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PREFACE

This book is a sequel to my Electricity and Magnetism,
2nd ed., (Electret Scientific, Star City, 1989) and Causality,
Electromagnetic Induction, and Gravitation, (Electret Scientific,
Star City, 1992). It is a result of a further exploration of the
classical theory of fields in search of heretofore overlooked
relations between physical quantities and heretofore overlooked
applications of the theory. The book is divided into two parts. The
first part, Chapters 1 to 5, presents the fundamentals of the theory
of electromagnetic retardation with emphasis on recently
discovered relations and recently developed mathematical
techniques. The second part, Chapters 6 to 11, presents the
fundamentals of the theory of relativity based entirely on the
theory of electromagnetic retardation developed in the first part.

Electromagnetic retardation is as yet a fairly obscure concept,
and therefore an explanation of what it is and why a book needs
to be written about it is in order.

Electric and magnetic fields propagate with finite velocity.
Therefore there always is a time delay before a change in
electromagnetic conditions initiated at a point of space can
produce an effect at any other point of space. This time delay is
called electromagnetic retardation. Recent studies have shown that
electromagnetic retardation is of overriding importance for the
general electromagnetic theory and, by extension, for the entire
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classical theory of fields. We now know that electromagnetic
retardation manifests itself in many different ways including, but
not limited to, electromagnetic cause-and-effect relations,
electromagnetic waves generated by oscillating electric charges
and currents, electromagnetic fields and potentials of time-
dependent charge and current distributions, electromagnetic fields
of moving charge distributions, mechanical relations between
time-dependent or moving charges and currents, dynamics of
atomic systems, time relations in moving electromagnetic systems,
and the visual appearance of moving bodies. Perhaps the most
important recently discovered aspect of the now evolving theory
of electromagnetic retardation is that this theory leads to, and
duplicates, many electromagnetic relations that are customarily
considered to constitute consequences of relativistic
electrodynamics. In fact, it is now clear that there exists an
intimate relation between the theory of electromagnetic retardation
and the theory of relativity. Obviously then, the phenomenon of
electromagnetic retardation and its theoretical representation must
be thoroughly understood and investigated.

In contrast with the theory of electromagnetic retardation, the
theory of relativity is fairly familiar. However, as far as its
scientific essence is concerned, the theory of relativity means
different things to different people. It is important therefore to
give a clear definition of the expression "theory of relativity" as
it is used in this book.

In this book, "theory of relativity" (or "relativity theory," or
simply "relativity") is used as a collective term for the body of
equations, methods, and techniques whereby physical quantities
measured in one inertial frame of reference can be correlated with
physical quantities measured in any other inertial frame of
reference.

As already mentioned, there exists an intimate relation
between the theory of electromagnetic retardation and the theory
of relativity. On the basis of this relation, all the fundamental
equations of the theory of relativity, including equations of
relativistic electrodynamics and relativistic mechanics, are derived
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PREFACE vii

in Chapters 6 to 8 in a natural and direct way from equations of
the theory of electromagnetic retardation without any postulates,
conjectures, or hypotheses. As a result, Maxwellian electro-
magnetism, electromagnetic retardation, and the theory of
relativity are united in this book into one simple, clear, and
harmonious theory of electromagnetic phenomena and of
mechanical interactions between moving bodies.

An important consequence of the theory of relativity
developed in the above manner is the revelation of certain basic
errors in the interpretation and use of Einstein’s special relativity
theory. The nature of these errors and the ways to avoid them are
explained in Chapter 9.

One of the most controversial elements of Einstein’s special
relativity theory is his idea of universal kinematic time dilation,
according to which the rate of all moving physical and biological
"clocks" is uniformly dilated in consequence of nothing other than
the relative motion of the clocks. As is shown in Chapter 10,
moving elementary electromagnetic clocks indeed run slower than
the same stationary clocks, but their slower rate is a consequence
of dynamic interactions and depends on both the velocity and the
construction of the clocks.

An extension of the theory of relativity, as it is developed in
this book, leads to a covariant theory of gravitation analogous to
relativistic electrodynamics. This extension is presented in Chapter
11, the concluding chapter of the book.

Although the book presents the results of original research, it
is written in the style of a textbook and contains numerous
illustrative examples demonstrating various applications of the
theory developed in the book. Therefore it can be used not only
for independent reading, but also as a supplementary textbook in
courses on electromagnetic theory and on the theory of relativity.

I am pleased to acknowledge with gratitude a stimulating
exchange of correspondence with P. Hillion, J. J. Smulsky, V. N.
Strel’tsov, and W. E. V. Rosser on some aspects of the theory of
relativity, and with M. A. Heald on the subject of electromagnetic
retardation.
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I am very grateful to S. W. Durland and D. K. Walker for
carefully reading the manuscript and for their most useful
suggestions and recommendations.

Special thanks are due to Yu. G. Kosarev who believes that
retardation is a universal phenomenon that should be properly
treated in a new branch of physics which he proposes to call
"retardics." His comments are highly appreciated.

Finally, I am very grateful to my wife Valentina for
proofreading the numerous versions of the manuscript and for
otherwise helping me to make the book ready for publication.

Oleg D. Jefimenko
April 14, 1997

PREFACE TO
THE SECOND EDITION

The second edition of this book is intended to update the
presentation of the subject matter and to correct the misprints and
other errors that appeared in the first edition. Sections 8-2, 9-4,
and 11-3 have been rewritten. Two new Appendixes have been
added. Particularly important is Appendix 3, containing an analysis
of the physical nature of electric and magnetic forces and
presenting a novel interpretation of the "near-action” mechanism
of electromagnetic interactions.

I am pleased to express my gratitude to my wife Valentina for
her assistance in the preparation of this edition of the book.

Oleg D. Jefimenko
March 31, 2004
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RETARDED INTEGRALS
AND OPERATIONS WITH
RETARDED QUANTITIES

The fundamental laws of electromagnetism are represented
mathematically by Maxwell’s electromagnetic equations. The
general solution of these equations for electromagnetic fields in a
vacuum is expressed in terms of "retarded" field integrals which
constitute the basic mathematical element in the general theory of
time-dependent  electromagnetic  phenomena. A thorough
understanding of the properties and use of retarded integrals is
therefore indispensable for formulation and application of the
theory. In this chapter we shall acquaint ourselves with retarded
integrals and with operations involving quantities and expressions
appearing in these integrals.

1-1. Vector Wave Fields and Retarded Integrals'

The vector wave field is the field of a vector V which satisfies
the inhomogeneous wave equation (also known as the general
wave equation)

2
vxvxV+L19Y gy, (1-1.1)
c? 01?2

where K is some vector function of space and time which, for
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simplicity, will be assumed here to be zero outside a finite region
of space (this differential equation constitutes a mathematical
expression for a wave-like disturbance that propagates in space
with the speed c).

An important property of a vector wave field is that this field
can be represented by the retarded field integral and retarded
potentials, as explained in the following theorem.

The Wave Field Theorem. A vector field V satisfying Eq. (1-
1.1) and vanishing at infinity can be represented by the retarded
integral

V=- ijwdva (1-1.2)
4w r

where the brackets are the "retardation symbol," to be explained
below, and r is the distance from the source point P'(x', y', 2')
where the volume element of integration, dV’, is located to the
field point P(x, y, z) where V is being determined; the primed
operator V' operates on the source-point coordinates only. (Note:
The integration in the above integral is over all space; except
when noted otherwise, the integration in all integrals that follow
is also over all space.)

The derivation of Eq. (1-1.2) is mostly of historical interest
and will not be presented here.? In lieu of the derivation we shall
show in Example 1-2.3 that Eq. (1-1.1) is satisfied by V given by
Eq. (1-1.2).

Corollary 1. A vector field V satisfying Eq. (1-1.1), vanishing
at infinity, and having zero divergence outside a finite region of
space can be represented by the retarded scalar potential ¢ and the
retarded vector potential A as

V=-Vp+VXxA, (1-1.3)

with ¢ and A given by
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V-V +K
o = %][__r;lldw 0, (1-1.4)
and
A= L[y A (1-1.5)
47l 1 0

where K, and K, are the ordinary potentials of the function K of
Eq. (1-1.1) (so that K = — VK, + V X K,), both vanishing at
infinity, and ¢, and A, are arbitrary constants.

Corollary II. A vector field V satisfying Eq. (1-1.1),
vanishing at infinity, and having zero divergence outside a finite
region of space can be represented by the retarded scalar potential
¢ and the retarded vector W as

V=-Vo+W, (1-1.6)
with
/.
o - L] V- Vgy: + o, 1-1.7)
4T r
and
w=-L[Bayow, (1-1.8)
Y U

where ¢, and W, are arbitrary constants. The proof of these
corollaries is presented in Examples 1-2.1 and 1-2.2.

The retardation symbol [ ] indicates a special space and time
dependence of the quantities to which it is applied and is defined
by the identity

1 = fx'.y'.2' t-rlo), (1-1.9)

where ¢ is the time for which the retarded integrals are evaluated.
Thus the value of a function placed between the retardation
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symbol [ ] is not that which the function has at the time ¢ for
which the integrals are evaluated, but that which it had at some
earlier time ¢t' = ¢t — r/c, or, as one says, the function is retarded.

The integrals of retarded quantities, or refarded integrals, are
mathematical expressions reflecting the phenomenon of "final
signal speed" - that is, the fact that a certain time r/c must elapse
before the results of some event at the point x', y’, z' can produce
an effect at the point x, y, z separated from the point x’, y’, z' by
a distance r.

Retarded integrals are closely associated with the principle of
causality. According to this principle, all present phenomena are
exclusively determined by past events. Therefore equations
depicting causal relations between physical phenomena must, in
general, be equations where a present-time quantity (the effect)
relates to one or more quantities (causes) that existed at some
previous time. As we shall presently see, in electromagnetic
theory retarded integrals are "causal equations" expressing electric
and magnetic fields and potentials in terms of their causative
sources: the electric charge density p and the electric current
density J.?

1-2. Mathematical Operations with Retarded Quantities

Mathematical manipulations with retarded integrals frequently
require applications of the operator V to retarded quantities. When
applying V to such functions, one should take into account that
they depend on space coordinates not only explicitly, but also
implicitly through

r={@-xy+@ -y P+ " (1-2.1)
appearing in the retarded time ¢’ ~ r/c. One also should take into

account that V may operate with respect to x, y, z coordinates as
well as with respect to x’, y’, z’ coordinates. Finally, one should
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take into account that a V operation may be performed upon a
retarded quantity taken at the instant # = constant as well as at the
instant ' = t — r/c = constant (the latter operation is identical
with the corresponding operation upon the same unretarded
quantity, combined with the subsequent "retardation" of the
resulting expression by replacing in this expression ¢ by t — r/c).

Let us designate an unspecified scalar or vector function fix’,
y', 7', f), together with an appropriate multiplication sign, if
needed, by X. To avoid ambiguities with V operations involving
X, we shall employ special notations, as follows. If an operation
is to be performed with respect to primed coordinates, we shall
use the primed operator V' in writing this operation, and we shall
use the ordinary operator V for designating operations with
respect to unprimed coordinates. If an operation upon a retarded
X is to be performed considering the retarded time ¢ — r/c as
constant, we shall denote the operation as [VX] or [V'X], placing
both the operator and the function upon which it operates between
the retardation brackets, and we shall use the ordinary notations
VI[X] or V'[X] for operations upon retarded functions when these
operations are to be performed considering the present time f,
rather than ¢ — r/c, as constant.

We shall frequently use expressions and operations involving
the radius vector connecting a volume element dV' of an electric
charge or current (the source point x', y’, z') with the point of
observation (the field point x, y, z). If this radius vector is
directed toward the field point, we shall designate it as r, if it is
directed toward the source point, we shall designate it as r’.
Likewise, we shall designate the corresponding unit vectors as r,
and r',. Observe that sincer = (x —x)i + (y — y)j + (z —
ZDkandr' = (x' —x)i+ (' — yj + (@' — 2k, the vector r'
= —r, so that the result of any operation upon r’ or r’ with V or
V' is the negative of the result of the same operation upon r or 7,
and the result of any operation upon r, r’, r or ' with V is the
negative of the result of the same operation with V'.

!



8 CHAPTER 1 RETARDED INTEGRALS

We shall now derive several useful operational equations for
retarded functions. Let us consider the operation a[X])/dx’ | ;. . ,»
where [X] is some retarded scalar or vector function.* Taking into
account that retarded functions depend on x’, y’, and z’ not only
directly, but also indirectly through r, we can write

oX]|  _ aIX] .0

oIX] OIX] _0X] L8@-rlo) (10
ox’ Iy ax! ly2lu-ne O(t-rlc)

xl’yl’zl ax/

We can simplify the last expression by noting that

% T [ﬁ)ﬁ] , (1-2.3)
a@-ric)lxy.z Latlxy.o
and that, by Eq. (1-2.1),
a-ric)y _ x-x' _ cosoz’ 1-2.4)
ox’ cr c

where cos « is the direction cosine of vector r with respect to the
x axis (Fig. 1.1). We then obtain

a[X] _ 0[X] . cosa[OX]

—_— —_ . (1-2.5)
ax’ lyze  ax! lyzu-ne ¢ Lot

x’,y’,z’

Analogous expressions can be obtained also for d[X]/dy’ | .. .,
and for 8[X)/dz' | ., ,- If we now multiply these expressions by
the unit vectors i, j, and k, respectively, and then add them
together, we obtain the following operational equation

X] = [v'X] + e[¥X 1-2.6

V/[X] = [V'X] ?[W], (1-2.6)
where
o= I _ia-x) +jo-y) + k@z-2)

Loy r (1-2.7)

icosae + jcosB + kcosy

is the unit vector directed along r toward the point x, y, z (cos 3
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A -x:}.’;z

PAPYY e |

x)?)’z a\

=Y

V4

Fig. 1.1 The direction cosine of r with respect to the x axis is coso
= (x — x’)/r.

and cos <y are the direction cosines of r with respect to the y and
Z axis, respectively).

In a similar manner we can obtain the corresponding equation
for the unprimed V (assuming that X does not explicitly depend
onx,Yy,2) rax

VIX] = - _z[_]. (1-2.8)
clor

Combining Egs. (1-2.8) and (1-2.6), we obtain an equation
correlating one unprimed V operation with two primed V
operations

[V/X] = V[X] + V/[X]. (1-2.9)

Differentiating V{[X]/r} and using Eq. (1-2.9), we obtain the

correlation

X o nX v | ndX] | vrx) VIX] (1210
r

r r2 r r2 r

and, combining the first and the last term of the last part of Eq.
(1-2.10), we obtain a useful equation

VXl v X, v XT 1-2.11)
r r r



10 CHAPTER 1 RETARDED INTEGRALS

Another useful equation is obtained by eliminating V[X] from
the middle part of Eq. (1-2.10) by means of Eq. (1-2.8):

vXl_ o nIX1 Tyox) (1-2.12)
r r? rcl ot
Finally we note that, since
aX] _ d[X]

, (1-2.13)

a(t-ric) ot

we have, by Egs. (1-2.3) and (1-2.13),
[%] - 9X] (1-2.14)

ot ot

v

Example 1-2.1 Prove Corollary I to the wave field theorem,
assuming that V - V, K|, and K, are zero outside a finite region of
space.

Expressing in Eq. (1-1.2) Kas K = — VK, + V x K, and
using Eq. (1-2.11), we have
v - V) -
V=-LJ[V(V V) K1y
4T r
V/(V! - V)+V'K -V’ x
- LJ[ V- N+VE Kl gy (1-2.15)
4 r
- - _lfvwdw —_I__IV’M(W’
47 r 4T r
. _I_IVx[_KZ]dV’ + _I_Jv' « Iy
4T r 4T r

The second and the fourth integrals of the last expression can
be transformed into surface integrals by using vector identities (V-
20) and (V-21) (see Appendix for a list of vector identities). But
since, by supposition V + V, K|, and K, are zero outside a finite
region of space, while the surface integrals are taken over all space,
the integrals vanish. We thus have
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V/ «V+K
V=-1[V[ + ‘]dV’+1

1 _[Vx K v -2.16)
4T r T r

Factoring V out from under the integral signs (we can do so
because the integration is with respect to primed coordinates, while
V operates upon the unprimed coordinates) and designating the
resulting integrals as ¢ — ¢, and A — A,, we obtain Corollary I to
the wave field theorem.

Example 1-2.2 Prove Corollary II to the wave field theorem.
As in the preceding example, we have

1ol .
v-- L[FC VR - Ly Vg
47r r 4T

-
- Lw [V - V1 1, LI (1-2.17)
4T r 4r ) r

The second integral of the last expression is, as in Example 1-2.1,
zero. We thus have

41r r 47r r

T V<47r.I v r ] dV,) 417rl—[$dw'

(1-2.18)

Designating the first integral as ¢ — ¢, and the second integral
as W — W, we obtain Corollary II to the wave field theorem.

Example 1-2.3 Show that V given by Eq. (1-1.2) satisfies Eq. (1-
1.1)
Using vector identity (V-16), we can rewrite Eq. (1-1.1) as

VIV - 12‘;" VV-V)-K =Z, (1-2.19)
&

c

where we have denoted V(V - V) — K as Z for simplicity.
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Let us now divide the volume of integration in Eq. (1-1.2) into
two parts: Vol, and Vol,. Let Vol, be a very small region close to
the point of observation, so that within this region the retardation
can be neglected. We then have from Eq. (1-1.2)

V. - - _1_I Z 4y, (1-2.20)
1 47 ) vol1 p

where the integral is not retarded. But this integral represents the
well-known solution of the Poisson equation’®

vV, = Z. (1-2.21)

The contribution of Vol; to V?V in Eq. (1-2.19) is therefore given
by Eq. (1-2.21).

Let us now determine the contribution of Vol, to V?V in Eq. (1-
2.19). From Eq. (1-1.2) we have

vy =v2(—i[ [_Z]dV')=—iI vy 1222
2 4 Jvo2 47 ) Vo2 r

where we have placed V? under the integral sign, because V?
operates upon the unprimed coordinates, while the integration is
with respect to primed coordinates.

We can evaluate the last integral in Eq. (1-2.22) by integrating,
in turn, the x, y, and z components of the integrand. Taking into
account that V? can be expressed as V -+ V, using Egs. (1-2.12),
(1-2.8), and (1-2.14), and remembering that V « r = 3, V(1/r") =
— (/P*Hr, and r * r, = r, we find, after somewhat lengthy but
very simple calculations®

2
vey, = - L[ Ty (1-2.23)
* 4 J vol2 e 29t

Since similar equation can be obtained also for the y and z
components of V,, Eq. (1-2.22) becomes
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V2V, =

2 P[Z] -
\ ﬂj T8 av. (1-2.24)

vol2 ye29t?

Factoring out %/c*0¢*, we have

2
vV, = L(— ij _@dv'), (1-2.25)
2 c20t? 41 ) vei2 r

or, by Eq. (1-1.2), remembering that Z = V(V - V) — K,

v
viv, = __2. (1-2.26)
i
The contribution of Vol, to V?V in Eq. (1-2.19) is therefore given
by Eq. (1-2.26).
Adding now Egs. (1-2.21) and (1-2.26), we obtain

Y
: + 7. (1-2.27)

2 -
VAV, + V) = pErY

Since Vol, can be made as small as we please compared to Vol,,
8°V,/c*07 can likewise be made as small as we please compared to
8°V,/c*0F. Therefore, assuming that Vol, < Vol,, we can add
0°V,/3d7 to the right side of Eq. (1-2.27) without affecting the
equation. We then have

v vy -2V OV, @ 1-2.28
\% (V1+ 2)- 626t2+c26t2+ = czatz(V1+V2)+Z, (1-2.28)
or
2
VAV, + V) - c?aﬁ(v‘ +V) =2, (1229

so that V, + V,, and therefore V given by Eq. (1-1.2) does indeed

satisfy Eq. (1-1.1). N
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RETARDED INTEGRALS FOR
ELECTROMAGNETIC FIELDS
AND POTENTIALS

A basic problem in electromagnetic theory is the obtaining
of equations expressing electric and magnetic fields and potentials
in terms of their causative sources: electric charges and currents.
In the case of time-dependent systems, the most general equations
expressing electric and magnetic fields and potentials in terms of
charges and currents involve retarded integrals. Electric and
magnetic fields and potentials expressed in terms of retarded
integrals are called retarded electric and magnetic fields and
potentials. In this chapter we shall derive several types of
equations for retarded fields and potentials of time-dependent
charge and current distributions and shall give examples of the use
of these equations.

2-1. Maxwell’s Equations and the Wave Field Theorem

The basic electromagnetic field laws are represented by four
Maxwell’s equations which, in their differential form, are!

V-D =p 2-1.1)

V-B

0 2-1.2)

15
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VXE - - B (2-1.3)
a7
and
VxH=J+%, (2-1.4)

where E is the electric field vector, D is the electric displacement
vector, H is the magnetic field vector, B is the magnetic flux den-
sity vector, J is the electric current density vector, and p is the
electric charge density. For fields in a vacuum (the only fields
with which we shall be concerned in this book), Maxwell’s
equations are supplemented by the two constitutive equations

D = ¢E 2-1.5)
and

B = pH, (2-1.6)
where ¢, is the permittivity of space and p, is the permeability of
space. (The names and designations of electromagnetic quantities
used in this book are the same as those used in Ref. 1.)

In Maxwell’s equations electric and magnetic fields are linked
together in an intricate manner, and neither field is explicitly
represented in terms of its sources. However, with the help of the
vector wave field theorem introduced in Section 1.1 we can
express each field in terms of its causative sources. To do so, we
shall first convert Egs. (2-1.1) - (2-1.4) into two inhomogeneous
wave equations, thereby separating the two fields one from the
other.

Taking the curl of Eq. (2-1.3) and using Eq. (2-1.6), we have

a a
VXVXE=-_VxB=-4_VxH. 2-1.7
ot Fog; ( )

Eliminating V X H by means of Eq. (2-1.4) and using Eq. (2-
1.5), we obtain
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aJ D ’E
VXVXE = ~Rogs —;,Lo_a_lE = 'F‘o% —soﬁ‘o%ﬁ- (2-1.8)

Rearranging terms and replacing &u, by 1/¢*, we finally obtain

1 0’E aJ
V><V><E+?W =—pOE. 2-1.9)

Taking now the curl of Eq. (2-1.4) and using Eq. (2-1.5), we
have

VXVxH=VxJ+2VxD=VxJ+gIVxE. (2110

Eliminating V X E by means of Eq. (2-1.3) and using Eq. (2-
1.6), we obtain

VX UxH=VxJ -5, 5B cvxI e, 0. @11
Tar* ar?
Rearranging terms and replacing gqu, by 1/c?, we finally obtain

°H

—r VX (2-1.12)

VXVxH + L
C2

Equations (2-1.9) and (2-1.12) are the general electromagnetic
wave equations for the electric and magnetic fields, respectively.
Applying Eq. (1-1.2) (the vector wave field theorem) to Egs. (2-
1.9) and (2-1.12), we can write for the electric field

[V’ V' E)+p— ZJ

E - - __[ tav. (2-1.13)
4T r

and for the magnetic field
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b J[v/(v'-H)—v'xJ

il av’, (2-1.14)
47

P
where E and H are determined for the instant ¢, and the quantities
in the brackets are taken at the corresponding retarded time ¢’ =
t — ric (c is the velocity of light in a vacuum).

2-2. Solution of Maxwell’s Equations in Termns of Retarded
Integrals

According to Egs. (2-1.1) and (2-1.5), V « E = p/g,, and

according to Eqs. (2-1.2) and (2-1.6), V - H = 0. Applying these
relations to Eqs (2-1.13) and (2-1.14) and noting that gou, = 1/¢2,

we obtain
ry
E--_1 j av (2-2.1)
dre, r
and
!
H - [[V XN gy (2-2.2)
4T r

Equations (2-2.1) and (2-2.2) constitute solutions of
Maxwell’s equations for fields in a vacuum and represent the
electric and magnetic fields in terms of their causative sources: the
electric charge and current distributions.? Since the fields in Egs.
(2-2.1) and (2-2.2) are expressed in terms of retarded integrals,
these fields are called retarded fields.

There are several special forms into which Eqs. (2-2.1) and
(2-2.2) can be transformed. One such special form is obtained
from Egs. (2-2.1) and (2-2.2) by eliminating from them the spatial
derivatives. This can be done as follows.

Writing Eq. (2-2.1) in terms of two integrals and using vector
identity (V-33) to transform the first integral, we have
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o | U[v'p]dv, 11 aJ]dV,}

dre ) 7 ot (2-2.3)
el oo 1)

The second integral in the last expression can be transformed into
a surface integral by means of vector identity (V-20). But this
integral vanishes, because p is confined to a finite region of space,
while the surface of integration is at infinity. Transforming the
integrand in the first integral by means of vector identity (V-34)
and using r, = r/r, we then obtain for the electric field

E=_1_I{£’! la"]} avi -1 II[OJ]dV’ (2-2.4)

4me, I U3 r2cl ot 4me,c? or

Similarly, applying vector identities (V-33) and (V-21) to Eq.
(2-2.2), taking into account that there are no currents at infinity,
and using vector identity (V-34), we obtain for the magnetic field

H - 47r[ {[;” 1 [%‘H}erV’ (2-2.5)

Observe that in Eqgs. (2-2.4) and (2-2.5) the vector r is directed
toward the point of observation (the field point).

Equation (2-2.4) represents a generalization of the electrostatic
Coulomb’s field integral to time-dependent systems and reduces
to that integral in the case of time-independent fields in a vacuum.
Likewise, Eq. (2-2.5) represents a generalization of the Biot-
Savart’s integral for magnetic fields and reduces to that integral
in the case of time-independent systems.>

Another form of the field equation for E can be obtained as
follows. According to the conservation of electric charge law (the
continuity law),*
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dp
o

Therefore the contribution that dp/0t makes to the first integral in
Eq. (2-2.4) can be expressed as

/ .
IL @]rdv’ - - Jurdw. 2-2.7)
ricl ot r

=-V.J. (2-2.6)

Using now vector identity (V-30) with r, = r/r for transforming
the last integral, and using vector identity (V-8), we obtain

V' -3, (V-] - [ovon
-[ ri rdV’—J( P g r)dV’ (2-2.3)

=I(‘ [J] r[J] vl [aJ/az]r) v

r? r? ric?

Next, using vector identity (V-23), we transform the first term in
the integrand of the last integral, obtaining

J_IC:V’ - Dlgyr - f%(ﬂ}. -dS’) . HE.Z]_ V’)%dV’. (2-2.9)

r? r r

Since the integration is over all space, and since there is no
current at infinity, the surface integral in Eq. (2-2.9) vanishes.
Applying vector identity (V-4) to the integrand of the remaining
integral in Eq. (2-2.9) and remembering that a V' operation upon
r is the negative of the same V operation (see Chapter 1, p. 7),
we then have

j_r_vf gy - j[‘“ av’. (2-2.10)
c r? cr?

From Egs. (2-2.7), (2-2.8), (2-2.9), and (2-2.10), we obtain
therefore
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jr—ic[%]dv -~ [ - Eypr Loy 21

Substituting Eq. (2-2.11) into Eq. (2-2.4) and taking into account
that V'(1/7%) = 2r/r*, we finally obtain®

- 1 j[p] /
) o 2-2.12)

1 I{E-Zr.[ﬂ._r.— r [aJ]°r+ 1 _aLI_]}dV’.

dwec )\ r? r4 rclar rclof

It is important to note that although in Egs. (2-2.1)-(2-2.12)
the charge density, the current density, and their derivatives are
retarded, retardation can frequently be neglected, in which case
the above equations can be used with ordinary (unretarded) charge
density, current density, and their derivatives. Let us define the
"characteristic time" of an electromagnetic system as the time T
during which the charge density, the current density, or their
temporal derivatives experience a significant change. For
example, in the case of periodic charge and current variations, T
may be assumed to be the period of the oscillations, and in the
case of monotonously changing charges and currents, T may be
assumed to be the time during which the charge density, the
current density, or their temporal derivatives change by a factor
of two. Let us now assume that the largest linear dimensions of
the system under consideration is L. If T and L satisfy the relation

T > Llc, (2-2.13)

then no significant change occurs in the system during the time
that the electric or magnetic field signal moves across the system,
and therefore the retardation in the propagation of the electric or
magnetic fields within the system is negligible. In Section 2.5 we
shall discuss in some detail electromagnetic effects in systems to
which Eq. (2-2.13) applies.
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v

Example 2-2.1 A thin circular ring of radius a and cross-sectional
area s carries a uniformly distributed charge ¢g. At ¢ = O the ring
starts to rotate with constant angular acceleration « about its
symmetry axis which is also the x axis of rectangular coordinates
(Fig. 2.1). Find the electric and magnetic fields at a point x on the
axis for t > 0.

Fig. 2.1 Calculation of the

electric and magnetic fields

x  on the axis of a charged
ring rotating with angular
acceleration a.

The current density J created by the rotating ring is J = pv =
pwal, = patal,, where p is the charge density in the ring, w is the
angular velocity of the ring, and 6, is a unit vector in the circular
direction (right-handed with respect to x). The time derivative of J
is 0J/0t = paab,. In terms of g, the current density and the
derivative are J = (qot/27s)8, and 8J/0t = (qo/27s)0,.

To find the electric field, we can use Eq. (2-2.4). Since dJ/d¢
is in the circular direction, and since r is the same for all points of
the ring, the second integral in Eq. (2-2.4) makes no contribution
to the electric field on the axis (the contributions of any two volume
elements on the opposite ends of a diameter cancel each other).
Since the charge density does not depend on time, the contribution
of the first integral is

E=1[

P rav’, (2-2.14)
dme, ) r?

r

which is identical with the expression for the electrostatic field
produced by a stationary charge density p. The solution of Eq. (2-
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2.14) for a charged ring is well known,® and therefore we shall
reproduce it here without calculations. It is
E=-__ ¥ j (2-2.15)
4me(a® +x2)*"
To find the magnetic field, we can use Eq. (2-2.5). Expressing
[J] and [0J/07] in Eq. (2-2.5) in terms of ¢, «, s, and 0,, we have

H - LH‘J"‘(”’/% v 9 0u}xrdV/
4T 2wsrd Y ric2ws

=iH gt g 9% g . 9% 0u}xrdV’ (2-2.16)
4t ) 2qsr? ric2ws r’c2ms

- LH 9ot }erV’.
473 Qgsp3 ¥

The current formed by the ring is filamentary. Its magnitude is
I = Js = qat/2w. Since the current is filamentary, the volume
element dV' in Eq. (2-2.16) can be written as sdl’', where dl’ is a
length element along the circumference of the ring. Furthermore,
we can combine #, and dl’ into the vector dl' = dl’§,. We then
have from Eq. (2-2.16)

H - - _1_<f_[_rxdl’, (2-2.17)
4 ) p3

which is identical with the expression for the magnetic field
produced by a time-independent filamentary current /. The solution
of Eq. (2-2.17) for a ring current is well known.” It is

2
H=-_12 (2-2.18)
2((12 +x2)3/2

or, substituting I = gat/27,
2
H-__ 9% (2-2.19)
4m(a® +x%)>*"

The surprising result of this example is that neither the electric
nor the magnetic field on the axis of the rotating ring is affected by
retardation.
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Example 2-2.2 Electromagnetic waves can be generated by a
radiating "electric dipole antenna." It consists of a piece of straight
open wire which carries a current

I = I sinwt. (2-2.20)

The current in the wire is produced by cutting the wire in the
middle and connecting the two parts to a source of alternating
current. If the length / of the antenna is much smaller than the
wavelength of the generated waves, [ < A = 27c/w, the antenna is
called a "Hertzian dipole." In a Hertzian dipole the current is the
same along the entire length of the antenna. Find the magnetic and
electric fields produced by the Hertzian dipole shown in Fig. 2.2,
at a large distance r > [ from the dipole.

z T k
6 /
\ ry . .
ol ¢?’\ Fig. 2.2 Calculation of the
)

electric and magnetic fields
generated by an electric
dipole antenna. (The unit
vector ¢, is directed into
the page.)

To find the magnetic field, we can use Eq. (2-2.5). Since the
current in the antenna is filamentary, we can replace the volume
integral in this equation by a line integral (note that for a
filamentary current JdV' = Jsdl' = Idl', where s is the cross-
section area of the conductor, and dl’ is a length element vector in
the direction of J). Furthermore, since the antenna is along the z
axis, we can write Eq. (2-2.5) as

H-_L J {L’l + L "’_’]}k xrdl’. (2-2.21)
4 I\ 3 p2c0l0t
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Differentiating Eq. (2-2.20), replacing ¢ in Eq. (2-2.20) and in
its derivative by the retarded time ¢ — r/c, and substituting the
resulting expressions in Eq. (2-2.21), we then have

H=__
4T 3

1 Hlosinw(t -rlc) . I wcosw(t - r/c)}k xrdl’. (2:2.22)
r r’c

Since, by supposition, r > N = 27c/w, the first term in this
integral is much smaller than the second term and can be neglected.
Since r > I, r may be considered the same for all points of the
antenna. The integral reduces therefore to the product of the second
integrand and the length of the antenna

_ Lywcosw(t - rlc)

H kXxrl, (2-2.23)

4mric
or, in terms of the coordinates shown in Fig. 2.2,

1y (-l
_ Ifwcoswlt - ric) indg, . (2-2.24)

dTrc

To find the electric field, we can use Eq. (2-2.12). Since we
are only interested in the electric field at a large distance from the
antenna, we can neglect in Eq. (2-2.12) all terms that approach zero
at infinity faster than as 1/r. We then have

E - __1_[{1 ﬂ]-r -1 ﬂ}}dV’, (2-2.25)
4mec?) (rilon rlot

which we can write similar to Eq. (2-2.22) as

E = 1 Hr(k.r)lowcosw(t -rlc) - Elowcosw(t - r/c)}dl’.
4me c? r? r
(2-2.26)
Taking into account that kK < r = r cos ¢, and replacing the
integral, as before, by the product of the integrand and the length
of the antenna, we obtain

E (2-2.27)

_ Hjwcosw(t - r/C){rcos0 _ k)
4me rc? Vo '
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Resolving r, and 8, shown in Fig. 2.2 into components along the z
and x axes, we can easily find that

rcosf _ Kk
r

Therefore we finally have

=r,cosf - k =sindé, . (2-2.28)

E - H wcosw(t - r/c)

sindé,. (2-2.29)
4mere?

An alternative method for obtaining Eq. (2-2.29) is to apply
Maxwell’s Eq. (2-1.4) to Eq. (2-2.24) and to integrate the result
with respect to 2.}

Example 2-2.3 Another system capable of generating electro-
magnetic waves is the radiating "magnetic dipole antenna,” shown
in Fig. 2.3. It consists of a circular loop of wire carrying a current

I = I;sinwt. (2-2.30)

Assuming that the radius of the loop is a, find the electric and
magnetic fields produced by this antenna at a large distance r > A\
= 27c/w > a from it.

zAKk
7
\ ru . )
_ b,z Fig. 2.3 Calculation of the

r>>a u 4 '
) o electric and magnetic fields
— | F u  generated by a magnetic
- ; )
a dipole an'tem.m. (Tﬁe unit
- x, 1 vector ¢, is directed into the
I=I0 smawft page.)

We shall find the electric field produced by the antenna by
using Eq. (2-2.4). Assuming that the antenna has no net charge, we
only need to consider the second integral in this equation. Since the
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current in the antenna is filamentary, the volume integral can be
replaced by a line integral (see Example 2-2.2). Differentiating then
Eq. (2-2.30) and replacing ¢ in the derivative by ¢t — r/c, we can
write Eq. (2-2.4) as

E = -

1 (}; I wcosw(t - r/c) v
r

, 2-2.31

4me,c? ( )
where dl' has the same direction as the current in the loop.
Transforming the integral in Eq. (2-2.31) by means of vector
identity (V-18), factoring out the constants, and using vector
identity (V-25), we have

E - - I de’  y/ Cosw(t = 1/c)
4’;‘3002 4 (2-2.32)
= + _Oio_ I {— ﬂsinw(t -ric) + lcosw(t - r/c)}ru x ds’.
dme,c? rc r?

But w/c = 2m/\ and, by the statement of the problem, r > \.
Therefore the second term in the last integral may be neglected, and
we obtain

g b jsinw(t—r/c)

P r,xds’.  (2-2.33)
71'806 r

Now, since r > a, we can replace the integral by the product of
the integrand and the surface area of the antenna, so that

E - - 1,9 sinw(t - ric)

r,Xxkma?, (2-2.34)
4mec? r

or

_ L*a’sinw(t - rlc)

E inb¢,. (2-2.35)

3
de.cor

The magnetic field can be determined from Eq. (2-2.5). Since
we are only interested in the magnetic field at a large distance from
the antenna, we can neglect in Eq. (2-2.5) the first term in the
integrand (it is proportional to 1/7%, and for large r is negligible
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compared with the second term, which is proportional to 1/r). We
then have, replacing as before volume integration by line
integration,

1 [ lywcosw(t -r/c)
L - r

H - xdl’.  (2-2.36)

4 ric
Since r » a, r may be considered the same at all points of the
antenna, and therefore we may factor out r/r, obtaining

H - - 1 r><(J;Iowcosco(t—r/c)dl,.

= (2-2.37)
4mcer r

But the integral in Eq. (2-2.37) is the same as in Eq. (2-2.31) for
E. By Egs. (2-2.37) and (2-2.31)-(2-2.35), we then have

H - Iow2a2 sinw(t - r/c)

o 5 sinfrXx ¢,. (2-2.38)
c r

or
2,42 .

_ Lwa® sinw(t - ric)
4c? r

H = sinfd . (2-2.39)

A

2-3. Surface Integrals for Retarded Electric and Magnetic
Fields

A remarkable feature of Egs. (2-2.1) and (2-2.2) is that they
correlate the electric field with the gradient of the charge
distribution and correlate the magnetic field with the curl of the
current distribution rather than with the charge and current
distribution as such. Hence, the equations may be interpreted as
indicating that the electric and magnetic fields are associated not
with electric charges and currents, but rather with the
inhomogeneities in the distribution of charges and currents (a
homogeneous, or uniform, charge distribution has zero gradient,
and a homogeneous, or uniform, current distribution has zero
curl).



SECTION 2-3 RETARDED SURFACE INTEGRALS 29

A frequently encountered charge or current distribution is a
distribution in which the charge or current changes abruptly from
a finite value in the interior of the distribution to zero outside the
distribution. For this type of charge and current distribution, Eqgs.
(2-2.1) and (2-2.2) can be transformed into special forms that are
more convenient to use than Egs. (2-2.1) and (2-2.2) themselves.

Consider first Eq. (2-2.1). In this equation the part of the
integral involving Vp can be separated into two integrals: the
integral over the boundary layer of the charge distribution under
consideration and the integral over the interior of the charge
distribution:

1 lep]dv/z 1 [ [V/p]dV/+ 1 I [V/p]dV/ (2-31)
dme,) dme, I 4re, Im 1 '

The first integral on the right of Eq. (2-3.1) can be transformed
by using vector identity (V-33):

1 J (V01 gy - 1 J viPlgyrs 1 j v Blay:
41['80 Bl r 47(80 B.1 r 47('80 B r (2_3 2)

In Eq. (2-3.2), V in the first integral on the right operates upon
the field point coordinates only. Therefore it can be factored out
from under the integral sign. The integrand in this integral will
then be [p]/r. Since both [p] and r are finite, while the integration
is over the volume of the boundary layer whose thickness, and
therefore volume, can be assumed to be as small as we please, the
integral vanishes. The second integral on the right of Eq. (2-3.2)
can be transformed into a surface integral by using vector identity
(V-20). Equation (2-3.2) can be written therefore as

/
1 J [V/p] av’ = 1 ._[p_]dS/ , (2-3.3)
dme, ) Blwer 1 4we, ) Blayer 1

where the surface integral is extended over both surfaces (exterior
and interior) of the boundary layer.
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In Eq. (2-3.3), dS’ of the exterior surface is directed into the
space outside the charge distribution, while dS’ of the interior
surface is directed into the charge distribution. However, since
there is no charge outside the charge distribution, the integral over
the exterior surface vanishes. Since the boundary layer can be
made as thin as we please, we can make the interior surface of the
boundary layer coincide with the surface of the charge
distribution. Reversing the sign in front of the surface integral, we
can write then Eq. (2-3.3) as

R Plas, @234
B.layer

4me, r 4we, ) Boundary  r

where the integration is now over the surface of the charge

distribution, and where the surface element vector dS’ is directed,

as usual, from the charge distribution into the surrounding space.
From Egs. (2-2.1), (2-3.1), and (2-3.4) we obtain

E-_L Vlgg- L[ Telgyr- 1 jl[ﬂ}dv'.
4e, | Boundary ™y dme, dmr 4mec?) rlor

(2-3.5)
This equation becomes especially simple in the case of a constant
(uniform) charge distribution surrounded by a free space. In this
case Vp in the interior of the distribution is zero, and Eq. (2-3.5)
simplifies to

E=-_1_ Wlye - 1 jl[ﬂ]dv'. (2-3.6)
4e, ) Boundary "y 4me,cr ) rioe

Consider now Eq. (2-2.2). Just as in the case of Eq. (2-2.1),
we can separate the integral in Eq. (2-2.2) into an integral over
the boundary layer of the current distribution and an integral over
the interior of the distribution. By the same reasoning as that used
to simplify Eq. (2-3.2), we find that the integral over the
boundary layer can be written as
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= V' X3 4y - =, vxHay. @37
41 ) B.layer r 47 ) B.layer r

Transforming the integral on the right of Eq. (2-3.7) into a
surface integral by means of vector identity (V-21), and taking
into account that there is no current in the space outside the
current distribution, we obtain, just as we obtained Eq. (2-3.4),

L V' X0 gy - L Wl us, 238
41 ) B.layer r 47 J Boundary
where the integration is over the surface of the current
distribution, and the surface element vector dS' is directed from
the current distribution into the surrounding space.

Equation (2-2.2) can be written therefore as

o Bxay « L[ Xy 239
47]' Boundary r 41 ) Intenor r

For the special case of V X J = 0 in the interior of the current

distribution, Eq. (2-3.9) simplifies to

1 Wy as. (2-3.10)

H=_"
47 ) Boundary  p
v
Example 2-3.1 A thin, uniformly charged disk of charge density
p, radius a, and thickness b rotates with constant angular
acceleration « about its axis, which is also the x axis of rectangular
coordinates. The midplane of the disk coincides with the yz plane
of the coordinates, and the rotation of the disk is right-handed
relative to the x axis (Fig. 2.4). Using Egs. (2-3.6) and (2-3.9), find
the electric and magnetic fields produced by the disk at a point of
the x axis, if at ¢ = O the angular velocity of the disk is @ = 0.
The disk creates a convection current J = pv = pwRl, =
patRl,, where R is the distance from the center of the disk, and 6,
is a unit vector in the circular direction (right-handed with respect
to «). The time derivative of J is dJ/0t = paRf,. To find V' X J,



32 CHAPTER 2 RETARDED FIELDS AND POTENTIALS

Fig. 2.4 Calculation of the
electric and magnetic fields on
the axis of a charged disk
»\\-p rotating with constant angular
acceleration o.

we use the relation v = @ X R and vector identity (V-12). Taking
into account that w is not a function of coordinates, we then obtain

V' xJ=V'X(wXR)=p[w(V'-R) -(w - V)R], (2-3.11)
and since R = y'j + z'k, while v + V' = wd/dx’', we have
V' XJ =2p0 =2pat = 2pati. (2-3.12)

Examining now Eq. (2-3.6) and taking into account that dJ/0¢
is in the circular direction, we recognize that the second integral in
Eq. (2-3.6) vanishes by symmetry (see Example 2-2.1). And since
p does not depend on time, we see from Eq. (2-3.6) that the electric
field of the disk is the ordinary electrostatic field given by

E-_1! Pas = _P " 2313

4we, ) Boundary r 4me, ) Boundary

Let us now evaluate the surface integral in Eq. (2-3.13). By the
symmetry of the system, only the two flat surfaces of the disk
contribute to the field on the axis. The back surface is located at x’
= — b/2, the front surface is located at x’ = + b/2. The direction
of the surface element vector dS' is — i for the back surface and +
1 for the front surface. We have therefore

- pi Jm 27RdR + oi J“ 27 RdAR
dwe, JO [R?2+(x +b/2)?12  4mey ) 0 [R? +(x -b/2)7]?

= - PL a2 s+ BI2)2 - (x +B12) - [@® + (x ~B/2)2] + (x - bI2)}.
2¢, (2-3.14)
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Since b < x, we can use the relation

[a? +(x £ b/2)"]V* =[a? +x? £ xb]V* =(a? +x»)'?[1 +xb/2(a® +x?)].

(2-3.15)
Substituting Eq. (2-3.15) into Eq. (2-3.14), we obtain after
elementary simplifications

pbl_ X

- (2-3.16)

E:

To find the magnetic field, we use Eq. (2-3.9). Substituting [J]
= paR(t-r/c)8, and [V' X J] = 2pa(t — r/c)iinto Eq. (2-3.9), we
have

=_1_ paR(t—r/c)o %dS’ +LI 2pa(t—r/c)dV,
4 J Boundary r " 41 ) int r (2_317)

By the symmetry of the system, only the curved surface of the disk
contributes to the first integral. At this surface R = a, r = (a* +
)2, 60, x dS' = — idS’, and the surface itself is S’ = 2mab. In
the second integral r is r = (R* + x*)'? and the volume element is
dV' = b2wRdR. The magnetic field is therefore

__.paalt-(a*+x»?/c*2wab _ ipc j = (R?+x2)V%/¢?
H=- #0170 AY) 1€ o nbRAR
1 41r(a2+x2)1/2 2T (R2+x2)”2 ™
- patazb +i paa b +lpOltb(a +x2)1/2 _lpOla b (2_3. 18)
2(a*+x?)”? 2c 7c
or

H = ipabt(a? +x2)‘”[1 - (2-3.19)

o)

It is interesting to note that neither the electric nor the magnetic
field of the rotating disk is retarded, just as was the case with the
fields of the rotating ring discussed in Example 2-2.1 (see,
however, Example 2-4.2).

A
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2-4. Retarded Potentials for Electric and Magnetic Fields

The calculation of time-dependent electric and magnetic fields
can sometimes be simplified by using retarded electromagnetic
potentials.

For the calculation of magnetic fields in a vacuum it is
convenient to use the potentials defined in Corollary I of Section
1-1. Substituting in Egs. (1-1.3), (1-1.4), and (1-1.5) V = B, V
V=V --B=0, K =0,and K, = p,J [because by Egs (2-
1.12) and (1-1.1) K = V X J in the wave equation for H, so that
K = u,V X J in the wave equations for B = puH], and leaving
out, as usual, ¢, and A,, we have

B - VXA, (2-4.1)
where
A=l | B gy (2-4.2)
ar ) r

If the current is filamentary, this equation reduces to
a-tofUa, 2-4.3)
4wl r

where dl’ is a length element vector in the direction of the
current.

For the calculation of electric fields in a vacuum it is
convemnient to use the potentials defined in Corollary II of Section
1-1. Substituting in Egs. (1-1.6), (1-1.7), and (1-1.8) V = E, V
- E=V - (Dley) = pleyg, K = — pydJ/ot [see Eq. (2-1.9)], and
leaving out ¢, and W, we have

E=-Vp+W, (2-4.4)
where
o= _1_ | o] gy (2-4.5)
dmey) 1
while
_ p’o 1 aJ] /
W=-_"’|2|=|@aV’. 2-4.6
47rj rlotr ( )



SECTION 2-4 RETARDED POTENTIALS 35

Using Eq. (1-2.14) and taking into account that the integration
in Eq. (2-4.6) involves space coordinates only, we can factor out
d/0t from under the integral sign, obtaining

A YT P

Therefore, according to Eq. (2-4.2), Eq. (2-4.4) can be written as

E-=-Vp- ‘;_*‘t‘, (2-4.8)

where A is the retarded magnetic vector potential given by Eq. (2-
4.2) or Eq. (2-4.3).

The potentials ¢ and A given by Egs. (2-4.5) and (2-4.2) are
the retarded electromagnetic potentials. They represent a
generalization of the ordinary electric and magnetic potentials ¢
and A and reduce to them in the case of time-independent fields
in a vacuum.’

v
Example 2-4.1 Show that the retarded potentials ¢ and A satisfy
Lorenz’s condition

ad
V-A=- eO,LOT‘f (2-4.9)
From Egs. (2—4.5) and (1-2.14) we have
Op _ 0 [P] l[ap] /
= av’. (2-4.10
~fotoy jatr 47rjr6 ( )

But according to the continuity law, Eq. (2-2.6),

- dp = [V/. 2-4
so that

0(,0 (V' -J] ./
—__“av’. 2-4.12
" Eotogr ot 4t j r ( )

Transforming the integral in Eq. (2-4.12) by means of vector
identity (V-27), we have
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acp [J] / ) / [J] / 4
2 VeldadV +_2 |V - 224V, 2-4.13
0 ar at 47[‘.[ r 47[‘,[ r ( )

The last integral can be transformed into a surface integral by
means of the vector identity (V-19), and since there is no current at
infinity, the surface integral is zero, and so is the last integral. In
the first integral, V can be factored out from under the integral
sign. Therefore we obtain

- e, 0P "(’;;’ ver| [‘:] av’. 2-4.14)

Eliminating the last integral in Eq. (2-4.14) by means of Eq. (2-
4.2), we obtain Lorenz’s condition.

Example 2-4.2 Find the electric and magnetic fields at all points
of space far from the rotating ring described in Example 2-2.1 (Fig.

2.5).
¢ / S t.B
Fig. 2.5 Calculation of the electric

\ and magnetic fields far from the
4 '9. | charged ring rotating with constant

a, S’ angular acceleration. (The unit vector
* r>>a ¢, is directed into the page.)

At large distances from the ring, the ring constitutes a point
charge ¢, which does not depend on time. Therefore the electric
potential of the ring is the ordinary electrostatic potential

o=_-91_. (2-4.15)

Since the ring constitutes a convection line current / = got/2,
the magnetic vector potential of the ring is, by Eq. (2-4.3),
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qo(t-ric)2m d - qotp, ({) dr qauo

A - Zf‘i; ’ -1 §dv (2-4.16)

The last integral on the right of Eq. (2-4.16) is zero. The remaining
integral can be transformed into a surface integral by means of
vector identity (V-18). We then obtain

I

1 / 1
qa ”’0 dl qa ,“'0 l 2 dS / (2_4. 17)
r

where r’, is a unit vector directed from the point of observation
toward the surface element dS’.

Now, since the point of observation is far from the ring, the
integral can be replaced by the (vector) product of the integrand and
the surface area S’ of the ring, so that the vector potential is

ot
S B s - - Iy wy, (24.18)
8r2r? 872r?

where r, is a unit vector directed from the ring toward the point of
observation. The magnitude of the vector S’ is ma?, and the direction
is along the x axis. Designating the angle between r, and S’ as 6,
we then have for the vector potential

2

a“ol,
A = - L Togingg,, (2-4.19)

87r

where ¢, is a unit vector in the circular direction left-handed
relative to the x axis.
By Eq. (2-4.1), the magnetic flux density field associated with
this vector potential is
qa’orp,
8wr3

B=V XA =

(2cosfr +sindf ) (2-4.20)

(we do not reproduce the actual calculation of V X A, since it is
not important for the purpose of the present example; the
calculation is done by using the expressions for the curl of a vector
in spherical coordinates'®). It is interesting to note that this field is
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an ordinary (unretarded) field of a current dipole,'! and that on the
x axis (8 = 0) it reduces to the field found in Example 2-2.1 (for
x > a).

Let us now find the electric field of the ring. By Eq. (2-4.8),
(2-4.15), and (2-4.19), we have

a’o
B = ot * g S009, (24.21)
0

or, using g, = 1/¢,

2
E-_4Y4 T, + ‘1‘1"2‘2sin0¢u. (2-4.22)
dmeyr 8me,c’r

It is interesting to note that although the electric field of the
ring does not depend on ¢, the presence of the ¢, term makes the
field different from the electrostatic field of the ring. This term
represents the contribution of [8J/07] in Eq. (2-2.1) and represents
the "electrokinetic field" (see Section 2-5). In the case under
consideration, the electrokinetic field is circular and is directed
opposite to the current in the ring.

On the x axis, the electric field of the ring reduces to the field
found in Example 2-2.1.

A

2-5. Electromagnetic Induction

Electromagnetic induction is frequently explained as a
phenomenon in which a changing magnetic field produces an
electric field ("Faraday induction") and a changing electric field
produces a magnetic field ("Maxwell induction").

A detailed examination of the causal relations in time-
dependent electric and magnetic fields shows, however, that
neither of the two fields can create the other.> The causal
equations for electric and magnetic fields in a vacuum are the
retarded field equations discussed in Sections 2-2 and 2-3.
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According to Egs. (2-2.1), (2-2.2), (2-2.4), (2-2.5), and (2-
2.12), in time-variable systems electric and magnetic fields are
always created simultaneously, because they have a common
causative source: the changing electric current 8J/9z. Once
created, the two fields coexist from then on without any effect
upon each other. Therefore electromagnetic induction as a
phenomenon in which one of the fields creates the other is an
illusion. The illusion of the "mutual creation" arises from the fact
that in time-dependent systems the two fields always appear
prominently together, while their causative sources (the time-
variable current in particular) remain in the background.

As can be seen from Eq. (2-2.1) or from Eq. (2-2.4), a time-
variable electric current creates an electric field parallel to that
current (parallel to [8J/0r]). This field exerts an electric force on
the charges in nearby conductors thereby creating induced electric
currents in the conductors. Thus, the term "electromagnetic
induction” is actually a misnomer, since no magnetic effect is
involved in the phenomenon, and since the induced current is
caused solely by the time-variable electric current and by the
electric field produced by that current.

The electric field produced by a time-variable current differs
in two important respects from the ordinary electric field produced
by electric charges at rest: first, the field produced by a current
is directed along the current rather than along a radius vector, and
second, the field exists only as long as the current is changing in
time. Therefore the electric force caused by this field is also
different from the ordinary electric (electrostatic) force: it is
directed along the current and it lasts only as long as the current
is changing. Unlike the electrostatic force, which is always an
attraction or repulsion between electric charges, the electric force
due to a time-variable current is a dragging force: it causes
electric charges to move parallel (or anti-parallel) relative to the
direction of the current. If the time-variable current is a
convection current, then the force that this current exerts on
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neighboring charges causes them to move parallel to the
convection current, rather than toward or away from the charges
forming the convection current [the total force is, of course, given
by all the terms in Eq. (2-2.1) or Eq. (2-2.4)].

Since the electric field created by time-variable currents is
very different from all other fields encountered in electromagnetic
phenomena, a special name should be given to it. Taking into
account that the cause of this field is a motion of electric charges
(current), we may call it the electrokinetic field, and we may call
the force which this field exerts on an electric charge the
electrokinetic force.” Of course, we could simply call this field
the "induced field." However, such a name would not reflect the
special nature and properties of this field.

Let us designate the electrokinetic field by the vector E,.
From Eq. (2-2.4) we thus have

E - - __l__jl ﬂ}dva (2-5.1)
4me,c?) rlot

The electrokinetic field provides a precise and clear ex-
planation of one of the most remarkable properties of electromag-
netic induction: Lenz’s law. Consider a straight current-carrying
conductor parallel to another conductor. According to Lenz’s law,
the current induced in the second conductor is opposite to the
inducing current in the first conductor when the inducing current
is increasing, and is in the same direction as the inducing current
when the inducing current is decreasing. In the past no convincing
explanation of this effect was known. But the electrokinetic field
provides the definitive explanation of Lenz’s law: by Eq. (2-5.1),
the sign (direction) of the electrokinetic field is opposite to the
sign of the time derivative of the inducing current. When the
derivative is positive, the electrokinetic field is opposite to the
inducing current; when the derivative is negative, the
electrokinetic field is in the same direction as the inducing
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current. Since the induced current is caused by the electrokinetic
field, the direction of this field determines the direction of the
induced current: opposite to the inducing current when that
current increases (positive derivative), the same as the inducing
current when the inducing current decreases (negative derivative).

Of course, since the direction of the inducing current usually
varies from point to point in space, the ultimate direction of the
electrokinetic field and of the current that it produces is
determined, in general, by the combined effect of all the current
elements of the inducing current in the integral of Eq. (2-5.1).

The electrokinetic field also gives a simple explanation of the
fact (first noted by Faraday) that the strongest induced current is
produced between parallel conductors, whereas no induction takes
place between conductors at right angles to each other. This
phenomenon is now easily understood from the fact that the
electrokinetic field due to a straight conductor carrying an
inducing current is always parallel to the conductor.

Although we have been discussing the electrokinetic field as
the cause of induced currents in conductors, its significance is
much more general. This field can exist anywhere in space and
can manifest itself as a pure force field by its action on free
electric charges. Of course, because of the ¢* in the denominator
in Eq. (2-5.1), the electrokinetic field cannot be particularly
strong except when the current changes very fast. This is probably
the main reason why this field was ignored in the past. Another
reason is the temporal (transient) nature of this field.

But even weak electric fields can produce strong currents in
conductors, and that is why the current-producing effect of the
electrokinetic field is much more prominent than its force effect
on electric charges in free space.

If we compare Eq. (2-5.1) with Eq. (2-4.2) for the retarded
magnetic vector potential A produced by a current J, we
recognize that the electrokinetic field is equal to the negative time
derivative of A (observe that u, = 1/g,%):
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0A
E, -5 (2-5.2)
However, although Eq. (2-5.2) correlates the electrokinetic field
with the magnetic vector potential, there is no causal link between
the two: the correlation merely reflects the fact that both the
electrokinetic field and the magnetic vector potential are
simultaneously caused by the same electric current.

Important as it is, the electrokinetic field has not been studied
(or even recognized as a special force field) until very recently,
although the fact that the time derivative of the retarded vector
potential is associated with an electric field has been known for a
long time.

Electromagnetic induction is a phenomenon associated with
relatively slow current variations and with electromagnetic fields
extending over relatively small regions of space (rapid current
variations and time-variable fields extending over long distances
are dealt with on the basis of radiation theory; see Examples 2-2.2
and 2-2.3). More specifically, electromagnetic induction applies
to systems satisfying Eq. (2-2.13). Therefore, as far as
electromagnetic induction is concerned, the retardation in the
propagation of the electric field from the inducing current to the
conductor in which the induced current is created can be ignored.
Removing the retardation symbol [ ] in Eq. (2-5.1) and factoring
out 9/0¢, we then obtain for the electrokinetic field

= - E(LILW/). 2-5.3)
0t\4me,c?) r

v

Example 2-5.1 A conducting circular ring of radius R is placed
outside a long coaxial solenoid of n turns, radius a and length L,
carrying a current I (Fig. 2.6). Using Eq. (2-5.3) find the
electrokinetic field and then the voltage induced in the ring when
the current in the solenoid is changing. Observe that according to
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the conventional explanation of electromagnetic induction, the
voltage and the current in the ring is induced by the changing
magnetic field at the location of the ring. But this explanation does
not work in the present case, because there is no magnetic field at
the location of the ring (except for the end-effect field of the
solenoid, which is negligible).

Fig. 2.6 Calculation of the voltage induced in a conducting ring
placed outside a solenoid carrying a variable current.

Let the axis of the solenoid be the x axis of a rectangular
system of coordinates, let the ring be in the yz plane, and let the
ends of the solenoid be at x = — L/2 and x = L/2. To find the
electrokinetic field induced by the solenoid in the ring, we shall
consider a point of the ring located on the y axis. We can represent
this point by the vector Rj. Consider next a point on the surface of
the solenoid at a distance x from the yz plane. Combining
cylindrical and rectangular coordinates, we can represent that point
by the vector b = xi + a cosfj + a sinfk. The distance between
the two pointsisthenr = Rj — b = — xi + (R — a cosb)j —
a sindk, so that for r in Eq. (2-5.3) we have, by adding the squares
of the components of r and taking the square root of the sum, r =
(* + R* + @® — 2Ra cosf)"?. The current density in the solenoid
can be written as J = (nl/Lw)8, = (nl/Lw)(— sindj + cosfk),
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where [ is the current in the solenoid, w is the thickness of the
current sheet, and 6, is a unit vector in the direction of the current.
The volume element to be used in Eq. (2-5.3) can be written as dV’
= wad0dx.

By the symmetry of the system, the contribution of the y
component of J to the electrokinetic field is zero. Equation (2-5.3)
becomes therefore (we replace 1/,¢* by )

=- 6(# 0 rwr/z nicos bk wadde) (2-5.4)
ko 9t\dr Jo J e Lw(R? +a? -2Racosh +x2)”? ’
or
#nla 27 L2
Ek=—9_(k°_j  pEp—. Zmdﬂdx). (2-5.5)
0r\ 4rnL Jo J-12(R?2+q?-2Racosf +x?)

Integrating by parts over 4, we obtain

E, =

i (k poniRa? r" J L2 sin*0

- Ik dﬁdx). 2.5.
o\ 4wxL Jo J-2 (R*+a%-2Racosf +x2)*? (2-5.6)

Integrating over x and taking into account that L > R, a, we
obtain

E - - 3(k"‘0”IR‘12[2“ sin?f

3\ 27L Jo (R®+a’-2Racosd)

dB). 2-5.7)

The integral in Eq. (2-5.7) is just w/R>. The electrokinetic
field generated at the point Rj of the ring by the current in the
solenoid is therefore (replacing k by 6,)

2

E, - - E(a ﬂ) (2-5.8)
or\ “ 2RL

and the voltage induced in the ring is

nma? ol (2-5.9)

"L ot

Vg = $E,-dl = E27R = - 1
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RETARDED INTEGRALS FOR
ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
MOVING CHARGES

In this chapter we shall learn how retarded integrals for
electric and magnetic fields and potentials can be used for finding
electric and magnetic fields and potentials of moving electric
charge distributions. We shall also discover important relations
between the electric and magnetic fields for two special cases of
moving charge distributions: an arbitrary charge distribution
moving with constant velocity and a point charge in arbitrary
motion.

3-1. Using Retarded Integrals for Finding Electric and
Magnetic Fields and Potentials of Moving Charge Distributions

A time-variable electric charge distribution always involves a
movement of electric charges. For example, if the density of a
charge distribution changes with time, then some electric charges
change their location within the charge distribution or move to or
from the charge distribution. Conversely, a moving charge
distribution is inevitably a time-variable charge distribution
because it creates charge density in regions of space which it

46
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enters and eliminates charge density from the regions of space
which it leaves. Consequently, the electric and magnetic fields of
a moving charge distribution can be determined from retarded
field (or retarded potential) equations derived in Chapter 2 for the
general case of time-dependent charge and current distributions.

To use retarded field integrals for finding electric and
magnetic fields of moving charge distributions, we need to express
the time derivatives dp/d¢ and 3J/d¢ in terms of the velocity of the
charge distribution under consideration. This can be done as
follows. Consider a stationary charge distribution of density p as
a function of x', y', z',

p=px’,y',z". (3-1.1)

If this charge distribution moves with velocity v without changing
its density, the total time derivative of p is
/
do _0p  8p dx'  dp dy’+ dp dz’ _dp

=Py T T+ P =Py eV,
d 0t ox' dt 9y’ dt 9z’ dt 0Ot

(3-1.2)
Since p remains the same as the charge moves, dp/dt = 0, so that
dp /
— =-v-Vp. 3-1.3
a v-Vip (3-1.3)

A moving charge distribution constitutes a current whose density
is J = pv. Therefore

aJ - dpv) -
ot ot

Observe that in the retarded field integrals derived in Chapter
2, the denominator r representing the distance between the volume
element dV' and the point of observation is not a function of time.
Therefore it is not a function of time also in the case of moving
charge distributions. A moving charge distribution must be
considered as moving past different volume elements of space
associated with different but fixed »’s. The question arises, if dV’

-(v-V'p)v +p% =—(v-Vp)v+pv. (3-1.4)
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is a volume element of space, rather than a volume element of a
moving charge distribution, how does one introduce the volume
of the charge distribution into the field integrals? To answer this
question, let us examine how the electric and magnetic fields of
a moving charge distribution are created.

The phenomenon of retardation indicates that time-dependent
charge distributions send out electric (and magnetic) field
"signals" that propagate in all directions with the velocity of light.
The electric or magnetic field created by a time-variable charge
distribution at the point of observation is the result of the signals
sent out by all the individual charges within the distribution and
simultaneously "received" at the point of observation at the instant
t. But different charges within the distribution are at different
distances from the point of observation, and the times needed for
the signals originating from the different charges to arrive at the
point of observation are different. Therefore the signals that are
received at the point of observation simultaneously at the instant
t are sent out from the different charges within the distribution at
different retarded times ' = ¢t — r/c. For a moving charge
distribution these times are different not only because different
charges within the distribution are located at different distances
from the point of observation, but also because the location of
these charges changes as the charge distribution moves. As a
result, the region of space from which the field signals responsible
for the field at the point of observation are sent is not equal to the
region of space, or volume, occupied by the charge distribution
when it is at rest.

Consider a charge distribution of length / moving against the
x axis with a constant velocity v. The electric field E of the
charge is observed at the point O (Fig. 3.1). A field signal is sent
from the trailing end of the distribution when this end is at the
distance r, from the point of observation. A field signal is sent
from the leading end, when this end is at the distance r, from the
point of observation. Since the leading end is closer to the point
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of observation than the trailing end, the field signal from the
leading end must be sent at a later time, if it is to arrive at the
point of observation simultaneously with the signal sent from the
trailing end. The difference in the times needed for the two
signals to arrive at the point of observation is r,/c — r,/c. During
this time the charge distribution moves a distance (r;/c — r,/c)v.
Hence the distance /* between the two points from which the two
signals are sent is

I*=(r,-r)vic +1. (3-1.5)

Fig. 3.1 For the two field
signals to arrive simultaneously
at O, the field signal originating
from the leading end of the
moving charge must be sent later
than the field signal originating
from the trailing end of the
charge.

In this chapter we shall be mainly concerned with the special
case of charge distributions for which r,,r, > I*. In this case (see
Fig. 3.2), r, —r, = I* cos ¢ = I*(r - v)/rv, where r is the
distance between the midpoint of /* and the point of observation,
and ¢ is the angle between r and v. Substituting this expression
for r, — r, in Eq. (3-1.5), we have

1> =1*(r-v)rc+l, (3-1.6)
or
1
I*=___° | 3-1.7
1-(r-v)/rc ( )

Therefore, as already mentioned, the region of space from which



50 CHAPTER 3 FIELDS OF MOVING CHARGES

Fig. 3.2 Geometrical
relations between r, ¢,
and I* when r,, r, >
I*. The significance of
the vector 1* will be
explained later.

the moving charge sends out the field signals resulting in the
electric and magnetic fields created at the point of observation is
not equal to the region of space (volume) actually occupied by the
charge. In the case of a charge distribution whose linear
dimensions are small compared with the distance from the charge
to the point of observation, this region of space, usually called the
effective volume, or the retarded volume, AV',, is

AV!

AV = —— |
1-(r-v)/rc

(3-1.8)
where AV’ is the actual volume of the charge [this equation is
obtained from Eq. (3-1.7) by noting that the volume dimensions
perpendicular to the direction of motion are not affected by
retardation, and that the dimensions along the direction of motion
change in accordance with Eq. (3-1.7)].

Although the distance /* given by Eq. (3-1.5) or Eq. (3-1.7)
is a distance between two points in space rather than a length of
an object, it is usually called the retarded length of the charge. In
fact, it is actually the "visual" length of a rapidly moving body,
as the length of the body would appear to a stationary observer.
As follows from Eq. (3-1.7), the retarded length of a body
moving toward the observer is longer, and the retarded length of
a body moving away from the observer is shorter, than the actual
length of the body.' It should be emphasized that Egs. (3-1.6)-(3-
1.8) hold only for charges or bodies observed from a distance
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much greater than the linear dimensions of the charge or body.
For a general case, the retarded length or volume of a body
cannot be expressed by a simple formula, but can be calculated in
terms of the actual length of the body once the position of the
body at the time of observation is given (Section 4-3).

Another effect of retardation that needs to be taken into
account when applying retarded field equations to moving charge
distributions is an apparent distortion of the shape of a moving
charge distribution. The distribution appears to change its shape
because the retarded times for different points within the
distribution are different.

I I | «— /e —»|
v
) S
R P P P

O

A A

Fig. 3.3 Geometrical relations between the "present position
vector" 1, and the "retarded position vector" r for a charge
distribution moving with velocity v in the negative x direction.

Consider a charge distribution moving against the x axis with
a velocity v and observed from a point O (Fig. 3.3). The retarded
volume element dV’ of the charge distribution is at the point P
and is represented by the vector r. The present position of the
same volume element is at the point P, and is represented by the
vector r,. The distance Ax’ from P to P, is the distance that the
charge travels during the time that it takes the field signal to
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propagate from P to O, that is, Ax' = v(r/c). We shall now show
that, within the charge, any line parallel to the y axis when the
charge is at rest or at its present position appears to be slanted
when the charge is moving and is at a retarded position.

First, let us note that according to Fig. 3.3 the relation
between the x component of the present position vector r, and the
x and y components of the retarded position vector r is (as usual,
we use primes to indicate source-point coordinates)

/

x! = x4 +vrlc, (3-1.9)

or
/

x! = xg+ @y, (3-1.10)

Differentiating Eq. (3-1.10) while keeping x,' constant, we have

@ yio) (3-1.11)
ay’  rl-(lo&x'ID]’

which can be written as

Ay | «—— rvic ——»|

o

Fig. 3.4 A charge at its retarded position appears to be elongated
and its vertical lines appear to be slanted.
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¥=

Fig. 3.5 Explanation of the vectors 1* and a*. The vector 1*
represents the retarded length of the moving charge, the vector a*
represents the "slanted" thickness of the charge.

dx’ _ y'vic _ y'vlc _  (vlc)sing
dy’  Ml-(lc)cosp]l rI-(c-v)irc] 1-(r-v)irc’
(3-1.12)

Thus, according to Eq. (3-1.12), a vertical line (x,’ = constant,
dx,'/dy,’ = 0) within the charge at the present position appears to
be slanted when the charge is viewed at its retarded position (Fig.
3.4), and the angle « of the slant is given by

cota = __ IV (3-1.13)
r[1 -(r-v)/rc]

In the derivations presented later in Chapter 4, we shall
consider a moving charge in the shape of a rectangular prism of
length [ and thickness a. For determining the magnetic and
electric fields of such a charge we shall make use of two special
vectors shown in Fig. 3.5: the vector I* representing the retarded
length of the charge, given by

r--__ L (3-1.14)
1-(r-v)/rc
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and the vector a* representing the "slanted" thickness of the
charge, given by (note thatr - v = x'v)

2% = ay'vlc

j= ay'vlc . a(r-x'vic)
ri1-(r - v)/rc] r[l-(r-v)/rc] rll1-(r-v)/rc]
(3-1.15)
We shall also use the following relation derived in Example
3-1.1 for a charge moving with acceleration v = dv/0t'

v/ 1 - F-rlc+(r-¥r/c? (3-1.16)
[r-(r-v)ic] r[1=(r - v)/rc]?

Note that if v = 0 (motion with constant velocity), Eq. (3-1.16)
becomes

v/ 1 . __r-mle 37
[r-(-v)/c] r1-(-v)/rcP

In dealing with retarded integrals for moving electric charges,
we shall frequently use the expression

r-(r-v)lc, (3-1.18)

where r is the retarded position vector joiming a retarded volume
element dV' of a moving charge distribution with the point of
observation. If the charge distribution moves with a constant
velocity v, this expression can be converted to the present position
of the charge distribution, that is, to the position occupied by the
volume element dV’ of the charge distribution at the instant for
which the electric and magnetic fields are being determined. This
can be done as follows.

First, assuming that the charge distribution moves in the
negative x direction and assuming that dV’ is in the xy plane, we
see from Fig. 3.3 that the present position vector r, of dV’ can be
expressed in terms of the retarded position vector r as

r, =r-rvlc. (3-1.19)
Next, we write Eq. (3-1.18) as
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[r-(r-v)c]=[r-x"vic]

(3-1.20)
=[(r-x"vIcy 1" =[r?-2rx'vic+x"*v¥c?"?.

Adding and subtracting x’? and 7v*/c? to the right side of Eq. (3-
1.20), we then have

[r-(r-v)c] (3-1.21)
=[r?-2m/vic+x"v¥c?t +x'* =x"* +rv?¥c? -rv?/c?] 2.

Let us now collect the terms on the right of Eq. (3-1.21) into
three groups:

x* = 2m'vic + rvi/c? (3-1.22)
rt - x’?, (3-1.23)

and
x'v2c? - riv¥c?, (3-1.24)

By Eq. (3-1.9), the first group represents x,'?, where x,’ is the
distance between the yz plane and the volume element dV' of the
moving charge at its present position. The second group is simply
y'%, where y’ is the (constant) y coordinate of the volume element
dV'. And the third group is —y'>v*/c*>. We can write therefore

[r-(r - v)/c] =l +y'% -y 2y2/c?)in

—(v!2 112 20 A 12 (412 Ly 1212 (3-1.25)
=(xg +y YHL -y I(xy” +y 3.

But, as can be seen from Fig. 3.3, x> + y'? = ry%, and y'%/(x,*
+ y'%) = sin® 8, where 4 is the angle between r, and the velocity
vector v. Therefore

[r=(@r-v)cl=r[1-(r-v)/rc]=r{1-(v¥cHsin*0}'?, (3-1.26)

where all the quantities in the last expression are present time
quantities. In obtaining Eqs. (3-1.25) and (3-1.26) we assumed
that the volume element dV’ of the moving charge was located in
the xy plane. Clearly, however, the two equations are valid even
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if dV' is not in that plane, provided that we replace in these
equations y' by y'? + 7%

Expressions involving the retarded position vector r and its
magnitude r have a very peculiar and important property which
should be kept in mind when dealing with moving charges and
currents. As already mentioned, a moving charge is assumed to
move through different but fixed points of space. Therefore
neither the retarded position vector r nor its magnitude r explicitly
appearing in retarded integrals is a function of time. On the other
hand, in the case of moving charges and currents, the distance r
appearing in the retarded time ¢’ = ¢ — r/c is variable and
therefore is a function of time. The same applies to Egs. (3-1.7) -

(3-1.17) presented above and to all similar expressions.

v

Example 3-1.1 Derive Eq. (3-1.16).

Let us arrange a rectangular system of coordinates so that the
acceleration vector of the moving charge is in the xy plane and the
velocity vector is in the negative x direction. Let the point of
observation be at the origin. The position vector of the charge is

then r = — x'i — y'j. Using vector identity (V-7), we have
v 1 - Vir-@ewie (397
[r-(r-v)ic] [r-(r-v)/c?

In differentiating the numerator in Eq. (3-1.27), we should
remember that the numerator is retarded. However, as explained in
Section 3-1, neither the position vector r nor its magnitude r
appearing in retarded integrals is a function of time and therefore
neither is affected by retardation (the charge moves through
different but fixed points of space). The only quantity in the
numerator affected by retardation is the velocity v which is a
function of the retarded time ¢ — r/c and does change as the charge
moves. Hence we can write, making use of vector identity (V-5),
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[r-(r-v)/c] [r-(@r-v)/c]?
-r,~(1/c)V'[r - v]
[r-@-v)/icl

v/ 1 __V'r-v'[(r - v)/c]

(3-1.28)

To evaluate V'[r - v], we first use vector identity (V-30),
obtaining

Viir-v]=[V/(r-v)] + |90 ")} (3-1.29)
cl ot
The first expression on the right can be evaluated with the help of
vector identity (V-6). Note that in this expression V' operates upon
unretarded quantities. Therefore we have

Vi@ v)=(V)v+r X (V' xv) +(v - VO)r +vx(V’ xr). (3-1.30)

Since all the quantities in this equation are unretarded, and since the
unretarded v does not depend on spatial coordinates, the first two
terms on the right of this equation vanish. Since V' X r = 0, the
last term vanishes also. By vector identity (V-4), the remaining
term is simply — v. We thus obtain

Vik-v)=-v. (3-1.31)

Taking into account that r in the last term of Eq. (3-1.29) is not
a function of time, we have

r,fo( - v)] [

c

r
=_4[r-¥].  (3-1.32)
c

Combining Egs. (3-1.28), (3-1.29), (3-1.31), and (3-1.32),
factoring out r in the denominator, and multiplying the numerator
and the denominator by r, we finally obtain

v/ 1 _ r-rlc+(r-¥ric? (3-1.33)
[r=(r-v)/c] Pll--v)/rc?
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Although all quantities in this equation refer to the retarded position
of the charge, to avoid an exceedingly cumbersome notation we do
not place them between the retardation brackets.

A

3-2. Correlation Between the Electric and the Magnetic Field
of a Moving Charge Distribution

There are two special cases of moving charge distributions for
which there exist simple correlations between the electric and the
magnetic field produced by the distributions. The first case is that
of an arbitrary charge distribution moving with constant velocity.
The second case is that of a point charge moving with
acceleration.

Consider first a charge distribution of arbitrary size and shape
moving with constant velocity v. Let us form the vector product
of g;v and Eq. (2-2.1). Since v is a constant vector, we can place
it under the integral sign, so that

v X [V’p + ii{}
c? ot
av’. (3-2.1)

gv X E =-_Lj

4T r

If a charge distribution moves with constant velocity v, then by
Eq. (3-1.4) the derivative 0J/0¢ is parallel to v. Therefore the
product v X [8J/df] vanishes, and since v is not affected by
retardation, Eq. (3-2.1) simplifies to

!
ey XE = - _l_jwdvf. (32.2)
47 r

Using now the vector identity

V' x(vp) = (V xXv)p - vxVp (3-2.3)



SECTION 3-2 CORRELATION BETWEEN FIELDS 59

and taking into account that V' X v = 0 and that vo = J, we
obtain from Eq. (3-2.2)

ev X E = j V' XJ] gy (3-2.4)
4T r

which, by Eq. (2-2.2), is the same as

H =¢yv XE. (3-2.5)

Since poH = B, and ¢, = 1/c% this equation can also be
written as

B = (v X E)/c?. (3-2.6)

Observe that E in Eqgs. (3-2.5) and (3-2.6) is the electric field
produced by a moving charge distribution.

It is interesting to note that since, in the present case, the term
dJ/dt in Eq. (3-2.1) makes no contribution to v X E, we can
write Eq. (3-2.6), using Eq. (2-2.1), as

/
B--yx__| J[Vp]dv’- vxﬁjﬁﬂldv', (3-2.7)
4mect! 4l 1

and, assuming that the velocity is along the x axis, so that v X
i=0,as

J [(V, +V2)0] av’

r

B-= vx__
4T

(3-2.8)
where only the components of V' perpendicular to v occur.
Furthermore, using Eq. (2-2.4) and taking into account that dJ/d¢
makes no contribution to v X E and that v X i = 0, we can
write Eq. (3-2.6) as
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B=v><_1_j{[p] 1 ap]}(};J+zk)dV’

4me,cd L3

—vx _Hﬂ L a"}(yJ +Zk)dv’.

4 ) L p3

(3-2.9)

As it follows from Egs. (3-1.7) and (3-1.8), for slowly
moving charge distributions the retardation can be neglected, in
which case Eq. (3-2.6) reduces to

B = (v x E)/c2, (3-2.10)

where E is the ordinary electrostatic field of the charge
distribution under consideration. Likewise, Egs. (3-2.7) - (3-2.9)
reduce to the corresponding equations involving unretarded charge
densities.

Consider now a point charge moving with acceleration. Let us
assume that the retarded position of the point charge is given by
the vector r, and let us form the cross product of r/(ru,c) and Eq.
(2-2.12). Assuming that r for a moving point charge can be
considered the same throughout the entire volume occupied by the
charge, we can place r/r under the integral signs.> Noting that r
x r = 0, we then obtain

rxE _ 1 H[J] [aJ]}x rdv’, (3-2.11)

2
HCr 4TEpC r

and, taking into account that gu,c® = 1 and using Eq. (2-2.5), we
immediately obtain

H-XE (3-2.12)
HoCT
or
B - *XE (3-2.13)

cr
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where r is the retarded position vector connecting the moving
point charge with the point of observation. Equations (3-2.12) and
(3-2.13) show that the magnetic field of a moving point charge is
perpendicular to the electric field produced by the charge and to
the radius vector joining the retarded position of the charge with
the point of observation.’

It is interesting to note that for a point charge moving with
constant velocity, Eqgs. (3-2.5) and (3-2.6) as well as Eqs. (3-
2.12) and (3-2.13) hold, because Eqgs. (3-2.12) and (3-2.13) are
true for any acceleration, including zero acceleration. However,
it is important to remember that Egs. (3-2.12) and (3-2.13)
involve the retarded position vector r. If the acceleration is zero,
Eq. (3-2.13) reduces to Eq. (3-2.6), as is shown in Example 4-
1.1.

References and Remarks for Chapter 3

1. The retarded length should not be confused with the relativistic
"Lorentz-contracted length." See Section 9-1.

2. This procedure is generally applicable to stationary point
charges only. For moving point charges its applicability depends on
certain parameters of the system under consideration. See Section
4-7 (in particular Eqs. 4-7.1 and 4-7.2) for details.

3. It is important to stress that Eqgs. (3-2.12) and (3-2.13),
although usually presented in the literature as perfectly true, are
actually only approximately correct. See Section 4-7 for details.



ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
MOVING POINT AND LINE
CHARGES

The finite propagation speed of electric and magnetic
fields has a profound effect on the electric and magnetic fields and
potentials associated with moving charge distributions. In this
chapter we shall use retarded integrals for determining electric and
magnetic fields and potentials of the two simplest types of moving
charge distributions: a moving point charge and a moving line
charge.

4-1. The Electric Field of a Uniformly Moving Point Charge'

Any stationary charge distribution viewed from a sufficiently
large distance constitutes a "point charge."* Consider a charge
distribution of total charge q and density p confined to a small
rectangular prism (Fig. 4.1) whose center is located at the point
x', y' in the xy plane of a rectangular system of coordinates, and
whose sides [, a, and b are parallel to the x, y, and z axis,
respectively. Let the point of observation be at the origin of the
coordinates, and let the distance between the center of the prism
and the origin be r, > a, b, I. Viewed from the origin, this

62
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Fig. 4.1 A charge of uniform density p is confined to a small
rectangular prism. The total charge of the prism is q. The charge
constitutes a point charge when viewed from a distance large
compared to the linear dimensions of the prism.

charge distribution constitutes a point charge.® Let the charge
move with uniform velocity v = — vi. We want to find the
electric and magnetic fields of this charge at the point of
observation.

To find the electric field produced by this charge, we shall
use Eq. (2-2.1). First we eliminate from Eq. (2-2.1) the term with
the current density J. We can do so with the help of Eq. (3-1.4).
Since the velocity of our charge is v = v,i = — vi, and since the
charge moves without acceleration so that v = 0, Eq. (3-1.4)
gives

g = - (vxﬂ)v = vzﬂl (4-1.1)
ot ox' ox’

Substituting Eq. (4-1.1) into Eq. (2-2.1), we then have for the
electric field of the charge
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Fig. 4.2 When the charge shown in Fig. 4.1 is moving and is at a
retarded position, its apparent length, shape, and thickness of its
front and back surface layers are no longer the same as for the
stationary charge. (All ¥’s meet at the origin).

[

-

oy @412

Observe that in this equation V' and 8/0x’ operate on the
unretarded p, so that in computing V'p and dp/0x’ we must use the
ordinary, unretarded, shape and size of the prism. Since p is
constant within the prism, V'p = 0 within it, and the only
contribution to V'p comes from the surface layer of the prism,
where p changes from p (inside the prism) to 0 (outside the prism).
Let the thickness of the surface layer be w. Taking into account that
V’'p represents the rate of change of p in the direction of the
greatest rate of change, we then have V'p = (p/w)n,,, where n,, is
a unit vector normal to the surface layer and pointing info the
prism. Hence V'p for the right, left, top, bottom, front, and back
surfaces of the charge (prism) are — (o/w)i, (o/w)i, —(p/w)j, (o/w)j,
—(p/w)k, and (p/w)k, respectively. Likewise, dp/dx' is zero
in the interior of the charge and is different from zero only in the
left and in the right surface layers of the charge, where
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’5"4\/

Fig. 4.3 The relations between r;, r,, and a* for the moving
charge at a retarded position. (The two r’s meet at the origin.)

dp/dx’' = p/w in the left surface layer and dp/dx’ = — p/w in the
right surface layer.

The volume integral of Eq. (4-1.2) can be split therefore into
six integrals, one over each of the six surface layers
corresponding to the six surfaces of the charge (prism). However,
since the center of the charge is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V’'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus only
the four integrals over the layers parallel to the xz and yz planes
remain. Let us designate the retarded distances from these layers
to the point of observation as r, r,, r;, and r, (see Figs. 4.2 and
4.3). Since the linear dimensions of the charge are much smaller
than r,, r,, r;, and r,, we can replace each integral over a surface
layer by the product of the integrand and the volume of the
corresponding layer. However, the integration in Eq. (4-1.2) is
over the effective (retarded) volume of the charge, and therefore
we must use not the true volume of the surface layers, but their
effective volume. The effective volume of the surface layers is not
the same as their actual volume, because, in accordance with Eq.
(3-1.7), the length [ of the two layers parallel to the xz plane must
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be replaced by
I = ! , (4-1.3)
1-(r-v)/rc
and because, also in accordance with Eq. (3-1.7), the thickness w
of the two layers parallel to the yz plane must be replaced by
. w

-__ " (4-1.4)
1-(r-wv)/rc

Equation (4-1.2) becomes therefore

= o P b (=) + 22 w1+ 22 b ()

47"3 r ry (4-1.5)
+p/wbl wj + ( )(‘O/wabw1 i+ p/wabw2 (- 1))}
P

4 2

or, substituting /* and w* from Eqgs. (4-1.3) and (4-1.4),

E = - 1 [ plw abw(-i)+__ﬂ__abwi
dme)lr -r - vic r,-r,-vlc

_ P i) + —__bIWJ (4-1.6)
ry-ryev/c r,-r,*vlc

2
o iy LR P e |
c?Nr -r =vic r,-r,*vlic

+

which simplifies to
2
o Bt b
4me, c2N\ry-ry=vic r-r -vic
el
+ - 1ji.
r4—r4-v/c ry,-ryevic

As can be seen from Figs. 4.2 and 4.3, the differences of the
fractions in these equations are simply the increments of the
function 1/(r - r - v/c) associated with the displacement of the tail

4-1.7)
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of r over the distances represented by the vector I* [in the i
component of Eq. (4-1.7)] and by the vector a* [in the j
component of Eq. (4-1.7)]. Therefore we can write Eq. (4-1.7) as*

2
£ gl )
4re, c? r-revlic
g S
r-r-vlic

Substituting the gradient from Eq. (3-1.17) (remembering that v
= () and substituting I* and a* from Egs. (3-1.14) and (3-1.15),
we have

(4-1.8)

_ pb [(1 _ vz)( r-rlc i) la .
4me, 2N\ -revirc) I1-revirc

_ /
o) N et o LCIY | N Ly @-1.9)
r’(1-r - v/rc)? r(l-r-v/rc)

. ( r -rvlc ) r-x'vlc ]
. alj
31 -r « v/rc)? r(1-r-v/rc)

Simplifying and taking into account thatr « i = — x', r » j =
—y,vei=—v,vej=0,andr - v= x'v, we obtain
2
E = pabl [(1 —v_)(—x’ +rvic)i
4mer’[L-r - vircPll 2
+ (—x’+rv/c)y/:/6j + (—y/)’_"‘_'L’Ej] (4-1.10)
r
pabl [(1 vz) /e ( vz) ]
- —_J(~x'i-rvic) +\1 - _|(- ,
4me,r[1-r - vircPl ¢? ( ) c? =3

and finally, noting thatr = — x'i — y'j, and that pabl = g,

g - _ q1-vich) [r_ﬁ]. (4-1.11)
dmer[L-revircPl ¢
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Equation (4-1.11) expresses E in terms of the retarded
position of the charge specified by the retarded position vector r
(see Fig. 3.4). Usually it is desirable to express E in terms of the
present position of the charge specified by the present position
vector r, (see Fig. 3.4). We can convert Eq. (4-1.11) from r to
r, by using Egs. (3-1.19) and (3-1.26). According to Eq. (3-1.19),

r-rlc =r, (4-1.12)

so that the last factor in Eq. (4-1.11) is simply the present position
vector r,. Substituting Eq. (4-1.12) and Eq. (3-1.26) into Eq. (4-
1.11), we obtain the desired equation for the electric field of a
uniformly moving point charge expressed in terms of the present
position of the charge

g(1 - v?/c?) - (4-1.13)

E =
47r80r03 {1-?%c?sin’0}>? ¢

This equation (in a different notation) was first derived by Oliver
Heaviside in 1888 on the basis of Maxwell’s equations by using
the "operational calculus" that he invented.’

\Krf / Fig. 4.4 As was first noticed by
\ / Heaviside, the electric field of a
moving point charge concentrates
‘ @ ___w itself in the direction
perpendicular to the direction of
motion of the charge and

/ / j l\\\ decreases along the line of the

motion.

There are two interesting properties of Eq. (4-1.13). First, as
was noted by Heaviside, with increasing velocity of the charge the
electric field of the charge concentrates itself more and more
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about the equatorial plane, § = 7/2, and decreases along the line
of motion, § = 0. This effect is shown in Fig. 4.4. Second, the
electric field appears to originate at the charge in its present
position. This, of course, is merely an illusion, because by
supposition the distance between the charge and the point of
observation is much greater than the linear dimensions of the
charge, so that neither Eq. (4-1.11) nor Eq. (4-1.13) gives us any
information concerning the structure of the field close to the
charge. Note also that because of the finite speed of the
propagation of the field signals and light signals one can never
observe the charge at its present position. In fact, the charge could
have stopped after sending the field signal from its retarded
position, and even then Eq. (4-1.13) would remain valid, although
in this case Eq. (4-1.13) would apply to the "projected," or
"anticipated,” present position of the charge.

v
Example 4-1.1 Show that for a point charge moving without
acceleration Eq. (3-2.13) reduces to (3-2.6).

According to Eq. (4-1.12), the retarded position vector of the
charge can be expressed in terms of the present position as

r =r,+rvic. 4-1.14)
Substituting Eq. (4-1.14) into Eq. (3-2.13), we have

rxE _ (r+rv/ic)xE  rXE NG
cr cr cr

B =

OXE " (4.1.15
Ccr

Since, by Eq. (4-1.13), E is directed along r,, r, X E = 0, and we
are left with
B = (v X E)/c?, (4-1.16)

which was to be proved.

Example 4-1.2 Equation (4-1.13) represents a "snapshot" of the
electric field of a moving point charge, since it does not express the
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field as a function of time. Modify Eq. (4-1.13) so that it shows
how the field changes as the charge moves.

Let us assume that the "snapshot" is for # = 0. If the charge
moves in the — x direction, the functional dependence of E on the
x coordinate will be preserved for ¢t # 0 if we express Eq. (4-1.13)
in terms of x," and replace x,’ by x,’ — vt. From Egs. (3-1.26) and
(3-1.25), we have

ro{l _(VZ/CZ)Sinze}l/Z = (xéz +y /2 _y/zvz/cz)uz

, (4-1.17)
= [xo +(1 -v¥cy?]'2.

Replacing in Eq. (4-1.17) x,’ by x,/ — vt, we obtain
{1 -(v¥cHsin?0}'? = [(x, - vi2 +(1-v¥cHy’]"2,  (4-1.18)

where x,’ is now the x coordinate of the point charge at t = 0.
Expressing r, in terms of its components and replacing x,’ by x," —
vt, we similarly have r, = —(x,/ — vA)i — y'j. Therefore Eq. (4-
1.13) can be written as

g(1 - vc){(x, - vi)i +y'j}

E =- ’
47r80{(x0/ - vt)2 +(1 -Vz/Cz)y/2}3/2

(4-1.19)

where the dependence of E on ¢ is shown explicitly. This equation
holds for the charge moving parallel to the x axis in the xy plane.
If it moves parallel to the x axis anywhere in space, y'* in this
equation should be replaced by (y'2 + z'2). A

4-2. The Magnetic Field of a Uniformly Moving Point Charge

Although by using Eq. (2-2.2) or Eq. (2-2.5), we can find the
magnetic field of a uniformly moving point charge in the same
manner as we found the electric field in Section 4-1 (see Example
4-2.1), it is much easier to find it from the known electric field by
using Eq. (3-2.5) or Eq. (3-2.6).
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Applying Eq. (3-2.5) to Eq. (4-1.11), we obtain for the
magnetic field in terms of the retarded position of the charge

S| Uk W OV ) @-2.1)
47r3[1-r - v/rc)?

Applying Eq. (3-2.5) to Eq. (4-1.13), we obtain for the
magnetic field in terms of the present position of the charge

—v2/r2
H=__ 907V [yxr). @422
4mry{1 -(v¥c?)sin’0}>>

v

Example 4-2.1 Find the magnetic field of a uniformly moving
point charge shown in Fig. 4.1 by using Eq. (2-2.2),

H=J4W*”wa (4-2.3)
4T r

To use Eq. (4-2.3), we need to know V' X J associated with
the charge under consideration. The moving charge constitutes a
current density J = pv. Since v is not a function of x', y’, z', we
have V' X J = V'p X v. But p is constant within the charge, and
therefore the only contribution to V' X J comes from the surface
layer of the charge, where p changes from p (inside the charge) to
0 (outside the charge). Using the values for V'p obtained in Section
4-1, we then have for V' X J of the top, bottom, front, and back
surface layers of the charge (prism) —pv/wk, pv/wk, pv/wj, and
—p/wj, respectively; the left and right surface layers make no
contribution to V' X J, because v and V’'p are parallel (or
antiparallel) there. Furthermore, since V' X J in the front surface
layer is opposite to V' X J in the back surface layer, while both
surface layers are at the same distance r from the point of
observation, the contributions of these two layers to the integral in
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Eq. (4-2.3) cancel each other, so that only the top and the bottom

surface layers contribute to the magnetic field of the charge.
Since the linear dimensions of the charge are much smaller than

r; and r,, (see Fig. 4.3), we can replace the integrals over the two
surface layers by the product of the integrand and the volumes of
the corresponding layers. Using Eq. (4-2.3) and taking into account
the effective volume of the boundary layers (see Sections 3-1 and
4-1), we have, as in Eqs. (4-1.5)-(4-1.7),

H- - Zl___pv_/w_/_wblk - L’W_/_wbzk]
7("'3 r3 v/C r4 r4 vV/C (4-24)
__ ol 1 _ 1 ]k
4t lr,-r,ovic r,-r,-vicl

The difference of the two fractions in the last expression is
simply the increment of the function 1/(r - r « v/c) associated with
the displacement of the tail of r over the distance represented by the
vector a* (see Fig 4.3). Therefore, using Eqs. (3-1.17) and (3-
1.15), we can write Eq. (4-2.4) as

H- - pbvl[( r-rvlc -i) y'vic
ar Wp3d-re-virc} /r(l-r-virc) (4-2.5)
. ( r-ric ) r-x'vic ]k
r31-r-vire® Jrd-revire) I
Simplifying and taking into account thatr * i = —x',r « j = —
y,vei=—-v,vej=0,andr - v = x'v, we obtain
H=- av [(=x"+rvic)y'virc +(=y")(1 -x'vIrc)]k

4rr3[l -r-v/rc)?

_ qv[1-v¥cy’ X
amr3[1-r-vircP ’ (4-2.6)

which, noting that vy'’k = v X r, is the same as Eq. (4-2.1).°
A
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4-3. The Electric and Magnetic Fields of a Line Charge
Uniformly Moving Along its Length

Consider a line charge of finite length L, cross-sectional area
S, charge density p, and linear charge density A = pS moving
with constant velocity v parallel to the x axis of a rectangular
system of coordinates in the negative direction of the axis and at
a distance R above the axis (Fig. 4.5). Let the point of
observation O be at the origin. What is the electric field at O at
the time z when the leading end of the charge is at a distance L,
from the y axis?

We can find the electric field of the moving charge by using
Eq. (2-2.1) or Eq. (2-2.4) if we know the retarded position of the

Li—|———Vr/C—
-L 2""' _ A%
EZZZ77Zz7z72z2z22222 _/I; PSR
[}
i —al x| LY

A A

Fig. 4.5 A line charge of linear density \ is moving with constant
velocity v. The retarded positions of the trailing and leading ends
of the charge are x,’ and x,’, respectively. The present positions of
the two ends are L, and L,, respectively. The distance between the
trajectory of the charge and the x axis is R. The point of
observation O is at the origin. The "retarded,” or "effective,”
length of the charge is longer than its true length.
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charge corresponding to the time for which the field is computed.
We can determine this position as follows.

First, let us determine the retarded position x,’ of the leading
end of the charge corresponding to the time #, that is, the position
from which the leading end sends out its field signal which arrives
at O at the time ¢. If the retarded distance between O and the
leading end is r,, then the time it takes for the signal to travel
from the leading end to O is r,/c. During this time the charge
travels a distance v(r,/c). Therefore at the moment when the
leading end sends out its field signal, the position of the leading
end is

x, =L, + rylc. (4-3.1)

Next, let us find the retarded position x,’ of the trailing end
of the charge corresponding to the time ¢. If the retarded distance
between O and the trailing end is r,, then the time it takes for the
signal to travel from the trailing end to O is r,/c. During this time
the charge travels a distance v(r,/c). Hence, at the moment when
the trailing end sends out its signal, the position of the trailing end
is

x| =L, +rylc. (4-3.2)

The x component of the electric field. We are now ready to
find the electric field of the charge by using Eq. (2-2.1) or Eq. (2-
2.4). The easiest way to find the x component of the electric field
of the charge under consideration is to use Eq. (2-2.1). According
to this equation, the x component of the field is due to the x
components of [V'p] and [0J/df] of the moving charge. For the
line charge under consideration, these components exist only at
the leading and trailing ends of the charge and are the same as for
the moving charged prism discussed in the preceding sections of
this chapter: [V'p], = (o/w)i for the leading end, and [V'p],
= — (p/w)i for the trailing end, [8J/df], = — (V’p/w)i for the
leading end, and [8J/d¢], = (V’p/w)i for the trailing end, where w
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is the thickness of the surface layer of the charge (this is the
actual thickness, not the retarded one). Since the surface layer of
the charge may be assumed as thin as one wishes, the retarded
volume integral in Eq. (2-2.1), as far as the x component of the
field is concerned, reduces to the product of the integrand and the
volume of the surface layers of the leading and trailing ends of the
charge at their retarded positions. By Eq. (4-1.4), for the leading
end, this volume is, using the asterisk to indicate values evaluated
at retarded positions,

wS

w,S=___" | 4-3.3
2 1-(r, - Vir,c @3.3)
and for the trailing end it is
w'S=__ W (4-3.4)
1-(r, - v)irc
The x component of the electric field is therefore
E=_PSU-vic) 1 - 1 ) (4-3.5)
* 4re, \r,[1-(r,*)/r,c] r[1-(c +v)/rcll
or
—12/p2
E = - IN¢! v/c)( 1/ _ 1/ ) (4-3.6)
4me, r,-xvic  r-xvlc

Equation (4-3.6) gives the electric field in terms of the
retarded position of the charge. We shall now convert it to the
present position of the charge (that is, the actual position of the
charge at the time 7). The calculations are similar to those used for
deriving Egs. (3-1.20)-(3-1.26). First, we note that, by Eq. (4-
3.1),

Ly = x3° - 2ryvic + rvic?. 4-3.7)

Next, we write the denominator of the first fraction inside the
parentheses of Eq. (4-3.6) as
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1y =xavic =[(r, =X VISP =(r ~2rx; vic +x] v¥c?)?. (4-3.8)

Adding and subtracting x'? and »,*/c? to the right side of Eq. (4-
3.8), we then have

/
r,=xvlc (4-3.9)
2 / 12 12 12 2 2
=(ry =2rxyvic+x, vict+x,” =x, +ryvict —rvic?)'2.

Let us now collect the terms on the right of Eq. (4-3.9) into three
groups:

X - 2rx,vic + rviic? (4-3.10)
2 -x?, (4-3.11)

and 12
x, v¥c? - rjvic?. (4-3.12)

By Eq. (4-3.7), the first group represents L,>. The second group
is simply R*(see Fig. 4.5). And the third group is — R»*/c%.

Similar relations hold for the denominator of the second
fraction inside the parentheses of Eq. (4-3.6). Therefore Eq. (4-
3.6) transforms to

g =M -v¥c?) 1 ) 1
’ ameR  L(L}/R*+1-v¥c?)'2  (L}/R?+1 -v3/c?H)2 ’
(4-3.13)

where only the present time quantities appear.

The y component of the electric field. The easiest way to find
the y component of the electric field of the charge under
consideration is to use Eq. (2-2.4). Only the first integral of Eq.
(2-2.4) makes a contribution to the y component of the field,
because 8J/0¢ has no y component. Separating this integral into
two integrals, we then have
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- 1 I (o] p 1 J 1 00] /
E = - Rav’ RdV'. (4-3.14
Y 4me, ) 73 47r80 T2l a ( )

The first integral in Eq. (4-3.14) is the same as for a stationary
charge, except that the integration must be extended over the
retarded (effective) length of the charge. Designating the
contribution of the first integral as E,, and noting that r = (x> +
R»'2, we obtain

_ 1 (p ' pS r" R /
E = - j_RdV = - dx’, (4-3.15
by ey r3 dmey ) (x/* +RHM? ( )
or / / / /
E =__NM [ X ) ]= N (xz _xl)
ly 41r80R (x1/2+R2)1/2 (x2’+R2)”2 47"30R 'r_z 'r_l ’

(4-3.16)
In order to evaluate the contribution of E, of the second
integral of Eq. (4-3.14) to the total field, we must determine the
value of the derivative [dp/0f]. According to the notation
convention for retarded quantities explained in Chapter 1, this
derivative is the ordinary derivative dp/d¢ used at the retarded
position of the moving charge. By Eq. (3-1.3), taking into account
that for our charge v = — vi, [dp/0f] is then simply vdp/dx'.
Since p is constant within the line charge, only the leading and the
trailing ends of the charge contribute to this expression, and the
contributions are vp/w and — vp/w, respectively. The electric field
E,, is therefore

R vp/w R voIw 1
E, = - I avy I avy, (4-3.17
Zy Amec) g2 2 41rsoc r - )

where the integration is over the surface layers of the leading and
trailing ends of the charge at the retarded positions of the charge.
Since the thickness of the surface layers is much smaller than r,
and r,, we can replace the integrals, as before for E,, by the
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products of the integrands and the volumes of integration (the
volumes of the respective surface layers). Using the relations dV,’
= wy*S, dV,' = w;*S, and using Eqs. (4-3.3) and (4-3.4) , we
then have

. T L Ll —
L dmecl r22 -ryr,*v)lc r12 -y, - v)le
(4-3.18)
_ MR] 1 - 1 ]
47rsoclr1(r1 -x{ vlc) ryr, ~X VI€)

Adding Egs. (4-3.16) and (4-3.18), we obtain for the y
component of the field

po N[, Rwe xR
PodmeRL r o r(r-x(vic) T ry(r,-xyvic) 4-3.19)
O [xz’ (r,=x;vlc) -R*Ic  x{(r,-x{vic) -sz/c]
4me R L ry(r, - xz’ vlc) r(r, —xll v/c)
or
_ A [le r, -x)2vlc-R™lc x| r, -x{vlc -sz/c} (4-3.20)
Y 4meRl r,(r, =X, vIc) r (r,=x{vic) '

But x,"v/c + R*/c = rlc and x,’VIc + RWI/c = r>lc.
Therefore

/ /

A {xz -ryvlc X —rlv/c)

y 7 7 :
dmeR\r —xjvic  r -x/vic

Now, by Eq. (4-3.1), x,/ — ryv/lc = L,, and by Eq. (4-3.2),
x,' — rvlc = L,. Substituting L, and L, into Eq. (4-3.21) and
transforming the denominators to the present position quantities by
means of Egs. (4-3.7)-(4-3.12), just as we did in Eq. (4-3.6), we
finally obtain

__ A L, _ L, (43.22)
Y Ame RVWLZIR* +1 -vHcH™  (LYR*+1 -v¥cH)'™R

(4-3.21)
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The magnetic field. Although we could find the magnetic field
of the moving line charge from Eq. (2-2.2) or from Eq. (2-2.5),
it is much simpler to find it from the electric field of the charge.
According to Eq. (3-2.5), the magnetic field H of any uniformly
moving charge distribution is always

H = ¢vXxE, (4-3.23)

where E is the electric field of the moving charge distribution.
Since v = — vi, the only non-vanishing component of the cross
product in Eq. (4-3.23) is the z component involving E, only.
Substituting v and Eq. (4-3.22) into Eq. (4-3.23) and denoting A\v
as the current /, we obtain

H-k_ ! L, L, (4-3.24)

4TR?L(L2/R* +1-v¥c)  (L}/R*+1 -v¥c?)2

4-4. The Electric Field of a Point Charge in Arbitrary Motion

As before, we consider a constant charge distribution of total
charge g and density p confined to a small rectangular prism (Fig.
4.6) whose center is located at the point x’, y' in the xy plane of
a rectangular system of coordinates, and whose sides /, a, and b
are parallel to the x, y, and z axis, respectively. The point of
observation is at the origin. The distance of the center of the
prism from the point of observation (the origin) is r, > a, b, [,
so that the prism constitutes a point charge.> We shall assume that
at the retarded time ¢' the center of the prism moves with velocity
v in the negative x direction and has an acceleration V.

For a given present time ¢, the retarded times associated with
different points of the prism are different, corresponding to
different retarded distances of these points from the point of
observation. Therefore the retarded velocities of the different
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ry>>abl

o -

Fig. 4.6 A charge of uniform density p is confined to a small
rectangular prism. The charge constitutes a point charge when
viewed from a distance large compared to its linear dimensions.

points of the prism are also different. If the prism is sufficiently
far from the point of observation, which we assume to be the
case, the difference between the retarded times corresponding to
different points of the prism is very small, and therefore the
retarded acceleration of the prism may be assumed to have the
same value v for all points of the prism, even if in reality the
acceleration is variable. Therefore the velocities of the different
points of the prism can be calculated from velocity formulas for
motion with constant acceleration.

As we shall presently see, in addition to the velocity of the
center of the prism, we only need the velocities of the right, left,
top, and bottom surfaces of the prism. Let the distances of these
surfaces from the point of observation be r,, r,, r;, and r,, as
shown in Fig. 4.7. The time interval between the retarded time
for the center of the prism and for its left or right surface is then
approximately (r,—r,)/2c (see Section 3.1), and the time interval
between the retarded time for the center of the prism and for its
top or bottom surface is approximately (r;—r,)/2c. Therefore the
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Fig. 4.7 When the charge shown in Fig. 4.6 is in a state of
accelerated motion and is at a retarded position, its apparent
length, shape, and thickness of its surface layers are no longer the
same as for the stationary charge. The distances from the center of
the charge and from the four surface layers to the point of
observation are represented by the vectors r, 'y, Iy, Iy, and r,. All
five ¥’s meet at the point of observation (origin of coordinates). The
acceleration vector is in the xy plane.

(approximate) retarded velocities of the right, left, top, and
bottom surfaces of the prism are, respectively, v, = v — ¥(r, —
r)2c, v, = Vv + ¥(r, — r)/2c, vy = v — V(r; — ry)/2c, and v,
=V + V(r; — ry)l2c.

As was explained in Section 3-1, the apparent size and shape
of the prism in its retarded position is not the same as that of the
prism when it is at rest. In particular, if the prism moves in the
— x direction, the prism appears to be longer, it appears to be
slanted, and the effective volume of the prism and of its surface
layers changes (Fig. 4.7). As a result, the following geometrical
relations hold for the moving prism at its retarded position:

The apparent length of the prism is, by Eq. (3-1.7),

o=t (4-4.1)
1-r-virc

The apparent volume of the prism is, by Eq. (3-1.8),
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@l = P (4-4.2)
1-r-virc
By the same equations, the apparent volume of the right surface
layer (distance r, from the origin) is

@w); = ¥ (4-4.3)
L-r +v,/rc
the apparent volume of the left surface layer (distance r, from the
origin) is
@wy; = P, (4-4.4)
1-r,-v,/rc
the apparent volume of the top surface layer (distance r; from the
origin) is
awy; = v . (4-4.5)
L-r,-v,/rc
and the apparent volume of the bottom surface layer (distance r,
from the origin) is
o (4-4.6)
l-r,-v,/rc
We shall find the electric field of our accelerating point
charge by using Eq. (2-2.1)

1 dJ
Y
[ p c? ot

r

av’. (2-2.1)

E--__|
4me,

Consider first the contribution of the gradient of the charge
density, V'p, to the field. Since p is constant within the charge,
V'p = 0 within it, so that the only contribution to V'p comes
from the surface layer of the charge, where p changes from 0
(outside the charge) to p (inside the charge). Let the actual
thickness of the surface layer of the charge be w. Taking into
account that V'p represents the rate of change of p in the direction
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of the greatest rate of change, we then have V'p = (o/w)n,,
where n;, is a unit vector normal to the surface layer and pointing
into the charge.” Since the center of the charge is in the xy plane
(' = 0), the integrals over the two surface layers parallel to the
xy plane cancel each other, because V'p for one of the layers is
opposite to that for the other layer, while 7 is the same for both
layers. Thus, as far as V’'p is concerned, only the four integrals
over the layers parallel to the xz and yz planes remain. Referring
to Figs. 4.6 and 4.7, they are the right, left, top, and bottom
surface layers, and V'p associated with these surface layers is,
respectively —(po/w)i, (o/w)i, —(p/w)j, and (p/w)j (these are the
same relations that we used for finding the electric field of a
uniformly moving point charge in Section 4.1).

Assuming that ry, r,, r;, and r, are much larger than /*, we
can replace the integrals over the four layers by the products of
the integrands and the retarded volumes of the layers, which gives

- ["’W(abw>1 (-1)+ 22 (abw); 1+ 2L @b ()
"2 " (4-4.7)
+M(lbw);wj]— 1 j[‘”’at]dv'.
r, 4me,c? r

Let us designate the part of Eq. (4-4.7) which explicitly
depends on p as E,. Using Eqs. (4-4.3)-(4-4.6) and cancelling w,
we can write then

1 1 .
[
P dmel\rfl-r, v, /rc} rf{l-r, -v,/rc} o

+( 1 1 )blj].
r4{1—r4-v4/r4c} rdl-r, -v,/rc}

(4-4.8)

The differences of the fractions in this equation are simply the
increments of the function 1/(r - r - v/c) associated with the
displacement of the tail of r over a small distance represented by
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the vector 1* [in the i component of Eq. (4-4.8)] and by the vector
a* [in the j component of Eq. (4-4.8)]. Therefore, just as we did
in the case of Eq. (4-1.7), we can write Eq. (4-4.8) as

LY AT PO

Using Egs. (3-1.16), (3-1.14), and (3-1.15), we now have

_ pb [(r -rvic+(r-Vr/c? i) la ;
4 47r£0l r3(1-r-v/rc)? 1-rev/rc
+(r -rvic +(r « V)ric? i) y'vlc alj (4-4.10)
r3(1-r -« v/rc)? r(l-r-v/rc)
+(r—rv/c +(r * V)r/c? ) r-x'vic alj]
31 -r « v/rc)? r(l-r-v/rc)

Simplifying and taking into account thatr « i = — x',r « j =
—y,vei=—-vy,ve+j=0,andr - v = x'v, we obtain
pabl

. {[-x’ +mvlc-(rV)x'/cYi

) 4me,r?[1-r « v/rc]P
/
+[-x"+rvlc - (r - V)x’/cz]y_:/cj

—x/ (4-4.11)
H[oy! - @0yl LR

- pabl
4meyr [l -r - v/rcP
+(vy[eHj -y j - - ¥)y'lcj].

[=x’i-rvic - (r < V)x'/c?i

Since we are not interested in the acceleration-independent
field E, (this field was found in Section 4-1), we shall drop in Eq.
(4-4.11) the terms that do not contain the acceleration v, and shall
designate the rest of the equations as E,,, with the subscript "4"
standing for "acceleration."” Noting thatr = — x'i — y'j, and that
pabl = g, we then obtain



SECTION 4-4 ACCELERATING POINT CHARGE 85

- q(r-v)r , (4-4.12)
dregic?(1-r- virc)

Ap

Consider now the contribution of 8J/dt to the field. By Eq. (3-

1.4), we have
8 _d(pv) _
ot ot

-(v-V'p)v +p%2 =—(v-Vp)v+pv. (4-4.13)

However, because the retarded velocity is different in different
regions (points) of the charge, we must evaluate Eq. (4-4.13)
separately for each region under consideration. There are five
such regions: the interior of the charge, the right surface, the left
surface, the top surface, and the bottom surface.

In the interior of the charge, V’p = 0. Therefore for the
interior we have

o (4-4.14)
o PV

At the right surface, V'p=(dp/dx")i=—(p/w)i, and the velocity
is v,. By Eq. (4-4.13), for the right surface we therefore have

aJ,
L=—(v, - V')V, +pV, = -(v, _)v +pV, =(p/W)v, v, +p¥,.
o \44.15)
or
’a_z] = (p/w)(v, v, + wv), (4-4.16)
and since we can make w as small as we please,
aJ,
¥ = (p/W)v,v,. (4-4.17)

At the left surface, V'p = dp/dx'i = p/wi, and the velocity is
v,.Therefore, by the same reasoning as in the case of Eq. (4-

4.16), 53

_513 = - (p/W)v,y,. (4-4.18)
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At the top surface, V'p = dp/dy’j = — p/wj, and the velocity is
v,;. Therefore,

aJ.
T: = (0/W)vyv,. (4-4.19)

At the bottom surface, V'p = dp/dy'j=p/wj, and the velocity is
v,. Therefore
a0J
6_t4 = = (p/w)v,yv,. (4-4.20)
Let us now designate the integral in Eq. (4-4.7) as E;. Since,
by supposition, all ’s for the charge (prism) are much larger than
the linear dimensions of the charge, we can replace the integration
by the product of the respective integrands and the volumes of the
five regions that contribute to dJ/d¢t. Using Eqs. (4-4.14), (4-
4.17)-(4-4.20) and (4-4.2)-(4-4.6), we then have

v abl
R A (4-4.21)
+p(vv abw )—p(vv abw )
I B § A B I T B} A R I
rw 1-r ev,/rcl rw 1-r,-v,/rc
0 Ibw ) 0 ( bw )
+ Py % - £ e A
r3w( ¥ -1, - v, /rel rw\ Y T v irc
or
i V¥ v,V
dmecBy = T+ ab( M b )
e r(1 -r - v/rc) b r,-r, -v,/c r,-r,-v,/c
v,V v,V
+pbl( SALBI A ) (4-4.22)
ry,-Yyevilc r,-r,ev,/c

Since the linear dimensions of the charge are very small
compared to the r’s, the difference of the fractions in the last two
terms of Eq. (4-4.22) can be regarded as the total differential
(increment) df = (8f/dx")dx’ + (df/0y')dy’ of the functions
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Vv

x (4-4.23)
r-rev/c
and
o (4-4.24)
r-revlc

corresponding to the displacements of the tail of r by I* and by
a*, respectively (see Fig. 4.7).

Using Eq. (3-1.16), noting that r = — x'i — y’j, noting that
v, = 0 (because v is parallel to the x axis), and remembering that
v and v are functions of the retarded time t' = ¢t — r/c, so that
ov/ox' = (9v/dt')ot'/ax’ = (dv/dt')x'/rc = vx'lrc with similar
expressions for dv/dy’, dv/dx’, and dv/dy’, we have for the needed
partial derivatives of the two functions

9 A )_ -x" = lc-(r-¥)x'lc?
0x’\r[1 —(l’ ° v)/rc] * 7'3[1 —(l' . V)/"C]2 (4_425)
vy +vvx’
ric[1-(r - v)/rcl’

o ) _ vyx'! (4-4.26)
ax \r[1=(r - v)/rc] rc[l-@r-v)/rc]’
and
K2 (_Vyv_) - WY wan
ay’\r[1-(r - v)/rc] r¥c[1-(r - v)/rc]

In evaluating Eq. (4-4.22) with the help of Egs. (4-4.25)-(4-4.27),
we shall omit from Eq. (4-4.25) the terms not containing v, since
they only contribute to the acceleration-independent field E,,
which we already found in Section 4-1. Combining Eqgs. (4-4.22),
(4-4.25)-(4-4.27), (3-1.14), and (3-1.15), we then have, denoting
the acceleration-dependent field as E;, ,



CHAPTER 4 MOVING POINT AND LINE CHARGES

88
v
ey = = )
[ -vv(r-v)x’ Wy +v¥)x’ ] I
+pa - .
r3c(1-r-virc)* rc(1-r-virc)l (1-r-virc)
p [ vvx' o aylvic (4-4.28)
ric(1-r-v/rcy r(d-r-v/irc)
. vy’ . a(r—r-v/c)]
r’c(1-r-virc) rd-r-virc)l
or
v
dmeoc By = r(1 —1"1 - v/rc)

- - V)x/
q VI XT e (4-4.29)
réc(1-r-v/rclre(1-r-virc)y ~*

+

9 Iy/! ¥ /
e hvxywv v,vy/'(r - v)
vx' -2~ —yyvy '+ 217 |
y
rc rc
Sincer + v=x'v= —x'vandsince —v.x' — v,y =

v - r (see Figs. 4.6 and 4.7), Eq. (4-4.29) reduces to

41e K, = 7(1‘%?77@ (4-4.30)
+ 9 v - v)(r-v) +(r < V)V +(r - V)V,

r’c(1 -r - v/rc)*lre(1-r - v/rc)

which after elementary simplifications becomes

E - qv + g - Vv (4-4.31)
M 4re (1 -1 - virc?  dmeciri(1-revirc)
0 0

Finally, in accordance with Eq. (4-4.7), subtracting Eq. (4-4.31)
from Eq. (4-4.12), we obtain for E,
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q@r « v)r _ q(r-vyv
2,3(] —p » 3 r2(1-r- }
dme,cor E;lv revire)  Amec’r’(1-x-vire)’ 4 4 35y

4me,c?r(1-r - virc) ’

which can be written in a simpler form as

_ q {rx[(r - .%v)xv]} . (4-4.33)

A 4me,ricX(1 -r « virc)®

The total electric field is the sum of the acceleration-
independent field E, given by Eq. (4-1.11) and of E, given by
Eq. (4-4.33). Adding Egs. (4-1.11) and (4-4.33), we obtain for
the total electric field of a point charge in arbitrary motion

E-= q {(r—ﬁXl -.v_z)+r><[(r—_r_‘:)x l}}
4meyr3(1-r  virc)’ c c? c c?

(4-4.34)
Note that r, , v, v, and v in this equation are retarded.

v

Example 4-4.1 A point charge moves with constant speed along a
circle of radius r (Fig 4.8). Find the electric and magnetic fields
produced by the charge at the center of the circle and discuss the
significance of the resulting equations for electrodynamics of atomic
systems.

For circular motion v = (V/F)r. Substituting v into Eq. (4-
4.34), taking into account that r «+ v = 0, and simplifying, we
obtain

2
E-_J4 {r(l-v_)-vi}. (4-4.35)
47r80r3 c? c

Equation (4-4.35) expresses the electric field in terms of the
retarded position of the charge. Let us convert this expression to the
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P ©

r

S

Fig. 4.8 Geometrical relations between the 'present position
vector" r, and the "retarded position vector" r for a point charge
q moving with velocity v in a circular orbit. The field signal
originates at the "retarded" point P and propagates with velocity ¢
toward the center of the orbit O. By the time the signal reaches the
center of the orbit, the charge has moved an angular distance wr/c
along the orbit and is at the "present position" point P,. (Note.: The
length of the arc between P nd P, is exaggerated. Since v < c, the
arc should be shorter than the radius of the orbit.)

present position of the charge. We can do so by resolving the
retarded position vector r and the retarded velocity vector v into
their components along the present position vector r, and the
present velocity vector v,. Since the angle between the present
position vector and the retarded position vector is §, — § = wr/c =
v/c, where w is the angular velocity of the charge, we obtain for the
two components of E

2
E = 9 {(1 -_v_)rcos wic) + M sin (v/c)}, (4-4.36)
© 4meyr? c? c
2
E, = _1 {(1 - _v_)rsin wic) - %V cos (v/c)}, (4-4.37)
© A4meyr? c? c
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and for the total field

2
E = q : {[(1 - %)COS Wic) + X SiIl(V/C)]rO
4meyr c ¢ (4-4.38)

+ [(1 - :‘)—z)% sin(v/c) - _c’: cos(v/ C)}Vo}-

The most obvious practical application of Eq. (4-4.38) is for the
case when we can neglect v/c to powers higher than 3. Expanding
sin(v/c) and cos(v/c) in Eq. (4-4.38) into power series of v/c and
dropping terms containing v/c to powers higher than 3, we have

E - _‘1_{(1 _v_2)r0 2 2vo}. (4-4.39)
4me,r? 2c? 3c3

To find the magnetic field, we apply Eq. (3-2.12) to the electric
field given by Eq. (4-4.35). This gives

2
H=_9 rx {r(l =Y
4mepyric c?

_ vf}, (4-4.40)
C

or, sincer X r = 0, and /g, = ¢,

H=_9 [vxr]. (4-4.41)
47r?

Although v and r in Eq. (4-4.41) are retarded, their cross
product is not affected by conversion to the present velocity vector
and present position vector of the charge, because the cross product
is the same for all points of the orbit. Therefore the magnetic field
given by Eq. (4-4.41) is exactly as expected from the Biot-Savart
law. But Eqgs. (4-4.38) and (4-4.39) for the electric field are quite
unexpected. Intuitively, one would expect the field to be the
Coulomb field [possibly with the factor (1 — v*/¢?)] directed to the
center of the orbit. Contrary to expectations, the true electric field
of a point charge moving with constant speed in a circular orbit is
very different from the Coulomb field: First, the field has a
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component parallel to the instantaneous velocity vector, and thus is
not directed to the center of the orbit. Second, the field is not
proportional to 1/7%. Third, the factor in the radial component of the
field is (1 — v*/2¢) rather than (1 — V*/c?).

As far as atomic systems are concerned, it is clear from the
derivations presented above that the Coulomb law cannot be used
as a rigorous basis for any atomic model. The problem is that, even
if the electric field of the nucleus is exactly a Coulomb field, so that
the electric force exerted by the nucleus on electrons is the ordinary
1/7* force, the electric force exerted by electrons on the nucleus is,
by Eqgs. (4-4.38) and (4-4.39), neither radial nor proportional to
1/7 [the fact that Eqs. (4-4.38) and (4-4.39) have been obtained for
a circular, rather than for an elliptical, orbit cannot possibly
change the essence of the information provided by Egs. (4-4.38)
and (4-4.39)]. Therefore any atomic model based on Coulomb field
or Coulomb potential can at best be only approximately correct,
although the corrections associated with the acceleration of the
electrons are clearly very small.®

A

4-5. The Magnetic Field of a Point Charge in Arbitrary Motion

Although by using Eq. (2-2.2) or Eq. (2-2.5) we can find the
magnetic field produced by a point charge in arbitrary motion in
the same manner as we found the electric field in Section 4-4 (see
Example 4-5.1), it is much easier to find it from the known
electric field by using Eq. (3-2.12).

Applying Eq. (3-2.12) to Eq. (4-4.33) and using ey, = 1/c?,
we obtain for the acceleration part of the magnetic field after
elementary simplifications

P —LaL LSS
4mric(l -r - virc)*Lre(l -r « v/rc)
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Applying Eq. (3-2.12) to Eq. (4-4.34) and using eou, = 1/¢7,
we obtain for the total magnetic field after elementary
simplifications

= q 1—V2/C2+T’V/C2(vxr)+‘.’xr (4_52)
4rr®(1 -r-virc)*L r(l-r-v/rc) )

v

Example 4-5.1 Find the magnetic field of an accelerating point
charge shown in Figs. 4.6 and 4.7 by using Eq. (2-2.2).

Since J = pv, V' X J=V' X pv =V'p X Vv + pV' X v. But
v is not a point function (there is no "velocity field"), and therefore
Vi Xxv=0and V' XJ = V'p X v. As we already know from
Sections 4-1 and 4-4, V'p for our charge is only different from
zero at the surface layers of the charge. Therefore the only
contribution to the integral in Eq. (2-2.2) comes from the right,
left, top, and bottom surface layers, where V'p is —(o/w)i, (o/w)i,
—(p/w)j, and (p/w)j, respectively (by symmetry, the contributions
of the front and back surface layers cancel). Since [V’ X J] in the
integral of Eq. (2-2.2) is retarded, the velocity in the expression
[V'p x v] is the retarded velocity of each surface under
consideration. By supposition, the distances from the charge to the
point of observation is much larger than /*. Therefore the integral
in Eq. (2-2.2) can be replaced by the integrand and the volume of
integration (the respective volumes of the surface layers).
Substituting into [V' X J] = [V'p X v] = — [v X V’'p] the above
expressions for V'p, and using Eqs. (2-2.2) and (4-4.3)-(4-4.6), we
then have

_ abw (v, X1) _ abw (v, X i)
drwlr{l-r - v,/rc} rf{l-r,-v,/rc} (4-5.3)
biw(v, X j) blw(v, X J)

{11, v,inc] ril-r,-vjirc)
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or
H- i[( L xia
4 \[r,-r, > v,/c]l [r,-1,*v,/c] (4-5.4)
+( i Y% )x 'bl} |
[ry-ry e vy/c] [r,-r = v,/c] o)

The differences of the fractions in Eq. (4-5.4), just as before in
Eq. (4-4.22), are the increments of the functions given by Eqs. (4-
4.23) and (4-4.24), except that v, and v, in the numerators are now
absent. By Eqs. (4-4.25) and (4-4.26), taking into account that v, =
0, the corresponding partial derivatives are

F) ( v )_ -x’—rvx/c-(roi')x’/czv
' \r-revic r3(1-rev/rc) (4-5.5)
vx'

ric(1-r-virc)’

and
O )_ -y~ (e ¥y/c?
=v
dy'\r-r-v/c) r3(1 -r-v/rc)? (4-5.6)
i vy

r2c(1-revirc)

In evaluating Eq. (4-5.4) with the help of Egs. (4-5.5) and (4-
5.6), we shall omit from Eqs. (4-5.5) and (4-5.6) the terms not
containing v, since they only contribute to Hy, (the magnetic field
of a uniformly moving charge), which we do not need. Combining
Egs. (4-5.4), (4-5.5), (4-5.6), (3-1.14), and (3-1-15), we then have
for the acceleration-dependent field

=_£_[( -v(r-v)x' vx! )xi- abl

4 4T\ P32 -revire) ric(l-r-virc) 1-r-v/rc

+( -v(r-v)x' vx! )x'- ably 'vic @-5.7)
ric¥1-revirc) r*(l-r-v/rc) r(1-r-v/rc)

+( -v(r-vy' vy' )x‘- ably (1 -r+v/rc) .
r3’c 1 -revirc)y r2c(l-re-v/rc) r(1-r-v/rc)
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Expanding Eq. (4-5.7), taking into account that v X i = 0, and
simplifying, we obtain

H - q [—'x' /. V(e v)y’ '—'x"},
4 4xric(l -r-virc)? ek rc(1-r-v/rc) TRl
(4-5.8)
Butix’ + jy' = —r,and v X jy' = — v X r (because v is
parallel to the x axis). Therefore Eq. (4-5.8) can be written as
H,- 7 er+lli29;ﬁ4. (4-5.9)
47rc(l -r « v/rc)? re(1-r = v/rc)

The total magnetic field of an accelerating point charge is the
sum of Eq. (4-2.1), representing the magnetic field of a uniformly
moving point charge, and Eq. (4-5.9), representing the effect of the
acceleration of the charge on the field. Adding Egs. (4-2.1) and (4-
5.9), we obtain

_ q [1-vc?+(r-¥)/c?
4r¥(1 -r-virc)’l r(1-r-v/rc)

wxr)+YXT| (4-5.10)

Observe that Eqgs. (4-5.9) and (4-5.10) express the magnetic field

in terms of the retarded position of the charge. A

4-6. Electric and Magnetic Potentials of a Moving Point
Charge

Electric and magnetic potentials produced by a moving point
charge g can be easily obtained from Egs. (2-4.5) and (2-4.2).

A "point charge" is a charge distribution viewed from a
distance large compared to the linear dimensions of the charge
distribution. Therefore, for a point charge, the distance r in the
integrals of Egs. (2-4.5) and (2-4.2) may be considered the same
for all volume elements of the charge, and therefore each integral
may be replaced by the product of the integrand and the retarded
volume of the charge AV'.
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By Egs. (2-4.5) and (3-1.8), we then have for the electric
scalar potential of a moving point charge

/
Y= P AV/ret = L4 (4-6.1)
dme,r dre,r(1-r-v/rc)

or, replacing pAV' by g,

_ q ) (4-6.2)
dweyr(l-r-vlrc)

From Egs. (2-4.2) and (3-1.8) we similarly have for the
magnetic vector potential of a moving point charge

pJ AV’

PN ,
47r(1 -r - v/rc)

4-6.3
drr ( )

ret
and since J = pv,

- oV , (4-6.4)
4rr(l1-r-v/rc)

Equations (4-6.2) and (4-6.4) are called the Liénard-Wiechert
potentials.®'° They express the potentials of a moving point charge
in terms of the retarded position of the charge. If the charge
moves with constant velocity, Liénard-Wiechert potentials can be
converted to the present position of the charge. Transforming the
denominators of Egs. (4-6.2) and (4-6.4) with the help of Eq. (3-
1.26), we obtain for a point charge moving with constant velocity

- q (4-6.5)
4 4meyr[1 - (v c?sin?6]'?

and

- M , (4-6.6)
47ry[1 -(v¥c?sin?6]"?

where r, is the present position radius vector, and @ is the angle
between v and ry,.
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v
Example 4-6.1 Equations (4-6.5) and (4-6.6) represent the

"instantaneous" potential of a uniformly moving point charge. Since
the charge is moving, the potentials change as the time goes by.
How should they be written to show explicitly their time
dependence?

Assuming that the charge moves in the negative x direction, the
x coordinate of the charge diminishes with time according to x,’ —
vt, where x,' is the value of the x coordinate at 1 = 0. Expressing
the denominators in Eqgs. (4-6.5) and (4-6.6) in terms of Cartesian
coordinates by means of Eq. (3-1.26) and (3-1.25), and replacing
x,' by x,/ — vt, we obtain the time-dependent expressions for the
potentials

- q
0= (4-6.7)
4me [(xg - vi)> +(1 -v¥c?y'?]?
and
A = T . (4-6.8)
4m[(xy - vi): +(1 -v¥c?)y'*]”? A

4-7. How Accurate are the Equations for the Fields and
Potentials Obtained in this Chapter?

The equations for the electric and magnetic fields of a point
charge in arbitrary motion were first derived in 1898 by A.
Liénard® from the potentials which we now call the Liénard-
Wiechert potentials [Eqgs. (4-6.2) and (4-6.4)]. These potentials
were first derived by Liénard in 1898 and later by Wiechert in
1900.%1° Both Liénard and Wiechert obtained the potentials from
the retarded integrals for the electric and magnetic potentials of a
time-dependent charge distribution in a manner similar to our
derivations presented in Section 4-6.

Liénard invented a special method for integrating retarded
potential integrals for the case of a charge distribution of "very
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small dimensions." The essence of the method was that, because
of the motion of the charge, the region of space from which the
charge "sends" electric and magnetic field signals is not the same
as the volume occupied by the stationary charge. According to
Liénard, if the region occupied by the stationary charge is Q, then
the integration is to be extended over the region Q/[1 - (u/V) cos
(u,r)], "en prenant pour u et r une valeur moyenne," that is, by
using average values for the velocity of the charge u and for the
distance from the charge to the point of observation r (Liénard
used V for the velocity of light). One should note that Liénard did
not specify how these average values were supposed to be
determined, and that, by using an "average value" for the velocity
of the moving charge, he eliminated the need for taking into
account a possible acceleration of the charge. Assuming then that
the charge was "concentrated" at a "single point," Liénard
obtained his "point charge" potentials.

Wiechert’s derivation was essentially the same as that of
Liénard. However, instead of using the average values for the
velocity and distance, he simply factored out 1/r from under the
integral sign because, according to him, "die Variation des
Nenners » kommt bei unendlich kleinen Dimensionen nicht in
Betrach," that is, because in the case of the infinitesimal volume
of the charge, r could be regarded as constant over the volume of
integration.

It is clear that since Liénard used average values of the
integrand in obtaining his potentials, the potentials could not be
exact. And it is also clear that Wiechert was wrong when he
referred to the volume of integration as "infinitesimal." Even if
the actual volume of the charge is "infinitesimal," the volume of
integration is not - in fact, according to Eq. (3-1.8), it can be
infinitely large, if the velocity of the charge is equal to the
velocity of light and if the charge moves toward the point of
observation!
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The conventional derivations of potentials and fields of
moving electric charges now used in most textbooks on electricity
and magnetism are basically the same as those used by Liénard
and therefore are subject to the same misgivings.

Our derivations of the electric and magnetic fields of a
moving point charge presented in this chapter differ in two
important aspects from the conventional derivations of these
fields: (1) the fields are derived directly from the general field
equations for an arbitrary time-dependent charge and current
distribution, and (2) the derivations clearly reveal the physical
effects responsible for the characteristic properties of the fields.
In contrast, the conventional derivations, based on the Liénard-
Wiechert potentials, hide these physical effects behind a physically
obscure mathematical procedure required for transforming the
potentials into the fields.! It is difficult to ascertain the range of
validity of Egs. (4-1.11), (4-1.13), (4-4.34) and (4-5.2) on the
basis of conventional derivation. But our direct derivations show
very clearly what restrictions apply to these equations and how the
restrictions originate.

In obtaining the expressions for E and H of moving point
charges we used several approximations. Our first approximation
was the replacement of the integrals in Egs. (2-2.1) and (2-2.2) by
the products of the integrands and the volumes of integration. This
can only be done if the relation r > I* is satisfied. Therefore, by
Eq. (3-1.7), our E and H expressions for moving point charges'
are subject to the restriction

l l

> = , 4-7.1
s 1-rev/rc 1-(v/c)cosod ( )

where [ is the length of the "point charge," v is the velocity of the
charge, r is the retarded position vector joining the charge with
the point of observation, and ¢ is the angle between v and r.
Since Eq. (4-7.1) must hold for all values of ¢, including ¢ = 0,
the velocity of the charge is subject to the restriction
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v < c(1-1/7). (4-7.2)

Consider now the approximations that we used for taking into
account the acceleration of the charge. The retarded time intervals
between the center and the right-left and top-bottom surfaces of
the charge are (r, — r)/2c = (I cos¢)/[2c(1 — r-v/rc)] and (ry
— r)l2c = (a sing)/[2c(1 — r-v/rc)], respectively (see Figs.
4.7, 3.2, and 4.3)." For Eq. (4-7.1) to hold, the increment in the
velocity of the charge during these time intervals must be less than
¢ — v. Hence the restrictions on the acceleration of the charge in
the direction of the x axis is

V(r,-r)/2c < c-v, (4-7.3)
or
v < 2(c -v)(c-vcos®) ‘ (4-7.4)
x Icos¢

A similar restriction applies to the acceleration in any other
direction. Since the largest possible value for cos ¢ and sin ¢ is
1, we obtain from Eq. (4-7.4) for the general case of the
acceleration v

b

y < 2 (4-7.5)
I

where L is the length of the "point charge" in the direction of the
acceleration.
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reflects the attitude of the observer toward this object. See Oleg D.
Jefimenko, Electricity and Magnetism, 2nd ed., (Electret Scientific,
Star City, 1989) pp. 95-98.
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with the displacement dl = xi + yj + zk is dU = VU - dl [see, for
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fields and potentials involves the use of the Dirac é-function. When
applied to moving point charges, the method yields standard results
[see Omer Dushek and Sergiy V. Kuzmin, "The fields of a moving
point charge: a new derivation from Jefimenko’s equations,” Eur.
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ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
AN ARBITRARY CHARGE
DISTRIBUTION MOVING WITH
CONSTANT VELOCITY

Electric and magnetic fields and potentials produced by
any time-independent stationary charge and current distribution
can be calculated with relative ease by a variety of methods. But
calculating fields of time-dependent charge and current
distributions, and the fields of moving charge distributions in
particular, still remains a formidable task. In this chapter we shall
obtain general formulas that allow one to determine the fields and
potentials of any uniformly moving charge distribution directly
and simply in terms of present time integrals that are not much
different from the integrals for fields of stationary charges.

5-1. Converting Retarded Field Integrals for Uniformly
Moving Charge Distributions into Present-Time (Present-
Position) Integrals

As we already know from Chapters 2 and 3, electric and
magnetic fields of moving charge distributions can be found from

103
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the retarded integrals

[V’p + ig}
1 c? ot
E - - j av’ (5-1.1)
4me, r
and
H-_L j (V' X J] gy (5-1.2)
4T r
or from
1 [o] 1|0dp / 1 1{0J
o e e L s
dmey ) L p3 i ricl ot r 4me,c?) rlot )
and
H - LH@ +L{"’_J xrdv'. (5-1.4)
4wt riclot

We shall presently show that for time-independent charge
distributions moving with constant velocity, these integrals can be
converted to the "present” position of the charge distribution, so
that the integration is performed not over the retarded, or
effective, volume (see Section 3-1), but over the real volume that
the charge distribution occupies at the moment ¢ for which the
fields are being determined.

The conversion is based on certain properties and relations
involving retarded integrals and retarded quantities which are
reviewed below.

Although in the retarded integrals the retardation symbol [ ]
usually appears only in the numerators of the integrands, all
quantities in the integrals are retarded. In particular, the volume
element dV’ stands for the retarded volume element dV',,, = [dV']
= d[x']d[y']d[z’'], r stands for the retarded distance [r], and r
stands for the retarded position vector [r]. Note that [Vp] means
"ordinary Vp used at retarded position," [dp/df] means "derivative
of ordinary p with respect to ordinary time used at retarded
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position," and [0J/3f] means "derivative of ordinary J with respect
to ordinary time used at retarded position."

In the derivations that follow, we shall assume that the point
of observation is atx = y = z = 0, and we shall only consider
a time-independent charge distribution moving with constant
velocity in the —x direction. For such a charge distribution,
because the charge density is not a function of time, [p] = p, and,
because v is constant, [v] = v. Also, as explained in Section 3-1
[see Egs. (3-1.8), (3-1.3), (3-1.4), (3-1.25), and (3-1.26)], the
following relations hold for such a charge distribution

@y -_4av. (5-1.5)
1-[rev]/rc
0 . _ . -, 00 i
Tt - v V/p - v5;7’ (5 16)
0J ap .
W eV = 290 (5-1.7
- (v+Vp)v v ax'l )

Y I 212 12 (12 12\ 2 A 21102
[r] =[x vl/c={xo" +y""+2"* - (y"* +z2"?/c?} (5-1.8)
={x62+(yl2 +Z/2)(l _v2/c2)}1/2={x62+(y/2 +Z/2)/,Y2}1/2’
[we are using the standard abbreviation y = 1/(1 — v*/c*"4], and
[r] - [r - vl/c = r,{1 - (v¥/c)sin?0 }12, (5-1.9)

where sin’0 = (y'? + z'?)/(x,’> + y'* + z'?) and 6 is the angle
between the velocity vector v and the vector [ry] joining [dV']
with the point of observation. For clarity, all retarded quantities
and expressions in the above equations are placed between square
brackets; the quantities without brackets, and the quantities
between braces in Eq. (5-1.8) and (5-1.9) in particular, are
present-time quantities. Observe that Eq. (5-1.8) is obtained from
Eq. (3-1.25) by replacing y'? by y’> + z'% the replacement is
needed because we no longer deal with a point charge and
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therefore cannot assume that the charge is confined to the xy
plane.

We can now proceed with the conversion of Egs. (5-1.1)- (5-
1.4). Once again, we shall only consider a time-independent
charge distribution moving with constant velocity v = — vi.

Converting Eq. (5-1.1). Using Egs. (5-1.5) and (5-1.7) and
remembering that p and v are not affected by retardation and that
V'p in Eq. (5-1.1) is the ordinary gradient, we can write Eq. (5-
1.1) as

E = - av’

1 jV’p—(v-V’p)v/c2
dme, [r-r-vic]

1 jV’p -i(v2/cH(dp/dx") dv'
4Te, [r-r-v/c] ’

(5-1.10)

where only the denominator is retarded. Converting the retarded
denominator in Eq. (5-1.10) with the help of Eq. (5-1.8), we
obtain the desired equation (we are omitting the subscript "0" at
x' for simplicity)

1 lV’p —i(vz/cz)(ap/ax/)dv/’ (5-1.11)
dme, ) (x2a(yP ez ) 2}

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (5-1.11) can be written in an alternative form. Using
Eq. (5-1.9) for converting the denominator of the integrand in Eq.
(5-1.10), we obtain (omitting the subscript "0" at r for simplicity)

E = - 1 lV’p —i(vZ/cz)(ap/Ox’) dv'. (5_1_12)
dmey ) r{1-(v¥c?sin?6}'?

An even simpler expression for E of a moving charge
distribution can be obtained from Eq. (5-1.1) if the density of the
charge under consideration is constant within the volume occupied
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by the charge. As was shown in Section 2-3, in this case the
charge gradient exists only at the surface of the charge, and the
volume integral reduces to a surface integral. Equation (5-1.12)
becomes then

) ds’ -_Fi(vzlcz)dy’dz’ , (5-1.13)
dmey ) r{l -(v?¥/c?sin?4}?

where the surface element vector dS’ is directed from the charge
distribution into the surrounding space, and the sign in front of i
is the same as that of dp/dx’ .

v

Example 5-1.1. A thin ring of width w, thickness b, and radius a
> b carries a uniformly distributed charge g and moves with
velocity v = — vi along the x axis, which is also the symmetry axis
of the ring (Fig. 5.1). Find the electric field produced by the ring
at the origin of coordinates when the center of the ring is at a
distance x’ from the origin.

Fig. 5.1 A thin ring of charge q moves with velocity v = — vi
along the x axis. Find the electric field at the origin.

We can solve this problem by using Eq. (5-1.13). By
symmetry, only the front (leading) and the back (trailing) surface
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of the ring contribute to the electric field at the origin. Let the
distances from the front and the back surface of the ring to the
origin be r; and r,. We then have r, = [(x' — w/2)* + a’]'?, r, =
[(x' + wi2)? + a’]'?, sinf, = a/[(x’ — wi2)* + a’]'?, sinf, =
all(x" + w/2)*> + a*]'*. Equation (5-1.13) becomes therefore

E-_P “ -{1-v¥c*dy'dz'i +j‘ {1-v¥cHdy'dz’i )’
dmey\J r {1 -(v¥c?sin?d }'? I r,{1-(?/c?)sin?,}"?
(5-1.14)
where the integration is over the two flat surfaces of the ring.
Substituting the above values for ry, r,, sind;, and sinf, and taking
into account that the area of each flat surface of the ring is 27ab,
we then have

E

e -vZ/c2)21rab( -1
{

4me (x!' -wi2)*+a?-v2a?/c?}"?

0 (5-1.15)

+W +a?-v? 2 2)
+
{(x’ /2)2 a a’lc }1/

or

E - iq(l -v?/c?) ( 1

7 2 —v2/n2\ 421172
dmegw  \{(x/ +w/2)*+(1 -v?/c?)a?} (5-1.16)

} 1
{67 -wi2P+(1 -v2/c2)a2}“2)'

Example 5-1.2. An infinitely long, thin, straight ribbon of width a
and thickness b carries a charge of uniform density p and moves
along its length with velocity v = — vi (Fig. 5.2). The plane of the
ribbon is in the xz plane of rectangular coordinates and the center
line of the ribbon is on the x axis. Find the electric and magnetic
fields produced by the ribbon at the point P(0, 0, R).

We can solve this problem by using Egs. (5-1.13) and (3-2.5).
According to Eq. (5-1.13), the only contribution to the electric field
of the ribbon at P comes from the edges of the ribbon located at
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Fig. 5.2 An infinitely long thin ribbon of charge density p moves
with uniform velocity v = — vi along the x axis of rectangular
coordinates. Find the electric and magnetic fields produced by the
ribbon at the point P.

z' = a/2and 7z’ = — a/2. Let us assume that the ends of the ribbon
are at x’ = — L, and x' = L,. By Egs. (5-1.13), (5-1-9), and (5-
1.8), we then have
E-_P qu kbdx' _rz kbdx'
4me )\ oL, (x2+(R-al2Iy3"? L+ (R +al2)H B
_kpb / /2 2/0 20172
= In{x’ + {x'*+(R ~-al2)?/ -1.
4mo{( {2+ (R-al2y 1y ") (5-1.17)
- In(x/ +{x"*+(R +a/2)2/’Yz}”2)}|L: )
or

E

_ kpb [ln L,+{L}?+R-al2)}y}"?
4me, | -L +{L}*+R-a/2)*/y* }'?
L, +{L, +R +al2)*Iy*}"* ]
-L+{LE+R+al2PIy* }2)

(5-1.18)

Since R — a < L,,L, and R + a < L,,L,, we can expand the
expressions in the braces and keep only the leading terms, obtaining
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_ kpb [m L,+L,+(R-al2)*2L,y*
4me =L, +L, +(R-a/2)*2Ly*
2 2
o LatL R al2yi2Lyy 5-1.19)
-L +L, +(R+al2)*2Ly*
Kpb ll 2L, +R-al22L7? 2L, + R +al2}/2LY
= n -In
(R —(1/2)2/2L|‘y2 (R +(1/2)2/2L1'y2

0

dme,

and, finally,

E - kPb jp B*a2) (5-1.20)
2me, (R-al2)

To find the magnetic field, we will use Eq. (3-2.5). By Egs. (3-
2.5) and (5-1.20), we have

H = ey xE = (- 1xk)p”’1 (R+al2)  (5.1.21)
2t (R-aR)

or

H-jlby ®rad) o 1, Reald) (s
2t (R-al2) ) 3ra R-al2)

where J is the current density and [ is the current formed by the
ribbon.

Observe that Eq. (5-1.22) is the same as that obtained for this
current configuration by means of Biot-Savart’s law (or its
equivalent),! which, taking into account the diversity and
complexity of the theoretical considerations leading to Eqgs. (5-1.13)
and (3-2.5), and observing that Egs. (5-1.13) and (3-2.5) appear to
have no connection with Biot-Savart’s law, is quite remarkable.

A

Converting Eq. (5-1.3). As before, we assume that the charge
is time independent and moves with constant velocity v = — vi.
Using Egs. (5-1.6) and (5-1.7), we can write Eq. (5-1.3) as
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E - 41 I[p3]rdv, . . 1 Cj' —[v-V’p]r+2v[v-V’p]r/cdv,'
T
T 1 K r (5-1.23)

Note that V’p in this equation represents the ordinary
gradient, that is, the gradient with respect to the ordinary source-
point coordinates. For the calculations that follow, we need to
convert V'p into the gradient with respect to the retarded
coordinates. According to Eq. (3-1.7),

dx'] = & (5-1.24)
1-[r-vl/[rlc’
and therefore

9 . 1 9 (5-1.25)
ax’ 1-[r-v)/[rlc d[x']

Since v is along the x axis, the y’' and z' are not affected by
retardation, so that 3/dy’ = 4/d[y’] and /37" = 0/0[z']. Hence

cvia < V1 [V'1i0] 5.1.26
[v+V'p] TVl ( )

Substituting this expression into Eq. (5-1.23), we obtain

- <V
E-_! j Prav'+ L j (rie v -V gy, (5-1.27)
4mwey ) rar? dweyc e r2(1-v - r/rc)

where all the quantities under the integral signs are retarded, and
where we have replaced the retardation brackets in the integrands
by the subscript "ret" at the integral signs.

Let us designate the last term in Eq. (5-1.27) as E,. We have

1 j (Vr/C _r)V . V,p dV/ ) (5'128)
ret

> e ) rA1-v - rirc)

To convert this integral to the present position of the charge, we
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shall first eliminate V'p from it. To do so, we shall write Eq. (5-
1.28) in terms of its Cartesian components. For the x component

we have, remembering that v = — viand thatr = — (x'i + y'j
+ z'k),
E,-- L[ Qhexlv-Vagy  (5129)
drec e r¥(1-ver/rc)

Let us now factor out v+ and let us write the integral as a
difference of two integrals,

. e\
E,=- Y| Qremx)Vh gy (5-1.30)
dwe,Cdree r%(1-v + r/rc)

Ve {I v (vric-x")p dV’-f oV (vrlc-x") dV’}.
471'800 ret r2(1 —vor/rc) ret r2(1-v-r/rc)

The first integral in the last expression can be converted into
a surface integral by means of Gauss’s theorem of vector analysis
[vector identity (V-19)], and since there is no charge outside the
charge distribution under consideration, the integral vanishes.
Differentiating the integrand in the second integral, collecting
terms, reintroducing v+ under the integral sign, and simplifying,
we obtain

E,= av’

¥ 4re,

1 f p {v¥c?-2verirc+(v-rirc)}x’ -(vic?-1yvrlc
ret r3(1 -v+r/rc)?
(5-1.31)
Proceeding in the same manner with the y and z components
of Eq. (5-1.28), we obtain

1 j {v¥c?-2v erirc+(v -rirc)’}y’ av’
ret

= 5-1.32
¥ 4re, r3(1 -v « r/rc)? ¢ )
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and

- 1 I {v¥c?-2v er/rc+(verirc)*}z’ av' (5-1.33)
4mey ) ra r3(1-v - r/rc)?

Multiplying Eqgs. (5-1.31)-(5-1.33), respectively, by i, j, and
k and then adding them together, we again obtain a single vector
equation for E,:

E,- 1 jp{2v-r/rc—(v-r/rc)’—vzlcz}r+(v2/c2-l)vr/cdw
4Ty Jra r3}(1 -ver/rc)? (5-1.34)

Let us now rewrite Eq. (5-1.27) using Eq. (5-1.34) for the
second integral of Eq. (5-1.27). We then have

E-_1 f P rav! (5-1.35)
47!'80 ret 13

L1 j {2v-r/rc (v -r/rep-v2icr + 2/ c? - Dyvrlc 4
4TE Jrer r3(1-v « r/rc)? .

Adding the two integrals, we obtain

g | f p A V)X -vrle) pyr  (5-1.36)
dmeyd e r3(1-ver/rc)

We shall now convert the retarded integral in Eq. (5-1.36) to
the present position of the charge. Replacing the retarded dV’ in
Eq. (5-1.36) by ordinary dV' with the help of Eq. (5-1.5) and
writing 1/92 for 1 — v*/c*, we have

_ 1 [ p(lel-vlrkie) 4y (5-1.37)
4me? ) P -v - [x)/[A)

where, since p, v, v, and ¢ do not depend on time, only r and r
are retarded. But according to Eq. (3-1.19), the present-position
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vector r, and the retarded position vector r are connected by the

relation
r, = [r] - v[rl/c, (5-1.38)

so that the numerator in Eq. (5-1.37) is simply the present-
position vector r,. Furthermore, according to Eq. (5-1.9), the
denominator is simply

re {1 -(v¥c)sin?f}*2, (5-1.39)
where r, is the distance from the present-position volume element

dV' to the point of observation, and § is the angle between v and
r,. Hence Eq. (5-1.37) can be written as '

E-_L | fTo av', (5-1.40)
amegy* ) 3 {1 -(v¥/c)sin?6 )32

where the integration is over the volume of the charge at its
present position.

v
Example 5-1.3. An irregularly shaped electric charge distribution
of total charge g moves with constant velocity v = vi. The longest
linear dimension of the charge distribution is a. Find the electric
field produced by the charge at a distance r > a from the charge.

We can solve the problem by using Eq. (5-1.40). Since r > a,
we can assume r and 4 to be the same for all points of the charge.
Therefore we can factor out r and the denominator of the integrand
in Eq. (5-1.40), obtaining

E - fo [oav
4megy?ro {1 - (v¥/c) sin? 6}

qr,

47r£0'yzr03 {1-@?*c?sin*6}*? '

(5-1.41)

A
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Converting Eqs. (5-1.2) and (5-1.4). The retarded integrals
for the magnetic fields in Eq. (5-1.2) and (5-1.4) can be converted
to the present position of the charge in the same manner as the
integrals in Egs. (5-1.1) and (5-1.3) for the electric field.
However, there is no need to resort to this conversion process,
because by Eq. (3-2.5) the electric and magnetic fields of any
uniformly moving charge distribution are connected by the
relation

H = ¢vxE. (5-1.42)

From Egs. (5-1.12) and (5-1.42) we then have, noting that
vxi=0,

H=-1 [ vxVip av'.  (5-1.43)
4 ) r {1 -(v¥c?)sin*6}'”

From Egs. (5-1.13) and (5-1.42) we have

H-" v xdS’ , (5-1.44)
a7 ) T-02Ic) s 0}

And from Egs. (5-1.40) and (5-1.42) we have

- 1 ] pv xr, av. (5-1.45)
4my* ) rd {1 - (v¥/c)sing 32

5-2. Converting Retarded Potential Integrals for Uniformly
Moving Charge Distributions into Present-Time (Present
Position) Integrals

We know from Chapter 2, Eqgs. (2-4.5) and (2-4.2), that the
electric potential ¢ and the magnetic vector potential A of time-
variable charge and current distributions in a vacuum can be
found from the retarded integrals
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- _1 [l gy 5-2.1
v 47r£OI Tdv ( )
and
A=ﬁ[ﬂdw. (5-2.2)
Tl r

As we shall presently see, for time-independent charge
distributions moving with constant velocity, these integrals can be
converted to the "present” position of the charge, so that the
integration is performed not over the retarded volume, but over
the volume that the charge distribution occupies at the moment ¢
for which the potentials are being determined.?

Converting Eq. (5-2.1). Using Eq. (5-1.5) and remembering
that p and v are not affected by retardation, we can write Eq. (5-
2.1) as

.1 J o /
= av’, 5-2.3
¢ dmwe,d [r-r-vlic] ( )

where only the denominator is retarded. Converting the retarded
denominator in Eq. (5-2.3) with the help of Eq. (5-1.8), we obtain
the desired equation (omitting the subscript "0" for simplicity)

_ 1 J o / _
= dv’, (5-2.4)
. 41r80 {x12 +(},/2 +Z/2)/,),2}1/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (5-2.4) can be written in an alternative form. Using
Egs. (5-1.8) and (5-1.9) for converting the denominator of the
integrand in Eq. (5-2.4), we obtain

1 J 0 /
= av’. (5-2.5)
¢ dme, ) r{l -(v¥c?sin?4}1?
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Equations (5-2.4) and (5-2.5) can be further modified so that
the potential is expressed not in terms of the charge density p as
such, but in terms of Vp (that is, in terms of the "charge
inhomogeneities"). This can be done as follows.>

Taking into account that the position vector r is directed

toward the point of observation, so thatr = — x'i — y'j — z'k
and V' r = — 3, we write
I ro = r .V
{x/2+(y/2 +Z/2)/,yz}1/2 {x’2+(y’2 +Z/2)/,YZ}1/2
+pV/ . r
{x’2+(y’2+z’2)/72}”2
_ r V- 3p
{x/2+(y/2 +Z/2)/,YZ}1/2 {x’2+(y’2+z’2)/'y2}“2
Cre {xiv@j+2’ R (5-2.6)
{x/2+(y/2 +Z/2)/72}3/2 )
r-Vop 20

B 2+ () 2+ 7 DA B Py

Using Eq. (5-2.6) and Eq. (5-2.4), we can now express the
potential as

¢=-81 fV/. 2 /er 72 21/2dv/
TE, X+ +2vY (5-2.7)
o L r-ve av'.
87|-30 {x/2+(y/2 +Z/2)/72}”2

The first integral in this equation can be transformed into a
surface integral over all space by means of Gauss’s theorem of
vector analysis [vector identity (V-19)], and, since there are no
charges at infinity, the integral vanishes. Hence the potential can
be written as
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1 I r- V/p /
= av’, (5-2.8)
@ 871'80 {x/2+(y/2+zl2)/,},2}1/2

or, by using Eqgs. (5-1.8) and (5-1.9), as

1 I re V/p /
= av'. (5-2.9)
v 8me, ! r{l -(v¥/c?sin’g }'”

Equations (5-2.8) and (5-2.9) can be written in a much
simpler form, if p is constant within the charge distribution. In
this case V'p is different from zero only in the surface layer of the
charge distribution, where the charge changes from p within the
distribution to zero outside the distribution. We then have V'p =
(p/7T)n,, where 7 is the thickness of the surface layer of the
distribution, and n, is a unit vector normal to the surface of the
distribution and directed into the distribution. The volume
element dV'’ in Egs. (5-2.8) and (5-2.9) becomes then 7dS’, where
dS' is a surface area element of the distribution, and therefore
Eqgs. (5-2.8) and (5-2.9) reduce to

0 r- dStl,w
8Tey ) {x /2 +(y'2+z'D) Iy} ’

o= - (5-2.10)
and
o r- dS(/,w

, (5-2.11)
8me, ) r{l -(v¥c?sin’6}1?

Y=

where dS,,, is a surface element vector directed from the charge
distribution into the surrounding space.

Converting Eq. (5-2.2). The current density produced by a
uniformly moving charge distribution is J = pv with v = const.
Since pog, =1/c*, the vector potential A for such a charge
distribution is, by Egs. (5-2.2) and (5-2.1), A = vg/c*. Hence,
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using Egs. (5-2.5), (5-2.9), and (5-2.11), we have

A=Y (5-2.12)
C2
- v [ o / _

= dav’, (5-2.13)

4me,c? ) r{l -(v¥/c?)sin*0}"?
A=_"Y J r-vi v, (5-2.14)

87e,c?d r{l-(v¥c?)sin?}'?

and
/

W r-dSo (5-2.15)

8re,c?) r{l-(v¥cHsin®0 )2’

and similar expressions corresponding to Eqs. (5-2.4), (5-2.8),
and (5-2.10):

A- | : av', (52.16)

47|'80C2 {x/2+(y/2 +z/2)/72}1/2
A=-_"Y J r-vp av'. (5-2.17)
87!'80C2 {x/2+(y/2+z/2)/,),2}1/2
/
A--_d r - S (5-2.18)
87!’8062 {x/2+(y/2+z/2)/,),2}1/2
v
Example 5-2.1. An irregularly shaped electric charge distribution
of total charge g moves with constant velocity v = — vi. The

longest linear dimension of the charge distribution is a. Find the
electric and magnetic potentials produced by the charge at a
distance r > a from the charge.
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We can solve the problem by using Egs. (5-2.5) and (5-2.13).
Since r > a, we can assume r and 8 to be the same for all points
of the charge. Therefore we can factor out the denominator of the
integrands in Eq. (5-2.5) and (5-2.13), obtaining

Q= 9 , (5-2.19)
dmer{l-(v¥c?sin’g}'"*

A = vq i (5-2.20)
dmec?r{l - (v¥c?)sin’*6}"?

A

5-3. Some Peculiarities of the Expressions for the Fields and
Potentials Derived in this Chapter

Three peculiarities of the equations for the electric and
magnetic fields and potentials derived in this chapter should be
noted.

First, in the equations developed in the preceding chapters we
used both retarded and present-time (present position) coordinates,
and therefore we needed to use different notation for the two types
of coordinates. In particular, we designated the present position
vector as r, and the x component of this vector as x,’, while we
designated the retarded position vector as r and its x component
as x'. However, since all the resulting expressions for the fields
and potentials developed in this chapter are for the present
position of the charge distributions, there is no longer a need to
use the subscript "0" at r or x'. Therefore, in the field and
potential equations obtained in this chapter r and x’ stand for the
present-time (present position) coordinates.

Second, in deriving our equations for the potentials of moving
charge distributions, we assumed that the field point (the point for
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which the potentials are determined) was at the origin. However,
in practical application of the potentials it is usually necessary to
differentiate the potentials with respect to the field point. In
particular, for finding electric and magnetic fields from potentials
it is necessary to operate upon the electric and magnetic potentials
with the operator V (which operates upon the field point
coordinates). Therefore, in general, the field point must be
allowed to vary.

We can easily convert our equations for the potentials (and
fields) into equations with a variable field point. Let us designate
the coordinates of this point as x, y, and z. If we then replace the
x',y’, and z' coordinates appearing explicitly or implicitly in our
equations for potentials or fields by (x — x'), (y — y'), and (z —
7'), respectively, the new equations will apply to fields and
potentials determined for the field point x, y, z. However, if the
charge density p within the charge distribution under consideration
is constant, we can differentiate the potentials with respect to the
field point without actually replacing the x', y’, z' coordinates at
all, because in this case, by vector identity (V-27), the only
difference between the differentiation of the integrands with
respect to x’, y’, z' and with respect to x, y, z is in the sign of the
resulting expression. Thus, in the case of constant p, we can
compute electric and magnetic fields from the potentials derived
in this chapter without changing the coordinates, provided that
after placing V under the integral sign we replace it by —V’ (see
Example 5-3.1).

Third, all the fields and potentials derived in this chapter are
"snapshots" representing only the instantaneous values of the
observed fields and potentials. In reality the fields and potentials
of a moving charge distribution vary as the charge distribution
moves relative to the point of observation. For practical
applications it may be necessary to determine time derivatives of
the fields and potentials. Therefore, in general, the fields and
potentials must be expressed as a function of time. This can be
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easily done by noting that as a charge distribution moves (with
constant speed), the present position of dV' (or dS') is given by
x' F vt (the minus applies to motion against the x axis, the plus
applies to the motion in the direction of the x axis). Thus all we
need to do for introducing the time dependence into the fields and
potentials derived in this chapter is to replace x' appearing
explicitly or implicitly in our field and potential equations by x’
¥ v (see Example 5-3.1, see also Examples 4-1.2 and 4-6.1).

v

Example 5-3.1 A very long hollow cylinder of wall thickness b
and radius a > b carries a uniformly distributed charge of density
p and moves with velocity v = — vi along the x axis, which is also
the symmetry axis of the cylinder (Fig. 5.3). Find the electric field
produced by the cylinder at the origin of coordinates when the
leading end of the cylinder is at a distance x’ from the origin.

O

Fig. 5.3 A very long cylinder of charge density p moves with
uniform velocity v = — vi along the x axis. Find the electric field
produced by the cylinder at the origin.

We shall solve this problem by using Egs. (5-2.4) and (5-2.16).
Applying the relation E = — Vo — 0A/d¢ [this is Eq. (2-4.8)
derived in Section 2.4] to Egs. (5-2.4) and (5-2.16), we obtain
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e w]
ame, ! {x+ (242" Iy} (5-3.1)

-i( | o dV’).
0t \4me c? {x?+@?+z"?) 1y 312

In Eq. (5-3.1), V operates upon the field point coordinates x,
y, z, which do not appear in Eq. (5-3.1). However, as explained
above, for constant p we can leave the first integral in Eq. (5-3.1)
as it now is, provided that for the actual differentiation we replace
V by —V'. Placing V under the integral sign and replacing it by
—V', we have for the part of the electric field due to ¢ (using E =
E, + E)

E-_! jv/ p av'. (532
@ 47rgo {xl2+(yl2+zl2)/72}112

To differentiate the second integral in Eq. (5-3.1), we must first
express the integrand as a function of 7. Replacing x' in the
integrand by x' — w, placing 8/0¢ under the integral sign, and
differentiating the integrand, we then have for the part of the
electric field due to A

E =-_7Y I p(x' vy av’, (53.3)
47(806'2 {(xl __vt)2+(y/2 +Z/2)/,YZ}3I2

or, setting £ = 0,

A

—-_V I vx'p av', (53.4)
47['806'2 {X/2+(y/2 +Z/2)/,YZ}3/2

which, as one can easily verify by direct differentiation, is the same
as

E,=-_" v- jv' p av'. (53.5)
47|'80C2 {xl2+(yl2 +z/2)/,Y2}1/2
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The total field is therefore

- 1 j / p dav’
47|-go {x’2+(y’2 +z/2)/,Yz}l/2

-2 v v p av'.
47|-£Oc2 {x/2+(y/2 _,_2/2)/,),2}1/2

(5-3.6)

Using now Gauss’s theorem of vector analysis [vector identity
(V-19)], we can convert the two integrals into integrals over the
surface of the cylinder, obtaining*

- P {,% dsout
dme, {x'2+(y'2+z’2)/72}”2 (5-3.7)

g B )
2 X+ 2+ 2D PR ’

where dS,,, is a surface element vector directed outward from the
volume of the cylinder.

By the symmetry of the system, the electric field at the point of
observation has only the x component. The only surfaces of the
cylinder contributing to that component are the surfaces of the
leading and trailing ends of the cylinder. However, since the
cylinder is very long, the contribution of the trailing end is
negligible. Furthermore, since the cylinder’s wall is thin, the
integration over the leading end can be replaced by the
multiplication of the integrand by the surface area S = 2mab of the
leading end’s wall. Taking into account that v = — vi, that for the
leading end y'* + z'?> = a%, dS,, = — dSi, and v - dS,, = vdS,
we finally obtain for the "snapshot” of the electric field produced
by the cylinder at the point of observation

E = - pab(l-vzlcz) i (5-3.8)
2e{x"*+a¥(1 -v¥cH}?
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Example 5-3.2 A line charge of length 2L and linear charge
density A moves along its length with constant velocity v = — vi
in the xy plane of a rectangular system of coordinates at a distance
y = R above the x axis. The point of observation is at the origin.
Find the electric potential, the electric field, and the magnetic field
at the origin at the moment when the two ends of the charge are at
equal distances L from the y axis and then obtain the limiting value
of the fields for a very long charge.

To find the electric potential, we use Eq. (5-2.4) with pdV’
replaced by Adx'. Integrating over the length of the line charge we
then have

1 [t A /
$ 7 e e
Teo T x"T+y ") (5-3.9)
= 47r30 ln{xl+(x12+y/2/,yz)1/2}I{L’
or
o = {L+(L2+y/2/,YZ)1/2} (5-310)

L)

To find the electric field, we differentiate Eq. (5-3.10) with
respect to y', using the positive derivative (by symmetry, the vector
potential makes no contribution to the electric field at the origin).
The result is

E-=- A j=- A j. (5-3.11)
2mwey (L+y Iy LY 2me R(1+RYYLH'?

The magnetic field of the line charge is, by Egs. (5-3.11) and
(3-2.5),

_ \v K. (5-3.12)
27R(1 +R*y’LH'?

For a very long charge, L > R, so that Egs. (5-3.11) and (5-
3.12) reduce to
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E=--_" (5-3.13)
27!'80R
and
H- Nk (5-3.14)
2TR

It is interesting to note that the electric field given by Eq. (5-
3.13) is the same as that of a stationary infinitely long line charge,
and that the magnetic field given by Eq. (5-3.14) is the same as the
magnetic field produced by a current / = Av.>

A
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FROM ELECTROMAGNETIC
RETARDATION TO RELATIVITY

In the preceding chapters we saw how electric and
magnetic fields and potentials of moving charge distributions
could be determined on the basis of the theory of electromagnetic
retardation. In this and in several chapters that follow we shall
acquaint ourselves with an alternative method of determining the
fields and potentials of moving charge distributions. This
alternative method is based on the principle of relativity and its
application to electromagnetic phenomena.

6-1. Relativistic Electromagnetism, Relativistic Termimology,
the Principle of Relativity, and Theories of Relativity

We shall enter now into the domain of relativistic
electromagnetism. The theory of relativistic electromagnetism
makes use of some special words and expressions a clear
understanding of which is imperative for a proper understanding
and use of the theory. A frequently used word in that theory is the
laboratory. The laboratory is simply a place where instruments
and devices for measuring and observing physical phenomena are
located. Unless otherwise stated, the laboratory is assumed to be
stationary. Another frequently used expression is the frame of
reference. Physically, a frame of reference is the same as the
laboratory. However, a frame of reference can be stationary as

129
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well as moving and is depicted graphically by a set of Cartesian
axes of coordinates. In this book, we shall always denote a
stationary frame of reference by the symbol X, and a moving
frame of reference by the symbol X'. A special case of a moving
frame of reference is a frame of reference moving with constant
speed along a straight line. Such a frame of reference is called the
inertial frame of reference. In this book we shall only use inertial
frames of reference.

Relativistic electromagnetism combines basic electromagnetic
laws with the principle of relativity. The principle of relativity was
first enunciated in 1632 by Galileo as a statement of the fact that
there are no experiments or observations whereby one could
distinguish the state of uniform motion along a straight line from
the state of rest. However, in accordance with the level of
scientific knowledge of his times, Galileo supported this statement
by citing only mechanical experiments and observations with an
indirect reference to the laws of optics. At the beginning of the
20th century, Lorentz, Poincaré, Larmor, and Einstein, in
separate works, demonstrated that the principle of relativity was
applicable to electromagnetic phenomena as well.

The expression relativity theory (or simply relativity), as it is
now used in physics, has several different meanings. In particular,
one differentiates between the relativity theory of Lorentz and
Poincaré, Einstein’s special relativity theory, and Einstein’s
general relativity theory.

Einstein’s general relativity theory is his theory of gravitation
and has little in common with other "relativities." The Lorentz-
Poincaré relativity theory and Einstein’s special relativity theory'
have at least two things in common: they affirm the principle of
relativity and they describe physical phenomena (mainly
electromagnetic) associated with rapidly moving particles.

The significance of the Lorentz-Poincaré relativity theory, the
significance of Einstein’s special relativity theory, the difference
between the two theories, and the allocation of priorities in the
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development of these theories are the subjects of considerable
controversy.>** However, there is no doubt that Einstein’s special
relativity theory is uniquely original insofar as the central point of
the theory is the idea of the "relativity of space and time" closely
associated with Einstein’s concepts of "relativistic length
contraction" and "relativistic time dilation."*

Relativistic electromagnetism and relativistic mechanics are
usually presented in textbooks as consequences of Einstein’s
special relativity theory. However, in this book we shall use a
novel approach to relativity, quite different from those used by
Einstein, Lorentz, or Poincaré. We shall develop relativistic
electromagnetism solely on the basis of electromagnetic
retardation combined with the principle of relativity without any
additional postulates, hypotheses, or conjectures. In turn, starting
with relativistic electromagnetism, we shall develop relativistic
mechanics, likewise without any additional postulates, hypotheses,
or conjectures.

6-2. Equations for Transforming Electric and Magnetic Fields
of Uniformly Moving Charge Distributions into Electric and
Magnetic Fields of the Same Stationary Charge Distributions®

Consider a charge distribution of density p moving with
constant velocity v = v.i = — vi. According to Eq. (5-1.11), the
electric field of such a charge distribution is given by the present-
time integral

E = - 1 J V’p—i(vzlcz)ap/ax’ dV/, (6-21)
amey ) {x2+(y"2 +z'%) Iy}

or, factoring out v,

E--_Y JV/p -i(vz/cz)ap/ax’dv,’ (6-2.2)
47r80 (,sz/2+y/2 +z/2)1/2
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where we use the standard abbreviation

) = 1 (6-2.3)
(1-v?c?)\?
Now, since J = pvand v = v,i = — vi, we have
- 0402 - - ey "(p") = (le ( ) (6-2.4)
ox’
or
- 1(v2/cz) (6-2.5)

Equation (6-2.2) becomes therefore

av'. (6-2.6)

_ v [ Vo + e, /0x")i
B J (,sz/2 +y/2 +z/2)1/2

4me,

The magnetic flux density field produced by the moving

charge distribution is then, according to Eq. (3-2.6), taking into
account that v X i = 0 and using 1/¢*> = &g,

B - - ﬁj VXV  ay
2 2 2
(,sz// PRI 62.7)
Ty \" X pv /
j (Yx T +y Eag AR av

or, since pv = pvi = Ji,

Vit VI xJi , .
_J( 212 12, I av’. (6-2.8)
YXTUry “+z

For the same stationary charge distribution, the field equations
corresponding to Egs. (6-2.6) and (6-2.8) are’
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E--_1 j Vo av (6-2.9)
47rgo (x/Z +y/2 +z/2)1/2

and B -0 (6-2.10)

We shall now obtain a set of transformation equations which
convert Egs. (6-2.6) and (6-2.8) into Eqs. (6-2.9) and (6-2.10).
The extraordinary significance of these transformation equations
will become clear later, when we shall use them as the foundation
for developing the theory of relativistic electromagnetism.

Since we are dealing with similar quantities relating to the
moving and to the stationary charge distribution, we shall denote
quantities pertaining to the moving charge distribution by subscript
"m" and those pertaining to the stationary charge distribution by
subscript "s," except when the relations are self-evident.

Let us write Egs. (6-2.6) and (6-2.8) in terms of their
Cartesian components. From Eq. (6-2.6) we have, resolving V'p
into its Cartesian components,

/ 2
E =-_2 j(a/a" Wo+ CIENT} i (2.1
4mey ) (Px 2 4y 4z DR
E, = -1 J dp/dy’ v’ (6-2.12)
47['80 (,ylez +y 2 +Z/2)1/2
| 0p102" _ gqyr (62.13)
4mey ) (y2x 24y sz )i

From Eq. (6-2.8) we similarly have, resolving V' X Ji into its
Cartesian components [see vector identity (V-11)],

B_ =0, (6-2.14)
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/
o[ W% gy 6219
ym 47 (72x’2 +y/2 +z/2 112
!
B = - l‘ﬁj 07,19y v’ (6-2.16)
an 4 (72x’2 +y/2 +z/2)1/2

Let us also write Eqs. (6-2.9) and (6-2.10), representing the
electric and magnetic fields of the stationary charge distribution,
in terms of the Cartesian components. From Eq. (6-2.9) we have

E,=- L[ 0 v, 62.107)
47|'80 (x/2+y 12 +Z/2)1/2

E =-_1 j /oy gy (6-2.18)
» ATy ) (17 4y 2eg AR

— 1 ap/az’ / 6-2.19

Ea = 41801()6/2,,_),/2_,_2/2 mV (6-2.19)

From Eq. (6-2.10) we have
Bxs = Bys = Bz; = O. (6‘2.20)

The transformations that we seek are those that transform Eqgs.
(6-2.11)-(6-2.16) into Egs. (6-2.17)-(6-2.20).

Clearly, to achieve the desired transformations, we need to
transform the denominators of the integrands in Egs. (6-2.11)-(6-
2.13) into the denominators of the integrands in Eqs. (6-2.17)-(6-
2.19). Comparing Egs. (6-2.11)-(6-2.13) with Eqgs. (6-2.17)-(6-
2.19), we recognize that the desired transformation of the
denominators will be achieved if we use?

x; = yx), (6-2.21)
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y! =yl (6-2.22)
2 =z, (6-2.23)

because the denominators of the integrands in Egs. (6-2.11)-(6-
2.16) can then be written as (x,2+ y,’+ z,/)"? = (x"?+ y?+
7'%),' and thus become the same as in Egs. (6-2.17)-(6-2.19).
Observe that this transformation simply changes the scale units of
the x axis for the stationary charge distribution and does not alter
the physical significance of Egs. (6-2.17)-(6-2.20). However, if
we change the scale units of the x axis for the stationary charge
distribution, then the derivatives d/dx’ in Egs. (6-2.11) and (6-
2.17) are no longer equal. According to Eq. (6-2.21), the
correlation between them is now

Bl e

Likewise, the volume elements dV' = dx'dy’'dz’ in the equations
for the moving and for the stationary charge distribution are no
longer the same. The correlation between them is now

dv! = ydv,!. (6-2.25)

If we now substitute Egs. (6-2.21)-(6-2.25) into Egs. (6-2.11)-

(6-2.16), we obtain, using subscripts "s" and "m" in the
integrands to keep track of the transformation steps,

/ 2
E =-_% J O10x)Ap I3yt (6-2.26)
xm 471'80 (x/2 +y/2 +z/2);/2

/
__ 1 J (9/9y"),p,, av'. (6227
4mey ) (x/2+y!2 47212

ym
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) 1 (@/0z")p,, . -
By o ] S dv];  (6:2.28)
TE ) (x/2+y /242,

B =0, (6-2.29)

_ Ko I (a/azl)s"xm dV, (6-2.30)
ym T A (x2+y"? _,_Z/Z):/? 7

B - - pvo l (a/ay/)ijm dV/ (6'2.31)
T R e

Comparing the numerators in Eq. (6-2.17) and Eq. (6-2.26),
we immediately recognize that the equation for transforming the
numerator in Eq. (6-2.26) into the numerator in Eq. (6-2.17) is

p, = o + (WIcHI Y, (6-2.32)
Substituting Eq. (6-2.32) into Eq. (6-2.26), we obtain

av!.  (6-2.33)

xm

1 l (8/0x")p,
47r£0 (x/z +y 12 +le)_:/2

All we now need to complete the transformation of Eq. (6-
2.11) into Eq. (6-2.17) is to replace E,,, on the left of Eq. (6-2.33)
by E, We denote this transformation step by the field
transformation equation

E -E,. (6-2.34)

Examining the remaining Eqs. (6-2.27)-(6-2.31), we recognize
that in order to use Eq. (6-2.32) with these equations we need to
combine equations for E, and B,. Noting that pee, = 1/c,
combining Eqs. (6-2.27)-(6-2.28) with Eqs. (6-2.30)-(6-2.31) so
that the expression y{p + (v/c>J} appears in the combined
equations, using Eqs. (6-2.18) and (6-2.19) as the transformation
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"targets," and using Eq. (6-2.32), we recognize that the remaining
transformation equations for the electric field must be

Eys = Y(Ey + VvB),, (6-2.35)
E, =vE, - VBy)m- (6-2.36)

Examining again Eqs. (6-2.27)-(6-2.31), remembering that J,
= — vp, and using Eq. (6-2.20) as the transformation "target",
we tentatively identify the transformation equations for the
magnetic field as

B, =B_, (6-2.37)
B, = ¥(B, - VE,Ic?),, (6-2.38)
B, = v(B, + VE,Ic?), (6-2.39)

(these equations must be considered tentative because the factor
v in them is as yet uncertain; the need for it will be established in
the next section).

As was stated in Sections 4-1, 4-6, and 5-3 (6ee Examples 4-
1.2, 4-6.1, and 5-3.1), Eqgs. (6-2.6), (6-2.7), and the subsequent
equations for the fields of the moving charge distribution are
"snapshots” representing instantaneous fields of the charge
distribution observed at ¢ = 0. Therefore also Eq. (6-2.21) is only
valid for ¢t = 0, so that x,' = yx,,,.,. We shall now put Eq. (6-
2.21) into a more general form by assuming that the time of
observation is an unspecified ¢. Since the charge distribution
moves with velocity v in the negative direction of the x axis, the
present position of the distribution is shifted toward smaller values
of x, in accordance with

X = (o = Vi) (6-2.40)

m

as ¢ increases. Hence, for a general case, Eq. (6-2.21) must be
replaced by
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xsl = y(x’ +Vl),, (6-2.41)

where x’ is the x coordinate of dV’, at the time ¢. Note that
although x," in Eq. (6-2.41) appears to depend on time, in reality
it does not depend on time since by Eq. (6-2.40) (x" + vp),, =

!
X m,t=0"

6-3. Inverse Transformations

According to the principle of relativity, it is impossible to tell
whether the charge which we call "moving" really moves with
velocity v = — vi relative to our laboratory and relative to the
charge that we call "stationary," or whether the laboratory with
the charge which we call "stationary" moves with velocity v = vi
relative to the charge that we call "moving." Consequently, the
transformation equations obtained in Section 6-2 should be
applicable not only for transforming the fields of a moving charge
distribution into the fields of a stationary charge distribution, but
also for transforming the fields of a stationary charge distribution
into the fields of a moving charge distribution by simply reversing
the sign in front of v and transposing the subscripts m and s.
From Egs. (6-2.41), (6-2.22), (6-2.23), (6-2.32), and (6-2.34)-(6-
2.39) we obtain therefore the following set of inverse
transformation equations (equations for transforming fields of a
stationary charge distribution into the fields of the same moving
charge distribution)

Xp = Y -v),, (6-3.1)
yh =yl (6-3.2)
2. =17/, (6-3.3)

0, = ¥{p - WicHI},, (6-3.4)
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E, =E_ (6-3.5)

E, =Y, - vB),, (6-3.6)
E, =YE, + vB),, (6-3.7)
B, =B, (6-3.8)

B, =B, + VE,/c?),, (6-3.9)
B, = y(B, - VE,/cY,. (6-3.10)

Observe that Egs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) can
also be obtained by solving Eq. (6-2.35), (6-2.36), (6-2.38), and
(6-2.39) for the components of E, and B, in terms of the
components of E; and B,. Eliminating B, between Eqs. (6-2.35)
and (6-2.39), eliminating B, between Egs. (6-2.36) and (6-2.38)),
eliminating E,, between Egs. (6-2.36) and (6-2.38), and
eliminating £, between Egs. (6-2.35) and (6-2.39), we obtain
Egs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) directly, without
invoking the principle of relativity. However, the equations so
obtained clearly confirm the principle of relativity for electric and
magnetic fields.

We shall now supplement our transformation equations by
four more equations. Solving Egs. (6-2.32) and (6-3.4) for J,, and
J..,» we obtain

J, =y, +vo), (6-3.11)
and

I, =vJ, - v),. (6-3.12)
Solving Egs. (6-2.41) and (6-3.1) for ¢, and #,, we obtain

o=y + wx'ic?),, (6-3.13)
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and
t,o= @ - w'lc?,. (6-3.14)

Let us now prove the need for the factor vy in Eqgs. (6-2.38)
and (6-2.39). According to Eq. (3-2.6), a uniformly moving
charge distribution always creates a magnetic flux density field
given by

B, = (vXE)/c?, (6-3.15)

where E,, is the electric field produced by the moving charge
distribution. Consider, for example, the y component of B,,. If v
= — vi, then by Eq. (6-3.15), this component is

B, = VE, Ic’. (6-3.16)

ym

But by Eq. (6-3.9), the same component is (noting that for a
stationary charge B, = 0)

B,, = YE,Ic*. (6-3.17)

Now, according to Eq. (6-3.7), E,, = YE,, so that Eq. (6-3.17)
can be written as

B, = VE, Ic?, (6-3.18)

ym

which is exactly the same as Eq. (6-3.16). Clearly, if the factor
v were not present in Eq. (6-3.9), then the factor 1/y would
appear in Eq. (6-3.18), the agreement between Eq. (6-3.16) and
Eq. (6-3.18) would not be possible, and therefore our
transformation equations for B would be incorrect. But since Eq.
(6-3.9) has been obtained from Eq. (6-2.38), the factor 7y must be
present also in Eq. (6-2.38) [and therefore in Eq. (6-2.39) as
well].

Note that none of the transformation equations obtained in this
and in the preceding section of the book constitute actual
equalities between the quantities involved. These equations are
merely prescriptions for obtaining electric and magnetic fields of
a stationary charge distribution from the fields of the same moving
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charge distribution by replacing quantities pertaining to the
moving charge distribution by quantities pertaining to the
stationary charge distribution and vice versa.

6-4. Equations for Transforming Electric and Magnetic
Potentials of Uniformly Moving Charge Distributions into
Electric and Magnetic Potentials of the Same Stationary
Charge Distributions and Vice Versa

According to Eq. (5-2.4), the electric scalar potential of a
uniformly moving charge distribution is given by the present-time
integral

o, = J p av',  (64.1)
47(80 {x/2+(y/2+2/2)/72}1/2

or, factoring out 7,

Y p v’ (6.4.2)

Pm = 41r80[ (vzx’2+y’2+z’2)“2

and, according to Eq. (5-2.16), the magnetic vector potential is
given by the present-time integral

-V [ p av',  (6-4.3)
m 47l‘80C2 {x/2+(y/2+z/2)/,)/2}1/2
or
A, - p Qv (64.4)
4me,c?) (YT 4y P ez )2

For the same stationary charge distribution, the potential equations
corresponding to Egs. (6-4.2) and (6-4.4) are®

1 [ o /
= av -4.
Sos 47T80 (x/2 +y 12 +Z/2)1/2 (6 5)
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and
A, =0. (6-4.6)
We shall now obtain a set of simple transformation equations
that convert Egs. (6-4.2) and (6-4.4) into Eqs. (6-4.5) and (6-4.6).
As before, since we are dealing with similar quantities relating
to the moving and to the stationary charge distribution, we shall
denote quantities pertaining to the moving charge distribution by
subscript "m" and those pertaining to the stationary charge
distribution by subscript "s," except when the relations are
self-evident.
Let us write Eqs (6-4.4) and (6-4.6) in terms of their
Cartesian components. Assuming, as before, that the charge

distribution under consideration moves with velocity v = — vi,
and using v,o = J,, we have from Eq. (6-4.4)
-1 | d av',  (647)
xm 47rsoc2 ('yzx’Z +y’2 +Z/2)1/2
4, =0, (6-4.8)
4, =0. (6-4.9)

From Eq. (6-4.6), we obtain
AXS = Ayx = AZS = 0. (6'4.10)

We seek transformation equations that convert Eq. (6-4.2) into
Eq. (6-4.5) and Egs. (6-4.7)-(6-4.9) into Eq. (6-4.10). Clearly, to
achieve the desired transformations, we need to transform the
denominator in the integrand of Eq. (6-4.2) into the denominator
of Egs. (6-4.5). However, we have already found that this
transformation can be achieved by using Egs. (6-2.21)-(6-2.23).
Of course, if we use Egs. (6-2.21)-(6-2.23), then we must also
use Eq. (6-2.25) for transforming the volume elements in the
integrals of Egs. (6-4.2) and (6-4.7). Naturally, we want
to use as few transformation equations for all electric and
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magnetic quantities and formulas as possible, and since we have
already obtained Eq. (6-2.32) for transforming p, we shall use Eq.
(6-2.32) now again.

Using Egs. (6-2.21)-(6-2.23), (6-2.25), and (6-2.32) for
substituting x’, y', z', dV’, and p in Eq. (6-4.5) , we obtain

2
oy l 0+ Vg (6411)
PoAmey ) (q 2y ez

Examining Eq. (6-4.11), we recognize that the integral in it
is a combination of Eqgs. (6-4.2) and (6-4.7), so that Eq. (6-4.11)
can be written as

o, = Yo + VAx)m’ (6-4.12)

which is the desired transformation equation for the scalar
potential.

Remembering that vo = — J, and combining Egs. (6-4.2)
and (6-4.7) so that A,; = O [as required by Eq. (6-4.10)], we find
that the transformation equation for the x component of the
magnetic vector potential is

A, =v{A, + (vicHe}, (6-4.13)

(this equation must be considered tentative because the factor -y in
it is as yet uncertain; we shall prove the need for it shortly).

For the remaining components of A, we obtain by comparing
Egs. (6-4.8), (6-4.9), and (6-4.10)

Ay, = A, (6-4.14)

A, =4, (6-4.15)

As in the case of transformation equations for electric and
magnetic fields, the relativity principle demands that the inverse
transformation equations should be obtainable from Egs. (6-4.12)-
(6-4.15) by simply reversing the sign in front of v and transposing
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"non

the subscripts "s" and "m." The inverse transformation equations
are therefore

@, = Ve - vA),, (6-4.16)
A, =74, - VcHel,, (6-4.17)
4, = A, (6-4.18)

A =A.. (6-4.19)

m t4)

Let us now prove the need for the factor vy in Egs. (6-4.13)
and (6-4.17). According to Eq. (5-2.12), the magnetic and electric
potentials of a uniformly moving charge distribution are connected
by the equation

A, =vyp lc?. (6-4.20)

Consider the x component of A,. If v = — vi, then by Eq. (6-
4.20), this component is

A, = - vp,lct. (6-4.21)

But by Eq. (6-4.17), the same component is (noting that for a
stationary charge 4,, = 0)

A, = - yvplc?. (6-4.22)

xm

Now, according to Eq. (6-4.16), ¢, = yg,, so that Eq. (6-4.22)
can be written as
A, = - vp,lc?, (6-4.23)

xm

which is exactly the same as Eq. (6-4.21). Clearly, if the factor
v were not present in Eq. (6-4.17), then the factor 1/y would
appear in Eq. (6-4.23), the agreement between Eq. (6-4.21) and
Eq. (6-4.23) would not be possible, and therefore our
transformation equations for A would be incorrect. But since Eq.
(6-4.17) has been obtained from Eq. (6-4.13), the factor y must
be present also in Eq. (6-4.13).
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Note that none of the transformation equations obtained in this
section of the book constitute actual equalities between the
quantities involved. These equations are merely prescriptions for
obtaining electric and magnetic potentials of a stationary charge
distribution from the potentials of the same moving charge
distribution by replacing quantities pertaining to the moving
charge distribution by quantities pertaining to the stationary charge
distribution and vice versa.

References and Remarks for Chapter 6

1. The name "relativity theory" ("Relativtheorie" in German) was
coined by Max Planck as an abbreviation for the Lorentz-Einstein
("Lorentz-Einsteinsche") electrodynamic theory and its application
to the motion of the electron [see Max Planck, "Die Kaufmannschen
Messungen der Ablenkbarkeit der 3-Strahlen in ihrer Bedeutung fiir
die Dynamik der Elektronen," Phys. Z. 7, 753-761 (1906); A. H.
Bucherer, in the discussion section of this article, called Einstein’s
theory the "Relativititstheorie"]. Einstein used the name "relativity
theory" ("Relativititstheorie") for the first time in his article "Die
vom Relativititsprinzip geforderte Trigheit der Energie," Ann.
Phys. 23, 371-384 (1907).

2. According to E. T. Whittaker (author of the highly respected
A History of the Theories of Aether and Electricity), Einstein’s
contribution to relativity theory was minimal. Referring to
Einstein’s famous article "Zur Elektrodynamik bewegter Korper,"
Ann. Phys. 17, 891-921 (1905), Whittaker says : "In the autumn of
the same year [1905]. . . , Einstein published a paper which set
forth the relativity theory of Poincaré and Lorentz with some
amplifications, and which attracted much attention" [see E. T.
Whittaker, A History of the Theories of Aether and Electricity
(Thomas Nelson, London, 1953) Vol. II, Chapt. 2 ("The Relativity
Theory of Poincaré and Lorentz") p. 40]. Whittaker’s assessment
is contrasted, for example, with that by Arthur I. Miller [author of
the very detailed "biography and analysis of the (Einstein’s)
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relativity paper set into its historical context"]. Miller describes
Einstein’s 1905 article as follows: "Page for page Einstein’s
relativity paper is unparalleled in the history of science in its depth,
breadth and sheer intellectual virtuosity. . . the consequences of the
special relativity theory changed mankind’s very view of its relation
to cosmos. . ." [see Arthur 1. Miller, "Albert Einstein’s Special
Theory of Relativity, (Addison-Wesley, Reading, Massachusetts,
1981) p. xiii].

3. According to K. N. Schaffner (a very thorough investigator of
the history of Lorentz’s and Einstein’s relativity theories) ". . . it
is clear that Lorentz’s theory and Einstein’s theory are rather
different theories — but it is exceedingly difficult precisely to define
the difference" [Kenneth F. Schaffner, "The Lorentz Electron
Theory of Relativity," Am. J. Phys. 37, 498-513 (1969)]. See also
Charles Scribner, Jr., "Henri Poincaré and the Principle of
Relativity," Am. J. Phys. 32, 672-678 (1964); Stanley Goldberg,
"Henri Poincaré and Einstein’s Theory of Relativity," Am. J. Phys.
35, 934-944 (1967); C. Kittel, "Larmor and the Prehistory of the
Lorentz Transformation," Am. J. Phys. 42, 726-729 (1974).

4. The controversy is partly caused by the fact that neither of the
two articles on relativity published by Einstein in 1905 [the first
article was "Zur Elektrodynamik bewegter Korper," Ann. Phys. 17,
891-921 (1905), the second article was "Ist die Trigheit eines
Korpers von seinem Energieinhalt abhingig?," Ann. Phys. 18, 639-
641 (1905)] has any references to works by other authors, although
Lorentz transformations of coordinates and time, transformations of
electric and magnetic fields, etc., which Einstein used in his first
paper were well known in 1905 from the works of Lorentz,
Larmor, and Poincaré (see Refs. 1 and 2 in Chapter 7). In this
connection it is noteworthy that the editors of the Collected Papers
of H. Poincaré specifically pointed out that the method of clock
synchronization by means of light signals used by Einstein in his
first relativity article was due to Poincaré. They also stated that
from the mathematical point of view Einstein’s 1905 article
presented nothing more than what had been published by Lorentz
and Poincaré ("Le célebre Mémoir de A. Einstein Zur
Elektrodynamik bewegter Kérper n’apportant rien de plus au point
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de vue mathématique que les publications de H. A. Lorentz et de
H. Poincaré") [see Ouvres de Henri Poincaré, (Gauthier-Villars,
Paris, 1954) Vol. IX, pp. 698, 699 (this volume contains most of
Poincaré’s papers pertaining to relativity); see also Handbuch der
Physik, (Springer, Berlin, 1927) Vol. XII, p. 270]. It is also
noteworthy that A. I. Miller in his comprehensive book on the
history of Einstein’s special relativity theory (see Ref. 2, above)
decided not to discuss Larmor’s contribution to relativity theory
"because in my opinion Larmor’s work had an indirect effect, if
any, on Lorentz’s thinking toward the electron theory of 1904" (p.
114). Taking into account that as early as 1900 Larmor, in his book
Aether and Matter (Cambridge U. P., Cambridge, 1900), published
(in his own notation) all basic relativistic transformation equations
for time and space coordinates and for electromagnetic quantities
which Einstein presented in his first 1905 article, and that in 1895
Poincaré devoted a large article (in four separate parts) to Larmor’s
carlier work, Miller’s decision only perpetuates the controversy.
5. See Albert Einstein, The Meaning of Relativity, (Princeton
University Press, Princeton, New Jersey, 1950), pp. 30, 31, 36 and
A. Einstein "Die Relativititstheorie" in E. Lecher, ed., Physik, 2nd
¢d., (Teubner, Leipzig, 1925) pp. 791-793.

6. See also Oleg D. Jefimenko, "Retardation and relativity:
Derivation of Lorentz-Einstein transformations from retarded
integrals for electric and magnetic fields," Am. J. Phys. 63, 267-
272 (1995).

7. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989) pp. 93 and 343. Observe that
Egs. (6-2.9) and (6-2.10) can be obtained from Eqs. (6-2.6) and (6-
2.8) by setting v = O and J = 0.

8. Itis important to note that in the transformation equations that
we are deducing, the "=" sign does not signify the equality of the
quantities on the two sides of the equations; it only shows that the
quantities which it connects can be substituted one for the other.
9. See, for example, Ref. 7, pp. 120 and 364. Observe that Eqs.
(6-4.5) and (6-4.6) can be obtained from Eqs. (6-4.2) and (6-4.4)
by setting v = 0.



THE ESSENTIALS OF
RELATIVISTIC
ELECTRODYNAMICS

Relativistic electrodynamics provides powerful yet simple
methods for solving a variety of problems involving uniformly
moving electromagnetic systems. In this chapter we shall
familiarize ourselves with the basic equations of relativistic
electrodynamics, their properties, consequences, and methods of
their application.

7-1. Basic Relativistic Transformation Equations

The basic equations of relativistic electrodynamics are the
transformation equations for coordinates, time, and
electromagnetic quantities derived in Chapter 6. However, in
relativistic electrodynamics these equations have a somewhat
different physical meaning and are customarily expressed in a
notation different from the notation used in Chapter 6.

To convert the equations derived in Chapter 6 into the
standard relativistic form, we shall now assume that the stationary
charge distribution used in Chapter 6 is located in a reference
frame X’ uniformly moving with respect to the laboratory
(reference frame X). Since the charge is at rest in X', all

" n

quantities with subscript "s" used in Chapter 6 apply now to

148



SECTION 7-1 BASIC TRANSFORMATIONS 149

measurements performed in that reference frame. And since the
reference frame L' together with the charge distribution moves
with respect to the laboratory (reference frame L), all quantities
with subscripts "m" apply now to measurements performed in the
laboratory. The transformation equations derived in Chapter 6
applied to a charge distribution moving with a velocity v = — vi,
that is, in the negative direction of the x axis. In relativistic
electrodynamics the reference frame L’ is usually assumed to
move with a velocity v = vi, that is, in the positive direction of
the x axis, and both frames ¥ and X' are assumed to have a
common x axis and a common xy plane (Fig. 7.1). Furthermore,
in relativistic electrodynamics the quantities pertaining to the
moving and the stationary charge distribution are customarily
designated not by means of subscripts, but by using primes for
identifying the quantities measured in the moving frame £’ and by
using ordinary notation for the quantities measured in the
laboratory.

AV Yy
Fig. 7.1 Reference
Jframe Y' moves with
velocity v with respect to z !
the laboratory (reference v={ v—>
ame L). > -~
Jrame L) Y . -

To put the transformation equations obtained in Chapter 6 into
the customary relativistic form, we need therefore to modify these
equations as follows: omit the subscript "m," replace the subscript
"s" by a prime, and reverse the sign in front of v. Observe that
we no longer can denote the field point coordinates by primes,
since the primes must now be used only for denoting quantities
measured in the moving reference system. Therefore, before
making any other modifications, we must first remove the primes
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from the transformation equations obtained in Chapter 6. Finally,
since we shall not use retarded quantities in relativistic equations,
we shall use the square brackets in relativistic equations and
elsewhere as the ordinary algebraic symbols.

After making the indicated changes of notation, we then
obtain for the quantities measured in X expressed in terms of the
quantities measured in X':

(a) For the space and time coordinates

x =y’ +vt'), (7-1.1)
y =y’, (7-1.2)
2=z, (7-1.3)
t =@ +vx'lc?. (7-1.4)
(b) For the electric field
E =E, (7-1.5)
E, = ¥(E, +vB,), (7-1.6)
E, = y(E; - vB)). (7-1.7)
(c) For the magnetic flux density field
B - Bx/’ (7-1.8)
B, = Y(B, - VE;Ic?), (7-1.9)
B, = y(B, + VE/IcY). (7-1.10)
(d) For the charge and current densities
p =o' + WIcHJ], (7-1.11)
J.o=yJy +v'), (7-1.12)
I, =, (7-1.13)

J, =, (7-1.14)
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[Egs. (7-1.13) and (7-1.14) follow from the fact that J, and J, do
not enter into the transformation equations obtained in Chapter 6].
(e) For the scalar and vector potentials

@ = (¢ +VA)), (7-1.15)
A, = YA + (vicHP'], (7-1.16)
A, =4y, (7-1.17)

4, =4, (7-1.18)

For the quantities measured in X' expressed in terms of the
quantities measured in ¥ we similarly obtain:

(a) For the space and time coordinates

x' = y(x-w), (7-1.19)
y' =y, (7-1.20)
' =2z, (7-1.21)
t! =yt - wxlc?). (7-1.22)
(b) For the electric field
E) = E, (7-1.23)
E = Y(E, - vB), (7-1.24)
/o -
E; = v(E, + vB). (7-1.25)
(c) For the magnetic flux density field
B! =B, (7-1.26)
B/ = y(B, + VE,c?), (7-1.27)

B/ = y(B, - VE,/c?). (7-1.28)
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(d) For charge and current densities

o' =l - (icH], (7-1.29)
J' =vU, - vp), (7-1.30)
I, =1, (7-1.31)

J', =1, (7-1.32)

(e) For the scalar and vector potentials

¢ =7 -v4), (7-1.33)
Al = vlA, - WcHg), (7-1.34)
Al =4, (7-1.35)

4/ = 4, (7-1.36)

The relativistic transformation equations for coordinates, time,
and electric and magnetic fields are usually called the Lorentz
transformation  equations." The relativistic transformation
equations for electric and magnetic fields together with the
transformation equations for the electric charge and current
density are sometimes called the Lorentz-Einstein transformation
equations.” The relativistic transformation equations for scalar and
vector potentials are due to Poincaré® but do not carry his name.

In the derivations that follow, we shall frequently use
"hybrid" transformation equations obtained from the "regular”
transformation equations listed above by transposing their terms
so that an unprimed or a primed quantity becomes associated with
both a primed quantity and an unprimed quantity. An example of
such a hybrid equation is

E, = E/Iy + vB, (7-1.37)
obtained from Eq. (7-1.24).
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7-2. Transformation Equations for Velocity and Acceleration

Since relativistic electrodynamics is primarily concerned with
moving electromagnetic systems, we need to know how to
transform velocity and acceleration from one reference frame to
another.

Let us first obtain transformation equations for velocity.* Let
an object move with a velocity whose x, y, and z components
measured in the rest frame ¥ are dx/dt = u,, dy/dt = u,, and
dz/dt = u, Let the corresponding components measured in the
moving frame X' be dx'/dt’ = u,’, dy'/dt' = u/, and dz'/dt’ =
u,'. Differentiating Egs. (7-1.1)-(7-1.4), we have

dx = y(dx' +vdt') = y(u, +v)dt’, (7-2.1)
dy =dy’, (7-2.2)
dz = dz7’, (7-2.3)

dt = y(dt’ + vdx'/c?) = (1 +vu/cHat’ . (7-2.4)

Dividing Egs. (7-2.1)-(7-2.3) by Eq. (7-2.4), we obtain
transformation equations for the velocity

/
o= (7-2.5)
1 +vu!/c?
u/
u = (7-2.6)
Y(1 +vu;/c?)
u/
w = —_° 7-2.7)

4

(1 +vux'/cz).

The inverse transformation equations are obtained, as usual,
by transposing the primes and changing the sign in front of v.
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They are
S (7-2.8)
1 -vu /c*
W= o (7-2.9)
(1 -vu /c?)
ul = “ (7-2.10)

v(1 - vu lc?) ’

Let us now obtain transformation equations for an
acceleration.® Let an object move with an acceleration whose x,
y, and z components measured in the rest frame X are du,/dt = a,,
du/dt = a,, and du/dt = a,. Let the corresponding components
measured in the moving frame L’ be du,'/dt’ = a, du,'/dt’ =
a,/’, and du,'/dt’ = a;'.

Differentiating Eqs. (7-2.5)-(7-2.7), we obtain

(1 +vu/Ictdu] - (! +vvdu!lc* (1 -v¥cDdu]

du, = /
(A +vu!lc)? (A +vu!lc??
i dux/ (7-2.11)
Y1 + v IcH)? ’
(1 +vu, Ic¥)du, -u, vdu, Ic* du, u, vdu, Ic?
u.= = - ,
’ (1 +vu!Ic?)? v +vul i) (1 +vu!lc?)?
(7-2.12)
(1 +vu] Ic¥du, -u) vdu) Ic* du; u, vdu,/c*
u = = - .
‘ (1 +vu! Ic?)? v(1 +vulicd) (1 +vu) lc??
(7-2.13)

Dividing Egs. (7-2.11)-(7-2.13) by Eq. (7-2.4), we obtain
transformation equations for the acceleration
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/
a,

a = , (7-2.14)
Y1 +vu!/c?)?
a, u)va, /c? (7-2.15)
a = - , -Z.
o2 vl ied? QA +vul e}
/ 1112
4 = a, _ uva, lc . (7-2.16)

O v e A v ic?)?

The inverse transformation equations are

al = % (7-2.17)
Y1 -vu, /c??
2
Y 4 ., wyalc (7-2.18)

V(A -vuic?? Y1 -vulc?)’

2
/o a, uyalc

. . (72.19)
Y(1 -vu,/c?? (1 -vulc?)’

Let us now obtain a transformation equation for the expression
1 — u"/c?, which frequently occurs in relativistic calculations.

Consider a charge distribution moving with velocity u’ in the
reference frame L’. The magnitude of u’ is given by

u? =ul* + uy/2 +u”. (7-2.20)
Using Eqgs. (7-2.8)-(7-2.10), we can write Eq. (7-2.20) as

n o @ -V @l ul)(1-v2/c?
u'® = )

7-2.
(A -vu, /c?? (722D

For the y and z components of u in ¥ we have

w o+ ul=ut-ul (7-2.22)
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Combining Egs. (7-2.21) and (7-2.22) and dividing by ¢?, we can
write for 1 — u"/c?

(u,/c -vic) +uc? -ullcd)(1 -v¥ic?)

1-u"*c?=1 i , (7-2.23)
1 -vu,/c)
which after simplifications becomes
1-uer = __Lowller (7-2.24)
Y -vu /c?)?
The inverse transformation equation is, as usual,
1202
1-w2)e? = L7u’e (1-2.25)

A1 +vu) /c2)? .

7-3. Transformation Equations for Partial Derivatives with
Respect to Coordinates and Time

We have arrived at the relativistic transformation equations for
coordinates, time, fields, and potentials by converting electric and
magnetic fields of a moving charge distribution into the
corresponding fields of a stationary charge distribution. As we
know from Chapter 2, the electric and magnetic field equations
that we used for this purpose are solutions of Maxwell’s
equations. We may suspect therefore that Maxwell’s equations
themselves can be transformed from one reference frame to
another by means of the same transformation equations. We shall
explore this possibility in the next section.

Since Maxwell’s equations involve partial differentiation with
respect to space coordinates as well as partial differentiation with
respect to time, we need to know how to transform these
operations from one reference frame to another.

Let us first find the equations for transforming d/dx and 0/0¢
from the rest frame X (laboratory) to the moving frame E'. The
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transformation must take into account that, according to Egs. (7-
1.1) and (7-1.4), a variation of x alone or ¢ alone in ¥ is
associated with a variation of both x' and ¢’ in £’, so that for the
purpose of the transformation, a function of x or ¢ must be treated
as a function of x’ and ¢'.

For d/0x we then have

I (73.1)
0x  9x’ Ox o’ Ox
Now, by Eq. (7-1.19), 0x'/0x = v, and by Eq. (7-1.22), d¢'/dx
= — yv/c*. Therefore Eq. (7-3.1) becomes

9. (i - 1_"’_). (73.2)
0x ax"  c*or’

The inverse equation, obtained by transposing the primes and
changing the sign in front of v, is

d i} v 0
=y o+ (7-3.3
o o - 2 i) )
The corresponding hybrid equations are
9 .10, v (7-3.4)
ax’  yox  c?or
and
i} - 1 0 _ v 0 (7_35)
ox  yax' cror
For /0t we similarly have
o0 0 (7-3.6)
o  9x’' ot o’ ot
By Eq. (7-1.19), 0x'/0t = — v, and by Eq. (7-1.22), 0¢'/0t =
7. Therefore Eq. (7-3.6) becomes
0-("_ ‘9) (137
o o el )
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The inverse equation is

0 _ (0 6) (7-3.8)
a Na " Vax) <

The corresponding hybrid equations are

o6 10 ,,90 (7-3.9)
ot/ v 0t ox’

and
6 .19 _,0 (7-3.10)
ot yar ox

By Egs. (7-1.2) and (7-1.3) or (7-1.20) and (7-1.21), the
derivatives with respect to y and z transform simply as

9 _ 0 (7-3.11)
ay oy’

and
0 i}
9.9 (1-3.12)
0z oz’

7-4. The Invariance of the Cartesian Components of Maxwell’s
Equations under Relativistic Transformations

The significance of the relativistic transformations presented
in the preceding sections of this chapter is twofold: First, the
transformations make it possible to correlate electromagnetic
quantities measured in different reference frames. Second, as we
shall now show, subject to certain limitations to be explained
below, Maxwell’s equations are invariant with respect to these
transformations.® Therefore also solutions of Maxwell’s equations
are invariant with respect to these transformations. This means,
among other things, that with the help of relativistic
transformations we can obtain solutions to problems involving
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uniformly moving electromagnetic systems by merely applying
rclativistic transformations to solutions obtained for the same
stationary electromagnetic systems. And since electric and
magnetic fields of stationary electromagnetic systems can be easily
determined, relativistic transformations provide a powerful and
convenient special method for analyzing uniformly moving
clectromagnetic systems and solving problems pertaining to these
systems.

Let us now show that Maxwell’s equations (two of them only
in their scalar form) are invariant with respect to relativistic
ransformations. Some special methods based on this invariance
will be developed and demonstrated in the next chapter.

Transformation of V .+ D = p. Remembering that D = g E
and writing Maxwell’s Eq. (2-1.1) in terms of Cartesian
components, we have

x

o0x

Using the hybrid Eq. (7-3.5) and Eq. (7-1.5), using Eq. (7-3.11)
and the hybrid Eq. (7-1.37), using Eq. (7-3.12) and the hybrid
cquation for E, obtained from Eqgs. (7-1.25), and using the hybrid
equation for p obtained from Eq. (7-1.29), we can write Eq. (7-
4.1) as

&

. OE, 4l
En—— Ey—— = . -4,
an Oaz p )

)M v OE oE, 0B ) o 0B
E—— " Ey——— * & + EV—— + &, - gy
Y0x c? ot yay’ dy y0z’ 0z
SLYRN (7-4.2)
Y c?

Rearranging, we have
1 (GEOEX/ . 0 E, . OEOEZ/)
¥\ ax’ ay’ 0z’

= lp’ —sov(g}_z - E;_y) + _v.(.l + agOE").
dy 0z c2\* ot

(7-4.3)
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However, since B = p H, since g, = 1/c?, and since ¢E = D,
the last two terms in Eq. (7-4.3) are simply the x component of
the expression
Y- vxH + T+ ?P.), (7-4.4)
c? ot
which by Maxwell’s Eq. (2-1.4) is zero. Hence, dropping the last
two terms in Eq. (7-4.3), cancelling v, replacing ¢;E' by D', and
restoring the vector notation, we obtain

V' eD =p’. (7-4.5)

Thus Maxwell’s Eq. (2-1.1) is invariant under relativistic
transformations.

Transformation of V. - B = (. Writing Maxwell’s Eq. (2-
1.2) in terms of Cartesian components, we have

98, , 98, [ 9B _,. (7-4.6)
ox ady 0z

Using the hybrid Eq. (7-3.5) and Eq. (7-1.8), using Egs. (7-3.11),
(7-3.12) and the hybrid equations for B, and B, obtained from
Egs. (7-1.27) and (7-1.28), we can write Eq. (7-4.6) as

/ / /
08 _v0B, 0B vOE 9B vOE _, (147
yox' ¢* 0t qdy’ 20y iz’ c* 0z

Multiplying by v and rearranging, we have

0B, 0B, 0B, v [(GEZ aEy) 3B,
+ + =yl - 2|+
ax’  dy’ oz’ c*l\ dy 0z ot
However, the expression in the brackets is simply the x
component of the expression

]. (7-4.8)

L(VX E + ﬂ’.), (7-4.9)
c? Jt
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which by Maxwell’s Eq. (2-1.3) is zero. Replacing the right side
ol Eq. (7-4.8) by zero and restoring the vector notation, we obtain

V' -B' =0. (7-4.10)

Thus Maxwell’s Eq. (2-1.2) is invariant under relativistic
transformations.

Transformation of V X E = — 0B/dt. Writing Maxwell’s
lig. (2-1.3) in terms of Cartesian components, we have

(OE OE, ) J((‘)E OE, ) (OE OEX)
gy 0z 0z ox ox ay (7-4.11)
0B, 0B 0B
= -2 -j2 -k__Z.
ot ot ot

Using Eqgs. (7-3.11), (7-3.12), (7-1.5)-(7-1.8), and (7-3.7), we
can write Eq. (7-4.11) as

= v T
Oy’ ay’ dz’ az’
/
az ax ox ay’
_ ( 3B, 3B, ) 0B, 0B
- i -j=2

- > - k_Z2.
i o’ v ox’ ot ot

According to Eq. (7-4.10), the terms with the derivatives
0B'\/ox', 0B',/dy’, B',/0z' in Eq. (7-4.12) vanish, so that the
cquation simplifies to

OE) oE/\ . aE; OE, 0E.  OE]
Y— -y y)w( ) k(_y—_)
/ / /
9 CE o Ox (1-4.13)
08! _ 0B, 0B,
= - iy— - .

Using Egs. (7-1.7), (7-1.6), (7-1.9), and (7-1.10), we can write
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Eq. (7-4.13) as

i( OF, aE;)+,[aE; ) a(Ez’—vB;)]+k[76(Ey+sz’)_aEx’

'Yay’ 'Yaz’ az’ R ox dy’
0B . O(B,-VE/Ic?) _ O(B]+vE]Ic?)
=yt —j -k z y (7-4.14)
" o’ I ot v ot
or, rearranging, as
.| OE, aE;)
nwy—m— - —
('Y ady’ E az’
/ / / / / /
+j[6E)r _ (aEZ +_V_aEZ )] . k[ (aEy +16Ey) _ aEx]
az’ ox c? ot ox c? ot ay’
oB] . (0B 0B/ oB] 4B/
-y —jv( Y ey y)_k ( 2 Ly ) (7-4.15)
ar’ ot ox ot ox
which, by Egs. (7-3.3) and (7-3.8), is
.| OE] 0E,\ ./0E; OE] 0E,  OE]
1(7 7~ /)+( T /)+k(_/_——/
ay 0z 0z Ox Ox dy
, , , (7-4.16)
. 0B, 0B 0B,
- T J T k '
ot ot or’

Comparing the x, y, and z components of the left side of Eq.
(7-4.16) with those of the right side, we find that the components
have the same form as the components of Eq. (7-4.11) (the factor
7 in the x components cancels if one compares only the individual
components of the left and the right side of the equation). Thus
the Cartesian components of Maxwell’s Eq. (2-1.3) are invariant
under relativistic transformations, but the equation itself is not
invariant because, due to the presence of v in the x components
of Eq. (7-4.16), Eq. (7-4.16) is not the same as Eq. (7-4.11).
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Transformation of V. X H = J + 0D/dt. Remembering that
D = ¢FE and writing Maxwell’s Eq. (2-1.4) in terms of Cartesian
components, we have

- _=
Ox dy
. . . OE  _ OFE 0E
=i + le + kJ, + ig; T + &y 0ty + ke 0;'

(0H 0H, ) (OH 0H, )

vk ( 0H, O0H,
ay 0z 0z  Ox )

(7-4.17)

Using Eqgs. (7-1.2), (7-1.3), (7-1.5), (7-1.8)-(7-1.10), (7-1.12)-(7-
1.14), and (7-3.7), and remembering that B = u H, we can write
Fq. (7-4.17) as

| OH] OE, 0H, OE,
l(’y_/. v 23,7 Yo Y 2 /)

ay poC 0y 0z poC 0z

H, 0H, H,

+j(aH 0 ) k( 9 ) (7-4.18)

9z ox 0x ay’

0E; OE, JE, OE,

=iy(J} +vp)+JJ +kJ; +1£O'y(a —VF) +jgg—2 Ot +ke, Otz'

According to Eq. (7-4.5) and taking into account that 1/p,c*
= &, the terms with the derivatives dE",/dx’, OE’,/dy’, OE',/07’
and p’ in Eq. (7-4.18) vanish, so that the equation simplifies to

[ OH] OH/\ (0H, 0H,  (0H, 6 0H,
i ilg - a5

Yay _’Yy ] az’  Ox W—ay’
oE]

+8
5 ey

(7-4.19)
=iyJ] +jJ; +KJ; +ive,

0t

Using Eqgs. (7-1.6), (7-1.7), (7-1.9), and (7-1.10), we can write
Eq. (7-4.19) as
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) (aH; aH;)
i _

v ay/ dz'
/
. oH! _70(H2’+vEy’/,¢0c2)]+k[7 O(H, -VE, Iu,c? ) 0H/!
az’ dx ox ay’
) ) . OE! . O +vB)) d(E] -vB))
=iyJ, +jJ) +kJ, +ive, 7 +jegy yat : +k£0'y__z_5t__y_
(7-4.20)

or, noting that &,B = H/c?, 1/u,c* = €, and rearranging, as

] ( 0H, OHy’ )
i -

¥ dy’ ! a9z’
+j[aH; _ (aH; +laH;)]+k[ (aH; +16H;)_6Hx’]
0z' ox 2 ot ox ¢? Ot ay’
7-4.21)
_ o] (
=l,ij/ +JJy/ +k]z/+rygo a7
. (0E] OE] O0E] OE]
”780( A ) +k7£°{ "V )
which, by Egs. (7-3.3) and (7-3.8), is
. [0H] 9H)\ (0H, 0H, 0H, 98H,
'v(ay’ ) az/)”(az’ ) 6x’)+k(0x’ 3y
7 422

O, 0E) 0E]
. / ./ ! . X . 'y z
=iyJ, +jJ, +KJ, +ive; =7 +j&, 577 +ke, O

Comparing the x, y, and z components of the left side of Eq.
(7-4.22) with those of the right side, we find that the components
have the same form as the components of Eq. (7-4.17) (the factor
7 in the x components cancels if one equates only the individual
components of the left and the right side of the equation). Thus
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the Cartesian components of Maxwell’s Eq. (2-1.4) are invariant
under relativistic transformations, but the equation itself is not
invariant because, due to the presence of vy in the x components
of Eq. (7-4.22), Eq. (7-4.22) is not the same as Eq. (7-4.17).7

7-5. Testing Relativistic Transformations

Although we have no reason to doubt the correctness of our
derivations and the correctness of the relativistic transformations
that we have obtained, it is instructive to test some of the
transformation equations. We can do so by using relativistic
ransformations for solving some problems whose solution is
already known on the basis of general electromagnetic laws.

Correlation between electric and magnetic fields of a moving
charge distribution. For the first test, let us see what effect
relativistic transformations have on the relation between the
electric and magnetic fields of a moving point charge. Consider
the equation expressing the magnetic flux density field B of a
uniformly moving charge distribution in terms of the electric field
E and the velocity u of the distribution [Eq. (3-2.10)]

B = (ux E)/c2. (7-5.1)

By the relativity principle, this equation should not depend on the
reference frame in which E, u, and B are measured. Let us see if
this conclusion is supported by our transformation equations.

Let a charge distribution move with velocity u’ with respect
lo a reference frame L', which moves with velocity v = vi with
respect to the laboratory. In £’ Eq. (7-5.1) is then

B’ = (u/ x E')/c?. (7-5.2)

We shall now transform this equation to the laboratory frame. To
do so we first write Eq. (7-5.2) in terms of its Cartesian
components
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B! = WE] -u/E))c? (7-5.3)
B, = WE] -uE})c? (7-5.4)
B/ = WE -uE})c*. (1-5.5)

Substituting into Eqgs. (7-5.3)-(7-5.5) E,’ from Eq. (7-1.5) and the
hybrid equations for E,’, and E,' obtained from Eq. (7-1.6) and
(7-1.7), we have

B! = [u)(E,/y +vB)) ~u(E,ly ~vB)))ic?  (1-5.6)
B] = [WE, -u/(E,ly +vB))lic* (7-5.7)
B! = [u/(E, /v -vB)) -u E]ic?. (7-5.8)

We shall now simplify Eq. (7-5.6) with the help of Eq. (7-
5.2) by using the relation

w B =u- (ll/ X E/)/CZ = O, (7_59)
from which it follows that
uB] +u/B = - ulB,. (7-5.10)

Substituting Eq. (7-5.10) into Eq. (7-5.6), we obtain

! / Ip!
B, = (uE,/y -uwE Iy -vu/B,)lc? (7-5.11)
or
B/(1 +vu/lc) = WE Iy -uwEnic?,  (1-5.12)
so that
u/ u/ 1
B, = > __E - . pll @513

vd +vilicd T v vl 1cy) e’
which, by Egs. (7-1.26), (7-2.6), and (7-2.7), is
B, = WE, -ukE)/c*. (7-5.14)
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Rearranging now Eq. (7-5.7), we have

B/(1+vullc?) = (wE, -u/EIv)Ic? (7-5.15)
or , /
B = _E-_— " _g]l. 0519
A +vulicd © vy +vulcd) “lc?

Substituting B," from Eq. (7-1.27), we obtain

/

V(B +VE, Ic?) = [ - EZ]L (7-5.17)
(1 +vu, /cz) ¥(1 +vu, /c?) “lc
or
o, u; 1
By = ; E - - vE]
Ly(1 +vu, /c?) (1 +vu, /cz) c?

u, E, - u!(1-v¥c?d +v(l +vu, /cz) ] 1
-2

Ly +vu)1c?) * (1 +vu)/c?) c
- / /

% p- % F]lz (7-5.18)
Ly(1 +vu, /c?) 1 +vulc?)

which, by Egs. (7-2.7) and (7-2.5), is
B, = WE, -ukE,)lc*. (7-5.19)
Clearly, Eq. (7-.5.5) transforms in the same manner into
B, = WE, -uk)c*. (7-5.20)

Recombining Egs. (7-5.14), (7-5.19), and (7-5.20) into a
single vector equation, we finally obtain Eq. (7-5.1) thus
demonstrating the validity of our transformations.

Electric field of a moving point charge. For the second test,
let us see what effect relativistic transformations have on the
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electric field of a moving point charge. Consider a point charge
g moving with constant velocity u’ = u'i relative to a reference
frame X', which moves with velocity v = vi relative to the
laboratory (reference frame ¥). Let the charge be in the x'y’
plane, let the point of observation in £’ be atx’ = 0, y' = 0,
z' = 0, let the time of observation in £’ be ¢’ = 0, and let the
point of observationin X be atx = 0, y = 0, z = 0. As usual,
let the x' axis coincide with the x axis, and let the x"y’ plane
coincide with the xy plane.
The electric field produced by ¢ in ¥’ is, by Eq. (4-1.19),

el + v
g -uTIH&i+y' D (71-5.21)

47l'80{)(30/2 +(1 __uIZ/CZ)y /2}3/2

E =

where x,’ is the x’ coordinate of the point charge at ¢ = 0. If our
relativistic transformation equations are correct, then the only
effect of these transformations on Eq. (7-5.21) when the equation
is transformed to the reference frame X should be the absence of
the primes in the equation.

To perform the transformation, let us first write the equation
in terms of its Cartesian components. We have

g(l-u?lc)xg

47re20{)c0’2 +(1-u'?/c?y’?}"?

E - (7-5.22)

and
B - g(1-u'*c)y’ . (7-5.23)
47rso{)c0’2 +(1-u'?c?)y’?pr

Substituting now into Eq. (7-5.22) Egs. (7-1.23), (7-2.24), (7-
1.20), and the hybrid equation for x' obtained from Eq. (7-1.1)
with ¢/ = 0, and noting that in the case under consideration u,'
= u', we obtain
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E = q(1 -u*/cHxly

b dme (1 -vu /ey + (1 -ulcd)yH(1 -vulcHy?}?
q(1 -u?/c®(1 -vulc?x

dme {xX(1 ~vulc?? +(1 -u*/cHy?}? .

(7-5.24)

Now, since in X' the charge was observed at ' = 0, x in Eq.
(7-5.24) is, according to Eq. (7-1.22), the position of the charge
at ¢ = vx/c*. But to make the electric field given by Eq. (7-5.24)
correspond to the field observed in L', the time of observation in
¥ must be the same as in L', that is, ¢ = 0. Therefore we must
replace x in Eq. (7-5.24) by x,, the position occupied by the
charge at ¢ = 0. Setting

X =X, +vut =x,+ u(vx/cz) (7-5.25)

and solving for x, we obtain
x=__ 0 (7-5.26)
1 - vul/c?

Substituting Eq. (7-5.26) into Eq. (7-5.24), we obtain
q(1 -u?/c?)x,

E._

- _ (1-5.27)
47reo{x02 +(1 -u?/cHy?}

For transforming Eq. (7-5.23), we need to use Eq. (7-1.24)
which contains B,. To obtain B,, we use Eq. (7-5.1), which gives
(note that the velocity of the charge in L is u)

B, = uE,/c*. (7-5.28)
Substituting Eq. (7-5.28) into Eq. (7-1.24), we obtain
E = YE,(1 - vu/c?). (7-5.29)

Substituting now into Eq. (7-5.23) Egs. (7-5.29), (7-2.24), (7-
1.20), and the hybrid equation for x’' obtained from Eq. (7-1.1)
with ¢/ = 0, and taking into account that in the case under
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consideration u," = u’', we obtain

YE,(1 -vulc?)
- q(1 -u*/c?)y
4mey* (1 -vu/c?H{x2/v* +(1 —u?/c®) v (1 -vulc?)?y >

= q(1 -u’lc®)(1 -vulc)yy (7-5.30)
47['80{)62(1 -vu/c??+(1 _uZ/CZ)yZ}:«;/z

or
E- q(1 -u*/c%)y . (7-5.31)
T dme (1 -vulc?) +(1-utlc?)y? P

Substituting Eq. (7-5.26) into Eq. (7-5.31), we obtain

E- g(1-u’/c?y ’ (7-5.32)
4me {xg + (1 -u?/cy?}”

Recombining Eqgs. (7-5.32) and (7-5.27) into a single vector
equation, we finally obtain

g-_1 —u/c?)(x i + ¥i)

_ , (7-5.33)
47rso{x§ +(1 -u?/c?y?}3”?

thus once again demonstrating the validity of our transformations.?

7-6. The Method of Corresponding States

In 1895, H. A. Lorentz enunciated a theorem, which he
called the theorem of corresponding states, according to which to
any electromagnetic system that is a function of space and time
coordinates in the rest frame X, there corresponds an
electromagnetic system in the moving frame X', being the same
function of space and time coordinates (primed coordinates) in
L'.° The theorem constitutes one of the most effective tools of
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relativistic electrodynamics, making possible a very simple
derivation of various equations for electric and magnetic fields of
uniformly moving charge distributions from the corresponding
clectrostatic and magnetostatic equations. Several examples of the
use of this theorem are provided below.

v

Example 7-6.1 The electric field of a stationary charge distribution
can be found from"!

E--_1 ijidv. (7-6.1)
dwey) r

Using Eq. (7-6.1) and appropriate transformation equations, find the
clectric field produced by a charge distribution moving with
uniform velocity v = vi.

Let us apply Eq. (7-6.1) to a charge distribution p' resting in
a reference frame X' which moves with respect to the laboratory
(reference frame E) with constant velocity v = vi. The Cartesian
components of the electric field E’ produced by p’ in this reference
frame are the same as those of Eq. (7-6.1) with V, p, r, and dV
replaced by the corresponding primed quantities, that is

r_ 1 (d/0x")p’ Lo s
b dme, I (x"?+y"?+7'? 1i2dx dy'dz’, (7-6.2)
A @/8y")p’ o s
e 4me, I (x?+y’?+7'? uzdx dy'dz’, (7-6.3)
= (81027)p’ 1y ! doi 7-6.4
¢ 47|'£0 J (x/2+y/2+z/2 I/de dy dz . ( . )

Since the electric field in ' does not depend on time, we are
(ree to choose the time of observation ¢’ in L’ and therefore, by Eq.
(7-1.4), the time of observation ¢ in X. For simplicity we shall use

= 0. Also since the electric field in L’ does not depend on time,
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so that d/0t' = 0, the derivative d/0x', by Eq. (7-3.2), transforms
into 8/~y0x. Taking into account that there is no magnetic field in L'
(because the charge distribution is at rest there) and using Egs. (7-
1.5)-(7-1.7), (7-1.19) with ¢t = 0, (7-1.20), (7-1.21), and (7-1.11)
with J,' = O (because there is no current in X') we transform Eqgs.
(7-6.2)-(7-6.4) into

= 1 (0/v0x)p Iy _
o [ d dz, (7-6.5)
x dmey ) [(yx)? +y? +z2 (vx)dydz
o [ d dz, (7-6.6)
’ ! 47!'80 [('Y)C)z +y2 +22]1/2 ('Yx)dy Z
-- (0/02)p Iy
e I d dz, (7-6.7)
AV 47['80 [(yx)? "’yz +7212 (yx)dydz
or
E = - 1 I (0/0x)p v 768
x 478072 [x2 "'()’2 .,_22)/,)/2]1/2 >
y 47!'30 [x2 +(y2 +Z2)/’Y2]1/2

! | 060 4y, (7-6.10)
47,-80 [x2+(y2 +ZZ)/,YZ]1/2

The denominators in Eqs. (7-6.8)-(7-6.10) can be simplified with
the help of Egs. (5-1.8) and (5-1.9). Multiplying Eqs. (7-6.8)-(7-
6.10) by i, j, and k, respectively, adding the equations, and
observing that 1/y* = 1 — V*/¢%, we obtain

1 JVp—i(vZ/C2)(6/ax)P av.  (1-6.11)
4me, ) r[1-(v¥c?)sin’4]"?

Observe that, except for notation, Eq. (7-6.11) is the same as
Eq. (5-1.12) that we obtained by converting the retarded integral
for the electric field given by Eq. (5-1.1) into the present-position
integral [the primes in Eq. (5-1.12) were used to indicate the
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source-point coordinates; in Eq. (7-6.11) these coordinates appear
without primes, because in relativistic electrodynamics the primes
arc used for identifying quantities in moving reference frames].

Iixample 7-6.2 The best known expression for calculating electric
ficlds of stationary charges is the "Coulomb’s field" equation'

E-_L [2av. (7-6.12)
dmey ) P

Convert this equation into the equation for the electric field
produced by a charge distribution moving with constant velocity and
vbtain the corresponding equation for the magnetic field produced
hy the moving charge distribution.

Consider a charge distribution p’ resting in a reference frame
L' which moves, as usual, with respect to the laboratory (reference
frame Y) with constant velocity v = wi. The electric field E’
produced by p’ in L' may be found from Eq. (7-6.12). Let us
rewrite this equation in terms of its Cartesian components (using
primed coordinates, since the coordinates are in X')

E - 1 J o' x’ d'dy'dy!,  (1-6.13)
47|'80 (x/2+y/2+z/23/2

g L[ 0 _aaya, (614
Y dme, ) (x 24y ey 2P ’

E- L P2 pidylag . (1-6.15)
47rgo (xll +y/2 +z/2)3/2

To find the electric and magnetic fields that the charge
distribution produces in the laboratory, we shall apply to Egs. (7-
6,13)-(7-6.15) our relativistic transformation equations. Since the
electric field in the moving reference frame X' does not depend on
lime, we shall use, for simplicity, ¢ = O for the time of observation
in the stationary reference frame X. Taking into account that there
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is no magnetic field in X' (because the charge distribution is at rest
there) and using Eqgs. (7-1.5)-(7-1.7), (7-1.19)-(7-1.21), and (7-
1.11) with J.' = O (because there is no current in ') we transform
Egs. (7-6.13)-(7-6.15) into

1 j( OCNYE__ giyodydz  (7-6.16)

x = 47780 ,YZxZ +y2+22)3/2
or
E =_1 J px av (7-6.17)
x drey? ) 2+ IR
. 1 I /)y : .
= dyodydz;  (7-6.18)
v dmey ) (v +y?+z?)? (e
or
E = — |2 ___av, (619
47(8072 [x2 +(yZ +22)/,YZ]3/2
and, similarly,
E - _ 1L J pz dv. (7-6.20)
z 41l’80‘Yz [xz +0,2+22)/,Yz]3/2

The denominators in Egs. (7-6.17), (7-6.19), and (7-6.20) can
be simplified with the help of Egs. (5-1.8) and (5-1.9).
Recombining Egs. (7-6.17), (7-6.19), and (7-6.20) into a single
vector equation, we then obtain

E-_1 I pr__ av.  (7-6.21)
dmepy* ) r’[1 -(v¥/c?)sin’ 0P

Observe that, except for notation, Eq. (7-6.21) is the same as
Eq. (5-1.40) which we obtained by converting retarded integrals
into present-time integrals.

Although the magnetic field produced by this charge
distribution could be found by applying relativistic transformations
[Egs. (7-1.8)-(7-1.10) in particular] to Egs. (7-6.13)-(7-6.15), it is
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much easier to find it by applying Eq. (3-2.6) to Eq. (7-6.21).
Clearly, this would yield Eq. (5-1.45).

Example 7-6.3 The electric field at a distance R from a stationary
line charge with endpoints at x, = L, and x, = L,, as in Fig. 4.5,
is

E =_ [ 1 - 1 ] (7-6.22)
AmeRLWL IR +1)"?  (L;IR*+1)"

E -~ A [ L, . L ] (7-6.23)
g dmeR*LWLIIR?+1)>  (LFIR*+1)"

where A is the line density of the charge, and where the point of
observation is at the origin.’* What is the electric field of this line
charge if the charge moves parallel to the x axis?

Let us suppose that the charge is at rest in a reference frame L’
which is moving with velocity v = vi relative to the laboratory
ieference frame T along their common x axis. In the X’ frame the
v component of the electric field of the line charge is, by Eq. (7-
0,22),

E =N 1 - 1 . (7-6.24)
4me R LR +1)'?  (L'ZR?+1)?

To find the corresponding electric field in the ¥ frame, we
transform E,’, R', N\’, and L' by using Egs. (7-1.23), (7-1.20), (7-
1.11), and (7-1.19) (observe that N’ transforms like p’, R’
transforms like y’, and L' transforms like x'). Selecting ¢ = O for
the time of observation in ¥ (we can choose ¢ at will because the
charge is time-independent in ') and noting that J', = 0O because
(he charge is stationary in £', we obtain from Eq. (7-6.24) after
clementary simplifications

o N1 = Ve 1 1

K dre R L(LYR? +1-v¥c)” B (LZIR? +1 -v?/c?)2 )
(7-6.25)
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Note that Eq. (7-6.25) is exactly the same as Eq. (4-3.13) that we
obtained by using the retarded field calculations.
By Eq. (7-6.23), the y component of the electric field in the &'
frame, where the charge is stationary, is
)\ / L/ L/
E = - ! - 2 . (7-6.26)
4me R7PLLR+1)'2 (L3R +1)"?

Using Egs. (7-1.6), (7-1.20), (7-1.11), and (7-1.19) for
transforming E,’, R’, ', and L’ and taking into account that there

is no magnetic field in X’ (because the charge is at rest there) we
obtain from Eq. (7-6.26) after elementary simplifications

A [ L, L,

E- _  (7-6.27)
? 4me RAULHR2+1-v¥cH)™ (LR +1 -v¥cH)2

which also is exactly the same as Eq. (4-3.22) obtained from
classical calculations.

Example 7-6.4 The scalar potential of a stationary charge
distribution can be found from the well-known equation

o= 1 jf’.dv. (7-6.28)
dme, ) r

Convert Eq. (7-6.28) into the scalar potential produced by a charge
distribution moving with constant velocity v = v i.

Consider a charge distribution p’ at rest in a reference frame X’
which moves with respect to the laboratory with uniform velocity
v = vi. The electric potential ¢’ produced by p’ in this reference
frame is given by Eq. (7-6.28) with ¢, p, r, and dV replaced by the
corresponding primed quantities, that is

o = 1 jp_’dV'. (7-6.29)
dmwe, d r!
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To find the potential in the laboratory, we transform the primed
quantities in Eq. (7-6.29) into the corresponding unprimed
quantities. Setting # = 0 and using Eqs. (7-1.19)-(7-1.21), (7-1.11),
and (7-1.15) with J.' = 0 and 4, = 0 (because there is no current
nnd no magnetic field in £'), we obtain

.1 j( P dewdydz,  (1-6.30)

v dre, ) (P vy )
or, simplifying and using Egs. (5-1.8) and (5-1.9),
o= j  ____av, (7631
dwe, ) r[1 - (v¥c?)sin?0]'?

which, except for notation, is the same as Eq.(5-2.5) that was
obtained from a retarded potential integral.

Example 7-6.5 The scalar potential of a stationary charge
distribution whose charge density is constant throughout the volume
occupied by the distribution can be found from the equation'*

- p4r -6.

R RN (7-6.32)
where dS,,, is a surface element vector directed from the charge
distribution into the surrounding space. Convert Eq. (7-6.32) into
the scalar potential produced by a charge distribution moving with
constant velocity v = vi.

Consider a charge distribution p’ at rest in a reference frame X’
which moves with respect to the laboratory (reference frame X) with
uniform velocity v = vi. The electric potential ¢’ produced by p’
in this reference frame is given by Eq. (7-6.32) with ¢, p, r, 1,
and dS replaced by the corresponding primed quantities:

o= - P 4T s (7-6.33)
8me, ) r/ out
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To find the potential in the laboratory, we transform the primed
quantities in Eq. (7-6.33) into the equivalent expressions in terms
of unprimed quantities. First, however, we expand the dot product
in Eq. (7-6.33), obtaining
o= - o ['dy'd' +y'dy'dx’ +z’dx’dy’)aw‘ (7-6.34)
8Te, r!

Now, setting ¢ = 0 and using Eqgs. (7-1.19)-(7-1.21), (7-1.11), and
(7-1.15) with J,” = 0 and 4,' = 0 (because there is no current and
no magnetic field in X'), we have

. (7-6.35)

_oly (_# (yxdydz + ydzydx + zydxdy),,
87['6 (,yxz +y2 +ZZ)1/2

or, simplifying, using Eqs. (5-1.8) and (5-1.9), and restoring the
vector notation,
. 8w (7636
8me, ) r[1 - (v¥/c?)sin®0]"?

which, except for notation, is the same as Eq. (5-2.11) obtained
from a retarded potential integral. A
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FROM RELATIVISTIC
ELECTROMAGNETISM TO
RELATIVISTIC MECHANICS

Electric and magnetic fields are force fields. They exert
forces on charged bodies and affect the state of motion of these
hodies. The study of the motion of bodies under the action of
different forces is the domain of mechanics. However, classical
mechanics was developed much earlier than electromagnetic
theory and before the advent of relativistic electrodynamics. It is
vlear therefore that classical mechanics needs to be reformulated
lo make it compatible with relativistic electrodynamics. The
mechanics thus reformulated is called relativistic mechanics. Its
fundamentals are presented in this chapter on the basis of already
teveloped relations of relativistic electrodynamics.

8-1. Transformation of the Lorentz Force

In Chapter 7 we derived relativistic transformation equations
for electric and magnetic fields. Electric and magnetic fields are
force fields. We may expect, therefore, that our transformation
cquations for electric and magnetic fields could be converted into
force transformation equations. To explore this possibility we shall
proceed as follows.'?

181
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The force experienced by a point charge g moving with
velocity u in the presence of an electric field E and a magnetic
flux density field B is given by the Lorentz force law?

F = g(E +u X B). (8-1.1)

This law does not depend on the inertial reference frame in which
g, u, E, and B are measured. Therefore in an inertial reference
frame X’ moving with velocity v relative to the laboratory
(reference frame X) in the direction of their common x axis,
Lorentz force law can be written as

F/ = gE’ +u’ xB'), (8-1.2)

where the primes are used to indicate quantities measured in the
moving reference frame (there is no prime on g because the
charge does not depend on the velocity with which it moves). All
we need to do to obtain an equation transforming F’ to F is to
express E, u, and B in Eq. (8-1.1) in terms of primed quantities
and to group the latter together in the form of Eq. (8-1.2).
However, when dealing with relativistic transformation, it is
usually much simpler to write the transformation equations in
terms of the Cartesian components of the vectors involved rather
than in terms of the vectors themselves. In terms of the
components, Egs. (8-1.1) and (8-1.2) are

F, = q(E +uB, -uB), (8-1.3)
F, =gqE +uB -uB), (8-1.4)
F, = q(E,+uB, -uB); (8-1.5)
and
F! = q(E! +u/B, -uB)), (8-1.6)
F) = q(E +u/B/ -u/B)), (8-1.7)

F, = q(E] +u/B/ -u/B/). (8-1.8)
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Transformation equation for the x component of F.
Substituting Eqgs. (7-1.5), (7-2.6), (7-1.10), (7-2.7), and (7-1.9)
into Eq. (8-1.3) and cancelling gamma, we have

/ / /
e Y g Bt (g2 @19
1+vu, 12V et +vu!Ic?\ c?

Adding and subtracting

IR Y
vu, u, B

c(1 +vu]ic?) ,

we obtain
/ / / /
F =q[EX/ u, /B’ VE, )_ u, /By’- VE, )}
l+vu’/cz\ 2! 1wvu!/c?\ c?
vu, u, B vy u B,
cX1+vulcd)  c2(1+vu)lc?)
PR
Y v/ ic? e (8-1.10)
_ u (g’ VE, vuy/Bx/
B, - +
1+va!/c?\ 7 c? c?
/
vu
=q[Ex’+____y—< B! +E; +u B)
cX1+vu!/c)\V

/
—_L( B! Ez’+uy’B,,’)].
cX1+vu)lcH\V

Adding and subtracting #,'B,’ inside the parentheses of the
first term and u,'B,’ inside the parentheses of the second term of
the last expression, we then have
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/

Vu

F = q[E;+___y__(_B’+u B! -u/B! +E/ +u/B] )
cX(1+vulcH)\ Vv

/ (8-1.11)
vu, N
" —_— _B u,B) -uB) -E, +u/B/|.
X1 +vulc)\V
Simplifying Eq. (8-1.11), we obtain
/ 2 2
Fx=q[Ex’+ e v /c) u/B! +E] +uB)
c2(1 +vulc?)\ v
v, lcz(l + Vi, /c2) /B ~E! +u'B] )]
- +u,
c2(1 +vulcd)) v
(8-1.12)
or
vu,
F.= q[Ex/ +uy/BZ’—uZ/By'+___.______(E +u, B! -u, 'B )
c(1 +vu)/c?)
, (8-1.13)
v, Il il
+ .—/Ez +u,B, -u,B, ||
cH1 +vu,/c?)

Comparing Eq. (8-1.13) with Egs. (8-1.6), (8-1.7), and (8-
1.8), we recognize that Eq. (8-1.13) can be written as
vu, v,
F =F!+ Y F) + : F/, (8-1.14)
c¥1+vu!lc? c2(1 +vu)/c?)

which is the transformation equation for obtaining the x
component of the force measured in the laboratory system from
the x, ¥, and z components of the force measured in the moving
system.

Transformation equation for the y component of F.
Substituting Eqgs. (7-1.6), (7-2.7), (7-1.8), (7-2.5), and (7-1.10)
into Eq. (8-1.4), we have
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/ /
u U, +v
F,=qv(E)+vB)) + B -—— Y(B‘u _viEy/ﬂ
Y(1 +vu, /c?) 1+vu,/c?

c
(8-1.15)
l‘actoring out
T
1+vu/c?
simplifying, and rearranging, we obtain
/
vu
Fo= Ty [(E’+vB’)(1+ ")
Y Teval el c?
/ vz) / / ( % /)]
+u,(l-_\B, - (u, +v)|B, + _.E
z( SR e (8-1.16)

v2 V2 v2
_17/_2[(1 —_Z)E; ! (1 -_2)32’ . uZ’(l - __2)31 ]
1+vu,/c c c c

/ I'n! I'n!
Tl
X

or, with Eq. (8-1.7),

F=—1 __F, (8-1.17)
Y1 +vu, /c?)

which is the transformation equation for obtaining the y
component of the force measured in the laboratory system from
the y component of the force measured in the moving system.
Transformation equation for the z component of F.
Substituting Egs. (7-1.7), (7-2.5), (7-1.9), (7-2.6), and (7-1.8)
into Eq. (8-1.5) and proceeding as we did for deriving Eq. (8-
1.17), we get
Fo=— 1 __F, (8-1.18)
Y1 +vu, /c?)

which is the transformation equation for obtaining the z
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component of the force measured in the laboratory system from
the z component of the force measured in the moving system.

Inverse transformation equations for F. The transformation
equations that we have obtained are for transforming forces from
the moving (primed) reference frame to the laboratory (stationary)
reference frame. The inverse transformations can be derived in the
same manner. However, as usual, the inverse transformations can
be obtained without additional derivations by simply switching
primes from the primed to the unprimed quantities and reversing
the sign in front of v. The result is

Flep-_ " p__ "™ g (119
Yok -vu /ey 7 cAl-vulcH t

1
F-__ 1 g (8-1.20)
Y v -vu/c? ’
and

Fl = ﬁFZ' (8-1.21)
Y1 -vu lc

8-2. Transformation of Electromagnetic Energy and
Momentum of a Parallel-Plate Capacitor

We shall deduce transformation formulas for mechanical
energy and momentum from transformation formulas for
electromagnetic energy and momentum of an electromagnetic
system that closely resembles a mass particle. Since a typical mass
particle is neutral and is confined to a limited region of space, a
corresponding electromagnetic system should also be neutral and
should be confined to a limited region of space. A small thin
parallel-plate capacitor, whose end effects are neglected, satisfies
these requirements.
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Let the charges on the plates of the capacitor be +¢ and — gq.
The energy of electric interaction of the capacitor’s plates with
each other is then*

U, = qop, (8-2.1)

where ¢ is the potential produced by the charge of one of the
plates at the location of the other plate.

If the capacitor moves with velocity u in a direction parallel
lo its plates, the charges move with the plates and constitute
electric currents, a magnetic field is created in the space between
the plates, and there is then also the energy of magnetic
interaction of the capacitor’s plates,

U,=qu-A, (8-2.2)

where A is the magnetic vector potential produced by the current
formed by the charge of one of the plates at the location of the
other plate.’

Furthermore, if the capacitor moves, there exists an
electromagnetic momentum associated with the charge of one of
the plates and the magnetic vector potential produced by the
current formed by the charge of the other plate,

G = gA. (8-2.3)

Equation (8-2.3) can be obtained as follows. The
clectromagnetic momentum contained in an electromagnetic field
of the capacitor is®

G = 2y | ExHaV, (8-2.4)

where E is the electric field and H is the magnetic field, and the
integration is extended over the region where the two fields are
present. Since in a vacuum, by Eqgs. (2-1.5) and (2-1.6), pH =
B and ¢;E = D, and since, by Eq. (2-4.1), B = V X A, we can
write Eq. (8-2.4) as

G - ij (VX A)dV. (8-2.5)
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Let us apply vector identity (V-22) to Eq. (8-2.5). We obtain

§@-2)ds - §AD-a9) - §DA-dS) (5256
- I[Dx(VxA)+Ax(V><D)—D(V-A)-A(V-D)]dV,

where the integration is over the space occupied by the capacitor.
Let D be due to the charge of one of the capacitor’s plates and let
A be due to the current formed by the charge of the other plate.
By symmetry, the surface integrals vanish. Also, by Eq. (2-1.1),
V - D = p, and, since H and E are time-independent, by Egs.
(2-1.3) and (2-1.5), V x D = 0, and by Egs. (2-1.6) and (2-4.9),
V - A = 0. Therefore Eq. (8-2.6) reduces to

[Dx (VxA)dV = [Apdv. (8-2.7)

By symmetry, A is constant on the capacitor’s plate containing
p, and therefor A can be factored out from the last integral in Eq.
(8-2-7). Since [ pdV = q, we then obtain Eq. (8-2.3) from Eqgs.
(8-2.7) and (8-2.5).

Let us now assume that the capacitor is at rest in a reference
frame ¥’ which moves with velocity v = vi relative to the
laboratory (reference frame X). By Eq. (8-2.1), the energy of
electric interaction of the capacitor’s plates in £’ is

Ul =q¢'. (8-2.8)

Let us now express U,’ in terms of the quantities measured in the
laboratory. Using Eq. (7-1.33) for transforming ¢’, we have
U. = qv(p -vA) (8-2.9)

* U, = v(ge-qA). (8-2.10)

However, by Eq. (8-2.1), g¢ is the energy of electric interaction
of the capacitor’s plates as measured in the laboratory [this
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relation is valid for a moving capacitor as long as the capacitor
moves with uniform velocity because, by Eq. (2.4.8), E is then
equal to —Vo] and by Eq. (8-2.2), gvA, is the energy of magnetic
interaction of the capacitor’s plates as measured in the laboratory.
llence the transformation equation for the electric interaction
energy for our capacitor is

U, =yU,-U,). (8-2.11)
As usual, the inverse transformation equation is
U, = y(U, +U,) (8-2.12)

[the "+" sign follows from Eq. (8-2.10), where there isa "—" in
front of gv].

Observe that instead of interpreting the term gvA, in Eq. (8-
2.10) as the magnetic interaction energy, we can interpret it,
nccording to Eq. (8-2.3), as the product of v and the x component
of the electromagnetic momentum G,. Therefore we can also write
Eq. (8-2.11) as

U =y(U,-vG,), (8-2.13)
nnd Eq. (8-2.12) as
U, = v(U, +vG;). (8-2.14)

Let us now obtain transformation equations for the
clectromagnetic momentum G of our capacitor. Writing Eq. (8-
2.3) in terms of Cartesian components and using Eqs. (7-1.34)-(7-
1.36), we can express the electromagnetic momentum G’
measured in X’ in terms of the electric and magnetic potentials
measured in the laboratory as

G, = qylA, - (vIc)gl, (8-2.15)

o -
G, =qA,, (8-2.16)

y

G = qA. (8-2.17)

4
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However, ¢A,, qA,, and qA, are the components of the
electromagnetic momentum associated with g as measured in the
laboratory, and gy is the electric interaction energy as measured
in the laboratory. Hence, by Egs. (8-2.15)-(8-2.17) we have for
the transformation of electromagnetic momentum of the capacitor

le - ,Y[Gx_(v/CZ)Ue]’ (8-218)
Gy/ = G,, (8-2.19)
G =G, (8-2.20)

The inverse transformation equations are then

G, = 7I[G] + (vIc®)U/], (8-2.21)
G, = G,, (8-2.22)
G =G,. (8-2.23)

8-3. Relativistic Expression for Mechanical Momentum

Let a charged particle of mass m move with velocity u = u,i
at the moment of observation in the laboratory reference frame X.
Observed in a reference frame L' which moves with velocity v =
vi = u,i relative to the laboratory, the particle is at rest. Let there
be an electric field in L' acting on the particle with a force F'.
Since the particle is at rest in L', it obeys the well-known laws of
classical mechanics there. In particular, it experiences an
acceleration under the action of F' according to Newton’s second
law, so that, considering the x component of the force, we have

F' = ma!, (8-3.1)

where a,’ is the acceleration of the particle in L' (note that
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although the particle is at rest in L', so thatu,’ = 0, a,/'# O if a
force acts upon the particle).

Let us convert Eq. (8-3.1) to the laboratory reference frame.
Taking into account that »," = u," = u," = 0 and that v = u,, and
replacing in Eq. (8-3.1) F,' by F, and a,’ by a, with the help of
Egs. (8-1.14) and (7-2.14), we have
F. = y'ma,. (8-3.2)

x

Consider now the relation

d u, (1-uglc®) Pdu, fdr +[uglcX(1-uglc?) ] du, /dt
dl (1 —uf/CZ)W] 1-ullc?
~ 1 du, _ 1

(8-3.3)

Since by supposition X' moves with velocity v = u,i, so that u,
= v, the fraction in the last term is the same as 7y* so that we can
write

a __“_] . (8-3.4)
atl(1-ulicyel 7

Combining Egs. (8-3.2) and (8-3.4), we obtain

F=-=29 __”L_] (8-3.5)

S Gt

But, by Newton’s second law, the force acting on a body is
equal to the rate of change of the momentum of the body.
Therefore the x component of the mechanical momentum of the
particle under consideration is not p, = mu,, as it is defined in
classical mechanics, but

ik (8-3.6)

Pe= ————
tA-ulie)©”
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For the y component of the force acting on the particle in X’

we have
F' = ma’. (8-3.7)

y y

Let us convert Eq. (8-3.7) to the laboratory reference frame.
Taking into account that " = u,/ = u,’ = 0 and that v = u,, and
replacing in Eq. (8-3.7) F, by F, and a,’ by a, with the help of
Egs. (8-1.17) and (7-2.15), we have

VF, = ¥ma, (83.8)

or
| = yma,. (8-3.9)

Consider now the relation

d[ u, ]_ a —uf/c2)“2duy/dt “[”y”x/c2(1 —uf/c2)”2]dux/dt
dr (1—143/02)1/2 1 —ll,cz/C2 (8—3.10)
- _awa-_ 1 g

(1 -u/ct (1 -u7lcH'?

(in obtaining this relation we took into account that u, = O,
because by supposition u = vi, so that only the x component of
u is different from zero). Since u, = v, the fraction in the last

term of Eq. (8-3.10) is the same as v, so that we can write

ﬁ[_”y_] - va. (8-3.11)
drl(1 -ulic?)\®

Combining Egs. (8-3.9) and (8-3.11), we obtain

F = i[_’m‘y_], (8-3.12)
Toodtla-ulieyn

Therefore the y component of the mechanical momentum of the
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particle under consideration is not p, = mu,, as it is defined in
classical mechanics, but

- (8-3.13)

p, = — .
T A-ulich”?

By the same procedure we find that the z component of the
mechanical momentum of the particle is

mu,

M N N— (8-3.14)
(1 -ul/cH)'?

Combining Egs. (8-3.6), (8-3.13), and (8-3.14) into a single
vector equation, and remembering that by supposition u = u,i and
v = ui, so that u = v, we obtain for the relativistic momentum
of a particle of mass m moving with velocity u’

mu