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Preface 

It is with great joy that we present a collection of essays written in 
honour of Jayant Vishnu Narlikar, who completed 60 years of age on 
July 19, 1998, by his friends and colleagues, including several of his for­
mer students. Jayant has had a long research career in astrophysics and 
cosmology, which he began at Cambridge in 1960, as a student of Sir 
Fred Hoyle. He started his work with a big bang, expounding on the 
steady state theory of the Universe and creating a new theory of gravity 
inspired by Mach's principle. He also worked on action-at-a-distance 
electrodynamics, inspired by the explorations of Wheeler, Feynman and 
Hogarth in that direction. This body of work established Jayant's rep­
utation as a bold and imaginative physicist who was ever willing to 
take a fresh look at fundamental issues, undeterred by conventional wis­
dom. This trait, undoubtedly inherited from his teacher and mentor, 
has always remained with Jayant. It is now most evident in his untir­
ing efforts to understand anomalies in quasar astronomy, and to develop 
the quasi-steady state cosmology, along with a group of highly distin­
guished astronomers including Halton Arp, Geoffrey Burbidge and Fred 
Hoyle. In spite of all this iconoclastic activity, Jayant remains a part of 
the mainstream; he appreciates as well as encourages good work along 
conventional lines by his students and colleagues. This is clear from the 
range of essays included in this volume, and the variety and distribution 
of the essayists. 

After a long stay in Cambridge, Jayant moved to the Tata Institute 
of Fundamental Research in Mumbai (then Bombay) in 1972. There he 
inspired several research students to work in gravitational theory and its 
many classical and quantum applications to cosmology and astrophysics, 
and established collaborations with his peers, which led to a fine body 
of work over the next 15 years. But perhaps his most enduring contri­
bution of this period was to forge a link between distinguished senior 

ix 
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relativists in India, and the younger generation of aspiring researchers. 
This has led to the formation of a warm and congenial community, spread 
throughout the country, working in relativity, cosmology and theoretical 
astrophysics. During this period Jayant also worked hard at the popu­
larization of science, through the press, television and most importantly 
through talks to ever increasing audiences. This not only exposed peo­
ple to good science, but it also helped to establish Jayant as one of the 
public figures of science in India. Jayant has used his formidable repu­
tation and influence, developed during this period, for the advancement 
of science in India, always in a very quiet manner. 

In 1988, inspired and aided by Professor Yashpal, then Chairman of 
the University Grants Commission, Jayant set up the Inter-University 
Centre for Astronomy and Astrophysics at Pune. Through this centre 
he has been able to open up for the university community avenues for 
excellent research in these areas. Jayant's broad vision, and his readiness 
to encourage every shade of opinion and to bring out the best in his 
colleagues, has enabled IUCAA to develop an international reputation. 
The centre is now seen as an example of how the energies of the research 
institutes and universities in India, usually considered disparate, could 
be harnessed together to excellent effect. 

It is the general practice to list, in a volume of this kind, the scien­
tific and other works of the person it seeks to honour. The list in the 
present case would have been rather unusually long, and we have there­
fore decided, in consultation with Jayant, that we will enumerate only 
his scientific books. These expose much of the work he has presented 
elsewhere in the form of research papers and review articles. They also 
present highly readable and often pedagogic accounts of modern astro­
physics, and will surely continue to be read for a long time to come. 
Amongst the works that we will leave unlisted will be his contributions 
to the annals of science fiction, which have helped much to endear him 
to the general public. In this matter too Jayant has followed in the steps 
of Fred Hoyle. 

Naresh Dadhich 
Ajit Kembhavi 
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Chapter 1 

OBSERVATIONS AND THEORyl 

Halton Arp 
Max-Planck Institut for Astrophysik 

Garching, Germany 

1. INTRODUCTION 
The most predictable observation concerning theories is that they will 

probably always turn out to be wrong. From Ptolemy to phlogisten these 
excercises have wasted untold model calculations and obsoleted endless 
sermons. Nevertheless, for the last 77 years, eschewing all humility, 
orthodox science has insisted on the theory that the entire universe was 
created instantaneously out of nothing. Observations for the last 33 
years have shown this to be wrong - but these basic facts of science have 
been rejected on the grounds there was no theory to "explain" them. 

Since 1977, however, there has not even been this feeble excuse for 
abandoning empiricism. That was the year in which Jayant Narlikar 
published a short paper in Annals of Physics (107, p325). The paper 
outlined how a more general solution of the equations of general rela­
tivity permitted matter to be "created" i. e. enter a black hole and 
remerge somewhere from a white hole without passing through a singu­
larity where physics just broke down. This was not just another play 
with words because it turned out that the newly created matter would 
have to have a high intrinsic redshift. The latter is just what observa­
tions with optical and radio telescopes had been requiring since 1966! 

As contradictory cases mounted over the years, the Big Bang theory 
had to be rescued by postulating an ever increasing number of adjustable 
parameters. As a consequence there is today a giant tsunami of evi­
dence cresting above the Big Bang. It demonstrates continual creation 
of galaxies and evolution of intrinsic redshift in an indefinitely old and 

1 Editors' note: Dr. Halton Arp has requested that his contribution be presented as two 
separate articles, which we do in this chapter and the next. 

N. Dadhich and A. Kembhavi (eds.), The Universe, 1-6. 
© 2000 Kluwer Academic Publishers. 
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large universe. By now we can start anywhere with this evidence so let 
us start with new results on a class of objects called active galaxies. 

2. ACTIVE GALAXIES 

In the preceding paper, preliminary investigation of two Ultra Lumi­
nous Infrared Galaxies (ULIRG"s) are reported. It is clear that these 
very disturbed objects are being torn apart during the process of eject­
ing high redshift quasars. Empirical evolutionary sequences show that 
the ULIRG's themselves are very active galaxies recently evolved from 
quasars. Therefore they also possess an appreciable component of in­
trinsic redshift. Conventionally this redshift gives too large a distance 
and this is why these objects are considered to be so "overluminous". 
As we shall comment later, however, they do not look at all like the 
most luminous galaxies of which we have certain knowledge. Instead 
they resemble small, active companion galaxies to larger, older parent 
galaxies. For example, Markarian 273 is an obvious companion to the 
large, nearby spiral, Messier 101. 

The defining characteristic of active galaxies is that they show enor­
mous concentrations of energy inside very small nuclei. They also show 
optical, radio and X-ray jets and plumes of material emerging from their 
centers. The latter is not surprising since the concentrated energy must 
expand and escape somehow. It has been accepted for about 40 years 
that active galaxies eject radio material so it is difficult to understand 
why the ejections associated with quasars are not recognized. But the 
expulsion of material is clearly responsible for the disrupted appearance 
of the active galaxies. Why then does conventional astronomy make an 
enormous industry out of a completely different, ad hoc explanation for 
morphologically disturbed galaxies - namely mergers! 

3. MERGERS? 

What is the conventional view of disturbed galaxies and ULIRG's? It 
is that two independent galaxies are merging. One galaxy sees another 
and heads directly for it. In its excitement it forgets about angular 
momentum and unerringly scores a direct hit. To judge how reasonable 
this is one could ask how many comets are perturbed into the solar 
system and proceed to plunge directly into the sun? 

In all honesty, however, I must admit that my long term scorn for the 
merger scenario has been tempered by recent evidence on ejection from 
active galaxies. For many years it was clear that there was a tendency 
for galaxies to eject along their minor axes. But recently there have 
been some cases where ejection has been aligned with striking accuracy 
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along the minor axis (6 quasars from NGC3516 , Chu et al. 1998, and 
five Quasars and four companion galaxies from NGC5985, Arp 1999). 
It is clear that proto galaxies ejected exactly out along the minor axis, 
and evolving into companion galaxies as they eventually fall back (Arp 
1997;1998) will have little or no angular momentum and therefore move 
on plunging orbits. Their chances of colliding with the parent galaxy are 
therefore much greater than if they were field galaxies. So maybe there 
is some usefulness after all to those many detailed calculations which 
have been carried out on colliding galaxies. 

But when the ejection of protogalactic material takes place in the 
plane or tries to exit through the substance of the parent galaxy then 
an entirely different scenario develops. Using the low mass creation 
theory, one can now begin to connect these events with previously un­
interpretable observations. 

4. SUPERFL UID 
In 1957 the famous Armenian astronomer Ambartsumian concluded 

from looking at survey photographs that galaxies were formed by ejec­
tion from other galaxies. As an accomplished astrophysicist he realized 
that would require ejection in an initially non-solid form form but with 
properties different from a normal plasma. He called it "superfluid". In 
spite of general agreement that Ambartsumian was a great scientist his 
important conclusion about the formation of galaxies has been ignored. 

But now the Hoyle-Narlikar variable mass theory is required to ex­
plain the high intrinsic red shifts of the quasars ejected from galaxies. 
The creation of mass in the centers of galaxies with this same variable 
mass theory then also solves the major problem which must have caused 
Ambartsumian to use the term "superfluid", namely that a normal, hot 
plasma expanding from the small dimensions of a galaxy nucleus would 
not have been able to condense into a new galaxy. In contrast, as the 
particles in the newly created plasma age they gain mass and, in or­
der to conserve momentum, must slow their velocity. This means the 
plasma cools as it ages and also its self gravitation increases - both fac­
tors working in the direction of condensing the material into a proto 
galaxy. 

The second major obstacle overcome by starting the particles off with 
near zero mass is the initial velocity of ejection. Observations have shown 
examples of ejected material in jets approaching closer and closer to the 
speed of light. Physicists believe that as a particle approaches the speed 
of light its mass must approach infinity. In other words one has to pump 
an enormous amount of energy into a huge number of particles to get 
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the velocities (gamma factors) which are implied by the observations. If 
the particles are initially near zero mass, however, they are almost all 
energy and are emerging naturally with near the signal velocity, c. 

In M87, the very strong radio galaxy in the Virgo Cluster, knots in the 
jet have been measured by their proper motion to have apparent outgo­
ing velocities of 5 to 6 c. But further out along this jet we find quasars 
and companion galaxies which the knots must evolve into. Now, how­
ever, all the calculations based on the assumption that the knots consist 
of normal plasma will have to be redone with a low mass plasma, e.g. 
the calculations of supposed shock fronts and containment envelopes. 
(See Arp 1998,1999) 

5. EXPLODING GALAXIES 

There is a strong (and in some cases almost perfect) tendency for 
quasars to be initially ejected out along the minor axis and also ordered 
in descending redshift with angular separation. Nevertheless there are 
some cases where quasars are found close to their galaxy of origin but 
not ordered in redshift. The key to understanding this situation lies in 
the observation that the nearby galaxy of origin is usually spectacularly 
disrupted. What could cause this disruption? The obvious inference is 
that the process of ejection has, somehow, fragmented the galaxy when 
the ejection is not out along the minor axis. 

At this particular point the usefulness of the variable mass theory 
becomes especially apparent. We are able to visualize a cloud of low 
particle mass material pushing out against the material of the galaxy, 
initially with velocity c. Low mass particle cross sections are large and 
eject and entrain the material of the galaxy into long, emerging jets. 
The initial pulse of energy concentrated at the center of the galaxy plus 
the sudden decentralization of mass explodes and tears asunder the par­
ent galaxy. Moreover, the new material is retarded and fragmented so 
that it develops into many smaller new proto galaxies much closer to 
the, by now, thoroughly disrupted galaxy. This is the case where the 
new material does not exit along the minor axis. This is exactly what is 
observed as shown here in Figures 1 and 2. 

Here the disrupted galaxy is 53W003 (a blue, radio, galaxy). As the 
picture shows it has been disrupted into at least three pieces. A pair of 
almost perfectly aligned quasars of z = 2.389 and z = 2.392 have ap­
parently come out fairly unimpeded. (There are, as expected, brighter 
quasars of z = 1.09 and z = 1.13 about 7 arcmin further along in this 
direction). The rest of the quasars, about 18 similarly high redshift ob­
jects, have wound up in a cloud only about 1.5 arcmin from the disrupted 
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Figure 1.1 Part ofa4m PF-CCD field in the F410M filter (4150A, filter width 150A) . 
The WFPC2 search fields are outlined - plus signs show non-AGN Ly Q emitters. 
Quasars in the cluster are circled with z marked. From Keel et al. 1998. 

Figure 1.2 Enlargement of z = .05 galaxy in Fig.1. Note how this blue radio galaxy, 
53W003, has multiple components. Image courtesy W. Keel. 
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galaxy. Evidently they represent some low mass plasrna that was bro­
ken up into smaller clouds in its violent exit from the galaxy. In support 
of this scenario, high resolution, Hubble Telescope images of these high 
redshift objects show them to be blue and irregular. At their conven­
tional redshift distance they would have absolute magnitudes of M = 
-24 mag. - well into the supposed quasar range of luminosity. Yet they 
have an extended morphology, whereas, in general, brighter quasars of 
the same redshift are point-like. 

More broadly, this leads me to comment that the faint images in 
the famous Hubble Deep Field exposure which have such large redshifts 
are of predominantly blue, irregular morphology. At their conventional 
redshift distance they should be enormously luminous. But all our ex­
perience with genuinely luminous galaxies indicates such galaxies should 
be massive, relaxed, equilibrium forms - like E galaxies, or at least Sb's. 
These Hubble Deep Field objects have ragged, irregular looking dwarf 
morphology. Instead of a new kind of object suddenly discovered in the 
universe would it not be plausible that they are really relatively nearby 
dwarfs but simply have high redshifts because they are young? 

6. A USEFUL THEORY 
Speaking for myself, the N arlikar general solution of the relativistic 

field equations has been a salvation. It has opened up possibilities of 
understanding the observational facts - facts which must be accounted 
for if we are to have a science. In the dogma of current astronomy, 
evidence no matter how many times confirmed, cannot be accepted if it 
does not fit Big Bang assumptions. With the the variable mass theory, 
however. essentially all the salient observational facts can be related to 
each other in a physically understandable, reasonable way. Even if it is 
only a stepping stone to a future, deeper theory - I must say, thank you 
Jayant. 
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Chapter 2 

EJECTION FROM ULTRALUMINOUS 
INFRARED GALAXIES 

Halton Arp 
Max-Planck Institut fur Astrophysik 

Garching, Germany 

Abstract 
Active galaxies, particularly Seyferts, have been shown to eject ma­

terial in various forms including quasars with high intrinsic redshifts. 
A class of active galaxy which has so far not been analyzed from this 
standpoint is the so called Ultra Luminous Infrared Galaxies (ULRIG's). 
Here we report the very beginning of an analysis of the three most lu­
minous examples of such galaxies. Aided by the availability of the new 
VLA all sky radio surveys it is clear that these ULRIG's show especially 
strong evidence for ejection in optical, radio and X-ray wavelengths . 
These ejections are strikingly connected with adjacent quasars, both 
with those of known redshifts and those which are candidate quasars 
waiting to be confirmed. 

1. MARKARIAN 273 
This is a torn apart galaxy with a brilliant, long optical jet. At a 

conventional distance corresponding to its redshift (z = .038) it is one of 
the most luminous galaxies known in red wavelengths. Hence it is called 
an Ultra Luminous Infrared Galaxy (ULIRG). When observed in X-rays 
the galaxy has an active center. Only 1.3 arcmin NE, right at the end 
of a broad optical filament, lies another X-ray source (see Figure 2.1). 
When the spectrum of this companion (Mark273x) was taken it was 
reported as z = .038, the same as the central galaxy. Naturally this was 
interpreted as showing that Mark273x was a "dwarf" Seyfert interacting 
with Mark273. Fortunately the investigators checked the spectrum (Xia 
et al. [2], [3]). They found they had accidentally measured an HII region 

7 

N. Dadhich and A. Kembhavi (eds.), The Universe, 7-12. 
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Figure 2.1 Copy of R film from POSSII. The X-ray contours around Mark273x (up­
per left) and Mark273 (center) are from Xia et al. [21. Redshifts of each object as 
measured by Xia et al. [31. Photographs to fainter surface brightnesses show luminous 
material extending in the direction of, and almost to, Mark273x. 

in Mark273 and that Mark273x was actually a high redshift object of z 
= .458. 

As in untold numbers of similar cases, as soon as the high redshift 
of the companion was discovered it was relegated to the background 
as an unassociated object. But, embarassingly, in this case it had al­
ready been claimed to be associated at the same distance. Tracking 
down the X-ray map of this system revealed at a glance that the z = 
.038 galaxy and the z = .458 companion were elongated toward each 
other! Moreover there was a significant excess of X-ray sources around 
the active central galaxy indicating further physically associated X-ray 
sources. Two of the brightest lay only 6.2 and 6.6 arcmin to the SE. 
The first was a catalogued quasar of z = .941 and the second an obvious 
quasar candidate whose redshift needs to be measured. As shown in 
Figure 2.2 there are both X-ray and radio jets emanating from Mark273 
in the direction of these two additional quasars. Moreover the fainter 
radio emissions form two separate filaments leading directly to the two 
quasars. On a deep optical plate one can see the beginning of these 
two filaments starting SE from the strong optical jet which dominates 
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Figure 2.2 Radio map from the NRAO VLA Sky Survey (NVSS). The four brightest 
X-ray sources in the region are marked with X's. The direction of the X-ray jet from 
Mark273 is indicated by an arrow. Faint radio filaments lead southeastward to the 
quasar (z = 0.941) and the the quasar candidate (V = 1B.1 mag.) . This is generally 
along the line of the main radio and X-ray extensions from Mark273. Note also the 
exact alignment of Mark273x and the strong radio source to the SW across Mark273. 

Mark273. (See deep R photograph of Mark 273 on web page of John 
Hibbard, www.cv.nrao.eduj jhibbard) 

This active galaxy appears to be ejecting optical, X-ray and radio ma­
terial in two roughly orthogonal directions. (Note the exact alignment 
of 273x with the strong radio source to the SW of Mark273.) Associated 
with these ejections are high redshift quasars and quasar-like objects. 
Although all of these kinds of ejections have been observed many time 
before (see Arp [1] for a review), the ULIRG galaxies seem to be es­
pecially active. The authors of the original paper measuring Mark273x 
(Xia et al. [2]) report that in correlating ROSAT X-ray sources with 
ULIRG's: " .. . we find that some ULIRG's have soft X-ray companions 
within a few arcminutes of each source" and "This phenomenon was first 
mentioned by Turner, Urry and Mushotzky (1993) ... ". Later (Xia et al. 
[3]) state: "It is interesting to note in passing that the X-ray compan­
ions of the three nearest ULIGs (Arp 220, Mrk 273 and Mrk 231) are all 
background sources ... " . 

Just a glance at two of the other most luminous ULIRG's (Mark231 
and Arp220) shows similar evidence for ejection from these enormously 
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Figure 2.3 High resolution radio map centered on Mark231 (at 20 em from VLA 
FIRST). Note puff of radio material just below the ULIRG and double nature of 
radio sources paired across Mark231. 

disturbed galaxies. I will show now some preliminary evidence for Mark231 
but it is already clear that there appear to be strong X-ray sources, radio 
ejections and physically associated high redshift objects connected to all 
three of these ULIRG's. 

2. MARKARIAN 231 

Figure 2.3shows a 30x30 arcmin radio map around Mark231. The im­
ages are high resolution 20cm from the VLA FIRST survey (www.nrao.edu) . 
The brightest object in the center is Mark231. There is a puff of ra­
dio material immediately below the galaxy. Forming a striking pair 
across Mark231 are radio sources both of which are close doubles. The 
multiplicity of these flanking sources is unusual and suggests secondary 
ejection. At the least these radio sources are strongly indicated to be 
associated with the central, active galaxy. 

Figure 2.4 shows an approximately 19x19 arcmin continuum radio 
map at lower resolution but fainter surface brightness. Here we see a 
continuous radio extension to the East of Mark231 including the multiple 
source seen previously on the higher resolution map. In addition we see a 
radio extension to the West, in the direction of the strong, close double 
source. There is also a string of small sources extending northward 
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Figure 2.4 Contour maps of low surface brightness radio material around Mark231. 
Continuous connection of radio material to the east of the galaxy contains blue quasar 
candidates with the labeled, V apparent magnitudes. The remaining radio sources 
have quasar candidates at the marked positions. The strong double source to the 
west falls close to a quasar candidate of V = 16.4 mag. The only catalogued quasar 
in the field is faint and of z = 1.27. 

from the central galaxy. We appear to be seeing another example of 
ejection in roughly orthogonal directions. (It is interesting to note that 
at FIRST resolution the strong radio source opposite Mark273x is also 
a close double.) 

Two color APM finding charts have been centered at the positions of 
some of the radio sources indicated in Fig. 4. The charts reveal blue, 
candidate quasar images quite close to the radio positions. They are 
labeled in Fig. 4 with plus signs and the apparent visual magnitude of 
the candidate. They need to be analyzed spectroscopically but it can 
already be noted that the candidate at the position of the eastern radio 
lobe (V=19.3 mag.) is very blue and therefore highly probable. The 
strong western (double) source is close to a bright (V=16.4 mag.) can­
didate which has fainter candidates aligned across it - suggestive again 
of secondary ejection. The only catalogued quasar has z = 1.27 and is lo­
cated in the direction of the western radio extension from Mark231. The 
X-ray maps are in the process of being analyzed and will undoubtedly 
add considerably to the understanding of the Mark231 region. Similarly, 
X-ray and radio maps of Arp220 are being analyzed and together with 
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Mark273 and Mark231 will form a representative sample of the most 
active infrared excess galaxies. 

3. CONCLUSION 

In the case of the tendency for long lines of ordered quasars to come 
out along the minor axes of disk galaxies [1] it was suggested that ejec­
tions encountered the least resistance along this spin axis. It is suggested 
here that if the ejections try to penetrate any appreciable material in 
the parent galaxy that they will expel and entrain gas and dust and 
dynamically rupture the galaxy. The production of new material in the 
centers of such galaxies would then then be responsible for the energetic 
X-ray and radio jets, the explosive morphology and the numbers of high 
energy, intrinsically redshifted quasars found nearby. 
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It is a pleasure to dedicate this article to Professor Jayant Narlikar on the 
occasion of his 60th birthday. 

Abstract 
Over the past six years, a detailed framework has been constructed 

to unravel the quantum nature of the Riemannian geometry of physical 
space. A review of these developments is presented at a level which 
should be accessible to graduate students in physics. As an illustrative 
application, I indicate how some of the detailed features of the micro­
structure of geometry can be tested using black hole thermodynamics. 
Current and future directions of research in this area are discussed. 

1. INTRODUCTION 
During his G6ttingen inaugural address in 1854, Riemann [1] sug­

gested that geometry of space may be more than just a fiducial, math­
ematical entity serving as a passive stage for physical phenomena, and 
may in fact have direct physical meaning in its own right. General rela­
tivity provided a brilliant confirmation of this vision: curvature of space 
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now encodes the physical gravitational field. This shift is profound. To 
bring out the contrast, let me recall the situation in Newtonian physics. 
There, space forms an inert arena on which the dynamics of physical 
systems -such as the solar system- unfolds. It is like a stage, an un­
changing backdrop for all of physics. In general relativity, by contrast, 
the situation is very different. Einstein's equations tell us that matter 
curves space. Geometry is no longer immune to change. It reacts to 
matter. It is dynamical. It has "physical degrees of freedom" in its own 
right. In general relativity, the stage disappears and joins the troupe of 
actors! Geometry is a physical entity, very much like matter. 

Now, the physics of this century has shown us that matter has con­
stituents and the 3-dimensional objects we perceive as solids are in fact 
made of atoms. The continuum description of matter is an approxima­
tion which succeeds brilliantly in the macroscopic regime but fails hope­
lessly at the atomic scale. It is therefore natural to ask: Is the same true 
of geometry? If so, what is the analog of the 'atomic scale?' We know 
that a quantum theory of geometry should contain three fundamental 
constants of Nature, c, G, Ii, the speed of light, Newton's gravitational 
constant and Planck's constant. Now, as Planck pointed out in his cele­
brated paper that marks the beginning of quantum mechanics, there is 
a unique combination, £p = JIiG / c3 , of these constants which has di­
mension oflength. (£p ~ 1O-33cm.) It is now called the Planck length. 
Experience has taught us that the presence of a distinguished scale in 
a physical theory often marks a potential transition; physics below the 
scale can be very different from that above the scale. Now, all of our well­
tested physics occurs at length scales much bigger than than £ p. In this 
regime, the continuum picture works well. A key question then is: Will 
it break down at the Planck length? Does geometry have constituents 
at this scale? If so, what are its atoms? Its elementary excitations? 
Is the space-time continuum only a 'coarse-grained' approximation? Is 
geometry quantized? If so, what is the nature of its quanta? 

To probe such issues, it is natural to look for hints in the procedures 
that have been successful in describing matter. Let us begin by asking 
what we mean by quantization of physical quantities. Take a simple ex­
ample -the hydrogen atom. In this case, the answer is clear: while the 
basic observables -energy and angular momentum- take on a continuous 
range of values classically, in quantum mechanics their eigenvalues are 
discrete; they are quantized. So, we can ask if the same is true of geom­
etry. Classical geometrical quantities such as lengths, areas and volumes 
can take on continuous values on the phase space of general relativity. 
Are the eigenvalues of corresponding quantum operators discrete? If so, 
we would say that geometry is quantized and the precise eigenvalues and 
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eigenvectors of geometric operators would reveal its detailed microscopic 
properties. 

Thus, it is rather easy to pose the basic questions in a precise fashion. 
Indeed, they could have been formulated soon after the advent of quan­
tum mechanics. Answering them, on the other hand, has proved to be 
surprisingly difficult. The main reason, I believe, is the inadequacy of 
standard techniques. More precisely, to examine the microscopic struc­
ture of geometry, we must treat Einstein gravity quantum mechanically, 
i.e., construct at least the basics of a quantum theory of the gravitational 
field. Now, in the traditional approaches to quantum field theory, one 
begins with a continuum, background geometry. To probe the nature of 
quantum geometry, on the other hand, we should not begin by assuming 
the validity of this picture. We must let quantum gravity decide whether 
this picture is adequate; the theory itself should lead us to the correct 
microscopic model of geometry. 

With this general philosophy, in this article I will summarize the pic­
ture of quantum geometry that has emerged from a spp.cific approach to 
quantum gravity. This approach is non-perturbative. In perturbative 
approaches, one generally begins by assuming that space-time geome­
try is flat and incorporates gravity -and hence curvature- step by step 
by adding up small corrections. Discreteness is then hard to unravel1. 

In the non-perturbative approach, by contrast, there is no background 
metric at all. All we have is a bare manifold to start with. All fields 
-matter as well as gravity / geometry- are treated as dynamical from the 
beginning. Consequently, the description can not refer to a background 
metric. Technically this means that the full diffeomorphism group of the 
manifold is respected; the theory is generally covariant. 

As we will see, this fact leads one to Hilbert spaces of quantum states 
which are quite different from the familiar Fock spaces of particle physics. 
Now gravitons -the three dimensional wavy undulations on a flat metric­
do not represent fundamental excitations. Rather, the fundamental ex­
citations are one dimensional. Microscopically, geometry is rather like 
a polymer. Recall that, although polymers are intrinsically one dimen­
sional, when densely packed in suitable configurations they can exhibit 
properties of a three dimensional system. Similarly, the familiar con­
tinuum picture of geometry arises as an approximation: one can regard 
the fundamental excitations as 'quantum threads' with which one can 
'weave' continuum geometries. That is, the continuum picture arises 
upon coarse-graining of the semi-classical 'weave states'. Gravitons are 
no longer the fundamental mediators of the gravitational interaction. 
They now arise only as approximate notions. They represent pertur­
bations of weave states and mediate the gravitational force only in the 
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semi-classical approximation. Because the non-perturbative states are 
polymer-like, geometrical observables turn out to have discrete spectra. 
They provide a rather detailed picture of quantum geometry from which 
physical predictions can be made. 

The article is divided into two parts. In the first, I will indicate 
how one can reformulate general relativity so that it resembles gauge 
theories. This formulation provides the starting point for the quantum 
theory. In particular, the one-dimensional excitations of geometry arise 
as the analogs of 'Wilson loops' which are themselves analogs of the line 
integrals exp if A.de of electro-magnetism. In the second part, I will 
indicate how this description leads us to a quantum theory of geometry. I 
will focus on area operators and show how the detailed information about 
the eigenvalues of these operators has interesting physical consequences, 
e.g., to the process of Hawking evaporation of black holes. 

I should emphasize that this is not a technical review. Rather, it is 
written in the same spirit that drives Jayant's educational initiatives. I 
thought this would be a fitting way to honor Jayant since these efforts 
have occupied so much of his time and energy in recent years. Thus 
my aim is present to beginning researchers an overall, semi-quantitative 
picture of the main ideas. Therefore, the article is written at the level of 
colloquia in physics departments in the United States. I will also make 
some historic detours of general interest. At the end, however, I will list 
references where the details of the central results can be found. 

2. FROM METRICS TO CONNECTIONS 

2.1 GRAVITY VERSUS OTHER 
FUNDAMENTAL FORCES 

General relativity is normally regarded as a dynamical theory of met­
rics -tensor fields that define distances and hence geometry. It is this 
fact that enabled Einstein to code the gravitational field in the Rieman­
nian curvature of the metric. Let me amplify with an analogy. Just as 
position serves as the configuration variable in particle dynamics, the 
three dimensional metric of space can be taken to be the configuration 
variable of general relativity. Given the initial position and velocity of 
a particle, Newton's laws provide us with its trajectory in the position 
space. Similarly, given a three dimensional metric and its time derivative 
at an initial instant, Einstein's equations provide us with a four dimen­
sional space-time which can be regarded as a trajectory in the space of 
3-metrics 2. 

However, this emphasis on the metric sets general relativity apart 
from all other fundamental forces of Nature. Indeed, in the theory of 
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electro-weak and strong interactions, the basic dynamical variable is a 
(matrix-valued) vector potential, or a connection. Like general relativ­
ity, these theories are also geometrical. The connection enables one to 
parallel-transport objects along curves. In electrodynamics, the object 
is a charged particle such as an electron; in chromo dynamics, it is a 
particle with internal color, such as a quark. Generally, if we move the 
object around a closed loop, we find that its state does not return to 
the initial value; it is rotated by an unitary matrix. In this case, the 
connection is said to have curvature and the unitary matrix is a mea­
sure of the curvature in a region enclosed by the loop. In the case of 
electrodynamics, the connection is determined by the vector potential 
and the curvature by the electro-magnetic field strength. 

Since the metric also gives rise to curvature, it is natural to ask if there 
is a relation between metrics and connections. The answer is in the af­
firmative. Every metric defines a connection -called the Levi-Civita 
connection of the metric. The object that the connection enables one to 
parallel transport is a vector. (It is this connection that determines the 
geodesics, i.e. the trajectories of particles in absence of non-gravitational 
forces.) It is therefore natural to ask if one can not use this connection 
as the basic variable in general relativity. If so, general relativity would 
be cast in a language that is rather similar to gauge theories and the 
description of the (general relativistic) gravitational interaction would 
be very similar to that of the other fundamental interactions of Nature. 
It turns out that the answer is in the affirmative. Furthermore, both 
Einstein and Schrodinger gave such a reformulation of general relativity. 
Why is this fact then not generally known? Indeed, I know of no text­
book on general relativity which even mentions it. One reason is that in 
their reformulation the basic equations are somewhat complicated -but 
not much more complicated, I think, than the standard ones in terms 
of the metric. A more important reason is that we tend to think of 
distances, light cones and causality as fundamental. These are directly 
determined by the metric and in a connection formulation, the metric is 
a 'derived' rather than a fundamental concept. But in the last few years, 
I have come to the conclusion that the real reason why the connection 
formulation of Einstein and Schrodinger has remained so obscure may 
lie in an interesting historical episode. I will return to this point at the 
end of this section. 

2.2 METRICS VERSUS CONNECTIONS 

Modern day researchers re-discovered connection theories of gravity 
after the invention and successes of gauge theories for other interac-
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tions. Generally, however, these formulations lead one to theories which 
are quite distinct from general relativity and the stringent experimen­
tal tests of general relativity often suffice to rule them out. There is, 
however, a reformulation of general relativity. itself in which the basic 
equations are simpler than the standard ones: while Einstein's equations 
are non-polynomial in terms of the metric and its conjugate momentum, 
they turn out to be low order polynomials in terms of the new connec­
tion and its conjugate momentum. Furthermore, just as the simplest 
particle trajectories in space-time are given by geodesics, the 'trajec­
tory' determined by the time evolution of this connection according to 
Einstein's equation turns out to be a geodesic in the configuration space 
of connections. 

In this formulation, the phase space of general relativity is identical to 
that of the Yang-Mills theory which governs weak interactions. Recall 
first that in electrodynamics, the (magnetic) vector potential constitutes 
the configuration variable and the electric field serves as the conjugate 
momentum. In weak interactions and general relativity, the configura­
tion variable is a matrix-valued vector potential; it can be written as 
Am where Ai is a triplet of vector fields and Ti are the Pauli matrices. 
The conjugate momenta are represented by Em where Ei is a triplet of 
vector fields3. Given a pair (Ai, Ei) (satisfying appropriate conditions 
as noted in footnote 2), the field equations of the two theories determine 
the complete time-evolution, i.e., a dynamical trajectory. 

The field equations -and the Hamiltonians governing them- of the two 
theories are of course very different. In the case of weak interactions, 
we have a background space-time and we can use its metric to construct 
the Hamiltonian. In general relativity, we do not have a background 
metric. On the one hand this makes life very difficult since we do not 
have a fixed notion of distances or causal structures; these notions are to 
arise from the solution of the equations we are trying to write down! On 
the other hand, there is also tremendous simplification: Because there 
is no background metric, there are very few mathematically meaningful, 
gauge invariant expressions of the Hamiltonian that one can write down. 
(As we will see, this theme repeats itself in the quantum theory.) It is 
a pleasant surprise that the simplest non-trivial expression one can con­
struct from the connection and its conjugate momentum is in fact the 
correct one, i.e., is the Hamiltonian of general relativity! The expression 
is at most quadratic in Ai and at most quadratic in E i . The similarity 
with gauge theories opens up new avenues for quantizing general relativ­
ity and the simplicity of the field equations makes the task considerably 
easier. 
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What is the physical meaning of these new basic variables of gen­
eral relativity? As mentioned before, connections tell us how to parallel 
transport various physical entities around curves. The Levi-Civita con­
nection tells us how to parallel transport vectors. The new connection, 
Ai, on the other hand, determines the parallel transport of left handed 
spin- ~ particles (such as the fermions in the standard model of particle 
physics) -the so called chiral fermions. These fermions are mathemati­
cally represented by spinors which, as we know from elementary quantum 
mechanics, can be roughly thought of as 'square roots of vectors'. Not 
surprisingly, therefore, the new connection is not completely determined 
by the metric alone. It requires additional information which roughly 
is a square-root of the metric, or a tetrad. The conjugate momenta Ei 
represent restrictions of these tetrads to space. They can be interpreted 
as spatial triads, i.e., as 'square-roots' of the metric of the 3-dimensional 
space. Thus, information about the Riemannian geometry of space is 
coded directly in these momenta. The (space and) time-derivatives of 
the triads are coded in the connection. 

To summarize, there is a formulation of general relativity which brings 
it closer to theories of other fundamental interactions. Furthermore, in 
this formulation, the field equations simplify greatly. Thus, it provides a 
natural point of departure for constructing a quantum theory of gravity 
and for probing the nature of quantum geometry non-perturbatively. 

2.3 HISTORICAL DETOUR 
To conclude this section, let me return to the piece of history involving 

Einstein and Schrodinger that I mentioned earlier. In the forties, both 
men were working on unified field theories. They were intellectually very 
close. Indeed, Einstein wrote to Schrodinger saying that he was perhaps 
the only one who was not 'wearing blinkers' in regard to fundamental 
questions in science and Schrodinger credited Einstein for inspiration 
behind his own work that led to the Schrodinger equation. Einstein 
was in Princeton and Schrodinger in Dublin. But During the years 
1946-47, they frequently exchanged ideas on unified field theory and, 
in particular, on the issue of whether connections should be regarded as 
fundamental or metrics. In fact the dates on their letters often show that 
the correspondence was going back and forth with astonishing speed. It 
reveals how quickly they understood the technical material the other 
hand sent, how they hesitated, how they teased each other. Here are a 
few quotes: 

The whole thing is going through my head like a millwheel: To take r 
[the connection] alone as the primitive variable or the g's [metrics] and 
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r's? ... 
-Schrodinger, May 1st, 1946. 

How well I understand your hesitating attitude! I must confess to you 
that inwardly I am not so certain ... We have squandered a lot of time 
on this thing, and the results look like a gift from devil's grandmother. 

-Einstein, May 20th, 1946 

Einstein was expressing doubts about using the Levi-Civita connec­
tion alone as the starting point which he had advocated at one time. 
Schrodinger wrote back that he laughed very hard at the phrase 'devil's 
grandmother' . In another letter, Einstein called Schrodinger 'a clever 
rascal'. Schrodinger was delighted and took it to be a high honor. This 
continued all through 1946. Then, in the beginning of 1947, Schrodinger 
thought he had made a breakthrough. He wrote to Einstein: 

Today, I can report on a real advance. May be you will grumble fright­
fully for you have explained recently why you don't approve of my 
method. But very soon, you will agree with me ... 

-Schrodinger, January 26th, 1947 

Schrodinger sincerely believed that his breakthrough was revolutionary 
4. Privately, he spoke of a second Nobel prize. The very next day after he 
wrote to Einstein, he gave a seminar in the Dublin Institute of Advanced 
Studies. Both the Taoiseach (the Irish prime minister) and newspaper 
reporters were invited. The day after, the following headlines appeared: 

Twenty persons heard and saw history being made in the world of 
physics. ... The Taoiseach was in the group of professors! and students . 
.. [To a question from the reporter] Professor Schrodinger replied "This 
is the generalization. Now the Einstein theory becomes simply a special 
case ... " 

-Irish Press, January 28th, 1947 

Not surprisingly, the headlines were picked up by New York Times which 
obtained photocopies of Schrodinger's paper and sent them to promi­
nent physicists -including of course Einstein- for comments. As Walter 
Moore, Schrodinger's biographer puts it, Einstein could hardly believe 
that such grandiose claims had been made based on a what was at best 
a small advance in an area of work that they both had been pursuing for 
some time along parallel lines. He prepared a carefully worded response 
to the request from New York Times: 

It seems undesirable to me to present such preliminary attempts to the 
public. ... Such communiques given in sensational terms give the lay 
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public misleading ideas about the character of research. The reader gets 
the impression that every five minutes there is a revolution in Science, 
somewhat like a coup d'etat in some of the smaller unstable republics. 

Einstein's comments were also carried by the international press. On 
seeing them, Schrodinger wrote a letter of apology to Einstein citing 
his desire to improve the financial conditions of physicists in the Dublin 
Institute as a reason for the exaggerated account. It seems likely that this 
'explanation' only worsened the situation. Einstein never replied. He 
also stopped scientific communication with Schrodinger for three years. 

The episode must have been shocking to those few who were exploring 
general relativity and unified field theories at the time. Could it be 
that this episode effectively buried the desire to follow up on connection 
formulations of general relativity until an entirely new generation of 
physicists who were blissfully unaware of this episode came on the scene? 

3. QUANTUM GEOMETRY 

3.1 GENERAL SETTING 
Now that we have a connection formulation of general relativity, let us 

consider the problem of quantization. Recall first that in the quantum 
description of a particle, states are represented by suitable wave func­
tions 'lI(x) on the classical configuration space of the particle. Similarly, 
quantum states of the gravitational field are represented by appropriate 
wave functions 'lI(Ai) of connections. Just as the momentum operator 
in particle mechanics is represented by p. 'lI I = -iii (a'll / ax I) (with I = 
1,2,3), the triad operators are represented by Ei' 'lI = -iliG(8'l1/8Ai). 
The task is to express geometric quantities, such as lengths of curves, ar­
eas of surfaces and volumes of regions, in terms of triads using ordinary 
differential geometry and then promote these expressions to well-defined 
operators on the Hilbert space of quantum states. In principle, the task 
is rather similar to that in quantum mechanics where we first express 
observables such as angular momentum or Hamiltonian in terms of con­
figuration and momentum variables x and p and then promote them to 
quantum theory as well-defined operators on the quantum Hilbert space. 

In quantum mechanics, the task is relatively straightforward; the only 
potential problem is the choice of factor ordering. In the present case, 
by contrast, we are dealing with a field theory, i.e., a system with an 
infinite number of degrees of freedom. Consequently, in addition to fac­
tor ordering, we face the much more difficult problem of regularization. 
Let me explain qualitatively how this arises. A field operator, such as 
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the triad mentioned above, excites infinitely many degrees of freedom. 
Technically, its expectation values are distributions rather than smooth 
fields. They don't take precise values at a given point in space. To 
obtain numbers, we have to integrate the distribution against a test 
function, which extracts from it a 'bit' of information. As we change 
our test or smearing field, we get more and more information. (Take 
the familiar Dirac o-distribution o(x); it does not have a well-defined 
value at x = O. Yet, we can extract the full information contained in 
o(x) through the formula: J o(x)f(x)dx = f(O) for all test functions 
f(x).) Thus, in a precise sense, field operators are distribution-valued. 
Now, as is well known, product of distributions is not well-defined. If 
we attempt naively to give meaning to it, we obtain infinities, i.e., a 
senseless result. Unfortunately, all geometric operators involve rather 
complicated (in fact non-polynomial) functions of the triads. So, the 
naive expressions of the corresponding quantum operators are typically 
meaningless. The key problem is to regularize these expressions, i.e., to 
extract well-defined operators from the formal expressions in a coherent 
fashion. 

This problem is not new; it arises in all physically interesting quantum 
field theories. However, as I mentioned in the Introduction, in other the­
ories one has a background space-time metric and it is invariably used 
in a critical way in the process of regularization. For example, consider 
the electro-magnetic field. We know that the energy of the Hamilto­
nian of the theory is given by H = J(E . E + B . B) d3x. Now, in the 
quantum theory, E and B are both operator-valued distributions and so 
their square is ill-defined. But then, using the background flat metric, 
one Fourier decomposes these distributions, identifies creation and anni­
hilation operators and extracts a well-defined Hamiltonian operator by 
normal ordering, i.e., by physically moving all annihilators to the right of 
creators. This procedure removes the unwanted and unphysical infinite 
zero point energy form the formal expression and the subtraction makes 
the operator well-defined. In the present case, on the other hand, we are 
trying to construct a quantum theory of geometry/gravity and do not 
have a flat metric -or indeed, any metric- in the background. Therefore, 
many of the standard regularization techniques are no longer available. 

3.2 GEOMETRIC OPERATORS 

Fortunately, between 1992 and 1995, a new functional calculus was 
developed on the space of connections Ai -i.e., on the configuration 
space of the theory. This calculus is mathematically rigorous and makes 
no reference at all to a background space-time geometry; it is generally 
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covariant. It provides a variety of new techniques which make the task 
of regularization feasible. First of all, there is a well-defined integra­
tion theory on this space. To actually evaluate integrals and define the 
Hilbert space of quantum states, one needs a measure: given a mea­
sure on the space of connections, we can consider the space of square­
integrable functions which can serve as the Hilbert space of quantum 
states. It turns out that there is a preferred measure, singled out by 
the physical requirement that the (gauge covariant versions of the) con­
figuration and momentum operators be self-adjoint. This measure is 
diffeomorphism invariant and thus respects the underlying symmetries 
coming from general covariance. Thus, there is a natural Hilbert space 
of states to work with5. Let us denote it by 1£. Differential calculus 
enables one to introduce physically interesting operators on this Hilbert 
space and regulate them in a generally covariant fashion. As in the clas­
sical theory, the absence of a background metric is both a curse and 
a blessing. On the one hand, because we have very little structure to 
work with, many of the standard techniques simply fail to carryover. 
On the other hand, at least for geometric operators, the choice of viable 
expressions is now severely limited which greatly simplifies the task of 
regularization. 

The general strategy is the following. The Hilbert space 1£ is the 
space of square-integrable functions 'lI(Ai) of connections Ai. A key 
simplification arises because it can be obtained as the (projective) limit 
of Hilbert spaces associated with systems with only a finite number of 
degrees of freedom. More precisely, given any graph 'Y (which one can 
intuitively think of as a 'floating lattice') in the physical space, using 
techniques which are very similar to those employed in lattice gauge 
theory, one can construct a Hilbert space 1£7 for a quantum mechanical 
system with 3N degrees of freedom, where N is the number of edges 
of the graph6 . Roughly, these Hilbert spaces know only about how the 
connection parallel transports chiral fermions along the edges of the 
graph and not elsewhere. That is, the graph is a mathematical device 
to extract 3N 'bits of information' from the full, infinite dimensional 
information contained in the connection, and 1£7 is the sub-space of 
1£ consisting of those functions of connections which depend only on 
these 3N bits. (Roughly, it is like focusing on only 3N components of a 
vector with an infinite number of components and considering functions 
which depend only on these 3N components, i.e., are constants along the 
orthogonal directions.) To get the full information, we need all possible 
graphs. Thus, a function of connections in 1£ can be specified by fixing a 
function in 1£7 for every graph 'Y in the physical space. Of course, since 
two distinct graphs can share edges, the collection of functions on 1£"1 
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must satisfy certain consistency conditions. These lie at the technical 
heart of various constructions and proofs. 

The fact that tl is the (projective) limit of tl, breaks up any given 
problem in quantum geometry into a set of problems in quantum me­
chanics. Thus, for example, to define operators on tl, it suffices to define 
a consistent family of operators on tl, for each ,. This makes the task 
of defining geometric operators feasible. I want to emphasize, however, 
that the introduction of graphs is only for technical convenience. Unlike 
in lattice gauge theory, we are not defining the theory via a continuum 
limit (in which the lattice spacing goes to zero.) Rather, the full Hilbert 
space tl of the continuum theory is already well-defined. Graphs are 
introduced only for practical calculations. Nonetheless, they bring out 
the one-dimensional character of quantum states/excitations of geome­
try: It is because 'most' states in tl can be realized as elements of tl, 
for some, that quantum geometry has a 'polymer-like' character. 

Let me now outline the result of applying this procedure for geometric 
operators. Suppose we are given a surface S, defined in local coordinates 
by X3 = const. The classical formula for the area of the surface is: 

As = f d2 X J Ef Ef, where Ef are the third components of the vectors 
Ei. As is obvious, this expression is non-polynomial in the basic variables 
Ei. Hence, off-hand, it would seem very difficult to write down the 
corresponding quantum operator. However, thanks to the background 
independent functional calculus, the operator can in fact be constructed 
rigorously. 

To specify its action, let us consider a state which belongs to tl, for 
some ,. Then, the action of the final, regularized operator As is as 
follows. If the graph has no intersection with the surface, the operator 
simply annihilates the state. If there are intersections, it acts at each 
intersection via the familiar angular momentum operators associated 
with SU(2). This simple form is a direct consequence of the fact that 
we do not have a background geometry: given a graph and a surface, 
the diffeomorphism invariant information one can extract lies in their 
intersections. To specify the action of the operator in detail, let me 
suppose that the graph, has N edges. Then the state W has the form: 
w(Ai) = 1/J(gl, ... gN) for some function 1/J of the N variables gl, ···,gN, 
where gk (E SU(2)) denotes the spin-rotation that a chiral fermion un­
dergoes if parallel transported along the k-th edge using the connection 
Ai. Since gk represent the possible rotations of spins, angular momen­
tum operators have a natural action on them. In terms of these, we 
can introduce 'vertex operators' associated with each intersection point 
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v between Sand ,: 

Ov . w{A) = 'L,k{J,L)JI ·JL . 'I/J{gl, ... ,gN) (3.1) 
I,L 

where J, L run over the edges of , at the vertex v, k{J, J) = 0, ±1 
depending on the orientation of edges J, L at v, and J I are the three 
angular momentum operators associated with the I-th edge. (Thus, lJ 
act only on the argument gI of'I/J and the action is via the three left 
invariant vector fields on SU(2).) Note that the the vertex operators 
resemble the Hamiltonian of a spin system, k{I, L) playing the role of 
the coupling constant. The area operator is just a sum of the square-roots 
of the vertex operators: 

(3.2) 

Thus, the area 0perator is constructed from angular momentum-like 
operators. Note that the coefficient in front of the sum is just !£~, the 
square of the Planck length. This fact will be important later. 

Because of the simplicity of these operators, their complete spectrum 
-i.e., full set of eigenvalues- is known explicitly: Possible eigenvalues as 
are given by 

£2 1 

as = ; 'L, [2j~d)(j~d)+I)+2j~U)(j~U)+I)-j~d+U)(j~d+U)+1)r (3.3) 
v 

where v labels a finite set of points in Sand j(d), iu) and j(d+u) are non­
negative half-integers assigned to each v, subject to the usual inequality 

(3.4) 

from the theory of addition of angular momentum in elementary quan­
tum mechanics. Thus the entire spectrum is discrete; areas are indeed 
quantized! This discreteness holds also for the length and the volume 
operators. Thus the expectation that the continuum picture may break 
down at the Planck scale is borne out fully. Quantum geometry is very 
different from the continuum picture. This may be the fundamental 
reason for the failure of perturbative approaches to quantum gravity. 

Let us now examine a few properties of the spectrum. The lowest 
eigenvalue is of course zero. The next lowest eigenvalue may be called 
the area gap. Interestingly, area-gap is sensitive to the topology of the 
surface S. If S is open, it is 1 £~. If S is a closed surface -such as 
a 2-torus in a 3-torus- which fails to divide the spatial 3-manifold into 
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an 'inside' and an 'outside' region, the gap turns out to be larger, ~l~. 
If S is a closed surface -such as a 2-sphere in R3- which divides space 
into an 'inside' and an 'outside' region, the area gap turns out to be 
even larger; it is 2f l~. Another interesting feature is that in the large 
area limit, the eigenvalues crowd together. This follows directly from 
the form of eigenvalues given above. Indeed, one can show that for large 
eigenvalues as, the difference t::..as between consecutive eigenvalues goes 

as t::..as ~ (exp - J as / l~ )l~. Thus, t::..as goes to zero very rapidly. (The 
crowding is noticeable already for low values of as. For example, if S 
is open, there is only one non-zero eigenvalue with as < O.5lp2, seven 
with as < l~ and 98 with as < 2l~.) Intuitively, this explains why the 
continuum limit works so well. 

3.3 PHYSICAL CONSEQUENCES: DETAILS 
MATTER! 

However, one might wonder if such detailed properties of geometric 
operators can have any 'real' effect. After all, since the Planck length 
is so small, one would think that the classical and semi-classical limits 
should work irrespective of, e.g., whether or not the eigenvalues crowd. 
For example, let us consider not the most general eigenstates of the area 
operator As but -as was first done in the development of the subject­
the simplest ones. These correspond to graphs which have simplest 
intersections with S. For example, n edges of the graph may just pierce 
S, each one separately, so that at each one of the n vertices there is just a 
straight line passing through. For these states, the eigenvalues are as = 
(v'3/2)nl~. Thus, here, the level spacing t::..as is uniform, like that of 
the Hamiltonian of a simple harmonic oscillator. If we restrict ourselves 
to these simplest eigenstates, even for large eigenvalues, the level spacing 
does not go to zero. Suppose for a moment that this is the full spectrum 
of the area operator. wouldn't the semi-classical approximation still 
work since, although uniform, the level-spacing is so small? 

Surprisingly, the answer is in the negative! What is perhaps even 
more surprising is that the evidence comes from unexpected quarters: 
the Hawking evaporation of large black holes. More precisely, we will 
see that if t::..as had failed to vanish sufficiently fast, the semi-classical 
approximation to quantum gravity, used in the derivation of the Hawking 
process, must fail in an important way. The effects coming from area 
quantization would have implied that even for large macroscopic black 
holes of, say, a thousand solar masses, we can not trust semi-classical 
arguments. 
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Let me explain this point in some detail. The original derivation of 
Hawking's was carried out in the framework of quantum field theory 
in curved space-times which assumes that there is a specific underly­
ing continuum space-time and explores the effects of curvature of this 
space-time on quantum matter fields. In this approximation, Hawking 
found that the classical black hole geometries are such that there is a 
spontaneous emission which has a Planckian spectrum at infinity. Thus, 
black-holes, seen from far away, resemble black bodies and the associated 
temperature turns out to be inversely related to the mass of the hole. 
Now, physically one expects that, as it evaporates, the black hole must 
lose mass. Since the radius of the horizon is proportional to the the mass, 
the area of the horizon must decrease. Thus, to describe the evaporation 
process adequately, we must go beyond the external field approximation 
and take in to account the fact that the underlying space-time geome­
try is in fact dynamical. Now, if one treated this geometry classically, 
one would conclude that the process is continuous. However, since we 
found that the area is in fact quantized, we would expect that the black 
hole evaporates in discrete steps by making a transition from one area 
eigenvalue to another, smaller one. The process would be very similar 
to the wayan excited atom descends to its ground state through a series 
of discrete transitions. 

Let us look at this process in some detail. For simplicity let us use 
units with c = 1. Suppose, to begin with, that the level spacing of eigen­
values of the area operator is the naive one, i.e. with flas = (J3/2)e~. 
Then, the fundamental theory would have predicted that the smallest 
frequency, wo, of emitted particles would be given by ~o and the small­
est possible change flM in the mass of the black hole would be given by 
flM = ~o. Now, since the area ofthe horizon goes as AH rv G2 M2, we 
have flM "" flaH/2G2M "" e~/G2M. Hence, ~o "" n/GM. Thus, the 
'true' spectrum would have emission lines only at frequencies w = Nwo , 

for N = 1,2, ... corresponding to transitions of the black hole through 
N area levels. How does this compare with the Hawking prediction? As 
I mentioned above, according to Hawking's semi-classical analysis, the 
spectrum would be the same as that of a black-body at temperature T 
given by kT "" n/GM, where k is the Boltzmann constant. Hence, the 
peak of this spectrum would appear at wp given by ~p "" kT rv n/GM. 
But this is precisely the order of magnitude of the minimum frequency 
Wo that would be allowed if the area spectrum were the naive one. Thus, 
in this case, a more fundamental theory would have predicted that the 
spectrum would not resemble a black body spectrum. The most proba­
ble transition would be for N = 1 and so the spectrum would be peaked 
at Wp as in the case of a black body. However, there would be no emis-
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sion lines at frequencies low compared with wp ; this part of the black 
body spectrum would be simply absent. The part of the spectrum for 
w > wp would also not be faithfully reproduced since the discrete lines 
with frequencies Nwo, with N = 1,2, ... would not be sufficiently near 
each other -i.e. crowded- to yield an approximation to the continuous 
black-body spectrum. 

The situation is completely different for the correct, full spectrum of 
the area operator if the black hole is macroscopic, i.e., large. Then, as 
I noted earlier, the area eigenvalues crowd and the level spacing goes as 

AaH ~ (exp -JaH /£~)£~. As a consequence, as the black hole makes 
transition from one area eigenvalue to another, it would emit particles 

at frequencies equal to or larger than f"V wp exp - J a H / £~. Since for a 

macroscopic black-hole the exponent is very large (for a solar mass black­
hole it is f"V 1038!) the spectrum would be well-approximated by a contin­
uous spectrum and would extend well below the peak frequency. Thus, 
the precise form of the area spectrum ensures that, for large black-holes, 
the potential problem with Hawking's semi-classical picture disappears. 
Note however that as the black hole evaporates, its area decreases, it 
gets hotter and evaporates faster. Therefore, a stage comes when the 
area is of the order of £~. Then, there would be deviations from the 
black body spectrum. But this is to be expected since in this extreme 
regime one does not expect the semi-classical picture to continue to be 
meaningful. 

This argument brings out an interesting fact. There are several icon­
oclastic approaches to quantum geometry in which one simply begins by 
postulating that geometric quantities should be quantized. Then, hav­
ing no recourse to first principles from where to derive the eigenvalues of 
these operators, one simply postulates them to be multiples of appropri­
ate powers of the Planck length. For area then, one would say that the 
eigenvalues are integral multiples of £~. The above argument shows how 
this innocent looking assumption can contradict semi-classical results 
even for large black holes. In the present approach, we did not begin 
by postulating the nature of quantum geometry. Rather, we derived 
the spectrum of the area operator from first principles. As we see, the 
form of these eigenvalues is rather complicated and could not have been 
guessed a priori. More importantly, the detailed form does carry rich 
information and in particular removes the conflict with semi-classical 
results in macroscopic situations. 
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3.4 CURRENT AND FUTURE DIRECTIONS 
Exploration of quantum Riemannian geometry continues. Last year, 

it was found that geometric operators exhibit certain unexpected non­
commutativity. This reminds one of the features explored by Alain 
Connes in his non-commutative geometry. Indeed, there are several 
points of contact between these two approaches. For instance, the Dirac 
operator that features prominently in Connes' theory is closely related to 
the connection Ai used here. However, at a fundamental level, the two 
approaches are rather different. In Connes' approach, one constructs a 
non-commutative analog of entire differential geometry. Here, by con­
trast, one focuses only on Riemannian geometry; the underlying man­
ifold structure remains classical. In three space-time dimensions, it is 
possible to get rid of this feature in the final picture and express the the­
ory in purely combinatorial fashion. Whether the same will be possible 
in four dimensions remains unclear. However, combinatorial methods 
continue to dominate the theory and it is quite possible that one would 
again be able to present the final picture without any reference to an 
underlying smooth manifold. 

Perhaps the most striking application of quantum geometry has been 
to black hole thermodynamics. We saw in section 3.3 that the Hawking 
process provides a non-trivial check on the level spacing of the eigenval­
ues of area operators. Conversely, the discrete nature of these eigenvalues 
provides a statistical mechanical explanation of black hole entropy. To 
see this, first recall that for familiar physical systems -such as a gas, a 
magnet, or a black body- one can arrive at the expression of entropy 
by counting the number of micro-states. The counting in turn requires 
one to identify the building blocks that make up the system. For a gas, 
these are atoms; for a magnet, electron spins and for the radiation field 
in a black body, photons. What are the analogous building blocks for a 
large black hole? They can not be gravitons because the gravitational 
fields under consideration are static rather than radiative. Therefore, 
the elementary constituents must be non-perturbative in nature. In our 
approach they turn out to be precisely the quantum excitations of the 
geometry of the black hole horizon. The polymer-like one dimensional 
excitations of geometry in the bulk pierce the horizon and endow it with 
its area. It turns out that, for a given area, there are a specific number 
of permissible bulk states and for each such bulk state, there is a precise 
number of permissible surface states of the intrinsic quantum geometry 
of the horizon. Heuristically, the horizon resembles a pinned balloon 
-pinned by the polymer geometry in the bulk- and the surface states 
describe the permissible oscillations of the horizon subject to the given 
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pinning. A count of all these quantum states provides, in the usual way, 
the expression of the black hole entropy. 

Another promising direction for further work is construction of better 
candidates for 'weave states', the non-linear analogs of coherent states 
approximating smooth, macroscopic geometries. Once one has an 'opti­
mum' candidate to represent Minkowski space, one would develop quan­
tum field theory on these weave quantum geometries. Because the un­
derlying basic excitations are one-dimensional, the 'effective dimension 
of space' for these field theories would be less than three. Now, in the 
standard continuum approach, we know that quantum field theories in 
low dimensions tend to be better behaved because their ultra-violet prob­
lems are softer. Hence, there is hope that these theories will be free of 
infinities. If they are renormalizable in the continuum, their predictions 
at large scales can not depend on the details of the behavior at very 
small scales. Therefore, one might hope that quantum field theories on 
weaves would not only be finite but also agree with the renormalizable 
theories in their predictions at the laboratory scale. 

A major effort is being devoted to the task of formulating and solving 
quantum Einstein's equations using the new functional calculus. Over 
the past two years, there have been some exciting developments in this 
area. The methods developed there seem to be applicable also to super­
gravity theories. In the coming years, therefore, there should be much 
further work in this area. More generally, since quantum geometry does 
not depend on a background metric, it may well have other applications. 
For example, it may provide a natural arena for other problem such as 
that of obtaining a background independent formulation of string theory. 

So far, I have focussed on theoretical ideas and checks on them have 
come from considerations of consistency with other theoretical ideas, 
e.g., those in black hole thermodynamics. What about experimental 
tests of predictions of quantum geometry? An astonishing recent devel­
opment suggests that direct experimental tests may become feasible in 
the near future. I will conclude with a summary of the underlying ideas. 
The approach one takes is rather analogous to the one used in proton 
decay experiments. Processes potentially responsible for the decay come 
from grand unified theories and the corresponding energy scales are very 
large, 1015 Ge V -only four orders of magnitude below Planck energy. 
There is no hope of achieving these energies in particle accelerators to 
actually create in large numbers the particles responsible for the de­
cay. Therefore the decays are very rare. The strategy adopted was to 
carefully watch a very large number of protons to see if one of them 
decays. These experiments were carried out and the (negative) results 
actually ruled out some of the leading candidate grand unified theories. 
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Let us return to quantum geometry. The naive strategy of accelerating 
particles to Planck energy to directly 'see' the Planck scale geometry is 
hopeless. However, as in proton decay experiments, one can let these 
minutest of effects accumulate till they become measurable. The labo­
ratory is provided by the universe itself and the signals are generated 
by the so-called ,-ray bursts. These are believed to be of cosmological 
origin. Therefore, by the time they arrive on earth, they have traveled 
extremely large distances. Now, if the geometry is truly quantum me­
chanical, as I suggested, the propagation of these rays would be slightly 
different from that on a continuum geometry. The difference would be 
minute but could accumulate on cosmological distances. Following this 
strategy, astronomers have already put some interesting limits on the 
possible 'graininess' of geometry. Now the challenge for theorists is to 
construct realistic weave states corresponding to the geometry we ob­
serve on cosmological scales, study in detail propagation of photons on 
them and come up with specific predictions for astronomers. The next 
decade should indeed be very exciting! 
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Notes 
1. The situation can be illustrated by a harmonic oscillator: While the exact energy levels 

of the oscillator are discrete, it would be very difficult to "see" this discreteness if one began 
with a free particle whose energy levels are continuous and then tried to incorporate the 
effects of the oscillator potential step by step via perturbation theory. 

2. Actually, only six of the ten Einstein's equations provide the evolution equations. The 
other four do not involve time-derivatives at all and are thus constraints on the initial values of 
the metric and its time derivative. However, if the constraint equations are satisfied initially, 
they continue to be satisfied at all times. 

3. As usual, summation over the repeated index i is assumed. Also, technically each Ai 
is a I-form rather than a vector field. Similarly, each Ei is a vector density of weight one, 
i.e., natural dual of a 2-form. 

4. The 'breakthrough' was to drop the requirement that the (Levi-Civita) connection be 
symmetric, i.e., to allow for torsion. 

5. This is called the kinematical Hilbert space; it enables one to formulate the quantum 
Einstein's (or supergravity) equations. The final, physical Hilbert space will consist of states 
which are solutions to these equations. 
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6. The factor 3 comes from the dimension of the gauge group SU(2) which acts on Chiral 
spinors. The mathematical structure of the gauge-rotations induced by this SU (2) is exactly 
the same as that in the angular-momentum theory of spin- ~ particles in elementary quantum 
mechanics. 
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Abstract The classical electrodynamics of point charges can be made finite by 
the introduction of effects that temporally precede their causes. The 
idea of retrocausality is also inherent in the Feynman propagators of 
quantum electrodynamics. The notion allows a new understanding of 
the violation of the Bell inequalities, and of the world view revealed by 
quantum mechanics. 

1. INTRODUCTION 

Dirac was never happy with quantum electrodynamics, although it 
was in large part his own creation. In old age, during an after-dinner 
seminar in 1970 that I attended in Austin, Texas, he lambasted such 
upstarts as Feynman, Schwinger, Tomonaga, and their ilk, under the 
dismissive collective term 'people'. These "People neglect infinities in an 
arbitrary way. This is not sensible mathematics. Sensible mathematics 
involves neglecting a quantity when it is small - not neglecting it just 
because it is infinitely great and you do not want it." A timorous spirit 
among the chastened listeners asked: "But, Professor Dirac, what about 
9 - 2?", referring of course to the g-factor in the expression for the 
magnetic moment of the electron. Dirac's own equation had predicted 
that this factor should be precisely 2, and the highly accurate quantum 
electro dynamical calculation of its deviation from 2 was, and is, one of 
the tour~ de force of modern physics. The agreement with painstaking 
experimental measurement of this quantity is phenomenal (the Particle 
Data Group gives on the World Wide Web ten digits of agreement after 
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the decimal point[I]). But the old maestro had his own views about this 
remarkable result: "It might just be a coincidence," he remarked evenly. 

Quantum mechanics, married to electromagnetism, has produced a 
very successful theory, as measured by its empirical adequacy. The mat­
ter is not so adequate, however, at a conceptual level. There are still 
many competing interpretations of what quantum mechanics is telling 
us about the nature of the world. Despite the early preoccupation with 
the breakdown of determinism, the serious difficulties have to do rather 
with causality, which is by no means the same thing. Classical electro­
magnetic theory is in fact not immune to such problems either: the only 
known way to remove disastrous infinities in the theory of point charges 
interacting through the electromagnetic field is by the introduction of 
retrocausal effects. Quantum electrodynamics inherits the diseases of 
causality and of divergence from both of its parents. Their nature is 
pervasive, the cure unknown. 

2. ADVANCED POTENTIALS 
An electrically neutral particle, of mass m, subject to a force F, sat­

isfies Newton's second law of motion, which may be expressed in the 
form 

ma=F, (4.1) 

where a = r is the acceleration, on condition that Ii- I < < e, so that 
relativistic corrections may be neglected. A similar charged particle 
cannot satisfy the same equation, because an accelerated charge emits 
electromagnetic waves, losing energy in the process. Newton's law may 
be repaired by adding an effective radiative damping force that accounts 
for this extra source of energy loss to space: 

ma = F + F rad , 

where one finds, for a point charge e, 

We may rewrite Eq.(4.2)-(4.3) in the form 

m(a-7a) =F, 

where 
2e2 

7=-3 3' me 

(4.2) 

(4.3) 

(4.4) 
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is called the Abraham-Lorentz relaxation time. For an electron it is 
about 6 x 10-24 sec., in which time light travels only about 1O-':l3 em., 
the size of a proton. 

The general solution of Eq.(4.4) is 

a(t) = _1_ [e dt' e{t-tl)/TF(t') , 
mT t 

where c is an integration constant. Clearly a(t) blows up exponentially 
as t --+ 00, the so-called runaway solution, unless c = 00. Accordingly, 
we choose this latter value, and find we can rewrite the solution in the 
form 

ma(t) = 1000 dse-SF(t+TS) , 

from which we derive the following Taylor series in T: 

00 

ma(t) = L TnF{n)(t). 
n=O 

(4.5) 

(4.6) 

The Newton law Eq.(4.1), as it applies to a neutral particle, corresponds 
to the zeroth term only. From Eq.(4.5), the acceleration at time t is 
determined not only by the value of the applied force at time t, but also 
by the force at all times later than t. 

For a simple force, one can evaluate Eq.(4.5) explicitly. For example, 
if a force is turned on at time t = 0, after which it remains constant, i.e. 
F(t) = 0 for t < 0 and F(t) = K for t ~ 0, then we find ma(t) = K for 
t ~ 0, as we would for a neutral particle, but surprisingly ma( t) = K et/ T 

for t < O. This preacceleration violates a naive notion of causality, 
according to which a cause precedes its effect, whereas here the force, 
which is not applied before time t = 0, produces (has already produced!) 
an acceleration before t = O. 

Consider next a universe consisting of many particles, at positions 
Xa , Xb,'" with masses ma, mb,'" and charges ea , eb,'" For particle a, 
the relativistic generalization of Eq.(4.2) for the four-momentum p~ is 

dp~ = [PIi- RIi-] dx~ 
d ea v + v d . 

Ta Ta 
(4.7) 

Here Ta is the proper time of particle a, and pli-v is the retarded field 
tensor that gives rise to the usual Lorentz force. It may be written 

FIi- = "'" F re
' Ii-v ~ b v' 

bi-a 
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where the sum is over all the contributions to the field from the particles 
other than a itself: there is no self-interaction. The term R/-! v is the 
radiation damping tensor: it corresponds to F rad in the nonrelativistic 
approximation (4.3). Dirac deduced the explicit form of this tensor and 
showed that it can be written 

R/-! = 1 [Fre,/-! _ Fadv/-! ] 
V 2 av a v· (4.8) 

It is very interesting that this expression involves the advanced, as well 
as the retarded fields arising from particle a. For the point particles that 
we are considering, these fields are separately singular on the world-line 
of a itself, but their difference (4.8) is finite. 

To simplify the notation, we will henceforth suppress the Lorentz 
indices. It is important to distinguish the sum l:b:;t:a' in which one sums 
over all particles except a, in order to calculate the influence of the rest of 
the universe on particle a, and the sum l:b' in which a is also included, 
giving a quantity that refers to the universe in its entirety. 

F+R = ~ ge' + 1 [Fre' _ Fadv] 
~ b 2 a a 
b-:j:.a 

~ p,re' _ Fre' + 1 [Fre' _ Fadv] 
~ b a 2 a a 

b 

L Fi"' - ~ [F~e, + F~dV] (4.9) 
b 

The essential assumption of Wheeler and Feynman[2] is that the uni­
verse is a perfect absorber: all radiation is absorbed somewhere and 
none escapes to infinity. Since a radiation field is of order 1/r for large 
distances r, to eliminate energy loss by radiation it is enough to require 

L Fr/' = 0 (r-1) LFtv = 0 (r-1) , 

b b 

for all times, i.e. the sum of all retarded (advanced) fields is assumed 
always to vanish faster than 1/r at spatial infinity. However, l:b Fr' 
and l:b Fbdv each satisfies Maxwell equations with the same sources and 
sinks (the charges). They are indeed two independent solutions of the 
same second-order equations. Hence their difference, 

L [Fb"' - F;dvl , (4.10) 
b 

satisfies a homogeneous system of equations, i.e. a system without 
sources or sinks. Such a system possesses nontrivial solutions, but they 
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are radiation fields that decrease like r-1 at spatial infinity: there are 
no 0 (r-1) nontrivial solutions. Thus the difference (4.10) is not merely 
zero at spatial infinity, it must be identically zero everywhere. Hence 

'"" Rre' - '"" p,adv _ 1 '"" [R,e' + p,adv] 
~ b -~ b -2~ b b, (4.11) 

b b b 

for all times. 
On combining this result with Eq.{4.9), we obtain 

F+R = ~ L [Fbe' + Ftv]- ~ [F~e' + F;dV] 
b 

~ L [Fbet + F;dV] (4.12) 
bta 

This is a stunning result: it says that to calculate the response of 
a charged particle to all the other charged particles in the universe, 
one has to sum over the fields emanating from all those other particles, 
on condition that one uses the time-symmetric solution of the Maxwell 
equation. In this approach there is no need, nor room, to add a further 
radiation damping term: it is all contained in the average of the retarded 
and advanced solutions of Maxwell's equations. Turning the argument 
around, one can say that the time-symmetric form is equivalent to, and 
so validates, the conventional calculation in which a retarded solution is 
supplemented, in a somewhat ad hoc manner, by a radiation damping 
field. 

It must not be thought that we have hereby forged an arrow of time 
from a time-symmetric theory. This can be seen by complementing 
Eq.(4.9) by 

F + R L F;dv - ~ [F~et + F;dvl 
b 

= L F;dV + ~ [F;dV - F~etl . (4.13) 
bta 

This is an equally valid modus operandi, involving the full advanced 
potential, supplemented by a radiation damping term, but since it is 
precisely minus the corresponding term in the first line of Eq.{4.9), it 
might better be called a radiation boosting term. 

3. BELL INEQUALITY 
Let us turn now to the Einstein-Podolsky-Rosen scenario [3] in its 

modern experimental avatar[4]. We will see that the violation of the 
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Bell inequality loses much of its impact once we entertain the notion of 
advanced fields. 

Briefly, two photons are prepared with opposed spins by the sequential 
decay of a calcium atom from an excited S state, through an interme­
diate P state, to the ground state, which is also S. The state of linear 
polarization of one photon is measured by means of a birefringent calcite 
crystal and a photo-detector at location A, and that of the other photon 
by a similar arrangement at location B. The separation of A and B is 
several metres, and the measurement events are contained within small 
space-time hypervolumes that have a mutual spacelike separation. Thus 
the measurement events at A and B are independent of one another in 
the sense that no information about the result of the measurement at 
A can be transmitted to B in time to influence the result of the mea­
surement there (and vice versa). This is true only if we limit ourselves 
to the usual retarded fields. The two photons are not independent, how­
ever, in the sense that their spins are correlated because of their common 
genesis in an atomic decay. The polarizations have, in the locution of 
Reichenbach, a common cause [5] . 

If the optical axes of the calcite crystals at A and B are parallel, then 
whenever a photon at A is found to go in the direction ofthe ordinary ray, 
the same is found at B. Similarly, there is perfect correlation in the case 
that the photons are deflected along the extraordinary ray directions. 
The more general situation, in which the optical axis at A is at an angle 
a to the vertical, and the optical axis at B is at an angle (3 to the vertical, 
leads to the following joint probabilities: 

Poo(a, (3) = ~ cos2(a - (3) = Pee(a, (3) 
Poe (a, (3) = ~ sin2 (a - (3) = Peo(a, (3) . (4.14) 

Here PO~ is the probability that the photons at A and B both go into 
the ordinary rays, Pee that both photons go into the extraordinary rays, 
Poe is the probability that the photon at A goes into the ordinary ray 
but the photon at B goes into the extraordinary ray, and finally Peo is 
the probability that the photon at A goes into the extraordinary ray but 
the photon at B goes into the ordinary ray. The results Eq.(4.14) are 
predicted by quantum mechanics and confirmed by experiment. 

The correlation coefficient is defined as follows: 

C(o'., (3) = Poo(o'., (3) + Pee (a, (3) - Peo(o'., (3) - Poe (a, (3) = cos 2(0'. - (3) . 
(4.15) 

If we suppose, with Bell[6], that the joint probabilities, and hence the 
correlation coefficient, are separable, in the sense of classical probability 
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theory, then we can write, for this correlation coefficient, 

C(a, (3) = L p('x)C(al'x)C((3I'x), (4.16) 
oX 

where ,X are hidden variables that account for the correlations between 
the two photon polarizations: they arise from the birth of the twin 
photons in the de-exciting calcium atom. The weight p(,X) is supposed 
to be positive and normalized; and C(al'x) is the correlation coefficient 

at location A, conditioned by the hidden variable 'x. Similarly, C((3I'x) is 
the conditional correlation coefficient at location B. Clearly each condi­
tional correlation coefficient, being the difference between two probabil­
ities, lies in the interval [-1,1]. 

The Bell coefficient is defined as the following combination of four 
correlation coefficients: 

B = C(a,(3) + C(c/,(3) + C(a',(3') - C(a,(3'). (4.17) 

It can be measured by combining the results of four separate runs of the 
experiment, with a choice of two possible orientations (a or a') of the 
calcite optical axis at A, and two possible orientations ((3 or (3') at B. 
One can show, under the assumption of separability, and 

(4.18) 

with p('x) ~ 0, that 
IBI ~2. (4.19) 

However, by choosing the angles a, (3, a' and (3' suitably, one can arrange 
that quantum mechanics yields B = 2V2 > 2. However, 

C(a, (3) = cos 2a cos 2(3 + sin 2a sin 2(3, 

so the normalization Eq.(4.18) is ruined! - on the right-hand side of 
Eq.(4.18) we obtain 2 instead of I! We must conclude that something is 
amiss; and we seem to have (at least) the following options: 

1. No hidden variables can be found that screen off the common cause. 

2. Classical probability theory is simply inapplicable in the quantum 
domain, in particular Kolmogorov's definition of stochastic inde­
pendence is inappropriate [7] . 
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3. Advanced as well as retarded fields are present. 

In this paper we will concentrate on the third possibility. If the absorp­
tion of the photon at A, after its passage through the calcite crystal 
at A, is accompanied by an advanced, as well as a retarded field, then 
information about the interaction of the photon at A, in particular de­
tails about the polarizer orientation at the moment of measurement, will 
ride the advanced wave back to the genesis of the photon pair, arriving 
at the calcium atom just at the moment that it de-excites. We can un­
derstand how, even if the orientation of the A polarizer is changed at 
the last moment before the polarization measurement, still the interac­
tion can carry information back about the measurement configuration. 
This way of speaking about information being carried back and forth, 
as if there were a sort of internal biological time of the sort that science 
fictional time travellers seem to carry about with themselves, is impre­
cise and may be confusing. It is better to say that, in the advanced 
field approach, one has a self-consistent picture in which the state of the 
photon's polarization is correlated to its future, as well as to its past 
interactions. The notions of 'cause' and 'information' are replaced by 
that of 'correlation'. 

In one variant of Aspect's experiment, the selection between the angles 
a and a' at A, and {3 and {3' at B, was changed randomly by two indepen­
dent oscillators every few nanoseconds. Still the predictions of quantum 
mechanics were borne out and the Bell inequality violated. Most peo­
ple interpret this as a demonstration of nonlocality (more soberly of 
nonseparability). With option 3 we can retain Lorentz covariance while 
achieving action at a distance. Is this action local or nonlocal? In a sense 
it is a semantic matter. It is not usual to call conventional retarded field 
theory nonlocal, the idea being that a particle is only influenced by a 
distant causal agent in the particle's past light cone. This influence is 
fleshed out by imputing a real existence to the field (in quantum theory 
to the field quanta). In this way the field serves as a messenger from 
afar, bringing influence and information at no more than light speed and 
delivering it in the vicinity of the particle. One might describe advanced 
action also as being local in an analogous manner: an influence is trans­
mitted by the advanced field, also within the light cone, arriving in the 
vicinity of the particle to deliver its information, much on a par with the 
retarded case. However, this account, even after deanthropomorphiza­
tion in terms of correlations rather than of causes and of influences, is 
incomplete. Since correlations can be established forwards and back­
wards in time, really the only logical requirement is one of consistency. 
The theory need only be such that it is impossible for an event in a 
space-time hypervolume both to occur and not to occur2. 
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4. RETROCAUSALITY 
According to David Hume, causality is based on nothing more than 

the observed constant conjunction of two or more kinds of events, say A 
and B. It is a mere habit we have to call the earlier of the occurrences, 
say A, the cause, and the later, B, the effect; no relation of necessity, 
nor even of likelihood, of a B's succeeding an A in the future can be 
deduced. If we replace the word 'habit' by 'theory', then we may re­
construe Hume's admonition as the trite Scottish verity that we have 
no proof that a theory, based on the results of observations in the past, 
will yield reliable predictions in the future, no matter how numerous the 
observations in question are. Indeed, we neither have, nor expect to be 
able to provide, such a proof concerning empirical matters. Moreover, 
if it is a mere habit, a mere linguistic convention, to call the temporal 
antecedent a cause, and the successor an effect, why should we not ex­
pand our horizons, generalize our theories, and envisage causes that can 
occur later than their hypothesized effects? 

In his intriguing article "Bringing About the Past", Michael Dummett 
has indeed claimed that the temporal asymmetry of the causal relation is 
contingent rather than necessary [8] . He describes two situations in which 
one might speak of a voluntary action performed with the intention of 
bringing about a past event. Nevertheless, stringent conditions must be 
satisfied to ensure the coherence of such a standpoint. In particular, 
Dummett claims that it is incoherent to hold all of the following claims: 

1. There is a positive correlation between an agent's performing an 
action of type A at time t A and the occurrence of an event of type 
B at time tB, where tA > tB. 

2. It is entirely within the power of the agent to perform A at time 
tA, if he so chooses. 

3. It is possible for the agent to find out, at time tA, whether B has 
or has not already occurred, independently of his performing A. 

One of the two examples that Dummett describes concerns a tribe that 
has the following custom: "Every second year the young men of the tribe 
are sent, as part of their initiation ritual, on a lion hunt: they have to 
prove their manhood. They travel for two days, hunt lions for two days, 
and spend two days on the return journey; ... While the young men 
are away from the village the chief performs ceremonies-dances, let us 
say-intended to cause the young men to act bravely. We notice that he 
continues to perform these dances for the whole six days that the party 
is away, that is to say, for two days during which the events that the 
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dancing is supposed to influence have already taken place. Now there is 
generally thought to be a special absurdity in the idea of affecting the 
past, much greater than the absurdity of believing that the performance 
of a dance can influence the behavior of a man two days' journey away; 
... " Ref.[8], pages 348-9. In physicists' terms, retrocausality seems even 
more absurd than action at a distance. 

The chief is a wise and rational man: he believes the first of the above­
mentioned three claims, at any rate as a statement of the significant 
statistical efficacity of his magic dancing. Let us further suppose that he 
does not believe that he is somehow hindered from dancing, or perhaps 
caused to dance inadequately, during the last two days, in the case that 
his young men have been cowardly. Then he must deny the third claim: 
he must assume that there is no way that he can find out, during the 
crucial days 5 and 6, what in fact has happened during days 3 and 4. For 
if it were possible to find it out, he could bilk the correlation. That is to 
say, he could choose to dance properly if, and only if, he knew that his 
men had not been brave. Then there would not be a positive correlation 
of the sort envisaged in claim 1. 

It seems that we, as anthropologists, would at any rate accept claim 
3, and thus conclude incoherence. With the aid of radio communication 
and a field worker, we could always arrange a bilking scenario, so that 
A could not count, even stochastically, as a cause of the earlier event 
B. But is there a situation in which claim 3 could defensibly be denied? 
There seem indeed to be such cases in subatomic physics. For example, 
the state of polarization of a photon, which has passed through one 
polarizer, and will pass through a second polarizer, is a property that 
we can only test by passing it through the next polarizer that it will 
encounter. If we choose to insert a calcite crystal in the path of the 
photon in such a way that it effects a polarization measurement, then this 
crystal is the next polarizer. If it be claimed that the state of polarization 
of a photon is correlated, not only with the orientation of the polarizer 
in its past, but also with that of the polarizer in its future trajectory, 
no bilking of the claim is possible. Here is indeed a clear candidate for 
retrocausal effects. 

5. THE VIEW FROM NOWHEN 
Is there a way to fit the notion of retrocausality into a general theo­

retical framework, rather than merely to permit its fugitive occurrence 
when all bilking scenarios are impossible? The Australian philosopher 
Huw Price elaborates a Weltanschauung that he calls the view from 
nowhen[9]. His point of departure is the time reversal (T) invariance of 
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microscopic processes3. When two inert gases of different colours, ini­
tially segregated and at different temperatures, are allowed to mix, the 
approach to an equilibrium mixture, of an intermediate colour and at 
an intermediate temperature, is irreversible, although the dynamics of 
the molecular collisions is T-invariant. A reversed video recording of the 
process would not look queer at the level of individual collisions, seen 
one by one, but it would appear odd at the macro-level, where it would 
show an apparently spontaneous segregation of the two gaseous compo­
nents. It is generally agreed that the Stofizahlansatz of Boltzmann, an 
example of what Price calls P 13 , or the principle of the independence 
of incoming influences, is not acceptable as an explanation of the irre­
versibility in question. For if P 13 holds, why should not PI 0 I hold, 
the principle of the independence of outgoing influences? If one sug­
gests that P 101 breaks down because correlations are generated by a 
collision, then one must ask whether after all P 13 is justified. That is, if 
correlations are generated in a collision process, may they not be present 
before as well as after the scattering? There seems in fact to be no good 
reason for adopting a double standard in this matter. Indeed, to do so 
in the search for a thermodynamic arrow of time is a flagrant example 
of petitio principii. 

A convincing case can be made that the the master arrow of time 
is cosmological, and the major task lies in explaining why the cosmos 
had such a low entropy in what for us is the distant past. The ther­
modynamic arrow follows readily: there is no need for an ad hoc P 13 

without a PIOI. The Wheeler-Feynman time symmetric treatment of 
electromagnetic radiation implicitly appeals ultimately to cosmology, for 
the effective retardation arises from the assumption of perfect future ab­
sorption. This absorption is treated as a matter of irreversible thermo­
dynamics, in terms in fact of a phenomenological absorptive (complex) 
refraction index. The thermodynamic arrow is tied to the cosmological 
one, and Wheeler and Feynman reason that radiation appears to us to 
be retarded because of thermodynamic processes in the future universe. 
The reason for the direction of the thermodynamic arrow itself seems to 
lie in the statistical properties of the early universe, i.e. in the fact that 
it was in such a low entropy condition. 

If the arrow of radiation ultimately derives from cosmological con­
siderations, it would be desirable to show this directly, in terms of the 
properties of a cosmological model, rather than indirectly, via thermo­
dynamics. This is precisely what Hoyle and Narlikar have done[lO]. 
Suppose that the future is not a perfect absorber, but only works at 
efficiency f, in the sense that the reaction of the universe, on particle 
a, is not the full Dirac radiation damping of ~ [F~et - F;dv], but only 
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f times this quantity. Analogously, suppose that the past is also not 
perfect as an absorber, but has efficiency p. That is, the boosting is not 
minus the Dirac term, but rather -p times that quantity. Let us write 
the symmetric sum over all the fields acting on particle a as a general 
linear superposition of retarded and advanced contributions, each with 
its damping or boosting terms: 

with A + B = 1. This leads to 

(1- 2A) LF[/t + (1- 2B) LFrv = 
b b 

(1- 2A + Af - Bp)F~et + (1 - 2B - Af + Bp)F~dv(A.21) 

The system is consistent if the coefficients of F~·t and F~dV vanish: 

A 

B = 

I-p 

2-f-p 
I-f 

2-f-p' 

and this is indeed consistent with A + B = 1. 

(4.22) 

The Hoyle-Narlikar relation Eq.(4.22) is interesting. Unless the past 
and the future are both fully absorbing, the values of A and Bare 
uniquely defined. For p < 1 and f < 1, since neither A nor B is zero, the 
radiation from an accelerated charge is effectively neither retarded nor 
advanced, but a superposition of the two, and the radiation damping 
is a definite fraction of the Dirac value. The special case in which the 
future is a perfect, but the past an imperfect absorber, f = 1 but P < 1, 
leads to A = 1 and B = 0, which is the empirically satisfactory situation 
of effectively retarded radiation, together with the full strength Dirac 
radiation damping. With p = 1 but f < 1, on the other hand, we obtain 
B = 1 and A = O. That is, in the situation in which the big bang acts 
as a perfect absorber but the future is not fully absorbing-in an open 
Friedmann model, for instance-one finds the unacceptable effectively 
advanced solution, with a radiation boosting term, i.e. minus the Dirac 
radiation damping. The main point to be made here is that, while the 
basic emission is time symmetric, the effective radiation is not symmet­

ric if and only if p =I f. That is, the radiative temporal symmetry is 
broken by an asymmetry in the absorptive properties of the past and 
future universe, in short by a cosmological asymmetry. 
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It seems that Feynman himself, after he had elaborated quantum elec­
trodynamics (QED) in the form that we still use today, rejected only part 
ofthe credo of symmetric action at a distance[ll]: "It was based on two 
assumptions: 

1. Electrons act only on other electrons 

2. They do so with the mean of retarded and advanced potentials 

The second proposition may be correct but I wish to deny the correctness 
of the first." The reason given for accepting that a charged particle can 
interact with its own field was precisely the success of the calculation of 
the anomalous magnetic moment of the electron-the famous 9 - 2 to 
which we alluded at the beginning. 

The close similarity between the Wheeler-Feynman account of radi­
ation and that given in QED-and also the crucial difference-can be 
appreciated by looking at the Green's functions of the theories. The elec­
tromagnetic field tensor may be expressed in terms of the four-potential, 
AJl(x), by 

PJlV = 8JlAv - 8vAJl , 

and the Maxwell equations can be written 

82 AJl = jJl' (4.23) 

in the Lorentz gauges, for which 8JlAJl = O. Here jJl is the four-current 
density. A solution of Eq.(4.23) is expressible as an integral, 

where DJlv is a Green's function that satisfies 

82 DJlv(x) = gJlVo4 (x) 

The relations between the different theories can be appreciated by 
comparing the various choices of Green's function. 'The standard classi­
cal choice is the retarded one: 

ret ( ) gJlV! 4 e- ipx g/-lv 2 
DJlv X = - (2 )4 d P (p . )2 = -2 O(xo)8(x). 

7r 0 + u: - p.p 1f 

The if. prescription means that the Green's function is to be inter­
preted as a distribution on a space of analytic functions: the implicit 
limit f. --+ 0 through positive values is equivalent to a small deformation 
of the ko-integration contour in the appropriate direction. The advanced 
Green's function is obtained from the above by changing the sign of E, 
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which implies that O{xo) is replaced by O{-xo). The Green's function of 
the Wheeler-Feynman theory is 

D;:{x) = ~ [D~~{x) + D~~{x)] 

= _ gJ.lv !d4pe-iPX p _ gJ.lv 8{x2) 
(27r)4 p2 - 47r ' 

(4.24) 

where P means the principal value in the sense of Cauchy. 
The QED Feynman propagator, defined through the vacuum expec­

tation value of the time ordered product of two fields, is in QED 

DF ) _ gJ.lv d4 e _ gJ.lv ! -ipx 1 
x --- p --

J.lv{ - (27r)4 p2 + if. - 4i7r2 x2 - if. . 

Now we can write 

DF (x) = _ gJ.lv !d4pe-iPX [P - i7r8(p2)] 
J.lV (27r)4 p2 

On comparing this with Eq.(4.24), we see that the Wheeler-Feynman 
Green's function is the real part of the Feynman Green's function. The 
extra piece, the imaginary part of the Feynman propagator, corresponds 
to the mass-shell contribution in momentum space, and has to do with 
the self-interaction of a charged particle that is coupled to the electro­
magnetic field. It guarantees the meromorphy of scattering amplitudes 
on the principal sheet of a suitably cut p2-plane. 

Microcausality, as it is now understood in quantum field theory, is 
expressed by the vanishing of (anti-)commutators of fields outside the 
light-cone; and this leads to analyticity of scattering amplitudes with re­
spect to momenta. However, this new style causality is perfectly consis­
tent with, indeed requires, retrocausality on the same footing as ordinary 
(Humean) causality. However, the heavy price that we must pay is the 
introduction of self interaction. This gives rise to divergences that are 
only provisionally hidden in the renormalization programme. Feynman 
was not satisfied with what he had achieved[ll]: "I invented a better 
way to figure, but 1 hadn't fixed what 1 wanted to fix ... The problem 
was how to make the theory finite ... 1 wasn't satisfied at all." 

Hoyle and Narlikar also add a self-action term to their quantized ac­
tion at a distance theory, almost as an afterthought, and clearly against 
their better inclination[lO]. As Dirac had done before them, they simply 
introduce an ultraviolet cut-off that breaks Lorentz covariance. Dirac 
writes, at the end of the fourth edition of his classic book, Quantum 
Mechanics[12]: "It would seem that we have followed as far as possible 
the path of logical development of the ideas of quantum mechanics as 
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they are at present understood. The difficulties, being of a profound 
character, can be removed only by some drastic change in the founda­
tions of the theory, probably a change as drastic as the passage from 
Bohr's orbit theory to the present quantum mechanics." 

Could it be that the change to the view from nowhen, following in the 
footsteps of Wheeler, Feynman, Hoyle, Narlikar and Price, is sufficiently 
drastic to cure the malaise of electromagnetism and of quantum mechan­
ics? As we have shown, retrocausality was built into the very foundations 
of QED. Yet the T-symmetry of quantum mechanics is routinely squan­
dered in the projection postulate, with its attendant mystique of the 
measurement process. Might a rigorously atemporal viewpoint lead to 
a physical picture closer to Einstein's than to Bohr's, and might it be 
that the infinite self interaction is somehow a, mistake induced by our 
time-bound viewpoint? 

Notes 
1. peA) = 1, A = {I, 2}. CC'Y11) = cos 2-y, C(-Y12) = sin 2-y, -y = {a, ,B}. 

2. We leave out of consideration the science fiction scenario of many worlds. This option 
is logically flabby and it carries moreover an unwieldly metaphysical baggage. 

3. This must be generalized to PCT invariance for some electroweak interactions, for 
example those responsible for KO-decay. 
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Chapter 5 

INSTANTONS FOR BLACK HOLE PAIR 
PRODUCTION 

Paul M. Branoff and Dieter R. Brill 
Department of Physics, University of Maryland 

College Park, MD 20742, USA 

Abstract Various ways are explored to describe black hole pair creation in a uni­
verse with a cosmological constant that do not rely on an intermediate 
state of "nothing". 

1. INTRODUCTION 
Of Jayant Narlikar's many important contributions to astrophysics 

and cosmology, none is more creative and imaginative than the idea, 
developed with Fred Hoyle, that particles may be created as the universe 
expands. Stated long before quantum effects of gravity could be treated, 
this proposal has new meaning today. Methods are now available to 
analyze quantum particle production in dynamic spacetimes, and even 
black hole creation can be understood semiclassically as a tunneling 
process. The latter process is the main subject of this paper. 

Although a complete theory of quantum gravity does not yet exist, 
examples of gravitational tunneling have been studied for a number of 
years, including such processes as pair creation of black holes and vac­
uum decay of domain walls. In each case the treatment is based on an 
instanton (solution of the Euclidean field equations) that connects the 
states between which tunneling is taking place. However, there are some 
nucleation processes of interest where the standard instant on method is 
not effective, for example because no solutions exist to the Euclidean 
Einstein equations that smoothly connect the spacelike sections repre­
senting the initial and final states of the tunneling process. It is therefore 
an interesting challenge to adapt the "bounce" method, most suitable 
for vacuum decay calculations, to deal with non-static initial states and 
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background fields such as a positive cosmological constant or domain 
walls typically present when particle-like states are created. 

A positive cosmological constant (and other strong gravitational sources, 
such as a positive energy density domain wall) acts to increase the sep­
aration of timelike geodesics. It is therefore expected to "pull particles 
out of the vacuum" by favoring creation of pairs over their annihila­
tion. The analogous creation of black hole pairs in de Sitter space can 
be treated in WKB approximation by the "no boundary" realization 
of quantum cosmology [1]. The first (and usually only) step in such a 
treatment consists of finding a solution of the Euclidean field equations 
containing the initial state (pure de Sitter universe) and the final state 
(Schwarzschild-de Sitter space) as totally geodesic boundaries. Such a 
solution exists only if we accept it in two disconnected pieces. If the 
cosmological constant is large enough one then obtains an appreciable 
probability of creating in each Hubble volume a pair of black holes com­
parable to the volume's size; if these break up into smaller ones (see, 
for example, Gregory and Laflamme [2]) one has, within pure gravity, a 
model of continuous creation not too far removed in spirit from that of 
Hoyle and Narlikar. 

This model is, however, not fully satisfactory in several respects. For 
example, it is not clear how to calculate the "prefactor" of the expo­
nential in the transition probability, which would define the dimension­
ful rate of the process. When it can be calculated from the fluctu­
ations about the instanton [3], a "negative mode" is necessary for a 
non-vanishing rate. But this negative mode would have to connect the 
two parts of the instanton, and therefore cannot be treated as a small 
perturbation. A discontinuous instanton is of course also conceptually 
unsatisfactory, because the usual composition rules assume that histories 
are continuous. 

Each of the two parts of the disconnected instanton has the universe's 
volume reaching zero. By forbidding arbitrarily small volumes one can 
connect the two parts. The exploration of modifications of Einstein 
gravity in which this is possible is still in its infancy. For example, 
Bousso and Chamblin [4] have used virtual domain walls to construct 
interpolating instantons. A similar technique using 'pseudomanifolds' 
has also been used to construct such solutions [5]. 

Modifications of Einstein's theory that have been proposed in other 
contexts may also give continuous instantons, if the change from Ein­
stein's theory becomes important at small volumes. For this reason it is 
natural to consider higher curvature gravity theories. 

Another promising modification of Einstein gravity is Narlikar's C­
field [6]. This field can describe reasonable energetics of particle produc-
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tion in a context where quantum mechanics plays no essential role, and 
it is therefore interesting to explore, as we will below, whether it can 
also solve the disconnectedness problem in the instanton treatment. 

So we ask whether these modifications of the Einstein-Hilbert ac­
tion allow continuous paths from an initial to final cosmological state 
when calculating amplitudes for cosmological black hole production in 
the context of closed universes. We will outline a modified version of 
the calculation of Bousso and Chamblin concerning the use of virtual 
domain walls in constructing interpolating instantons. We next discuss 
the existence of continuous instantons in higher curvature gravity the­
ories whose Lagrangians are nonlinear in the Ricci scalar. Finally, we 
consider the case of general relativity with a cosmological constant and 
a Narlikar C-field. 

2. GRAVITATIONAL TUNNELING 

Processes such as black hole pair creation can be analyzed semi­
classically through the use of instanton methods. One can think of 
such a process as a tunneling phenomenon. The initial state consists 
of a universe with some background metric and no black holes, and the 
final state consists of a universe with two black holes supplementing the 
background metric. Classical dynamics is prevented from connecting 
the two states by a generalized potential barrier. The quantum process 
can "penetrate" the barrier with some probability, and the same barrier 
makes it improbable for the final state, once created, to "annihilate" 
back to the initial state. In problems that can be treated by instantons, 
the non-classical transition from initial to final state can be described 
approximately as an excursion in imaginary time. A solution that goes 
from the initial state to the final state and back again is called a bounce 
solution; an instanton is a solution which goes from the initial state 
to the final state, i.e., half a bounce. In the WKB interpretation the 
excursion into imaginary time simply signifies an exponentially decreas­
ing wavefunction that is large only near configurations contained in the 
instanton. In the sum over histories interpretation the instanton is a 
saddle point by means of which the propagator is to be be evaluated. 

The exponential of the instanton's classical Euclidean action is the 
dominant factor in the transition probability, provided it is normalized 
so that the action vanishes when there is no transition. That is, we are 
really comparing two instantons, one corresponding to the background 
alone in which initial and final states are the same, and the instanton 
of the bounce, in which they are different. If the initial state is static, 
it is typically approached asymptotically by the bounce, and therefore 
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the normalization of the action can be achieved by a suitable surface 
term. If the initial state is only momentarily static, as in the case of 
the de Sitter universe, we must find the two instantons explicitly and 
evaluate their actions. In the context of the disconnected instanton the 
background instanton corresponds to two disconnected halves of a 4-
sphere: a de Sitter space fluctuating into nothing and back again. A 
first test whether a modification of Einstein's theory can have connected 
instantons is therefore to see whether the background instanton can be 
connected (Fig. 1). 

The rate of processes like black hole pair creation is calculated by 
subtracting from the action of the bounce, f bc , the action corresponding 
to the background state, fbg. The pair creation rate is then given as 

(5.1) 

where A is a prefactor, which is typically neglected in most calculations 
because it involves fluctuations about the classical instantons that are 
difficult to calculate. Without this dimensionful prefactor one can find 
the relative transitions to different final states, but the actual the number 
of transitions per spacetime volume to a given final state can only be 
estimated, for example as 1/(instanton four-volume) for finite volume 
instantons. 

The connected background instanton as described above is closely 
related to a Euclidean wormhole, or birth of a baby universe [7]: if 
the two parts are connected across a totally geodesic 3-surface, we can, 
according to the usual rules, join a Lorentzian space-time at that surface, 
passing back to real time. An instanton with this surface as the final 
state would then describe the fluctuation of a large universe into a small 
one, with probability comparable to that of the creation of a black hole 
pair. Thus whatever process provides a connected instanton is likely 
to lead not only to the pair creation but also to formation, of a baby 
universe. (In section 5 we will see how the latter can be avoided) 

An instanton calculation has been used by a number of authors to find 
the pair creation of black holes on various backgrounds (see, for example, 
Garfinkle et al [8]). The instantons involved a continuous interpolation 
between an initial state without black holes and a final state with a 
pair of black holes. By contrast, in cosmological scenarios where the 
universe closes but Lorentzian geodesics diverge, as in the presence of 
a positive cosmological constant or a domain wall, there are Lorentzian 
solutions to Einstein's equations with and without black holes (such 
as de Sitter and Schwarzschild-de Sitter spacetimes, respectively), but 
there are no Euclidean solutions that connect the spacelike sections of 
these geometries [4]. (For the related case of baby universe creation the 
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absence of such solutions is understood, for it is necessary that the Ricci 
tensor have at least one negative eigenvalue [9].) 

The No-Boundary Proposal of Hartle and Hawking [1] can be modified 
to provide answers in these cases. The original proposal was designed 
to eliminate the initial and final singularities of cosmological models by 
obtaining the universe as a sum of regular histories, which may include 
intervals of imaginary time. One can think of the Euclidean sector of the 
dominant history as an instanton that mediates the creation of a (typi­
cally totally geodesic) Lorentzian section from nothing. By calculating 
the action corresponding to these instantons, one can calculate the wave 
function for this type of universe, i.e., 

(5.2) 

where IinstW) = ~Ibc is the action corresponding to a saddlepoint so­
lution of the Euclidean Einstein equations whose only boundary is the 
3-dimensional geometry q. The probability measure associated with this 
universe is then given by 

(5.3) 

To relate the probability measure to the pair creation rate of black holes 
given in Eq. (5.1) one writes 

- Pbh _ [( bh bg )] r - R - exp - 2Iinst - 2Iinst 
bg 

(5.4) 

so the ratio of the probability of a universe with black holes to the 
probability of a background universe without black holes is taken to be 
also the rate at which an initial cosmological state can decay into a final 
cosmological state, that is, the pair creation rate. In the latter sense the 
two disconnected instantons together describe the tunneling process. 

Although this formalism allows one to calculate, in principle, the rates 
of nucleation processes, there is no well-justified reason why Eq. (5.4) 
should be identified with this quantity. The straightforward interpreta­
tion of the instanton concerns the probability for one universe to annihi­
late to nothing and for a second universe to be nucleated from nothing. 
This second universe can either contain a pair of black holes, or it can 
be identical to the initial universe, but it retains no "memory" of the 
initial state. It would clearly be preferable to have a continuous interpo­
lation between the initial and final states. (This would allow degrees of 
freedom that interact only weakly with the dynamics of gravity to act as 
a memory that survives the pair creation.) In the following sections we 
will consider several ways in which this continuity of spacetime can be 
achieved, the first of which involves matter fields that can form virtual 
domain walls. 



56 THE UNIVERSE 

3. CONTINUOUS INSTANTONS VIA 
VIRTUAL DOMAIN WALLS 

In this section, we will consider the method by which the authors of 
[4] use virtual domain walls to construct continuous paths between two 
otherwise disconnected instantons. They illustrated the method for the 
nucleation of magnetically charged Reissner-Nordstrom black holes in 
the presence of a domain wall. We will confine attention to nucleation 
of uncharged black holes in a universe with a cosmological constant. The 
initial state is the de Sitter universe and the final state is the extremal 
form of a Schwarzschild-de Sitter universe known as the Nariai universe 
[10], which is dictated by the requirement that the Euclidean solution 
be non-singular. To understand virtual domain walls we will need some 
elementary properties of real domain walls. These have been discussed 
extensively in [4, 11, 12, 13, 14, 15]. 

3.1 BRIEF OVERVIEW OF DOMAIN WALLS 
A vacuum domain wall is a (D - 2)-dimensional topological defect in 

a D-dimensional spacetime that forms as a result of a field </> undergoing 
the spontaneous breaking of a discrete symmetry. If we let M denote the 
manifold of vacuum expectation values of the field </>, then a necessary 
condition for a domain wall to form is that the vacuum manifold is not 
connected (11"0 (M) =J 0). An example of a potential energy function U (</» 
of the field </> giving rise to domain walls is the double-well potential. 

Throughout this section, we will be dealing with a domain wall in 
the "thin-wall" approximation, which means that the thickness of the 
domain wall is negligible compared to its other dimensions, and it is 
homogeneous and isotropic in its two spacelike dimensions, so that the 
spatial section of the wall can be treated as planar, and the spacetime 
geometry as reflection symmetric with respect to the wall. 

The action of a real scalar field </>, interacting with gravity, that may 
form a domain wall is given by 

Idw = ! d4xH [Lmat + Rl~:A] 
with matter Lagrangian 

Lmat = -~ gp.v 8p.</>8v</> - U{</» 

and stress-energy tensor 

(5.5) 

(5.6) 

Tp.v = 8p.</>8v</> - gp.v [~ga{38a</>8{3</> + U{</»] (5.7) 
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Here U (¢) is a potential function with two degenerate minima ¢_ and 
¢+, at which U = 0; 9 is the determinant of the 4-metric gJjIl; and R 
is the Ricci scalar. (We have neglected boundary terms in the action 
since the instantons we will be considering are compact and have no 
boundary.) 

The trace of the Einstein equations (resulting from the variation of 
Idw with respect to gJjIl) gives 

(5.8) 

which can be used to simplify the action (5.5) when evaluated on a 
solution: 

(5.9) 

The ¢-field is essentially constant away from a domain wall, with 
¢ = ¢_ on one side and ¢ = ¢+ on the other. In Gaussian normal 
coordinates {(i, z) with the wall at z = 0, ¢ depends only on z, and the 
field equation for ¢ implies that Tzz of Eq. (5.7) is negligible. The rest 
of the components of the stress-energy tensor differ from zero only near 
the wall, where ¢ changes rapidly from ¢_ to ¢+: 

Tt' = ac5(z)diag(l, 1, 1,0) (5.10) 

where u can be related via the ¢-field equation to the ¢-potential alone, 

u = ! 2U{¢(z))dz. (5.11) 

Thus u is the surface energy density of the wall. For such surface distri­
butions the Israel matching condition imply that the intrinsic geometry 
hij of the domain wall is continuous, and that the extrinsic curvature 
jumps according to 

Ktj - Kij = 41fuhij . (5.12) 

Here the normal with respect to which Kij is defined points from the + 
side of the surface to the - side. Outside the wall we have the sourceless 
Einstein equations. 

3.2 JOINING INSTANTONS BY DOMAIN 
WALLS 

The jump (5.12) in extrinsic curvature across a domain wall can 
be used to join the two parts of a disconnected instanton (Fig. 1) by 
"surgery": We remove a small 4-ball of radius", from each instanton. 
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(a) (b) (c) 

Figure 5.1 Two-dimensional analog of de Sitter instanton. Imaginary time runs 
horizontally. Because no significant change can be shown in two dimensions, this is a 
"background" instanton with identical initial and final states. (a) The disconnected 
instanton. (b) "Yoyo" instanton connected by domain wall (heavy curve labeled DW). 
(c) Instanton connected by a "virtual baby universe" (BU). 

Their two 3-surface boundaries have the same intrinsic geometry, and 
their extrinsic curvatures are proportional to the surface metric. They 
can therefore be joined together in such a way as to satisfy the Israel 
matching conditions, Eq. (5.12), thereby inserting a domain wall. 

However, the surface energy density a of the domain wall used to join 
the instanton must be negative: As we approach the domain wall from 
the initial state, heading towards annihilation, successive 3-spheres are 
shrinking, Kij < o. After we pass through the domain wall, successive 3-

spheres are expanding, Kij > O. Because of the negative energy density 
the authors of [4] call this a virtual domain wall, but it is not virtual in 
the sense that it corresponds to a Euclidean solution of the equations 
of section 3.1, for the (7 of Eq. (5.11) remains positive when passing to 
imaginary time. Within this scheme the only way to achieve a "yoyo" 
instanton as a saddle point of the Euclidean action is to have a scalar 
field with a negative energy also in the real domain, that is, a Lagrangian 
with the opposite sign as that of Eq. (5.6). As we will see in section 5, in 
that case a plain scalar field, without the domain-waIl-forming potential 
U ( ¢), will do as well and is preferable. 

By how much does the Euclidean action change when we introduce a 
domain wall whose radius 'T/ is small compared to the radius y'3/ A of 
the instanton itself? The extrinsic curvature of the connecting 3-sphere 
is then nearly the same as what it would be in flat space, Kij = hij/'T/, 
and the jump in curvature is twice that; hence the size of the domain 
wall is determined from Eq. (5.12), 

1 
'T/=--_. 

211"(7 
(5.13) 
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The Euclidean version of Eq. (5.9) is 

(5.14) 

We have taken a 4-ball with scalar curvature R = 4A away from each 
part of the original instanton, for a total change in action (including a 
boundary term) by 37rrJ2/2 - A7rrJ4/8; this is comparable to that due 
to the added domain wall with action given by Eqs. (5.14) and (5.11), 
Idw = -7r2(jrJ3 = ~7rrJ2, which is small compared to the total action 
-37r / A. Thus the Euclidean action increases when we add the domain 
wall, and the connected instanton therefore has a relatively smaller prob­
ability measure (although the difference is small compared to the total 
action), and the disconnected instanton will dominate. If the path inte­
gral is extended over continuous histories only, the domain wall provides 
the only saddle point, with action very close to what the discontinuous 
history would have given, thus justifying the calculation using the dis­
continuous history alone. But in that case a path integral without a 
domain-wall-forming scalar field gives a very similar value of the action, 
as shown in [4]. 

Introducing this scalar field may therefore be considered a high price 
to pay for gaining a saddle point, particularly because it entails other, 
less desirable processes. For example, the "center" z = 0 of the domain 
wall is totally geodesic with 8¢/8z = 0, that is, a possible place to revert 
from imaginary time back to real time. This corresponds to the forma­
tion of a baby universe of size comparable to rJ and smaller Euclidean 
action than that for the black hole formation. 

If a field exists that can form small domain walls, any two instan­
ton parts can be connected by such surgery across one or several small 
3-spheres, with a change in action as estimated above for each; the dom­
inant history will have the fewest connections. 

Finally, recall that the periodicity in imaginary time of each part 
of the disconnected instanton is well defined by the requirement that 
conical singularities should be absent from each part. If the parts are 
connected where there would otherwise be a conical singularity, one such 
requirement is eliminated. Thus there are connected instantons for which 
the final state is not Nariai but Schwarzschild-de Sitter geometry with 
black hole and cosmological horizons of unequal size. 
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4. CONTINUOUS INSTANTONS IN 
HIGHER CURVATURE THEORIES 

Higher curvature theories have a long history and have been proposed 
in several different contexts. For example, they arise naturally in theories 
describing gravity by an effective action [16, 17]. 

In this section we will explore whether higher order theories can pass 
the "first test" of Section 2, namely whether there is a continuous in­
stanton describing the annihilation and rebirth of de Sitter space (gen­
eralized to these theories). Adding higher order terms to the action 
does not, however, immediately eliminate disconnected instantons; for 
example, de Sitter space (that is, a spacetime of constant curvature) is 
a solution of many higher-order theories. In fact, if the universe without 
and with black holes can originate by tunneling from nothing, a discon­
nected instanton will also exist. Therefore connected instantons may 
again co-exist with the de Sitter-like, disconnected instantons. 

The Euclidean action we will be considering has the form 

(5.15) 

where 
(5.16) 

R is the Ricci scalar, A is the cosmological constant, and Cl', ,,(, etc., 
are coupling constants whose value we leave unspecified for the moment. 
The metric has the Euclidean Robertson-Walker form appropriate to 
three-dimensional space slices of constant positive curvature:! 

(5.17) 

Here T is imaginary time determined from the analytic continuation 
t ~ iT, N is the lapse function, a is the universe radius and dn~ is the 
metric on the unit three-sphere. Having the metric depend on Nand 
a allows us to obtain all the independent Einstein equations by varying 
only these functions in the action (5.15): variation with respect to a 
gives us the one independent spacelike time development equation, and 
variation with respect to N yields the timelike constraint equation, as in 
ordinary Einstein theory. A further variation that is easily performed is 
a conformal change of the metric, giving the trace of the field equations, 
which is not independent of the other equations but involves only the 
function f{R): 

o (5.18) 
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a f+-Na -- -. UNa) 3 af 3 d [ a 3 ] 
aN dT aN 

o (5.19) 

2R!' + 6\72!, - 4f o (5.20) 

where 
\72 _ d2 + 3iL ~ (5.21) 

- dT2 a dT' 

a dot denotes d/dT, and a prime denotes d/dR. 
Equation (5.18) is a fourth order ordinary differential equation, and 

Eq. (5.19) is a third order first integral of this equation. The trace 
equation (5.20) shows that we can regard R as an independent variable, 
satisfying a second order equation. In this view Eq. (5.20) replaces 
Eq. (5.18) (to which it is equivalent), and a also satisfies a second-order 
differential equation, namely its definition in terms of R, 

(5.22) 

In addition we still have the constraint, Eq. (5.19), a first order relation 
between a and R. 

A general Hamiltonian analysis (c.f. [18J and references therein), not 
confined to the symmetry of Eq. (5.17), bears out the idea that, as 
a second-order field theory, this is Einstein theory coupled to a non­
standard scalar field [19J. For example, for a Lagrangian quadratic in 
the Ricci scalar with no cosmological constant, the relationship between 
R and the non-standard scalar field ¢ is given by [20J 

¢= {faR (5.23) 

where the ¢>-field has the standard stress energy tensor multiplied by 
(1 + 4(7r/3)1/2¢)-2. 

Can this effective scalar field form a domain wall in four dimensions? 
If the coefficients up to , in Eq. (5.16) are non-zero, then the "force 
term" R!, - 2f occurring in the trace equation (5.20) vanishes at three 
equilibrium states for R, where \72 f'(R) = 0, approximately at R = 
±1/ vIT and at R = 4A, for small,. But in order to have a macroscopic 
universe on either side of the wall we need R = 4A on either side, so the 
usual wall formation where the scalar field changes from one equilibrium 
to another is unsuitable in this case. A solution of the bounce type may 
appear possible, since the equilibrium at R = 4A is unstable. At the 
turning point the time-dependent R would then have to "overshoot" the 
stable equilibrium near R = -1/ v1T' A negative R is required there so 
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that the universe radius can turn around at the same moment. This 
synchronization, if possible at all (numerical calculations have failed to 
reveal it to us; see however ref. [21]), would require fine tuning that does 
not appear natural in this context. Furthermore, if we had a bounce for 
both a and R, half of it would be an instanton describing the formation 
of a baby universe of size '" 'Y~1/4, which would then continue to collapse 
classically, and this process would be exponentially more probably than 
the black hole formation. For these reasons the effective scalar field that 
derives from higher curvature Lagrangians of the form (5.15) does not 
appear promising for connected instantons. 

We therefore consider solutions to Eqs (5.18) - (5.20) when R is con­
stant, R = Ro. To allow a continuous transition to imaginary time at 
7 = 0 we make the usual ansatz that all odd time derivatives of a{ 7) 
vanish at 7 = O. With the choice N = 1, the above equations at 7 = 0 
take the form 

Rof' - 2f = 0 

aof + 6aof' 0 

a5f - 2f'{aoao - 2) = O. 

Eliminating f from these equations we get the condition 

(a6Ro - 12)f' = O. 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

Thus, we have two classes of solutions. The first class is described by the 
condition Ro = 12/a5. The second class is described by the condition 
f = f' = O. 

If R = Ro = 12/a5 and ao = 0 then the unique regular solution of 
Eq. (5.22) is a de Sitter-like solution, a(7) = aOcos{7/ao), leading only 
to the disconnected instanton. 

The second condition indeed allows periodic, non-collapsing solutions 
with any amplitude A of the form 

2 6 fRo 
a = Ro + A cos V 3 7 where f{Ro) = 0 = !,(Ro). (5.28) 

If we want this Ro to be close to that of the de Sitter universe, Ro = 4A, 
then at least one of the higher-order coefficients (a, 'Y ... ) in f{R) of 
Eq. (5.16) has to be large and rather fine tuned. Furthermore, because 
the action for all of these solutions vanishes, we should integrate over all 
values of A, which includes some disconnected instantons, so this prob­
lem is not really avoided by these solutions. {They appear pathological 
also in other ways, for example they would allow production of baby 
universes of any radius. They would also tend to be unstable in the 
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Lorentzian sector, although this can be confined to the largest scale by 
judiciously choosing f(R) = R - 2A except near Ro '" 2A.) 

5. CONTINUOUS INSTANTONS IN 
C-FIELD THEORY 

Except for boundary terms, which describe classical matter creation 
and which we neglect in the present context, the C-field Lagrangian 
is similar to the usual scalar field Lagrangian without self-interaction 
(Eq. (5.6) with U = 0), but with the important difference that the 
coupling constant - f of the C-field has the opposite sign from the usual 
one [6]. Thus the total action of gravity with cosmological constant and 
C-field has the form, for Lorentzian geometries 

(5.29) 

(We have not included ordinary matter fields here because we are con­
fining attention to pair production of black holes as purely geometrical 
objects.) 

5.1 SOURCELESS C-FIELD IN 
LORENTZIAN COSMOLOGY 

The field equations that follow from this action by varying C and 9J.tv 

are, for the C-field: 

(5.30) 

and for the geometry, 

The stress-energy tensor Tffv gives a negative energy density (for f > 0). 
Narlikar [6] has given reasons why this violation of the energy condition 
is not an objection when the C-field is coupled to Einstein gravity of an 
expanding universe. 

For Lorentzian cosmology we make a Robertson-Walker ansatz anal­
ogous to (5.17), 

(5.32) 

In agreement with the homogeneous nature of this geometry we assume 
that C is homogeneous in space and hence depends only on t. The field 
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Figure 5.2 The effective potential for de Sitter-like universes: a universe with only 
cosmological constant (curve a) , one with a real C-field (curve b) , and one with a 
virtual C-field (curve c). 

equations, derived by varying a, N, and C, and then setting N = 1, are 

ii 0,2 + 1 
47rJ(:2 (5.33) 2-+---A 

a a2 
. A _ 47rJ (:2a2 a2 + 1 - _a2 (5.34) 

3 3 
d(a3(:) 

O. (5.35) 
a3 dt 

The second equation, as usual, is a first integral of the first (time 
development) equation, and it implies the latter except for extraneous 
solutions a = const . The third equation has the integral 

. K 
C=­

a3 
(5.36) 

where K is a constant. By eliminating (: we obtain an equation of the 
"conservation of energy" type for a: 

. 2 . 2 A 2 47r J K2 
a +v'ff=a --a + =-1. 

e 3 3a4 
(5.37) 

This is the usual de Sitter equation supplemented by a term in l /a4, 
which is unimportant at late times when a is large and does not change 
the qualitative Lorentzian time development at any time (Fig. 2). 
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5.2 SOURCELESS C-FIELD IN EUCLIDEAN 
COSMOLOGY 

The effective potential in Eq. (5.37) increases monotonically as a de­
creases below the minimum classically allowed value. The corresponding 
Euclidean motion in such a potential therefore does not bounce; instead, 
a would continue to decrease and reach a = 0 in a finite Euclidean time. 
This is a geometrical singularity if K -=f:. 0 because, for example, it follows 
from Eqs. (5.33) and (5.36) that R = 4A + 81fj(K2/a6 ). 

However, a different potential is obtained if the motion of both a and C 
is continued to imaginary time,2 thereby describing a virtual process that 
involves both of these variables, so that we take into account fluctuations 
in C as well as in a. Then the K of Eq. (5.36) becomes imaginary, 
K = ik, and the Euclidean "conservation of energy" equation becomes 

. 2 A 2 41fjk2 
-a - -a - -- = -1. 

3 3a4 
(5.38) 

It is easily seen that, for sufficiently small k, this equation does have 
bounce solutions, with a turning point at a f'V k1/ 2 j1/4 (Fig. 2). Thus 
the C-field theory passes the "first test": it has a continuous instanton 
describing a fluctuation with identical initial and final state. It is rea­
sonable to suppose that the theory will also have continuous instantons 
describing the creation of a black hole pair, because for small k the turn­
ing point occurs at small a, so that two disconnected instantons can be 
joined by surgery similar to that of section 3. 

It is essential that the fluctuation of the C-field be virtual, that is, that 
the coupling constant j have the opposite sign from the usual, positive 
energy density scalar field. If the C-field were real, time could revert 
to real values at the minimum radius of the bounce and continue in a 
small, Lorentzian universe [23] that we have above described as a baby 
universe. This transition would be the most probable if allowed. By 
contrast, in the case of the virtual C-field this transition is not allowed, 
The reason is that at the moment of the bounce, the C-field's effective 
potential dominates. A return to real time (K changing from imaginary 
to real) would make a large change in Veff of Eq. (5.37), violating this 
Lorentzian Hamiltonian constraint. A much smaller violation is involved 
at the first change to imaginary time, at large a. This can occur if the 
background is not exactly de Sitter-like, but contains some gravitational 
wave excitation that can supply the necessary small energy difference in 
the local region where the black hole will form. Thus the C-field makes 
a continuous instanton possible, but avoids forming a baby universe. 3 
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5.3 BLACK HOLES IN C-FIELD 
COSMOLOGY 

As a final step we exhibit as an endstate of the particle creation instan­
ton an expanding universe in C-field theory of spatial topology 8 1 x 8 2. 

This describes a universe with an extremal black hole pair in the same 
sense that the Nariai solution [10, 25] describes such a universe in Ein­
stein's theory. The metric has the homogeneous form 

where X has periodicity appropriate to 8 1, () and <p are coordinates on 
82, and a and b are functions only of t. The C-field likewise is a function 
only of t and therefore obeys the conservation law analogous to (5.36), 

. K 
C= ab2 ' 

The field equations then take the form 

. '2 
Gt + A = _ 2iLb _ b + 1 + A 

t ab b2 

2b b2 + 1 
Gx+A=-----+A x b b2 

() ii iLb b 
Go + A = - -;;: - ab - b + A 

41l'J K2 
a2b4 

41l'JK2 
a2b4 

41l'J K2 
a2b4 . 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

If the universe volume expands similar to the Nariai solution, the effects 
the C-field will become negligible at late times. It is therefore reason­
able to solve the field equations with the condition that the solution 
be asymptotic to the Nariai universe, a(t) = (l/..JA) cosh ..JAt, b(t) = 
l/..JA. We also require a moment of time-symmetry (to enable the 
transition from imaginary time). The solution to first order in £ = 
41l' J K2 A 3/2 is 

a(t) 

b(t) 

These functions do not differ much from those for the Nariai solution 
for any time t. However, the differences would become large in the 
continuation to imaginary time, as the volume decreases. In order to 
reach a minimum volume we again need an imaginary K (virtual C­
field). This minimum volume, like all t = const. surfaces, has topology 
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Sl X S2 and would therefore not fit directly on the minimum-a surface 
of a de Sitter-like metric, Eq. (5.17); a solution with less symmetry in 
both spaces would be needed to make the match. 

6. CONCLUSIONS 
In Einstein's theory of gravity with a cosmological constant, typical 

Euclidean solutions describe a universe originating from "nothing," or 
decaying into nothing, but there are no equally simple solutions cor­
responding to quantum processes, such as creation of a pair of black 
holes, which change a universe that is already present. According to 
the simple interpretation of Euclidean solutions in Einstein's theory, the 
most probable path to black hole creation is discontinuous via nothing 
as an intermediate state. In the present paper we have considered sev­
eral modifications of Einstein's theory that allow continuous histories as 
saddle points of the Euclidean action between two finite universes. Con­
sidered as a matter source, these modifications involve extreme forms of 
the stress-energy tensor because the Ricci tensor will typically have at 
least one negative eigenvalue. Therefore the formation of baby universes 
is a possible competing process. 

A matter field that can form sufficiently small domain walls is a uni­
versal connector, replacing the intermediate state of nothing with at 
least a small three-sphere. Higher-order Lagrangians in the scalar cur­
vature have to be fine tuned to allow the desired continuous histories. 
In many ways the most successful solution involves a scalar C-field of 
negative (but small) coupling constant. 

Notes 
1. The cases of zero or negative curvature present additional normalization problems 

because the naive Euclidean action would be infinite. Therefore we confine attention to the 
positive curvature case. 

2. We assume that this transition is the most probable; this would not be so if a transition 
were possible in the potential of Eq. (5.37). For example in penetrating radially a spherically 
symmetric potential barrier the most likely transition maintains the real angular momentum 
[22]. 

3. We also note that, as remarked in [24], a real change in C (if K were real) during 
the instanton could be interpreted as a change in the gravitational constant after the pair 
creation, which would be undesirable. 
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Chapter 6 

THE ORIGIN OF HELIUM AND 
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G. Burbidge 
Department of Physics and Center for Astrophysics and Science 

University of California, La Jolla, CA 92093, USA. 

F. Hoyle 
102 Admiral's Walk 

Bournemouth BH2 5HF, Dorset, UK 

Abstract The energy released in the synthesis of cosmic 4He from hydrogen is 
almost exactly equal to the energy contained in the cosmic microwave 
background radiation. This result strongly suggests that the 4He was 
produced by hydrogen burning in stars and not in the early stages of 
a big bang. In addition, we show that there are good arguments for 
believing that the other light isotopes, D, 3He, 6Li, 7Li, gBe, lOB and 
11 B were also synthesized in processes involving stars. By combining 
these results with the earlier, much more detailed work of Burbidge et 
al. and of Cameron, we can finally conclude that all of the chemical 
elements were synthesized from hydrogen in stars over a time of about 
lOll yr. 

1. INTRODUCTION 
There are more than 320 stable isotopes in the periodic table. In our 

original work ([1], hereafter B2FH; see also [11]), we showed that nearly 
all of them, with the possible exception of the helium isotopes and D, 
Li, Be, and B, were synthesized by nuclear processes in stellar interiors. 
In the 1950s, there appeared to be several problems associated with 
explaining the observed abundances of these remaining nuclides, which 
we discuss in turn. We shall show here that another approach leads 
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to the conclusion that very likely all of them have been synthesized in 
processes involving stars. 

2. 4HE 

In the 1950s, it appeared to us that there were two problems associated 
with explaining the origin of helium in its measured abundance through 
hydrogen burning. Assuming that the time-scale of the universe is "'" 
HOI, there was not enough time for a 4He/H ratio of about 0.24 to be 
built up, if the luminosities of the galaxies remained at normal levels 
for 1010 yr. Second, there appeared to be no evidence that the energy 
released by this amount of hydrogen burning was present. The energy 
density of starlight of about 10-14 ergcm-3 is well below the energy 
released in hydrogen burning, which, for a 4He/H ratio of 0.243 [33, 25] 
that we assume to be universal, is 4.37x 10-13 erg cm-3 . In deriving this 
quantity, we have taken the mean density of baryonic matter associated 
with galaxies to be 4.31 x 10-31 gm cm-3 . This number has been obtained 
from the counts of galaxies, and we assume that baryonic dark matter 
in the form of massive halos, etc. (with 10 times the visible mass), is 
present. Here we have put Ho = 60kmsec-1 Mpc-1 . 

In the 1950s, Bondi, Gold & Hoyle [5] argued that the large amount of 
undetected energy, which must be present if the helium has been synthe­
sized in stars, must reside in the far-infrared spectrum, while Burbidge 
[8] speculated that perhaps there was an earlier short-lived phase in the 
evolution of galaxies in which they were much more luminous, or else 
possibly the true helium abundance was lower than 0.24, because most 
of the mass is tied up in low-mass stars in which HelH < 0.24. 

Of course, the solution to the He problem that became popular was 
that which Gamow, Alpher, & Herman proposed earlier [1]), that the 
helium was made in a hot big bang some 1010 yr ago. Several calculations 
following this work and starting with Hoyle & Tayler [24], Peebles [34], 
and Wagoner, Fowler, & Hoyle [46] demonstrated this. We have now 
reached the stage where it is argued that the existence of He and the 
other light isotopes is taken, together with the microwave background 
radiation, as primary evidence in favor of the standard, hot, big bang 
cosmological model. However, this argument is only powerful if there 
is no other way to explain the helium abundance and the microwave 
background radiation. 

In 1941, McKellar [30] showed that there must be a radiation field 
present in the Galaxy with a temperature between 1.8 and 3.4 K. Pen­
zias & Wilson's [35] measurements, followed by others and culminating in 
the COBE observations by J. Mather and his colleagues [16] have shown 
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that the cosmic microwave background (CMB) has a blackbody form at 
least out to radio wavelengths with T = 2.728 K. The hot big bang cos­
mological model is not able to predict the temperature [43]. But what is 
remarkable about the result that we have described here is that the en­
ergy density of the observed blackbody radiation is extremely close to the 
energy density expected from the production of helium from hydrogen 
burning. We showed earlier that this energy is 4.37x 10-13 erg s-l cm-3 

and when this energy is thermalized, the temperature turns out to be 
T = 2.76K. 

While the value of the baryonic density in galaxies and their en­
virons is not known with anything like the precision with which the 
blackbody temperature is measured, it is clearly not very different from 
p = 3xlO-31 gmcm-3 (Ho = 60kmsec-1 Mpc-1, and dark-to-luminous 
baryon ratio'" 10) and of course, the calculated temperature is only 
proportional to p1/4. Indeed, it might be argued that the CMB temper­
ature gives a more precise measure of the true mass density of baryonic 
matter in the universe than can be obtained by estimating the mass in 
galaxies. 

We conclude that this result, based on two simple observational argu­
ments, strongly suggests that the helium and the CMB were produced 
by hydrogen burning in stars. This requires a time much greater than 
1010 yr, and there must be a physical mechanism operating that is able 
to thermalize the radiation that is initially released through hydrogen 
burning as ultraviolet photons from hot stars in starburst situations 
in galaxies. We have shown elsewhere that both of these conditions 
are fulfilled within the framework of the quasi-steady state cosmology 
(QSSC) (Hoyle, Burbidge, & Narlikar [20, 21, 22, 23]). In the QSSC, 
the universe is in a sequence of oscillations of period Q superposed on 
a general universal expansion of period P. In our model Q ~ 1011 yr 
and P ~ 1012 yr. These timescales correspond to the lifetimes of main­
sequence dwarf stars with masses less than 0.7M8 and 0.4M8 , respec­
tively, thereby greatly enhancing the importance of dwarf stars in cos­
mogony. We conclude that 4He in the cosmos is most likely a result of 
stellar nucleosynthesis. Given that this most abundant nucleus among 
the light elements is a result of stellar activity, it is then natural to ask 
whether the other light isotopes can also be due to processes involving 
stars. 

3. 

Much work has been done on these nuclides in recent years. It is gen­
erally accepted that 6Li, 9Be, lOB and 11 B were produced in spallation 
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reactions of high-energy protons on 12C and 160 with energy ultimately 
coming from galactic processes as we originally proposed B2FH. Reeves, 
Fowler & Hoyle [37] showed that galactic cosmic rays are an important 
ingredient. The most modern work shows that it is the C and 0 that 
bombard the protons and a-particles. The Be and B abundances are 
proportional to the Fe/H ratio is sub dwarfs, and Vangioni-Flam et al. 
[45] have shown that spallation by high-energy C and 0 can account 
for this. The high-energy C and 0 nuclei are ejected in the winds from 
massive stars and supernovae. 

What about 7Li? The early suggestion [37] that spallation is respon­
sible gives a 6Li/ sevenli ratio f'V 1, but in the solar system, 6Lij1Li ~ 10. 
This is one of the reasons why it has been argued that 7Li at least is 
due to big bang nucleosynthesis. This argument has been supported by 
the claim that there is a "plateau" at 7Li/H = 1. 7x 10-10 in a sample of 
Population II stars that are > 1010 yr old [41]. However, it is now known 
that this plateau is breached and that several stars have 7Li/H < 10-10 

[6]. Ryan et al. [38] conclude that there is an intrinsic spread in the 
7Li abundance due to influences other than uniform nucleosynthesis in 
a big bang. We must also not forget that while it is generally believed 
that susceptibility to destruction prevents 7Li from being synthesized in 
stars, the observation that there is a class of lithium-rich supergiants (cf. 
WZ Cas; [30]) shows that stellar processes may be responsible, as was 
suggested in a complicated scenario by Cameron & Fowler [12]. 

Boesgaard & Tripicco [4] looked at the Li abundance as a function of 
[Fe/H] for both Population I and old disk stars. They found that the Li 
abundance could be very different in stars where the [Fe/H] abundance 
has the solar value but that there is an absence of stars that are Li rich 
but have low values of [Fe/H] (see also [36, 3]). The abundances and 
isotope ratios of Li in the interstellar gas have been determined most 
recently by Lemoine, Ferlet, & Vidal-Madjar [27]. They have concluded 
that there must be an extra source of 7Li in the Galaxy. It is now 
clear from the observations that there may be at least three possible 
effects that have contributed to the observe Li abundance. They are 
(a) stellar processing, which tends to deplete Li, (b) galactic produc­
tion which tends to build Li and (c) big bang nucleosynthesis. From 
the observations, the relative importance of (a), (b),and (c) is not yet 
clear. However, in view of our earlier arguments concerning the origin 
of 4He, we consider it likely that (c) is not operating. Thus, we believe 
that (a) and (b) alone can explain the Li abundance and that further 
observational investigations will show this. 
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4. D AND 3HE 

The light isotope 3He is produced in large quantities in dwarf stars 
where the masses are not large enough for it to be destroyed by 3HeeHe, 2p)4He. 
It is also the case that there is a class of stars in which it has been shown 
from measurements of the isotope shift that most of the helium in their 
atmospheres is He. These stars include 21 Aquilae, three Centaurus A 
and several others [1, 39, 18, 42]. The stars are peculiar A, F, and B 
stars having He/H abundance that are 1/10 of the normal helium abun­
dance. The 3He/4He ratio can range from 2.7 to 0.5. These stars occupy 
a narrow strip in the llogg, Tefr) plane between the B stars with strong 
helium lines that shows no evidence for the presence of 3He. However, 
the detection of 3He from the isotope shift will fail if the 3HerHe ratio is 
::; 0.1. Thus, many of the weak helium-line stars may well have 3He/4He 
abundance ratios far higher than abundance ratio that is normally as­
sumed to be present, namely, 3He/4He:::::; 2x10-4 . The high abundance 
of He in these stars has been attributed by G. Michaud and his colleagues 
to diffusion ([32] 1979 and earlier references). Whether or not this is the 
correct explanation, what these results do tell us is that stellar winds 
from such stars will enrich the interstellar gas with 3He in large amounts. 
This 3He is in addition to the 3He that will be injected from dwarf stars. 
The final abundance required is 3He/H :::::; 2xlO-5 . It has been argued 
by those who believe that 3He is a product of big bang nulceosynthesis 
that there has not been time to build up the required abundance by 
astrophysical processes. However, not only do we not know what the 
rate of injection from stars is, but in the QSSC, the time scale for all of 
this stellar processing is '" 1011 rather than HOI:::::; lOlD yr. Thus, we 
believe that 3He may very well have been produced by stellar processes. 

We turn finally to the production of deuterium. It has been ar­
guead that D cannot be synthesized by spallation or photo-disintegration 
in supernova outbursts [15, 40]. Recently, however, Fuller & Shi [17] 
have argued that antineutrinos ve can give rise to deuterons through 
ve + P -t n + e+ followed by n(p, 'Y)D -reactions in the collapse of su­
permassive stars (M 2: 5 x 104 M 8) in the early history of galaxies. This 
mechanishm may be important but in view of the fact that the 3He/H 
and D/H ratios are very similar, and because we believe that the 3He is 
likely to be produced by low-mass stars, we believe that the most likely 
source of the cosmic deuterium is the dwarf stars. 

It is known that the dwarf M stars are a major constituent of normal 
galaxies. They have extensive convective envelopes, and thus they are 
likely to have outer layers in which extensive flare activity takes place. A 
very good example is the large UV flare in the red dwarf AU Microscopii, 
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which has just been reported [26]. In our view, it is the cumulative effect 
of stellar winds and flares from these low-mass stars that has led to the 
build up of the deuterium. 

It is easily shown that the smount of energy required to generate a 
D /H ratio '" 10-5 through flaring and ejection from dwarf stars is not 
very large. The energy required to produce D in stellar flares through 
the generation of neutrons and the subsequent capture by protons turns 
out to be close to 6x1018 erggm-1 D, which is much the same as the 
energy release involved in hydrogen burning to 4He. For a univer­
sal mass density of 3 x 10-31 gm cm -3, the energy requirement is then 
1.8 x 10-17 erg cm -3. This is very small compared with the energy of 
starlight, which at present, is '" 10-14 erg cm-3 and which, in the QSSC 
will build up to '" 10-13 erg cm -3 in the full cycle. Thus, the energy re­
quirement in the production of D is for a small fraction of the available 
energy that is to into the generation of neutrons. 

Deuterium is known to be produced in solar flares [13, 2] and early 
work by Coleman & Worden [14] has shown how much mass can be 
ejected from the dwarf stellar component. They estimated that for a 
typical galaxy containing 1010 - 1011 dwarf M stars, the mass-loss rate 
will amount to about 0.lM0 yr-1 from the dwarfs. If we add to this 
the fact that the programs now underway to detect faint stars through 
microlensing are now showing that the number of dwarf stars is very 
large, and the fact that in the QSSC cosmology, the timescale for the 
buildup of D in the interstellar gas is much greater than 1010 yr, a large 
amount of interstellar gas that is enriched in deuterium will be produced 
in a timescale corresponding to a cycle of oscillation Q in the QSSC i.e. 
in 1011 yr 

Of course, in the same period, the deuterium contained in gas that 
is recondensed into stars will be destroyed, so that the final abundance 
will depend on how much uncondensed gas remains. More measure­
ments are required of D /H both in the gas in our Galaxy [28, 29] and 
elsewhere. Much has been made recently of the D/H ratio determined 
in the absorption-line spectra of QSOs with large redshifts. The value 
obtained by D. TyUer and his colleagues [44, 10], D/H ;S2xlO-5, is the 
best estimate that has been made so far for extragalactic material, and 
this has been discussed only in the context of big bang cosmology. In the 
QSSC, the absorbing clouds that give rise to the absorbtion spectrum 
may also lie at an earlier epoch in the cycle. However, as we have dis­
cussed elesewhere [19]' there is independent evidence that many QSOs 
may not lie at the distances indicated by their redshifts, so the epoch 
to which these values of D/H correspond is not clear. Our prediction 
is that with the deuterium made largely in stellar flares, there will be a 
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range of values of the D /H ratio. With values of D /H '" 10-5 at the high 
end. We do not expect that the D /H ratio will have a constant value 
throughout an individu al galaxy or throughout a cycle of the QSSC. 
Thus, a possible test is to look for difference in the D /H ratio both inside 
and outside our Galaxy. 

5. CONCLUSION 
We have shown that there are good reasons to argue that 4He has been 

produced by astrophysical processes following stellar activity. Thus, 
provided that a timescale much greater than HOI is available, as is 
the case in the QSSC, all of the chemical elements may well have been 
synthesized in stellar processes. The fact that the great majority of the 
320 stable isotopes have been generated astrophysically has always made 
the idea that all of the isotopes were made this way very attractive. 
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Chapter 7 

SUPERLUMINAL MOTION AND 
GRAVITATIONAL LENSING 

S. M. Chitre 
Tata Institute of Fundamental Research 

Homi Bhabha Road, Bombay 400 005 

Abstract The role of gravitational bending of light in generating ohserved appar­
ent superluminal motions of VLBI components in the compact cores of 
some of the AGNs and quasars is highlighted. 

1. INTRODUCTION 
In the early part of 1970s, the very long base line interferometry 

(VLBI) enabled radio astronomers to probe the internal structure of ra­
dio sources at milliarcsecond scales. There was an understandable feeling 
of disbelief, therefore, when several radio sources monitored with VLBI 
over a number of years, revealed components in their nuclei separating at 
speeds exceeding that of light. The first hint of a superluminal motion in 
quasars was contained in observations of the sizes of variable components 
in quasars 3C273 and 3C279 ([1], [2]). More observational evidence for 
such motions accumulated through the 1970s when two distinct compo­
nents apparently separating with a linear speed, f3app = vapp/c ~ 5 -10, 
over a period of a few months, were detected ([3], [4], [5]). It has now 
been convincingly demonstrated for several dozens of sources, from the 
high-resolution VLBI observations, that the compact radio sources in 
the active galactic nuclei exhibit striking superluminal motion associ­
ated with several components ([6], [7], [8]. Since their discovery, the 
superluminal sources have remained one of the most intriguing themes 
in radio astronomy. 

Even prior to the detection of apparent superluminal motion, the 
observations of some quasars had indicated the presence of fast bulk 
motions through their rapid intensity variations ([9]). The feasibility of 
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superluminal motion was in fact, suggested by Rees ([10]) in a prescient 
paper where he had argued that the relativistic expansion of a source at 
speed v can result in its size increasing at an apparent speed of ')'vb == 
(1_v2/c2)-1/2).. The arrival time differences ofthe signals from different 
parts of the source can then lead to the apparent size expansion at a 
transverse speed '" ')'c( ')' » 1). The VLBI measurements of the compact 
core regions of quasars suggest a typical Lorentz factor, ')' ~ 10 for the 
relativistically moving components, corresponding to a typical proper 
motion of ~ 1 milliarcsec yr-1. Over the past quarter of a century, 
the superluminal sources have been observed with VLBI and VLBA to 
establish a number of striking features ([8]): 

(i) The superluminalmotion appears to be common amongst the brighter 
radio sources and generally exhibits properties such as rapid vari­
ability of intensity and polarization, although, not all well-surveyed 
sources display superlight motion (e.g. 3C84). 

(ii) The expansion speeds are on the average larger for the core-dominated 
sources compared to the lobe-dominated sources. 

(iii) The compact sources exhibit superluminally expanding relative 
motion of the components, with the emergence of new components 
from the core. 

(iv) The superluminal motion is largely uniform, but there are cases of 
acceleration and deceleration, and in some cases there are instances 
of bent trajectories as well. 

(v) The VLBI jets associated with the superluminal sources are invari­
ably curved and misaligned with the large-scale symmetry axis of 
the extended lobes. 

2. THEORETICAL SCENARIOS 

There are two ways in which it is possible to account for the observed 
superluminal motion of VLBI components in the nuclei radio sources. 
The obvious way out to explain the velocities of components apparently 
exceeding the speed of light, c is to argue that these radio sources are 
located at distances considerably smaller than what is implied by Hub­
ble's law. Since all the observations depend on measurements of angular 
separation between components, their conversion into linear transverse 
motion would necessarily require a knowledge of the distance to the ob­
jects. Should the sources be situated closer than what is indicated by 
the Hubble interpretation of their redshifts, the observed motion would 
turn out to be subluminal after all ([11], [12]). Indeed, the AGNs and 
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quasars are now widely accepted to be located at cosmological distances. 
It, therefore, becomes necessary to imagine that the observed superlu­
minal speeds are not physical, but rather, the result of cosmic illusions. 

A number of ingenious proposals, mostly based on the kinematics 
of the source have been advanced for explaining such cosmic illusions. 
These include: 

(a) Christmas-tree model proposed by Dent ([13]) invokes independent 
flares erupting all over at random locations in the source. Such 
random flaring could mimic a regular superlight motion, though 
it was realized that the observed motions were highly systematic 
and indicated only expanding motions of the components ([14]). 

(b) Light-echo model of Lynden-Bell ([15]) attributed the superluminal 
motion to an outward propagating relativistic blast curve that can 
cause a progressive brightening of the region of the source with 
increasingly large size. If such an oppositly directed signal along 
an axis making a small angle with the sight-line can lead to a su­
perluminal expansion. The model does not seem to be compatible 
with the observed core-jet structures in these sources. 

(c) Gravitational screen model was proposed by Chitre and Narlikar 
([16], [17]) as a plausible explanation of superluminal motion in 
AGNs, prior to the discovery of the first gravitational lens system, 
the twin quasar 0957 + 561 A,B, by Walsh, Carswell & Weymann 
([18]). This model envisages the presence of a gravitational screen 
in the form of an intervening galaxy or a cluster of galaxies, be­
tween the source and the observer. Owing to the gravitational 
bending produced by the deflecting mass en route, the observer 
would see the components in the nucleus of the background source, 
not in their real positions, but at virtual transversely separated lo­
cations, thus creating an illusion of superlight motion. 

The effect is due to the differential gravitational deflection caused 
by the intervening mass with the increasing impact parameter distance, 
from the centre, of the light rays emanating from the background source. 
For a spherically symmetric matter distribution in a galaxy, G, with 
mass, M and radius, R, the external gravitational bending of a typical 
ray is given by 

~ = 4G M for r 2:: R. 
c2r ' 

It turns out the interesting effects are produced from light paths that 
go through the inner regions of G. It can be demonstrated ([17]) that 
value of the relativistic bending angle is exactly twice the Newtonian 
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value in the case of weak gravity. The important feature of the bending 
angle is that ll.' (a) > 0 in the inner regions of most physical mass­
distributions associated with galaxies or galaxy-clusters. For external 
bending, on the other hand, ll.' (a) < O. The most striking aspect is the 
effect of gravitational bending on the apparent velocity of separation. 
For this purpose let us denote by Dd, Dds and Ds the distances between 
the observer and the deflector, the deflector and the source, and the 
observer and the source respectively. Let V..L be the transverse speed of 
separation between two components in the nuclear region of a stationary 
background source. Then, the apparent separation velocity as seen by 
the observer is 

Vapp = 1- D1fsds ll.'(a) . 

It is clear that we can get a large maBnification of the real transverse 
velocity provided, ll.'(a) > 0 and D~8 ds ll.'(a) :::: 1, a condition that 
is satisfied when the source and the observer are situated at conjugate 
points with respect to the deflector. 

It is, thus, essential for the manifestation of apparent superluminal 
motions to have a suitably placed gravitating intervenor between the 
source and the observer. The presence of an intervening deflector for 
producing the superluminally separating images is a requirement for 
this scenario. A test of the gravitational screen model would, therefore, 
be the detection of an actual deflecting object, which has, unfortunately, 
not been borne out in all the known superluminal sources. 

There are certain features associated with the gravitational lensing ef­
fect which may even stand the scrutiny of future observations in the case 
of the superluminal sources. A notable feature of the gravitational bend­
ing of light is that the amount of deflection is independent of wavelength 
and we therefore expect the superluminal separation of components to 
be the same at all observing wavelengths. A definitive characteristic 
associated with the lensing phenomenon is the non-uniform amplifica­
tion in directions perpendicular to the line of sight. Thus, the image 
of a linear trajectory would appear curved or bent, and it is only to 
be expected that the VLBI jets should be misaligned in relation to the 
extended structures. Such a misalignment property has, indeed, been 
noted in some of the quasars exhibiting superluminal motions. The su­
perluminal acceleration or deceleration of the separating components is 
yet another consequence of the gravitational screen model, this could 
result from changes in the amplification of the light beams when the 
amount of relativistic bending varies with the density of the intervening 
matter. Furthermore, the local inhomogeneities in the deflecting object 
is also liable to produce short-term (8 '" 1 yr) changes in the velocity; 
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the angular separation as a function of epoch is, therefore, unlikely to be 
a smooth curve, but rather should have a scatter around the linear trend. 
The apparent separation velocity observed in the source 3C345, for ex­
ample, shows an increase from 7.5c to 12.2c (for Ho = 50 km 8-1 Mpc1) 

which is a genuine case of superluminal acceleration. 
A clear-cut prediction of the gravitational screen model would be 

the detection of superluminal separation of the VLBI components in 
the cores of AGNs and quasars which have been unambigously estab­
lished gravitational lens systems. Thus, the twin quasar 0957 + 5cI 
should show a magnificationi of velocity by a factor of 2-3 and conse­
quently, should there be relativistically separating components in the 
source-quasars, we should see apparent superluminal motion, vapp ::::; 3c. 

Likewise, the triple radio source 2016 + 112 should reveal an apparent 
superluminal speed, vapp exceeding 10c. Indeed, there are reported cases 
of highly magnified gravitational lens systems whose cores exhibit struc­
tures at submilliarcsecond scales. The VLBA features are detected in 
one of the images first, followed by their appearance in the second image 
of the lens system with a time-delay of several weeks to months. There 
is some observational evidence for the existence of such a superluminal 
motion in the lens system 1830-211 (Patnaik, Private Communication). 

d) Relativistic beaming model was proposed by Rees ([19]) and later 
elaborated by Blandford and Konigal ([20]). In this kinematic picture 
the superluminal motion is simulated by one or more blobs or plasma­
components moving at a relativistic speed, v away from the core that is 
stationary in the rest frame of the observer. The transverse velocity of 
separation of the plasma blobs from the core is then given by 

(3 sin () 
vapp = 1 (3 () c, - cos 

((3 = vic). 

For the manifestation of apparent superluminal motion, the angle () of 
the beaming plasmoid with the sightline has to be very small. The 
expression for the apparent velocity attains a maximum value, v~~x = 
H-=1 c ~ 'YC. This model makes an ingenious use of the kinematic 
effect, and was in fact, advanced even before the apparent faster-than­
light phenomenon was discovered on the VLBI scale in the cores of AGNs 
and quasars. 

The observed superluminal motions may be best interpreted in the 
framework of bulk relativistic motion beamed towards the observer. This 
is by far the most attractive model to explain the observed phenomena 
associated with the superluminal sources. However, the simple rela­
tivistic beaming model is not without its difficulties in accommodating 
various observational features. 
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Thus a successful model must be able to explain the emission charac­
teristics of the superluminal sources such as the spectrum, polarization, 
flux variability and features like the curved trajectories of superluminal 
components, and their variable angular speeds, bent jets on the parsec 
scales and misalignment property of the extended structures. Should 
the relativistic beaming model be the correct description of superluminal 
sources, we would expect at least some quasars to show two-sided large­
scale jets, unless the one-sided jet is an intrinsic property of quasars on 
both small and large scales. In any case the bright hot spots are expected 
to be on the jetside. Furthermore, because of the Doppler boosting the 
flux density of the approaching components is expected to exceed that of 
the receding (or stationary) component by several orders of magnitude, 
in conflict with the comparable flux densities of components. 

The X-ray emission from superluminal radio sources is supposed to 
have provided a strong indication for the occurrence of relativistic beam­
ing in their compact cores. For this purpose it is argued that the syn­
chrotron radiation in a compact volume would produce X-ray flux, by 
an inverse Compton scattering of radio and infrared photons. The basic 
question to be addressed is whether the inverse Compton process is the 
underlying cause for the X-ray flux from superluminal sources, for which 
it is possible to constrain the physical parameters associated with the 
radio sources. It turns out that the observed X-ray emission is much 
smaller than what is expected from the parameters of the radio compo­
nents. Essentially, the VLBI measurements determine vic and the X-ray 
fluxes set limits on the Doppler factor, 6 = 1/,(1 - (3 cos fJ), thus pro­
viding valuable constraints on the geometry and motion of the emitting 
components. It is usually argued (cf. [6]) that the observed superluminal 
motions, weak X-ray emission and variability of the sources are taken to 
provide strong evidence in support of the relativistic beaming model. 

Marscher ([21]) has, however, pointed out certain difficulties encoun­
tered by the synchrotron-Compton emission process when applied to 
realistic radio sources. It turns out because of the complex nature of 
the compact sources, they are composed of a number of discrete com­
ponents, and these could conspire to become self-absorbed at different 
frequencies to produce a remarkably flat composite spectrum. For the 
sake of simplicity, each component is assumed to have a spectrum of 
a uniform synchrotron source, but, then the resultant inverse-Compton 
X-ray flux density and the total energy requirement have a very strong 
dependence on the turnover frequency, and the angle of the bulk veloc­
ity vector with the line of sight. Based on the simplifying assumptions, 
the evidence for the inverse-Compton process generating the observed 
X-ray flux is favorable, though not overwhelming. But the discrepant 
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time scales of variability in the wavebands ranging from millimeter (~ 
weeks) to X-rays ('" day) for the bright quasar 3C273 certainly casts a 
shadow on the tenability of the inverse-Compton hypothesis. 

3. SPECULATIONS ON MICROLENSING 
AND SUPERLUMINAL MOTIONS 

The phenomenon of gravitational lensing has been effectively used to 
gain valuable information about the masses and sizes of intervening de­
flectors. In most studies the lensing objects are generally assumed to 
be stationary, except in those cases where the effects of motion on the 
light curve have been important while crossing the caustics like in the 
microlensing events (cf. [22], [23], [24]). The usefulness of astronomic di­
agnostic properties of moving lenses was discussed by Chitre and Saslaw 
([25]). It was demonstrated that with a suitable placement of the back­
ground source within the cone of inversion, the source velocities could 
conceivably be magnified by an order of magnitude or more and part of 
the image may even exhibit an apparent superluminal motion (cf. [26]; 
[27]). 

A striking feature associated with moving lenses is the conversion 
of linear proper motion into rotational motion, since the lensing effect 
magnifies the velocities by different amounts in different directions. Con­
sequently, we expect the conversion of uniform linear source motion to 
be accompanied by an apparent acceleration of the individual compo­
nents in the source. Equally, the radial component of the source motion 
is also influenced by the moving lenses by converting it into a transverse 
component of the image motion. 

One of the fascinating challenges in galactic astronomy is to surmise 
the presence of a putative massive black hole residing at the centre of our 
Galaxy. One obvious way to infer its existence and physical properties 
would be to search for its gravitational influence on the background 
sources such as maser complexes, relativistic jets of 'microquasars', lying 
on the far side of the galactic nucleus from us. Thus, it is tempting to 
imagine an individual relativistically moving source in a maser complex, 
or a relativistic beam of a micro quasar located in the background to 
be lensed by the black hole in the galactic centre. This should almost 
certainly generate the resulting velocities which could apparently mimic 
superluminal motions. Such a suitable positioning of the background 
microquasar along the line of sight passing through the nuclear region 
should create an image morphology that could provide a valuable handle 
to infer the mass of the lensing black hole (cf. [25], [28]). 
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A possible velocity manifestation would consist of nearly circularly 
moving superluminal components, resulting from the lensing of a back­
ground relativistic jet by the massive black hole; the typical state of the 
velocity pattern would be of the order of several arcseconds. A defini­
tive observation of superluminal motion in the direction of the galactic 
centre would provide further support to the existence of a massive black 
hole in the nucleus of our Galaxy. 

A remarkable aspect of superluminality has been stressed by Gopal­
Krishna and Subramaniam ([29]). This involves a superluminal mi­
crolensing scheme which combines beaming with the phenomenon of 
gravitational lensing. The microlensing of compact sources such as 
quasars by brown dwarfs has been invoked to account for their inten­
sity variability on timescales of the order of several months to a few 
years. But some of the active quasars, in particular, blazars are known 
to show variability on a time-scale as short as hours in the optical wave­
band and days in the radio. The blazars have relativistically beaming 
jets composed of bright components which are known to make a small 
angle with the line of sight ([20]) and these knots are expected to ex­
hibit apparent superluminal motions. Gopal Krishna and Subramanian 
([30]) have invoked the superluminal microlensing of such ultra-rapidly 
moving components which causes an amplification of both the flux and 
velocity, over and above that resulting from the relativistic beaming or 
lensing phenomenon alone. Such a composite beaming-lensing scheme 
would also lead to the requisite short time-scale intensity variations. 
Furthermore, for the case of knots crossing a caustic this would lead to 
extraordinarily large apparent superluminal velocities exceeding 20-30c. 

Thus, if the microlensing by a million solar mass black hole of a quasar 
or a relativistic jet were to happen, this will almost certainly lead to 
significant morphological distortions, variations in the flux ratios and 
velocities of the images over a very short time-scale (~lhr). Clearly, 
the VLBA monitoring of the galactic nuclear region and of the cores 
of compact radio sources (e.g. AGNs, quasars, blazars) should reveal 
the existence of massive and supermassive black holes in the nuclei of 
galaxies. A definitive observation of superluminal motion in the direction 
of the Galactic centre would provide further support to the existence of 
a massive black hole in the nucleus of our Galaxy. 
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DUAL SPACETIMES, MACH'S PRINCIPLE 
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Abstract 
By resolving the Riemann curvature relative to a unit timelike vec­

tor into electric and magnetic parts, we define a duality transforma­
tion which interchanges active and passive electric parts. It implies 
interchange of roles of Ricci and Einstein curvatures. Further by mod­
ifying the vacuum/fiat equation we construct spacetimes dual to the 
Schwarzschild solution and fiat spacetime. The dual spacetimes de­
scribe the original spacetimes with global monopole charge and global 
texture. The duality so defined is thus intimately related to the topo­
logical defects and also renders the Schwarzschild field asymptotically 
non-fiat which augurs well with Mach's Principle. 

1. INTRODUCTION 
In analogy with the electromagnetic field, it is possible to resolve the 

gravitational field; i.e. Riemann curvature tensor into electric and mag-
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netic parts relative to a unit timelike vector [1-2]. In general, a field 
is produced by charge (source) and its menifestation when charge is 
stationary is termed as electric and magnetic when it is moving. Elec­
tromagnetic field is the primary example of this general feature, which 
is true for any classical field. In gravitation, unlike other fields, charge 
is also of two kinds. In addition to the usual charge in terms of non­
gravitational energy, gravitational field energy also has charge. Thus 
electric part would also be of two kinds corresponding to the two kinds 
of charge, which we term as active and passive. 

The Einstein vacuum equation, written in terms of electric and mag­
netic parts is symmetric in active and passive electric parts. We define 
the duality relation as interchange of active and passive electric parts ... 
Then it turns out that the Ricci and the Einstein tensors are dual of 
each-other. That is, the non-vacuum equation will in general distin­
guish between active and passive parts and we could have solutions that 
are dual of each-other [3]. In particular it follows that perfect fluid space­
times with the equation of states, p - 3p = 0 and p + p = 0 are self dual 
(/\ -+ -1\) while the stiff fluid is dual to dust. 

The question is, can we obtain a dual to a vacuum soltuion? Since 
the equation is symmetric in active and passive parts, it would remain 
invariant under the duality transformation. However it turns out that 
in obtaining the well-known black hole solutions not all of the vacuum 
equations are used. In particular, for the Schwarzschild solution the 
equation Roo = 0 in the standard curvature coordinates is implied by 
the rest of the equations. If we tamper this equation, the Schwarzschild 
solution would remain undisturbed for the rest of the set will determine it 
completely. However this modification, which does not affect the vacuum 
solution, breaks the symmetry between active and passive electric parts 
leading to non-invariance of the modified equation under the duality 
transformation. Now we can have solution dual to vacuum which is 
different. This is precisely what happens for the Schwarzschild solution. 

The Schwarzschild is the unique spherically symmetric vacuum solu­
tion, which means it characterizes vacuum for spherical symmetry. It is 
true that not all the equations are used in getting to the solution. In fact 
it turns out that ultimately the equations reduce to the Laplace equation 
and its first integral [4-5]. That means the Laplace equation becomes free 
as it would be implied by its first integral equation. Without disturb­
ing the Schwarzschild solution we could introduce some energy density 
on the right which would be wiped out by the other equations. The 
modified equation would turn out to be not invariant under the duality 
transformation, yet however it admits the Schwarzschild solution as the 
unique solution. Now the dual set of equations also admits the unique 
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solution, which could be interpreted as representing the Schwarzschild 
particle with global monopole charge [6]. The static black hole with and 
without global monople charge are hence dual of each-other. 

Similarly it turns out that flat spacetime could as well be characterized 
by a duality non-invariant form of the equation. The static solution 
of the dual equation will represent massless global monopole (putting 
the Schwarz schild mass zero in the above solution) and the non-static 
homogeneous solution will give the FRW metric with the equation of 
state p + 3p = 0, which is the characterizing property of global texture 
[7-8]. The former could as well be looked upon as spacetime of uniform 
relativistic gravitational potential [4-5]. Global monopoles and textures 
are stable topological defects which are produced in phase transitions in 
the early universe when global symmetry is spontaneously broken [7-10]. 
In particular a global monopole is produced when the global 0(3) sym­
metry is broken into U(l). A solution for a Schwarz schild particle with 
global monopole charge has been obtained by Barriola and Vilenkin [6]. 
It therefore follows that the Schwarzschild and the Barriola-Vilenkin so­
lutions are related through the duality transformation. They are dual 
of each- other. Like the Schwarzschild solution, the global monopole 
solution is also unique. Applications to cosmology and properties of 
global monopoles [10-14] and of global textures [7-8,11,15-19] have been 
studied by several authors. What dual solution signifies is restoration 
of gauge freedom of choosing zero of relativistic potential which was 
not permitted by the vacuum equation that implied asymptotic flat­
ness. This means that the dual solution breaks asymptotic flatness of 
the Schwazschild filed without altering its basic physical character. The 
relativistic potential is now given by ¢ = k - M / r instead of ¢ = - M / r. 
This is precisely what is required to make the Schwarzschild field consis­
tent with Mach's principle. The constant k brings in the information of 
the rest of the Universe, say for solar system moving towards the great 
attractor [20]. The important difference between the Newtonian and 
relativistic understanding of the problem is that constant k produces 
non-zero curvature and hence has non-trivial physical meaning. This is 
the most harmless way of making the field of an isolated body consistent 
with Mach's principle. 
In sec. 2, we shall give the electromagnetic decomposition of the Rie­
mann curvature, followed by the duality transformation and dual space­
times in Section 3 and concluded with discussion in Section 4. 
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2. ELCTROMAGNETIC DECOMPOSITION 
We resolve the Riemann curvature tensor relative to a unit timelike 
vector [1-2] as follows: 

where 

H(ae) = *CabedUbud 

1 e b d 
H[ae] = 2rJabeeRdu u . 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

Here Cabed is the Weyl conformal curvature, rJabed is the 4-dimensional 
volume element. Eab = Eba, Eab = Eba, (Eab, Eab, Hab)Ub = 0, H = 
Hg = 0 and uaua = 1. The Ricci tensor could then be written as 

- - - 1 
Rab = Eab + E - ab+ (E + E)UaUb - Egab + 2Hmnue(rJaemnUb + rJbemnUa) 

(8.5) 
where E = Eg and E = Eg. It may be noted that E = (E + ~T)/2 
defines the gravitational charge density while E = -TabUaub defines the 
energy density relative to the unit timelike vector u a . 

3. DUALITY TRANSFORMATION AND 
DUAL SPACETIMES 

The vacuum equation, Rab = 0 is in general equivalent to 

E or E = 0, H[ab] = 0 = Eab + Eab 

which is symmetric in Eab and Eab. 

We define the duality transformation as 

(8.6) 

(8.7) 

Thus the vacuum eqaution (6) is invariant under the duality transforma­
tion (7). From eqn. (1) it is clear that the duality transformation would 
map the Ricci tensor into the Einstein tensor and vice-versa. This is be­
cause contraction of Riemann is Ricci while of its double dual is Einstein. 
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Consider the spherically symmetric metric, 

ds2 = c2(r, t)dt2 - a2(r, t)dr2 - r2(d(j2 + sin2()dcp2). (8.8) 

The natural choice for the resolving vector in this case is of course it 
being hypersurface orthogonal, pointing along the t-line. From eqn. 
(6), H[ab] = 0 and Ei + Ei = 0 lead to ac = 1 (for this, no bound­
ary condition of asymptotic flatness need be used). Now E = 0 gives 
a = (1- 2Mlr)-1/2, which is the Schwarzschild solution. Note that we 
did not need to use the remaining equation and Ei + Ei = 0, it is hence 
free and is implied by the rest. Without affecting the Schwarzschild so­
lution, we can introduce some distribution in the I-direction. 

We hence write the alternate equation as 

(8.9) 

where.A is a scalar and Wa is a spacelike unit vector along 4-acceleration. 
It is clear that it will also admit the Schwarzschild solution as the gen­
eral solution, and it determines .A = O. That is for spherical symmetry 
the above alternate equation also characterizes vacuum, because the 
Schwarzschild solution is unique. 

Let us now employ the duality transformation (7) to the above equation 
(9) to write 

H[ab] = 0 = E, Eab + Eab = .AwaWb' 

Its general solution for the metric (8) is given by 

(8.10) 

(8.11) 

This is the Barriola-Vilenkin solution [6] for the Schwarzschild particle 
with global monopole charge, /'if. Again we shall have ac = 1 and 
E = 0 will then yield c = (1 - 2k - 2Mlr)1/2 and .A = 2klr2. This has 
non-zero stresses given by 

(8.12) 

A global monopole is described by a triplet scalar, 'ljJa(r) = 'f/f(r)xa Ir, xaxa = 
r2, which through the usual Lagrangian generates energy-momentum 
distribution at large distance from the core precisely of the form given 
above in (12) [6]. Like the Schwarzschild solution the monopole solution 
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(11) is also the unique solution of eqn.(1O). 

If we translate eqns. (9) and (10) in terms of the familiar Ricci compo­
nents, they would read as 

and 

Ro - Rl - \ R2 - 0 - R o - 1 - A, 2 - - 01 

Ro - Rl - 0 - R R2 - \ o - 1 - - 01, 2 - A. 

(8.13) 

(8.14) 

For the metric (8), we shall then have ac = 1 and c2 = f(r) = 1 + 2¢, 
say, and 

(8.15) 

2 2 ( )' R2 = -- r¢ r2 (8.16) 

Now the set (13) integrates to give ¢ = -Mlr and>' = 0, which is the 
Schwarzschild solution while (14) will give ¢ = -k-Mlr and>' = 2klr2, 
the Schwarzschild with global monopole charge. Thus global monopole 
owes its existence to the constant k, appearing in the solution of the 
usual Laplace equation implied by eqns. (14) and (15). It defines a pure 
gauge for the Newtonian theory, which could be chosen freely, while the 
Einstein vacuum equation determines it to be zero. For the dual-vacuum 
equation (14), it is free like the Newtonian case but it produces non-zero 
curvature and hence would represent non-trivial physical and dynamical 
effect (see R~ = -2klr2 i= 0 unless k = 0). This is the crucial differ­
ence between the Newtonian theory and GR in relation to this problem, 
that the latter determines the relativistic potential ¢ absolutely, van­
ishing only at infinity. This freedom is restored in the dual-vacuum 
equation, of course at the cost of introducing stresses that represent a 
global monopole charge. The uniform potential would hence represent a 
massless global monopole (M = 0 in the solution (11)), which is solely 
supported by the passive part of electric field. It has been argued and 
demonstrated [5] that it is the non-linear aspect of the field (which incor­
porates interaction of gravitational field energy density) that produces 
space-curvatures and consequently the passive electric part. It is im­
portant to note that the relativistic potential ¢ plays the dual role of 
the Newtonian potential as well as the non-Newtonian role of producing 
curvature in space. The latter aspect persisits even when potential is 
constant different from zero. It is the dual-vacuum equation that uncov-
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ers this aspect of the field. 

On the other hand, flat spacetime could also in alternative form be 
characterized by 

Eab = 0 = H[ab] , Eab = AWaWb (8.17) 

leading to c = a = 1, and implying A = 0 . Its dual will be 

Eab = 0 = H[ab] , Eab = AWaWb (8.18) 

yielding the general solution, 

c' = a' = 0 ==} c = 1, a = const. = (1 - 2k)-1/2 (8.19) 

which is non-flat and represents a global monopole of zero mass, as it 
follows from the solution (11) when M = O. This is also the uniform 
relativistic potential solution. 

Further it is known that the equation of state p + 3p = 0 which means 
E = 0, characterizes global texture [7,19]. That is, the necessary condi­
tion for spacetimes of topological defects; global textures and monopoles 
is E = O. Like the uniform potential spacetime, it can also be shown that 
the global texture spacetime is dual to flat spacetime. In the above eqns 
(13) and (14), replace WaWb by the projection tensor hab = gab - UaUb. 

Then non-static homogeneous solution of the dual-flat equation (14) is 
the FRW metric with p + 3p = 0, which determines the scale factor 
S(t) = at + (3, and p = 3(a2+ k) j(at + (3)2, k = ±1, O. This is also the 
unique non-ststic homogeneous solution. The general solutions of the 
dual-flat equation are thus the massless global monopole (uniform po­
tential) spacetime in the static case and the global texture spacetime in 
the non-static homogeneous case. Thus they are dual to flat spacetime. 

It turns out that spacetimes with E = 0 can be generated by considering 
a hypersurface in 5-dimensional Minkowski space defined, for example, 
by 

(8.20) 

which consequently leads to the metric 

ds2 = k2dT2 - T2[dX2 + sinh2x(d(P + sin20d<p2)]. (8.21) 

Here T2 = t2 - xi - x~ - x~ and p = 3 (1- k2) / k2T2. The above construc­
tion will generate spacetimes of global monopole, cosmic strings (and 
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their homogeneous versions as well), and global texture-like depend­
ing upon the dimension and character of the hypersurface. Of course, 
E = 0 always; i.e. zero gravitational mass [11]. The trace of active part 
measures the gravitational charge density, responsible for focussing of 
congruence in the Raychaudhuri equation [21]. The topological defects 
are thus characterized by vanishing of focussing density (tracelessness of 
active part). 

Application of the duality transformation, apart from vacuum/flat case 
considered here, has been considered for fluid spacetime [3]. The dual­
ity transformation could similarly be considered for eletrovac equation 
including the A-term. Here the analogue of the master equation (10) is 

H[ab] = 0, E = A - 2Q:, E! + E! = (- Q: + A)WaWb (8.22) 
r r 

which has the general solution c2 = a-2 = (1- 2k - 2M/r + Q2/2r2 -
Ar2/3) and A = 2k/r2. The analogue of eqn. (6) will have E = 
-A - Q2/2r4 instead of E in (20). Thus the duality transformation 
works in general for a charged particle in the de Sitter universe. Simi­
larly spacetime dual to the NUT solution has been obtained [22]. In the 
case of the Kerr solution it turns out, in contrast to others, that dual 
solution is not unique. The dual equation admits two distinct solutions 
which include the original Kerr solution [23]. 

4. DISCUSSION 
First of all let us try to get some physical feel of active, passive and 
magnetic parts. For a canonical resolution relative to a hypersurface 
orthogonal unit timelike vector, it follows that Eab would refer to the 
curvature components Roaoa, Eab to Rabab and Hab to ROaab. With ref­
erence to the spherically symmetric metric (8), it can be easily seen 
that the active part is crucially anchored onto the Newtonian potential 
appearing in goo = 1 + 2¢, while the passive part to the relativistic po­
tential, gn = -(1 + 2¢)-1. Note that in obtaining the Schwarzschild 
solution we ultimately solve the Laplace equation, which does not take 
into account contribution of gravitational filed energy as source. It can 
be shown that contribution of gravitational field energy goes into curv­
ing the space through gn 1= 1 leaving the Laplace equation undisturbed 
[4-5]. Thus passive part is created by the field energy while the active 
by non-gravitational energy distribution. The magnetic part would as 
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expected be due to motion of sources. 

Under the duality transformation, the vacuum equation remains invari­
ant leading to to the same solutions, but the Weyl tensor changes sign 
which would mean GM --+ -GM. This happens because active part 
is produced by positive non-gravitational energy while passive part by 
negative field energy, and the interchange of active and passive would 
therefore imply interchange of positive energy and negative field energy 
[2J. 

Consider the Maxwell like duality E --+ H, H --+ -E as given by 

(8.23) 

This implies E = 0, H[ab] = 0, Eab + Eab = ° which is the vacuum equa­
tion (6) and keeps the Einsten action invariant because R = 2(E - E). 
This is a remarkable result indicating that vacuum equation is implied 
by the duality symmetry of the action [2J. Note also that duality trans­
formation of the action does not permit the cosmological constant which 
could however be brought in as matter with the specific equation of state. 
This result is similar to the well-known property of GR that equation of 
motion for free particle is contained in the field equation. 

The duality transformation (7) introduces in most harmless manner a 
global monopole in the Schwarzschild black hole which amounts to break­
ing the asymptotic flatness. The latter is a necessary requirement for the 
field to be consistent with Mach's principle at the very elementary level. 
In essence, it is obtained by simply retaining the constant of integration 
in the solution of the Laplace equation. Thus it makes no difference at 
the Newtonian level and hence its contribution is purely relativistic. 

The most general duality-invariant expression consisting of the Ricci and 
the metric is Rb - (~- A)gb' This, without A equal to zero would be the 
equation for gravitational instanton, which follows from the R2-action. 
The instanton action and the field equation are duality-invariant. They 
are also conformally invariant as well. As a matter of fact conformal in­
variance singles out the R2-instanton action. That means the conformal 
invariance includes the duality invariance, while the duality invariance 
of the Palatini action with the condition that the resulting equation be 
valid for all values of R would lead to the conformal invariance [24-25J. 
The simplest and well-known instanton solution is the de Sitter space­
time. Here the duality only leads to the anti-de Sitter. 
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Chapter 9 

NONCOSMOLOGICAL REDSHIFTS OF 
QUASARS 

Prashanta Kumar Das 
Indian Institute of Astrophysics, 

Bangalore 560034, India 

Abstract This article very briefly reviews the evidence for an against the cosmo­
logical hypothesis (CH) viz. the redshifts of all extragalactic objects are 
due to the expansion of the Universe. In the latter part various theoret­
ical noncosmological alternatives are discussed with a special emphasis 
on quasars. 

1. INTRODUCTION 
The discovery of the velocity-distance relation by Hubble established 

cosmology as an observationally testable and hence falsifiable subject. 
The theoretical basis for the observed Hubble relation was provided by 
the 'expanding Universe' models of Friedmann as well as Robertson and 
Walker. The Hubble's law is best stated in the form of the 'Cosmological 
Hypothesis' (CH): 'The redshift of an extragalactic object is (almost) 
entirely due to the expansion of the Universe'. The term 'almost' allows 
for a small noncosmological component. Thus if z and Zc are the total 
and cosmological redshifts of an extragalactic object and ZNC stands 
for redshift(s) due to Doppler, gravitational or any other effects or a 
combination of them then the validity of CH demands Z ~ Zc and 
1 ZNC 1« 1. 

Ever since its early success CH has remained the most favoured hy­
pothesis for extragalactic redshifts and the entire edifice of modern cos­
mology critically depends upon it. Hence it is imperative that its validity 
is assessed in the light of modern observational data. We proceed to do 
so in the next section. 
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2. OBSERVATIONAL EVIDENCE 
Following the approach of Burbidge (1973) and Narlikar (1989) we 

segregate the observations as (i) evidence consistent with the CH (ii) 
neutral evidence (iii) discordant evidence. 

2.1 CONSISTENT EVIDENCE 
Observations which have a natural interpretation in terms of the CH 

fall in this category. The following may be included in this group. 
A reasonably scatter-free magnitude-redshift (m-z) relation, consis­

tent with the CH, is obtained for galaxies - albeit for carefully chosen 
samples. Similarly the number-magnitude [N{m)] and number-flux den­
sity [N(s)] observations can be accommodated in the CH. Also the ob­
servations of absorption line systems in QSO spectra and gravitational 
lensing can be fairly plausibly explained if the CH is valid. An evolu­
tionary connection between the QSOs and active galactic nuclei (AGNs) 
can be made on the basis of the Hubble law. The data on QSO-galaxy 
(Q-G) associations provide, with some reservations, evidence for the cos­
mological nature of QSOs with moderate redshifts. 

2.2 NEUTRAL EVIDENCE 
In this we group the observations which do not suggest the CH directly 

but can be made compatible with it with the help of suitable epicycles. 
It is well known that the m-z plot for QSOs is a complete scatter 

diagram. Unlike in the case of galaxies there is a clear lack of any corre­
lation between the magnitudes and the redshifts in the case of quasars. 
This does not disprove the CH but, at the same time, it does not give any 
support to it either. Similarly the angular size-redshift [8(z)] observa­
tions for galaxies, radio sources and QSOs do not provide any conclusive 
evidence for the CH. The observed superluminal motions in QSOs can 
be made consistent with the CH in the somewhat contrived relativistic 
beaming models. The energy problems of QSOs, which largely disap­
pear if the QSOs are local, can be somehow reconciled with the CH. 
Lastly the absence of significant absorption in the continuum blueward 
of Lyman - a in the spectra of the QSOs with z ~ 2 does not have a 
very satisfactory explanation in the CH. 

2.3 DISCORDANT EVIDENCE 
In this section we present evidences which, if real, imply that some 

objects atleast possess substantial noncosmological redshifts and thus 
seriously question the validity of the CH. 
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Nonlinear Hubble Relation. Segal (1976, 1980) has argued for a 
quadratic velocity-distance relation (v :::::: D2) instead of the linear Hub­
ble law for nearby galaxies on the basis of his chronometric cosmology. 

Periodicities in Redshift Distribution. Periodicities and peaks in 
the redshift distributions (redshift quantization) have been claimed both 
for nearby galaxies (Tifft, 1997 and references therein) and QSOs (Duari, 
1997 and references therein), observations which go against the Cosmo­
logical Principle underlying the CH. 

Galaxy-Galaxy Associations. Arp (1987 and references therein) 
has reported several cases where the compact companion galaxies have 
excess redshifts compared to the bright main galaxy in a group, with an 
apparent luminous connection joining the two in some cases. 

QSO-Galaxy Associations. There seems to be a strong evidence 
that normal galaxies and QSOs tend to cluster together irrespective of 
their redshifts (Burbidge 1981, Arp 1981; Burbidge et al. 1990) imply­
ing physical associations and a substantial noncosmological (anomalous) 
redshift component in the QSO if its redshift is large. 

Alignments and Redshift Bunching. There are several examples 
of remarkable alignments between QSOs around a central galaxy (in 
some cases without a galaxy). Also in many cases the QSO redshifts are 
bunched around in relatively small intervals (Arp 1987, 1997a, 1997b) 
which are difficult to explain on the basis of the CH. 

3. NONCOSMOLOGICAL OPTIONS 

We feel that an unbiased assessment of the observational data shows 
that, though the CH may be applicable to ordinary galaxies, a sub­
stantial noncosmological (anomalous, discordant) component of red shifts 
may be present in the QSOs and to a lesser extent in compact, compan­
ion galaxies. Thus we may have ZNC :::::: Zc or even ZNC > Zc. We now 
discuss various theroetical alternatives for ZNC. 

3.1 THE DOPPLER EFFECT 
The Doppler shift, which occurs when there is relative motion between 

the source and the observer, was first considered as a mechanism for 
quasar redshifts by Terrell (1964) and Hoyle and Burbidge (1966). The 
Doppler model is attractive because the problems of energy generation 
and superluminal motion in quasars largely disappear, the scatter in 
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the Hubble diagram for quasars ceases to be a matter of concern and it 
offers a natural explanation to the phenomenon of alignments. The main 
problem with the Doppler effect is the absence of blueshifts which should 
strongly predominate over redshifts in a normal situation. However, 
this can be overcome in a scenario suggested by Hoyle (1980) in which 
the QSO radiates within a backward cone. Doppler models based on 
this hypothesis have been considered by Narlikar and Edmunds (1981), 
Narlikar and Subramanian (1982, 1983) to explain quasar alignments 
such as the Arp-Hazard triplets (Arp and Hazard, 1980). However, 
these models still predict a small number of blueshifted QSOs and the 
actual mechanism of ejection of quasars from galaxies still needs to be 
investigated. 

3.2 THE GRAVITATIONAL REDSHIFT 
The gravitational redshift, predicted by Einstein's General Theory of 

Relativity, was considered as a possible explanation for quasar redshifts 
soon after the discovery of QSOs. But there were two problems with it. 
The first was based on the observations of the very first two QSOs to be 
discovered, viz. 3C48 and 3C273. (Greenstein and Schmidt 1964). The 
second, of a theoretical nature, was due to Bondi (1964) who showed that 
with physically plausible equations of state, the surface gravitational 
redshift from a spherical body could not exceed a value rv 0.62. 

However, both these could be overcome in an ingenious model pro­
posed by Hoyle and Fowler (1967), who visualized the QSO as a com­
posite object in which the observed emission is from a central emitting 
region, which gets largely redshifted by the gravitational potential pro­
vided by the largely transparent envelope composed of highly collapsed 
compact objects. 

Das and Narlikar (1975), Das (1975, 1976, 1979; 1984) have developed 
detailed Hoyle-Fowler type core-envelope models for QSOs. From their 
work it seems possible to have bound, stable, massive ( Mrv 1010 M0 ) 

objects with realistic equations of state and non-negative distribution 
functions, capable of central redshifts upto "" 1.5. On the whole, these 
models could be satisfactory for isolated QSOs with z "" 1.5 but cannot 
offer a suitable explanation for alignments and associations. 

3.3 THE SPECTRAL COHERENCE EFFECT 
The spectral coherence effect (Wolf 1986, 1987), which can give rise 

to both blueshifts and redshifts, has been suggested as an explanation 
for QSOs with ZNC > O. But the Wolf effect is yet to be studied in detail 
in the astrophysical scenario. 
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3.4 CHRONOMETRIC COSMOLOGY 
Segal (1976) has suggested the chronometric cosmology as an alterna­

tive to the expanding Universe which gives a quadratic redshift-distance 
relation for nearby objects and has also claimed a better agreement with 
m(z), N(m) and O(z) observations. 

3.5 THE TIRED LIGHT THEORY 
Peeker (1976) has developed the idea that the photon may have a 

small but nonzero rest mass and travelling through space would lose en­
ergy progressively (tired light) through interaction with a specific form 
of matter (</J -matter) and be thus redshifted. The anomalous redshifts 
are attributed to local inhomogeneities in the </J - bath. Again the ap­
plicability of this theory remains to be critically assessed. 

3.6 THE VARIABLE MASS HYPOTHESIS 
Based on the Variable Mass Hypothesis (VMH) of the Hoyle and 

Narlikar (HN) theory of conformal gravitation (Hoyle and Narlikar 1974, 
Narlikar 1977) Narlikar and Das (1980) developed a model for the anoma­
lous redshift QSOs. In this scenario the redshifts are due to variable par­
ticle masses and kinks (inhomogeneities) in the zero mass hypersurface 
give rise to the anomalous redshifts. It is hypothesised that quasars are 
born in and ejected from the nuclei of parent galaxies as massless objects 
and the masses in them systematically increase with epoch. Analysis of 
the dynamics of such a quasar-galaxy (Q-G) pair shows that, depending 
upon the initial conditions, Q may escape the gravitational influence of G 
to emerge as a field quasar or may form a bound system with G undergo­
ing damped oscillations of decreasing periods. The Narlikar-Das model is 
fairly successful in explaining the observed features of Q-G associations, 
alignments and redshift bunching as well as the luminous connections 
observed between objects with vastly dissimilar redshifts [Das 1993] The 
VMH can also, in principle, offer an explanation to redshift quantization 
where a discrete mass spectrum would lead to discrete values of z. 

4. CONCLUDING REMARKS 
We have presented a very short overview of the present state of the 

observational evidence for an against the Hubble law and also discussed 
briefly the non cosmological alternatives. While no definite conclusions 
about the validity of the CH can be drawn (nor was it hoped) we feel 
that the discordant evidence cited above point to the fact that the non­
cosmological, 'antiestablishment' alternatives merit a far more serious 
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consideration than they have been accorded till now. While some of 
them (3.1. - 3.3.) fall within 'conventional' physics, the rest (3.4. - 3.6.) 
involve 'unconventional' ideas. Perhaps before invoking such 'radical' 
ideas the former should be investigated in more detail. 
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Chapter 10 

EXTRAGALACTIC FIRE-\VORKS IN 
GAMMARAYS 

Patrick Das Gupta 
Department of Physics 

University of Delhi, Delhi 110 007, India 

The enigma of gamma-ray flashes from random locations in space 
releasing bursts of photons with energy mostly above", 0.1 MeV, on 
time-scales ranging from about 30 milli-seconds to '" 103 seconds with 
diverse time-profiles, gives rise to one of the most challenging problems in 
astronomy that cajoles many theorists to create exotic models to under­
stand the nature of gamma-ray bursts. Even professor Jayant Narlikar 
was not spared from the charm of gamma-ray flashes, having been pro­
voked into working out a whitehole description of gamma ray bursters 
(GRBs) in late seventies! As a tribute to Prof. Narlikar, I will presently 
discuss some of the observational aspects of GRBs, and conclude with a 
brief description of our recent findings pertaining to temporal profiles of 
short-duration bursts. 

1. FLASHES AND AFTERGLOWS 

Three decades have gone by since the serendipitous discovery of 16 
GRBs by US watchdog satellites Vela 5 and Vela 6, that was reported 
in scientific literature later in 1973 [1] However, it appears now that the 
first detected GRB may have been an earlier event recorded by the Vela 
4a satellite on July 2, 1967 [2]. About a quarter of a century later, with 
the launching of the Compton Gamma-Ray Observatory (CGRO) by 
NASA, there was a major jump in the understanding of GRBs. BATSE 
on board the CGRO started detecting GRBs at a rate of'" 1 per day, 
and further, led to the discovery that GRBs are distributed isotropically 
on the celestial sphere [3], ruling out those models that involved neutron 
stars in the Galactic disc and suggesting, rather, that GRBs lie at cos­
mological distances. BATSE detected gamma-ray events with intensity 
as high as 10-3 erg/sec/cm2. 
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The next phase transition in the understanding of GRBs started on 
February 28, 1997, when with the help of an Wide Field Camera on 
board the Italian-Dutch satellite BeppoSAX , astronomers zeroed in 
to the location of gamma-ray burst event GRB 970228, and detected 
transient afterglows from this object both in X-rays as well as in optical 
band [4]. Since then, there has been a string of detection of afterglows 
in the lower energy bands corresponding to a handful of GRBs [5,10], 
with an added bonus - distance information for two GRBs. Observed 
absorption lines suggests that the redshift of GRB 970228 is larger than 
0.83 [6], while GRB 971214 appears to be on top of a galaxy with a 
high star-formation rate at a redshift of 3.42 [8]. If redshift estimates 
are correct then the debate between local versus extragalactic origin of 
GRBs gets settled in favour ofthe latter. GRBs with observed afterglows 
like GRB 970508, GRB 971214, GRB 980326 and GRB 980329 appear 
to be on top of different host galaxies, strengthening the case for their 
extragalactic origin. 

The afterglow flux in X-rays and in optical band for these GRBs 
appears to decrease with time steadily as t, in agreement with the pre­
diction of Fire-ball models [11,15]. Most fire-ball models start with the 
assumption that energy '" 1053 ergs is very quickly released in a re­
gion of size'" 100km leading to a rapid expansion of this hot ball of 
photons, neutrinos and electron-positron pairs, and subsequent conver­
sion of thermal energy into relativistic bulk motion of the outer shell 
[11,12]. Whether the observed gamma-ray burst take place when the ex­
panding fire-ball becomes optically thin or when the shocked outer shell 
moving relativistically interacts with external matter is still a subject of 
intense activity [16,19]. However, the afterglows in lower energy photons 
is expected to be due to the interaction of the expanding ball with the 
ambient matter [13,15]. 

GRB 971214, observed a year back, poses a brain teaser. The esti­
mated energy released above 20 keY from GRB 971214 is found to be 
'" 1053 ergs ( provided emission is isotropic, and provided its redshift 
is indeed", 3.4) embarrasingly large for models that invoke merging of 
binary neutron-stars to trigger a fire-ball [8]. Furthermore, merging sce­
nario faces problem from different quarters - numerical calculations sug­
gest that it is unlikely that neutrino annihilation could produce required 
photons and electron-positron pairs to initiate a powerful fire-ball, and 
to make matter worse, both the coalescing neutron stars seem to collapse 
to form black holes before the final merging [20]. The key question at the 
moment is : what gives rise to an expanding fire-ball? A total energy 
release of", 1053 ergs to about", 1055 ergs in a region of size'" 100 km 
appears to be the requirement, indicating the basic source of energy to 
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be of gravitational binding energy origin either from binary systems of 
compact objects or from cores of massive stars. It has been suggested 
in the literature that GRBs may be associated with cataclysmic end 
of massive stars, linking the rate of gamma-ray burst events with the 
massive star-formation rate [20,22]. However, it is fair to say that the 
current situation is open to new ideas. 

2. LONG AND SHORT 
In gamma-rays, GRBs display a wide variety in their temporal profiles 

- single pulse events, smooth well-defined multiple peaks, chaotic events 
or distinct peaks with long gaps in between [23]. During the burst, flux 
typically varies on time-scales of few milli-seconds, although a case with 
sub-millisecond structure has been reported [24]. The peaks are nor­
mally asymmetric with shorter leading edges and longer trailing edges, 
suggesting an explosive origin [23]. If the individual peaks were due to 
sweeping beams as in the case of pulsars, one would expect symmetric 
pulses on an average. 

Duration of a burst is normally characterised by Tgo, defined as the 
time-interval in which the gamma-ray fluence increases from 5 to 95 
percent of its total gamma-ray fluence. It has been pointed out that al­
though for single pulse events the duration is a measure of pulse-width, 
in the case of bursts with multiple, narrow peaks as well as those with 
long gaps sandwiched between peaks, the duration characterises pulse­
separation time, and therefore ought to be distinguished from the pulse 
width, as the respective origins could be due to distinct physical pro­
cesses. 

The histogram of Tgo exhibits a bimodality with a distinct dip in num­
ber of GRBs, around Tgo rv 2 seconds [25]. The short-duration bursts 
(defined to be those with duration less than 2 seconds) are found to be 
roughly one-fourth of the total number of observed GRBs. It appears 
that bursts with shorter duration tend to be brighter and harder [23] 
(i.e. fraction of number of photons detected in higher energy channels is 
larger). Time-profiles of a given GRB in different energy channels show 
that duration in high energy channels tend to be shorter while the cor­
responding sub-pulses are sharper. Those bursts that display sharp rise 
followed by a long decay period exhibit hard to soft evolution with time 
[23]. One may also look for gravitationally lensed GRBs by analysing 
two or more time-profiles with apparent similarity [26,27J. 

Recently, we have studied 65 short duration bursts belonging to the 
3B catalogue [28]. In this sample, time-profiles with single and double 
peaks are 23 and 16 in number, respectively, forming the majority, while 
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triple peaked bursts are 12 in number. Bursts with larger number of 
peaks are relatively fewer, culminating with a solitary case of eight­
peaked time-profile. Since, peaks in the time-profiles display temporal 
asymmetry, individual peaks have been fitted with log-normal functions. 
We have characterised the rise-time and decay-time of individual peaks 
by the time taken by the observed photon counts to increase from 5 to 
95 percent of the peak height and the corresponding decrease from 95 
to 5 percent, respectively. 

Since the distances of the bursts are unknown, we have studied rrd, 

the ratio of rise to decay time, against other parameters. Taking the 
ratio has a merit in the sense that stretching of time-intervals due to 
cosmological expansion gets cancelled. We find that single-peaked bursts 
tend to be highly asymmetric with an average value for r rd to be '" 0.3 
(average has been taken over bursts with only one peak). Considering 
the sub-sample of bursts with two or more peaks, one finds a systematic 
increase in the average value of r rd as one moves from first to second 
peak and so on. We also find a strong positive correlation between rise­
time and decay-time. Scatter-diagram of energy evolution parameter 
versus burst duration, corresponding to this sample of short-duration 
bursts, appears to suggest that there is a greater lag between hard and 
soft photons for longer bursts in this sample. Details of these analysis 
will appear later [2S]. 

3. TAIL END 
Both supernovae as well as GRBs involve roughly similar energy scales 

suggesting that latter may be associated with the end product of either 
single stellar or binary evolution. With", 1011 stars in individual galax­
ies, and 'seeing distance' in gamma-rays extending upto few Gpc, the 
high rate of GRB detection may not pose serious threat to such scenarios. 
GRBs are also expected to be strong sources of gravitational radiation, 
and their high event-rate heralds a promising future for LIGOs. 

However, mechanisms that lead to the fire-ball and the observed mul­
tiple peaks as well as the bimodal distribution of duration, still remain 
a puzzle. In the post-BeppoSAX times, the extragalactic origin along 
with the observed high degree of isotropy of GRB distribution may be 
used as a reverse-argument to claim that universe is isotropic even in 
the gamma-ray regime! 
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Abstract 
The large scale interferometric gravitational wave detectors consist 

of Fabry-Perot cavities operating at very high powers ranging from tens 
of kW to MW. The high powers may result in several nonlinear effects 
which would affect the performance of the detector. In this article I 
will consider two such major effects which could result in degrading 
the performance of the detector. The first is the thermal distortion of 
the mirrors due to temperature gradients and the second is effect of 
radiation pressure which can displace the freely hanging mirrors. Both 
these effects tend to drive the cavity out of resonance degrading the 
optimal performance of the detector. These effects are likely to be 
important in the optimal functioning of the full-scale interferometers 
such as the VIRGO and LIGO. 
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1. INTRODUCTION 
This article is in honour Prof. Jayant Narlikar who has been a wonder­

ful teacher and a source of great inspiration to me. He is responsible for 
the crucial 'phase transition' which launched me in my research career. 

The direct detection of gravitational radiation is one of the major 
challenges in these millenary years. The existence of gravitational waves 
(GW) was predicted by Einstein as early as 1916. It was not until 
forty years later, that relativists proved rigourously that gravitational 
radiation was in fact a physically observable phenomenon and that GW 
carry away energy. In some ways, in the general theory of relativity, 
GW are similar to electromagnetic waves, in that they travel in vacuum 
with the universal speed c '" 3 X 108 metres per second and have two 
polarisations. But in many crucial ways they differ from electromagnetic 
waves so that they can bring to us information about the universe which 
is complementary, in fact, almost orthogonal, to that of electromagnetic 
waves. While electromagnetic waves are generated by matter on the 
atomic scale, GW are generated by bulk motions of matter. The crucial 
point is that since gravity couples very weakly to matter, GW are not 
easily scattered by intervening matter, unlike electromagnetic waves, and 
thus carry high fidelity information about the source. Astrophysically 
powerful sources of GW must be compact and relativistic. Compact 
objects possess high potential energies which can give rise to relativistic 
velocities in surrounding matter, thus producing powerful GW. Such 
sources are normally shrouded by dust or plasma, the fact that GW 
are not easily scattered, as opposed to electromagnetic waves, it makes 
them ideal probes of such objects. However, the other side of the coin 
is that this very weak coupling makes them hard to detect. So much 
so that, physicists have not seriously considered them for experimental 
observation or detection until recently. 

But thanks to the enormous strides technology has taken in the past 
few decades and simultaneously the efforts by astronomers that it has 
become viable to seriously consider the observation of GW. The advent 
of radio astronomy established that the universe exhibits violent phe­
nonmena such as radio jets, quasars etc. Technology at the same time 
made it possible to make high precision measurements and produce in­
struments of unprecedented sensitivities which could in principle detect 
GW from the violent phenomena in the universe. At first the sensitivi­
ties required to detect GW were beleived to be naively optimistic. But 
subsequent negative results obtained by experimentalists, coupled with 
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the up to date and careful estimates of the strengths of the sources ob­
tained from astrophysics and highly directed and focussed Rand D for 
better detection techniques, led to the construction of three large scale 
and two medium scale laser interferometric detectors. The three large 
scale detectors comprise of two detectors of the US LIGO [1] project 
with arm lengths of 4 km. and the one detector of the French/Italian 
VIRGO [2] project with an arm length of 3 km. In the medium scale 
there are the German-British project GE0600 [3] with an arm length of 
600 metres and the Japanese TAMA300 [4] of 300 metres arm length. 
Also initial funding has been obtained for the Australian AIG0500 [5] 
project. There are also separate proposals for space-based detectors 
which could be operational twenty-five years from now (e.g., LISA: the 
Laser Interferometer Space Antenna, a cornerstone project of the Eu­
ropean Space Agency) [6]. The ground based interferometers will use 
Fabry-Perot cavities in their arms and arm lengths of a few kilometers. 

2. NONLINEAR EFFECTS IN HIGH 
POWERED CAVITIES 

There are several noise sources which plague the detector. Amongst 
them, the photon shot noise is dominant at high frequencies. It is re­
duced by increasing the amount of power of the laser source, as the noise 
scales inversely as the square root of the power. Therefore to attain 
the desired sensitivities, the cavities envisaged will operate at very high 
powers ~ tens of kW for initial detectors and perhaps MW in advanced 
detectors. 

However, the high power stored in the cavities can generate a number 
of nonlinear effects which would adversely affect the operation of the 
optical cavity. The most evident effect is that of the absorption of the 
light power in the substrates of the mirrors resulting in temperature gra­
dients across the mirror. The temparature gradients can cause thermal 
lensing finally leading to loss of power in the cavity. Moreover, the tem­
perature changes deform the mirror, detuning the cavity in the process. 
The other major effect is that of the radiation pressure exerted on the 
mirror surface. Since in the detector the mirrors are 'freely' hanging, 
the radiation pressure can change the position of the mirror, driving the 
cavity out of resonance and thus degrading the sensitivity of the detec­
tor. Therefore, it is essential that experimentalists have a quantitative 
idea about the magnitude of these effects and when these effects must 
be seriously combated. 

In this article I will restrict myself to two of these effects, (a) the 
thermo-elastic deformation of the mirrors, (b) radiation pressure. The 
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Figure 11.1 The mirror comprising of substrate and coating heated by the laser beam 

analysis is particularly important within the bandwidth of the detector 
between few Hz to a few kHz where the servo is in effect inoperative. The 
emphasis therefore lies in this regime, where the analysis is necessarily 
dynamical. 

3. THERMO-ELASTIC DEFORMATION OF 
THE MIRRORS 

In order to study the dynamics we must first obtain the time depen­
dent transfer function which connects the power in the cavity to the 
deformation of the mirror. Then secondly we must obtain the change in 
power due to the deformation. We then get a coupled system which we 
solve self-consistently [7, 8]. We proceed in three steps: 

1. Obtain the time dependent temperature profile inside the mirror 
substrate. 

2. Solve the thermo-elastic problem to obtain the deformation for the 
temperature profile. 

3. Evaluate the change in power due to the deformation of the mirror. 

The mirror is in the shape of a cylinder of radius a and thickness h 
and consists of a substrate, usually silica, and a high-quality reflective 
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coating. In gravitational wave interferometers typically, a rv 0.1 m and 
h rv 0.1 m (for the input mirrors). The axis of the mirror is the z-axis 
and it is coated on the face at z = 0 (see Fig.11.1). The cavity lies along 
the positive z-axis with the other mirror (suitably curved) at z = L. 
The intra-cavity laser light is incident on the mirror at z = 0 which gets 
heated due to absorption in the coating. We neglect absorption in the 
substrate of the mirror. The mirror loses heat to its surroundings by 
radiation. We consider a time varying intensity profile I(r)e-int with a 
single Fourier component at O. I(r) is the modulus square of the TEMOO 
mode of the electric field and has a Gaussian profile. The temperature 
T obeys the diffusion equation, 

(11.1) 

where (for pure silica) p is the mass density (2202 kg m-3), C is the spe­
cific heat capacity (745 J kg-1 K- 1) and K is the thermal conductivity 
(1.38 W m- 1 K- 1). We solve the equation with radiative boundary con­
ditions. An approximate but adequately accurate, axially symmetric, 
solution is the temperature profile given by, 

T(t,r,z) = Ej;: exp [J - i (J - ~ + Ot)] . (11.2) 

where, 8 is the 'skin depth' defined by, 

J~ J ~~p (11.3) 

For the VIRGO parameters the skin depth is a fraction of a millimetre. 
The time varying temperature causes time varying deformation near 

the lit surface of the mirror producing acoustic waves. To quantify this 
we solve the thermoelastic equations for the temperature profile above. 
We do not write down the equations here but just mention that the one 
must obtain the displacement vector field u in the mirror by solving the 
elastic equations in which the forcing term arises from the temperature. 
However what is important to our analysis is the z component of the 
displacement field, u z , at the lit surface of the mirror. It is in fact U z 

averaged over the Gaussian beam profile which determines the detuning 
of the cavity. It is given by, 

(u z ) (0) = L uz l<PooI2dS, (11.4) 

where A is the area of the mirror and <Poo is the TEMOO mode. For 
1 Watt of absorbed power and for the VIRGO parameters, (u z ) (0) rv 

O.72i X 10-9 0- 1 m. 
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The phase '¢ corresponding to this deformation is obtained by multi­
plying this average displacement by twice the wave number k = 271"/>' of 
the laser light. Thus we have, 

(11.5) 

This is the detuning phase which must be substituted in the expression 
for the intra-cavity power. Note that this information in '¢ is incomplete 
since the above expression is valid only at frequencies much greater than 
the diffusion time-scale f'V 3 hours for the VIRGO mirror. We include 
the static part as given by [9, 10] in our analysis in a phenomenological 
manner and obtain '¢(n) for 0, f'V o. We then have a transfer function 
connecting '¢(n) to the power p(n). By taking inverse Fourier trans­
forms we obtain a differential equation governing '¢(t), namely, 

d'¢ __ '¢ + a 
d(not) - b - cos('¢ + <Po)' 

(11.6) 

a(0)t2c;p. l+R2 
where, a = 21bo on, b = 2R' R = TIT2, the product of the reflectiv-
ities of the mirrors, tl is the transmission coefficient of the mirror M 1 , 

Pin is the input power and € is the absorption coefficient. a(O) is the 
detuning phase per Watt of absorbed power in the static case and a is 
the corresponding quantity in the dynamic case. The ratio of a to a(O) 
is no. Note that since R ::; 1, b ~ 1. For b > 1 we obtain stable solutions. 
For small values of'lj; and <Po = 0 we can integrate the equation to yield, 

a ( n t) '¢ f'V b _ 1 1 - e- 0 • (11.7) 

This is inherently a stable solution. It is to be noted however that eq. 
11.6 is suspect in the regime when the variations in '¢ occur near the 
thermal diffusion time scale f'V 3 hours. Our interest however lies in the 
bandwidth of the detector which is above a few Hz where the solution 
is certainly valid. In any case, variations below the bandwidth will be 
removed by the servo-control. 

4. DYNAMICS OF RADIATION PRESSURE 
EFFECTS 

The other important effect is that of radiation pressure. The intra­
cavity power P will produce a radiation pressure force on the mirrors 
f'V 2P / c, where c is the speed of light. Even in initial detectors, the 
intra-cavity power will be of the order of tens of kW, which will produce 
a force of the order of 10-4 Newtons. This force is sufficient to displace 
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the mirrors by order of the wavelength>. '" 1O-6m of the laser (Nd­
Yag) light, thus driving the cavity out of resonance [11, 12]. In fact, 
the situation is even worse because, there is the so called 'delay effect' 
[13, 14] which leads to a continuous gain in energy, if the mirrors are 
left 'free' meaning that no servo-control is used. However, in actual 
detectors a servo will be used, and even then the delay effect cannot be 
ignored in the action of the servo. Therefore in this section we will first 
consider the case for the free mirrors and then just describe the results 
for mirrors with servo control or the 'locked cavity'. 

4.1 FREE MIRRORS 
The only forces acting on the mirrors are the radiation pressure forces 

and gravity which manifests itself as the restoring force of the pendulum. 

Ml 

B .. 
A 

• 
B3 

... ... 

Figure 11.2 Schematic diagram of the cavity and the intra-cavity fields 

We consider a single cavity with mirrors M1 and M2 which are sus­
pended as shown in fig. 11.2. The input beam A enters the cavity from 
mirror Ml and bounces back and forth between the mirrors. The field 
builds up inside the cavity and this magnitude depends on the finesse 
which is dependent on the reflectivities of the two mirrors and the de­
tuning of the cavity. The field or the power produces radiation pressure 
force which pushes on the mirrors driving them apart, thus changing the 
original distance between them. This in turn changes the power inside 
the cavity. For instance if the mirrors were hanging in a position of res­
onance, the radiation pressure force drives the cavity out of resonance, 
reducing the radiation pressure force. The mirrors start swinging with 
radiation pressure force adjusting to the continuously varying length of 
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the cavity. The crucial point is that the radiation pressure force does not 
adjust instantaneously to the new length but Zags behind the expected 
static force (the force if the cavity had this fixed length) by an amount 
comparable to the storage time of the cavity. 

We will consider two situations: 

1. The cavity is in resonance and the laser is switched on. 

2. The mirrors are hanging in an equilibrium state with the radiation 
pressure forces balancing the restoring forces of the suspension. 

Since it is the distance between the mirrors which determines reso­
nance, we will consider the differential mode 'ljJ = k(X2-Xt), where Xl, X2 
are the positions of the mirrors. The appropriate equation of motion is: 

(11.8) 

where F(t) is the total radiation pressure force acting on the two mir­
rors. We have ignored damping because the delay effects occur on much 
smaller time scales than the damping time-scale of ,...., 106 sec (VIRGO). 
Denoting by Fs ('ljJ) the force when the mirrors are stationary, we find 
that for low mirror velocities,...., 1J.tm / sec the force profile 'follows' the 
mechanical motion retarded by an effective delay Tlag, or, 

(11.9) 

The equation of motion becomes, 

(11.10) 

The ~ term is the damping/anti-damping term and depending on its 
sign the system gains or loses energy. We can write an expression for 
the energy gain as, 

(11.11) 

where, ~E is the energy gain/loss in the time interval between tl and 
t2' For the VIRGO finesse the effective delay Tlag is around 16 to 30 
times the round trip time T of the cavity, near the resonance peak. 

We can integra:te the above equations numerically. We find that the 
net effect of the 'ljJ term is that of anti-damping and energy is gained as 
the system completes an oscillation. 
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The results are similar in the case when the mirror hangs in equilib­
rium between gravitational and suspension forces. The perturbation b'ljJ 
about the equilibrium point 'ljJeq satisfies the equation, 

(11.12) 

where Teq and f2eq depend on the finesse, power, 'ljJeq and T. Since Teq > 0, 
the system is unstable. Figure (3) displays the phase space trajectory of 
the mirror. 

INPUT POWER _ 1 tim 

0,5 
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,(),3 '()2 .(),1 ° 0,1 

• 

Figure 11,3 The phase space trajectory for 1 kW of input power, 

4.2 LOCKED CAVITY 
We now include the effect of the servo-system since the mirrors in 

the actual cavities will be locked by the servo. We have used the servo­
control transfer function given by Caron et al.[15] in incorporating the 
effect of the servo. We assume the displacement to be small enough 
so that the radiation pressure force Fs ('ljJ) is linear in the displacement. 
Then it is possible to use Laplace transform methods to analyse the 
system. In effect, we obtain a feedback loop and thus a characteristic 
equation for the mirror displacement. The roots of this equation de­
termine the stability of the system and they essentially depend on the 
phase offset <5 of the operating point, the finesse of the cavity and the 
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input power. We find that for 0 > 0 and for typical parameters, the 
system is stable. For 0 < 0, but chosen within the linewidth, for a given 
finesse and above a certain critical power the cavity becomes unstable. 

Given the finesse, the mass and the servo transfer function parame­
ters, we can write, the critical input power Perit , above which instability 
occurs, as, 

(1 + a 2 )382 

Perit = Pehar a(1 + a 2 - 38)(1 + 1.58)' 
(11.13) 

where 8 = 1- R and a is defined through 0 = a8. For VIRGO, Pehar :::: 

340 kW and the critical power can range from few kW to hundreds of 
kW depending on the detuning. 

5. CONCLUSION 
Since as yet, there are no optical cavities operating at such high pow­

ers, it is all the more important to have simulated results in the absence 
of any experiments. We draw the following conclusions from our analy­
sis: 

Thermoelastic deformation of the mirrors will not cause power vari­
ations within the bandwidth of the detector and therefore this is not a 
cause for worry to GW experiments. On the other hand, radiation pres­
sure makes the GW interferometer without servo control, intrinsically 
unstable at all powers. A servo will combat the instability only below 
a certain critical power Perit given above. But since the critical power 
is high, the initial detectors operating at relatively low powers will not 
encounter the instability. However, for advanced detectors operating at 
high powers, one must seriously consider the implications. 
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Chapter 12 

THE EPISTEMOLOGY OF COSMOLOGY 

George F. R. Ellis 
Mathematic Department, University of Cape Town 

Cape Town 7700, South Africa 

Fundamental issues in cosmology have always been of major concern to Jayant 
Narlikar. It is thus a pleasure to dedicate this reflection on the nature of epis­
temology in cosmology to him, on the occasion of his 60th birthday. 

Abstract This article reviews epistemological issues that arise in cosmology, which 
is different from other subjects particularly because the universe is 
unique. A series of philosophical assumptions underlie our present-day 
spatially homogeneous and isotropic world models, whose assumed ge­
ometry is not directly testable because of limitations on what can be 
measured; alternative models are also viable. Nevertheless the standard 
model has strong support from evidence and can with full justification 
be adopted as a solid basis for cosmological investigation. However phys­
ical cosmology rests on, and is unable to investigate in terms of its own 
methods, a further series of metaphysical issues to do with the existence 
and nature of physical laws. Examination of these issues has of necessity 
to rest on appropriate philosophical and metaphysical approaches. 

1. INTRODUCTION 
Scientific Cosmology is the study of the large scale structure of the 

physical Universe (by definition, that single physical entity consisting of 
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all events that are causally connected to each other and that includes our 
world), and in particular examines the expansion of the universe from 
a Hot Big Bang and the subsequent formation of structure (including 
galaxies and galaxy clusters). It has unique features that make consid­
eration of its epistemology! a central concern in any mature approach 
to the subject (see [2, 13] for useful discussions). 

2. THE CONTEXT 
Three somewhat mundane features are crucial in terms of their effect 

on the epistemology of cosmology. These restrictions cannot be evaded. 
The first and most fundamental is that there is only one physical uni­

verse. While there is a vast variety of conceivable or possible universes, 
there is only one that actually exists and that we have access to (we live 
in it, and can observe it and experimentally interact with some parts 
of it). I discount here as a serious part of classical physics2, loose talk 
about 'many universes' - if they are directly or indirectly physically con­
nected to us, they are part of our one universe, and the terminology is 
seriously misleading; if they are not, we cannot interact with them or 
observe them, so we can say anything we like about them without fear 
of disproof; thus any statements we make about them have no scientific 
status. 

The implication is that we cannot compare the universe with any 
similar object that we know exists. We can compare it with hypothetical 
objects, considered as possible under various kinds of hypotheses, for 
example possible universes as legislated by Einstein's theory - but this 
is quite different to comparing it with real objects, demonstrating the 
existence in Nature of some kind of behaviour; they are possible, but 
not actual3 . Nor can we scientifically establish 'laws of the universe' 
that might apply to the class of all such objects - for there is no way 
we can test any such proposed law (we cannot re-run the universe, nor 
obtain statistical properties of a class of physically existing universes). 
The concept of a 'law' becomes doubtful when there is only one object 
to which it applies. 

The second is that we can only view the universe, considered on a 
cosmological scale, from one spacetime event ('here and now'), because 
of its vast scale. If we were to move away from this spatial position 
at almost the speed of light for say 10,000 years, we would not succeed 
in leaving our own galaxy, much less in reaching another one; and if we 
were to start a long term astronomical experiment that would store data 
for say 20,000 years and then analyze it, the time at which we observe 
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the universe would be essentially unchanged (because its age is of the 
order of 1010 years). 

The third is that the region of the universe we can see from this 
vantage point is restricted, because a finite time has elapsed since the 
universe became transparent to radiation, and light can only have trav­
eled a finite distance in that time. As no signal can travel to us faster 
than light, we cannot receive any information from galaxies more distant 
than our visual horizon - essentially the distance light can have traveled 
since the decoupling of matter and radiation as the hot early universe 
cooled down [30, ti]. 4 . There are many galaxies - perhaps an infinite 
number - at a greater distance, that we cannot observe by any type of 
radiation. The exception to this is if we live in a small universe we have 
already seen around (because it has closed spatial sections whose size is 
smaller than the Hubble scale). This is a possibility, and is in principle 
testable [7]; however there is no solid evidence to show that the real 
universe is like this. 

3. OBSERVATIONS 

As in other sciences, the epistemology of cosmology is based on the 
types of observation we can make. Null cone observations of sources 
and background radiation are obtained from telescopes operating at all 
wavelengths (optical, infrared, ultraviolet, radio, X-ray), giving detailed 
observations (including visual pictures, spectral information, and po­
larization measurements) of the matter this side of the visual horizon. 
We can also aspire to use neutrino and gravitational wave telescopes to 
obtain information on matter lying between the visual horizon and the 
particle horizon5 . However distant sources appear very faint, both be­
cause of their distance, and because their light is highly redshifted (due 
to the expansion of the universe). Additionally, absorption of intervening 
matter can interfere with light from distant objects. The further back we 
look, the worse these problems become; thus our reliable knowledge of 
the universe decreases rapidly with distance (although the situation has 
improved greatly owing to the new generation of telescopes and detec­
tors, particularly the Hubble Space Telescope and the COBE satellite). 

Three interrelated problems occur in interpreting these observations. 
The first is that (because we can only view the universe from one point) 
we only obtain a 2-dimensional projection on the sky of the 3-dimensional 
distribution of matter in the universe. To reconstruct the real distri­
bution, we need reliable distance measurements to the objects we see. 
However because of variation in the properties of sources, we lack reliable 
standard candles or standard size objects to use in calibrating distances, 
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and have to study statistical properties of classes of sources. Second, 
because the radiation by which we obtain information travels to us at 
the speed of light6 , we see distant sources at an earlier epoch when their 
properties may have been quite different. The inevitable lookback-time 
involved in our observations means we need to understand evolution ef­
fects which can cause systematic changes in the properties of sources we 
observe; but we do not have good theories of source evolution. Thirdly, 
a variety of selection effects interfere with observations, because some 
sources are easy to detect but others are not. Most notably, some kinds 
of matter emit very little radiation and are not easy to detect by ab­
sorption, hence the dark matter problem: we do not know the amount 
of matter in the universe to within an order of magnitude. 

Another source of cosmological information is data of a broadly ge­
ological nature; that is, the present day status of rocks, planets, star 
clusters, galaxies, and so on contains much information on the past his­
tory of the matter comprising those objects. Thus we can obtain detailed 
information on conditions near our spatial position 7 at very early times 
if we can interpret this data reliably, for example by relating theories 
of structure formation to statistical studies of source properties. Par­
ticularly useful are measurements of the abundances of elements which 
resulted from nucleosynthesis in the Hot Big Bang, and age estimates 
of the objects we observe. If we can obtain adequate quality data of 
this kind at high redshifts, we can use this type of argument to probe 
conditions very early on at some distance from our past worldline [9]. 

A final - much more controversial - source of data about the universe 
is the nature of local physical laws. For example it might be that the 
local inertial properties of matter are related to the distribution of mat­
ter in the distant universe, or that the existence of the local arrow of 
time is related to boundary conditions in the distant past and future. 
The problem is that in the cosmological context, because of the unique­
ness of the universe, it is difficult to distinguish between laws of nature 
and boundary conditions governing solutions to those laws; and any pro­
posal in this regard is untestable. Thus while there may be invaluable 
information hidden here, it is difficult to decode it uniquely. 

4. GEOMETRY 

One of the prime aims of cosmology is to determine the spacetime 
geometry of the universe. The standard models of cosmology are the 
Friedmann-Lemaitre (FL) family of universe models expanding from a 
Hot Big Bang, based on the Robertson-Walker (RW) geometries, that 
is, spacetimes that are exactly spatially homogeneous and isotropic ev-
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erywhere. We want to know to what degree observational data supports 
these universe models, and what parameters are appropriate for a 'best­
fit' FL model. 

Observational support for the basic idea of expansion from a hot big 
bang is very strong [10]: the linear magnitude-redshift relation demon­
strates expansion, with the blackbody Cosmic Background Radiation 
(CBR) being strong evidence that there was indeed evolution from a 
hot early stage8 , and agreement between measured light element abun­
dances and the theory of nucleosynthesis in the early universe confirming 
this interpretation. The question is how good are the RW geometries as 
models of the real universe. 

The first issue that arises is that of averaging scales and scale of de­
scription. The real universe is obviously neither spatially homogeneous 
nor isotropic. Thus this idealized model is meant to represent the uni­
verse in some smoothed out or averaged sense. It is difficult to define 
such an averaging procedure in an adequate way within the context of 
the curved spacetimes of general relativity theory (the theory of gravity 
in the majority of cosmological models). Thus underlying our models is 
an ill-defined averaging process that is rarely examined [12, 13]; indeed it 
is seldom one even sees an explicit statement as to what averaging scale 
is understood when the RW geometry is used, but this is an important 
parameter in cosmology, characterizing the minimum scale at which the 
universe can be validly described as homogeneous and isotropic. 

Assuming one is talking about a 'large enough scale', the second issue 
is, why should we believe that the universe is both spherically symmetric 
and spatially homogeneous? What is important here is the relation 
between spatial homogeneity9 and isotropylO. If (i) a universe is spatially 
homogeneous, and is also isotropic about one point, then clearly it is 
isotropic about every point. If (ii) a universe is isotropic about at least 
3 points at any time, and in particular if it is isotropic about every point, 
then it is necessarily spatially homogeneous. If either of these relations 
hold everywhere at some initial time, thenll they will hold at all later 
times, and the universe has a RW geometry. It will then be characterized 
by an isotropic background radiation spectrum, and by isotropic source 
observations (magnitude-redshift relation, angular size-distance relation, 
number counts) of a specific FL form, seen equally by all observers, with 
the shape of the curves depending on the deceleration parameter qo and 
density parameter no. 

Considered on a large enough angular scale, astronomical observa­
tions are isotropic about us, both as regards source observations and 
background radiation; indeed the latter is spectacularly isotropic, better 
than one part in 105 after a dipole anisotropy, understood as resulting 



128 THE UNIVERSE 

from our motion relative to the rest frame of the universe12 , has been 
removed. Because this isotropy applies to all observations (not just the 
background radiation, which by itself cannot establish the required re­
sult), this establishes that in the observable region of the universe, both 
the space-time structure and the matter distribution are isotropic about 
us. If we could additionally show that the source observations had the 
unique FL form as a function of distance, this would additionally es­
tablish spatial homogeneity, and hence a FL geometry. However the 
observational problems mentioned earlier - specifically, unknown source 
evolution - prevent us from carrying this through. Indeed the actual situ­
ation is the inverse: taking number-count data at its face value, without 
allowing for source evolution, contradicts a RW geometry. The usual 
procedure is to assume spatial homogeneity is known some other way, 
and deduce the evolution required to make the observations compatible 
with this assumption (it is always possible to find a source evolution that 
will achieve this [14]). Thus attempts to observationally prove spatial 
homogeneity this way fail [15, 16]. 

What about an alternative route? If we could show isotropy about 
more than two observers, we would prove spatial homogeneity. Now 
the crucial point has already been made: we cannot observe the uni­
verse from any other point, so we cannot observationally establish this 
requirement. Hence the standard argument is to assume a Copernican 
Principle: that we are not privileged observers. This is plausible in 
that all observable regions of the universe look alike: we see no major 
changes in conditions anywhere we look. Combined with the isotropy we 
see about ourselves, this implies that all observers see an isotropic uni­
verse, and hence by (ii) establishes the RW geometry. The result holds 
if we assume isotropy of all observations; a powerful enhancement was 
proved by Ehlers, Geren, and Sachs [17], who showed that it follows if 
one assumes simply isotropy of freely-propagating radiation about each 
observer: using the Einstein and Liouville equations, exact isotropy of 
the CBR at each point implies an exact RW geometry. 

This is currently the most persuasive observationally- based argument 
we have for spatial homogeneity13. A problem is that it is an exact result, 
assuming exact isotropy of the CBR; is the result stable? Recent work 
has shown that indeed it is: almost-isotropy of the CBR everywhere in 
some region proves the universe geometry is almost-RW in that region 
[19]. Thus the result applies to the real universe - provided we make 
the Copernican assumption that all other observers, like us, see almost 
isotropic CBR. And that is the best we can do. The observational sit­
uation is clear: the result follows not directly from astronomical data, 
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but because we add to the observations a philosophical principle that is 
plausible but untested. It mayor may not be true14 . 

What is the alternative? It is that we live in a spherically symmetric 
inhomogeneous universe [22, 23], where we are situated somewhere near 
the centre (as otherwise our observations would not be almost isotropic), 
with the cosmological redshift being partly gravitational15 . Most people 
regard this proposal as very unappealing - but that does not show it is 
incorrect. One can claim that physical processes such as inflation make 
existence of almost-RW regions highly likely, indeed much more probable 
than spherically symmetric inhomogeneous regions. This is a viable 
argument, but we must be clear what is happening here - we are replacing 
an observational test by a theoretical argument based on a physical 
process that mayor may not have happened. It will be strongly bolstered 
if current predictions for the detailed pattern of CBR anisotropy on small 
scales, based on the inflationary universe theory, are confirmed; but 
that argument will only become rigorous if it is shown that spherically 
symmetric inhomogeneous models (with or without inflation) cannot 
produce similar patterns of anisotropy16. 

The purpose of the above analysis is not to seriously support the view 
that the universe is inhomogeneous, but rather to show clearly the na­
ture of the best observationally-based argument by which we can (quite 
reasonably) justify the assumption of spatial homogeneity. Accepting 
this argument, the third question is, in which spacetime regions does it 
establish a RW-like geometry? We consider separately when the result 
may be supposed to hold, and where it is established. 

The CBR we detect probes the state of the universe from the time 
of decoupling of matter and radiation (at a redshift of about 1100) to 
the present day. The argument from CBR isotropy can legitimately be 
applied for that epoch. However it does not necessarily imply isotropy 
of the universe at much earlier or much later times, because there are 
spatially homogeneous anisotropic perturbation modes that are unsta­
ble in both directions of time; and they will occur in a generic situa­
tion. Indeed, if one examines the Bianchi (spatially homogeneous but 
anisotropic) universes, using the powerful tools of dynamical systems 
theory, one can show that intermediate isotropisation can occur [24, 25]: 
despite being highly anisotropic at very early and very late times, such 
models can mimic a RW geometry arbitrarily closely for an arbitrarily 
long time, and hence can reproduce within the errors any set of RW- like 
observations. We can obtain strong limits on the present-day strengths 
of these anisotropic modes from CBR anisotropy measurements and from 
data on element abundances, the latter being a powerful probe because 
(being of the 'geological' kind) it can test conditions at the time of 
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element formation, long before decoupling. But however low these ob­
servationallimits, anisotropic modes can dominate at even earlier times 
as well as at late times (long after the present). If inflation took place, 
this conclusion is reinforced: it washes out any information about very 
early universe anisotropies and inhomogeneities in a very efficient way. 

As well as this time limitation on when we can regard isotropy as 
established, there are major spatial limitations. The above argument for 
homogeneity does not apply to domains beyond the visual horizon - for 
we have no evidence at all as to what conditions are like there; observers 
there mayor may not see near isotropy. Indeed in the currently popular 
chaotic inflationary models [26]it is a definite prediction that the universe 
will not be like a RW geometry on a very large scale - rather it will 
consist of many RW-like domains, each with different parameter values, 
separated from each other by highly inhomogeneous regions lying outside 
our visual horizon 17. This prediction is as untestable as the previously 
prevalent assumption18 that the universe is everywhere RW-like. The 
point here is that the verification status of the spa("etime regions inside 
and outside our past light cone are totally different, see [30]19. For 
example, it is commonly stated that if the density parameter is less 
than unity and the cosmological constant vanishes, then the universe 
has infinite spatial sections. However this deduction only applies if the 
RW-like nature of the universe within the past light cone continues to 
be true indefinitely far outside it - and there is no way we can obtain 
observational evidence that this is the case. 

The final issue regarding the best-fit FL model for the observed region 
of the universe is, what are the values of the parameters characterizing 
such a model? Establishing the Hubble constant Ho, deceleration pa­
rameter qo, and density parameter no has been the subject of intensive 
work for the past 30 years. However there is still major uncertainty 
about their values2o , essentially because of the observational problems 
discussed in section 2. Particularly important are estimates of the age of 
the universe (dependent on the Hubble constant and the density param­
eter), as compared to the age of objects in the universe; this is the one 
area where the standard models are presently vulnerable to being shown 
to be inconsistent, hence the vital need to establish reliable distance 
scales, basic to estimates of both Ho and the ages of stars. 

Two further points here are significant from the viewpoint of episte­
mology. Firstly, because of our lack of adequate theories for the objects 
we observe21 , there are a variety of conflicting estimates for these cos­
mological parameters, based on different lines of argument; particularly, 
many of the methods of estimating no depend on studying the growth 
and nature of inhomogeneities in the universe; this makes them rather 
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model-dependent, and introduces a further set of parameters (describing 
the statistical properties of the matter distribution) to be determined by 
observation. To obtain believable answers one has to use informed judg­
ment to decide which methods are more reliable, and give them more 
weight. 

Secondly, determination of the values of cosmological parameters is 
an issue that must be ultimately decided by observations. One has 
to specifically state this because there has been a tendency by some 
to claim that the inflationary models make such a definite prediction 
that the density parameter no must be unity, that observational data. is 
irrelevant22 . More recently a variety of inflationary models have arisen 
that do not predict no = 1 (the initial ones, e.g. [35], having being 
ignored). This may be connected with a growing perception that after 
all this prediction is not true. The viewpoint of this article is that rather 
one should insist on a methodology that respects the basic canons of 
SCIence. 

5. THE DIFFERENT APPROACHES TO 
MODELING 

The underlying tension here is that between theory and observation. 
In essence, three approaches23 to relating models to observations have 
been used [36]. 

The standard approach, implicitly assumed above, is to (1) choose a 
family of spacetime geometries and use them to obtain universe models 
dependent on a few parameters; (2) determine observational relations in 
such universes as a function of these parameters; and then (3) determine 
the best-fit values for the parameters by fitting these theoretical curves 
to astronomical observations. This approach is essentially theory based, 
for it allows one to use physically based models, such as an inflationary 
universe, to make observational predictions; when these are found to be 
true, theorists are justly satisfied. The model chosen in most cases is a 
FL model based on the RW geometry; the more adventurous use Bianchi 
spatially homogeneous models, or Tolman-Bondi spherically symmetric 
models. The approach is popular because of its high explanatory power 
- geometric and physical features are related in a satisfactory way, for 
example in the case of nucleosynthesis (where the expansion timescale 
determined by the spacetime geometry together with physical reaction 
rates lead to good predictions of light element abundances). 

The problem is that there are many possibilities; there is no guaran­
tee we have chosen the best model to describe the real universe. The 
retort that the choice made is justified because we get a good fit to the 
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observations can be regarded with a bit of skepticism, because this is 
only true once one has added extra freedom to the model (if we use FL 
models we have to introduce source evolution functions to make number 
counts consistent - which will then allow any spherical geometry to fit 
the observations [14]). 

The inverse approach works differently. Here we make no a priori 
assumptions about the matter distribution and space-time geometry, 
but rather try to determine them directly from observations [37, 38] on 
the basis of assumed knowledge about properties of the distant sources 
we observe - supernovae, for example. This approach is observationally 
based rather than theory based24 • It has no explanatory power, and for 
that reason is not popular. However it has high descriptive power, and 
without it we would never have discovered features such as structure in 
the large-scale distribution of matter - superclusters, voids, walls. Using 
the standard approach, we can only discover what is already built into 
our models. 

Thus both approaches have elements we need. The third approach, 
not yet fully developed, combines features of the other two. It is based 
on an optimal fitting procedure for a chosen model, which aims not just 
to determine the parameters of the model, but to obtain a detailed fitting 
of the model to the real universe, enabling a pointwise characterization 
of the deviation of the universe from a FR geometry [40]. This then 
allows one to quantify goodness of fit of the model, and hence criteria 
that a model be acceptable as a good description of the real universe. 
This process underlies approaches where density inhomogeneities are 
mapped in detail from large scale velocity flows25 , and can be the basis 
for a series of successive approximations to the real universe, based on 
stepwise refinement of an initial idealized model. 

Reflection on these different approaches to modeling in cosmology 
may assist in developing the best way to integrate explanatory theory 
with detailed observational data; the first two approaches have tended to 
occur rather independently of each other as almost independent strands. 
Something like the third way may be optimal. 

6. THE UNIVERSE AND PHYSICS 

On the standard view, local physical behaviour (with given initial 
conditions) determines the geometry of the universe, which then in turn 
serves as the background for local physics. Operating in this context, 
physical laws lead inter alia to nudeosynthesis, creation of structure, 
and the existence of life. 
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The further feature mentioned earlier is that it is possible the cosmos 
influences the nature of local physical laws - for example leading to 
the arrow of time26 or a time variation in physical constants27 . This 
link should enable us to determine features of the cosmos by carefully 
examining features of local physics: for example perhaps deducing the 
expansion of the universe from the fact that the night sky is dark [28, 42]. 
A recent argument of this kind is Penrose's suggestion that the existence 
of the arrow of time undermines standard inflationary universe models 
[43, 44]. However as has already been discussed, such proposals are 
intrinsically untestable, and so are unlikely to gain consensus. 

7. PHYSICS AND THE UNIVERSE 
The underlying program of the standard approach is to use only 

known local physics, pushed as far as far as possible, to explain the 
structure of the Universe, giving a solely physical explanation of what 
we see. The relevant local physics is General Relativity (the classical 
theory of gravity) plus a suitable matter description, possibly includ­
ing some approach to quantum cosmology at very early times. Two 
problems arise here28 . 

The first is our inability to test the physics that applies in the early 
universe. The highest energies we can attain in accelerators on Earth 
cannot reach those relevant to the very early universe, hence our un­
derstanding of physics at that time has to be based on extrapolation of 
known physics way beyond the circumstances in which it can be tested. 
The result is we cannot be confident of the validity of the physics we 
use, and this becomes particularly so in the presumed quantum grav­
ity era. We end up rather testing theoretical proposals for this physics 
by exploring their implications in the early universe (which is the only 
'laboratory' where we can test some of our ideas regarding fundamen­
tal physics). The problem is we cannot simultaneously do this and also 
carry out the aim of the program stated above: if we don't know the rel­
evant physics, we can't use it to predict anything. Guessing this physics 
and then confirming our guesses only by their implications for the early 
universe gives support to a particular proposal for the physics only in­
sofar as no other proposal can give similar cosmological outcomes. A 
particular example is the inflationary universe proposal: the supposed 
inflaton field underlying an inflationary era of rapid expansion in the 
early universe has not even been identified, much less shown to exist 
by any laboratory experiment, or demonstrated to have the properties 
required in order that inflation took place as proposed. The hypothesis 
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that no inflation took place is as viable (although not as satisfying from 
an explanatory viewpoint). 

Second, this verification problem occurs a fortiori in considering the 
creation of the universe itself, and the associated problem of what deter­
mines initial conditions for the universe. No physical experiment at all 
can help here because of the uniqueness of the universe, and the feature 
that no spacetime exists before such a beginning; so brave attempts to 
define a 'physics of creation' stretch the meaning of 'physics,29. The 
Hartle-Hawking 'no-boundary' proposal [45] gets round the issue of a 
time of creation in an ingenious way, but cannot get around the basic 
problem: a purely scientific approach (as usually understood) cannot 
succeed in explaining why the universe has one specific form rather than 
another, when other forms seem perfectly possible. A choice between 
different contingent possibilities has somehow occurred; but no experi­
mental test can determine the nature of any mechanisms that may be in 
operation in the relevant circumstances, when even the concepts of cause 
and effect are suspect30 . Unavoidably, whatever approach one may take, 
metaphysical issues inevitably arise. 

8. METAPHYSICS 
A series of profound questions lie at the base of cosmology, whose na­

ture is metaphysical31 rather than physical: their status is philosophical 
rather than scientific, for they are issues that cannot be resolved purely 
scientifically. These include the more profound forms of the Anthropic 
question: 

- why does the universe allow the existence of life? 

[46], because they rest on the basic cosmological questions of this kind: 

• why does the universe exist ? 

• why do the laws of physics exist ? 

• why do they have the form they do ? 

• why do boundary conditions have the form they do ? 

At this point the issue becomes, what is scope of cosmology? This is 
a choice one has to make. 

These further questions need further assumptions if answers are to 
be given; standard cosmology cannot answer them without supplement. 
One option is to decide to treat cosmology as far as possible in a strictly 
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scientific way; one ends up with a solid technical subject that by defini­
tion excludes such fundamental philosophical questions32 , because they 
cannot be solved scientifically. This is a consistent and logically viable 
option. One should note here that in any case there will be philosophi­
cal assumptions underlying the practice of cosmology even if carried out 
as a purely technical exercise, but those assumptions will not enter this 
kind of arena. 

The second option is to decide that these kinds of philosophical ques­
tions are of such interest and importance that one will tackle them, even 
if that leads one outside the strictly scientific arena. This is also a legiti­
mate exercise, investigating the various options available here, provided 
one follows three basic guidelines. First, one must avoid the claim that 
scientific methods can resolve these questions: it is essential to respect 
the limits of what the scientific method can achieve33 , and acknowledge 
clearly when arguments and conclusions are based on some metaphys­
ical philosophical stance rather than purely on scientific argument. If 
we acknowledge this and make that stance explicit, then the bases for 
different viewpoints are clear, and alternatives can be argued rationally. 

Second, in undertaking this task, one must be aware of the limitations 
of the models of reality we use as our basis for understanding. They are 
necessarily partial and incomplete reflections of the true nature of reality, 
helpful in many ways but also inevitably misleading in others. No model 
(literary, intuitive, or scientific) can give a perfect reflection of reality; 
so they must not be confused with reality34. 

Finally, if one wants to seriously tackle issues in the relation of cos­
mology to humanity, one must include in one's analysis data of a broad 
enough scope to reflect fully the nature of human beings. 

As well as taking into account that we are complex structures based 
on the physics and chemistry of organic molecules who have evolved 
by natural processes in the context of the expanding universe, such at­
tempts must acknowledge our truly human attributes and experience -
consciousness and emotion, love and pain, free will and ethical choice 
[49, 50]. Only if we add to the cosmological data considered above the 
much broader range of data of this kind can we hope to obtain a world 
view of adequate scope to be a worthy theory of humanity and cosmology 
- that is, of Cosmology in the broad sense that relates fully to philosophy 
and the humanities as well as to science35 . 

This can be undertaken as a perfectly rational project; it is a question 
of choice as to whether one wants to embark on a study of this broader 
scope, or to restrict one's consideration to the physical aspects of cos­
mology. Confusion will be avoided if one makes quite clear at the outset 
what is the scope of the theory one wishes to consider. 
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Notes 

1. 'epistemology' = 'the philosophical theory of knowledge which seeks to define it, 
distinguish its principle varieties, identify its sources, and establish its limits' [1]. 

2. The situation in quantum cosmology is not included in the scope of discussion in this 
paragraph. 

3. Here one must try to make sense of notions of possibility and necessity, and to dis­
tinguish between what might happen in some possible worlds and what must happen in all 
possible worlds, as has been investigated in David Lewis' theory of counterfactuals. I am 
indebted to John Norton for emphasizing this. 

4. One should realize here that we can in principle feel the gravitational effect of matter 
beyond the horizon; however we cannot uniquely decode that signal to determine what matter 
distribution caused it, see [6]. 

5. The furthest matter with which we can have had any causal connection, see [B] (Despite 
its name, this paper actually deals with causal horizons). 

6. Hence on light rays lying in our past light cone. 

7. More accurately, near our past world-line in spacetime. 

B. Particularly important are measurements of the CBR temperature at high redshift, 
confirming the standard interpretation of this radiation, see [11] 

9. All physical and geometrical quantities are the same at each point of space (i.e. at a 
constant time). 

10. All observations are the same in all directions about the point of observation. 

11. Provided the matter content is a perfect fluid, as usually assumed. 

12. An alternative interpretation would be that this is evidence of spatial inhomogeneity. 

13. Another proposal is to use the uniformity in the nature of the objects we see to deduce 
they must have all undergone essentially the same thermal history, and then to prove from 
this uniformity of thermal histories that the universe must be spatially homogeneous; however 
this effort has not succeeded so far, see [IB]. Nevertheless observations of element abundances 
at high z are very useful in constraining inhomogeneity. 

14. Weak tests of the isotropy of the CBR at other spacetime points come from the 
Sunyaev-Zeldovich effect [20], and from CMB polarization measures [21], but not enough to 
give good limits on spatial inhomogeneity through this line of argument. 

15. And conceivably a contribution to the CBR dipole from this inhomogeneity (if we are 
a bit off-centre). 

16. They may be able to do so, because the source of the expected 'Doppler Peaks' 
in the CBR spectrum is pressure- generated waves in the matter-radiation mixture before 
decoupling, rather than any specific feature of the RW geometry. 

17. See also [27] for arguments on large-scale inhomogeneity. 

lB. Formalised as the Cosmological Principle, see for example [2B, 29]. 

19. The following analogy is used there: consider an ant surveying the world from the top 
of a sand dune in the Sahara desert. Her world model will be a universe composed only of 
sand dunes - despite the existence of cities, oceans, forests, tundra, mountains, etc. beyond 
her horizon. 

20. For overviews of current estimates, see [31], [32], [33]. 

21. Cepheids, supernovae, galaxies, galaxy clusters for example. 
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22. For example, after I wrote a paper with Peter Coles summarizing the data and deriving 
a value for no of between 0.2 and 0.3 [34], Coles was told by a senior cosmologist that he 
should not question the theoretically preferred value of unity; if he continued to do so, he 
would be considered a crank. 

23. Associated with different criteria for satisfactoriness of a cosmological model, see Sec­
tion 1.3 of Coles and Ellis [32J. 

24. The work of Edwin Hubble is a classic example. His 200 page book The Realm of 
the Nebulae [39J relegates theory to 4 pages at the end; rather than using the FL models, he 
simply fitted curves to the data. 

25. Definition of both the flows and the inhomogeneities are based on such a fitting 
procedure, which defines a specific perturbation gauge. 

26. The fundamental physical laws by themselves being time symmetric, and so unable 
to explain this feature. 

27. This is to some degree open to observational test, see e.g. [41J. 

28. Apart from the averaging issue: some averaging of descriptions on different scales 
is involved here, because the scale on which General relativity is tested (the solar system 
scale) is quite different than the cosmological scale on which we apply it; but the dynamical 
equations do not commute with this averaging process. Extra 'polarization' type terms result 
in the field equations, which may be significant under some circumstances, but handling these 
adequately in the context of curved spacetimes is difficult. 

29. These usually rely on an array of properties of quantum field theory and of fields that 
seem to hold sway independent of the existence of the universe and of space and time (for the 
universe itself is to arise out of their validity). The locus of their existence or other grounds 
for their validity in this context are unclear. 

30. As are the concepts of 'occurred', 'circumstances' and even 'when' - for we are talking 
inter alia about the existence of spacetime. Our language can hardly deal with this. 

31. i.e. beyond or behind physics. 

32. They are sometimes labeled as meaningless; but this is true only if one chooses to 
restrict one's method of investigation to the purely scientific. 

33. An example where this is not the case is Frank Tipler's book The Physics of Immor­
tality: Modem Cosmology, Physics, and the Resurrection of the Dead [47J; see also [48J. 

34. An example where such confusion takes place is Tipler's book. 

35. If we propose a 'thin' theory that does not reflect human experience adequately, 
the broader public and our academic colleagues in other disciplines will rightly dismiss it as 
simplistic and inadequate as a full view of the nature of the universe. The full range of human 
experience is indeed evidence about the universe both because we exist in the universe, and 
because we have arisen from it. 
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The simplest Friedmann models, about which astronomers were still 
arguing in the late nineteen fifties and sixties are dominated by the 
equation 

(13.1) 

in which 8 is the scale factor of the universe, a function of the time, A 
is a positive constant and k is a topological factor which can be 0 or ±l. 
No zero of S exists for 8 < 80 where 80 is the present day value of 8, 
and this result is not affected by adding positive terms to the right hand 
side of (1), as for instance a term Bj84 due to relativistically-moving 
particles, e.g. photons or neutrinos. Thus if the simple Friedmann mod­
els were correct, a spaceti me singularity, 8 ---+ 0, would inevitably 
occur in a time-reversed form of the models. This was the Big-Bang, 
which has been well-known to astronomers since Hubble and Humason 
had discovered the expansion of the universe in about 1930. 

However, it was implicit in equation (1) that the universe is homo­
geneous and isotropic. Otherwise the spacetime structure cannot be 
described by the single function 8(t). Several functions become in­
volved and they depend on several of the coordinate s of spacetime. 
When Jayant Narlikar began research in 1960, doubts were felt among 
astronomers that the universe could have originated in a singularity and 
ways to avoid the implications of (1) were being sought. In particular 
by E.M. Lifshitz in the Sov iet Union and by O. Heckmann in Germany. 
Both relied on complicating the spacetime structure, Heckmann through 
rotation and Lifshitz by inhomogeneity in a very difficult paper of about 
fifty pages. Such matters were extensively discussed at international c 
onferences in those days. 
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This was not a problem as I would not normally have asked a re­
search student to tackle - it was much too difficult. But Jayant had 
distinguished himself by an outstanding performance in the Cambridge 
Mathematical Tripos, and then he was in the summer 0 f 1960 asking 
for a problem in relativity and cosmology, so I suggested that he looked 
into these claims by Heckmann and Lifshitz. It seemed reasonable to 
simplify things a bit. In Britian at the time there had been a strong 
emphasis, first from Milne, th en from McCrea and then Bondi, on the 
fact that equation same as (1) can be obtained by Newtonian methods 
as well as from general relativity. The likelihood, therefore, was that 
the same would apply more generally, when isotropy and homogeneity 
were aban doned. And subject to the resulting simplification Jayant was 
able to show that the claims which had been advanced with great con­
fidence in Germany and the Soviet Union were wrong. Deviations from 
isotropy and homogeneity made no difference to the conclus ion that in 
a time-reversed model the Universe plunges into a singularity, and in 
essentially the same time interval, about 1010 years, as in the simple 
Friedmann models. This I think was Jayant's first paper, published in 
the Monthly Notices of the R.A.S. 

Some years later, the same result was obtained from general relativity, 
by Penrose and Hawking, confirming our expectation that Newtonian 
cosmology was just as reliable in this more complicated case as it had 
been in the simple models. It was found nec essary by Penrose and 
Hawking to assume that the tt-component of the energy momentum 
tensor is not negative, which prevents negative terms from appearing on 
the right-hand side of (1). The form of the steady-state theory in use in 
the 1960's had such a ne gative term, of the form 

A B 
(13.2) 

where A and B are both positive constants. Now a time-reversed solution 
leads to S = 0 and contraction of the Universe switches to expansion. 
Indeed in the case of k = 1 there can be two values of S at which S = 0, 
with the Universe oscillating between them. What makes for such a 
negative term in (2) is that creation of matter occurs with conservation 
of energy, a negative term being required to balance the positive energy 
of matter. 

I had not intended to involve Jayant with anything as controversial 
as the steady-state theory, but in 1961 Martin Ryle announced the first 
result of the 4C survey, in which he claimed that the number of radio 
sources continued to increase at a super-Euclidean rate down to signif­
icantly lower flux values than the 9Jy of the 3C survey. This as it has 



MATHEMATICS AND SCIENCE 143 

turned out was on exaggeration of a situation in which a super-Euclidean 
count occurs over a much more restricted flux range and is appreciably 
less in amount than those first claims. The super-Euclidean behaviour 
arises because the observer lies in a partial void with respect to radio 
sources, a void with a radius of about 0.1cHo1 . In 1961-62 we published 
two papers on this problem, in the seco nd of which we adopted this 
inhomogeneity solution. But the thought that the universe might be 
irregular on such a scale did not recommend itself to astronomers of the 
day, although it turned out eventually to be so. 
During the source-counting episode we made a trip to Jodrell Bank to see 
Robert Hanbury Brown, who had expressed doubts about the uniformity 
of the radio sources that were being counted in the Cambridge surverys. 
It was during this visit that we were shown Henry Palmer's first results 
from a wide interferometric survey of sources then being carried out 
between Jodrell Bank and a mobile field station. About a dozen sources 
were of too small an angular diameter to have been resolved at that 
time. As we were shown the list, we did not dream that here wan an 
astonishing new class of objects, later to become known as quasi-stellar 
objects (QSOs). 

The history of the discovery of QSO's in early 1963 is complicated. 
The decisive step was the identification of the Balmer series at a redshift 
of 0.158 in the spectrum of the source 3C 273, H j3, T and 8 being detected 
photographically by Maarten Schmidt and Ha detected in the infrared 
by J .B. Oke. Since the visual magnitude of 3C 273 was about + 13 this 
meant that according to the usual Hubble relation 3C 273 was intrinsi­
cally brighter than major galaxies by a large factor (rv 100), suggesting 
that all of cosmology would soon be revolutionised by the adoption of 
QSO's as standard candles instead of galaxies. But cosmologists were 
due for a surprise. For when by 1966 some 50 QSO's had been detected 
and these redshifts and magnitudes had been measured, it was found 
that they did not fit a Hubble diagram. Those who continued to believe 
that QSO redshifts arose like the redshifts of galaxies from the expan­
sion of the universe, probably hoped that things would eventually settle 
down into a Hubble diagram as soon as the number of QSO's increased 
sufficiently. But this has not happened, even with more than 10,000 
QSO's now available. What has indeed emerged is a relation of magni­
tude to (1 + Z)-2. This simply reflects the fact that objects lose energy 
from the redshift and from the counting effect of the redshifts. In an 
expanding universe the appeared luminosity l of an object of intrinsic 
luminosity L situated at a radial coordinate r with a redshift Z is given 
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by 

(13.3) 

Galaxies satisfy this relation, but QSO's do not show the effect of the 
radial coordinate T, although they do show the {1 + Z)-2 factor. 

And in the late 1960's too many cases of QSO's near bright galaxies 
were found for their jaxtapositions to be chance projections on the sky. 
But all such evidence was ignored by most of the astronomical commu­
nity. It seemed more and more determined, the stronger the evidence 
becomes, to force the world to conform with their own wishes. 

An investigation carried out in 1989 by Jayant in collaboration with 
Geoffrey Burbidge, A. Hewitt and P.DasGupta seemed to me to settle 
the matter beyond all doubt. A computed search of a catalogue of 
about 7000 QSO's and of the Revised New Cat alogue of Non-Stellar 
Astronomical Objects was made with a view to determining all cases in 
which a QSO and a galaxy lay within an angular separation 0 ~ 600" 
of one other. About 400 cases were found, in most of which the galaxy 
in question had a measured redshift value, which was considered to give 
the distance d of the galaxy. Then 0 was plotted against d, with the 
result Od :::: constant. Since this relation was maintained over a range 
of about 500 in d, the evident implication was that the QSO was in 
physical association with the galaxies. Therefore the redshifts of the 
QSO's, which were mostly much larger than those of the galaxies, must 
come mainly from a source other than the expansion of the universe. 
What this so urce may be remains a problem, but the circumstance that 
we may not understand a phenomenon is no reason to ignore it. Science 
would have made little, if any, progress if this had been the dominant 
attitude throughout history. It is covered today by too much money, 
especially in the United States, by too many people, and by a weakness 
in the training of scientists that was first pointed out to me by Jayant 
Narlikar. 

Whereas in mathematics one is constantly seeking to learn new tricks 
for solving problems, in laboratory work in sciences the student only 
obtains known answers to known situations. The one produces a will­
ingness to consider new possibilities, while th e other leads to a rigidity 
that takes for granted more than it should. The mathematician likes to 
work with a clean sheet, whereas the scientist likes to work along fixed 
tracks. 
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1. PROLOGUE 
It is a privilege and pleasure to be invited to contribute an article 

to the JVN Fest. When I received this invitation, I tried to go back 
along my world-line and look for intersections with Jayant. A popular 
article by Jayant Narlikar entitled 'The Arrow of Time' [1] mystified and 
fascinated me. It roused an almost romantic longing and an urge to ap­
preciate, if not investigate, such basic problems. Probably it was these 
subconscious fantasies that propelled me towards physics and eventu­
ally, general relativity. I still remember the first time I heard a public 
talk by N arlikar on Cosmology after his return to India. It was at the 
Homi Bhabha auditorium of TIFR in 1972. The hall was overflowing 
and I heard his (favorite?) joke on the mathematician, physicist and 
astronomer for the first time. I heard it again this year in his talk at the 
Academy and was impressed by his un-apologetic use of it to make his 
point! I met Jayant Narlikar at the Einstein centenary symposium in 
Ahmedabad in 1979 and his interests then included scale invariant cos­
mology (with Ajit Kembhavi) and black holes as tachyon detectors (with 
Sanjeev Dhurandhar). He carried his fame lightly, was unassuming and 
though he was not very talkative, he felt very approachable. When I fin­
ished my Ph.D. with Arvind Kumar at the Bombay University, I could 
not get a post doc at TIFR or work with Jayant, since he was away that 
particular year. Over the last sixteen years, I have had much overlap 
with Jayant in the organization of Relativity related activities in India. 
There is much to admire in Jayant and emulate. His time management, 
missionary zeal to the popularization of science, vision and hard work, 
pedagogic skills, fervor for the non-standard and ability to play devil's 
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advocate in his research almost as a point of faith. In addition to the 
above, personally, I also admire him for his ability to take criticism and 
his democratic mode of functioning. 

I am always impressed by Jayant's ability to start a lecture on fairly 
profound, subtle and technical themes like action at a distance in physics 
and cosmology or Mach's principle from a very elementary basic discus­
sion. In every lecture of his that I have heard he covers a fair amount 
of ground starting from the very beginning and leading to what he is 
currently researching on. He reminds me of a capable, composed and 
competent guide taking a group of motley tourists up a mountain, lead­
ing everyone to the heights their capability can reach. Everyone gets a 
view, maybe a different glimpse, but everyone is happy to have partici­
pated in the trek and adventure that Jayant leads them on. No wonder 
he is a populariser par excellence and probably holds a record for such 
lectures and writing at least in India. 

I have heard that Jayant has a soft corner for his work related to elec­
trodynamics and action-at-a-distance [2]; he considers it to be one of the 
important topics in his research career. Recent progress in theoretical 
gravitational radiation research is very reminiscent of this research and 
as a tribute to Jayant, I shall try to imitate him and without getting lost 
in technical details compare these developments in general relativity to 
those in electrodynamics. 

2. GRAVITATION AND 
ELECTROMAGNETISM 

The similarity of gravitation and electromagnetism does not escape 
any thoughtful student of an elementary physics course [3]. Both New­
ton's law of gravitation and Coulomb's law of electrostatics are inverse 
square laws. They are proportional to their respective charges: gravi­
tational mass and electric charge. The gravitational charge is of only 
one kind, while there are two kinds of electric charges, conventionally 
denoted as positive and negative. In electrostatics, like charges repel, 
while unlike charges attract. Gravitation on the other hand is always 
attractive and in gravitation, like charges attract! Though functionally 
similar, the numerical strengths of these forces is very different. The 
gravitational force is about 1039 times weaker than the electrical force 
and this has experimental implications, as we shall see later. Unlike 
electromagnetic forces, gravitation cannot be screened out. Moreover, 
matter in the universe is predominantly neutral. This is why, in spite of 
its enormous weakness, gravitation determines the large scale structure 
of the universe. 
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Both Newton's law of gravitation and Coulomb's law of electrostatics 
assume instantaneous action-at-a-distance. Thus they cannot be con­
sistent with the principle of special relativity. Coulomb's law is not 
adequate to describe moving charges. Electromagnetic phenomena are 
more simply described by field equations and a moving charge produces 
both an electric field and a magnetic field. The laws of electromag­
netism are summarized by Maxwell's equations and Lorentz equation 
of motion. These equations are relativistically invariant. However, in 
Newtonian gravitation, there is no analogue of the magnetic field; a 
moving mass produces the same field, as a mass at rest, if the mass dis­
tributions are identical. The situation is different in Einstein's general 
theory of relativity and closer to electromagnetism. Here the gravita­
tional field produced by a body depends not only on the distribution 
of matter but also the state of its motion. Mathematically, the source 
of the gravitational field is the energy momentum tensor whose compo­
nents include mass, motion and stresses. The gravitational analogue of 
the magnetic force is called gravimagnetism and like the Lorentz force 
in electrodynamics, depends on the test particle velocity. It has physical 
consequences like the dragging of inertial frames, Lense Thirring effect 
or precession of gyroscopes. Usual tests of general relativity normally 
involve only the gravielectric component. Like the magnetic force, the 
gravimagnetic component is usually smaller by a factor of v / c relative to 
the gravielectric part and experiments are under way to verify it directly. 
One can set up a detailed analogy between rotation in general relativity 
and magnetism. In electromagnetism, there has long been a conjecture 
about the possible existence of magnetic monopoles. Given the detailed 
similarity between rotation and magnetic fields, one can ask, if there 
is such a thing as the gravimagnetic monopole. The answer is in the 
affirmative. The famous NUT solution is the gravimagnetic monopole 
[4]. Of course, the Schwarzschild solution the gravielectric monopole. 

3. ELECTROMAGNETIC WAVES AND 
GRAVITATIONAL WAVES 

As mentioned earlier, the laws of electromagnetism are summarized 
by Maxwell's equations. Maxwell's equations admit wave like solutions 
and these are electromagnetic (EM) waves. EM waves are produced 
by accelerated electric charges. The dominant radiation is dipole radi­
ation and is caused by the time varying dipole moment of the charge 
distribution. The EM field is of spin one (a vector field) and has a con­
served quantity associated with it: charge. Consequently there is no 
monopole EM radiation. EM waves propagate at speed of light c, they 



148 THE UNIVERSE 

are transverse and have two independent states of linear polarization 
corresponding to oscillations of the electric field in two perpendicular 
directions. The effect of an EM wave can be seen by its action on a test 
particle. If a sinusoidally varying EM wave is incident on a test particle, 
it impresses on it this sinusoidal motion. Thus, by studying the motion 
of a test particle, we can infer the passage of a EM wave. EM is a strong 
force. Consequently by the oscillation of charges and currents we can 
produce EM waves at one end of the laboratory and detect it at the 
other end: the famous Hertz experiment. 

Similarly, the best description of gravitation is via Einstein's equa­
tions. These equations also admit wave like solutions. Gravitational 
waves are not mere artefacts of our choice of coordinates, but indeed 
physical, in that they carry energy. For a fascinating historical account 
ofthese debates, see Kennefick [5]. Gravitational waves are produced by 
accelerated motions of masses. The dominant radiation is quadrupolar 
and caused by the second time variation of the quadrupole moment of 
the mass energy distribution. The gravitational field is of spin two (a 
tensor field) and has conserved quantities associated with it correspond­
ing to mass, linear momentum and angular momentum. Consequently, 
there is no monopole or dipole radiation. Gravitational waves also prop­
agate with speed c, are transverse and have two independent states of 
linear polarization. The effect of a gravitational wave cannot be seen by 
its action on a single test particle. Gravity obeys the equivalence prin­
ciple and consequently a uniform gravitational field can be transformed 
away by going to an accelerated frame. Tidal fields cannot be so trans­
formed and provide a true measure of gravitational fields. Gravitational 
waves induce a weak time-dependent tidal field and thus, a gravitational 
wave can be detected by letting it impinge on a circular ring of particles. 
Due to the tidal field, the ring is squeezed in one direction and elon­
gated along the perpendicular direction. Since the tidal field oscillates 
in time, the ring will go through a pattern of shapes, characteristic of 
the tidal field. Starting out as a ring of particles, after a quarter of a 
period the ring elongates into a ellipse, say along the x axis, back to a 
circle, then an ellipse elongated along y axis and back again to a circular 
shape. This pattern repeats thereafter and is characteristic of spin two. 
This is referred to as plus polarization. The other independent mode 
of polarization yields an ellipse rotated by 45° and is referred to as the 
cross polarisation. Gravitational wave detectors differ in the way they 
measure this minute tidal effect. Broadly we can classify them as bars 
(spheres), interferometers on earth and interferometers in space. 

Unlike EM, gravitation is a very weak force. Consequently, the oscil­
lation of masses in the laboratory cannot produce gravitational waves of 
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measurable strength. The detection by any suitable method is equally 
difficult for the same reason. A Hertz type experiment is not possible in 
this case and one is forced to appeal to astronomy, to provide sources 
that will radiate in this bandwidth. 

4. INSPIRALING COMPACT BINARIES 
AND GW PHASING 

The Binary pulsars 1913+16 and 1534+12 establish the reality of 
gravitational radiation [6]. They provide proof of the validity of Ein­
stein's general relativity in the strong field regime. More importantly, 
they are prototypes of inspiralling compact binaries, which are strong 
sources of gravitational waves for ground based laser interferometric 
detectors like LIGO and VIRGO [7]. The phenomenal success of the 
high-precision radio wave observation of the binary pulsar makes crucial 
use of an accurate relativistic 'Pulsar timing formula' [8, 9]. Similarly, 
precise gravitational-wave observation of inspiraling compact binaries 
would require an equivalent accurate 'Phasing formula' [7, 10] i.e. an 
accurate mathematical model of the continuous evolution of the grav­
itational wave phase. The lowest order gravitational wave radiation 
reaction is sufficient to treat pulsar timing. Gravitational wave phasing, 
on the other hand, requires higher post-Newtonian order gravitational 
radiation reaction, since in the final stages the systems are highly rela­
tivistic. 

At this point, it is worth comparing the situation here in general rel­
ativity (GR) to that in electrodynamics (ED) to illustrate the issues. 
For instance, in ED we have the following categories of problems: (a) 
Given the charge and current distribution, compute the electromagnetic 
field; e.g. evaluate fields in wave-guides. (b) Given the external electro­
magnetic field, compute the effect on charges and currents; e.g. energy 
losses of charged particles moving past a nucleus. (c) Given the energy 
loss by say the Larmor formula, compute the reaction on the motion; 
e.g. Abraham-Lorentz, Planck. The corresponding situation in GR, in 
the inspiraling binary problem, is the following: (i) Generation Prob­
lem: Given the compact binary and its orbital motion, compute the 
gravitational field in this situation. (ii) Given the gravitational field, 
compute the far-zone energy and angular momentum fluxes. (iii) Radia­
tion Reaction problem: Given the far zone fluxes of energy and angular 
momentum, compute the reaction on the near zone motion, assuming en­
ergy (angular momentum) balance. Or compute it directly, by a higher 
iteration of the equations of motion. 
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In what follows, we will discuss briefly aspects of motion, generation 
and radiation reaction and draw parallels to the EM case, where possible. 

5. MOTION 
It may be worth mentioning that unlike linear EM, non-linear GR 

has the feature, that its field equations contain the equations of motion. 
For discussions on the relation between the above feature, non-linearity 
and tensor nature of the field, see the review article by Havas [11]. The 
N-body problem as in Newtonian gravity is decomposed into an external 
problem and an internal problem. The former refers to the problem of 
defining and determining the motion of the center of mass and the latter 
to motion of each body around the center of mass. The effacement of 
internal structure in the external problem and effacement of external 
structure on the internal problem involves subtle issues in the problem 
of motion and we cannot do better than refer the reader to the beautiful 
review by Damour [12]. 

The topic ofEOM for compact binary systems received careful scrutiny 
in the years following the discovery of the binary pulsar. There have been 
three different approaches to the complete kinematical description of a 
two body system upto the level where radiation damping first occurs 
(2.5PN). Damour's method explicitly discusses the external motion of 
two condensed bodies without ambiguities, using harmonic coordinates, 
in which all metric deviation components satisfy hyperbolic (wave) equa­
tions. The method employs the best techniques to treat various subprob­
lems. (a) A Post-Minkowskian approximation to obtain the gravitational 
field outside the bodies incorporating a natural 'no incoming-radiation 
condition' whose validity is not restricted to only the near-zone. (b) A 
matched asymptotic expansion scheme to prove effacement and uniquely 
determine the gravitational field exterior to the condensed bodies. (c) 
An Einstein Infeld Hoffmann Kerr type approach to compute equations 
of orbital motion from knowledge of the external field only. The nth 
approximate EOM is obtained from the integrability condition on the 
(n + l)th approximated vacuum field equations. (d) Use of Riesz's an­
alytic continuation technique to evaluate surface integrals. The final 
EOM at 2.5PN level are expressed only in terms of instantaneous po­
sitions, velocities and spins in a given harmonic coordinate system and 
given explicitly in Ref.[12]. The two mass parameters in these formulas 
are the Schwarzschild masses of the two condensed bodies. 

The conservative part of the EOM upto 2PN (excluding the secular 
2.5PN terms) are not deducible from an conventional Lagrangian (func­
tion of positions and velocities) in harmonic coordinates, but only from 
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a generalized Lagrangian (depending on accelerations). This is con­
sistent with the result in classical field theory that in Lorentz-covariant 
field theories there exists no (ordinary) Lagrangian description at O(c-4 ) 

[13]. This Lagrangian is invariant under the Poincare group and thus al­
lows one to construct ten Noetherian quantities that would be conserved 
during the motion. These include the 'Energy', 'Angular Momentum', 
'Center of Mass' and thus a solution to the problem of 'motion' provides 
the Energy that enters into the phasing formula. The EOM for the gen­
eral case is given in [12] and crucially used in the following studies of 
generation and radiation reaction. All the above has detailed parallels 
in the electromagnetic case and the relevant Lagrangian and associated 
subtleties are discussed in the Les Houches lecture by Damour [9]. 

Schafer's [14] approach, on the other hand, is based on the Hamil­
tonian approach to the interaction of spinless point particles with the 
gravitational wave field. The Hamiltonian formulation is best done in 
the Arnowitt-Deser-Misner (ADM) coordinates, in which two metric co­
efficients satisfy hyperbolic equations (evolution) while the remaining 
eight are of elliptic type (constraints). It uses a different gauge that 
allows an elegant separation of conservative and damping effects. One 
recovers the damping force acting on the Hamiltonian subsystem of in­
stantaneously interacting particles coming from its interaction with the 
dynamical degrees of freedom of the gravitational field. In this approach, 
point masses are used as sources and regularisation uses Hadamard's 
'partie finie' based on Laurent's series expansion regularisation. 

The last approach due to Grischuk and Kopejkin [15] on the other 
hand is based on (a) Post-Newtonian approximation scheme (b) assump­
tion that bodies are non-rotating 'spherically-symmetric' fluid balls. The 
symmetry is in the coordinate sense. The EOM of the center of mass of 
each body are obtained by integration of the local PN EOM. These are 
explicitly calculated retaining all higher derivatives that appear. One 
then reduces the higher derivatives by EOM and obtains the final re­
sults. Formally collecting the various relativistic corrections into a 'ef­
fective mass', one can have a PN proof of effacement of internal structure 
and provide a plausibility argument for validity of 'weak field formulas' 
for compact objects. 

The fact that three independent methods give formally identical equa­
tions of motion at 2PN order is a strong confirmation of the validity of 
the numerical coefficients in the EOM. This work provides the basis for 
the timing formula mentioned earlier. The damping terms can be con­
sidered as perturbation to a Lagrangian system which is multi-periodic­
a radial period and a angular period corresponding to periastron preces-
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sion - and leads to the observed secular acceleration effect in the binary 
pulsar. No balance argument is involved at any stage. 

The situation is now under investigation at the 3PN level. The work 
on 3PN generation crucially requires the EOM at 3PN accuracy and 
work is in progress to obtain the 3PN contributions by different tech­
niques. These include the MPM method supplemented by Hadamard 
'partie-finie' [16], the Epstein Wagoner Will Wiseman method [17] as 
also the Hamiltonian formalism [18]. As mentioned above, upto 2.5PN, 
three distinct computational techniques led to a unique EOM. Prelim­
inary investigations have even raised questions about whether this sort 
of uniqueness will persist at 3PN. 

It is interesting to note that both the Riesz regularisation and the 
Hadamard finite part averaged over all directions of approach to the sin­
gularity are techniques employed in the discussions of EOM in EM [19]. 
Both continuous source distributions and point sources (delta functions) 
have also been used in these computations. However, the situation in 
EM is much better than in gravitation because all the divergent terms 
can be renormalized into the mass after regularization. In gravitation, 
these offensive terms have a more complicated structure and we do not 
renormalize and simply throwaway these divergent terms. The proce­
dure in EM is also different since it is Lorentz invariant. In gravitation 
on the other hand we work in a particular frame and hope that in the 
end the EOM is nevertheless Lorentz invariant. Of course, if they are, 
it is a very powerful check that all is well with the computation [20]! 

6. GENERATION 
There are two approaches to calculate gravitational wave generation 

to higher orders, philosophically following the approaches of Fock and 
Landau-Lifshitz; the Blanchet-Damour-Iyer (BDI) [21] approach and the 
Epstein-Wagoner-Thorne-Will-Wiseman (EWTWW) [22, 23] approach 
respectively. Blanchet, Damour and Iyer build on a Fock type derivation 
using the double-expansion method of Bonnor. This approach makes 
a clean separation of the near-zone and the wave zone effects. It is 
mathematically well defined, algorithmic and provides corrections to the 
quadrupolar formalism in the form of compact support integrals or more 
generally well defined analytically continued integrals. The BDI scheme 
has a modular structure: the final results are obtained by combining an 
'external zone module' with a 'radiative zone module' and a 'near zone 
module'. For dealing with strongly self-gravitating material sources like 
neutron stars or black holes one needs to use a 'compact body module' 
together with an 'equation of motion module'. It correctly takes into 
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account all the nonlinear effects. It should be noted that, in generation 
problems, as one goes to higher orders of approximation, two indepen­
dent complications arise. Though algebraically involved in principle, the 
first is simpler: contributions from higher multi poles. The second com­
plication is not only algebraically tedious but technically more involved: 
contributions from higher nonlinearities e.g for 2PN generation cubic 
nonlinearities need to be handled. 

The Epstein and Wagoner (EW) approach, also starts by rewriting 
the Einstein equations in a "relaxed" form. As in electromagnetism, one 
can write down a single formal solution valid everywhere in spacetime 
based on the flat-spacetime retarded Green function. The retarded inte­
gral equation for hCi{3, can then be iterated in a slow-motion (vic < 1), 
weak-field (I!hCi{311 < 1 ) approximation as shown by Thorne [22J. Unlike 
in the electromagnetic case, however, the non-linear field contributions 
make the integrand of this retarded integral non-compact. The EW 
formalism leads to integrals that are not well defined, or worse, are di­
vergent. Though at the first few PN orders, different arguments were 
given to ignore these issues, they provide no justification that the di­
vergences do not become fatal at higher orders. Consequently, the EW 
formalism did not appear to be a reliable route to discuss higher PN ap­
proximations. Recently, Will and Wiseman have critically examined the 
EW formalism and provided a solution to the problem of its divergences 
by taking literally the statement that the solution is a retarded integral, 
i.e. an integral over the entire past null cone ofthe field point. The new 
EW method proposed by Will and Wiseman can be carried to higher 
orders in a straightforward, albeit very tedious manner and the result is 
a manifestly finite, well-defined procedure for calculating gravitational 
radiation to high PN orders. 

The end result of the computations are expressions for the radiative 
mass and current multipole moments characterizing the source distribu­
tion. Once they are on hand, one can proceed to compute the associ­
ated gravitational waveform. From the waveform, the far zone energy 
flux may be computed by time differentiation (this is why one needs the 
EOM) and integration over all directions. The energy flux can also be 
computed directly from the moments and this provides a simple check 
on the algebraic correctness of the long computations. The angular mo­
mentum flux can also be computed for non-circular orbits. At the 2PN 
level this program is complete not only for circular, but also general 
orbits [24J. The extension to spinning bodies is also available [25J. The 
extension of these results to 3PN accuracy is an algebraically heavy and 
conceptually involved exercise, under investigation since 1996, using the 
multipolar post-Minkowskian approach [26J. The Hadamard regulariza-
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tion, based on the Hadamard partie finie, used in the computation of 
motion is also used in generation and provides consistent results. Though 
the known test particle limits are recovered, the finite mass correction 
introduces a plethora of new contributions. Hopefully in the near future 
the EW and ADM formalisms [17, 18] should provide a check on these 
results. 

The solution to the generation problem thus provides the second input 
for phasing once we make the assumption of energy balance. 

1. RADIATION REACTION IN 
ELECTRODYNAMICS 

The idea of a damping force associated with an interaction that prop­
agates with a finite velocity was first discussed in the context of elec­
tromagnetism by Lorentz. He obtained it by a direct calculation of the 
total force acting on a small extended particle due to its 'self-field'. The 
answer was incorrect by a numerical factor and the correct result was 
first obtained by Planck using a 'heuristic' argument based on energy 
balance which prompted Lorentz to re-examine his calculations and con­
firm Planck's result, pi = ~ ~ vi , where Vi is the velocity of the parti­
cle. The relativistic generalization of the radiation reaction by Abraham 
based on arguments of energy and linear momentum balance preceded 
by a few years the direct relativistic self-field calculation by Schott and 
illustrates the utility of this heuristic, albeit less rigorous, approach [9]. 
The argument based on energy balance proceeds thus: A non-accelerated 

particle does not radiate and satisfies Newton's (conservative) equation 
of motion. If it is accelerated, it radiates, loses energy and this implies 
damping terms in the equation of motion. Equating the work done by 
the reactive force on the particle in a unit time interval, to the nega­
tive of the energy radiated by the accelerated particle in that interval 
(Larmor's formula) the reactive acceleration is determined and one is 
led to the Abraham-Lorentz equation of motion for the charged particle. 
Lorentz's direct method of obtaining radiation damping, on the other 
hand, is based on the evaluation of the retarded action of each piece 
of the charge on the other parts. Starting with the momentum conser­
vation law for the electromagnetic fields, one rewrites this as Newton's 
equation of motion, by decomposing the electromagnetic fields into an 
'external field' and a 'self-field'. Expanding the self-field in terms of po­
tentials, solving for them in terms of retarded fields and finally making 
a retardation expansion, one obtains the required equation of motion, 
when one goes to the point particle limit. For a historical summary of 
classical theories of radiation reaction see Erber's account [27]. 
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There have been two broad approaches to radiation reaction later: 
The field theory one originally due to Dirac [28], that considers the to­
tal field at all points in space to be a fundamental physical quantity and 
point charges as singularities of the field; the action-at-a-distance 
one originally due to Wheeler and Feynman [29], that considers only 
forces exerted on the charge by other charges as physically meaning­
ful. Each approach strictly goes beyond Maxwell's equations and uses 
an additional assumption: the conservation law for the EM energy mo­
mentum tensor in field theory and the relation between Lorentz force 
and momentum of the particle in action-at-a-distance theory. Though 
the plausibility of the physical idea of reducing everything to interaction 
of particles is the fascinating advantage of action-at-a-distance theories, 
none of the viewpoints appears preferable to the other from considera­
tions of simplicity. Hoyle and Narlikar [3] have assessed the status of 
action-at-a-distance theories both in classical and the quantum electro­
dynamics. As there are no fields, the usual problems of divergences are 
absent in this treatment. When considered within cosmological models, 
these theories place stringent requirements on the future and past null 
cones of the universe. The theories will not work in Friedman cosmolo­
gies but do in steady state or quasi-steady state models. Issues related 
to the use of advanced fields in the Dirac derivation, were clarified later 
[30] and an approach to radiation reaction without advanced fields was 
presented by properly taking into account the retarded self-field of the 
point charge as required by the idea of energy-momentum localization. 
Since the retarded field diverges on the world line of the particle and the 
'limit' depends on the direction of approach, one defines the field at the 
singularity as the average value over all possible directions [19]. A recent 
novel approach to radiation reaction is due to Gupta and Padmanabhan 
[31]. They show that fields of charged particles moving on arbitrary 
trajectories in an inertial frame can be related in a simple manner to 
the fields of a uniformly accelerated charged particle in its proper rest 
frame. Since the latter field is static and easily calculable, the former 
field is obtained by a coordinate transformation. It also allows them 
to compute the self force on the charged particle and recover the Dirac 
result. 

8. RADIATION REACTION IN GR 

As in electromagnetism, radiation reaction forces arise in gravitation 
from the use of retarded potentials satisfying time asymmetric bound­
ary conditions like no-incoming boundary condition at past null infinity. 
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The problem is more complicated because of the nonlinearity of general 
relativity. 

The approach to gravitational radiation damping has been based on 
the balance methods, the reaction potential or a full iteration of Ein­
stein's equation. The first computation in general relativity was by Ein­
stein who derived the loss in energy of a spinning rod by a far-zone 
energy flux computation. The same was derived by Eddington by a di­
rect near-zone radiation damping approach. He also pointed out that 
the physical mechanism causing damping was the effect discussed by 
Laplace, that if gravity was not propagated instantaneously, reactive 
forces could result. An useful development was the introduction of the 
radiation reaction potential by Burke and Thorne [32] using the method 
of matched asymptotic expansions. In this approach, one derives the 
equation of motion by constructing an outgoing wave solution of Ein­
stein's equation in some convenient gauge and then matching it to the 
near-zone solution. Restricting attention only to lowest order Newtonian 
terms and terms sensitive to the outgoing (in-going) boundary conditions 
and neglecting all other terms, one obtains the required result. The first 
complete direct calculation it la Lorentz of the gravitational radiation 
reaction force was by Chandrasekhar and Esposito. Chandrasekhar and 
collaborators [33] developed a systematic post-Newtonian expansion for 
extended perfect fluid systems and put together correctly the necessary 
elements like the Landau-Lifshitz pseudo-tensor, the retarded potentials 
and the near-zone expansion. These works established the balance equa­
tions to Newtonian order, albeit for weakly self-gravitating fluid systems. 
The revival of interest in these issues following the discovery of the binary 
pulsar and the applicability of these very equations to binary systems of 
compact objects follows from the works of Damour [9] and Damour and 
Deruelle [8] discussed earlier. 

Many other approaches to radiation reaction problems have emerged 
in the last five years. For instance, given the formulas for the far-zone 
energy and angular momentum fluxes to a particular PN accuracy, to 
what extent can one infer the radiation reaction acceleration in the (lo­
cal) EOM? Given the algebraic complexity of various computations and 
subtle evaluations of various small coefficients, it is worthwhile to check 
the obvious consistency requirement on the far-zone fluxes. To this end, 
Iyer and Will (IW) [34] proposed a refinement of the text-book treat­
ment of the energy balance method used to discuss radiation damping. 
This generalization uses both energy and angular momentum balance 
to deduce the radiation reaction force for a binary system made of non­
spinning structureless particles moving on general orbits. Starting from 
the IPN conserved dynamics of the two-body system, and the radiated 
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energy and angular momentum in the gravitational waves, and taking 
into account the arbitrariness of the 'balance' upto total time derivatives, 
they determined the 2.5PN and 3.5PN terms in the equations of motion 
of the binary system. The part not fixed by the balance equations was 
identified with the freedom still residing in the choice of the coordinate 
system at that order. The explicit gauge transformations they corre­
spond to has also been constructed. Blanchet [35], on the other hand, 
obtained the post-Newtonian corrections to the radiation reaction force 
from first principles using a combination of post-Minkowskian, multi­
polar and post-Newtonian schemes together with techniques of analytic 
continuation and asymptotic matching. By looking at "antisymmetric" 
waves ~ a solution of the d'Alembertian equation composed of retarded 
wave minus advanced wave, regular all over the source, including the 
origin ~ and matching, one obtains a radiation reaction tensor poten­
tial that generalizes the Burke-Thorne reaction potential, in terms of 
explicit integrals over matter fields in the source. The validity of the 
balance equations upto 1.5PN is also proved. By specializing this po­
tential to two-body sytems, lyer and Will [34J checked that this solution 
indeed corresponds to a unique and consistent choice of coordinate sys­
tem. This provides a delicate and non-trivial check on the validity of the 
1PN reaction potentials and the overall consistency of the direct meth­
ods based on iteration of the near-field equations and indirect methods 
based on energy and angular momentum balance. It should be noted 
that the 'balance method' by itself cannot fix the particular expression 
for the reactive force in a given coordinate system. In order to solve a 
practical problem (in which we erect a particular coordinate system), the 
method is in principle insufficient by itself, but it provides an extremely 
powerful check of other methods based on first principles. Gopakumar, 
lyer and lyer [36J have applied the refined balance method to obtain 
the 2PN radiation reaction ~ 4.5PN terms in the equation of motion. 
Different facets of the lW choice like the functional form of the reac­
tive acceleration have been systematically and critically explored and a 
better understanding of the origin of redundant equations is provided 
by studying variants obtained by modifying the functional forms of the 
ambiguities in energy and angular momentum. These reactive solutions 
are general enough to treat as particular cases any reactive acceleration 
obtained from first principles in the future. 

Within the ADM approach, the radiative 3.5PN terms in the ADM 
Hamiltonian has been obtained by Jaranowski and Schafer [37J. Work is 
in progress to check that this leads to expressions for 3.5PN acceleration 
that is a particular case of the general IW solution. In the test parti­
cle case, work on radiation reaction has focussed on understanding the 
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evolution of Carter constant in Kerr geometry by a variety of methods. 
Issues related to radiative versus retarded fields, adaptation of Dewitt­
Brehme and asymptotic matching methods, axiomatic treatments as well 
as extension to spinning particles have also been investigated in the last 
three years [38]. 

9. CONCLUSION 
It is amazing that in the macroscopic world, the computations of 

small higher order corrections so reminiscent of Lamb shift corrections 
in quantum electrodynamics (microscopic world) are in-expendable to 
extract the best from the LIGO and VIRGO facilities that will be able 
to look for gravitational wave signals by 2001. General relativity, far 
from being an esoteric and abstruse theory driven by aesthetic consider­
ations is in a situation where experiments are driving the theory. We are 
on the threshold of opening another window to this marvelous universe 
and gravitational wave astronomy could well be the new astronomy of 
the 21st century. With the inauguration of the Gravitational Wave As­
tronomy, more than ever before, General Relativity will have found its 
true home. 
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Chapter 15 

GRAVITATIONAL COLLAPSE: THE STORY 
SO FAR 
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Abstract We discuss here some recent developments in the theory of gravitationa.l 
collapse, examining the issue of the final fate of continual collapse of 
a matter cloud. It is pointed out that it is basically the nature of the 
regular initial data that decides whether the collapse ends in a black hole 
or a naked singularity. We outline here some problems which remain as 
yet unresolved regarding the naked singularities and cosmic censorship. 

A central issue in the gravitation theory today is that of cosmic cen­
sorship and asymptotic predictability [1]. Eventhough the singularity 
theorems predict the existence of singularities under fairly general con­
ditions on a spacetime, they are silent on the nature of these singularities. 
It is thus necessary to understand the nature of singularities arising as 
end state of collapse. The important assumption fundamental to black 
hole physics is that the singularities forming at the end point of gravi­
tational collapse of a massive object will necessarily be covered by the 
event horizons of gravity. Such a cosmic censorship hypothesis remains 
fundamental to the theoretical foundations of black hole physics. On the 
other hand, existence of visible or naked singularities would offer a new 
approach on these issues, offering the possibilities of their observational 
effects. 

We review here some recent developments in this direction, examining 
the possible final fate of gravitational collapse in general relativity. Dy­
namical collapse scenarios have been examined in the past decade or so 
for cases such as clouds composed of dust, radiation, perfect fluids, and 
also of matter compositions consisting of type I general matter fields. 
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We discuss these conclusions and some open problems in the field are 
pointed out. 

Consider, for example, the collapse of a dust cloud. It is well known 
that this will result into a black hole in the case of homogeneous dust col­
lapse. What will be the situation when the perturbations over a homoge­
neous density profile are taken into account? It is important to include 
effects of inhomogeneities because typically a realistic collapse would 
start from an inhomogeneous initial data with a centrally peaked den­
sity profile. This problem can be investigated using the Tolman-Bondi­
Lemaitre models [2]. This is an infinite dimensional family of asymp­
totically flat solutions of Einstein's equations, which is matched to the 
Schwarzschild space-time outside the boundary of the collapsing star. 
The Oppenheimer and Snyder [3] homogeneous dust ball collapse is a 
special case of this class of solutions. This question has now been in­
vestigated in detail (see e.g. [4], and references therein), and it is seen 
that the introduction of inhomogeneities leads to a qualitatively different 
picture of gravitational collapse. The metric for spherically symmetric 
collapse of inhomogeneous dust, in comoving coordinates (t, r, 0, ¢), is 
given by, 

F' 
E = E(t,r) = R2R' (2) 

where Tij is the stress-energy tensor, E is the energy density, and R is a 
function of both t and r given by 

(3) 

Here the dot and prime denote partial derivatives with respect to the 
parameters t and r respectively. As we are considering collapse, we re­
quire R( t, r) < O. The quantities F and f are arbitrary functions of rand 
411" R2 (t, r) is the proper area of the mass shells. The area of such a shell at 
r = const. goes to zero when R( t, r) = O. For gravitational collapse situ­
ation, we take E to have compact support on an initial spacelike hypersur­
face and the space-time can be matched at some r = const. = rc to the 
exterior Schwarzschild field with total Schwarzschild mass m{rc) = M 
enclosed within the dust ball of coordinate radius of r = rc. The appar­
ent horizon in the interior dust ball lies at R = F{r). 

With the integration of equation for R above we have in all three 
arbitrary functions of r, namely f(r), F(r), and to{r) where the last 
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indicates the time along the singularity curve. One could use the coor­
dinate freedom left in the choice of scaling of r to reduce the number of 
arbitrary functions to two. Rescaling R such that R(O, r) = r leaves us 
with only two free functions f and F. The time t = to(r) corresponds 
to R = 0 where the area of the shell of matter at a constant value of the 
coordinate r vanishes. The singularity curve t = to(r) corresponds to 
the time when the matter shells meet the physical singularity. Thus, the 
coordinates are given by 0 :s: r < 00, -00 < t < to(r). It follows that 
unlike the collapsing Friedmann case, or the homogeneous dust case, 
where the physical singularity occurs at a constant epoch of time (say, 
at t = 0), the singular epoch is a function of r as a result of inhomogene­
ity in the matter distribution. One could recover the Friedmann case 
if we set to(r) = t~(r) = O. The function f(r) classifies the space-time 
as bound, marginally bound, or unbound depending on the range of its 
values which are f(r) < 0, f(r) = 0, f(r) > 0, respectively. The function 
F(r) is interpreted as the weighted mass within the dust ball of coordi­
nate radius r. For physical reasonableness the weak energy condition is 
assumed, that is, Tij ViVj ~ 0 for all non-spacelike vectors Vi. This im­
plies that the energy density E is everywhere positive. (E ~ 0) including 
the region near r = O. l,From the scaling above, the energy density E on 
the hypersurface t = 0 is written as E = F' / r2. Then the weak energy 
condition implies that F' ~ 0 throughout the space-time. 

Within this framework, the nature of the shell-focussing singularity at 
R = 0 can be examined. In particular, the problem of nakedness or oth­
erwise of the singularity can be reduced to the existence of real, positive 
roots of an algebraic equation, constructed out of the free functions F 
and f and their derivatives [5], which constitute the initial data of this 
problem. It is then seen that for a wide variety of physically reasonable 
regular initial data, the singularity can be naked. 

We call the singularity to be a central singularity if it occurs at r = O. 
Partial derivatives R' and k can be written as, 

( aR(t,r)) =R'=(7]-f3)p_[1+f3-7]+(7]-~f3)~]R (4) 
ar t=const. J>- + f 

( aR'(t, r)) = ~R + _>-_ [1 + f3 -7] + (7] _ ':J.(3)i] (5) 
at r=const. 2r 2rP2 J>- + f 2 r 

where we have used the notation, 

R(t,r) = rP(t,r), 
F' 

7] = 7](r) = r p ' l' 
f3 = f3(r) = ry' F(r) = d(r) 

(6) 



164 THE UNIVERSE 

To focus the discussion, we restrict to functions I(r) and ).(r) which are 
analytic at r = 0 such that ).(0) =I O. The tangents Kr = drldk and 
Kt = dt/dk to the outgoing radial null geodesics, with k as the affine 
parameter, satisfy 

dt Kt R' 
= = --=== dr Kr .;r+7 (7) 

Our purpose is to find whether these geodesics terminate in the past 
at the central singularity r = 0, t = to(O). The exact nature of this 
singularity t = 0, r = 0 could be analyzed by the limiting value of 
X == tlr at t = 0, r = O. If the geodesics meet the singularity with a 
definite value of the tangent then using l'Hospital rule we get 

X 1· t 1· dt 1· R' 0= 1m -= 1m -= 1m 
t-tO,r-tO r t-tO,r-tO dr t=O,r=O y1 + 1 (8) 

where the notation is, ).0 = ).(0), (30 = (3(0), 10 = 1(0) and Q = Q(X) = 
P(X,O). Using the expression for R' earlier, the above can be written 
as V(Xo) = 0, where 

( {30 3)~ 11:£ 
V(X) == (1- {3o)Q + J).o + 10 + (1 - 2(30)X Y Q + 10 - X VI + 10 

(9) 
Hence if the equation V(X) = 0 has a real positive root, the singular­
ity could be naked. In order to be the end point of null geodesics at 
least one real positive value of Xo should satisfy the above. Clearly, if 
no real positive root of the above is found, the singularity t = 0, r = 0 
is not naked. It should be noted that many real positive roots of the 
above equation may exist which give the possible values of tangents to 
the singular null geodesics terminating at the singularity. However, such 
integral curves mayor may not realize a particular value Xo at the singu­
larity. Suppose now X = Xo is a simple root to V(X) = O. To determine 
whether Xo is realized as a tangent along any outgoing singular geodesics 
to give a naked singularity, one can integrate the equation of the radial 
null geodesics in the form r = r(X) and it is seen that there is always 
atleast one null geodesic terminating at the singularity t = 0, r = 0, with 
X = Xo. In addition there would be infinitely many integral curves as 
well, depending on the values of the parameters involved, that termi­
nate at the singularity. It is thus seen that the existence of a positive 
real root of the equation V(X) = 0 is a necessary and sufficient condi­
tion for the singularity to be naked. Finally, to determine the curvature 
strength of the naked singularity at t = 0, r = 0, one may analyze the 
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quantity k2 RabKa Kb near the singularity. Standard analysis shows that 
the strong curvature condition is satisfied, in that the above quantity 
remains finite in the limit of approach to the singularity. 

The assumption of vanishing pressures here may be considered a lim­
itation of dust models. It is argued sometimes that in the final stages of 
collapse, the dust equation of state could be relevant and at higher den­
sities the matter may behave more and more like dust. Further, if there 
are no large negative pressures (as implied by the energy conditions), 
the pressure also might contribute gravitationally in a positive manner 
to the effect of dust and may not alter the conclusions. 

In any case it is important to consider collapse situations with matter 
with non-zero pressures and reasonable equations of state. It is possible 
that pressures may play an important role for the later stages of collapse 
and one must investigate the possibility if pressure gradients could pre­
vent the occurrence of naked singularity. This issue has been examined 
in a number of papers [6], for both self-similar as well as non-self-similar 
collapse models. In particular, for self-similar models the results are, if 
in a self-similar collapse a single null radial geodesic escapes the singu­
larity, then an entire family of non-spacelike geodesics would also escape 
provided the positivity of energy density is satisfied as above. 

The results on matter forms such as directed radiation, dust, perfect 
fluids etc imply some general pattern emerging about the final outcome 
of gravitational collapse. Hence one could ask the question whether the 
final fate of collapse would be independent of the form of matter un­
der consideration. An answer to this is important because it has often 
been conjectured that once a suitable form of matter with an appro­
priate equation of state, and satisfying energy conditions, is considered 
then there may not be naked singularities. After all, there is always a 
possibility that during the final stages of collapse matter may not have 
any of the forms considered above, because such relativistic fluids are 
phenomenological and one must treat matter in terms of fundamental 
fields, such as for example, a massless scalar field. 

Recent efforts in this direction are worth mentioning where the above 
results on perfect fluid were generalized to matter forms without any re­
striction on the form of Tij, which was supposed to satisfy the weak en­
ergy condition only [7]. The main argument of the results such as these is 
along the following lines. In the discussion above it was pointed out that 
naked singularities could form in the gravitational collapse from a reg­
ular initial data, from which non-zero measure families of non-spacelike 
trajectories come out. The criterion for the existence of such singulari­
ties was characterized in terms of the existence of real positive roots of 
an algebraic equation constructed out of the field variables. A similar 
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procedure was developed now for general form of matter. In comov­
ing coordinates, the general matter can be described by three functions, 
namely the energy density and the radial and tangential pressures. The 
existence of naked singularity is again characterized in terms of the real 
positive roots of an equation, constructed from the equations of non­
spacelike geodesics which involve the three metric functions. The field 
equations then relate these metric functions to the matter variables and 
it is seen that for a non-zero measure subspace of this free initial data 
in terms of matter variables, the above equation will have real positive 
roots, producing a naked singularity in the space-time. 

It is thus seen that the occurrence of naked singularity is basically 
related to the choice of initial data to the Einstein field equations, and 
would therefore occur from regular initial data within the general context 
considered, subject to the matter satisfying weak energy condition. The 
condition on initial data which leads to the formation of black holes is 
also similarly characterized. It would then appear that the occurrence 
of naked singularity or a black hole is more a problem of choice of the 
initial data for field equations rather than that of the form of matter or 
the equation of state. This has important implications for the cosmic 
censorship in that in order to preserve the same one has to avoid all 
such regular initial data causing naked singularity, and hence a deeper 
understanding of the initial data space is required in order to determine 
such initial data and the kind of physical parameters they would specify. 
This would classify the range of physical parameters to be avoided for a 
particular form of matter. More importantly, it would also pave the way 
for the black hole physics to use only those ranges of allowed parameter 
values which would produce black holes, thus putting black hole physics 
on a more firm footing. 

Much attention has been devoted in past years to analyze the collapse 
of a scalar field, both analytically as well as numerically [8]. This is a 
model problem of a single massless scalar field which is minimally cou­
pled to gravitational field and it provides possibly one of the simplest 
scenarios to investigate the nonlinearity effects of general relativity. On 
the analytic side, the results by Christodoulou show that when the scalar 
field is sufficiently weak, there exists a regular solution, or global evolu­
tion for an arbitrary long time of the coupled Einstein and scalar field 
equations. For strong enough fields, the collapse is expected to result 
into a black hole. Such an approach helps study the cosmic censorship 
problem as the evolution problem in the sense of examining the global 
Cauchy development of a self~gravitating system outside an event hori­
zon. The problem of scalar field collapse has been numerically studied 
by Choptuik and others, where a family of scalar field solutions with a 
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parameter p characterized the strength of the scalar field. The numeri­
cal calculations showed that for black hole formation, there is a critical 
limit p ---7 p* and the mass of the resulting black holes satisfy a power 
law Mbh DC (p - p*)'Y, where the critical exponent 'Y has value of about 
0.37. 

The pattern that appears to be emerging from the current work on 
gravitational collapse is that both naked singularities and the black holes 
occur in several collapsing configurations from regular initial data, with 
reasonable equations of state such as describing radiation, dust or a 
perfect fluid with a non-zero pressure, or for general forms of matter. 
An insight that is gained from such an investigation is the final state of 
a collapsing star, in terms of either a black hole or a naked singularity, 
may not really depend on the form or equation of state of collapsing 
matter, but is actually determined by the physical initial data in terms 
of the initial density profiles and pressures. The important question 
then is the genericity and stability of such naked singularities arising 
from regular initial data. An investigation on this would enable one to 
reformulate more suitably the censorship hypothesis, based on a criterion 
that naked singularities could form in collapse but may not be generic. 
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It is a pleasure to dedicate this article to Prof. Jayant Narlikar, my first research 
Guru, though he may want to have little to do with toroidal and poloidal fields 
and the infamous 'pomega' ! 

Abstract 
Magnetic fields correlated on several kiloparsec scales are seen in 

spiral galaxies. Their origin could be due to amplification of a small 
seed field by a turbulent galactic dynamo. We critically review the 
current status of the galactic dynamo, especially some of its problems 
and possible solutions. We also comment on the nature of seed magnetic 
fields, needed to prime the dynamo. 

1. INTRODUCTION 
Magnetic fields in spiral galaxies have strengths of order few 1O-6G, 

and are coherent on scales of several kpc [1 J. In several disk galaxies, like 
M51 and NGC 6946, they are also highly correlated (or anti-correlated) 
with the optical spiral arms. How do such ordered, large-scale fields 
arise? One possibility is dynamo amplification of a weak but nonzero 
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seed field", 10-19 - 1O-23G, provided the galactic dynamo can operate 
efficiently to exponentiate the field by a factor '" 30 - 40. We critically 
review here some of the issues relevant to the operation of the galac­
tic dynamo, the problems which arise and possible solutions. We also 
touch upon the origin of the seed magnetic field, needed for dynamo 
amplification. 

The evolution of the magnetic field, in the MHD approximation, is 
described by the induction equation 

DB at = V' x (v x B - 'f}V' x B), (1) 

provided one assumes the usual form of Ohms law and neglects the dis­
placement current term in Maxwells equation. Here B is the magnetic 
field, v the velocity of the fluid and 'f} the resistivity. If 'f} --t 0 the mag­
netic flux through any area in the fluid is conserved during the motion of 
the fluid. The presence of a finite resistivity allows for a violation of such 
'flux freezing' and the magnetic Reynolds number (MRN) Rm = vL/'f} 
measures the relative importance of flux freezing versus resistive diffu­
sion. Here v and L are typical velocity and length scales of the fluid 
motions. In most astrophysical contexts flux freezing greatly dominates 
over diffusion with Rm > > 1. 

B = 0 is a perfectly valid solution of the induction equation. So 
there would be no magnetic field generated if one were to start with a 
zero magnetic field. The universe probably did not start with an initial 
magnetic field. One therefore needs some way of violating the induction 
equation and produce a cosmic battery effect, to drive curents from a 
state with initially no current. There are a number of such battery 
mechanisms which have been suggested [2]. All of them lead to only 
small fields, much smaller than the galactic fields. Therefore dynamo 
action, due to a velocity field acting to exponentiate small seed fields 
efficiently, is needed to explain observed fields. We first briefly comment 
on a cosmic battery before discussing dynamos in detail. 

2. COSMIC BATTERIES AND SEED 
FIELDS FOR THE DYNAMO 

The basic problem any battery has to address is how to produce finite 
currents from zero currents? Most astrophysical mechanisms use the 
fact that positively and negatively charged particles in a charge-neutral 
universe, do not have identical properties. For example if one considered 
a gas of ionised hydrogen, then the electrons have a much smaller mass 
compared to protons. This means that for a given pressure gradient of 
the gas the electrons tend to be accelerated much more than the ions. 
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This leads in general to an electric field, which couples back positive 
and negative charges, of the form ET = -'VPe/ene, where Pe and ne 
are the electron pressure and number density, respectively. If such a 
thermally generated electric field has a curl, then by Faradays law of 
induction a magnetic field can grow. Taking Pe = nekT with T the 
electron temperature we have 'V x ET = (ck/e)('Vne/ne) x'VT. So ET 
has a curl only if the density and temperature gradients, are not parallel 
to each other. The resulting battery effect, known as the Biermann 
battery, was first proposed as a mechanism for thermal generation of 
stellar magnetic fields [3]. 

The Biermann battery can also lead to the thermal generation of seed 
fields in cosmic ionisation fronts [4]. These ionisation fronts are produced 
when the first ultra violet photon sources, like quasars, turn on to ionise 
the intergalactic medium (IGM). The temperature gradient in a cosmic 
ionisation front is normal to the front. However, a component to the 
density gradient can arise in a different direction, if the ionisation front 
is sweeping across arbitrarily laid down density fluctuations, associated 
with protogalaxies/clusters since these in general have no correlation to 
the source of the ionising photons. The resulting thermally generated 
electric field has a curl, and magnetic fields on galactic scales can grow. 
They turn out to have a strength B f"V 3 x 1O-2o G. This field by itself 
is far short of the observed microgauss strength fields in galaxies, but 
it can provide a seed field, coherent on galactic scales, for a dynamo. 
Indeed the whole of the IGM is seeded with small magnetic fields. This 
seed field may infact have the right symmetry properties for the galactic 
dynamo modes [5]. The Biermann battery has also been invoked to 
generate seed magnetic fields in galactic or proto-galactic environments 
[6]. 

Larger seed magnetic fields than above can arise if we combine some 
form of dynamo action with the battery effect. For example, if stellar 
dynamos work efficiently, and some stars blowout as supernovae, then 
they can seed the interstellar medium, with significant magnetic fields. 
Alternatively galactic turbulence can itself lead to a small-scale dynamo 
(see below) and provide a larger seed for the large-scale galactic dynamo. 
There have also been attempts to invoke exotic physics in the early uni­
verse to produce primordial magnetic fields [2]. (Infact a primordial field 
in the IGM, which redshifts to a present day value of f"V 1O-9G, and is 
correlated on Mpc scales, can significantly perturb structure formation, 
and cause detectable anisotropies in the cosmic microwave background 
radiation [7].) It is fair to say at present that most seed field generation 
mechanisms fall far short of producing large-scale correlated fields at 
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the micro-gauss level. One does need some form of large-scale dynamo 
action. 

3. THE LARGE-SCALE GALACTIC 
DYNAMO 

Disk galaxies are differentially rotating systems. Also the magnetic 
flux is to a large extent frozen into the fluid. So any radial component of 
the magnetic field will be efficiently wound up and amplified to produce 
a toroidal component. But this results in only a linear amplification of 
the field. To obtain the observed galactic fields starting from small seed 
fields one should find a way to generate the radial component from the 
toroidal one. If this can be done, the field can grow exponentially and 
one has a dynamo. 

A mechanism to produce the radial field from the toroidal field was 
invented by Parker [8]. The essential feature is to invoke the effects of 
cyclonic turbulence in the galactic gas. The interstellar medium (ISM) 
is assumed to be turbulent, due to for example the effect of supernovae 
randomly going off in different regions. In a rotating, stratified (in den­
sity and pressure) medium like a disk galaxy, such turbulence becomes 
cyclonic and acquires a net helicity. Helical motions of the galactic gas 
perpendicular to the disk can draw out the toroidal field into a loop 
which looks like a twisted O. Such a loop is connected to a current and 
because of the twist this current has a component parallel to the origi­
nal field. If the motions have a non-zero net helicity, then the random 
current components parallel to the field, add up coherently. A toroidal 
current can then result from the toroidal field. Hence, poloidal fields can 
be generated from toroidal ones. 

In quantitative terms, suppose the velocity field is the sum of a mean, 
large-scale velocity Vo and a turbulent, stochastic velocity VT. The in­
duction equation becomes a stochastic partial differential equation. The 
equation for various moments of B, can be derived in two ideal limits. 
First when Rm < < 1, and the distortions to the mean magnetic field 
are small, and second when Rm > > 1, but the turbulence is assumed to 
have a delta function (or very small) correlation in time. For galaxies 
the latter idealisation may be more relevant. 

Let us split the magnetic field B = Bo + oB, into a mean field Bo 
and a fluctuating component oB.. Here the mean is defined either as 
a spatial average over scales larger than the turbulent eddy scales or 
more correctly as an ensemble average. Assume the turbulence to be 
isotropic, homogeneous and helical. The action of the turbulent velocity 
field VT, on the magnetic field, the (v x B) term, then leads to an extra 
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contribution to the mean electric field of the form -cEo = aBo - 'fJt V x 
Bo. Here a = -(1/3) J < VT(t).(VXVT(S)) > ds, depends on the helical 
part of the turbulent velocity correlation function, and 'fJt = (1/3) J < 
VT(t).VT(S) > ds, called the turbulent diffusion depends on the non­
helical part of the turbulence. Here the angular brackets <> denote 
an ensemble average, over the stochastic velocity field. The induction 
equation for the mean field, with the extra turbulent component of the 
mean electric field, is then given by 

aBo at = V x (vo x Bo + aBo - ('fJ + "IT) V x Bo)· (2) 

This kinematic mean-field dynamo equation, can have exponentially 
growing solutions, which have been studied extensively in the litera­
ture [1]. While the a-effect is crucial for regeneration of poloidal from 
toroidal fields, the turbulent diffusion turns out to be also essential for 
allowing changes in the mean field flux. Also in galaxies, differential ro­
tation (the 0 effect) is dominant in producing toroidal from radial fields. 
The growth rates of the galactic' a-O dynamo', are typically a few times 
the rotation time scales, of order 109 yr. Modulations of a, and 'fJT, due 
to enhanced turbulence along spiral arms, can also lead to bi-symmetric 
large-scale fields, correlated with the optical spirals [9J. 

Note that the mean field has a scale limited only by the size of the 
system, which can be much bigger than the scales associated with the 
turbulence. In this sense one has created order from chaos. One may 
be tempted to refer to this as an inverse cascade, a term which would 
suggest transfer of power from smaller to larger and larger scales. But 
reality is more subtle. All scales larger than the turbulent eddy scale can 
grow simultaneously due to the a-effect; but with larger scales growing 
slower. So the effect can be thought better as a long range interaction 
between the turbulent scales, and all larger scales. 

A physics comment is in order at this stage. When one considers 
the effect of turbulent fluid motions on a scalar field, like say smoke, 
one only gets a mean diffusion of smoke, associated with the random 
walking nature of turbulent fluid motions. But for 'frozen' magnetic 
fields the induction equation has terms which not only imply a body 
transport due to the random motions (v.VB), but also a term, B.Vv, 
which describes the generation of magnetic fields due to velocity shear. 
It is this qualitative difference between magnetic fields and smoke that 
leads to an alpha effect (provided also that the motions have a non-zero 
average helicity), over and above turbulent diffusion. As we see below, it 
also leads to the small-scale dynamo. Note that both a and 'fJT, depend 
crucially on the diffusive (random-walk) property of fluid motion. So if 
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due to some reason (see below) the fluid motion becomes wavelike, then 
the above integrals average to zero, and the alpha effect and turbulent 
diffusion will be suppressed. 

In deriving the mean-field equation, the turbulent velocities have been 
assumed to be given, and unaffected by the Lorentz forces due to the 
magnetic field; at least not until the mean large-scale field builds up 
sufficiently. However this does not turn out to be valid due to the more 
rapid build up of magnetic noise compared to the mean field, a problem 
to which we now turn. 

4. THE SMALL-SCALE DYNAMO AND 
MAGNETIC NOISE 

The problem with the kinematic mean field dynamo is that it is a 
myth. This is because, the same turbulence which contributes to the 
a-effect, the turbulent diffusion, and associated growth of mean fields, 
also leads to a more rapid growth of small-scale fields. 

In incompressible turbulence, fluid particles random-walk away from 
each other. This leads to stretching of the field lines attached to these 
particles, and an exponential increase of field strength. The stretching 
will also be accompanied by the field being squeezed into smaller and 
smaller volumes. Suppose one considers a flux tube, of length it, cross 
section A, density p and magnetic field B. Then flux freezing implies 
BA = constant, mass conservation pAlt = constant, and incompressibil­
ity p = constant. So as It increases due to random stretching, the the 
magnetic field B ex: It increases and the cross-section A ex: It 1 decreases. 

If for the moment one ignores Lorentz forces, then the sqeezing into 
small volumes, stops only when diffusive scales are reached. Typically 
the field can be thought of as being in flux ropes, curved on the eddy 
scale, say L, and a thickness of order the diffusive scale, say rd (assuming 
only a single scale eddy is present). At this stage the energy input into 
the magnetic field due to random stretching would be comparable to 
the energy loss in diffusion. This gives vB / L I'V ."B / r~, implying r d I'V 

L / R~2. What happens further (whether growth or diffusion wins out), 
can only be decided by a more quantitative treatment of the problem. 

A rigorous analysis of small-scale field dynamics, was first worked out 
by Kazantsev [10], and elaborated extensively by many authors [11], 
for the simple case, where the turbulence was assumed to have a delta 
function correlation in time. We shall mainly draw upon our own work 
in Ref. [12]. It turns out that, the small-scale dynamo (SSD) can 
operate under fairly weak conditions; that the MRN associated with 
the turbulent motions be greater than a critical value Rc '" 100. In 
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particular the fluctuating field tangled on a scale 1, can grow on the 
turn over time scale of a turbulent eddy of scale 1, with a growth rate 
fl '" vI/l, provided the MRN on that scale Rm(l) = vl ll7J > Rc. Here 
VI is the velocity associated with eddies of scale 1. For Kolmogorov 
turbulence, since VI ex: 11/ 3 , the growth rate fl ex: 1-2/ 3 , and so increases 
with decreasing l. For galactic gas, with a significant neutral component, 
typically, even the eddies at the cut-off scale of the turbulence, say lc, 
have Rm(lc) »Rc· 

The spatial structure of the small-scale dynamo generated field is 
also of great interest. For this it is useful look at the behaviour of the 
magnetic correlation function, say w(r, t) =< 8B(x, t).8B(y, t) >, where 
r = Ix - YI. Here the averaging indicated by <>, is a double ensemble 
average over both the stochastic velocity and fluctuating magnetic fields. 
i,From V.8B = 0, one can show that the curve r2w(r) should enclose 
zero area. Since w(O) is neccessarily positive, as one goes to larger r, 
there must be some r '" d say, when w(r) becomes negative. For such r, 
the fluctuating field at the origin, and at a separation d are pointing in 
'opposite' directions on average. This can be intepreted as saying that 
the field lines on average are curved on scale d. 

For Kolmogorov type turbulence, and if Rm(lc) » Rc, the fastest 
growing mode, has w(r, t) strongly peaked within the diffusive scale of 

the cut-off scale eddies, r = rd(lc) = lclR~2(lc), changing sign at r '" lc, 
and rapidly decaying for larger r Ilc. One can interpret such a correlation 
function as implying that field is concentrated into ropes of thickness 
rd(lc) and curved on scales of order lc. For slower growing modes, with 
growth rate fl '" vI/l, w(r) extends upto r '" 1, after which it decays 
exponentially. For these modes, the small-scale field can be thought of 
as being concentrated in rope-like structures with thickness of order the 
diffusive scale r d (lc) and curved on a scale upto '" l. In general, at the 
kinematic stage, the growth rate of irreducible higher order correlations, 
increase with order, indicating that the field becomes highly intermittent 
in space. 

Note that the small-scale dynamo due to even the eddy at the outer 
scale of galactic turbulence, will lead to the exponetial growth of small­
scale fields on a time T = Llv '" 107 yr. (Here we have taken L '" 100 
pc, and a velocity scale V '" 10 km s-l.) This time is much shorter 
than the time scale '" 109 yr for mean field growth. The magnetic 
field is then rapidly dominated by the fluctuating component, before 
the mean field has grown appreciably. If the energy in the small-scale 
component grows to equipartition with the turbulent energy density, 
the turbulence could become more wavelike 'Alfven' turbulence, than 
an eddy like fluid turbulence. So diffusive effects like the a and 7JT, 



176 THE UNIVERSE 

would get suppressed, and mean field growth stopped. How does the 
galaxy escape this predicament? 

5. SATURATION OF THE SMALL-SCALE 
DYNAMO 

To answer this question, it is crucial to find out how the small-scale 
dynamo saturates. We have concentrated on the possibility that the 
small scale field continues to be intermittent in space, when it saturates, 
as it was in the kinematic regime. That it saturates as a 'can of worms'; 
with peak fields being limited by non-linear effects to values of order 
or slightly larger than equipartition fields, but with most of the space 
having much smaller fields. Then the average energy density of the satu­
rated small-scale dynamo generated field, may still be sub-equipartition, 
since it does not fill the volume. And the turbulence will remain eddy 
like, and preserve diffusive effects like a and 'fit. We have given one ex­
plicit realisation of the above idea, in Ref. [12], in the case of a galaxy 
dominated by neutral particles. 

In partially ionised plasma, the Lorentz force acts on ions, which are 
only coupled to neutrals through collisions. This leads to a 'ambipo­
lar' drift of ions (and hence the field) with respect to neutrals. With v 
in Eq.{I) replaced by the neutral fluid velocity, the effective diffusivity 
changes to 'fief! = 'fI+ < oB2 > /(61rPiVin). Here Pi is the ion density 
and Vin is the neutral-ion collision frequency. So, as the energy density in 
the fluctuating field increases, the effective magnetic Reynolds number, 
for fluid motion on any scale of the turbulence say Rambi{l) = vll/'fIef!' 

decreases. If Rambi could decrease to R e, this itself will lead to a SSD 
saturation, but for conditions appropriate to galactic gas, Rambi remains 
much larger than Re. So as the the small-scale field grows in strength, 
it continues to be concentrated into thin ropy structures, as in the kine­
matic regime. These flux ropes are curved on the turbulent eddy scales, 
while their thickness is now set by the diffusive scale determined by the 
effective ambipolar diffusion. 

Other restraining effects have to then limit the SSD. The first of these 
is due to the growing magnetic tension associated with the curved flux 
ropes. It acts to straighten out a flux rope, at a rate determined by 
equating the tension force and frictional drag. Frictional drag also damps 
the magnetic energy associated with the wrinkle in the rope. Further, 
small-scale flux loops can collapse and disappear, causing an irreversible 
sink of magnetic energy into heat. These non-local effects operate on 
the eddy turnover time scale, when the peak field in a flux rope, say 
Bp , has grown to a few times the equipartion value. Their net effect 
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is to make the random stretching needed for the SSD inefficient and 
hence saturate the SSD. As the field is in flux ropes which do not fill the 
volume. the average energy density in the saturated small-scale field is 
still sub-equipartition, and a and rrr are preserved. 

Note that Bp has to grow to a larger and larger value, thinner the 
flux rope, for inefficient random stretching to operate. This is because 
tension is a volume force (ex TJlt) while drag acts on the surface of the 
rope and is ex Tdlt. But Bp cannot grow larger than (81TPext}1/2, where 
Pext is the total pressure in the ISM. At the same time the thickness of 
flux ropes is larger, greater the ambipolar diffusion, or smaller the ion­
density. So the SSD saturates as above, for a given Pext , provided ni is 
less than a crictical value ni. In the ISM, if Pext is a factor F greater than 
the gas pressure (the gas assumed to have T I"'V 104K and a density nn), 
one gets ni I"'V 1O-2cm-3(v/1Okms-l)-3(nn/cm-3)2/3(F/2f/3. So for 
a range of 'galactic' like parameters, this picture of small-scale dynamo 
saturation works. 

For larger ion densities ni > ni, the way the SSD saturates is not very 
clear. The peak field is still limited by the external pressure. But how 
the flux ropes behave in the post-kinematic stage is yet to be rigorously 
worked out. It is possible that, when one starts with weak fields, the 
field is first squeezed into small volumes until limited by magnetic pres­
sure. Subsequently, constructive folding of the field, may lead to fusing 
and thickening of the flux rope, while destructive folding may lead to 
reconnect ion , and dissipation. A phenomenological model [13] which in­
corporates this thickening of flux ropes as the field builds up, drives the 
SSD into saturation, when the rope thickness becomes of order L/ R~/2, 
the peak field reaches equipartition levels, but with the average energy 
density of order R;l of equipartition. 

Numerical simulations of dynamo action due to mirror-symmetric tur­
bulence [14] or convection [15] have also hinted at a saturated state of 
SSD as described above; a magnetic field concentrated into flux ropes, 
occupying a small fraction of the fluid volume, having peak fields com­
parable or in excess of equipartition value but average magnetic energy 
density only about 10% of the kinetic energy density. Such simulations 
are however limited by the MRN they can achieve. There have also 
been MHD simulations of the SSD in fourier space, adopting some form 
of closure approximation, like the EDQNM approximation [16], or the 
DIA [17]. They have also indicated that the small-scale field could sat­
urate at sub-equipartition levels. However, why this happens and the 
relation of the fourier space, to the real space calculations which we have 
emphasised, is not at present clear. 
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There of course remains the possibility that the SSD in a fully ionised 
gas saturates only when the energy density in the noise grows compa­
rable to that of the turbulence. However, the spatial structure of the 
small-scale field, is still likely to be highly intermittent. The large-scale 
dynamo action will then depend on how such a field responds to turbu­
lent motions, especially whether the field can reconnect efficiently [18]. If 
reconnect ion is efficient, then it may allow diffusive transport to still oc­
cur, through the forest of small-scale fields, rather like Tarzan, swinging 
from one rope to another crosses the jungle! Reconnection is an impor­
tant issue, which deserves much more discussion than we have given (cf. 
[19]). Another important issue which is just beginning to be addressed 
[20], is the calculation of a (or 'fJT) in the presence of significant small­
scale fields. 

In summary, the survival of the diffusive effects needed for large-scale 
dynamo action could depend crucially on whether the SSD generated 
fields can saturate at sub-equipartition levels. We feel that this may 
indeed be possible, if the noise saturates as a 'can of worms'. Note 
the SSD generated field is indeed spatially intermittent in the kinematic 
regime. So when one starts from weak fields, kinematic evolution oper­
ates for some time, and the small-scale field is driven to an intermittent 
state. The important question is to what extent it remains so in the 
non-linear regime, when it saturates. This SSD generated field will also 
provide a strong seed for the large-scale dynamo [21]. Indeed, in a uni­
fied treatment of small and large-scale dynamos, large-scale correlations 
are produced, from small-scale fields in a way analogous to 'quantum 
mechanical tunnelling', of the stationary state of the SSD [13]. The heli­
cal, turbulent, a-D dynamo still seems to be the best bet for explaining 
large-scale galactic fields. Ultimately the galactic dynamo is a non-linear 
dynamo; but a discussion of how it operates in the final saturated regime 
needs more thought. Our thoughts on galactic magnetism have yielded 
interesting results but much remains to be done. 
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Chapter 17 

THE BLACK HOLE IN MCG 6-30-15 
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Pune, India 

This article is dedicated to Jayant Vishnu Narlikar, who to one of us has been 
teacher, mentor and punching-bag, and to the other an esteemed senior col­
league. 

Abstract We review the evidence for the existence of black holes in active galaxies, 
with particular reference to the Seyfert galaxy MeG 6-30-15. 

In the astrophysical context, black holes are believed to have been found 
on two altogether different mass scales. Black holes with mass ,....., 1 -
lOM0 have been inferred to exist in X-ray binary systems, in which mass 
transfer takes place from a more or less evolved star to a compact object. 
A clean way to establish that a compact object is a black hole is to show 
that it has a mass exceeding the maximum mass that a neutron star can 
have, which is ,....., 3M0 . Unfortunately, estimates of the compact object 
mass depend on the orientation of the plane of the binary relative to the 
line of sight, and the nature of the companion star. In spite of these 
uncertainties, in some cases the lower limit on the compact object mass 
exceeds the neutron star mass limit. The most notable case of this sort 
is the binary system GS2023+38, in which the mass of the companion 
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is ~ 6.26 ± O.31MG . It seems inescapable that the compact object is a 
black hole. 

Black holes are also believed to have been detected at the centre of a 
variety of galaxies, ranging from a normal one like M 31 (Andromeda) to 
active galaxies. The black hole mass here is orders of magnitude larger, 
going upto a f"V 109 MG. There is firm photometric and spectroscopic 
evidence for the existence of a large mass concentration with high mass­
to-light ratio M / L at the centres of some galaxies, and it is possible to 
argue that these are black holes. There are also several theoretical and 
observational considerations which make it plausible that active galactic 
nuclei, amongst which we include quasars, are powered by accretion of 
matter on to a supermassive black hole. Supermassive black holes could 
also exist at the centres of all, or at least a significant fraction of all 
galaxies, including our own. 

The disappointing element in the stellar as well as galactic contexts 
sketched above has been the absence of any direct evidence for the ex­
istence of black holes. This can come from the detection of relativistic 
effects which can be found in the strong gravitational field close to the 
Schwarzschild radius. Detailed models used in the description of these 
observations should be able to rule out explanations based on matter 
distributions of high, but finite, density like neutron stars or dense star 
clusters. 

It is possible that such a signature of the existence of a black hole 
has been found in the shape of iron emission lines at X-ray wavelengths 
observed at high resolution in the Seyfert galaxy MCG 6-30-15. The line 
has the double peaked shape which is expected.in the emission from a 
compact rotating disk. Other features of the line shape point to the 
effects of strong gravity and highly relativistic motion. The case for the 
detection of a black hole has therefore become stronger than ever, and 
it is possible that with some improvement in the observational data, the 
issue will be unambiguously settled in favour of a black hole. We shall 
discuss below the case for black hole detection in MCG 6-30-15, as well 
as in some other galaxies. 

1. WHY A BLACK HOLE? 
Quasars and AGN have luminosities in the range f"V 1042 _1048 ergs-l, 

with the emission spread across an immense bandwidth, ranging from 
low frequency radio ( ;S100MHz) to high energy ,- rays ( ;S30GeV); 
Te V ,- ray emission has also been seen in a few objects like the BL Lac 
MRK 421. The high frequency radiation is emitted from very compact 
regions of size ;S1012 cm around the nucleus. The intense emission lines 
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in quasar and AGN spectra, found in the optical band and wavelength 
regions close to it, arise on the parsec and kiloparsec scale, while the 
radio radiation comes from vast radio lobes extending to hundreds of 
kiloparsec from the host galaxy. There is now enough observational evi­
dence and theoretical modelling available to argue convincingly that the 
emission from the extended regions is ultimately powered by radiation 
and energetic particle beams which arise in close vicinity of the centre 
of the galaxy. Production of vast quantities of energy in a compact re­
gion, with attendant relativistic beams and bulk motion, over tens or 
hundreos of millions of years is best facilitated by matter falling into the 
deep gravitational well provided by a supermassive black hole. We will 
summarize below a few of the standard arguments in favour of such a 
model. 

1.1 ARGUMENTS FAVOURING BLACK 
HOLES 

If the observed flux from an object varies on a timescale of T, then 
the spatial size of the emitting region is required to be ;5CT. If the 
region were bigger than this limit, different parts of the source would 
not be causally related over the variability time. The subregions would 
therefore vary independently, and the net amplitude of variability would 
be reduced considerably. 

It has been found that the AGN in Seyfert galaxies, as well as many 
BL Lacs and related objects, show rapid and high amplitude variability 
in their X-ray flux. In some low luminosity Seyferts variations are found 
on the time scale of hours or less, and the X-ray flux from the Seyfert 
galaxy NGC6814 varies by a factor of"" 2 in less than 100s (see [1] 
and [2]). The size of the emitting region is therefore ~1011 cm, which 
is comparable with the Schwarz schild radius 3xl012 (M/107 M 0 ) cm of 
a "" 107 M0 mass black hole. When the energy release is due to ac­
cretion of matter, a characteristic quantity is the Eddington luminosity 
LEdd :::: 1045 (M/M0) ergs-I, at which the outward radiation pressure 
on the accreting matter balances the inward force due to gravity. While 
this limit strictly applies only to spherical accretion, there are indica­
tions that it is rarely exceeded in real situations. If the rapidly variable 
emission occurs close to the Schwarzschild surface, then the size of the 
emitting region as well as the luminosity would be roughly proportional 
to the mass, and there are indeed strong indications that variability 
timescales are proportional to the luminosity of the object. 

When observed on milliarcsecond scales, many compact radio sources 
are found to have features which appear to move at speeds which can be 
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as high as rv lOc. The jet like structures found on these scales, as well as 
on much large angular scales in radio quasars are invariably one-sided, 
even though the extended radio structures have more or less symmetric 
two-sidedness, with both sides showing signs of being continuously ener­
gized. These observations can most satisfactorily be explained as being 
due to highly relativistic bulk motion in the source. Such motion leads to 
the illusion of superluminal velocities because of light travel time effects 
when the motion is at a small angle to the line of sight. Moreover, a fea­
ture moving towards the observer appears to be very much brighter than 
a receding feature, leading to observed one-sidedness. The relativistic 
motions required in this model are are naturally to be expected in the 
presence of a deep gravitational potential well generated by a black hole. 

The large scale collimated beams in radio sources maintain their di­
rection extremely well over ~107 yr. The beams are thought to emerge 
from the place of creation through funnels in bloated parts of an accre­
tion disk around the nucleus. If there is a massive spinning black hole 
at the centre, the coupling of the disk to the spin angular momentum of 
the black hole can naturally maintain the direction of the funnel. More­
over, the spin energy can be extracted to power the beam through the 
Blandford-Znajek process (see [3]). 

The above arguments, and several others, like the the high efficiency 
of the energy production in quasars which rules out nuclear or atomic 
processes for the generation, are all indicative of the gravitational origin 
of the energy, but none of them unequivocally requires the existence of 
a supermassive black hole. It is in principle possible for the gravita­
tional potential well to be provided bye. g. a supermassive star, a dense 
star cluster, a collection of stellar mass black holes or spinars. But such 
models are hard put to explain highly energetic outbursts, rapid vari­
ability and collimated small scale jets. Moreover, as pointed out by 
Rees [4], all these systems undergo a runaway as the potential well gets 
deeper due to accretion, and will almost inevitably collapse to a single 
black hole. These considerations have led to the general, but not com­
plete, acceptance of a the existence of a spinning black hole with mass 
rv 106 - 109 M0 as the prime mover of AGN. If it is true that normal 
galaxies of the present epoch harbour a now defunct AGN, then super­
massive black holes could be present in all, or at least a good fraction, 
of all galaxies. The question then is, how do we detect these monsters? 
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2. DYNAMICAL EVIDENCE FOR THE 
EXISTENCE OF BLACK HOLES 

If a supermassive black hole of mass M is present at the centre of 
a galaxy, it is expected to perturb the dynamics of the nuclear region 
around it to a distance G M /(52, where (5 is the stellar velocity dispersion. 
The distribution function of stars in the region will be affected, changing 
the intensity distribution of stellar light, and the velocity dispersion 
of the stars from what is expected in the absence of the black hole. 
Attempts to detect such effects were first made by Young et al. [5] and 
Sargent et al. [6] from observations of the powerful radio galaxy M 87 
situated in the Virgo cluster. The relatively nearby location (distance 
rv 15 Mpc) allows regions close to the centre of the galaxy to be probed 
even with the limited resolution available from ground based telescopes. 

Young et al. found that the radial luminosity profile of M 87 in the V 
band contained a barely resolved spike in the centre, with a luminosity 
cusp extending to rv 10 arcsec. The luminosity profile inside this region 
could not be fit by the isothermal King model profiles which are used in 
normal elliptical galaxies. Combining the photometric data with spec­
tra obtained by Sargent et al. , which showed that the stellar velocity 
dispersion in the core of the galaxy was 278 ± 11 km s -1, Young et al. 
obtained a value of 3 x 109 M0 for the black hole. In fact a model inde­
pendent analysis of the photometric and spectroscopic data showed that 
the nucleus contains a compact mass, located inside a radius < 100 pc, 
and having a mass-to-light ratio M /.c > 60. A supermassive black hole 
is a very plausible candidate for the compact object. 

The black hole models of Young et al. and Sargent et al. have been 
questioned over the years. On the observational side, it has been found 
that M 87 like profiles with cusps are found in a number of galaxies some 
of which, like M 33 have low central dispersion velocities which show that 
a supermassive black hole cannot be present. On the theoretical side, it 
has been shown that the assumption of an isotropic distribution of veloc­
ities is critical to black hole interpretation. Models in which the radial 
component of the stellar dispersion velocity is greater than the tangen­
tial component can reproduce the observed properties of M 87 without 
requiring the presence of a compact dark object. Such anisotropic ve­
locity dispersions are common in giant ellipticals (see [7] for a detailed 
discussion of these issues and references). 

Using observations from the Hubble Space Telescope (HST), Ford et 
al. [8] have been able to discover what appears to be a rotating disc of 
ionized gas surrounding the nucleus of M 87. The disc is approximately 
normal to the optical jet observed in the galaxy. Harms et al. [9] have 
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obtained spectra of the disk like structure, centred on the nucleus and at 
rv 18 pc on either side of it, along the major axis of the disc. The radial 
velocities of the gas in the disc at the two positions have been found 
to be rv ±500kms-1 relative to the systemic velocity of the galaxy. 
When combined with other spectra obtained close to the nucleus, the 
data show that the gas disc is in Keplerian rotation about a mass of 
2.4 ± 0.7x109 Mev within 18pc of the nucleus with a mass-to-light ratio 
of M / C :::: 170. This is a shot in the arm for the black hole model, 
but observations closer still to the nucleus are required to make the 
case stronger. Miyoshi et al. [10] have observed line emission at radio 
wavelengths from water masers very close to the nucleus of the galaxy 
NGC 4258 with the Very Long Baseline Array. The emission appears 
to arise in a nearly edge on rotating disc, with the rotation velocity 
decreasing as r-1/ 2 with distance r from the centre, as is expected in 
Keplerian motion. The mass of 3.6 x 107 Mev around which the Keplerian 
motion takes place is located within a radius 0.13 pc, which corresponds 
to a mass density> 4 x 109 Mev pc-3, which is > 40 times in excess of the 
density of other black hole candidates. 

There are several cases of possible black holes in active as well as 
in normal galaxies, and a good summary about these may be found 
in [7]. Even in the best of these optical and radio observations, the 
centre is not approached close enough to measure essentially relativistic 
signatures which will help eliminate alternatives to the black hole model. 
We will see below how observations at X-ray wavelengths may provide 
the clinching evidence. 

3. THE IRON LINE PROFILE IN 
MCG-6-30-15 

The X-ray spectra of a majority of AGN have been represented as a 
power-law emission extending at least up to 200 keY. A region producing 
such X-rays has to be necessarily hot, i. e. , with temperature around 108 

K. It is now also known that there is colder (i.e. with a temperature 
less than 107 K) matter in the vicinity of the X-ray source. Such a 
medium would reflect a significant fraction of the X-rays impinging on 
it. In particular, the high energy photons (Le. E > 100 keY) would 
be Compton down-scattered while the low energy photons (Le. E < 20 
ke V) would be absorbed by the partially ionized atoms in the medium. 
The net result should be a broad feature centered around 50 keY. It 
is now confirmed that many AGN have this additional broad feature 
around 50 ke V, thus confirming that cold matter is indeed present in 
the vicinity of the X-ray source (e. g. [11]). 
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Another important signature of the cold medium is the Iron Ka X-ray 
fluorescent line. The line energy here is a slowly increasing function of 
the ionization state of Iron, rising from 6.4 keY for Fe I to 6.45 in Fe 
XVII, but then increasing steeply to 6.7 keY in Fe XXV and 6.9 in Fe 
XXVI ([12] and references therein.). This Iron line (at 6.4 keY) has also 
been observed in most AGN thereby reconfirming the model. 

The reflecting material is probably in the form of a cold accretion disk 
around a massive black hole. The Iron Line emission from the inner disk 
region would then be red shifted or blue shifted due to gravitational and 
Doppler effects. Since different regions of the disk give rise to different 
line energies, the net emission will be seen as broad line. The detailed 
calculation of the line shape for different geometries and viewing angles 
have been computed by Fabian et al. [13] and Laor [14]. In most cases, 
the shape is double peaked. Since the reflecting material is cold, the 
thermal broadening of the Iron line is expected to be not detectable 
(i. e. , (J < < 0.1 keY). 

It was not until the launch of the Japanese-US X-ray satellite ASCA 
(Advanced satellite for Cosmology and Astrophysics) in February 1993 
that this prediction could be tested. ASCA carries low background CCD 
X-ray detectors that have an unprecedented spectral resolution of 160 
eV around 6.4 keY [15]. A long (~ 4.5 days) observation by ASCA 
of the Seyfert 1 MCG 6-30-15 revealed that the Iron line profile in this 
source is broad with velocity width of > 1010 cm sec-1 [16]. The results 
also showed that the line profile has a skewed red wing which was in 
agreement from the inner disk line profiles calculated. The analysis 
showed that the spectral shape matched the predicted emission from 
a disk with inner and outer radii at 6rg and 20rg respectively, where 
r 9 = G M / c2 . The inclination of the disk was also constrained to be 
around 30° ± 3. The data and the corresponding fit to the disk line 
model of Laor [14] is shown in Figure 17.l. 

A more detailed analysis of the data by Iwasawa et al. [17] showed that 
the profile is variable. They also showed that when the source intensity 
is minimum, the disk producing this line has to have an inner radius 
I"V l.2r g, which implies that the black hole is spinning close to its max­
imal value. If this interpretation is correct, then this is the first direct 
observation of the strong gravitational effects expected in the vicinity of 
a black hole. This would strongly constrain theoretical models since the 
inner disk region has to be cold in order to produce the Iron line while 
at the same time the hard X-ray producing region would also have to be 
located close to the inner edge of the disk. 

Sulentic et al. [18] showed there was a disagreement between the 
inclination angle derived by fitting the Iron line profile and the angle 
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Figure 17.1 The unfolded spectra and best fit disk line model of Laor [14]. The 
medium intensity data from both chips (SISO and SIS1) for Bright (B) and Bright2 
(B2) modes are shown separately. The dotted line is the power-law while the solid 
line is the sum of the power-law and Iron line profile. 

obtained from HI and Ha measurements. Several AGN for which a broad 
Iron line was detected have the peak centroid close to 6.4keV [19]. This 
is not expected [20] if the disks are oriented in random directions. They 
propose that the Iron line profile is a sum of two independent Gaussian 
lines in order to explain the different correlation relationships of the red 
and blue side with the source intensity. They also claimed that there 
is a blue wing in the Iron line emission which cannot be explained by 
the disk line model. These discrepancies and the importance of the 
implication of the disk line model warrant a study of alternate models 
to explain the phenomenon. Due to the profound implications of being 
able to 'observe' the immediate vicinity of a super massive black hole, 
it becomes important to examine models for the broad Iron line that do 
not require strong gravity. 

As an alternative to the disk line model, Czerny, Zbyszewska and 
Raine [21] proposed that the line is intrinsically narrow and it gets 
broadened due to Compton down scattering of the photons as they pass 
through an optically thick cloud. This model is referred to here as the 
Comptonization model. Fabian et al. [22] rejected the Comptonization 
model by arguing that the surrounding Comptonizing cloud has to have 
a radius R < 1014 cm in order that the cloud be highly ionized and does 
not produce strong absorption lines. For a 107 M0 black hole this would 
imply that the Iron line producing region is smaller than 50rg and grav­
itational effects would be important. The lack of a blue wing in the best 
disk-line fit to the line profile, implies that the temperature of the cloud 
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should be kT < 0.2 ke V, which is in apparent conflict with the expected 
Compton temperature of the cloud. Further, a break in the continuum 
around 20 keY is expected for the Comptonization model which has not 
been observed. On the other hand, Misra & Kembhavi [23J pointed out 
that for a smaller sized black hole, the intrinsic Iron line produced may 
not be significantly broadened by gravitational effects. They calculated 
the equilibrium temperature of the cloud to be around 0.2 keY provided 
an intense UV source is assumed to be present in this source. They 
showed that the present broad band data for this source is consistent 
with the Comptonization model. Misra & Sutaria [24J showed that the 
Comptonization model indeed fits ASCA data for MCG-6-30-15 well. 
It was pointed out by Misra & Kembhavi (1998) that broad band data 
for this source (1-300 keY) will be able to distinguish between the two 
models. Data from the Italian BeppoSAX satellite indicates that the 
Comptonization model is not compatible with the broad band spectrum 
of the source [25J. In particular, the Comptonization model predicts 
a rolling off in the spectrum around 100 keY which is not observed. 
Thus the disk model remains as the most natural model to explain the 
observed broad Iron line feature in AGN. 

Despite the success of the disk model, there are still some inconsis­
tencies as noted by Sulentic et al. [20J. Firstly, the disagreement of the 
inclination angles derived by fitting the Iron line profile and that from 
HI and Ha measurements indicates that line profile is perhaps more 
complex than has been modeled. There are also theoretical arguments 
against the X-ray source being close to the marginal stable orbit rather 
than at around lOrg where most ofthe gravitational energy is dissipated. 
Perhaps, a double component model (i.e. the emission arises from two 
distinct regions in the disk) can resolve the discrepancies. These ques­
tions will be answered by the next generation of X-ray satellites with 
still better resolution than ASCA. 
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It is a pleasure to dedicate this work to Jayant Narlikar on his sixteeth birthday; 
Jayant's substantial contributions to to cosmology have left a lasting impact on 
the subject. 

Abstract Inhomogeneous cosmological models are studied extensively in the lit­
erature, in particular when the shear vanishes. The integrability prop­
erties of the field equation Lxx = F{x)L2 of a spherically symmetric 
shear-free fluid are reviewed. A first integral, subject to an integra­
bility condition on F{x), is found which generates a class of solutions 
which contains the solutions of Stephani (1983) and Srivastava (1987) 
as special cases. The integrability condition on F{x) is reduced to a 
quadrature. The Lie procedure for this equation is considered and we 
list various forms of F(x) and their Lie symmetry generators. A con­
formal Killing vector in the t-r plane is assumed to exist and for this 
particular case the solution to the field equation is expressible in terms 
of Weierstrass elliptic functions. 
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1. INTRODUCTION 
Spherical symmetry is often assumed when seeking exact solutions to 

the Einstein field equations. Spherically symmetric solutions may be 
used as inhomogeneous cosmological models, or to model the interior of 
expanding or contracting spherical stars (Santos 1985, de Oliveira et al 
1985). The shear-free condition substantially simplifies the field equa­
tions and most of the exact solutions known are not shearing (Kramer et 
al1980, Krasinski 1997). Various approaches have been followed in seek­
ing solutions to these equations. McVittie (1933, 1967, 1984) assumed a 
functional form of the metric coefficients. The solutions found by Kus­
taanheimo and Qvist (1948)' Chakravarty et al (1976), Wyman (1976) 
and Stephani (1983) depend on a suitable choice of a function of inte­
gration. A more recent approach by Herrera and Ponce de Leon (1985), 
Dyer et al (1987), Sussman (1989), Maartens and Maharaj (1990) and 
Maharaj et al (1991) is to suppose that the spacetime is invariant under 
a conformal Killing vector. 

One -of the field equations for a spherically symmetric shear-free fluid 
can be reduced to the partial differential equation Lxx = F{x)L2. The 
purpose of this paper is to review integrability properties of this equa­
tion. In section 2 we give the field equations for a shear-free matter 
distribution. A condition on the function of integration F{x) is found in 
section 3 that yields a first integral of Lxx = F{x)L2 and we express this 
condition as a third order ordinary differential equation. In section 4 we 
indicate that it is possible to perform a Lie analysis on this equation. 
The Lie point symmetries for particular forms of the function F(x) are 
listed. Finally is section 5 we indicate, with the help of an example, how 
imposing a conformal symmetry on spacetime leads to new solutions. 

2. FIELD EQUATIONS 
For a spherically symmetric, shear-free, perfect fluid we can introduce 

a comoving and isotropic coordinate system xi = (t, r, (), ¢) such that the 
metric is 

ds2 = _e211(t,r)dt2 + e2>.(t,r) [dr2 + r2{d(}2 + sin2 (}d¢2)] (I) 

Under these conditions the Einstein field equations become 

e" = Ate-f(t) (2) 
>. 2 -e (Arr - Ar - Ar/r) = -F{r) (3) 

where f{t) and F{r) are arbitrary functions of integration for (I). The 
energy density I" and pressure p then assume the form 

I" = 3e2! - e-2>'{2Arr + A; + 4A/r) (4) 
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p = Atle-3Aat[e'\X~ + 2Ar /r) - e3A+2f )] (5) 

Note the solution of equations (2)-(5) may be simplified. The trans­
formation x = r2, L{t,x) = e-\ F{x) = F/4r2 reduces equation (3) 
to 

Lxx = F{x)L2 (6) 

which is the governing equation. 
In spite of the great interest generated by shear-free perfect fluids the 

solution of the field equations in complete generality has been studied 
extensively only for (Kustaanheimo and Qvist 1948) 

2 -5/2 
F{x) = (ax + bx + c) 

and (Stephani 1983) 

F{x) = x-15/ 7 or x-20/7 

Many of the solutions published previously, using a variety of techniques 
of integration, are contained in these classes. Incidentally subclasses of 
the McVittie (1984) class of metrics also correspond to these forms of 
F{x). We extend this to a new class of solutions in section 3. 

3. A FIRST INTEGRAL 

The technique of Srivastava (1987) may be extended to obtain a first 
integral of (6) without choosing an explicit functional form for F{x). 
The first integral found is subject to an integral equation in F{x) which 
can also be expressed as a nonlinear third order ordinary differential 
equation. Maharaj et al (1996) show that the first integral is given by 

1/Jo{t) = -Lx + FIL2 - 2FIILLx + 2FIIIL; + 2 [(F FII h - ~Ko] L3 (7) 

when we impose the condition 

2FFIII + 3(FFIIh = Ko (8) 

where 1/Jo{t) is an arbitrary function of integration and Ko is a constant. 
It is possible to transform the integral equation (8) into an ordinary 
differential equation. If we make the the transformation ;: == FIll then 
(8) can be written as 

'1:: K '1::-5/2 .rxxx = l.r (9) 

where Kl is a constant of integration. Repeated integration of (9) yields 
the result 

;:-1 = K4+K3 (/ ;:-3/2dX ) +K2 (/ ;:-3/2dX ) 2 -~Kl (/ ;:-3/2dX ) 3 

(10) 
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where K 2, K 3 , K4 are constants of integration. We now let 

u = J F- 3/ 2dx 

which gives the result 

(11) 

where Xo is constant. Thus we have reduced the differential equation 
(9) to the quadrature (11) which can be evaluated in terms of elliptic 
integrals in general (Gradshteyn and Ryzhik 1994). 

We have established that for our class of first integrals the form of F 
may be given in parametric form in general. It is interesting to observe 
that the solution of Kustaanheimo and Qvist (1948) is not contained 
in the first integral (7). Note that the first integral (7) was obtained 
without specifying the function F(x). Any F(x) satisfying (8) will yield 
a first integral of the form (11). With the choice F(x) = (ax + bt 
where n = -15/7 we regain the first integral reported by Srivastava 
(1987). With a = 1 and b = 0 equation we regain the first integral found 
by Stephani (1983). 

4. LIE ANALYSIS 
In section 3 we obtained the first integral (7) of (6) in an arbitrary 

fashion. We now consider a geometric technique to reduce (6) to a first 
order differential equation. A systematic method to determine whether 
a second order ordinary differential equation can be solved by quadra­
tures is that of Lie (1912). On performing the Lie analysis (Leach 1981, 
Leach et at 1992) we find that (6) is invariant under the infinitesimal 
transformation 

provided that 

a a 
G = A(x) ax + [B(x)L + C(x)] aL 

F(x) 

Axxx 

B(x) 

C(x) 

MA-5/ 2 exp (~J ~) 

2MCA-5/ 2 exp (~ / ~) 
(Ax - a)/2 

Co + C1x 

(12) 

(13) 
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where a, M, Co and C1 are constants. A solution of (13) gives F(x) by 
(12) which reduces (6) to a first order differential equation. Note that 
the existence of the symmetry G permits a reduction to first order. If 
two symmetries G are known, the second order equation (6) may be 
reduced to quadratures. 

For a comprehensive analysis of the Lie analysis to shear-free fluids 
see Maharaj et al (1996) and Stephani and Wolf (1996). As an example 
we let a = 0, C = O. This corresponds to the simplest case and (12) 
yields 

2 -5/2 F(x) = M(ax + bx + c) 

which is equivalent to the Kustaanheimo and Qvist (1948) class of solu­
tions. As a second example we let a = 0, Co i= 0 = C1. In this case (13) 
reduces to the differential equation 

A K A-5/2 
xxx = 1 

where K1 = 2MCo. This is the same as equation (9) considered in 
section 3 and the results of that section become applicable. Thus we 
have established that the first integral (7) is a special class of solutions 
admitted by the general Lie method. Clearly the remaining cases are 
more complex. 

There are either one or two Lie symmetries 81 or 82 depending on 
the form of C(x). The various cases are listed in Leach and Maharaj 
(1992). The analysis to obtain the Lie symmetries 81 or 82 is lengthy 
and tedious. Here we list the functions F(x) for which (6) can be solved: 
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f(x} = xm 81 = x tx - (m + 2}y ~ 

f(x) = X- 5 

f(x) = eX 

(0: f= (3) +[(m + 3) - (m + 2)f3 + x]y ty 

f(x) = (ax2 + 2bx + c)-5/2 81 = (ax2 + 2bx + c) Ix + (ax + b)y ~ 

f(x) = x-15/ 7 81 = -7x .!L - y.!L 
Bx By 

82 = 343x6/ 7 .!L + (147x- 1/ 7y - 12).fL 
Bx By 

f(x) = x-20/ 7 

82 = 343x8/ 7 .!L + (196x1/ 7y - 12x)JL Bx By 

The various functions F{x) and their corresponding solutions to the 
Einstein field equations for shear-free spherically symmetric spacetimes 
are considered in a variety of publications. Systematic treatments are 
given in Maharaj et al (1996), Srivastava (1987), Stephani (1983), and 
Stephani and Wolf (1996). Leach and Maharaj (1992) perform a more 
general analysis for equations that include (6) as a special case. Their 
treatment can be applied to different physical applications, e.g. the 
study of a spherical gas cloud acting under the mutual attractions of its 
molecules and subject to the laws of thermodynamics. 

5. CONFORMAL SYMMETRY 
In trying to solve the highly nonlinear field equations of general rel­

ativity it is sometimes assumed that the spacetime admits symmetries. 
We analyse the example of Dyer et al (1987) who assume a particular 
form of a conformal Killing vector in the t-r plane in spherically sym­
metric shear-free perfect fluid spacetimes. If the spacetime is invariant 
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under a conformal Killing vector e then 

.c~gij = 2¢gij 

where ¢ is the conformal factor. The particular e chosen is 

e = t6i t + r6i r 

(14) 

The motivation for the choice of e is that subclasses of Mc Vittie's so­
lutions (1984) admit a conformal Killing vector in the t-r plane. For 
further details see Havas (1992) and Maharaj et al (1991). 

The conformal Killing equations (14) become 

B' i3 
rB+t B ¢-1 

A' A 
rA+t A ¢-1 

for the line element (1) where we have set A = eV , B = eA. These imply 

A 
B = a(r/t) == a(Jt) 

where a is an arbitrary function. The field equations give the condition 

We deduce that the following hold 

T(Jt) (1/2a)(Jtap. - Jt 2ap.p.) 
a = JtmTp. 

The equation that T has to satisfy is given by 

This third-order field equation is highy nonlinear but has a solution 
in terms of a Painleve transcendent. We observe that (15) has a first 
integral 

where k is a constant. We make the change of variables 

T(Jt) = rY(x) + To, x = In(Jt)/ {3 
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where To is the constant solution of (16), given by 

T6 + (m -l)(m - 3)To - k = 0 

Then (16) becomes 

~; + 2(m - 2){3~~ + k{32y + {32,y2 = 0 (17) 

Equation (17) is of Painleve form (Kamke 1971, eq 6.23, p 547]). The 
solution for y is then given by 

y = a2Cre-2axp(Cle-ax + C2, 0, -1) 

where C1, C2 are arbitrary constants. The quantity P is a Weierstrass 
elliptic integral. 

This example illustrates that imposing a symmetry, in our case a 
conformal symmetry, enables us to integrate the field equations. This 
approach is an alternate mechanism, utilising a geometric structure on 
the manifold, to generate solutions and often proves to be fruitful. 
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THE BLACK HOLE INFORMATION 
PARADOX: WHAT HAVE WE LEARNT 
FROM STRING THEORY? 
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Abstract In a complete theory of quantum gravity and matter we must come to 
grips with the information paradox that is created when black holes 
form and evaporate. If the paradox is to be resolved within the frame­
work of quantum mechanics as we know it, then we arrive at some very 
specific requirements from the theory of quantum gravity - the degen­
eracy of states must reproduce the Bekenstein entropy of black holes, 
and the interactions must give rise to unitarity preserving Hawking ra­
diation. In the past few years string theory has had remarkably success 
in reproducings these requirements from black holes. We review some 
of these developments in this article. 

1. INTRODUCTION 
Black holes have furnished us with a very deep paradox. The path to 

resolving this paradox may well be the path to arriving at a consistent 
unified theory of matter and quantised gravity. 

Let us review the basic nature of black holes, to see how the infor­
mation paradox arises. We imagine a large collection of low density 
matter, in an asymptotically flat spacetime. For simplicity we take the 
starting configuration to be spherically symmetric and nonrotating -
these restrictions do not affect the nature of the paradox that emerges. 
This ball of matter will collapse towards smaller radii under its self­
gravition. At some point the matter will pass through a critical radius, 
the Schwarzschild radius Rs , after which its further collapse cannot be 
halted, whatever be the equation of state. The end result, in classi-
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cal general relativity, is that the matter ends up in an infinite density 
singular point, while the metric settles down to the Schwarz schild form 

1.1 THE ENTROPY PROBLEM 

Already, at this stage, one finds what may be called the 'entropy 
problem'. One of the most time honoured laws in physics has been the 
second law of thermodynamics, which states that the entropy of matter 
in the universe cannot decrease. But with a black hole present in the 
Universe, one can imagine the following process. One takes a box with 
some gas, say, which has a certain entropy, and then drops this box into 
a large black hole. The metric of the black hole then soon settles down 
to the Schwarzschild form above, though with a larger value for M, the 
black hole mass. The entropy of the gas has vanished from view, so that 
if we only count the entropy that we can explicitly see, then the second 
law of thermodynamics has been violated! 

This violation of the second law can be avoided if one associates an 
entropy to the black hole itself. Starting with the work of Bekenstein [1] 
we now know that if we associate an entropy 

All 
SBll = 4GN (2) 

with the black hole (All is the area of the horizon, and GN is the New­
ton's constant) then in any Gedanken experiment where we try to lose 
entropy down the hole, the increase in the black hole's attributed entropy 
is such that 

d 
dt(Smatter + SBll) ~ 0 

This would suggest that the proposal (2) is a nice one, but now we 
encounter the following problem. We would also like to believe on general 
grounds that the entropy of any system is the logarithm of the number 
of states of the system, for a given value of the macroscopic parameters 
of the system. For a black hole of one solar mass, this implies that there 
should be 101078 states! 

But the metric (1) of the hole suggests a unique state for the geometry 
of the configuration. If one tries to consider small fluctuations around 
this metric, or adds in, say, a scalar field in the vicinity of the horizon, 
then the extra fields soon How off to infinity or fall into the hole, and 
the metric again settles down to the form (1). 
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If the black hole has a unique state, then the entropy should be In 1 = 
0, which is not what we expected from (2). The idea that the black 
hole configuration is uniquely determined by its mass (and any other 
conserved charges) arose from studies of many simple cases for the matter 
fields. This idea of uniqueness was encoded in the statement 'Black holes 
have no hair'. 

As it turned out this statement was not really a theorem, and in a 
larger class of matter fields (which arise naturally in string theory) it is 
in fact not true. One may say that it is a very interesting and precise 
requirement on the theory of quantum gravity plus matter that there be 
indeed just the number of states given through (2) for a black hole with 
given mass. 

1.2 HAWKING RADIATION 
If Black holes have an entropy S BH, and an energy equal to the mass 

M, then if thermodynamics were to be valid, we would expect them to 
have a temperature given by 

TdS = dE = dM, T = dS = 1 
dM 87rGNM 

(3) 

Again assuming thermodynamical behavior, the above statement implies 
that if the hole can absorb at a given wavelength with absorption cross 
section (J, then it must also radiate at the same wavelength at a rate 

1 d3k r=(J ---
ek'f - 1 (27r)3 

(4) 

Classically, nothing can come out of the black hole horizon, so one may 
be tempted to say that no such radiation is possible. But quantum me­
chanically we find that the vacuum for the matter fields has fluctuations, 
so that pairs of particles and antiparticles are produced and annihilated 
continuously. Because of the gravitational field of the hole, one member 
of this pair can fall into the hole, where it has a net negative energy, 
while the other member of the pair can escape to infinity as real positive 
energy radiation [2]. The profile of this radiation is found to be thermal, 
with a temperature 

T= 1 
87rGNM 

in accord with the expectation (3). 

1.3 THE INFORMATION PROBLEM 
But the above 'Hawking radiation' was produced from the quantum 

fluctuations of the matter vacuum, in the presence of the gravitational 
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field of the hole. The gravitational field near the horizon, where the par­
ticle pairs are produced in this simple picture, is given quite accurately 
by the classical metric (I). The curvature invariants at the horizon are 
all very small compared to the planck scale, so quantum gravity seems 
to not be required. Further, the calculation is insensitive to the precise 
details of the matter which went to make up the hole. Thus if the hole 
completely evaporates away, the final radiation state cannot have any 
significant information about the initial matter state. This circumstance 
would contradict the assumption in usual quantum mechanics that the 
final state of any time evolution is related in a one-to-one and onto fash­
ion to the initial state, through a unitary evolution operator. Worse, 
the final state is in fact not even a normal quantum state. The outgo­
ing member of a pair of particles created by the quantum fluctuation is 
in a mixed state with the member that falls into the hole, so that the 
outgoing radiation is highly 'entangled' with whatever is left behind at 
the hole. If the hole completely evapotates away, then this final state 
is entangled with 'nothing', and we find that the resulting system is 
described not by a pure quantum state but by a mixed state. 

If the above reasoning and computations are correct, one confronts a 
set of alternatives, none of which are very palatable. The semiclassical 
reasoning used in the derivation of Hawking radiation cannot really say if 
the hole continues to evaporate after it reaches planck size, since at this 
point quantum gravity would presumably have to be important. Thus 
the hole may not completely evaporate away, but leave a 'remnant' of 
planck size. The radiation sent off to infinity will remain entangled with 
this remnant. But this entanglement entropy is somewhat larger than 
the black hole entropy SBH, which is a very large number as we have 
seen above. Thus the remnant will have to have a very large number 
of possible states, and this number will grow to infinity as the mass of 
the initial hole is taken to infinity. It is uncomfortable to have a theory 
in which a particle of bounded mass (planck mass) can be allowed to 
have an infinte number of configurations. One might worry that in any 
quantum process one can have loops of this remnant particle, and this 
contribution will diverge since the number of states of the remnant is 
infinite. But it has been argued that remnants from holes of increas­
ingly large mass might couple to any given process with correspondingly 
smaller strength, and then such a divergence can be avoided. 

Another possibility, advocated most strongly by Hawking, is that the 
hole does evapotate away to nothing, and the passage from an intial pure 
state to a final mixed state is a natural process in any theory of quantum 
gravity. In this view the natural description of states is in fact in terms 
of density matrices, and the pure states of quantum mechanics that we 
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are used to thinking about are only a special case of this more general 
kind of state. Some investigations of this possibility have suggested, 
however, that giving up the purity of quantum states causes difficulties 
with maintaining energy conservation in virtual processes [3]. 

The possibility that would be most in line with our experience of 
phyiscs in general would be that the Hawking radiation does in some 
fashion manage to carry out the information of the collapsing matter 
[4]. The hole could then completely evaporate away, and yet the process 
would be in line with the unitarity of quantum mechanics. The Hawking 
radiation from the black hole would then be not really different from the 
radiation from a lump of burning coal - the information of the atomic 
structure of the coal is contained, though in a very hard to deciph er 
form, in the radiation and other products that emerge when the coal 
burns away. 

1.4 DIFFICULTIES WITH OBTAINING 
UNITARITY 

Let us review briefly the difficulties with having the radiation carry 
out the information. We can study the process of formation of the hole, 
where we see the matter collapse from a large radius down through the 
Schwarz schild radius. 

To study the evolution, we must choose a foliation of the spacetime by 
spacelike hypersurfaces. We can find a foliation where the hypersurfaces 
themselves are smooth, which means that the curvature length scale is 
large enough that quantum gravity effects will not be important. Note 
that this requires that the spatial slices be smooth as well as that the 
embedding of neighbouring slices change in a way that is not too sharp. 

As we evolve along this foliation, we see the matter fall in towards the 
center of the hole, while we see the radiation collect at spatial infinity. It 
is important to realise that the information in the collapsing matter can 
not also be copied into the radiation - in other words, there can be no 
quantum 'xeroxing'. The reason is that suppose the evolution process 
makes two copies of a state 

where the l1/Ji > are a set of basis states. Then, as long as the linearity 
of quantum mechanics holds, we will find 

and not 
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Thus a general state cannot be 'duplicated' by any quantum process. 
The infalling matter cannot lose its information suddenly as it crosses 

the horizon in this foliation, since it sees nothing special happen at the 
horizon. Thus the radiation that collects at infinity cannot contain the 
information of the infalling matter , and we are forced to a scenario 
where information is lost in the process of black hole formation and 
evaporation. 

To bypass this conclusion we have to find that effects of quantum 
gravity invalidate the above semiclassical analysis of spacetime. Thus if 
we can show that there is no information loss in black hole evaporation, 
we will probably also find at the same time a nontrivial change in our 
understanding of spacetime physics, and not just at scales shorter than 
planck length. 

2. STRING THEORY 
String theory had its origins in quantum chromo dynamics, where the 

phenomenon of confinement made the flux lines between quarks behave 
like a flux tube or string. Such a string was 'open' since it had the quarks 
at the ends. It was then realised that while open strings could describe 
gauge theories, closed strings would necessarily contain the graviton in 
their spectrum. The closed string can carry travelling waves both clock­
wise and anticlockwise along its length. The state with one quantum of 
the lowest harmonic in each direction is the graviton: if the the trans­
verse directions of the vibrations are i and j then we get the graviton 
hij. 

The extended nature of the string removes the loop divergences in the 
interaction of gravitons, thus bypassing a major problem with formulat­
ing a quantum theory of gravity. But the theory had several features 
that made it unpalatable to many physicists. For one thing, The string 
could be consistently quantised only in 10 dimensions, so that to obtain 
a 4-dimensional spacetime one had let 6 dimensions to be compact and 
small. Another feature was that the string could be excited to any en­
ergy level, so that there was an infinite spectrum of massive particles 
above the massless graviton. Further, the change from a point-like par­
ticle to a string seemed to some to be somewhat arbitrary - if strings 
then why not extended objects of other dimensionalities? 

Over the past few years, as non-perturbative string theory has devel­
oped, it has come to be realised that these features are actually very 
natural, and also perhaps essential to any correct theory of quantum 
gravity. Before the advent of strings as a theory of quantum gravity, 
there was an attempt to control loop divergences in gravity by letting 
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the theory have supersymmetry. The more the number of supersym­
metries, the better was the control of divergences. But in 4 dimensions 
the maximal number of supersymmetries is 8, since more supersymme­
tries would force the theory to have fields of spin higher than 2 in the 
graviton supermultiplet, which leads to inconsistencies at the level of 
interactions. Such D=4, N =8 supersymmetric theories appear to be 
complicated, but can be obtained in a simple way from dimensional re­
duction of a D=l1, N=1 theory or a D=lO, N=2 theory. The gravity 
multiplet in the higher dimensional theory gives gravity as well as mat­
ter fields after dimensional reduction to lower dimensions, with specific 
interactions between all the fields. 

Thus higher dimensional theories had naturally arisen in the study of 
quantum gravity without any direct connection to string theory. But 
even the supersymmetric theories with the maximum number of allowed 
supersymmetries had divergences at some loop order, and thus were not 
satisfactory quantisations of gravity. 

If we take string theory and restrict ourselves to the massless fields, 
then we get either the dimensional reduction of the D=l1 supergravity 
theory to 10 dimensions, or the above mentioned supergravity theory 
in 10 dimensions. (These two cases correspond to the type IIA and 
type lIB string theories respectively.) The presence of the infinite tower 
of massive modes also present in the string theory smooths out all the 
loop divergences. But a closer look at the supergravity theories leads to 
the observation that the existence of extended objects is actually very 
natural within those theories, and in fact is essential to completing them 
to unitary theories at the quantum level. 

Consider the case of 11 dimensional supergravity. The supercharge Qa. 
is a spinor, with CY = 1 ... 32. The anticommutator of two supercharge 
components should lead to a translation, so we write 

where C is the charge conjugation matrix. Since the anticommutator is 
symmetric in CY, (3, we find that there are (32 x 33) /2 = 528 objects on the 
LHS of this equation, but only 11 objects (the PA) on the RHS. Suppose 
we write down all the possible terms on the RHS that are allowed by 
Lorentz symmetry, then we find [5] 

where the Z are totally antisymmetric. The number of ZAB is llC2 = 55, 
while the number of ZABCDE is llCS = 478, and now we have a total of 
528 objects on the RHS, in agreement with the number on the LHS. 
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While for example PI =J. 0 implies that the configuration has momen­
tum in direction Xl, what is the interpretation of Zl2 =J. O? It turns 
out that this can be interpreted as the presence of a 'sheet-like' soliton 
stretched along the directions Xl, X 2. It is then logical to postulate that 
there exists in the theory a two-dimensional fundamental object (the 2-
brane). Similarily the charge ZABCDE corresponds to a 5-brane in the 
theory. The 2-brane has a 2 + I = 3 dimensional world volume, and 
couples naturally to the 3-form gauge field present in 11-dimensional 
supergravity, just like a particle with I-dimensional worldline couples to 
a I-form gauge field as f AJl-dxJl-. The 5-brane is easily seen to be the 
magnetic dual to the 2-brane, and cou pIes to the 6-form that is dual to 
the 3-form gauge field in 11 dimensions. 

Thus we see that it is natural to include some specific expended ob­
jects in the quantisation of 11-D supergravity. But how does this re­
late to string theory, which lives in 10 dimensions? Let us compactify 
the 11-D spacetime on a small circle, thus obtain ing lO-D noncompact 
spacetime. Then if we let the 2-brane wrap this small circle, we will 
get what looks like a string in IO-D. This is exactly the type IIA string 
which had been quantised by the string theorists! The size of the small 
compact circle turns out to be the coupling constant of the string. 

We can also choose to not wrap the 2-brane on the small circle, in 
which case there should be a 2-dimensional extended object in IIA string 
theory. Such an object is indeed present - it is one of the the D-branes 
shown to exist in string theory by Polchin ski [6]. Similarily, we may 
wrap the 5-brane on the small circle getting a 4-dimensional D-brane in 
string theory, or leave it unwrapped, getting a solitonic 5-brane which is 
also known to exist in the theory. 

Thus one is forced to a unique set of extended objects in the theory, 
with specified interactions between them - in fact there is no freedom to 
add or remove any object from the theory, or the freedom to change any 
couplings. Now we would like to see what is predicted about black holes 
in this theory. 

3. BLACK HOLES IN STRING THEORY 

3.1 ENTROPY FROM STRING STATES 
An idea of Susskind [7] has proved very useful in the study of black 

holes. Since the coupling in the theory is not a constant but a variable 
field, we can take a state of the theory, and study it at weak coupling, 
where we can use our knowled ge of string theory. Thus we may compute 
the 'entropy' of the state, which would be the logarithm of the number of 
states with the same mass and charges. Now imagine the coupling to be 
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tuned to strong values. Then the gravitational coupling also increases, 
and the object must becomes a black hole with a large radius. For this 
hole we can compute the Bekenstein entropy from (2), and ask if the 
microscopic computation agrees with the Bekenstein entropy. 

For such a calculation to make sense, we must have some assurance 
that the density of states would not shift when we change the coupling. 
In a supersymmetric theory we have a special class of states - the BPS 
states, whose mass is indeed determined solely from their charges. Such 
states give, at strong coupling, black holes that are extremal - they have 
the minimal mass for their charge (if the metric is not to have a naked 
singularity) . 

Let some of the directions of the lO-D spacetime be compactified 
on small circles. Take a string and wrap it nl times around one of 
these circles. From the point of view of the noncompact directions, this 
looks like a massive point object carrying 'win ding charge'. From the 
microscopic viewpoint, the state of such a string is unique (it does have 
a degeracy 256 due to supersymmetry, but we can ignore this - it is not 
a number that grows with nd. Thus the microscopic entropy is zero. 
If we increase the coupling, we expect a black hole, but this hole turns 
out to have a horizon area zero. This happens because the tension of 
the string 'pinches' the circle where the string was wrapped. Thus we 
get an entropy zero both from the microscopic and from th e black hole 
viewpoints, which is consistent but not really interesting. 

To prevent this 'pinching', we can put some momentum along the 
string, which amounts to having travelling waves move up the string. 
The momentum modes have an energy that goes as the reciprocal of 
the length of the compact circle, so now this circle attai ns a finite size. 
The number of microscopic states is now large, since the same total 
momentum can be obtained in many ways: for example two quanta of 
the lowest harmonic have the same momentum as one quantum of the 
second harmonic for vibrations of the string. The entropy of microstates 
is ;:::; 2J2Jnln2 where the the momentum was p = n2/ R, with R the 
radius of the compact circle. 

From the viewpoint of the noncompact directions, we have an ob­
ject with two charges. At strong coupling this gives a black hole with 
Bekenstein entropy'" Jnln2, which agrees with the microscopic count 
[8J! 

The black hole result here was not exact, since this hole is also singu­
lar: the coupling constant diverges on the horizon. It turns out that one 
needs three kinds of charges for a 5-D hole, and four kinds of charges 
for a 4-D hole, before a completely non singular hole is reached and an 
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exact comparison is possible. Since the 5-D case is thus slightly easier, 
we discuss that here. 

We compactify MlO ~ M 5 X T5. On this T5 we can wrap the 5-branes 
that we find in the theory. Let there be n3 5-branes, and further take 
as before nl strings wrapping one of the directions in the T 5 , with n2 

units of momentum along the string. The string can vibrate ins ide the 
5-branes and thus carry the momentum as travelling waves along it. A 
count of microstates this time gives the entropy Smicro = 27rv'nln2n3. 

If we go to large coupling, we get a nonsingular black hole carrying 
three charges. The Bekenstein entropy computed for this geometry from 
(2) gives 27rv'nln2n3, in complete accord with the microscopic calcula­
tion [9][10]! 

3.2 HAWKING RADIATION FROM THE 
STRING MICROSTATE 

In the above calculation we had allowed all the momentum to flow 
in one direction along the string, thus obtaining the maximum possible 
momentum charge for the given energy, and getting a BPS state which 
became an 'extremal' black hole at strong coupling. To study Hawking 
radiation we must take waves travelling in both directions along the 
string: these waves can collide and result in emission of a graviton or 
other massless quantum of string theory. While at weak coupling this 
would be a computable stri ng theory process, at strong coupling it is 
expected to go over into Hawking radiation. Note however that if we 
can reproduce the Hawking radiation in this manner from a microscopic 
process, then it will be unitarity preserving, and no different from the 
radiation from the lump of coal referred to earlier. 

First we must know what we expect from the macroscopic calculation. 
The relation (4) says that the radiation rate follows from the absorption 
cross section. We will be performing computation at low energies, so we 
need (J at long wavelengt hs. The method of doing this calculation is 
an old one, but it was found in [11] that at leading order in the energy 
a massless minimally coupled scalar is absorbed into any black hole (in 
any dimension) with a cross section 

(J = AH 

where AH is the area of the horizon, 
On the microscopic side, we must find the amplitude for vibrations of 

the string to couple to, say, gravitons. This coupling will arise from the 
action 

S = 16~G / R v' -G + Sstring 
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Sstring = [TensionJ [Area of 'world sheet'J 

Note that the area of the world sheet sees the embedding metric, and 
thus couples the vibrations of the string to gravity. Suppose a vibration 
in the direction i transverse to the string, carrying an energy w /2 collides 
with a vibration in the tr ansverse direction j travelling the opposite way, 
also carrying energy w /2. Then we emit the graviton hij with energy w 
with an amplitude per unit time 

[41TGNJ ! ! 
-- 2 w2 

V 
We must combine this factor with the number of vibration quanta 

that can collide. We finally get an emission rate 

which agrees exactly with the semiclassical Hawking radiation rate [12J! 
Further, note that the string vibrates inside the 5-branes, which means 

that the directions i, j in the above are among the compact directions 
of spacetime. Thus from the viewpoint of the noncompact spacetime, 
the emitted quantum hij is a scalar, an d the emission of vectors and 
gravitons is suppressed in the microscopic calculation in this low energy 
limit. But this agrees exactly with what one expects from the semi­
classical computation of Hawking radiation from the black hole: higher 
spin emission is suppressed at low energies due to an angular momentum 
barrier. 

4. CONCLUSIONS 
We thus find that the details of the microscopic state in the com­

pact directions somehow reproduce exactly the correct degrees of free­
dom to yield the Bekenstein entropy for the hole that is seen from the 
non-compact point of view. They also reproduce th e gross properties 
required of the Hawking radiation, but by a process that is manifestly 
unitary and thus information preserving. 

What is lacking this far is a picture of what exactly can go wrong 
in the reasoning suggested by Hawking where information loss is seen 
to occur. This requires us to understand the changes that occur to the 
picture of a string state as we tune the coup Ii ng from small (where 
we understand the state) to large (where the black hole radius becomes 
classical). Progress in this direction is expected to be swift. Recently it 
has been suggested that spacetime can be understood as a large N limit 
of gauge theorie s [13J; this should provide us with a direct view of the 
string state at strong coupling. 
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In any case it is fair to say that the results of string theory have 
illuminated many issues about black holes, and black holes in turn have 
given us reason to believe that string theory has the essence to be a 
correct theory of quantum gravity. 
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Chapter 20 

THE COUNTING OF RADIO SOURCES: 
A PERSONAL PERSPECTIVE 

Jayant V. Narlikar 
Inter- University Centre for Astronomy and Astrophysics 

Pune 411 007, India 

Abstract 
This article gives the author's personal perspective on the continuing 

efforts by radio astronomers to determine the nature of the cosmolog­
ical model by counting radio sources in the universe out to different 
levels of faintness. Although initially the source counts were expected 
to reveal the underlying geometry of space and time, subsequent expe­
rience showed that the issue is mixed up with the physical properties of 
the sources and their evolution with epoch. It is shown, how the ear­
lier claims of disproof of the steady state model through source sounts, 
turned out to rest on very uncertain evidence. 

1. INTRODUCTION 
When Naresh Dadhich asked me to write an article for this volume, 

I was hesitant, as I was not aware that festchrifts as a rule permit self­
action. However, he then produced a few examples, where this had 
happened, and I therefore agreed to contribute an article. It describes 
an area of astronomy to which I was drawn willy-nilly from my early 
research student days, and to which I have returned from time to time. 
I refer to the counting of radio sources in order to test the validity of 
a cosmological model. From a perspective four decades later, the issues 
involved look different from what they seemed in the late fifties and the 
early sixties. 

This is therefore a historical account, and a highly personal one, and 
consequently open to the charge of being biased. But in this somewhat 
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contoversial field, it will be very difficult to find an account that is com­
pletely neutral! 

So let me begin with the basic cosmological test itself, as ideally con­
ceived, and then come to the trials and tribulations of translating it into 
reality. 

Suppose we live in a uniform Euclidean universe which has a uniformly 
distributed class of sources of radiation, each with a luminosity L. Let n 
denote the number density of such sources in the universe. We therefore 
expect the number of sources within a distance R from us, to be 

N = 471" R3 3 n , (1) 

and the faintest of these will be those on the periphery of the sphere of 
radius R centred on us. The flux received from each of these sources will 
be 

L 
F = 471"R2. (2) 

In general if we count the number N of sources brighter than F for 
a range of values of F, we will get a plot of points in the log N-log F 
plane, lying on a straight line given by 

10gN = -1.5 logF + constant. (3) 

In other words, we expect the slope of the log N-Iog F line to be -1.5. In 
our later discussion of radio source count we shall have frequent occasions 
to describe the slope of the source count curve in the above sense. We will 
refer to the 'slope' by magnitude: thus in the above example, the slope 
is 1.5. Likewise, a slope of 1.8 is steeper than a slope of 1.5, although in 
source count equations like (3) above, the slopes are negative. 

In optical astronomy, we may wish to count galaxies, in which case 
the appropriate quantity for F will be the apparent magnitude m. Since 

m = -2.5 10gF + constant, 

the above relation becomes modified to 

10gN = 0.6 m + constant. 

(4) 

(5) 

In other words, the curve of log N plotted against m should be a straight 
line with a slope of 0.6. Likewise, if we are counting radio sources, 
then the relevant measure of flux received is the flux density S, which 
measures the flux received in a relatively narrow bandwidth, usually 
1 Hz. In this article we are mainly concerned with the counts of radio 
sources and hence will be discussing the log N -log S relation. 
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If we wish to extend this result to non-Euclidean cosmological mod­
els, such as those used for describing the expanding universe of mod­
ern cosmology, naturally the prediction will be different. We keep all 
other assumptions the same but change the Euclidean spacetime to the 
Robertson-Walker spacetime given by the line element 

(6) 

where we have used the standard notation for the coordinates, and a(t) 
denotes the expansion factor. The space-curvature is denoted by the 
parameter k which can take values, 0,1, -1. The coordinates r, 0, ¢ are 
the constant comoving coordinates of a typical galaxy and t denotes the 
cosmic time. 

The relations derived above for the Euclidean geometry can be ob­
tained for the above models also. In the standard Friedmann cosmology, 
the simplest generalization is that the number density of sources in the 
comoving coordinates is constant with respect to t. For details see some 
standard text in cosmology (e.g. Weinberg 1972, Narlikar 1993). The 
question is, can the actual number count tell us whether any of the wide 
ranging cosmological models described by the RW-line element above 
comes closest to reality? 

This is the basic issue to be discussed here. 

2. HISTORICAL BACKGROUND 
One of the first attempts to try this test with galaxies as the sources 

to be counted, was made in the 1930s by Edwin Hubble, who hoped to 
measure the curvature of space (the parameter k) through this observa­
tion. However, for the data to be decisive enough, one needs to go to 
high redshifts, and hence counts of a large number of galaxies is involved. 
Moreover, the other assumption in the test is that all sources are equally 
powerful, which also is not the case in reality. The sheer enormity of 
the operation rendered the test impractical and Hubble eventually aban­
doned it. However, one salutary effect this abortive operation had on 
observational astronomy was that the proposed test provided motivation 
for building a large telescope, and that is how the 5-metre telscope got 
built on the Palomar Mountain! 

The radio astronomers got into this game in the mid-fifties, when 
they realized that a substantial part of the radio source population is 
extragalactic, and that their number density is considerably lower than 
that of galaxies. Thus by counting relatively fewer number of sources, 
there was the chance of obtaining the answer Hubble was looking for. 
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Hubble's procedure was to compare the predicted galaxy count with 
the observed one. Instead of the number-magnitude relation, the radio 
astronomers had a number-flux density relation for radio galaxies. What 
does a typical relation look like? 

The qualitative signature of a typical expanding universe model is to 
flatten the log N-Iog S curve as one goes from high to low flux levels, that 
is to progressively reduce the slope from 1.5 to lower values, 1.4,1.3,1.2, ... , 
because of the redshift effect on flux densities and volumes. Thus, it was 
claimed that the test was a powerful tool for distinguishing between 
cosmological models. 

Martin Ryle (1955) from the Mullard Radio Astronomy Observatory 
of the Cavandish Laboratory in Cambridge announced the first result 
based on his early catalogue of radio sources in the Halley Lecture de­
livered on May 6, 1955, where he got a slope of the log N-Iog S curve 
to be 3.0. Thus, with a magnitude exceeding 1.5, the curve was steeper, 
instead of flatter than the Euclidean value. 

Prima facie, the result seemed to disprove all expanding universe (big 
bang) models. However, there is a loophole in such models. Because the 
universe is evolving, one could argue that the number density of radio 
sources in the past was greater than at present. By suitably adjusting 
the number density n as a function of the cosmic time t, any slope can 
be accommodated. The alternative also exists that the luminosity L is 
a function of t, and between the two variations the fit to the observed 
data could be achieved. 

There is one model, however, which does not have this freedom of 
choice. This is the steady state model, wherein the universe has the 
same physical properties at all epochs. Thus the nand L values for any 
source population cannot be epoch dependent. For such a model, prima 
facie, a slope as steep as 3 spelt doom. Indeed, Ryle, who never liked 
the steady state theory, took pains to underscore this conclusion. 

There was, however, the alternative possibility that the counts could 
have been in error. Indeed, in 1958, Ryle and his colleagues (Archer, et 
al 1959) revised the index down from 3 to 2.2. Although the credibility 
of the claim suffered somewhat by this drastic come-down, the revised 
finding was again projected with great certainty as clearly disproving 
the steady state theory. 

In the meantime, the Australian radio astronomers had been con­
ducting their own surveys largely of the southern sky, although having 
an overlap region with Ryle's northern sky. Mills and Slee (1957) an­
nounced that their results showed a slope not significantly different from 
the Euclidean slope of 1.5. Based on their study of the overlap region, 
they pointed out possible sources of errors, which might have affected 
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the data reduction by the Cambridge group leading to their claimed 
steeper slope. 

These results related to the 3C (Third Cambridge) Survey. In 1960, 
Ryle announced a new result related to the 4C Survey which had fainter 
(and hence assumed to be more distant) sources. The slope this time 
was claimed to be 1.8, and because the new survey had more sources, 
it was claimed to be more accurate. Surely, argued Ryle, this finding 
disproved the steady state theory conclusively. 

This is where I was drawn into the controversy. 

3. A DEFENCE OF THE STEADY STATE 
THEORY 

In June 1960, when I approached Fred Hoyle with the request to be 
my Ph.D. guide, he readily agreed and suggested a number of interest­
ing lines of investigation in astronomy and astrophysics. However, when 
discussing cosmology, he did not mention the steady state theory, which 
I had found an attractive approach to the study of the universe. He said 
that although there were many challenging problems in that theory, he 
wished to keep a research student away from controversy. Consequently, 
I set to work on an idea proposed by Heckmann and Schucking on spin­
ning universes. The problem was to see if spin allows non-singular cos­
mological models, models which oscillate with finite upper and lower 
scales of size. I was then to look at the problem of primordial nucle­
osynthesis in such models. 

Within six months, however, I had reached a dead end, i.e., I could 
see that the Heckmann-Schucking models would not lead to non-singular 
oscillating models as their authors had claimed. So the next part of my 
investigation did not arise. I thus found myself somwhat at a loose end 
in January, 1961. This was when the Hoyle-Ryle controversy broke out. 

For, of the three originators of the steady state theory, Hermann Bondi 
and Tommy Gold did not take Ryle all that seriously, dismissing the 
claim as just one along the line of earlier claims in which the announced 
slope had steadily come down from 3 to 2.2 to 1.8. Perhaps further errors 
may be discovered in the future which would lower the slope further to 
the Euclidean 1.5, which the Australians were happy with, anyway. It 
was only Hoyle who took the results seriously enough to realize that a 
threat to the steady state theory indeed existed. 

The Hoyle-Ryle confrontation took place at a press conference given 
by the latter. As recalled by the former in a recent book (Hoyle, et al 
1999), it did not help in making their personal interaction any easier. 
Ryle, however, realized that for a peer-understanding of his findings, he 
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had to present his work not before the media but to a body of scientists. 
Accordingly, he arranged to describe his results during the February 
10 meeting of the Royal Astronomical Society. It was expected, that 
Hoyle would reply to his claimed disproof of the steady state theory. 
Indeed there was great expectation of a lively scientific confrontation in 
a society which had previously witnessed controversies between Milne 
and Eddington, Eddington and Chandrasekhar, etc. 

Hoyle, as mentioned earlier, had not been dismissive of Ryle's data; 
rather his attitude had been that given the observational uncertainties, 
it was still possible to fit a realistic steady state model to the observed 
source counts. This was when he asked me to work out on an idea that 
might possibly serve the purpose. To begin with we needed to get the 
data from Professor Ryle and his colleagues. This was, however, not 
so easy, as the Cavendish group was very secretive about its findings. 
Rather than get a catalogue of sources with flux densities from which 
one could prepare tables and plot curves, all we got from Ryle after a 
tea-time discussion was a hand-drawn log N-Iog S curve, with a few 
points marked for numbers and flux densities. The curve had a slope 
of 1.8 which Ryle challenged us to reproduce within the cosmological 
framework of the steady state model. 

However, it was already mid-January and in order to have a viable 
model ready for reporting we had to work 'overtime' during those three 
weeks or so. I shall come to the model and its aftermath in the following 
section. Here I recall using the EDSAC computer with punched paper 
tape and machine language programming as well as hand operated Facit 
calculators to churn out the numbers. The numbers came out fine: the 
theory could indeed reproduce Ryle's steep slope within the framework 
of the steady state theory. We thus had a counter-example to Ryle's 
claim. We then had to persuade the Engineering Labs to make at short 
notice a few 'lantern slides' based on our calculations. We managed to 
get everything organized with a couple of days to spare. 

However, in the meantime, Fred Hoyle had set off a bomb-shell so far 
as I was concerned. He had discovered that he had a prior engagement 
to speak at a college in London on February 10, and so he would not be 
able to attend the RAS meeting at all. Instead, he asked me to reply to 
Ryle! 

So here was I, a raw research student with barely six months of re­
search experience now launched into the limelight of a major controversy. 
However, Hoyle assured me that with the mathematical backing we had 
for our model, I should be able to handle any counterattack. He drilled 
me, nevertheless, in speaking concisely so that I could convey the salient 
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features of our model within ten minutes. He made sure that the RAS 
would allot me that much time for presenting our counter-example. 

In the end, my presentation went well. Ryle raised a minor protest 
that this seemed a new version of the steady state theory. However, 
Bondi who was quick to see the point behind our approach rose to its 
defence. In any case I came back from the meeting considerably elated 
and with a newly acquired confidence that I had now been groomed into 
participating in scientific debates. This experience has stood me in good 
stead in facing other astronomical controversies. 

4. RADIO SOURCE COUNT IN THE 
STEADY STATE COSMOLOGY 

Let me recall the model we had proposed early in 1961. It rested on 
two premises: 

1. The universe is inhomogeneous on the scale of 50-100 Mpc, being 
made of superclusters and voids. 

2. The probability of a galaxy becoming a radio source increases with 
its age r, being proportional to exp[4Hr]. 

The rationale behind these two assumptions as perceived then was as 
follows. The 'hot universe' model of the steady state universe proposed 
by Gold and Hoyle (1959) envisaged that galaxies would form typically 
in large groups with characteristic dimensions of 50-100 Mpc. Thus the 
theory envisaged an inhomogeneity on this scale. In the late 1950s and 
the early 1960s only one observational astronomer G. deVaucouleurs was 
talking of the 'Local Supercluster', and he was generally not taken seri­
ously by the majority which believed in universal homogeneity beyond 
the cluster scale. There was, however, evidence already for 'second or­
der clustering' from the work of George Abell (1958), who had done an 
extensive analysis of distribution of clusters on the sky. Thus there was 
both theoretical and observational support for the first assumption. 

The second assumption was based on the finding then emerging, that 
the property of radio emission seemed confined largely to elliptical galax­
ies, which are generally considered old. Thus the correlation of radio 
property with age was conjectured through the second assumption. At 
the time, the radio astronomers tended to believe that radio emission 
arose from collisions of galaxies. Which is why, there was a ready accep­
tance of the Cambridge belief that the number density of radio sources 
was significantly higher in the past: in a big bang universe, the density of 
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galaxies was higher in the past and hence the chances of collisions were 
greater. The collision hypothesis had already been demonstrated as the­
oretically untenable by the work of Geoffrey Burbidge, whose estimates 
of the energy of a typical radio source emitting synchrotron radiation, 
were far higher than the energy of collision of two galaxies (Burbidge 
1959). Subsequently, in a few years, the collision idea received a decent 
burial; however, belief in the notion that the process of radio emission 
had to be more frequent in the past persisted. 

In the steady state theory, however, no appeal could be made to an 
epoch-dependent process, as the word 'steady' forced one to regard the 
average state of the universe to be the same at all epochs. The second 
assumption, however, coupled with the first one, led to an apparently 
evolutionary effect in a local statistical sense, as follows. 

In the steady state theory, the age-distribution of galaxies follows the 
formula: 

Q(T)dT = exp(-3HT)dT, (7) 

where Q(T)dT denotes the number density of galaxies in the age range 
[T, T + dT]. Thus to observe very old galaxies, a typical observer would 
have to sample a larger volume, and hence look out to farther distances. 
Hence, one expected that a generic observer would begin to see an in­
creasing density of radio sources (which by assumption 2 were more likely 
to be found in older galaxies) at larger distances. This effect was in a 
sense a statistical fluctuation from the 'average' situation which was rep­
resented by the completely homogeneous Robertson Walker line element 
for the steady state theory, with a(t) = expHt. In other words, after 
a somewhat local steepness, the log N-Iog S curve would revert to the 
standard progressively flattening form described earlier. 

In 1961 we published a detailed version of this model (Hoyle and 
Narlikar 1961), followed by another carrying out computer simulations 
of the real universe, in the following year (Hoyle and Narlikar 1962). 
In retrospect, I think these papers were pathbreaking on the following 
counts, although because of the general feeling of hostility against the 
steady state theory these aspects went unnoticed at the time. 

1. They introduced the idea of a universe inhomogeneous on the scale 
of superclusters and voids with typical length scales 50-100 Mpc, 
an idea that became accepted as reality two decades later, although 
at the time it was seen as introducing unnecessary complications 
into cosmology. 
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2. The idea of counting a source population which was evolving with 
age became standard practice in the big bang cosmology, from 
mid-sixties onwards, although it was first introduced here in the 
framework of the steady state theory. 

3. The second of these papers used Monte Carlo techniques to simu­
late source distributions on a computer, and these were counted by 
random observers to demonstrate fluctuating source counts at high 
flux levels. I believe, this was the first simulation of its kind in cos­
mology, and was made possible because Fred Hoyle had rented time 
on the IBM 7090 machine in London. In today's desktop work­
station environment it is difficult to imagine the mode in which 
we were operating, viz. going to London once a week with our 
punched cards which were to be handed over to the computer staff 
in the morning and the results collected in the evening. If the pro­
gramme had a serious bug, one had to wait for a week to sort it out! 

4. Although a super-Euclidean slope was seen as a clear indication of 
support for big bang, it could clearly not be sustained at low flux 
densities. Our model naturally led to a flatter curve at low flux 
densities, which was borne out by later surveys. 

5. We had estimated the majority of sources to be of medium power at 
modest redshifts, whereas Ryle and his colleagues believed them to 
be typically very powerful and very distant. The issue could not 
be settled till the sources could be optically identified and their 
redshifts measured. This is a slow process, and to date only the 
3C Revised catalogue has all sources optically identified and their 
redshifts measured. As we shall see later on this account, the data 
have turned out to be closer to our interpretation rather than to 
that of the Cambridge radio astronomers. 

5. QUASARS VS RADIO GALAXIES 
While we were working on this paper, Fred Hoyle arranged to visit 

Hanbury Brown at the other premier radio observatory in Britain, the 
Nuffield Observatory at Jodrell Bank. Hanbury Brown had just carried 
out a study of radio sources, especially their angular sizes. He had 
noticed that there were quite a few which were too compact for their 
angular size to be measured by interferometric techniques. What were 
these 'chaps', as he called them? In any case their presence indicated 
that the population of radio sources was by no means homogeneous, and 
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hence basing cosmological deductions on them might be misleading. [As 
a sound precaution, it is best to understand the class of objects you are 
counting, before drawing profound conclusions from them.] 

To study these compact sources, it was essential to optically identify 
them, measure their redshifts and other physical features. The positions 
given by radio astronomers needed to be made more precise for optical 
identification to be attempted. 

During 1962, the special technique of lunar occultation used in Aus­
tralia enabled the position of the compact source 3C 273 to be measured 
accurately. In 1963, the source was optically identified and its spectrum 
examined. The resulting finding of a redshift of", 0.16, despite the ex­
traordinary optical brightness (13m ) of the source, suggested that here 
we are looking at a new class of radio sources. Later months brought to 
light several of these objects which, because of their starlike appearance, 
eventually came to be called Quasi-Stellar Objects, (QSOs) or quasars. 
Clearly the radio astronomers were looking at mixed populations of ra­
dio galaxies and quasars. It made more sense to separate the two before 
counting them in order to draw cosmological conclusions. 

U sing the maximum likelihood method of determining the slope of 
the log N-Iog S curve, Jauncey (1967) pointed out that the 3CR cat­
alogue had three kinds of sources, (i) radio galaxies, (ii) quasars and 
(iii) unidentified sources. Of these, the radio galaxies had a slope not 
significantly different from the Euclidean 1.5, while the quasars showed 
a steeper slope'" 2. So far as quasars are concerned, there are reasons, 
not widely accepted but still not completely disproved either, castinging 
doubts on the cosmological interpretation of their redshifts. 

In his lecture at the Royal Society, Fred Hoyle (1968) discussed the 
source counts as he perceived them at the time. The steepness of the 
source count curve for the three types of sources turned out to be not 
significantly different from 1.5 for (i) radio galaxies and (ii) quasars, but 
was 2.5 for (iii) the unidentified sources. For radio galaxies, which do not 
have very large redshifts, the slope 1.5 is not cosmologically significant; 
nor is it so for quasars if their redshifts are not cosmological. The slope 
is, however, cosmologically significant and inconsistent with the steady 
state value for the quasars if their redshifts do follow Hubble's law. What 
about the sources of class (iii)? 

The number of unidentified sources was however, small and the impli­
cation of their steep slope was like this, as pointed out by Hoyle. There 
are 10 unidentified sources at S = 12.5 Jy and 93 at S = 5Jy, which 
gives the 2.5 slope. However, suppose that we don't know the value of 
N at the high flux level and wish to determine it on the assumption 
that the slope is 1.5. Thus the number at the high flux level S = 12.5 
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Jy is 23. Had there been 23 instead of 10 sources at the high flux end, 
the observed slope would have been 1.5. The observed deficit is thus 
of 13 sources over 3 steradians, i.e., about 4-5 sources per steradians. 
The Hoyle-Narlikar model of radio source evolution described above, al­
lowed for this deficit by the probability law proportional to exp[4H 7]. In 
short, we are in a local hole which has a deficit of radio source activity. 
Since our model did allow for local inhomogeneity (-which is now being 
observed), such a local hole was not inconceivable. 

As pointed out by Hoyle, Ryle's interpretation of the above data would 
be different, however. Suppose we have a 1.5 law with the high flux value 
given, i.e., N = 10 at S = 12.5Jy. What is the expected number at S = 

5? The answer is 40. Thus the observed number 93 represents an excess 
of 53 sources, i.e., about 18 sources per steradian. A strong evolution is 
required to explain this rise, as per the big bang cosmology, an evolution 
that cannot be accommodated within the steady state theory. 

The issue thus became one of local fluctuations (limited to say 50-
100 Mpc) if Hoyle's interpretation is accepted versus a cosmologically 
significant evolution, if Ryle's view were adopted. 

6. IS EVOLUTION NECESSARY? 
The case of the 3CR survey was finally resolved when almost all of 

its sources were optically identified and had measured redshifts, thanks 
to the efforts of Spinrad, et al (1985). In 1985, of the 298 sources of the 
Spinrad compilation of redshifts in the 3CR catalogue, 195 were radio 
galaxies, 53 were QSOs and 38 were unidentified. If one avoided the 
low galactic latitude sources with Ilbll > 7 deg, S ~ lOJy, there were 
163 radio galaxies. DasGupta, et al (1988) studied this sample to see if 
there were any need to postulate evolution over and above the standard 
Friedmann evolution of spacetime geometry. The procedure adopted 
was simple and straightforward. First, we take a generic Friedmann 
model which is characterized by the deceleration parameter qo. Writ­
ing the bolometric luminosity distance in this model as D = (c/Ho)x, 
(Ho=Hubble's constant) we have the well known relation 

(8) 

between the luminosity distance and redshift. This relation can be in­
verted to give 

z = qox - (qO - 1)[v'1 + 2x - 1]. (9) 

Note that, the above relation is valid also for radio sources with spectral 
index 1. 
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Next we see how the radio luminosity function g(L) is completely 
determined if we assume no physical evolution. We define the number 
of sources per unit proper volume brighter than a given luminosity L as 

F(L) = [00 g(l)dl, (10) 

with the expectation that F(L) -+ 0 as L -+ 00. If the survey is limited 
to flux densities 8 ~ 80 , say, then the sources ofluminosity L will appear 
in the survey, provided 

(11) 

A little manipulation with the Friedmann geometry then gives the num­
ber of sources with redshifts in the range z, z + dz as 

dN = - n x F 41f - 80 x2 dz. ( c) 3 x2 
[ (c) 2 1 

Ho (1 + z)3J1 + 2qoz Ho 
(12) 

Writing G(z) = dN/dz, which can be determined by observations, we 
can invert the above relation to write: 

F(L) = (Ho)3 G(z)(l + z)3J1 + 2Qoz, 
c nx2 

(13) 

where x is determined from: 

2 L x - ----=--
- 41f(c/ HO)280 ' 

(14) 

and z is given by the equation (9) in terms of x. 
Thus, the important conclusion is that the radio luminosity function 

is completely determined by the observed G(z). The RLF can therefore 
be used to compute the number of sources expected in a typical small cell 
ZI ~ Z ~ Z2, 8 1 ~ 8 ~ 82 in the (z,8) plane. These predicted numbers 
can be compared with the observed ones through the x2-test. Dasgupta 
et al (1988) carried out the test and found that the fit is statistically 
good. At a more sophisticated level, they also applied the Kolmogorov­
Smirnov test adapted to two-dimensional distributions along the lines 
discussed by Peacock (1985). Again, the fit is good, without having to 
introduce any evolution of luminosity and/or number density of sources. 

However, DasGupta (1988), also found that a similar analysis applied 
to the steady state theory produces not only a good fit, but a better fit 
than for the Friedmann cosmologies. Both the X2 - and the Kolmogorov­
Smirnov tests turn up better figures for the steady state theory than for 
the non-evolving standard Friedmann models. 
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7. CONCLUSION 
Thus I believe, so far as the 3CR catalogue of radio sources is con­

cerned, the Hoyle-Ryle controversy has been laid to rest. The technique 
followed in the previous section can be used only for the complete flux­
limited samples which have all redshifts known. So far no other such 
samples are available. The log N - log S curve does not contain infor­
mation on redshifts and is thus likely to be less definitive. 

In any case, the standard big bang approach involving fitting the 
observed curve to the theoretical one which folds in evolutionary param­
eters, defeats the original purpose of Hubble, that of determining the 
geometry of the universe by counting sources. 
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Abstract We show how to construct a generating family for the singularities of 
the null surface that is obtained by following null geodesics normal to a 
spacelike closed two-surface. The construction is based on the priciple of 
least time of arrival of light signals from a source to a localized observer. 

1. INTRODUCTION 

In the study of the wavefronts and their related characteristic (or null) 
surfaces in Lorentzian spacetimes one is often confronted with difficulties 
in the analytic description of the development of caustics and crossover 
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regions. Probably the most powerful technique for their study is V.I. 
Arnold's theory of Lagrangian and Legendre submanifolds and the asso­
ciated Lagrange and Legendre maps [1]. One of the main ingredients in 
this theory is the construction of what has been refered to as generating 
families. They are, in general, two point functions, F(xi, sJ) (chosen 
from, perhaps, different spaces with different dimensions), that are con­
structed from physical arguments and which are stationary with respect 
to variations in one of the two different spaces. In what follows we give 
a particularly important example of this construction where we consider 
the time-of-arrival function of light rays which begin from points on a 
two-surface, embedded in a four dimensional spacetime, (thought of as a 
source ofradiation), and which end at points on a curve (thought of as 
the worldline of an observer of that radiation) also embedded in the same 
four-space. This example appears to be, in principle if not in practice, 
of generic use in the theory of gravitational lensing [2] in any Lorentzian 
spacetime. 

In Section 2. we state the time of arrival theorem and prove it via a 
modification of Schrodinger derivation of gravitational frequency shifts 
in the cosmological context. In Section 3. we reobtain our result via 
Arnol'd's generating families. 

2. THE TIME OF ARRIVAL FUNCTION 
We are concerned with the travel time of light signals from an ex­

tended source to a localized observer. For our purposes, the source 
lights up instantaneously, in its own rest frame, emitting photons in all 
directions from every point on its (closed) surface. There is one pho­
ton that arrives first at the observer's location, in the observer's proper 
time. If the metric is stationary, then this photon is, intuitively, the one 
that takes the shortest spatial path, perpendicularly to the surface of the 
source. In the following, we make these notions more precise, extending 
them to the case of arbitrary metrics. 

Consider, in an arbitrary Lorentzian four-dimensional manifold, a 
given closed spacelike two-surface, S, described by 

(1) 

where x a are spacetime coordinates in the neighborhood of the source, 
and sJ = (sl, 82) parametrize the surface S. In addition, consider a 
timelike worldline, .c. In the neighborhood of the worldline, with no loss 
of generality, let the local coordinates be such that .c is given by (T, Xi) 
where the Xi are three constants, the spatial location of the observer, 
and T is the proper time along the worldline. 
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~From each point sJ of S, construct its future lightcone, CsJ. In 
general, in the absence of horizons, the line .c intersects each CsJ at least 
once. The intersection takes place at a particular value of the proper 
time T for each point sj on the surface. This means that there is a 
two-point function 

(2) 

that represents the proper time of arrival at .c of light signals from S. 
One explicit way of constructing such a function is as follows. The 
light cone C sJ is foliated by lightrays from the point Xo (sJ), which are 
solutions 

(3) 

of the geodesic equation with initial data labeled by the initial point 
sJ and the initial direction (e, ¢) of the ray. Here r can be thought of 
as an affine parameter along the null geodesics. The intersection of the 
light cone with the world line .c takes place at points where 

"'/(r;sJ,e,¢) = Xi 

and the time (xO = T) at which the lightray reaches the observer is 

T = ,o(r;sJ,e,¢) 

(4) 

(5) 

where the values of (r;sJ,e,¢) in the right-hand side are restricted by 
(4). In cases where (4) is invertible for every value of sJ, it provides 
(r, e, ¢) as functions of (Xi, sJ), which can be inserted into (5) to yield 
(2). 

For large distances between the source and observer, a worldline inter­
sects any generic future light cone several times, due to the folds in the 
individual light cones produced by spacetime curvature (see Fig. 21.1). 
This is the case where (4) is not invertible, since for every fixed value of 
sJ there would be several values of the set (r, e, ¢) corresponding to the 
same spatial location Xi. This means that there are several photons, 
shot in different directions, that reach the observer's location at different 
times. Therefore, for large distances the function T(Xi, sJ) is multival­
ued. We restrict attention to such cases where T(Xi, sJ) is single valued. 
In this case, there exists the following theorem, mentioned by Arnol'd 
(see [1], p. 251, and [3], p. 298): 

Theorem. The proper time of arrival, T, at .c, is extremized by those 
rays that leave S perpendicularly to it. In other words, the points sJ 
such that 

aT i J 
as J (X , s ) = 0 (6) 
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latest 
photon 

earliest 
~1----7<----- photon 

Figure 21.1 Origin of the multiplicity of the time ofaxrival function. Due to the 
folding of the lightcone in the presence of curvature, there axe several null geodesics 
that reach the same spatial location, at different times. In our picture, three null 
geodesics, leaving Xo in different directions at the same time, reach the same worldline. 

are connected to C by lightrays that are normal to S. 
Proof: The proof is based on the standard variational principle for null 
geodesics, and is an extension of a similar result in [4]. Consider the 
action 

(7) 

where xa == dxa /dr is the tangent vector to an affinely parametrized 
null geodesic between the points P = xa(o) and q = xa(l), and s is the 
affine parameter. Consider the variation of [ constructed by taking the 
difference between two neighboring null geodesics with different initial 
points, PI and P2, and different final points, ql and q2 Since [ evaluates 
identically to zero in both instances, its variation is zero as well, 

(8) 

The variation is 

6.[ = 101 9ab,eXuxb8xe + 29abXa8xb dr 

t (( 2) . a . b 2 .. b) £ e 2 d ( . a £ b) J 0 9ab,e - geb,a X X - gebx uX + dr 9abX uX d(9) 
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(10) 

Since the curves are null geodesics, the term proportional to 6xc in the 
integrand vanishes, and we are left with 

(11) 

By (8) and (11), we have 

·a.r bl ·a.r bl 
9ab X uX r=l = 9abX uX r=O (12) 

In (12), 6xb represents an arbitrary (up to the condition that p and q 
can be connected by a null geodesic) displacement at r = 0 and r = 
1 between the null geodesic with tangent j;b and a neighboring one. 
We now particularize (12) to our case of interest, in which, initially, 
neighboring null geodesics are connected by displacements on the surface 
S; i.e.; 

6xbl _ = (OXg) ds J 
r-O osJ (13) 

where ~ are the two coordinate tangent vectors to Sand ds J is arbi­
trary. The final displacement must be tangent to C, i.e., 

(14) 

with vb the tangent vector to the curve C. However, because the two 
null geodesics arriving at r = 1 and separated by 6xbl s=1 must be the 
same pair of null geodesics leaving r = 0 separated by 6xb lr=o then dT 
is not arbitrary, but 

OT J 
dT = dTlxi = osJ ds . 

With (13), (14) and (15), Eq. (12) reads 

( 
. a oxg . a b aT ) d J 

9abX osJ - 9ab X v osJ S = o. 

(15) 

(16) 

Since ds J is arbitrary, and since 9abj;avb can not vanish as long as j;a 

and vb are tangent to a null and a timelike curve, respectively, then (16) 
is equivalent to 

(17) 
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This implies that, at each point of S, aT / osJ vanishes if and only if 
the null ray xa is normal to the surface at that point. This proves the 
theorem.~ 

Note that since no property of the line .c was used, the theorem can be 
restated as follows. Given a time foliation of a Lorentzian manifold with 
local coordinates chosen as (T, Xi), and a source, a closed two-surface 
that "lights up", the time T = T(xi, sJ) of arrival at any spatial point 
Xi, of light signals from a surface point sJ, is extremized by the lightrays 
leaving the surface perpendicularly. 

3. EIKONALS AND THE TIME OF 
ARRIVAL 

In the following, we provide an alternative method for obtaining the 
time of arrival function which is based entirely on the use of the eikonal 
equation - with Arnold's generating families - and specifically on knowl­
edge of a two-parameter family of solutions of the eikonal equation, 

(18) 

Le., it is assumed that a solution, with the two parameters a A = (a l , ( 2 ) 

(19) 

to Eq.(18) is known. Then for each value of aA the level surfaces of Z 
are null (Le., oaZ is a null covector). Furthermore it is assumed that 
at each point xC,oaZ sweeps out the entire null cone at xa as aA goes 
through its range. 

Remark. We point out and emphasize that the level surfaces of the 
solutions to Eq.(18) though referred to as "null or characteristic surfaces" 
are not strictly speaking surfaces; they can have self-intersections and 
in general are only piece-wise smooth. Though Arnold refers to them 
as "big-wave-fronts" we will continue to call them null surfaces. The 
intersection of a big wave front with a generic three surface yields a 
two-dimensional (small) wave front. 

The first thing that we want to show is that the light-cone, e:xo ' from 
an arbitrary space-time point Xo can be constructed from knowledge of 
the function Z of Eq.(19). 

One sees immediately, from Eqs.(18) and (19), that the function 

S*(xa,xo,aA ) = Z(xa,aA ) - Z(xo,aA ) = 0 (20) 

defines a two-parameter set of surfaces which all pass thru the point xg 
and which, furthermore, are all null surfaces. The envelope of this family 
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is constructed by demanding that 

B A S* (xa , xg, oA) = 0 (21 ) 

where a A denote the derivatives with respect to the a A . Assuming for 
the moment that (21) could be solved for the aA = aA(xa), then when 
they are substituted into (20) one obtains the function 

S(xa,xg) = Z(xa,aA(xa)) - Z(xg,aA(xa)) = O. (22) 

Using (21) it is easy to see that BaS = BaS* so that again S(xa,xg) 
is a null surface thru the point xg; its gradient at xg, namely BaS = 
Z(xg,aA),spans the light-cone at xg [at xg, Eq.(21) can not be solved 
for the aA = aA(xa); all values of aA are allowed.] We thus see that 
Eq.(22) represents the light-cone <!:xo. The assumption that Eq.(21) could 
be solved for aA = aA(xa) depended on the non-vanishing of the deter­
minant J of the matrix Jij == BiBj S* (xa, xg, ai ). J does vanish at the 
singularities of the "surface" S(xa, xg), e.g., at the apex xa = xg. In 
general, however even when J = 0, Eqs.(21) and (20) can be solved for 
other variables, namely some set of three (say xQ;which might be differ­
ent in different regions) of the four xa , in terms of the fourth one (say 
x*) and the aA , i.e., 

(23) 

Note the important point that if the coordinates x a are such that three 
of them are space-like and one of them is a time coordinate, xo, then 
Eq.(23) has a stronger version, namely 

(24) 

(25) 

where the two xj and the x* are the three space-like coordinates. That 
one can solve for the xo = xo (xg, x* , aA) follows from the fact that 
Eq. (22) can always be solved, from the implicit function theorem, for xo 
since S* satisfies the eikonal equation and hence B.s* / Bxo # 0 

Eqs.(24) and (25) are a parametric representation of <!:xo via the null 
geodesics that rule it. For the different given values of the a A , they are 
the null geodesics thru xg. 

We thus have the result that the <!:xocan be given either via the surface 
(22) or by its geodesics (24) and (25). We will return to Eq.(25) later. 

If we now allow the xg to lie on a space-like two-surface S described 
by xg = xg(sJ), parametrized by the two parameters sJ , then the 
previous construction of light-cones yields the family of light-cones of 
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wavefront 

wavelets 

~~~~~ 

initial time slice 

Figure 21.2 The construction of the wavefront as the envelope of the individual 
wavelets. 

all the points of S via xg =} xg(sJ). The intersection of the set of all 
the light-cones with a constant-time slice xO = constant, is a family 
of individual (small, two-dimensional) wavefronts emanating from each 
point on the surface; they are denoted as "Huygen's wavelets". By 
Huygen's principle, the envelope of all the wavelets, at xO = constant, 
is the two dimensional wavefront from the source S. (see Fig. 21.2) The 
evolution, as xO changes, of these wavefronts yields a new characteristic 
surface (big wave-front). It is equivalent to the envelope of the family 
of light-cones of all the points of S; the envelope corresponding to the 
stationary variation of the family of light-cones with respect to variations 
in the sJ. 

More precisely, the envelope is the three-surface defined, first by 
Eqs.(20) and (21), [the conditions for the light-cones from xg(sJ)], i.e., 

OAS*(Xa,xg(sJ),aA) = 0 (27) 

augmented by the sJ variations, i.e., by 

(28) 
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These are five conditions on the eight variables (xa , sJ, aA ) thus forming 
a three-surface in the eight dimensional space; this when projected down 
to the space-time results in the aforementioned envelope. It is easily 
seen from Eqs.(27) and (28) that this surface, which we will denote 
by 

(29) 

is a characteristic surface and hence satisfies the eikonal equation, (18). 
Though almost everywhere it can be given in the form of the vanishing of 
a function of xa, i.e., by Eq.(29), there will be lower dimensional regions 
where it must be given parametrically. See e.g., Eq.(23) or Eqs.(24) and 
(25). 

Before looking at the time of arrival function, we first look at 
Eq.(28) more closely. Substituting Eq.(26) into Eq.(28) and taking the 
required derivatives we have 

a J A 8xg 
8aZ(xo(s ), a ) 8sJ = 0 (30) 

which is the statement that for the null ray leaving S at the point xg(sJ), 
J A oxa 

8aZ(xg(s ), a ) must be normal to the tangent vectors Fs:9-at Sand 
thus normal to S. Eq.(30), hence, chooses among all the rays forming 
the light-cone at xg(sJ), i.e., the rays parametrized by aA, just the 
appropriate a A so that the ray is the (unique) normal to S. We thus 
have the result that ( 30) can be solved by 

aA = aA(sJ). (31 ) 

Using Eq.(31), we have that Eqs.(26) and (27) become 

8AS*(Xa,xg(sJ),aA)laA=aA(sJ) = 0 (33) 

Using the same argument that led to Eq.(25), namely the implicit func­
tion theorem and 8S* j8xO =I- 0, we see that Eq.(32) is equivalent to 

(34) 

If we take the three xa = X a as the "constant spatial position" of 
the world-line of Sec. II, we have the time of arrival function. Since, 
interpreting Eq.(32) as defining Eq.(34) implicitly, we have that 
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oS* 
oxO oJT + oJS* = 0, (35) 

which, since oS* /oxo =1= 0, implies that 

(36) 

Thus the extremization of S* implies the extremization ofT(xO, x8(sJ), aA(sJ)) 
as was to be proved. This proof is not affected by the difficulties in Sec. 
n of the possible multivaluedness of the earlier T. 

In the terminology of Arnold, these results follow from his theory of 
Legendre sub manifolds and maps, where 

(37) 

from Eq.(26), defines a generating family F(xa, a A , sJ) and Eqs.(27) and 
(28) define the Legendre map. 

4. DISCUSSION 

We have given two derivations of a variational principle for the time 
of arrival of null geodesics at an observer. Superficially, it appears as 
if it were a version of Fermat's principle; in actuality it is quite dif­
ferent. Fermat's principle leads to local evolutionary laws for the rays 
while here we have from the start assumed that the rays are given by 
null geodesics. Our variational principle gives the initial direction of 
the ray. Often Fermat's principle is invoked to derive the equations of 
gravitational lensing [5, 6]. A paper is now in preparation, using the 
techniques discussed here, in which a universal lensing equation valid in 
all situations is obtained. 
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Chapter 22 

CONCEPTUAL ISSUES IN COMBINING 
GENERAL RELATIVITY 
AND QUANTUM THEORY 
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Abstract 
Points of conflict between the principles of general relativity and 

quantum theory are highlighted. I argue that the current language of 
QFT is inadequete to deal with gravity and review attempts to identify 
some of the features which are likely to present in the correct theory of 
quantum gravity. 

1. INTRODUCTION 
The question of bringing together the principles of quantum theory 

and gravity deserves to be called "the problem" of theoretical physics 
today. The history of failures in this attempt illustrates not only the 
conceptual complexity of the problem but also the sociology of science 
in the late twentieth century. Since Jayant will be sympathetic to my -
rather heretical - way of thinking about this issue, I thought a descrip­
tion of my views on this subject will be appropriate for this volume. 

2. THE MIRACLE OF QUANTUM FIELD 
THEORY 

In proceeding from classical mechanics [with finite number of degrees 
of freedom] to quantum mechanics, one attributes operator status to var­
ious dynamical variables and imposes the commutation relations among 
them. These relations, and an expression for the hamiltonian operator 
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H(fj,p), allow us to write down the equations for the time evolution of 
the operators. If these equations can be solved, then we can determine 
the full structure of the theory. Often, it is conveneient to provide a 
repesentation for the operators in terms of normal differential operators 
so that the problem can be mapped to solving a partial differential equa­
tion - say, the time-dependent Schrodinger equation - with specific 
boundary conditions. Such problems are mathematically well defined 
and tractable, allowing us to construct a well defined [though, in general, 
not unique] quantum theory for a classical system with finite number of 
degrees of freedom. 

The geralisation of such a procedure to a field with infinite number of 
degrees of freedom is not straightforward and is fraught with conceptual 
and mathematical problems. Given a classical field with some dynam­
ical variables, one can attempt to quantise the system by elevating the 
status of dynamical variables to operators and imposing the commuta­
tion rules. But finding a well defined and meaningful representation for 
this commutator algebra is a nontrivial task. Further, if one tries to 
extend the approach of quantum mechanics [based on Schrodinger pic­
ture] to the field, one obtains a functional differential equation instead 
of a partial differential equation. The properties - let alone solutions! 
- of this equation are not well understood for any field with nontrivial 
interactions. Somewhat simpler (and better) approach will be to use 
the Heisenberg picture and try to solve for the operator valued distri­
butions representing the various dynamical variables. Even in this case, 
one does not have a systematic mathematical machinary to solve these 
equations for an interacting field theory. The procedure to quantise an 
arbitrary [but well defined] classical field theory fails right at the outset 
due to inadequete mathematical apparatus. We have no right to expect 
quantum field theories to exist! 

It is, therefore, quite surprising to me that quantum field theories in­
deed could be developed and used to make veriafiable predictions. To see 
how this miracle was achieved, let us look at the prototype of quantum 
field theory, viz. QED. The evolution equations for operators in QED [in 
3+1 dimensions] cannot be solved exactly; however, it is possible to set 
up a perturbation expansion for these variables in powers of the coupling 
constant (e2 Inc) ::::::: 10-2 . The lowest order of the perturbation series, 
in which all interactions are switched off, defines the so called free field 
theory. It is possible to map this theory to one describing infinite num­
ber of noninteracting harmonic oscillators and solve for the dynamics of 
anyone of the oscillators completely. The perturbation expansion can 
be then used to obtain the "corrections" to this free field theory. Several 
issues crop up when such an attempt is made: 
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(a) To begin with, the decomposition of the field in terms of the 
harmonic oscillators is not unique and there exists infinite number of 
inequivalent representations of the basic commutator algebra for the 
system. This shows that "physical" quantities like ground state, particle 
number etc. will depend on the specific representat ion chosen and will 
not be unique. 

(b) Since the system has infinite number of degrees of freedom , quan­
tities like total energy can di verge. The actual form of the divergence 
depends on the representation chosen for the algebra and the differences 
between infini te quaoties may retain a representation dependent [finite] 
value, unless one is careful in reguiarising such expressions. In some 
cases, one may be forced to choose particular set of harmonic oscillators 
because of the boundary conditions. Then, the difference between two 
infinite quantities could be physically relevant (and even observable as 
in the case of, for example, Caisimir effect ). 

(c) The situation becomes worse when the perturbat ion is switched 
on. In general, the perturbation series will not converge and has to be 
interpreted as an asymptotic expansion. Further , the individual terms 
in the perturbation series will not, in general , be finite creating a far 
more serious problem. This arises because the amplitude for propagation 
of a free field quanta, of mass m and euclidian momentum p varies as 
(p2 +m2)-1 , which does not die down sufficiently fast at large p. This, in 
turn, is related to the fact that virtual quanta of arbitrarily high energy 
are allowed to exist in the theory [incorporating Lorentz invariance at 
arbitarirly small length scales] and still propagate as free fields. 

(d) Perturbation theory completely misses all effects which are non­
a.nalytic in the coupling constant. In QED, for example, per turbation 
theory cannot lead the result that an external electromagnetic field can 
produce e+ - e- pairs, since this effect has nonanalyt ic dependecy on c. 
[l J One cannot even estimate the seriousness of this problem since very 
few nonperturbative results are known. 

How does one cope up with these difficulties? Issue (a) is handled by 
choosing one part icular representation for the free field theory by fiat , 
and working with it - and ignoring all other representations which are 
not unitarily equivalent to the same. This also dodges the issue (b) pro­
vided some means of regularisation can be found to discard the infinities 
of the free field t.heory. Once a representation for the harmonic oscillators 
is chosen, this can be implemented by a procedure like normal ordering. 
Issue (d) is accepted as a failure of the method [at least by the honest 
researchers!] and then ignored . Most of the successful effort was con­
centrated on handling the problem of infini t ies in the individual terms of 
the perturbation ser ies, that is, on issue (c) . The pardigm for handling 
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these infinities can be stated in terms of the concept of renomalization 
which, by itself, has nothing to do with any divergence. In the sim­
plest terms, renormalization expresses the fact that the interactions will 
change the values of the various coupling constants in the theory; that is, 
the physically observed coupling constants are the "renormalized" ones 
and not the "bare" ones which appear in the original Lagrangian. The 
phenomena of renormalization exists, for example, in condensed matter 
theories where both the bare and renormalized coupling constants can 
be finite. In the context of field theory, renormalization can provide a 
means to eliminate divergences, if all the divergent terms of a perturba­
tion expansion can be eliminated by redefining the coupling constants 
in the theory. For an arbitrary field theory, we have no assurance that 
all the divergences can be so eliminated; in fact, it is quite easy to con­
struct well defined classical field theories for which divergences cannot 
be eliminated by this process. 

The unexplained miracle of 20th century quantum field theory lies in 
the fact that several physically relevant field theories - describing quan­
tum electrodynamics, electro-weak interactions and QeD - belong to 
this special class of perturbatively renormalisable theories. For such the­
ories, perturbation series can be developed as an algorithmic procedure 
to evaluate matrix elements for transitions between asymptotic states 
of the free field theory, to any order in perturbation theory. The agree­
ment of such predictions with observations led to (several nobel prizes 
and) a religious faith in perturbative renomalization as the paradigm of 
quantum field theory by late 60's - early 70's. Nobody knows why this 
mathematically non-rigorous, conceptually ill-defined, formalism of per­
turbative quantum field theory works. The miracle becomes even more 
curious when we notice that the bag of tricks fail miserably in the case 
of gravity. 

3. THE EDIFICE OF GENERAL 
RELATIVITY 

Until early seventies, most of the hardcore particle physicists used to 
ignore general relativity and gravitation and the first concrete attempts 
in putting together principles of quantum theory and gravity were led 
by general relativists (see e.g. ref. [2]). It was clear, right from the begin­
ning, that this is going to be a formidable task since the two "theories 
of principle" differed drastically in many aspects. The key features of 
gravity which are of relevence in this context are the following: 

(a) The Lagrangian describing classical gravity, treated as a function 
of hik = gik -'f/ik, is not perturbatively renormalizable; in fact, there does 
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not exist any simple redefinition of the field variables which will lead to 
a perturbatively renormalizable theory. So the most straight forward 
approach, based on the belief that nature will continue to be kind to us, 
is blocked. The miracle fails. 

(b) The principle of equivalence implies that any resonable descrip­
tion of gravity will have a geometrical structure and that gravitational 
field will affect the spacetime intervals in a specific manner. This in­
escapable conclusion leads to several corollaries, all of which make grav­
ity an odd-man-out: (i) To begin with, this makes the spacetime itself 
a dynamical entity and not something which can be prescribed before­
hand. (ii) Secondly, the description of gravitational field in terms of the 
metric tensor 9ik translates into a constrained dynamical system; that is, 
the true degrees of freedom of gravity are only 2 per event rather than 
the full set of 10 functions contained in 9ik. Understanding the nature 
of constraints in general relativity - and implementing it in different 
descriptions of quantum theory - turn out to be a very non trivial task. 
(iii) Thirdly, the geometrical description leads to a fairly unique (class 
of) Lagrangian(s) for the gravitational field. The equivalent Hamilto­
nian formulation of the theory in terms of 3-geometries lead to a degree 
offreedom (conformal factor) which is unbounded from below. (iv) The 
geometrical structure also implies that there is no prefered coordinate 
system in the presence of gravitational field. In fact, there is no unique 
and meaningful separation of the various effects as those due to gravity 
and those due to noninertial forces, if we stick to the metric tensor as the 
fundamental physical variable. For a general gravitational field, there 
will be no way of choosing a special class of spacelike hypersurfaces or a 
time coordinate. 

(c) Gravity affects the light signals and hence determines the causal 
structure of spacetime. In particular, gravity is capable of generating 
regions of spacetime from which no information can reach the outside 
world through classical propagation of signals. This feature, which may 
be loosely called 'the existence of trapped surfaces' has no parallel in 
any other interaction. 

(d) Since all matter gravitates, the gravitational field becomes more 
and more dominant at larger and larger scales. In the limit, the asymp­
totic structure of spacetime is determined by global, smoothed out dis­
tribution of matter in the cosmological context. In such a case, the 
spacetime will not be asymptotically flat in the spatial variables at any 
given time. The behaviour of the spacetime for t -+ ±oo will also be 
highly non-trivial and could be dominated by very strong gravitational 
fields. 
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(e) All energies gravitate thereby removing the ambiguity in the zero 
level for the energy, which exists in non-gravitational interactions. This 
feature also suggests that there is no such thing as a free, non-interacting 
field. Any non trivial classical field configuration will possess certain 
amount of energy which will curve the spacetime, thereby coupling the 
field to itself indirectly. Gravitational field is not only nonlinear in its 
own coupling, but also makes all other fields self-interacting. 

(f) The coupling constant governing gravitational interaction has a 
non trivial dimension in the language of quantum field theory; Ep == 
(G/lic)-1/2 has the dimensions of energy in contrast to (e2 /lic) which 
is dimensionless. Simple power counting arguments based on this re­
sult will show that gravity will be perturbatively non renormalizable. 
Further, one can construct a quantity with dimensions of length, Lp == 
(GIi/c3)1/2 ~ 10-33 cm, from the gravitational coupling constant. Though 
no formal proof exist, it is very likely that quantum gravitational ef­
fects will modify the spacetime structure at length scales comparable 
to L ~ Lp. In fact, simple thought experiments combining the prin­
ciples of quantum theory and gravity show that the planck length acts 
as a 'zero-point- length' to any spacetime. (see e.g. ref [3]) Any correct 
formulation of quantum gravity must have the infrastructure to incorpo­
rate this feature just as the operator description of quantum mechanics 
is capable of incorporating the uncertainty principle. 

(g) The truely remarkable feature of classical general relativity is that 
this theory is fundamentally wrong. This is most easily seen from the 
fact that one can ask questions - in the form of thought experiments -
to which the theory cannot provide sensible answers. One such question 
could be the following: "A neutron star of mass 6M0 collapses to form 
a blackhole. How will the physical phenomena appear with respect to 
a hypothetical observer on the surface of the neutron star at arbitrarily 
late times as measured by the observer's clock?" Such questions cannot 
be answered in classical general relativity because the relevant equations 
lead to an infinte curvature singularity. Such a theory must clearly be 
wrong and has to be replaced by a better formulation at very strong 
curvatures. 

The features (a) to (d) already suggest that there are fundamental 
contradictions between the formulation of quantum field theory and that 
of general relativity. Given the result (a), one could have taken two sep­
arate routes: (i) How can gravity be made to conform to the tenets 
of QFT ? or (ii) Why did QFT work in the case of other interactions 
and how should QFT be modified to handle gravity? Historically, most 
of the effort went into route (i) and led to a blazing trail of failures. 
This is in spite of the fact that many of the features listed above show 
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that contradictions of language surface even when one tries to develop a 
quantum field theory in an external gravitational field (without worrying 
about the quantization of gravity itself). Since gravity does not allow 
a prefered slicing of the spacetime, quantum field theory needs to be 
formulated without using any prefered representation for the operator 
algebra. Loosely speaking, this implies that there is no generally covari­
ant definition for the vacuum state (or particle excitations) in a generic 
curved spacetime. Infinite number of inequalent representations exist 
and we have no means of choosing anyone of them as ' more physicaP 
than another. It is clear that such a description - based on a ground 
state and the particle-like excitations - is of very limited value and will 
not survive the transition to the next layer, say, the one in which we 
need to take the back reaction of the particle production into account. 

An abstract way of stating the same conclusion is as follows: Gravity is 
inherently local (local coordinate charts, observers, freely falling frames 
... ) while the standard formulation of QFT is global (global spacelike 
hypersurface, global mode functions, ... . ). There is no such thing as lone_ 
particle-state- at-the-event-P' in QFT and there are serious problems in 
defining any such concept. 

More difficulties arise from the feature (c) listed above. When gravity 
makes certain regions inaccessible, the data regarding quantum fields in 
these regions can "get lost". This requires reformulation of the equa­
tions of quantum field theory, possibly by tracing over the information 
which resides in the inaccessible regions - something which is not easy 
to do either mathematically or conceptually. Trapped surfaces also high­
light the role of boundary conditions in QFT. The structure of a free 
field propagating in an arbitrary spacetime can be completely specified 
in terms of, say, the Feynman Greens function Gp(x,y) which satisfies 
a local, hyperbolic, inhomogeneous, partial differential equation. Each 
solution to this equation provides a particular reali;r.ation of the the­
ory. In other words, there exists a mapping between the realizations of 
the quantum field theory and the relevant boundary conditions to this 
equation which specify a useful solution. When trapped surfaces exists, 
the differential operator governing the Greens function will be singular 
on these surfaces (in some coordinate chart) and the issue of boundary 
conditions become far more complex. It is, nevertheless possible - at 
least in simple cases with compact trapped surfaces to provide an 
one-ta-one correspondence between the ground state of the theory and 
the boundary conditions for G F on the compact trapped surface. In 
fact , the Greens function connecting events outside the trapped surface 
can be completely determined in terms of a suitable boundary condit ion 
on the trapped surface, indicating that trapped surfaces acquire a life 
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of their own even in the context of QFT in CST. In a way, the proce­
dure is reminiscent of renormalisation group approach, but now used in 
real space to integrate out information inside the trapped surface and 
possibly replace it by some boundary condition. 

In this connection, it is worth noting that effects like particle pro­
duction by a blackhole (or expanding universe) are infrared phenomena 
and arises due to the coupling of modes at large scales. [The conflict 
between local GR and global QFT is again apparent]. The ultraviolet 
modes are comparitively local and decoupled. This is somewhat different 
from standard situations in QFT where the ultraviolet modes get cou­
pled due to interaction and the infrared ones get a free ride. Integrating 
out the information inside a trapped surface in real space might also 
translate into a renormalisation group approach in fourier space with 
infrared modes integrated out. 

The importance of cosmological solutions in classical gravity [item 
(d)] led to the investigations in quantum cosmology and the possibilities 
of 'wave function of the universe'. Two features emerged from these 
attempts: (i) It may be possible to circumvent the classical cosmological 
singularity in quantum cosmological models. (ii) If the ground state 
of the universe is globally determined, the boundary conditions could 
also lead to specification of the ground state for matter fields, thereby 
providing a quantum version of Mach's principle [4]. Both these results 
are tentative and nonrigorous but go to show the richness of possibilities. 
The feature (d), however, creates problems in formulating quantum field 
theory in terms of scattering amplitudes or asymptotic "in" "out" states. 
Such concepts are meaningful when the global spacetime structure is 
externally specified but not when dynamics determines the structure of 
asymptotic universe. 

I think the key physical message from some of these investigations is 
the following: Fields are more important than particles and could be 
more robust entities. In fact, this conclusion is apparent even from the 
existence of a phenomena like Casmir effect which cannot be explained 
in terms of virtual particles and is independent of the coupling constant 
(e2 Inc) of the perturbative theory. This is in sharp contradiction with 
the phisolophy of perturbative gauge theories in which the particle physi­
cist uses fields just as a tool to obtain an algorithm for computation of, 
say, S-matrix elements. The baggage we carry from Lorentz invariant, 
perturbatively renormalizable, quantum field theory - like the concepts 
of quanta, vacua, in-out states, Smatrix.... etc. - is probably to be 
abandoned. 

Features (e) to (g) make the situation worse. The fact that all matter 
gravitates [see (e)], once again stresses the need to abandon description 
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based on free field theory to handle virtual excitations with arbitrarily 
high energies. An excitation with energy E will probe length scales of the 
order of (1/ E) and when E -l- Ep , the nonlinearity due to self gravity 
cannot be ignored. The same conclusion is applicable even to vacuum 
fluctuations of any field , including gravity. If we attempt to treat the 
ground state of the gravitational field as the flat spacetime, we must 
conclude that the spacetime structure at L ;:S Lp will be dominated by 
quantum fluctuations of gravity and the smooth macroscopic spacetime 
can only emerge when the fluctuations are averaged over larger length 
scales. 

The difficulties mentioned above should caution one against approach­
ing the problem of quantum gravity as one of mathematics requiring a 
better technical apparatus. There is very strong indication that the 
basic language of field theory is inadequate to grapple with the compli­
cations introduced by gravity. Perturbative language which - at best ­
gives an algorithm to calculate S-matarix elements, is not going to be of 
much use in understanding the quantum structure of gravitational field. 
Most of the interesting questions - possibly all the interesting ques­
tions - in quantum gravity are non perturbative in character; whether 
a theory is perturbatively renormalizable or not is totally irrelevent in 
this context. Conventional quantum fie ld theory works best when a 
static causal structure, global Lorentz frame, asymptotic in-out states, 
bounded Hamiltonians and the language of vacuum state, particle ex­
citations etc. , are supplied. The gravitational field removes all these 
features , strongly hinting that we may be working with an inadequate 
language. The gradual paradigm shift in the particle physics community 
from perturbative finiteness of supergravity (in early 80's) to non per­
turbative description of superstrings (in late 90's) represents a grudging 
acceptance of the lessons from gravity. The history of these failures in­
dicates that we have not been ruthless enough in attacking the problem. 

4. QUANTUM GRAVITY FROM PURE 
T HOUGH T? 

Given the above results, is it possible to describe the key features 
which must be present in any future, successful , theory of quantum 
gravity? I believe this can be done to certain extent thereby providing 
some useful pointers. 

The fact that there will exist violent spacetime fluctuations at small 
scales suggests that the macroscopic, continuum, description of space­
time can only be approximate and valid when quantum fluctuations are 
averaged over large scales. The description of continuum spacetime in 
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terms of, classical, Einstein's equation is similar to the description of a 
solid by elastic constants or the description of a gaseous system by an 
equation of state. While the knowledge of microscopic quantum the­
ory of atoms and molecules will allow us, in principle, to construct the 
description in terms of elastic constants, the reverse process is unlikely 
to be unique. What one could hope is to take clues from well designed 
thought experiments, thereby identifying some key generic features of 
the microscopic theory. 

One might assume that the microscopic description is in terms of cer­
tain [as yet unknown] variables qi and that the conventional spacetime 
metric is obtained from these variables in some suitable limit. Such 
a process will necessarily involve coarse-graining over a class of micro­
scopic descriptors of geometry. I will now outline an argument which 
suggests that there are infinite number of microscopic descriptors which 
are "integrated out" in proceeding from the fundamental description to 
spacetime description, [5]. The argument proceeds in three steps: (1) 
Among all systems dominated by gravity, the universe possess a very pe­
culiar feature. If the conventional cosmological models are reasonable, 
then it follows that our universe proceeded from quantum mechanical 
behaviour to classical behaviour in the course of dynamical evolution de­
fined by some intrinsic time variable. It can be shown that a system 
with bounded Hamiltonian can never make such a transition if classi­
cality is defined in terms of behaviour of a suitable Wigner function. It 
follows that the quantum cosmological description of our universe, as 
a Hamiltonian system, should contain atleast one unbounded degree of 
freedom. It can also be shown that the unbounded mode - which, in 
the case of FRW universe, corresponds to the expansion factor - will 
go classical first, as is experienced in the evolution of the universe. (2) 
Let us next address the task of obtaining an unbounded Hamiltonian 
for an effective theory when the original theory contained a larger set 
of dynamical variables. It can again be shown that, if one starts with a 
bounded Hamiltonian for a system with finite number of quantum fields 
and integrate out a subset of them, the resulting Hamiltonian for the 
low energy theory cannot be unbounded. (3) Assuming that the orig­
inal theory is describable in terms of a bounded Hamiltonian for some 
suitable variables, it follows that an infinite number of fields have to 
be involved in its description and an infinite subset of them have to be 
integrated out in order to give the standard low energy gravity. This 
feature is indeed present in one form or the other in the descriptions 
of quantum gravity based on strings [6] or Ashtekar variables [7]. My 
argument suggests that this is indeed inevitable. 
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If the description in terms of continuum spacetime is like theory of 
elasticity, and we do not know the fundamental descriptors of spacetime, 
is there any way of bridging the gap between the two? It turns out 
that this is possible by using the properties of macroscopic spacetime 
near the trapped surfaces. I have given detailed arguments elsewhere [8] 
to show that the event horizon of a Schwarzschild blackhole acts as a 
magnifying glass, allowing us to probe Planck scale physics . Consider , 
for example, a physical system described by a low energy Hamiltonian, 
B low. By constructing a blackhole made from the system with this 
Hamiltonian and requiring that the blackhole should have a density of 
states that is immune to the details of the matter of which it is made, 
one can show that the Hamiltonian, B true describing the interactions 
of the system at transplanckian energies must be related to Blow by 
H lrue = QE~ In[l + (Bl~w/aE~)] where Q is a numerical factor. Of 
course, the description at transplanckian energies cannot be in terms of 
the original variables in the rigorous theory. The above formula should 
be interpreted as giving the mapping between an effective field theory 
(described by H true ) and a conventional low energy theory (described by 
B low) such that the blackhole entropy will be reproduced correctly. 

In fact , one can do better and construct a whole class of effective field 
theories [9] such that the one-particle excitations of these theories possess 
the same density of states as a Schwarzschild blackhole. All such effective 
field theories are non local in character and possess a universal two-point 
func t ion at small scales. The nonlocality appears as a smearing of the 
fields over regions of the order of Planck length thereby confirming ones 
intuition about microscopic structures, trapped surfaces and blackhole 
entropy. 

If the physical descript ion above Planck energy (or equivalently below 
Planck length) changes drastically, how can one modify the low energy 
description such that the singularities in spacetimes and the perturbative 
divergences in quantum field theory are removed? This question cannot 
be answered rigorously without knowing the microscopic structure of 
spacetime. However two broad class of theories can be distinguished in 
terms of a general criterion. In the first class of theories, the low energy 
(E « E p) and high energy (E » E p) behaviour are not related by 
any manner and the high energy sector of the theory does affect the low 
energy behaviour significantly. If nature is built along these lines, then 
we cannot predict much without knowing the full theory. On the other 
hand , one can think of another class of theories in which the high energy 
and low energy descriptions are related in a specified manner and are 
not completely independent. The simplest form of such a relation will be 
a ~ duality ' in which the behaviour at a scale E is related to a behaviour 
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at scale (E~ / E), or - equivalently - the behaviour at length scales 1 
and (L~/l) are related. Implementing this duality in the path integral 
representation for a propogator, say, leads to a remarkable result [10]: 
The effect of this duality is the same as assuming that the spacetime 
possesses a 'zero-point-Iength' and replacing the flat spacetime interval 
(x - y)2 by (x - y)2 + L~. I suspect that the converse is also true: ifthe 
structure of the theory is such that planck length acts as a minimal length 
to the spacetime, then the theory will possess a duality between length 
scales 1 and (L~/l). String theories do show related - though not the 
same - features. If nature is built along these lines, then transplanckian 
physics is dual to the low energy theory and must possess a description 
in terms of some effective field theory. 

The key conclusions which emerge from all these are the following: (i) 
It is unlikely that one will make genuine progress, unless the language of 
quantum field theory is expanded to be capable of handling the features 
listed in section 3. The question to understand is not why gravity is dif­
ficult to quantise but why the perturbative approach was so unreasonahly 
successful in dealing with other interactions ? This must be because 
the conventional QFT is a wrong way of looking at physics though it 
accidentally incorporated several features of the right [as yet unknown] 
approach - as was in the case of, say, old quantum theory. Rethinking 
about QED in a possibly new language might offer hints on how to pro­
ceed further. (ii) Given the unlikely event of experimental confirmation 
of quantum gravity, it is necessary to attempt a top-down approach [ 
classical gravity --+ effective field theory --+ microscopic spacetime de­
scriptors ] using, say, well-defined thought experiments. In this regards, 
spacetimes with trapped surfaces will be valuable. (iii) It is also impor­
tant to worry, at a conceptual level, the effect of transplancian physics 
on low energies. If this effect is not to be unreasonably strong, thereby 
killing predictability, it is necessay that the low energy theory is pro­
tected by some kind of duality mapping relating transplancian energies 
to low energies. A progam for quantum gravity, along these lines, holds 
promise. 
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Chapter 23 
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Abstract We look for Hawking-Turok ( HT )instanton solutions in a higher deriv­
ative theory of the type R + o.R2 - 2A , which describes the creation of 
an open inflationary universe. Converting the R2 -theory into a theory 
of a scalar field minimally coupled to Einstein gravity by a conformal 
transformation, we obtain a singular HT instanton solution for a class of 
R2 -theory, with parameters a < 0, A = 1(0.) > 0,810.1/(0.) < 1. Non­
singular de Sitter type instantons are also present in this case.. The HT 
instanton solutions are not very generic in nature in R2 -theory. 

1. INTRODUCTION 
In two recent papers, Hawking and'IUrok ( HT ) [1,2] have suggested 

that Hartle-Hawking [3] no boundary proposal provides for the creation 
of an open inflationary universe in a generic sense. Till recently, it 
was believed that all inflationary models lead to no '" 1 to a great 
accuracy. This view was modified after it was discovered that there is a 
special class of inflaton effective potentials which may lead to a nearly 
homogeneous open universe with no ~ 1 at the present epoch. These 
potentials should have a metastable minimum followed by a small slope 
region which permits a slow roll inflation. The inflaton is supposed to 
be initially trapped in the false vacuum leading to a period of inflation, 
which gives an almost de Sitter space with small quantum fluctuations. 
The inflaton field eventually undergoes a quantum tunneling, nucleating 
bubbles within which the inflaton field slowly rolls down to the true 
vacuum. It was pointed out by Coleman and De Luccia [4] that the 
interior of such a bubble is actually an open universe. However, this 
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scenario can be realised only at the cost of making very fine tunning. 
To keep the quantum fluctuations small, a very flat potential is required 
while one also needs a metastable minimum. The mechanism suggested 
by HT does away with the requirement of a false vacuum and it also 
leads to a universe created with minimal quantum fluctuations. 

Vilenkin [5], however, questioned the validity of the HT mechanism 
by raising the following points : 

• The instanton of HT is singular in the sense that both the curvature 
and the scalar field become singular at one point. 

• The field equations are not satisfied at the singularity and it is, 
therefore, not a stationary point of the Euclidean action. 

• It is not clear that HT instanton will give the dominant contribu­
tion to the Euclidean path integral. 

• There is also a counter example : Consider the case of a massless 
scalar field interacting minimally with gravity, which also gives 
a singular instanton, which is asymptotically flat. The nucleation 
probability of such an instanton is not suppressed. But, if accepted 
as legitimate it leads to the unacceptable results that the singular 
bubbles expand rapidly to engulf the universe. 

In response, HT [2] argue that the instanton considered by them is 
legitimate since it is integrable and the Euclidean action is finite. More­
over, it avoids the catastrophe which Vilenkin's example predicts. How­
ever, the question whether it is proper to use the singular instanton in 
evaluating the path integral remains to be answered. Considerable work 
has already been done [6-11] on various aspects of this problem. 

Consideration of models which give singular as well as non-singular 
instantons may be quite useful in this connection. We present here 
the higher derivative theory as a model for such a calculation. The 
presentation of the paper is as follows: in section 2, we discuss the 
non-singular instanton solutions in R2 - theory. The scalar field theory, 
obtained by a conformal transformation of the R2 - theory is discussed 
in section 3. Instanton solutions, both singular and non-singular, have 
been determined. We discuss our results in section 4. 

2. HIGHER DERIVATIVE THEORY 
We consider here a generalized theory of gravity to explore the pos­

sibility of an instanton solution for creation of an open-inflationary uni­
verse. It is well-known that the R2 -theory has a number of good fea­
tures. It is known that with suitable counter terms viz., CllVp8CllVp8 , R2 
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, A added to the Einstein action, one gets a perturbation theory which 
is well behaved, formally renormalizable and asymptotically free [12]. 

Let us consider the following Euclidean action 

IE = __ 1_ J d4 xJ9[R + aR2 - 2A]- ~ r d3xYhk(1 + 2aR). (1) 
167r 87r JaM 

where 9 is the determinant of the 4-dimensional metric, R is the scalar 
curvature, A is cosmological constant, hij is the metric induced on aM 
and K = hij Kij is the trace of the second fundamental form. 

We consider here 0(4) symmetric Euclidean metric which is 

ds2 = d(J2 + b2((J) (d'lj;2 + sin2 'lj; dOD 

where dO~ is the metric of 2-sphere. The scalar curvature is 

(
b" b,2 1 ) 

R = -6 b + b2 - b2 . 

(2) 

(3) 

where prime denotes derivative with respect to (J. We treat band R as 
independent variables and rewrite the action, including the constraint 
(3) through a Lagrange multiplier {J, 

IE = ~ J d(J [(R + aR2 - 2A)b3 - {J ( R + 6b~ + 6~: -~ )] 
-~ r d3xYh K (1 + 2aR). 

87r JaM 
Varying with respect to R, we determine 

Substituting this in eq.(4) we now obtain 

(4) 

IE = ~ l:oM [(-2A - aR2)b3 + 6b(1 + b,2)(1 + 2aR) + 12ab2b'R'] d(J 

+37r[b'b2(1 + 2aR)]T=o. (5) 

The field equation for b( (J) is given by 

[
b" 1b,2-1] b' 1 A 

(1 +2aR) b + 2" b2 +aR" +2ab R' + 4aR2 +"2 = o. (6) 

The eq.(6) admits an instanton solution 

b = H;;l sinHo(J (7) 
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with R = 12H; and A = 3H;. The solution is non-singular and inde­
pendent of the parameter Ct. The Euclidean action (4) in this case can 
be calculated by integrating over half of the 8 3 : 

IS3 = - [~~ + 121m] . (8) 

The dependence of the probability of creation of the de Sitter type uni­
verse on the two parameters A and Ct can be read out from equation 
(8). Note that the higher derivative term with Ct > 0 enhances the 
probability. A smaller A also does the same. 

An open inflationary universe may be obtained by analytic continua­
tion of the metric (2) to the Lorentzian region, 'ljJ = ~ + iT, 

(9) 

which is a spatially inhomogeneous de Sitter like metric. However, if one 
sets a = i t and T = i ~ + X, the metric (8) becomes 

(10) 

where a(t) = - i b(i t). If the model admits Hawking-Turok sin­
gular instantons, the creation of the open universe may be a generic 
phenomenon. It is, therefore, interesting to see if such instantons are 
permitted in this model. To see this we need to consider a conformal 
transformation which converts the R2 -theory into a scalar field theory. 
This will be taken up in the next section. 

3. INSTANTON WITH A SCALAR FIELD 
We consider a generalised action given by 

(11) 

where f(R) is a function of scalar curvature R. To write the action in 
terms of Einstein gravity coupled to a scalar field we use a conformal 
transformation of the form 

(12) 

where Inn = -jg = pn If' (R)I, prime denoting a derivative with respect 
to R. The action given by (11) gets transformed into 

(13) 
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with V(4)) = ~e -2.ff4> [R~ - f(R)]. Comparing with the action given 

by (1), considered in the previous section, we have f(R) = R+aR2 - 2A. 
The scalar field potential in this case takes the form 

The potential depends on two parameters a and A. The Einstein field 
equations corresponding to the action (13) are derived using the equa­
tions 8~~v = 0 and g~ = O. For g described by the metric 

(15) 

the field equations are 

(16) 

",II 3 a' "" = av 
If' + a If' a4> ' (17) 

with prime denoting derivative with respect to &. We now look for non­
singular as well as singular instanton solutions of these equations : 

(1) Non-singular Instanton solutions exist for a > 0, A > 0 as well as 
for a < 0,0 < A < 81~1' The solution is 

4> = 4>0 = If In(1 + SaA), 

A _ 
3(1 + SaA) a. 

(IS) (-) V3(I+saA). 
a a = A SIn 

The corresponding Euclidean action evaluated in this case becomes 

(19) 

which is the same as in the original R2 -theory. 
(2) HT instantons : The HT instantons cannot be obtained for all 

values of a and A. The only class that permits HT instanton is given 
by a < 0, A = f(a), SlalA < 1. We note the general features of the 
potential V(4)) in this case ( with a' = -a) : 
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(i) V(¢) has two zeros, ¢+ and ¢_ , given by 

¢± = ~ In(1 ± VSa' A) (20) 

(ii) It has a maximum at ¢ = ¢m = [! In(1 - Sa' A)) with V(¢m) = 
A 

I-Ba'A· 

(iii) V(¢) -+ - B;' as ¢ -+ 00. 

The choice of initial values play a dominant role in the evolution of 
these solutions. Let us assume that at 0- = 0, ¢(O) = ¢+ and V(¢+) = O. 

It then follows that ¢'(O) = 0 and ~~ 1<1>+ = - V3cl(I:~). Since the 

point 0- = 0, is a non-singular point, the manifold looks locally like R4 in 
spherical polar coordinates and we may assume b(o-) = voo-+0(0-2) where 
Vo is the initial velocity, i.e., b'(o) = Vo. The potential has a negative 
gradient at 0- = 0 .. The initial conditions along with the field eqs.(16) 
and (17) determine the evolution of band ¢. 

To see if a singular solution of HT type is present we assume that 
close to the singularity 0-" ( 0-, - 0- < 1 ) 

¢ = q In(o-, - 0-) 

b", (0-, - o-)n 

(21) 

(22) 

The eq.(17) then determines q = [! for n < 1. The eq.(16) now 
determines 

3 1 [ 1 - Sa' A] 
n = 4" ="3 1 + 6a' ' (23) 

which also determines A in terms of a', 

A = f(a') = 2 ~6~a' 

and hence a' < 125. Thus HT instanton can be obtained only for a 
special domain of the parameter space ( a < 0, A = f(a) and SlalA < 1 
). Note that in this model, V(¢) cannot be neglected even close to 
the singularity, in contradiction to the speculation of HT. Although the 
existence of a HT type instanton is indicated by the above calculation, 
two possibilities may emerge : 

(a) The scalar field may move uphill and get stabilised at <Pm, giving 
the non-singular instanton solution (IS). 

(b) The universe may end up in a singularity at 0- = 0-" giving the 
HT instanton. Further studies are required to decide which of the two 
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possobilities is open to the scalar field for the given potential V (¢). An 
approximate calculation of the Euclidean action for the HT instanton 
can be done by following the suggestions of HT[2]. This will be taken 
up elsewhere. 

4. DISCUSSION 
We have seen that both singular and non-singular instantons are per­

mitted by field equations in R2-theory which satisfy some constraints. 
The corresponding scalar field theory clarifies the special features of the 
two types of solutions. In the non-singular type, the scalar field sits on 
top of the maximum of the potential. This gives an indication that the 
Lorentzian continuation of this solution ( with a < 0 ) may be unstable, 
as is the case with the de Sitter solution in the R2 - theory [13]. The 
fact that HT instantons cannot be obtained in R2 - theory for a > 0 
shows that these objects are indeed not very generic. There is also no 
HT instanton for A < o. 
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Chapter 24 

THE NON-HOMOGENEOUS AND 
HIERARCHICAL UNIVERSE 

Jean-Claude Peeker 
College de France,Paris 

Abstract The cosmological principle of homogeneity and isotropy, widely used by 
all mathematical cosmologies, is discussed in several aspects, in which 
it leads to misunderstandings. One first describes some implications of 
the observed fractal distribution of matter, continuous or not. One thus 
covers the discussion of Olbers and Seeliger's effects. Some suggestions 
are made in order to use the observed distribution of matter as a starting 
point for an extrapolation of the present to the past, towards... who 
knows? Second, one examines the consequences of a non-continuous 
distribution of matter, and in particular Narlikar's reflections upon a 
quantized phase of the Universe. Finally, one gives a short account of 
the recent scale-invariant relativity of Nottaie, which may be another 
way of looking at these problems. 

1. THE COSMOLOGICAL PRINCIPLE IN 
QUESTION 

One of the basic principles of both the standard big bang cosmolo­
gies (for example, read Tolman, 1934), and of the Quasi Steady State 
Cosmology of Burbidge, Hoyle & Narlikar (1998), is the Einstein's cos­
mological principle (implied in Einstein,1 917; see also Weinberg, 1972), 
of homogeneity and isotropy of the Universe, hence considered as a con­
tinuum, of fractal dimension 3. It assumes that all parts of the Universe 
are essentially equivalent. Of course it is much more constraining than 
that, when one expresses it in mathematical terms. 

The reason for adopting this principle is not altogether so obvious. It 
is practical for solving the equations of General Relativity. One could 
almost say it is necessary for it. But it has no obvious physical basis. 
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However, it can be justified, as said Weinberg (1971, p. 407-408) just 
in the same way as one justifies the use of gas equation in physics, al­
though their molecular structure is known: Let us quote Weinberg: "Of 
course, the homogeneity of the Universe has to be understood in the 
same sense as the homogeneity of a gas. It does not apply to the Uni­
verse in detail, but only to a smeared-out Universe averaged over cells of 
diameter 108 to 109 light years, which are large enough to include many 
clusters of galaxies" ...... "The real reason, though, for our adherence to 
the Cosmological Principle is not that it is surely correct, but rather, 
that it allows us to make use of the extremely limited data providerl to 
cosmology by observational astronomy". These statements invite some 
comments. 

First of all, one notes that amongst the" significant" data ( significant 
from the point of view of cosmology) are mentioned "extremely limited 
data". They are not listed at this place in Weinberg's book; but we 
know well which they are: (a) Hubble's linear law,(b) the background 
black body radiation and (c) the abundance of light elements. This is 
the case for the two groups of theories we have mentioned, and for some 
others as well. 

But is not the tremendous inhomogeneity ofthe Universe (1013 gmcm-3 

in neutron stars, not to speak of black holes, to 10-30 gm cm -3 in in­
tergalactic space), not an obvious essential astronomical datum, quite 
significant from the point of view of cosmology, and perhaps even more 
significant than some of the three others, if we note that several different 
types of theories can account for these, but not for the inhomogeneity? 

The distribution of mass is not only inhomogeneous but also hierar­
chical as shown by Charlier (1896, 1908, 1922), by de Vaucouleurs(1971), 
by others (for example, Nottale 1993, Pecker 1998). Is not this fractal 
distribution of mass (between some scale limits of course, not necessarily 
extending to very large scales or to very small ones) also a significant 
observed datum for cosmology? 

Let us start this discussion by the Weinberg's remark and its biases. 
At a scale smaller than 108 or 109 light-years, the assimilation of the 
matter distributed in the Universe to a gas is misleading, and wrong. 
But what consequence does it have on the physical situation near the 
so-called big bang (say, at z = 5, as observed by the Hubble telescope) 
? Galaxies are then much closer to each other than at z = 0, the 
equation of state of the universal gas is not valid anymore; we are in 
a situation comparable to that of an ordinary gas, when one must take 
into account the molecular structure. The ideal gases approximations 
are not any more valid; we have got to find some equivalence to the Van 
der Waals theory for the equation of state, and we are far from the ideal 
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gas situation. So, are the classical solutions of the General Relativity 
equations still valid? I doubt it very much. 

Actually, from a certain degree of condensation, the assumption of 
the continuous nature of a gas, easy to treat and to include in the equa­
tions, is not valid. The equation themselves are not valid anymore. We 
could call the needed physics a quantum physics of the condensed Uni­
verse. But we do not know this quantum physics, except for some earlier 
discussions due to Narlikar (1992) 

I would like to claim that one should start from this observed distri­
bution of matter, hierarchical, fractal, inhomogeneous, and even discon­
tinuous, as we see it now, in our light cone, and go back to what the 
situation may have been earlier. A first step is perhaps to discuss the 
implications of the fractal distribution of matter, as it has been done 
earlier by Charlier. 

1.1 OLBERS AND SEELIGER'S 
PARADOXES 

The habit, in "standard cosmology" is to treat very lightly Olbers' 
paradox, and to ignore Seeliger's paradox. Let us express these two 
paradoxes simply. 

Olbers (and his predecessors, including Kepler, Halley and Loys de 
CMzeaux) assumed an Euclidean space in which sources of light are 
distributed, perhaps discontinuously, as stars, but evenly in the whole 
space. Then, a simple integration shows that the intensity of the light 
coming from the shining matter to the observer located at the origin 
of coordinates (or at any other point in space), is extremely large. In 
other words, the sky should be uniformly bright, would this description 
be correct. The intensity of light is a scalar, decreasing like r-2, r being 
the distance of the shining surface to the observer. 

Olbers paradox was discussed by Charlier, along similar lines as Lam­
bert, in the XVIII-th Century, assuming that the observer is located 
at the edge of a mass distribution of successive structures, imbedded in 
each other, like a series of Russian dolls. So he considered only the local 
effect of only one half of the space. It explains why he had not seen that 
Seeliger's paradox is of an entirely different nature (see Figure 1). 

Seeliger's paradox concerns the gravitational field of these evenly dis­
tributed stars. It was first implicit in the work of Carl Neumann, in 
1879, as noted by Solomon, but was formulated by Seeliger (1894). The 
gravitational field due to anyone star de creases as r- 2 , like the light 
intensity. But it is a vectorial quantity, not a scalar quantity. Hence one 
half of the sky exerts an infinite gravitational force, but this is compen-
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Figure 24-1 Olbers and Seeliger's paradoxes. On the left, is an illustration of Olbers 
paradox: the light comes from all directions. At the origin the observer receives a 
positive quantity of energy, the same from each side of the (artificial, introduced by 
Olbers, for whom the observer is located a the edge of a distribution) dividing plane 
P of the space. In an Euclidean, homogeneous, non-evolving Universe, this quantity 
of energy is "infinite". On the right, is an illustration of the Seeliger's paradox: At 
the origin, the mass m is attracted towards every direction. It results, on each side 
of the plane P, in two forces; each of the two has an "infinite" value in an Euclidean, 
homogeneous, non evolving Universe. But each of them strictly annihilates the other. 
The paradox would exist only in the Olbers construction, where the observer is located 
at the edge of the mass distribution, only on one side of the plane P. 
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sated by the force exerted on the observer by the other half of the sky. 
This is the reason why the paradox had been ignored. But even from one 
half of the sky, an infinite force is a hard thing to admit, even compen­
sated. Why should the compensation be exact? So Seeliger introduced 
in the Newton law a complementary term, decreasing like exp - K r. This 
indeed was an alternate way to solve some of the paradoxes which led 
to special relativity. 

Olbers paradox gave place (Charlier, de Vaucouleurs) to what Wein­
berg calls naive models (Weinberg, page 611-613). Of course, as said by 
Weinberg, in a big bang cosmology, there is obviously no paradox since 
the integral of the light intensity from r = 0 to r -+ 00 is effectively 
cut off at a lower limit, t = O. Weinberg completes the discussion by 
stating that the steady state cosmology requires a luminosity tending to 
zero with time for each star, so that the integration extends only over 
the life-time of the star, proper account being of course taken of the 
stellar evolution. The "only difficult case" seems tor Weinberg to be 
that of oscillatory models (such perhaps as that of the QSSC). In this 
case, "absorption occurs during the highly contracted era, and the red 
shift during the subsequent expansion saves us from an intolerable bright 
sky. From this point of view the 2.7 K microwave background appears 
as pale image of the fiery furnace with which we were threatened by 
de Cezeaux and Olbers". Other authors have invoked the displacement 
to the red of the spectrum to show that the apparent luminosity is de­
creasing more rapidly than r- 2 , until its complete disappearance from 
the visible domain. These arguments of course are fallacious when one 
looks at Seeliger's paradox. There is no screen against the gravitation (a 
principle of cosmology which in my view is much more important than 
the cosmological principle)! So only the big bang models (because of the 
limit of integration at t = 0, i. e., at the origin of the expansion). 

There is however a way to look at these paradoxes which differs basi­
cally from the ones above, which is that of Charlier(1908, 1922, not even 
mentioned by Weinberg !). In a hierarchical Universe (as well noted 
much later by de Vaucouleurs, 1971, 1972) with a fractal distribution of 
matter (see Figure 2) with a dimension D different from 3, one can show 
easily that the Charlier's integral converges for D < 2 (strict inequal­
ity!). Hence fractal models such as those of Fournier d'Albe or Hoyle 
(D = 1) satisfy this condition. The value D = 1.3 found in the observed 
world by de Vaucouleurs, from neutron stars to superclusters of galax­
ies, is equally satisfactory. In Charlier's hierarchical Universe, there is 
no Olbers paradox any more. 

What about the Seeliger's paradox? Quite clearly, it requires a very 
different treatment than Olbers' paradox, contrary to what was believed 
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Figure 24.2 Definition of the dimension D of a fractal but continuous distribution 
of matter. On the abscissae is indicated the radius (logarithmic scale) of the various 
structures, or steps, of an hierarchical distribution of mass, numbered: 1,2,3 ... 6. On 
ordinate is indicated the average density (in logarithmic scale). If the density is inde­
pendent of the radius of the volume in consideration, the distribution is 3-dimensionalj 
the fractal dimension is D = 3 (chain-dotted line). For a point-mass surrounded by 
vacuum (at happens in first approximation in all steps of the hierarchical Universe), 
the average density decreases as r-3 . The fractal index is the quantity: x = D - 3. 
It varies from step to step, and between the steps, of coursej but the successive steps 
may follow a fractal law. One has D = 0 for the point-mass surrounded by empty 
space (here represented ideally in step 2, by a straight line of slope -3), until the next 
step, towards which the average density tends to a constant, as in a distribution of 
dimension D = 3. D is generally < 3. See Figure 24.3 for actual values. 
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by Charlier, who treated the problem linked with matter located only 
on one side of a plane containing the observer. We must now introduce 
the fluctuations in the distribution of light sources responsible for the 
gravitational attraction. Whatever the distribution, or the spectrum of 
sizes of this distribution, the local gravitational field at the location of 
the observer, is infinite under the classical Olbers conditions. But if 
we assume the hierarchical model, with a fractal distribution of matter, 
the decrease with the distance to the observer of the gravitational force 
resulting from the fluctuations is faster than if we do assume an homo­
geneous distribution (D = 3). To solve the problem, and to get a finite 
force, we need (Pecker, in preparation) to have D < Dj, where Dj is 
the limit dimension in a fluctuating distribution of matter, and depends 
upon the typical size scale f of the distribution, an obvious parameter of 
the problem. D j differs definitely from 2 and the restriction appears as 
more restrictive than in the case of Olbers paradox (I hope to be able to 
publish soon more definite results); therefore, in the Charlier Universe, 
there is perhaps still an infinite Seeliger's paradox. But of course, we are 
reasoning in a Euclidean space, and this discussion is merely academic. 

But the gravitational field locally still exists, due to the actual fluctu­
ations. Hence, locally, the matter must be attracted by some attractor. 
Actually, there is probably a residual force, acting to create the disper­
sion of velocities in clusters of galaxies. The scale j of the fluctuations 
is then involved. This scale is commanded by the size of clusters, su­
perclusters, etc. Such force could explain, quite in agreement with the 
Machian point of view, motions other than expansion; i.e. proper mo­
tions of the clusters of galaxies with respect to each other, of galaxies 
with respect to each other, in other terms the proper motions of the 
galaxies. We know such motions to exist at velocities of the order of 
1000 km s-l. The evaluation of this velocity field for a cluster of, say, 
1000 galaxies, allows to determine a kinetic quasi-thermal energy within 
the cluster. It would be quite interesting to analyse the data with this 
idea in mind. The very existence of this energy might strongly affect 
any model implying a big bang. 

We should also note, as a logical consequence of the hierarchical struc­
ture of the Universe, on the scales from stars to that of clusters of galax­
ies, of a variation of the apparent expansion rate with scale, as the 
expansion rate should be a function of t he average density of the ex­
panding matter. This actually was suggested by Pecker & Vigier (1974), 
and it should be tested through more complete observations of clusters. 
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2. A STEP-TO-STEP TRIP TOWARDS THE 
PAST. 

If the dispersion of velocities did not exist, as observed, but also as 
more or less predicted by the Seeliger's paradox, it would be very difficult 
to understand the extrapolation backwards of the presently observed 
expansion, an extrapolation which is basic to all models such as the 
standard one or the QSSC. These extrapolations backwards lead, in the 
standard cosmology, to a point-Universe, at the time t = O. If we follow 
this backwards extrapolation, climbing up the flow, in what could be 
called a de-pansion, all galaxies get closer and closer to each other, and 
finally dissolve in a cloud of amorphous matter; all matter coalesces, 
before the reversal of the usually assumed inflation (deflation), and the 
the usually admitted reunification of forces (if we follow backwards the 
standard model). The conservation of energy and momentum imposes 
the conservation of this one-way motion, completed by an accelerated 
inflow, according the equations of GR. 

In the QSSC, the same type of extrapolation backwards leads to galax­
ies getting closer and closer to each other; but we have to introduce a 
rate of de-creation of matter when the Universe has a small enough size. 
In both cases the flow of energy is centrally directed at the time zero of 
the simulation, i.e. at the present epoch (t = to). 

But if we admit, in clusters, a dispersion of velocities, as suggested by 
the above discussion of the Seeliger's paradox, as soon as their mutual 
distances are such that transverse motions are comparable to de-pansion 
motions, galaxies can go away each from each other. 

The previous qualitative attempt by the author (Pecker 1997) should 
perhaps be looked at again; it implies a sort of continuity condition, in 
the piling-up of structures, during the de-pansion extrapolation back­
wards. In other terms, a quickly collapsing cluster should not become 
smaller than the possibly not so quickly collapsing galaxies it contains. 
A more quantitative simulation is certainly very much in need. 

There are models for which the problem has to be put in entirely 
different terms: such is the Godel's (1949) model, which implies a general 
anisotropy of the whole Universe; but this model is not acceptable for 
several reasons. But some quasi-turbulent motions in the Universe are 
perfectly acceptable. Locally, they may appear as rotations. 
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3. FROM CONTINUUM TO 
QUANTIZATION: THE QUANTUM 
UNIVERSE OF NARLIKARI 

It is clear that, whether one does or does not accept the expansion, 
whether or not one does or does not accept the inflationary phase, and 
the grand unification (GUT), there stays a basic question: what was the 
Universe before? Before what? A certain time at which all these theories 
seems to fail, for very basic physical reasons. If people often quote the 
time tpl = (Gh/c5)1/2 = 5.4xlO-44 second (the so-called Planck time) 
as the time after which all is "clear" (at least for the fans of the standard 
cosmology), and before which one just does not know (we do not even 
know what to know, or whether there is anything to know), we have still 
to ask the question- Could we know? Still, the time, which is a physical 
quantity, as it enters the equation of General Relativity, has a clear 
meaning, - but which one? Has this past (before tpl) left any observable 
relics, as one sometimes claims have been left by the following period? 

One obvious question, which we have already alluded to many times, is 
that a simple formula on which both the macroscopic gravity (through 
G), and the quantities such as h, typical of the quantization at small 
scales of the Universe, are intervening, brings in itself the problem of 
quantization of gravitational energy. That the gravitational energy be 
transmitted through gravitons is the expression of a partial reply to this 
fundamental interrogation. 

Another question, which arises at this point is : what is then the 
meaning of time? We know well what is the time of GR -an absolute 
time, in an absolute reference frame, defined in the Mach's way, by the 
ensemble of all masses present at once in the Universe. Obviously, the 
GR equations imply a continuous time, which enters the equations as 
t, and fits at the present the time as defined by the usual clocks, be 
they astronomical, or more precisely, atomic. There are no unexplained 
gravitational or astronomical phenomena which require a change in this 
point of view. 

The quantization of gravitation, the introduction of gravitons in physics, 
is linked primarily to the need for insuring the grand unification (GUT) 
of the four fundamental forces, - the theories of the three other interac­
tions (electromagnetic, weak, and strong) being already well-established 
quantum theories. As clearly stated by Narlikar(1992), the Universe, 
around the hypothetical big bang epoch, is so small as to make the clas-

lThis section and the following one are very similar to the corresponding paragraphs of the 
book Understanding the Universe, by the author (Springer c. 1999). 
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sical description impossible, in term of action, the classical notion used 
for example in the (macroscopic) principle of least action, or of station­
ary action. One can actually demonstrate the GR from the macroscopic 
principle of stationary action, as shown by Hilbert as early as in 1915. 
But it results also from Hilberts's demonstration that classical laws of 
physics cannot be applied for t < tpl. 

What to say then? We feel immediately embarrassed by the fact 
that in GR the force of gravitation is merely a geometrical effect. In 
quantum gravity, the very process of quantization must therefore affect 
the structure of space-time, and this may distort the causality linking 
two events A & B, as well described by Narlikar. 

A solution might lie in the conformal quantization, which keeps the 
angles of the light cones unchanged. Without entering into many details 
in a difficult theory, we may give, as a hint to more general problems 
(always according to Narlikar), the description of the hydrogen atom. 
In the classical (Newtonian!) description, the electron, massive, acceler­
ated, loses energy (all accelerated particles radiate) and therefore spirals 
inwards and falls onto the proton, in a time of the order of 10-23 s. Ob­
viously, this does not occur. By quantizing only r, the distance from 
proton to electron, the electron can exist for an extremely long time in a 
stationary orbit of radius r = h2 /mc2 . This could be done as well at the 
scale of the hypercondensed Universe of the Friedmann's models, before 
the Planck epoch. We could introduce conformal transformations that 
would not satisfy the classical GR equations of Einstein .. Narlikar con­
cluded from this discussion that, generally, these new models do not have 
any singularity, the big bang models being actually extremely unlikely. 
So the question is: can stationary states thus exist for the Universe? It 
has been demonstrated that it is indeed the case, and that their char­
acteristic scale is (not surprisingly) the one associated with the Planck 
time, i.e. the Planck length Lpl = (Gh/c3)1/2 = 101.6-33cm. It is inter­
esting that such models eliminate the need for inflation (in the sense that 
the horizon problem does not occur anymore, in particular). And one 
may conclude that the pre-Planck era may be a very important phase 
in the history of the Universe - although unknown. 

4. NOTTALE'S MODEL OF 
SCALE-INVARIANT COSMOLOGY. 

We have mentioned the important suggestions made by Narlikar, as 
to the possibility of a quantum phase in the life of the Universe. But the 
fact that the Universe has a fractal structure does not imply in itself any 
quantum phase, any quantization. However, we should be very careful 
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about this concept. The standard cosmology and the QSS cosmology 
assume a continuous distribution of matter; the fractal distribution may 
be also continuous, and the QSS Cosmology satisfies the Charlier's con­
dition. But it is one thing to speak about hierarchical and fractal dis­
tribution, or fractal but not hierarchical (structures being not imbedded 
in successive steps), and quite another one to speak about quantized 
Universe, - not only at the very small scale addressed by the preceding 
paragraph. In addition, one may state that the Universe may be quan­
tized and hierarchical (fractally) in a certain interval of size scale, but 
that it may be homogeneous at a larger scale (this is what Weinberg says 
explicitly), and completely quantized at a much smaller scale (according 
the type of description given by Narlikar). 

It is obviously not easy to reconcile these points of view, and to treat 
all the scales in a unique way, like existing cosmologies generally do. 
This is why it seems interesting here to give an account of the scale­
invariant cosmology of L. Nottale. Actually, the physical conditions and 
their mathematical expressions are different from one scale to another 
(say: the scales of the quantum domain and of the classical domain ,of 
the cosmological domain). What is actually the scale determining the 
physics? The basic physics, and mathematical formulation of Nottale's 
theory assume that it is not the case. There is for him a basic unity in 
the physical laws, whatever the scale, and the inhomogeneous structure 
is for him an essential ingredient of the observable Universe. 

Nottale's theory is difficult; we shall describe it only briefly. It is 
founded on an extension of Einstein's principle of relativity (that was 
up till now applied only to motion transformations) to scale transforma­
tions. It proceeds as follows: One first gives up the arbitrary hypothesis 
of the differentiability of space-time coordinates, while keeping their con­
tinuity (an hypothesis which was implicitly basic in all previous cosmolo­
gies). Such non-differentiable space-time must be fractal, and it must 
be resolution-dependent. Therefore the space-time resolution becomes 
inherent to the physical description, and it is defined as an essential 
variable which characterises the state of scale of the reference system. 
One can then set a principle of scale relativity, according to which the 
laws of nature apply whatever the state of scale of the reference system. 
Its mathematical translation consists in writing the equations of physics 
in a scale-covariant way. 

The motion relativity evolved, as well known, from the Galilean rel­
ativity to Einsteinian special relativity. In an analogous way, the scale 
relativity evolves from the simplest scaling laws to much more evolved 
ones. 
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The simpler scale-relativity laws have the structure of the Galilean 
group; they correspond to the standard fractal power laws, with con­
stant and uniform fractal dimensions. From such scale laws, one can re­
cover the main axioms of quantum mechanics. In other words, one can 
demonstrate that the quantum behaviour implies a non-differentiable 
and fractal geometry of the micro-space-time, - quite in the same way 
that, at large scale, gravitation is a manifestation of the Riemannian 
geometry of the large-scale space-time. 

But the standard scale laws are only a very particular case. More 
generally, one can show that the laws of transformation from a scale to 
another have the structure of the Lorentz group of transformations. In 
this framework (which can be called special- scale-relativity), the fractal 
dimension is no longer uniform, but varies with scale. The effect of two 
successive dilations is not any more their direct product. Instead of the 
zero and the infinite, there appear two minimal and maximal scales, 
invariant under dilations while keeping the properties of the previous 
zero and infinite. This is in a way similar to what happens in special 
motion relativity: there the velocity of light is finite, and a limit that 
cannot be passed beyond; but it keeps the physical properties of the 
Galilean infinite velocity. If one wants also to give up some other aspects 
of the usual treatment, such as its linearity, even more general scale laws 
can be considered. 

Nottale's new theory accounts through unique formalism, and in terms 
of an unique fundamental constant, the structures observed in our own 
solar system (Titius-Bode-like laws). It also accounts for the Tift effect 
of redshift quantization, studied by Arp, and Napier & Guthrie, as well 
as for gravitational hierarchical structures observed on a range of scales 
covering 1015 orders of magnitude. 

Another cosmological consequence of the scale-invariant relativity the­
ory applies to the primeval universe. The minimal, impassable scale is 
naturally defined by the Planck length and Planck time scale. In the spe­
cial scale relativistic framework, this scale is invariant under dilations, so 
that the whole of the universe is connected at the Planck epoch, which 
solves the horizon-causality problem, and therefore makes inflation quite 
unnecessary. The expansion would start asymptotically from the Planck 
length scale. Scale invariant gravitational structures are predicted by 
the theory, even in the absence of initial fluctuations. 

A third class of consequences arises from the suggestion of the exis­
tence of a maximal scale, also invariant under dilations. Such a scale 
is naturally identified with the cosmological constant scale C = A -1/2, 
where A is the usual Einstein cosmological constant. This suggestion 
provides a meaning for the cosmological constant; it implies it is non-
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Figure 24.3 The Hierarchical Universe, according G. de Vaucouleurs. We reproduce 
here, somewhat modified, Figure 3 from the original de Vaucouleurs's paper. The 
symbols 1, 2, 3 ... , of the successive steps of the hierarchy represent, respectively: 1: 
neutron stars and white dwarfs; 2: stars 3: protostars; 4: compact galaxies and (cross) 
globular clusters; 5: spiral galaxies, and (cross) compact groups; 6: groups of galaxies 
(cross) and clusters; 7: local supercluster, 8: largest explored universe in the 50s and 
60s. The chain-double-dotted line (C) corresponds to the Charlier limit, D = 2, 
the chain-dotted line (FA-H) to the abstract construction of the Universe of Fournier 
d'Albe and to the fragmentation process of Hoyle (D = 1). The density of the growing 
volume, when passing from one step to the next is represented as in Figure 24.2, but 
only to represent the interplanetary (IPM), interstellar (ISM), intergalactic (IGM), 
and inter cluster (ICM) medium (dotted lines). The overall distribution can reasonably 
well be represented by a fractal distribution of D = 1.2 - 1.3 (index: x = 1.8 - 1. 7), 
according to the computations of de Vaucouleurs. 

zero, and it provides several new ways to measure it. The resulting 
values are consistent and solve the age problem. The ratio of the two 
minimal and maximal fundamental scales is then found to be of the order 
of 5 x 1060 , from several different tests. It yields perhaps a basis for the 
physical understanding of the Dirac's large number coincidences. More­
over, as in the microphysical domain, the fractal dimension is expected 
to vary with scale (see Figures 3 and 4). This allows both domains to 
recover the observed value of the fractal dimension of the distribution 
of matter r at scales 10 kpc to 100 Mpc, and to predict a transition to 
uniformity at a scale of about 1 Gpc. 

5. THE QSS COSMOLOGY AND THE 
HIERARCHICAL UNIVERSE. 

In the standard cosmology, the structures grow and they cluster through 
gravitational interactions, during the expansion. To grow) they need the 
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Figure 24.4 The dimensional aspect of the scale invariant relativity theory. On the 
upper part of this figure, according Nottale (from his Figure 7.2, somewhat simpli­
fied), the trend of the anomalous dimension delta, from the smallest possible scale 
(LP1) to the largest possible scale (.c), through the quantum domain to the cosmo­
logical domain. The classical domain corresponds to a physics of scale independence, 
whenever both quantum and cosmological domains corresponds to scale dependence. 
The scale on the abscissa is logarithmic. In the cosmological case, the anomalous 
dimension 0 is equal to the fractal dimension D (in may be generally not so, as ? 
is linked with a two-point correlation coefficient). On the lower part of the figure, 
one has reproduced the trend of the fractal dimension D according Figure 3, and 
according Weinberg'S ideal gas logic, quoted in the text. Nottale gives the following 
estimates: .c = A-l/2, where A = 1.36xlO-56 cm- 2 is the cosmological constant. 
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existence of preassigned primordial density fluctuations. They may per­
haps give place to a fractal distribution, provided the parameters of the 
simulation are properly adjusted. But to the author's knowledge, this 
has not been done so far. 

In the QSS Universe, no primordial density fluctuations occur. There­
fore gravitational effects may not playa key role. On the contrary, pro­
cesses of creation (not ab nihilo ! No theology or metaphysics is implied 
here) of matter occur, at the time of the minimum size of the Universe, 
as ejecta from strong condensations (collapsed massive objects, black 
holes?).These ejecta act as creation centers at the period of increasing 
size of the universe. This is what can be called new matter. So, in the 
model, new creation centers are added to keep the model stationary. 
Hoyle's toy model, advocated by Narlikar, consists in the use of a com­
puter to simulate that idea. Without entering into details, a clustering 
appears in the simulation. And, for an ad hoc but reasonable rate of 
creation, one obtains a fractal distribution of matter quite similar to the 
observed one, with a dimension 1.2; the work is in progress. A better 
choice of the rate of creation will allow to predict a better value of the 
fractal dimension, still closer to the observed one. 

6. CONCLUSIONS 

It seems now that the Universe being actually not continuous, being 
even quantized, and having a fractal structure, accompanied by an hier­
archy of structures, one should incorporate these facts in any model of 
the Universe; Nottale's scale invariant relativity can probably be adapted 
to either solution of the Einstein equations - the standard and the QSS 
cosmologies. It is perhaps one of the most fruitful ways of research now, 
together with simulations of the evolution of the distribution of galaxies 
in time, either forwards, or backwards toward the alleged origins. 
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Chapter 25 

ELECTROMAGNETIC WAVE PROPAGATION 
IN GENERAL 
SPACETIMES WITH CURVATURE AND/OR 
TORSION (U4 ) 

A. R. Prasanna and S. Mohanty 
Physical Research Labomtory 

Ahmedabad 380 009, India 

1. INTRODUCTION 
Till now the only window that we have, to view the Universe around 

us, is the electromagnetic window which indeed has given birth to as­
tronomies from Radio to ,-rays. The information that one gets through 
receiving and analysing radiation in these frequencies has given us quite 
a bit of understanding about the large scale structure of space time. 
However, there are still many questions unanswered and this calls for 
as accurate an analysis as possible of the electromagnetic waves coming 
from distant sources to get a clearer picture of the sources as well as 
the material distribution through which these waves propagate before 
reaching us on Earth. 

With the advent of general relativity as the correct theory of gravi­
tation, the understanding of the large scale structure of the Universe -
Space, Time and Matter, turned cosmology into a Science from its meta­
physical status. The main aspect of general relativity viz. the curvature 
of space time produced by the matter distribution revealed several im­
portant effects on the behaviour of trajectories of both particles and pho­
tons, which are indeed well simulated into the geometry of space time. 
By studying these trajectories one could thus understand clearly the ge­
ometry of the Universe which is reinterpreted in terms of the Physics of 
the Universe. As is well known, the affine connection associated with 
Einstein's theory is by definition symmetric. On the other hand, if one 
considers a general space time manifold U4 the connection is asymmet-
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ric and the antisymmetric part, the torsion could have some influence if 
appropriately taken into account. Cartan (1922) generalising Einstein's 
theory to include torsion related it to the spin density of the matter 
distribution as curvature is related to the energy density. However, this 
approach did not get any momentum till the early seventies. On the 
other hand, Hehl and coworkers (1976) developed a theory of gravitation 
with torsion, which is more known by the name Poincare gauge theory, 
while Trautman (1972) re-established the Einstein-Cartan theory in the 
language of differential forms, starting from an action Lagrangian which 
is a function of the frames and the asymmetric connection. In fact, as 
has been shown the connection with torsion arises naturally when grav­
ity is treated as a gauge theory wherein the Poincare symmetry is made 
a local symmetry group. The metricity condition 'V j1.go:/3 = 0 yields the 
generalised connection to be 

r~v = { :// } + ~ (TO:j1.v - Tj1. 0: V - Tv 0: j1.) 

where { p,: } is the Christroffel connection determined completely by 

the metric, whereas the torsion is regarded as a characteristic of the 
space-time independent of the metric. In general, T has 24 components. 
However, if one considers space times where TO:j1.v is antisymmetric in 
all the three indices, the geodesic equation written in terms of the gen­
eralised connection also describes the shortest distance trajectories. In 
this context, it is worth mentioning that string theories also predict the 
existence of a totally antisymmetric three index tensor field which is iden­
tified with the completely antisymmetric torsion field (Green, Schwarz 
and Witten). 

The completely antisymmetric torsion field To:/3'Y has only four inde­
pendent non-zero components that can also be expressed in terms of 
its pseudotrace part Td defined as To:/3'Y = ~€o:/3'YdTd. In the present 
discussion we restrict our attention to space times with completely anti­
symmetric torsion wherein the generalised connection is given by r~v = 

{ :// } + ~T::V" In fact, as Trautman (1975) has pointed out, by split­

ting the torsion tensor into three parts, it can be measured only if it 
is purely antisymmetric or when it is due to a spinning fluid of the 
Wyessenhoff type. 

A standard result of Einsteinian gravity is that the trajectories of all 
massless particles are null geodesics. It would be worthwhile to check 
whether there is a deviation from the null geodesics when particles have 
spin due to the interaction of the spin with curvature and torsion. As 
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Hehl et al. point out, if one tries to use the minimal coupling for the 
Maxwell field in a manifold with torsion, one would get the spin angu­
lar momentum tensor Tijk = A[iFj]k which is not U(l) gauge invari­
ant. However, Maxwell's equations can be expressed in terms of exterior 
derivatives which are generally covariant on any manifold. 

Prasanna (1975) has written the Maxwell's equations on U4 formally 
which however yield the usual equations of the Riemannian manifold 
as torsion terms do not appear explicitly. This is generally interpreted 
as the fact that the causal structure of a U4 based on light signals is 
completely determined by the metric structure of the manifold. 

It is interesting to note that even though the Lagrangian and the 
equations of motion for the electromagnetic field do not have torsion 
couplings, the covariant second order wave equation does have torsion 
couplings, due to the fact that the commutator of the covariant deriva­
tives is proportional to both curvature and torsion. Our aim in the 
present work is to see the effect of curvature and torsion terms on the 
wave propagation in U4. We do find two important results viz. (1) 
the presence of the curvature terms in the wave equation does not per­
mit superluminal velocities, as claimed by some, when the background 
matter satisfies the strong energy condition, and (2) the effect of the tor­
sion background is to rotate the plane of polarisation of electromagnetic 
waves, with the angle of rotation being independent of the wave length. 

2. FORMALISM 
The interaction of electromagnetic fields with gravity or equivalently 

the action Lagrangian describing electromagnetic fields in a general space 
time manifold is given by 

S = ! d4xFYFJ1.vFJ1.V (1) 

and the corresponding equations of motion by the covariant Maxwell's 
equations 

(2) 

and the Bianchi identity 

(3) 

where FJ1.V is the dual of the field tensor given by 2AEJ1.Vo.{3 Fo.{3. Equa­

tions (2) and (3) may be re-expressed in a manifestly covariant form on 
U4 as given by Prasanna (1975) 

(4) 



280 THE UNIVERSE 

and 
T;(3FAP. + T$p.FAOl 

+T;OlFA(3 
(5) 

Here V stands for the covariant derivative with the generalised connec­
tion. 

In order to obtain the second order wave equation for electromagnetic 
fields on U4, operate on equation (4) with VOl to obtain 

V VOl Fp.v + [VOl V ] FI-'v = ~ VOl (Tv FAI-') p. , p. 2 AP. (6) 

The commutator identity is given by 

[V p., V v] F Ol(3 = - TAp.v VAF Ol(3 

+ ROI F A(3 + R(3 FOIA AP.V AP.V 
(7) 

Operating (5) by Vp. and rearranging the terms, one gets 

VP.V P.FOl(3 + [VI-', V (3] (FP.Ol) + V (3 Vp. FP.Ol 

+ [VP., VOl] (F(3p.) + VOl Vp. F(3p. (8) 

= T AOl(3 Vp. FP.A + TAp.Ol Vp. F(3A + T A(3p. Vp. FOIA 

wherein the derivatives of T are omitted. Using the cummutator and 
the Maxwell's equations (6) and (4) appropriately and simplifying, the 
final wave equation is obtained to be 

VI-'V P.FOl(3 = ~ (TA~V 01 - TA~V (3) FAp. 

- ROl(3r8Fr8 - ROlAFr/ + R(3AFOI A 
(9) 

(One has used the cyclic identity for the curvature tensor while simpli­
fying the above equation). 

2.1 CURVATURE WITHOUT TORSION 
(TQ{3"Y = 0) 

The wave equation (8) immediately reduces to the form 

VP.V P.FVA = Rpp.v>,.FP.P + RP AFpv - RP VFPA (10) 

Using the geometric optics approximation one can describe the photon 
trajectories by the eikonal solutions of the wave equation as given by 

F - eiS(x)f p.v - p.v (11) 



ELECTROMAGNETIC WAVE PROPAGATION 281 

where 8(x) the phase is a rapidly varying function of the space-time 
coordinates as compared to the amplitude fp,v. The gradient of the 
phase 'V p,8 represents the wave number kp, and one has 

(12) 

U sing this one can write the wave equation in the form 

which yields the dispersion relation 

(14) 

The solution (11) when used in the Bianchi identity (5) with To.(h = 0, 
shows that of the six components of Fp,v only three are independent as 
expressed by the relation 

kohj + ki!jo + kjfoi = 0 

Using (15) in (13) one finds the set of three equations 

(k28/ + E/) foj = 0 

where 

(15) 

(16) 

(17) 

Let us consider the example of electromagnetic wave propagation in 
the expanding universe as depicted by the Friedmann-Robertson-Walker 
geometry. 

The general homogeneous, isotropic universe described by the line 
element 

ds2 = dt2 - R2(t) (dr2 + r2d(j2 + sin2 ()dq}) (18) 

has for the E matrix the non-zero components 

1 2 3 R R 87rG ( .. .2) 
E 1 = E 2 = E 3 = - 2 R + R2 = - -3- (p - 3p) (19) 

with p and p denoting the density and pressure respectively. 
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Using (19) in the dispersion relation to be obtained from the matrix 
equation (16) for the electric field components one finds the relation 

2 2 87rG 
w - ki = -3- (p - 3p) (20) 

and thus the photon velocity is given by 

(21) 

which is clearly < 1 for p ~ 3p. In the radiation dominated era when 
p = 3p the photon velocity is 1. Hence we find that following special 
relativity we say that photons of any polarisation cannot exceed the value 
c( = 1), then it is necessary that the material distribution through which 
the waves are propagating has to satisfy the strong energy condition 
p~ 3p. 

Recently Olum (1998) has discussed the issue of superluminal velocity 
and using the space-time diagramatic analysis has shown that 'Superlu­
minal travel requires negative energy' in the sense that the weak energy 
condition has to be violated. 

2.2 TORSION WITHOUT CURVATURE 
l,From (8) we get after neglecting the curvature terms and restricting 

the torsion terms to only linear order, the wave equation 

(22) 

By defining the wave vector Kp. of the propagation mode by the eikonal 
condition 

(23) 

one finds 

(24) 

Substituting for the totally antisymmetric torsion tensor, its pseudotrace 
T°{3P. = ~E°{3p.vTv, the wave equation for the transverse electric field 
components of a wave with wave vector Kp. = (Ko, 0, 0, K3 ) propagating 
through space-time with torsion pseudovector Tv = (To, T) is given by 
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The dispersion relation is given by the determinant of the K matrix and 
the wave vectors of the two propagating modes denoted by subscripts ± 
are 

1 
K3± = Ko =r= 12 (To - T3 ) (26) 

The solution for the electric field components of the waves are 

E± = EOlexp{i (Kot - K3±Z)} (27) 

The phase difference between the two modes after propagating over a 
distance Z = L, will be observed as the rotation of the plane of polari­
sation of the plane polarised modes E(1) and is given by 

(28) 

For light signals propagating at angle 0 with respect to the of direction 
T the optical rotation angle (28) is given by 

1 
~cp(L) = 6"(To- 1 T 1 cosO)L (29) 

We note that this optical rotation by torsion is independent of wave­
length and this effect can therefore be distinguished from Faraday rota­
tion by galactic magnetic fields where the optical rotation is proportional 
to the square of the wavelength. 

Nodland and Ralston [10] using observations from 90 sources with 
z < 0.3 and 71 sources with z > 0.3 found an anisotropic effect in the 
wavelength independent optical rotation which in our formalism could 
be accounted for by a non-zero spacelike component of the torsion 1 T I::: 
Ho ::: 10-42 GeV. 

Recently Carroll and Field [11] analysed data from both nearby (z < 
0.3) and distant (z > 0.3) sources to conclude that the signal of optical 
rotation is consistent with zero and one can at best put upper bounds 
from such observations. Using the Carroll and Field results [11] and 
using equation (29) we put upper bounds on the time and spacelike 
components of the torsion pseudovector given by 

To = (1.74 ± 2.40)Ho = (3.72 ± 5.10) x 1O-42 ho Gev (30) 

1 T 1= (3.36 ± 4.2)Ho = (7.20 ± 9.0) x 1O-42 hoGeV (31) 

We have thus seen that analysing the propagation of electromagnetic 
waves using the wave equation (8) has given some new insights regarding 
both curvature and torsion effects on signal propagation, intrinsic to the 
space time structure. It is indeed a great pleasure for us to dedicate this 
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article to Professor Jayant V. Narlikar, on his sixtieth birthday. Jayant 
has been a source of inspiration to several younger generations of rela­
tivists and astrophysicists. We wish him a very happy and fruitful next 
sixty years keeping a steady state of interaction with the community of 
scientists all around. 
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Chapter 26 

A FRESH LOOK AT THE SINGULARITY 
PROBLEM 

A. K. Raychaudhuri 
Relativity and Cosmology Centre, 

Physics Department, 

Jadavpur University, 

Calcutta - 700 032, India 

Abstract The slant of singularity theorem was towards proving the non-existence 
of singularity free cosmological solutions. The recent discovery of singu­
larity free solutions demands a fresh look at the problem to find out the 
characteristics and limitations of singularity free solutions. The present 
article shows that a characteristic of almost all these solution is the van­
ishing of spatial averages of important scalars that govern the dynamics 
of models. 

Jayant Narlikar has somewhere related how he came across my paper 
when he was working for his doctoral thesis in 1960. He was interested 
in finding the role of rotation in cosmology - in particular whether it 
could prevent the collapse singularity that occurs in Friedmann models. 

About three year later, we met at Dallas during the first Texas sympo­
sium. That was in December, 1963. Since then a somewhat intimate and 
strange sort of relationship has developed between us - call it friendship 
if you like, although there is a great disparity in age and position. Dur­
ing all these years, the versatility of his genius and numerous qualities 
of his head and heart have made a great impression on me. 

lt was the singularity problem that introduced me to him and so I 
think it fit to have a look at that problem on this occasion. In fact the 
discovery of some singularity free solutions demands a fresh look. 

In a way, the problem is simple to understand. Consider two bodies 
interacting gravitationally. Apparently they must meet sometime in the 
future or the past. If they are approaching or receding with a kinetic 
energy less in magnitude than their gravitational potential energy, they 
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will meet in future while if they are receding with a velocity higher than 
a critical value, an extrapolation back in time leads to a meeting of the 
two bodies. If this simple argument be carried over to a distribution of 
matter, finite or infinite; discrete or continuous, may we not expect a 
similar meeting together resulting in an infinite density. 

So far we have used Newtonian language and one may raise some 
questions. Is it not possible that in a distribution, as the gravitational 
attraction on a body comes from different directions, there will be a 
cancellation and gravitation will be effectively removed. Indeed if the 
distribution be homogeneous and isotropic, then there should not be 
any non-vanishing gravitational field as the field is a vector field and se­
lects out a preferred direction. However Poisson's equation shows that a 
non-vanishing density of matter must have a non-vanishing gravitational 
field. These and some other difficulties merely highlight the logical fal­
lacy of using Newtonian ideas in cosmology. 

Going over to general relativity, we can reconcile homogeneity and 
isotropy with non-vanishing gravitational field basically because it is 
now a tensor field. But the symmetry assumptions severely restrict the 
possibilities. There remain only an unknown function of time, usually 
called the scale factor and a parameter determining the nature of cur­
vature of the space sections. But conclusions regarding the presence of 
a singularity where physical and geometrical entities blow up persist in 
these simple solutions. 

Recognised as a basic difficulty, it became important to investigate 
whether singularities are inescapable in general relativity. One might 
think of non-gravitational forces (recall that pressure gradient maintains 
the equilibrium in stars and centrifugal force maintains the planets in 
stationary orbits). Could they not stop the collapse? What seemed to be 
a final answer to these questions came in the seventies. These theorems 
relied on several conditions, which apparently seemed to be generally 
valid and then concluded that a singularity is inevitable. However there 
came a new definition of singularity - a finiteness of the life-history of 
free particles, massive or massless. It is not our purpose to question the 
legitimacy of this definition but we like to emphasise that this definition 
and the underlying conditions were often overlooked. Thus statements 
were frequently made that with general relativity, there must be a big 
bang type of singularity involving a blow up of physical and geometrical 
variables. The reasons for such over-simplified and incorrect statements 
were two fold. An exact statement would have been less sensational and 
so not quite salable to the public and secondly the proofs of the theorems 
were so complicated, that very few even amongst professional physicists 
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made a critical study to realise the importance of the definition and the 
underlying conditions. 

In this background singularity free solutions seemed somewhat puz­
zling but it was soon found out that they did not satisfy one of the 
underlying conditions of the singularity theorems. So the singularity 
problem somewhat changed its complexion - one had to recognize the 
existence of singularity free solution; the task was to spell out the pecu­
liarities (or limitations) of such solutions. 

We recall that non-gravitational forces may play an important role. 
Non-gravitational forces cause a departure from geodesicity technically 
termed as acceleration. The influence of non-gravitational forces is given 
by the divergence of the acceleration. As the acceleration is to be uni­
valued and bounded at all points including those at spatial infinity, it 
easily follows that the spatial average of the divergence of acceleration 
must vanish. Using this result, one obtains in case rotation is absent, 
the following inequality: 

- ~ < () > > ~ < (}2 > + < X > . as - 3 
(1) 

where () is the rate of volume expansion and X is the gravitational inter­
action term and < a > signifies the spatial average of a and %s is the 
differential coefficient with respect to the proper time. 

The gravitational term X involve the energy stress tensor and for 
ordinary matter one has X 2: O. However X may not be positive in 
exceptional case - thus in the inflationary scenario, the false vacuum 
has X < O. We shall restrict to the case X 2: 0 (the strong energy 
condition) and thus obtain 

_~ < (() » ~ < (}2 » ~ < () >2 . as - 3 - 3 (2) 

The above inequality shows that if < () >=/= 0, then < () > will blow 
up either in the past or the future at a finite proper time. This will 
mean a singularity. Consequently for the non-singular solution, the space 
average of both the acceleration term and the expansion must vanish. 
When this is the case < X > also vanishes. 

The above results hold good for both open and closed spaces. But for 
closed spaces, the vanishing of the spatial average of a positive definite 
quantity signifies the vanishing of the quantity itself. Thus for closed 
spaces, there is no non-trivial singularity free solution if rotation be 
absent. 

The situation is somewhat complicated when rotation is present. In 
some cases of rotating solutions, closed timelike curves (CTCs) appear 
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Singularity rree Cosmological Solution 

Non-rotating 

Spatially open 
(Non-trivial 
solutions exist but 
the spatial averages 
of physically 
relevant scalars 
including the energy 
density vanish) 

Spatially closed 
No nontrivial 
Solution exists. 

Having ere ?? 

Figure 26.1 

Rotating 

NoCTC 
(situation similar 
to the non.rotating 
case if spatially 
open). Situation 
for closed space 
not clear. 

such that there is a breakdown of causality. The precise condition for this 
to occur is not as yet clear - one can only say that in such cases the space 
time does not admit a foliation into space sections and consequently 
that the pattern of the discussions that we have made so far becomes 
untenable. In any case spacetimes having closed time like curves are 
usually considered physically unacceptable. 

However all rotating solutions do not contain closed time curves. In 
that case one can make a foliation into space sections and show that 
if the space sections are open, then the vorticity vanishes sufficiently 
rapidly at infinity and we recover the vanishing of spatial averages of 
all relevant physical scalars. However if the space sections be closed, no 
clear conclusion seems possible. Summing up we may present our results 
in Figure 26. 
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PROBING BEYOND THE COSMIC HORIZON 

Tarun Souradeep 
Department of Physics, Kansas State University, Manhattan, KS 66506, U.S.A. 

Abstract There are reasons to believe that the region of uniform curvature that 
we observe within our horizon is perhaps a tiny patch, much smaller 
than the length scales of inhomogeneity and global connectivity of an 
extremely complicated manifold. However, the recent supernova (SN) 
results suggest that the horizon scale could be comparable to or even 
much larger than curvature radius. Non trivial global structure too 
tends to be of the order of the local curvature scale. Probing (slightly) 
beyond the cosmic horizon can potentially reveal nontrivial global struc­
ture lurking around or just beyond the horizon scale. The cosmic mi­
crowave background (CMB) anisotropy is a sensitive probe of the uni­
verse on length scales up to and somewhats beyond the horizon scale 
and is perhaps poised to detect or put interesting limits on non trivial 
features the global structure. This point is exemplified by high CMB 
anisotropy signal of the Elliptical topology in a large fraction of the re­
vised parameter space of the closed FRW universe (spherical geometry) 
currently preferred by SN observations. 

. .. How can I 
even for an instant understand the beginning, the end, 

the meaning, the theory - of something outside of which 
I can never go? Only this I know -

that this thing is beautiful, great, terrifying, 
various, unknowable, my mind's ravisher ... 

- Rabindranath Tagore, (1901), 
translated from Bengali[l] 

1. INTRODUCTION 
I am delighted to contribute to the festschrift honouring an illustrious 

scientific career such as that of Jayant Narlikar and to pay my tribute 
to a great teacher. It is indeed an amazing and fortunate coincidence 
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that this festschrift comes at a time when my research interests have 
wandered back into the interests of my early graduate student days under 
Jayant's supervision. lowe my continued interest in cosmic topology to 
his whole hearted encouragement and tolerance towards rather crazy 
and even incorrect ideas at the start of my research career. 

One of the first scientific papers on cosmology that I read during that 
phase was Jayant's paper (with Seshadri) addressing the observability of 
Elliptical universes through the 'counter-images' of cosmologically dis­
tant light sources (say, quasars or very high redshift galaxies) [2]. In 
discussing the prospects of probing beyond the horizon, it seems ap­
propriate for the occasion to present results from an ongoing work of 
mine that addresses the same question using a different probe and, more 
importantly, in the light of some very exciting recent observations. 

The recent results from the high redshift supernova searches are point­
ing to the presence of a cosmological constant, A[3]. A non-zero A term 
1 allows for values of the 'horizon' size relative to the curvature scale, 
To/de of order unity in spherical models for acceptable values of OD (see 
figure 27.1). An important and exciting ramification of this result is 
that nontrivial features in the global spatial structure of universe may be 
within the grasp of observations. The argument has two parts. First, 
the length scale in the simplest forms of multiple connectivity (nontrivial 
topology) or breakdown of homogeneity is of the order of the curvature 
radius, de. Examples demonstrating this fact are plenty: the connecting 
stalk in a bubble universe (see figure 27.2) can be at most at a dis­
tance 7rde from any observer on the smooth spherical region; compact 
hyperbolic spaces have diameters 2 of the order of de; the diameter of an 
elliptical universe is 7rde/2, etc. . The second part is the fact that the 
observed (Cosmic Microwave Background) CMB anisotropy probes the 
spatial structure of the universe up to scales comparable to and some­
whats beyond the horizon. In this article, I illustrate this point with the 
example of Elliptical universe models. 

There are theoretical motivations to believe that the spatial section of 
the universe is indeed a complex manifold such as shown in figure 27.2. 
That is not tractable in full generality. A more tractable and well de­
fined problem would be to restrict attention to homogeneous (uniform) 
curvature manifolds with non trivial topology [4]. The CMB anisotropy 
and the constraints from data have been studied in many multiply con­
nected Euclidean and Hyperbolic universe [5]. Spherical geometry did 
not get attention possibly because in a dust filled universe, To/de « 1 
for reasonable values of its cosmological density. However, in the pres­
ence of a non zero A, that is no longer true and the observability of an 
Elliptical universe is an interesting question. 
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Figure 27.1 The contours of constant ratio between the horizon radius and curvature 
radius, To/de are shown on the OD - 0" plane for models with spherical spatial 
section. The models with hyperbolic geometry in the hatched lower left corner are not 
considered here. The dividing line represents Euclidean models (de ~ 00 =} To/de ~ 
0). In the absence of a cosmological constant (0" = 0) , counter-images lie within the 
horizon (i. e. , satisfies To/de > 'IT /2) when OD > 2, whereas, in the presence of a A 
term the condition can be satisfied for all OD (vertically hatched region). Recent high 
redshift supernovae measurements point to the presence of a cosmologically significant 
A term; the horizontally hatched region in the parameter space is a rough depiction 
of the range of models preferred by the Supernova results (part of the 68% likelihood 
region that lies within the range of the plot ; the peak lies outside further into the 
Spherical and high To/de region at around (OD,OA)::::; (0.75,14)). For most of the 
preferred spherical models, the possibility of Elliptical topology can be easily verified 
or refuted using the CMB anisotropy data 
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Figure 27.2 A cartoon of the possibly rich global structure of universe on ultra­
large scales is depicted. The 'X' marks denote two observers in regions with locally 
spherical and hyperbolic geometry, respectively. In cosmological settings such that 
To/de « 1, i.e., observable volume shown by the cross hatched discs around the 
observer is small), the observer will never detect the rich global structure and be 
satisfied with a standard "open" or 'closed' FRW model of the universe. However, 
in a cosmology such To/de is of order unity (the larger shaded discs around each 
'X'), certain signatures of global structure may be detectable. Note region within 
the observable volume need not encompass any significant curvature variation, or be 
multiply connected. The non-trivial global structure could reveal itself in the CMB 
anisotropy through the modification of the spectrum of fluctuations; e. g. the narrow 
throat in the spherical case (boundary of the hatched ellipse) and the 'toroidal' regions 
in the hyperbolic case. 
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2. CMB ANISOTROPY IN A ELLIPTICAL 
UNIVERSE 

The realization that the universe with the same local geometry has 
many different choices of global topology is as old as modern cosmology 
- De Sitter was quick to point out that Einstein's closed static universe 
model with spherical geometry 53 could equally well correspond to a 
multiply connected Elliptical universe model where the antipodal points 
of 53 are topologically identified [5]. 

In order to keep within the suggested size for the article, I restrict my 
text to points of direct relevance to the problem at hand. The reader 
is directed to [2] for a good description of Elliptical universe; excellent 
recent reviews [5] and some classic papers [6] on cosmic topology. 
Elliptical universe is unique in being the only multiply connected Friedmann­
Robertson- Walker (FRW) cosmology that preserves global isotropy and 
homogeneity. This in terms of global symmetries of the universe is the 
mildest possible deviation from a trivial global structure. As in a sim­
ply connected FRW universe, the CMB anisotropy here is statistically 
isotropic; the angular correlation function, C(O) is simply a function of 
the separation implying that the angular power spectrum Ce is a com­
plete description. 

Figure 27.3 shows sample plots of Ce and C(O) expected in Elliptical 
universe. The corresponding results for the spherical universe is also 
plotted for comparison. The signature of Elliptical universe is described 
in the caption. In this article I present a brief explanation of the basic 
effect. (A more detailed explanation will be given in a future publica­
tion [7].) 

In the standard picture, the CMB that we observe is a Planckian dis­
tribution of relic photons which decoupled (last scattered) from matter 
at a redshift ~ 1100. These photons have freely propagated over an affine 
distance Xis ~ TO from this two-sphere of last scattering (SLS) to the 
observer at its center. The CMB anisotropy arises from the variations 
in the local properties on the SLS such as the gravitational potential 
fluctuations -+ Surface Sachs-Wolfe effect (SSW), velocity of baryons 
-+ acoustic peaks, etc. . and from an integral over the evolving gravi­
tational fluctuations encountered by the photons along its path -+ the 
Integrated Sachs-Wolfe effect (ISW). 

The CMB anisotropy signature of an Elliptical universe is on large an­
gular scales where the Sachs-Wolfe effect dominates the CMB anisotropy. 
The angular correlation function of the CMB anisotropy then depends 
only on the spatial correlation functions on a equal-time spatial hy­
persurfaces (see [8]). The method of images implies that for Ellip-
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Figure 27.3 The figure presents a comparison of the CMB anisotropy between 
the multiply connected Elliptical universe and the corresponding simply connected 
('closed') FRW universe with spherical geometry. The density of pressure-less "Dust" 
component is fixed at the f!D = 0.3 and the contribution of cosmological constant , 
f!A , is selected to give the stepped values of Xi s ~ To/de marked on the panels. The 
left panels show the angular power spectra, Cl , for the Elliptical (jagged curve) and 
'closed' model (smooth) curve. The shaded band around the closed model is an esti­
mate of the cosmic variance. The Cl are normalised to unity at e = 250 to facilitate a 
good visual comparison; a COBE normalisation generally introduces an offset which 
is important to bear in mind. The Cl 'S for the Elliptical models show an marked 
difference in amplitude between the odd and even values of the harmonic , e, up to 
e ~ 100. For To/de:::; 1f/2, the even values of Cl are enhanced relative to the odd 
one while the trend tends to reverse for To/de> 1f/2. This alternating pattern of 
Cl 'S is reflected strongly in the angular correlation function , C(8). The right panels 
plot C(8)/C(0) for the same set of models measured with a COBE beam. The solid 
and dashed curves are for the Elliptical and 'closed' models, respectively; the shaded 
band estimates the error bar . The ratio C(O)/C(1f) seems to be a good measure 
to distinguish locally (geometrically) identical universes with and without Elliptical 
topology. 
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Figure 27.4 The figure supplements the explanation based on the method of images 
provided in the text for the eMB anisotropy signatures of an Elliptical universe. 
The eMB in an Elliptical universe can be interpreted as that on a simply connected 
spherical ('closed' FRW) universe but with a doublet of sources. The spatial sec­
tion of an Elliptical universe is represented as a spherical manifold with antipodal 
points identified. The polar angle X measures the radial light-travel distance from 
the observer , 'X' ; every circle of constant X denotes a physical two-sphere at that 
distance. The spheres of last scattering (SLS) is shown for a cosmological setting 
with TO = Xl , « 7r/2 and one for which TO ::::; Xl , ;S 7r/2. The points A and B with 
three coordinates (Xl, ' q) and (Xl . , -q) represent two eMB source points on the SLS 
along the lines of sight in two diametrically opposite directions q and -q in the sky. 
Each source point of the eMB anisotropy A and B has an image A' and B' at the 
antipode of the 3-sphere. 

tical spaces, the correlation function, ~e(XA, XB) between two points 
XA == (XA , qA) and XB == (XB ,qB) can be expressed as 

(1) 

in terms of the correlation function , e, on the spherical space where 
XB, == (71" - XB, - qB) is the antipode of XB· The only feature of e 
required for this explanation is that it falls off with increasing separation. 

Consider the correlation between the CMB temperature in two dia­
metrically opposite directions in the sky, ±q, and assume for simplicity 
that the surface Sachs-Wolfe effect dominates the CMB anisotropy. The 
CMB correlation is then just the correlation between the potential fluc­
tuation on two diametrically opposite points on the SLS. 
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Two cases of the above situation is illustrated in figure 27.4. For 
the case, when Xis « 1['/2, the correlation ee ~ e between A and B 
because the second image term in eq.(I) is much smaller (A is far from 
B'). Hence, CMB anisotropy in the Elliptical universe is essentially 
indistinguishable from that in the corresponding closed FRW universe. 
This is to be expected since the scale of global connectivity is 1['/2 in 
units of the curvature radius, de. 

In contrast, for the case when X's f"V 1['/2, the correlation between the 
point A and B given by eq.(I) is much higher than what one get in a 
'closed' universe because the second term is large owing to the proximity 
of B' to A. This explains the enhanced angular correlation between 
diametrically opposite directions in the sky in the Elliptical universe in 
the X's = 0.451[' and Xis = 0.51[' panels of fig. 27.3. Such a correlation 
function translates to a jagged Cl curve where the odd multipoles are 
suppressed relative to the even ones. As X's ~ 1['/2, the pattern gets 
stronger and persists up to progressively larger values of f-

In figure 27.3, the X's = 0.71[' panels show that the CMB anisotropy 
spectrum and correlation functions for the Elliptical universe also differs 
dramatically from its spherical counterpart for X's > 1['/2. However, the 
deviation is reversed: there is now a strong anticorrelation diametrically 
opposite directions in the sky, and consequently, the even harmonics in 
Cl are now suppressed relative to its odd neighbours. This cannot be 
understood solely in terms of the surface term of the Sachs-Wolfe effect 
which predicts identical CMB for models with equal 11['/2 - x'si. The 
effect arises because the photon path from the SLS to the observer now 
crosses the image of the SLS leading to a large negative interference term 
between the SSW and ISW effects. This generic correlation feature, seen 
in multiply connected universes where ISW is important, was pointed 
out in [8] for compact hyperbolic universes. There is a value of X's just 
beyond 1['/2 where the positive contribution of the pure SSW correlation 
to C(1[') is cancelled by the negative contribution from the interference 
term, e. g. see the X's = 0.551[' panel in fig. 27.3. 

An important signature of the Elliptical universe relative to its spheri­
cal counterpart is the anomalously large magnitude of C(1[')/C(O). Fig. 27.5 
presents a contour plot of C(1[')/C(O), measured with a Cosmic Back­
ground Explorer-Differential Microwave Radiometer (COBE-DMR) beam, 
in the OD - TO plane. Models in the bright (high positive values) and 
dark regions (high negative values) in the contour plot predict a po­
tentially detectable signal in the COBE-DMR data. This overlaps with 
a large portion of the preferred (10") region of the recent high redshift 
supernova results in the OD - OA plane (see fig. 27.1). Roughly, only a 
few levels in gray corresponding to C(1[')/C(O) between -0.1 to 0.4 will 
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Figure 27.5 The extreme levels in contour plot of the ratio C(Jr)jC(O) for Ellipti­
cal universes in the f2D - TO parameter space are the regions most readily probed 
by the CMB anisotropy data. The correlation is computed assuming the COBE­

DMR beamwidth. The contours are in steps of 0.1, ranging from C(Jr)jC(O) = -0.5 
to 0.8. Since the magnitude of ratio is '" 0.1 - 0.2 in simply connected models, a 
large region of the parameter space can be probed for Elliptical topology using the 
COBE-DMR data. 
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be inaccessible. This roughly corresponds to the models where either 
the horizon size is too small To/de < 0.451f, or which correspond to the 
thin band just above To/de = 1f/2 where two competing effects annul the 
signal. This provides only a rough guide to the results expected from 
the complete likelihood analysis using the full COBE-DMR data that is 
currently underway [7]. 

It should be noted that future CMB data covering large portions of 
the sky at higher resolution will be more sensitive to the signature of 
an Elliptical universe. Ideally, the contrast between C(1f)/C(0) in a 
Spherical and Elliptical universe can be enhanced by filtering out the 
first few multipoles (this ensures the C(1f)jC(0) in spherical model is 
very small) and filtering out power on £ ~ 100 (since difference between 
the elliptical and spherical model is negligible on small angular scales). 
Since COBE-DMR beam corresponds to a Gaussian cutoff around £ '" 18 
there is scope for improvement with future 'all-sky', higher resolution 
data. 

3. ADDRESSING GENERAL ULTRA-LARGE 
SCALE POSSIBILITIES 

Nontrivial topology is just one aspect of the possible nontrivial global 
spatial structure of the universe. In general one could envisage bizarre 
possibilities such as shown in fig. 27.2. How should one address the 
detect ability of a general breakdown of homogeneity and connectivity on 
scales just beyond the horizon? One such general idea is the Grischuk­
Zeldovich effect which uses the small values of the detected quadrupole 
in the CMB anisotropy to constrain the length scale on which universe 
could have density fluctuations of order unity [9]. 

Exploiting the general connections between the geometry of manifolds 
and the spectrum of eigenvalues of the Laplacian is perhaps an interest­
ing approach [10]. The constraints from CMB anisotropy data on the 
lowest eigenvalues of the Laplacian could have a lot to say. Let me 
try to motivate this approach with a toy example. Consider the bubble 
universe shown in fig. 27.2 connected to the rest of the universe by the 
throat. Consider the throat to have area A, the volume of the bubble re­
gion to be V and the curvature radius in negatively curved throat region 
is greater than d. Ignore the complication of the rest of the manifold 
and simply assume that it is compact and has much volume greater than 
V, and that there are no sections narrower than the throat nor regions 
more negatively curved. Given these conditions, the first eigenvalue of 
the Laplacian, ki, can be bounded using known mathematical results to 
be in the range h~/4 ::; ki ::; 4he/d + lOh~, where he = A/V is the 
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Cheeger's constant. Sharper bounds and less restrictive conditions may 
be possible, but even with what we have, one can, in principle, constrain 
the size of the throat. Very narrow throat would imply small values 
of he and can force the value of k? to be below what is expected in a 
simply connected spherical universe with curvature dc . If the horizon is 
sufficiently large, the presence or absence of a supercurvature mode will 
be discernible in the CMB anisotropy. 

4. CONCLUSIONS 
The recent high redshift supernova results which point to the exis­

tence of a non zero cosmological constant also have encouraging news 
for the detect ability of nontrivial features in the global spatial structure 
of our universe using the CMB anisotropy measurements. This general 
statement is borne out by this study of CMB anisotropy in the multiply 
connected Elliptical universe models. 
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Notes 

1. It implies, more generally, some exotic form of matter that accelerates the expansion 
of the universe. In this article, all my comments regarding the possible A term also applies 
to these other exotic possibilities. 

2. The diameter of a manifold is the maximum of distances between all possible pairs of 
points. 
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Chapter 28 

THE KERR-NUT METRIC REVISITED 
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Abstract Using Galilean time and retarded distance as coordinates, the combined 
Kerr-NUT metric is investigated in connection with Einstein field equa­
tions for a perfect fluid plus a pure radiation field. Two particular 
solutions of the field equations are discussed. One of them describes the 
field of a Kerr particle embedded in flat Robertson-Walker universe. 

1. INTRODUCTION 
We [1] have investigated the combined Kerr - NUT metric earlier for 

pure radiation fields. In addition to the Kerr [2] and NUT [3] solutions 
of Einstein equation, three other types of solutions were obtained. They 
were (i) the radiating Kerr solution (ii) the radiating NUT solution sat­
isfying Rik- = (}"~i~k, ~i~i = 0 and (iii) the associated Kerr solution 
satisfying Rik = 0 [4J. For the derivation of these solutions, we have 
considered the Kerr - NUT metric in the form. 

where 
9 = g(a), L = L(t, u, a), M = M(t, u, a) 

We introduce the tetrad 

du + gsinad{3'(P = Mda, 

M sinad{3, ()4 = dt - L()1 

So that the metric (1) becomes 

ds2 = 2()1()4 _ (())2)2 _ (()3)2 = g(ab)()a()b 
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(2) 

(3) 

(4) 
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Here and in what follows the bracketed indices denote tetrad compo­
nents with respect to the tetrad (3). The tetrad components R(ab) of 
the Ricci tensor for the metric (1) have been given by us in the reference 
[1]. They are reproduced in the appendix for ready reference. From 
the expressions listed in the appendix, a lengthy but straight forward 
calculation leads to 

M 2MCt r2M] 
[R(44)]Y - 4C-R(34) + --C R(24) - -R(24) = 0 

9 9 L 9 t 
(5) 

and 

M 2MCt [2M] 
[R(44)]U - 4C-R(24) + - C R(34) - -R(34) = ° 

9 9 9 t 
(6) 

where 
/ 

C = M2' 2/ = gOi. + gcota (7) 

d £Ii d . 1 d' . !!JL L 82 L an a su x enote partIa envatIves,e.g. gOi. = 801.' UU = 7fUX etc. 
The variable y is defined by a differential relation 

gda = dy (8) 

If R(24) = 0, R(34) = 0, then (5) and (6) imply that R(44) is a function 
of cosmic time t. Again by direct calculation we have verified that 

CtM 
[R(14) - LR(44)lu = C g{R(13) - LR(34)} 

+2C M {R(12) - LR(24)} - [M {R(13) - LR(34)}] (9) 
9 9 t 

and 

[R(14) - LR(44)]Y = - ~ ~ { R(12) - LR(24) } 

+2C~ { R(13) - LR(34) } + [~ {R(12) - LR(24)}] t' (10) 

If R(24) = R(34) = 0, R(12) = R(13) = 0, then (9) and (10) indicate that 
R(14) - LR(44) is also a function of t alone. The above discussion leads 
us to suspect that our Kerr-NUT metric (1) is more likely to describe 
cosmological situations. We shall now check that this is really the case. 
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2. THE FIELD EQUATIONS 
We take the usual perfect fluid distribution traversed by unidirectional 

radiation flow. The energy momentum tensor for such a distribution is 
given by 

(11) 

with 

(12) 

Here p, p and a are repsectively the fluid pressure, the matter density 
and the radiation density. The field equations are 

(13) 

where Tik is given by (11) and (12). These field equations can be ex­
pressed in tetrad basis as 

where v(a) and W(a) are the tetrad components of the flow vector Vi and 
the null vector Wi respectively. 

For the metric (1) we take V(a) and W(a) as 

1 
v(a) = (>',0,0, 2>.)' W(a) = (2)',0,0,0) (15) 

where>. is a function of coordinates to be determined from the field equa­
tions. In view of (15) the field equations (14) give rise to the following 
relations: 

R(23) = 0, R(24) = 0, R(34) = ° (16) 

R(12) = 0, R(13) = ° (17) 

87r'P = - R(14) (18) 

87rp = -[2R(22) + R(14)1 (19) 

2>.2 = R(22) + R(14) 

R(44) 
(20) 
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and 

R(1l)R(44) 
1671"0" = R(22) + R(14) - R R 

(22) + (14) 
(21) 

where R(ab) are given by the expressions listed in the appendix. 

3. SOLUTIONS OF THE FIELD EQUATIONS 
For the metric (1), R(23) is zero identically, the other two equaitons 

R(24) = 0 and R(34) = 0 of (16) give 

M2 = /cj; (X2 + y2), X = U - cp(t) , y = -y (22) 

where cp(t) is an undetermined function of time t. Now onwards an 
overhead dot indicates differentiation with respect to t. Instead of cp(t), 
it is more convenient to use the function H(t) defined by cj; = e-H(t). 

Now the equations (17) determines the metric function L as 

2B(t)X . -H 1 
L = A(t) - X2 + y2)' B + Ae = 2" (23) 

where A and B are functions of t. Thus the three functions H, A and 
B of time t are related by only one relation. Therefore, for explicit 
solutions, two of them can be chosen arbitrarily. It is interesting to note 
that the field equations (16) and (17) do not put any restriction on the 
metric potential g(O'). For Kerr metric we haveg = ksinO' where k is 
a constant related with the angular momentum of the body. So, for 
simplicity we take 

9 = ksinO', f = k cos a, y = -kcosO' 

Consequently we have 

(24) 

Using the above results, the remaining R(ab) for our metric can be 
determined. They are given by 
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.. 1. 2 .. .. 
H + 2H ,R(14) = LR(44) + A + AH, 

.. ·2 .. 1 -H . 
-A(H + H ) - AH + (X2 + y2) [2Ae - 2BH -1] 

X . -H· ···2 
+ (X2 + y2) [2Ae - H + 2B(H + H)], 

2 2·· 
L R(44) + (X2 + y2) [2B - BH] 

2X .. 
+ (X2 + y2) [AH - A] (26) 

where L is given by (23). 
Using (25) in the equations (18) - (21), we can find the physical pa­

rameters p,p, (1 and >.2. 
We shall discuss the explicit solutions for two particular cases: Case 

I : B = menH and Case II: A + Ail = 0 where m and n are constants. 
Case I: B = menH . For this case (3.5) give 

.. 1. 2 
H+ 2H, 

[A - X;~XY2] (if + ~il2) + A + Ail, 

_~eH (if + 2il2) + mne(n+l)H il { 2if + (n + 2)il2 } 

2mXenH [ "·2 2 ] 2menH il(n + 1) 
+ (X2 + y2) (1- n)H - H (n + n - 1) - (X2 + y2) , 

[ 2BX] 2.. 1. 2 2m(2n - 1)enH . 
A - X2 + y2 (H + 2H ) + (X2 + y2) H 

2mnX e(n+l)H.. . 2 

+ (X2 + y2) [H +nH] (27) 

We now pick up particular subcases. 
Case I (i) m = O. If m = 0, then we obtain 

A 1 H 2 1 H 2e ,B = 0,(1 = 0,2>' = 2e , 

81fp _eH (if + ~il2), 81fp = ~eH il2 (28) 

In this case we get the flat Robertson - Walker universe. The explicit 
form of the line element is 
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ds2 = 2(du + ksin2ad{:J)dt - eH (X2 + k2cos2a) 

(da2 + sin2ad{:J2) - eH (du + ksin2ad{:J)2 (29) 

where X = u - I e-Hdt. 
This is the flat Robertson-Walker metric in rotating coordinates. 
Case I (ii) n = O. In this sub case we have 

1 H 1 H 2mX 
B = m, A = 2"e ,L = 2"e - X2 + y2 (30) 

The physical parameters for this case are given by 

H·· 5· 2 2mX .. 1· 2 
87rp = -e (H +"4H ) + (X2 + y2) (H + 2"H ) (31) 

3 H . 2 mX .. . 2 4mB 
87rp ="4e H - (X2 + y2) (2H + 3H ) + (X2 + y2) (32) 

2m[XH2 - B] 
2>.2 = !eH +.. . 2 (33) 

2 (H + !H2)(X2 + y2) 

and 

·2 . 

[ 1 H·· 1· 2 mX H - 2mH] 
167rU 2"e (H + 2"H ) + (X2 + y2) 

.. 1·2 
m(H + 'iH). H H··· 2 

= (X2 + y2) [2H(1 - e ) + 2Xe (H + H )] 

4m2 ·2 ·3 2···· ·2 
+ (X2 + y2)2 [H - XH - X H(H + H )] (34) 

When m = 0, we recover the case I (i) of flat Robertson-Walker uni­
verse. If we remove the expansion of the universe (i.e. H = 0) , the above 
solution reduces to the well-known Kerr empty space - time. Therefore 
the solution of this sub case describes the field of a rotating mass particle 
embedded in the flat Robertson-Walker universe. One such solution is 
discussed earlier by Vaidya [5]. In Vaidya [5] solution, the fluid pressure 
is anisotropic. Also the solution was obtained by a coordinate transfor­
mation. In our solution the fluid pressure is isotropic but there is a pure 
radiation field in addition to perfect fluid. The explicit metric of our 
solution is 
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ds2 = 2(du + ksin2ad(3)dt - eH (X2 + k2os2a) (da2 + sin2ad(32) 

- [eH - X2 :~~os2a] (du + ksin2ad(3)2 (35) 

where X = u - J e-Hdt. 
We have also worked out the details of the sub cases n = 1/2 and 

n = -1. For the sake of brevity these details are not reported here. 
Case II A + Ai! = o. If we take e-H = F, then we get 

1 a 2 
A = aF + b B = -t - - F - bF + c , 2 2 (36) 

where a, b, c are arbitrary constants. One can work out the details for 
the above solution (36). We shall work them out in a particular case 

b = c = 0 F2 = t A = at1/ 2 B = ..:-(l_-_a)_t , , , 2 

The physical parameters for this case are given by 

and 

_ ~ [ 1/2 _ (a - l)tX] 
8np - 8t2 at X2 + y2 

3a 9(1 - a)X 3(1 - a) 
8np = 8t3/ 2 + 8t(X2 + y2) + X2 + y2 

2 \2 _ 3/2 (1 - a)t(X + 4t) 
/\ - at + (X2 + y2) 

6nO' [ 1/2 t(l - a)(X + 4t)}] 
t2 at + (X2 + y2) 

(37) 

(38) 

(39) 

(40) 

9(1-a) [ {1/2 2(1-a)(X+2t)} ] 
16t3(X2 + y2) (X + 2t) at + t X2 + y2 + t (41) 

where X = u - t1/ 2, Y = kcosa. When 0 < a ::; 1, the physical require­
ments p ~ 0, p ~ p and 0' ~ 0 are satisfied for all t > O. Here t = 0 is 
a singularity because as t -+ 0, p and p diverge. It is interesting to note 
that when a = 1, we recover a particlular case of the subcase case I (i) 
with p = p (stiff-fluid). 

In the above discussion we have assumed the form 9 = ksina for the 
metric potential g( 0:). But the field equations do not give any condition 
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on g(a). Therefore the other choices of g(a) are also possible. Thus the 
Kerr - NUT metric (1) can give rise to some other new exact solutions of 
Einstein equations corresponding to a mixture of perfect fluid and pure 
radiation. 
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Appendix 

R(23) = 0 

R(44) = (2/M)[Mtt - /2/M3] 

R(24) = (g/M)[(Mt/M)y - (f /M2)u] 

R(34) = -(g/M)[(Mt/M)u - (f /M2)y] 

R(14) = Ltt + (2/M)[Mtu + (LMt)t + (L/2/M3)] 

R(12) = LR(24) + (g/M)[(Lt + Mu/M)y + (2/ L/M2)u)] 

R(13) = LR(34) + (g(M)[-(Lt + Mu/M)u + (2/ L/M2)y)] 

R(22) = R(33) = (1/M2) [g2(Mu/M )u + l(My/M)y 

+ 2/(My/M) +4/2L/M2 -1- (M2)ut - {L(M2h}J 

R(u) = L2 R(44) + (1/M2)[l(Luu + Lyy) + 2/ Ly 

+ 2LuM Mt + 4LM Mut - 2LtM Mu + 2M Muu] (42) 



Chapter 29 

BLACK HOLES IN 
COSMOLOGICAL BACKGROUNDS! 

c. V. Vishveshwara 
Indian Institute of Astrophysics, 

Bangalore 560 034, India 

For some two decades now, Jayant Narlikar and I have been participating in 
various activities together - organizing conferences and workshops, planning and 
teaching courses at schools for doctoral students and so on. Since its very incep­
tion, I have had the good fortune of associating myself, in some capacity or the 
other, with IUCAA which has blossomed into a fine academic institution under 
Jayant's leadership. Over the years, I have enjoyed reading his books, articles 
and stories. It is with great pleasure that I dedicate this article to Jayant, a 
close friend and an esteemed colleague. 

1. MOTIVATION 
Black hole physics has been one of the most active areas of research 

in general relativity. A great deal of information has been gathered on 
the structure of black holes and physical phenomena that take place in 
their spacetimes. These spacetimes, such as those associated with the 
Schwarzschild and Kerr black holes, are time-independent and asymp­
totically flat. Time symmetry is equivalent to the requirement that the 
spacetime admit a global timelike Killing vector field. In a totally realis-

IThis article is based on ongoing work of K. Rajesh Nayak, B. S. Ramachandra and C. V. 
Vishveshwara at the Indian Institute of Astrophysics. 

309 

N. Dadhich and A. Kembhavi (eds'). The Universe, 309-318. 
© 2000 Kluwer Academic Publishers. 



310 THE UNIVERSE 

tic model, however, the black hole should be imbedded in or associated 
with a cosmological background. In such a scenario, neither of the above 
two conditions would be valid. Being part of an expanding universe, the 
black hole would cease to be time independent, i.e., the spacetime will 
no longer admit a timelike Killing vector field. Furthermore, spacetime 
would become cosmological and non-flat at large distances from the black 
hole. Very little has been done in exploring such black holes. It is not 
at all unlikely that the structure and properties of these black holes may 
differ significantly, or even drastically, from the ones that have been 
studied. Even in the case of the latter it is well known that the intro­
duction of rotation, i.e., the passage from the non-rotating, spherically 
symmetric Schwarzschild to the rotating Kerr black hole, brings about 
profound changes. For instance, in the case of the Schwarzschild black 
hole the timelike Killing vector becomes null (static limit) on the black 
hole which is itself a null surface (Killing event horizon)[l]. On the other 
hand, in the case of the Kerr black hole the stationary limit at which 
the timelike Killing vector becomes null does not coincide with the event 
horizon which is required to be a null surface. However, Kerr spacetime 
admits a globally hypersurface orthogonal, irrotational timelike vector 
field which does become null on the event horizon[2]. The separation of 
the stationary limit from the event horizon and the consequent existence 
of the ergosphere in between lead to several interesting phenomena such 
as the Penrose process and superradiance. Similarly, phenomena that 
occur in the Schwarz schild spacetime may not take place in the Kerr 
spacetime, for instance the generation of gravitational synchrotron radi­
ation. In the same manner, the introduction of the cosmic background 
may radically transform the physics of black holes. 

2. SOME BASIC ISSUES 
There are several broad issues one would like to address in considering 

cosmological black holes. Following are some of them. 

• Definition: One of the basic issues is that of defining the black 
hole. Tipler[3], for instance, defined a black hole for stably causal 
spacetimes as an object containing all small trapped surfaces. On 
the other hand, Joshi and Narlikar[4] offered a definition using the 
notion of trapping of light by the strong gravitational field of a 
collapsing object in a globally hyperbolic spacetime. It is essential 
to study such alternative definitions as well as any new viable 
ones and decide which of these would hopefully represent a true 
cosmological black hole. Furthermore, one would also like to know 
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whether such a definition would make the black hole a null surface 
as in the case of regular black holes. 

• Comparison: Once a proper definition of a cosmological black hole 
has been arrived at, the next task is to test whether the known 
properties of the conventional black holes are valid or not. There 
are several such properties some of them involving the existence of 
the global timelike Killing vector and some dependent on asymp­
totic flatness. It is possible that some of them would remain unal­
tered, while others may get modified or altogether violated. 

• Physical phenomena: Physical phenomena in the gravitational 
fields of black holes, often unusual and interesting, have been well 
studied. Once again it is worthwhile finding out whether these phe­
nomena continue to exist in connection with cosmic black holes. 
It would, of course, be important to seek new physical phenomena 
in this context. 

3. METHODOLOGY AND RESULTS 
Our approach to the problem of cosmological black holes is to con­

sider specific examples of black hole solutions in non-flat backgrounds. 
We shall proceed step by step relaxing successively the conditions of 
asymptotic flatness and time symmetry. The aim is to investigate dif­
ferent issues, some of which have been outlined in the previous section 
within this framework. 

For this purpose we consider the exact solutions found by Vaidya 
[5] that are supposed to incorporate black holes in cosmological back­
grounds. For details regarding the derivation of these solutions we refer 
the reader to the above paper. Suffices here to mention that the starting 
point is the particular background metric in which one wishes to incor­
porate a black hole, e.g. flat, Einstein, or Robertson-Walker background. 
Then transform to ellipsoidal polar coordinates and finally make certain 
adjustments that yield the required exact solutions. We list the line 
elements of these spacetimes below. 

Kerr black hole in flat background (KFB) 

2(du + a sin2 a d(3)dt - (r2 + a2 cos2 a)( da2 

[ 1 2mr ](d + a sin2 a d(3)2 + (r2 + a2 cos2a) u (1) 
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This is the usual Kerr spacetime in the new coordinates. Here u = t - r 
is the null coordinate; a and f3 are the polar angles usually denoted by 
o and ¢. 

Kerr black hole in Einstein universe (KEB) 

ds2 2(du + a sin2 a d(3)dt - (1 + 2mJ1.) (du + asin2 a d(3)2 

- M2 [(1 - a2 sin2 a/ R2)-lda2 + sin2 a d(32), (2) 

where 
M2 = (R2 - a2) sin2(i) + a2 cos2 a 
and J1. = (1})2 sin(i) cos(i). Note that for m = a we recover the 
Einstein universe and in the limit R tending to infinity we obtain the 
Kerr metric. 

Kerr black hole in Robertson-Walker background ( 
(KRWB) 

ds2 = e2F(t){2(du + a sin2 a d(3)dt - (1 + 2mJ1.e-2F(t») 

(du + a sin2 ad(3)2 - M2[(1 - a2 sin2 a/ R2)-lda2 + sin2 adf320~} 

where F is an arbitrary function of time t. Once again we recover the 
Robertson-Walker and Kerr metrics in the limits of m tending to zero 
and R tending to inifinity respectively. We shall now discuss specific 
examples. 

3.1 KERR BLACK HOLE IN EINSTEIN 
UNIVERSE 

We transform to coordinates analogous to those of Boyer and Lindquist 
to obtain 

ds2 = (1 - 2mJ1. )dt2 - 2maJ1. sin2 a dtdf3 

_[M2 sin2 a + a2(1 + 2mJ1.) sin4 a]df32 

_M2[m2(1 - 2mJ1.) + a2 sin2 at1dr2 

M2 d 2 
2 • 2 a (4) 

1- ~sm a 

In this form orthogonal transitivity is manifest with respect to the time­
like Killing vector ea = 8g and the axial Killing vector 'fJa = 83, As has 
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been shown by Greene, Schiicking and Vishveshwara[2] , there exists a 
globally hypersurface orthogonal vector field 

a _ (:a (~b'fJb) a X -." - - 'fJ. 'fJc'fJc 
(5) 

Furthermore, the surface on which Xa becomes null (XaXa = 0) is itself a 
null surface. In a stationary spacetime like KEB, this is indeed the event 
horizon and hence defines the black hole in the Einstein background. The 
condition XaXa = 0 is equivalent to 

or 
Rtan(..!:.) = m ± Vm2 - a2 

R 

(6) 

(7) 

This is the same surface identified by Vaidya as the black hole. On the 
other hand, the stationary limit (~a~a = 0) is given by the surface 

r 1 [ Rtan(R) = ( 2. ) m ± 
1- -Wsm2a 

(8) 
In figure 1 we show both the event horizon and the stationary limit 

enclosing the ergosphere for two different values of R, the parameter 
which incorporates the effect of the background. As R increases the 
situation tends to that of the usual Kerr in flat background. For lower 
values of R the ergosphere is larger and more distorted than in this limit. 

One of the remarkable properties of the Kerr spacetime is that it 
admits a second rank Killing tensor which leads to a quadratic constant 
of geodesic motion. Further, the Killing tensor can be expressed as the 
'square' of a Killing-Yano tensor. The existence of these two tensors is 
related to the property of the Kerr spacetime being Petrov type-D. We 
have found that all these features are retained in the KEB spacetime. 

3.2 SCHWARZSCHILD BLACK HOLE IN 
EINSTEIN UNIVESRE 

By setting the angular momentum parameter a = 0 in equation (4), 
we get the required line element 

( 2m) 2 ( 2m) -1 2 
1- RtanCk) dt - 1- Rtan(fl) dr 

- R2 sin2 ( ~) [da2 + sin2 ad,82] (9) 
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Figure 29.1 Plots of the stationary limit (solid line), event horizon (broken line) and 
the ergosphere in between for different values of R 



BLACK HOLES IN COSMOLOGICAL BACKGROUNDS 315 

As before m = 0 and R -+ 00 give respectively Einstein universe and 
the Schwarz schild metric. The parameter R measures the cosmological 
influence on the black hole given by 

r 
Rtan(R) = 2m (10) 

One can discuss in the present spacetime SEB all the physical phe­
nomena known in the conventional Schwarz schild field. For instance, 
consider the propagation and scattering of scalar waves. By virtue of 
time and spherical symmetries the wave function can be written as 

(11) 

Limits ofthe radial coordinates are given by Rtan(fl) = 2m to (fl) = ~. 

Further, setting the radial function 'R(r) == R~t)i) and defining dr* = 

I-t~~(i) we can derive the Schrodinger equation 

(12) 

The effective potential that controls the propagation of the scalar waves 
is given by 

V(r} = 

(13) 

The effective potential vanishes at the black hole surface and goes to 
a constant at the other limit fl = ~ resembling the Eckart potential[6]. 
Figure 2 displays the plots of the effective potential V (r) as function 
of tan(fl) for 1 = 2 and different values of R. The effective potential 
corresponding to the Schwarzschild metric has also been shown (dotted 
line) as function of r for comparison. For low values of R, i.e. high 
background influence, the difference is drastic, whereas for high values 
of R the two effective potentials approach each other. 

We have also studied the three classical tests of general relativity 
within the framework of this spacetime. They are modified by the back­
ground as codified by the parameter R. This is true of the geodesics - the 
range of circular orbits, the Keplerian frequency, the effective potential 
and the classification scheme. 
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Figure 29.2 Plot of the equivalent potential for a black hole in spherically symmetric 
Einstein background (solid line) as a function of Rtan( fl) compared with that for the 
Schwarzschild black hole (broken line) as a function of r for different values of R. 
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3.3 BLACK HOLE IN 
ROBERTSON-WALKER BACKGROUND 

The spacetime is now given by the line element of equation (3). Both 
conditions of asymptotic flatness and stationarity have been relaxed. In 
the Boyer-Lindquist form, the metric may be written as 

di = (e2F - 2mJ-t )dt2 - 2maJ-t sin2 adtd{3 

- [e2F M2(a2 sin2 a + M2 + 2mM2J-te-2F )-1] dr2 

_e'F M' (1 _ .' ~~' ") -1 00' 
e2F [M2 sin2 a + a2(1 + 2mJ-te-2F ) sin4 a] d{32 (14) 

Now, how do we locate the black hole? Vaidya[5] wrote down the equa­
tion for this surface entirely in analogy with the Kerr metric by replacing 
m by me-2F since e-2F is the additional factor appearing in the metric 
now. Then the equation for this surface reads 

R2 tan2 ( ~) - 2me-2F Rtan( ~) + a2 = 0 (15) 
R R 

However, if we require of the event horizon the basic property of one way 
membrane then it should be a null surface with the light cone tangential 
to it. It is easy to verify that the surface given by equation (15) does 
not satisfy this condition. Therefore it may fail to qualify as candidate 
for being a black hole! This is indeed a basic problem that has to be 
remedied. 

4. FUTURE STUDIES 
We have made just a beginning of our investigation on black holes in 

cosmological backgrounds. In the case of Kerr spacetime in the station­
ary background of Einstein universe, the black hole can be well defined as 
a null surface on which the globally hypersurface orthogonal vector field, 
i.e. the projection of the global timelike Killing vector field orthogonal to 
the axial Killing vector, becomes null. In this case the structures of the 
horizon and the stationary limits can be properly studied as a function 
of the cosmological background influence. On the other hand, in the case 
of Vaidya's black hole metric in the time dependent Robertson-Walker 
background one fails to obtain a similar null event horizon. Either the 
metric should be suitably modified to accommodate a comoving black 
hole of this type or the definition of the black hole has to be modified 
in such a way that its behavior resembles that of the conventional one. 
This is an open problem. 
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Another important consideration is that of the energy-momentum ten­
sor Tab. Tensor Tab is obtained from Rab for a given metric. We are 
investigating the behaviour of Tab in the spacetimes we have considered. 
For perfect fluid source, there seems to be a generic problem of running 
into negative energy density or negative pressure in certain regions of 
spacetime. Nevertheless, the weak energy condition is satisfied by the 
prefect fluid acting as the source for the spacetime thereby indicating 
that the situation is not pathological. 

As we have seen in the forgoing discussions, several significant ques­
tions arise in considering black holes in cosmological backgrounds and 
more are bound to appear. We expect to be able to answer the ques­
tions that have already arisen and find out more about black holes in 
cosmological backgrounds. 
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Chapter 30 

ELEMENTARY PARTICLE INTERACTIONS 
AND NONCOMMUTATIVE GEOMETRY 

Kameshwar C. Wali 
Physics Department, Symcuse University 

Symcuse, NY 13066, USA 

It is indeed a great privilege to contribute to this volume celebmting the sixtieth 
birthday of Jayant Narlikar and to wish him many more productive years of 
good health and creativity. I have had the good fortune of knowing him over 
four decades, and have always followed his career with great pride and affection, 
and admimtion for his tremendous accomplishments both in science, arts and 
public service. IUCAA is a splendid example of his dedicated effort to provide 
aspiring astromers and astrophysicists in India a place for education, research 
and tmining. 

Abstract Brief review of the general framework of noncommutative geometry pro­
posed by Alain Connes and its application to the Standard Model and 
a discretized version of Kaluza-Klein theory is presented. 

1. INTRODUCTION 
It has become increasingly evident that our present concepts of space 

and time are inadequate for a unified description of all elementary par­
ticle interactions, particularly if one wants to include gravity. In spite of 
great deal of effort over the decades, we find the twin pillars of twentieth 
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century physics, namely, General Relativity (governing the dynamics of 
classical space-time coupled to the dynamics of matter moving in it) 
and Quantum Field Theory (with rules of quantization to be applied 
in principle to all degrees of freedom including gravity) are found to be 
incompatible. Attempts at quantizing general relativity over the past 
several decades have yet to meet with success. String theory, as the can­
didate for a consistent quantum theory of gravity along with a unified 
description of all elementary interactions, has so far remained only a 
promise. In spite of its recent new discovery through duality of an un­
derlying unity among a diversity of string theories, it is as yet far from 
being a convincing physical theory with predictable and experimentally 
verifiable consequences. We need new ideas. 

Both general relativity and quantum field theories are constructed 
on a continuum picture of space-time. A pseudo-Riemannian manifold 
endowed with a metric structure based on a continuum picture underlies 
general relativity. Likewise, quantum fields and their interactions are 
local operators that are continuous functions of commuting space-time 
coordinates. 

There are several reasons to believe why such a continuum picture of 
space-time is inadequate at all distance scales. The problem of singu­
larities in the curvature tensor in general relativity and the ultra-violet 
divergences in quantum field theories are too well known to merit any 
discussion. To these we might add two other problems that have received 
considerable attention in recent years. One is the problem of black hole 
entropy and the enumeration of the black hole degrees of freedom and 
the other the problem of localization consistent with quantum mechan­
ics. To elaborate briefly on the latter, we note that when we perform 
accurate measurements of the space-time localization of an event, up to 
uncertainties D.Xo ,D.X1 , D.X2 , D.X3 , we must transfer energy of the or­
der E ~ 1/ D.X. This energy creates a gravitational field and assuming 
spherical symmetry for simplicity, the associated Schwarzschild radius 
R ~ E ~ 1/ D.X. Consequently signals originating inside R cannot reach 
an outside observer. From such arguments, one may infer the existence 
of a set of fundamental space-time uncertainty relations(STURS)[l]' 

Such fundamental STURS are incompatible with classical commuting 
coordinates of a Lorentzian or a Riemannian manifold. They seem to 
imply[2] that the quantum theories of space, time and matter are inter­
woven; they are not, a priori, a property of space-time, but a property 
of space-time in which quantum mechanical matter triggers events. Said 
in different words[3], "Curvature oscillations may tend to become un-
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controllable at short distances. Is there a way to 'smoothen out' short 
scale curvatures? In some sense nature must become regular there. It 
is suggestive to speculate that space-time might cease to be continuous 
but become 'quantized' into some sort of space-time lattice." 

~From such considerations, it appears that the ultimate goal of a fun­
damental theory should be a generalized quantum theory, a theory that 
does not, at the outset, begin with a continuum space-time as an input, 
but gives rise to the classical continuum of space-time in an appropriate 
limiting regime just as classical behavior of quantum systems emerges in 
an appropriate limit. However, at present, we have no real candidate for 
such a generalized quantum theory of matter, space and time, although 
there are promising guideposts and indications of progress from several 
different points of view. Superstring theory claims to have a quantized 
theory of all interactions including gravity. A version of pure quantum 
gravity suggests 'loops,' whereas causal sets of discrete points are the 
basis of an alternate approach. 

In recent years, Alain Connes has proposed an approach based on 
noncommutative geometry that is regarded by some, if not many, as 
providing a new and suitable framework for a geometrical description 
of all elementary particle interactions [4]. It is, according to Frohlich 
[2], a mathematical tool that looks promising for constructing a no­
tion of differential geometry compatible with quantum theory. Connes' 
ideas hinge upon the well known theorem due to Gelfand and Naimark, 
which states that the classical manifold based on a continuum can be 
equivalently described by the abelian or commutative and associative 
algebra of smooth functions defined on that manifold. Connes' starting 
point is an extension and a generalization of the idea expressed in the 
above mentioned theorem to noncommutative spaces, by adopting asso­
ciative noncommuting algebras as describing such spaces. Connes has 
reconstucted the standard objects of differential geometry in a purely 
algebraic way, providing the framework of a noncommutative geometry 
that permits one to deal with more general spaces with both continuous 
and discrete degrees of freedom. 

In the next section, I discuss briefly the general framework of Connes, 
followed by a its application to the Standard Model. In Section 3, I 
present a qualitative discussion of a discretized version of Kaluza-Klein 
theory. The final section is devoted to some concluding remarks. 
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2. GENERAL FRAMEWORK; STANDARD 
MODEL 

Connes' formalism consists of three basic elements, called the SPEC­
TRAL TRIPLE, 

(A, 1l, V), 

where A is an involutive, associative, commutative or noncommutative 
algebra, 1l is a Hilbert space which acts as the carrier space for a repre­
sentation of the algebra A, and V is a self-adjoint operator acting on A 
with the property that 

[V, A] is bounded Va E A. 

The algebra A generalizes the commutative algebra of smooth func­
tions. The operator V allows one to build a differential structure asso­
ciated with any associative algebra. To construct a Lagrangian and an 
action based on such a spectral triplet, one first constructs the so called 
universal differential algebra O*(A) based on a E A and a symbol 8 that 
obeys 

8(1) = 0, 8(ab) = (8a)b + a(8b)Va, bE A. 

and a representation no* (A) of this universal algebra on the Hilbert 
space 1l consisting of bounded operators, 

where £(1l) is the space of bounded operators on 1l and p is a represen­
tation of of A on 1l. 

Using such a general framework, one defines a hermitian connection 
one-form V and the curvature V2 • A suitably chosen scalar product 
then helps to construct a Lagrangian and action. 

In Connes-Lott [5] formulation of the Standard Model, the spectral 
triple (A, 1l, V) consists of 

A = COO(M) ® AF; AF = C E9 H E9 Ma(C) 
1l L2(M, S) ® HF 

V -yJl.®I+'"l®Vr , (1) 
(2) 

where COO(M) is the algebra of smooth functions on a real manifold and 
AF is a finite matrix consisting of a direct sum of complex C, quaternion 



ELEMENTARY PARTICLE INTERACTIONS 323 

Hand 3*3 complex matrices M3(C). HF is the Hilbert space that is 
spanned by particles and antiparticles of the standard model. Finally 
D F contains block matrices of the form 

where M and M are matrices signifying coupling constants that even­
tually result in mass parameters of fermions. 

Using this as input, Connes and Lott[5], and subsequently many oth­
ers [6] have derived the Standard Model with some amazing successes 
that go beyond the conventional model. In spite of the spectacular agree­
ment of the Standard Model predictions with experiments, the model has 
many shortcomings, notably the spontaneous symmetry breaking mech­
anism through the introduction of the Higgs scalar meson. As is well 
known, unlike the gauge sector, the form, the content and the couplings 
of the scalar field to fermions are not prescribed by gauge principles 
alone. Additional seemingly ad hoc assumptions are needed in model 
building. In contrast, in the approach based on noncommutative ge­
ometry, one finds a geometric origin for the scalar just like the gauge 
mesons. They appear on equal footing and a spontaneous symmetry 
breaking mechanism appears naturally. One can predict, in principle, 
some of the parameters that are arbitrary in the Standard Model, such 
as the Weinberg angle, and the quark and lepton masses However, such 
predictions in reality are based on certain approximations and are sub­
ject to uncertainties. 

3. INCLUSION OF GRAVITATIONAL 
INTERACTIONS 

The noncommutative geometrical approach also lends itself naturally 
to include gravity along with other interactions. In the minimal Stan­
dard Model of electro/weak interactions, parity violation in weak inter­
actions is incorporate by attributing different symmetries to left-handed 
and right-handed fermions. One may imagine that the right-handed and 
left-handed components live on two different copies of space-time. this 
leads to the concept of an extended space-time that includes two discrete 
points. Such a space-time may be looked upon as a discretized version of 
Kaluza-Klein theory in which the continuous fifth dimension is replaced 
by two points. Riemannian geometry on such an extended space-time 
will inevitably lead to a different picture of gravity. In the background of 
such a geometry, elementary particle interactions are modified. Nguyen 
Ai Viet and myself have studied such a geometry [7] and find it intriguing 
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in that it gives rise to several rich and complex models. Standard Model 
in the background of such a geometry is currently under investigation 
[8]. 

Without going into details, let me summarize some basic results; 
- The extended space-time permits one to introduce a generalized 

vielbein consisting of a pair of tensor, a pair of vector, and a pair of 
scalar fields. 

- In the general case, one component of each pair has zero mass while 
its partner is massive. 

-Metric compatible, torsion free connection one-forms lead to con­
straints on the vielbeins in the form of dynamical dilaton fields that 
imply new and intersting consequences on gravity. 

- In the conventional Riemannian geometry non-vanishing torsion does 
not lead to unique determination of the connection one-form coefficients 
in terms of the metric components and their derivatives. In contrast, 
it is possible in the extended geometry to determine both nonvanishing 
torsion components and one-form coefficients in terms of the assumed 
vielbeins. 

- With the unique determination of the connection coefficients, the 
Lagrangian and the action one obtains appears as a sum of two terms, 
each consisting of all the six independent fields and each representing a 
generally covariant action. 

- These resulting actions present rich and complex structures that 
suggest various physical models for further study and investigation. In 
such models, in contrast with the conventional Kaluza-Klein theories, 
mass spectrum is finite, needing no truncation of the mass spectrum. 

4. CONCLUDING REMARKS 
Connes' recent development of noncommutative geometry has pro­

vided new ideas and new tools for a unified description of elementary 
particle interactions. In the context of the Standard Model, it is fair to 
say that the model in the framework of Connes' noncommutative geome­
try has reached a heightened status of a fundamental theory .. With spon­
taneous symmetry breaking arising naturally, with fundamental Higgs 
and gauge fields appearing on the same footing and with the prospect of 
predicting the values of some parameters arbitrary in the original model, 
one has the hope that the approach based on noncommutative geometry 
will provide a deeper understanding of the successes of the Standard 
Model. 

A continuum space extended by the inclusion of discrete points pro­
vides an example of a noncommutative space. Geometry based on 
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Connes' ideas leads to new version of gravity that includes interactions 
of other subsidiary vector and scalar fields with complex, but well speci­
fied linear and nonlinear interactions. Will such modified action lead to 
a renormalizable theory of gravitation? This is an intriguing question 
that certainly warrants study. 
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FROM INTERSTELLAR GRAINS TO 
PANSPERMIA 
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Abstract Data relating to interstellar dust could be interpreted in terms of a 
widespread distribution of bacterial material in the galaxy. The present 
contribution reviews the main arguments supporting a modern version 
of panspermia. 

1. INTRODUCTION 

Lyman Spitzer Jr. prophetically referred to interstellar dust parti­
cles as "grains" many years ago. It is scarcely conceivable that Sptizer 
would consciously have foreseen modern debate concerning the possible 
biological nature of grains, nor the recent trends that will be discussed 
in this contribution. Fred Hoyle and the present writer first approached 
the subject of panspermia not from a biological point of view but from 
an attempt to understand the nature of interstellar dust (Hoyle and 
Wickramasinghe [12]). The first relevant point to consider is that these 
particles of interstellar dust or grains appear to be much the same in all 
directions, as we look outwards from the Earth. They are of a size that 
would be typical for bacteria, a micro metre or less. 

Another fact relevant to panspermia is that the total mass of interstel­
lar dust in the galaxy is as large as it possibly can be if all the available 
carbon, nitrogen and oxygen in interstellar space is condensed as grains. 
The amount is about three times too large for the grains to be mainly 
made up of the next commonest elements, magnesium and silicon, al­
though magnesium and silicon could of course be a component of the 
particles, as would hydrogen, and also many less common elements in 
comparatively trace quantities. 
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If one now asks the question: what precisely are the interstellar dust 
grains made of, a number of inorganic molecules composed of H,C,N,O 
present themselves as possible candidates. These would include water­
ice, carbon dioxide, methane, ammonia, all such materials being easily 
condensible into solids at temperatures typically of about 20-50 degrees 
Kelvin, which is the usual temperature of the grains. 

During the decade starting from the early 1960's the properties of 
a wide range of inorganic grain models were studied, and their elec­
tromagnetic properties checked against the number of new observations 
that were beginning to emerge. Such models stubbornly refused to fit the 
available data, particularly relating to interstellar extinction, to anything 
like the precision that was required. The correspondences between pre­
dictions for assemblies of inorganic particles and the observations could 
be lifted to a certain moderate level of precision but never beyond that, 
no matter how hard one tried. 

It was certainly a milestone in progress towards panspermia when the 
present writer realised that there is another very different class of materi­
als that can be made from the same four commonest elements - C,N,O,H, 
namely organic materials, possibly of a polymeric type (Wickramasinghe 
[26]). Of course there are a vast number of possible organic composi­
tions, making for a great number of further investigations that could 
be made. By the mid-1970's, the astronomical observations were span­
ning a large range in wavelength, from 30 Jl m in the infrared, through 
the near infrared, into the visible spectrum, and further into the ul­
traviolet. So a satisfactory theory of the nature of grains had by now 
to satisfy a very large number of observational constraints. Figure 31.1 
shows the so-called extinction curve of starlight, the way that starlight is 
dimmed as it traverses clouds of interstellar dust. A puzzle here relates 
to how the visual part of this curve (over the 1 - 3 J.l m -1 range) could 
be reproduced almost exactly in all directions of the sky. For inorganic 
condensation models one requires a rather precise definition of particle 
sizes, and that is difficult to justify. The puzzle remained unresolved 
until we first began to consider organic particles, particularly organic 
particles that were hollow. Particles that have about 70 percent hollow 
space gave very good results. This is what bacteria become when they 
are fully dried out. The solid curve in Figure 31.1 (heavy line) com­
bines the effects of hollow bacterial particles with clusters of aromatic 
molecules that result naturally from the inevitable degradation of bac­
teria, along with a small admixture of silica-iron particles of submicron 
sizes that could explain the rise in the extinction into the far ultraviolet. 

The excellent fit shown in Figure 31.1 follows from the assumption of 
the grains being mostly comprised of bacterial material. The invariance 



am 

FROM INTERSTELLAR GRAINS TO PANSPERMIA 329 

DACTEIUAjSILICA/IRON 
9 - Mass ratio 2.37: 1 : 6·094 

115 AROMATIC BIOMOLECULES 

7 -

3 

1-

O~-L __ ~~~~~ __ ~~ 
o 5 6 

t/l. qrl) 

8 10 

Figure 31.1 The filled circles (points) are excess interstellar absorption values over 
and above a scattering curve for hollow bacteria. Crosses are the mean interstellar 
extinction data. The heavy curve is calculated for hollow bacteria with an admix­
ture of bioaromatic molecules and trace quantities of silica and iron in the form of 
submicron sized grains. The thin line is the absorption profile for an ensemble of 
bioaromatic molecules (full references and credits in Hoyle and Wickramasinghe [12] 
and Wickramasinghe [27]). 

of the visual extinction curve follows from this assumption, with no 
additional ad hoc hypotheses being required. 

2. THE 10 MICRON FEATURE IN 
INTERSTELLAR GRAINS AND 
SILICATES 

Woolf and Ney [28] made the first detections of infrared emission from 
interstellar grains in the 8 to 13 J-l m waveband. The grains responsible 
for the observed infrared emissions were quickly characterised as "sil­
icates", without it being considered necessary to specify what type of 
silicate was involved. 

Improvements in infrared techniques over subsequent years soon per­
mitted an extended range of astronomical objects to be studied in detail 
- late-type stars, planetary nebulae, compact HII regions, the galactic 
centre, comets and the Trapezium nebula. Hot stars in this latter nebula 
were heating interstellar grains in the vicinity to temperatures of about 
175K, thereby causing detectable infrared emission over the 8 to 12 J-l m 
waveband. 

What was significant in the case of the Trapezium dust was that 
the emission suffered little self-absorption in the nebula itself. Under 
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Figure 31.2 Top panel: The points are the flux measurements from the Trapezium 
nebula over the 8 to 13 J.t m waveband (full references in Hoyle and Wickramasinghe 
[12]). Bottom panel: Trapezium nebula fluxes over the waveband 8 to 35mum, com­
pared with predictions for amorphous silicates heated to two temperatures. 
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such conditions of optically thin emission the flux of radiation at any 
particular wavelength >. is given by 

F>.. = constant x T{>')B>..{T), (1) 

where B>.. (T) is the Planck function at the temperature T of the particles 
and T{>') is the opacity of grain material. This function T{>') can be 
measured in the laboratory for any particular material. And in the 
astronomical case it can be obtained observationally to within a constant 
factor from Equation 1, once the temperature T is specified. So with the 
left hand side of Equation 1 determined by astronomical observations 
at various values of >., the observed opacity function T{>') is obtained 
by an easy calculation. Thus if we think the particles in the Trapezium 
nebula consist of a certain type of silicate we can readily verify our belief, 
or otherwise, by comparing the resulting observed T{>') with the T{>') 
obtained for the material in question in the laboratory. The two ways 
of finding T{>') must agree to within a constant factor, which necessarily 
must be expected because the amount of the sample in the laboratory 
is unlikely to be the same as in the Trapezium. 

When such a comparison was made for all silicates that anybody cared 
to tryout in the laboratory the results were appallingly bad as can be 
seen in Figure 31.2. The curves are calculated by using Equation 1 with 
a temperature of T = 175 K and the opacity values of silicates T (>.) 
measured in the laboratory. The points are the actual flux observa­
tions for the Trapezium nebula. The situation only got worse when the 
observations of the Trapezium were extended further into the infrared 
(See references in [12]. The bottom panel of Figure 31.2 shows what 
happened for the best amorphous silicates that actually exist. 

A remarkable resolution of the difficulty eventually came to be of­
fered. Using the observed points of Figure 31.1 on the left hand side 
of Equation 1, the astronomically required function T(>') was worked 
out, which can be called TObs(>'). Then instead of looking for an actual 
substance with Tlab{>') = Tobs{>'), such a substance was invented by hy­
pothesis. And the proposed so called "astronomical silicate" solution 
to the problem was to consider the hypothetical substance actually to 
exist. 

The scientific validity of this procedure leaves much to be desired. Of 
course it could not be asserted that real silicates, amorphous or hydrated, 
did not exist anywhere in the Universe. They certainly exist on Earth 
and elsewhere in the solar system as well. All we could say from the 
Trapezium nebula data is that anything remotely resembling a silicate 
cannot contribute any significant fraction to the mass of the dust. 
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3. THE 10 AND 20 MICRON FEATURES IN 
BIOLOGICAL GRAINS 

Absorption and emission features at 10 and 20 J.l m are by no means a 
prerogative of mineral grains. Many complex organic materials, includ­
ing biopolymers, exhibit broad features arising from C-O, C=C, C-N, 
C-O-C bonds centred on wavelengths close to 10 and 20 J.l m. As our 
thoughts began to turn in the direction of cosmic biology it occurred 
to us that there is a possible contribution from biogenically generated 
silica, as for instance are found in a class of algae known as diatoms, 
a class that appears to have made a sudden appearance on the Earth 
some 65 million years ago. 

Shirwan AI-Mufti, who was making laboratory measurements for all 
manner of possible candidate substances, managed after some searching 
around, to obtain a mixed culture of diatoms taken from waters of the 
River Taff [14, 2]. Here both 10 and 20 J.l m absorptions arise from a 
combination of biologically generated carbonaceous and siliceous mate­
rial. 

Going back to Equation 1 and using this measured Tlab(A) for T(A) 
on the right hand side of Equation 1, together with the same tempera­
ture of 175 K as before, permits the expected emission of diatoms to be 
worked out at each wavelength A. Thus the curve in the upper panel of 
Figure 31.3 shows the expected curve for diatoms. When this curve is 
compared with the observed points the agreement is seen to be most im­
pressive indeed. And when the comparison was subsequently extended 
further into the infrared up to 40 J.l m, the agreement still remained good, 
as can be seen in the lower panel of Figure 31.3. 

Recent data As with the introduction of every new observing tech­
nique the use ofISO (Infrared Space Observatory) launched by ESA on 
17 November 1995 provided new opportunities for testing astronomical 
theory. Particulates in localised regions, for example, planet-forming 
regions around young stars, would be expected to contain a fair propor­
tion of silicates,and this expectation was indeed borne out in some recent 
investigations. Spectral features near 19, 24, 28, and 34 J.l m that have 
been attributed to hydrated silicates have been observed in several such 
sources including HD100546 and also Comet Hale-Bopp ([4, 23]). The 
uniqueness of these assignments is still in some doubt, and even on the 
basis of a silicate identification in the case of Hale-Bopp such material 
appears to make up only some few percent of the mass of the dust, the 
rest being Trapezium-type grains [13]. In all cases where grains in the 
general interstellar medium or in extended 
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Figure 31.3 Points are same as for Figure 31.2. The curves show calculated emission 
behaviour of diatoms at 175 K. 
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Figure 31.4 Spectrum of VI Cyg OB2 No.12, combining ground based observations 
and satellite data points (adapted from Whittet and Tielens [25]). The dashed line is 
the Rayleigh-Jeans tail of stellar emission. The segment of solid curve is calculated 
assuming extinction by diatom-typt material. regions of space have been studied 
the situation is exactly as we have discussed earlier - no real silicate can explain the 
observations over the 8-141-£ m waveband. 

An object that has recently been re-examined and one that is in­
teresting in the present context is the highly reddened B star VI Cyg 
No.12. This star has a normal interstellar extinction curve with a to­
tal visual extinction of some 10 mag. So it could be inferred that its 
reddening is due to dust over an extended path length in the diffuse in­
terstellar medium. W.A. Stein and F.C. Gillett [21J first examined this 
star to search for a 3.1 J-t m water ice band that was expected for the 
then popular ice grain theory. The results for the ice grain theory were 
disappointingly negative as it eventually turned out. Now the same star 
has been studied at high spectral resolution using both ground-based 
telescopes and satellite observations ([5, 3, 25]). This data is reproduced 
in Figure 31.4. The filled and open circles are ground-based data and 
the crosses represent SWS ISO observations. We note first that a hint 
of a feature occurs at 3.4 J-t m amounting when measured accurately to 
an extinction of 0.12 mag. This data is also seen to be consistent 
with the earlier data which implies that there is little or no evidence for 
water-ice absorption at 3.07 J-t m in the general interstellar medium. 

The most striking feature of the spectrum of VI Cyg No.12 is the 
broad smooth absorption feature over the 8-12 J-t m waveband, which 
must be due to grains in the general interstellar medium. The dip below 
a continuum level near 9.5 J-t m corresponds to an extinction of about 
O.8mag. 
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The dashed curve displayed in Figure 31.4 corresponds to a Rayleigh­
Jeans spectrum for the longwave emission from the star. The expected 
reduction of flux at the Earth due to absorption by interstellar dust is 
now given by the simple formula 

I~FAI = constant T(oX), (2) 

where T(oX), as before, refers to the opacity of a candidate grain mate­
rial as measured in the laboratory. With an appropriate choice of the 
constant scaling factor the resulting diminished flux, using T(oX) for our 
mixed diatom culture model, is plotted as the solid curve in Figure 31.4. 

4. THE 3.4 MICRON ABSORPTION BAND 
The earliest evidence of organic matter in a condensed form occurring 

in interstellar space had been greeted with strong scepticism from the 
mid-1970's through much of the 1980's. The first relevant data pointing 
in this direction turned up in spectra of protostellar sources such as 
the BN object as well as in dense clouds like the Taurus dust clouds 
[24, 17J. The evidence was in the form of a long-wave wing in the 3.1 J.-l m 
absorption band due to water-ice. The circumstance that the 2.9-3.3 J.-l m 
ice band with a mass absorption coefficient at its band centre of some 
30,000 cm2 g-1 could mask a very much weaker CH-stretching absorption 
band invariably left only a residual hint of a 3.4 J.-l m feature to be seen. 
This was true wherever water-ice was able to condense on grains even 
in relatively small quantities. Hoyle and Wickramasinghe were the first 
to recognise this hint of 3.4 J.-l m absorption in many sources such as the 
BN. It was pointed out that even in these instances such as this the mass 
of organics exceeded the mass of ice by more than a factor of ten (Hoyle 
and Wickramasinghe [8, 9, 10, 11]). 

The first direct evidence of complex organic molecules associated with 
interstellar dust came with observations of the galactic centre source GC­
IRS7 [1]. Their observations, using instruments on the Anglo Australian 
Telescope, with possibly optimal observing conditions, showed unequiv­
ocal evidence of a broad absorption band centred at about 3.4/-L m that 
could be attributed mostly to CH stretching within a mixture of aliphatic 
and aromatic functional groups. The absorption was to be clearly de­
tected against the background of thermal emission in a source radiating 
at a temperature of 1100K. Quantitatively the absorption amounted to 
0.3 mag at the centre of the 3.4/-L m band. Figure 31.5 shows the spec­
tra several similar sources distributed over an extended 3 cubic parsec 
volume around IRS7 which were subsequently observed by Okuda et al. 
[18, 19J. The circumstance that all these sources display approximately 
the same central optical depth (0.3 mag) at the 3.4/-L m band centre, rela-
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tive to the underlying black-body continuum, makes it certain that most 
of the absorption arises from the diffuse distributed interstellar medium 
rather than from local circumstellar regions. It is therefore safe to infer 
that this C-H stretching absorption is characteristic of interstellar grains 
over an extended path length to the galactic centre of some lOkpc or so. 
It is also clear from Figure 31.5 and from the original observations of 
Allen and Wickramasinghe [1] that there is no ice band at 3.1 f-L m to 
any significant extent, at any rate none that exceeds the optical depth 
of the 3.4 f-L m band. This result is consistent with the ISO observations 
of VI Cyg No. 12 to which we have already referred. The points in 
the upper panel of Figure 31.6 shows the detailed absorption profile in 
GC-IRS7, combining the data of Allen and Wickramasinghe [1] with 
that of Okuda et al. [18]. The absorption occurs over wavelength ranges 
characteristic of OH stretching, CH aromatic and aliphatic stretching 
and NH stretching. It is immediately clear that a complex mixture of 
organic materials is involved, but the precise combination of functional 
groups within plausible models is difficult, perhaps impossible to spec­
ify. However, for any given organic substance, or mixture of organic 
substances, one could determine whether a fit to the astronomical data 
is possible or not. The general argument is exactly the same as that for 
the Trapezium nebula that we have discussed in an earlier section. 

A laboratory sample of candidate material could give an experimen­
tally measurable transmittance T(>') = 100 exp[-T(A)] , whilst the spec­
trum of GC-IRS7 (e.g. Allen and Wickramasinghe [1]) gives a flux 

(3) 

A, a being constants and BA)(T) being the Planck function. Thus we 
can regard the astronomical observations as determining the quantity 
T(>') via Equation 3, at any rate to within a constant factor. 

Historically, the first organic model that was considered, and found 
to match the data to a remarkable degree of precision, was the material 
represented by the common bacterium E-coli. A spectroscopic KBr disc 
was prepared with a carefully measured mass of 1.5 mg of dry E-coli. 
The KBr disc was then heated in an inert gas upto a temperature of 
350 C and the quantity T(>') for this system was measured using a stan­
dard Perkin-Elmer spectrometer. The raw spectrum showing T(>') for 
this case is displayed as the lower panel of Figure 31.5 [2]. The mass 
absorption coefficient at the peak of the 3.4 f-L m absorption was found 
from this experiment to be close to 500cm2 gm-1 . The curve in the up­
per panel of Figure 31.6 shows the closeness of the fit that ensued with 
a choice of a = 1.3 used in Equation 3. To obtain this fit, which implies 
an extinction value of 0.3 mag at the centre of the 3.4 f-L m band, we 
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require a distributed mass density of "bacteria-like" organic dust grains 
amounting to about 10-26 gm cm-3 - a large fraction of all the mass of 
interstellar dust. 

There have also been new attempts to measure the spectrum of GC­
IRS7 using better instruments than before, although not necessarily at 
superior observing sites with regard to ambient atmospheric water. It 
should be noted in this context that even minute amounts of atmospheric 
H2 0 would introduce a 3.11" m feature in spectra that would be incon­
sistent with the original AAT observations of GC-IRS7 a nd also the ISO 
observations of VI Cyg No.12. The generally favoured modern spectrum 
of GC-IRS 7 appears to be one attributed to Pendleton et aL [20] which 
is reproduced as the points in Figure 31.7. We see immediately that 
this spectrum differs from the original spectrum of Allen and Wickra­
masinghe [1] (dashed line) to the extent of an excess absorption over 
the 2.8-3.31" m waveband that is generally consistent with the presence 
of water-ice. Our original conclusion concerning the E-coli - GC-IRS7 
opacity correspondence would remain valid provided we adopt one of the 
following two procedures: 

(1) Subtract the excess absorption in this waveband, attributing it 
to spurious atmospheric water (2) Add a component of water-ice to 
our proposed bacterial grains, an amount as little as 2sufficient for this 
purpose [15]. 

Despite the astonishingly modest nature of requirement (2), the present 
writer would prefer the former of these alternatives, option (1), and pro­
pose to adopt the relative flux curve of Figure 31.6 as having the correct 
overall shape, subject only to refinements of detail over the 3.41" m band 
profile arising from improvements in astronomical spectroscopy. 

5. Uniqueness of bacterial solution 
One might now ask: what other chemical system besides biology can 

be invented to match the data for GC-IRS7? We can use Equation 3 
to invert the relationship between T and F(>') and obtain the TObs(>') 
curve just as was done for the Trapezium. In view of the closeness of the 
fit seen here TObs(>') should be considered to all intents and purposes as 
being necessarily identical to the E-coli opacity. This is of course true 
only we accept the observations represented by the points in Figure 31.6 
as being substantially correct. 

Since 1982 many attempts have been made to match the GC-IRS7 
spectrum in the 2-41" m waveband using abiotically generated mixtures 
of organic materials. Irradiation of suitably constructed mixtures of 
inorganic ices have been shown to result in organic residues possessing 
spectra that fitted the astronomical spectra to varying degrees [22]. But 
all these arguments and comparisons have begged the important question 
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as to how the precise conditions under which the laboratory experiments 
were conducted could be reproduced with such unerringly precision on 
a galaxy-wide scale. 

6. Other indications of biological grains 
Another remarkable development in recent years has been the discov­

ery of independent evidence for vast quantities of aromatic molecules 
occuring on a cosmic scale [12]. These molecular structures appear to 
be distributed quite extensively on a galactic as well as an extragalactic 
scale, and once again a large fraction of the available interstellar carbon 
seems to be tied up in this form. Needless to say, such molecules are 
part and parcel of biology, and their occurrence in interstellar space is 
readily understood as arising from the break-up of bacterial cells. 

Even much earlier, in 1962, the presence of aromatic molecules in 
space might have been inferred from the so-called diffuse interstellar 
absorption bands. It has been known for over half a century that some 
20 or more diffuse absorption bands appear in the spectra of stars, the 
strongest being centred on the wavelength 4430A. Despite a sustained 
effort by scientists over many years no satisfactory inorganic explanation 
for these bands has emerged. F.M. Johnson had first shown that a 
molecule related to chlorophyll - magnesium tetrabenzo porphyrin - has 
many of the required spectral properties [16]. 

There is yet another property of biological pigments such as chloro­
phyll that persistently shows up in astronomy. Many biological pigments 
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are known to fluoresce, in the fashion of pigments in glow worms. They 
absorb blue and ultraviolet radiation and fluoresce over a characteristic 
band in the red part of the spectrum. For some years astronomers have 
been detecting a broad emission feature of interstellar dust over the 
waveband 6000-7500 Angstroms. Chloroplasts containing chlorophyll, 
when they are cooled to temperatures appropriate to interstellar space 
fluoresce precisely over the same waveband [13]. 

7. Concluding remarks 
In this contribution I have discussed only a small subset of the as­

tronomical data that since the 1980's have pointed consistently in the 
direction of panspermia. At the most conservative the astronomical 
data show decisively the overwhelming dominance of highly complex or­
ganic molecules in a condensed state. This condensed particulate matter 
must have spectroscopic properties over ultraviolet, optical and infrared 
wavebands that make them indistinguishable from freeze-dried bacteria. 
On this there is no longer any disagreement. Also isotropy of visual 
extinction curve of starlight shows that these organic grains must be 
substantially the same in one direction from the Earth as in another. 
By far the simplest way to produce a vast quantity (1040 gm of small 
organic particles everywhere of the sizes of bacteria is from a bacterial 
template. The power of bacterial replication is immense. Given ap­
propriate conditions for replication, a typical doubling time for bacteria 
would be two to three hours. With a continuing supply of nutrients, a 
single initial bacterium would generate some 240 offspring in four days, 
yielding a culture with the size of a cube of sugar. Continuing for a fur­
ther four days and the culture, now containing 280 bacteria would have 
the size of a village pond. Another four days and the resulting 2120 
would have the scale of the Pacific Ocean. Yet another four days and 
the 2160 bacteria would be comparable in mass to a molecular cloud 
like the Orion Nebula. And four days more still for a total since the 
beginning of 20 days, and the bacterial mass would be that of a million 
galaxies. No abiotic process remotely matches this replication power of 
a biological template. Once the immense quantity of organic material in 
the interstellar material is appreciated, a biological origin for it becomes 
an almost inevitable conclusion. 
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