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TRANSLATOR'S PREFACE

This is a translation of '""Methodes de calcul differ-
ential absolu et leurs applications," by G. Ricci and T.
Levi-Civita, Mathematische Annalen, vol. 54 (1900). This
memoire is one of the most influential and important in
the history of both differential geometry and mathematical
physics. For example, it seems to have been the basic
document from which Einstein learned the tensor analysis
that he used in the creation of General Relativity.

My immediate aim is, of course, to make this key paper
- which is still very readable and informative - available
to the scientific community. To enhance its usefulness, I
have added Remarks which 1link the material with contemporary
differential geometry and physics. I have also modernized
the notations and terminology, e.g. using the summation
convention, and substituting the term "Tensor Analysis" for
"Absolute Differential Calculus." I have also added a few
topics to the main text, e.g. the notion of '"mixed tensor,"
which seemed useful.

This is the first of a series of translations and
edited impressions of classic work in differential geometry,
Lie group and differential equation theory of the late 19th
and early 20th centuries. I have always found this work a
great inspiration, and much of it very '"modern" in spirit.
What is particularly important is that this group of geometers
(e.g. Lie, Cartan, Ricci, Levi-Civita) thought of mathe-
matics in close relation to physics, and their work can
serve as a model of the sort of synthesis and interaction
between mathematics and the disciplines which use mathe-
matics that I am trying to develop in this series.

I have changed the system used for references to con-
form to contemporary fashion, and to eliminate footnotes,
which are cumbersom to print and to read. The references
are referred to by author and date, e.g. Ricci [1886] refers
to Ricci's article dated 1886, listed in the Bibliography
at the end. I refer to my own books by abbreviations, given
in the Bibliography. For example, DGCV refers to my book
'Differential Geometry and the Calculus of Variations."
(This book, together with "Geometry, Physics and Systems"
and some of the other volumes in this series can serve as to
furnish general background detail, and notation for my
Remarks.) '"Volume II" refers to th.e Interdisciplinary
Mathematics series.

I again thank Mrs. Alta Zapf for her superb typing!

iii



PREFACE

Poincaré has written that a good notation has the
same philosophical importance in Mathematics as a good
classification system has in the Natural Sciences. One
may extend this remark, with even greater force, to cover
methods, since they determine the possibility of grouping
Jiverse facts which have no obvious interconnection accord-
ing to certain natural relations.

One may also say that a theorem is only half-proved
when it is proved by a tortuous route or by using artifices
with no essential links with the material. Almost always
the same theorem can be developed in a more complete and
general manner, if one approaches it by a more direct route
and with appropriate methods.

For example, let us cite the case of the proof given
by Jacobi and extended by Beltrami of the invariance of
the expression 4(U) (which is now called the Laplace-
Beltrami operator). It is certainly elegant, and testifies
to the profundity of thought of its discoverers, but it is
surprising that to prove the theorem - which involves the
algebraic theory of elimination - they use the variation
of an integral. The application of this methodological
principle to this example has led to the development of
methods that we call the Absolute Differential Calculus
(see Ricci [1886, 1889]), and discovery of a chain of differ-
ential invariants generalizing the Laplace-Beltrami operator.

The algorithm that we call Absolute Differential Calcu-
lus, the subject of this work, may be found in a remark by
Christoffel [1899] - but the methods are founded on the
notion of '"n-dimensional manifold" that we owe to the genus
of Gauss and Riemann.

. The metric properties of such manifolds are defined
intrinsically by n independent variables and by an equiva-
lance class of quadratic differential forms in these vari-
ables, with two such forms equivalent if one can be trans-
formed into the other by a change of variables. As a
consequence a manifold, denoted by Mp, remains invariant
under all transformation of coordinates. The Absolute
Differential Calculus, which acts on covariant and contra-
variant forms of M_ to derive others of the same nature, is
also - in formulas and results - independent of changes of

v



vi PREFACE

coordinates. Since it is essentially attached to M,, (not
to a choice of coordinates), it is a natural tool for all
research which deals with such manifolds, or where one
meets positive quadratic differential forms and their
derivatives.

The brief exposition that we give here of these methods
and their applications is intended to convince the reader
of their advantages - that we think are great and self-
evident - and to reduce as much as possible the effort that
is required - as for any new technique - from those who want
to apply it. We think that, after having surmounted the
initial difficulties, one will readily find that the
generality and independence of choice of coordinates leads
not only to elegance, but also to agility and insight into
proofs and conclusions.

Remark: The first two paragraphs are a classic statement
of the practical importance of the development of elegant
and general tools. Here, the authors clearly set the tone
for much of twentieth-century mathematics. Physicists and
engineers who like to complain about mathematicians becoming
too fancy and abstract for their taste should keep this in
mind! Presumably a point that Ricei and Levi-Civita would
take for granted '(since it is clear in all their work) is
that this thrust towards elegant and general methods is to
be tempered by a broad perspective and insight into the
really important topics, not the least of which are those
done in contact with science!

From now on, I translate Absolute Differential Calculus
by Tensor Analysis, although there may be subtle differences
in what they meant and what we now mean by the terms.

Nowadays, the notion of "manifold” is of course differ-
ent from that whieh Ricei and Levi-Civita ascribe to Gauss
and Riemann. We now think of a manifold more concretely
as a set of points with certain definite properties, or
satisfying certain definite "axioms." However, their
emphasis on the use of local coordinates, provided the con-
cepts are developed in a way which is "manifestly invariant”
of the choice of any one coordinate system, means that most
of the concepts developed by the "local” Tensor Analysts
carry over to manifolds as we now know them. Of course
this more classical viewpoint also played a critically
important role in Einstein's mind in his development of
General Relativity. To this day most physicists and engi-
neers find the older ideas more congenial than those of
modern differentiable manifold theory.
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It is interesting to note that they refer to positive
uadratic differential forms (we now say: positive
Riemannian metrics) in the fifth paragraph. In fact, every-
Thing works also in the more general case that the form is
non-degenerat , and this enabled Einstein to apply their
methods to gravitation. This is an even greater vindication
for the methodological principle they state in the first
two paragraphs than the example - now forgotten - that they
eite.
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Chapter I

THE ALGORITHM OF TENSOR ANALYSIS

1. CHANGE OF VARIABLES AND SYSTEMS OF FUNCTIONS

Denote by T a general coordinate transformation

o= xigd, o, v, (1.1)

which is invertible and regular in the domains we encounter.
Further, let @ be a system whose elements consist of func-

tions

(F1r-ve0 £,

where fl,..., fp are functions of the variables x, functions
-that we call elements of the system @. Denote also by S a
substitution which acts on the system @ by substituting for
the elements £15004s fp a set gy,..., g of functions of the
variables y.

Let us think of S as a function of T, i.e. suppose
that, for each transformation 1.1 which acts on the inde-
pendent variables one is given a well-defined substitution S.
Further, assume that S, considered as a function of T,

Satisfies the following conditions:

1



2 THE ALGORITHM OF TENSOR ANALYSIS

1) If T = identity, then S = identity
2) If T, Tl’ T2 are three transformations of type 1.1,
with S, Sl’ S2 the corresponding substitutions,
and if one has
T =TTy,

then also:

S = S,8

271"

There are different ways to determine S as function of
T. One may, for example, take as elements of the transformed
system the function obtained by substituting y for the

variables x, according to the given formulas (1.1). We will

say in this case that the system transforms by invariance,

or that it is invariant.
But often the nature of the given system may make us

prefer another transformation law. For example, if

fl"“’ fn are the derivatives of a function f with respect
to Xy,..., X,, one finds it natural to take as transformed
system the derivatives fl',..., fn' of the function f' which

is the transform of £ by the transformation T, instead of
the functions which one obtains from the fl,..., fn by
applying the transformation T.

In this case, the substitution S will be defined by

formulas:
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j
£, = £, a—xf (1.2)
J sy
where the functions fl,..., fn ought to be expressed in

terms of the variables y.

Remark: The summation convention is used in (1.2), and will

be used from now on. It was not known when the paper was
vritten, but was invented by Einstein, and enormously ez~
tended the calculational usefulness and simplicity of the
formalism.

If the given system consists of a function f and its
derivatives up to a given order, one may require that it
transform in the same way. In this case the formulas which
represent the transformation law of the system are, analyti-
cally, fairly complicated. The function transforms by
invariance, its first derivatives by formula (1.2), and its

second derivatives by the following formulas:

a%f - 22f axf ax’
aytayl  axFax? syl ayd (1.3)
.+ of azxk
kK

ax* aylayl
One also obtains important examples by considering the

Coefficients of an expression which is linear and homo-

geéneous in the first derivatives of a function, such as
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A, (1.4)
X

or the coefficients of an expression which is quadratic in

the differentials of the independent variables, such as:
i4,J
aijdx dx (1.5)
When one makes the transformation (1.1) on the inde-

pendent variables, at the same time one passes from the

expressions (1.4) and (1.5) to their transforms:

Bi of
ayt

ig,d
bijdy dy”’.

The new coefficients B' and bij are given by the following

formulas:
i j ay.1
Bl = A . (1.6)
ax?
k £
b, . ox_ 9X (1.7)

15 T ke 3y Y5
It is then natural to perform on the system of coeffi-
cients of the expressions (1.4) or (1.5) the substitutions
(1.6) and (1.7) each time that one transforms the independent
variables by the formulas (1.1).
We conclude that the nature of the systems we study

often suggests to us transformation laws which are differ-

ent from the simplest transformation by invariance.
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Remarks: This section develops the idea of general "eco-
S———

- pariance,” which is the main algebraic feature of tensor
analysis, and which is also very important physically,

especially in General Relativity.

Recall that, in the Special Theory of Relativity,

Einstein first expressed the "laws of physics" in a form
which is "covariant,"” i.e, has a well-defined transfor-
mation law, according to changes of "reference frames'
eorresponding to "observers' in uniform rectilinear motion
with respect to each other. This corresponds (when the
variables x are identified with space-time variables) to
‘aZZowing only changes of variables (1.1) of a certain special
type. (Precisely, belonging to a subgroup of the group of
diffeomorphisms of R4, usually either the group of Lorents
or Galilean transformations on space-time). To accomplish
this required some interesting analysis of the physical
(and mathematical) "nature" of space and time, and phystecal
laws, but no really new physics beyond that described by
Newton's laws of mechanies and Maxzwell's equations of
electromagnetism.

However, when Einstein turned his attention to "co-
variance"” under general coordinate transformations on space-
time - which was natural to him both because of his

own private physical and philosophical ideas and his under-
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standing of this paper by Riccil and Levi-Civita - he was
led to something fundamentally new, a completely "covariant"
theory of gravitation to replace Newton's (and which repro-
duced Newton's to an approximation). Ever since then, this
idea of expressing the "laws of physics" in a "eovariant
form" has been one of the most powerful mathematical tools
in the physicist's arsenal, particularly in the process of
discovering new physical laws. In many areas, the way to do
this is still unknown - for ewample, there is no quantum
gravitational theory which is completely covariant.

The profound ideas of Section 1 may be readily described
in terms of modern mathematical tdeas. I refer to Volume I
in this series, "General Algebraic Ideas,” for the termi-
nology to be used now.

Let R denote the "space" of n-real variables, i.e. a
point of R" ig denoted by an n-tuple

x = (xl,.‘., z")

A trangformation
7: &" » R"
ig a mapping satisfying the following conditions:
1) The funections (1.1) deseribing the transformation

are differentiable an arbitrary number of times.

One says that T is infinitely differentiable or c”
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2) T is one-one and onto. The inverse map T—J (which
is then well-defined ag a set-theoretic mapping)
ts also C . (Note that there are such mappings
which are one-one and onto, for which r! s not

c”; e.g., the map = ~ xS of R -~ R).

Such a mapping 1s called a diffeomorphism in modern
differential geometry, but I will use "transformation" in
order to stay closer to their terminology.

Two such transformations can be composed and their
inverse taken, i.e. the set of all such transformations
forms a group, which we denote by
| G(R™).

G(r") is of course defined as a transformation group acting

n
on R:

The transform of a point x € R" by a T € G(R") is
the point
T(x).

However, G(R") may act on other spaces. What Ricel
and Levi-Civita mean by a "transformation” law involves
such actions on other spaces R, (usually infinite dimensional
ones).

For example, consider @ as forming what they call (in

the first paragraph) a system of funetions. In this case,

R may be taken as the space of all c” mappings
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f: B" - A", (1.8)

where m is another integer. Such a mapping may be defined
as a set
(Fgseves I’
of m, real-valued, c” functions on R”, i{.e. the mapping (1.8
s defined explicitly as follows:
flz) = (f(z)se.n, fplxl) (1.9)
for = = (xl,..., 2") € g™,

What they mean by a transformation law is a transfor-

mation group action o G(R") on @, i.e. a mappin
pping

G(R") x 2 - 2
satisfying the following conditions:
1) T,(Ty(f)) = (T,T4)(F)

for T,, T, € G(R™"), F e

2
(The image of (T, f) € G(R") x @ in @ is denoted by T(f)).

2) If T = identity map, then T(f) = f for all f € Q.

Although the authors do not include it explictitly, it
would be appropriate to add a "locality” condition. Here
is one way of phrasing tt:

3) Suppose that f, f' € @ are two elements, and

z € B' ig a point at which all derivatives of the

corresponding components of f and f' agree, then

all derivatives of T(f), T(f') agree at T(z).
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To appreciate the full geometric meaning, it would be
necessary to go into the theory of "jets" of mappings. See
VB and GPS.
Various generalizations are needed and useful in
different situations in mathematics and physics. One
éeneralization is to replace G(R") b4 a subgroup G; for
gxample, Special Relativity involves:
n =4
G = group of Lorentz transformations on r?

nother generalization is to replace R" by a general differ-
ntiable manifold N, and G(R") with the group of diffeo-
orphism of N, and to take § to be the space of cross-
ections of a fiber space, with N as base. (See bGcv, VB,
PS for more detail). Another possibility is to relax the

lobal nature of the transformations, i.e. to allow G(R")
'/o inelude coordinate transformations defined on open
ubsets of R", but only to require that elements of G(R™)
0e compared when their domains and ranges matchup. (Such
; mathematical object is called a pseudo group.) Finally,
and most important (at least for the purposes of physics)
?s the following generalization:

G is an abstract group.

A group homomorphism (not necessarily one-one)

¢ » G(R™)
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is given, a transformation group action of G on 9 then de-
termines the "transformation law."

This set-up allows the possibility of a non-unique
transformation law for a system of functions fl""’ fm (and
hence for physical objects) The most prominent example is
the case of gpinors in Special Relativity: Given a Lorentz
trans formation on R4, there are two possible transformation
laws for "spinor fields."” Algebraically, this means that
the postulated group homomorphism

¢ > c(rRY)

has C the eyelic group with two elements, as kernel.

2’
We can now describe more exzplicitly the action of G(rR")
on @ that Ricei and Levi-Civita call - in paragraph 3 -

transformation by tnvariance. Let

r: R" » B

be an element of G(R"), and let
£: " > B

be an element of R, with:
= (00 ol

Let

Jx)

H

T(f): = » F(T° T(f)(x) (1.10)
T(f) defined by (1.10) is the transform by invariance. {(In
modern differential geometry, this is also denoted by T_J*(f)

4ds the next example, given in Seetion 1, suppose:
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7 ax’t
Set:
£ o= T(f).
Then,
£, o= T(f,) az” (1.11)
7 g ayL

It often requires a certain care with logic to correlate
this "active" way of looking at things - regarding a "trans-
formation” as acting on points, with the "passive" way
;mglicitly used by the authors, where the "points" remain
the game, and only the way of labelling them changes. For
sxample, consider formulas (1.11). If

1 n,

1
o= (4, y )

, x = (x,...,
denote points of R, then formula (1.11) assigns to each y
an x. This must be interpreted as:

rle - Y-
Thus, if = - f(x) is an element of 9, its transform "by
invariance” is

y » £y = rer iz,
Thus,

f'(y) = flx(y)).

Hence, using the chain rule for differentiation:
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J
of' _ L (aqy)) 2, (1.12)
ayt oz ay

which is identical to formula (I1.11).

To summarize, the "active' point of view - points change,
while "coordinates' remain the same - is the more customary
in modern differential geometry (hence we use it here), while
the "passive" one - points remain the same but coordinates
change - is used more in physics and the older differential-
geometric literature. In quantum mechanics, they "active”

approach is called the Sehrbdinger picture, while the

"passive” one is called the Heigenberg picture.

Example. Change of reference frame in mechanics
Consider
R4

as our space. A point is denoted by:
x = (x, 7, ¢, ).

Let:
z = (x , 7, x°),

the position vector,

t = x,

the time coordinate. Let v = (vz, vZ, vg) be a fized vector

in RS, Using it, define a transformation

r: g% - &?
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a8 follows:
T(z, t) = (2 + 0t, t). (1.13)

This is a Galilean transformation representing a "change of

frame" corresponding to an "observer" moving with constant

«

velocity 5.
From the point of view of physics, it is natural to
qsgociate two types of "systems'". First,
P&, 8) =(f, Fae £/,
with
fp=2l ry=al, py =8

f defined in this way represents the pogition vector. Thus,

f(Z, t) = =.
Now,
-1 -

TT(E, t) = (T - Dt, t).

Hence,

-1 -

fitz, t) = f(T " (z, t))

f(Z - Bt, t)

-+ -
=x - vt.

This represents the position vector of the system as seen

by the observer moving with constant velocity B.

Similarly, let
f(Z, t) = ¢t.
Thig system represents time. It satisfies:

fref=t,
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i.e. time ig invariant for Galilean transformations. Here

is the important point:
Both "position" and "time" systems transform "by in-
variance" under Galilean transformations, i.e. by the law

(1.10). However, the time system is invariant, i.e. trans-

forms into itself under Galilean trangformation.

Exercige. Work out the analogous concepts in case T i8 a
Lorentz transformation. Is there a system which "transforms
by invariance" and transforms into itself, i.e. i "imvariant'

in the usual sense?

Now, I want to explain the summation convention. In

contrast to the convention used in my previous work (e.g. in
DGCV), we now use the form used in Tensor Analysis, namely:
An index occurring in two places in a formula, one upper

the other lower, is assumed to be summed over its

natural (i.e. given) range of values. It i8 agsumed

also that indices do not occur in a repeated form ezcept

in pairs, one upper, the other lower.

For example, formula (1.2) reads, without the summation

convention:
J
Ax

f. =

£i' = .
i 19 5yt

J

oS
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If (aij) is a 2-indexed symbol, then

n
L oa;;
1=1
ig not
A+ =
17

Using the summation convention, 1t is:

X

6ija.
g

where
(6%9)
i8 the Kronecker-Delta symbol, <Z.e.

sid _ [0if i %
14if i =g

Ag we go along, we shall see further rules for using the
gummation convention.

We have emphasized the group-theoretic meaning of the

ideas of Tensor Analysis. In fact, E. Cartan has emphasized
that this way of looking at it brings it within the influence

of Klein's Erlangen Program, with infinite dimensional Lie

groups as the basic group-theoretic objects. Another direc-
tion for abstraction is towards the modern theory of

Categories and Functors. See MacLane [1].

2. COVARIANT AND CONTRAVARIANT TENSORS. EXAMPLES

Among all the transformation laws that one may conceive,
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there are two which play a predominant role in mathematics.

We call them the covariant and contravariant transformation

laws.
Fix the integer n and the indices as follows:
1 =i, j, kyeoor il, 0005 jl’ Jgsees < n.
Let
X = (xl,..., XP)

be independent variables, representing

R".

An m-th order system is a system (of the type described in

Section 1), which is labelled by m-tuples
(igseres i)
of indices ranging over the values from 1 to n, i.e. to each

(igse00s im) € En,x,zn Xooox Loy
m
there is a unique function

f(il,..., i)

in the system Q.

Remark. Z, denotes the first n integers. 2, X...X z,

m
denotes the Cartesian product of m copies of Zn’ Thus, an

"m-th order system,'" as defined by Ricei and Levi-Civita,

is a mapping

n
= e e on R%)
m

Z x...x L, > (space of real-valued ¢” functions



1»THE ALGORITHM OF TENSOR ANALYSIS 17

Various types of m-th order systems are defined by
putting some of the indices "below", some "above". For
example, for m = 2, we might label them as

..
1ts

This would be "covariant". Alternately,
i,1
1*2
f .
Thie would be "contravariant.'
i
1
5
2

would be "mized”.

4
Definition. The covariant m-th order system consists of the

sets of functions indexed (in order to make this transfor-
mation law natural from the point of view of the summation
convention) as follows:

X.

i LA (2.1)

1" "m

1 = il,..., im = n.
The transformation law of the covariant system, for a trans-
formation

x > T(x) =y

of R L 1 (given again by formulas (1.1)}), is the following

one:
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J1 Im
Yiog =X B o, (2.2)
17 m Ji-oIm ey ay M
Remark. Y. : denotes the components of the system

7t
transformed by T. (It was denoted by X' in Section 1).

The elements of this system are called m-th order co-

variant tensor fields on Br".

Definition. The m-th order contravariant system CONsists

of the sets of functions indexed as follows:

with the following transformation law:

. . . . i
i.,..1 Jieee] 1 m
y I'oom oyt "‘913.—...3)’]. (2.3)
ax 1 ax~ ™

The elements of this system are called contravariant tensor
fields.

In (2.3), it is assumed that the y's are functions of
the x's, which requires the inversion of relations (1.1),
then expressing everything back in terms of y.

Denoting by X a function of the variables x, by Y the
same function expressed in terms of y, the formula

Y =X

may be regarded as a particular case of both (2.2) and (2.3).
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Thus, a system of order 0 besides being an "invariant",
may be considered as a limiting case of a covariant or
contravariant system.

From now on, when we introduce a symbol such as

i....1
1 m
it

1 m) we understand that it belongs to a covariant

i
(or X
(or contravariant) system of order m, that we call system
iq...4
i (or X 1 m).
11-.. mn
The first order derivatives of a function and the coef-
ficients of a quadratic differential form ¢ provide examples
of covariant systems of, respectively, first and second
order. The inverse of the coefficients of ¢ provides an
example of a contravariant system of second order. Similar-

ly, the formulas

tell us that the differentials of the independent variables
are examples of a contravariant systems.
The systems which are formed of the derivatives of
order m > 1 of a function
f(x)
are neither covariant nor contravariant. The transformation

law of these systems are more complex - which is the source
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of the difficulty one meets in Differential Calculus in
transforming the partial derivatives of order greater than
the first.

We will see that one may avoid these difficulties by

replacing ordinary differentiation with another operation,

Rpemark: This operation is now called covariant differ-
entiation.

It is useful to note that covariant or contravariant
systems of the theory of algebraic forms are particular
cases of those we just defined, since in this theorw one
considers transformations of type (1.1) which are linear ana

homogeneous.

Remark: Here is how some of these basic ideas may be des-
eribed in more contemporary algebraic language. Let
F(R")

denote the set of real-valued, ¢” functions

x -~ flz)
on B*. (x, as always, denotes a point of B, with coordinat
(xz,..., ")) one can add and multiply two such functionss

i.e. F(R™) forms a commutative ring. (See Vol. I for the

general algebraic ideas used here).
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A derivation i1s a mapping
X: F(R") » F(R")
guch that:
X(f,Fq) = X(F£,)F, + FX(Fg)e (2.4)
Such derivations can be added and multiplied by elements of
F(R"), i.e. they form an F(R") module which is denoted by
V(R").
The elements of V(R") are also called vector fields. It
turns out that they are also naturally identified with

1-contravariant tensor fields, as defined above, as we shall

gee in a moment. Now, set:

v2 (&™) = v(r™) ® v(R™)
(2.5)
v &™) = vE(R") & v(R").

and so forth. It turns out that the elements of V' (R") are

Qﬁa m-contravariant tensor fields. (In (2.5), the symbol ®

d@notes tensor product of the two F(R")-modules. Now, in I M,

@bl. II, we have defined tensor productsof two vector spaces,
b K

th "fields" (e.g. the real or complex numbers) as scalars.

e ideas generalize, and one can define the tensor product

modules as well.)
To define the "co" objects, set:

Fl(Rn) dual module of v(r™)

ut

set of maps

8: V(R") > F(R™)
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such that:

G(XZ + X,) = G(XZ) + G(XZ)

2
o(fX,) = fo(x,)

for X,, X, € ver™), £ e F(R™).
FL(R") is also an F(R")-module, hence its temsor products

may be defined. The m-covariant tensors are then to be

identified with elements of

FLE™) w0 FLR").
Al

m times
We must now show that these algebraic definitions
reproduce those of Ricei and Levi-Civita. To this end,
define the coordinate differential operators

-921 F(r") > F(R"),

ox

1 =2, § = mn.
They satisfy the "derivation" rule (2.4), hence define

elements of vr™).

Theorem 1. The —gz»form a basis for the F(R")-module, V(M)
ox
i.e. each X € V(R") can be written in a unique way as

Xo=x" =, (2.6)
3x

with (x1,..., 1" € F(&™).
The proofs of this and other results in these Remarks

may be found in the standard differential-geometric referent
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clisted in the Bibliography. See especially DGCV and Bishop

and Goldberg [1].

Theorem 2. The assignment
Theorem o
X - (x%)

defined by (2.6) sets up a one-one, onto correspondence
between the elements of V(R") and the l-contravariant
tensor fields.

This correspondence will only be useful and natural
if it leads to the characteristic "contravariant tensor"
transformation law. We sketch how this goes.

Given a transformation

7: B" » R",
the transform of f € F(R") by T is given by the formula:

T(fi(x) = £(1 L (z)).

for x € R".

(This is the "transformation by invariance,” which is the
firet sort of transformation described by Ricei and Levi-

Civita). Given X € V(R"), transform it by T as follows:
TX)(f) = Tx(rTieg))), (2.7

?otice that X > T(X) defines a transformation group actio

°f G(R") on v(R").

)

n
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Theorem 3. The correspondence
X » (x%)
between V(R") and l-contravariant tensors tintertwines the

action of G(R") in both spaces. In other words, if

i 3

T(X) =¥ ox .
K2

£

then (Y*) is the transformation of (x*) according to the
contravariant transformation law.
According to the principles of temnsor algebra (see

Vol. II), an element of

v(E") ®...® V(R™) (2.8)
J
M times

is of the form:

It is now readily verified that the correspondence

il...in
X «— (X )

sets up a 1-1 station between elements of the module (2.8)
and the contravariant m-fold tensors, in the sense of Riceti
and Levi-Civita.
Now, for the covariant omes. Define a mapping
d: F(R") ~ FL(r™)

by the following formula:
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df(X) = X(f) (2.9)

for £ € F(R"), x ¢ v(rR").

‘df is called the differential or exterior derivative of f.
In particular, one can apply d to the coordinate

vunctions z¥.  The resultin elements o Fl(Rn)
bi g
dxl,..., dxn,

form a basis for the module FZ(Rn). Let G(R") act as a

‘ﬁransformation group on FZ(Rn) in the following way:
T(w)(X) = w(r71x) (2.10)

For T € G(R™), w € FI(R™), X € v(R").

Theorem 4. Set up a correspondence

W (X7,)

5¢tween elements of FZ(Rn) (called differential forms of

degree) and "systems" of funetions, in the sense defined
by Ricci and Levi-Civita. This correspondence then inter-
twines the action of G(R") on FZ(Rn) (defined via formula
(2.10) and the natural action on I-covariant tensors.

Similarly, a element of

FLer™) o...» FL(r™) (8.11)

M times

May be written in the form:
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(2.12)

This sets up a natural correspondence between the module
(2.11) and the space of m-fold covariant temsors in the
Ricei and Levi-Civita sense.

We can also introduce the moving frame viewpoint (due
to E. Cartan) to serve as a bridge between classical tensor
analysis and modern differential geometry.

A moving frame for R" is a set

(yz,..., y")

of funections which form a new coordinate system for B",

i.e. which satisfy the following condition:

The map

x - (yl(x),..., yn(x))
(2.12)

of B » B" is a diffeomorphism.

Each such moving frame determines bases of v(R") and

Fl(Rn), namely the following elements:

—-a-—=i”ﬁi——a— (2.13)
oy®  ay® ez
iyl i
dyY = 7 dx” . (2.14)
ox

Each moving frame then sets up a correspondence of

7(R") @...® V(R") and FI(R") ®...® F1(R") between m-fold
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eontra and co-variant indexed quantities:

1" "m ) 9
ay * ay ™

Y € V(R") ®...® V(R")

<
m

il
Y. . ody T ®...R dy
Toeent
1 m

e r1r™) w...% FL(R").
Again, one sees that this labelling is the correct one to

derive the covariant transformation law for (Yi : )
= FRERE

) ~and the contravariant transformation law for
[ 2
(Y 1 ™) from the moving frame transformation law (2.13)

-(2.14).

3. ADDITION, MULTIPLICATION AND CONTRACTION OF TENSOR
FIELDS. RIEMANNIAN-METRICS. RECIPROCAL SYSTEMS
MIXED TENSORS

Addition. If

is also a m-covariant tensor field. We say it is the sum
of the two given fields. Similiarly, one defines the sum
of two m-contravariant tensor fields, which will be one

©of the same type.
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fensor Multiplication. If

Xy i L .
1°-+1ip 31...Jp

are two covariant tensor fields, of order m and p, respec-

tively,

Yi 15 . = Xi i Z.
1reeipdyee-dp i3y

is a covariant tensor field of order m + p, that one calls
the (tensor) product of the two temsor fields. Substituting
the word '"contravariant'" for weovariant" defines the product

of two covariant tensor fields.

Contraction. If

X.

i .1

Loeeipdyeedp

is a covariant tensor field of order (m + p), and Z
is a m-contravariant tensor field, then:

[
1 P x.
1 1

Y. . =1 3
1+ 1p 1

ApdpeIp

is covariant of order m. Similiarly, given tensor fields
;RS T DR |
x 1 m’1 p’ 7. o,
ipeeedp

form the following m-contravariant tensor field:

.1 S A T D |

Y mo_ oy 1 m- 1 P 7, .
Jl...]p

il...i

We say that Yi i and Y M are the contractions of

1o+ 1
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the two given tensor fields.

In particular, for m = 0, one obtains by contraction
a system of order zero, i.e. an invariant, which results
from the contraction of two tensor fields of opposite type
and the same order.

The reader will perceive that these concepts, which
are frequently used in calculation, are derived from a

unified principle, called the saturation of indices.

The fundamental Riemannian metric

The methods of Tensor Analysis essentially require
that we be given a positive quadratic differential form in

s 1 n . .
the n-variables x~,..., X, i.e. an expression of the form:

¢ = gijdxldxj.

Remark. Later on, the techniques of tensor analysis were
completely freed of the need to hypothesize such a metric.
See Schouten [1] and Vranceanu [1].

The coefficients (gij) of this form occur everywhere
in our formulas, and give them a remarkable symmetry and

simplicity.

Reciprocal systems.

Let

(g
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denote the inverse matrix to (gij), i.e.
ij i
g5y = A (3.1)

where 5k1’ the Kronecker delta symbol, is zero if 1 # k,

equal to +1 if i = k.

In general, given an m-covariant tensor field X,
m)

i
IEEE
construct an m-contravariant tensor field denoted by
TR |
X L m, by the following formula:
ii...1 i3 ij
X 1 m _ g 1 1...g momy L. (3.2)
J1oIm
In the same way, starting from a contravariant tensor field
irelld
Z L ™ define a covariant one, Z; i by the follow-
[EERE™
ing formulas:
Jy--dp
Z. .= g . gy s ee. 8 s L . (3.3)
1ot 1131 1232 mim

The succession of the operations (3.2) and (3.3) is
the identity, hence we say that pairs of tensor fields

il...'m '.m
X , X. . and Z.
1 1

i i

1°°+in IRERE ™
are reciprocal with respect to the Riemannian metric.

From (3.1)-(3.3), one derives the following identity:

.

i;. .. L.d
x 177 Tmy, .= X, .z m, (3.4)

It can be interpreted in words as follows:

"Each function resulting from contracting a covariant
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and contravariant tensor field of the same order is equal
to the contraction of their reciprocals."

After fixing the Riemannian metric, it suffices to
give a covariant or contravariant tensor field and their
reciprocals are determined. This fact is reflected in the
convention, which we have already used in the examples,
that the same 1£77£R representsa covariant tensor or
its reciprocal, according to whether the indices are placed
below or above the letter.

We shall now define an n-covariant tensor

€1 .. .3 (3.5)

by the following rules:

€5 3 changes sign when two adjacent indices are
1+-+ip
permuted.

€12...n = * V&,

g = absolute value of det(gij), the
determinant of the matrix formed
by the coefficients of the metric
tensor, and +1 or -1 according to
whether the determinant of the
coordinate system in which the

components of the tensor are being
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described has a positive or negative
Jacobian with respect to the original

coordinate system of rRP.

.1

il.. n
have simi-

The elements of the reciprocal tensor ¢
liar properties with respect to permutation of the indices,

and have values

0, + -% .
g
Thus, if

X..
1]

is a 2-covariant tensor field,

101,
3 Xo. .. .X .
111 ni,

is

det(Xij)/:VE,

where det(Xij) is the determinant of the matrix (Xij). In
particular, if zl,..., z™ are functions of n-variables
xl,..., xn, and

n
A(zl,..., z)

is the Jacobian determinant of the functions, then we have
the following identity:

ij... n
Vg A(zl,..., Zn) 1 n 98z> ... 9z




THE ALGORITHM OF TENSOR ANALYSIS 33

This identity makes intuitive the invariant property of a,
and at the same time makes it accessible to the methods of

tensor analysis. We denote the tensors

ioL..i
n
£ - 3 and ¢ 1
IERRE

by the names of covariant and contravariant tensors E.

Mixed tensors

Let
(x}) and (x;")
be a l-contravariant and covariant tensor. If
)
is another coordinate system, recall that the components
b, oy

in this new coordinate system transforms as follows:

. . i
vi - yJ 8y
ax
v o= x, ax)
i I oyt
Set:
x. b= xix,
J J
v. 1o yly s
J J

=, using the transformation laws given above.
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k ayi . 9X
X XZ 3y -

3x j

k ay' 8x
= o,y
b7 axX ayd

We see that the products

i
X.
(J)
form a system (in the sense of Section 1) which transforms

in a linear homogeneous way under a change of coordinates.

Such a system we call a l-contravariant, l-covariant mixed

tensor, and this way of forming such a tensor from a
we

contravariant and covariant oneAwill call the tensor

product.

In general, a mixed m-contravariant, p-covariant tensor

assigns, to each coordinate system
i
(x7),

a system of function labelled

%1"'%m)
SERRRY

p

X

’

which transform to a new coordinate system (yl) according

to the following rule:
i i k k
17 fn 3y ! 3y M ax 1 3X
| 2 £ j. 0 j
1 P oox ! ax ™ ay 1 ay P

il...im ) XZ P
k

Jpeeedp

The products of two mixed tensors, e.g. an (m, p) and

(m', p') one, form another mixed tensor, of type
y
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(m +m', p+p').
(This material on mixed tensors is not in the original

paper).

Remarks: This section is purely algebraic, and may be
readily described in terms of modern "Tensor Algebra'.

{Seﬁ V;Zume II). The basic idea ig that contravariant and
covariant tensors of a given order are dual modules. I will
briefly sketch some of the material required:

Let F be a ring, i.e. a set with an abelian addition
and multiplication operation
(f15 £5) > £, + £y and £,F,,
satisfying the usual rules of algebra. We also suppose
that F has a multiplicative unit element, denoted by
1.
A set M is an F-module if it has the following pair

of binary algebraic operation:

Addition: M x M > M, denoted by

X x Y > X+7

for X, Y € M.

Sealar multiplication: F x M - M, denoted by

(fy X) - fXx.
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The following laws hold:
Fi(foX) = (£3F,0X
f(X + YY) = fX + fY
1X = X.

The dual module, denoted by

M,

consists of the set of all F-linear maps
9: M > F,

i.e. 6 satisfies

8(fXx) = fo(x).

A set Xy,..., X of elements of M forms a basis of M

r

i1f each X € M can be written as:

and the coefficients (fl""’ fn) € F are uniquely deter-
mined by X.

M ig said to be a free module if it has at least one
basis.

If M, M' are modules, one can form a third module
MM,

called the tengor product of M and M'. The elements of
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3

%
.
.
&
f
:
.

M ® M' are the linear combination
]

1
2f; K R X
of elements Xi € M, le € MZ, subject to the following
rules:
(X, + X,) ®» XZ =X, ® X + X, ® XZ
1 2 1 2
1 1, 1 1
X®(X1 +X2)-—X®X1 +X1®X2.
Theorem 1. If M, MZ are free modules, so are:
Md and M ® MZ.
Theorem 2. If M i8 a free module, and
M = MM
%W———/
m-times
I A Y
W m ,

m-times
then Mm 18 the dual module to M

them is as follows:

(6, ®...® em)(Xz R, .. X

1

= 61(X1) N em(Xm)'

Theorem 3. If M ig a free module,

The duality between

37
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M™® o MP 1s MTP
M &M 1s M .
m p m+p

The identification involved are as follows:

(X

; ®..® Xm) ® (Y, 2...8 Yp)
=X, P..@ X ®Y, ®..0 Yp
8, R...® em) ® (n; ®...8 np)

®...0 6 @ My R...8 "M

1 m p’

Notational remark. The use of indices here, e.g. Xl""

is not temnsorial. X X

70 Xgsenn denote particular elements

of M. The indices then are simple "counting" indices, and
the reader must keep their role distinet from the far more
essential role that indices play in classical tensor
analysis! One reason Tensor Analysis is no longer in
fashion in mathematice is that it depends critically on
this elaborate "technology"” of indices, whereas the "coordi-
nate free" methods of modern differential geometry are much
more in tune with tendencies in algebra, and the rest of
mathematics.

We can apply these algebratic results to understand the
algebraic operations Ricci and Levi-Civita define in this

Section. Set:
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" = set of m-contravariant
il...im
tensor fields X .

T = set of m-covariant

tensor fields X.
AR A
1 m

Two elements of Tm or T" may be added and multiplied

by a function of x, i.e. they form F(R") -modules. We have

already seen, in the Remarks to Section 2, that:

T =7l r") .. Fl(r™)
I )
4
m-times
™ = v(&") @ ..% v(R")
— — 7
m-times

We see then that:

This defines the tensor multiplication presented in this

‘Seetion. The contraction operation is based on the fact

that:

(74 o

_ am
(Tm) =T

Lontraction is defined by bilinear maps
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or by linear maps

™7 2T » T
I

T TP 5> T .
m+p m

Expliecitly, if:

n
Hyseons Xy, € V(R ),

8senes 0 € FLer™),
then the contraction map is defined as follows:

(XZ R Q Xm+p) x (61 R, .. R ep)

e (Xl R . R Xp)(61(Xm+1) s O Ky

A Riemannian metric is a symmetric, F(R" )-bilinear,

non-degenerate map
o: V(R") x V(R") » F(R").

It sets up an isomorphism between v(R") and its dual space,
i.e. FJ(Rn), and this isomorphism extends to an isomorphism
between

Tm and T".
This is what Ricci and Levi-Civita call the reciprocal

operation.
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Consider the tensor E defined by (3.5). In DGCV and

Vol. IV I have defined and used the volume element differ-

ential form associated to the Riemannian metric o. (There

are no problems with orientation of the manifold, since we
always work with R”, which comes with its natural Cartesian
eoordinate system (xl,..., z%)). It is defined to be that
n-form which has inner product +1 with itself (with respect
to the natural metric on differential forms defined by o)

and which is positively oriented with respect to the

‘Cartesian coordinate system (xl,..., z") for R". Thus, 1f

¢ = gladacidac‘j
18 the Riemannian metric,
© = Vg del A...n da”

ig the explicit formula for the volume element differential

form, where:
g = det(gij).

In any other coordinate system (y ),

S
It

t,d
hijdy dy”,
{wz have:
o=t VA dyl A..on dy”,

Where the sign +1 is chosen if (yl,..., y") is positively

; riented with respect to the original coordinate system
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i
(xl,..., ") (i.e. f the Jacobian determinant det(éi?), is

ax
positive) and -1 is chosen otherwise. Thus, we see that

the tensor E defined in the text is essentially defined to

be the temnsor such that, in every coordinate system

(yl,..., yn) for Rn, the volume element differential form

w for the given Riemannian metric is given by the following

formula:

B
dy T oniin dy 7

1
w = — €.
n! "1

FEREE
The mized tensors which are m-contravariant, p-covartant
can now readily be defined as the elements of

T o T,
p

4. APPLICATIONS TO VECTOR ANALYSIS

Remark: The material in this section does not seem closely
Telated to the rest of the paper, nor of great current
interest, hence I have omitted it.

5. COVARIANT DERIVATIVES AND RIEMANNIAN METRICS. GENERAL-
IZATION OF THE RULES OF ORDINARY DIFFERENTIAL CALCULUS
COVARIANT DERIVATIVE OF COVARIANT TENSORS

Let

o = gijdxlde
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be the fundamental metric tensor. Set:

. - ag. ag ag.
21 i Lk ik
{Ek} = ¢ 7( % T 5)‘ (5.1)

X axX aX

{{L} are called the Christoffel symbols.

Remark: Ricei and Levi-Civita seem to take for granted
that the reader knew what the Christoffel symbols were.
In these notations, I have more closely followed Eisenhart
[1], except that I do not define all the possible Chris-
toffel symbols.

Christoffel has been the first to remark [1869] that,
if
SRR
is an m-covariant tenseor, the following system of order

m+ 1, aX.

(5.2)

is also a covariant (m+l)-tensor. We call the operation
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which assigns to a given tensor (Xi 5 ) the tensor
1001,
(X. . . ) the covariant derivative with respect to
i;...i o, 1
1 m m+1
the metric ¢. We say that (X. : : ) is the first
s i L1, 1 —
1 m m+1
derived tensor of (X; L),
_———— ip...dy

As limiting case, for m = 0 we see that the first
derived tensor of a scalar tensor X consists of the de-
rivatives of this function, which is independent of the

metric. Set:

x. = X (5.3)

Similiarly, one finds the following formula for the covari-

ant derivative of a l-tensor;

aX.
_ i fk
Xi5 7 %, {ij} X 5.4

and for a 2-tensor:

aX.
s S (e
ST T {ik} X3 {jk} Xig: (.5)

For

we have the following identities:
i,k = 0
which tell us that:

The covariant derivative of the coefficients of the

metric ¢ is identically zero.
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Applying fhe formula (5.2) to the covariant tensor E
defined in Section 3, one verifies that:

The covariant derivative of the tensor E

is identically zero.

If a symbol with m indices represents a covariant
tensor, it will be understood that the same letter, with
another covariant index, after a comma, represents its co-
variant derivative (with respect to the given Riemannian
metric). .

Jﬂi
Of course, apply, the covariant derivative p-time% one

may associate to an m-tensor one of order (m+p), called

the p-th derived system.

For example, starting with a scalar X, one may define

the covariant derivatives

Xio Xg 50 X5 5 g

of the function X.
From the well-known properties of the Christoffel
symbols and formula (5.4) one deduces that:

A l-covariant tensor results from the

derivatives of a scalar if and only if

its covariant derivative is a symmetric

tensor.

Using (5.2), we see that the derivatives of a covariant

tensor with respect to an arbitrary coordinate system are
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linear functions of the tensor itself and its covariant
derivatives. One may therefore replace, in many calcu-
lations, the ordinary derivatives by the covariant de-

rivatives.

Remark: This principle turned out to be extremely tmportant
for physics. After deriving a system of differential equa-
tions which expresses a physical law in a Cartesian coordi-
nate system, one may often simply substitute covariant de-
rivatives for the ordinary ones to write the same law in
arbitrary coordinate systems or in an arbitrary Riemannian
metrie. For example, with n = 3, ¢ = éijdxidxj, i.e.
Euclidean geometry, Poisson's equation (a typieal partial

differential equation of mathematical physics) is:

%t + 2%t + o%¢ =05
a7x1 ax? x>

or

This is important practically where one wants to compute
the Laplacian operator

f-7

.7 in general
» T
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coordinates, e.g. polar or cylindrical coordinates. Maxwell's
electromagnetic equations are another important exzample.

Here, n = 4. They read:

= A, . - A
ij i,j jsi
N
i,j i

Here (Fij) is the electromagnetic field tensor, (Ai) is the

electromagnetic potential, (Ji) 18 the current. Now, when
the metric tensor (gij) defines the Lorentz metric on R4,
the Mazwell equations in their classical form are obtained.
When one substitutes for this a general Riemannian metric
(e.g. one which, physically, defines the gravitational
field) one obtains a set of equations which are called
(when one adds to them the Einstein equations for the

metric) the Maxwell-Einstein equations. They are very

important in Cosmology and Astrophsics.

In Mathematics, one has the advantage (in working with
covariant instead of ordinary derivatives) of dealing with
systems of differential equations in a form which has a
uniform and simple transformation law under change of co-
ordinates.

We will see later that it is precisely the tensorial
form of the transformation law for covariant derivatives

that is responsible for the invariant nature of the formulas
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and equations that are developed using Tensor Analysis:

Covariant derivative of contravariant

tensors and contravariant derivatives.

Suppose given a contravariant tensor

i...i
x 17

Its covariant derivative will be defined as a mixed tensor:

m-times contravariant, l-time covariant. As definition,

i,...1 1" "m ii,...1 i
x 1 mo_ X X 2 m {i%}

ii...1 i (i
oo x 1 m-1 {m}
ij

The contravariant derivative is then defined by raising the

covariant index to a contravariant one, via the metric

tensor:

1°"""m, "m+l me1d Lt
g

,J

One may treat this operation in a way which is analogous to

the previous treatment of covariant derivative.

Remark: Since Ricei and Levi-Civita do not deal with mized
tensors, they do not define the covariant derivative of a

contravariant tensor. I have added it because it is now
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such a standard idea.

One may say, in general, that there exists a law of
"reciprocity™” or "duality" which enables one to derive
from each theorem or formula of Tensor Analysis a recip-
rocal theorem or formula by interchanging the words co-

variant and contravariant, and using the metric tensor to

raise or lower indices.

Calculational rules

The well-known rules for ordinary differentiation of
sums and products of functions generalize to covariant

differentiation of sums and products of tensors. Suppose

that:
Yo oo oK T
1°m 1° m 1°"°™m
Yy i =X ... L
1 tmdreJp 19 tm J1e7p
Then,
Y. . = X. . + 7. . .
1peeip,i iy 1,1 100031
T i "X 1,1t
17wl Jp’ 1°°""m? Jy- Jp
+ X. A

Analogous rules hold for contravariant or mixed tensors,

or for sums and products of an arbitrary number of tensors.
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Consider a contracted tensor:

Yioooio X Z
1 m 1wl Ip
Then,
Jqee-d
Yi i ,i " Xi i j_,i Z ' P
1 m? 17wl dpe
Jqeeod
+ X. P Z ; P,
ipeeeipdq- .Jp , 1
For example, for a scalar such as
Y = 2'X,,
one has:
y. = zt.x. + X
J s 1 1,]
For a function f of xl,..., xn, consider the scalar
ol
Alf = f fi.
One has:
_ i i
(Alf)j = fj fi + f fi,j
= 2f'€. .
1,)

Remark: This material has undergone extensive generali-
zation, abstraction and algebrazation since 1900, both by
the classical Tensor Analysis school (see Schouten [1]) and
the modern geometers who base differential calculus on

mantifold theory.
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From the Tensor Analysis viewpoint, im order to free
the notion of "covariant derivative from its dependence

on the choice of metric, one defines an affine connection

to be a generalization of a tensor, namely as a system of

functions assigned to each coordinate system, labelled as

i

which have the same transformation law under change of

variables as do the Christoffel symbols derived from a
metric tensor.
In modern differential geometry, an affine connection,

typically denoted by v, (X, Y)»79 Y, is an R-bilineanr

X
mapping

V(R") x V(R") - v(R"),
such that:

Uy (FY) = X(f)Y + fu,.¥

Voyt = 7,7,

fx

for f e F(R™); x, ¥ ¢ v(R™)

To see the relation between the two definitions, suppose
first that we are given such a 9. For an arbitrary coordi-
nate system (x°) of R", let {;%} be the system of functions

‘8uch that:
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One readily verifies that the system of functions

{fi}

defined in this way transforms under change of coordinates

precisely in the way required by tensor analysis.

The {;%} are called the components of the connection.

Given a Riemannian metric

e: V(E") x V(R") - F(R"),

there is a unique affine connection - called the Levi-Civita

conneetion - such that:

X(o(Y, 2)) = o(V,¥, 2) + o(¥, V,2)

for X, ¥, Z € V(R").

VY - VX = (X, 7]

for X, ¥ € V(R"),

where [X, Y] is the Jacobt bracket of the two vector fields.

(See DGCV). It turns out that the components {;%} of this

connection are the Christoffel symbols, i.e. are defined in

terms of the metric tensor by formula (5.1).



THE ALGORITHM OF TENSOR ANALYSIS 53

6. RIEMANN CURVATURE TENSOR., SECOND COVARIANT DERIVATIVES

Let

be the given Riemannian metric. Let

i)

be the Christoffel symbols, given by formula (5.1) in terms

of the metric tensor
(gij ).

Set:

RY, L{B} E {3}
ijk axd ik axE ij 6.1)

: {imk} {nfa} ’ {flj} {mek}'

_ m
Reijx = 8emRijx- (6.2)

The (Rfjk) form a mixed tensor, called the Riemann curvature

tensor, which is of great importance in the theory of
Riemannian metrics. It may be found, up to a factor, in

Commentatio Mathematica by Riemann (See his Collected Works,

pP. 270). Its fundamental properties were worked out by
Christoffel.

The number of independent components of the covariant
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Riemann curvature tensor (i.e. (6.2)) is
N = nz(nz—l)
12
In particular, for n = 2,
N=1.
The only component 1is
Ri2120

or the ratio

1212
g

that we call X, which is the well-known Gaussian curvature

function for surfaces.

Let X, i be an arbitrary covariant tensor. Con-
1°"""'m
sider the second covariant derivatives X; i,i,je One
proeeipsds
can prove the following identities:
X, ... o~ XK.
ipeenip,isg Ipeaeipsdst
(6.3)
- rK + Rk X s o te,

RY . .Xy. . P G
ijij Kije.. i i,1j 11k13...1m

They show that X. . . . is not, in general, equal to
ipeeadpsisg

X, . ...
ipeeaipsdsi

Remark. Identity (6.3) is now called the Ricci identity.

I shall sketch in the Remarks how it can be proved.
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If the Riemannian metric ¢ is flat, i.e. if the coordi-

nate system (xl) can be chosen so that
- 1]
I Sijdx dx”’,
then the Riemann curvature tensor is identically zero,
hence the left hand side of (6.3) is zero, i.e. covariant
derivatives commute, in the same way as ordinary derivatives.

Here is one consequence:

If the Riemann curvature tensor vanishes, then an

(m+1)-tensor

is the covariant derivative of an m-tensor if and only if

X : .= X, . .
EERERE PR 11...J,m+1

Remark: To emphasize the geometric meaning of these ideas,
one should note a fundamental property of tensors:

If the components of a given tensor all

vanish in one coordinate system, then

they vanish in all coordinate systems.

Of course, this is a trivial consequence of the postulated
linear, homogeneous way that tensors transform. For
example, note that affine connections {;k} ao not behave

in this way - their components may vanish in one coordinate
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system, but not im another. However, the curvature tensor,
which is formed via formula (6.1) from the Christoffel
symbole, is a tensor.

Hepe is the way that the Ricei identity (6.3) tis

proved in the modern algebraic way. Recall (see the Re-

marks of Section 5) that an affine connection i8 a map

(X, Y) ~» VXY
from pairs of vector fields to vector fields, which is

R-bilinear, and such that:

vg (£Y) = X(£)Y + £9,Y (6.4)

Y = fVXY (6.5)

Vex
for £ ¢ FR™); X, Y ¢ VR™.
Now, (6.4) is the "obstacle" to V being of "tensorial”
nature. We can get rid of the "non-tensortial" term X(f)Y
by iterating covariant derivatives. Here is the technique
for doing this:
For X, Y, Z € V(R"), set:
R(X, Y)(Z) = Vg (Vy2) - Uy (Vy2) - V[X, Y]Z' (6.6)
Now, verify that the map

(x, Y, 2) - R(X, Y)(Z)

of v(R") x v(B") x V(R") - V(R")



THE ALGORITHM OF TENSOR ANALYSIS 57

is F(R")-multilinear. (Notice again that V itself is not;

the first term on the right hand side of (6.4) is the
obstacle. The magic is that this term is eliminated by the
epecific form taken by the right hand side of (6.6)). As
explained in DGCV (see also Hicks [1], Bishop-Goldberg [I1]
for this approach) this "module linearity" is the algebraic
equivalent of the "tensorial" transformation property intro-
duced by Ricei and Levi-Civita.

Given R defined by (6.6), define the "tensor” R;kz
by the following rule:

R(=27, 22 = gL, 2
J

sx sx sx gkt axl

(6.7)

What we must now verify is that, with V satisfying
(6.4), (6.5), and being the "Levi-Civita" affine connection
associated with the metrie, as explained in Section 5, and

with R( , J( ) defined by (6.6), R by (6.7), the R;k

i
Jke
are given by the Riemann-Christoffel formula (6.1).

12

Completing this calculation (which is left to the
reader) will verify the Ricei identity (6.3) in case X is

a l-contravartant tensor field. In fact, notice that what

we have done is use a typical trick of modern mathematics,
namely take a property of something that was discovered
by the old-fashioned, calculational, way, and, turning it
upside down, make it into a definition. In the case of

the Riceil identity, what we have done is to "axiomatise’,
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in this way only a special case. We must show that the
proof in the general case follows from the special case
and the properties of the covariant derivative operation.

I have already explained, in these Remarks, how
general tensors are defined in terms of the algebra of
tensor products of modules. DNow I want to discuss an
alternate useful way of defining them.

Recall that a vector field X ¢ V(R") is a derivation
map : F(R") » F(R"). It can be written, in local coordinates

(xi), as

axZ

FZ(Rn) is defined as the dual module to v(R™), i.e. each

6 ¢ FL(R") is an F(R")-linear map
v(R") ~ F(R").

In coordinates (xl), the components of 6 are the functions

6; defined by:

) = 6.
sx

6(

This assignment 6 - (ei) identifies FZ(Rn) with the 1-co-
variant tensors.

Consider now an m-multilinear map

w: V(R™) x...x v(R") » F(R"). (6.8)
“ -

g

m-times
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Assign to such a map an m-covariant tensor, with coeffi-

cients

©z 1
PR

in coordinates (z*), by the following rule:

w( o b e . .
1 m 700ty
3x 3x

one readily verifies that this assignment

w > (mi i )
JERRE

'identifies (with the automatically correct rules for the

transformation under change of variables!) the space of

such multilinear mapsand the space of m-covariant tensors.
Given an w indicated by (6.8), and an affine connection

(X, ¥) » VyYs one may now define the covariant derivative

of by X as another m-multilinear map, via the following

formula:
VX(m)(XZ,..., Xm)

= (X gseney X)) = w(VyXy, Koyunn,

- m(XZ, XZ""’ VXXm).

It turne out (again, a small "miracle", considering that

V ig not F(R")-bilinear) that the map

(X, X e K)o V(@) (X, X )

12 m
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v(R™) x...x V(R") » F(R")

\ J
v
(m+1)-times

is F(R") -multilinear, i.e. defines an (m+1)-covariant
tensor field. This tensor field, when written in terms of
a coordinate system, is the covariant derivative as defined
by Ricei and Levi-Civita, i.e.

( 3 .. 3 )- (6.10)

3x
The full Ricei identity, (6.3), now follows from (6.1),
(6.7), and (6.6). One can also readily extend the Ricecti
identity to mixed tensors, using this method. Identify an
m-covariant, p-contravariant tensor with an F(R")-multi-

linear map

or V(R™) xu..x V(R™) x FL(R") x...x FL(R") ~ F(R"),
€ - \ —

~
m-times p-times

and define the covartant derivative

VX(T)

by a formula analogous to (6.6).

7. THE INVARIANT NATURE OF THE EQUATIONS OF TENSOR
ANALYSIS

The equations which define the transformation law of
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tensors tell us that the property of all the components of
a tensor equalling zero is independent of the choice of
variables (xl,..., Xn). It is this property that is meant

when one says that a system of equations

X, . =0
1p...1)

has an invariant or absolute nature.

When one meets a new problem, to put the equations in
invariant form it suffices to express its main features in
terms of general coordinates, and then to substitute co-
variant differentiation for ordinary differentiation, in a
way that is almost always evident by the nature of the
problem. As we shall see in various applications, this path
should be followed when dealing with general theories and
when attempting a systematic development of such theories.

Here is a more practical general problem. One has
derived a system of equations (E) associated to a problem,
expressed in terms of variables y. One wants to transform
the equations using general coordinates without repeating
the steps which led to the derivation of the equations (E).
In order to do this it suffices to determine a tensor X
such that, in the y-variables, the components of X coincide -
perhaps only up to a common factor - with the terms of the
equations (E). It is then evident that, to have the equiva-

lent of equations (E) in coordinates (x), it suffices to
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equate to zero the components of tensor X in the coordi-
nates x.

Certainly, this method will not succeed in all cases,
but it often works in a quick and easy way. As we shall
see, this is particularly so for the equations of mathe-
matical physics. In fact, we are astonished to see the
difficult and devious routes that were formerly used to

arrive at the same goal.

Remark: This has indeed turned out to be a prophetic
statement! The method they describe here has served not
only to write known equations in elegant form but to derive
new equations. The most prominent example of this is the
Einstein gravitational equations. Today, this approach is
most alive in the field of Continuum Mechanics.

It would be interesting to formalize this argument
more precisely, using the better philosophical and meta-
mathematical tools that we have now. The ideas of the
theory of "categories" and "functors' should play some
role here. For example, "physical theories" should be
some sort of "category". "Equations" should be another

category. The assignment
"physical theories" - "equations”

should be a "functor". The equations described in terms of
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tensor analysis should be a "subcategory". I have found

it even more useful (e.g. in the other books in this series)

to express these, in Cartan's way, in terms of vector fields

and differential forms. Of course, in principle this is a

spectal case of Ricei and Levi-Civita's method, but in

practice the two are more distinct.






Chapter II

INTRINSIC GEOMETRY AS A CALCULATIONAL TOOL

1. GENERALITIES ON ORTHOGONAL CONGRUENCES

As basic references for this material, see Ricci
[1895] and [1896].

In this chapter we make use of geometric language,
with a Riemannian metric tensor ¢ defining the basic
"geometry."

Let (xi) be a l-contravariant tensor, which is non-
zero at each point.

Consider the differential equations:
dx _dx” o dx (1.1)

. . . n
These equations define in R’ a congruence of curves.

Remark: From now on, I will use the term vector field or

eontravariant vector as an alternate to l-contravariant

tensor. I will also use the terms 1-differential form or

govariant vector field as synonyms for "I-covariant tensor

fields. "
Notice that the transformation properties of contra-

variant vectors are precisely those which guarantee that

65
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equations (1.1) be invariant in nature, i.e. independent

of coordinates.

Remark: Here is what this means more explicitly. Suppose
(x*) i one coordinate system for R". Consider a curve in

r", parameterized in these coordinates by functions

t - xF(t).

To say that this curve satisfies (1.1) is to say that:

ax! 1 dx? .2
& plaxe)) = Tt = (1.2)
Now, choose different coordinates (yi). The game curve

will have coordinates
t >yt
The vector field will have components
(ai)
in these coordinates, which of course are related to xi

via the contravariant trangformation law:

i . 7
a’ = PO
ax?

Then, equations (1.2) will be satisfied if and only if:

1 2
& syt = Tl o) -

O0f course, a more formal and elegant way of deducing this
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"{nvariance”, without any caleulation, is to notice that
both

dxi and xi
ehange contravariantly, hence that their quotient

7
(not summed)

dx
Z

is "invariant." This <s the method indicated by Ricei and
Levi-Civita in the text.

Since the equations (1.1) do not change when the vector
field )\ is multiplied by a common factor, we suppose this

factor to be chosen so that:

gi 5 M= 1= A (1.3)

We will say that the vector field (xl) is the contra-

variant vector coordinate of the congruence of curves

represented by the equations (1.1), and that its reciprocal

differential form (xi) is its covariant vector coordinate.

Denote by ds the element of arc-length of a curve of
the congruence, i.e. the positive value of Vo. From (1.1)
and (1.3) we see that ds is the absolute value of the
ratios which appear in (1.1). We see that:

= b s
e (x(s)) s
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If one takes the positive sign in (1.4} as we shall do from
now on, this determines at each point of R™ a direction
pointing tangent to the congruence, that we call the posi-
tive direction.

If the metric ¢ is Euclidean, and if (xi) are orthog-
onal Cartesian coordinates, the xi (which coincide with xi)
are just the cosines of the angles that the curves of the
conguence make with the coordinate axes.

By definition (due to Beltrami), the angle a between
time tangent directions dxi and éxi leaving from the same
point P of R" is given (in terms of the metric ¢) by the

following formula:

i
B gijdx 5x7
cos a = 77

(gijdxildxj)

(1.5)

T 1/2°
(gijéx 5x7)

If one is given by two congruences, defined by contra-
variant vector fields
(1) and (1),

and if a denotes the angle between the curves of the con-
gruence leaving from the same point P of Rn, (1.3)-(1.5)

imply that:
cosS a = le. = X.pl = gij)\lu.'). (1.6)

1 1

The condition of orthogonality between the two con-
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gruences 1is then:
N uy o= 0. (1.7)

Now, we must consider n separate congruences, defined

by n unit-length contravariant vector fields
i i
A [1],..., 2 [n].

Suppose them pairwise orthogonal. Then, the following con-

ditions are satisfied:

MK = 57, (1.8)

where 6k3 is the Kronecker symbol, zero if j # k, equal to

1if j = k.

Remark: Here is where tensor analysis notations begin to

be awkward and inconvenient, leading to "un debauch d'indices,'
that Cartan complained about in his book "Géométrie des éspaces
de Riemann." Here, the j, k indices are not tensorial in
nature, but simple '"counting" indices. Ricei and Levi-Civita

handle this by denoting

xi[k] as xk/i.

I find this awkward, hence have substituted the one indi-
cated. In the final Remarks to this section I will indi-
ceate how these notations are enormously simplified in

modern differential geometry.
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We call each set of n congruences with the properties

just described on orthonormal moving frame. We denote by

{11, {2],..., [n]} the congruences which make up the moving
frame; by 1, 2,..., n the curves of the congruences passing
through a given point of Rn; and by sl,..., s™ the arc-

length parameter along these curves.

Remark: The term used in the text is ennuple orthogonale.

I have substituted the term ("répdre mobile”) used by

Cartan in his exposition of Riemannian geometry.

Expansion of a Tensor Field in Terms
of an Orthonormal Moving Frame

i be a covariant tensor field, and let
I

Let Xi
25

be an orthonormal moving frame. One can then write:

X, . = C; s [gadeeons L3 1. (1.9)
.01 Jpeeedp 4 1 i, m

Remark: It is meant that the summation convention applies

to jl,..., jm'

The coefficient functions C are determined by the

following formulas:
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il im
C. T X-l"'i N [Jl]...x [Jm], (1.10)
m
which tell us that they are invariants. One can extend
them easily to describe contravariant or mixed tensors.

In particular, if one considers the metric tensor

gij’ one has:

8§

u
-
[l =]
=

; A KIS [K] (1.11)

gtd = zoadpg k. (1.12)

=
I =]
=

Remark: VNotice that the summation convention breaks down
at this point, and we are forced to use summation signs!

The determinants
det (2 [3])
det (V' [51)
are then equal, respectively, to Vg and ngr.

Returning to equations (1.9) and (1.10), we see that

each system of tensorial equations

X . =0
SRR

may be replaced by equations:
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i.e. each tensorial system of equations may be transformed
in such a way that its left hand side is composed of in-
variants. We shall often make advantageous use of this

transformation.

Remark: It is confusing to understand emactly what is
meant here, so I will try to explain further. Recall that
by an "invariant"” they mean quantities which pemain_the

same when the coordinate system is changed. The m-covariant

tensor fields form an F(R") -module Tm. Each tensor field

Xi i determines an element of Tm' Now, an orthogonal
ooty

moving frame, once fixed, determines a bastis for Tm (via

tensor-product of modules, as we shall explain in the final

Remarks to this section), which is independent of the choice

of coordinates, and the Cil"'im are the coefficients of
the expansion of the tensor field in terms of this moving
frame basis for Tm. So, the coefficients do not involve
choice of the coordinates (xi), i.e. they are "invariants.”
This trick is that involved in the "Sehrjdinger-Heisenberg
picture,” which is familiar to physicists from quantum
mechanics.

Let us remark also that, since

i .
<oy, (1.13)
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if £ is a function of (xl,..., xn), we have:
Ve - L ) (1.14)
H dSJ

j =1,..., n.

Remark: Here is what is meant. Suppose s - xi(s) are the
coordinates of a curve, parameterized by the arc-length of
the Riemannian metric ¢ = dsg, which belongs to one of the
congruences - say the j-th - which make up the moving frame.
Then, (1.13) are the ordinary differential equations which
the coordinates of the curve must satisfy. Equation (1.14)

evaluates the direction derivative

2 flaie))

of any function f along this curve.

First Order Properties of the Metric

The metric properties of the lines 1, 2,..., n - which
are related to what one ordinarily calls the curvature of
Space curves - are described by the derivatives of the
A [3]. These derivatives are not all independent; they
should satisfy the nz(n+l)/2 equations obtained by differ-
entiating the relations (1.11).

Set:
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32 abrErad .

Yk@ = X [ I [Z])\h,i[J]’ (1.15)
and apply the covariant derivative. We find first the
nz(n+l)/2 equations mentioned above, in the following form:

i i _

X [k]xi’j[h] + X [h]xi’j[k] = 0, (1.16)

and one sees readily that they may be replaced by:

j k
e * Ty. = 0 (1.17)

which includes as special case

vi, = 0 (1.18)
(no summation).

The number of the independent invariants among the Yie is

then equal to

nz(n—l)
2z
Since this number is equal to
b

3 nf(me)
n(rl)

with n2 the number of derivatives of Xi[j] and nz(n+l)/2
the number of relations among these derivatives, one may

express the

in terms of the Xi[j] and the invariants y. Using the
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equations (1.15), we obtain these expressions in the follow-
ing form:

h
Yk,e[h] = iijijxk[i]xz[j]' (1.19)

>
In order to study the metric properties of the lines

1, 2,..., n, it then suffices to consider the invariants
y;k. In fact, the relation linking the metric properties
to the invariants are very direct and simple. We will not
at the moment examine in detail the geometric or kinematic
significance of each of the v; we have said enough for the
applications which follow. Let us add that, because of
their kinematical meaning, the invariants y will be called

the rotational coefficients of the moving frame

(11, (2},..., [n}.

Remarks: Despite their final claim of '"directness and
simplicity, " in fact we would now say that their formalism
i8 aqwkward for the analytic description of this material,
and that Cartan's (which will now be explained) is much
simpler. However, the underlying geometric ideas are the
same - choose objects (orthogonal congruences in Ricei and
Levi-Civita's framework, bases of differential forms in
Cartan's) which are "naturally" adapted to the Riemannian

metric,
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" Con-

Begin with a modern definition of "congruence.
sider V(Rn), the vector fields on B" (or I-contravariant
tensors). Recall that they are defined as the space of

derivations or first order linear homogeneous differential

operators: F(E™) > F(R"). V(R") is an F(R")-module.
FJ(Rn), the space of 1-differential forms (or l-covariant
tensor fields) is the dual module to V(R").

An element f € F(R") is said to be invertible if:

£ oe Fer™). (1.20)

(0f course, the condition for (1.20) is that f(x) # 0 for
all = € R?). Define an equivalence relation on V(R") as

follows:

X ~ Y iff. there exists an
inveptible f € F(R") such

that X = fY.

Definition. A congruence is an equivalence class of vector

fields. 4 veetor field X is said to belong to the con-
gruence if it belongs to the equivalence class. (Thus,
algebraically a "econgruence" is an element if the "pro-
jective space" associated with the F(R")-module v(r")).

To deseribe what Ricei and Levi-Civita mean by the

curves of the congruence, let us recall the basie notion
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of integral curve of a vector field. (See DGCV). In order
to avoid confusion with the letter "z'" standing for coordi-
nate, I will denote a point of R" (in the geometric sense)
by P. (The authors use this device also). t or s usually
denote curve parameters, varying over some interval of

real numbers.

Definition. Given X € V(Rn), a curve
t > P(t)

in B" is an integral curve of X if the following conditions

are satisfied:

A rpce)) = xir)ris)) (1.21)
for all ¢, all f € F(R™).

Thus, if (x¥) are coordinates for R", if

axz
i.e. (Xi) is the l-contravariant tensor, and if
t > xi(t)(z xi(P(t))) are the coordinates of the curve,
then conditions (2.1) are equivalent to:

dz”

7
Ji = Az (t)). (1.22)

Notice that these differential equations - when freed of

the dependence on the parameter t, are precisely equations
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2

(1.1), which define what Ricei and Levi-Civita mean by

"eurve of the congruence." Let us formalize this in the

following way.

Definition: Suppose given a congruence on Rn, as formal-
ized in the previous Definition. A curve t > P(t) is then

said to be a curve belonging to the congruence if there is

a vector field X belonging to the congruence such that the
eurve is an integral curve of X.
Another way of doing this is to say that a congruence

is a l-dimensional foliation.

So far, the Riemannian metric ¢ has not been used.
Recall that ¢ is a positive-definite, symmetric, F(R")-
bilinear map

v(R") x v(R") -~ F(R").
A congruence is said to be regular if there is a vector
field X belonging to the congruence such that:

o(X, X) > 0

at all point of R".

(Congruences well assumed to be regular, unless mentioned
otherwise.) One may then normalize X, multiplying if

necessary by a scalar factor, so that

o(X, X) = 1. (1.22)
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(Condition (1.22) is equivalent to (1.3)). X is then
determined up to t1. Fixing the "orientation' or "diree-
tion" of integral curves then uniquely determines X.

The integral curves of a vector field X satisfying
(1.22) are automatically in arc-length parameterization
with respect to the metric ¢. The authors' convention is
that "s" is to be used as parameter for suech curves. (This
i8 the meaning of (1.4)).

Two congruence are orthogonal if
(X, Y) =0

for X in the first congruence, Y in the second. Geometri-
cally, this means that curves of the two congruences always

meet at right angles.

A moving frame is a set

(Xysenos X))

of veetor fields which form an F(R")-basis of V(R"). We

can now denote a moving frame by
(x.).
T
Here "i" is a counting index. We shall see that there is
a good reason for putting it below, i.e. treating it as a

"eovariant" index. Now, this counting index has a differ-

ent geometric nature from the indices (which range over
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the same values, i.e. 1 to n) which parameterize the com-
ponents of tensors with respect to coordinate systems on
R". This faet is what foreces Ricei and Levi-Civita to
various notational contortions.

For example, suppose (xi) is a coordinate system for
R, They denote the l-contravariant tensor components of

X, in this coordinate system by

)\.(j).
7

Thus, we have:

x. =9 2 (1.23)

Apparently, Ricei and Levi-Civita were nervous about intro-
ducing "mized" temsors, so they did not use the more

natural notation

X.j
0
So far, this is not too bad. However, let

7
®

be the reciprocal 1-covariant tensors (i.e. 1-differential
forms) with respect to the metric ¢. They form a basis
for FJ(Rn). Ricei and Levi-Civita would denote them as

follows:

- J
0p ) = Ny sdw (1.24)
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Here the slash / signifies somehow that i and j have a
different geometric significance, which is true enough.
However, the slash / is sometimes (admittedly, rather
rarely) used as notation for covariant derivative. At any
rate, it is too close for comfort to the covariant deriva-
tive notation. That is why I changed the notation in my

translation to
AL[2].
S120
To be consistent, I also changed

Xi(j) to Xi[j].
This will require that the reader be careful when reading
the translation - but this 1s unfortunately in the nature
of things, since it is linked to the notational limitations
of elassical tensor analysis.

However, Cartan (notably in his book "Géomdtrie des
éspaces de Riemann", but also in his other differential
geometry work) brilliantly resolved these notational
problems by saying: Forget about the coordinates, and use
moving frames to describe the geometry, and tensors as
well. This restores the "purity" of the index notation
for tensors.

For example, suppose (X.) is a basis for v(rR"), and
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(0F) is the reciprocal basis for 1-forms.

Warning. w? is not the dual basis of differential forms,

t.e. the 1-forms 6" such that

z

]
[o4]

z
87 (Xx.)
J
In fact, we have:

i
X,) = 06(X., X.).
w ( J) (Xl, J)

T .1 _ i X
We see that o = 8" sff. 8(X., Xj) = 5ij’ i.e. (X,) ts an

orthonormal moving frame.

An m-covariant tensor T can then be written as follows:

Now, Cartan reasons, as long as one is expanding tensor
analysis by allowing such "non-holonomic representations'”
(this is the terminology that is sometimes used in the
elassical literature) why not choose them in the most con-
venient way. In the case of Riemannian geometry, this
convenient choice is where (Xi) forme a basis of v(r"™)
which is orthogonal with respect to the form ¢, T.e. which

satisfies:
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o(Xys X5) = 8, .. (1.25)

This i8 called an orthonormal moving frame. Its geometric

significance in terms of congruences should be clear.
The reciprocal basis w® of 1-forms then satisfies the

following relations:

n
¢ = I @, (1.26)
ket k Tk

(» means the symmetric product of differential forms.)

We shall now show that equation (1.26) is equivalent
to equation (1.11). This provides a key link between the
two formalisms. Suppose (z¥) is a coordinate system for

™. Then,

oy = Ay [k1da’. (1.27)

Now, the metric tensor (gij) 18 determined by:
- T, )
¢ = gijdx dxv . (1.28)
Substitute (1.27) into (1.26), and compare with (1.28):

gijdxl-de = i xi[k]xj[k]dxl~de.

k=1

Comparing coefficients on both sides gives relation (1.11).
In Cartan's theory the rotational coefficients v,

defined by (1.15), take a much more direct and important

meaning. Let (0") be a basis for I-forms satisfying (1.26).

It can be proved (see DGCV) that there are a set
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z
(wj )
of 1-forms satisfying (and uniquely determined by) the

following conditions:

do” = w. A o (1.29)
w. + w., = 0. (1.30)

Here, d and N are the exterior derivative and exterior
product operatioq,which are basic in Cartan's theory and
explained in detail in all modern differential geometry

books, e.g. DGCV. The mjl are called the conneetion forms,

since the affine connection V associated to the Riemannian
metric (hence also the covariant derivative) is determined

by the following relation:
7 _ 7
s (X) = w (VXXj) (1.31)
for all X € V(R™).

The rotational coefficients are now determined as follows:

T T k
S AR FTAL S (1.32)

They are "invariants", in the sense that they are inde-
pendent of coordinates, although they are of course de-
pendent on the choice of moving frame, - and in fact trans-
form in a non-tensorial way on change of moving frame.

However, the curvature forms
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2.t = do.t - 0.k A mk' (1.33)

have the property that their coefficients RjkeJ’

do change in a tensorial, i1.e. linear-homogeneous, way

on change of orthogonal moving frame.

2. INTRINSIC DERIVATIVES AND THEIR RELATIONS

We must establish the relations between

3 of 3 af
— and —
35X as) 3sd as<

because one may not commute the operations represented by

the symbols

3 3
—— and .
as? ask

In fact, if one differentiates the identity (1.14), one

has first:
3 of k. k .
— = = MIjlf . o+ £ (5],
axt 3s) k,i k,i
and then:
3 oaf i 3 oaf
— 2 = T[] S =
as” as? ax* asJ

I

SIS E R T VNS
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We derive from this the following relations, which determine

how —EE and 2 commute:
3s

as
3 oaf 3 oaf i i, aof

s e i s TS R TR I €I S
as? as as® ast i jk kj aSi

Remarks: I have not given the full details of the argument
given by the authors leading to (2.1), since it ie much
more readily derived by Cartan's methods.
First, let us interpret what
af
asj
means. Recall that (Xj) is an orthonormal moving frame.

The curve
s/ » pPrs?)

is the integral curve of Xj' Since Xj has length +1 in

the metric, 7 18 automatically the arc-length parameter.
Thus
3 - x.(f). . (2.2)
3s? J
Hence, the left hand side of (2.1) is:
Xj(Xk(f)) - Xk(Xj(f))' (2.3)

Now, it is well-known (see DGCV again) that (2.3) equals
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where [Xj’ Xk] is the Jacobi bracket of the two vector
fields. Further, using the relations between Jacobi

bracket and exterior derivative,

2 _ Z 2
dw (Xj, Xk) = Xj(w (Xk)) - Xk(w (Xj))
z
- w ([Xj’ Xk])
z
= - ([Xj, Xk])-

Hence,

[x., x

i %l )X (2.4)

_ Z
= -~ do (Xj’ Xk

Recall now, from the Remarks of Section 1, that:
de® = w.® A mJ, (2.5)

7 2

R PR (2.6)

Relation (2.1) results from putting together these relations.

3. NORMAL AND GEODESIC CONGRUENCES. ISOTHERMAL FAMILIES
OF SURFACES. CANONICAL SYSTEM OF A CONGRUENCE
A congruence of curves in a Riemannian metric space is
said to be normal if it is composed of the orthogonal tra-

jectories to a one-parameter family of surfaces
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f(xl,..‘, xn) = constant.

Suppose given an orthogonal moving frame, composed of con-
gruences [1],..., [n], we propose to determine the neces-
sary and sufficient conditions that the congruence [n] is
orthogonal.

Clearly, for this to happen it is necessary and suf-
ficient that each tangent direction

éxl

normal to a curve of [n] be tangent to the curve f(x) =

constant, i.e. that:

Ef—i—éxl = 0.

3X
As before, let Xl[j] be the components of the vector field
which makes up the j-th congruence. Since the congruences

[1],..., [n) are orthogonal, the vectors
211,..., 2 n-1]
£ill up the orthogonal space to Xl[n]. Hence, we must have:
ip. _
IS [J]fi =0
for j = 1,..., n-1.

Let Xj be the vector fields which make up the moving frame,

i.e.
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X, =ty =2
j S

Then, the condition that [n] be normal is that:

u
o

X5 (£)

for j =

[
—
-
-
=]
|
—

The condition that such an f exists is that the first order
differential operators represented by the differential

operators Xl,..., Xn_l be completely integrable, i.e. that:
The Jacobi brackets

[Xj, Xk] are linear combinations of

(3.1)
Xl,..., Xn—l’ for 1 = j, k = n-1.
Rewrite (2.1) as
_ i i
[Xj’ Xk] = (ij Y'kj )xi' (3.2)
Compare (3.1) and (3.2). It implies the following
Lﬂ;l%iﬂ;él conditions:
n _ n
ij = ij (3.3)

for 1 = j, k = n-1,
Let us sum up as follows:

The necessary and sufficient conditions

that the congruence [n] be normal is

that (3.3) be satisfied.
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The following condition also holds:

Each congruence of the orthogonal moving

frame is normal if and only if:

ijl = 0 for each triple (i, j, k)

of indices which are all distinct.

I1f conditions (3.3) are satisfied, then the Xj[n] are
proportional to the derivatives fj of a function £, i.e.

there is a function p such that:

£. = ux.[n],
; uJ[n]
which also satisfies:
f007 fi5e
Using formula (1.19), we have:
£ 1 = mrylnl ¢y ME TR L] (3.4)
Set:

¥y = log u.

The function ¢ satisfies the following equations:
Uihend vy Mg [l e
= g Inl ¢ vy [ e]
k™1 ie "k j

After multiplying these equations by ) [n] and summing on

j, one obtains the following equation:
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n-1
b = g vz e Py, (3.5)
i-

with v remaining indeterminate.

Isothermal Families of Surfaces

A one-parameter family of surfaces f(xl,..., xn) =
constant) in R" is said to be isothermal, and f is said to

be an isothermal parameter, if it satisfies the following

equation:
g e . o= 0. (3.6)
(We shall see later on that this equation is a generali-
zation of the equation for harmonic functions in Euclidean
space).
Now, any family of surfaces

f(x) = constant

determines the congruence of orthogonal trajectories, i.e.
the curves which are perpendicular to the surfaces. Thus
one can always find an orthonormal moving frame, whose

rotational coefficients satisfy the following relations:
n _ n
ij = ij (3.7)

for 1 = j, k = n-1.

Remark: Here is what is meant: Choose the basis
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(X Xn) of V(R") to be orthonormal with respect to

JEREEN
the metric ¢, and so that:
- grad f

X = >
" ofgrad f, grad f)1/2

where "grad f" is the gradient vector field associated with
f, as defined by the metric ¢. (See DGCV for definition

of "gradient').

We now propose to establish the necessary and sufficient
conditions that a family of surfaces be isothermal, and to
determine its isothermal parameter.

Substitute in (3.6) the expressions (3.4) for the
covariant derivatives of fj; we obtain the following equiva-

lent equation:

oy ; Rt

Remark: Recall that QEH = Xn(w).

as
This determines the function v of formula (3.5) as

follows:
n-1 n
v = - z Vs e (3.8)
i=1 M
The necessary and sufficient condition that a family of

surfaces whose orthogonal trajectory congruence is [n] be
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isothermal is that, after substituting the value of v given
by (3.8) into the right hand side of (3.5), equation (3.5)
be solvable for y. After determining v, f is determined
by:

- v
£ = Ce¥xiin],

f = Cwaxj[n]dxj +c,

with C and c arbitrary constants.
One sees easily that the integrability conditions that

(3.5) be solvable for y are the following equations:

J j
Xj(v) * Xy lrpn) vy

n-1 ) (3.9)
i i i
+ oy Oy S vni ) =0
jop 'nn jn nj
n-1 i
Xg Crpp” )+ 2 Ynn Yk
i=1
-1 C (3.10)
k n i i
X + 2 .
J(Ynn ) io1 Ynn Yk_] s

If the congruences [1],..., [n] are all normal, i.e. if
the curves of the congruences are intersections of n

orthogonal surfaces in Rn, these equations reduce to the

\

following simpler form:
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X; )+ X G ) e vy =0 (3.11)

Xy Cran?) = X Croy ) (3.12)

for 1 = 3j, k £ n-1.

Geodesic congruences. See Ricci [1896a] and [1898, Part

I, Chapter IV].
A curve in R" is a geodesic of the metric given by
the form ¢ if the first variation of the integral
de = f(gljdxlde)l/z

vanishes. We will say that a congruence [n] is a geodesic

congruence if all the curves belonging to the congruence

are geodesics. If [n] belongs to an orthonormal moving
frame [1],..., [n], the conditions that it be geodesic are:
i
Yon = 0. (3.13)

Notice that this equation indicates geometrically that y's
have an invariant character. In particular, if the metric
is Buclidean, equations (3.13) give the intrinsic charac-

terization of rectilinear congruences.

Geodesic Curvature of a Congruence

If the congruence [n] is not geodesic, and if one con-
siders R™ as a submanifold of Rn+m’ with the metric form on

R™ just that induced from the Euclidean metric on Rn+m’ we
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may represent in the following way the geodesic curvature

of a curve of [n] passing through the point P of R":

The length of the geodesic curvature vector is

given by the formula
2 n-1

y = I (r
i=1

- HE. (3.14)

The direction of the geodesic tangent vector is
n-1

L

75 nixj[i]. (3.15)

n

This vector has the following properties:

1) It is identically zero if and only if the con-
gruence [n] is a geodesic congruence.

2) Its projection on the tangent plane spanned by
the tangent vectors to the curves [i] and [n]
is equal to the curvature of the projection of
the tangent vector to [n] on the same plane.

3) It is perpendicular to [n}.

Because of these properties, we will call this vector

the geodesic curvature and the curves which belong to con-

gruence generated by the covariant vector field by the

curves of geodesic curvature of the congruence n.

Canonical Systems with Respect to
a_given congruence

Given a congruence [n], one may, and in many ways,
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choose (n-1) other congruences which form with [n] an
orthonormal moving frame. Among all the possible choices
of these (n-1) other congruences, we are going to define
a certain subset, whose elements we will designate as
canonical with respect to the congruence [n].

Let Xi[n] denote the normalized l-covariant tensor

field which defines the congruence [n]. Set

ZZij = Xi,j[n] + Xj’i[n],

and consider the following systems of algebraic equations:

x; [nlot = 0. (3.16)

alnle v (2 + mgjk)ck - 0. (3.17)

In the equations (3.16}-(3.17), the

n
Ly Wy T yeavy O

unknowns. Now, together, they form a system of (n+1) 1linear,
homogeneous equations in (n+1)-unknowns

1 n

By T seeey T

with © a parameter. Let A(w) denote the determinant of the
system, a polynomial of degree (n-1) in . Consider the

equation

A(w) = 0, (3.18)
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which has real roots. Denote these roots by @ppeees O 1y
and suppose first that all the roots are simple. If one

substitutes into (3.16) and (3.17) the value

w = (Di,

and solve for the corresponding cl,..., cn, they form the
components of a l-contravariant tensor field, which we

denote by:

oI 1],
They are determined - up to a sign - by the condition that
they be of unit length. As i varies, they determine (n-1)
congruences [1],..., [n-1], which are orthonormal, and
together with the given congruence [n], form an orthonormal
moving frame for R™. In this case, the canonical system
is completely determined.

If the roots of the equation (3.18) are all equal,
every orthogonal system of (n-1) congruences forms with n
a2 moving frame which satisfies equations (3.16) and (3.17),
and hence every orthonormal moving frame, such that the
given congruence is the n-th element, may be regarded as a
canonical system.

In general, let

Wpseeny @
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be the distinct roots of the equation (3.18), and p,..., Pp
denote their multiplicities, and set in equations (3.16)-

(3.17) the values:
® = wp, h=1, 2,..., m.

One may for each h, determine Py orthonormal congruences
whose contravariant components are solutions of (3.16)-
(3.17), with o = @, . 0f course, such congruences are only
determined up to an orthogonal transformation of order Py

i.e. the general solution of these equations depends on

P, (py-1)/2
arbitrary functions. One may now consider one as canonical
orthonormal moving frames consisting of Py orthonormal con-
gruences satisfying (3.16)-(3.17) for o = w15 Py satisfying
(3.16)-(3.17) for o = w55 etc. The family of such canonical

moving frames thus depends on
m
2 pp(p,-11/2
p=1 PR

arbitrary functions.

When [1],..., [n] are orthonormal congruences such
that [1],..., [n-1] are elements of a canonical system
with respect to {n], the following characteristic equations

are satisfied:
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n n _
ik + Tkj T 0. (3.19)
If the congruence [n] is normal, the ijn are all zero for
j # k in the canonical system for [n]. In this case, the

congruences of this system have a simple geometric interpre-

tation: They determine the principal curvatures of the

surfaces which are orthogonal to the curves of [n]. (For
the theory of curvatures of hypersurfaces see Lipschitz
[1870].)

It is possible to give a simple geometric interpre-
tation for the canonical system when n = 3. (See Levi-
Civita [1897). It would be feasible to generalize this
interpretation to manifolds of arbitrary dimension, but

we pass on to other topics.

Remarks:
I shall now describe how these ideas may be described
in the modern way. Let
o: V(R") x v(R") - F(R")

be a positive definite, symmetric F(R")-bilinear form which
defines a Riemannian metric on R". We shall extend ¢ to

define F(R")-linear and bilinear maps

o: V(R") ~ FL(rR")
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o: FLRY) x PLR™) - F(RT),
by means of the following formulas:
e(X)(Y) = o(X, Y)

for X, ¥ € V(R").

-1 -1
¢(m1, m2) = ol (ml), @ (mg))

(3.20)

(3.21)

In terms of coordinates (x%), here is the description

of these maps:

3 3
(p( Ty ———) = g.
az® ax? L

2 - J
¢(axi) = gi.dx

¢(dxi, dxj) = gij.
If f ¢ F(R™), the vector field

grad f = o 1 (df)

is called the gradient of f. In coordinates,

grad f ¢_1(§fz>dxl)

a3x
_ gf__gij S
axl a3x

(3.22)

i.e. grad f is a l-contravariant tensor field whose com-

ponents are:

- g’ 2L - gjif;

axl
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i.e. grad f is the reciproecal tensor to df.
Wee see that a given congruence is normal if and only

if there is a function f such that

grad f is a vector field
(3.23)
of the congruence.

To see what the condition for this is, Let X € V(E") be a

vector field of the congruence normalized so that

(X, X) = 1.

w = o(Xx) € FL(R").
Then,
plw, w) = 1.

® 18 the covariant tensor field whieh is reciproecal to X.

Condition (3.23) is equivalent to the following one:
df = how,

for some function h. In turn, this equation means that

the Pfaffian equation

is completely integrable. The condition for this is:

w A deo =0 (3.24)
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This can be made explicit as follows:

(X. . - X. .)dxi A dxj,

do =
154 Js?

Dol

where (Xi j) is the covariant derivative of the tensor
B
field X,. Alternately, one can follow the route suggested

by the authors: Set
Ho={Y ¢ v(R"): o(¥, X) = 0},

i.e. H is the orthogonal complement to the congruence in

v(R"). ‘"Normality" meane complete integrability of H,

i.e.

[H, H] < H.

Isothermal Surfaces and the Laplace-Beltrami Operator

Given Y € V(Rn), set:

. ig
Y = (v, Y, X.), 3.26
div g X, J) ( )

where (X.) i¢ an arbitrary F(R")-bases of v(R"), and:
915 = gx,, Xj),
(5°7) = inverse matriz to (g;;). div Y is called the

divergence of Y. In terms of classical tensors, if
y = (YY),

then
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div ¥ = ¥°, .. (3.26)

’f
Given f € F(Rn), set

A(S)

div (grad f)

aiv (575 )
- _ . td
= (g fJ)L =49 fJ,L

The second order linear differential operator f - A(f) is

called the Laplace-Beltrami operator of f. A function f

i8 satid to be harmonic (with respect to the given Riemannian

metric) if
ACF) = 0.

The calculation given in the text determines the con-

dition that a vector field X € V(R") such that
(X, X) =1
must satisfy in order that:
X = h grad f, (3.27)

for some pair (h, f) of functions in F(R") such that
A(f) = 0.
It is important to keep in mind the physical meaning

of the term "isothermal.”" In case

n =3,
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o = éijdxldxg, a solution f of the harmonic equation
Af = 0

may be thought of as a solution of the Heat or Diffusion

equation:

of .
3t - CAf:

which is independent of t. For example, "temperature"
‘satisfies such an equation, and harmonic functions may be

thought of as time-independent temperature functions.

Points lying on the surface
flx) = constant,

where f is a harmonic function, may then be thought of as
having "equal temperature," whence the term "isothermal"
for such surfaces.

There are several papers (e.g. #166, 167, 168, 172)
in Vol. 2 of Part III of Cartan's Collected Works which
deal with the theory of isothermal surfaces. They are
recommended both as a summary of the classical results and
for their interesting new detail, particularly the links

with the theory of Lie groups.

Geodesic Congruences

Let X be a vector field, belonging to a given con-



INTRINSIC GEOMETRY 105

gruence, normalized so that
o(X, X) = 1.

The condition that the congruence is geodesic, in the sense
that all curves of the congruence are also geodesics of the

metric ¢, 18 then that:

Geodesic Curvature of a Congruence

Let X be a vector field, belonging to a given congru-

ence, normalized so that
o(X, X) = 1.
Let:
H={Y € V(R"): o(X, ¥Y) = 0}. (3.28)

In words, H consists of the vector fields which are per-
pendicular to X. V(R") is thus a divect sum of H and the
one-dimensional submodule spanned by X.

Now, set:

Y = projection of VyX in H. (5.29)

The congruence determined by Y is then the geodesic curva-

ture congruence of the congruence X.
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Canonical System of a Congruence

Let X continue as a unit-length vector field generating
a congruence, and let H be defined by (3.28). Let a be

the map
a: H ~ H
with the following properties:

o(a(¥), Z)

Lootx, v,z + v,¥) (5.30)

Y

ol(a(Y), Z) o(Y, a(z)) (3.31)

for Y, 7 € H.

It is readily seen that a is an F(R")-linear map. Further,
it is (by (3.31)) symmetric with respect to the positive
definite form (3.31). (This accounts for the fact that
its eigenvalues, which are the numbers Wyseens wp of the

text, are real numbers).

Definition. An orthonormal moving frame of vector fields

(X Xn) is said to be a canonical system for the con-

73

gruence X if the following conditions are satisfied:

X, is an etgenvalue for a,

for 1 =1 = n-1.
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As Ricei and Levi-Civita remark, the canonical system
is essentially uniquely determined if all the eigenvalues
of a are distinet. In the case some are degenerate, the

canonical system is determined up to qwn F(R")-linear map
B: H > H

which s an isomorphism of the metric form ¢, and which
commutes with a.
If H is completely integrable (i.e. X is a normal

congruence), then a is essentially the second fundamental

form (with respect to the metric ¢; see DGCV) of the
maximal integral submanifolds of H.

This geometric concept has reappeared recently in
General Relativity and Cosmology. Here, the metric ¢ is
non-positive, and the a may not be a diagonalizable map.
However, it is often applied to the case where ¢ is a

hyperbolic metric, i.e. its normal form has 1 plus and

(n = 1)-minus signs, and X is a time-like congruence, i.e.

(X, X) = 1.

In this important case, ¢ restricted to H is negative defi-
nite, and the authors' ideas will carry over. Physically,
the curves of the congruence X are thought of as defining

a "fluid flow"; the rotational coefficients ijl defined
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by the canonical systems are then important physical in-

variants of this fluid flow.

4, PROPERTIES OF THE ROTATIONAL COEFFICIENTS AND
RELATIONS TO DARBOUX' THEORY OF MOVING FRAMES

We have seen in Section 2 that there are nz(n-l)/Z
rotational coefficients ijl associated to an orthonormal

moving frame (Xi) of vector fields.

Remark: Keep in mind that they can be defined in the modern

notations as follows:

v, X, = v X (4.1)
x4k T Yk e :
This identity enormously simplifies the calculations.

These functions ijl satisfy certain first order differ-
ential equations. Set:

vike' = X Crp - Xylrg,
* Yijh(Ykej - Yekj) (4.2)
* ?(Yherikj R ATRL
Suppose that Xi[j] are the components of Xj' Then, one

has:
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Yikzh = Rogen™ RIS [k 2], (4.3)

where R( ) is the (completely covariant) Riemann curvature
tensor. These equations give us the necessary and suffi-
cient conditions that the functions yjki(x) given in
advance on R may be regarded as the rotational coefficients
of an orthogonal moving frame with respect to the given

Riemannian metric.

Remark: In other words, that there exist vector field (Xi)
which are orthonormal and which satisfy (4.1). In the
Remarks at the end of this section I will describe the
modernized version of Cartan's way of dealing with this

question.
For n = 2, equations (4.1) reduce to a single equation:
1 2
XZ(YZI ) + Xl(‘{'lz )
1,2 2.2
= (YZ]_ )7+ (le )7+ K, (4.4)
where K is the Gaussian curvature. This formula is well-

known in the theory of surfaces, since yle and Y122 are

the geodesic curvatures of the curves belonging to the

congruences [1] and [2].
For n = 3, these equations are the generalization of

those which link the components p, q, r of the rotations
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in Darboux' theory of moving frames. (See Darboux [1894;
T. I, Chapter V). If the metric ¢ is the Euclidean metric
for RS, the tangents to the curves 1, 2, 3 determine at
each point P of space a set of three orthonormal vectors
in RS. As the point P "moves' the three orthonormal
vectors 'move'", and this geometric idea is the reason for

calling them "moving frames." The rotational coefficients

i T4

iji give us the infinitesimal rotations Pi» 4a
(i =1, 2, 3), which define the infinitesimal displacements
along the curves 1, 2, 3. See Levi-Civita [1899] for
further developments.

One may see in this example how the methods described

in this paper subsume and possess all the advantages of

those procedures already known.

Remarks: In order to see the relation between the ideas
in this section and modern ideas it is most convenient to
describe, in the language of manifold theory, the notion
of "frame bundle."

Let N be a manifold of dimension n. (This now replaces
R

R F(N) denotes the ring of ¢”, real-valued functions

on N. V(N) denotes its derivations, i.e. the vector fields.

For p € N, Np denotes the tangent vector space to N at p.
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Each X € V(N) determines an X(p) € Np, called its value

at p.
Suppose given a Riemannian metric on N, i.e. an

F(N)-bilinear, positive-definite, symmetric map
¢: V(N) x V(N) - F(N)

It possesses a value at each point p € N, which is an

R-bilinear, symmetric, positive definite map
¢: N_x N_ > R.

In fact,
o (X, Y)(p) = o(X(p), Y(p))

for X, Y € V(N).

Definition. A set (450, v ) of vectors in Np is an

orthonormal frame at the point p ¢ N if:

¢ (v, vj) = 5ij' (4.5)

Definition. The (orthonormal) frame bundle to N, denoted

by FR(N), consists of the set of all ordered (n+l)-tuples
(ps Vyseres ¥ )5

where:
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(UZ,..., vn) form orthonormal

frame at p, i.e. satisfy (4.6).

Let

n: FR(N) - N
be the map defined as follows:
mT(p,s Vysees vn) = p.

w, called the projection map, defines FR(N) as a (local

product) fiber space over N. It is, in fact, a principal

fiber bundle over N, with structure group O(n, R), in

the sense described in Steenrod's book [1951]. (Indeed,
this example was the prototype for the "principal fiber
bundle” notion!) .

Now, we have already defined an (orthonormal)

moving frame as a set (Xi) of vector fields such that

w(Xi, Xj) = Sij'

Such an object defines a cross-section map
c: N - FR(N),

since we can map

p - (p, Xl(p),..., Xn(p)) = olp)

Thus, the notion of "orthonormal moving frame' and "eross-
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gections of FR(N)" are essentially identical.
One proves now that there are 1-forms (ml, miJ)

on FR(N) with the following properties:

1) (ml, w.9) forms an absolute parallelism for

FR(N), i.e. an F(FR(N))-basis for F.(FR(N)).

2) w.d o+ w.t =0

2 J
3) de® = w.* A&7
J
4) c*(ml)(Xj) = 5jl, where

ol(p) = (p, Xi(p)senss Xn(p)) for all p € W,
i.e. is the cross-section map assigned to the

moving frame

(Xl""’ Xn)'

Condition 4 then means that o*(w’) are the differential
forms which are associated via the metric to the vector

fields Xi'

Let R, ,° be the funetions on FR(N) such that:

Jke
Z 7 k _ Tk 2

dmj - A w = Rjk@ o™ A w¥. (4.6)

Here is a statement of the problem considered in this

8ection. Suppose that ijl are functions given on N.

c: N - FR(N)

8uch that:
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*(m.i
ey

) = ijic*(mk) (4.7)
This is a problem which is best set up in terms of E.
Cartan's theory of Exterior Differential Systems. The
Integrability Conditions are derived by applying the

exterior derivative operation to both sides of (4.7),

and using relations (4.5) and (4.6).

5. CANONICAL FORMS FOR TENSORS ASSOCIATED TO THE
RIEMANNIAN METRIC

In problems of Geometry, Physics, Mechanics, etc.,
one is almost always led to system of equations which have
an invariant nature, (See Section 7 of Chapter I), and in
which one encounters a Riemannian metric, and several asso-
ciated 1 or 2-tensor field and their covariant derivatives.
For simplicity, we restrict attention to the case of one
associated tensor field.

Suppose first that this tensor field is a l-covariant

tensor field

T
1

We associate to it a congruence [n], whose curves are

defined by the equations:
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The normalized covariant component of this congruence is:
AInl = < /0,

with

We will say then that the following formula:

Ty T D)\i[n] : (5.1)

gives the canonical form for the tensor =.

The next step is to give canonical forms for the co-
variant derivatives of ©. To do this, proceed as follows.
Start by defining (n-1) congruences which form, with [n],
an orthonormal moving frame. Further, one may suppose -
as explained in Section 3 - that they form a canonical
system with respect to the congruence [n].

One obtains in this way a system of equations which
is closely linked to the essential features of the problem.
The geometric interpretation of the problem, which is
nearly always simple and natural, usually characterizes
the equations in an efficient and useful manner. Often,
writing the system in this way will provide suggestions

for its solution and for a choide of independent variables.
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If the equations can be solved, one may at the end intro-
duce ordinary notations, which will give the canonical
solution of the problem.

We are the first to admit that these methods (i.e. a
"canonical' choice of moving frame) will not eliminate
the essential difficulties of the problems to which they
are applied. On the contrary, after transforming the
equations in this way all the difficulties remain. These
methods only teach us how to avoid the accidental obstacles.
Often, starting from a relatively complicated set of equa-
tions one ends up with a simple and tractable canonical
system, leading to interesting and unexpected successes,
where the ordinary methods would have almost certainly
failed.

Here is a method for dealing with a symmetric Z2-tensor

(aij). Consider the eigenvalue equations:

(a55 - pgij)XJ = 0. (5.2)

Solving them for a non-zero set of A's requires that p
& q

satisfy a polynomial equation of degree n (the character-
istic polynomial of the matrix ajl = glkakj) with well-

known properties. All the roots of this equation are

real, and their substitution into (5.2), then solution

for the \'s, determines an orthonormal moving frame
» g
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[11,..., [n] such that:

ST oy [KI A [].

This is the canonical form for the tensor field o5

Starting with these expressions, one transforms the
equations of problems involving such tensors, and one
arrives often at canonical solutions, analogously to what
has been done for 1l-tensor fields.

We can deduce certain general rules from these ex-
amples. We have seen that the components of an m-covari-
ant tensor field may be expressed as homogeneous functions

of degree m of the components of an arbitrarily given

reference moving frame. In the case m = 1, we have ob-

tailed a canonical form of a tensor field T by choosing
a moving frame [1],..., [n] such that, in the general

formula for =,

Ty T ;Cj)\i[j]’
J
we have:
€1 = ¢ = R

The rule is then that the canonical form is determined by

the choice of moving frame so that a maximal number of

coefficients of < vanish.
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Similiarly, we have determined the canonical form for
a symmetric 2-tensor i3 by choosing the moving frame so

that, in the general formula

ST ety [hIN 2],

one has:

Cyxsz = 0 for k # 2.

Again, notice that the canonical form is determined by
choosing the moving frame so that a maximal number of
components vanish.

In general, to treat a covariant tensor of order m,
choose the moving frame so that the components of the
tensor field with respect to that moving frame take the
simplest or most convenient form. After that, to obtain
the intrinsic equations of the problem one has only to

follow very simple and uniform procedures.

Remarks: This Section sketches a method for dealing with
geometric and physical problems that was later extensively
developed by Cartan. He called it "the method of the
moving frame." In modern fiber bundle language, it can
roughly be described as follows: (It is notoriously

difficult to formalize precisely. See my paper [1965]).
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Describe the situation first in termes of a principal fiber
bundle with a certain structure group G. (In the case
here, G = 0(n, R), so that the bundle is the frame bundle
of the Riemannian metric.) Then, try to reduce the struc-
ture group to a subgroup in a "natural” geometric way,
choosing the subgroup to be as small as possible.

Of course, "reducing the structure group" is a con-
cept that also appears in topology. (See Steenrod [1851]).
However, in thie case there are not usually topological '
obstructions (in fact, the base space of the fiber bundle
ts usually Rn), but one wante to find reductions which

satisfy certain sets of differential equations. Despite

the confidence displayed here by Ricci and Levi-Civita
about the ease in application of the method, it has turned
out to have certain mysterious features which have inhibited
full development. However, I do believe that understanding
better how the method works will lead to new progress in
differential geometry - the promise anticipated by Riccti
and Levi-Civita is still there!

There is also a more intelligible purely algebraic
problem involved here, involving what is now known ae

invarignt theory. (See Dieudonné and Carrel [1971]). Let

G be a group of linear transformations on a vector space V.
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(In the situation discussed by the authors, V = Rn,
G = 0(n, R), the group of n x n real orthogonal matrices.)
Let
m
T (V)
p

denote the space of mixed tensors on V which are m-times

contraqvariant, p-times covariant. The action of G on V

m

determines a linear action of G on Tp (V). What is in-

volved 18 a canonical form or fundamental domain for the

action of G on Tpm(V), a subset of Tpm(V) which slices
across the orbits of G, meeting the "general" orbit in
precisely one point. In the case at hand, where G is
compact, it is not difficult to show the existence of such
a subset, and even to prove useful facts about its proper-
ties. (See DGCV, Chapter 25). In the case G is non-
compact (which would be of interest for relativity, e.g.
G = 0(1, 3)), the relevant theory does not exist, although
with existing tools a fair amount could be done.

There is a suggestion here of a general method for
constructing such "fundamental domains'" that has, to the

best of my knowledge, not been worked on systematically.
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(In the situation discussed by the authors, V = Rn,
G = 0(n, R), the group of n x n real orthogonal matrices.)
Let

m
r 14
p (v)

denote the space of mizxed tensors on V which are m-times
eontravariant, p-times covariant. The action of G on V
determines a linear action of G on Tpm(V). What is in-

volved is a canonical form or fundamental domain for the

action of G on Tpm(V), a subset of Tpm(V) which slices
across the orbits of G, meeting the "general" orbit in
precisely one point. In the case at hand, where G is
eompact, it is not difficult to show the existence of such
a subset, and even to prove useful facts about its proper-
ties. (See DGCV, Chapter 25).
In the case G is non-compact (which would be of interest
for relativity, e.g. G = 0(1, 3)), the relevant theory
does not exist even up to the level of my work in the
papers cited above, although with existing tools a fair
amount could be done.

There is a suggestion here of a general method for
constructing such "fundamental domains"™ that has, to the

best of my knowledge, not been worked on systematically.



122 INTRINSIC GEOMETRY

Namely, on each orbit of G acting on Tpm(V), choose the

element such that a maximal number of components with

respect to a fixed basis of V vanish.




Chapter III
ANALYTIC APPLICATIONS

1. CLASSTFICATION OF QUADRATIC DIFFERENTIAL FORMS

Let ¢ be a positive definite quadratic differential

form in the n variables xl,..., . If p is sufficiently

large it is possible to choose n + p functions

yl,..., yn+“

of the x's such that:
o = (@yh? e @y e @l

Let m denote the smallest possible value of u. One has:
0 =m =

n{n-1)
——.

m is called the class of the Riemannian metric p. m can

serve to classify metrics.

For example, if n = 2, the class is zero or one.

The metrics of class zero (of any number of variables)
are characterized by the condition that their Riemannian
curvature tensor vanishes identically. Here is a result
(see Ricci [1884}) which characterizes the metrics of
class one.

123
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® is of class one if and only if there exists

a symmetric tensor b-1j such that:

1) - b

Rijke = PikPje ~ PigPjx

2) + b,y . = 0.

Pij,k T Pik,;

When these conditions are satisfied, the functions
1 n+l . : .
Y sy ¥ may be determined as solutions of a differ-
ential system whose integrability conditions are satisfied.
For forms of higher class there is an analogous
theorem.
But, we do not pursue this generalization; another

important application of Tensor Analyses awaits our

attention,

Remarks: The problem briefly alluded to here is now

called the isometric embedding problem. Of course, the

authors mean to work only locally. The global isometric
embedding of a Riemannian manifold into a higher dimen-
sional Euclidean space was only proved within the last
twenty years, by John Nash [1]. In faect, Nash's work

is one of the most brilliant and important results in 20th
century differential geometry.

It is interesting that Ricei and Levi-Civita took for
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granted the existence of a local isometrie embedding. To
the best of my knowledge, this was in faet only proved in

the 1920's by Janet and Cartan.

2. ABSOLUTE INVARIANTS. GEOMETRIC REMARKS. DIFFERENTIAL
OPERATORS
See Ricci [1884, 1898], Levi-Civita [1894].
The classical work of Jacobi, Lamé and Beltrami, which
introduced into analysis the invariants known as differ-

ential parameters, is based on the first variation of

certain integrals. Despite the elegance and ingenuity

of this approach, it leads to methods which are indirect
and far away from those which the nature of the problem
would seem to suggest. In fact the study of such differ-
ential parameters is part of the following general problem,

which after all only involves algebraic elimination:

Given a Riemannian metric ¢ and a number of

associated tensors S (covariant or contravariant),

determine all the absolute invariants which may

be formed from the coefficients of ¢ and S, and

their derivatives up to an order u fixed in

advance,
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If one did not have to take into account the deriva-
tives, this would be a well-known algebraic problem. The
involvement of derivatives seems at first to severely com-
plicate the situation. Happily, it really does not.

Tensor analysis leads us back to the algebraic problem,
because we can substitute covariant for ordinary derivatives.

More precisely, we have the following Theorem:

To obtain the absolute differential invariants

of order u, it suffices to determine the alge-

braic invariants of the following form

a) The fundamental form

b) The forms associated to S and their covariant

derivatives (with respect to ¢) up to order 4

c) For pu > 1, the Riemann curvature tensor and

its covariant derivatives up to order u - 2.

The first problem is that of determining the differ-
ential invariants of ¢ alone. From the preceding Theorem,

we deduce the following Corollaries:

The metrics ¢ of class zero have no non-zero

differential invariants. The metrics of non-

zero class have no differential invariants of

the first order. The invariants of order
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greater than one are the invariants of 4, the

Riemann curvature tensor, and its covariant

derivatives.
These results are of the simplest form for the case
n = 2 or 3.

For n = 2, the Riemann curvature tensor reduces to
the Gaussian curvature K, which is the only second order
invariant of 2-dimensional Riemannian metrics.

We might remark at this point that, when we regard ¢
as the metric of a surface, the value of K is the product
of the principal radii of curvature. This is the reason

for calling K the total curvature of the metric o. We

know that X = 0 is the necessary and sufficient condition
that the metric ¢ be of class zero. In geometric language,
this is the well-known fact that developable surfaces are
the only ones which are applicable on a plane.

For K = 0, our metric form has no non-zero differ-

ential invariants. In general:

The invariants of a 2-dimensional metric of

order pu > 2 are obtained as the algebraic in-

variants of the form ¢ and the covariant deriva-

tives of K up to order u - 2.
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This result is implicitly contained in a memoir by
Casorati [1860].

Turn now to the study of the case
n = 3.

In place of the Riemann curvature tensor Rijke’ substitute
the contravariant tensor ot defined by the following
formula:
Qi o Ris1, ie2, §e1, ez
g8

where we use the convention that two indices are identified

if they are equal modulo 3. Thus,

12 Rassa | Ross

g B Vg
(See the remarks at the end of this section for the co-
ordinate-free way of defining a.)
Now, a = 0 is the necessary and sufficient condition
that ¢ be of class zero. When a is non-zero, consideration

of the quadratic forms gij and a.. gives us all the differ-

1]
ential invariants of these two forms, we may take the roots

of the equation
det(c’-ij - pgij) =0,

and call them the fundamental differential invariants of
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the metric ¢. We are led to this choice by the general
process of reduction of the 2-tensor %5 to its canonical
form. (Section 5, Chapter II). It leads very naturally
to an orthonormal moving frame which is very important
for the study of the geometric properties which generalize
those associated to the total curvature in the 2-dimensional
case.

We will come back to these geometric applications
(Chapter IV, Section 8). For the moment, we limit our-
selves to the remark that the field of eigenvectors of «

are called the principal congruences, and their values at

points are called principal directions.

It is hardly necessary to add that, to obtain the
differential invariants of the 3-dimensional metric ¢ up
to order u > 2, it suffices to take into consideration, in

addition to the forms a.. those which one obtains by

ij? gij’
covariant differentiation of a up to order u - 2.

Having dealt with the invariants of a metric ¢ alone,
let us now examine several simple examples of the general
case where one has also associated tensors.

First, suppose that we are given two functions U and

V associated to the metric ¢ in n-variables. Suppose

that:
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p = gijdxidxj.
The differential invariants of first order of the system
(¢, U, V) are described by the following differential
operators:

= gld

8 (U) = g"lu,U;
i
by (V) = g Jvivj

= 1]

y(u, V) g Uivj'

Remark: Recall that

aU

Ui = —
X

When the system is formed by the metric ¢ and a
single function U, the only first order invariant is
Al(U). To treat the second order, consider the invariants
of the following three differential forms:

gijdxlde, Uidxl, U, jdxldxl.

’

In particular, the invariants of the pair
gijdxldxj, Ui,jdxldxJ
are the roots of the equation

det (U.

i, } =0,

pgij

and will be of degree 1, 2,..., n in the second covariant
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derivatives in U. The invariant of the first degree,
8,(U) = gtlu.
is the well-known second degree operator defined by

Beltrami.

Remark: A, is now called the Laplace-Beltrami operator

associated with the metric o,
It completely
characterizes the metric ¢.
Suppose now that we associate with the metric ¢ a

l-covariant tensor

(Ti)
The pair (¢, 7) defines first order invariants, which are
the algebraic invariants of the differential form

i i j

@, Tidx s Ti’jdx ® dx”.
Among these invariants, the most important for applications
is:

0(z) = gz,
From the point of view of applications, it is important

to note that the following alternate form for 8:
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This expression is often most useful in calculations,
while the first form is best suited to theoretical de-
ductions. In the particular case where n = 2, one may

replace the bilinear form Ti,jdx1 ® dx’ by the symmetric

bilinear form

(

13,7
Ti,j + Tj,i)dx dx”’,

provided one adds the invariant formed from the tensor

T and the contravariant tensor E defined in Chapter I,

i,j
Section 3. Here is its explicit formula:

ij =1 -
€755 y= (t1,2 = 72,1)
= also
_l {arl i afz}
Vg ‘ax axt

I

Similiarly, for n 3, one associates to (¢, ) the

symmetric tensor

T. . *+ T. -
1’] J’l,
and the l-covariant tensor

i_ 1 _ijk
=7 N

W
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This can also be written as follows:

U’ o= -

Vg 1+1 i+2

i 1 {aTi+2 aTi+1}

X X
where again one adopts the convention that indices equal
modulo three are the same. This formula is particularly

effective for calculations in applications.

Remarks: This Section certainly covers ground! In fact,
it proposes ideas which have not been adequately formu-
Zat;d or developed even to this day. Accordingly, I shall
now try to explain what is involved, using the ideas and
notations of manifold and vector bundle theory.

First, there is a purely "algebraic" part. The
authors aim to reduce the study of "geometric' invariants
to "algebraic ones. I will describe some of these alge-
braic problems from the viewpoint of modern group and

vector space theory.

Let V be a real finite dimensional vector space. Let

Vd be its dual space. For each pair of integers (r, s),
let:
v,® = 7 e .0V erd e . e v
s times r times

Thus, an element of VrS is an r-fold covariant, s-fold
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contravariant tensor, in terms of V.
Let W be the vector space direct sum of a certain

number of copies of such tensor spaces. Say, that:

n
Typically, one is given an element w of W,a geometric

problem. What is wanted is a notion of a set of alge-
braic "invariants” associated with w. This may be thought
of as a "mapping" (in the sense of algebraic geometry; see
Volume VIII) from W to another vector space W'.

Consider the following example:

Giving w amounts then to giving a patr

Qa Qa

1° 2
of linear maps: V ~ V. (What is involved here is the
identification of the space of linear maps: V -+ V with
the set of tensors aij, i.e. matrices, 1.e. 1-fold co-
variant, l-contravariant.)

What are the "invariants' of such pairs of linear
maps? The answer comes from the Weirstrass-Kronecker

"elementary divisor'" theory. Let )\ be a new variable,

and form the "pencil" of linear maps:
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al\) = a; *+ Xag.

See Volumes III, VIII, IX and Gantmacher [1964] for the full
story of what is involved here,

Alternately, one can define

ao(al, a2),..., an(a a,)

1° "2

as the real numbers such that:

n
det(a(\)) = a, + alx Foat anx .

The a a_ are polynomial functions in the terms of

gs s Gy
linear parameters for ays Gy Hence, we can map

W o> Rn+1

by assigning:
(al, a2) - (ao(al, a2),..., an(al, a2)).

This map defines, in a obvious sense, the "algebraic in-
variants" of the elements of W. Unfortunately, such a
simple and natural construction of "algebraic invariants”
ig not known for most more complicated collections of
tensors!

This "algebraic invariant” problem also has a group-
theoretic side. Here is one typical situation.

Let G be a group of linear transformations on V. G

extends in a tensorial way to act on Vrs, hence on W, which
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is a direct sum of a number of copies of such tensor spaces.

The problem can be stated in several interrelated ways:

Find the orbits of G acting on W. Find

rational functionson W which are invariant

under G. More generally, find vector spaces

W' on which G acts irreducibly, and find maps

(in the sense of algebraic geometry again)

W= W'

which intertwine the action of G.

Study of these general questions form a modern version

of what was classically known as invariant theory. See

the book by Dieudonné and Carrell [1971] for a recent
treatment.

I shall now try to give an idea, in modern language,
of what 19th century geometers meant by a differential

invariant or covariant. Let M be a manifold. F(M) denotes

the ring of ¢”, real-valued functions on M. Let V(M) be
the ¢~ vector fields on M, i.e. the derivations of F(M).
V(M) is a module over the ring F(M). Let Fl(M) be the dual

module, i.e. the 1-differential forms on M. Set:
7 P = Flony 5. m B on) ® vy ®L® v

A - / \ ~ J/
r-times s-times
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( ® denotes tensor product of F(M)-modules). The elements

of TPS(M) are the r-fold covariant, s-fold contravariant

tensor fields on M.

Let G(M) be the group of diffeomorphisms of M. G(M)
acts, in the natural "tensorial way, 45 a o trans-
, on s
formation group,each T, (™).
Now, let T be a submodule of the direct sum of a

certain number of tensor field spaces. Say, that

8

I ¢ Tr l(M) @, ,.h T

¥m
(M).
1 T

Suppose that the action of G(M) leaves the submodule T
invariant.

A k-th order differential invariant is a mapping (not

necessarily linear, and not necessarily even defined

everywhere)
r -~ T 7 (M)

which:
a) Intertwines the action of G(M)
b) Is defined, in each local coordinate system for
.M, by formulas which involve differential oper-
ators of order k in the components of the
elements of T.

The matin point of this Section may be stated as
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follows: Suppose

89 5m
T c STZ(M) D Tr (M) &...& T B

2 T
i.e. the first component of v € T is a symmetric, two-
fold covariant tensor field ¢. (8T denotes "symmetric
tensors'".) Generally, this ¢ will be non-degenerate, i.e.

will define a Riemannian metric (possibly non-positive,

of course) for M. Thus, the covariant derivative with

respect to ¢ may be used - as indicated by the examples
given in the text - together with the algebraic invariants
constructed on tensors at one point, to define differ-

ential invariants.



Chapter IV

GEOMETRIC APPLICATIONS

1. STUDY OF TWO DIMENSIONAL MANIFOLDS (GEOMETRY ON A
SURFACE): GENERALITIES - CURVATURE - CONGRUENCES -
BUNDLES OF CONGRUENCES - INVARIANCE OF A BUNDLE -
BELTRAMI'S THEOREM

The theory of surfaces and curves on surfaces -
founded by Gauss - is now developed to form in itself a
vast and rich scientific domain., But, even in the best
expositions of this subject, unified methods are lacking.
It is not developed naturally from simple, well-determined
principles. Tensor Analysis, by contrast, gives the theory
a form which seems as simple as possible.

It also leads to a rational separation of those
properties of two dimensional surfaces which are intrinsic
and those which depend on the embedding into our three
dimensional Euclidean space R3. The intrinsic properties

are derived from the ds2 of the surface (first fundamental

form) induced from the Euclidean metric on R3, while the
embedding properties are defined by another quadratic
differential form, called, by Bianchi, the second funda-
mental form.

139
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Let us begin with the first form. Choose indices

and summation convention as follows:

and metric
ds? = g..dxtdxd = o.
1]
Let us regard this form as the fundamental one. If its
Gaussian curvature K vanishes, we have seen that the

manifold will be linear. If K does not vanish, the assign-

ment
¢ ~ K

gives rise to all the invariants of the form ¢, i.e. to
all the (differential) expressions linked to intrimnsic
properties of the Riemannian manifold M.

Let
A 11]
r 2]

be the covariant components of two orthonormal congruences,

defined on our manifold. They will be referred to as
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congruence [1] and

congruence [2].

Let us use, for this case n = 2, the general orthonormal

frame formalism of Chapter 2. Set:

2 .
o3 = vp3 L3l

Then, we have:

STEEEY RS A TR

(1.1)
n L5121 = g [y

The rotational coefficients of the moving frame [1], [2]
have, in this case, two independent components. We shall
take them as:

1 2
Y21 » Y12

They represent the geodesic curvature of the integral
curves of the vector fields [1] and [2].
Set:
®: = €7, 1.2)
The formulas of Chapter 2 specialize to:

K = g13$i’j. (1.3)

We have:

A (1] = eijxj[Z]. (1.4)
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Substitute (1.4) into (1.1). This gives a system of
differential equations for the xi[Z]. Equation (1.3) is
the integrability condition for these equations, when one

adds the algebraic condition:
xi[Z]xl[Z] = 1. (1.5)

The general solution of this system has the form:

xi = sin(a)xi[l] + CcoS axi[Z], (1.6)

where a is a constant.

For a particular value of a, the xi are components
of a congruence whose integral curves meet the integral
curves of xi[Z] in the angle a.

Such a system of congruences is called a bundle of

congruences.

Remark. They use the term "faisceau”.

®; is called the covariant vector field of the bundle.

Equation (1.3) then is the condition that a vector
field given in advance be associated in this way with a
bundle.

If 04 and wi are vector fields associated with two
bundles, the differences ¢; - ¥; have a remarkable geometric

significance. They are the derivatives of the angle between
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two vector fields of the different bundles.

Following the rules of the preceding section, suppose
that one has constructed all the differential invariants
obtainable by the association of the vector field ¢ to the
congruence [2]. One obtains in this way all the intrinsic
properties of a congruence in the 2-dimensional manifold M.

We obtain a single algebraic invariant, represented
by equation (1.5).

Because of equations (1.1), the differential invariants
of the first order are the algebraic invariants common to
the metric tensor and to the two vector fields Xi[Z] and

®y- There are two such invariants:

J

U}

i _ 2
1 A [2]‘Pi = le
i 1.2 2.2
Jz =9 ®; = (Y21 )"+ (le )T,
The second order invariants are the Gaussian curvature

K and the quadratic form:

wij = %(wi’j + wj,i)-
The invariants of order greater than the second are the
covariant derivatives of K and of the tensor wi..
As we have said, the differential invariants of the
metric tensor represent intrinsic geometric properties of

the manifold M. Similiarly, the invariants of ®5s wij’
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and their covariant derivatives represent the invariants

of the bundle. Thus, the invariant J, represents the sum

of the squares of the geodesic curvature of the two
orthogonal curves belonging to one of the pair of congruences
of the bundle. Similiarly, the function

i
g5 5
in an invariant of the bundle. Its vanishing is the neces-
sary and sufficient condition that each congruence of the
buneld is isothermal. This proves in a very natural way

the following theorem of Beltrami:

If a congruence is isothermal, so is each con-

gruence which belongs to the same bundle, i.e.

which makes a constant angle with the given

congruence.

Remarks: I will now redo this material in Cartan's form.
Let

(w?)
be an orthonormal moving frame of 1-differential forms.

(If (z*) is a coordinate system, the xi[j] can be defined

by the relation:

of =\, [51dz").
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Then, we have:

Jo_ . d k
do? = @0 A
J _ dg.t
0t = Yy dx”.
Thus,
i 2 i 2
widx =71, Xi[Zjdx = vy e

Hence, we have:

7 2
widx = o,

We see that, in Cartan'’s language, what Ricei and
Levi-Civita are saying is that the assignment
(ml, mz) > o,
defines the geometry on the 2-dimensional Riemannian mani-
fold. The 1-form m12 determines the Riemannian connection,
and the second fundamental form (i.e. the "geodesic curva-
ture"”) of the integral curves of the moving frame.

Here is the relation to the Gaussian curvature K:

2
dml = Kml Aoy,

1, 92) be two orthonormal

Definition. ILet (w’, o?), (6
moving frames for the metric. They are said to belong to
the same bundle of moving frames <f there is a constant

reagl number such that:
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7 1 . 2
6 = cos aw + 8in Qw

2 . 1 2
6" =-sin qw + CO8 AW .

Another way of putting this is to say that these formulas
define an action of S0(2, R) on the moving frames. The
bundles are the orbits of this action.

Then, we have

del = cos aml A mz - sin aml A ml
2 -2
= m21 A 6
Similiarly,
d92 =- m21 A 91.
Hence:

The assignment
1
(ol %) > (0,
is invariant under the action of 50(2, R), hence

defines a differential invariant of the bundles

of moving frames.

2. SURFACES OF 3-SPACE-FUNDAMENTAL EQUATIONS - PARTICULAR
REMARKABLE FORMS - GENERALIZATION OF THE FORMULAS OF
GAUSS AND CODAZZI

As indicated in Section 1 of the preceding Chapter, in
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order to determine all surfaces of R3 which admit a given

metric dsz, it suffices to determine all tensors

iy i=1,3 =2,
which satisfy the following algebro - differential system

of equations:

b5,k = Pik,j (z.1)
b
2 = K, 2.2
: (2.2)
where:
b =b, b, - by,2
11P22 - P12

~ ) 2
& = 811822 ~ 812

Choose another set of indices as follows:
1l <a, b =3,
Let (ya) be functions which define the 2-dimensional mani-
fold as a surface in RS. Then, we have:

3
- a a
gi5 = E ¥y (2.3)

a _ _a
yi,j =z bij’ (2.4)

where the z? are defined by the following relations:

3
2%y % =0 (2.5)
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2
2 (z7)" = 1. (2.6)

ja denote the covariant derivatives of the func-
b

tions ya with respect to the connection associated with

a
(yi » Vi

the metric gij)‘
Considered as a system of partial differential
equations for the ya, the system formed by (2.3) and (2.4)

is completely integrable. (Conditions (2.1) and (2.2) are

the integrability conditions.) The general solution of

this system depends on six arbitrary constants; they fix
the position of the coordinate axes of R3 with respect to

the surface.

Remark: Here is what is meant. Consider (y%) as defining
a map
y: M - R3,
where M is the 2-dimensional Riemannian manifold. Let G
be the group of rigid motions acting on R3. It is a 6-
dimensional Lie group (whence the "six arbitrary constants”).

Each g € G acts on y:

4 > g4
Clearly, gy is again a solution of (2.3)-(2.4).

We see that to each particular solution of equations
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(2.3)-(2.4) there corresponds a surface on RS, uniquely
determined up to a rigid motion, which admits the given
metric ds2 as the metric induced from the flat metric on
R3. Equations (2.3)-(2.4) may be called the intrinsic

equations of the surface. Equations (2.1)-(2.4) (which

we will call the fundamental equations of the theory of

surfaces) are much better suited to the study of geometric
properties of the surface than the literal equations de-
fining the surface, which involve objects which are not
‘naturally defined in terms of the surface itself.
As outlined in Chapter 2, Section 1, equations (2.1)-
(2.4) may be written in terms of an orthonormal moving

frame in the following form:

bij = Bkgxi[k]xj[z]’ (z.7)

where

Pre = Poxo
and xi[l], xi[Z] denote the covariant components of an
orthonormal moving frame. One sees that B11» Bpzs B1z
measure (up to a sign) the normal curvature and the
geodesic torsion of the integral curves of the orthonormal
congruence [1], [2].
In order to write these equations in a form which is

intrinsic to the orthonormal moving frame, let us adopt
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the following indicial convention:
i+ 2 =1,

Then, (2.1) and (2.2) take the following form:

°Bii  %Pi(i+1
P%i41 %44
) . (2.8)
Z BihYl(i+2)h * B(i+1)th(h+1)( +1
h=1 Y )
2
B11P22 - By = K. (2.9

As we have described in Chapter 2, there is an ortho-
normal moving frame [1], [2] for which the expression
(2.7) takes its canonical form. This frame is that tangent

to the lines of curvature of the surface. We have then

BlZ =0,

which gives the known theorem that the lines of curvature
have zero geodesic torsion. Bll’ Big» after a change of

sign, are the principal curvatures. Equations (2.8) and

(2.9) reduce, in this case, to the well known Gauss-

Codazzi equations.

One may also choose the orthonormal fram€so that:
Byg = 0.

(It may be necessary to use complex frames. Real frames
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are sufficient if K = 0). The curves of the congruence

[2] are then asymptotic curves of the surface. Equation

(2.9) then defines 512’ and (2.8) leads to relations which
have been already mentioned by M. Raefy [1892].

The reader who wants further detail on how these
techniques give the most important theorems of surface
theory should see Ricci's "Lezioni sulla teoria delle
superficie," to which we have already frequently referred.
Instead of going in this direction, in the next section we
deal with a problem in the theory of isometry of surfaces,

where Tensor Analysis has completely solved the problem.

Remarks: Cartan's methods are ideally suited to this
material. Let

a

(e”)

be a moving frame of I1-forms on R® which is orthonormal
with respect to the flat Riemannian metric on RS, (In
other words, if (yl, y2, y3) are Cartesian coordinates on

Rg, then

ol + 020 4+ o%.07

1

= ayleay? v ayleay? + ay’eay®,

where + denotes the symmetric product of differential forms.)
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Let M be a 2-dimensional submanifold of Rg. Choose

the moving frame (6%) so that:

0 = 0 on u. (2.10)
Set:

ml = el restricted to M

m2 = 62 restricted to M

de? = oleo? 1+ w2e0, (2.11)

This quadratic differential form on M 1is then the Riemannian

metric induced from the flat metric on R3.

Suppose that

b
%

are 1-forms on R3 such that:

dae? = eba Ao (2.12)
a b _
eb + ea = 0. (2.13)
Set:
miJ = eiJ restricted to M. (2.14)
Then,
do’ = wji A o, (2.15)

This relation tells us that the
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(%)
are the connection forms of the metric dsz, given by formula
(2.11) with respect to the orthonormal moving frame (mi).
Equation (2.12) implies one additional relation when
restricted to M. Namely, set a = 3 in (2.12), and use
(2.10):

5.° A 0" =0, (2.16)

where:

1
]

: eig restricted to M. (2.17)

Now, let (z%) be an arbitrary coordinate system on M. Set:

- J
ei = bijdx . (2.18)
(The bij are the functions used in the text). Also,

5.5 = 8. .00, (2.19)

g =0.500. (2.20)

This quadratic differential form on M is called its second

fundamental form. (The "first" fundamental form is the

metric dsz.) It is extrinsic, t.e. it depends on the em-
bedding of M as a submanifold of Rs.
Now, condition (2.18) is equivalent to the following

one:
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Bis = Bipe (2.21)
In turn, (2.21) implies:

p =B, .0 e, (2.22)
i.e. (Bij) is the matriz of the quadratic differential

form with respect to the moving frame (o).

We can now develop the curvature relations. 7% has

zero curvature, hence:

dea = ea A ea (2.28)
Restrict this relation to M, and set a = i, b = g:
dmiJ = mik A wa
(2.24)
-3 -3
- 61 A ej
Now,
dm-j - m-k Ao J - Kmi A mj (2.25)
7 7 k s *

where K denotes the Gaussian curvature of M. Combining

(2.24) and (2.25) gives the following relation:

i i .3 -3
Koy~ A ¥ = - 8; A ej . (2.26)
Use (2.19)
-8 =3 _ x ¢
ei A ej = Bijw A Bje“
-1 k ¢
7 (BixPjg = BigPylo n o

Thus, we have:
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(2.27)
= BirPio — PigBie
Relation (2.27) has been obtained from (2.23) by

getting
a=1, b =j.

We also obtain relations by setting

Then,
de.” = w, A B, (2.28)

Formula (2.27) is called Gauss' formula. (2.28) are

called the Mainardi-Codazzi formulas. They are the Funda-
mental Formulas of surface theory. It is readily verified

that (2.28) 1is equivalent to the relation (2.4), i.e.

b (2.29)

g,k T Pk, g
Suppose now conversely that M is considered as a

Riemannian manifold, with its metric d32 given intrinsically.

Suppose that B is a quadratic differential form on M, which

satisfies (2.29), i.e. that the covariant derivative of B

with respect to the metric d32 i8 a completely symmetric

S8-tensor. We shall show that there is an embedding of M

as a submanifold of R3 such that the metric d32 18 induced
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on M by the flat metric on r%.  (Such an embedding 1s

called an isometric embedding.)

To do this, let (0%) be an arbitrary orthonormal
moving frame for the metric d32 on M, and let (6%) be an

orthonormal moving frame for the flat metric on Rs.

Let miJ be the I1-form such that dot = mjl A mJ,
wjl + wiJ = 0. Let eab be the 1-forms such that
a _ a b a b _
de® = 0,% n 67, 0,7 + 0 " =0
Suppose:
B = Bijwi'w'j
Set:
= 3 _ J
ei = Bijm .

(Thus, we are just reversing the preceding definitions,
starting off now with (0", 6%) as arbitrary moving frames.
Consider the manifold

M x R3,

and consider the forms (o", ea, wij, eab) on M x Rs,

pulled back with Cartesian projection maps.

. . . . 3
Congider the following differential forms on M x R .
at = et - wm}
3 3

n® =6



GEOMETRIC APPLICATIONS 157

Let v denote the F(M x R3)—submodule of FZ(M x Rs) spanned
by these 1-form:s. Congider it gs defining an exterior

differential system. An integral submanifold is a sub-

mantfold of M x 8% such that all the forms in m are zero
when restricted to that submanifold.

It is now readily seen that (as a consequence of the
Gauss and Mainardi-Codazzi equations) this system is com-

pletely integrable, i.e. defines a foliation of M x R3.

(See DGCV) Further, the leaves of this foliation are 2-
dimensional submanifolds, which locally are the graphs of
submanifold maps

M*Rg.

These maps are the isometric embeddings of the Riemannian

manifold M, which are determined by giving the second funda-

mental form B.

3. SURFACES WITH GIVEN PROPERTIES - QUADRICS

Suppose given a quadratic differential form ¢ 2p a

2-dimensional manifold M. One general problem is to
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recognize whether embeddings of M into R® exist, such that

the flat ds? of R®

restrict to ¢, and which satisfy certain

conditions which are fixed in advance. In order to do this,

equations must be added to the isometric embedding equations.

The integrability conditions of the resulting system must

be found. If they are compatible, the resulting system of

equations is the one which determines the unknown function.
This is the classical method. Typical problems are

to decide whether surfaces with a given metric exist which

are ruled, of constant mean curvature, etc. We restrict

ourselves here to pointing out that the known theorems on
the deformation of such types of surfaces may be proved
very naturally using our methods.

In particular, we have used these methods to determine
when a given metric admits an embedding as a second degree
surface, i.e. as a quadric. (See Ricci 1895, "Lezioni",
Second Part, Chapter VI). " This problem, which had been
solved only for the sphere, is now finished for an arbitrary
quadric. One may, using simple finite operations, decide
if a given form ¢ may be the metric of a second degree

surface. Up to a rigid motion, there is at most one surface

with this property.

Remark: Here is what is meant by the problem of defor-
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mation in the classtieal literature.

Let M be a 2-dimensional submanifold of RS, and let
¢ be the Riemannian metric induced from the flat metriec
ds? on R, 4 deformation of this surface ie another sub-
manifold mapping

n:M*R'B

such that:

n*(dsz) = ¢, but

such that n does not result from a rigid motion of RS,

For example, it is a famous theorem that a compact, 2-
dimensional Riemannian manifold of positive Gaussian curva-
ture admits, up to a rigid motion, exactly one isometric

embedding into R3. In the classical language, it is inde-

formable.

4. GENERALIZATIONS OF THE THEORY OF SURFACES TO n-DIMEN-
SIONAL SPACES

The general ideas of the preceding sections generalize
easily to the case of n dimensional submanifolds of Rn+1,
which are called hypersurfaces. The formulas are a special-

ization of those given in the preceding chapter, which
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express that the metric is of the first class.

Remark: Ricei and Levi-Civita now proceed to write down
these generaliszations. Since these formulas are quite
complicated in their formalism, will present them in
Cartan's way.

Choose the following range of indices and summation

conventions:

1 24, § =mn

1 =a, b = ntl.

Let M be an n-dimensional submanifold of R™1. Let (e%)
be an orthonormal moving frame of 1-forms in Rn+l, such
that:

o™ = 0 on .
Set:

o’ = 6% restricted to M.

The (w°) are an orthonormal moving frame of the induced
metric on M.

Let (eab) be the forms on Rn+l such that:
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Set:
wij = e.j restricted to M.
éin+1 = ei”+1 restricted to M.
§n+1i = 6n+1i regtricted to M = - @in+1
B = éin+1 . wi = gsecond fundamental form of M
= Bijwl'wj.

The conditions expressing the flatness of the metric

n+l
on R * are:

Restrict these conditions to M, obtaining the following

relations:

J _ k J = n+l = J
dw W A @t = Gi A 6n+1
Set:
9.9 = do.9 - w.k Aoy ?
7 T 7 k
_ J k £
= Rikl w A w
= Riemann curvature tensor of the
induced metric on M.
Thus,
J ok _ £
RikZ W AW = %Kw A Biiw B
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or

Jg_ 1
Bore =7 (BugPyx = Puxfye/

(4.1)
This ie the generalization of Gauss' formula. It can be
put into the form given in the text by Ricci and Levi-
Civita by transforming frames from («") to (da®), where

(z*) is a coordinate system for M.

To define the Mainardi-Codazzi equations, start with

n+1’ part of the conditions ex-

the following formula on R
pressing the fact that it has zero curvature.

do. ™M1 2 g M1 A g9,
Z J 7

Restrict it to M:

as.mtl oo g o, 9. (4.2)
Z J 7

These are a set of differential equations which must be
satisfied by the second fundamental form B. They can be

written in tensor analysis language as:
Prg e = Pir, g
i.e. the 3-covariant tensor

(81 1)

18 completely symmetric.

There is another approach to this question which goes

back to Darboux' methods in his "Theorie des surfaces.”
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Replace Rn+1 by G, the Lie group of rigid motions of Rn+1.

Rn+1 18 a coset space of G. This method has the great

advantage of generalizing to other homogenous spaces, thus
enabling one to develop a theory of submanifolds of other
geometries, e.g. projective and conformal. Cartan himself
extensively developed this approach. I shall now briefly
indicate how it goes for the particular case:

G = group of rigid motions of ™I,

G 18 of dimension

_ (n+¥1)(n+2)

(n+1)(n)
2 2

+ (n+1)

The vector space of 1-differential forms on G which are
invariant under left-translation has a basis labelled as

follows:

de® = 8,7 A o?
do,® = 8,% n 8,
The Pfaffian system
% =0
i8 then completely integrable. Its maximal integral

manifold which passes through the identity element of G



164 GEOMETRIC APPLICATIONS

is a subgroup H, which is isomorphic to

SO0(n+1, RJ.

1

(H is the subgroup of rigid motions of R™ uhich leaves

the origin fixed - hence is linear - and which have de-

terminant +1). Rn+1 i8 the coset space G/H. We shall
write this as
¢/8 = B™L,

Now, let M be a manifold of dimension n. Let a be a
quadratic differential form on M which defines a Rieman#
metric for M. Let B be another quadratic differential
form on M.

Let (mi) be a moving frame for M which is orthonormal
relative to the metric ¢. Let (wij) be the corresponding
connection forms. Let:

B = Bijwi'wj-

n+l _ J

Gi = Bijw .

Now, on M x G, consider the following exterior

differential system:

en+1 -0
6 n+l é_n+1 -0
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It is readily verified that this system is completely
integrable (i.e. defines a foliation of M x G) if and only

if ¢ and B are related as follows:

o and B satisfy both the generalized Gauss

and Mainardi-Codazzi Equations.

If these conditions are satisfied, then the following

conclusiong can be derived:

The leaves of the foliation are (at least
locally) graphs of mappings M = G. Follow such
a mapping with the projection G - G/H = Rn+1,
and obtain an isometric embedding of M as a sub-

1

mantfold of s , with B8 as the second funda-

mental form.
There is also an important group-invartiance property.
The forms ea, eba are, by definition, imvariant under left
translation by elements of G. Let G act on M x G as
follows:
The translation of (p,g) € M x G by gy € G
18 (p, ggg).

Then, we see that the exterior differential system is
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itnvartant under this action of G. In particular, i1f Gauss-

Mainard-Codazszi is satisfied:

The transformation of a leaf of the foliation

by a rigid notion is again a leaf.
Projected down to Rn, this implies that:

Two i1gsometric embedding of M with B as second

fundamental form differ by a rigid motion.

5. GROUPS OF MOTIONS OF A RIEMANNIAN MANIFOLD

Let ¢ be the quadratic differential form which defines
a Riemannian metric on a manifold M of dimension n. Let
(xi), 1l =i, j = n, be a coordinate system for M. Let
x=xi—a—i-
X
be a vector field on M. It generates a one parameter group

of motions of M. We say this group is rigid or defor-

mation-free if each element of the group preserves distances.
The condition for this is that the Lie derivative of ¢ by
X is zero, or, alternately, that the following relations

be satisfied:

x .tex J-o. (5.1)
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These relations are due to Killing [1892], and a vector

field X satisfying them is called a Killing vector field.

Remark. Recall that X jl denotes the covariant derivative
Ed

of the contravariant vector field with respect to the

metric tensor ¢. In modern notations, relation (5.1) can

be written as:
0 (V X, Z) + o(V,X, ¥) =0 (5.2)
for ¥, 7 € V(M).
Let
X = pY, (5.3)

with Y a normalized vector field (i.e. (Y, Y) = 1), p a
function. Y defines a congruence.

Setting relation (5.3) into (5.1), we have the follow-
ing theorem, which is a natural generalization of the
situation for surfaces.

Let C be a given congruence on the manifold M. In

order that the curves of C be orbits (after change in

parameterization) of a Killing vector field it is
necessary and sufficient that the following conditions
be satisfied:

a) Each system of (n-1) congruences which forms,
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together with C, an orthonormal system of con-
gruences is canonical with respect to C.

b) Let C' be a congruence which is orthogonal to C.
Then, either C' is geodesic, or its geodesic
curvature at each point is perpendicular to the
curve of C passing through this point.

c) C is a normal congruence, and the one-parameter
family of hypersurfaces which is perpendicular

to C is isothermal.

Consider the case where M is 3-dimensional and X is

a Killing vector field. Let

Xy

be the covariant components of X, and let Xi,j be their
covariant derivative. The Killing equations (5.1) then
assert that Xi,j is a skew-symmetric tensor. Hence, it
may be written in the form

. K
X; 5= €qxk (5.4)

(Eijk) is the completely skew-symmetric tensor defined in
Chapter I, Section 3.

Introduce an orthonormal moving frame [1], [2], [3]
into M. Let Xi', Zi‘ be the components of X and Z with
respect to this moving frame, defined by the following

equation:
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-~
]

XIn.[i]
J (5.5)

(o]
1

- zjxj[i].

Remark: Recall that (Xj[i]) are the components (with
respect to the coordinates (z') of the vector field [%].

Conditions (5.4) then take the following form:

ax. ! 3 i

= t
- jil 510X (5.6)
ax, " 3
I PP GL R 4 5.7
CEeR S CRe DI i+2 (5.7)
aX. ! 3.

1 1 t

= 3oyt X.t' - Z) (5.8)

CEFP) j=1 j(i+2)7j i+l

We also have the following integrability conditions:

[
aZi

3
55, 2
3 z

i i '
2O BT T Na

i (5.9)
T Yien¥ez)

Remark: In (5.6)-(5.9), the summation convention ig not
in force. The authors are using the special convention

(for n = 3) that indices differing mod 3 are identical.

Remarks: I will discuss some of the general problems
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suggested by this material.

Let M be a (positive definite) Riemannian manifold
and let G be a group of isometries of M, i.e. each g € G
ig a diffeomorphism of M which preserves the length of
curves. In order to be able to use certain technical tools
of differential geometry and Lie group theory, we make the

following assumption:

G 18 a closed subgroup of the group
(5.10)
of all isometries of the metric.

(It is known (see Helgason [1]) that the group of isometries
can be made into a Lie group, which acts in a smooth way
on M. "Closed" refers to the Lie group topology on the
group).

Hence, by a theorem of Cartan, G itself is a Lie group
and acts smoothly on M, i.e. the map

G xM->N

defined by the transformation group action is C .

The following property is very useful in deducing
general properties. It is only true if G acts as a group
of isometries of a positive metric:

The transformation group map G x M - M
ig proper, i.e. the inverse image of a (5.11)

compact subset of M is compact.
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As for any transformation group, the action of G on

M defines an equivalence relation:

Points p, p' € M are equivalent if there is

a g € G such that

p' = gp.
(See "Interdiseiplinary Mathematics,” vol. I, for general
algebraic concepts related to transformation group actions.)
The equivalence classes are called orbits of G. The space

of equivalence classes,
G\M,

ts called the orbit space. In this section, Ricei and
Levi-Civita are concerned with properties of the orbits
and the orbit space in case G is a one-parameter group,
and the orbits are one-dimensional submanifolds. I shall
attempt to cover the general case.

The first question is: What type of topological-
manifold structure is it natural to put on G\M? In DGCV,
I have described a metric space structure on G\M - this
of eourse defines a topology.

Let us examine the manifold structure question. Let
Go be the conmnected component of the identity of G. G

o

is an invariant subgroup of G. The orbits of G, define a
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foliation of M. (A foliation of a manifold M is an equiva-
lence relation on M, whose equivalence classes are con-
nected submanifolds of M). The quotient group G\GO acte

on the orbit space G\M. It is readily seen that this

action preserveg the metric space structure on GS\M defined
- as explained in DGCV - by the given Riemannian metric on
M. Thus we can seperate the problem of studying orbit
spaces into two parts - first orbit spaces of connected
groups, then discrete ones.

Suppose then that G is connected. In the classical
literature, one usually assumes everything is "non-
singular.”" In this case, this means that the orbits are

of constant dimension. Let us also suppose that this con-

dition is satisfied. (See DGCV for what can be said more

generally.)
, the Lie algebra of G, is a Lie algebra of vector
g g

fields on M. The foliation defined by § is non-singular.

Definition. The foliation is said to be regular i1f the
space of leaves (in this case, G\M), can be made into a
manifold in suech a way that the projeetion map

n: M -~ G\M which assigns to each point p € M the orbit

on which it lies is a submersion map, i.e.
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M) =GN

for all p € M.

H. Sussman has given a very useful and convenient

necessary and sufficient set of conditions that a non-

singular foliation be regular. He requires that:

a)

b)

The set of points of M x M of the form (p, gp),
with p € M, g € G, is a closed subset of M x M.
Let 5 be the set of vector fields X on M such
that the one parameter group generated by X
maps each leaf of the foliation into another

leaf. (S is called the symmetry Lie algebra

of the foliation). Sussman's condition is then

that: S(p) = Mp for all p € M, {.e. that S act

transitively on M.

Sussman's conditions apply to general non-singular

foliations. In this case - where the leaves are orbits

of a closed, connected group of isometries, we can show

that a) is always satisfied. For, suppose

(pz, qz), (p2, q2),...

i8 a sequence of points of M x M, each of which lies in

the same orbit, and which approaches a limit (p, q) as
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lim p, =p
j—)oo J
lim g. = 1.
j»m dJ

By hypotheses that each (pj, qj) lies on the same

orbit, there is a q; € G such that

From the theorem that the transformation group action

G x M ~ M is proper, we see that a subsequence of the
{gj} must converge, say to a g € G. Then, we have:

q = gp, i.e. (p, q) lies on an orbit, and we have proved
that condition a) is satisfied.

Unfortunately, I do not see any useful general con-
ditions whieh imply that condition b) is satisfied.
Perhaps this is a suitable topie for further research.

Let us now suppose that the foliation is regular, in
the sense that G\M is a manifold. What are the differ-
ential geometric properties of G\M? Especially, can one
give a set of properties which characterize orbit spaces?
(Notice that Ricei and Levi-Civita do this here, in case
G is a one-parameter group.) Now, one general property
of Riemannian manifolds that has been isolated in recent

times is the notion of a Riemannian submersion mapping.
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(Their properties have been discussed by, among others,
B. Reinhart (who was the first), the author and B. 0'Neill.)

It is easy to see that the natural projection map
M > G\HM

has (in the regular case) this Riemannian submersion proper-
ty. Ricei and Levi-Civita's remarks suggest (to me at least)

that an interesting geometric problem might be:

Find the further properties that a Riemannian
submersion must satisfy to imply that it be is

the orbit space of an isometry group action.

Aecording to the statements in this Section, Ricei has done
this for foliations with 1-dimensional leaves.

In order to develop some insight into this problem, I
will develop, in Section 8 at the end of this chapter, the

general geometric properties of Riemannian submersions.

6. COMPLETE STUDY OF THE GROUPS OF MOTION OF THREE
DIMENSIONAL RIEMANNIAN MANIFOLDS - RESOLUTION OF
THE PROBLEM OF RECOGNIZING IF A THREE DIMENSIONAL
RIEMANNIAN MANIFOLD ADMITS A GROUP OF MOTIONS, AND
OF DETERMINING THE GROUP

Intransitive groups. In a 3-dimensional Riemannian

manifold M a one-parameter family of surfaces may be
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represented (as explained in Chapter 2, Section 3) by a
covariant vector field which represents the congruence of
its orthogonal trajectories. Let us be given such an
object, and ask whether M admits rigid motions which trans-
form each of the surfaces into itself. First, we remark
that, from previous work, one may regard the problem as
solved when the motion group has one-dimensional orbits;
this of course happens for one parameter groups.

This said, consider, in equations (5.7)-(5.9) of the
preceding section, the congruence [3] as the orthogonal

trajectory of the family of surfaces. One will have:

X.' = 0. (6.1)

Remark. Recall the notations, using Cartan's moving frame

notations. Let (w' ) be an orthonormal moving frame for M.

determines the family of surfaces. X is a Killing vector
field resulting from the group of motions. Xil denote the
covariant components with respect to the (o) of the vector

field X.

Equations (5.7)-(5.8) give the following relations:
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g ." =0 (6.2)
j=1133 73 '
3
3 1
2, = % oy, X, 6.3
1 j=1YJZ ] ( )
3
7' = 3% (6.4)

Z
z j=1le J

If (6.2) is not satisfied identically, it determines the
orbit of the group as one dimensional submanifolds. If,

to the contrary, (6.2) is satisfied identically, one has:

3 3
=0 = v,g. (6.5)

Y13
These equations tell us that the congruence [3] is geodesic.

Hence, we have the following result:

In order that a 3-dimensional Riemannian manifold
M admit a rigid motion group of more than one
parameter, which leaves invariant each surface

of a one-parameter family of surfaces, it is

necessary that these surfaces be geodesically

parallel.
Remark: The theory of Riemannian submersions, described
in Section 8, covers this result. In this language, Ricetl

and Levi-Civita assume given a submersion map



178 GEOMETRIC APPLICATIONS

me M' - M,
with:
dim M' =1,

i.e. the fibers of n are 2-dimensional submanifolds of M.
They assume given a connected Lie group G, acting on M as
a group of isometries, which maps into itself each of the
fibers of n. They (implicitly) assume that the aetion of.
G is "non-gsingular,"” in the sense that its orbits are of
constant dimension.
The first case is that where the orbits are all 1-

dimensional. Here is the result which covers that situ-

ation.

Theorem. Suppose G has all one-dimensional orbits. Then

G 1e itself one-dimensional.

Proof. Let p be a point of M. If G were not one-
dimensional, there would be a one-parameter subgroup
t > g(t) which acts as the identity on the orbit
Gp
of G through p. Now, by assumption, G maps into itself a

2-dimensional submanifold N (the fiber of n) passing
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through p. Each g(t) acts as isometries, hence leaves
invartant the tangent vectors to N which are perpendicular
to the orbit Gp. Hence, g(t) leaves each point of N in-
variant. Again, g(t) leaves invariant the tangent vectors
to M which are perpendicular to N, hence also leaves fized
the geodesics they determine. Hence, each g(t) acts as
the identity on M, which is the contradiction.

Consider the case now where the orbits of G are 2-
dimensional. They then fill up the fibers of n, i.e. the
fibers of n are orbits of an isometry group. As proved in
Section 8, the submersion map © is then Riemannian, and
the fibers of n are geodesically parallel.

Let us remark that, because of Equatlons (6.1)-(6.4),

the unknown functions reduce to three, namely:

These must also satisfy Equations (5.7)-(5.9), which ex-
press the partial derivatives of these three unknown
functions in terms of the functions themselves and known

quantities. One concludes that:

A group of isometries which leaves
invariant each fiber of n is at most

3-dimensional.
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Remark: Here is a more precise result.

Theorem. Let G be a connected group of isometries of a
connected, 3-dimensional Riemannian manifold. Suppose
also that G leaves invariant a 2-dimensional connected
submanifold N of M. Then, G is at most 3-dimensional.
If G 18 2 or 3-dimensional, then N is (in the Riemanntian

metric induced from that on M) of constant curvature.

Proof. Again, we will show that every one-param-

eter subgroup
t > g(t)

of G must act in a non-trivial way on N. Suppose other-
wise, i.e. each g(t) leaves each point of N fixed. g(t)
then leaves fixed each perpendicular tangent vector to N,
hence leaves invariant each perpendicular geodesic. Hence,
g(t) leaves fized each point of an open neighborhood of V.
Since M is connected, g(t) acts as the identity on M, con-
tradietion.

Hence, G is determined by its action on N. Now, one
can readily prove that a Lie group of isometries of a
2-dimensional Riemannian manifold is at most 3-dimensional,

and 1f it act transitively, (which will happen 1f
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dim G = 2 or 3) N must be of constant curvature.

To finish our work, it would be necessary to discuss
the full system of equations determining the group. A
convenient choice of moving frame {1], [2] would make this
discussion relatively easy. We cannot go into it here.
Among the results to which one is led we restrict ourselves

to citing the following:

If a manifold M admits a group G of rigid motions
of the kind considered just before, i.e. which
leaves invariant a l-parameter family of surfaces,
then at a point of M the principal directions are
given by the normal and principal tangent vectors
to the surface passing through this point. The
principal invariants of M, are invariant under

the group and have a constant value on each

surface of the family.

Transitive groups

Here are the results obtained in case G acts transi-
tively on the 3-dimensional Riemannian manifold M.

In order that G act transitively, it is necessary that
the principal invariants (of the Riemannian metric) be con-

stants. Denote these invariants by
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Cl, CZ’ C3

Remark: ¢7s g ¢ are the eigenvalues of the Ricei tensor

of the metric on M,

There are three cases to consider:

1) <1

2) <,

1

[g]
w

a
[

H

€2
3) Cp # Cy5 Cz # Cy5 Cy # Cy.

In the first case, the manifold M is of constant

curvature, and G has at most six parameters.

In the second case, the invariant <y corresponds to
a principal congruence [1] which is unique and determined;
Cys C3 correspond to congruences [2], [3] such that [1],
[2}, [3] determine @n orthonormal moving frame for M. G
will be transitive and 4-dimensional provided that the

following additional conditions be satisfied:

a) The congruence [1] is geodesic; For each
orthogonal congruence [2], its geodesic curva-
ture is perpendicular to the lines of [1], [2].
b) The rotational coefficients Y321, stl have

constant values, and their sum is zero.
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In the last case, the orthonormal frame [1], [2], [3]
is completely determined. In order that G be transitive,
it is necessary and sufficient that the rotational coef-
ficients of the moving frame all be constants. If this

condition is satisfied, then G has exactly 3 dimensions.

Remarks: The modern version of this material would be to

classify groups of isometries of all 3-dimensional

Riemannian manifolds. I will now deseribe some results

which can be obtained by modern techniques, and which are
in the spirit of the material sketched by Ricei and Levi-
Civita in this section.

Let M be a Riemannian manifold, and let G be a con-
nected Lie group of isometries of M. Suppose, in addition,
that G is a closed subgroup of the group of all isometries
of M.

A point p € M is said to be a mazimal point of the
action of G if:

dim (Gp) = dim (Gp')
for all p' € M.
The set of all mazimal orbits forms an open subset of M.

(See DGCV, Chapter 25, for the basic material.)

Given a point p € M, let
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GF = {g € G: gp = p}.

GP ie called the isotropy subgroup of G at p.

A point p € M is called a principal point (relative

to the action of G) if p is a maximal point, and if GF
has a minimal number of comnected components, compared
with the other maximal orbits.

Let N be an orbit of G at a principal point p. Here

is a basic result. (See DGCV):

GP leaves fiwed each geodesic of
(6.6)
M which i1s perpendicular to N.

From this, we deduce:
Theorem 1. Suppose a g € G acts as the identity on N.
Then, g acts as the identity on M. In particular, G is

isomorphic to a transitive transformation group on N.

Corollary to Theorem 1. If the prineipal orbits are one-

dimensional, then G is a one parameter group. If the
prineipal orbits are two dimensional, G is isomorphic to
a group which can act transitively on a 2-dimensional

Riemannian manifold of positive curvature.

T

G, the Lie algebra of G, is identified with a Lie
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algebra of vector fields on M, t.e. with a Lie subalgebra

of V(M). Denote the Riemannian metriec by ¢. Let

d
oF

denote the 3-dimensional differential form on M which is
the volume element relative to ¢. (dwp is characterized
by the property that its inmner product under ¢ is +1).

Given X € G, it defines a Killing vector field on M.

For Y, Z € V(M), set:
wX(Y, z) = ¢(VYX, z). (6.7)

The Killing equations imply that wy is a 2-differential

form on M. This defines an R-linear map

X - Wy

of G ~+ F2(M). Let us investigate its properties, relative
to the Lie algebra structure on §.

Suppose X,;, X, are elements of G. Lie derivation by
X, is an infinitesimal automorphism of the affine connec-

tion. This means that:
[XZ’ VYZ] = V[Xz’ Y]Z + vy([XZ, z]) (6.8)
for Y, Z € V(M).

Hence,

vy([xl, X2]) = [Xl, vyxg] - V[Xz’ Y]XZ. (6.9)
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Thus, using (6.9) and (6.7):

w[XJ’ XZ](Y, Z) = @(VY[XZ, X2], zZ)

= ¢([X1, VYXZ]’ z) - w(V[X Z)

¥
=, uging the faet that the Lie derivative of

¢ by X, is zero.

- e(VyX,, [Xl’ z]1) + X (0(VyXy, 2))

- ¢(V Z).

[x,, ¥1¥e

We see then that we have:

(6.10)

1’ 2]

This means that the map
G~ Fo(u)

intertwines the action of G.
Let us now specialize to the case considered by Ricei

and Levi-Civita, namely:
dim M = 3.

Given X € G

~3

let
5(X)
be the vector field on M such that:

5X) | dp = ay. (6.11)
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(Here we use the fact - which 18 basic for the success of
classical veetor analysis - that the space of tangent
vectors is isomorphic to the space of 2-covectors.) It is

this map
5: G > V(X)

which the authors use in the text. It intertwines the

aetion of G, i1.e.

[X,, 5(xy)] = 6([X;, X,1) (6.12)

1) 2]

for XZ’ X2 € G.
Now, let us suppose, as in the text, that an orbit of
G is a 2-dimensional submanifold N of M. Let S be the
second fundamental form of S. The action of G leaves S
invariant. Now, S and ¢ are both quadratiec differential

forms on N which are invariant under G. In particular,

the trace of S is invariant under G, i.e.

N has constant mean curvature

(For the significance of this faet, see Section 8.)

Let us now consider the case where:

G acts transitively on M.

Given a point p € M, the Riemann curvature tensor R
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is a quadratic form on the vector space

M_NM_,
p p

Since M _is 3-dimensional, Mp A Mp is isomorphic to Mp
Thus, R 1s identified with a quadratic form on Mp. (This

is, in fact, essentially identical with the Ricci curvature

tensor of the metric). Let ¢ ¢, denote the eigen-

1° 02)

values of quadratic from an Mp determined by R.

3

Now, R is invariant under the action of G. Hence,

9s Cgz are constant on M. (6.13)

To derive the consequences of (6.13), let
(0" ), 1 =1, § = 3, (6.14)

be an orthonormal moving frame of 1-forms on M. Let
J
(w;%)

be the corresponding connection forms, and let

Q.7
7

be the curvature forms.

Suppose that the moving frame (0¥) . js chosen to be

the eigenvectors of R, with eigenvalues Cys Cgs g Then,
the following conditions are satisfied:
9 . c wl A w2 (6.15)
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@w A (6.16)

®” A w (6.17)

As we have seen, the transitivity of G, as a group of

isometries, implies that the c Cqs Cg are constants.

1 3
Combine relations (6.15)-(6.17) with the following

Riemannian structure relations:

dwiJ - mik A wa = QiJ. (6.18)

We see that they imply that there are constants ejkz such

that:
do® = c. twd A wk. (6.19)
Jk
We recognize that (6.19) means that M is diffeomorphic to
a 3-dimensional Lie group H such that the forms (') are

identified with the left <Invariant 1-forms on H. Since

the metric ¢ is

5..wl'mJ,

1J
we see that the metric ¢ is invariant under left trans-
lation by H.

We can now sum up as follows:

Theorem. Every homogeneous 3-dimensional Riemannian mant-

fold is isometric to a left-translation-invariant metric
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on a 3-dimensional Lie group H.

One can prove further that the group of isometries of
M is a subgroup of H x H, acting via left and right trans~

lation on itself.

7. RELATIONS BETWEEN THE PRECEDING RESULTS AND THE
RESEARCH OF LIE AND BIANCHI

The research that we have just described is closely
linked with that of Lie on the problem of Riemann-Helmholtz
and that of Bianchi [1897] on 3-dimensional spaces which
admit a connected group of rigid motions. He has determined,
in convenient coordinate systems, all the isomorphism
classes of Lie groups that appear as motions and the in-
variant metrics.

In Section 6 we have considered the following question:

Given the metric tensor ¢ of a 3-dimensional
Riemannian manifold, determine if it admits rigid motions,

at all, and also determine the full group of such motions.

Our results also give a new contribution to what Lie

calls the Problem of Riemann-Helmholtz. (See Lie and

Engel's "Transformationsgruppen,'" vol. III). To see this
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connection, recall that in Section 6 we have considered
two Killing vector fields X and Z whose components satis-

fy the following relations:

Xi,j = Gijkzk'

When the manifold M is R3

, with the Euclidean metric, Z
can be considered as an infinitesimal generator of a one-
parameter translation group, while X is the infinitesimal
generator of a group of rotationg. Following the ideas
of Section 4 of the preceding Chapter, we may form these

equations in an arbitrary Riemannian manifold M. We see

that:

M has constant curvature if and only if there
is a Killing vector field for which the com-
ponents of translation and rotation take on

arbitrary values.

This gives a precise kinematic meaning to the words

of Riemann (Gesamelte Werke, p. 264) on the subject:

The common property of constant curvature mani-
folds can be expressed by saying that figures

may be moved arbitrarily without deformation.

If we consider a 3-dimensional Riemannian manifold

which possesses a 4-dimensional transitive group G of
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rigid motions, the translation part may be chosen arbitrari-
ly, but the rotation is only about one axis. When the group
is 3-dimensional, there is no rotational component.

Finally, we remark that these results answer - at
least for the case of 3-dimensional manifolds - the problem
which has been posed as a competition by the Jablonowski
faculty for the year 1901.

We also point out that these results may be described
without using group theory,’ although we do prefer to use
its language in order to present to the reader the full
spirit of the work and to point out the connection with

what we already known.

8. RIEMANNIAN AND ISOPARAMETRIC-ISOTHERMAL SUBMERSIONS

Let M, M' be Riemannian manifolds. (For simplicity,
we suppose that the Riemannian metric is positive, although
it is possible, using the ideas developed in Vol. V of
IM to extend the development to the non-positive case.)

Let
ne M o> M

be a submersion mapping. Suppose ¢ and ¢' denote the
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Riemannian metrics on M and M', Take ¢ and o' in their

contravariant form, i.e. ¢ is a bilinear, symmetric form

on 1-differential forms. n ig said to be a Riemannian

submersion if the following condition is satisfied:
myle) = o', (8.1)

Recall from IM, vol. V, that (8.1) means the following

condition:

@lu*(8,), n*(0,)) = n*(p'(0,, 8,)) (8.2)

o 8, € FLuT).

for ©
This condition is also said to define m as a metric
homomorphism. Suppose from now on that it is satisfied.
Choose indices and the summation convention as
follows:
1 =41, g =n =dimM'",
n+1<v, us=m=dim M

1 2=a, b =m=4dim M.

Let (8%) be a moving frame of 1-forms for M' which
is orthonormal with respect to tne metric o¢'. This means

that:
o'(8", o) = 8", (8.3)

Set:
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o' = nteet). (8.4)
Condition (8.2) implies that:
w(m%, W) = ﬂ*(w’(ei, 8d)) = 8",

i.e. the (»°) are orthonormal with respect to_the metric

¢ _on M.

One can now find additional 1-forms (w*) on M, such
that the (mi, W) form an orthonormal moving frame for the
metric ¢. A moving frame of this type is said to be

adapted to the submersion. (M has a G-structure, in the

sense of Cartan, where G = 0(n) x 0(m-n). The (mi, W)
are moving frames adapted to this G-structure.)

Let (Gij) be the connection forms of the moving frame
(Gi), and let (mab) be the connection formes of the moving
frame (%) = (mi, W), By definition, we have the following

relattons:

Set:

a @58, (8.5)



GEOMETRIC APPLICATIONS 195

Using (8.4), we have:

11 T u J
(ij of oy, w JoA W
1 1 1 u v
+ (Yvk o oy, ) A w

= 0t(8,") A o,
J

We see from this relation that:

ﬂ*(ejl) = ijimk (8.6)
3 z

Tou' = Yuw (8.7)
; i

Yjul = - v (6.8)

Conditions (8.6)-(8.8) are the first order conditions

implied by the Riemannian submersion relations.
We can transform relations (8.6)-(8.8) into a basis-

independent form. To do this, let
(Xa)

be the basis of vector fields on M which are dual to the

basis (w?) of 1-forms. This means that
o (Xy) = 8,7

Hence,
n*(Xu) =0 (8.9)
n*(Xi) =7,
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are the basis of vector fields on M dual to the (6¥). The
vector fields X, are vertical with respect to the submersion

map nw, while the Xa are horizontal. Let

Ve V(M) > V(M)

H: V(M) - V(M)

be the projection maps of vector fields on the vertécal
and horizontal ones.

Let V be the affine connection associated with the
metric ¢, and let V' be the affine connection associated

with the metric o'. Then

Cx . (8.10)

£p = Yap %o

Vx
a

From (8.6), we see that:

mk(V

k
X.Xj) = 9 (VY.'Yj)' (8.11)

2 T

We can rewrite this as follows:

n*(H(VX‘Xj)) =V

w, (X ) (8.12)
: J

?
ﬂ*(Xi)
We can interpret this formula in the following basis

independent way:

Theorem 1. Let Yl’ YZ be vector fields on M', and let

Xl’ XZ be their horizontal lifts to M. Then,

H(VX XZ) is the horizontal
1 (8.13)

. '
lift of VX7Y2'
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As a corollary, we have the foZZowiﬁg basic results

on the geometric properties of geodesics of the metric on M:

Theorem 8.2. Let o be a curve in M which is horizontal in
the sense that it is perpendicular to each fiber of n, and
which 18 a geodesic of the metriec on M. Then, n(c) is a

geodesic of the metric on M'.

Proof. Since o is a geodesic of M, there is (at least
locally) a vector field X on M such that:
o is an orbit curve of X.
The condition that o is a geodesic is that:
VXX =0 on o.
Since o is horizontal, we can suppose without loss in

generality that X is horizontal. Consider
H(V,X).

Projected into M' via w, it 18 a vector field Y such that
n(c) is one of its orbit curves. Hence, VY'Y =0 on w(o).

This shows that w(o) is an geodesic of M'.

Theorem 8.3. Let o be a curve in M which is horizontal,

in the sense that it is perpendicular to each fiber of m.
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Suppose that n(o) is a geodesic of M'. Then, o is a geodesic

of the metric on M.

Proof. A Hamilton Jacobi function onm M' is a function

f' sueh that:
o' (df', df') = 1. (8.14)
Let f' be such a function, and let

Y = grad f',

Y(h) = o'(df", dh) (8.15)

for each h € F(M'). Then, the orbits of Y are geodesics
of the metric o', and, locally, each such geodesic arises
in this way from Hamilton-Jacobi functions. (See DGCV).

In particular, choose f' so that nw(c) is an orbit of

Y. Set:

Fo=mr(fr). (8.16)
Then,

o(df, df) = o(u*(df'), n*(df'))
=, using the Riemannian submersion property for nw. (See

IM, vol. V),

nA(e(df’), df')) = 1.
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We see that f is a Hamilton-Jacobi function with respect
to the metric o.

Set:
X = grad f.
Then, 1f Z is a vertical vector field on M,

0(Z, X) = 2(f) = Z(v*(f'))

nA(n(Z)(f"))
=0,
since 2 satisfies:
m,(2) = 0.
In particular,

X is horizontal.

Now, for p € M, h € F(M'),
Ny (X(p))(h) = X(p)(n*(h))
= @(de W*(dh))(p)
= o(dn*(f'), n*(dn))(p)
= n*(o(df’, dh))(p)
= n*(Y(h))(p).

Hence,

n.(X(p)) = Y(n(p)).
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Now, a tangent veector to M' admits a unique horizontal
lifting to a tangent vector to M. The tangent vector to o
is one such horizontal lifting for the tangent vector to
n(c). X is a horizontal lifting for Y. Hence, by unique-
ness, o is an orbit curve of X, hence is a geodesic of the

metric ¢, by the Hamilton-Jacobi Theorem.

Theorem 8.4. Let o be a geodesic of the metric ¢ which is
perpendicular to one fiber of n. Then, it is perpendicular

to each fiber that it meets.

Proof. Suppose that o is parameterized by 0 = t = 1,
and the o(0) is the point at which o is perpendicular to
the fiber of n. o'(0), the tangent vector to o at t = 0,
18 then horizontal. By Theorem 8.4, there exists a hori-
zontal geodesic of ¢ which passes through o(0) and which
has o'(0) as tangent vector. Since geodesics are uniquely
determined by their tangent vectors at one point, this
horizontal geodesic must equal o, hence o is horizontal,
which means that o is perpendicular to each fiber that it

touches.

Theorem 8.5, Let n: M - M' be a Riemannian submersion map
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such that the following condition is satisfied:

All the fibers of n are totally
(8.17)
geodesic submanifolds of M.

Let X € V(M) be a vector field satisfying the following

conditions:

a) X 28 horizontal
b) X is projectable under mw to a vector field Y

on M', 1.e.
M, (X) = Y. (8.18)

Let t + a, be the one parameter group of diffeomorphism

of M generated by X. Then, each a, maps a fiber of w into
another fiber, and is an isometry of the metric on the

fibers induced from the metric ¢ on M,

Proof. If Z is a veetor field on M, we have:

9

3t at*(Z) = [Xat*(Z)]. (8.19)

Let 2 be a vertical vector field. Then,

3
— o(a,,(2), a,,(2))
ot et t* (8.20)

= 2o([X, at*(Z)], at*(Z))

Also,
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a,4(2) is vertical.
Now, the right hand side of (8.20) is:

20 (Vya, (2) -V a4 (2))

a,.(2)%

= X(w(at*(Z), at*(Z)) (8.21)

+ 29 (7, (2), X).

L1 (208
Now, if all the fibers of n are totally geodesic,
then the covariant derivative of one vertical vector field

with respect to another vertical vector field is again
vertical. In particular, we see that the second term on
the right hand side of (8.21) vanishes. Combining (8.20)

and (8.21), we have:

2

*
5t g (000,425 0, 42)) = 0,

whieh implies that a, is indeed an isometry of the fibers

t
of .

Theorems 8.1 - 8.5 are now standard properties of
Riemannian submersions. They involve the first order
properties of the metrics. In order to better understand
the material presented by Ricei and Levi-Civita, let us

investigate the second order properties. The most con-

venient way to do this is to study the behavior of the
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Laplace-Beltrami operators of the metrics on M and M'.

Let (Yi) be an orthonormal moving frame of vector
fields on M'. Let (Xa) be, similiarly, an orthonormal
moving frame on M. Recall that we have divided in the

indices (a) into two groups

dim M'

1 =4, § =n

n+ 1 =u, v m = dim M.

A

Suppose that:
ma(X,) = Yo,

i.e. the X X, are the horizontal lifting of the

[EEREE

vector fields Y Y

73 n

Let f' € F(M'). The value of the Laplace-Beltrami
operator on it is given by the following formula:
- gtd
AT(FT) = 8 (V'Yidf,)(yj)
_Lig _ r ot
=6 (Yin(f) = df'(v Yin)).

Now,

0*(BI(F1)) = 5”j(xixj(w*(f))
(8.22)

- * ' . .
d(n*(f )(inXJ))

(To derive the second term on the right hand side of (8.22),

use the fact that

—_ !
ﬂ*(VX‘Xj) =v', r.)
i i
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Similiarly, let A: F(M) - F(M) be the Laplace-Beltrami

operator associated to the metric ¢. Then,
senr(fr)) = 5% (X xy (w51

- dn*(f')(v

x Xp!
a

Since the X, are vertical, we have
* ' =
Xu(ﬂ (f')) 0.
Hence, we have:

nACAT(F)) - a(ur(FT))
v (8.23)
= '
= - 8 du*(f )(VXuXv)

To interpret this formula geometrically, for a point
p € M. dn*(f') is a l-covector which annihilates the

tangent vectors to the fiber of m through p. Hence:

The right hand side of (8.23),

evaluated at p, is the trace of the

second fundamental form of the fiber (8.24)

of m_at p in the direction of the

covector dun*(f*)(p).

Remark: Here is the general definition of second funda-
mental form. (See DGCV). Let M be a manifold, with a

torsion-free affine connection V. Let
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N cM

be a submanifold of M. For p € N, let 6 be a one-covector

to M at p such that:
6(N_) = 0.
p

The second fundamental form

Se: Np X Np - R

is a symmetric bilinear form, such that:

Se(Zl(p), ZZ(p))
(8.25)
= 6(v, 2
ZZ

for every pair (24, 22) of vector fields of M which are

Py

tangent to N.

With these ‘notations, we can write (8.23) and (8.24)

wA(AT(FT)) - A(ur(FT))
(8.26)
= trace(sdw*(f,)),

where A, A' are the Laplace-Beltrami associated with the
metrics o, ¢' and 5( )( , ) 18 the second fundamental form
of the fibers of the map w. In particular, this formula

proves the following result:
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Theorem 8.6.
TAAT = Am* (8.27)

if and only if the fibers of w are minimal submanifolds

of the Riemannian metric ¢, i.e. the traces of their funda-

mental formg all vanish.

Here is a weaker property than minimality.

Definition. The Riemannian submersion w: M ~ M' is said
to be isoparametric if, for each function f' on M', the

funetion
trace(sdw*(f,)(, )) (8.28)

is eonstant on the fibers of m.

Theorem 8.7. Suppose
dim M' = 1, (8.29)
i.e. the fibers of n are hypersurfaces of M. Then, m is

igoparametric if and only if the mean curvature of each

fiber of n is constant.

Proof. The mean curvature at a point p € M is the

absolute value of
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trace(Se( , ),

where S denotes the second fundamental form of the fiber
through p, and 6 is a covector at p perpendicular to the
fiber which is of length one.

Now, if f' € F(M'), the Riemannian submersion proper-

ty of m implies that the length of
dn*(f")

is constant over the fibers of n. That this tmplies the

statement of Theorem 8.7 should be obvious.

Remarks: FE. Cartan, in papers No. 166, 167, 168 and 1728
in Part 3, vol. 2 of his Collected Works, has discussed
this "isoparametric' notion in case condition (8.29) is

satisfied and the metric M _is of constant curvature. Thus,

our material is a natural generalization to the case of
foliations with lower dimensional leaves. Here is a result
which relates our definition to Ricei and Levi-Civita's

definition of "geodesie' and "isothermal' congruences:

Theorem 8.8. Let mw: M - M' be a Riemannian submersion

mapping, such that:

dim M' = 1.
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Let Z be a horizontal vector field of unit length. (In
terms used by Ricei and Levi-Civita in Chapter 2, Z defines

a normal, geodesic congruence). Then, the congruence Z is

isothermal in Ricei and Levi-Civita's sense if and only if

n i8 an isoparametric map.

Proof. Z ig isothermal if and only if there is an

f' € F(M') such that:
A(n*(fr)) = 0.

Given (8.26), this implies that:
trace(Sdn*(f,)) = n*(a'(f')),

which shows that trace de*(f’) is constant on the fibers

of m.
Conversely, suppose that m is isoparametric. We can

suppose the coordinate & for M' is chosen so that:

We must show that we can find a function f'(xz) of this

variable so that:
Ant(f') = 0. (8.30)
Using (8.29), (8.30) will be satisfied if and only if:

2
aFfr, o art
n*(de ) = ﬂ*(dx ) trace(Sdﬂ*(x)). (8.31)
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Since trace(Sdﬂ*(x)) is w* applied to a function of x, to
find f' ie now only a matter of solving an ordinary differ-

ential equation.

Finally, here is the way we can specialize this ma-
terial to cover the ideas sketched by Ricei and Levi-

Civita in Section 5.

Theorem 8.9. Let M be a Riemannian manifold, and let G be

a connected Lie group of isometries of M. Let
we M > M

be a submersion mapping, such that the fibers of w are the
orbits of G. Then, w is a Riemannian, <isoparametric sub-

mersion,

Proof. To show that the submersion map w is a Rieman-
nian, it suffices to prove that horizontal lifting of
tangent vectors to points of M' all have the same length.
But, this follows from the tramsitivity of G on the fibers
of n, and the fact that G preserves length of tangent
vectors.

Let us prove the isoparametric property. Let

f'r € F(M'), and let p' € M'. Then,
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gr(nA(F1)) = wA(f")

for all g € G.

Now, g preserves the second fundamental form S( )( s s

since it acts as an isometry. Hence,
trace(Sdﬂ*(f,))

ig invariant under the action of G, hence is constant on

the fibers of mw.



Chapter V

APPLICATIONS TO MECHANICS

‘1. INTEGRAL FUNCTIONS OF THE EQUATIONS OF MECHANICS -
LINEAR INTEGRALS
Consider a mechanical system, with (holonomic) con-

straints which are time-independent. Let

2T = g. . x %3 (1.1)

giJ
‘be the kinetic energy of the system. (As usual, dots
above observables denote time-derivatives. 1,)j are

indices which range from 1 to n, the number of degrees

of freedom of the system.)

The Lagrange equations, determining the motion of

the system under the action of given forces, are:

d 3T T
& O 537 % (1.2)
X dx

which the Xi are related to the forces by well-known
relations.

We see easily that, when the coordinates (xi) are
chosen, the Xi transform as covariant l-tensors. Intro-
duce the reciprocal covariant tensor, using the follow-
ing metric tensor:

211
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2

as? = 27at? = gijdxidxj (1.3)

After solving the Lagrange equations (1.2) with
respect to the second time derivatives of the coordinates,

we have:

NG SN R S I 8
X X {jk} xX“x . (1.4)

(The {;k} are the Christoffel symbols. See formula (5.1)
of Chapter I). This is the form of Lagrange's equations
which is best suited to our goal.

Suppose that f is a function of the variables xi and

x'. In order that f be an integral of motion, it is

necessary and sufficient that

df 3 -1 af i

= S, x7 o+ X
T 3
I ax?®

i

be identically zero when one replaces the X~ by their

values, as given by (1.4). This condition is then:

of i, af i _ of {i } -j.k
CESDC N S L T R S S P (1.5)
ax?t ax’t axt 3k

It is known (see Levi-Civita [1896]) that to each integral
which is algebraic with respect to the x there corres-
ponds an integral (which is homogeneous with respect to
the i) for the system obtained by setting the forces Xi

equal to zero.
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For this reason, the study of integrals of force-
free systems is particularly important. Geometrically,
it corresponds to the study of homogeneous integrals of
equations of geodesics, for the trajectories of motion
with zero forces are geodesics of the Riemannian metric

ds? = gijdxidxj. (1.6)

Let us apply formula (1.5) to determine the con-

ditions that a homogeneous form of degree m

f = c. L X CL..X (1.7)

be an integral of the geodesic equations. Notice that

the coefficients of f form an m-th degree symmetric tensor
field. Assuming Xi = 0, we see that equations (1.5) can
be written in terms of covariant derivatives with respect

to the metric (1.6), as follows:

i ii
¢; 4y X Lo xmeml oy, (1.8)
1°"""m’> m+l

}

The covariant derivative tensor of the tensor {Cil"'im
thus appears very naturally. We immediately see the
simplications that the covariant derivative operation can
make in this type of research!

If it is not assumed that the forces Xi vanish, the

conditions that an f of form (1.7) be an integral is (1.8)
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plus the following equation:
i i
c. ;X Tx TLox =0 (1.9)

From (1.9), one derives (using the symmetry in the indices)

the condition:

c. . x 1 =o. (1.10)

To illustrate these general facts, let us discuss
the conditions for the existence of integrals
f=cyx (1.11)
which are linear with respect to the velocity variables
ki. The identity (1.8) becomes:

c. .x'x) =0, or

c., - +tc. . = 0. (1.12)

In the case there is a non-zero force field Xi’ one adds

to this the condition:
i
c; X" = 0. (1.13)
We have already met equations (1.12) in Chapter IV.

They express the fact that the one-parameter group gener-

ated by the infinitesimal transformation (or vector field)

ct 2 (1.14)
1
3X
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is a group of isometries of the metric ds2 given by (1.6).
This link between linear integrals of geodesics and groups
of isometries is well-known, and hence merits only this

brief comment

Remark: The standard terminology is now to say that a
vector field of form (1.14), satisfying (1.12), is a

Killing vector field. Although Ricci and Levi-Civita did

not use this terminology, I will do so. (1.12) expresses
the fact that the Lie derivative of the metric ds2 with
respect to the vector field (1.14) is zero.

A linear integral of form (1.11) determines a

canonical congruence

A = pC. (1.15)

i i
Conditions (1.13) then have the following simple geometric

interpretation:

The canonical congruence of a linear integral

is perpendicular to the lines of force.

When the force is derived from a potential function U, i.e.

Xi=aU_,,
axt

this condition means that:
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The canonical congruence of a linear integral

is perpendicular to the lines of force.

When the force is derived from a potential function U,

i.e.

this condition means that:

The canonical congruence is equipotential.

Because of their importance, we defer the study of
integrals which are quadratic in the velocities to the
next section.

We want to say a few words about invariant hyper-

surfaces.

Remark: Their term is integrals particulariseés or

equations invariants.

We mean by this an equation
f(x, x) =0 (1.16)

which is such that a solution of (1.14) which satisfies
it at one value of t satisfies it for all values of t.
(In other words, the submanifold of RZn defined by (1.16)

is invariant under the one-parameter group whose orbits
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are the solutions of (1.14)). The condition for this is
that

df
dt

be a consequence of the equations (1.4) and the equation

f = 0 itself. We are thus led to the following identity:

At gl o, (1.17)
ax ax?t

where the x' are replaced by their values in terms of
x, k, as given by equations (1.4), and M is same function.

We shall only consider here the case where:
f is linear in the x'.

It is then permissable to suppose that the invariant

hypersurface is determined by the following equation:
.1
p;[nlx™ = 0, (1.18)

where (xi[j]) determine an orthonormal moving frame of
the metric dsz.
The left hand side of (1.17) we have already calcu-

lated in our work on integrals of motion. We have then:

- i _ -1
Xi,j[n]xixj + X xi[n] = Mxi[n]x . (1.19)

We conclude that the multiplier M must be linear in the

x', say of the following form
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M= vt (1.20)

(1.19) and (1.20) combine to give the following conditions:

Xixi[n] =0 (1.21)
xi,j[n] + Xj’i[n] = vixj[n]
(1.22)
+ vai[n]

Equation (1.21) tells us that the lines of force are

perpendicular to the curves of the n-th congruence. As
before, when the forces are conservative, this implies
that the congruence [n] is equipotential. In order to

discuss equation (1.22), set:

o = ijJ[i]. (1.23)

Condition (1.22) may be written in the following equiva-

lent form:

+ Ynji = Ejnmi + Einmj. (1.24)

nij
For n = 2, there are three equations of form (1.24). The

third reduces to

v517 = 05 (1.25)

which means that the congruence [2] is a geodesic con-
gruence. But, we have seen that the lines of this con-

gruence are lines of force, i.e. are integral curves of
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the contravariant vector field (Xl). Here is the conclu-

sion:

The equations of motion of a mechanical system

with two degrees of freedom admit an invariant

hypersurface only if the lines of force are

geodesics of the metric dsz. The ‘notions which

4iEon this hypersurface have the property that

their velocity and forces have the same direc-

tion.

It would be interesting to work out the conditions
that a system with an arbitrary number of degrees of

freedom admit such an invariant.

2. QUADRATIC INTEGRALS OF FORCE-FREE SYSTEMS - INTRINSIC
CONDITIONS FOR THEIR EXISTENCE - PARTICULAR CONDITIONS
WHICH LEAD TO THE DYNAMIC SYSTEMS OF STACKEL

Consider a mechanical system with no force, whose
notions are then geodesics of the Riemannian metric

2

ds? = gijdxidxj. (2.1)

Suppose it has a quadratic integral of the following form.

H=c..x'x7. (2.2)

1]
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As we have seen in Section 1, the conditions for this are

that:

i k

ciljek
Cij,kx XX 0,
i.e. that:

+ C.

it Cki,y O (2.3)

“ij,k ki,j
In order to study these relations, it is natural to intro-
duce the canonical form of the tensor Cij (Chapter II,

Section 5):

Cij=k

| =]

1pk)\i[k])\j k], (z.4)

where the p, are the roots of the eigenvalue equation
det(cij - pgij) =0, (2.5)
and (xi[k]) determine a orthonormal moving frame. Com-
bining (2.3) and (2.4) gives the following relations:
0 = Cox = pidvkij ¥ (o; - Pj)Yijk
+ (Pj - pk)iji’
k #1i# j, no summation:

apk
g;; = Z(Pk - pi)Yikk’ (2.6)

also no summation on the indices.

Remark: Recall that
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ok
- = Y.(p,),
asl v k
where
-Yi = XJ[i] —a_
axd

is the i-th vector field of the moving frame.

Equations (2.5) and (2.8) give the intrinsic geo-
metric form to the problem of finding all types of kinetic
energy forms whose geodesics admit at least one quadratic
integral. To obtain these various types, start off with
the metric dsz, considering (2.5) as equations for the
orthonormal moving frame, with the p; as auxillary un-
knowns. The first assumption is to consider all the Py
as equal. Equations (2.5) are then satisfied identically,
and equations (2.6) imply that the p; are constant. There
exists then, for any metric, at least one quadratic inte-
gral, determined by the metric form itself. This is just
the kinetic energy itself, which is conserved, because
there are no external forces.

Putting aside this obvious case, it would appear
plausible to study the system of equations (2.5) and (2.6)
by classifying the type of p which may appear. For example,
first consider the case where all the p; are distinct,
then the case where (n-1) are distinct, and so forth.

Such a study has not been carried through. It would be
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of the greatest interest if it were done, but at the
moment it seems very arduous.

We do have particular solutions of the system, which
correspond to the kinetic energy forms discovered by
Stickel [1897]. These examples generalize the classical
examples found by Hamilton and Liouville. (See Di Pirro
[1896], Stickel [1897], Painlevé [1897]). One may find
Stickel's examples from equations (2.5) and (2.6) by
making the special assumption that the orthonormal moving
frame (Xi[k]) is normal. (To be exact, one assumes the
normality of all the vector fields in the moving frame
when all the p; are distinct. When several coincide, the
relevant hypothesis is slightly less restrictive. See
Levi-Civita [1897a]).

One might be tempted to conjecture that Stédckel's
examples exhaust the solutions of examples (2.5) and (2.6),
i.e. that all moving frames which are solutions of (2.5)-
(2.6) are normal. This is true for n = 2 (trivially,
since all vector fields are normal in dimension 2), but
as soon as one passes to a larger number of variables one
sees easily that there are new types of solutions. See
Levi-Civita [1897b]. The true difficulty lies in the
problem of finding all solutions. The first step in this

direction should be the solution of the system. (2.5)-
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(2.6) in the next case beyond the case where all the Py
are equal, namely the case where only two of the py are
distinct.

We point out to the reader this possibly interesting
research direction, which we have reduced to a compara-

tively simple form.

3. SURFACES WHOSE GEODESICS POSSESS A QUADRATIC INTEGRAL
(LIOUVILLE SURFACES). CLASSIFICATION OF THESE
SURFACES BY THE NUMBER OF THEIR DISTINCT GEODESIC
INTEGRAL FUNCTIONS

The basic reference of this section is Ricci [1894],

and [1898], Part I, Chapter VI, VII.

For n = 2, equations (2.5) are satisfied automatically,

and the only relevant conditions are equations (2.6), which

become:

8pp 2Py 0
ast as
3p

1

= 2(p; - pPyIY (3.1)
1 271211

3s
3p,

= Z(Pz - Pl)lez-

Assume that:

Py # P
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Then, equations (3.1) imply the following integrability

conditions:

52111 °Y122

= - 3v,11Y122¢
sl 552 2117122

(3.2)

Each orthonormal moving frame [1], [2] which satisfies
(3.2) provides a function H (different from the kinetic
energy) which is quadratic in the velocity variables and
which is conserved under the geodesic flow of the metric.
Denote by o the angle between the curves of the congruence
[2] and the curves of an arbitrary geodesic congruence.
One sees readily that the conservation condition on H are

equivalent to the following geometric property:
.2 2
py sin g + py cos 8 = constant (3.3)
along each geodesic

Conditions (3.2) imply that the moving frame [1], [Z]

belongs to an isothermal bundle. (See Chapter IV, Sec-

tion 1.)
From (3.1) it follows without difficulty that, one

may choose coordinates (u, v) of the surface such that:
2 2
as? = (p, - pp)(du’ + avi). (3.4)
(3.5)

Vector field [1] is proportional to —

Vector field [2] is proportional to g% (3.6)
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Combining these conditions with the first set of equations

of (3.1), we see that:
P1 is a function pl(u) of u only
(3.7)

P is a function pz(V) of v only.

Here is the classical

Definition. A two dimensional Riemannian manifold is

said to be a Liouville manifold (or Liouville surface)

if it admits a coordinate system (u, v) satisfying (3.4)
and (3.7).

We have then proved the following result:

In order that the geodesics of a two dimensional

Riemannian manifold admit a conserved quadratic

function it is necessary and sufficient that

the manifold be Liouville.

Now, the following problem is suggested: How to
recognize if a metric, given in advance, is of Liouville
form, and in how many different ways may it be written in
Liouville form? This problem is naturally equivalent to
that of determining the number of quadratic conserved
functions of the geodesic equations.

Here are the results found by Ricci [1894]. Let us

say that an orthonormal frame [1], [2] which satisfies
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anv

(3.2) i%‘isothermal Liouville system.

1) Only manifolds of constant curvature possess

isothermal Liouville systems which depend on

four parameters.

2) Manifolds of non-constant curvature admit at

most two parameter families of Liouville

systems. There is one class of manifolds which

admits precisely this number. They are the

. 3 . . .
surfaces in R~ which are isometric to surfaces

of revolution and also have parallel lines of

curvature.

3) There exist manifolds which have 1l-parameter

families of Liouville systems, and others which

have a unique liouville system.

Koenigs, in a Prize Memoir of the Academie des Sciences
de Paris [1894], has dealt with a problem which is closely
related to the one just described, but not exactly identi-
cal. He proposes to find all metrics which admit at least
two Liouville systems. With this viewpoint, he can estab-
lish some of the results described above. Koenigs announced

them at the same time as Ricci.
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4. PROJECTIVE TRANSFORMATIONS OF THE EQUATIONS OF
DYNAMICS
Suppose given two dynamical systems, (A) and (Al),
whose forces are velocity independent. We say that (A)

and (Al) are projectively equivalent if the solution

curves of A and Al in configuration space are the same

up to a change in parameterization.

A NI N g
Remark: The terminology used by Ricci and Levi-Civita

is that the systems correspond.

NS N St ey
Painlevé [1894] has proposed the following problem:

Given a dynamical system (A), determine the

conditions that it admit projectively equivalent

systems, and find all of them.

One can prove that, if the external forces are zero
for (A), they are also for (Al). Then, the geometric side
of the problem of projective equivalence takes the follow-

ing form:

Determine all the Riemannian metrics which are

projectively equivalent to a given one.

This problem has been studied by R. Liouville [1895].
He has proved general and remarkable results, without

giving a definitive answer. (Perhaps it was not possible
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without the help of Tensor Analysis). We now give an
idea of the methods of attack on this problem, following
work of Levi-Civita [1896].

Let
gijdxidxj
hijdxidxj
be two metrics which are projectively equivalent, i.e.
which have the same geodesic curves up to a change in
parameterization., Consider the first metric as given

(and determining covariant differentiation). Here are

the equations which the second metric must satisfy:

2uh.

ij,k hij *

*o2uphy g *oushyy

(4.1)
*ughgy =0,
where p is same function of x. Denote by g and h the

determinant of the matrices (gi ), (hij). Set:

j
A.. = u’n (4.2)
ij T ¥ Py :
From the preceding equations one readily derives the

following relation:
1

W= e, (4.3)

with C a constant; and

Aij,k + Ajk’i + Aki’j = 0. (4.4)
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This shows (see Section 2) that

Aijxixj (4.5)
is conserved under the geodesic flow of the metric

1447
gijdx dx- .

To investigate these relations further, consider the

canonical form for the tensor hij:

hij = z prhy (KD (K]

Equations (4.1) imply the following relations:

(Pk - pi)Ykij =0, k#1i#]j. (4.6)
2( ) e (4.7
Py T PilYysi T T .

i j7Tij1 asd

(i # j; no summation)

a(P-Pi) . .

— =0 (i # j) (4.8)
3sJ

3 (up;)

___ii_a,pi_a.u_i:o, (4.9)
as as

(no summation.)

The form of the system of equations (4.6)-(4.9) indicate
to us that the number and nature of the independent con-
ditions involved depends on the number of distinct roots

and multiplicities of the eigenvalue equation

det(hij - pgij) = 0.
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Suppose first that all the p are distinct. The
orthonormal reference frame is in this case completely
determined, and, because of equations (4.6), the rotation-
al coefficients Yijk with i,j,k distinct must vanish.

It follows (Chapter II, Section 3) that all the con-
gruences of the moving frame are normal, and one is
naturally led to take the corresponding orthogonal hyper-
surfaces as coordinates. With the choice of such a co-
ordinate system, the metric takes the following form:

as? = u (axh?. (4.10)

With this form for the metric, equations (4.6) are auto-
matically satisfied, and conditions (4.7)-(4.9) take the
following form:
3 log Hi api
Z(Pi - pj) -—*;;?—— + g;?’= 0 (4.11)

(i # j; no summation)

3 (up; )
— 2 -0,1i2]j. (4.12)
axJ
3 (ups)
11 + o0y I 0; no summation (4.13)
ax ax?t

The solution of this system is easy. We are led to

the following result:
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Theorem. For each index i between 1 and n, let wi be an

arbitrary function of x; and let ¢, C be arbitrary con-

stants, Set:

2 n n i 2
ds“ = 3 (M (b - ;))(dx)) (4.14)
i=1 j=1 J
J#1
2 _ [
St B (DN (L) I ()
n 1 n i i2 (4.15)
iil TE;:ET (j21 (Wj Wi))(dx )°.
j#i

Then, the metric dsl2 is projectively equivalent to dsz,

and every metric which is projectively equivalent to ds?

is of this form.

Let us pass to the other extreme case, where all the
p are equal. We see that hij is then a constant multiple
of gij> which is the trivial sort’ of projective equiva-
lence. .

The intermediate cases, where some of the p are
equal, some unequal, combined with equations (4.6)-(4.9),
lead to well-defined systems of equations which determine
the projectively equivalent metrics. As we have seen for
the case covered by the above Theorem, the geometric

interpretation suggests the choice of variables in which

the system is easiest to solve.
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Returning for a moment to the case where all the 5
are unequal, let us remark that the corresponding con-
served function for the geodesic flow of the metric (4.14)

takes the following form:

n
R R I IR
n .iy2
clig 2 Oy - vp)) D) (4.16)
j=
j#i

As the right hand side of (4.16) is conser: ed for

each value of c, the coefficients of the expansion in

powers of ¢ are also conserved, and are quad%ﬁg in the
velocity variables. They give n distinct conserved
functions. (In general, there will bé as many distinct
conserned quadratic functions obtained in this way as
there are distinct eigenvalues among the Ps-rrs Pp-
It would be important to characterize invariantly

the metrics which can be reduced to the form (4.14).

(They are called generalized Liouville metrics.) We have

already done this in Section 3 for the case n = 2; the
case n = 3 is the next situation to study.

More generally, it should be kept in mind that the
problem of projective equivalence for non-zero forces is
still unsolved. Painlevé [1896] has made very interesting

contributions, and has solved the problem for n = 2.
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See also the work of Viterbi [1900]. Will Tensor Analysis
enable us to push this problem to a conclusion? At the

moment, we can only hope so.

Remark: 1In case the forces admit a potential (which of
course includes the case n = 2) the solutions of the
Lagrange equations are, after reparameterization, geodesics
of a metric. (This is the "Principle of Mauperty fs.”

See DGCV, Chapter 16). Hence, the essence of this last
problem lies in the case where the forces do not admit a
potential.

In addition, the reader will notice that a vast area
of research is still open. For example, Stdckel has ex-
tended [1898] the projective equivalence problem by re-
quiring that two dynamical systems (A) and (Al) have
k(< 2n-1) parameter families of orbits which differ only
by a change in parameterization. In an article which will
appear soon, Malipiero considers the geodesic case from
this point of view, and presents some remarks which are

not without interest.

Remarks: There has been of course a considerable amount
of work on these problems since 1900, successfully using

(as Ricei and Levi-Civita had suggested) the methods of
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Tensor Analysis. I am not very familier with this work -
the treatises by Schouten [1954] and Vranceanu [1857]
would be a good place to start. Of course, highlights
of the post - 1900 work were the introduction of the

projective curvature tensor by Weyl, and the development

of the theories of projective connections by Weyl and

Cartan.

I would imagine that there is interesting work to
be done in non-classical directiong; for example, the
study of global préperties of projective equivalence and
the relations with quantum mechanics. For example, equa~
tions of a force-free rigid rotation (or more generally a
dynamical system on a Lie group invariant under left
translation) admit quadratic conserved quantities. I
suspect that they are related to "projective" symmetries.
What is the role of these projective symmetries in

quantum mechanics?



Chapter VI
PHYSICAL APPLICATIONS

1. REDUCIBILITY TO TWO VARIABLES OF THE HARMONIC
EQUATION (BINARY POTENTIALS)

Consider Laplace's equation in Cartesian coordinates:
aZu aZu azu

AU = + — * — = 0. (1.1)
x? 3y 3z

=]

If we suppose that the function u is independent of z,

it must satisfy:

22 32
u u
*— = 0. (1.2)
39X 3y

This equation defines an extended class of potentials,
which are constant along the lines in RS which are parallel
to the z-axis. (C. Neumann calls them logarithmic
potentials).

Similiarly, consider Laplace's equation in spherical
coordinates (r, 6, ¢). Assume that u is a solution which

does not depend on 9. It must satisfy the following

equation:

1 3 2.2, 2u 3 : au _
;Z—in—e{-aT(TSIHS-aT)*'ﬁ(Slneﬁ}—o (1.3)

235
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There is no trace of ¢ remaining in the coefficients.
The solutions of (1.3) form a very important class of

harmonic functions, the symmetric potentials, which are

well-known after the work of Beltrami [1881]. They are

constant on the circles r = constant, 6 = constant.
Similiarly, we may look for functions which are

independent of r. The corresponding potentials are the

solutions of

2
3 . au 1 3 u _
55 (SIn 058 Y 77 0 (1.4)

Their equipotential curves are the lines in R3 through
the origin.

It is not possible to treat 6 on the same footing.
For, if u is a solution of (1.1) which is independent of

6, we have two equations

3 2 au, _
57 (07 39 <

=0,
o9

which have the solutions:

c c
_ 2 4
u = (Cl + —;) + (C3 + -;),

where the c's are arbitrary constants. This solution does
not have the same degree of generality as the previous

cases.
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Remark: Physically, the trouble with this family of
solutions is that there are not enough to provide golutions
of boundary value problems.

These remarks led Volterra [1883] to pose the follow-

ing problem:

Consider the harmonic equation Au = 0, trans.

formed in terms of an arbitrary coordinate

system (xl, xz, XS) for RS. In general, when
one sets 253'= 0, one cannot eliminate Xg from
5 (i.e., the two equations a(u) = 0, 2%x = 0 do
not form a completely integrable systZ;). There

are some cases - we have already encountered some
R 3 S
simple examples - where x~ can be eliminated.

Here is Volterra's problem: Determine all such

cases.

To each such coordinate system, there is a class of
potential functions depending on two variables, called

binary potentials. In applications they may be used in

the same way as logorithmic or symmetric potentials.
Volterra has studied [1883] then from a general point of
view,

A problem which remains is to find if there are types
in addition to the ones which are known, and to determine

them.
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Riemann has solved this problem (Collected Works,

p. 370) for the heat equation

3u
= o+ =
3T kau 0,

but his method is extremely cumbersome. It is necessary
to clear away the complicating material; Tensor Analysis
can do this. (See Levi-Civita [1899]). We shall now
cover the highlights of this research.

Notice that one type of bilinear potentials is

characterized by its associated equipotential congruence,

i.e. the congruence whose curves satisfy:

xl = constant, xz = constant,

formed by the curves along which all the elements of the
class are constant. In fact, when this congruence is given,
it suffices to choose coordinates arbitrarily (xl, xz, xs)
such that the curves of the congruence are:

X1 = constant, xz = constant.

The equation which defines the corresponding binary po-

tentials is obtained by writing the harmonic equation

au = 0

in these coordinates, and then setting EE§-= 0. (The

3IX
hypothesis that the congruence is equipotential is pre-
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cisely equivalent to the fact that one can set 953 = 0 in

ax

Au = 0 without being bothered by xs).
The problem then comes down to finding all the equi-

potential congruences of space. These congruences (as-

sumed to be real) fall into the four following types:

1) Isotropic straight-line congruences, called

Ribaucour congruences. (See Bianchi, 'Lezioni

di geometra differenziale,' Chap. X, Levi-
Civita [1899]).
2) Congruence of circles with the same axis.
3) Congruences of helices.

4) Congruences of spirals.

We derive from this a corresponding classification of

binary potentials. They are isotropic, symmetric, heli-

coidical, and spiral.

Remarks: This material is still of great current interest.
Here is one general way of formulating the problem, using
the theory of linear differential operators. (See GPS,
Chapter I).

Let M be a manifold, F(M) the ¢” real-valued funetions

on M. Let

A:F(M) > F(M)
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be a differential operator. (The case where A is the
Laplace operator is typical and important, but is by no
means the only interesting examplel)

Let M' be another manifold,

A': F(M') > F(M)

a differential operator on M'.

Definitions. A map
Q: M - M!
is said to intertwine A and A' if:

Alo*(Ff')) = o* (A" (f))
(1.5)

for all f' € F(M').
¢ is said to be a homomorphism from A to A' Lf the follow-
ing condition is satisfied:
If A'(Ff') = 0, then Ale*(f)) = 0. (1.6)
Of course, condition (1.5) implies (1.6). The con-
cepts discussed by Ricei and Levi-Civita are really
"localizations" of this one.
Here is another formulation in terms of foliations.

Let M be a manifold,

A: F(M) - F(M)
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a di

fferential operator. Let V ¢ V(M) be a

vector field system on M, i.e. an F(M)-sub-

module of V(M). Suppose it is integrable, i.e.

that it defines a foliation on M, Z.e.

[VJ

V] < V.

An integral of V is a real-valued function f

defined on an open subset of M such that

X(f)

Let

= 0 for all X € V.

I(0, V) denote the set of integral functions

defined in each open subset 0 of M.

Definition. The foliation V is said to reduce the differ-

ential operator A if:

a(I(0, V)) c I(0, V). (1.7)

Ricei and Levi-Civita consider the case where

M =

vV =
As in so much
this material

view (perhaps

R,

Laplace operator.
1-dimensional foliation.
of the rest of this paper, I would say that

should be reworked from a modern point of

with a global outlook), with special attention
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to new problems of this sort which arise in the theory of
Lie group representation theory, differential equations,
and General Relativity.

Here is another example, of an important geomeiric

situation which is covered by (1.5). Suppose
B: V(M) x V(M) ~ F(M) (1.8)
defines a Riemanntian metric on M. A can be chosen as the

first Beltrami operator, considered earlier:
A(f) = pldf, df). (1.9)

(Of course, p must be "dualized" first, to define an inner
product on differential forms). Suppose also that M' is
another manifold, B' a Riemannian metric on M', A" its
first Beltrami operator. Condition (1.5) then means that
A is a homomorphism between the Riemannian metrics B &nd
R', as defined in Volume V. (In the terminology used

earlier by Reinhart and 0'Neill, B is a bundle-like metric

with respect to ¢, and ¢ is a Riemannian submersion between

M and M'). See Chapter IV for more detail.

2. VECTOR FIELDS

For general ideas on vector fields, from our point
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of view, one might consult with profit (in addition to the
well-known treatise by Tait) the posthumous memoir by
Ferraris [1897], and the recent memoir by Donati [1898].
By a vector field we mean a correspondence which
assigns to each point of a domain of space (i.e. R3) a

vector V whose origin is at P.

Let yl, yz, y3 be the Cartesian coordinates of P;

2 ; .
Yl, Yo, Y3 the coordinates of V with respect to the co-
ordinate axes. The law of coorespondence between points

and vectors means that the components Yl, YZ, Y3

functions of yl, yz, Y3-

of V are
We suppose, of course, that these
functions are continuous and possess as many derivatives
as is necessary.

Given such a vector field, the scalar quantity

oyt | aY® | oy’

+
ayl dy ay3

is naturally associated. One calls it the divergence of

V at the point P:

2 3
givv=2¥_ 3, 3Y (2.1)

It appears quite often in physical theories. For example,
if the vector V represents the displacement of P in an
elastic deformation, div(V) is a measure of the stretching

of the particles in a neighborhood of the point P. More
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generally, when V is a flux of any physical nature, div(V)
measures its condensation.
If the components (Yi) are derivatives of a function

U{in which case we say that the flow represented by V is

of potential type), then
div V = A(U).

There is another vector closely linked to the field,

the curl 2Zw. Its components are given by the following

formulas:
D S
ay? oy’
S
ay3 syl
aY? oyt
T T 7
oy oy

To see its physical interpretation, think, for example,
of hydrodynamics. If V is the velocity of the fluid, then
the "rotation" of the fluid is defined by the vector w.
It is identically zero for the velocity fields of potential
type.

Now, suppose that the physical space, R3, is described
by arbitrary coordinates (xl, xz, xs). One naturally

encounters the problem representing the vector field and
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the above operations in these coordinates.

To do this, associate with the vector field V a
l-covariant tensor (Xi), 1 =1, j = 3, whose components
reduce in Cartesian coordinates (yi) to the components
(Yi) of V. The principles of Tensor Analysis immediately
enable us to write down the above operations. (The same
method enables one to immediately write down the standard
integral formulas, such as those of Green and Stokes, in
arbitrary coordinate systems. See Ricci [1897]).

Let (gij) be the metric tensor of the Euclidean

. 3 .
metric on R, i.e.

2 _ i,3
ds® = éijdy dy
= gijdxldxj.
Then,
s _ i
div V g Xi,j (2.1)

(curl V)t = eijkxj’k. (2.2)
(For the definition of the ¢ tensor, see Chapter I,
Section 5). To prove these formulas, notice that the
right hand sides are invariants under change of coordi-
nates, which reduce, in Cartesian coordinates, yl, yz, y3,
to the values they should to make (2.1)-(2.2) identities.

For vector fields of potential type, i.e.
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it follows that

div V = glJU.
which is the general form of the Laplace operator AU,
as expected.

We have already remarked (Chapter I, Section 5) that

one may write (2.1) in the following form:

divv =2+ 2 waxh (2.3)
vg ax?t
. oX. X,
i_ 1 i+ i+l

(curl V)* = — (g;T:T ax1+2

(Again, in (2.4) regard two indices which differ modulo
three as the same). These formulas are useful for calcu-

lations.
In elasticity and, especially, in electrodynamics,

one encounters the vector field
® = - curl (curl V). (2.5)

Here are the formulas for this operation in terms of

Tensor Analysis: Start with Cartesian coordinates (yl):

o - R : aY.l ) aYi+2 N
i ay1+2 ay1+2 ay‘
) N (aYi+1 ) aY.l 3
1+1 1 i+l

ay ay dy
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This may be written as:

3%y j

. . J
2, = gk T i . *ari
aylay® eyl ay?
. 32Y.
k i 3 .
- 57 ——x - —y @iv V). (2.6)
ay-ay ay

We can now write down the formula in a arbitrary coordi-
nate system.
jk

9. = gl X - Ll (div V). (2.7)

i,k o4

To prove formula (2.6), note that it is an invariant
formula, which takes the form (2.6) in the Cartesian co-

ordinate system.

3. DIVERSE EXAMPLES - EQUATIONS IN GENERAL COORDINATES
OF ELECTRODYNAMICS, THEORY OF HEAT, AND ELASTICITY

Electrodynamics. The electromagnetic field is de-

fined by two vector fields
E, B,

called the electric and magnetic field vectors. This

depends on time. For fixed time, they are vector fields

on R3, as considered in Section 2. We denote by
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3E 9B
t? at?

(s3]

the vector fields obtained by taking partial derivatives

with respect to the time, t.

Remark: I follow the modern notations, now used in
=

physics books. (See Jackson [1961] or, Volume IV, Chapter
1

IV) Ricei and Levi-Civita use Fos Fos (which actually is
not a bad notation!) To be precise, in terms of arbitrary
coordinates (") for RZ, 1 =14, § = 3,
F = Et a_,
dxt

where E* are functions of the form E'(z, t), then

3F
53 = (

aEt) 3
3

ot axi
With these notations, the equations for a homogeneous,

isotropic dialectric are, in Hertz' form:

3B _

Aun 3T - curl E (3.1)
dE _

Ac¢ Py curl B (3.2)

A, u, € are constants.

We may translate these equations into an explicit
. . . . i
form, in terms of an arbitrary coordinate system (x°) for

R3, by using the formulas of the preceding section. Let
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(Ei), (Bi) denote the covariant l-tensors corresponding

to the vector fields E and B. Equations (3.1) and (3.2)

become:
Wi S | {iEiiZ ; ifi:l} (3.3)
ot Vg aX1+1 ax1+2
Ae i1 {aBiﬂ . __._aB'”Z} (3.4)
ot Vg aX1+2 aX1+1

It may be useful (for the study of waves, for example)
to separate the differential equations satisfied by E
and B. This may be done by eliminating first E1 then B1

from equations (3.1)-(3.2). One finds in this way:

2
Alue 22 - Ae 2 (curl E)
ot
- aFE
= A¢ curl (5f
= - A€ curl (curl B).
Similiarly,
2 o%E
A"pe — = - curl (curl E).
ot

Formula (2.7) leads to the following relations:
3%B,;

2 i jk 3 :
A%pe —— = g B i - —7% (div B) (3.5)
at 1,3k 5 d
A%ue 2 T gIkg. - 2 (div B) (3.6)
T el 1,3k o d
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For empty space, one has, in particular,

div(B) = div(E) = 0. (3.8)
One may now translate the limit conditions into general-
ized coordinates, then, introducing polarisation and
current, consider the case of dielectrics and conductors.
It would be interesting to present some applications
of these general formulas, but this would lead us too far

afield. We have simply given enough to guide the reader.

Remark: After the development of Special and General
Relativity it became clear that the equations of electro-
dynamics were even more elegantly and usefully describ-
able in the context of four dimensional tensor analysis.
See Jackson [1962], Landau-Lifschitz [1959]. Then,
Cartan showed that the ultimate framework was in terms of
differential forms. See Volume v, ="

Heat. The movement of heat in a conducting body 1is

determined (when one neglects phenomena of absorption

and mechanical work) by the following equation:

Co §= div(F). (3.9)

C and p represent specific heat and density; T is temper-

ature, (a scalar), while F, a vector field, is the heat
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flux. All are time-dependent objects defined over space.

The vector field F is defined in isotropic bodies by
the fact that its component in any direction is propor-
tional to the derivative of temperature in that direction,
i.e.

F=cgrad T (3.10)

c may depend on the coordinates. If (Fi) denotes the
covariant coordinates of F in an arbitrary coordinate

i . .
system (x ), these equations can be written as follows:

3
o =Lz 2 vy (3.11)

Vg i=1 ax? ax
When C is a constant, we have the well-known result:

Co g—z= caT. (3.12)

Remark: Equation (3.12) is now called the heat or
diffusion equation.

Notice that (3.10) is unnatural from the point of
view of tensor analysis, since relation (3.9) seems to
indicate that F is a contravariant vector field. Physi-
cally, the origin of this identification is our assumption
that the conductor was isotropic. For an arbitrary con-

ductor, the following general relation should be assumed:
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pl o (43 2l (3.13)
ax?

The coefficients c'? (which are symmetric, and are called

conductivity coefficients) are functions of the variables.

They define a 2-covariant tensor.

Remark: In modern continuum mechanics, relations (3.13)

are typical constitutive relations.

We can now write down the general version of (3.11)

that is correct from the viewpoint of temnsor-analysis:

aT 1 3 ij aT
ot Vg ax?t axJ

I1f the heat conductor is homogeneous, the coefficient

ij . . . .
¢!l are constant in Cartesian coordinates. Of course, if

they are regarded as forming the component of a tensor,
they are not constant in arbitrary coordinate systems.
In particular, one cannot take cij outside the differen-
tiation sign in (3.14). Another form of (3.14) is:

co 2L - Mg, . (3.15)

To see that both (3.14) and (3.15) are legitimate
verions of the heat equation in general coordinates, note
that both have an invariant nature, and reduce to the

standard equation in Cartesian coordinates.
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Remark: This is a typical application of Tensor Analysis
in physiecs! Finding the "correet” or "imvariant" form
(from the viewpoint of Tensor Analysis) of system of Equa-
tion is often a great help in investigating new physical
phenomena. For example, quantum field theory carries over
this viewpoint to desecribe elementary particles in terms
of quantum fields. One must regard such equations as
mathematically inspired guesses, whose consequences are
compared with experiment to check the correctness of the
mathematical guesses. Unfortunately, in quantum field
theory it is, so far, too hard mathematically to derive

enough consequences to check with experiment!

Elasticity. Let (yl) be Cartesian coordinates. Let
u; be the coordinates (in the y-coordinates) of points in

the elastic body.

2a.. = —b & 4 (3.16)

(aij) measures the strain of the body.
The potential of the elastic forces acting on the
body is a function 2I1 of the g which is typically

quadratic and homogeneous. Set:

2 = ciike (3.17)

aijake.
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The coefficients cljkl are called elasticity coefficients,

and may be functions of the y.

Denote by F the vector field representing the force
which acts on a unit amount of mass. p is the demnsity of

matter in the body. Set:

ij o 8 _ _ijke
n Sa c Qppe (3.18)
1]
The equations of elastic equilibrium are then:
ij :
M~ - ort, (3.19)
ayJ

It is now easy to write these equations in a form
which is valid in an arbitrary coordinate system

(xl xz, x3) for R3. Regard:

’

(ui) as a l-covariant tensor

(cike

F as a l-contravariant tensor.

) as a 4-contravariant tensor.

Set:
Zaij = ui,j + uj,i (3.20)
ij _ ijke
I c L (3.21)
p i3 oo b, (3.22)

Again, the equations (3.20)-(3.22) are independent
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of choice of coordinates - because they are written in
terms of Tensor Analysis - and reduce to the usual re-
lations (3.16)-(3.19) when the coordinates for R3 are
orthogonal Cartesian.

This is not the place to go further, but we might
mention that the theory of elasticity is one of the areas

where Tensor Analysis may be called on to serve as a

mathematical language and framework.

Remark: This last prophecy - as for so many others in
the book - indeed became true - see any current treatise
on elasticity and continuum mechanics. (Unfortunately,
they are all in the engineering or applied mathematics
literature - a contemporary version of Ricei and Levi-
Civita's work is very badly needed in this field!)

It is also historically appropriate that the article
ends with equation (8.22), showing that the "divergence"
operation on symmetric 2-tensors is the appropriate in-
variant form of one of the classical partial differential
equations of mathematical physics. This fact was a key
idea - even a dramatic clue, in the detective story sense
- in Einstein's discovery of General Relativity. See his

book, "The Meaning of Relativity” [1].
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