !} (x, § — v, w) according to

a=55(l1—0), B=z5(l+2)

(ScEwNGER [1949]). The G(v) in (13.88) are obtained as a result of
the integration with respect to w.

The second lines in (13.86) and (13.87) give the second and third
terms of the vacuum polarisation effects (13.73) of the electron field.
In the case of a charged vector field, not only C° but also f([]) diverges.
As shown in Ch. XV the latter infinity is a serious difficulty for the
renormalisation theory.

1) On the other hand, in the non-covariant perturbation theory (cf. §2)
vis rela-ted with the scalar product (p#pu) of the energy-momenta p, p’ (p,p, +»*
= p”p“ + x* = 0) of a charged particle and its antiparticle in a virtual state
as follows:
452
1—a?

2{p, P, +23} =

(Unezawa and Kawase [19495]).



cH. x01, § 6] EXAMPLES 257

ExampLE 7. THE SELF-STRESS OF AN ELEMENTARY PARTICLE

We shall consider the expectation value of the energy-momentum
tensor 7', in & state of an elementary particle with energy-momentum
p, and mass p {p,p,+u*=0). In relativistic field theory the energy-
momentum tensor 7', must obey the transformation law of the
tensor of the second rank, namely )
E, = (p|f d*z' T(=")|p) )

s (=0, 4 |[ @ Ty(2) ~F* | B2 Tu(@)| p=0, 0. §

Here T, and T',, are the energy-momentum tensors in the rest coor-
dinate system (z,) of the particle and in the co-ordinate system ()
moving in the z;-direction with a velocity v=pg=mp/p,. In (13.89)
(p,) and | p,) denote the state of the particle with the energy-momentum
P, On the other hand £ must have the transformation property of
the energy of the particle,

(13.89)

B = 4 _ _i___ =0, da T =__0’ R 13.90
» V(I—p% Hl——ﬂ’)(p .”U z “(x)lp u)- ( )

Transformations (13.89) and (13.90) show that
(p=0, /szs:!: Tu(x)|p=0, p),
called the self-stress of the particle, must be zero.

We can prove that this self-stress is zero in the following formal
way (Taxamasar and Umrzawa [1952]). First, we shall consider a
spinor field ¢ interacting with some spinless fields U (x=1, 2, ...).
The Lagrangian is

L= — §(,0, + py—% 3, U@ 3, U@ 1 ()2 U@ U) L L' (13.91a)
L = z f@ O p U= 4 z g 0:‘«) v BF’U(a)’ (13.913)

«®

where O™ and O’ are products of y-matrices and g are coupling
constants having the dimension of length: [g@]=[L]. By means of
field equations for U and » we have, from (7.3b);

T,=udpy+ S {2 U@ U — f= FODp U™} + T, (13.92)
T=3Q,U%. .3, U+ (2T UW). (13.93)

1) Here we make use of the well known relation for the Lorentz contrac-

tion:
on da = VT=P d¥z.
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The energy-momentum tensor in the interaction representation
can be obtained from 7T, by means of the unitary transformation
S[e]. Such an energy-momentum tensor in the interaction repre-
sentation has some additive terms to (13.92). However, as shown in
§ 5. we ¢ n disregard them by means of the calculation method of
the P*-symbol. Then, (p=0, y|T,|p=0, #) can be calculated by
substituting (13.92) into F[x : n] of (13.18) and regarding y and
Ut as the operators in the interaction representation. Although we
have only three dimensional integration d3 in (13.89), we may
integrate it over all four dimensional space and finally omit the time
integral, because we must pick up the matrix element (of [d3%T,,)
in which the energy is conserved:

(P | [P A% T (@) | ) = 27 (p’|[ d®2 T ) |P) 6(Po—Po) Opp -
The expectation value
P=0,4|{Z0dxT|p=0,u
can be calculated by substituting the term?)
2 [P dtr 3 {3, A7 —x) 3, AP (x~2") + ()2 4P (2" —2) - AP (x — ")

into an arbitrarily chosen x-Boson line (1/2) 49 (' —2") in the self-
energy graph of the Fermion ¢ (cf. Fig. 13.14a). !

T

SRR TN
f(a:) ora)

@) (b)

—_—y ~~~~ Boson line
Fig. 13.14

From (8.37) we have

2 [ B0 {3, 49 (2'-2) -2, 4 (2-2) + () AP (') 4P (o)

——2i(}) 4P ~ o). (13.94)

1) A% is the Ap-function of the U®.field,
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Thus, we see that one insertion of the operator 7' gives — 28u, where
du is the self-energy of the Fermion.

Since there are n/2 positions at which this insertion in the nth order
self-energy graph of the Fermion can be made, it follows that

P=0,u|fdxT|p=0,u) =—>3ndu™. (13.95a)
a=0

Here 6u™ means the nth order term of the self-energy du in the
perturbation calculation, and therefore has the form

du™ = g{n (g@)™e (foN)la} F(my .oty .3 ly... 1, ...), (18.95b)

(=)
where X means to sum over all possible m, and I, under the condition

2 (me+ 1) =mn.
The functions F(...;...) are independent of coupling constants.
Then, from (13.95a,b) we have

? ?
(p=0,p|fd=T|p=0,4) =~ [ 7@ O+ 0 5o sp.} (13.96)

The term
(p=0’ ﬂlf(“)fdam Ipo(a),lp U(d)[p=0, /l,)
can also be calculated by means of the self-energy. graph of the
Fermion, in which any vertex of the interaction f*§p0“ypU“ isregarded
as that due to f*g0@pU™ in T,, (cf.Fig.13.14b). Since each term

of (13.95b) in the perturbation calculation is made up of m, such
vertices, we have

2 @=0,u|f®[dPz§0yp U |p=0, )
@ 3 (13.9)

()
= z my (fO)"= (g0 F(...; ...) = — z = 7™ op.

On the other hand, from (8.37), and (13.41), we have

" 33-” Spla—a) = — 3 ufda" Sel@—a) 8plz"—2)  (13.97a)

d

(ex)
Sy

AP(@—2z') = — i 2* [ db” AP (x—2") AGH2"—2’). (13.97b)
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This shows that the operation x3/>u on an internal Fermion line or
the operation »“3f2x™ on an x-Boson line are equivalent to the
insertion of —iuPy and —i(x*)2 U=U™ respectively. Thus, we have

. ?
=0, ulu|Pegy|p=0,p)=png; o

(13.98)
(p=0, 1| (2¢)2 [ d3z U™ U™ |p=0, p) = x a:m dpe.

s

Fig. 13.15
From (13.92),

(p::O,Iu,Uda‘.‘cTM'p=0,y) (ﬂap‘!'z (“)a,‘(a) 29‘“’3!,(,,)3#4'# (13.99)

Since the energy operator [dzT,, must give the self-energy du
according to

(p=0, ylfdPz Tyylp=0, p)=p+dp
we have 1)
(p=0, 4f P2 T [p =0, = (pez+ 3455055~ 3¢ 5751 . (13.100)
Since we must have

(p=0, ylfd*z Tylp=0, p)=(p=0, y|[d°c Typlp=0, p)
=(p=0, y|fd’z Tulp=0, u)

in the rest system of the Fermi particle (p=0, py=u), we have from
(13.100):

P=0,p|fd?%xTy|p=0,u) )
1

__(yb +Z _;%_ > -"(“’a:«z;—l) 6”‘5 (13.101)

1} In the calculation of (T,,) thers appear some diggrams imn which the
operator T, , operateg on a closed loop, which 18 connected with the other part
of the diagram through a single line with zero momentum (cf. Fig. 13.15).
The contribution of these diagrams is called the vacuum polarisation. In the
usual calculation of the self-energy Ju this contribution is neglected. However,
du in (13.100) and (13.101) must include them, In quantum electrodynamics they
are zero on account of the Furry’s theorem (SAWADA [1950], ErsTEIN [1951],
Taxamaspt and Umezawa [1952].
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Similar results can be obtained in more general case. Suppose that
there are fields @™ (x=1, 2, ...) interacting with each other through
interactions H® (a=1, 2,...), the coupling constants ¢'¥ of which
have dimensions [g*]= [L"(" } Then, we have (Taramasmr and
Umezawa [1952]):

(p=0,%xV|fd% Ty [p=0,x%)
?

1 @ _0 ) @ @
_§[§xa Y gna g ag(a)—l] 6

where x* denote the mass of the @®-field, %" is the self-energy of
the particle (x=1) and (p=0, | indicates the expectation value in
the state of the particle («=1) at rest. This relation was first dis-
covered by Pais and EpsTEIN [1949] in the simple case of the electron
and the electromagnetic field, for which g'**=0, and »'* =0 and m for
photon and electron, respectively.

Since éx*' has dimensions [dxV']=[L~1], it must have the form

§xV = 3 a(my,, 1) T (&)ms (g@)s (13.103)

My ly

(13.102)

with
Sl —-3m,=—1
[} &

Here the dimensionless coefficients a(m,, l,) can depend on log (' [x*"),
By substituting (13.103) into (13.102), we have

(p=0, x| [d% Ty (x)}|p=0, »*)=0. (13.104)

However, practical calculation sometimes lead to non-zero self-
stress. This fact can also be understood from (13.102). When the self-
energy &x is infinite, it must have, instead of (13.103), the form

33 = lim §xD(P). (13.105)
P—ro0

In other words, there appears a new constant P(— oc), whose dimension
is [L—1]. Here P denotes the upper limit of the integration appearing
in the calculation of the self-energy. Thus, above dimensional gon-
sideration without taking into account P eannot hold and we find &
non-zero self-stress. This difficulty is called the problem of the self-

stress.
For example, the self-stress of an electron interacting with an
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electromagnetic field can be calculated from its self-energy (13.63)

. P
O =}_1»n°1° ax log ol bx].
Here a and b are dimensionless finite numbers (@ = 3e2/872, b = 3¢%[4872).
Since the charge e is dimensionless, (13.102) gives:

e3

%= T ondm)

17 9
P=0,%|[d% T, |p=0,%)= §(x§; — 1) dn=—3

5 x. (13.106)

This agrees with the results of the practical calculations. However,
if dx were finite, its only possible form would be

dx=cxn (13.107)

with a dimensionless constant ¢, because x is the only constant with
dimension in quantum electrodynamics. If we substitute this into
(13.102), we have

1 d
(p=0,|[d*x Ty |p=0, %) =§(x5;—1) dx = 0.

Equation (13.104) shows why Pauli’s regularisation method (RO=HR-
LICH [1950]) or the mixture theory (Yorawa and UMEzawa [1949])
succeeded in giving a zero-self-stress, for those theories lead to a finite
self-energy of the electron. On the other hand, the difficulty of the
gelf-stress cannot be settled by the renormalisation theory, in which,
as shown in the next Chapter, the self-energy itself is not finite.
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CHAPTER XIV
RENORMALISATION THEORY IN QUANTUM ELECTRODYNAMICS

§ 1. Renormalisation Theory

In the present quantum field theory serious difficulties arise from
the existence of the proper fields. However, since the infra-red cata-
strophe can only be eliminated by taking account of the proper field,
we cannot disregard it. In such & case it would peem difficult to
understand the experimental success of quantum electrodynamics.
The resolution of this difficulty may be provided by searching for the
observable effects of proper fields.

First, we shall again consider the ultra-violet catastrophe discussed
in the last Chapter. In the problem of the elastic scattering of an
electron in the e%-approximation, the effects of the proper electro-
magnetic fields (i.e. the so-called radiative corrections) give infinite
values for the modifications dx and de of the electron mass and charge.
Since we observe not the bare electron but the electron with the
proper field, the observed values of the mass and charge must be
equal to »" == »+ 6x and ¢; = e+ de.

The mass term of the Lagrangian can be written as

—xPy = — %' Py+ Onpy. (14.1)

When we take an interaction representation in which y satisfies the
wave equation of the free electron of mass »'(x — x’ in (7.110)), the
second term of (14.1) gives the in* “.otion Hamiltonian

HL(@) = — bep(ayp(a). (14.2)

Taking dx=A4°% we can eliminate the effect of (13.64). Similarly,
writing the electromagnetic interaction as
9'7’)’,?-4,. = 61'1-57#1/"4# - 687/-’)’pr;‘ (14-3)
with
e, = e+ de (14.4)

and regarding e3/4n as the observed value 1/137 of the elementary
charge, we can eliminate the first term in (13.75) by means of the
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second term in (14.3) (with de=eC?). These procedures are called
mass and charge renormalisations (ITo, Korsa and Tomovaca [1947],
ScewiNGgEr [1948], Lewis [1948], ErsTEIN [1948]). Since we can
obtain definite finite answers in the e*-approximation by means of
these procedures we can compare them with the experimental data.

For example, this theory gives for an electron in a static magnetic
field an anomalous magnetic moment 0.00117 {—ef2m) due to its
proper field (ScEWINGER [1948]). Here, —¢/2m is the Bohr magneton
for an electron. In the same way one would expect the energy levels
of an electron in the Coulomb potential of the hydrogen atom to be
influenced by its proper field: the 228, ,-level energy (which must be
the samg as the 22P,,-level energy when we do not take into account
radiative corrections) comes out larger by about 1000 Me than the
latter level energy. This latter fact had been previously suggested by
some experiments (Pasterxack [1938]).

Conclusive experimental data on the energy levels of the hydrogen
atom and the anomalous magnetic moment of the electrons were
given by LaMB and RETHERFORD [1947] and RamBr’s group {1947];
these results have been successfully explained by the renormalisation
theory.

This fact shows that the concept of the proper field has a real
meaning, and that renormalisation theory is valid at least in some
circumstances. However, in order to show that the interpretation is
consistent, we must prove two points: First, that in the renormalisation
theory of quantum electrodynamics there are no infinities in any
approximation of the perturbation series; second, that this perturbation
series converges to a definite result. The first problem was analysed
in detail by Dysox [1948]. We shall consider this problem in the

following paragraphs.

§ 2. Primitively Divergent Diagrams

We ghall now consider how many kinds of infinity appear in quantum
electrodynamics. A diagram is called primitively divergent (Dysox
[1949]) when its S-matrix element is infinite but the infinity arises
only in the last 4-momentum integration; i.e. the result of the »—1
(n=number of internal lines) 4-momentum integrations which we
choose to perform first is finite. In other words, a diagram obtained
by cutting any internal line of a primitively divergent diagram gives
a finite S-matrix element.
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Let us ask how many sorts of primitively divergent diagrams
there are in quantum-electrodynamies.

It is easily seen that for a primitively divergent diagram, we must
have the relation

N = (highest order of products of independent variables in the

numerator) - (those in the denominator) = 0. (14.5)

The independent variables are here selected as follows: Some integra-
tion variables are eliminated by the é-function 1) representing the
energy-momentum conservation law at each vertex, and the remaining
variables are regarded as the independent variables.

The inequality (14.5) must be interpreted as a condition for diver-
gence only when the denominators of the integrands give rise to no
singularities. In fact, we can rewrite the denominators in a positive
definite form by changing the contour of the kj-integration from the
real axis to the imaginary axis 2). As shown in Fig. 13.4 this can be
done without crossing undisplaced poles. Moreover, the contribution
of the displaced poles is finite, because the momenta integration
domain at the displaced poles is limited by (13.39).

We shall consider a primitively divergent diagram in which the
numbers of external and internal electron lines are E, and I, respec-
tively, in which those of the external and internal photon lines are
E, and I, respectively and the number of vertices is » (from which
n, correspond to the mass type interaction (14.2)). Equations (8.35)
and (13.24a) show that each electron or photon internal line con-
tribuves 1 or 2 to the second term in (14.5). Moreover, we have
4] integration variables (d*% ... d4k;, I =1,4 1,) in the numerator.
However, 4(n—1) of them are eliminated on account of the -functions
at each vertex. On the other hand, taking into account the fact that
three lines are inserted at each vertex for the interaction (14.3), we
can easily derive the relation 3)

eI, + E,=n—m,

14.6
2I,+E,=2n { )
1) This é-function comes from the integration [ d4r at each vertex.
%) Then k = &} 4 k§ + &§ — k% changes into k% + k% + k2 + [k|%
%} Eaech vertex corresponds to one external photon line or a hslf of internal
photon line.
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Thus, we have
N=4 (I-n+1)-1,-2I,
=4—if,— E,—n,.

Then, the condition (14.5) for a diagram to be primitively divergent
can be written as

(14.7)

4 B ~E,—n,>0 (14.8)

Dysox [1949]). The number X is the highest degree of the infinities

of the primitively divergent diagrams, it being understood that
N =0 implies logarithmic divergence.

There are six cases satisfying (14.8):

(a) B,=0, E,=2, (b) E,=1, E,=2, (c) E,=2, E,=0,
(d) B,=4, E,=0, (e) E,=3, E,=0, (f) E,=1, E,=0.

However, the S-matrix elements given by (e) or (f) are zero by
Furry’s theorem (cf. Example 2 of Ch. XTIT}; (d) leads to a logarith-
mically divergent S-matrix of the form A,4,4,4,. We shall take
this as zero on account of the gauge-invariance of the theory, in a
similar way to the zero self-energy of a photon.

The diagrams (a), (b) and (¢) of Fig. 14.1 are called photon self-
energy, vertex part and electron self-energy diagrams, respectively.
Then, the above result can be expressed as follows: any primitively
divergent diagrams must be (a), (b) or (c)1).

%
/N

Fig. 14.1

@ ©
§ 3. Separation of Infinities

We shall consider a primitively divergent diagram G(E,, E,) with
the Ep electron and Fe photon external lines. When this primitively
divergent diagram is contained in a Feynman diagram, the momenta

1y However, divergences of (a), (b) and (c) are not always primitive.
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™ (m=1 ... n) of its external lines do not necessarily satisfy the free
field equation. By denoting all the external momenta by the symbol ¢,
we can write the S-matrix element given by G(E,, K,) as

f d* R(k, ¢). (14.9)

Since the diagram is primitively divergent, E(k,t) contains no in-
finities. The integration (14.9) is called the final integration.
Let us introduce momenta %™ (corresponding to ™) of the free
electrons and photons, by the definitions
when ™ is the momentum

S fOUM) g g
Lyt a=0 of the electron line

f00m) o) @ when ™ is the momentum (14.10)
BB of the photon line.
By denoting (£%V ... %) by #* we can write (14.9) as
Bk R(k, t)= { d*k R(k, t°) \
omy _g0em £ gap [ -2
3 (Hm—t) [ d k[u&m)R(k, t)l_‘.
D2
3 (1 — 1) (8 — 80 4 [ R (B H]_. (14.1

1 m m ——-—-D ____3
et 3y 3 (H — 1) L (t — g3 [ A [azg;'-' S R(k, t)] —p
+ (a finite function of ).

(DysoN [1949]) It can be easily seen that the highest degrees of
infinities of the first, second, ... terms of (14.11) are N, N—1, ... (N is
defined by (14.5)) respectively. Thus, we can separate the infinite
terms from the finite terms by means of (14.11) (cf. (13.62)). For
large ¢ (i.e. large t% ... {™ in comparison with masses of particles), the
last term in (14.11) may be approximately written as a sum of terms
whose forms are products (¢ ... {®»)) multiplied by constant factors.

The ({+1)th term is called G{Ep, Be, I)-term. The highest degree
of infinities of the G(Ep, Fe, l)-term is (N —1), it being understood
that ¥ —!=0 imphes logarithmic divergence.

It is clear that every diagram that gives rise to a divergent S-matrix
element contains some primitively divergent diagrams.

§ 4. Irreducible Diagrams

The diagram which is obtained by replacing all the self-energy
and vertex parts of a given diagram by lines and vertices containing
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no radiative corrections is called a skeleton. A diagram is called
irreducible, when it coincides with its skeleton.

There are no proper irreducible diagrams of the electron and photon
self-energies except those shown in Fig. 14.2.

A diagram is called a proper one when it cannot be divided into
two parts by cutting only one internal line.

SN M

a b

O

Fig. 14.2

§ 5. Renormalisation Constants

Let us denote all contributions of the electron and photon self-
energies and vertex parts diagrams by 8%(t), dR(f) and I,(#,?)
respectively; ¢ is the energy-momentum of the external line of the
self-energies diagrams, and (#%, t) are those of the external electron
lines of the vertex part. All contributions of the proper diagrams of
the electron and photon self-energies are denoted by $Z*yp and
AL A, respectively. They are obtained by summing the contri-
butions of all possible diagrams given by inserting internal lines in
the respective irreducible diagrams (Fig. 14.2). In other words, they
are obtained from the S-matrix elements of the respective irreducible
diagrams by replacing Sy, 4, and y, at the points a of Fig. 14.2 by
8%, A% and I';. It must be noted that I, must not replace y, at tue
points b of Fig. 14.2. In fact, the diangram given by inserting an
internal line ‘‘around” the point b, i.e. the vertex at b, is equivalent
to the diagram given by inserting an internal line “around’ the point
a, i.e, the vertex at a, (cf. Fig. 14.3).

PN TN
a & b wa S b
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Thus we see that X* and II; can be written as
Zx=e2d4 y, Syt —k) Aplk) T,(t—k, t) —2miox  (14.12a)
IT} = e2fd*k Sp(Sw(t — k) y* 8'(k) T,(t~k, ?)). (14.125)
Since any self-energy diagram is obtained by connecting a self-

energy diagram with a proper self-energy diagram, we can write

(Dyson [1949])

Ap=A5+ AplI*A%, (14.13b)
where it is to be understood that all guantities on both sides refer

to the same momentum. Sy(k) and 4 z(k) are the Fourier amplitudes
of Sy(z) and Ag(z) respectively:

I 1
AF(k)=§7ﬁE k. k, 2

Ly ks’
Sp (k) T 0nd (pky+#'%) 5

Quantities S7 and A% can be calculated by (14.13a, d).
We shall now assume that 83, A% and I', have the forms

Sz=2,87(e)
Ap=Z3 A% (e) ¢ (14.14)
Fp=Zf11’,‘1(61)-s

Here Z,, Z, and Z; are constants which must be determined such

that 8y, A% and I',; contain no infinities. The observable charge e, is
finite and such that

(14.13¢)

e, =fe (14.15)

(with a constant f). This equation can be regarded as an extended
expression of the charge renormalisation (14.4).
Substituting (14.14) into (14.12q, b),

Zr=271ZyZ;e® [ Ak y, S (e1) A (1) Ty (1) — 2midx (14.16a)
IL=2Z87Z7" e [ d*k8p (S (e1) ¥uSri(es) Ty (€9)). (14.160)

Equation (14.13) can be written by using the rules of the operational
calculus as

S (31)=m (14.17a)
, 4
An() =gz 515 (14.17b)
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On the other hand, we shall prove in the next paragraph that
J @k y,8%5 (e1) D (e1) L (61) /

=Z7 {A(e;)—iB(ey) (¥, d,+%)+ ...} )

§ A4 8 p (S, (1) 7, 1 (2) Ty (€)) =27 H{ —Cle)) OO+ ...} (14.19)
L=y +Z7 {L(e)) yut - b (14.20)

(14.18)

where A(e;), B(e,), Cle;) and L(e,) are some constants. Terms ... in
(14.18) (14.19) and (14.20) are finite and contain the factors (y,2,+ '),
1% and 9, respectively. From (14.16a, b) we have

Zy8p Z* = (Zi1 2y 7% €)2 [A (€) Syt o= B(e)) +...) — 2miZ, 58 (1421)
2 1 27
Zy ApIT* = (271 Z, B2 ¢)? {EIEO(el)—[— } (14.22)

Substituting these relations into (14.17q, ), and taking into account
the conditions 8% — Sz, A% — A, Iy — y, for e, — 0 (cf. (14.13¢)),

we see that S%, A% and I',; contain no infinities only when the
constants are taken to be

1
b= e T3 € A (e)
Zy=1—L(e,)
Zy=1+5- & B(ey) (14.23)

Zg=1 +'2‘1;; £ C(ey)
f=27 2,23,

These are the ‘“‘renormalisation constants’.

§ 6. Final Integration

We shall now establish the equations (14.18, 19, 20). Any proper
diagram ((14.5) defines a number N for this diagram) of the electron
self-energy may contain primitively divergent diagrams -called
G, Gy ... ((14.5) gives numbers N,, N, ... for them). Infinities of G
can be separated by using (14.11). Omitting these infinite terms, we
can obtain the finite term. This term is approximately proportional
to the Nith power of the external momenta f, of the primitively
divergent diagram G;, when the latter momenta are large. These
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momenta become internal ones for a primitively divergent diagram
in which the abovementioned finite terms for all G; are substituted
into the internal line or the vertex, corresponding to the former
primitively divergent diagrams (i.e. &, (¢=1,2,...). Separating
infinite terms of this integration by (14.11), omitting them and
repeating the procedure, we obtain the “final integration” of the
electron self-energy diagram as

J @*k y, 8p(e) Amle) Tyle) (14.24)
on account of (14.12az).

This successive separation of infinities is discussed in detail in § 9.
We can say here that it determines (S, 4%, I,y) and (4, B, C, L);
the latter constants then determine the renormalisation constants
(0%, Zy, Zy, Zy, f) by (14.23).

Tt must be noted that (14.24) is not yet written in terms of e, but e.
We see from the above discussion that the highest degree of the
infinities in (14.24) is N, given by (14.5) (and therefore by (14.7)).
Taking E,=0 and E,=2, we see that (14.24) contains linear and
logarithmie infinities. Therefore, using (14.11) we can write (14.24) as

(8% (€)y, Apy(€) Tyale) =27 H{A() —iBe)p,d, +) + .} (14.26)

Here A4(e) and B(e) are constants d.werglng at most linearly and
logarithmically, respectively 1).

The reason for the Z;* factor in (14.25) is the following one. Although
I, has replaced y, in the vertex ¢ and not in the vertex b, we must
expect the final result to be symmetric with respect to the two
vertices ¢ and b. Then, (14.14) shows that we also have the faetor,
Z 1 at, the vertex b. The proof of this fact, which we shall give in § 9,
was given by Savawm [1951]. The infinite Z;* at the vertex b is called
the b-divergence.

Replacing e in (14.25) by ¢; we obtain (14.18). Equations (14.19)
and (14.20) can be established in a similar way.

We can obtain finite results for the S-matrix by using this procedure
of successive separation of infinities.

§ 7. Renormalisation of External Lines

We shall denote the sums of all posslble y-, 9- and A -external
lines with many internal lines by v’, %' and A4, respectlvely When

1) The electron self-energy can be proved to be logarithmically divergent.
(WEIsskorr [1939]).
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v, ¥ and A4, are operators of free fields we have
V=Zry, §=ZF, A,=Z4,. (14.26)

In fact, in the diagram of the S—*[oc] S[oc] (which is equal to unity
on account of the unitarity of S{oc]), some external lines of S{oc]
and S—'[oco] are connected with each other to give internal lines.
These units occur with the infinite coefficient given by (14.14). In
other words, (14.26) gives the normalisation of ', %" and A, such
that S{oc] is unitary.

In fact, using the equation similar to (14.13a, b) with ¢’, ¢’ and 4,:

Y=p+yp2*Ss
Ai=A,+ A, IT% A%

we can calculate these infinite coefficients. However, these results
cannot be unique. We therefore must use the unitarity of S[co] to
determine these coefficients uniquely. This situation was exemplified
by the determination of B°in (13.67) (cf. discussions following (13.67)).
As shown there, the coefficients in (14.26) can also be uniquely
determined by making the assumption of adiabatic switching on and
off of the interaction constant (Dysox [1951], LtpErs [1952]).

§ 8. Renormalisation

We have seen in § 4 that the S-matrix element can be obtained by
replacing Sy, 45 and y, corresponding to the electron and photon
internal lines and vertices of all possible irreducible diagrams, by
8%, A% and I', respectively. Then, all infinities can be written as the

factor Z; 1 Z, Z}”? at each vertex (cf. Fig. 14.4) where

z Zy and Z}” are given by two electron lines and one

photon line entering the vertex respectively (cf.

2 (14.14)), and Z;* appears on account of the replace-

z¢ ment y, — I, However, this infinite factor can be

z amalgamated into the observed charge e;=fe (cf.
Fig. 14.4 (14.23). Thus, we see that there are no infinities in

the S-matrix of the perturbation theory of the
quantum electrodynamics. Since we can prove the following relation

(Warp [1951]), we have
e, =Z3%, |=Z3". (14.28)



-
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The equation (14.27a) corresponds to (13.70) in the e®-approximation.
A proof of (14.27a) 1s as follows. On account of the relation

st Sr (k)= = 2785 () 7,81 (B) (14.276)

we see that the derivation with respect to k, corresponds to adding
a photon line of zero energy-momentum to the diagram. Therefore,

we have

I = 1 2

; 7F—§5m2*(k) for 1=0, (14.27¢)

where [ is the energy-momentum of the photon represented by the
external line of the vertex part. Substituting (14.16a) and (14.20)
into (14.27¢) we have

1 5
~Z71 L(ey) =5 Zi* & B(e)

which gives
Z7 Y1 ~2y) =23 (1—2Zp)

on account of (14.28). This gives (14.27a). The property (14.275) of
Sz used in this proof is based on the gauge-invariancy of the theory,
which implies that the electromagnetic interaction ie. —iepy. 4,y
occurs only in the combination #(y,, d.—1ied,) v.

Equation (14.28) shows that the charge renormalisation depends
only on the factor Zg of A% (photon internal line). This result is valid
not only in the system of the electromagnetic interaction of the
electron but that of any charged field, because (14.27) is a consequence
of gauge invariance. (Wamrp [1951], Kamervcar and UmMmzawa
[1952]). On the other hand, as shown in Example 6 of Ch. XIII, the
deviation de of the charge is induced by the polarization of the
vacuum particles of all charged fields due to an incident photon.
Thus, Z; must include the contributions of all charged fields and
therefore does not depend on the property of the respective charged
field. This fact is compatible with the fact that every charged particle
has the elementary charge e,/}/27z=1//137.

§ 9. Separation of Infinities

There are various methods to separate successively infinities given
by any disgram. (Warp [1951], Saram [1951]). We shall now give
the method due to Salam. First, let us consider the diagram of Fig.
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14.5. This is a part of the electron self-energy diagrams in the ei-

approximation.
The S-matrix element given by this diagram has the integral

M={ds% [ d*%" F(p, k') Q(p, ¥', ") H(p, k"). (14.29)

The d*&’ integration leads to a logarithmic infinity in the vertex
part at the point ¢ and the d*k” integration to a similar infinity at
point b. Since G(p, k&', k") does not have the form of a product of a
function of ¥’ and a function of k", we cannot write M as a product
of two diverging integrations; for this reagon such a diagram is said
to be “overlapping divergent”.

In general, the integration with respect to (kY ..., &™), selected
from the variables (&%, ..., k™), is called the (&%, ..., £"™)-sub-
integration. In the (k@,. ., k™)-subintegration, the integration is
carried out for any factor containing a variable (¥% ... ) in the
integrand. We shall denote the integration of the above factor, in

Kk’ p-k™-k

e{jr’“'“:\x?(p-k"
g P_k, i\\:‘w,f; ’
kK

Fig. 14.5

which variables other than (k% ..., k™) are replaced by momenta
of the free fields (we shall denote them by the symbols with super-
scripts 0, i.e. A,4(#3)=0 in (8.2a), by D(%k™, ... k™). For example,
from (14.29) we have

D (k)= [ d% F(2° k') G (25, k', K0 g0
D)= [ dk G (2P, B, &) H (2P, ). (14.30)
‘Whence
M=D(k) &% H(p, ¥")+D (k") | d% F (p, k'); el
+ a4 [ a4 R(p, K, k). (14.31)
where -
R(p, k', k)= 2

{'F(p’ k') G(Z’, k,: k”)"F(poa kl) G(pos k': k"")}H(p, k,) (14.32)
—F(p, ¥)G(2° B, ") H (2% ¥'). S
The infinite quantities in the third term of (14.31) are separated
by means of (14.11) as follows:

J a4 [ d*k” B(p, ¥', k") =T (p) +1(p) (14.33)
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where
14 " b ’ ”
T (p) = & [ a4 (RO K, B)+ (0= P (g B (0. KL K))  (14.34)

and I,(p) is finite.

The proof of (14.33) is given as follows: The dk’-integration of the
first bracket in (14.32) does not diverge and its dk”-integration gives
the linearity at most diverging terms (cf. discussion of N following
(14.24)) which can be separated in the form of (14.33) by means of
(14.11). The integration of the last term of (14.32) can be written as
follows:

— JA% § & F(p, k)G (2, B, k) H (1, 1)
7 ’ ’ a r
= — [ &% {F(0,k) = F (oK) (p,~20) (52 F (0. 1)), __]
§ d%" @ (00, 19, &) H (59, k)
— % F (%, k) [ & G (0, %K) H (%, %)

— —md / _b__ ’ 477 0 royn 0 7./
(=22 J A% (5= F(p. ) [ G (9,19, ') H (3", F').

The first term of this does not diverge in the dk’-integration and
diverges logarithmically in the dk"-integration; its infinity can be
separated in the form of (14.33). The second and third terms of the
above integratic;n have the forms of the first and second terms of
(14.34) respectively.

Thus, we see that M can be written as follows:

M=T(k") [d*%" H(p, k") +T (k")  d*%' F.(p, k)
T (K, B+ L (o), (14.3%)
where
T(k) = D(ky, T(,', k") = T(p). (14.36)

The first term of (14.35) is the product of the infinite constant 7'(¥’)
and the integration given by the k’-reduced graph which is defined
28 that obtained by omitting the %’-internal line in Fig. 14.5. As shown
by Fig. 14.5, T(k’) is equal to Z{1; it can be eliminated by the renor-
malisation (the second line of (14.23)) of the vertex part of the point a.
In a similar way, the second term of (14.35) has the form: 7'(k") x k-
reduced graph and is cancelled out by the renormalisation of the
vertex part of the point . We see that 7'(k”) is just the b-divergence
Z5* of (14.25). This fact shows that, while Fig. 14.5 is constructed by
inserting a line stepping over only one point of Fig. 14.2, the final
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integration contains two Z;"1 of two points and therefore it is symmetric
with respect to the right and left sides. This fact can be established in
any order of the perturbation series!). The third term of (14.33)
must be eliminated by the mass renormalization é6x and Z,-renor-
malization in the e*-approximation, and then we obtain the finite
answer I,

This method can be extended to determine Z,, Z,, Z,, éx in any
order of the perturbation series as follows (MATHEWS and SAraM
[1951]). We shall denote a S-matrix element of a diagram of a self-
energy or a vertex part by M, in which the independent variables of
integration are (%, ..., k™). The graph given by omitting the internal
lines of momenta (K7, ..., k™) is called (k%, ... ¥™)-reduced graph.
Separate from M (by means of (14.11)) all possible T'(k*¥) x k®-
reduced graph, where 7'(k™) are the infinite constants of the k“-sub-
integrations (¢=1, ..., n). The remaining parts do not diverge with
respect to £¥-integration. Then. make the (A" (i=1, ... n,7=1,...,n,
¢ = §)-subintegrations of the latter part.

These integrations give the infinite terms T (AWk®) x (AVEY)-
reduced graph, where T'(k“k"’) are the infinite constants given by
the (K%, k¥’)-subintegrations. Repeating similar methods of separating
and omitting infinities we can obtain a finite answer. The infinite
constant T'(k™, ..., k™) which must be subtracted at the last stage
of elimination of the infinities of the (£, ..., ¥™)-subintegration is
called the true divergence of the (k'%, ..., k™)-subintegration.

Since the divergences T'(kW, ..., &™) in the successive procedures
above appear as factors of (k% ... k™)-reduced graphs, they are
cancelled by the Z,, Z,, Z, and 6x of the lower order approximation
except when T'(AT ..., k") is the true divergence obtained in the last
stage of the procedure. This true divergence must be eliminated by
Z,,Z,,7Z, and dx in the same order of approximation as the present
graph. Then we obtain the infinite result I,

I=[1-TF" ... k)] (14.87)
where
Q=[1-T((FEY . EmD) -T2 . E™)—..] 2
[1-T &Y EP=D) T (., k)~ ]... (14.38)
[1-T (V)T (®)—...] M. 5

1) In this proof Salam introduced a concept ‘‘category”. This concept has
been extended to other cases (Taxwpa [1952]).
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“—T(k' ... k)’ means the operation of omitting the divergence
T(k* ... B™).

§ 10. Examples

Exampre 1. LAMB SHIFT AND WELTON IMAGE
Let us denote the electric intensity of the electromagnetic field
(i.e. the proper field) around an electron by E(x). Newton’s equation
of the motion of the electron is
m B x=cE(2), (14.39)
where x is the three dimensional vector of the position of the electron.
Using the Fourier amplitude E(l) of E(z):

E(x)= ;E(l) ed-x—in (] = |1}), (14.40)
we can write the solution of (14.39) (if x=0 for E=0) as

x= 2 = L EQ) eit-x-m, (14.41)

In other words, the position of the electron fluctuates by an amount
x due to the proper electric field of the electron itself. In the following,
we shall write x by éx because it describes the fluctuation of the
position.

In the lowest order of the perturbation approximation we can
regard E as the electric intensity of the electromagnetic field made
from A%™(x) of (12,29). Then, we can obtain using (7.64) and (9.50)

(EQ-EMNo=gp (LD—3B dy=—S 8y (14.42)

Here the symbol ( ), means the expectation value with respect to a
state containing no photon.
Substituting (14.41) into (14.42) we have

1 L | e3
(6!‘6X)o=-r—,;:—;i~i.—=(%)am’fdl—-"m T (14.43)

When the eledfron with the electric proper field moves in an
external potemtial @{z), its motion is made up of the superpositien
of the slow motion due to the external field and the rapid fluctuation
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0x due to the radiative reaction. If we can neglect the higher power
(>2) of small dx, we have

H(x+ 6x) ~ §(a) + by % $(x) + § O, o, 3—,,‘3%5 é(x),

Since the three directions (¥=1, 2, 3) of dx cannot be distinguished
physically, we have
($lz+dx))y &~ H(x)+§(8Z)* A(x) (14.44)
where
(62)2 = }((8x- 6x)),-
In the problem of an electron of a hydrogen atom, ¢(z) is the
Coulomb potential due to a proton, or

b(z) = — ;—,,1,- (r =|x}), (14.45)

where the origin is taken to be the position of the proton. Then we
see that the change of the energy due to the radiative reaction is

AB = (y*{$(x+ dx) —(x)}p)o =} (W*(8E) - Ad) = } (62)2 |9(0)}2 (14.46)
on account of the relation
A = — B).

Substituting (14.43) into (14.468) we have
L dl
A = 55 [ T WO (14.47)
On the other hand, we know that

1
()2 = | 7@ for the electron of $-state (14.48a)
0 for the electron of P-state
where
4
a=_= (14.48b)
.and n is the principal quontum number. Thus, for an electron in a
2S-state we have

AR = —o * (14.49)

dl
{Nin'm’aa .[
(WrLTON [1948]).
Although there are many high energy photons in the electro-
magnetic proper field, we can adopt the non-relativistic calculation
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in the view-point of the renormalisation that the main contribution
of the high energy region can be amalgamated into the observed mass
(i.e. the mass renormalisation). Therefore, we shall restrict the region
of the integration of the momenta ! in (14.49) by the condition

I < m. (14.500)

It is easily seen that (14.49) leads to an infra-red catastrophe.
However, since we have seen in Example 4 of Ch. XTII that this is
not the essential difficulty of the quantum field theory, we shall
proceed as follows.

As is well known in the non-relativistic quantum mechanies of the
electron, the electron in the 28-state of the hydrogen atom has the
energy (2nRy/4) (Ry is the Rydberg constant me?/(4x)?). In other
words this electron has the frequency (Ry/4). Therefore, we can
assume that the effect of the fluctuation due to photons of the smaller
momenta than 2zRy/4 can be neglected. Then, the momenta ! in
(14.49) are such that .

I > 2nRy/4. (14.500)
Then

4 2
AE = gy log (2?;7;3,) = = (=) log {8(4m)?e?}.  (14.51)

This equation gives A =1600 Mc. Taking into account the fact
that the present calculation is a rough estimation based on an intuitive
image of the proper field, we can say that this result is in rough
agreernent with the experimental result 1057.77 Mc¢ (LamB and
RETHERFORD [1947]).

Examprr 2. LAMB SHEIFT AND ANOMALOUS MAGNETIC MOMENT OF
ELECTRON

We shall now make the'more accurate caloulation of the Lamb shift.

The Schrodinger equation in the interaction representation is

: s.,—'i;;, Yol ={H'[2:n] + p*(z) $(@) v(2)} Plo],

where H'[z : n] is the sum of the well known electromagnetic inter-
action ofsthe electron field and the mass- and charge-counter terms,
and yp*dy is the external potential.

Introducing the transformstion

¥[o]=v"1[0] S-[0] P[o]
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with S{c] and v[c] satisfying the relations

60@) S[o] = H'[z: n] S]]

v 3;-(;7 v[e] = p*(z) () y(z) v[a],
we have
i 5y F ) = {$°(2) $(2) b(2)— ¢°(2) $(2) (2)} Flo]. (14.520)
Operators ¢, ¢ and A, are defined by
$(@)=v"c] 8[c] p(z) S[c] v[0],
A (@)=v"[0] 87[c] 4,(#) S[o] v[c],
p(z)=v"[o] p(z) v[s].
It can be easily proved by means of (6.5z) that ¢ satisfies the
equations
3, §(x) v, —P(@) {m +y, $()} = 0.
Since (14.52z) has the form of Schriddinger equation with the
interaction Hamiltonian
$*(x) d(z) Y(z)— ¢*(z) $() p(x),
the energy operator 7% in the Heisenberg representation may be
| written as
Ti=UoXT,+ [z {$*(x) (2) () —¢*(=) $(z) p(2)}) Ulo]. (14.52¢)

Here T, is the energy operator (defined as the displacement operator
for ¢, A)) in the W-representation and U[s] is the transformation
connecting the Heisenberg representation with the ¥W-representation.
The relation (14.52c) can be obtained by a consideration similar to
that used in the deduetion of (10.32).

Introducing the eigenvector & of 7',, we can write the perturbed
energy AE due to the external potential as

AE = (U o] [T+ [, Bz {p*(z)d(x)(z) — @* (@) $(z)p(2)}] U o] —T)

where ( ) means the expectation value with respect to the unperturbed
state @. The equation for Ule] is derived from (14.52a) to be

i 5oz ULl ={$°(2) $(2) $(@) —¢°(2) $(@) 9(a)} Vel
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In just the same way as in the proof (13.8), we can prove that

AE=3

»m=0

s (U™ 00, 0] fod% (14.53a)
{$*(2) $(z) P(2) —9*(x) B(z) p(2)} U0, —o0]),

where U®[o, — o] is the term of the I-th order power of the external

potential ¢ in Ule]; or

Ulsl= ; U%[g, —o0].

Equation (14.53a) can be written as (cf. (13.11))

(@ Vo)) ol PV (14 535

AE=(3|f,d% V(z)|1) +Z pramars

where w; and w, are energies of the initial state @, and virtual state
@, respectively and

V@) = $*(a) $() b(z) ~ 9*(@) $() (@) (1450
= v=2{0} {8-[0] 9*() $(2) ¥(2) S[o] — ¥*() (@) v(@)} o[].

The operator in the above bracket is just the radiative correction
in the trapsition matrix of the slastic scattering of the electron .
Thus, ite e3-term is equal $o the sum of (13.71), (13.75) (cf. Example &
of Ch. XIII)) and the contribution of the counter mags and charge
terms (cf. (14.2) and (14.3)). The latter counter terms cancel the
infinite terms (i.e. 4° and C°). The transformation operator v[a]
can be eliminated by the replacement y — ¢. Thus, we have 1)

i [% 02 V(@) = A + gy [ A 9*(@) (1 6(2) () + ... (14.55)

for the e*-term V@(z) in V*(x). When the external potential ¢(x) is
constant in time, we have, in the non-relativistic approximation,

oo 2 1
R B V() = 3mn= in {log 2k0+24 }fdsx"’ pdé

1
mz;fd%(q"\'?‘a#‘)

(14.56)
+
(ef. (13.77)).
The e-term V(x) of (14.54) contributes to the Lamb shift an
amount

apw - 3 STV Gl Vi)l (14.57)

1) The potentral ¢ (x) corresponds to (14.45).
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with
w, = B, ' (14.58)
w,=E,+k

Here E, and k are energies of an electron and a photon in a virtual
state, and F, is the energy of the electron in the initial state.

The V®(x) is obtained by (13.58a), and is, in the non-relativistic
approximation,

V(e)=0io] {3 3 s v(@) wla) (€9 34(2)) | olo]

(14.59)
¢*(z) () (e - D(x)).

e 1
T m kz, kV3hV
Since each photon has two polarization directions (r=1, 2) we can
replace X (7, 8¢4)2 in (14.57) by (2/3) (0¢-0¢). By substituting (14.59)
into (14.57) we have

2 3
ABY =~ 353 [ G s mE | (14.60)
(618 0*(2) 9(2) % $@)|0) (0] P29™@) 9(@) 22 ).
This can be calculated as follows: The relations in (14.52b) lead to
(|f Pz o* ¢ % 4]1)
= — (2] 8% $(y, 2+ m+ 7o) %pli)
=@|fd% {3, §y.—FHm+dy)}uy
— %P VaRP—FVady 3:&99]1":)
=1 '2% (v]f Bz o™ ¥ pld)
=B, ~ E,) (v|d® ¢* 3 p]3).
Substituting (14.61) into, (14.60) we obtain

2 ©dk (E,—
ABV=—3 5 | T Gameg el Feeugli (1462

(14.81)

- “,m,z 2 (B—B)e|f et a,q;mmogEv“E (14.63)

We shall rewrite (14.63) by means of the substitution
; (Ev'—Et) I(’U“' Pz ‘P* bk q’li)lz log (Eﬂ_E;)
= log (EV—EC)Av g (Eﬂ_—El) !(-u]_fdax <p* ak <P|":) 12
(BeETHE [1947]7).

(14.64)
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The average value log (E,—F,),, is 17.8 Ry when the i-state is a
2S-state. Using the relation

33 (B-E) |l d% oyl =} (]f &2 g pAg]i) (14.65)
v 1
(see BrTHE [1947]), we can write (14.63) a
E1 v
AV = — W “'dsx (}9 @ A (p! ].Og *—'—o'_)i (1466)

The Lamb shift 4% is given in the e?-approximation by AEY + AE®
where

AE® = (i | {d3z V()| 3). (14.67)
Using (14 56) we obtain

A =505 3:rzm’ - {log &y mE¢)]"+ 24 } (][ Pz o* p A1) )

(14.68)
L2 izt y e 090,

It must be noted that (14.68) has no infra-red catastrophe for
ky— 0. This fact gives an example of the general discussion in
Example 5 of Ch. XTIIL

The last term in (14.68) can be calculated as follows:

Glf &z (p*y¢-84)]0)
=§1;,: Glf Pr §{yy v (m+v48)—(Mm+,8) ¥ va} 9 % $|9)

+

= = g Gl P2 {2 § ¥a 7 V2 9+ B 72 72 7,20 9} 28 9)
= 5 2 61 P2 G0, 9 2 8]4)
— e G S 0% (30" 7172 @ + 0% 72 7% 9) + % )
= 55 611 % ¢* pAp—2i[ &% o* (o - [grad § » grad]) ¢]i)
on account of (.14.526), (3.49) and the relation
2 Prgyep-udli) = (Bi—E) (][ Prdyo-%dli) =0. (14.70)

When ¢ is a central potential we have

(14.69)

[grad ¢ a grad] =i 1 22 (14.71)
with
L = [r A grad] {angular momentum operator)

and r=|x|.
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Substituting (14.69) into (14.68), we obtain
e2 m 5 1y ,. .
AE—Sno‘nz 4n{1°g N E,— )1 +2“‘} Clf Pz e* @ - 44|0) /

1 124 )S

+ 4nm_4_¢( Udsxcp (o, L) @ - e
Now (o, L) can be written as
(o-Ly=(L-+-3ec)2—L2— a2

Denoting the total and orbital angular moments of tuo 1 Ltate by
j and [ respectively, we can calculate ¢ = (s, L) to be
g=70G+D-10+1)—-%EF+1)
_{ A for j=1+1% (14.73)
“\-1-1 for j=1-—1%.

(14.72)

In the problem of an electron in a hydrogen atom ¢(z) is Coulomb
potential (14‘45) and therefore

m 5 1 2
AE = 3:rtm“ e {Iog N Bo—Fiyae T8 3} [:(0)| 2

2 2 1
+ T 12 4] P2 & o) 2

where ¢, is the wave function of an electron in the ¢-state.

When the i-state is the S-state, g=0 and therefore AX is given by
the first term of (14.74). On the other hand, when the i-state is not
an S-state, we have |p,(0)| =0 and therefore AF is given by the second
term of (14.74). In the latter case we have

(14.74)

et o3
AE = 167im’ dn n’a"l(l-}- D {E+1) (14.75)

where ¢ is deflned by (14.48b).
For an S-state (14.74) gives

et 1 m 5 1
AB = 5o s e sy te—s)-  (1476)

The difference of level shifts between the 28 and 2P;,-levels is

AE (n=2,1=0)—AE (n=2, =1, j=1—3%)
m [e*\b m 5 1 1 (14.77)
= %= H) {1°g 2(E,—E¢)4,+6—_5+§}’

or, numerically (1050) M¢. This result is in excellent agreement with
experimental results.
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We shall now consider the anomalous magnetic moment of an
electron. The second term of (13.69b) shows that the radiative cor-
rection gives, in the e?-approximation, the anomalous magnetic
moment (cf. (7.114))

1 /e
=g (_m) 4 (14.78)
where
[

Here u is the well known proper magnetic moment of an electron.
The result (14.78) is in good agreement with the experimental results
Suju=0.00114.

On account of these successes of renormalisation theory, it is fair
to say that proper fields have real observable effects and that renor-
malisation is probably a step in the direction that will some day lead
to a coherent theory of elementary particles.

§ 11. Various Problems in Renormalisation Theory

The renormalisation method can remove all the infinities of the
S-matrix of quantum electrodynamics. Nevertheless, in order to
regard experimental successes of the quantum electrodynamics as
that of this renormalisation theory, we must have a consistent
quantum field theory based on the renormalisation theory.

We have seen that the renormalisation procedure leads to the
gauge-invariant quantum electrodynamics and that the observed
charge has a definite value ¢, irrespective of the type of the charged
fields, when we start with the common value ¢ of a mechanical (not
observable) charge of all charged fields (cf. § 8).

In order that the theory shall be completely rational, we require
that the perturbation series should converge to a finite result. Let
Ny (n) be the number of Feynman diagrams in the »-th order approxi-
mation which describe & certain transition M. In general, it is found 1)
that fy(n)=2Ny(n+ 2)/Ny(n) increases rapidly with increasing n.
Therefore, it is not impossible that the higher order terms for which
fu(n)> 137 make larger contributions to the S-matrix. Thus it seems
very doubtful whether the perturbation series of the renormalisation
theory will converge. These doubts have been expressed by many

i} See on the galculation of N,.(n) the reference HursT [1952].
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writers (Dysox [1952], KaTavama and Yamazaxi [1952]). Moreover,
others have shown that the perturbation series of the renormalisation
theory diverges even in the simple case of the scalar field U with the
interaction of the form AU3 (and in the energy domain which is not
enough to produce free particles) *) (Horst [1952], TRIRRING [1953],
Urrvama and ImMamura [1953], PETERMANN [1953]).

If this is true also in quantum electrodynamies, so that the per-
turbation series of this theory does not converge, it is again necessary
to explain the excellent agreement between experimental results and
the lower order calculation of quantum electrodynamics. We have
no proof, but it is possible that this agreement comes from the fact
that the perturbation expansion of the S-matrix is an asymptotic
series in the coupling constant e;, which is small to make the error
of the lower order calculation small. If so, the point ;=0 would be
an essential singularity of the S-matrix and the error would be
decreased to an order of approximation and then begin to increase
again.

It would seem unreasonable to expect that renormalisation theory
should be based only on the perturbation expansion. Many attempts
have been made to formulate the renormalisation theory independently
of the perturbation calculation (Kirrew [1952], LraMaN [1954]).
The theory of propagators of the Heisenberg representation which
we shall discuss in Ch. XVIII also suggests interesting possibilities
of refermulating renormalisation in a manner independent of the
perturbation calculation.

Even if we could formulate the renormalisation theory without
any approximation, it would normally be necessary to introduce
some approximation in order to apply such a renormalisation theory
to complicated systems such as quantum electrodynamics, meson
and nucleon fields ete. Thus, it may be worthwhile to find a model
which is simple enough for renormalisation to be applied without
any approximation. Such a simple model has been proposed by Lr
[1954]. The renormalisation of this model leads to a difficulty, which
is discussed in detail in Ch. XVIIL. It is shown in Ch. XVIII that
such a difficulty disappears if we cut off the effects of high energy
particles in the proper fields to make renormalisation constants finite,

1) This restriction is introduced in order to avoid the contribution of the
interference threshold (cf. Example 1 of Ch. XTII).
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and if the coupling constants are suitably small. Thus, although the
renormalisation theory has been introduced to eliminate the ultra-
violet catastrophes. we must make renormalisation constants finite
in order to obtain a consistent renormalisation. If we should have a
sitnilar difficulty in quantum electrodynamics to that in the case of
Lee’s model, it would again be necessary to explain the well known
success of the renormalisation theory in the quantum electrodynamics.
One possible explanation is as follows: It is obvious that, in the
high energy domain, effects of various particles are mixed up and
therefore quantum electrodynamics cannot really be regarded as a
closed system. If the various particles play the role of cohesive fields,
ie. of reducing the number of high energy particles in the proper
fields, the renormalisation constants may be finite. Then the difficulty
which we find in the case of Lee’s model may not appear in the
quantum electrodynamies, on account of the smallness of the electric
charge.

In the present Chapter we have considered only quantum electro-
dynamics. We shall turn to the renormalization theory of various
fields in the next Chapter.
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CHAPTER XV

RENORMALISATION THEORY IN GENERAL CASE

§ 1. Applicability of Renormalisation Theory

Based en the use of the relativistically covariant formalism of the
guantum theory of wave fields, renormalisation theory aims at
reformulating the theory in its equivalent non-singular form ?).
The effects of the reaction of proper fields are divided into two parts,
the observable and unobsérvable parts 2), and divergences appearing
in the latter are removed by the procedure of renormalisation to give
definite finite results that can be compared with experiment. In this
tontext the excellent agreement of the results given by the lower
order approximation of the perturbation theory with experimental
data can only be understoed if renormalisation theory leads to the
non-singular form of the quantum field theory, not only for quantum
electrodynamics but also for those theories which describe the
behaviour of other elementary particles. Hence, there arises an
important problem of the applicability of the renormalization theory.

There is an ambiguous point in the renormalisation theory which
seems to stem from its transitional character. In the present quantum
théory we start with interactions (i.e. the primary interactions) which
are important iri the higher order terms of the perturbation theory;
and the latter effects dre observed as if these were induced by the
direct effects of some interactions (i.e. the secondary interactions)
without being mediated by virtual states3). In a renormalisation
theory these secondary interactions are in part amalgamated with
some of the primary interactiobs to give finite results. At present
there is no eriterion for deciding what kinds of interactions are primary
and what kinds of interactions are the consequences of them. Thus,

1) We shall refer to ‘‘non-singular theory” or ‘“closed theory” when all
divergens thereof can be removed by the finite number of counter interactions.

?) For example, the self-mass éx is amelgamated into the observable mass
%' = % -+ 3. It is the interesting problem whether ths experimental observation
of &x is in principle impossible or not.

%) Remember the mass term (14.2) due to the self-energy effect.
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for example, the anomalous magnetic moment of the electron could
be explained by assuming the existence of a primary interaction of
the F,,-type, even though it might not be explicable in terms of the
renormalisation theory based on a primary interaction of the 4,-type.
This ambiguous property of renormalisation arises from the fact that
all the relativistic invariant, gauge-invariant interactions are compa-~
tible with present quantum theory. In other words, this problem is
connected with the problem of explaining ‘““why these particular
elementary particles with these particular interactions are selected
to exist in nature”. So far no sufficient explanation exists. For the
present we shall investigate the applicability condition of the renor-
malisation theory for diYerent kinds of interaction.

§$ 2. Dimensional Analysis

Suppose the interaction Lagrangians g,l; of the fields Q% (where
a=1, 2, ..., denote field and x=1, 2, ... its cornponents) are such that

L = ; 7L, (15.1)

The @ satisfy the commutation relations (8.14a, d). Let us denote
the derivation operators of the commutation relations of the a-field
by d®(2). The highest degree b of the derivation operator d“(3) is
determined by the spin of the a-field as shown by (8.52a, b).

For large momentum k > % it is approximately true that

d@ (ik) oc & (15.2)

The interaction Lagrangians gL, contain @ (z) in the expression 1),
D9(3)Q(z) where D'(d) are derivation operators. Using the true
orders ¢ of D@ (3) (cf. Example 6 of Ch. VIII) we can write approxi-
mately (for a large k)

D@ (ik) D@(ik) d9(ik) oc Lo +2t(e) (15.3)
For convenience in the following discussions, we shall now introduce

several quantities which characterize the interaction form g,L,. These
are

A= Tt 3@
B, =23 b A (15.4)
CZ == z Z%a)

a

Yy The sum over @ is'not taken.
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where A{® means the number of the field operators of a Q@-field in
L;. In other words, 4, is the total sum of the true degrees of the
derivation operators in L, B;is the total sum of &’s of field operators
in L, and C, is the number of the field operators in L,.

Using (8.52a) and (8.52b) we can write B; in terms of the spin
8@ of field operators; that is

= ; 28" 28 1. 02 A0 (15.5)

Here the (a’) denote fields of the non-zero masses x” s 0 and the
spins 8@ and the a” denote fields of the zero masses " =0 and the
half integer spins respectively. Since every interaction contains an
even number of field operators of half-integer spin, we see from (15.5)
that B, is always even.

We introduce the constants

= 4+340—4 (15.6)

(The meaning of #; will become apparent in the next paragraph).
We ecan assume that the normalization of the field quantities is so
performed that d® have the forms

d9QR) = ad®™® +ax®-v (15.7)

where @, a;, ... are dimensionless constants ). In this representation
d®(ik) contain no quantities of dimension ?) [L"] (» # 0) except %, in
problems of large momentum %> %®. We shall also define the coupling
constants g; in such a way that the coefficients of the highest
derivation operators of D¥¥(3) in

L;={product of D(3) Q@(x)} (15.8)

are dimensionless. Then there are no non-zero dimensional quantities,
except g; and k,, in the § matrix when this momentum is large.

§ 3. Dimensions of Coupling Constants
We shall now prove that the dimensions of the coupling constants

g; are [Lm].
Since g;[{d*zL{x) has the dimension of energy (i.e. [L~1]), the

1) For example, in the case of a vector field U u (for which d, ur +
— (1/x*)8,4,), by using the field operator V, = xU, mstoad of U, we ca.n obtam
d -—xd — 3,9, which has the form of (157)

4
1) The symbol [L"] means the dimension of the nth power of length.
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dimension of L,(z) is [L—%]. On the other hand, (15.3) and (8.144, &)
show that the dimensions of the D(d) Q¥ (z) are

[L- %+ m +11] (15.9)

Thus we see that
[gr]=[L™]. (15.10)

Therefore the 7; represent the dimensions of the coupling constants.

§ 4. S-Matrix

Because we started with the interaction Lagrangian, the S-matrix
given by (13.35) (and not (13.14)) is convenient for our present
purpose. It must be noted that although (13.35) was derived from
(18.14), it is not clear that the interaction Hamiltonian H’[z : n]
exists when the interaction Lagrangian contains derivatives of high
degree. Nevertheless we shall adopt (13.35), which has been used by
many workers even when the interaction Lagrangian contains deriva-
tives of high degree.

§ 5. The Condition for Primitively Divergent Diagrams

Let us consider a Feynman diagram. It is easily seen from (15.3)
or (15.9) that each D@(3) @@(x) contributes ¢® - (59/2)+1 to the
N defined by (14.5).

We can calculate N by using a method similar to that used for
deriving (14.5). By performing the integration over internal momenta
this diagram can be expressed in terms of secondary interaction L,,
which resembles an interaction giving rise, in a first order term of
the perturbation expansion, to the eorresponding transition. We now
show that L, is given a form of

L=3go L

by using (14.11). The characteristic constant %® of the interaction
L® is, from (15.8), given by
n§1)=A(:)+_€_'+(j’...4 (15.11a)

where
A::) = z (Nla) +_M£a))E(a)

a

B, = 3 bR (15.115)
C, =3 B9

a
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Here E denotes the number of external lines of the a-fields and
N@ and M@ are defined as follows. Each external operator @® con-
tains derivation operators of the true degree {®. Therefore, we can
specify the Feynman diagram as G(E®, N@), in which N@ denotes
the sum 2@ of true degrees of the external a-field operators. Further-
more, as a result of the integration over internal momenta, G(E@, N@)
splits into several independent diagrams, denoted by G(E'9, N + M@),
These contain new derivation operators on Q@ of total number
M®=0,1,2,.... This decomposition of G(E®, N@) into G(E9,
N@ 4 M@) is obtained by using the expansion of the integral (14.11)
in which the order of the product of ™ contributes to M®. It is
easily seen that the infinities of the highest degrees occur when
M@®=0. Each G(E®, N®{+ M®) corresponds to a secondary inter-
action L¥®; its characteristic constant n® is given by (15#), which
leads to (15.11a). Divergent integral appears to be a factor in the
coupling constant g®. Since g;{d%L,(x) is dimensionless and the
dimension of g; is [L%], each [d%l,(x) has the dimension [L~"] and
therefore contributes an amount %; to the highest degree of the
momenta in S[oc]. Thus, the highest degree of momenta (including
the product of d4k) in S™[ o] is Zny;, where n, is the number of vertices
of the interaction L, Since the dimension of g is [L™9] the highest
degree of the internal momenta in S™]oo] is

N= Eljnm,——n‘,“). (15.12)

Now, from (15.12), the menber of primitive divergent diagrams
must satisy the condition

PR (15.13)
;

{SaraTa, Umezawa and KamrrucHr {1952], STUECKELBERG and
PrrerMaNN [1951]). It must be noted that this condition is written
in terms of #; and #P. The degree of the divergence of such a diagram
is NV defined by (15.12) (with the rule that N =0 means the logarithmic
divergence).

§ 6. Applicability Condition of Renormalisation

The last equdtion shows that the condition that the number of
primitive divergent diagrams G(E, N@+ M®) should remain finite
in any order of the perturbation approximation is

n<0  (for all I). (15.14)
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We shall first consider the case for which (15.14) 1s satisfied. Then,
since 4@ =0, (15.11b) shows that all the diagrams satisfying the
condition ¢

4<C, (15.15)

have no infinities. We can therefore introduce a definite number 4,
which depends only on the number of the fields participating in the
interaction under consideration !), in such a way that the number of
primitively divergent diagrams cannot exceed 4. The divergences in
Q(E°, N°+ M?) can be eliminated by introducing —¢@¥L® into the
Lagrangian at the starting point. It must be noted that on account
of (15.13), (15.14) ¥ < 0 and therefore —g*L¥® can be introduced
without violating the condition (15.14). Thus we see that, when
(15.14) is satisfied, all the divergences can be eliminated by intro-
ducing a finite number (< j) of counter interactions. The theories
in which (15.14) is satisfied are called ‘‘renormalisable”. The discussions
on the methods of separation of infinities and the methods of renor-
malisation are just the same as those of the quantum electrodynamics
(in Ch. XIV).

On the other hand, when there is at least pne interaction for which

7>0, (15.16)

any G(Ee, N*+ M?) diverges if », is sufficiently large in the high order
terms of perturbation series. It is impossible, (except in some cases
which we discuss in the next chapter), to eliminate this infinite
number of divergences by introducing a finite number of counter
terms because, as we proceed to the higher order, new diverging terms
which are topologically independent, appear one after another. There-
fore, it is impossible to remove all the divergences by introducing
only a finite number of local interactions. Such a theory is called
non-renormalisable (SARATA, UmEzawa and Kamerooar [1952]).

§ 7. Classification of Interactions

We have seen in the last section that the condifion of the renor-
malisability is

1; < 0 for all interactions — renormalisable 15.17
7n; > 0 for at least one interaction — unrenormalisable. (15.17)

1) For exaraple, we can take the number of diagrams having less than 5
external operators as j.
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‘We shall call interactions which satisfy (15.14) and (15.16) interactions
of the first and the second kinds respectively.

In the case when all the interactions realized in nature are of the
first kind, renormalisation may form a closed non-singular theory
in the framework of the present quantum field theory.

We shall now consider what types of fields may lead to the inter-
actions of the first kind (UmMezawa [1952]). Since 4, = 0 and C, > 0,
we see that a field for which

b >4 (15.18)

cannot lead to interactions of the first kind. Taking into account
(8.52a), we see that the fields with spin S = 2 and the mass » = 0 can
never have interactions of the first kind.

For the field U,, with §=2 and x 0 the interaction with the

smallest 7; is
L=U, B,  (5=0), (15.19)

where B, is the field with §=2 and »=0. All other interactions are
of the second kind.
For the field », with §=3/2 and » # O the interaction with the

smallest #; is
L=x,0, {m;=10), {15.20)

where o, is the field with §=3/2 and »=0. All other interactions are
of the second kind.
For the field U, with §=1, and »=0 the interactions of the first
kind are
F,F,,UU,, UpU (7=0) (15.21)
U,05 o9 (m=0), (15.22)

where U, and U’ are fields with S=1 and S=0 respectively. Here
CY  and O® are fields with »=0. It must be noted that each inter-
action in (15.21) consists of only two field operators. For the real
vector U,, the vector couplings with a spinor field % (S=1/2) and
those with a scalar field U are also of the first kind, namely

gily=1ig3,U*-U— U*-pr)U”~ ?U‘,U,,U"'U {;,=0) (15.23)
gili=1ig, 9 vup- U, (=0 (15.24)

At first sight (15.23) and «(15.24) seem to be interactions of the second
kind because b9 =2 for the field U,. However, as shown in Ch. X1,
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the B-component of U,=4,4(1/%)>,B has no physical effect, and
we must take the 4@ of 4, not as b =2 but 5 =0, Therefore we find
m=0 for (15.23) or (15.24).

As shown in Ch. XI, this depends on the gauge-invariance (cf.
(7.101)). It is an example of the fact that invariances of the theory
lead to relations between some of the diagrams of such a kind that
their contributions nullify each other. Another example of this
gituation is given in the discussion of true degrees in Example 6 of
Ch. VIII, where the relativistic invariance of the theory may make
the true degree smaller and hence the degrees of the divergences smailler.

The fields with §<1 bhave various interactions of the first kind.

The interactions of the A,-type or F,,-type between the electro-
magnetic field and a complex field ¢ with §=1/2 belong to the first or
the second kind respectively.

The interaction of the A, -type between the electromagnetio field
and a complex field U with §=0 is of the first kind. In this case there
appear primitively divergent diagrams with four extermal U-field
operators, which lead to the secondary interaction LP=U*UU*U.
We must therefore introduce the interaction —g®L{® in the total
Lagrangian to cancel this divergence (MATHEWS [1950, 1951], SarAM
[1951], RoERrtIcH [19560]).

The scalar or pseudoscalar interactions between a spinor field and
a field U with §=0 are of the first kind (5,;=0). In such cases we
must also introduce the counter interactions gU® (= —1) and
U4 (5;=0) in order to obtain a non-singular theory. It is easily seen
by taking into account the charge conservation and the relativistio
invariance of the theory that gU® must be introduced only when U
is a real scalar. Thus, for the spin 0 field U, interactions of the first
kind are made up of

v’ m=-2), UU'U" (q=-1) , UT'U'U" (5=0)
2,03, U" (;=0) , pOp'U (1,=0)
and the vector coupling (15.23) with a real vector field U, (including
the electromagnetic field). Here U’, U”, U” denote fields of spin 0
and y and ¢ denote fields of spin 1/2.

The vector or pseudovector interactions between a spinor field and

a scalar field or a pseudoscalar field are of the second kind (,=1) ).

1) However, as shown in Ch. XI, the vector interaction between a real
scalar and a spinor fleld has no physical effects.

(15.25)
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The direct interactions (7°Oy?) (#°0’y®) (O and O’ are products of y,’s)
between spinor fields belong to the second kind (7,=2).
For the field y of spin 1/2 interactions of the first kind are made
up of
0y  (p=-1), F0pU (1;,=0) (15.26)

together with the vector coupling (15.24) with a real vector field
U, (ineluding the electromaguetic field).

Table I shows the properties of important interactions between
common fields.

TABLE I
U U, v
Charged f Neutral Charged Neutral Charged | Neutral
4 ¥ (0) lst V (1) 2nd V (0) 1st
B [U*DU*U((0)] T(2) 2nd (1) 2nd
S (0) 1st S (0) 1st V (0) for o lst
(o*uo*uo | [o40),0%0)] | ¥ 1224y (1) for pv 2nd | Direct Interaction
¥y (2) 2nd
V (1) 2nd  V(1)2ndforps! T (1)2nd| 7 (1) 2nd
]

S, ¥V and T denote the scalar, vector and tensor couplings respectively. The
values in brackets show 7, for respective interactions. The counter interactions
required for the renormalisation are written in [ ]. The symbols s, ps, v and pv
denote the scalar, pseudoscalar, vector and pseudovector fields respectively.

§ 8. The Physical Meaning of the Classification of Interactions

We shall now give a discussion based on a dimensional analysis
which shows the physical meaning of the classification of interactions
given in the last paragraph (Sagara, Umezawa and KamerucwHr
[19527).

In-high energy processes, in which the ‘“‘high energies’ areexpressed
roughly by (1/1) (A=wave length), the ratio of the n-th and (n+1)th
terms (S, S®+1) of the S-matrix can be written as

Sin+1) a1

For the dimension of y; is [L™]. Therefore, we see that, when #,>0,
higher order terms of the §-matrix make the large contributions to
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the high energy processes (A% < g;) even when the coupling constant
g, is very small.

This shows that the reaction of the self-field becomes very im-
portant when #;> 0. For this reason it has often been said (HEISENBERG
(1936, 1938, 1939a, b]), that there exists a fundamental length 7, and
that (15.29) must be changed in the erergy region A<7, From this
point of view r, can be regarded as the radius of the elementary particle
and 2 ~ r, marks the limit of the applicability of the present quantum
field theory. This is lent support by the following discussion. If we
try to obtain a non-singular theory of the interactions of the second
kind by using the renormalisation method, it is necessary that there
should exist simultaneously an infinite number of interactions (i.e.
the counter interactions) which are also of the second kind. Such
an assembly of interactions is equivalent to a non-local interaction
corresponding to an extended model of the elementary particles 1),
However, there are no known phenomena which are established to
depend essentially on r,. The phenomenon which most strongly suggests
an interaction of the second kind is that of S-decay, although it is
possible that f-decay may be explained by interactions of the first
kind (Umezawa [1952], TaNTRAWA [1953], TaNakA and ITo [1953]).
The perturbation theory cannot account for meson phenomena (e.g.
meson production by zn-, y- or nucleon-nucleon collision, meson-
nucleon scattering and so on), which suggest that the coupling
constant of the meson-nucleon interaction is not small enough for
perturbation theory to be valid. Furthermore, recent experiments
have sometimes suggested the existence of isobaric levels (of the
nucleon-meson system), which has been expected by the strong
(WENTZEL [1940]) and the intermediate (Tomoxaca [1946]) coupling
theories. This makes it difficult to decide the type of the meson-
nucleon interaction. Since the higher order effects have larger contri-
butions in the case of an interaction of the second kind, we can expect
the simultaneous production of many mesons by a nucleon-nucleon
collision. The occurrence of multiple production is supported by
recent experiments. However, from these experiments we cannot yet

gonclude that the meson-nucleon interaction belongs to the second
kind.

1) [The interactions between field operators at different points are called
non-local interactions.
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CHAPTER XV1
DAMPING THEORY

§ 1. Damping Equations

In damping theory some of the higher order terms of the per-
turbation expansion are taken account of in the same way as the
damping effect is in the lower approximation.

For simplicity, we shall now take ) a flat surface at the time ¢.
We obtain the evolution operator S[t, ;] in the Schrédinger repre-
gentation from that in the interaction representation by means of

the relation (cf. {10.56))
8t ty)=exp [—iT%1 S[o(t), o(t)] exp [iTY,].

On account of (10.57) we obtain
2Bt )= (H,+H) Ble, 1)) for t>1, (16.1)

where H,+ H' is the total energy operator in the Schrédinger repre-

sentation, and is given by (10.58) and (10.59).
The operator S(t, ¢,) can be obtained as a solution of (16.1) with

the initial condition
S, 4)=1 for t=4,. (18.2)
We write S(Z,#) as a Fourier expansion
S—(t’ t) =f°—-°oo dE S(E, t, %) (16.3)
with S(Z,t, ) whose form is
S(E, t, t,)=exp {tE(t—14)}-S(E).
Then, (16.1) leads to
[ dE (E—H°—-H')S(E,t, ¢)=0 for t>t,. (16.4)

We shall consider the case in which the interaction Hamiltonian H’ is

made up of two parts, or
H'=H"+¢, (16.5)

1) For the covariant formulation of the damping theory see FurUDA and
Mrvazmas [1950].
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and adopt the representation in which
H=H%+¢ (16.8)
is diagonal 1).
It is easily seen that (16.4) is satisfied by the solution of the equation

(E—H—H")SE,t,1)=—

P
We now assume that S(Z, ¢, ¢;) has the form

S(E, ¢, t;)={1—2nié (E— HYU(E)}AE, ¢, t). (16.8)

(Arxous and Ziewav [1951]). Then, the left hand side of (16.7) can

be written, by means of (8.30a), as
(BE—H—H"){1—-2nid (E—-H)UE)IAE, ¢, t)
=[E—H+U(E)—{H" —2niH"5 (E—-H)U(E)}]ME,1t,).

exp {—1E(t—t)}. (18.7)

(16.9)

By assuming that U(F) is a matrix whose diagonal elements are
zero, we obtain, from (16.7), the equations

U(B)={H" — 2riH"3 (B — HYU(E)}u.q (16.10)
ME, t,8) = — o= {E—H+ ;D)) exp {—iB(t—t)} (16.11)
I'(B) = 2{H"— 2riH"8 (B — H)U(E)},. (16.12)

Here the matrix { }; is obtained from the matrix {} by putting all
non-diagonal elements = 0, and { },.; is obtained by putting all
diagonal elements 0.

Thus, we see that (16.10) and (16.11) are the equations from which
8(¢, ;) must be determined. Equation (16.10) is called the Heitler
damping equation (Herrrer [1941], Wisox [1941]).

Equation (16.3) shows that

Bt t) = — o [2wdB{1—2ni0, (B~ B)U(E)} | E~H+51(m) )™
exp {—1 E(t—t,)}
= —[®odE 8, (E—H) exp {—i B(t—1,)} (16.13)
~ |2 dB 8. (B~ H) [ UE)-3T(B) | [ E-H+ir®m)”
exp{"'iE(t_t1)}

1) For example, in the problem of the electron in a hydrogen atom, ¢ can be
regarded as the Coulomb potential due to the proton.
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When #>£,, we can integrate the first term on a large semi-circle

below the real axis in the complex E-plane (cf. Fig. 16.1), and obtain
82, t,) = e H-
, . -
— [® dE 6, (B —H) { U(E)—3 I'(E) } {E_ H+§]’(E)}

(16.14)
exp { —iE(t—1t)} for ¢>t,.

We can show (ARNOUS and Z1exnav [1951])
that if S(¢, ¢,) is given by (16.14), it satis-
H-ie fies the initial condition (16.2).
In the calculation of the transition
probability w;, between two eigenstates
(¢, f) of the unperturbed energy operator
H, the use of S(t, t;) may be replaced by
that of 8°(¢, #;) given by

Fig. 16.1

8¢, t,) =T 8¢, 1,). (16.15)

In fact when E; and &, are the eigenvalues of the i- and f-states of
H we have

=[(18(, %) |92 %
—(F187(t, ) |9} 2 (16.19
Substituting (16.14) into (16.15), we have
8t t)=1
— [P dE exp {—i(H—-H)(t—4)} (16.17)

8,(E—H)[U®) -L @) | B~H+i1(E))

It can be proved (ArNovUs and Zrewavu [1951]) that when é=0 and
therefore H =T, the power series expansion of (16.17) agrees with the
Dyson S-matrix (13.14).
* Equation (16.17) gives

S, —o0]=1+ [ dE8(E—H) | UE) -5 T | E- H+57®) 16.18)
on account of the relation

— Hm ¢ (a)—-— hm "‘fo dp ™6+ ?
o - (16.19)
= ~§7; f_oo dp et = d(a)

Nt
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It must be noted that the equality in (16.19) is only valid in the
integration
— lm [, da e 8, (a)f(a)=1(0)

t—=>—00

when f(a) is an analytic function.
From (16.18) we have

(F18'(t, —o0) [y = —LLEEMD g f 25 (16.20)
Ei—Ei+3 To(Ey)
(IS¢, —oo)i)=0  (when Iy =0),  (16.21)
where
IyE) = G| T(E)). (16.22)

The probability that the f-state lies in the range (£, E,;+dE,) is

H”U(EI)H”: dE 16 23
(Ey—Ei—3 TP (BN +HTE BN ( )

where I'f® and I'{D are the real and imaginary parts of Iy, so that
Ty(B)=I'$N(E) +iT(E). (16.24)

‘w,-, dE, =

§ 2. Damping Effects

First, we shall consider the physical meaning of I'{". Equation
(16.23) shows that the energy of the final state has a maximum
probability for E;=E;+(1/2)1¢"(%,). In other words, the system
which was initially in the i-state changes its energy by (1/2)I¢"(E;)
on account of the disturbance due to the various states connected
with the i-state by the interaction. For example, when ¢=0 and the
i-state corresponds to a free particle, (1/2)I¢(E;) is equal to the
self-energy. Then, although it is infinite, we must take the observed
value of the energy of a free particle as E,=E,+(1/2)I{"(E,) in
the renormalised theory. When the i-state corresponds to an electron
in a hydrogen atom, (1/2)I§P(E;) is the deviation of the energy levels
due to radiative corrections. The difference between the latter
deviation and the self-energy of an electron gives the Lamb-shift.

We shall now consider the physical meaning of I§®,

In the classical theory of the electron an accelerated electron loses
energy by radiation. This results in a reaction force (2/3)e?(d3/di3)x
acting on the electron itself. Therefore the equation of motion of an
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electron oscillating with the natural frequendy », due to an external
force is
d? 5 2 ,d?
mzﬁx=—mv5x—i-§e2ﬁx, (16.25)
where the terms with higher time derivatives (= 3) and depending
on the electron radius are omitted.

Since, when v,> 1/ry (ry is the classical electron radius e?/m), the
wave length is smaller thar the electron radius and we cannot use
(16.25) in which the terms depending on the structure of the electron
do not occur. Therefore, it is necessary that the eondition

vere K 1
should be satisfied. This condition leads to
7> (16.26)
with
_2e 5, 2,
=3V = 3V%0 -

Under the condition (16.26), the solution of (16.25) can be written
approximately as

T A zge5 et (16.27)

This shows that the intensity E of the electromagnetic field produced
by the electron is also damped by the factor exp (—y£/2):

E = Eje 5t et . (16.28)
The Fourier representation of (16.28) is
= o [ A E (v) e

% 1

E0) =g Egrmron - (16.29)
Thus we obtain the radiation intensity
1.7 1
I=l oo’ (16.30)

where I, is a constant which is independent of ». The term (y?%/4) in
the dencminator comes from the radiative correction (the second
term of (16.25)) and leads to the width of /2 around the maximum
v=y, in the frequency distribution of the radiation mtensity. The
quantity /2 is called the natural line width.
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We see that (16.23) and (16.30) have very similar forms and that
(1/2)T'®#N(B,) can be regarded as the line width of the probability
distribution (16.23).

From (16.12) we have

I'®(E) = 2n(U* (E) 6(E—-H) UE)),; . (16.31)
In fact, (16.12) and (16.10) give
(B =B+ I'(E))
=2n{H"6 (E—-H)UE)+ U*(E)o_(E—H)H"},
=2n{H.;0 (B —H)U(E)+ U*(E)o_(E - H)H ;},
=2n{U*(E)o (E—H)U(E)+ U*E)S_(E~H)U(E)},
=2n(U*(E)0(E — H)U(E));.

On the other hand, from (16.17) we obtain

218, 8)19)

=— -Ef“’ dE e~ ¥E-Epti=b) ———-—-——---—(” UiB)|é) for f 1.
B~ E1+-P0(E)

The relation (16.23) shows that, if I'(® is small, for most final states
we have
By~ E+ 3T (B .

In such a case we obtain
2 (I8 1) ]9
~ =i [Zp dB 554~ (B~ E)) (f| U(E) |1).
From this we obtain
S (18t~ 00) |4) = i [=, dE 8B —E,) (f | U(B) i)
=i(fIUE))s) for f+#1i. (16.32)

on account of (16.19).
Moreover (16.20) leads to

(F18°¢, — oo)ld) ~ —2mi(f| U(B,)|i)8, (B, — B, ~ } TP (E,)).

By substituting this and (16.32) into (13.4), we find that the transition
probability per unit time is

Loy 2| (| U(Ey) 14) 17 8 (By— B, 3T (F,)) (16.33)
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Comparing (16.31) and (16.33), we bave
d
TE(B) ~ ;-&;wﬁ . (16.34)

In other words, I'j® (&) is roughly equal to the sum of the transition
probabilities (per unit time) from the i-state to the other states.
Therefore 1/I'{¥(H,) can be regarded as the life time of the i-state.
This is in agreement with the discussion in Ch. XIII which showed
that the imaginary parts of the self-energies give the reciprocal of
the life-times of natural decay. We see from (16.23} and (16.34) that
the probability of transition to any f-state is decreased because of
the transition effects (I{®') from the i-state to the other f-states.

This fact, that the width of spectral lines are larger when the
transition probabilities from them are larger, shows that the levels
of unperturbed states are disturbed by states strongly connected
with them by the perturbing interaction energy.

As an example we shall cousider the two levels a, b of an electron
in an atom. Here a is the ground state and therefore its width is zero.
Since an electron in the level & can make a transition to the level a
by y-ray emission, b has a large width. Moreover, if different atoms
collide with each other frequently (as in a gas), the width of the
b-level becomes still wider on account of the increase in the transition
probabilities induced by the collisions. Therefore, experiments which
set out to determine natural line widths must be carried out in
gases at low pressure. These results for the line widths, first given
by Wgisskorr and WIGNER [1930], have been confirmed experi-
mentally.

It must be noted that for interactions of the second kind, although
the numerator of (16.23) becomes very large for high energy processes,
the I'$® of the denominator cancels this effect and it may be expected
that the transition probability cannot become extremely large. This
result is very reasonable on account of the unitarity of the S-matrix.
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CHAPTER XVII
THEORY OF S-MATRIX

§ 1. Observable Quantities

Since the present quantum field theory is beset with difficulties
concerning the infinite value of certain physical quantities, it must
be regarded as a provisional theory; we still lack a correct theory of
the elementary particles. In an attempt to formulate a theory
HEISENBERG [1943] discussed the phenomenological relations between
observable quantities in the expectation that there would be some
correspondence between the present theory and a correct one.

The observable guantities adopted by Heisenberg as fundamental
to the theory of elementary particles are the energy-momenta of free
particles and the quantities
(1) the discrete energy eigenyalues for the bound states,

(2) the asymptotic form (phase shift) of the incident and scattered
waves at points very far from the scattering centres.

Since in scattering problems the cross-sections can be determined

only by asymptotic forras of wave functions at points very far from

points of interactions, (2) ean be regarded as observable guantities.

Since bound states ean be regarded as the case of zero diverging
wave of a stationary scattering, we can expect intimate relations
between (1) and (2).

The asymptotic forms of diverging waves can be determined at a
time very long after the interactions and therefore determined by
the S-matrix. For this reason, Heisenberg investigated whether (1)
and (2) may both be determined by means of the S-matrix (HEISEN-
BERG [1943]).

§ 2. S-Matrix
For simplicity we adopt flat surfaces o(¢) at time {. From (10.1)
and (10.50) we have
Plo1=8[c]¥{— oo] (17.1)
S[— oo]=1 (17,2)
8lo]=1—1 [t dt' H'[o(")] S[a(t)]. (17.3)



cH. XvI, § 2] S-MATRIX 309

The probability of finding a state @, at { = co when the state vector
at t=—ocois @, is 1)

ba=| (@, S[00]D,)[2 = |8,,]% (17.4)
We introduce the R-matrix by
S=1+R. (17.5)
Here 8 is the matrix [§,,]. Since § is unitary we have
R*R= —(R+R*). (17.6)
Then (17.5) and (17.4) give, for a # b,
Wy, o= | Bpa|®. (17.7)

On the other hand, (17.3) gives
By = — 1 [T dt (D, H'[0(8)] S [o(t)] D) )
= — i [R di (Dy, @B H' ¢~ T S[o(1)] B,), §

where H° is the free energy operator (10.59) and H' the interaction
Hamiltonian (10.58) in the Schrédinger representation. Assuming

(17.8)

that the interaction is switched on and off at t = —occand t= + oo
respectively, we can take the eigenfunctions of H® as @, and @,
H®,=E, D, 170
H ®,— E, &, " (17.9)

We must then introduce a factor exp (—¢gjt|) in H' (cf. (13.10)),
where € is an infinitesimal positive constant. Then, (17.8) can be
written as

Ry, ="— i(D,, H P{H(H,)) , (17.10)
where
PHNE) = [, dt ¢E-Etg=elll § [5(1)] &,. (17.11)

Using (8.30a), (17.3) and (17.11) we see that ¥} (E) satisfies the
equation 2)

Vi (E) = 278 (B — E,) H'PH(E)  (17.12)

1
®+E H“—{—ze

Introducing ¥} by
ViNEY=2nd(E—E,)¥} (17.13)

) (D, AD,) = OF A D,
%) Here, the following relation is used
[P0 dt [ o dt’ {8, ') = [T dt’ [ dt (8, ¢') .
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we have, from (17.12),
+ - . +. .
Y=, +E H"+zeHW (17.14)

The probability per unit time of transition to a state P, at time ¢
from a state @, at t = — oo is (cf. (13.4))

2 wpo= | (P 8 [0(2)] Pa) 2 (17.15)

For b # a, by using (17.3), this gives

; Wy,o = 1 (H'[(6#)] S [0(5)] Pas D) (Py, S [0(t)] Do)+ C.C.=
= (HE~E% S {5(2)] Dy, H'D,) [t oo At (B, H' X5~ § [o(t')] B,) (17.186)

+ C.C.

where C.C. means the complex conjugate quantity of the preceding

term.
Using (17.10), (17.13) and the relation

e~ Et S [o(t)] B, = e~ B WS,

which is derived from (17.11), we can write (17.16) as

iw,,a = | Ry, [2 oo 4t €Ba—E =0 4 C.C. (

& (17.17)

= 2% Ry, [ 8 (B, — Fy). )

Here R,, is defined as
R, = —2mid(E,— E,)R,,. (17.18q)
From (17.18) we obtain (LipPMAN and ScEWINGER [1950])

R, = (P, H'P). " (17.18b)
On the other hand, (17.14) can be written, by means of (8.30a) as
VYi=®,—2nid (E,—HYH'Y}. (17.14b)

As shown by the &, -function, (17.14b) has the form of a solution
of a scattering problem with the ‘“ausstrahlung” boundary con-
dition 1).

1} In general, when &, describes a state of many particles, the spacial
representation corresponding to 4,(E — H,) can be written asymptotically
a8 a product of their outgoing waves.
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Since the first term of (17.14b) has the form of an incoming wave,
the second term can be regarded as the scattered wave.
Let us introduce a matrix ¥=[%,,]
¥yo = (b} ¥]a) = (D, P}).
Then, (17.14b) can be written as
Y14 P (17.14¢)
with
Wee — —2mid, (Bo— By) (By H'PY) |
= — 2710, (£, — Ey)Ry,.
The quantity ¥* is the matrix of the scattered wave (MorLLER [1945,
1946]).

Now we shall give an important theorem in wave theory.
Equation (17.6) can be written in terms of R as

4n® E 6(Ea“ Eb)R:a d (Eb'_Ec)Rba = 2% 2"B(E,a""E'c) (Rac'- R:a)-
4

(17.19)

Omitting §(E,—E,) on both sides and taking a=c¢, we obtain

32 = 21, (R,). (17.20)
b

The left hand side of (17.20) can be regarded as the total transition
probability from an a-state to all possible b-states (ba). Therefore,
(17.20) shows that this total probability can be given by the “forward
scattering’” (i.e. the scattering from the a-state to itself). In other
words, the decrease in the intensity of a wave propagating through
a medium is the result of interference between the incident wave and
the scattered wave (Lax [19507).

§ 3. Scattering Problems

We shall apply the fundamental equation (17.14c) to a scattering
process involving two spin 0 particles (masses s;, »,). Let us take the
coordinates and the energy-momenta of the two particles as (r'’, kM)
and (r'®, k®) respectively. Then the total and relative momenta K
and k are

K = ki 4 k®

k = 3(EW—k®)
and the total energy Z is
E=Vi2+ (3K -k, }JK—Kk)+ Vi + (3K +k, }JK+k). (17.22)

(17.21)
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Any state of the two particles can be determined by a set (K, Z, {, ¢)
of variables, where { and ¢ are

C=cos€=—’5_‘3, <p=tan‘1ﬁ. (17.23)
2 7y

When (K, E, ) is a set of “‘scattering constants”, (17.14¢) can be
writlen in the mixed representation of (K, E. J, ¢) and (K, E, n) as
(B, 0, ¢'|PIE, n)=0E—-E) ', ¢'In)
+6(E—E')(E,, ¢|—2niR|E, )
where the factor § representing the conservation of total momentum
is omitted. Therefore, (17.24a) is true only for K=K'.
The last equation can be written in the form
(E’: Zl: (P’lTIE: 77)'_: 6—(E—El) (Z': (PI{"])/
+ 0 (E—E') (B, {, ¢'|A|E, ) }

(17.24a)

(17.24b)
where

(B, ¢AlE, )=, ¢'In)+E. ¢, ¢'| -2mR|E, n). (17.25a)
From (17.25a) we obtain

(B, 0, ¢ (4] Bym) = [ L7 dg" (8¢ — &) 8(¢" — ¢)
_{_ (E’ él, ¢I{| — 2767:R t E, ://’ ¢II)} (C”, ¢II l E’n) (17.25b)
=8(".¢'|n for (E'=E).

where S° is determined in such a way that S°§(E’ — E) is an eigenvalue
of S corresponding to a state (K, E, {’, ¢).

We shall now transform (17.24b) into the coordinate representation.
In the centre of mass system (K =0) we can take the angular momenta
I and their components m in the z,-direction as the constants 7.
When the incoming wave is exp (1k-r) we obtain

Y = f’;, S V2AFT i — etz )
o (17.260)
+et®r-z0 80 Y9 (cos §), k= |k, r = |r], S

where 6 is the angle of r with respect to the direction of the momen-
tum k.

The last equation can be obtained as follows: The coordinate
representation of ¥ is given, first by changing the representation
from (E',{’, ¢') to k' in (17.24b) and next by integrating over d°%’
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multiplied by (1/27)32 exp (¢ k' -r)d3k’. The change of the representation
from (E',{’, ¢") to (k') can be done by multiplying ¥ by a nor-
malisation factor 1/VA. This factor is required to preserve the nor-
malisation of the wave function under the change of the representation
and therefore is defined as

fA-}-dE/ dCI d¢' ek’ n — J‘dakl ekt J'klz k' dC' dtpl ek’

In other words, %24 is the Jacobian ) A=>3E'/3k".
Thus. the coordinate representation of ¥ is

W) = (gm) 2 [ ol de’ oo (B, 0, | P1E, Lm)
(27‘)/'2‘[ fgnd(p J‘Osmeldeleq,krcose (E’C ‘PIYJIE’lm),

where (¢, 6’) are the angles of %’ with respect to the direction r.
Integrating over de’df’ and neglecting the higher power terms (> 2)
of (1/k'r), we obtain the asymptotic form

Y’(r)m(————)h fE
——e"‘“’(E’,C’: - 1|¥|E, i, m)}.

{80 = 1] ¥| B,l,m)

(17.26b)

On the other hand, we know that

[P dB' 8_ (B — E') e~*7 (k') = e~ f(k)

JZw dE’ 8, (B — E') &7 [(k') = % f(k)

[P dB 8_(E — E') ®T{(k') = O

[P0 dE 6, (By— B )Ye ™ f(k) = O
for any regular function f(k). The first equation is derived by writing

[P dE' 6_(BE—E') e %7 {(k')
2 | o B e )
1 , 1 k2t
= 3m ) e IF)
1) For example, when »; = #, = %, 4 is givenr by (17.22) and (17.23) as
2

EYer+ks

a4 =
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where the contour C is made up of the real axis and the semi-circle
below the real axis (cf. Fig. 17.1). The residual at the pole &' = —is
is (—)e~*f(k). Thus we have

[P0 dE’ 6_(E — E") e~ %" f(k') = e~ % f(k) .

X
E-i€e

Fig. 17.1

The other equations can be proved in the same way.
Then, substituting (17.245) and (17.25b) into (17.26b) we obtain
I\2 1 :
¥ () = () sm{—e ™= —1ln) + ¥ (B,=1|4]|E,)}
I y2 1 ;
= (m) mi—e l==1]n) + 8 (=1|n}
On the other hand, the incoming plane wave ¥, can be developed
in spherical harmonics, so that

Y, = etk Ngg-; V2i+1 il{—e—i(k"'gl)

) % (17.27)
+ efbr—50 1 Y9 (cos 6) for large r.

Since W(r) must reduce to the incoming wave when S°=1, we
see that

(z?:l“z)m (C=1[l,m)=Vaz-y2I+1 &7 ¥? (cos 6)

1 . (17.28)
(2712) Be==11Lm) = Yz YBITT 5 TP (cos e)g

form=0,and (=1}, m)=({ = — 1{l, m)=0 for m 5= 0. These relations
lead to (17.26a).

The amplitude of the scattered wave (1/r)f(f) obtained as the
difference of (17.27) and (17.26q) is

21(6) = Zﬂ: 3 V2I+1 R X9 (cos ) e—3  (17.29a)
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where
RO=1-8" (17.295)
It follows that the differential and total cross-sections are
da(0)=|f(0)|2d2 (17.30a)
o=[dQdo(6) = 7 3 (21 +1) | RO[2. (17.300)

The first of those can be obtained as follows:
The number of the incoming particles in a unit volume is unity. For

(@] @)= | Pm=1

where the domain of integration has unit volume (cf. (17.27)). There-
fore, the number of incoming particles through unit surface in unit
time is equal to v (v is the velocity of incoming particles). On the
other hand, the number of outgoing particles through a small surface
ds at a position r is vdsr—2[f(0)|2. Therefore, the cross-section is

do(6) =vdsr—2/f(9)|2/v=|/(6)[*d0.

Since S is unitary, it can be written as exp (i) in which the
hermitean matrix # is called the phase matrix.

We shall consider a case in which the only possible processes are
scattering (no absorption). Then 8° must satisfy

|8o[2=1. (17.31)

Thus 8% can be written as
S0 = 20 (17.32)

where & is a c-number.

Substituting (17.32) into (17.26a), we see that 24 is the phase
difference of the converging waves. Furthermore, it is easily seen
that the incoming wave (17.27) and outgoing wave (17.29z) have the
phase difference 3.

Using (17.32) we can write (17.30b) as

o=3% 3 (21+1) sin? 3, (17.30c)
i

§ 4. Bound States

We shall now discuss the relations between the S-matrix and
bound states, taking an S-state (I=0) as an example. S(k), an eigen-
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value 80 of the state (k,!) with =0, can be defined in the complex

k-plane by ananlytic continuation.
For k = —i|k| the terms in the bracket of (17.26a) can be written as

Y (1) oc{—e~Hr 1 o7 §(—3]k])}. (17.33)

The first and second of these vanish and become infinite respectively
at r — oo. Therefore, when ¥_,;(r) is a bound state, 8(—i|k|) must
be zero. Thus, we have

S(k)=0, k= —ilk|, (17.34)
for a bound state, the energy of which is
~ L RE

L - (17.350)

in the non-relativistic approximation.

We shall now consider whether or not (17.34) can always give rise
to bound states. The Schrodinger equation of a particle in a central
potential field ¢(r) is

AW (r)+2x{E — $(r)} P(r)=0. (17.36a)
If =0 we introduce ¢ by r¥(r)=¢(r) and can write (17.36a) as
@"(r)+k*p(r) = (r)e(r) (17.36b)
where
k2=2x F
. d2 (17.35b)
¥ =gm2 ¢

First we shall assume the potential (BETHE and Bacuer [1936])
B(r) = — 2wy e T (17.37)

where ¢, and a are positive. When %2> 0, the solutions of (17.363) can
be written in terms of Bessel functions

J solos €xp (—7/2a)).
Here
e=2ak, x=2al2nd,.

The solution, which is zero at r=0, is

=T :
7ulr) = = [Tl + 1) (o)] 2(1,7.38(1)
{J el T €XP (—1[28)) —J (&) T _ (o exp (~r/2a))}. §
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The asymptotic form of (17.38a) at r — oo is

gulr) & o= | T(ig + 1)/ (o) |
Van * 2 (17.38b)
(Lol o Tul2) /20 ) s

I(ig+1) I(—~dg+1)
Comparing (17.38b) with (17.26a), we obtain S° as

\_ Jiglo) Tlia+1) (o)~
S = 7 4 S (3) (17.39a)

This shows that S(k) is zero when (i) J,, («)=0 or (ii) I'(—ig+1)
is infinite. Since all the zero points of J;, (x) below the real axes
appear on the imaginary axes, the condition of (i) can be written as

Jia1()=0. (17.40)

At these zero points k=k, (9=p,) the wave function (17.38a) is
equal to

Pulr) = 0,.——1,’; I'(jo] +1) (2/a)les T, (x exp (—7/2a)) (17.38¢)

where C, is a normalisation constant (BETHE and Bacmrr [1936]).
Condition (ii) implies that

I(~ig+1)=00 {17.41a)

which is satisfied for
ig=p]=1,2,3,... (17.41b)

However, the wave functions for these g’s are zero on account of
the relation
Jple)=(=1)"J_,(x) for n=1,2, ...

Thus, we see that the zero points given by (17.41a) do not correspond
to bound states. They are called the ‘“‘redundant zeros’ which were
first found by Ma [1946, 1947a, b].
We shall now counsider the redundant zeros in detail. Let us assume
that the central potential satisfies the condition
J@drl¢(r)| = finite. (17.42)
There are two independent solutions of the equation (17.363)
f(k,r) and f(—Fk, r), (JosT [1947]),
Em e* f(k,r) =1
lim =% f(—k,r) = 1. (17.43)

7= 00
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We introduce f(k) and f(—k) defined by
flk) = f(k, 0), f(—k) = f(— (17 44)
If (17.42) is satisfied it can be proved that f(k r) and f(—k, r) are

complex conjugates for real non-zero k£ and continuous Wlth respect
to k and r; also that f(k) = 0 and hm f(k) = 1. Furthermore, when

the potential satisfies the stronger condltlon (than (17.42))
6°dr 7| $(r)| = finite, (17.45)

it can be proved that f(k, r) is continuous even for k=0. We can
write the solution of (17.365), which is zero at r=0, as

#lr) = gy (K—F) ear) = fB) f(~R, )} (17.46)

with the omission of a constant factor.
Then, (17.26a) shows that

S(k) = % = f(k)[[(— (17.47)

Since, for k = —ilk|, f(k, ) vanishes exponentially when 7 — oo, it
describes & bound state. Therefore, the condition that (17.46) describes
a bound state can be written as

fe)=0 for k= —ilk|. (17.48)

It must be noted that the bound states at k=0 (i.e. E=0) cannot be
determined by f(0)=0, because f(k,r) and f(—k,r) are equal and
therefore not independent at k=0. We must find another independent
solution in order o construct the solution ¢ at k= 0. However, it can
be proved (BArRGMANN [1949]) that when the condition (17.45) is
satisfied, there is no bound state of zero emergy (E=0).

Summarising, these results, we see that, when (17.45) is satisfied,
the phase shifts §(k) and the discrete energies of the bound statesare
determined by f(k). However, there is no converse theorem: i.e., 8(k)
cannot determine f(k) but only S(k). Moreover, S(k)=0 does not
always correspond to bound states, because f(—k)=oo also gives
S(k)=0.

We shall give a concrete example of these results by using our
previous example (17.37). In this example, f(%, r) and f(k) are

f(k,7) = (g)“" T(ig+1) J(x exp (—r/2a)) (17.49a)

10 = (2) ™ Tlio+1) T o). (17.4905)



CE. XVII, § 4] BOUND STATES 319

The condition (i) (i.e. (17.40)) is equivalent to (17.48) which leads to
bound states. However, the condition (ii) (i.e. (17.41)) gives f(—k%)= oo
which implies redundant zeros.

These results suggest that there may be many potentials which
give the same phase shifts and different bound state energies. In fact,
an example of this fact was given by BareMANN [1949] who con-
sidered on the two potentials

go{400+ (¢ — g)* cosh ((¢e+ g} r—26) —(g+ o) cosh ((p —o) 1)}

$ar) = e T e (17.50a)
_ go{dga+(e—o)?cosh ((9+ o)) —(¢+ 0)® cosh ((o—a) r+ 26)}
¢2(r) — {asmh (QT+6)"‘QSiIlh(Uf+B)}2 (17.50b)

where ¢g>0>0 and §>0.
Let us denote the f(k)’s given by ¢, and ¢, by f,(k) and f,(k) respec-
tively. Then f(k) is

__2k+i(e+o0)
hk) = 53— =5y (17.51)

which gives k= —(¢/2) (¢+ o) for the bound state and therefore its
energy is
1
By =— i (e+0)2 (17.52)

On the other hand, f,(k) is given by

oy 2k+i(e—o)
h®) =5 —ete (17.53)

which gives k£ = — (/2) (o — o) for the bound state. The energy of this is
therefore

By=— 5= (e—o)t. (17.54)

However (17.47), (17.51} and (17.53) show that ¢, and &, give the
same S(k); ie.,

Sk = (2eEie=0) 2kt ilet o)
Gulk) = 50 = Gr—sie—op @E~ileron” (1759

Furthermore, since ¢4(r) depends on 6, and f,(k) and S;(%¥) do not
depend on #, many potentials continuous with respect to 0 give the
same phase shift (i.e., S). This result is true also for ¢,.

It follows from these conclusions that the potential cannot be
uniquely determined merely by means of phase shifts (or S(%)). In
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fact, it can be proved that the difference of two potentials which give
the same phase shifts and same eigenvalves of k can be written as.

$y(r) = ¢a(r) = X @ Zp(7), (17.56)

where a,, are constants and the Z, are defined by Z,=¢4% ¢@.
The functions ¢ (or ¢2') are solutions of (17.36b) with k,, = —i|k|
for the case of the potential ¢, (or ¢,) (HormBERe [1952]).
However, it can be proved (BamreMaNN [1949]) that when two
potentials ¢, and ¢, which satisfy the condition (17.45) and

Hr)+ ——5— l+1) (for a certain [/ and any r)

give the same phase shifts for “‘every’” angular momentum I, these
two potentials must be equal?l) (i.e. ¢(r)=gy(r)).

We shall now discuss the conditions under which there are no
redundant zeros. Since redundant zeros come from f(—k)=oco we
have no redundant zeros when f(k, r) is regular in the whole domain
of the complex k-plane. In such a case the same S(k) gives the same
bound state energies.

It can be proved that a sufficient condition for the potential to
give regular f(k, r) is (see BaraMANN [1949])

I{a) = [e*"| (r)|dr=1inite  (for all positive «). (17.57)

However, this condition is too' strong for present quantum theory;
for example, the Yukawa potential (12.25) cannot satisfy this con-
dition.

We shall demonstrate the above fact by using the previous example
(17.37). First, we shall modify the potential (17.37) at r=R so that
it satisfies (17.57) by putting (Ma [1946, 1947])

-—-2n¢0e z for 0<r<R

#(r) 0 for r>R.

(17.58)

The solution ¢(r) of (17.36b) is proportional to sin (kr+8) for r>.R
and to (17.38a) for r<R respectively. Their coefficients must be

}} An excellent method to construct potentials by means of phase shifts was.
given by JosTt and Komn [1952].
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determined such that ¢ and its first derivdfive are eontinuous at
r=R. Then, we obtain S(k) as

s I 0l2) Jiea(0: P (= J20)) + Vi) T sgr(ooxp (—Rj%a) 17 30
J —gla) Jig-1{ox exp {— R/2a)) + Jip(cx) J —igr1{aexp (— R/2a)) " '

B=—e

The condition S(k)=0 gives
T i) Jigia(ox 0Xp (— R[28)) + Jio(@) J _sos (o xp (— Rj22)) = 0, (17.59)

which is equivalent to the econdition (17.40) at B — oo. Thus, we see
that the redundant zeros are dispensed with calculating the discrete
energies from a potential which vanishes for r> R and then allowing
R to approach oco.

A mare detailed discussion on the relation between S(k) and bound
states was given by VAN KamprN [1951]. Let us define f(k) and S(k)
in the complex E-plane by analytic continuation. We shall call I
the whole domain of the complex E-plane without the real axes and
denote f(k, r) in I" by f(&, r) (its asymptotic form is exp (1E'r); Et is
defined so that I, (E*)>0 (ef. (17.35a) in order that m f(&, r) — 0).

T =00

Then it can be proved that f(E, r) is a single valued function in I
and that f(E) = f(E, 0) is analytic in [I'; also that its zero points
are on the real ‘“‘negative’’ axes of E (see Van KawmrEN [1951]).
S(E) can be written as
S(E) = ;§§+; for real E. (17.60)
where f(E.) means the value of f(E) obtained as its limit in the
upper or lower sides of the cut ‘‘real” positive axes. For example
in the lower domain of the real axes, I,(E_) < O and therefore ()t is
not k+ie but —k+ie (k>0). Thus, we see that f(E_)=f—k). In a
similar way we have f(E )=f(k). From (17.47) we obtain (17.60).
From (17.60) we obtain

log f(E) = o fw dE’ IOgS(E) z log (1——2—) (17.81)
where E,, are zero points of f(Z) and the logarithms are defined by
the appropriate branches.

The proof of (17.61) is as follows: Since the function

o(B) = log {1(B) T] 75 | = log 1(E) — 3 log (1~ 3)
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i8 analytic in the domain I', Cauchy’s theorem gives

g(E) = “ B H2L 0(1'7)

"m

where L is the contour shown in Fig. 17.2.

G |

Fig. 17.2

It follows that
, (B —g(E.)
9(8) = 2,.,f a Li——%-—
7 f(-E+)
I dE log i)

. logS(E )
f ap SE=3

which leads to (17.61).

This equation shows that f(¥) cannot be determined only by
means of S(¥) on the real positive £ but requires the values of E, ;
and that even when S(¥) is given, E, can be made arbitrary by
modification of f(£) which do not violate (17.61) (see also WILDERMUTH
[1950] and Hu [1948]).

Summarising the above results, we can say that the S-matrix can
determine the energies of bound states only when it has no redundant
zero and the discrimination of the redundant zeros requires the more
detailed information of the wave function than its asymptotic form.
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CHAPTER XVIII
THEORY OF PROPAGATORS

§ 1. Introduction

In Ch. XIT we considered a theory of the Heisenberg representation
m which the basic quantities were the free field Q%™(x) describing
incoming particles. However, such a theory does not exactly cor-
respond to the real situation where incoming and outgoing particles
carry their proper fields. It might be expected that, in a theory in
which no bare particles appear, the renormalisation of mass and
coupling constants might be automatically performed. In the following
paragraphs we will develop a first approach to such a theory. It has
been shown in Ch. XTIV that, in the renormalisation theory of quantum
electrodynamics, the normalisation of the external operators of the
electron and photon fields must be changed by the factors Z, and Z,
respectively. This is in contrast to the normalisation of internal
operators, for which the constants Z, and Z; can be amalgamated
into the coupling constant (cf. Fig. 4 in Ch. XIV). However, there
cannot be any essential difference between external and internal
operators; in fact, incoming and outgoing particles may be observed
by means of some electromagnetic interactions, and so the change in
normalisation of external operators may be cancelled out by the
renormalisation of coupling constant of the external electromagnetic
interactions. In other words, by writing the external electromagnetic
interaction, ey, 4,y for the incoming electron as iyy (An=1iey,4,p)
we can regard the change of the normalisation of y as a change of the
strength of the external coupling constant A. Following this con-
sideration, we shall discuss the renormalisation in a form independent
of perturbation expansion. It will be shown in § 6 that the renormalised
theory is connected with the unrenormalised theory through a trans-
formation, i.e. renormalisation transformation.

Discussions in § 8 are concerned with more general cases than the
quantum electrodynamics; —with some general features of the renor-
malisation of the one-body-propagators. The renormalisation method
given in Ch. XIV and in § 7 of this Chapter are developed for cases
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where particles of each field have one stable mass state. However, it
sometimes happens that the proper field leads to more than one
mass state of the particle. The renormalisation in latter cases is
discussed in § 8.

§ 2. Formulation of the Theory

Let us consider !) an electron-positron field y(x), #(z) interacting
with an electromagnetic field 4,(x).

The external sources of these fields we will denote by 7, % and J,
respectively. 2) We shall introduce a representation, the source free
representation, in which the field equations are

F(z) p(x) = (y, 0, +x—tey, 4 ,(x)) plx) =0 (18.1a)
F@) §(z) = (/f 3, —x+ieyEd,(x)) @) = 0 (18.15)
[0 4,7) = —jux) = — i 5 §(2) 7,9(@) +h.c. (18.1c)

If we denote <, . A, the same fields in the Heisenberg repre-
sentation, their field equations are given by

F@) (@) = An(2) (18.20)
F(x) P(z) = — A7(x) (18.25)
O Ay(x) = jy(z) - Z'JF(:E) (18'%)

where A and A’ are the coupling constants of the external sources.

This corresponds to an interaction Lagrangian due to the sources
(ScawiNaer [1951]):

L,(x) = AP(2) n(2) + 17i(x) P(z) + 2'J (7} Ay(2)- (18.3)

As stated in Example 4 of Ch. X, each term in the interaction

Hamiltonian density must include an even number of operators,

which anticommute with any given field operator. By taking ¢, A,
n and J, successively as test operators, we deduce from (18.3)

(=), B(") 1= [n(2), @], = [n(z), n(z")], =0 (18.42)

(@), Au(z’)]-= [n(z), Ju(z")]}-=0 (18.4b)
(@), P(2)]-= [J (), P(=')]-=0 (18.4c)
(@), A@) ] = [/ (2), J,(2")]-=O. (18.44)

1) Here we restrict ourselves to quantum electrodynamics. On propagators

in meson theory, see Epwarps [1953].
1) The theory of propagators has also been formulated in the interaction

representation by NISEITIMA [IQMj.
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These commutation relations are proved to be valid only when the
four vector z—2’ is space-like. We ean, however, assume them to
obtain for any two points z,2’ without contradicting the field
equations, since, then they commute with the Hamiltonian at
arbitrary points.

The unitary transformation U connecting the state vectors ¥, ¥ in
source free and Heisenberg representations gives

Ylo]= Ule, 0y, 5, 1 ¥, ] (18.5a)
with
Ulagy, 0y, . J1=1 (18.5b)

and the ficld operators in the two representations are connected by
the relations

'P(x) = U[a(z), 61: 77’ J] '-l’(‘”) U—I[a(z), ‘71) 9, J]
A (@)= Ulolx), 0y, 1, J]1 A(2) U0z}, 03, 1, J .

It can be proved that the evolution operator Uf satisfies

i-a—a%;)-U[o‘, 01, N, J] = H,(z) Ulo, 0y, 1, J]. (18.6a)
Here the interaction Hamiltonian (in the source free representation) is
H () = — A9(z) n(x) — A4(x) p(@) — AT (x) 4,z).  (18.6b)

In fact, from (6.5a), (18.2a) and (18.6¢) we obtain

8 ’ PRy
yppr(x) =V m')' .fa'dgﬂ U[U: 1 7 J] q)(x ) U 1[6’ 01, 7, J}
= Ule, 03, 7, T1{7, 2, Y (@) = Ay, [, d 0, [P(2), Y(2")]+ n(®) }
U-l[a: 0'1: 77? J]
= U[“! 01, 7 J] {yl-l bﬂ 4)(1:) "7'77(3’)} U—l[o" Oy 17’ J]
= iey, 4,) p(z)— =),
which leads to (18.1a). In a similar way, it can be proved that the
transformation U converts (18.2¢) into (18.1c).
If the energy operator in the source-free representation is denoted
by T,, its eigenstates ¥, are defined by
T,%.=E,%,. (18.7)

It is an advantage of the present representation that the states ¥,
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are independent of the sources. The vacuum ¥, is defined ) as the
state of lowest energy K.

The transition matrix between states ¥{o,], ¥[o;] on two space-
like surfaces o, and ¢; is given by the operator Ule,, 0y, %, J]. This
operator may be expanded in the functional Taylor series. In par-
ticular, its vacuum expectation value can be written as

(U[Uzs 01,7, 1o =

S S B ) 6 OB b B Gy 8 | (18.8)

m=0 n=0 1=9
& - &R TulEa) +or T80

Here and in the following we integrate over all Greek variables (&, ¢).
The symbol (), means the vacuum expectation value. Since each
incoming (outgoing) particle must go through the external fields on
the surface e, (0p) for determining its state, the coefficients G™ in
(18.8) may lead to the tramsition matrix elements: — the propagators

’ 7 R4 ’
G it By oes Ty T oo Ty 24 oo 2y 2y - 2)

(where 2y ... Z,, 2 ... % aTe ON Oy, Z] ... Tp, 2Zj...2; O ¢3) are pro-
portional to the transition matrix elements between = electrons on
o, and m electrons on gy, accompanied by the emission of [ photons
on o, and the absorption of I’ photons. The quantities G are called
propagators and we proceed to give somé of their properties.

The G%™ can be obtained from the guantities %)

H ) [, T3 @y e T T e Ty 23 00 ]

— (,,)—n-z,-m( gntmtl
a 87i(2y) ... 877(@,) (L) .. On(zy,) O, (1) ...

by taking limits # -0, 70, J, > 0.

(18.9)

Mp‘(‘zl) U[O's’ 01’ 17’ J])O

1) It must be noted that the vacuum state ¥, is defined as the lowest energy
state of the interacting fields, not that of the free fields. Getr—~Many and Low
[1951] have derived the relation between the vacuum states (¥, ¥,) of inter-
actirig and free fields.

?) Functional derivatives are defined by

F[ﬂ+5ﬂ,7)+6mJ+6J] = Fin, %, J] + [ d* Et’ﬂ(f) Fln, 7, J18(8)
+Jak M(E)W Fln, #J1+ | d*cm Fln, 7, J187,42)

with Infinitesimal increments.
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The equation (18.6a) can be replaced by the integral equation
Uloy, 0y, 7, J1=1—1i {3 d*’ H(x') Ulo’, 01,9, J],  (18.10)

where ¢’ passes through the point z". We change H, by an infinitesimal
amount 6H and ask for the corresponding change 4U.
Quite generally, when two operators U and U, satisfy the operator

equations
U=1+(K,+K,)U

Ul = ]- + Kl Ul’
we ean prove
° U - Ul = U1K2U.

From this follows, neglecting higher order terms in $H,
0U[oy, 0y, 0, J 1= —i fada’ Ulay, o', 9, J] 6H(z') Ufo’,00,7,J]. (18.11)
We now define 3H as a change induced by a variation of the sources:
SH (x) = — A(P() dn(x) + 8ij(x) v(z)) — 18 J (%) 4,(2),

where 8, 87, 8J, have the same commutation properties as %, 7, J,,.
Then, (18.11) leads to

% @) (Ulos 01,1, 1o = Xog, $(@"), 01)q (18.12a)
%3;;':; (Ulog, 01,1, J1)g = Ao, p(2), 01)s (18.125)
;1' Ja(,, (Ulos, 01,17, J])p = 4'(03, 4,(2), 01)y (18.12¢)

where the symbol can be understood from the example: —

(03: A(x) B(Z'), 01)0

8.13
= (Uloy, o(z), 7, JA(2) U o(z), o(z"), n,J 1 B(x')U[0(2"), 61,7, 1)y (8-13)

with any operator A(z), B(z). From (18.4a), (18.12a) and (18.13)
we obtain

1 6‘
3 &) oniar) (Ulog, 01,1, J1)e

A¥ay, p(z) P(@’), 61)  for o(x)>a(x) (18.14)
— 40y, $(2) p(2), 0)  for ofx)<o(z’)
= &(x, z') 0y, Ply(x) $(a')], 0y).
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In this way we can derive the relations
G 0,5 Xy eee Ty T3 oon Ty 2y .- 7] 2
= A AN (g . By Xy ... B (18.15)
(0, Plp(ay) ... p(@,) P() ... P(am) A, (21) - Au(2)], 01,

where P is the chronological operator (time increasing from right to
left} and e(z; ... 7, 25 ... ;,) is the product of all &z, z;) (1>7),
e(z{. 2} (1>7) and &(a;, 77). As examples of (18.15), we obtain

GOVn, J; 2] = A(ag, P('), 01)p (18.16a)
GO0y, J; x] = A(ag, p(x), 01 (18.16b)
Gun.T:2]  =X(on A,(2), 5) (18.16¢)
(n, m) . 4 4
G [777 J’xl"‘xy'u xl;"xm] ., -, % (18.17“)
="M e(2y. . 2y, X1 2,) (09, Ply(y). . 9(2,) P(21) ... P(x5)], 61)

G 5 21 1] = A(g, PlA,(21) ... 4, (2)], 61)o.  (18.17H)

We shall denote the limit of a functional F[n,J;z...] for f=n=0
or J,=0 by

FlJ;z..]= Fiy=0,J;z...] (18.18a)
Flp;z..]=Fp,J=0;2 ... (18.18b)
Fz..) =Fn=0J=0;z..] (18.18¢)

Since the Lagrangian with »=#=0 is invariant under the trans-
formation i — ¢**p, the functionals G*™ and G%™ must also be
invariant under this transformation, therefore G™*[J;...] and
G™»[J; ...] with different numbers of y’s and #’s, i.e. for m#n, are
zero.

Furthermore, for p=#=J,=0, the Lagrangian is invariant under
charge conjugation of the y-field together with 4, —~ —4,,. Therefore
the function G, (...) made up of an odd number of 4,’s must be
zero 1),

We note further that the operator Ul[a,, 0y, 17, J] is the generating
operator of the propagators as shown by (18.9) (Umrzawa and
ViscoNTI [1955a]).

1) It must be noted that this is just Furry’s theorem (cf. Example 2,
Ch. XI1II).
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§ 3. Equations for the Propagators. Normalised Propagators
From (18.12a, b,¢)!) we can derive the relations (UmMEzawA and
Viscontr {1956a], Symanzix [1954])
d d
(7# A t+x—e€ Yy, m) (@) (Ulog 01:m, 1o
= 1 A2 q(z) (Uloy, 01, 7, 1o
[/} .
D-J‘TF_(;—)- (U[Gﬂi O3, 75 ']])0 =1 )"2 Jﬂ(z) (U[GZ’ 0y, 7, J])ﬂ ; (18-196)
+ 1 (4'/2) ¢ 8p (G*V[J 5 2, 2] Yo -
e =¢efd. (18.20)

The derivation of (18.19¢) is as follows; from (18.12a) and (6.5a)
we obtain

% (18.194)

Here

%) 52055 (Ul @11, T o
= i 2 (v 5ogg;) Jo 4% (Ul o(a), m, T19(&) Ulo(a), 03,7, Mo

=14 (U[dz» a(z), 7 J] Vi O 1l”(x) U[o‘(z), 011 J])O
+ 9 22 (Uloy, 0(2), 1, I] Jou [¥(&"), @)1+ d 0, Ulo(2), 01, 7, T])o 1(z)
which is equal to
= —idx(Uloy, o(x), 7, J ] p(z) Ulo(z), o1, 7, I ])o
“"}'eyﬁ(U[ox’ 0’(27), ns J] An(z) %D(fc) U[a(:c), Gy, 7, J])O
+143(Uloy, 01, 7, J 1o 1()
on account of (18.1a). This leads to (18.19a); (18.195) can be proved
in a similar way.

Equations (18.19a) and (18.19b) are the generating equations for
the many-body propagators; by operating successively with &/éz,
8/87 and 8/3J,, we can derive equations for all possible propagators.
This is done in the following for the one-electron, one-photon, and
two-electron propagators.

Taking the derivative of (18.19s) with respect to 7(z’), we obtain
the equation for G"¥[y, J; z, z']:

1 (y,, dutx—e v, 37%;)-) GV, J; z, 2]
= 126(3 —27') (U["z’ 01’ ﬂ:J])O + “-277(15) % (U[Us, 01’ 77, J])O

) Anattempt for solving these equations has been given by Symanzix [1954].

(18.21q)
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Let us define the normalised propagators by dividing them by
the vacuum expectation value of U, e.g.

Gl.Ug,J;x,z']
(Uloy 01,1, J1)0”

It must be noted that the propagators are not changed by the above
normalisation when % and J are zero, because of

(Uloy, 01, p=0,J=0]),=1.
Putting #==0 in (18.21a) we havel) 2)

G¥V[n, J; o, 2] = (18.22)

z'(yp dutx—tiey Yy Gunld; ] —e1 v, 57 (w)) GyV[J; 2, '] (18.215)
= 12 8(z—1).

Operating with 4&3/67j(x,) dn(z;) on(x;) on (18.19a) gives the equation

for the two-electron propagator (with 7=0)

. — . — é (2, 2) « i

g (7,, dutn—tey, G, x[J; 2] —e1 7y 3——']”(:”)) GE2[J ; x 2, 71 23] g (18.23)
= A2 O(w — 1) GG V[T ; 24, 25] — A2 (x—23) GH V[T ; 2y, 7).

In the same manner, we can deduce equations for the one-photon
propagator from (18.195).

§ 4. Vertex Part, Mass Operator and Free Dressed Particle

Since we always consider normalised propagators in the rest of
this Chapter, we shall drop the index N. For the derivative of a
composite funectional we have (ScEwiNeER [1951])

] o ___6__ WwBry. ,
7’6J,,( zfaG[J-i]G [J; z, 2] (18.96
where

é,,,[J; 22’1 =G,,[J; ' 1—G,[J; 21 G.[J; 2']. (18.25)

It must be noted that G, is equal to the one-pheton-propagator
G,, if J=0.
) __3 Fln,J1 1 8
) 57,0 T T 575 Wlew o 1,70~ Olen 5757 Ws 87,0 - 7
—4Gyuyln, J5 2]- Fyln, J1.

Z) An interesting method for solving (18.215) has been presented by
Epwarps and Pememis [1954].
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In order to express 6G™1/4G, by the vertex part I, we assume the
existence of the inverse of the propagator G‘-V[J; z, '] satisfying

JQEV-1T 2, E]GUDT; &, 2’ ]= bz — ) (18.26)
and define the vertex part by

L[J; z’”’”‘]“aa,u z](’“ M-z, 2] (18.27a)

= = GOV 3, 8] g 6V £ 81600 T £,27) (18.276)
(ScawingER [1951]). Equation (18.275) leads to

:166’[‘, A AT

g (18.28)
=~ [QUVJ; 2, E] T[T ; 2, & ]GV ; &, 2],

Finally, we have from (18.24)

6J()Gu O[Tz, 2]

~ g (18.29)
= e [QUUT g, E] D[J; L, & E1 GOV £, 2] G010 ¢ 2).

Equations (18.28) and (18.29) have the graphical interpretations
given in Fig. 18.1, where solid and dotted lines correspond to one-
electron and one-photon propagators, respectively. The derivative
operator 6/4J,(z) means the creation of a photon (at a point z) by
the source J,(z). This photon must be absorbed at a point in the

Fig. 18.1 Fig. 18.2

diagram, because we always consider vacuum expectation values
of operators. Therefore, it is apparent from (18.24) that 8/0G [J ; 2]
means to insert a photon line at z (cf. Fig. 18.1). If 2=z, Fig. 18.16
reduces to Fig. 18.2. Corresponding to Fig. 18.2, we introduce the
mass operator by

MW o, 2 ]=i6l [y, GV, E) TJ; L, €, 2] GL[T; 2, 2] (18.30)
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(ScEwWINGER [1951]). Equation (18.29) goes over into
—ey YV, 6—.73(?)' GEUJT sz, 2= [ M[J; 2, §] GEV[J; & 2], (18.81)

Then (18.216) can be written as follows

t(pdu—te v, GIJ; 2]+ %) - GMV[J; 2, 2']
+ 1 [M[J; 2, §] GBI ; & 2] = 22 d(x—2').

For J,=0 and ¢>¢, equation (18.32) becomes
8 (70t %) GMV(z, 2') +4 [ Mz, £) GI(E, 2')=0.  (18.33a)

Since the theory is invariant under an inhomogeneous Lorentz trans-

formation, the propagator G%-Y(z, ') and the mass operator M(z, z')

must be functions of 2 —2’. Their Fourier components depend on oue

momentum p, only. In particular, the Fourier component of M — this

being a scalar —must be a function of y,p,; we write it M(—iyp)
Equation (18.33a) reads then, for ¢’ = — oo,

{iyapu+x+M(—iyp)} GLV(p)=0. (18.335)

Here G{-Y(p) is the Fourier amplitude of the function G*Y(z,2’) with
t = — oo.

On the other hand, according to (18.17a), we have

(18.32)

G0z, ') = (vac|y(z) $(z) | vac) for t>1".
This leads to
@z, x') = 3 (vac|y(z) | p@) (p*|px’)| vac) for t>¢'
(@)

(LeaMANN [1954]). Here |p'®) denotes an eigenstate of the total
Hamiltonian and the summation is taken over all such eigenstates.
By making use of the Fourier components of v and #,

wz) =3 —IFV (p) e ete.,
r

(V: the fundamental volume) we obtain

Gz, 2') = T (vac|p(@®)|p®) (p|H(p) |vac) o=, (18.34)
{a}
We shall write the energy eigenvalues p{® in the form of

p‘()a) —_ VP . P + c(a)2
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Comparing (18.34) with (18.332z), we see that the relation
—o+sx+M(x)=0 (18.35a)

can hold only for x=c®. In other words, roots of (18.35a) appear
at the points x=m®, m®, ..., m™. M(x) is complex for «>c. Here
the particle is assumed to have observable mass values m®, ..., m™
and the constant ¢ is defined in such a way that «>c¢ corresponds
to states of more than one particle. The quantities

m® —x=M(m®) (i=1, ..., n) (18.35b)

are called self-energies.

When we take the point z’ in G*Y(z, 2') on the initial surface
¢' = — oo, it follows from (18.33b) and (18.35b) that the incoming
particles deseribed by the propagator GV (x, ') has masses m™,..., m™.
We call these the free dressed particles. This is true also for outgoing
particles (i.e. particles arriving on the surface o).

§ 5. Two-Body-Propagators
We shall now show that the equation (18.23) of the two-electron-
propagator is equivalent to the following set (UMEzawA and ViscoNT:
[1955a]).
GRALT; 2y 2, 2 2] = GO 23, 2] G0 25, 2] 2
—dey fQUVT; 2, E10,[J; 8, &, VLT ; &, & oy, 2] 25] ¢ (18.36)
- )
where
vl 2,2, 2] =i To[J; &, =, E] GRS &, 2] Q[T £ 2] (18.87)

and I, satisfies the equation

1]
I 3’. Ly = ! {1,1) . s
I‘[ 32, xl zz: xl :62] é(xl %) 6G"[J; z] G [J’ xz: xZ] g (18.38)
+ ey [ Viuold; 2,24, &, E L[5 £, &5 s, 27 7]
with
. ’ "o R ’ )
VW[J,z,z,z,:v]-_—ve{J,z,x,x]m. (18.39)

In (18.36) the bracket (z;+«— 2;) means the addition of all the terms
obtained by exchanging »; and z;. We call these the “‘renormalised
equations” bécaus it can be shown (of. §6 and § 7) that they can
yield the renormalised solutions.

Before deducing (18.36) let us consider .its physical meaning.
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Successive iteration of (18.38) leads to
1752, 2y 29, 25 23] =

— &y 8(zy— ) [ GUV[T 5 2o, £ T[T 5 2, &, &1 GV ; &, 2]
+n§1(—-el)”+1f qu,,[‘]; z, Xy, Cm fﬂ] Ve O —1 [J; Cm é.m Cn-—l» Sn-—l]

Vol 5 80y &, L0, N GUV[T 5 2,81 T, [V 584,87, 6] GV [T 5 €, 23]
By substituting this expansion into (18.36) we obtain the two-body
propagator which can be graphically expressed by Fig. 18.3.

N H%{i

Fig. 18.3

(18.40)

The nth term of this expansion can be represented by Fig. 18.4,
in which a photon created at a vertex I, can be absorbed by the
electron lines, photon lines and vertices only in the region abave the

Fig. 18.4

boundary represented by the dotted curve »— 2. It can be seen from
Fig. 18.4 that we have no self-energy and corrected vertex diagrams.
Therefore, this diagram is made up of all possible irreducible diagrams
(i.e. skeletons). This result agrees with that given in Ch. XIV, when
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we identify GVY, G,, and I, with 8 ,, A% and I',;. However, it must
be noted that the present proof for this fact does not depend on the

perturbation approximation.
The derivation of equation (18.36) is as follows: Equation (18.215)

gives
(yo Yot x—1 ey Y, Go[d; T] — €1 7, &Tz_ﬂ) 37{(—5 GUT ;s z, 2]
=y ¥, FoulJ; 2 2] GVV[J ; 2, 2],
which leads, using equations (18.29), to
ey [T[J;8, 2, E1Gp[J; L 2] G2V s &, 2] =
— &1, Gl 2] GRU[J ; 2, 2] (18.42)
+iely, [ QUPT s, 8] g (LUl 106,81 €OV 5,0 Bl 3 £

Figure 18.5 gives the graphical expression of (18.42). In the second
graph on the right hand side the photon created at  must be absorbed
by any part of the diagram except the electron line connecting x and £.

z z z
xé}—x’ ==:r§-—-x’ + xi:}é-—.r‘
r 4 ¢r

Fig. 18.5

We can show by means of (18.38) and (18.42) that (18.36) satisfies
(18.23) as follows: by substituting (18.36) into (18.23) we have

te y, AWV 2y, 2] s 57 ( Gl YT ; 4, 5]
+e 2[@,[J;,¢7] FF[J, ', xy, E] GV ; &y, £
L[J; 0, 8 2y, 2 23] + i €y, [G2V[T; 2y, &] 37,7%7 (18.43)

{386, 1G58, QG £, 8 [T ; &, 8 2y, 23]}
+ (@ ox)=0

(18.41)

which, on account of (18 42), may be written

i & ),’” o nJ; xy, 3’1]

6J( 2y 007 2 73]

-+ 61 79 f ﬁgy[‘,: (51, C'] G(I'I)[J; 271, 5]] Iﬂ[J; C’: 51 272, x; z;]
+ie ypfa(l'l)["; zy, §] Fﬂ[J; £, 61,61 égv[J; 494

GuU[J; &, £] 33-5(-51)_ LiJ; L, &, xg, 27 23} = 0.

(18.44)
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This can be satisfied if (18.38) is true. We can calculate two-electron
propagators by substituting solutions of (18.38) into (18.36).

We now see that the equation for the two-body propagator can be
written in a form of

G22(x, iy, T, ) = GUV(z,, 2}) GSV(,, 23)
— QU (g, x5) QUD(z,, 2)) (18.45)
+ [ GV (g, &) GUV (g, &) M (4, &5, & &) G2V(8] &, 7] 7).

Here the two-body mass operator M(xy, z,, a3, 2;) is given by the
semi-proper irreducible diagrams for the Moller scattering, where
semi-proper diagram means graphs which cannot be cut into two
separate parts by cutting two-electron lines. Indeed, the ladders made
up of the semi-proper irreducible diagrams give all possible irreducible
diagrams for the Mgller scattering (cf. Fig. 18.6).

tox z

M M M

% S—
Fig. 18.6

An equation of the form (18.45) is called the Bethe-Salpeter equation 1)
(SALPETER and BETHE [1951]; GEri~MAaNN and Low [1951]; NamBy
[1950], Krra [1952]).

Other many-body propagators may be treated in a similar way.
For instance, the propagator for the one-electron—one-photon
system (Compton scattering) can be derived from (18.19a) as follows

. , 4 Y
z(yeaa+x—-ze1ye Ga[Jix]—‘Gx?’em) GaVJ; 2, 2, 2 2]

- ; (18.46)
=2 8(z—=') (G[J; 2 2] + GulJ 5 2] Gy [T 5 223

We can rewrite (18.46) by means of (18.42) in the following way

GLV[J ;s @, o', 2 2]
= QUU[J; z, 2] {G—‘,,,[J; 2y 23] + GLIJ; 2] G,[J; 241} } (18.47)
+ e JGUVT; 2,81 0,[J; L, &, E1 Lu[d 8, 8, 2, 2y 24),
1) By using a simple example for the kernel M, Wicx [1954] and Saram

and KemMEr [19565] clarified the properties of the Bethe-Salpeter equation
for bound states of two-Fermion system.
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where [,, is a solution of
LWl 2,2, 2, 2 2] = O(x—2') {3@:[677]_ @‘,[J; 2y 2]
+ 8(2—2,) 80, QL[ 23] + 82— %) 8 Gyl 5 1]
+e [Vl 2,2, 8, 8] Lol s £, &, 0, 23 24].

By applying the successive substitutions to (18.48), we can show that
A&z, #', 2, 25) is given by all possible irreducible diagrams for the
Compton socattering.

(18.48)

§ 6. Renormalisation Invariance

The transformation
A=>CA XN =CO¥ (18.49)

e > /C (18.50)
and induces the following changes (of the one-body propagator)
GUV(z, &) — O GV, '), Gz, 2) = 02 G,z 2) (18.51)

and analogous changes for the many-body propagators. We call
(18.49) the remormalisation transformation because it just changes
the normalisation factors of the propagators.

‘We note that equations (18.36), (18.38), (18.46) and (18.48) contain
neither A nor A’ and are therefore invariant under the transformation
(18.49): they are remormalisation invariant (UMEZAWA and VISCONTI
[1955a]). It is physically reasonable that the value of the charge
depends on the normalisation of the propagators; indeed if the
strength of the electromagnetic field is multiplied by ¢ the charge
must be divided by the same constant. When 4’=1 and A=1, we
obtain the unrenormalised theory. However, there is one condition
to be fulfilled by the constants 4, 2’: the normalisations of the pro-
pagators for the free dressed electron and photon must be the same
as those of Sp and Ay respectively. To 'determine 4, 2’ by means of
this condition is called renormalisation.

is equivalent to

§ 7. The Normalisation Constants

Let us consider the equation (18.32) of the one-electron propagator,
for J=0 Its Fourier transform has the form

T (4 Yy Pu + % + M(—iy p)) GXV(p) = 22 (18.52)
The causality principle requires that G(z, 2’) contains only posttive
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(negative) frequency parts for t>¢" (t<t’) (cf. §2, Ch. VIII):
{GHV" (=, ') for t < t/
lG“-‘H‘(x, z') for t > ¢

Such a propagator is obtained from (18.52) as follows:

GuV(y, 2') = =R [asp [ dp, et ! (18.54)
)= ] TP P Dapat R M=)

GV (z, ) = (18.53)

The integration path L is defined so as to give {18.53).

In the following discussion we shall assume that the electron has
only one mass level m. From (18.35a) we see that the denominator
can be written in the form

a(—1y p) (¢ yu Py + M) (18.55)
where a(x) is a function without zero in the domain x<c. To the
eigenvalue m of the mass we define a constant Z, by

1Zy =+ (a- Mo | ammm (18.56)
= a(m)- (18.57)
Then (18.54) can be written in the form
GOV (2, x') =
Dz 1 alm) ¢ (18.58a)
(2 )‘Z hm_fdsp Sz @py &%= oy |
tp.e—zy _ WuPu—m a{m)
(2,;)& Zzllm_fdsp.f dp, €9-==2" p,,p:—}-”m’——i( pra g (18.58b)

For t>1', we ecan carry out the integration over p, in (18.58h) by
taking the path of integration as the half-circle below the real
axis. Thus we see that singular points appearing under the real axis
can contribute to (18.585) (for t>t’), i.e. py=p®™ =Vp-p+m? and
interference effects in the domain of py>> V/p-p+ ¢ The pole at p,= pf®
contributes to {18.586) through an oscillating term with frequeney p{™.
This term can be calculated by using the residue of (18.58b) at p,= p{™
to give

iz 2y, P\ —m m

(2:;): J' d3p s ;’; - eo™z—2)
P P+ B (18.58¢)

L4 J’ Po T y ™ 22y
(o .7!)3 2 (m) 4
with
me) = (p, PEv).
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Here we have used the relation

(6 y, P —m) Gy, P +m)* =0 (n integer)
and therefore

(87, P —m) (6 Y™ —m) Lo
= == {2 —m).
a(— 1y p'™) A(—iyp™—m+m)  am) (v, P )

The operator H in (18.59¢) is defined by

H=1iy,(y -p)+mys=(a-p)+mp.

Since (pf™-+H)/2p§®=1 for positive energy states, (18.58¢) shows
that the propagation funection of the free dressed particle appears
with the normalisation factor A2Z, Then, for the renormalisation of
the propagation function of the free dressed electron we have to take

A2=1/Z,. (18.59)
From (18.55) and (18.57) we obtain
. . 1 ,. .
1YuPu+ %+ M=ty p) = 5 (yupu +m) (1+ Mi(—1yp)), (18.60a)

where, according to (18.55),

My(—iyp) =£(.;-(-”“"%Pl— 1 (18.60b)
gso that
M,(m) = 0.

From (18.54) and (18.60a) we obtain

1 1
Pu+m 14-My(—typ)’

(1,1) N L[ gag poz-2
G0 (@, o) = o [ dip &0~ — (18.61)

The one-photon propagator can be discussed in a similar way.
In particular, the normalisation constant 2’ can be determined in a
similar way to A.

From (18.61) we can derive

(7uputm) (1+My(—yp)) G21(p)=1 (18.62)

where m is the experimental mass. Now (18.60a) shows that M;(—iyp)
and Z, correspond respectively to the finite part of the mass-operator
Z*, and to Z,, in the Dyson theory. Therefore, we see that G-1(p)
is the renormalised propagator.
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By using the formulae (18.27a) we can show that I', corresponds
to the renormalised vertex part, I, defined in Ch. XIV. Since we
showed in §5 that propagators can be given only by irreducible
diagrams made up of G*V, G, and vertices (with the observable
charge ¢,), we see that the theory is renormalised.

§ 8. Renormalisation and Mass Levels

Discussions in the last paragraph were concerned with cases where
particles of each field have one mass state. We shall now discuss
some features of the one-body-propagator of a spinor particle which
has a finite number of different stable states of mass

m(l)’ veey m(ﬂ) (m(l) < m(z) < .. < m(ﬂ)).

In the following discussion we don’t restrict ourselves to the

quantum electrodynamics.
The equation for the one-body-propagator may have the form 1)

{87y + %+ M(—1yp)) G(p) =1. (18.63)
The mass values of the particle are given by the discrete roots
a=m®, ..., m™ of the equation (18.35a), i.e.
a—2x—M(x)=0 (18.64)
in the domain
a<e. (18.85)

We shall assume, for simplicity, that these mass values correspond
to simple roots of (18.64). Thus, we can write the operator

h( —iyp) = ( _‘.Vupp"""‘ M(—syp)) (18.66)
in the form

M—iyp) = a(—irp)flfg(—mp,‘—mm). (18.67)

Here a(x) is a function without any zero for a<ec.
Corresponding to each mass value m* we define constants Z9 by

= 5 (5= M (@) am® (18.68}
= a(m®) T] (mP —m®). (18.69)

k=*)

1
Z%

1) Here 1 is taken to be 1.
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Then, it can be shown from (18.83) that (UmEzawa and VisconTr

[1955b])
am?) (18.70)

= 7} ?
G(p) = %Z — 2 Pu Pu— M +ie a(—1iyp)

The relation (18.70) shows that Z® is just the normalization factor
of the propagator of the particle whose mass is m®. The definition
(18.68) can be regarded as the extension of (18.56) for Z, to the case

of many mass levels.
In order to clarify the physical meaning of the constants Z¥, we
shall now calculate the propagator

Gz, 2') = (-2—:?)-‘ f dip G(p) ePwsu=p

1 YA . 1 a(m) D -3
_P_I:(l, (2n)‘fd p*‘i-y,,p,‘—-m(i)—{-ic a(———dyp)e w T (18.71)
2 Al J— 1 YuPpu— m a{m) P27
:——0 & (2m)* Pppp+m(5’2——~'it a(—1iyp) .

for t>#'. Since we take >, we can carry out the integration over
P in (18.71) by taking the path of integration as the half-circle below
the real axis. Thus we see that singular points appearing under the
real axis can contribute to (18.71), i.e. py=p§ = Vp2+m?2 for all
j and interference effects in the domain of py>Vp-p +¢2 The pole
at po=pf’ contributes to (18.71) through an oscillating term with
frequency p{. This term can be calculated by using the residue of
(18.71) at p§’ to give

Z4) ”,I‘p(n — ) ",h) o2
- (27) J. 299 ’
18.7
_ .z J’ o, P8 +H? y, @ z=20 (18.72)
(Zx)? 2§ 4
with
P = (. p)
and
HY =iyy(y-p) + mPy,= (- p)+m 8.
On the other hand, from (18.34) we obtain
Gz, ")y = [ d®p (vac|p(p?)| p%) (p? [y*(p?)| vac) &2 mu—=u
i (18.73)

+ 2 dp, [ Bp g(p, py) EPwzu—"w for t > ¢'.
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The last term of (18.73) denotes the contribution from the eigenstates
in the domain «»c¢. Comparing (18.73) with (18.72), and taking
account of the fact that (p§’+ H®)/2p{?=1 for positive energy states,
we have

29 = (vao|p(p?) | p7) (9] 4*(p) | vac). (18.74)

Since the function a(x) has no zeros for «x<c¢ it has no zeros for
a<m™. Thus, provided it has no singularities in this domain of «,
the function a(«) is either positive or negative definite. For a moment
we will suppose that this condition is satisfied. Then, it follows from
(18.69) that the sign of Z% alternates with increasing j (UmMEzawa
and VisconTr [1955b]):

Z9[Z4+m+ <0 (m: integer). {18.75)

In other words, half of the Z% are negative, and the others are
positive. Taking into account (18.74), we have the curious situation
that the matrix element (vac [p|p?) is the complex conjugate of
(p?|p*| vac) for those j only whose Z% is positive. Thus, the inter-
action Hamiltonian H(z) containing w cannot be Hermitian;—
if the matrix element (a|H(x)p?) ((a| denotes an eigenstate of the
total Hamiltonian) is the complex conjugate of (p@|H(z)la) for
Z9 >0 (Z¥ < 0), then it is not so for Z¥ <0 (Z¥>0). Thus, we can
expect that the S-matrix is not unitary.

This situation gives rise to the following difficulty: When we have
processes where the spinor particle transmutes into another partiecle
through vertex I (cf. Fig. 18.7), which is assumed to have common

renormalization factor for all mass states of the
spinor particle, the observable coupling constants

() ——__ 9" satisfy relations (ef. Fig. 14.4)

I gt ( z«))uz

Fig. 18.7 9 —\Z® (18.76)

Here the coupling constant g% corresponds to the transmutation
process from the m®-state of the spinor particle. Thus, we may find
that some ratios of the observable coupling constants are imaginary,
and therefore the S-matrix is not unitary.

We may obtain a unitary S-matrix only when all of Z? are positive.
The relation (18.69) shows that all of the Z% may appear to be positive
only when the function a{x) has a very special distribution of singu-
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larities;— a{x) has at least one singular point in each domain of

mO<x<m?, m®<a<m®, ..., m*V<x<m™, as Fig. 18.8 shows.
1
]
+ L~ — + + (74
m(n-!) mo? m (n-1) me c
Fig. 18.8

§ 9. A Simple Model

Since it is difficult to calculate rigorously the one-body-propagators
and vertex I, in the quantum electrodynamics, we shall consider a
gimple model, to which the discussions in § 7 and § 8 can be applied
without using any approximation method.

We shall start from the Hamiltonian

H=|dxH (18.77a)

+9(FeUt+gpU-)
for two spinor fields w, ¢ and one scalar field U (Lee (1954]). In
(18.77b) », M and p are the mechaniocal masses of the y-, ¢- and
U-particles, respectively, and U+ and U~ are the positive- and
negative-frequency parts of the U-field operator.
Denoting the field operators in the interaction representation by
bold letters, the field equations are

(34+7¢)‘.l)= 0
(st M)p=0

for the - and ¢-fields respectively. It follows that ¢ and ¢ are just
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the positive-frequency parts, i.e. the annihilation operators. Thus,
P and @ are the creation operators.

It is clear from (18.77b) that the @-particles (U-particles) eannot
create the U-particle (pairs of the spinor particles). Thus, the mass
operators of the ¢- and U-particles are zero;— one-g-particle-propa-
gator is just the Sy-function satisfying the relation

(Po— M) Sp(p)=1, (18.78)

and one-U-particle-propagator is the A, defined in Ch. VIII.

‘On the other hand, the mass operator M(p,) for the y-particle can
be obtained by calculating the process corresponding to Fig. 18.9.
There is no other diagram which contributes to M(p,). By using
(18.78) and (8.35), M(p,) can be given as

L (g ——r

M(po) = (2n>’fo % o—perin (1879 7o
with A R 7

= V&2 + u?. Fig. 18.9

Corresponding to (18.63), we have the equation for the one-p-particle-
propagator G(p):

W(—po+ %+ M(py)) G(p)=1.
We shall denote the funection (p;—x— M(p,)) by A(pg).

According to the discussion in §8, the stable mass levels can
appear for p,<¢=2M +u. Since the mass values m; are zeros of A(p,):

h(m;)=0 (18.80)
we obtain
h(po) = (Do) — Al(my)
= Py — my — M(py) + M(m) (18.81)

d k?
=(p°—m,){ (2n)'f k a{w— po+M)(w—-'m4+M)}'

By using (18.68), we define constants Z; by

1 ?
7" 7 (Po — M(20))pomm,
k’

(18.82)
=1l+n5 (215)’ f dke wl(w—mg+M)32°

It can be easily shown that the vertex I" is given by I'=1. Thus,
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the observable charge g;, corresponding to the process y-particle in
the m, mass state — @-particle + U-particle is given by

R=q2Z,. (18.83)
From (18.82) and (18.83), we obtain
1 1

k2

1 o0
F=5t @), % semmr (18.84)

This shows that g2 must be negative in order that g} is finite.
When ¢2 is negative, the Hamiltonian (18.775) cannot be hermitian.
Moreover, we can show that, when g2 is negative, there appear two
mass values and one of two Z-factors (Z,, Z,) is negative. The relation
(18.81) leads to the condition for two mass values m, and m,:

1+ A [T dk L =0 18.85
* By fo olo—m+M) (0—my+M) (18.85)
We shall show later that (18.85) can be satisfied and, therefore, that
there exist two mass levels.

By using (18.81) and (18.85), k(p,) can be written in the form

h(po) = (po—m) (Do — M) a(py) (18.86)
with
_ gs o0 kﬂ
a(p0) = a5 [, % oo T I e T T

(18.87)

It is clear from (18.87) that a(p,) has no zeros for p,< M + u, where
it is negative. It follows that a(p,) is not the function of the property
shown by Fig. 18.8. Then, according to the discussions in § 8, one
of Z,factors (i=1, 2) must be negative. Indeed, using (18.69) we
obtain

'zl; = a(my) (my — my) (18.88a)
21; = a(my) (my — my). (18.88b)

These relations show that
Z,|Z,<0.

It follows from (18.83) that one of two observable coupling constants
91 9 must be imaginary.

It is clear from (18.87) that both of a(m,)/g® and a(m,)/g? are finite,
and therefore Z,/Z, is finite. Thus, we can take both g, and g, to be finite.



cx. xvirr, § 9] SIMPLE MODEL 347

As an example of the scattering problem, we shall calculate the
phase shift 6 for the process g+ U — ¢’ + U’. The momenta of U
and U’ are k and k’ (Jk|==k’|) respectively. There is only one diagram
(Fig. 18.10) for this process. The S-matrix element is given by

™1 3 2 -
(@, U89, U) = lim 57 (M + o +ie)

1 . 1 1
=lm o5 ,_zmgf U)o F I = F39) alo T LT 59)

with

o= VK k+pt =YK K +4°.
On the other hand, (18.88a, b) leads to
g3 a(my) + g3 a(my) = 0.
The phase shift § can be calculated from the relation

tan & — 1(¢', U'|Slg, U)— (¢, U'|S|p, U)* \
2 (¢, US|, U)+ (9, U'|S|e, U)* 3
="‘Jkll{(w+M-—ml) (0 + M —my) S (18.89)
© k3
Pfo dk o0’ —w) (w'+M——m1)(w’+M——m,)]

{ef. (17.32)). It is not suprising that the right hand side of (18.89)
does not depend explicitly on either g, or g, because the latter
constants depend uniquely on the mass values m; and m,. There are
two diagrams (Fig. 18.11) for the scattering process y+ U — w'+U".
Here ¢ and o’ can be in either of the two mass states.

78 R/ v
\\\\ - - i
7] v’ TN
i G(M+w+(€) ‘ l l
7) ¢' IIJ y}’ -9 wl
Fig. 18.10 Fig. 18.11

We shall now examine the condition (18.85). Equation (18.82)
leads to

gf 00 k3
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The relation (18.85) can now be expressed in terms of g; by

g1 ket

1— g (=) [k e

=0 (18.91a)

on account of the relation

gz o0 k!
2, (1+ g [, % oy D)

g% J‘co L2
(27)% Jo ol{w—my+ M) (0 —mg+ M)

L2
w—my+ M)2 (0 —mg+ M)~

We can rewrite (18.85) also in terms of g,:

=Z1+

g% )
=1— s (my—my) [k

k3
w(w —my+ M) (@ —my+ M)

g2 )
1— s (my—my) jo dk = 0. (18.915)
It is interesting to note that (18.91a, b) can also be derived from
(18.83) by using (18.88a, b).
We shall now consider the condition (18.91a, b) in the two cases

(1) ¢2>0 and therefore g¢<0, and
(ii) ¢*<0 and therefore gi>0.

In the case (i), (18.91a, b) leads to m,<m,. Then (18.88a, b) shows
that Z, <0, Z,>1 and therefore g*<0. By changing (g,, Z,, m,) into
(g, Zy, m,) in this discussion, we can obtain the result for the case (ii).
These results are summarised in Table I. In the following discussion,
we shall denote the higher and lower mass by m, and m, respectively.

TABLE I
= |  highor mas |  lower mam
Zfactor <0 >1
% real imaginary
g? negative

We shall now restrict the domain of integration over % by
0<k< K(K > u). Then, the condition (18.91a, d) is
1_.4

X k2
(2n)* (ml"mz) fo dk @0 —1my + M) (w—mg+ M) * (18.92)
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By using the relations
e ka
Ay, my) = (my—ms) [ dk

(o= F MY (o—myT 30y =

'bjn'z; A(my, my) < 0
lim A(my, m,) = J.f ak K

M0 o —my+M)*’
it can be shown that there is a lower limit for g,. ie

2
Gertt = (2n)2/ffdk 5-('5:7%-1—_11?)5

satisfying (18.92). This result has been given by Ki1iEN and Pavia
[1955] in the case m;=M. It can be shown from (18.90), (18.915)
and (18.92) that, when the lower mass level goes to — oo and the
higher mass value remains to be fixed, the observable coupling
ccnstants, Z-factors and the unrenormalised coupling_ constant g
behave as shown in Table II. When g, becomes smaller than g, Z,
turns out to be positive on account of (18.90), and g* becomes also
positive; — all difficulties disappear with the lower mass level.

TABLE II
higher mass ~ lower mass
g = Jou > 0 - — oo
Z;-factor ! 0 <« -1
g — —oo

— @ means to decrease to a
a < means to increase to a.

Summarizing the results, we see that, by cutting off the integrations
in the momentum space and by taking g2 positive, we obtain Z-factor
to be positive and finite and the observable coupling constant to be
real and smaller than g.,. In other words, the renormalisation can
lead to reasonable results, only when the theory has no ultra-violet
catastrophe before the renormalisation is performed.

It is interesting to reconsider the renormalisation scheme in quantum
electrodynamics. Although there has been no complete calculation
of the renormalisation factor Z, of the photon propagator, the
lowest order approximation of the perturbation calculation has always
shown that Z; = — co. If Z, would be negative, it would be a little
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difficult o understand the successes of the renormalisation procedure
in quantum electrodynamics. One possible answer to this questior
can be obtained from the results of the previous paragraphs. In the
high energy domain the effects of various other charged particle:
may intervene and so we cannot treat the system of electron anc
electromagnetic field as an isolated system. If we suppose that such
effects could lead to a finite mass operator of the electron and photon,
then there might appear a critical value of the coupling constant
such that for values of the electric charge smaller than this critical
value there is only one mass level. In that case Z-factors would be
positive. Since we have no precise notions about such additional high
energy interactions we have no way of checking this suggestion.
However, it might be possible to apply such considerations to a
simplified model:— instead of introducing a cut off in Lee’s case,
some cohesive field could be introduced to make the mass operator
of the yp-field finite.
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NOTES ADDED IN PROOF

NOTE ADDED IN PROOF, 1

We note here that the solution of the fundamental equations
(18.19a, b) can be written in a form similar to Feynman’s path integral
formula. By using the functional Fourier transform, we shall assume
the solution of (18.19a, &) in the form:

(Ulog: 01, m, T o= [ 63 92 6b; ... b, ula, &, b, 5, 04]- }
exp {1 3 [(E)a(&) +E(Em(s) +Bu(E) ()48} §

Here b, is treated as a c-number field and any two of a, d@. # and 5
anticommute with each’other. To substitute ’(l) into (18.19q, b) leads to

(1)

. (}’yblt+x—ielyubp(x))a(x)u[aa da b st 61]= 5 ( )u[a’ aa b 62’ 0'1]

t [Jb(2)ula, @, b, 05, 0,1=4"2 ab e )u[a @, b, oy 01—

- (-2' /l)hel SP(a(z)ha(z))u[a, é, b: Oy, 0'1]-

These equations can be solved to give

ula, &, b, 05, 0] = 3 exp {e [ord*s LT} (2)
with
L{§]= — 7 E(E}{rdu+ 2 —ie, b, (88 + 57308 T 6(E).  (3)

It;must be noted that (3) has the form of the Lagrangian density for
the electromagnetic field 4,=5,/A’ and the spinor field py=a/i with
the charge e=ed'. Since Ulo,, 04, 7=0,J=0]=1, we obtain N as

.N=J-6a-l éa 8b1 o 6b4 u[d, ﬁ, b, 0'2, 0'1]. (4)

By substituting the generating operator (1) with (2) and (4) into
(18.9) can be obtained the many-body propagators.

NOTE ADDED IN PROOF, 2

The relation (18.74) says that the renormalisation factor Z is, in
general, positive when the interaction Hamiltonian is hermitian. On
the 6ther hand, we have pointed out in Example 5 of Ch. XIII that
Zy<1 for the one-photon-propagator (UmEzawa and KamrrvcHr,



352 NOTES ADDED IN PROOF

[1951]). The latter feature has been extended to the renormalisation
faotors in general cases (Kirrmwn [1952], LEEMANN [1954]). As an
example, we shall consider & spinless field U(z). The one-body-
propagator of this field can be derived in a way similar to that of the
electro-magnetic field and is (cf. (18.172))

G(z, 2')=23(P[U (), U*(a')])o (8)

This is the renormalised propagator when A*=1/Z (cf. § 7). Taking
advantage of the causality condition (cf. §2, Ch. VIII), Lehmann
proved that the propagator can be written in the form

Gz, 2') =} | do®o(a®)A y(e, &', ) (8)

Here Ay(z, 2, &) is the A p-function for the mass «. Then, from (8.51)
and (8.47) we obtain the relation
n_ 1 1 -
G(x,x)=mjd4k(—i2i’°)> o(—k?) e, (7)
By introducing the eigenstates ®(k) of the total energy-momentum

operator in the source free representation, we can expand the state
U*(x)®, in the following form (cf. (18.7)):

U*(x)Py= % D (k)eFu®s, (8)

By comparing (7) with (8) under the condition ¢>%, we see that
Zp(a?) is the probability of the states @(k) with k2= —u2:

Zg(a?) =3 D*(k) D(k), 9

where the summation is taken over all states with k%= —x2 The
relation (9) says that o(x?) is positive definite when the interaction
Hamiltonian is hermitian. In summation (8) the ome-particle state
appears with the observable mdss m and many-particles states with
k?>c? (cf. § 4). According to the discussions (in § 7) for the normali-
sation of the propagation function of the free dressed particle, the -
one-particle state should appear with the unit normalisation:

e(a®) =8(a? —m?) + o (%) (10)
with :
o(x®)=0 for a®<c?.

The relations (9) and (11) show that the renormalisation factor Z is
the probal ility of the one-particle state (with the mass m) appearing
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in the state (8). On the other hand, the canonical commutation
relation leads to

lim (262 )e— L0, #hee) =5 ([S U0, U (x, t)])o) "
. (11
=1 -2,— d(x—x'). 5

To substitute (6) into the left hand side of (11) gives the relation
Z [ da? o(x2)=1. ) (12)

This with (10) says that Z<1, when the interaction Hamiltonian is
hermitian. Thus, in this case, we have

0<Z<1. (13)

In a similar way we can prove the relation (13) for the spinor fields
and the photon field. There is an exceptional case; the renormalisation
factors of the charged fields depend on the gauge of the electromagnetic
field and therefore do not necessarily satisfy (13).

We shall further give a useful theorem. This is that, by writing
the renormalised propagator G(k) (for the scalar field) or G(p) (for
the spinor field) as

1
G(k) == AF(]C) ZR( ——k"‘,gl)-l-'iZI( ___kz,gl)’ (14)
1
@) = Se(0) gr—mpan Tz = (15)

we can prove that

lim Z5(A2, g,) =2 (16a)
A0

ZX(oa2,¢g,) =0 for x<e (17a)
lim Z®(A, ¢;) =Z (16b)
A-»c0

ZN &, g,) =0 for x<c (17b)

The constant Z is the renormalisation factor, Z¥ and Z7 are [real
functions and ¢, is the renormalised coupling constant. When the
many-particles states @(k) (—k?>c?) are of positive probabilities
(i.e. o(a2) > 0), comparison of the imaginary part of (14) with that of
(6) leads to the faect that the function Z' is positive definite. It can
be shown that the Z®(A42 ¢,) and Z*(A, g,) are the renormalisation
factors obtained by a cut-off method (with the cut-off energy A).



354 NOTES ADDED IN PROOF

The ZT comes from the contributions of displaced poles in the self-
energy diagrams (or interference effects of many-particles processes
1o the one-particle process, c¢f. Example 1, Ch. XIIT and § 2, Ch. XIV)
and therefore is of no divergencies. It should be noted that theorems
(14), (15), (16a,d) hold only in cases of interactions of the lst kind
{cf. Ch. XV).

NoTeE ADDED IN PROOF, 3

We shall develop discussions here as an addendum to Ch. I. They
may also be regarded as addenda to Ch. XIV and Ch. XVIII.

Although the renormalisation theory has made a great success in
the realm of quantum electrodynamics, there still remain open
questions as to the internal conmsistency and the prediction as to
high-energy phenomena. It is assumed in the renormalisation theory
that the renormalised coupling constant g, is equal to the observed
value g, of the coupling constant. Suppose that, when the unrenor-
malised coupling constant g runs over all possible values for which
the interaction Hamiltonian is hermitian, the renormalised coupling
constant g;, being a function of ¢, runs aver a certain domain N(g,).
This domain is called the normal zone. If g, does not lie in the normal
zone, to regard ¢, as ¢, is equivalent to assume the interaction
Hamiltonian to be non-hermitian. Such a situation happened in the
Lee example. There, N(g,) contains only ¢;=0 and g, being out of
N(g,) leads to appearance of the negative-probability state (KALLEN
and Pavix [1955]). Quite generally, the renormalisation factor Z is
a function Z(g;) of g;. However, in the renormalisation theory, g, in
Z(g,) is replaced by g, It is now clear that, when the condition (13)
in the preceding note is not fulfilled by Z(g,,), e.g2. Z{g,) <0, g, is out
of N(g,). In this connection a question immediately arises as to whether
the eoupling constants realized in nature really lie in their normal
zones. In the quantum electrodynamics, it has been shown in various
ways that the observed value of the electric charge, e, =1/}137, is
out of its normal zone N(e,) (LANDAU ef al. [1954], Unmzawa and '
Kameruont [1956], Tayror [1956]). In the Lee example, it was shown
that there exists a critical cut-off energy 1; g,, can lie in N(g,) and
the renormalisation factor can be positive only when we disregard
effects of states with energy larger than A. Similar critical constants
4 also appear in the quantum electrodynamics. CHEW and Low [1955]
made a reliable estimation of the coupling constant of the meson-
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nucleon interaction in problems of low energy meson-nucleon
scattering and photon-meson production phenomena and obtained
the result g%,=0.08. In their analysis, use is made of the cut-off
method; the cut-off energy is about 5m(w); (m(z): the m-meson
mass). In this theory it seems that the critical cut-off constant 1
is about the nucleon mass. This 1 is fortunately not smaller than
the cut-off energy used in calculations.

A peculiar feature of cases where g, is out of N(g,) is appearance
of states of negative probabilities. However, it is clear that the latter
states never appear in observations. Thus, it seems better to gearch
for observable peculiarities that appear in cases where g, does not
lie in the normal zone. To do this it may be useful to remember the
fact that all transition matrix elements are built with the renormalised
constants g, and with the renormalised propagators G(g;) and vertices
I'(g;)- In the renormalisation theory, g, is replaced by g, Therefore,
it is importent to find essential differences between G{gy) With g
in N{g,) and the one with g, out of N(g,). Such a difference really
appears in the high energy region. When g is out of N(g,) and the
renormalisation factor is negative, the function Z2(—k?, g,,), defined
by (14)} in the preceding note, turns out to be negative in the high
energy domain — %2> 12, where 1 is the critical cut-off constant. This
can be easily found from the fact that Z&(A42, g,,) is the renormalisation
factor obtained by the cut-off method with the cut-off energy A.
The sign of Z® is important in problems of high energy phenocmena.
In fact, it can be shown that the sign of the scattering phase shift
in the Lee Example depends essentially on that of Z®. Furthermore,
in quantum electrodynamics, the Coulomb potential in the
renormalisation theory turns out to be attractive in the scattering
processes of charged particles with energy transfer larger than A.

When g, is out of the normal zone, it may be reasonable to expect
that some physical effects have been out of consideration and that to
.take account of such effects may change essentially the renormalised
propagator in the high energy domain (—%2>A12). Since interactions
due to particles with masses larger than 1 may affect the propagator
G(k) with —%2>72, it may be of importance to examine how the
effects of the heavy particles have influences on the normal zone
N(gy). The critical [constant A] in quantum electrodynamics is
about the value of m exp (3z x 137) ~ 10*m (m: the electron mass).
This is much larger than any of the masses of known particles. There-
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fore, it seems that the failure of quantum electrodynamics can never
be removed taking into account effects of other fields, if they are
subject to interactions of the first kind. The final solution may there-
fore be obtained by considering the structure of space-time itself or
by introducing a new fundamental length. We can expect that the
fundamental length may be introduced into quantum electrodynamics
through the intermediary of interactions of the second kind (cf. Ch. XV)
in which the electron participates, that is, the Fermi interaction
(¢ —e decay, B-decay etc.) and the gravitational interaction. From
the consideration of order of magnitude they are supposed to be
effective in the energy regions > 5 x 105m and > 10 x 102 m,
respectively. As these values are much larger than any of the masses of
known particles and are small in comparison with the critical cut-off
value A a 102 m, their contribution may play an essential role in
the discussion of the normal zone of the electric charge.

In the meson theory, we may expect that A is about the nucleon
mass and therefore that the renormalisation theory for the system
consisting only of meson and nucleon will immediately lead to contra-
dictions in the observable energy region. The renormalised propagators
of the z-meson and the nucleon for high energy-momenta depend on
effects due to heavy mesons and hyperons, and therefore we should
carefully take into account the latter effects in order to obtain the
normal zone for the meson-nucleon interaction.

It was pointed out in Ch. I that-the fundamental problems in the
quantum field theory, e.g. problems of divergencies, mass and coupling
values of particles, limit of applicability of the theory and structure
of the! particles] ete., have found the realistic footing for their
further investigations in the observable effects of the proper field,
which are estimated by the renormalisation theory. We now see that
observed values of coupling constants should be limited to their
normal zones and that the high energy behaviour of renormalised
fields is important for further clarification of the fundamental
problems.

As was pointed out before, the low energy meson-nucleon phenomena,
have been analysed to give low energy meson-nucleon interaction.
The analysis of the nuclear potential has also made great progress;
it has been confirmed that the present meson theory, in the 2nd
and 4th order approximations of the perturbation theory, can predict
the properties of the long-range part (range > 0.6/m(x)) of the nuclear
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potential (TaxETaw: ef al. [1952], [1954]). The Brookhaven-cos-
motron experiment (WALKER et al. [1954], FowiER et al. [1954)]
has succeeded to obtain the multiple production of mesons and found
a peculiar angular distribution of produced mesons. It is clearly
important to construct a synthetical view to explain both low
energy and high energy meson-nucleon phenomena. Existence of
the negative proton has been confirmed by the Berkeley-accelerator
experiment (1956). This is in harmony with the present theory where
charged particles are always assumed to exist in positive and negative
forms. The Berkeley-bevatron experiment (CHEUPP, GOLDHABER ¢t al.
[1955]) succeeded to obtain the beam of K-particles. This will stimulate
the study of heavy mesons to elarify their properties.
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