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PUBLISHER'S FOREWORD

We are pleased to be publishing this second translation volume of THE
OOLLECTED PAPERS OF ALBERT EINSTEIN. As with Volume 1, we strongly urge
readers to use the translations only together with the documentary edition,
vhich provides the editorial commentary necessary for a more complete under-—
standing of the documents. Every effort has been made to insure the scientific
accuracy of this translation. It is not intended as a literary translation
that can stand alone without the documentary edition.

We are again grateful to Dr. Anna Beck and Professor Peter Havas for
their hard work and dedication to this project, which is separate fram the
documentary edition project. BAll translations appearing in the documentary
edition were prepared by the editors of that volume, and those appearing in
this volume were prepared by Drs. Beck and Havas.

We are also pleased to acknowledge the grant fram the National Science
Foundation that has made this publication possible. In particular, we thank
Dr. Ronald Overman of the NSF for his continued interest in the project.

Princeton University Press
September 1989






PREFACE

This volume contains the translations of all documents in Volume 2 of
The Collected Papers of Albert Einstein, all of which were originally written
in German. It is not self-contained and should be read in conjunction with
the documentary edition and its editorial apparatus. All editorial headnotes
and footnotes have been omitted, as have the introductory materials and the
bibliography. However, we used the bibliography to check the references cited
in the documents and, especially, to correct and complete the titles and
bibliographic data given by Einstein in his reviews of books and articles. In
this volume we have included the editorial footnote numbers, which appear in
brackets in the margin and correspond to the footnotes in the documentary
edition. We have not corrected any misprints or other errors (including those
in the formulas) if the editors have commented on them. Misspellings of names
of persons have been routinely corrected.

Although some of the documents have been translated before, we have
provided new translations here rather than attempt to use any "best" existing
translation.

The purpose of the translation project, in accordance with the agreement
between Princeton University Press and the National Science Foundation, is to
provide " a careful, accurate translation that is as close to the German
original as possible while still producing readable English." This is,
therefore, not a "literary" translation but should allow readers who are not
fluent in German to make a scholarly evaluation of the content of the
docunents while also obtaining an appreciation of their flavor.

Many technical expressions used in the original documents are outdated
(see the editorial comments in Volume 2); whenever possible, we have not
replaced them with the modern English versions but have used the expressions
employed in the technical literature of the time, if known, or else we
provided a literal tramslation. In particular, we retained the term "electric



xiv PREFACE

mass" frequently used by Einstein for electric charge. All formulas were
included in a form as similar to those in the original documents as was
possible with our word processor. We kept the standard German notation used
at the time, representing vectors by German (Fractur) letters and vector
products by [ ]; for example, we kept [€$)] for the vector denoted in
current literature by E«xil orExI.

Ve are indebted to John Stachel, the Editor of Volume 2, and Robert
Schulmann, Associate Editor, as well as Walter Lippincott, Director, and Alice
Calaprice, Senior Editor, of Princeton University Press, for their help and
encouragement. We also wish to thank Marjorie Zabierek for her part in
preparing the final typescript.

Anna Beck, Translator
Peter Havas, Consultant
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Doc. 1
CONCLUSIONS DRAWN FROM THE PHENOMENA OF CAPILLARITY
by Albert Einstein
[Annalen der Physik 4 (1901): 513-523]

If we denote by 4 the amount of mechanical work that we have to supply
to a liquid in order to increase the free surface by one unit, then 7 is not
the total energy increase of the system, as the following cyclic process will
show. Let there be a certain amount of liquid of (absolute) temperature Tl
and surface area 01. We now increase isothermally the surface 01 to 0O,
increase (at constant surface area) the temperature to 75, then reduce the
surface to 01 and cool the liquid to 7} again. If one assumes that no
heat is supplied to the body other than that received on account of its speci-
fic heat, then the total heat supplied to the substance during the cyclic
process will be equal to the total heat withdrawn. According to the principle
of conservation of energy, the total mechanical work supplied must then also
be zero.

Hence the following equation holds:
Oy - 0)7y - Oy - 0)1 =0 or 7y =1.

However, this contradicts experience.

We have, then, no other choice but to assume that the change in the sur-
face is associated with an exchange of heat as well, and that the surface has
a specific heat of its own. If we denote by U the energy, by S§ the en-
tropy of the unit surface of the liquid, by s the specific heat of the
surface, and by w, the heat necessary to form a unit surface, expressed in
mechanical units, then the quantities

dU = s.0.dT + {7 + wy}d0
and

ds = S-U.dT+ g}yp 4o

will be total differentials. Hence we will have

[1]

[2]



2 PHENOMENA OF CAPILLARITY

(s.0) _ d(y+up)

d (s d

a7 - alF)
From these equations it follows that

7+uw=7-T g% y

This is, however, the total energy necessary to form a unit surface.
Further, we form

2
g i1+ ) = Tk -

The experimental studies have shown that 7 can be represented with
141 very good approximation as a linear function of temperature, i.e.:
The energy necessary to form a unit surface of a liquid is independent
of the temperature.
It also follows that

Gty G rfieo.

{51 hence: no heat content should be ascribed to the surface as such; rather, the
energy of the surface is of potential nature. It can be seen already that the

quantity
7—T§%

is more suited for stoichiometric investigations than is the hitherto used 7
at boiling temperature. The fact that the energy required for the formation
of a unit surface barely varies with the temperature teaches us also that the
configuration of molecules in the surface layer will not vary with temperature
(apart from changes of the order of magnitude of thermal expansion).

To find a stoichiometric relationship for the quantity

7-T§%
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I proceeded from the simplest assumptions about the nature of molecular
attraction forces and examined their comsequences regarding their agreement
with experiment. In this I was guided by the analogy with gravitational (6]
forces.
Let thus the relative potential of two molecules be of the form

P = ﬂm = cl.c2.go(r) "

where ¢ is a constant characteristic of the molecule in question, and ¢(7)
is a function of their distance that does not depend on the nature of the
molecules. We assume further that (71

n n
d 2 z €a®p w(ra,ﬁ)
o=1 f=1

is the corresponding expression for # molecules. In the special case in
which all molecules are alike, this expression becomes

n n
b2 ) ) wlr, g -
a=1 f=1

We further make the additional assumption that the potential of the molecular
forces has the same magnitude it would have if the matter were homogeneously
distributed in space; this is, however, an assumption which we should expect
to be only approximately correct. Using it, the above expression converts to

P = F; - fe2y? JJ dr.dr‘w(rdT,dT.) ) [8]

where N is the number of molecules per unit volume. If the molecule of our
liquid consists of several atoms, then it shall be possible to put, in analogy
with gravitational forces, ¢ = Eca, where the ca‘s denote the values
characteristic for the atoms of the elements. If one also puts 1/¥ = v,
wvhere o denotes the molecular volume, one obtains the final formula
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(Ze,)?
P= Pm -1 _TJJ dr.dr' ‘P(’”d.r dT')

If we now also assume that the density of the liquid is constant up to
its surface, which is made plausible by the fact that the energy of the
surface is independent of tcmperature, then we are able to calculate the
potential energy per unit volume in the interior of the liquid, and that per
unit surface.

I.e., if we put

J i Iy__m L__m dadydz [T = X

then the potential energy per unit volume is

(Ee,)?
ﬁn - b=

If we imagine a liquid of volume ¥ and surface S, we obtain by
integration
(Zc,)? (X, )2
P=F -K—g— V- ——1r— o/

where the constant X&' denotes

=00 Z=00
(10] J J J J J I de.dy. dz.ds" . dy' .dz’
z'=0 Jy'=0 Y 2'=-m y=-w J 2=0

</>[J(r—z‘)2+(x/—y')2+(z—1')7] .

Since nothing is known about ¢, we naturally do not get any
relationship between K and £'.

One should keep in mind, to begin with, that we cannot know whether or
not the molecule of the liquid contains the n-fold mass of the gas molecule,
but it follows from our derivation that this does not change our expression
for the potential energy of the liquid. Based on the assumptions we have just
made, we obtain the following expression for the potential encrgy of the
surface:
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or - I;—j—;rg;

Since the quantity on the right can be calculated from R. Schiff's
observations for many substances at the boiling temperature, we have ample
material for the determination of the quantities o I took all the data
from W. Ostwald's book on general chemistry. First, I present here the data
that T used for the calculation of ¢, for C, H, and 0 by the least
squares method. The column with the heading Eca (calc) gives the Ecu as
determined from chemical formulas using the o thus obtained. Isomeric
compounds were combined into one value, because their values on the left-hand
side did not differ significantly from each other. The unit was chosen

arbitrarily because it is not possible to determine the absolute value of ¢

a
since K' is unknown.
I found:
CH = '1‘6, CC = 55,01 CO = 46;8 .

Formula Eco an {calc) Name of the compound

Cyotlys 510 524 Limonene

cb 140 145 Formic acid

ﬁ 6 193 197 Acetic acid
C3H502 250 249 Propanoic acid
C,lig0 309 301 Butyric acid and isobutyric acid
Coyo0s 365 352 Valerianic (pentanoic) acid
C4H60 350 350 Acetic anhydride

Hyols 505 501 Ethyl oxalate
CSHS 494 520 Methyl benzoate
Colisol 553 562 Ethyl benzoate
CEH103 471 454 Ethyl-acetoacetate (diacetic ether)
% 422 419 Anisole
cguoo 479 470 Phenetole and methyl cresolate
CgHyo0, 519 517 Dimethyl resorcinol
o i 345 362 Furfural
of 348 305 Valeraldehyde

lei“(] 587 574 d-carvone

It can be seen that in almost all cases the deviations barely exceed the
experimental errors and do not show any trend.

[11]

[12]
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After that I separately calculated the values for Cl, Br, and J; these
determinations are of course less reliable. I found:

¢y = 60, epr = 152 gy = 198 .

I present the data in the same way as above:

Formula Xe, e, (calc) Name of the compound
CglisC1 385 379 Chloro benzene
C,1I:C1 438 434 Chloro toluene
C:41,C1 450 434 Benzyl chloride
C5lls0C1 270 270 Epichlorohydrin
C,0HC1,4 358 335 Chloral

C,1;001 462 484 Benzoyl chloride
CHgCl, 492 495 Benzylidene chloride
Br, 217 304 Bromine

CallsBr 251 254 Ethyl bromide
C3li;Br 311 306 Propyl bromide
Cqll;Br 311 306 Isopropyl bromide
C,llsBr 302 309 Allyl bromide
CHsBr 353 354 Isobutyl bromide
Cglly Br 425 410 Isoamyl bromide
Ccﬂshr 411 474 Bromo benzene
C.l1.Br 421 526 o-Bromo tolucne
Coll4Bry 345 409 Ethylene bromide
CallgBry 395 461 Propylene bromide
CallgJ 288 300 Ethyl iodide
Cali,J 343 352 Propyl iodide
Cll;J 357 352 Isopropyl iodide
CsllsJ 338 355 Allyl iodide
Cyllgd 428 403 Isobutyl iodide
CsllyyJ 464 455 Isoamyl iodide

It scems to me that the larger deviations from our theory occur for
those compounds that have relatively large molecular masses and small
molecular volumes.

Based on our assumptions, we found that the expression for the potential
cnergy per unit volume is

(Bc,)?

Pw = ](_1}2-— £

where K denotes a definite quantity, which we, however, are not able to
calculate because it 1s only defined completely by the choice of the ca's.
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We can therefore set K = 1 and thereby obtain a definition for the absolute
values of the ca's. If we take this into account from now on, we obtain the
following expression for the magnitude of the potential pertaining to one
equivalent (molecule):

(Be )2
P=pP - F—2& |
(] v

where, of course, ﬂm denotes another constant. We could now equate the
second member of the right-hand side of this equation to the difference
DmJ- Avd, where ”m is the molecular heat of evaporation (heat of
evaporation x molecular mass), J the mechanical equivalent of ome calorie,
4 the atmospheric pressure in absolute units, and vy the molecular volume
of the vapor — if the potential energy of the vapor were zero and if at the
boiling point the content in kinetic energy would not change during the
transition from the liquid to the gaseous state. The first of these
assumptions seems to me absolutely safe. However, since we have neither a
basis for the second assumption nor a possibility to estimate the quantity in
question, we have no other choice but to use the above quantity itself for the
calculation.

In the first column of the following table I entered the quantities

p- ¢ in thermal units, with D& denoting the heat of evaporation minus the
external work of evaporation (in thermal units). In the second column I
entered the quantities Eca, as obtained from capillarity experiments; the
third column contains the quotients of the two values. Isomeric compounds are
once again combined into a single line.

[13]

[14]
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Name of the compound Formula le'.v Eca (calc) Quotient

Isobutyl propanoate C;H,40, 1157 456 2.54
Isoamyl acetate "
Propyl acetate
Isobutyl isobutyrate Cely60, 1257 510 2.47
Propyl valerate "

Isobutyl butyrate i

Isoamyl propanoatec

Isoamyl isobutyrate CoH,50, 1367 559 2.45
Isobutyl valerate "

Isoamyl valerate 81%"1002 1464 611 2551
Benzene 795 310 2.57
Toluene CoHe 902 372 2.48
Ethyl benzene Cg}'l‘l() 1005 424 2.37
m-Xylene

Propyl benzene Collj2 1122 475 2.36
Mesitylene i

Cymene Ciollis 1213 527 2.30
Ethyl formate Csllgl,y 719 249 2.89
Methyl acetate "

Ethyl acetate C,J'Irsl)z 837 301 2.78

Methyl propanoate
Propyl formate "
Methyl isobutyrate CsH, 00, 882 353 2.50
Isobutyl formate y
Ethyl propanoate "
Propyl acetate i
Methyl butyrate .
Ethyl isobutyrate CGHI‘ZUZ 971 405 2.40
¥ethyl valerate "
Isobutyl acetate "
Ethyl butyrate "
Propyl propanoate "
Isoamyl formate

Even though the quotient in the fifth column is by no means a constant,
but is, on the contrary, clearly dependent on the constitution of the
compounds, we can nevertheless use the material on hand to obtain the factor,
or at least its order of magnitude, with which we must multiply our ca's t0
obtain them in the absolute unit we had chosen. The mean value of the
multiplier looked for is

2.51 = [4.17 x 107 = 1.62 x 10% .

Since the foregoing discussion shows that the kinetic conditions of the
molecules change during evaporation (at least if our expression for the
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potential energy is correct), I decided to obtain the absolute quantity <,
in one more way. I proceeded from the following idea:

If we compress a liquid isothermally and its heat content does not
change in the process, as we now wish to assume, then the heat released during [16]
compression equals the sum of the work of compression and the work done by the
molecular forces. We can therefore calculate the latter work if we can find
the amount of heat released during compression. This we can do with the help
of Carnot's principle.

Let the state of the liquid be determined by the pressure p in
absolute units and by the absolute temperature 7; if the value of the heat
supplied to the substance during an infinitesimally small change of state is
d{ in absolute units, and the mechanical work done on the substance is d4,
and 1f we put

df = Xdp + $.d7T,
- _ dv dv
dd = -pdv="-p [ﬂi dp + 7 d71
= p.v.kdp - p.v.adT , [17]

then the condition that d{§/T and d§ + df must be total differentials

yields the equations
) - (]

and 9 3
g7tk + pr) = gi(S - pa) s (18]
here, as can be seen, [ denotes the heat, in mechanical units, supplied to
the substance during isothermal compression produced by pressure p =1, §
is the specific heat at constant pressure, k is the coefficient of compres-
sibility, and e is the coefficient of thermal expansion. From these
equations, we find
a

Xdp = - T[a + pg; + pg!;a]dp g [19]

One has to remember that for any phenomena involving compression of
liquids, the atmospheric pressure, to which our bodies are usually subjected,
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can be considered unhesitatingly as infinitesimally small; likewise, compres-
sions in our experiments are very nearly proportional to the compression
forces applied. Thus, the phenomena proceed as if the compression forces were
infinitesimally small. TIf this is taken into account, then our equation
reduces to

X.dp = - T.a.dp .

If we now apply the assumption that the kinetic energy of the system
does not change in isothermal compression, we obtain the equation

X.dp + work of compression + work of the molecular forces = 0.

If P is the potential of the molecular forces, then the last-mentioned
work is

P
Er

If one inserts herein our expression for the magnitude of the potential
of the molecular forces and takes into account that the work of compression is
of the order dp?, one obtains, neglecting this quantity which is
infinitesimally small of second order,

T (Eca)2
T

?%Ib

where k denotes the compressibility coefficient in absolute units. We thus
obtain once more a means for the determination of the looked-for proportional-
ity coefficient for the quantities Cyr I took the a and &k values for the
temperature of ice from Landolt and Bornstein's tables. This yields the
following values for the factor sought:

Xylene 1.71 = 104 Ethyl alcohol 1.70 x 104
Cymene 1.71 x 104 Methyl alcohol 1.74 x 104
Turpentine oil 1.73 x 104 Propyl alcohol 1.82 x 104

Ethyl ether 1.70 = 104 Amyl alcohol 2.00 x 104
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First of all, it should be noted that the two coefficients obtained by
different methods show quite satisfactory agreement even though they have been
derived from totally different phenomena. The last table shows a very satis-
factory agreement of the values; only the higher alcohols show deviations.
This i1s to be expected, because from the deviations of alcohols from
Mendeleev's thermal expansion law and from R. Schiff's stoichiometric law of
capillarity, it has already been concluded earlier that in these compounds
temperature changes are associated with changes in the size of the molecules
of the liquid. Hence it is to be expected that such molecular changes should
also arise during isothermal compression, so that for such compounds at the
same temperature the heat content will be a function of volume.

In summary, we may state that our basic assumption stood the test: To
each atom corresponds a molecular attraction field that is independent of the
temperature and of the way in which the atom is chemically bound to other
atoms.

Finally, it should also be pointed out that the constants iy generally
increase with increased atomic weight, but not always, and not in a propor-
tional way. The question of whether and how our forces are related to gravi-
tational forces must therefore be left completely open for the time being. It
should also be added that the introduction of the function ¢(r), which is
taken to be independent of the nature of the molecules, should be understood
as an approximate assumption, and so should the replacement of sums by inte-
grals; in fact, as the example of water shows, our theory does not seem to
hold for substances with small atomic volumes. Only extensive special
investigations can be expected to bring answers to these questions.

Zurich, 13 December 1900. (Received on 16 December 1900)

(28]
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(28]
[29]
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Doc. 2
ON THE THERMODYNAMIC THEORY OF THE DIFFERENCE IN POTENTIALS BETWEEN METALS
AND FULLY DISSOCIATED SOLUTIONS OF THEIR SALTS AND ON AN ELECIRICAL
METHOD FOR INVESTIGATING MOLECULAR FORCES
By A. Einstein
[4nnalen der Physik 8 (1902): 798-814]

§1. 4 hypothetical extension of the second law of the
mechanical theory of heat

The second law of the mechanical theory of heat can be applied to such
physical systems which are capable of passing, with any desired approximation,
through reversible cyclic processes. In accordance with the derivation of
this law from the impossibility of converting latent heat into mechanical
energy, it is here necessary to assume that those processes are realizable.
llowever, in an important application of the mechanical theory of heat, namely
the mixing of two or more gases by means of semipermeable membranes, it is
doubtful whether this postulate is satisfied. The thermodynamic theory of
dissociation of gases and the theory of dilute solutions are based on the
assumption that this process is realizable.

As is well known, the assumption to be introduced is as follows: For
any two gases 4 and B it should be possible to produce two partitions such
that one is permeable for 4 but not for 2, while the other is permeable for
I but not for 4. If the mixture consists of more than two components, then
this assumption becomes even more complicated and improbable. Since the
results of the theory have been completely confirmed by experiment despite the
fact that we worked with processes whose realizability could indeed le
doubted, the question arises whether the second law could not be applied to
ideal processes of a certain kind without contradicting experience.

In this sense, on the basis of the experience obtained, we certainly can
advance the proposition: One remains in agreement with experience if one
extends the second law to physical mixtures whose individual components are
restricted to certain subspaces by conservative forces acting in certain
planes. We shall hypothetically gencralize this proposition to the following:
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One remains in agreement with experience when one applies the second law
to physical mixtures whose individual components are acted upon by arbitrary
conservative forces.

In the following we will always make use of this hypothesis, even when
this does not seem absolutely necessary.

§2. On the dependence of the electric potentiial difference of a completely
dissociated salt solution and an electrode consisting of the soluie metal
on the concentretion of the soluiion and the hydrosietic pressure
Let a solution of a completely dissociated salt be contained in a

cylindrical vessel whose axis coincides with the z-axis of a Cartesian
coordinate system. Let wvdo be the number of gram-molecules of the salt
dissolved in the volume element do, Ve do the number of metal ioms, and

vy do the number of acid iomns, where v and v, are integral multiples of

m
v, so that we have the following equations:

i

14 n v,

m m

B v

ys S

Further, let =n.v.F.do be the magnitude nf the total positive electric charge
of the ions in do, and hence also, up to the infinitesimally small, the
magnitude of the negative charge. Here n is the sum of valencies of the
molecule's metal ions, and £ the amount of electricity required for the
electrolytic separation of one gram-molecule of a univalent ion.

These equations are certainly valid, since the number of excess ions of
one kind can be neglected.

We shall further assume that the metal and acid ions are acted upon by
an external conservative force whose potential per ion has the magnitude Ph
and Ps’ respectively. Furthermore, we neglect the variability of the density
of the solvent with the pressure and density of the dissolved salt, and assume
that a conservative force, whose potential per gram-equivalent of the solvent
has the magnitude P,, acts upon the parts of the solvent; there shall be
vodo gram-molecules of solvent in do.

Suppose that all force functions depend solely on the 2z-coordinate, and
that the system is in electrical, thermal, and mechanical equilibrium. Then

[2]

[3]

[4]

[51
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the quantities concentration v, electric potential =, osmotic pressures of
the two ion types 2 and Py and hydrostatic pressure p, will be func-
tions of 2z only.

At each location of the electrolyte, each of the two types of electrons
must then be in equilibrium separately, which is expressed by the equations

ar,

dp
m 1 dr _
& i el EE-U
dp dP
s 1 dr _
R ALk B
wvhere
2, = u-nm-RT s
Py = u-ns-ET #

and where R is a constant common to all ionic species. Hence the equations
take the form
dP
dlgv
nmET —aé— n 7T_ + ok 3_ =05
dP
dlgy $ dr _
WA gy B =0

(1)

If P and P are known for all 2, and » and 7 for a particular 2z,
then equations (1) yield v and = as functions of 2. Also, the condition
that the solution as a whole is in equilibrium would result in an equation for
the determination of the hydrostatic pressure p,, which need not be written
down. We only note that the reason that dp, is independent of dv and dr
is that we are free to postulate arbitrary comservative forces that act on the
molecules of the solvent.

¥We now imagine that electrodes made of the solute metal and occupying a
vanishingly small part of the cross section of the cylindric vessel are placed
in the solution at =z = 7y and z = g The solution and the electrodes to-
gether form a physical system, which we take through the following reversible
isothermal cyclic process:

1st partial process: We pass the amount of electricity =nf infinitely
slowly through the solution, using the electrode at z = z; as anode, and
that at 2 = 29 as cathode.
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2nd partial process: The amount of dissolved metal that has thus been
moved electrolytically from 7y to 2z, we now move back mechanically
infinitely slowly from zy to z;.

First of all, it is evident that the process is strictly reversible,
since all steps are imagined to proceed infinitely slowly, i.e., the process
is compounded of (ideal) states of equilibrium. For such a process the second
law requires that the total amount of heat supplied to the system during the
cyclic process shall vanish. In conjunction with the second law, the first
law requires that the sum of all other energies supplied to the system during
the cyclic process shall vanish.

During the first partial process the amount of electric work supplied is

-nE(ﬂ2 -n) o,

where H2 and nl denote the electric potentials of the electrodes.
During the second partial process

3
Kdz
22

is supplied, where K is the force acting in the positive 2z-direction that
is required for the " metal ions that are to be moved, and which are now in
the metallic state, to keep them at rest at an arbitrary location 2. It is
easily seen that the following equation will hold for K:

dp dp
m 0 _
S A

llere Y, denotes the volume of one metal ion in the metallic state. Hence
the above work takes on the value

24 29 dpﬂl dpo
J K.dz = - J ["m?:g_ ., TJz_]dz

29 2y

-nm[(]}@"’;y) i vm(poz_ pol)] g
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where the second index denotes the coordinate of the electrode.
We obtain, hence, the equation

(2) n.B (M -1y) = _"m(’yb"l;h) B "mvm(pog_ pol) i

If the electric potentials in the cross sections of the electrodes
inside the solution are denoted by r; and 7,, integration of the first
equation (1) yields

- mB(ry- 7)) = m, [P, - P, + nmﬂﬂog[%] :

where »; and v, refer again to the cross sections of the electrodes.
Adding these equations, one obtains

(nz‘ 72) - (Hl" T]) (AH)2 - (An)l

(3)

n RT n_v
o v, n’m
PYA log[,—,f] Y (poz_pol) ’

Since the »'s and p; are completely independent of each other, this
equation represents the dependence of the potential difference ANl between
metal and solution on concentration and hydrostatic pressure. It should be
noted that the postulated forces no longer appear in the result. If they were
to appear, the hypothesis posited in §1 would have been carried ad absurdum.
The equation obtained can be resolved into two equations, namely:

(A")z"(A")1 = 7? - 1r10g[%ﬂ at constant pressure,
(4) Py U
(AH)T-—(AII)1 =-7 T - (poz—-pol) at constant concentration.

The final formula (3) could have also been obtained without the hypothesis
proposed in §1 had the external forces been identified with terrestrial
gravity. However, in that case » and p would not be independent of each
other and the resolution into equations (4) would not be permitted.
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It should also be briefly noted that the Nernst theory of electric
forces inside dissociated electrolytes, taken in conjunction with the first of
equations (4), makes it possible to calculate the electromotive force of the
concentration cell. Thus ore arrives at a result that has already been tested
repeatedly and that till now has been derived from special assumptions. [7]

§3. On the dependence of the quantity AN on the nature of the acid

We shall consider the following ideal state of equilibrium: Let us
again have a cylindric vessel. Parts I and IT shall each contain a completely
dissociated salt solution; the two salts shall have an identical metal ion
(same metal and same electric charge) but a different acid ion. Between the
two parts there shall be a connecting space ¥ which contains both salts

T, 3z

in solution. Upon the acid ions in ¥ shall act forces whose potentials
i;‘l’ and Ps(2’ depend only on 2z, and these forces shall bring about that
only infinitesimally few acid ions of the first and of the second type get
into II and I, respectively. Furthermore, Ps‘l’ and PS‘Q’ shall be chosen
such that the metal ion concentration in the two parts I and II be the same.
Also, let py = po .

If there are per unit volume um“’ and um‘2‘ metal ions that correspond
to the first and second type of salt, respectively, then

(1) — () (2) = (1 -
(1) U =Vt Vs 0, e 0,
where the subscripts refer to space I and II, respectively.
However, the condition for the equilibrium of the metal iomns in ¥
yields
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dlog(v'V + p(2)
m m dr _
T ~ekb =0,

vhere ¢ denotes the valency of the metal iom.
Integrating over ¥ and taking equations (1) into account, we obtain

(2) Ty =1 .

Next we imagine that electrodes made of the solute metal are installed in T
and IT, and construct the following ideal cyclic process:

1st partial process: We send an amount of electricity ¢F infinitely
slowly through the system, taking the electrodc in I as anode, and the other
as cathode.

2nd partial process: The metal thus transported electrolytically from
z=12 t0 z= 2 which has the mass of one gram-equivalent, is now returned
mechanically to the electrode in 2z = zy-

By applying the two laws of the mechanical theory of heat, one again
reaches the conclusion that the sum of mechanical and electrical energy
supplied to the system during the cyclic process vanishes. Since, as one can
readily see, the second step does not require any energy, one obtains the
equation

(3) n, =1

where H2 and ﬂ1 again denote the potentials of the electrodes. By
subtracting equations (3) and (2), one obtains

(HZ_ 12) = (H]— 71) = (AH)2 - (AII)1 =0

and hence the following theorem:

The potential difference between a metal and a completely dissociated
solution of a salt of this metal in a given solvent is independent of the
nature of the electronegative component, and depends solely on the
concentration of the metal ions. It is assumed, however, that the metal ion
of these salts is charged with the same amount of electricity.
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84.

Before we turn to the study of the dependency of (All) on the nature of
the solvent, we shall briefly develop the theory of conservative molecular
forces in liquids. 1 shall borrow the notation from a previous article on
this topic,! which shall at the same time temporarily justify the hypotheses I
am going to introduce.

To each molecule of a liquid or a substance dissolved in a liquid shall
be assigned a certain constant ¢, so that the expression for the relative
potential of molecular forces of two molecules, which shall be characterized
by the indices e and “eege will be

(a) P=P -ccop(r) .,
® 12

where ¢(r) 1is a function of distance common to all molecular species.
These forces shall simply superpose, so that the expression for the relative
potential of =»n molecules shall have the form

a=n f=n

(b) Const. - % z 2 ¢4tp w(raﬂ)
e=1 f=1

Should all molecules be identical, we would obtain the expression

e=n f=n
(c) Const. - #c? z 2 w(raﬂ) .
e=1 =1

Further, if the laws of interaction and distribution of the molecules
are so constituted that it is permissible to convert the sums into integrals,
then this expression becomes

Const. - $e2m J J dr.dr'plry, 40) -

IA. Einstein, Aan. d. Physik 4 (1901): 513. 191
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Here N denotes the number of molecules per unit volume. If AN, denotes the
number of molecules in one gram-equivalent, then N,/¥ = v is the molecular
volume of the liquid, and if we assume that the investigation involves one
gram-equivalent and neglect the effect of the liquid surface, our expression
becomes

2
Const. - % %;—A% JTN dT"w(Tb,dT') .

We shall now choose the unit for ¢ such that this expression reduces to

(d) Const. - %;. hence % N§ me dT'.w(ro’dT.) =1 .

By this choice one obtains absolute units for the quantities ¢. It has been
shown in the previously cited article that one remains in agreement with
experience if one sets ¢ = Eca. where the quantities €q refer to the atoms
composing the molecule.

We now want to calculate the relative attraction potential of a gram-
molecule of an ion with respect to its solvent, while making the express
assumption that the attraction fields of the solvent molecules do not act upon
the electric charges of the ions. Methods to be developed later will provide
the means by which to decide whether this assumption is permissible.

If ¢. is the molecular constant of the ion and ¢y that of the
solvent, then the potential of one molecule of the ion with respect to the
solvent has the form

Const. - % cjce,w(r) = const. - cj.cehk J dr.w(ro,dr),

where A% denotes the number of solvent molecules per unit volume. Since
No/N, = vy, this expression becomes

AB
Const. - cj'cé'iz J dr.w(ro,dr) 5
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However, since a gram-equivalent contains N, molecules of the ion, we obtain
for the relative potential of one gram-equivalent of the ion:

c..c c..c
Const. - _%e_f Aﬁj dT.QD(TO‘dT) = const. - 2—%—}[—8 ;

Introducing the solvent concentration l/vz = vy, one obtains the form
(e) Pjé = const. - 2¢;.¢pvp -

If the solvent is a mixture of several liquids, which we shall distinguish
from each other by indices, we obtain

(e”) ij = const. - ch 2 Colp o

vhere the v, denote the number of gram-molecules of the individual
components of the solvent per unit volume. The formula (e’) holds
approximately also if the quantities vy vary with position.

85. On the dependence of the electric potential difference
exisiing between a metal and a completely dissociated solution
of a salt of this metal on the nature of the solvent

Let a cylindric vessel again be divided, as in §3, into spaces I and IT
and the connecting space V. Space I shall contain a first solvent, [l a
second one, and V a mixture of both, and forces that prevent diffusion shall
act on the solvents in space ¥. The vessel shall contain a completely
dissociated dissolved salt. In V¥, on its anions there shall act forces whose
potential shall be called Ps and which shall be chosen such that the salt be
of the same concentration in I and II. We now establish the condition for the
equilibrium of the metal ions. We again take the z-axis parallel to the
cylinder axis from I to II.

The force of electric origin that acts on one gram-equivalent will be

I
o=
-~
by
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The force exerted on the equivalent by osmotic pressure is

_m.dlozgv.

The effect of molecular forces on the equivalent is

. Hdi{‘ 2 cfl gt - 2,2 vi?}

vhere the superscripts refer to the solvents. The equilibrium condition
sought is then

= %"; £ ;‘g - AT 1%)%5—” + ;?E{umc‘g”uk” *2cP v} =0 .

If one integrates over FV and takes into account that » is the same in I
and I7, and that according to our assumption uk” and u@” vanish, one
obtains

n_ 2¢
m ““m
o= {C‘fz)"?) - c%”uk”} ,

vhere the superscripts refer to spaces I and I, respectively.
We now imagine that electrodes made up of the dissolved metal are placed
into I and I7, and construct a cyclic process by sending an amount of elec-

tricity nl F through the system and then returning the transported metal

m

mechanically, which does not require any work if we assume that the hydro-
static pressure is the same in I and II. Application of the two laws of the
theory of heat yields

g - M =0.

Subtraction of the two results gives

I

(My-79) - (- 7g) = (AN - (AM)D

n_ 2c
: 3"" _E’E {e@ v - cfbuph} .
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If each of the two solvents is a mixture of several nonconducting
liquids, one obtains somewhat more gemerally

n_2¢
m m
(A - (Am = - {2 P ugd - z o |,

where now vy denotes the number of gram-molecules of a component of the
solvent in a volume element of the mixed solvent.

Hence the potential difference ANl depends on the nature of the sol-
vent. This dependence can be used as a basis for a method of exploring the
molecular forces.

§6. A method for the determination of the constant ¢ for
metal ions and solvenis

Let two completely dissociated salt solutions undergo diffusion in a
cylindrical vessel; these salts shall be indicated by subscripts. The solvent
shall be the same throughout the vessel and shall be indicated by the super-
script. The vessel shall again be divided into spaces I and II and the
connecting space ¥. Space I shall contain only the first salt, and I/ only
the second salt; diffusion of the two salts shall take place in space V.
Into spaces I and Il there shall be introduced electrodes consisting of the
respective metal solute and having electric potentials “1 and H2'.
respectively; onto the second electrode shall be soldered a piece of the first
electrode metal, whose potential is H2. Furthermore, we denote the electric
potentials in the interior of the unmixed solutions in I and IT by LS and
7. We then have

(“2_ “1)(1) = (y-My') + (Hy' - 7)) (0 + (,2- ,1)(1) - (“1_ ,1)(n .

If one produces exactly the same arrangement except for using a
different solvent, which shall be denoted by the superscript (2}, one
obtains:

(My-1) D = (I,-T,') + (' - 715) 2 4+ (1y-71,)'2 - (I )

1M
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Subtracting these two expressions and taking into account the results found in
§5, one obtains

(nz_nl)(Q) - (n2_n1)(1) =
v3) n 2 |[Cn"n) _ [ n"n 2) (2) D ,n
{mg- 7))@ - (zy-m) "} - [TL [T], APy - efP v}

The cxtension required if the solvents are mixtures is easily obtained
as in §5.

The values of the left-hand side of this cquation are obtained directly
from experiment. The determination of the first term of the right-hand side
will be dealt with in the next paragraph; for the time being, let it only be
said that this term can be calculated from the concentrations used and the
molecular conductivities of the respective ions for the respective solvent,
provided the arrangement has been suitably chosen. Thus the equation makes it
possible to calculate the second term on the right-hand side.

This we utilize to determine the constant ¢ for the metal ions and to
test our hypotheses. We always use the same two solvents in a series of
experiments of the kind described. Then for the whole experimental series the
quantity

% {ep? vy - cpV vy} = k = const.

Hence, if one puts "llnm = El’ etc., to be equal the valency of the
1
first etc. metal ion, the last term calculated of the right-hand side will be
a relative measure for the quantity

C c
e |
|

If one thus examines the combinations of all electrode metals pair by
pair, one obtains the quantities
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c [
m]- mk

(]- fk

in relative measure.

One obtains in this same measure the quantities cm/c separately by
carrying out an analogous investigation with a metal in such a way that the
salts and electrodes in I and II contain the same metal, but that ¢, i.e.,
the valency (electrical charge) of the metal ion, is different on the two
sides. The value of the quantities n in this measure can then be obtained
for the individual metals. A series of such experiments thus leads to the
ratios of the cm‘s, i.e., the constants for the molecular attraction of metal
ions. This series of cm's must be independent of the nature of the salts
used, and the ratios of the cm's thus obtained must be independent of the
nature of the two solvents on which we based the investigation. A further
requirement must be that ¢, ~must prove to be independent of the electrical
charge (valency) displayed by the ion. If this is the case, the above
assumption that the molecular forces do not act upon the electrical charges is
correct.

If one wishes to determine the absolute value of the quantities ¢, at
least approximately, one can do so by taking the approximate value of £ for
both solvents from the results of the previously cited paper using the formula
g = an. It has to be noted here, of course, that just for the two liquids
most obviously suggesting themselves as solvents, namely water and alcohol, it
has not been possible to demonstrate the validity of the law of attraction
from the phenomena of capillarity, evaporation, and compressibility.

Our results could equally well serve as a basis for studying the solvent
constants ¢, however, by basing the investigation on two metal ions and
varying the solvent, so that then the quantity

is to be considered as constant. By also using mixtures for solvents, the
investigation might be extended to all electrically nonconductive liquids.
From such experiments it is possible to calculate relative values of the

[11]
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quantities €y that pertain to the atoms constituting the liquid molecules.
This, too, opens ample possibilities for testing the theory inasmuch as the
¢, can be arbitrarily overdetermined. Here, too, the result must be
independent of the choice of the metal ions.

§7. (Calculation of (ry-17;)

All that now remains is to study the diffusion process in the space V
in greater detail. Let the variable quantities depend on =z only, where the
z-axis of the Cartesian coordinate system we have chosen coincides with the
direction of the axis of our vessel. Dﬁn’ Vs,’ umz, and VSz shall be the
z-dependent concentrations (gram-equivalents per unit volume) of the four
ionic species, ‘an €, E, 2E, €, E their electric charges, and = the
electric potential. S1nce no substant1a1 electric charges occur anywhere, we
have for all 2z approximately

(a) umlfml - ”31631 + "n%fmb - ”32632 = 0 .

In addition, for each ionic species we obtain an equation which states
that the increase per unit time in the number of ions of a certain kind
present in one volume element equals the difference between the number of
molecules entering and the number of molecules leaving that volume element
during the same time period:

v
0
o o+ et 8] <

) 9 »RTayS N P dr| _ 6us
‘031.32 _(TZ_L eslusl % B _a_t_l ?
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where v with the corresponding subscript denotes the constant velocity
imparted by a unit mechanical force to one gram-equivalent of the
corresponding ion in the solution.

In conjunction with the boundary conditions, these four equations
completely determine the process taking place, since they permit the
determination of the five quantities

o 6u 311
i N TR
dz 0t ot

uniquely for all times. The general treatment of the problem would entail
great difficulties, however, especially since equations (f) are not linear in
the unknowns. However, we are only interested in the determination of Tg - 7q-
We therefore multiply the equations (f) successively by eﬂh' -esl, Emz’ —esz,
and obtain, when taking into account (a),

-0,

where
o, 31/8 . or i
IZTve—l-ve—1+-—-+veu +v_ €y, + -+ - . 13
¢ = m g, 818 g, { EmPm T Vs, S5,V s, } 7

In view of the fact that

3u c‘?u ar
_l N

0z 0z dz

vanish wherever diffusion does not take place, integration of this equation
with respect to 2z yields

@=0.
Since time is to be considered as comstant, we may write

IlT{vme dum - v, .€,.dv, +v_€ dv —vsesdus}

dr = - 1 8 51 8%  mymy My 28y 1597 [14]

2 2 2 2
o€ V + U €SV +V €<V + 9, €LV
my my m 81 81 84 My "My My 89 (52 8o
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In general, the expression on the right is not a total differential,
which means that Al is determined not only by the concentrations in
diffusion-free regions but also by the character of the diffusion process.
However, one can make the integration possible by applying an artifice in the
arrangement .

Ve imagine that space F 1is divided into three parts, space (1), space
(2), and space (3), and that these are separated from cach other by two
partitions before the start of the experiment. Let (1) be connected with 7
and (3) with II, and let the two salts be simultaneously dissolved in (2), at
concentrations that shall be exactly the same as in I and II, respectively.
Thus, before the experiment, (1) and I contain only the first salt in solu-
tion, IT and (3) only the second, and (2) a mixture of both. The concen-
tration is everywhere constant. At the start of the experiment the partitions
are removed and immediately thereafter the potential difference between the
two electrodes is measured. For this time it is possible to integrate over
the diffusing layers, because Yy and ¥, in the first diffusing layer,
and Yy and v in the second, are constant. The integration yields

S2
vo- v, v €2v  + v €2,
Tg-7y = RT[_”'l_‘_sl_ 1g [1 L WL L S1 81 8
+ 2y 4 2y J
ﬂ'1€ml vslesl ”’”26”12 My 1}32682 Sg

v - v v €2y + v €2y,
N m M 1g [1 4 Mo My my 52 S é‘2” )

€2 2y
Sy

v_c + v, C v +
g My 89 ' Sg vml my my USl(Sl

The method can be simplified if it is possible to choose the same acid
ion of the same concentration in [ and II. If in this case I is connected
directly with space 71, onec has to put for the start of the diffusion process:

Sy Sg S S So s’
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Equation (1) then becomes

(1') =0 .

YmEm * VmCmy, ~ VsCs
0f the equations (2), the first and the third remain unchanged, and the
second and the fourth yield, by addition,

dv v
ad s or s
v RT —=2 - e v F = it
s 0z { PR s s 3?] a1
If the derivatives with respect to time are eliminated by means of

equation {1') from the equations (2) thus modified, one obtains, as pre-
viously, an expression for dr, that is a total differential. Integrating,
one gets

- 2 2

v v v o+ €2 wp

ie -1, = - BT Um, m_ g €m,'my my * €5Ys"s

2 1~ " T v_¢€ - v_¢€ ey v + €vv °
My 2 m1 i my my ml S8 S8

where the numerical indices now refer to the integration limits. Due to the
relations

€m¥m = €s¥s T CmPmy °
we obtain even more simply
- +
To - T, = - ¥ va vml g emva2 esvs
2 1 v - v T
”,262 ml€1 Emlvml 63‘”5

In conclusion, I feel the need to apologize for outlining here a skimpy
plan for a laborious investigation without contributing anything to its
experimental solution; but I am not in the position to do so. All the same,
this work will have achieved its goal if it motivates a researcher to tackle
the problem of molecular forces from this direction.

Bern, April 1902. (Received on 30 April 1902)
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KINETIC THEORY OF THERMAL EQUILIBRIUM AND OF THE SECOND LAW
OF THERMODYNAMICS
by A. Einstein
[Annalen der Physik 9 (1902): 417-433]

Great as the achievements of the kinetic theory of heat have been in the
domain of gas theory, the science of mechanics has not yet been able to pro-
duce an adequate foundation for the general theory of heat, for one has not
yet succeeded in deriving the laws of thermal equilibrium and the second law
of thermodynamics using only the equations of mechanics and the probability
calculus, though Maxwell's and Boltzmann's theories came close to this goal.
The purpose of the following considerations is to close this gap. At the same
time, they will yield an extension of the second law that is of importance for
the application of thermodynamics. They will also yield the mathematical
expression for entropy from the standpoint of mechanics.

§1. Hechanical model for a physical system

Let us imagine an arbitrary physical system that can be represented by a
mechanical system whose state is uniquely determined by a very large number of
coordinates Py---by and the corresponding velocities

dpl dpn
LR

Let their energy £ consist of two additive terms, the potential energy V
and the kinetic energy L. The former shall be a function of the coordinates
alone, and the latter shall be a quadratic function of

dp
v o_
R 7
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whose coefficients are arbitrary functions of the p's. Two kinds of external
forces shall act upon the masses of the system. One kind of force shall be
derivable from a potential Va and shall represent external conditions (grav-
ity, effect of rigid walls without thermal effects, etc.); their potential may
contain time explicitly, but its derivative with respect to time should be
very small. The other forces shall not be derivable from a potential and
shall vary rapidly. They have to be conceived as the forces that produce the
influx of heat. If such forces do not act, but Va depends explicitly on
time, then we are dealing with an adiabatic process.

Also, instead of velocities we will introduce linear functions of them,
the momenta g¢,,....q,, as the system's state variables, which are defined by
n equations of the form

where [ should be conceived as a function of the Pireeespy and pi,...,p;.

§2. UOn the distribution of possible states between N ideniical adiabalic
stationary systems, when the energy contents are almost identical.

Imagine infinitely many (#) systems of the same kind whose energy
content is continuously distributed between definite, very slightly differing
values F and F+ 6F. External forces that cannot be derived from a poten-
tial shall not be present, and Va shall not contain the time explicitly, so
that the system will be a conservative one. Ve examine the distribution of
states, which we assume to be stationary.

We make the assumption that except for the energy F = La—Va+ Vi, or a
function of this quantity, for the individual system, there does not exist any
function of the state variables p and ¢ which remains constant in time; we
shall henceforth consider only systems that satisfy this condition. Our
assumption is equivalent to the assumption that the distribution of states of
our systems is determined by the value of £ and is spontaneously established
from any arbitrary initial values of the state variables that satisfy our
condition regarding the value of energy. I.e., if there would exist for the

[4]

[5]

(6}
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system an additional condition of the kind w(pl....,qn) = const. that
cannot be reduced to the form ¢(F) = const., then it would obviously be
possible to choose initial conditions such that each of the N systems could
have an arbitrarily prescribed value for ¢. HNowever, since these values do
not vary with time, it follows, e.g., that for a given value of £ any
arbitrary value might be assigned to Xy, extended over all systems, through
appropriate selection of initial conditions. On the other hand, Xp is
uniquely calculable by the distribution of states, so that other distributions
of states correspond to other values of Xp. It is thus clear that the exis-
tence of a second such integral ¢ would necessarily have the consequence
that the state distribution would not be determined by ¥ alone but would
necessarily have to depend on the initial state of the systems.

If ¢ denotes an infinitesimally small region of all state variables

Pioe-Pys G-y which is chosen such that E(p1...qn) lies between F

and E+ 6F when the state variables belong to the region g, then the
distribution of states is characterized by an equation of the form

dN'—‘ ¢(p1;-.-,qn) J dpl-..dq",
g

where dN denotes the number of systems whose state variables belong to the
region ¢ at a given time. The equation expresses the condition that the
distribution is stationary.

¥e now choose such an infinitesimal region €. The number of systems
whose state variables belong to the region ¢ at a given time ¢ =0 1is then

av = p(Py,...0) Ja ap,...dq,.

where the capital letters indicate that the dependent variables pertain to
time ¢ = 0.

Ve now let elapse some arbitrary time {. If the system possessed the
specific state variables P1'---0n at time ¢ = 0, then it will possess the
specific state variables Pyseergy, at time f = t. Systems whose state
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variables belonged to the region 6 at ¢ = 0, and these systems only, will
belong to a specific region g at time { = ¢, so that the following equation
applies

a¥ = ¥(py, - -q,) I ) (9]
g

However, for each such system Liouville's theorem holds, which has the form

j dPy,...df, - j dpy,...dg,.

From the last three equations it follows that
15(}’1,---0,‘) = ¢(P1----qn) 2

Thus, ¢ 1is an invariant of the system, which from the above must have the
form ¢(p1,...q”) = ¢*(F). However, for all systems considered, ¢*(£)

differs only infinitesimally from #*(E) = const., and our equation of state
will then simply be

it dpy,...dg,
g

where 4 1is a quantity independent of the p's and ¢'s.

§3. UOn the (stationary) probabilitly of the siates of e system S that is
mechanically linked with o system I whose energy ts relatively infinite

We again consider an infinite number (#) of mechanical systems whose
energy shall lie between two infinitesimally different limits E and E+ 6E.
Let each such mechanical system be, again, a mechanical link between a system
§ with state variables p;,...q, and a system T with state variables [11]
Tyree Xy The expression for the total energy of both systems shall be con-
stituted such that those terms of the energy that accrue through

ICf. L. Boltzmann, (astheorie [Theory of gases], Part 2, §32 and §37. [10]
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action of the masses of one partial system on the masses of the other partial
system are negligible in comparison with the energy £ of the partial system
S. Further, the energy # of the partial system ¥ shall be infinitely
large compared with E. Up to the infinitesimally small of higher order, one
might then put

E=¥0+F.

We now choose a region ¢ that is infinitesimally small in all state var-
iables Pi---Gpr Tpoo-Xy and is so constituted that E lies between the

constant values E and E + 6E. The number dN¥N of systems whose state
variables belong to the region ¢ 1is then according to the results of the
preceding section

v = 4 jg dp,...dy, -

Ve note now that we are free to replace 4 with any continuous function of
the energy that assumes the value 4 for E = E, as this will only
infinitesimally change our result. For this function we choose A‘.e_QhE,
where £ denotes a constant which is arbitrary for the time being, and which
we will specify soon. We write, then,

dN = 4" J e 2By, ay, .
g

We now ask: How many systems are in states in which Py is between

Pyt dpl, and, respectively, 2 between Py + dp2... 4, between 9, and
g, + dqn, but T Xy have arbitrary values compatible with the conditions
of our system? If we call this number dN', we obtain

B -2hE -2hK
v = 4¢Py . dq J e 2Myr .. .dy, .
The integration extends over those values of the state variables for which ¥

lies between E-F and E- E+ 6E. We now claim that the value of % can
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be chosen in one and only one such way that the integral in our equation
becomes independent of £.

It is obvious that the integral J e_2hﬂaxl...dx", for which the limits
of integration may be determined by the limits E and E + 3E, will for a

specific ¢E be a function of E alone; let us call the latter y(E). The
integral in the expression for dN° can then be written in the form

x(E - B) .

Since F is infinitesimally small compared with E, this can be written, up
to quantities which are infinitesimally small of higher order, in the form

X(E - £) = x(E) - Bx'(E) .

The necessary and sufficient condition for this integral to be independent of
E is hence

x'(E) =0 .
But then we can put

Y(E) = e 2kE y(E) |

where w(E) = J drl...dxn, extended over all values of the variables whose
energy function lies between E and E+ éE.
Hence the condition found for % assumes the form

e_zhE.w(E).{-Zh . ﬂ'_@l] = 5
w(E)

or

Thus, there always exists one and only one value for % that satisfies
the conditions found. Further, since w(E) and w'(E) are always positive,

as shall be shown in the next section, 4 1is also always a positive quantity.

[14]
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If we choose kb in this way, the integral reduces to a quantity inde-
pendent of £, so that we obtain the following expression for the number of

systems whose variables pi---4, lie within the indicated limits:

av = 4e gy dq
Thus, also for a different meaning of 4", this is the expression for the
probability that the state variables of a system mechanically linked with a
system of relatively infinite energy lie between infinitesimally close limits
when the state has become stationary.

84. Proof that the quantily h is positive

Let ¢(z) be a homogeneous quadratic function of the variables
Tyee T, Ve consider the quantity 2z = [ dzl...dzn, where the limits of
integration shall be determined by the condition that ¢(z) lies between a
certain value y and y+A, where A is a constant. We assert that z,
which is a function of y only, always increases with increasing gy when
n> 2.

If we introduce the new variables z = azi...zn = az;, where
e = const., then we have

z=a" J dzi...dz; .

Further, we obtain ¢(z) = aZp(z').
Hence, the limits of integration of the integral obtained for ¢(z')
are

Further, if we assume that A is infinitesimally small, we obtain

Z = a"-2 J dzi...dx; )

Here y' lies between the limits
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The above equation may also be written as

2 [y
2(y) = a Z[az] "

Hence, if we choose a to be positive and # > 2, we will always have [18]

which is what had to be proved.
We use this result to prove that % is positive.
We had found

_ . w'(E
b=t S5,
where

w(B) = J dpy...dq, »

and E lies between E and E+ 6E. By definition, w(E) is necessarily
positive, hence we have orly to show that w'(E) too is always positive.

We choose E; and E, such that E2> E, and prove that “(Ez’ > w(El)
and resolve u(El) into infinitely many summands of the form

d[w(El)] - dpy...dp, J dg,...dg, .

In the integral indicated, the p's have definite values, which are such that
V< El‘ The limits of integration of the integral are characterized by [
lying between E, - ¥ and E, + 6k - V.

To each such infinitesimally small summand corresponds a term out of
w(E2) of magnitude

d[o(E))] = dpy...dp, J dg...dg,,
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where the p's and dp's have the same values as in d[w(El)], but I lies

between the limits E, - ¥ and Ep - F+ 8E.
Thus, according to the proposition just proved,

d[w(E2)] > d[w(E))] .
Consequently,

Y dle(Ey)] > Y dlu(E,)] ,

vwhere X has to be extended over all corresponding regions of the p's.
However,

Y dlw(E))] = w(E,) .
if the summation sign extends over all p's, so that

V< E1 .
Further, we have

[19] Y dla(Ey)] < w(Ey) .
since the region of the p's, which is determined by the equation

K< E2

includes all of the region defined by the equation

V< E1

§5. 0On the temperature equilibrium

Ve now choose a system § of a specific constitution and call it a
thermometer. Let it interact mechanically with the system X whose energy is
relatively infinitely large. If the state of the entire system is stationary,
the state of the thermometer will be defined by the equation
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d¥ = le'2hEdp1...dqn 5

where d¥ is the probability that the values of the state variables of the
thermometer lie within the limits indicated. The constants 4 and A& are
related by the equation

1=4. J e'zhidpl...dqn .
where the integration extends over all possible values of the state variables.
The quantity A thus completely determines the state of the thermometer. We
call h the temperature function, noting that, according to the aforesaid,
each quantity H observable on the system § must be a function of &
alone, as long as Vn remains unchanged, which we have assumed. The quantity
h, however, depends only on the state of the system ¥ (§3), i.e., it does
not depend on the way in which ¥ is thermally connected with S. From this
we immediately obtain the theorem: If a system I is connected with two
infinitesimally small thermometers § and S§', the same value of h obtains
for both thermometers. If § and S§' are identical systems, then they will
also have identical values of the observable quantity A&.

We now introduce only identical thermometers S and call H the
observable measure of temperature. We thus arrive at the theorem: The
measure of temperature K that is observable on § is independent of the way
in which ¥ is mechanically connected with §; the quantity # determines
h, which in turn determines the emergy E of the system £, and this in turn
determines its state according to our assumption.

From what we have proved it follows immediately that if two systems 21
and 22 are mechanically linked, then they cannot form a system that is in a
stationary state unless the two thermometers S§ connected to them have equal
measures of temperature or, what amounts to the same, if they themselves have
equal temperature functions. Since the state of the systems 81 and 22 is
completely defined by the quantities h1 and h2 or H& and Hé, it follows
that the temperature equilibrium can be determined only by the conditions
hl = h2 or Hi = Hé.

It now only remains to be shown that two systems that have the same
temperature function A (or the same measure of temperature H) can be
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mechanically connected into one single system that has the same temperature
function.

Let two mechanical systems 3 and 22 be merged into one system, but
in such a way that the energy terms that contain state variables of both
systems be infinitesimally small. Let I, aswell as 22 be connected with
an infinitesimally small thermometer §. The readings 4 and K, of the
latter are certainly identical up to the infinitesimally small because they
refer only to different locations within a single stationary state. The same
is of course true of the quantities hl and hy. We now imagine that the
energy terms common to both systems decrease infinitely slowly toward zero.
Thereby the quantities K and k as well as the distributions of state of
the two systems change infinitesimally because they are determined by the
energy alone. If then the complete mechanical separation of 21 and 22 is
carried out, the relations

I = H,, hy = hy

continue to hold all the same, and the distribution of states changes infin-
itesimally. h& and hl, however, will now pertain only to El, and Hé and
h2 only to 22. Our process is strictly reversible, as it consists of a
sequence of stationary states. We thus obtain the theorem:

Two systems having the same temperature function k£ can be merged into
a single system having the temperature function A such that their
distribution of states changes infinitesimally.

Equality of the quantities & is thus the necessary and sufficient
condition for the stationary combination (thermal equilibrium) of two systems.
From this follows immediately: If the systems I, and %, as well as I,
and I3, can be combined in a stationary fashion mechanically (in thermal
equilibrium), then so can 22 and 23.

I would like to note here that until now we have made use of the assump-
tion that our systems are mechanical only inasmuch as we applied Liouville's
theorem and the energy principle. Probably the basic laws of the theory of
heat can be developed for systems that are defined in a much more general way.
We will not attempt to do this here, but will rely on the equations of
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mechanics. We will not deal here with the important question as to how far
the train of thought can be separated from the model employed and generalized.

86. Un the mechanical meaning of the quantity k!

The kinetic energy [ of a system is a homogeneous quadratic function
of the quantities g¢. It is always possible to introduce variables r by a
linear substitution such that the kinetic energy will appear in the form [21]

I = f(alr% + 02r§ oo+ anri)
and that

J dql...dq" = J drl...dru,

when the integral is extended over corresponding infinitesimally small
regions. The quantities s are called momentoids by Boltzmann. The mean
kinetic erergy corresponding to one momentoid when the system together with
one of much larger energy forms a single system, assumes the form

v

-2h[Vrasr2+a,r3+. . .+a,12] @ 12
J A"e 1'1772"2 il -—%r—-dpl...dpn.drl...drn

1
= : [22]
—2h[V+alr%+02r§+...+anr§] 4
j I dpy..dp dry...dr,

Thus, the mean kinetic energy is the same for all momentoids of a system
and is equal to

s [24]

where I denotes the kinetic energy of the system.

1Cf. L. Boltzmann, Gasiheorie, Part 2, §§33, 34, 42. (23]
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§7. Ideal gases. Adbsolute temperalure

The theory we developed contains as a special case Maxwell's distribu-
tion of states for ideal gases. I.e., if in §3 we understand by the system S
one gas molecule and by ¥ the totality of all the others, then the expres-
sion for the probability that the values of the variables py---py of § lie
in a region ¢ that is infinitesimally small with respect to all variables
will be
ah = 1 [ dpy g,
g
One can also immediately realize from the expression for the quantity A
found in §4 that, up to the infinitesimally small, the quantity A& will be
the same for a gas molecule of another type occuring in the system, since the
systems ¥ determining A& are identical for the two molecules up to the
infinitesimally small. This establishes the generalized Maxwellian
distribution of states for ideal gases. —
Further, it follows immediately that the mean kinetic energy of motion
of the center of gravity of a gas molecule occurring in a system § has the

value %-h because it corresponds to three momentoids. The kinetic theory of
gases teaches us that this quantity is proportioral to the gas pressure at
constant volume. If, by definition, this is taken to be proportional to the
absolute temperature, one obtains a relationship of the form

)
)

=i

= ¢

w'(

gf k.T

where & denotes a universal constant, and ® the function introduced in §3.

88. The second law of the theory of heat as a consequence
of the mechanical theory

We consider a given physical system § as a mechanical system with
coordinates Pi---Py- As state variables of the system we further introduce
the quantities
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dp, .
TP T TP

Pl"'Pn shall be the external forces tending to increase the coordirates of
the system. Vi shall be the potential energy of the system, [ its kinetic
energy, which is a homogeneous quadratic function of the pLs. For such a
system Lagrange's equations of motion assume the form

av.-1) dTal
_?;”—+H[W;]-PI/-O' (V=1! '/=ﬁ)

The external forces consist of two kinds of forces. The first kind, Pil),
are the forces that represent the conditions of the system and can be derived
from a potential that is a function of py---py only (adiabatic walls,
gravity, etc.):
Y :g:—”.

v
Since we have to consider processes which consist of states that infinitely
approximate stationary states, we have to assume that even though Va
explicitly contains the time, the partial derivatives of the quantities
ara/apy with respect to time are infinitesimally small.

The second kind of forces, Pﬁz) =0, shall not be derivable from a
potential that depends on the ?, only. The forces N represent the forces
that mediate the influx of heat.

If one puts V; + Vi = ¥, equations (1) become

n o= oLy il
v " apy di 35; :

The work supplied to the system by the forces ﬂu during the time di
represents then the amount of heat df absorbed during di by the system S,
vhich we will measure in mechanical units.

[26]
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dg =Y N dp, - -(%V—dp —a——dp "ZTT[BQL_]‘“‘
v
llowever, since

d o] 4 . oLy oL
prw[zrp;]dt-dma;;' o7
and, further,

al ~ dl al v
23-1,—;1}"}—2.6. mdpv+ mdpy-dL,
we have
d0=2£7,/rdp
Since, further
T=ql-=t
T 4kk T Wk
we will have
(1) 4zg=nn%—+4nh2—a—dp

We will now concern ourselves with the expression
ar
7, 4

This represents the increase of potential energy in the system that would take
place during time dt if F were not explicitly dependent on time. The time
element dt shall be chosen so large that the sum indicated above can be
replaced by its average value for infinitely many systems S of equal temper-
ature, and at the same time so small that the explicit changes of & and V
with time be infinitesimally small.

Suppose that infinitely many systems § in a stationary state, all of
which have identical 4 and Va’ change to new stationary systems which are
characterized by values h+ 8k, ¥+ 6V common to all. Generally, "§&" shall
denote the change of a quantity during transition of the system to a new
state; the symbol "d" shall no longer denote the change with time but differ-
entials of definite integrals. —
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The number of systems whose state variables lie in the infinitesimally
small region ¢ before the change is given by the formula

dN = Ae2h(V+L) J dp,...dp, ;

here we are free to choose the arbitrary constant in FV for each given £
and Va such that 4 will equal unity. We shall do this to simplify the
calculation and shall call this more precisely defined function F/*.

It can easily be seen that the value of the quantity we seek will be

(2) %,f—: oy = | 81Dy pipy. g,

where the integration should extend over all values of the variables, because
this expression represents the increase of the mean potential energy of the
system that would take effect if the distribution of states would change in
conformity with &6F* and &6h, but ¥ would not change explicitly.

Further, we obtain

v 1 -2h(P*+1)
- 4kh 2 35; dp, = 4x § J e }.h.V.dpl...dq"

ax[hy] - 3 [ 2R P+ hlgrhy gy g .
N 1 n

Here and in the following the integrations have to be extended over all pos-
sible values of the variables. Further, it should be kept in mind that the
number of systems under consideration does not change. This yields the
equation

J 6(e'2h(p*+L))dpl...dqn =0,

or

[ T Dihndp,...dg, + b [ ™ Di(1yap,....dg, = 0 ,

or

(4) %I e D) sy dp, .. .dg, + axLéh = 0 .

[35]

[36]

(371
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¥V and I denote the mean values of the potential and kinetic energies
of the N systems. Adding (3) and (4), one obtains

axh Y ggf dp, = 4k8[AV] + 4xL.6h ,

or, because

[38] h ¥ 6k = - - 8L,

B
412

Qil=

4xh g}c)/_ dp, = 4k6[hV] - nn-’i-’L— -
v

If we substitute this formula in (1), we obtain

g 4 - §lanhi¥) = 5[!’}] :

Thus, df/T is a complete differential. Since

% = 1K thus 6[%] =0 4

4-45)

Thus, apart from an arbitrary additive constant, F£*/7 is the expression for
the entropy of the system, where we have put F* = /*+ [. The second law thus

one may also sct

appears as a necessary consequence of the mechanistic world picture.

89. Calculation of the entropy
The expression ¢ = F*/T that we obtained for the entropy € only
appears to be simple, because F* remains to be calculated from the

conditions of the mechanical system. I.e., we have

L’*=E+Eo,
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where F is given directly, but £; has to be determined as a function of Z
and - & from the condition

J e_2hw_£°)dp1...dqn =N. (40}

In this way, one obtains

ol %; _E Lo, log[I e—2h3dp1_,.dqn] + const. (41]

In the expression thus obtained, the arbitrary constant that has to be added
to the quantity £ does not affect the result, and the third term, denoted
"const.," is independent of ¥ and T.
The expression for the entropy € is strange, because it depends solely
on F and 7, but no longer reveals the special form of F as the sum of
potential and kinetic energy. This fact suggests that our results are more
general than the mechanical model used, the more so as the expression for &
found in §3 shows the same property. [42]

§10. Ezlension of the second law

No assumptions had to be made about the nature of the forces that corre-
spond to the potential Ph, not even that such forces occur in nature. Thus,
the mechanical theory of heat requires that we arrive at correct results if we
apply Carnot's principle to ideal processes, which can be produced from the
observed processes by introducing arbitrarily chosen V&'s. 0f course, the
results obtained from the theoretical consideration of those processes have a
real meaning only when the ideal auxiliary forces Va no longer appear in
them. [43]

Bern, June 1902. (Received on 26 June 1902)
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Doc. 4
A THEORY OF THE FOUNDATIONS OF THERMODYNAMICS
by A. Einstein
[Annalen der Physik 11 (1903): 170-187]

In a recently published paper I showed that the laws of thermal equi-
librium and the concept of entropy can be derived with the help of the kinetic
theory of heat. The question that then arises naturally is whether the
kinetic theory is really necessary for the derivation of the above foundations
of the theory of heat, or whether perhaps assumptions of a more general nature
may suffice. In this article it shall be demonstrated that the latter is the
case, and it shall be shown by what kind of reasoning one can reach the goal.

81. On a general mathematical representation of the processes
in isolated physical systems

Let the state of some physical system that we consider be uniquely
determined by very many () scalar quantities PisPg---Py» which we call
state variables. The change of the system in a time element df is then
determined by the changes dpl,dp2...dp” that the state variables undergo
during that time element.

Let the system be isolated, i.e., the system considered should not
interact with other systems. It is then clear that the state of the system at
a given instant of time uniquely determines the change of the system in the
next time element d¢, i.e., the quantities dpl,dpz...dpn. This statement is
equivalent to a system of equations of the form

P; . '
(1) m—z—:wi(‘pl'“?n) (3= Tess i = a) ;
vhere the ¢'s are unique functions of their arguments.

In general, for such a system of linear differential equations there
does not exist an integral of the form
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¢(p1...pn) = const.,

which does not contain the time explicitly. However, for a system of
equations that represents the changes of a physical system closed to the
outside, we must assume that at least one such equation exists, namely the
energy equation

E(pl...pn) = const.

At the same time, we assume that no further integral of this kind that is
independent of the above equation is present.

82. UOn the stationary distribution of stale of infinitely
many isolated physical systems of almost equal energies

Experience shows that after a certain time an isolated system assumes a
state in which no perceptible quantity of the system undergoes any further
changes with time; we call this state the stationary state. Hence it will
obviously be necessary for the functions w; to fulfill a certain condition
so that equations (1) may represent such a physical system.

If we now assume that a perceptible quantity is always represented by a
time average of a certain function of the state variables Py---Dy and that
these state variables py---py keep on assuming the same systems of values
with always the same unchanging frequency, then it necessarily follows from
this condition, which we shall elevate to a postulate, that the averages of
all functions of the quantities py---p, must be constant; hence, in
accordance with the above, all perceptible quantities must also be constant.

We will specify this postulate precisely. Starting at an arbitrary
point of time and throughout time 7, we consider a physical system that is
represented by equations (1) and has the energy E. If we imagine having
chosen some arbitrary region I of the state variables py---p,» then at a
given instant of time T the values of the variables py---p, will lie
within the chosen region T or outside it; hence, during a fraction of the
time 7, which we shall call 7, they will lie in the chosen region T. Our
condition then reads as follows: If py---p, are state variables of a

[4]
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physical system, i.e., of a system that assumes a stationary state, then for
each region T the quantity 7/T has a definite limiting value for 7 = «.
For any infinitesimally small region this limiting value is infinitesimally
small.

The following consideration can be based on this postulate. Let there
be very many (&) independent physical systems, all of which arc represented
by the same system of equations (1). We select an arbitrary instant ¢ and
inquire after the distribution of the possible states among these N systenms,
assuming that the energy F of all systems lies between F* and the
infinitesimally close value F* + §F*. From the postulate introduced above,
it follows immediately that the probability that the state variables of a
system randomly selected from among N systems will lie within the region I
at time ¢ has the value

lim ; = const.

= ®

The number of systems whose state variables lie within the region T' at time
t is thus

N lin %,

T=m7

i.e., a quantity independent of time. If ¢ denotes a region of the coordi-
nates py-..p, that is infinitesimally small in all variables, then the
nunber of systems whose state variables fill up an arbitrarily chosen
infinitesimally small region ¢ at an arbitrary time will be

(2) dN = e(p;--.p,) J dpy---dp, -
g

The function € is obtained by expressing in symbols the condition that
the distribution of states expressed by equation (2) is a stationary one.
Specifically, the region ¢ shall be chosen such that »y shall lie between
the definite values py and py o+ dpl, py between py and Py + dpz,...p"
between P, and P, + dpn; then we have at the time ¢

d%& = e(pl...pn).dpl.dpz...dpn,
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where the subscript of dN denotes the time. Taking into account equation
(1), one obtains furthermore at time ¢ + d¢ and the same region of the state
variables

Vﬂa(e‘p)

dNt+dt = dNt _3—_—— dp1 dpu.dt
v=1

However, since dNt = d”t+dt’ because the distribution is stationary, we have

(7(6(,0”) 0 [6]
_?ﬁi;__ =0 .
This yields

2 p 2 (log €) Z a(log (log

where d(log €)/dt denotes the change of the function log ¢ with respect to
time for an individual system, taking into account the changes with time of
the quantities P,
One obtains further
v=n

- [ a 2 g‘p—ww)

V=

e-m+¢(5') .

The unknown function ¢ is the time-independent integration constant which
may depend on the variables Py Py but can contain them, according to the
assumptions made in §1, only in the combination in which they appear in the
energy £.

However, since ¢(£) = $(F*) = const. for all N systems considered,
the expression for ¢ reduces in our case to

V=R
&pv
- dt ap_'
v
€ = const. e =, = const. ¢ "

According to the above we now have
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_ -m
dN = const. e Jg dpl...dpn .

For the sake of simplicity we now introduce new state variables for the
system considered; they shall be denoted by T, Ve then have

-m
_ €
d”——pW dﬂ'l...da'n ’
Dlp,.--p,) g

n

where the symbol D denotes the functional determinant. — We now want to
choose the new coordinates such that

o D(zl...r")
Dipl...pni )

This equation can be satisfied in infinitely many ways, e.g., by setting

g =Py

To = P )
33 LE} =Jem-dp1 .
L

Using the new variables, we thus obtain

dN = const. J drl...drn -
Henceforth we will always suppose that such variables have been introduced.
§3. On the distribution of state of a system in coriact
with a system of relatively infinitely large energy.

We now assume that each of the X isolated systems is composed of two
partial systems ¥ and ¢ in interaction. Let the state of the partial
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system I be determined by the values of the variables “1“'“)’ and that of
the system o by the values of the variables Ty Tpe Further, let the
energy £, which for each system shall lie between the values F£* and &F%,
i.e., shall equal F* up to the infinitesimally small, be composed of two
terms, of which the first, #, shall be determined only by the values of the
state variables of ¥, and the second, #, only by the state variables of o,
so that, except for the relatively infinitesimally small, one has

F=H+19.

Two systems in interaction which satisfy this condition will be called two

systems in contact. We also assume that # 1is infinitesimally small compared

with M.
For the number dﬂi of the AN-systems whose state variables “1"'“)
and 1.7y lie between nl and Hl + dnl, ﬂ2 and H2 + dH2, ...11A and

HA + dHA. and T and T+ drl, LN and Ty + drz, Ty and T+ dxe, we

get the expression
le = C-dl]l...dll)\~dxl...dwe .

where € can be a function of £ = K + 1.
However, since according to the above assumption the energy of each of
the systems considered up to the infinitesimally small has the value F*, we

can replace € by const.e 2P = const.e 2PN ithout causing any

changes in the result, where A& is a constant still to be defined precisely.
Hence, the expression for dAﬁ becomes

lel = const. e’zh(llm)-dﬂl...dﬂA-drl...dre .

The number of systems whose state variables 7 lie between the indi-
cated limits, while the values of the variables I are not subjccted to any
restrictive condition, may thus be represented in the form

dN, = const. e_Zh”-dxl...dz[J e 2l _..an,

8]
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where the integral is to be extended over all values of NI to which
correspond values of the energy K lying between F* - 5 and FE* + 6% - 7.
Had the integration been carried out, we would have found the distribution of
the state of the systems ¢. This is in fact possible.

We put

Je'Qh”-dnl...dHA = x(E) ,

where the integral on the left-hand side is to be extended over all values of
the variables for which # lies between the definite values £ and F + 6F*.
The integral that appears in the expression dN2 then assumes the form

X(E* - 7’) B

or, since g is infinitesimally small compared with F£*,
x(E*) - x'(B*)-q .

Thus, if & can be chosen such that x'(£*) = 0, the integral reduces
to a quantity that is independent of the state of o.
It is possible to put, up to the infinitesimally small,

xw)=aﬁﬂjmr“mA=a“5mm,

where the integration limits are the same as above, and where w denotes a
new function of F£.
The condition for A& now assumes the form

¥ () = e 2P (B - 2ho(E9)) = 0
consequently:
1 o' (F¥)
h=5=—"=2.
2 w(F¥)

If h 1is chosen in this way, the expression for dﬂb will assume the form



DOC. 4 55

(3) dNé = const. e'zh”drl...dze .

Vith suitable choice of the constant this expression represents the proba- [10]
bility that the state variables of a system in contact with another system of
relatively infinitely large energy will lie within the indicated limits. The
quantity A depends only on the state of the above system I of relatively
infinitely large energy.

84. On absolute temperature and thermal equilibrium

Thus, the state of the system ¢ depends only on the quantity 4, and [11]
the latter only on the state of the system 2. We call the quantity
1/4hs = T the absolute temperature of the system I, where & denotes a
universal constant. [12]

If we call the system ¢ '"thermometer," then we can immediately advance
the following propositions:

1. The state of the thermometer depends only on the absolute tempera-
ture of the system £, and not on the kind of contact of the systems £ and o.

2. If in case of contact two systems 21 and 22 impart the same
state to a thermometer o, then they have the same absolute temperature and
will also impart the same state to another thermometer ¢' 1in case of
contact.

Further, suppose two systems 21 and 22 are in contact and 21 is
also in contact with a thermometer ¢. The distribution of states of o
depends then only on the energy of the system (21 + 22), i.e., on the quan-
tity hl,?' If the interaction between X, and Iy is imagined to decrease
infinitely slowly, this does not change the expression for the energy ”1,2
of the system (El + 22), which can be readily seen from our definition of
contact and the expression for the quantity & that we formulated in the last
section. Finally, if the interaction had ceased completely, the distribution
of states of ¢, which does not change during the separation of 21 and Zys
will now depend on 21, i.e., on the quantity hl’ where the index denotes
association with the system El alone. Hence we have
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hy = hyg -

By an analogous line of argument, one could have obtained
hence

or, in words: If one separates two systems 21 and 22 in contact which
form an isolated system (21 + 22) of absolute temperature 7T, then the now
isolated systems El and 22 will have the same temperature after separa-
tion. Ve imagine a given system in contact with an ideal gas. This gas shall
be completely describable in terms of the kinetic theory of gases. As the
system ¢ we consider a single monoatomic gas molecule of mass p whose
state shall be completely determined by its orthogonal coordinates =z, y, 2
and the velocities &, 7, (. In accordance with §3, we obtain for the
probability that the state variables of this molecule lie between the limits
z and z + dz, ...( and ( + d( the well-known Maxwellian expression

d¥ = const. e“h”(£2+”2+<2)-dz...dc .

By integration, one obtains from this for the mean kinetic energy of this
molecule

e+ ot + (1) = g5

However, the kinetic theory of gases teaches that at constant volume of
the gas this quantity is proportional to the pressurc exerted by the gas. The
latter is by definition proportional to the quantity designated in physics as
absolute temperature. Thus the quantity we designated as absolute temperature
is nothing else but the temperature of a system measured by the gas
thermometer.



DOC. 4 57

§5. On infinitely slow processes

Until now we have only considered systems that are in a stationary
state. Now we are also going to investigate changes of stationary states,
though only those that proceed so slowly that the distribution of states
existing at an arbitrary instant differs only infinitesimally from the
stationary distribution; or, more precisely, that, up to the infinitesimally
small, the probability that the state variables lie in a certain region ¢
can be represented at any moment by the formula found above. We call such a
change an infinitesimally slow process.

If the functions ?, (equation (1)) and the energy F of a system are
specified, then, according to the above, its stationary state distribution is
also specified. An infinitely slow process will thus be specified either by a
changing £, or by the functions ¢,  containing the time explicitly, or by
both circumstances simultaneously, but in such a way that the corresponding
differential quotients with respect to time are very small.

We assumed that the state variables of an isolated system change accord-
ing to equations (1). However, conversely, if there exists a system of
equations (1) according to which the state variables of a system are changing,
this system does not always have to be an isolated one. For it can happen
that a system under consideration is influenced by other systems in such a way
that this influence depends only on such functions of the variable coordinates
of the influencing systems which do not change when the distribution of states
of the influencing system is constant. In this case the change of the coordi-
nates p, of the system considered can also be represented by a system having
the form of equations (1). However, the functions ¥, will then depend not
only on the physical nature of the system in question, but also on certain
constants that are defined through the influencing systems and their distribu-
tions of states. This kind of influence on the system under consideration we
call adiabatic. It is easy to see that as long as the distributions of state
of the adiabatically influencing systems do not change, there exists an energy
equation for the equations (1) in this case as well. If the states of the
adiabatically influencing systems do change, then the functions ¢, of the
systems considered change explicitly with time, with equations (1) maintaining

[15]
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their validity at all times. Such a change of the distribution of states of
the system under consideration we call an adiabatic one.

Ve now consider a second kind of changes of the state of a system X.
Consider a system that can be influenced adiabatically. We assume that at
time f = 0 the system X enters into such an interaction with a system P
of a different temperature that we called "in contact” above, and we remove
the system P after the time necessary for the equalization of the
temperatures of ¥ and P. The energy of ¥ has then changed. The
equations (1) of ¥ are invalid during the process but valid before and after
it, while the functions ¢, are the same before and after the process. Such
a process we call "isopycnic" and the energy supplied to £, "heat supplied."

It is evident that, up to the infinitesimally small, it is possible to
construct each infinitely slow process from a succession of infinitesimally
small adiabatic and isopycnic processes, so that in order to get a general
overview we have to study the latter ones only.

86. On the concepl of eniropy

Let there be a physical system whose instantaneous state shall be
completely determined by the values of the state variables Pi---Py- Let this
system undergo a small, infinitely slow process, in which the systems that
influence this system adiabatically cxperience an infinitesimally small change
of state, and energy is being supplied to the system considered by systems in
contact. We take account of the adiabatically influencing systems by
stipulating that in addition to the Pr--oPy the energy £ of the system
considered shall also depend on some parameters AI,A2.... whose values shall
be determined by the distributions of states of the systems that influence
adiabatically the system considercd. In purely adiabatic processes there
holds at any instant a system of equations (1) whose functions @, depend
not only on the coordinates p, but also on the slowly changing quantities
X; for adiabatic processes 100, there will hold at any instant the energy
equation, whose form is
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We now investigate the energy increase of the system during an arbitrary
infinitesimally small, infinitely slow process.
For each time element d¢ of the process we have

(4) =Y % o+ gpidpy
v

For an infinitesimally small isopycnic process, all dA vanish in each time
element, and thus the first term of the right-hand side vanishes too.

However, since according to the previous sectionr, in an isopycnic process dE
is to be considered as heat supplied, for such a process the heat supplied d{
is represented by the expression

oF
dg =Y o,

However, for an adiabatic process, during which equations (1) are always
valid, we have, according to the energy equation,

ok _\v or -
Hp—y‘dp”-xap—y(pvdt—o.

On the other hand, according to the previous section, df = 0 for an
adiabatic process, so that one can put

oF
g =) o, @,

for an adiabatic process as well. Hence, this equation must be considered as
valid for any arbitrary process during each time element. Thus equation (4)
becomes

(4') dt::zg{{d,nda.

This expression represents the energy change of the system occurring during
the whole infinitesimally small process at changed values of d} and d{ as
well.
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At the beginning and the end of the process, the distribution of states
of the system considered is stationary, and when the system is in contact with
a system of relatively infinitely large energy before and after the process,
this assumption having formal significance only, this distribution is defined
by the equation having the form

d¥ = const. e
= ec_zhﬂ-dpl...

-2hF
h -dpl...dpn

dpn 5
where dF denotes the probability that the values of the system's state

variables lie within the limits indicated at any arbitrarily chosen moment.
The constant ¢ 1is defined by the equation

(5) J ec_ZhE-dpl...dpn =Bl

vhere the integration has to be extended over all values of the variables.
Specifically, if equation (5) holds before the process under
consideration, then afterwards we have

1...dpn =1,

ok
- J e(cn-dr)—2(h+dh)[£ ) B%d,\] .

and the two last equations yield

| [de - 28an - 20§ G| e ap, = 0

or, since the expression in parentheses can be taken as a constant during
integration because the system's energy £ never differs markedly from a
fixed average value before and after the process, and taking into account
equation (5),

(5") de - 2kdh - 28 Y iy -0

However, according to equation (4') we have
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-2 + 20 Y S ar + 2hdg = 0,
and by adding these two equations one obtains

2h-df = d(2hE - ¢) ,

#:d[f,-m]:ds.

This equation states that d/T is a total differential of a quantity that we
will call the entropy § of the system. Taking into account equation (5),
one obtains

or, since 1/4h = «.T,

§ = om(2hE-c) = £+ 2lclogJ ey ...dp

vhere the integration has to be extended over all values of the variables.

§7. 0On the probability of distribulions of states

In order to derive the second law in its most general form, we have to
investigate the probability of distributions of states.

Ve consider a very large number (¥) of isolated systems, all of which
can be represented by the same system of equations (1), and whose energies
coincide up to the infinitesimally small. The distribution of states of these
N systems can then be represented by an equation of the form

(2") dN = e(pl...pn,t)dpl...dpﬂ 5

where in general € depends explicitly on the state variables Py, and
also on time. Here the function ¢ completely characterizes the distribution
of states.

It follows from §2 that when the distribution of states is constant,
which, according to our assumptions, is always the case at very large values
of ¢, we must have € = const., so that for a stationary distribution of

states we will have
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dN = const. dpl"'dpn :

From this it follows immediately that the expression for the probability
d¥ for the values of the state variables of a system randomly chosen from
among the N systems to lie in the infinitesimally small region ¢ of the
state variables located within the assumed energy limits is given by

d¥ = const. I dpl...dpn -
g

This proposition can also be formulated as follows: If the whole pertinent
region of state variables that is determined by the assumed energy limits is
divided into ¢ partial regions 91799---9 such that

L1=ng= "”L,_,'

and if one denotes by h&, ﬁb, etc., the probabilities that the values of the

state variables of the arbitrarily chosen system lie within 91299--- at a
certain instant, then
B _ _1
hy=Fy=--F=7.

The probability that at a given moment the system considered will belong to a
specific region from among these 91---9p regions is thus just as great as
the probability that it will belong to any other of these regions.

The probability that, at a randomly chosen time, € of N systems
considered will belong to the region 91> €9 tO region g9s ---€y to region

9¢> is hence
AI
N il
WiE hd e legl e T

or also, since €+€9-..€, are to be thought of as very large numbers:

n

e=f
log ¥ = const. - z € log € .
e=1
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If £ is sufficiently large, one can put without noticeable error

log ¥ = const. - I € log ¢ dpl...dpn ]

In this equation ¥ denotes the probability that a given distribution of
states, which is expressed by the numbers €12€g---€py OT, else, by a specific
function € of Py---py according to equation (2'), prevails at a given
time.

If in this equation ¢ were constant, i.e., independent of the py's
within the energy limits considered, then the distribution of states con-
sidered would be stationary, and, as can easily be proved, the expression for
the probability ¥ of the distribution of states would be a maximum. If ¢
depends on the values of the p”'s, then it can be shown that the expression
for log ¥ for the distribution of states considered does not have an
extremum, i.e., that there exist distributions of states differing
infinitesimally from the considered one for which ¥ 1is larger.

If we follow the N systems considered for an arbitrary time interval,
the distribution of states, and thus also ¥, will contipually change with
time, and we will have to assume that always more probable distributions of
states will follow upon improbable ones, i.e., that ¥ increases until the
distribution of states has become constant and ¥ a maximum. [17]

It will be shown in the following sections that the second law of
thermodynamics can be deduced from this proposition.

First of all, we have

- J €' log ¢' dpl...dpn 2 - J € log e dpy...dp, ,

where the function e determines the distribution of states of the ¥
systems at a certain time {, the function €' determines the distribution of
states at a certain later time {', and the integration on both sides is to be
extended over all values of the variables. Further, if the quantities log e
and log ¢' of the individual systems from among the N systems do not
differ markedly from each other, then, since
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I edpy...dp, = I ¢'dpy...dp, = N,

the last equation becomes

(6) - log €' > - log € .

88. Application of the results obtained to a pariicular case

We consider a finite number of physical systems 0 20g.-. that together
form an isolated system, which we shall call total system. The systems
Ty+0g. - shall not interact markedly with each other thermally, but they
might affect each other adiabatically. The distribution of states of each of
the systems T1s0g s vhich we shall call partial systems, shall be station-
ary up to the infinitesimally small. The absolute temperatures of the partial
systems may be arbitrary and different from each other.

The distribution of states of the system 7y will not be markedly
different from the distribution of states that would hold if g, were in
contact with a physical system of the same temperature. We can therefore
represent its distribution of states by the equation

du, = L~ 2k By Jg dP{l)---dPEi;-

vwhere the indices (1) indicate affiliation with the partial system -

Analogous equations hold for the other partial systems. Since the
instantaneous values of the state variables of the individual partial systems
are independent of those of the other systems, we obtain for the distribution
of states of the total system an equation of the form

- 2h
7 dv = dv-duy-+- = J dpy---dp,

where the summation is to be extended over all systems, and the integration
over the arbitrary region ¢, which is infinitesimally small in all the
variables of the total system.
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We now assume that after some time the partial systems 01s09--- enter
into some arbitrary interaction with each other, but that during that process
the total system always remains an isolated one. After the lapse of a certain
time there shall arise a state of the total system in which the partial
systems ¢,,04... do not affect each other thermally and, up to the
infinitesimally small, exist in a stationary state.

Then an equation completely analogous to that holding before the process
will hold for the distribution of states of the total system:

Yl - 2h1E) J B

(7") dv' = dw)-dugy--- = € .-
g

We now consider N such total systems. Up to the infinitesimall