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FOREWORD 

During the Summer of 1944, Dr. Rudolf K. Luneburg presented a course 
of lectures on the Mathematical Theory of Optics at Brown University. The 
lecture material was later collected in a volume which was issued by Brown 
University in the form of mimeographed notes. These notes were by no means 
a compilation of generally available knowledge. They contained a highly 
original, thorough, and systematic account of the foundations of several 
branches of optics and numerous new and important results. 

The supply of copies of Luneburg's notes was soon exhausted, but demand 
for them has continued. The University of California Press is providing a 
real service to the scientific community by issuing a printed version of these 
notes. Fate has prevented Dr. Luneburg from seeing this volume. He died 
in 1949, at a time when the importance of his work was just beginning to be 
generally recognized. 

The chief contribution which Luneburg has made through these notes lies 
in having shown how the two main mathematical disciplines of instrumental 
optics, namely geometrical optics and the scalar diffraction optics, may be 
developed in a systematic manner from the basic equations of Maxwell's 
electromagnetic theory. Prior to Luneburg's work these two disciplines were, 
by and large, treated as self-contained fields, with little or no contact with 
electromagnetic theory. 

The starting point of Luneburg's investigation was the observation of the 
formal equivalence of the basic equation of geometrical optics (the eikonal 
equation) and the equation that governs the propagation of discontinuous 
solutions of Maxwell's equations (the equation of characteristics). By boldly 
identifying the geometrical optics field with the electromagnetic field on a 
moving discontinuity surface, Luneburg was led to a complete formulation of 
geometrical optics as a particular class of exact solutions of Maxwell's equa­
tions; This formulation is by no means based on traditional ideas; for tradi­
tionally geometrical optics is regarded as the short wavelength limit (or, 
more precisely, as the asymptotic approximation for large wave numbers) of 
the monochromatic solution of the wave equation. Luneburg was, of course, 
aware of this more traditional viewpoint and he touches briefly on it in §16. 
In fact, in a course of lectures which he later presented at New York University 
(during the academic year 1947-1948) Luneburg devoted considerable time to. 
the interrelation between the two approaches. Some of the ideas outlined in 
the two courses have become the nucleus from which a systematic theory of 
asymptotic series solutions of Maxwell's equations is gradually being 
developed. An account of the material presented by Luneburg in his New York 
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vi FOREWORD 

lectures and of related more recent developments will soon be published by 
Drs. M. Kline and I.W. Kay in a book entitled Electromagnetic Theory and 
Geometrical Optics (J. Wiley and Sons, New York). 

Chapter I of the present work contains the derivation of the basic laws 
of geometrical optics from Maxwell's equations. Amongst the many new results 
which this chapter contains, the transport equations, eq. (11.38), relating to 
propagation of the electric and the magnetic field vectors along geometrical 
rays, are of particular significance. In Chapter II Hamilton's theory of 
geometrical optics is formulated and in the chapter which follows it is applied 
to special problems . Amongst results which seem to make their first appear­
ance in the scientific literature are some of the formulae of §24 relating to 
final corrections of optical instruments by aspheric surfaces; some new 
theorems relating to perfect optical instruments (§28.4); and the introduction 
in §29· of a new "perfect lens," which images stigmatically onto each other two 
spherical surfaces which are situated in a homogeneous medium. This is the 
now well known "Luneburg lens" which has found valuable applications as a 
microwave antenna. First and third order theories of optical systems are 
discussed in Chapters IVand V and, like all the other chapters, they contain 
a wealth of information. 

Chapter VI deals with the diffraction theory of optical instruments. The 
first sections of this chapter are devoted to the derivation, in a mathematically 
consistent way, of expressions for the electromagnetic field in the image 
region of an optical system suffering from any prescribed aberrations. A 
solution of this difficult problem (naturally somewhat idealized) is embodied 
in formulae (47.33), now known as the Luneburg diffraction integrals. These 
formulae are an important and elegant generalization of certain classical 
results of P. Debye and J. Picht. Section 48 deals with another important 
problem, often ignored in other treatises, namely with a systematic derivation 
of the scalar theory for the description of certain diffraction phenomena with 
unpolarized light. The concluding sections deal with problems of resolution 
and contain a discussion of the possibility of improvements in resolution by a 
suitable choice of the pupil function. These investigations are amongst the 
first in a field that has attracted a good deal of attention in recent years. 

In two appendices formulae are summarized relating to vector analysis 
and to ray tracing in a system of plane surfaces. They are followed by 
supplementary notes on electron optics, prepared by Dr. A. Blank and based 
on lectures of Dr. N. Chako. The volume concludes with supplementary notes 
by Dr. M. Herzberger, based on his lectures dealing with optical qualities of 
glass, with mathematics and geometrical optics and with symmetry and 
asymmetry in optical images. 
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FOREWORD vii 

It is evident that Luneburg's Mathematical Theory of Optics is a highly 
original contribution to the optical literature. I consider it to be one of the 
most important publications on optical theory that has appeared within the 
last few decades. 

Department of Physics and Astronomy 
University of Rochester, 
Rochester 27, New York 
May, 1964 

PUBLISHER'S NOTE 

Emil Wolf 

The present edition has been reproduced from mimeographed notes 
issued by Brown University in 1944. It is reprinted by permission of the 
Brown University Press. 

The University of California Press extends gratitude for help in making 
this edition possible to Dr. A. A. Blank, Dr. Max Herzberger, Mrs. R. K. 
Luneburg, Dr. Gordon L. Walker, and Dr. Emil Wolf. 

The author's name was misspelled in the original edition. This has, of 
course, been corrected, and a number of typographical errors, almost all of 
which were listed originally in the Errata of the mimeographed version, have 
also been corrected. Dr. Blank has clarified the last section of Chapter Von 
the basis of the Errata. No other changes have been made in this edition, 
which presents Luneburg's work as he left it. 
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CHAPTER 1 

WAVE OPTICS AND GEOMETRICAL OPTICS 

In this course we shall be concerned with the propagation of light in a 
transparent medium. We shall not consider absorbing media or non-isotropic 
media, such as metals or crystals; but we will allow the medium to be non­
homogeneous. The optical properties of such a medium can be characterized 
by a scalar function 

n = n(x, y, z) , 

the refractive index of the medium. In ordinary optical instruments this 
function is sectionally constant and discontinuous on certain surfaces. 

The mathematical treatrnen11 of the propagation of light can be based on 
two theories: The wave theory of light (Physical Optics) and the theory of 
light rays (Geometrical Optics), Both theories seem to be fundamentally dif­
ferent and can be developed independent of each other. Actually, however, 
they are intimately connected. Both points of view are needed, even in 
problems of practical optical design. The design of an optical objective is 
carried out in general on the basis of Geometrical Optics, but for the inter­
pretation or prediction of the performance of the objective it becomes 
necessary to investigate the propagation of waves through the lens system. 

In view of this fact, these theories will be developed simultaneously. 
The wave theory is considered as the general theory, and Geometrical Optics 
will be shown to be that special part of the wave theory which describes the 
propagation of light signals, i.e., of sudden discontinuities. On the other hand, 
in the important case of periodic waves, it represents an approximate 
solution of the differential equations of wave optics. This approximate 
solution can be used in a method of successive approximation to develop the 
diffraction theory of optical instruments, as will be shown in the later parts 
of this course. 

§1. THE ELECTROMAGNETIC EQUATIONS. 

1.1 The wave optical part of this course is based upon Maxwell's 
electromagnetic theory of light. The phenomenon of light is identified with an 
electromagnetic field. 
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2 MATHEMATICAL THEORY OF OPTICS 

The location in space is determined by three coordinates x, y, z, the 
unit of length being 1 cm. The time is determined by the coordinate t; the 
unit of this variable being 1 sec. The electromagnetic field is represented 
by two vectors: 

the electric vector: 

the magnetic vector: 

E(x,y ,z,t) 

H(x,y,z,t) 

(Ei,E 2 ,E 3) , 

(H1,H2 ,H3) . 

The components, (E 1,E 2,E 3), of the electric vector are functions of x,y,z,t; 
the unit of these components is 1 electrostatic unit of E. The unit of the 
components (Hi, H 2, H 3) of the magnetic vector is 1 electromagnetic unit of H. 

The properties of the medium can be characterized by two scalar 
functions of x,y ,z (the medium thus is assumed not to change with the time): 

the dielectric constant: E = E (x,y,z) , 

the magnetic permeability µ µ(x,y,z) . (1.11) 

1.2 The electromagnetic vectors satisfy a system of partial differential 
equations which, with the above choice of units, assumes the form: 

curl H - i Et = 0 , 
C 

curl E + I:!:. Ht = 0 . 
C 

The constant c is the velocity of light, in our units numerically equal t.o 

C = 3 • 1010 • 

(1.20) 

If the components of E and H are introduced, the above vector equations 
yield a system of six linear differential equations of first order: 

aH3 aH 2 E aE1 a E 3 a E2 µ aH1 = 0 0 -- + 
ay az C at ay az C at 

aH1 aH 3 E a E 2 a E1 aE3 µ aH 2 
0 0 + , (1.21) 

az ax C at az ax· C at 

aH2 aH1 E a E 3 aE 2 aE1 + !!:. 
aH 3 

0 0 
ax ay C at ax ay C at 

alan




WAVE OPTICS AND GEOMETRICAL OPTICS 3 

In the group of optical problems to be considered in this course, we can 
assume µ = 1, since our medium (glass) is not magnetic. The dielectric 
constant, E = E (x,y,z), will be replaced by the index of refraction of the sub­
stance, according to the equation 

(1.22) 

This relation between two different properties of a medium is actually far 
from being satisfied by the substances we are mainly interested in. However, 
experience shows that the predictions of the electromagnetic theory are in 
excellent agreement with observation if in theoretical results the quantity -fE 
is replaced by the index of refraction, measured by optical methods. Further­
more it is possible to give a satisfactory explanation of the above discrepancy 
by molecular considerations. 

We prefer in the following sections to leave Maxwell's equations in the 
above forms, (1.20) and (1.21). The symmetrical structure of these equations 
will often allow us to find from one relation another one simply by inter­
changing the letters E and µ, and replacing E by -H and H by E. 

It is customary to add two more equations to the equations (1.20), namely: 

(1.23) 

div(µH) = 0, or ...£_ (µHi) + ...£_ (µH 2 ) + ...£_ (µH 3 ) = 0 . 
ax ay az 

These state that the electromagnetic field does not contain a source of 
electricity or magnetism. However, these equations are not independent of 
(1.20). Indeed, since div curl A = 0 for an arbitrary vector field A(x,y ,z,t), 
it follows 

8
8t (div EE) = 8

8t. (div µH) = o , 

i.e., both div(E E) and div(µH) are identically zero if they are zero at any 
particular time. 

(1.24) 

1.3 Energy. If we· form the scalar product of E with the first of the 
equations (1.20) and of H with the second one and subtract both results we 
obtain 

1 
E • curl H - H • curl E - - (EE• Et + µH, Ht) 

C 

On account of the identity 

H·curl E - E·curl H div(E x H) 

0 . (1.30) 

(1.31) 
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4 MATHEMATICAL THEORY OF OPTICS 

this gives 

or 

The function 

c div(E x H) + _! _Q_ (EE 2 + µH 2) 
2 at 

div 4c,r(E x H) + _£_ _!_(EE 2 + µH 2) 
at B1r 

W(x,y,z,t) 

0 (1.32) 

0. (1.33) 

(1.34) 

measures the distribution of electromagnetic energy in the field. It determines 
the light density in Optics. The vector 

C 
S(x,y ,z, t) = 4,r (E x H) (1.35) 

is called Poynting's radiation vector, and the relation between W and S is given 
by the equation 

aw + div s = o 
at • 

Let us integrate this equation over a domain D of the x,y ,z space 
enclosed by a closed surface r. From Gauss' integral theorem: 

aat ff f W dx dy dz + ff Sv do = O, 
D r 

(1.36) 

(1.37) 

Sv being the normal component of S on r. The first integral represents the 
change of the total energy of the domain D per unit time. The surface integral 
thus gives the amount of energy which has left the domain D through the surface. 
Hence we interpret the vector field 

C 
S = -(ExH) 4,r 

as the vector field (or better, tensor field) of energy flux. 

Let do be the area of a surface element at a point x,y,z, and N a unit 
vector normal to it. Then the energy flux through this surface element is 
given by 
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WAVE OPTICS AND GEOMETRICAL OPTICS 5 

where SN = S, N is the normal component of the Poynting vector, S. 

In Optics, the energy flux per unit area is called the illumination of the 
surface element. We have 

(1.38) 

1.4 Boundary Conditions. The vector functions E and H are of course 
not uniquely determined by the differential equations (1.20), unless certain 
boundary conditions are added. For optical problems, the following problem 
types are significant: 

1. To find a solution of the equations (1.20), i.e., two vector fields, 
E(x,y,z,t) and H(x,y,z,t), if the electromagnetic field E(x,y,z,0) and 
H(x,y,z,0), at the time t = 0 is given and satisfies at this time the conditions 
div(E E) = div(µH) = 0. 

2. Let us assume that on the plane z = 0, the electromagnetic field is 
a known function of x,y and t when t > 0, and that certain homogeneous 
boundary conditions are satisfied on another plane, z = L; i.e., 

L 

z 

E = E(x,y,0,t) given for t > 0 and, for example, 

E(x,y ,L,t) = 0 on z = L (Figure 1). 

Let furthermore E = H = 0 for t = 0. 
To find a solution, E and H, in the half­
space z > 0 which satisfies these 
boundary conditions. 

3. Of greater practical importance 
is the case for which the electromagnetic 
field is established under the influence of 

Figure 1 a periodic oscillator. Let us assume that 
an electric dipole is oscillating at a given 
point in space, for example, in front of an 

optical objective (Figure 2). Under the influence of this point source, an 
electric field is established which represents the light wave which travels 
through the objective. The problem is to determine these forced vibrations of 
the space as solutions of Maxwell's equations. 

§2. PERIODIC FIELDS. 

2,1 We can expect that the electromagnetic field which in the end is 
established by a point source periodic in the time, will be periodic in time 
itself and, that its frequency equals the frequency of the oscillator. On the 
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6 

Figure 2 

w 
271" 

MATHEMATICAL THEORY OF OPTICS 

basis of this expectation, 
one is led to consider 
special solutions of 
Maxwell's equations which 
have the form 

E u(x,y,z)e- iwt 

H v(x,y,z)e- lwt , (2.11) 

where u and v are vectors 
independent of t. The 
quantity 

(2.12) 

is the frequency of the oscillator and 11. the wave length. 

2.2 The above complex notation is chosen on account of its mathematical 
advantages. The vectors u and v are in general complex vectors 

u = a + ia*, 

V = b + ib*' 

i.e., complex combinations of real vectors a, a* and b, b*. Calculations 
involving these complex vectors can be carried out in the same way as those 
involving real vectors only, when i is considered a scalar quantity, with 
i 2 = -1. For example: 

Scalar product: u-v = (a•b - a*-b*) + i(a•b* + a*•b). (2.21) 

Vector product: u xv = (a x b - a* x b*) + i(a x b* + a* x b). (2.22) 

The absolute value of a complex vector: u-u = a 2 + (a*) 2 • 

Two complex vectors u and v are called orthogonal if U•V = u·v 

a-b + a *·b* = 0 , 

ab* - a*· b = 0 . 

(2.23) 

0, i.e., if 

(2.24) 
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If two complex vectors E and H satisfy Maxwell's equations then both the real 
and imaginary parts of E and H are solutions. The real parts of the vectors 
(2.11), for example, are given by 

E acoswt+a*sinwt, 
(2.25) 

H b cos wt + b* sin wt , 

and will be considered in the following as representing the electromagnetic 
field. 

2.3 We now introduce the expressions (2.11) into Maxwell's equations. 
This yields 

iw 
curl v + - E u O , 

C 

(2.31) 
iw 

curl u - ~ µ v = 0 , 

i.e., a system of partial differential equations without the time variable. By 
introducing the constant 

we obtain 

It follows that 

k 
w 
C 

curl v + ik E u 0 , 

curl u - ik µ v 0 . 

div( Eu) = div(µv) = 0 

so that it is unnecessary to add these conditions explicitly, as in (1.23). 

(2.32) 

(2.33) 

(2.34) 

2A Energy. The period, T = 271" = ~ , of the functions (2.11) is so 
W C 

extremely short in optical problems that we are unable to observe the actual 
fluctuation of the electromagnetic field. Indeed, in case of sodium light, for 
example, we have 

11. = 0.6 x 10-4 cm., hence T 2 x 10-15 sec. 



8 MATHEMATICAL THEORY OF OPTICS 

The same is true for the extremely rapid fluctuations of the light density 

W(x,y,z,t) = 8~ [E(acoswt + a*sinwt) 2 +µ(bcoswt+b*sinwt) 2]. (2.41) 

We are, however, able to observe the average value of this energy, which is 
given by the integral 

(2.42) 

We can express this result in terms of the original complex vectors u and v 
and obtain 

- 1 r. - -J W = - LE U • U + µ V • V 
l61r 

as an expression for the observable light density at the point x,y ,z. 

(2.43) 

2.5 Flux. Similar considerations may be applied to the Poynting vector, 
S. By introducing the expressions (2.25) into the definition of S, (1.36), it 
follows that 

S = :'Ir (a cos wt + a*sin wt) x (b cos wt + b*sin wt) (2.51) 

which is also a periodic function with the small period, T. Again, only the 
average value, 

- 1 1 T S=- Sdt 
T rt, ' 

can be considered as physically significant. We obtain 

- C S(x,y,z) = S1r (a x b + a* x b*) , (2.52) 

or in terms of the complex vectors, u and v, 

C - -S(x,y,z) = 1671" (u x v + u x v) . (2.53) 

We can show that the vector field, S, of average flux is a solenoidal field, i.e., 
div S = 0. 
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For the complex vectors u and v satisfy the equations 

curl v + ikE u 
curl u - ikµv 

0' 
0. (2.54) 

The conjugate complex vectors u and v, consequently, satisfy 

It follows that 

or 

curl v - ikEu 
curl u + ikµv 

0 ' 
0. 

ii curl v - v curl u + ik (Eu·ii ~ µv•v) 
v curl u - u curl v + ik ( E u • iI - µv • v) 

div (u X v) + ik (€ u. u - µv • V) 

div (ii x v) - ik ( EU • ii - µv • v) 

Hence div (u xv + u x v) = O; i.e., div S O. 

0 ' 
0. 

0' 
0 ' 

(2.55) 

(2.56) 

(2.57) 

2.6 Polarization. The vectors E and H given by (2.25) describe 
certain closed curves in space. The type of these curves determines the 
state of polarization of the wave at the point x,y,z, and this again represents 
an observable characteristic of the field. In general, the electric vector is 
considered as the vector which gives the polarization of the light. 

We have E = a cos wt + a* sin wt, or in components 

E1 a1 cos wt + a1* sin wt , 
E 2 = a 2cos wt + a 2* sin wt, 
E 3 a 3cos wt + a 3* sin wt . 

(2.61) 

The curve described by E is plane since E is a linear combination of 
the vectors a and a*. We can show easily that this curve is an ellipse. Let 
us introduce ~ = cos wt and 7) = sin wt. By squaring the components of E 
we find 

alan
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These equations, together with the relation ~2 + 112 = 1 represent four 
linear equations for the three quantities ~2, 11 2, and 2~7). Their determinant 
thus must be zero: 

1 1 1 0 

Ei2 ai2 a1*2 a1a1* 
0 (2.62) 

E 2 2 a22 a2*2 a2a2* 

Eg2 ag2 a3*2 a3a3* 

This is an equation of the type AEi2 + BE 22 + CEa2 = D, which means that 
the curve of E lies on a surface of second order. The intersection curve of 
a plane and a surface of second order, however, is a conic. It must be an 
ellipse because it is closed. 

The equations (2.61) show that the ellipse is symmetrical with respect to 
the origin, i.e., to the point x,y ,z in question. Thus we can find the length and 
direction of the axes by determining the extreme lengths of the vector, E, i.e., 
the extreme values of the quadratic form 

under the condition ~ 2 + 7J 2 = 1. In other words, the axes are equal to the 
characteristic values of the above quadratic form and are given by the two 
solutions, ;>..1 and ;>.. 2, of the quadratic equation 

Hence, 

la·a - ;>.. 

a•a* 
a•a* I 
a*-a* - ;>.. 

0. (2.63) 

(2.64) 

The characteristic values, ;>.. , are real, since the expression under the radical 
is not negative. The characteristic values cannot be negative; for, with the 
aid of the inequality (a.a*) 2 ::§ a 2 • (a*) 2 , one can see that 
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We illustrate three types of polarization: 

a* 

a 

Figure 3. Elliptical polarization. 

a* 

Two different characteristic 
values, Ai =/- A2 , both different 
from zero. The electric vector 
describes an ellipse. 

The characteristic values are 
equal, At = A2. This implies 

11 

a-a 
a.a_'." 

a*• a*, 
0. 

(2.65) 

a 

Figure 4. Circular polarization. 

a a* 

Figure 5. Linear polarization. 

The two components a and a* of 
u are orthogonal and equal in 
length. The electric vector 
describes a circle. 

The smaller one of the character­
istic values, A, is zero. The 
electric vector describes a 
straight line. The two vector 
components of u have the same 
direction, 

a x a* = 0. (2.66) 

We can express these results again by using the complex vector, u 
directly. The quadratic equation for ll. may be written as follows: 

a+ ia*, 

A. 2 - (u • u) A - ¼ (u X u) 2 = 0 ; 

and this has the solution, 

(2.67) 

The ellipticity E of the polarization, i.e., the ratio of the lengths of the axes, 
is thus given by the expression 

Hence, 

U • U - v1u) 2 (u) 2 

u•u + -ltu) 2 (U:) 2 

for linear polarization: 
for circular polarization: 

uxu = 0, 
u 2 =u•u=0. 

(2.68) 

(2.69) 
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§3. DIFFERENTIAL EQUATIONS FOR E AND H. 

3.1 If we eliminate one of the vectors, E or H, from Maxwell's 
equations, (1.20), we obtain second order equations for either E or H. By 
differentiation with respect to t: 

E 
curl Ht - - Ett O , 

C 

curl Et +I!:. Htt 0. 
C 

We introduce Ht = - ~ curl E in the first of these equations, and Et 
curl H in the second. The results. are 

µcurl(~ curl E) + ~ Ett O, 

C 

E 

E curl (¾ curl H) + ?" H tt = 0 . (3.11) 

We apply the following vector identity, which holds for an arbitrary scalar 
function, f(x,y,z), and an arbitrary vector field, A(x,y,z), with continuous 
derivatives of the second order: 

curl (f curl A) = -f A A + f grad (div A) + (grad f) x (curl A) , 

where A A = Axx + Ayy + Azz. Equations (3.11) become 

? Ett - A E = (curl E) x G grad t) - grad (div E), 

? Htt - AH = (curl H) x (e grad¾) - grad (div H) . 

From the second pair of Maxwell's equations (1.23), it follows that 

i.e., div E 
defined by 

div E E 
divµ H 

E div E + E • grad E 

µ div H + H • grad µ 
0 ' 
o,; 

-E • p and div H = -H • q, where the vectors p and q are 

1 
grade grad (log E ) , p 

E 

1 
gradµ grad (log µ) . q -

µ 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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We introduce 

(3.16) 

and obtain from (3.11) the equations 

n2 -;;z E tt - 6. E = grad (p • E) + q x curl E , 

(3.17) 
n2 -;;z Htt - 6. H = grad (q • H) + p x curl H . 

The vectors p and q and the function n are given by the properties of the 
medium; they are not independent of each other but are related by the equation 

1 
2 (p + q) = grad (log n) . (3.18) 

In the special case of a homogeneous medium, both p and q are zero, 
and n = '/Eµ is a constant. The equations (3.17) become 

n2 -;;z Ett - 6. E = 0 , 

n2 -;;z Rtt - 6. H = 0 . 

(3.19) 

Each component of E and H satsifies the ordinary wave equation. The velocity 
of the waves is given by the quantity 

v = c/n, 

which allows us to regard the quantity n = '/Eµ as the index of refraction of 
the medium, defined by the ratio n = c/v of the velocity of light in a vacuum 
to the velocity in the medium. 

In the case of a non-homogeneous medium, a more complicated set of 
equations is obtained. Since n is now a function of x,y ,z, the six equations, 
(3.17), no longer yield one equation in each component, for the first order 
operators on the right sides involve all the components of the vectors in each 
equation. However, it is still true that the wave velocity, v, is given by the 
ratio c/n. Indeed, we shall see that for the propagation of a light signal, i.e., 
a sudden disturbance of the electric field, only the second order terms in 
(3.17) are significant. These terms lead to a generalized wave equation in 
which the coefficient, n, is not constant. 

3.2 Stratified media. Let us consider as an example the case of a 
stratified medium, in which the functions E and µ depend only on one variable, 
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for instance on z. This case is of considerable practical interest, since the 
propagation of waves through thin, multilayer films, evaporated on glass, 
leads to a problem of this type. Let µ = 1 and le = n(z). It follows that 

Hence 

p = 2 grad (log n) = (o,o, 2 :•). , 

q 0 . 

p·E 2 n' E 
n 3 

grad (p • E) ( 2 !!..'._ 8E3. 2 !!..'._ 8E3. 2 _£. (n' E \) 
n ax ' n ay ' az n 3/ 

2 n' (8H1 _ 8H 3 - p x curl H = 
n az ax ' 

8H3 8H2 ) --+-- 0 
ay az ' 

The differential equations (3.17) become 

n2 a2E1 
-AE1 c 2 at2 

n2 a2E2 

c 2 at2 -AE 2 = 

n2 a2E3 
-AE 3 = 

c 2 at2 

n2 a2H1 

c 2 at2 -AH1 + 

n' BE 
2---3 

n ax 

n' 8E 3 
2--

nay 

2.£...(n' E~ az n 3 

n' 8H1 
2--

n az 
n' 8H 

+2---3 
n ax 

n' aH 
+ 2---3 

nay 

(3.21) 

(3.22) 

(3.23) 

We thus obtain two partial differential equations, namely, those for E 3 and H3, 
in which none of the other components appear. After E 3 and H3 have been 
determined from these two equations, they are substituted in the remaining 
equations of (3.23); and these equations then become modified wave equations 
for E 1, E 2, H1, and H 2 modified in the sense that the right side is not zero, but 
a known function. As a result of this simplification it is possible to find 
explicit solutions for many problems connected with stratified media, 
especially with films producing low reflection. 
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§4. INTEGRAL FORM OF MAXWELL'S EQUATIONS. 

The functions E (x,y ,z) and µ(x,y ,z) are not necessarily continuous 
functions. We assume, however, that they are sectionally smooth, i.e., every 
finite domain of the x,y ,z space can be divided into a finite number of parts 
in which E and µ are continuous and have continuous derivatives. 

The differential equations (1.20) represent conditions for the electro­
magnetic field in every part of the space where E, µ, and E, H are continuous 
and have continuous derivatives. They are, however, not sufficient to establish 
conditions for the boundary values of E and H on a surface of discontinuity. 
This is the reason why it is advantageous to replace the differential equations 
(1.20) by certain integral relations. These integral equations are equivalent 
to the differential equations if E, µ, and E, H are continuous and have con­
tinuous derivatives. They are more general, on the other hand, since they 
apply equally well to the case of discontinuous functions E, µ; E, H and 
establish definite conditions for the electromagnetic field in this case. 

4.1 Let us consider, in the four-dimensional x,y,z,t space,. a domain D 
which is bounded by a closed three-dimensional hypersurface r. We assume 
that the hypersurface r consists of a finite number of sections in which the 
outside normal N of the hyper surface varies continuously. This normal N is 
a unit vector in the x,y,z,t space given by 

A. 

if the surface r is represented by the equation <p(x,y,z,t) 
denote the components of the unit vector N by 

0. In general we 

(4.11) 

and call these components the direction cosines of N with respect to the four 
coordinate axes. 

Figure 6 

Let F(x,y,z,t) be a function which has 
continuous derivatives in D. We consider 
the integral of Fx over D and carry out the 
integration with respect to x: 

dx dy dz dt 

fff (F(P') - F(P)) dy dz dt. 
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The integral. on the right side is a surface integral. over the hypersurface r. 
We introduce 

at P': dy dz dt 

at P: dy dz dt - XN do 

where x N' and xN are the x-components of the unit vector N at P' and P, 
respectively, and do' and do, differentials independent of the choice of the 
coordinate system. We call do the surface element of the hypersurface r. 
With this notation, we obtain 

ffff Fx dx dy dz dt 
D 

In the same way, we find 

ffff Fy dx dy dz dt 
D 

ffff Fz dx dy dz dt 
D 

Jf ff Ft dx dy dz dt 
D 

JJJ F XN do. 
r 

fff F YN do, 
r 

fff F zN do , 
r 

fff F tN do. 
r 

(4.12) 

(4.13) 

These formulae allow us to transform equations which involve derivatives of a 
function F(x,y ,z,t) into conditions for the function F itself. 

4.2 Let us apply these transformations to the equation div EE 
conclude first 

0. We 

ff ff (div E E) dx dy dz dt 
D 

JJJ E (E1XN + E 2yN + E3ZN) do . (4.21) 
r 

The expression E 1x N + E 2yN + E 3 z N can be interpreted as the scalar 
product of the two three-dimensional. vectors E and 

M = (xN ' y N ' z N) (4.22) 

The vector M is the projection of the four-dimensional. unit vector N into the 
x,y ,z space, i.e., 

M (x N , y N , z N , 0) . 
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By using the vector M we can write (4.21) in the form 

JJJJ div EE dx dy dz dt = JJJ E(E •M) do. (4.23) 
D r 

This integral relation, of course, is nothing but the integral theorem of Gauss 
for four dimensions and applied to a vector EE for which the fourth component 
is zero. 

Since div EE = div µH 
formulate the statement: 

0, according to Maxwell's equations, we can 

The surface integrals 

JJJ E (E • M) do and jf J µ(H • M) do (4.24) 
r r 

are zero for any closed hypersurface r in the four-dimensional x,y,z,t space. 

We have derived this result from Maxwell's equations under the assumption 
that E, µ; E, H are continuous and have continuous derivatives. In this case 
the integral relations (4.24) are equivalent to the differential equations 
div EE = div µH = O, as we can see easily. However the relations (4.24) canbe 
applied directly to discontinuous functions as long as they are integrable. We 
will see presently that explicit conditions for discontinuities can be derived 
from (4.24). In view of this we consider the integral equations as the original 
source of the differential equations to which we have to go back in case of 
doubt .. 

4.3 We next apply our transformation to the equation 

curl H - ~ Et = 0 . 
C 

From curl H = i x Hx + j x Hy + k x Hz follows: 

Hence 

JJJJ curl H dx dy dz dt = JJJ [(ixN + jyN + kzN)] x H do 
D r 

jf J (M x H) do . 
r 

f.lJf (curl H - ~ Et) dx dy dz dt 

(4.31) 
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and similarly, 

f.!Jf (curl E +~Ht) dx dy dz dt = f£f (M x E + ~ tNH) do (4.33) 

Hence: The surface integrals 

(4.34) 

are zero for any closed hypersurface r in the four-dimensional x,y,z,t space. 

Again we notice that these conditions involve only the vectors E and H 
and the functions E and µ, and not their derivatives. They are equivalent to 
Maxwell's equations (1.20) if the derivatives exist. We require, however, that 
the integral relations (4.34) must be satisfied also by discontinuous electro­
magnetic fields. 

§5. GENERAL CONDITIONS FOR DISCONTINUITIES. 

5.1 We apply the integral equations (4.24) and (4.34) to the following 
problem. Let rp(x,y,z,t) = 0 represent a surface section on which E, µ or 

Figure 7 

E, H are discontinuous. What is the 
relation of the boundary values of E 
and H on the two sides of <P = 0 to 
each other? We consider a closed 
hypersurface r which is divided into 
two parts r 1 and r

2 
by the hyper­

surface rp = O. Let r
0 

be the part 
of <P = 0 which lies inside of r. The 
normal of the surface rp = 0 is 
proportional to the vector (<Px• <Py, <Pz, 
rpt). Let us assume that on r0 this 
vector points toward r

2
• We denote 

the boundary values of (E, µ, E, H) by 
(Ei, µ1, Ei, H1) if r 0 is approached 
from the domain Di, and by (E 2 , µ 2 , 

E
2

, H
2

) if r
0 

is approached from D
2

• 

5.2 We now, apply the first 
equation (4.34) to the closed surface 

0. (5.21) 
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However, this condition must also be satisfied if the closed surface r 1 + r 0 

is chosen. On r 0 we have in this case 

M 
grad cp <Pt 

; tN =---;: /=2 ====2===2=====2 
V<Px + <Py + <Pz + <Pt 

and hence 

M 

If the surface r2 + r0 is considered, in which case on r 0 

grad cp 
-;:::::::~::::::::::::::::::::::::::::::::::::::::::- ; t N = 

✓ <Pt + <Pi + <Pz2 + <Pt2 

we obtain 

(5.22) 

O . (5.25) 

We finally subtract the equations (5.25) and (5.23) from (5.21). The result is 

This relation must be true for any part r 0 of the surface cp 
possible if the integrand in (5.26) is zero; hence 

where 

grad cp x I H ] - <Pt [ E E ] 
C 

0 

0. (5.26) 

0. This is only 

(5.261) 

(5.27) 

denotes the size of the discontinuity of the quantity inside the bracket. 
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5.3 We next consider the first integral equation (4.24) and apply it to the 
three closed surfaces r

1 
+ r

2
; r

1 
+ r

0
; r

2 
+ r

0
. We obtain 

ff f E (E • M)do + ff f E (E • M)do = 0 , (5.31) 
r1 r2 

ff f E (E • M)do + ff f (E1E1 • grad cp) do 
r1 ro ✓ cp} + <Pi + cpJ + <Pt2 

0, (5.32) 

ff f E (E • M)do 0, (5.33) 
r 2 

and by subtraction 

0 . (5.34) 

This yields in the same way as above: 

[EE],grad cp = 0. (5.35) 

5.4 From (5.26) and (5.35) two more equations can be found by inter­
changing the letters E and µ,, and E and -H. We summarize our results as 
follows: 

An electromagnetic field which is discontinuous on a hypersurface 
cp(x,y,z,t) = 0 must satisfy the conditions: 

grad cp x 
<Pt = 0, [ E E ] • grad cp [H] - -[EE] 0. 
C ' 

<Pt 
grad cp X [E] + -[µHJ 0, [µ,HJ • grad cp = o . 

C 

(5.41) 

We notice that the second column of equations follows from the first column if 
cp t =/- O. The equations (5.41) may be considered as the counterpart of 
Maxwell's differential equations. They represent a system of linear difference 
equations which take the place of the differential equations (1.20) and (1.23). 

§6. DISCONTINUITIES OF THE OPTICAL PROPERTIES. 

We apply the general conditions (5.41) to the special case where discon­
tinuities of E and H are introduced by discontinuities of the functions E or 
µ. Any system of glass lenses gives an example for this case. Let 1/J(x,y ,z) = 0 
represent a refracting surface on which E (x,y,z) and µ(x,y,z) are discon­
tinuous. We consider the hypersurface 

cp(x,y,z,t) = lf! (x,y,z) 0 

alan
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in the four-dimensional x,y,z,t space. This is a cylindrical hypersurface the 
generating lines of which are parallel to the t-axis. In this case, since <Pt = 0, 
our conditions (5.41) become 

grad 1/J x [H] 

grad 1/J x [E] 

0, 

0, 

[EE]• grad 1/J 

[µH] • ~rad 1/J 

0, 
(6.1) 

0 . 

The vectors g~;=a~ ; I H and g~~a~ ; I E are linearly related to the tangential 

components of H and E. The quantities El !r:aa:I 1/1 and µ~~:~~I 1/1 are the 

normal components of EE and µH. Therefore we_may formulate the con­
ditions (6.1) in the following customary way: 

The tangential components of E and H and the normal components of 
E E and µH are continuous on a surface of discontinuity of E and µ. 

§7. PROPAGATION OF DISCONTINUITIES; WAVEFRONTS. 

7 .1 Discontinuities of the electromagnetic field can appear without being 
caused by a discontinuous distribution of substances. Let us, for example, 

L 
8 X 

\\ 

0 

Figure 8 

consider the case E = µ = 1 and 
assume that at t = 0 the vectors 
E(x,y,z,0) and H(x,y,z,0) are different 
from zero only tn a small sphere of 
radius o around the origin. We expect, 
in analogy to other forms of wave 
motion, that this electromagnetic field 
expands with increasing time such that 
at a given time t > 0 the vectors E 
and H are different from zero in a 
larger sphere of radius o + ct. In 
other words we expect that the surface 
which separates the parts of the space 
which are still at rest from those 
penetrated by the original impulse 
travels over the space. A surface of 
this type is called a wavefront. In the 
above example the wave fronts are 
spherical and given by the equation 

cp(x,y,z,t) =✓x2 + y 2 + z 2 - cS - ct = 0. (7 .11) 

If the boundary values of E(x,y,z,0) or H(x,y,z,0) on the original sphere 
of radius o are different from zero then this sphere is a surface on which the 
electromagnetic field is discontinuous. We must expect that at the time t > 0 
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the corresponding boundary values on the wavefront (7 .11) are likewise dif­
ferent from zero so that the electromagnetic field is also discontinuous on the 
new wave front. This consideration leads us to define a wave front more 
generally as any surface in the x,y ,z space on which, at a given time t, the 
electromagnetic field is discontinuous. 

An observer at a point x,y ,z will interpret such a discontinuity as a 
sudden signal which reaches him when the wave front goes through the point 
x,y,z. 

Instead of illustrating the equation (7 .11) by a set of surfaces in the three­
dimensional x,y ,z space depending on the parameter t, we can interpret such 
a relation rp(x,y ,z,t) = 0 as a hypersurface in the four-dimensional space 
x,y,z,t. In our example this hypersurface is the cone 

and the electromagnetic vectors are discontinuous on this cone. Its "contour 
lines", i.e., the cross sections of the hypercone, rp(x,y,z,t) = 0, with the 
hyperplanes t = const., then represent the above set of wave fronts in the 
x,y,z, space. 

7 .2 We may expect from 
the above example that the 
hypersurfaces rp = 0 which 
determine the propagation of 
discontinuities are not arbitrary 
but must fulfill certain con­
ditions. We can derive these 
conditions easily with the aid 
of the general relations (5.41). 
Let us assume that rp(x,y,z,t) = 
0 represents a hypersurface on 
which the vectors E and H are 

Figure 9 discontinuous. The functions 
E (x,y ,z) and µ(x,y ,z) shall be 
continuous in the neighborhood 

of rp 0. We introduce, on rp = 0, the vectors 

u [El E2 E1' 
(7 .21) 

V = [HJ H2 - H1' 

which measure the discontinuity of E and H on rp 0. It follows from (5.41): 

gradrpxV- i rpt u 0. U • grad rp 0. 
C ' ' 

(7.22) 

grad rp x U + I!:. 
C 

<pt V O· 
' 

V • grad rp 0. 
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The first column of these equations represents a system of six linear 
homogeneous equations for the six components U1,U 2 ,U 3 ; V1,V 2 ,V 3 • This 
system can have non-trivial solutions, U -=f- 0 and V -=f- 0, only if the deter­
minant is zero. This establishes the desired condition for the function 
rp(x,y,z,t) = 0. We can derive this condition as follows: We form the vector 
product of grad rp with one of the equations (7.22), for example, with the 
second equation: 

grad rp x (grad rp x U) + g_ <Pt grad rp x V = 0 
C 

and introduce grad rp x V = ~ <Pt U from the first equation. It follows 

grad rp x (grad rp x U) + E½ r,oi2 U = 0 . 
C 

If we apply the vector identity (Appendix: I.23) we obtain 

(U • grad rp) grad rp - (grad rp) 2 U + ~ r,oi2 U 
C 

or, since U • grad rp = 0, 

0. 

In a similar way we find 

((grad r,o) 2 
- ?" <Pt2 )v = o 

0. 
' 

(7.23) 

(7 .24) 

(7.25) 

and conclude: If U and V are different from zero, i.e., if E and H are dis­
continuous on rp = 0, then rp(x,y,z,t) must satisfy the equation 

(grad <,0)2 = <Px2 + r,o/ + r,o/ = ?" <,0( . (7.26) 

This equation is called the characteristic equation of Maxwell's differential 
equation. Every function rp(x,y ,z ,t) which, for rp(x,y ,z ,t) = 0, satisfies this 
equation (7 .26) represents a hypersurface which is called a characteristic 
surface of the differential equations. 

7,3 The characteristic equation (7.26) is not a true differential equation 
for rp(x,y,z,t); indeed it does not have to be satisfied identically in x,y,z,t but 
only for those combinations x,y,z,t for which rp(x,y,z,t) = 0, 
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We can, however, assume, without loss of generality, that the 
characteristic surface is given in the form 

cp = 1/J(x,y,z) - ct = 0, 

where 1/J(x,y ,z) is independent of t. We obtain 

and this equation must be satisfied identically in x,y ,z. 

(7 .31) 

We may formulate our result as follows: If E and H are discontinuous 
on a set of wave fronts p(x,y,z) = ct then p(x,y,z) must be a solution of the 
partial differential equation (7.31). 

The equation (7.31) is called the equation of the wave fronts; in some 
literature it is known as the Eiconal Equation. It is the basic equation of 
Geometrical Optics; the greater part of this course is conc~~ed ;Nith'pro-
blems related to this equation. \ '. ' • . 

\ , l , 
If we introduce cp = 1/J - ct in the original equations (7 .22) we obtain 

grad 1/J x V + EU O , 
(7 .32) 

gradl/JxU-µV 0. 

It is not necessary to add the other two equations (7 .2,2)-explicitly since 
both equations are a consequence of (7 .32): 

U•grad 1/J O, 
(7.33) 

V·gradlfJ O. 

We furthermore conclude 

U•V = 0. (7.34) 

Hence: The vectors U and V are tangential to the wave fronts and perpendicular 
to each other. 

If 1/J - ct = 0 represents a set of wave fronts in the, sense of our 
original definition, namely, boundaries of regions which have been penetrated 
by a light impulse, then U and V are equal to the vectors E and H on the 
wave front (because E = H = 0 on one side of the surface 

1/J - ct = 0). 
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E 

Figure 10 

We find: The electromagnetic vectors on 
such a wave front are tangential to the 
wave front and perpendicular to each 
other. 

§8. BICHARACTERISTICS; LIGHTRAYS. 

8.1 The problem of integrating a 
partial differential equation of first 
order can be reduced to the problem of 
integration of a system of ordinary dif­
ferential equations, the so-called 
characteristic differential equations. 
The integral curves of the characteris­
tic equations are known as character­
istics. The equation of the wave fronts 

(8.11) 

is itself a characteristic equation of Maxwell's differential equations. There­
fore the characteristics of this first order equation are called Bicharacter.­
istics of Maxwell's equations. 

For our purpose it is not necessary to introduce these bicharacteristics 
by general considerations which would apply to any partial differential 
equation of first order. We would find that the bicharacteristics in our 
special case are nothing but the orthogonal trajectories of the wavefronts 
if! = ct. Hence we prefer to introduce these bicharacteristics directly as 
orthogonal trajectories of a set of wavefronts 1/J = ct. We call these trajec­
tories the light rays of the optical medium and we will see in the following 
that this name is justified. 

x, y t z 

Figure 11 

8,2 Let us consider a set of wave­
fronts 1/J(x,y ,z) = canst. An orthogonal 
trajectory of these surfaces at any point 
x,y ,z is normal to the wavefront through 
this point. The complete manifold of 
orthogonal trajectories through the given 
set of wavefronts 1/J = canst. thus must be 
identical with the solutions of the differential 
equations 

dx 
dcr 

dz 
dcr 

(8.21) 
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where l.. = l..(x,y,z,CT) is an arbitrary factor. The choice of l.. does not in­
fluence the geometrical form of the trajectories but only their parametric 
representation. 

The orthogonal trajectories (8.21) depend of course upon the chosen set 
of wavefronts, i.e., on the particular solution z/1 of (8.11). It is now significant 
that it is possible to determine light rays, i.e., orthogonal trajectories of 
surfaces z/1 = const. without reference to a particular solution z/1 of (8.11). 
Indeed, if we differentiate .! dx with respect to CT we obtain 

l.. dCT 

d (1 dx) dx ~ dz 
dCT ~ dCT = lfixx dCT + z/!yx dCT + lfizx dCT ' 

A(z/!xx lfix + z/!yx z/!y + z/!zx !/Jz) , 

and hence, on account of (8.11) 

1 d ( 1 dx) 
l.. dCT l.. dCT 

1 an2 

2 ax (8.22) 

By dealing similarly with the other equations (8.21) we find: The orthogonal 
trajectories (8.21) form a two-parameter manifold of solutions of the 2nd 
order equations: 

1 d ( 1 dx) 
l.. dCT l.. dCT 

1 a - -(n2) 
2 ax ' 

1 a - -(n2) 
2 ay ' 

(8.23) 

We remark again that the choice of l.. does not affect the geometric form of 
the integral curves of (8.23). This can be seen from the following fact: Any 
particular solution x(CT), y(CT), z(CT) of (8.23) can be transformed by a trans­
formation of the parameter CT into a solution x(CT'), y(CT'), Z(CT') of the equations 

(8.24) 

where l.. = 1. Such a transformation, however, does not affect the geometric 
shape of the curve. 
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8.3 We choose first ;>.. = 1 and denote the parameter O" by T. The 
equations (8.21) become 

27 

~ 
dT 

dz 
dT 

(8.31) 

and the equations (8.23) become: 

(8.32) 

The orthogonal trajectories (8.31) thus form a two-parameter manifold of 
solutions of the equations (8.32). According to (8.31) we have 

(8.33) 

The analogy of (8.32) to the equations of mechanics is obvious. If we interpret 

-½ n2 as a potential field our light rays can be regarded as paths of particles 

moving in this field with energy ½ (x2 + y2 + z2) - ~2 = o. 

8.4 We choose next ;>.. = 1/n and denote the parameter O" by s. It 
follows: 

dx 
n­

ds 
,,, . n ~ = ,,, . n dz 
'l'x ' ds 'f'Y ' ds !Jlz (8.41) 

( dxds)2 + (~ds)2 + (ddzs)2 and hence = 1, i.e., the parameter s measures the 

length along the light rays. Equations (8.23) become 

d 
(n :) 

an 
ds ax' 

d 
(n f) an 

(8.42) 
ds ay, 

d 
(n ::) 

an 
ds az 
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These equations can easily be recognized as the Euler equations of the 
variation problem 

V 
P1 J n ds is an extremum. 

Po 
(8.43) 

Let us consider two points P 0 and P 1 in the x,y,z space. Let x(s), y(s), 
z(s) be a continuous curve between P0 and P 1 which also shall have a con­
tinuous tangent. We define the optical length of this curve by the integral 

V 
P1 

J n ds. 
Po 

In case n = 1 this optical length coincides with the geometrical length. 

The problem is to find the curve for which the optical length is a 
minimum. Let us assume that a solution exists and is given in the form 

(8.44) 

x = x(u), y = y(u), z = z(u) where u is a parameter, such that u = 0 at 
P0 and u = 1 at P 1 ; hence 

Figure 12 

:u (✓x•2 
n;t 

z'2 )-+ y'2 + 

:u (✓x•2 
nz' 

z'2 )-+ y•2 + 

V = 

(8.45) 

is a minimum. 

The necessary conditions which the 
solution must satisfy are Euler's dif­
ferential equations, i.e., in case of (8.45): 

ny ✓x•2 + y•2 + z'2 0 ' (8.46) 

nz ✓x•2 + y'2 + z'2 0 . 

If we introduce in these equations the geometric length s of the solution as a 
parameter we obtain the differential equations (8.42). 
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The light ray between two points P0 and. P1 is the curve for which the optical 
path attains an extreme value. 

This result is known as Fermat's principle of geometrical optics. 

If the index of refraction is interpreted as the ratio c/v of the velocity 
of light in a vacuum to the velocity v(x,y,z) in the medium, the optical path 

V = J n ds = c J !s = c J dt 

becomes proportional to the time needed to travel from P 0 to P 1 • The 
principle of Fermat states that the light ray is a curve on which this time is 
a minimum, or at least an extremum. 

§9. CONSTRUCTION OF WAVE FRONTS WITH THE AID OF LIGHT RAYS. 

9.1 Every solution lf.,(x,y,z) of the equation 

(9.11) 

determines a two-parameter manifold of light rays, i.e., of orthogonal tra­
jectories. We have seen that these light rays satisfy a system of ordinary. 
differential equations 

x n nx 

y n ny (9.12) 

z n nz 

and the condition 

x2 + y2 + z2 = n2 . (9.13) 

The dot means differentiation with regard to the parameter t. 

Our aim in the following is to show that the two problems of integrating 
the partial differential equation (9.11) or the system of ordinary differential 
equations (9.12) are equivalent. 

Let us first assume that the solutions of (9.12) are known. We show that 
it is possible then to solve the following problem simply by quadratures and 
eliminations. 
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Let r be an arbitrary surface section given in parametric form 

X f(L 7)) 

y g(L 7J) (9.14) 

z h(L 7J) 

To find a solution !Jl(x,y ,z) of (9.11) ;which, on r, has given values 
!JI = F(L 7J ). 

9.2 We know, if !JI is the desired solution, that the orthogonal trajec-
tories of the surfaces !JI const. are solutions of (9.12) and (9.13) and the 
optical length 

Figure 13 

between two points P0 and P 1 of such a 
trajectory is given by the difference 

(9.21) 

This leads to the following attempt to 
solve the above problem. We determine 
through every point ; , 7J of r a light ray, 
i.e., a solution 

x = x(L7Ji T), 

y y(L 7j; T) ' (9.22) 

z z(L 7J; T) , 

of (9.12) and (9.13) which satisfies the boundary conditions 

x(L 7J, O) 

y(;' 7j' 0) 

z(L 7J, 0) 

f(;,7J), 

g(;' 7j) ' 

h(L 7J) , 

x(L 7J, O) 

y(L 7J, O) 

z(L 7J, O) 

The functions a,b,c must obey the condition 

a(;' 7J) ' 

b(L 7J) , 

c(L7J). 

a2 + b2 + c2 = n2(;,7J) 

(9.23) 

(9.24) 

in order to insure that the functions (9.22) satisfy the condition (9.13) but are 
otherwise arbitrary. 
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We now consider the expression 

T 

1/J(L T'/, T) = F(;, ri) + f n 2 dT 
0 

31 

(9.25) 

and expect that the solution of our problem can be obtained in this form when 
; , T'/, T are expressed as functions of x,y ,z with the aid of (9.22). We assume 

that the Jacobian ~~;,:,:~ is not zero in the neighborhood of r in order to be 

able to carry out this elimination. 

9.3 It is clear that 1/J(x,y ,z) has the correct boundary values on r; for 
T = 0, we have 1/J = F(;, T'/ ). We show next that if; satisfies the equation 
(9.11) if the functions a,b,c are chosen suitably. We determine the deriva­
tives of 1/J(;, T'/, T). First, 

§!I!. = n2 = :x:2 + y2 + z2 
aT 

Then, we write (9.25) in the form 

I/! 

and obtain 

+ TJ (. ax • £i. • az) d 
O X ~ + y a; + Z ~ T , 

We introduce n nx x, n ny = y, n nz = z and find 

T d 
( • ax+ • EX.+ • az) 

1/!g Fg + ~ dT x a; Y a; z a; dT 

( af + Qg + ah) . ax • EX. 
I/Jg Fi - a a; b a; ca; +x-+y + 

a; a; 

and similarly 

F ( af Qg ah) . ax • EX. 
l/!11 - aari+bari+cari +x-+y + 

ij ari ari 

(9.31) 

(9.32) 

. az 
(9.33) z~, 

• az 
(9.34) z ari • 
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We now assume that the functions a,b,c satisfy the conditions 

8f + b ~ + 8h 
a af 8~ C af = Ft ' 

8f Ba- 8h a-+b=+c-
81'/ 8rJ 8rJ 

(9.35) 

a2 + b2 + c2 = n2 . 

These equations have two solutions (a,b,c) provided that not all of the sub­
determinants of the matrix 

are zero. Let (a,b,c) be one of these two solutions. With this choice of 
a,b,c we obtain 

On the other hand 

• 8x . £l. . 8z 
X af + y 8; + z af ' 

. 8x . 8v . 8z x-+y:::...z...+z-
8rJ 8rJ 8rJ ' 

8x £l. + 8z 
1/Jx a[ + 1/iy 8; 1/Jz 8; , 

8x £l. 8z 
1/Jx 8rJ + 1/Jy 8rJ + 1/Jz 8rJ • 

8x £l. 8z 
1/J X 8T + 1/J y 8T + 1/J z 8T ' 

(9.36) 

(9.37) 

(9.38) 

Since the determinant B(x,y,z) is different from zero it follows by comparing 
8(~, 7) ,T) 

(9.37) and (9.38): 

1/Jx = X, 1/Jy = Y, 1/Jz z. (9.39) 
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Therefore, on account of (9.13) 

i.e., 1/J is a solution of (9.11). 

Actually, our method allows us to find two solutions of the above problem 
as we expect from the quadratic nature of (9.11). 

9.4 We apply our result to the case F(~, 11) = O. The surface r itself 
is thus a wave front, namely, the wave front at the time t = 0. The problem 
is to find the position of the wave front at the time t. We calculate the two­
parameter set of solutions of (9.12) which intersect- the surface r with direc­
tions a(L 11), b(L 11), c(L 11), The quantities a,b,c can be found from (9.35), 
i.e., from 

af + £B: + ah 
a 8~ b 8~ c ~ 0 ' 

0 ' (9.41) 

a2 + b2 + c2 = n2 . 

From the first two of the above equations it follows that the light rays must 
be normal to the surface r. When these rays have been found: 

r 

Figure 14 

X X(~ , 1), T) , 

y y(L 1)' T) ' (9.42) 

z z(L 1J, T) , 

we obtain the solution 1/J by the integral 

T 

1/J(L 1J, T) = J n 2 (x,y ,z) dT , 
0 

(9.43) 

in which ~ , 7J , T have to be expressed in 
terms of x,y,z with the aid of (9.42). 

9.5 The original wave surface. r of the preceding section may degen­
erate into a point, (x 0 , Yo, z 0). The functions f, g, h are constant in this 
case, so that the conditions (9.41) reduce to only one condition: 

(9.51) 
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Let us determine the two-parameter set of light rays through the point 
(xo, Yo, z 0), i.e., solutions 

x x(a,b,c,T) , 

y y(a,b,c,T) , 

z z(a,b,c,T), 

of (9.12) which satisfy the boundary conditions 

x(a,b,c,O) 

y(a,b,c,0) 

z(a,b,c,O) 

Yo 

x(a,b,c,O) 

y(a,b,c,O) 

z(a,b,c,O) 

a, 

b , 

C • 

We obtain a solution 1/J(x,y,z) of (9.11) in the form of the integral 

T 

1/J(a,b,c,T) = J n 2 (x,y,z) dT 
0 

(9.52) 

(9.53) 

(9.54) 

after a,b,c,T have been expressed by x,y,z with the aid of the relations (9.51) 
and (9.52). 

These special solutions are called "Spherical" Waves or simply wave­
lets. If x 0,y 0,z 0 are considered as variable parameters 1/J becomes a 
function of two points 

T 

V(x 0, Yo, z 0 ; x, y, z) = J n 2 dT 
0 

(9.55) 

It determines the optical distance of the two points (x 0,y 0 ,z 0) and (x,y,z). 
The spherical wave fronts around a point (x 0,y 0,z 0) then are given by the 
surfaces 

V(x 0,y 0 ,z 0 ; x,y,z) - ct = O. (9.56) 

9.6 Huyghens' Construction. With the aid of the wavelet 
V (x 

O
, y O, z 

O 
; x, y, z) another method can be obtained to determine the wave 

fronts belonging to a given single wave front r. This method is of prime 
importance and is known as Huyghens' construction. We consider the wave­
let functions V(~, 1): x,y,z) which belong to the points (~,TJ) of the surface r, 
At the time t a two-parameter set, 

V(~,T);x,y,z) - ct 0 (9.61) 
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Figure 15 

V(!,77 1x,y,z) =ct 

Figure 16 

is a solution of (9.11). Indeed, 

or, on account of (9.62): 

and similarly, 

of spherical wave fronts is obtained; 
we show that the envelope of these 
wave fronts is the wave front 

7/J(x,y ,z) - ct = 0 

which, at t = O, coincides with the 
given surface r. 

We find the envelope of the 
surfaces (9.61) by eliminating the 
parameters (~ , 7J) from the three 
equations, __ 

V ~ (~, 7J ;x,y ,z) 0 , 

V 1J (~, 7J ;x,y ,z) 0 ' (9.62) 

V (~ , 7J ;x,y ,z) - ct = 0 . 

Let 

~ A(x,y,z) , 
(9.63) 

7J B(x,y ,z) 

be the result of calculating ~, 7J from 
the first two equations (9.62). We 
introduce ~ and 7J in V(~, 7J ;x,y ,z) 
and show that 

7/J(x,y,z) = 

V (A(x,y ,z) ,B(x,y ,z);x,y ,z) (9.64) 

7/Jz (9.65) 
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These equations state that, at the point (x,y ,z) the surface 1/J - ct = 0 has 
the same tangential plane as the wave V(i;, 71;x,y,z) - ct from the point(~, 71), 
by (9.63). Since V satisfies the equation (9.11), the same is true for the 
function (9.64). 

The function V(A,B;x,y,z) determines the optical distance of a point 
(x,y,z) from the corresponding point (~, 71) defined by (9.63). If the point 
(x,y ,z) approaches the surface r the corresponding point (~, 71) on r 
approaches the same limiting point. Instead of proving this analytically, we 
will refer to the geometric evidence. Hence 1/J = V(~, 71 ,x,y,z)-0 if (x,y,z) 
approaches the surface r. The function (9.64) thus is the desired solution. 

§10, JACOBI'S THEOREM. 

10.l In this section we shall be concerned with the inverse problem. 
Suppose we are in a position to integrate the partial differential equation 

(10.11) 

To find the general solution of the differential equations of the light rays. 

The answer is given in a general theorem of Jacobi. This theorem, 
applied to the differential equations (10.11) states: Let 1/J(x,y,z; a,b) be a 
complete integral of the equation (10.11). A complete integral is defined as 
a set of solutions which depend on two arbitrary parameters a and b such 
that not all of the subdeterminants of the matrix 

(
1/Jxa.• 

1/Jxb• 1/Jyb, 

1/Jza.•) 

1/Jzb, 
(10.12) 

are zero. Then the light rays of the medium of refractive index n(x,y ,z) are 
given by the equations 

a 
aa 1/J(x,y,z; a,b) Cl! , 

(10.13) 
a 
ab 1/J(x,y ,z; a,b) = {3 , 

where Cl! and {3 are arbitrary constants. 

If, for example, the determinant 

1/Jya. 1/Jza. 
=f. 0 ' 

1/Jyb 1/Jzb 
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then we may calculate y and z as functions of x: 

y y(x; a,b,O! ,/3) , 
(10.14) 

z = z(x; a,b,a ,/3) . 

These functions represent a four-parameter set of curves which, according to 
Jacobi's theorem, are the light rays of the medium. 

10.2 For the proof of Jacobi's theorem let us assume that the curves 
(10.13) are given in parametric representation: 

x = x(cr; a,b,a,{3) , 

y y(cr; a,b,a,{3) , (10.21) 

z = z(cr; a,b,a,{3) . 

By introducing these functions in (10.13) we obtain identities in cr,a,b,a,{3. 
HE_mce by differentiation with respect to er: 

I/Jax x+ I/Jay y+ 1/Jaz 
. 
z 0' 

(10.22) 

1/Jbx x + 1/Jby y + 1/Jbz z 0. 

The six quantities 

I/Jax• 1/Ja.y• 1/Ja.z, 
(10.23) 

1/Jbx• 1/JbY• 1/Jbz• 

can be interpreted as two vectors which, on account of (10.12), are not 
linearly dependent and thus determine a plane. The equations (10.22) state 
that the vector (x,y ,z) is perpendicular to this plane. From (10.11) we have 
by differentiation with respect to a and b: 

i.e., the vector (1/Jx, 1/Jy, 1/J.) is also normal to the above plane. Hence, 

x = ?..1/Jx, y = ?..1/Jy, z = ?..1/Jz, • 

(10.24) 

(10.25) 
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By differentiating these last equations with respect to O" we have as in 
section 8.2: 

1 d • - -(!) 
;>,. dO" ;>,. nny' (10.26) 

which shows that the curves (10.21) are light rays. 

10.3 Example. Let us consider the case of a stratified medium where 
n = n(z). We verify easily that 

l/J = ax + by + / ✓n2 - a 2 - b 2 di; 
0 

is a complete integral of the equation 

The light rays in such a medium thus are given by 

E!l!. X - a t di; 
ila o ✓n2 (1:) - a2 - b2 

E!l!. y - b { di; 
8b o ✓n2 (l;) - a2 - b2 

or 

Jz di; 
X = Cl!+ a 

o ✓n 2 (1:) _ a 2 _ b2 

y 

(10.31) 

Cl! ' 

(10.32) 

(3 

(10.33) 
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§11. TRANSPORT EQUATIONS FOR DISCONTINUITIES IN CONTINUOUS 
OPTICAL MEDIA. 

We shall derive certain differential relations in this section which allow 
us to calculate the discontinuities of an electromagnetic field along a given 
light ray if the discontinuity is known at one point of the ray. We assume 
explicitly that the functions E = E(x,y,z) and µ, = µ,(x,y,z) are continuous 
functions. The case of discontinuous optical media will be studied later and 
a principal difference between both cases will be found. 

11.1 Differentiation along a light ray. Let F(x,y,z) be a differentiable 
function. Along a given light ray x = x(T), y = y(T), z = z(T), a function 

F(T) = F(x(T), y(T), Z(T)) , 

is obtained whose differential quotient is 

dF 
dT 

On account of the relations x = 1/Jx, etc. this becomes 

Hence the differential operator 

a a a a 
8T = 1/Jx 8X + 1/Jy 8y + 1/Jz 8z 

(11.11) 

(11.12) 

can be interpreted as differentiation along a light ray provided that 1/J(x,y ,z) 
is a solution of the equation 

Let F(x,y ,z) 1/J(x,y,z), for example. It follows 

E!l!. = ,1, 2 + ,1, 2 + ,1, 2 = n2 8T 'l'x 'l'Y 'l'Z • (11.14) 

The operator (11.12) can also be applied to a vector field; for example 

(11.15) 

11.2 We consider an electromagnetic field which is discontinuous on the 
hypersurface 

cp(x,y,z,t) 1/J(x,y,z) - ct 0. (11.21) 
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Figure 17 
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Let D and D' be two domains of the 
x,y,z,t space which are separated by the 
hypersurface cp = 0. We assume that E 
and H are continuous functions with con­
tinuous derivatives in the individual 
domains D and D'. The boundary values 
on cp = 0 which are assumed if this 
surface is approached from D and D' are 
denoted by 

E',H',Ex',Hx', ... , respectively. 

The discontinuities U and V of E and H are then given by 

U E 1 - E, 

V H' - H. 

First we consider the boundary values of E,H in the domain D. Both 
E and H(x,y,z,t) become functions of x,y,z on cp = 0 = 1/J - ct. We denote 
these vectors by 

E*(x,y,z) E (x,y,z; ¾ 1/J(x,y,z)) 

H*(x,y,z) = H (x,y,z; ¾ 1/J(x,y,z)) 

The derivatives, for example of E *, are given by 

Therefore 

E* y 

E* z 

curl E* 

and similarly curl H * 

1 
curl E + - grad 1/J x Et 

C 

1 
curl H + - grad 1/J x Ht . 

C 

(11.22) 

(11.23) 

(11.23) 
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From Maxwell's equations: curl E = _ I± Ht and curl H 
C 

hence: 

c curl E* - µHt + grad 1/J x Et , 
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.f E . 
C t • 

(11.24) 
c curl H* 

These equations can be considered as a system of six linear equations 
for the six components of the vectors Et and Ht . The matrix of these 
equations is the same as the matrix of the homogeneous equations for the 
discontinuities U and V on cp = 0: . 

grad 1/J x V + EU O , 
(11.25) 

grad 1/J x U - µV O , 

and we know that the determinant of this matrix is zero on 1/J - ct = 0. We 
conclude that the equations (11.24) are possible only if the left sides satisfy 
certain conditions. These conditions will now be derived. 

We form the vector product of grad 1/J with the second equation (11.24): 

c grad 1/J x curl H* = E grad 1/J x Et + grad 1/J x (grad 1/J x Ht) 

or on account of the vector identity (Appendix I.23) 

c grad 1/J x curl H* = E(grad 1/J x Et - µHt)+ (Ht· grad 1/J) grad 1/J . 

Hence with the aid of the first equation (11.24): 

1 
grad 1/J x curl H* - Ecurl E * = - (Ht· grad 1/J) grad 1/J . 

C 
(11.26) 

This equation states: The vector grad 1/J x curl H* - E curl E * has the 
direction of grad 1/J, i.e., is normal to the wave front 1/J = ct. 

The same considerations can be applied to the boundary values 

E'* = E'(x,y,z,.!1/J) , 
C 

H'* = H'(x,y,z,.!1/J) . 
C 

(11.27) 

If 1/J - ct 0 is approached from the domain D', we find that the vector 

grad 1/J x curl H'* - E curl E' * 
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is normal to the wave front ljJ = ct. Finally, by considering the differences 
U = E'* - E* and V = H' * - H* we have: The vector 
grad 1/J x curl V - E curl U is normal to the wave front 1/J = ct. 

We formulate this statement in the equation 

Ecurl U - grad ljJ x curl V = R grad ljJ (11.28) 

where R is a certain scalar function of x,y ,z. We can determine R explicitly 
by forming the scalar product of grad ljJ with equation (11.28). It follows 

1 
R = - (grad l/J • curl U) . 

µ 
(11,281) 

Let us, finally, introduce U = _.! (grad ljJ x V) with the aid of (11.25). The 
result is E 

curl (-; grad ljJ x V) + ¾ grad ljJ x curl V = - ~ grad ljJ (11.29) 

which is a differential equation of first order in the discontinuity V. 

11.3 We can transform the equation (11.29) into a much simpler form. 
We remark that the vector V x curl ( ¾ grad ljJ) has the direction of grad l/J. 

Indeed, on account of the vector formula (Appendix I.412), we have 

curl (¾ grad ljJ) = ¾ curl grad ljJ + ( grad ¾) x grad l/J 

(grad ¾) x grad l/J • 

Hence, 

V x curl(¾ grad¢) = (V·grad ¢)grad¾ - (v·grad¾) grad l/J 

which proves our statement, for V • grad l/J = 0. Consequently, we can write 
(11.29) in the form 

curl ( ¾ grad ljJ x V) + ¾ grad l/J x curl V + V x curl ( ¾ grad l/J) 

= R' grad ljJ (11.31) 
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where R' is a certain scalar function. The left side can be transformed with 
the aid of the vector identity (Appendix I.48) by introducing 

and 

1 
A=-gradl/J, B=V 

E 

Using A· B = 0, we obtain 

1 a 
E aT 

2 av . (1 - - - - V div - grad 
E aT E 

- R* grad 1/J, 

(11.32) 

(11.33) 

R * being a new factor. We find R * by forming the scalar product of (11.33) 
with grad 1/J. We obtain 

n 2 R* 
2 av 
E a:;:--•gradl/J 

2 a 
- - V·- grad 1/J 

E aT 

or, by (11.15) 

i.e., 

R* 

Equation (11.33) becomes 

Finally we introduce the notation 

i.e.' 

1 
- -V•grad n 2 

E 

2 V•grad n 
E n 

(11.34) 

o. (11.35) 

(11.36) 
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and we get the equation 

av 1 1 
87 + 2 f:J.dJV + ~ (V • grad n)grad l/J = 0. (11.37) 

A similar relation can be found for the discontinuity U by replacing E and V 
by µ and -U in (11.37). 

Thus our complete result is: The discontinuities U and V satisfy the 
differential equations: 

(11.38) 

where the differential operators .6.€1/J and .6.µl/J are defined by 

.6.€1/J = € [(¾ l/Jxt + (¾ l/!yt + (¾ l/Jz)z] ' 

.6.µl/J = µ [ (t l/Jx)x + (t l/!y)y + (t l/Jz\] 

(11.39) 

§12. TRANSPORT OF DISCONTINUITIES. (CONTINUED). 

12.1 On a given light ray the equations (11.38) represent a system of 
ordinary differential equations. Indeed, we have shown in (11.1) that the dif­
ferential operator a/aT differentiates a function in the direction of a light ray. 
Let us introduce, in (11.38), instead of U and V, the vectors 

u 

Figure 18 

p 

(12.11) 

which have the same directions respec­
tively as U and V, but different lengths. 
The differential equations (11.38) then 
assume an even simpler form: 
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dP 1 
-d + - (P • grad n) grad 1/J = 0 , 

T n 
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(12.12) 
dQ 1 
-d + - (Q • grad n) grad z/! = 0 . 

T n 

Since U and V are orthogonal to grad z/!, the same is true for P and Q. 
From U·V = 0 it follows that P •Q = 0. 

By forming the scalar product of P and Q with the equations (12.12) it 
follows that 

0 , 0 . - (12.13) 

This shows: 

The lengths of the vectors P and Q are not changed on a given light ray. 
Thus without loss of generality we can assume 

and interpret P and Q as unit vectors which determine the directions of the 
vectors U and V. 

If P and Q have been found as solutions of (12.12), we obtain U and V 
from 

1 1" 

J Aµz/!dT 
u IUol P e 

2 0 

(12.14) 
1 J-r Aez/!dT 

V = IVol Q e 
2 0 

These equations make it evident that U and V are zero on the whole light ray 
if they are zero on one particular point, T = 0, of the ray. The light rays 

r 

Figure 19 

thus determine the region of the space where 
directed signals can be seen. Let us assume 
that from the point 0 a light signal is released 
at the time t = 0. Let us furthermore assume 
that the discontinuities U and V which repre­
sent the signal are different from zero only on 
a section r 0 of the wave front z/! = ct0 • From 
(12.14) it follows that, at a time t > t 0 , only on 
the corresponding section r of the wave front 
z/! = ct will discontinuities U ,V be observed. 
This section is determined by the light rays 
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through r 0 • In other words, the light signal will be observed only in the part 
of the space which is covered by the light rays through r 0 • 

This does not exclude the possibility that light penetrates into other 
regions of the space. However, this "diffracted" excitation does not have a 
sudden discontinuous beginning. 

12.2 The exponential factors in (12.14) have a simple geometric meaning. 
We have 

or 
a 

t:..1/) - aT (log E) , 

(12.21) 

Similarly 
a 

t:..µ1/J = t:..1/) - aT (log µ) • 

Let us now consider a "tube" of light rays, i.e., a domain D of the x,y,z space 
which is enclosed by a surface r 

Figure 20 

consisting of two sections r 1 and r 2 
of the wave fronts 

1/) = Pt and 1/J = P2 

and the cylindrical wall rs formed 
by the light rays through the 
circumference of r 2 and r 1. We 
apply the theorem of Gauss to this 
domain D: 

ff f t:..1/) dx dy dz 
D 

ff ~do 

r (12.22) 

where E!E. is the derivative of ¢ in direction of the outside normals. However, av 

E!E. o on rs av ' 

E!E. n2 on r2 , av 

E!E. - n1 on r 1 • av 
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Hence, 

ff f fllj) dx dy dz 
D 

47 

(12.23) 

We now express the surface elements do 2 and do1 by the corresponding 
surface elements do of an arbitrarily chosen wavefront lj) = ct 0 • We write 

(12.24) 

The factor K measures the expansion of an infinitesimally narrow tube of 
light rays. It follows that 

ff f fllj) dx dy dz 
D 

The volume element dx dy dz can be expressed as follows: 

dx dy dz = K do ds = nK do dT . 

Hence, 

ff f fllj) dx dy dz = ff f ~ a~nK) dx dy dz . 
D D n T 

Since D is of arbitrary size, we find 

and hence 

fllj) = _.!.. _.£_ (nK) 
nK 8T 

fl El/) 

flµlJ! 

a 
87 (log nK) 

a nK -log-
8T E 

a nK -log - . 
8T µ 

(12.25) 

(12.26) 
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The exponential factors in equation (12.14) become 

(12.27) 

and we conclude from (12.14): 

K Ko 
-Elul2 = - E 1u 12 n no o o ' 

(12.28) 

That is, the quantities ~ E lul 2 and ~µ lvl 2 are constant along a light ray. 
n n 

This result allows us to determine the lengths of U and V along the 
light rays of a given set of wave fronts !/J = ct without integration, simply by 

calculating the ratio : = 1° of corresponding surface elements of the 
wave fronts. 0 00 

12.3 Energy and flux on a wave front. Let us assume that the electro­
magnetic field is zero on one side of the wave fronts !/J - ct = 0. In this 
case E = U and H = V; hence 

1 C w = 871" (E u2 + µ v2), s = 471" cu x V). (12.31) 

E 

g rdd 1/1 

Figure 21 

It follows from (11.25) that 

E U2 U • (V X grad !/J) , 

(grad !/J x U) • V , 

and thus 

EU2 = µV 2 (12.32) 

i.e. Electric and magnetic energies 
are equal on a wave front. From 
(11.25) it follows further that 
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Hence, 

1 1 
U x V = ~(V x grad l/1) x V = n 2 µV 2grad 1/J 

41r 
2 W grad l/J. n 

C 
S = 2 Wgradl/J. n 

This yields for the absolute value of the Poynting vector: 

1s1 = ~w. n 

This result allows us to interpret the equations (12.28). If we add both 
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(12.33) 

(12.34) 

equations we find ~W Ko W0 and, introducing KK ddo , we obtain 
n no o oo 

1 
-W do 
n 

1 
-W do 0 • Finally, on account of (12.34): 
no 

Isl do = !Sol do 0 • (12.35) 

The flux through corresponding surface elements of a set of wave fronts is 
constant. 

12.4 We continue the investigation of the differential relations (11.38) 
for U and V. The preceding results show that it is sufficient to consider the 
equations (12.12) for the directions P and Q of the vectors U and V. Let us 
represent the light ray in the vectorial form 

We have 

X grad l/J , 

X=ngradn 

and we can write (12.12) in the form 

. 1 ... 
P + n2 (P • X)X O , 

Q + --¾- (Q • x)x o . 
n 

(12.41) 

(12.42) 
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Instead of the parameter T we introduce the geometrical length s of the 

light ray, by using the relation ~: ~ We have 

X 
dX 

nX' n-
ds ' 

X n(nX1) I 

p nP', 

and hence, 

0. (12.43) 

However, 

P • (nX1 )
1 = P • (nX" + n'X') 

on account of P • X' = 0. This yields 

n(P •X") 

P 1 + (P • X")X' 0 , 
(12.44) 

and similarly Q• + (Q • X")X' 0. 

The equations (12.44) demonstrate that the two unit vectors P and Q 
are determined by the light ray alone. The same light ray, of course, can be 
an orthogonal trajectory to many different sets of wave fronts. For example, 
in case n = 1, a given straight line can be orthogonal to systems of spherical 
wave fronts or to a system of plane wave fronts. Equations (12.44) however, 
state that the vectors U and V are submitted to the same rotation around the 
light ray no matter to which type of wave fronts the light ray is orthogonal. 
The wave fronts influence only the size of the discontinuities U and V. 

Figure 22 

T' * 

P' - cT 

Q' - bT 

12.5 The tangential vector 
T = X' of the light ray and the 
vectors P and Q define an orthog­
onal system of unit vectors which 
travel along the light ray X = X(s). 
In general the c~ange of such a 
system along a curve is determined 
by three kinematic formulae: 

cP +bQ 

* +aQ (12.51) 

-aP * 
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The coefficients a,b,c are functions of s. In our special case these formulae 
reduce to 

T' * cP +bQ 

pr - cT * * (12.52) 

Q' -bT * * 

as is shown by (12.44). We have, incidentally, 

a = 0, b = (Q • X"), 

P (s) 

X (s) 

c = (P ·X") . 

The fact that a = 0 for our system 
T ,P ,Q has a simple geometrical 
meaning. Let us consider the ruled 
surface which is formed by the 
straight lines through the vectors P 
on X(T), From 

dP = - cT ds 

it follows that 

P + dP = P - c ds T 

lies in the plane formed by the 
vectors P and T. This means that 
two neighboring unit vectors P and 
P + dP are not skew but intersect 
each other in a point of the plane of 
P and T. The total manifold of 
straight lines through the vectors 
P(s) thus envelopes a certain curve 
C in space and can be interpreted as 
the manifold of tangents of this curve. 
A ruled surface which consists of the 

Figure 23 tangents of a curve in space is called 
an applicable surface, since it is 
possible to apply it to a plane by 

bending without strain. The same consideration applies to the ruled surface 
of the vectors Q(s). Hence we can formulate the statement: 
The vector discontinuities U and V along a light ray determine a ruled 
surface which is applicable. 

12,6 We can interpret the light rays as the geodetic lines in a space 
whose line element has the form 

(12.61) 
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By introducing, on a light ray X(o-) the parameter o- = J n ds = J n 2 dT 
which measures the optical length on the ray we have the relations 

dX 
do-

dP 
do-

1 
2 grad I{!, 
n 

1 dP 
n 2 dT 

With this choice of the parameter the equations (12.12) become 

dP 1 dX 
- + - (P • grad n)- = 0 , 
do- n do-

dQ 1 dX 
- + - (Q • grad n) - = 0 . 
do- n do-

(12.62) 

We shall see that these equations characterize the vectors P or Q as being 
"parallel" along the light ray; parallelism being defined for the line element 
(12.61) in accordance with a definition which was introduced by Levy-Civita. 
The equations of the geodetic lines, i.e., of the light rays with o- as parameter, 
follow from (8 .23) letting X = 1/n 2 and hence 

(:r + (? r + (~:r 1 
n2 

We find 

n2 d 
(n2 dx) 

do- do- nnx ' 

n2 d 
(n2 ~) 

do- do-
nny , 

n2 d 
(n2 ~;) = nnz • do-

Let us denote temporarily the components of the vector X(o-) 
X1(o-), X2(o-), X3(o-), and the partial derivatives of n by 

an an an 
n1 ax ' n2 = ay ' Il3 = az • 

Then (12.63) assumes the form 

d ( dXa) n2 - n2 --
do- do-

(12.63) 

(x,y,z) by 

(12.64) 
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or 

n2 
d2xa dXCl 

(~ n1 dX1) net 
du2 + 2n--

du du n 

d2XCl dXCl (~ ni dX;) = net 1 

du2 
+ 2 ~ du n du n 

By introducing on the right side -i" 
n 

( dX) 2 
~ du1 , we obtain the differential 

equations of the geodetic lines in the form, 

( ni dX;) net (dX;) 2 
~-- - -~ -

n du n du 
0. (12.65) 

d 2X 
Thus, the second derivative dut of each component is equal to a quadratic 

dX 
form of the first derivatives du1 ; we write 

0 ' 

where 

Cl 1 (. an an an ) 
rik = ~ ,oai axk + Oak ax1 - Olk axCl ' 

as one can easily verify. The symbols o1k are Kronecker symbols 

Oik = 0 , i /- k 

Oik = 1 , i k. 

In general the equations of the geodetic lines X(u) of any line element 

du2 = ~ g1k dx1 dxk 
1,k 

(12.66) 

(12.67) 

(12.671) 

(12.68) 

can be written in the above form (12.66). The matrices r~k are given by the 
coefficient g lk and are called Christoffel's symbols. In the special case of 
optics, i.e., for 

these coefficients are given by (12.67). 
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The theory of curvature of a space with the line element (12.68) can be 
developed in a similar way as the curvature of curves or surfaces, if one can 

Figure 24 

compare the directions of vectors which 
are not attached to the same point. 
Obviously this involves a definition of 
parallelism in a non-Euclidean space, 
i.e., a criterion for the parallelism of two 
vectors at different points in space. Levy­
Civita' s definition of parallelism is as 
follows: A vector A(u) is moved parallel 
on a given curve X(u) if it satisfies the 
differential relations 

dAa dXk 
du + l~k rf,k A1 du = o. (12.681) 

dX 
According to this definition, for example, the tangential vectors d a of a 
geodetic line are parallel. u 

In case of the optical line element (12.61) we find by using (12.67): 

or 

1 dXa +--­
n du 

In vector notation: 

dd(nA) + _! (nA. grad n) ddX - (nA. ddX) grad n = 0 . 
u n u u n 

which is the condition of parallelism in our optical medium. 

Let us now consider a vector A(u) along a light ray; we have 

d(nA) + _! (nA . grad n) dX _ (<nA) . dX) grad I). = O 
du n du du n 

and 

_i_ (n dX) + .!(n dX •grad n) dX - n(dX)2 ~ = 0. 
du du ndu du dun 

= 0. 

(12,682) 

(12.683) 
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We multiply the first equation by n ~X and the second equation by nA. It 
follows, by adding the results that r; 
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0. (12,684) 

Hence: If A • ~: = 0 at one point of the ray, then it is zero at all points of 

the ray. If a vector is normal to the ray then its parallel vectors on the ray 
are also normal to the ray. 

Such normal vectors thus obey the condition 

~ 1 dX 
dr; + ~ (nA • grad n) dr; = O . (12.69) 

.By comparing this with (12.62), we find that the vectors ¾p and ¾Q satisfy 
the above condition and thus demonstrate the parallelism of the directions P 
and Q on the light ray. 

12. 7 Integration of the transport equations. We introduce the following 
orthogonal system of unit vectors on the light ray, X = X(s): 

Tangential vector: T x•. 

Principal normal: N 
1 

(12,71) ---X". 

~ 
Binormal: s = TX N. 

The derivatives of these vectors, and the vectors themselves, are 
related by a system of formulae of the type (12.51) which, in this case, are 
known as Frenet' s formulae: 

T' 

N' 

8' 

1 
+-8 

T 

.! is the principal curvature, and .! is the torsion of the ray. 
p T 

(12. 72) 
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Let us consider the equation 

pr + (X" ·P)Xr = 0 

for the vector P. By introducing the notation (12.71), we obtain 

or on account of (12. 72): 

pr + (Tr· P)T = 0 , 

1 
pr + - (N ·P)T = 0. 

p 

(12. 73) 

(12.74) 

Since P is normal to T, we can express it as a linear combination of 
N and S. We introduce 

p aN + {3S 

in (12.74). This yields 

a rN + aNr + 13rs + {3S' + ~ T O , 

or, on account of (12.72): 

It follows that 

whence 

Cl! r 
(!.. 

0 ' 
T 

/3' + 
g_ = 0. 
T 

These two differential _equations can be written in the form 

__Q_ (O! + i{3) + _Ti (O! + i/3) = 0 • 
ds 

(12. 75) 

(12. 76) 

(12. 77) 
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and have a solution in the form 

Cl( + i{3 

We introduce 

0 

and 

Cl( cos .,, 

(3 sin 1' 

Equations (12. 78) become 

f s ds 
0 T 

(3 0 

{ ds 
0 T • 

cos 1' o 

sin 1' 0 

(12.78) 

(12. 79) 

i 1' i( 1'0 - 0) 
e e 

whence, 

(12. 791) 

The vector P thus is given by 

P = N cos(1' 0 - 0) + S sin("o - 0). (12. 792) 

s 
Q 

Figure 25 

P changes its position relative to the 
principal normal and binormal of the ray; 
the angle of rotation with respect to N 
being given by 

- 0 

In case .! = O, i.e., if the light ray re-
T 

mains in one plane, then the vector P 
remains unchanged relative to the vectors 
N and S. 

Finally we determine the vector Q by 

Q T x P = - N sin (.,, 0 0) 

+ S cos ( 1' o - 0) . 
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§13. SPHERICAL WAVES IN A HOMOGENEOUS MEDIUM. 

We illustrate the former results with the example of the spherical wave 
which represents the electromagnetic field of a dipole. We assume the medium 
is homogeneous. Without loss of generality we let µ = E = 1. In optics we 
may consider this electromagnetic field as the simplest mathematical repre­
sentation of the light wave which is radiated from a point source. 

13.1 Maxwell's equations in vacuum are 

1 
curl H - - Et = 0 , 

C 

1 
curl E + - Ht = 0 . 

C 

The vectors E and H satisfy the second order equations 

1 
2 Ett - AE = 0, 
C 

1 
2 Htt - AH = 0. 
C 

However, only such vectors E or H are permitted for which 

div E = div H = O • 

(13.11) 

(13.12) 

In the case of the wave equation --\ Utt - Au = O for a scalar function 
C 

u(x,y,z,t) it is easy to find spherical waves. We simply ask for solutions u 
which depend only on r = ✓x2 + y 2 + z 2 and on t. We find the equation 

1 
2 (ru)tt - (ru)rr = 0 , 
C 

which possess the solution 

u = .! ( f(r - ct) + g(r + ct)) , 
r 

(13.13) 

(13.14) 

where f and g are arbitrary functions. Outgoing spherical waves are obtained 
if g = o, i.e., 

1 
u = - f(r - ct) . 

r 
(13.15) 
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From this it follows that the first one of the equations (13.12) can be satisfied 
by a vector 

1 
E = - F(r - ct) 

r 
(13.16) 

where F = (F1,F 2 ,F 3 ) is a vector whose components are functions of (r - ct). 
However, from 

div E = ( d ) a (F(r - ct)) gra r • ar r 

(13.17) 

it follows that div E = 0 is possible only in the case F 1 = F 2 = F 3 = 0, 
Physically, this means that electric fields are not possible in which the 
electric vector is constant for points on the same sphere at a given time, t. 

13,2 In the case of the scalar wave equation 

1 
~ Utt - 6.u = 0 

we can find other spherical waves from (13.15) by differentiation. Let L be 

th d 'ff t'al t L = a...! + b ...! a h b t t e 1 eren 1 opera or ax ay + c az , w ere a, ,c are cons an s. 
Then 

(13.21) 

is a solution of the wave equations. It can be interpreted as the wave which is 
radiated from a dipole with an axis (a,b,c). 

More general solutions can be found by repeated differentiation. Let 

L =a...!+b...! a th IJ IJ ax IJ ay + cl/ az ' en 

(13.22) 

represents a wave from a 11multipole11 with K axes (a11 ,b11 ,c 11 ). 

13.3 We proceed in a similar way for vector waves. Let 

L (13.31) 
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be a differential operator in which A,B,C are matrices with constant elements 
A1k, Btk , Ctk. We then obtain a variety of new solutions of ..!... E tt - .6.E in 
the form c 2 

E L ~ ~ F(r - ct) ~ (13.32) 

or explicitly 

3 

E; = t, (Aik a~ + Bik a~ + cik a~) ;Fk (r - ct). (13.33) 

More complicated 11multipole 11 waves can be found by repeated differentiation: 

(13.34) 

1 
of a vector - F(r - ct). 

r 

13.4 All these solutions satisfy the equation --\ E tt - .6.E = 0 and the 
C 

remaining problem is to find operators Lu such that div E = O. For the 
dipole wave (13.32) this problem is solved by the operator L = curl. In 
fact, this operator is of the type (13.31), namely 

A = (: : _:) , B = ( : : : ) , C = (: -: : ) • 

0 1 0 -1 0 0 0 0 0 

Furthermore, div L (; F) = div curl (; F) = 0 . 

In order to obtain our solution in a suitable form, let us write the 
vector F as the derivative of a vector M = (Mi, M2 , M3), i.e., 

We then know that 

F(r - ct) = M'(r - ct) . 

E 
1 

curl - M'(r - ct) 
r 

satisfies the equations --\ E tt - .6.E 
C 

O; div E o. 

(13.41) 

(13.42) 

(13.43) 
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• Now we have to construct a vector H such that both equations (13.11) 
are satisfied. From the equation curl E + ¾ Ht = 0, it follows that 

Hence, if 

1 
Ht = c curl curl - M'(r - ct) . 

r 
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1 
H = - curl curl - M(r - ct) , 

r 
(13.44) 

we know that the second equation (13.11) is satisfied. Clearly, div H = O. 
In order to show that the first equation (13.11) is also satisfied, we write with 
the aid of the vector identity (I.43) 

H = Li..!. M(r - ct) - grad div ..!. M(r - ct) 
r r 

It follows that 

curl H = curl ( ¾ M"(r - ct)) . 

On the other hand, from (13.43): 

Et = c curl (; M "(r - ct)) , 

and hence 

1 
curl H - - Et O . 

C 

Our result is: 

(13.45) 

(13.46) 

Let M(r - ct) be an arbitrary vector function of cp = r - ct with 
continuous derivatives to the third order, M', M", M' ". Then a solution of 
Maxwell's equations is given by the vectors 

E = - curl ( ¾ M'(r - ct)) 

(13.47) 

H curl curl ( ~ M(r - ct)) 
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This electromagnetic field can be regarded as the field of a dipole at the 
point r = 0 whose momentum M = M(-ct) is given as a function of t. 

Of course, a second solution can be obtained by replacing E by +H and 
H by -E. This yields 

E curl curl (; M(r - ct)) 

(13.48) 

H = - curl (;M'(r - ct)) . 

From a mathematical point of view either one of these solutions may repre­
sent the radiation of a point source. 

13.5 Let us consider, in the following, the solution (13.47). We have 

E = - _! (ix + jy + zk) x ...£. (.! M ') 
r ar r 

X p' (13.51) 

where p is the unit vector 

(13.52) 

The expression for H can be transformed as follows: 

curl - = r x - M' - - . M .... 1 ( M) 
r r 2 r 

Hence 

r X M' M) 3 ::T + 3 5 r r 
-J (M' M) xr +2 r:r-?" 

This however is equal to 

(13.53) 
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Hence we get the final result: 

E = X p' 

(13.54) 

13.6 We conclude from (13.54): 

p 

Figure 26 

M (,,o) 

fO 

Figure 27 

E·p = O; 

2 -
H • p = ~ (rM' - M) • p , (13.61) 

i.e., the electric vector but, in general, not the 
magnetic vector, is tangent to the sphere. 

Let us now assume that M(cp) = 0 for 
cp > 0 . This means that the dipole begins to 
oscillate at the time t = 0. It follows that 
E = 0 and H = 0 for cp = r - ct > 0, i.e., 
for r > ct. At the time t, the sphere r = ct 
thus represents the wave front of the electro­
magnetic field, i.e., the boundary of the region 
of penetration. We assume furthermore that 

M(0) = M'(0) = 0 , 

but M"(0) = m I- 0, so that M(cp) is a function 
of the type indicated in Figure 27. On the wave 
fronts cp = r - ct = O; we thus have the 
boundary values 

1 
E = - (m X p) 

r 

1 
H = p X E = ;_: p X (m X p) 

(13.62) 

which represent discontinuities of the electro­
magnetic field. We immediately verify the 
relations E • p = H • p = 0, and E • H = 0, as 
our former results required. Hence, only on the 
wavefront are the vectors E and H of the 
spherical wave normal to the light ray and 
perpendicular to each other. 
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The quantities IE I 2 and IHI 2 on the wave front decrease in proportion 
to 1/r2 ; i.e., in proportion to the ratio of corresponding surface elements on 
the spherical wave fronts. 

§14. WAVE FRONTS IN MEDIA OF DISCONTINUOUS OPTICAL PROPERTIES. 

We shall not assume in the following that the functions E(x,y ,z) and 
µ(x,y,z) are continuous and have continuous derivatives. However, these 
functions will be sectionally continuous in any finite domain D of the (x,y ,z,t) 
space, i.e., it will be possible to divid.e D into a finite number of subdomains 
in which € and µ are continuous, and assume finite boundary values on the 
bounding surfaces. We furthermore assume that the derivatives of E and µ 
are also sectionally continuous. 

Our first aim is to find the laws according to which wavefronts pass 
through a refracting surface, i.e., a surface on which E or µ is discontinuous. 
The result will be Snell's law of refraction and the law of reflection. After 
that, we can answer the question of how signals, i.e., discontinuities of E and 
H, are influenced by such surfaces. We will find a system of formulae known 
as Fresnel's formulae. 

14.1 Snell's Law of refraction. Let :r be a surface in the (x,y ,z) space 
which separates two media D and D' of indices of refraction n(x,y ,z) and 
n'(x,y,z), such that on :r: [n] = n' - n -/- 0. Both n and n' shall have con­
tinuous derivatives in their respective domains. A light signal may travel 
through the (x,y ,z) space over a set of wave fronts 

cp(x,y ,z,t) = 1/J(x,y ,z) - ct = 0 . (14.11) 

In other words, a characteristic hypersurface cp = 0 in the (x,y,z,t) space is 
assumed on which E and H are discontinuous. This hypersurface is continu­

y 

Char. surface cp = 0 in case n 
discontinuous on x = O. 

Figure 28 

X 

ous but does not necessarily have 
continuous normals, as is indicated 
in Figure 28. Letting cp = 1jJ - ct 
we conclude that 1/J(x,y ,z) must be a 
continuous solution of the equation 

1/J; + 1/Ji + 1/Ji = n2 (14.12) 

even on the surface :r where n is 
discontinuous. It's derivatives are 
sectionally continuous. 

We assume that :r is given in 
the form 

x = f(~,1)), y = g(~;r,), z = h(~,TJ) (14.13) 

alan


alan


alan


alan


alan
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M 

and denote the values of 1/J on the two sides of :E 
by 1/J and 1/J'. 1/J and 1/J' have continuous deriva­
tives in their domains. From this it follows that 

1/J (f(~,7J), g(~,7J), h(~,7J)) 

n' 
1/J' (f(~,7J), g(~,7J), h(~,7J)) 

Figure 29 
and that both sides have continuous derivatives. 
Consequently 

(1/Jx' - 1/Jx)fs + (1/Jy' - 1/Jy)gi + (1/Jz' - 1/Jz}?s 0' 
(14.14) 

(1/J; - 1/Jx)fll + (1/Jy' - 1/Jy)gll + (1/Jz' - 1/Jz)¾ 0. 

These equations state that the vector 

is normal to the surface :E. If M is a unit vector in direction of the surface 
normal, we can write 

grad 1/J' - grad 1/J = rM . (14.15) 

Grad 1/J' and grad 1/J give the direction of the orthogonal trajectories of the 
surfaces 1/J' = const. and 1/J = const., i.e., of the light rays. Let T and T' 
be unit vectors along the light ray; then grad 1/J = nT and grad 1/J' = n'T'. 
It follows that 

n'T' - nT rM, (14.16) 

where r is a scalar factor. 

We conclude that the refracted ray leaves the surface :E in the plane 
formed by the incident ray and the surface normal M. 

From (14.16) it follows that 

n'(T' x M) = n(T x M) . (14.17) 

The length of the vector on the left side is n 'sin iJ '; on the right side, n sin iJ , 
where iJ is the angle of incidence and iJ' is the angle of refraction. This 
yields Snell's law of refraction 

n' sin iJ' n sin iJ . (14.18) 
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T' 

Figure 30 
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We find the factor r in (14.16) by forming the 
scalar product of M with (14.16): 

n'(T'-M) - n(T•M) = r' 

or 

r n' cos rJ ' - n cos rJ . 

The relations 

n'T' - nT 

n' sin rJ' 

(n' cos rJ ' - n cos rJ )M , 

n sin rJ 

(14.19) 

(14.191) 

allow us to find T' if T and M are given. 

14.2 The law of reflection. We know by experience that a light signal 
when reaching a surface of discontinuity of n is not only transmitted, but also 
reflected. Mathematically, this possibility is suggested by the quadratic 
character of the equation 

We have seen in §9 that, on account of this, there exist two solutions ip which 
attain given boundary values on a given surface :E. 

That a surface of discontinuity must actually produce a set of reflected 
wave fronts will be seen in the next section by deriving Fresnel's formulae. 
Let us here assume the existence of a reflected signal. This means that the 
characteristic hypersurface cp = 0 consists of two branches cp = ip - ct = 0 
and cp * = 1/1 * - ct in the neighborhood D of the surface :E. These two 
branches are joined together on :E, as is indicated in Figure 31 for the case 

Figure 31 

when :E is the plane x = 0. This 
implies that the two functions 1/1 and 
ip * must have the same boundary 
values on :E, i.e., 

ip ( f(~,17), g(~. 7J), h(~. TJ)) 

1/1* (rc~,TJ>,· g(~,7J>, iic~,7J>) 

(14.21) 

As above we conclude that 

grad 1/1* - grad ip = rM (14.22) 
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or, by introducing the unit vector T * on the 
reflected ray, 
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n(T* - T) = rM. (14.23) 

Figure 32 

It follows: The reflected ray leaves the surface 
~ in the plane determined by T and M. We find 
as above that 

T* X M = TX M' 

and hence 

sin {} * = sin {} , 

where {} * is the angle of reflection. For r we obtain 

r = n(cos {} * - cos {} ) . 

The equations 

T* - T (cos {} * - cos {} )M , 

sin {} * sin {} 

can be satisfied by two vectors T * if T is given. From sin {} * 
it follows 

{} ' 
or 

cos {} * cos {} ' cos {} * - cos {} . 

(14.24) 

(14.25) 

(14.26) 

sin {} 

(14.27) 

The first solutions give T* = T, i.e., the incident ray; the second solutions 
yield 

T* - T = - 2 cos rJ M . (14.28) 

This is the reflected ray. T* and T are symmetrical with respect to the 
tangent plane of ~ at the point of incidence. 

§15. TRANSPORT OF SIGNALS IN MEDIA OF DISCONTINUOUS OPTICAL 
PROPERTIES. FRESNEL'S FORMULAE. 

15.1 In 14.2 we have seen that, on a surface ~: w (x,y ,z) = 0 on which 
the functions E and µ are discontinuous, a set of wave fronts 1/J = ct must be 
expected to split up into two sets of wave fronts; the transmitted wave fronts 
1/J - ct = 0 and the reflected wave fronts 1/J* - ct = 0. The corresponding 
characteristic hypersurface then consists of three branches; the incident 
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branch <p = 1/J - ct = 0, the reflected branch <p* = 1/J*. - ct = 0, and the 
transmitted branch <p' = 1/J' - ct = 0. All these branches intersect each 
other in a common manifold J which lies on the cylindrical hypersurface 
w(x,y,z) = 0. 

X 

Figure 33 

w=O , 
~=O 

M 

In this section we study an electromagnetic field which is discontinuous on 
these three branches and, of course, also on the cylindrical hypersurface 
w = 0. The four-dimensional neighborhood of the common manifold of inter­
sections, J, is divided into five parts separated by the four hypersurfaces 
<p = 0, <p* = 0, w = 0, <p' = 0. Let us assume that the vectors E and H 
are continuous in these five parts and that they attain finite limits. 

E 0 ,Ei,E 2 ,E 3 ,E 4, 

(15.11) 

if a point P of the manifold J is approached. 

We denote the surface normal of w = 0 by M, i.e., a unit vector 
proportional to the vector (wx, wy, Wz, 0) at P. By applying the conditions 
derived in §6 for E and H on a surface of refraction, we find 

(15.12) 
E3 X M; Eo x M 

where E and E' are the boundary values of E on w = 0. 



WAVE OPTICS AND GEOMETRICAL OPTICS 69 

Similarly, 

(15.13) 
H 3 x M; H 0 x M 

Since the boundary values of the discontinuities on J are given by 

u E1 Eo V H1 Ho 

U* E2 E1 V* H2 H1 (15.14) 

u• E3 E4 V' H3 H4 

We find from (15.12) and (15.13) readily that 

E(U + U*) ·M E'U'•M' 

(U + U*) x M U' x M; 
(15.15) 

µ(V + V*) •M µ'V'•M, 

(V + V*) X M V' x M. 

15.2 We consider now the light rays which belong to the point P0 on :r, 
i.e., to the projection of P in the (x,y,z) space. The direction of these rays 
is given by 

T 

T* 

1 
- grad 1/1 
n 

1 
- grad 1/1* n 

1 
T' = ,grad 1/1' . n 

These vectors and M are related by the equations 

n'T' nT + (n' cos iJ' - n cos iJ )M 

T* T - 2 cos iJ M . 

(15.21) 

(15.22) 

The four vectors T, T*, T', and M lie in one and the same plane of the 
x,y ,z space. This plane is normal to the unit vector 

S = T x M 
sin i'J 

T* X M 
sin i'J * 

T' X M 
sin i'J' 

(15.23) 
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This fact suggests the introduction of the following orthogonal system of unit 
vectors attached to each of the three rays: 

T,N s X T' s 

T*, N* s X T*, s (15.24) 

T', N' s X T'' s 

15.3 We consider the incident ray first. We know that the discontinuities 
U and V on this ray are related by the equations 

grad ip x V + EU O , 
(15.31) 

grad ip x U - µV O , 

or, on account of (15.21): 

.,/µ (T x V) + VE U 0 
(15.32) 

VE(T x U) - .,/µv o. 

From these equations it follows that U and V can be represented in the form 

VEU = aN + {3S 

.,/µv = -f3N + as , 

as linear combinations of N and S. 

(15.33) 

In order to apply the conditions (15.15) let us determine the products 
U·M and U x M. We obtain 

EU·M = aVEM•N = aVEsin ~ 
and 

U X M = ;; (N x M) +~ (S x M) . 

However, 

NxM (S x T) x M - (M • T)S cos ~ s. 

Hence 

EU•M a!E sin ~ 

UxM - ;; cos ~ s + ¾ (S X M) . 

(15.34) 
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15.4 Equations identical with (15.34) can be found for the products 
EU*•M, U* X M, and EU'·M, u• X M. Since sands X Mare orthogonal, 
and thus independent, we obtain from (15.15) the equations 

.fE (a sin t'J + a* sin t'J *) = -.IE'" a ' sin t'J ' 
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1 1 r;: (a cos t'J + a* cos t'J *) = --a ' cos t'J ' 
VE R 

(15.41) 

i L 
- (/3 + /3*) 
-..1£ -IE' 

On account of t'J * 
become 

1r - t'J and {Eµ sin t'J = -..1£'µ' sin t'J ' these equations 

a +a* 

(3+{3* 

!II. Cl/ I 

,J µ' 

IT /3' ,Ji• , (15.42) 

Instead of carrying out analogous calculations for the vector V, we may 
simply replace a by -/3, {3 by a, and E by µ in (15.42). The first equations 
(15.42) do not give any new conditions. The last equation, however, yields 

/3 _ /3 * = ~ COS t'J I /3 I 
,J µ' cos " • 

(15.43) 

The four equations (15.42) and (15.43) allow us to express a', f3', and 
a*, {3 * as functions of a and {3. The result is 

Cl/ I 2 if. = 2 
a ff. ff. cos"' /3 P + ff. 

cos"' 
+ ~ cos" I cos" 

(15.44) 

H, ff,- COS t'J I JF,- I[. COS t'J I 

a*= /!:_ - E' cos" £_= cos " 
a ff. +p 

COS t'J I /3 ff. + ff. COS t'J I 

E' cos" µ' cos" 
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~ In relation to the plane of incidence, it is customary to call the com-
ponents of the electric discontinuity U with respect to N and S, the parallel 
component and the normal component of U, and to use the notation: 

AP 
Cl! As = __.fi__ = re re 

RP 
a* 

Rs = Ji!_ re re (15.45) 

DP 
Q! I 

Ds =L = R R 

It follows that, letting µ µ' = 1 and re = n; k = n'; 

1 -
n COS t'J I n cos t'J' ----

RP AP 
n' cos t'J 

Rs = As n' cos" 
l +]!__cos t'J' n cos t'}' -+---

n' cos t'J n' cos" 
(15.46) 

2 ]!__ 2 ]!__ 

DP AP 
n' Ds = As n' 

1 + ]!__ cos " 1 n cos t'}' -+---
n' cos t'J n' cos t'J 

The above formulae are identical with Fresnel's formulae for the reflection 
and transmission of plane waves on a plane surface of refraction. We have 
seen, however, that their significance is more general since they give also 
the reflection and transmission of any discontinuity of the vectors E and H 
on such a surface. We have to consider these equations as the supplement to 
the transport equations (11.38) for U and V in case of a continuous medium. 

In the case of normal incidence, we have t'} = t'J' = 0 and hence: 

RP AP 
n' - n Rs As n - n' ---

' n' + n' n' + n 
(15.47) 

DP AP 
2n 

Ds As 
2n 

n' + n' n' + n 
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§16. PERIODIC WAVES OF SMALL WAVE LENGTH. 

16.1 The simplest type of radiation from a point source in a vacuum can 
be represented by the electromagnetic field 

( M 11 
_ M') x 

E = r r2 p ' 

(16.11) 

where M = M(<,0), the moment of the dipole, is an arbitrary vector de­
pending on <,O = r - ct, and p is the unit vector p = ½ (x,y,z). This was 
the result of §13. 

Let us consider a dipole, which is periodic in t, so that M = M(<,0) is 
a periodic vector function of <P = r - ct. We assume that M is of the form 

M = - : 2 me1k "' , k = ~1T (16.12) 

where m is a constant complex vector m 
(16.11) and obtain E and H in the form 

a + ia*. We introduce (16.12) in 

E Ue ik(r - ct) 

H Ve ik(r - ct) . 

U and V are the complex vectors 

U = (_! + _!_) (m X p) 
r kr 2 

V p x U - k½-3 + (m. p) (k:r3 - k!\) p • 

(16.13) 

(16.14) 

In the case of small wave lengths J.., the quantity k = 2: becomes very great 

so that in (16.14) only those terms are significant which are independent of k. 
In the limit J.. _,. 0 we obtain for r /= 0: 

1 
U = - (m X p), 

r 

V p XU 
1 
- p X (m X p) . 
r 

(16.15) 
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These expressions are formally identical with the equations (13.62) for 
the vectors E and H on the wave fronts. The mathematical reason for this is 
that the terms in (16.11) which are given by the derivatives of M of highest 
order determine the discontinuities of E and H of highest order, and, in case 
of periodic waves, ·the terms of lowest power of ¾. 

We shall demonstrate in the following that this relation is true in 
general: Periodic electromagnetic fields of small wave lengths obey the same 
laws as discontinuities, i.e., signals. 

16.2 Let us assume that a dipole is oscillating at the point (0,0,0) of a 
nonhomogeneous medium. The oscillation of the dipole shall be the same as 
in the preceding case; namely, that given by the momentum 

M __ m -ikct 
- k2 e (16.21) 

On the basis of the exact solution in case of a homogeneous medium, it is 
justifiable to attempt to solve the case of a nonhomogeneous medium with an 
electromagnetic field 

E U eik(\l, - ct) 

H Veik(y, - ct) 
(16.22) 

where the surfaces 1/J(x,y,z) - ct = 0 represent the "spherical" wave fronts 
of the medium around the point (0,0,0). The vectors (16.22) are of the type 
which we have investigated in §2, the relation of u,v and U,V being given by 

u 

v = Ve1k\l, 
(16.23) 

If we introduce these expressions in (2.33) we obtain the equations for U and 
V: 

1 
ik curl V + [grad 1/J xv + EU] 0 ' 

(16.24) 
1 
ik curl U+ [grad 1/J x U - µV] 0 . 

Let us denote the quantity i~ by a-; hence 

a- curl V + [grad 1/J x V + EU J 0 ' 

[grad 1/J x U - µV] 
(16.25) 

a- curl U + 0. 
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The solution of (16.25) in the case of a homogeneous medium is given by 
(16.14), i.e., by vectors of the form 

u I Uv aY, 

V=O 

2 
(16.26) 

V 2 Vv aY' 

V = 0 

1 
where Uv and V v are vectors independent of a - "k . This leads us to 
solve the equations (16.25) by the power series in_i 

"" 

u I UV r,Y 

V =O 

"" 
(16.27) 

V I Vv r,Y 

V=O 

with vectors Uv and V v as coefficients. 

If we introduce these series in (16.25) we find the following conditions 
for the vectors Uv, V v: 

grad 1/J x V0 + e:U 0 0 ' 
(16.28) 

grad 1/J x U0 - µV0 0 ' 

and in case v ::::: 1: 

grad 1/J x Vv + e:Uv curl Vv-t 
(16.29) 

grad 1/J x Uv - µVv curl Uv-t 

16.3 • We are especially interested in the vectors U O and V0 since they 
determine the electromagnetic field in the form 

E Uoeik(f- ct) 

H V ik(f- ct) 
oe 

(16.31) 

for small wave lengths, i.e., the field which belongs to the realm of Geomet­
rical Optics. We call the function 1/J(x,y,z) the phase function of the wave 
(16.31) so that the wave fronts 1/J = const. represent surfaces of equal phase. 
The vectors U0 and V0 may be called the amplitude vectors of the wave. 
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The equations (16.28) for U0 and V0 are formally identical with the 
conditions for discontinuities on the wave fronts. They can be satisfied by 
vectors U0 f- 0 and V0 f- 0 only if the phase function !/J satisfies the 
equations ¢; + !/Ji + ¢; = n 2 • The only difference from the equations for 
discontinuities is that U0 and V0 are in general complex vectors. We con­
clude as before that 

U0 • grad !/J = V0 • grad !/J = U0 • V0 = 0 , (16.32) 

i.e., U0 and V0 are tangential to the wave fronts. The complex vectors U0 

and V0 are orthogonal to each other in accordance with our definition of 
orthogonal complex vectors in §2. 

It follows furthermore that 

EU0 • U0 = (V0 x grad !/J) • U0 

(grad !/J x U0) • V0 = (V0 x grad !/J) • U0 

The two right sides of these equations are conjugate complex numbers. They 
must be equal because they are real as are the left sides. Hence 

(16.33) 

The average energy density, according to §2, is given by 

1 - -
W = l61r (EUo • Uo + µVo· Vo) • (16.34) 

We conclude: The average electric energy is equal to the average magnetic 
energy. Hence 

1 -
81r µVo. Vo 

The average flux vector S is given by the formula (2.53): 

C 
S = lS1r (U0 x V0 + U0 x V0) • 

From (16.28) it follows that 

(V0 x grad !/J) x V0 

V0 ·Vo grad !/J . 

(16.35) 
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Hence 

and 

or 

s 

w 
S = c 2 grad 1/J. 

n 
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2µV0 •Vo 
n2 grad 1/J 

(16.36) 

We conclude that the vector S of average flux is normal to the wave fronts. 
Its absolute value is related to the average energy W by the equation 

1s1 = ~ w. 
n 

16.4 We consider next the equations (16.29) in the case v 
assume continuity of e:(x,y ,z) and µ(x,y ,z). We have 

grad 1/J x V1 + e:U1 curl V0 

curl U0 

(16.37) 

1; and 

(16.38) 

These equations are formally identical with the equations (11.24) for [Et] and 
[Ht] in § 11. By the same argument we conclude that they are solvable only 
if the right sides satisfy certain conditions. The former method of deriving 
these conditions can be repeated literally. We obtain the result: The ampli­
tude vectors U0 and V0 satisfy the following differential equations along the 
light rays: 

dUo 1 (uo. grand n) a,;:- + 2 ~µ1/JUo + grad 1/J 0' 

Again the only difference is that U0 and V0 are complex vectors. 

16.4 We solve the equations (16.39) as follows. We introduce 

(16.39) 
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where P and Q satisfy the equations 

dP 1 
dT + ~ (P • grad n) grad 1/J O , 

(16.42) 
dQ 1 
dT + ~ (Q • grad n) grad 1/J = 0 • 

The three vectors P, Q and T = .!. grad 1/J form a system of unitary vectors 
along the ray, i.e., complex vector~ which satisfy the relations 

T,P 

P,Q 

Q,T 

T•P 

P·Q 

Q•T 

0 ' 

0 ' 

0 ' 

T-T = 1, 

p.p = 1' 

Q·Q = 1' 

T 

p 

Q 

p X Q' 

Q X T' 

TX p. 

(16.43) 

By introducing on the ray the orthogonal system of unit vectors T ,N (Principal 
normal), and S (Binormal), and the geometrical length of the ray as parame­
ter, the equations (16.41) become 

1 
P' + p (N • P)T O , 

(16.44) 
1 

Q' + p (N • P)T = 0 . 

A complex vector P, normal to T, for which P • P = 1 can be expressed in 
the following form as a linear combination of N and S; 

P = cos A (N cos {} + S sin {} ) + i sin A (N cos t? * + S sin t? *) , 

(16.45) 

where A, {} and t? * are arbitrary real numbers. The solution of the equations 
(16.44) belonging to a vector P 0 , at a point 

s s = 0 of the ray, then is given by the 
equation 

p* 

A = Ao ' 
p 

{} = {} 0 - 0o ' (16.46) 

{} * = {} o* - 0 ' 
N 

where 0 l s ds 1 
being the torsion of = 

Figure 34 0 T ' T 
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the ray. In other words, if P = p + ip* then both vectors p and p* are 
rotated relative to N by the same angle -0 and are unchanged in length. 
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16.5 The exponential factors in (16.41) can be replaced by the expres-
sions (12.27). We obtain a result, analagous to (12.28): The quantities 

K 2 
- e: luol and n 

and hence !5.w, where W is the average energy density, are constant along a 
n 

light ray in media of continuous index of refraction. 

On account of the relations (16.36) and (16.317) this means: The energy 
flux ISi do through corresponding surface elements of the wave fronts is 
constant in a medium of continuous index of refraction. 

We finally consider the polarization of the light along a light ray. The 
ellipticity E of the polarization, according to (2.68), is given by the formula 

IUol 2 - JuJ uJ 
luol 2 + ,jufuJ 

On account of (16.41) this reduces to 

1 _ ✓ p2p2 
€2 = 

1+Jp2p2 

(16.47) 

(16.48) 

However, from (16.42) we readily obtain :T P 2 = :T P2 = 0, i.e., P 2 and 
P2 are constants along the ray. Hence: The polarization along the light ray 
is not changed if n varies continuously. 

16.5 Media of discontinuous optical properties. Results, quite different 
from the above, are obtained if the optical properties are discontinuous. Let 
us assume that a surface fJ(x,y ,z) = 0 separates two media with continuous 
E ,µ and e: 1 , µ' in such a way that on fJ = 0 these functions assume different 
boundary values. We have seen, that in this case, a reflected set of wave fronts 
has to be introduced so that we have to deal with two sets of wave fronts 
!/J = ct and !/J* = ct on one side of fJ = 0, and with one set !/J' = ct on the 
other side. This suggests solving the problem 16.2 by an electromagnetic 
field of the type 

E U eik(y,- ct) + U* eik(y,• - ct) 

H V eik(y,- ct) + V* e ik(y,• - ct) 
(16.51) • 
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.O.= 0 

Figure 35 
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on the one side of fl = 0, and by 

E U' eik(lf' - ct) 

(16.52) 
H 

on the other side. On fl = O we 
have 1/J = 1/J* = 1/J' and, on account 
of the conditions (6.1), the relations 

E(U + U*) • M 

(U + U*) x M 

µ(V + V*) ·M 

(V + V*) x M 

u• x M, 

µ'(V'•M) 

V' X M. 

(16.53) 

(16.54) 

By introducing the power series (16.27) in these conditions, we find that 
each one of the vector coefficients Uu, Vu; Uu*, Vu*; Uu', Vu' must satisfy the 
conditions (16.53) and (16.54). In the case of the vectors U0 , V0; U0*, V0*; U01 , 

Vo' which represent the field for small wave lengths, not only the above con­
ditions are valid but also the relations (16.28) written down for each of the 
three functions 1/J and their associated vectors U0 , V0. However, this set of 
conditions is identical with the conditions from which, in §15, we have derived 
Fresnel's formulae. By introducing normal and parallel components, as 
defined in (15.45), we thus have the result, for the complex vectors U, U*, U': 

l _ ..!!_ COS iJ I n cos.,,, 

Uop 
n' cos .,J 

Uo*s Uos 
n' cos" 

l + ..!!_ COS .,JI n COS iJ I 
-+---

n' cos rJ n' cos iJ 
(16.55) 

2 ..!!. 2 ..!!. 
Uop 

n' 
U~s Dos 

n' 
n COS rJ I n cos iJ' 

1 +---- -+---
n' cos iJ n' cos iJ 

Of course, if we consider a given light ray which passes the surface 
fl = 0 we cannot expect that the flux through surface elements of the trans­
mitted wave fronts is the same as the flux through the corresponding surface 
elements of the incident wave front. Part of the incident flux follows the re­
flected light ray. One also verifies readily that the polarization of the light 
on the transmitted or reflected ray is not the same as on the incident ray. 
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16,6 An optical instrument consists in general of several refracting 
surfaces which separate media of different refractive indices. Consequently, 

Figure 36 

multiple reflections must be expected, 
such that in every part of the medium 
infinitely many different sets of wave 
fronts are to be considered. The 
electromagnetic fields in each of the 
media are therefore considerably 
more complicated than the field given 
in the formula (16.51); namely an 
infinite sum 

(16.61) 

with terms related to the different 
wave fronts. 

However, on each surface of refraction, the boundary values of these 
different terms can be divided into groups of three corresponding to an 
incident, transmitted and reflected set of wave fronts, for which 1/J = zj;* = 1/J' 
on the refracting surface. The boundary values of E and H given by infinite 
series of the type (16.61) then can satisfy the conditions (6.1) of §6 only if the 
conditions (16.53) and (16.54) are satisfied by each of the above groups individ­
ually. This means that Fresnel's formulae can be applied safely at every 
single step of the multiple reflection in the instrument. 

In practice the internal reflections are seldom of interest but are even 
carefully eliminated by the absorbing walls of the objective. Only the set of 
wave fronts which consists of transmitted wave fronts alone is of prime inter­
est. With the aid of Fresnel's formulae - or in case of continuous variation 
of n - with the aid of the transport equations (16.39) we are now in the position 
to construct the electromagnetic field U0 , V0 for small wave lengths, if the 
paths of light rays in the instrument are known. The field, which by this pro­
cedure is obtained in the image space, represents the actual field to a close 
approximation. 

p 

Serious deviation from the exact solution, however, must be expected in 
the neighborhood of conjugate points, 
i.e., at points where the bundle of 
light rays from a point source P 
contracts to a narrow region. In a 
later chapter we shall see how one 
can use the present first approxima­
tion to construct a second approxi­
mation which is also valid with great 
accuracy in the neighborhood of 

Figure 37 conjugate points. 



CHAPTER II. 

HAMILTON'S THEORY OF GEOMETRICAL OPTICS 

§ 17. PRINCIPLES OF GEOMETRICAL OPTICS. 

The deduction of the principles of Geometrical Optics from the electro­
magnetic differential equations might tempt us to consider these principles as 
inherently connected with the special form of wave optics which Maxwell's 
theory represents. Actually only a few of the general premises of the wave 
theory are essential for the deduction of the laws of Geometrical Optics. 
Mathematically, this follows from the fact that the same characteristic equation 
can be obtained from various forms of wave equations, that, in other words, 
the same laws for the propagation of discontinuities can be found for quite dif­
ferent forms of wave motion. This applies especially if the field of geometrical 
optics is limited to the construction of wave fronts and light rays. 

In the next chapters we shall be concerned with this special part of 
optics. The concept of the electromagnetic field or any form of wave motion 
does not play any part in our investigation; it would, in fact, have been entirely 
possible to develop this theory from its own premises. However, in order to 
develop the diffraction theory of optical instruments, we then would be forced 
either to develop an entirely different theory or to carry out similar con­
siderations to those in Chapter I. 

17 .1 Huyghens' Principle. Huyghens' construction of wave fronts as 
envelopes of wavelets, i.e., of spherical waves, can be considered as the 
principle of Geometrical Optics which is most closely related to the concept 
of wave motion. In Chapter I this principle has been formulated mathemati­
cally as follows: If 1/J(x,y ,z) - ct = 0 represents a set of wave fronts then 
1/J(x,y ,z) must be a solution of the differential equation 

(17.11) 

The direct connection with Huyghens' construction was given by the theorem: 
If 1/J(x,y,z; a,b) is an integral of (17.11) which depends on two arbitrary param­
eters a,b, then the envelope of the wave fronts 1/J(x,y,z; a,b) - ct is also a 
wave front 1/J(x,y,z) - ct = 0 and 1/J(x,y,z) is a solution of (17.11). Indeed, 
Huyghens' wavelets V(x,y,z; x

0
,y

0
,z

0
) where (x

0
,y

0
,z

0
) is a point on a surface 

r represent integrals of the above type. 

It can be seen quite easily that Huyghens' construction leads to the above 
mathematical formulation. Let us assume that light is a wave motion of finite 

82 
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velocity. A light signal is given at a point (x 0 ,y 0 ,z 0) at the time t 0 and has 
penetrated at a time t > t 0 into a domain of the space which is enclosed by a 
surface given in the form 

Figure 38 

i.e., 

V(x 0 ,y 0 ,z 0; x,y,z) = c(t - t 0) . (17 .12) 

This set of wave fronts has a two-parameter manifold 
of orthogonal trajectories. We measure the velocity 
of the disturbance by the velocity of the wave fronts 
along the orthogonal trajectories. For two points P 1 
and P 2 on such a trajectory we have 

or in differential form 

C dt; 

(17.13) 

The velocity of the point P 1 along the trajectory is given by the vector 

( dx ~ dz) 
dt ' dt ' dt • 

dz 
dt 

~ 
dt 

(17.14) 

where v is the absolute value of the velocity. By introducing these expres­
sions in (17.13) we find 

✓ Vx2 + V 2 + V 2 = .£ 
y z V (17.15) 

We finally assume that the medium is isotropic: the velocity v at the point 
(x,y,z) shall be independent of the direction of the particular trajectory, and 
also independent of (x 0,y 0,z 0), the point where the light signal was released. 
We thus introduce 

.£ 
V 

n(x,y,z) (17.16) 
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and obtain 

V x2 + Vi + V z2 = n 2 (x,y ,z) . (17.17) 

This means that V(x 0 ,y 0 ,z 0; x,y,z) is a solution of (17.17) which depends on 
the arbitrary parameters x 0 ,y O ,z O• Huyghens' Principle, that all other wave 
fronts 1/J(x,y ,z) - ct = 0 can be found as envelopes of wavelets V(x,y ,z; 
x 0 ,y 0,z 0), then characterizes 1/J(x,y,z) also as a solution of this partial 
differential equation (17 .17). 

We remark explicitly that, with this interpretation of v(x,y ,z) as the 
velocity at points on the wave fronts, the velocity is smaller in an optical 
medium of greater n. 

17.2 Light rays as paths of corpuscles. We have introduced the light 
rays of a medium as orthogonal trajectories of the wave fronts and we have 
found that it is possible to characterize the light rays, independently of the 
concept of wave fronts, as solutions of a set of ordinary differential equations, 
namely as those solutions of the system: 

x = .l._ (..!n2) ax 2 

y .l._ (..! n2) ay 2 
(17 .21) 

z .l._ (..! n2) az 2 ' 

which satisfy the condition 

(17 .22) 

These equations allow us to employ a radically different interpretation of the 
phenomenon of light. By considering the parameter T as a time parameter 
we find that the light rays are nothing but the paths of corpuscles which move 
in a potential field cp = -½ n 2 with a velocity w = n. This interpretation, 

however, forces us to admit that the ve:iocity of the corpuscles is greater in 
the medium of greater n contrary to Huyghens' interpretation. 

The first derivation of Snell's Law was given by Descartes on the 
corpuscular basis by using the principle that the tangential component of the 
velocity is unchanged when a medium of different refractive index is entered. 
This means that the difference w' - w of the two velocity vectors w' and 
w on the boundary of the medium has the direction of the normal unit vector 
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Figure 39 

M. Hence w' = w + rM; or, since w' = n'T' 
and w = nT on account of (17.22), where T and 
T' are unit vectors: 

n'T' = nT + rM (17.23) 

This we recognize as our former formulation 
(14.16) of Snell's Law. 

17 .3 This second interpretation of Geo­
metrical Optics is the one which we have to 

adopt in Electron Optics. If a charged particle moves in an electrostatic field 
of potential cp(x,y,z) we have the equations of movement 

y Kcpy (17 .31) 

z Kcp. 

where K is a constant. It follows in the usual manner that 

x2 + y2 + z2 = 2(c - K<1>> (17 .32) 

with a constant C depending on the original kinetic energy of the electron and 
the location of its origin. If the origin of the electron lies in a part of the 
field where the potential cp is negligible then C is proportional to the original 
kinetic energy. For such electrons it follows that the possible paths of 
electrons with given original kinetic energy are the same as the light rays in 
a medium of refractive index 

n = ✓ 2(C - Kcp) . (17 .32) 

This statement allows us to apply the theory of geometrical optics of continu­
ous media directly to electron optical instruments which employ electrostatic 
fields but not magnetic fields. The velocity of the electron is greater in a 
medium of greater n and therefore is not to be identified with the velocity of 
light on the rays according to Huyghens' definition. 

17 .4 Let us consider, finally, all solutions of the equations (17 .21), and 
not only those compatible with the condition (17.22). In other words all paths 
of corpuscles of equal mass in the potential field cp = - ½ n 2 • We have for 
an individual corpuscle 

n 2 + C, (17.41) 
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where C is a constant. Let us now consider all solutions of (17 .21) for which 
(17 .41) is satisfied, C being given arbitrarily. These solutions represent a 
four-parameter manifold of curves. If we denote 

n*2 = n2 + C , 

we can write the equations (17.21) in the form 

x a (½ n*2) ax 

y a (½ n*2) ay 

z a (½ n*2) az ' 

and (17.41): 

It follows that solutions of (17 .21) which satisfy the condition 

x2 + y2 + z2 = n2 + C 

where C is a fixed but arbitrary constant determine the light rays in a 
medium of refractive index 

n* = -../ n 2 + C , 

(17 .42) 

(17.43) 

(17 .44) 

(17.45) 

(17 .46) 

17 .5 Fermat's Principle. It is quite customary to deduce the laws of 
geometrical optics from Fermat's Principle of shortest optical path. In fact 
we have seen that the extremals of the problem of variation 

P1 

l n ds 
Po 

are the solutions of the differential equations 

(nx') r Ilx 

(ny')' 

(nz') 1 Dz 

Min. (17.51) 

(17.52) 
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if we chose s the geometrical length on the extremals as a parameter. These 
differential equations have the same integral curves as (17 .21) and (17 .22). 
Euler's equations (17.52) represent necessary but not sufficient conditions for 
the solutions of the problem (17.51). It is perfectly possible that curves 
between two given points P 0 and P 1 exist with an optical length smaller than 
the optical length of the extremal between Po and P 1 , i.e., the solution of 
(17.52) which goes through both points P 0 and P 1 . The light ray, determined 
by P 0 and P 1 , then is given by the extremal and not by the curve of shorter 
or shortest optical path. 

This makes it necessary to formulate Fermat's principle more 
cautiously. The existence of curves of shorter optical path than the length of 

Figure 40 

e 

Figure 41 

Q 

Figure 42 

the light-ray can be expected if the 
two points P 0 and P 1 on the light 
ray are too far apart. To a given 
point P 0 on a given light ray there 
exists, however, a neighboring 
section of the light ray such that the 
light ray is the curve of shortest 
optical path between Po and a point 
P 1 on this section. 

On account of this, 
Caratheodory gives the following 
formulation of Fermat's principle: 
A curve e can coincide with a light 
ray if and only if each point P of e 
is an interior point of at least a 
partial section of e with the follow­
ing property: Fermat's integral 
taken along this partial section, and 
between its end points, P' and P", 
has a smaller value than the same 
integral calculated for a curve v 
different from e which has the same 
end points P' and P", and lies in a 
certain neighborhood of e. 

17. 6 A simple example for the 
case that the light ray between two 
points is not the curve of shortest 
optical path is given by the concave 
spherical mirror. Let Q be the 
vertex of the mirror and M its 
center. We consider two points, P0 

and P 1 , symmetrically located to the 
mirror axis and in the plane through 
M which is perpendicular to the axis. 
The light ray between P0 and P1 is 
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given by the line P
0 

QP
1

• Its optical path has the length P
0 

Q + QP
1

• We 
can show that any other line P0 Q 1 + P 1Q1 , where Q• lies on the mirror and 
in the plane P

0 
QP 

1 
has a shorter optical path. Let us construct the ellipse E 

through Q which has P0 and P 1 as focal points. Its radius of curvature at Q 
is certainly greater than MQ, the radius of the mirror. Hence it lies outside 
the mirror. We now extend the line P0 Q' until it intersects the ellipse at Q". 
Then P 1Q" + Q11Q1 > P 1Q' and hence 

(17 .61) 

On the other hand 

(17.62) 

Hence 

(17.63) 

which demonstrates our statement. 

The line P 1 Q' + Q'Po certainly cannot be a light ray because the 
angles of reflection can only be equal if P 1 Q' = Q'Po which is not the case. 
The optical path P0 Q + QP 1 of the actual light ray, however, has an extreme 
value, a maximum, so that the light does not choose the path of shortest but 
of longest optical length in this example. 

If, on the other hand, two symmetrical points Po' and Pt' on the light ray 
are considered which are near enough to the mirror, then the ellipse through 
Q with Po' and Pi' as focal points lies inside the mirror and the optical path 
P01Q + QP 11 becomes a minimum. This illustrates Caratheodory's formula­
tion of Fermat's principle, that the light ray is the curve of shortest optical 
path between two of its points which are not too far apart. 

§18. THE CANONICAL EQUATIONS. 

18,1 In most optical instruments there exists an axis with respect to 
which the instrument is symmetrical, On account of this it is advantageous to 

orient the coordinate system so that 
one axis, for example the z-axis, 
coincides with th~ axis of symmetry. 
In the case of rotational symmetry 
with respect to the z-axis this axis 
represents a light ray. Only those 
light rays are of practical signifi­
cance which lie in a more or less 
extended cylindrical neighborhood of 
the z-axis. We can describe these 
light rays by two single-valued 

Figure 43 functions 
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x = x(z), y = y(z) , 

89 

(18.11) 

thus excluding the case that a refracted light ray reverses direction, i.e., 
returns towards the side where it originated. We shall in general assume that 
the light is directed from left to right through the instrument. We do not 
assume in the following that the optical medium is rotationally symmetrical. 
Let us, however, limit our investigation to instruments in which the light rays 
can.be represented in the form (18.11) in a sufficiently large neighborhood of 
the z-axis. 

18.2 We derive the following results with the aid of Fermat's integral 
and interpret the light rays as the extremals of Fermat's problem of 
variation: 

V 
Zt 

f n✓l + x2 + -J 2 dz . 
Zo 

We use the notation x = ~: ; y 
dy 
dz. 

With this choice of the parameter Euler's equations of V become, 

d 
[ 

nx 
]- n. ✓1 + *' + y2 = 0' dz ✓1 + x 2 + y2 

d 
[ 

ny J- n, ✓1 + X' + y2 0. 
dz ✓1 + x 2 + y2 

The quantities 

x 
cos a 

✓1 + x 2 + y2 

cos b 
✓1 + x 2 + y2 

1 
COS C 

✓1 + x 2 + y2 

(18.21) 

(18.22) 

(18.23) 

are the direction cosines of the light ray with respect to the x,y,z axes. The 
form of the equations (18.22) suggests the introduction of the notation 
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x 
p n cos a n 

✓1 + *2 + y2 
(18.24) 

q n cos b n 
✓1 + *2 + y2 

These quantities are called the optical direction cosines. 

We can express the derivatives x and y in terms of p and q. From 
(18.24) it follows that 

n2 
(18.25) 

1 + *2 + Y2 

and hence 

x _Q_ ✓n2 - p2 - q2 
' ✓n2 - p2 - q2 ap 

(18.26) 
a ✓n2 y - p2 - q2 

✓n2 aq - p2 - q2 

The Euler equations (18.22) become with the aid of (18.25): 

nnx a ✓n2 _ p2 _ q2 p 
✓n2 ax ' - p2 - q 2 

(18.27) 

q nny a ✓n2 _ p2 _ q2 

✓n2 - p2 - q2 ay 

The equations (18.26) and (18.27) demonstrate that the functions x(z), y(z), 
p(z), q(z) satisfy a system of canonical equations 

x 

y 

where the Hamiltonian function 

p 

q 

H(x,y;p,q) - ✓ n 2 - p 2 - q 2 = - n cos c 

(18.28) 

(18.281) 

is equal to the negative optical direction cosine, -n cos c of the ray with 
respect to the z-axis. 
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We may finally express the optical length, V, of the ray in terms of 
x(z), y(z); p(z), q(z). It follows, on account of (18.25) that 
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V J -~---_-_-_-_-_-_-_-dz= ✓n2 - p2 - q2 -Zt n2 lZt( + p2 + q2 )dz 
zo ✓n2 _ p2 _ q2 zo ✓n2 _ P2 _ q2 

and hence, with the aid of (18.26): 

Zt 
V f (xp + yq. H)dz . (18.29) 

Zo 

The canonical equations (18.28) are nothing but Euler's equations of this 
integral (18.29) if the four functions x(z), y(z); p(z), q(z) are considered as 
unknown. The problem is to find functions x(z), y(z), p(z), q(z) such that 
x(z), y(z) represents a curve between P0 and P 1 for which the integral 
(18.29) has an extreme value. 

18.3 The variation problem (18.29) is called the canonical form of 
Fermat's problem (18.21). It is possible to generalize the above procedure 
so that it applies to other types of problems of variationJ Let us consider 
the problem 

V 
Zt 

J F(x,y, x,y; z)dz 
Zo 

Extremuin (18.31) 

where F is a function of the indicated variables with continuous second 
derivatives. We mention that the limitation to two unknown functions x(z) 
and y(z) is not essential. Euler's differential equations are 

We introduce 

d 
-(F·) - Fx = 0, dz x 

p F,:: (x,y; x,y; z) , 

q Fi, (x,y; x,y; z) . 

tcourant-Hilbert, Methoden der Math. Physik. 2nd Ed. of Vol. I, pp. 199 etc. 
(Transformation of Friedrichs). Vol. II, page 96. 

(18 .32) 

(18.33) 
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If we assume that the Jacobian 

I o (18,331) 

it is then possible to calculate x and y from (18.33) as functions of x,y; p,q, 
and z. We now define the function H(x,y; p,q; z) by the equation 

F+H=xp+yq (18.34) 

with the understanding that x and y shall be replaced by their expressions 
in x,y,p,q, and z determined from (18.33). If we differentiate the identity 
(18.34) with respect to p, we obtain 

ax ay . ax ay 
F·-+F·-+H =x+p-+q-xap Yap p ap ap (18.35) 

or, by (18.33): HP = x. In a similar way we find y = Hq. This demonstrates 
the interesting fact that the inverse transformation (18.33) is of the form 

x HP (x,y; p,q; z) , 
(18.36) 

i.e., with regard to H,p,q it is of the same form as the original transforma­
tion (18.33) with regard to F, x, y. 

We can summarize these results in the formulae: 

p 

q 

F· X 

F· y 

x 
F+H xp+yq, 

y 
(18.37) 

which represent the transformation of the function F(x,y; x,y; z) into 
H(x,y; p,q; z) and its inverse. A transformation of this type is known as a 
Legendre transformation of the function F(x,y) and the variables x,y into 
the function H(p,q) and the variables p,q. 

The variables x,y and z in this transformation only J;>lay the part of 
parameters. We show, however, that the equations 

0 ' (18,371) 
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are identities if either x and y in F are expressed by x,y; p,q; z or p,q in 
H by x,y; x,y; z with the aid of (18.37). 

In fact, from F + H = xp + yq follows with respect to the variables 
x,y; p,q; z; 

ax a· 
P - + qEX ax ax 

Hence, on account of p = Fie and q = Fy, Fx + Hx 
if the variables x,y; x;y; z are considered 

O. Furthermore, 

i.e., again F x + Hx = O. The other identities (18.371) follow in a similar 
manner. 

Euler's equations (18.32) in terms of x,y; p,q; z become, by (18.33) 
and (18.371); 

(18.38) 

On the other hand, from (18.37), we have 

(18.381) 

which shows that x,y; p,q are solutions of the canonical equations with 
H(x,y; p,q; z) as the Hamiltonian function. 

The variation integral (18.31) assumes the form 

V 
Zt 

f (xp + yq - H) dz 
Zo 

(18.39) 

if F is replaced according to (18.37). The canonical equations (18.38) and 
(18.381) are Euler equations of this integral as we readily verify. 
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By applying the transformation (18.37) to Fermat's problem, i.e., to the 
function 

F n(x,y,z) ✓1 + x2 + y2 

we find H = - ✓n2 - p 2 - q 2 , in agreement with our former result. 

§19. HAMILTON'S CHARACTERISTIC FUNCTION V(x 0 ,y 0 ,z 0; x,y,z). 

19.1 The numerical investigation of a given optical instrument is 
carried out in general along the following lines. One considers a point 

,1 (x o ,yo) of a certain 
,' : plane z = z O which is 

,' I / , called the object plane. 
,-/x 1 : A suitable number of 

Ll.--+-------:/~-- _,.4 rays which originate at 
/ ,.-·· ,,•· : the point (x 0 ,y 0) are 

~~---,... : traced through the in­
strument with the aim of 

Figure 44 

calculating their inter­
section (xi,y1) with 
another plane z = z1 , 

the image plane. In a 
corrected instrument all 
these rays should inter­
sect the image plane at 
points (xi,y1) which are 
as near as possible to 
the ideal image point 

(19.11) 

where M is a constant of the instrument depending only upon the choice of the 
object plane, and not on the data of the incident ray. 

The incident ray is completely determined by (x O ,y 0), the intersection 
with the object plane, and by its optical direction cosines 

Po n 0 cos a 0 
(19.12) 

q 0 n 0 cos b 0 

The intersection (x1,y1) of the refracted ray with the image plane z = z1, 

and its optical direction cosines p1,q1 at this plane, are functions of the initial 
data at z = z O : 
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(19.13) 

To determine these four functions is a problem of numerical computation 
in practical optics. The optical image of the plane z = z 0 on the plane 
z = z1 is considered as perfect if the first two functions (19.13) reduce to 

(19.14) 
Yt Myo 

M being a constant for all points x 0 ,Y O of the plane z = z O , and all di­
rections p 0 ,q 0 • The main problem of optical design is to find a distribution 
of optical media, n = n(x,y ,z), such that the conditions (19.14) are satisfied, 
or at least approached to a high extent. The deviations 

(19.15) 

are called the aberrations of the optical system. 

19.2 The main result of Hamilton's theory is that it is possible to 
reduce the above problem of finding four functions to the problem of finding 
one function alone. From this function, then, the four functions (19.13) can be 
deduced by differentiation and elimination. The derivation of this result can 
be carried out for canonical equations in general just as readily as for the 
special optical Hamiltonian H = - ✓ n 2 - p 2 - q 2 . Therefore we do not 
assume this special form of H in the following: 

Let us assume that 

(19.21) 
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is the solution of the canonical equations 

x 

y 

p 

q 
(19.22) 

which for z 
identities 

z 0 has the initial values x 0 , y 0 , Po, q 0 . Hence we have the 

Xo x(z o ,z o; xo ,yo ,Po ,qo) 

Yo y(zo,zo; xo,Yo,Po,cio) 
(19.23) 

Po p(z o ,z o; xo ,yo ,Po ,qo) 

qo q(zo,zo; xo,Yo,Po,qo) • 

At the image plane z = z1, the functions (19.21) assume the values 

(19.24) 

If the Jacobian of the first two of these equations with respect to (p 0 ,q 0) is 
not zero, 

(19.25) 

we can calculate (p 0,q 0) from these equations as functions of z 0 ,z1; x 0 ,y 0 , 

x1,y1. By introducing these functions in (19.21), we obtain four functions 
x,y; p,q of the variables z 0 ,z1; x 0 ,y 0 , x1,Y1, and z; namely 

X x(z 0,z1; x 0,y 0,xi,y1; z) 

y y(zo,z1; xo,Yo,X1,Y1; z) 
(19.26) 

p p(z 0 ,z1; x 0,y 0 ,xi,y1; z) 

q q(zo,z1; xo,Yo,X1,Y1; z) 

which represent the light ray which goes through the point x 0 ,y O ,z O of the 
object plane, and the point x1,y1,z1 of the image plane. 
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These functions now are .introduced in the integral for the optical path 

z1 
V f (xp + yq - H) dz , (19.27) 

Zo 

so that a function 

(19.28) 

is found which determines the optical distance between the points (x 0 ,y 0,z 0) 

and (x1 ,y 1,z1). 

19.3 Our aim is to show that the total differential dV of this function 
has the form 

(19.31) 

where the coefficients pi,q1; p 0,q 0 are functions of (z 0,z1; x 0 ,y 0,xi,y1). 

From these functions the desired "image functions" (19.24) can be found by 
elimination. By H1 and H 0 we denote the expressions 

(19.32) 

From (19.31) it follows that 

av av 
H1 

av 
Po = - - Pt ' 

= -
' axo ax1 az1 

(19.33) 
av av 

Ho 
av 

qo = 
' q! = 

' 
= +-. 

ayo ay1 az 0 

The first and second column of equations are equivalent to the equations 
(19.24) and demonstrate the fact that the four functions (19.24) can be found 
from one function V(z 0,z1; x 0,y 0 , Xi,Y1) by differentiation and elimination. 

The last column of (19.33) represents two partial differential equations 
for V which we obtain by introducing the partial derivatives of V for p O, q O, 

Pi, qi in H0 and H1. We find 

av 
H(xo,Yo,zo; 

av av) 
az 0 ax 0 ' - ayo 

(19.34) 
av ( av av) - - H x1,yi,z1; ax1 ' ay1 az1 
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19.4 The proof of the above theorem is not difficult. First we consider 
the integrand 

J= xp + yq - H (19.41) 

of (19.27). This becomes a function of (z 0 ,z1; x 0,y 0 , xi,y1) and z if the 
functions (19.26) are introduced. Let (J' denote any one of the parameters 
(z 0 ,z1; x 0,y 0 , x1,y1). Hence 

(* - Hp) ~a~ + (y· - H ) aq + ax - H ax 
u q 8(1' p 8(1' X 8(1' 

or, by the canonical equations (19:22): 

ad ax av .ax .av 
- = p-+q=-+p-+q=-
8(]' 8(1' 8(1' 8(1' 8(1' 

This, however, is equal to 

and it follows that 

aJ 
8(1' 

d(ax ay) 
dz p 8(1' + q 8(1' ' 

(19.42) 

(19.43) 

(19.44) 

(19.45) 

Let us now assume that (J' is one of the parameters x 0 , Yo, xi, y1. Then 

av zi ad 
a(]' = J a;: dz, (19.46) 

Zo 

and we conclude immediately from (19.45), and from the relations 

x(z1) Xt' x(z 0) Xo ' 

y(z1) Yt , y(zo) Yo , 

the four relations 

av av av av (19.47) 
ax1 

Pt, axo 
- Po , 8y1 qt ' 8Yo 

- qo . 
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If, however, a- = zi, we have 

- Po ( :: ) - qo (~) 
1 z=z 0 1 z=z 0 

From the identities 

it follows that 

o = (~ + x) • az ' 
1 z=z1 

and similarly: 0 (.QL + ·) az y 
1 z=z1 

Hence 

By analagous methods in case a- = z O, we obtain from 

av 
az 0 

aJ 
aa- dz , 
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(19.48) 

(19.49) 

the relation ~V = + H0 , which, together with (19.48) and (19.47), represents 
oZo 

the hypothesis (19.33). 

19.5 In the case of the optical Hamiltonian H -✓n 2 - p 2 - q 2 , 

the function V(z 0,z1; x 0,y 0; x1,Y1) is identical with Huyghens' wavelet function. 
The surfaces V = const. are the spherical wave fronts around the object 
point x O, y O, z O• In our present interpretation it measures the optical distance 
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of two points, one of which is lying on the object plane, the other on the image 
plane. V is completely determined by the instrument and the position z 0 , z1 
of the two planes. Hence it is called the Characteristic of the instrument; 
especially the Point characteristic, since it is a function of two points. 

If the point characteristic V for a given pair of planes z 0 and z1 is 
known, we can find the image functions (19.24) by elimination from the 
formulae 

Po - Vxo<zo,z1; Xo.Yo,X1,Y1) 

Pt Vx1Czo,z1; xo,Yo,X1,Y1) , 
(19.51) 

qo - Vy 0Czo,z1; xo,Yo,x1,Y1) 

qi Vy1 (zo,z1; xo,Yo,X1,Y1). 

Finally, from (19.34) it follows that V can be found as the solution of the two 
partial differential equations 

§20. HAMILTON'S CHARACTERISTIC FUNCTIONS, WAND T. 

20,1 We have obtained the point characteristic V(z 0 ,z1; x 0 ,y 0 ,x1,Y1) by 
introducing the functions (19.26) in the integral (19.27). Let us now consider 
the image functions (19.24) again, and assume that the Jacobian of the last two 
equations with respect to Po and q 0 is not zero: 

(20.11) 

Then we can calculate p O and q O from these two equations as functions of 
(z 0,z1; x 0 ,y0 ,p1,q1) and introduce these functions in (19.21). We obtain four 
functions 

X = x(z o ,z1; Xo ,Yo ,p1,q1) , 

y y(z o ,z1; xo ,Yo ,p1,q1) , 
(20.12) 

p p(zo,z1; xo,Yo,P1,q1) , 

q q(zo,z1; Xo.Yo,P1,q1) • 
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They rep re sent the light ray from a point (x O ,y O) of the object plane which 
intersects the image plane with the direction (Pi,qi)• If the functions (20.12) 
are introduced in the integral (19.27), we obtain V as the function 

(20.13) 

From (19.31) it follows that 

(20.14) 

On the left side we replace xi and Yi by 

(20.15) 

and obtain a function 

W = V - XiPi - Y iqi , (20.16) 

of the six variables z O ,z i; x O ,y O ,p i,q 1, which has the differential 

(20.17) 

It follows that 

8W 8W 
Hi 

8W 
Po = - ' 

Xi ' ' 'oxo 'opi 'ozi 
(20.18) 

8W 8W 
Ho= + 8W qo = 

' Yi = 
' 'oyo 'oqo 'ozo 

By comparing these equations with (19.33) we find that only the second 
columns are formally different. We recognize immediately that these four 
equations 

Pt= 
8V 
8x1 ' 

8V 
qt = 'oyi ' 

together with (20.16), i.e., 

V-W 

8W 
Xt 'opt ' 

(20,181) 
8W 

Yt 8qt ' 

X1P1 + Ytqi , (20,182) 
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represent a Legendre transformation and its inverse. Thus we may formulate 
the statement: 

The function - W can be obtained from V by transforming V, and the 
variables x1, Y1 with a Legendre transformation. 

The last column of (20.18) allows us again to characterize W as a 
solution of two partial differential equations: 

aw ( = H xo, Yo, 
8z 0 

aw 
8x 0 ' 

(20.19) 

In the special case of optics we obtain the two equations: 

aw 
az 0 

(20.191) 

20.2 The function W(z 0 ,z1; x 0 ,y 0; p1,q1) is called Hamilton's mixed 
characteristic because it depends upon one point of the object plane, and on 
the direction (p1,q1) of the ray at the image plane. It is not difficult to give 
a geometric interpretation to this function. 

Figure 45 

Let us consider a light ray 
originating at a point P O: 

(x 0 ,y 0) of the object plane. 
Let P 1: (x1,y1) be its inter­
section point with the image 
plane and (pi,q1) its direction 
at this point. We construct 
the tangent of the ray at P 1 
and drop the perpendicular 
01Q1 from the origin 01 of 
the (xi,y1) plane onto this 
tangent. The optical length of 
the straight section P 1Q1 of 
the tangent, measured with the 
index n1 at P1, then is given 
by 

(20.21) 

The optical path between P O and P 1, on the other hand, is given by the 
function V. It follows that 
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The mixed characteristic W = V - XtP1 - y 1q1 represents the optical 
length of the light ray from its origin (x 0, Yo, z 0) to the foot Q1 of the perpen­
dicular dropped from 01 upon the tangent of the light ray at P 1. The optical 
length of the linear section P 1Q1 has to be measured with the index n1 at the 
point P 1. 

20.3 The method described in 20.1 can obviously be varied in many ways 
and leads to other characteristics. The essential point in all these variations 
is that among the canonical variables (x 0, y 0; Po, q 0) and (xi, Yti Pi, q1) any 
two pairs may be selected, provided that one pair belongs to the object plane, 
and one pair to the image plane. By excluding the case that one pair consists 
of variables of different canonical type (for example (x 0, Po)), we obtain four 
combinations, i.e., four characteristics: 

Point characteristic: 

Mixed characteristics: 

Angular characteristic: 

{
W(z 0 ,z1; x 0 ,y 0 ,p1,q1) 

W*(z 0 ,z1; Po ,qo ,Xi,Y1) 
(20.31) 

All of these different functions have their use in practical optics. We 
have established the first two V and W. The third function W* follows by 

considerations very similar to those 
in (20.1). The geometrical inter­
pretation of W* is that of the optical 
length of the ray from the foot Q O of 
the perpendicular O 0Q O dropped 
from O O onto the tangent of the ray 
at P O to the intersection P 1 with 
the image plane. The section Q 0P 0 
of the tangent has to be measured 
with the index n 0 at P 0 , i.e., by 

Figure 46 n 0 (x 0, y 0). 

The function W* is defined by 

W* = V + XoPo + Yoqo ' 
(20.31) 

and we obtain the relations 

8W* 8W* 
H1 

8W* 
Xo apo Pt ax1 az1 

(20.32) 
8W* SW* 

Ho 
8W* 

Yo 8qo 
qi 

8y1 azo 
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It satisfies the partial differential equations 

i.e., in the optical case: 

8W* 
az 0 

( 8W* 8W* ) 
+ H 8po '8qo 'Po, qo, zo 

(20.33) 

(20.34) 

In order to carry out the necessary eliminations, we have to assume 
that the Jacobian 

(20.35) 

20.4 The angular characteristic T. In order to derive Hamilton's 
angular characteristic T(z 0,z1; p 0 ,q 0 ,p1,q1) we again consider the image 
functions (19.24) and use the last two equations to express (x 0,y0) as functions 
of (z 0 ,z1; p 0 ,q 0 ,pi,q1). In order to be able to do this, we have to assume 

(20.41) 

By introducing the resulting function x 0 , y O in (19.21), we obtain 

X = x(zo,z1; Po,qo,P1,q1; z) 

y y(zo,z1; Po,qo,P1,q1; z) 
(20.42) 

p p(zo,z1; Po,qo,P1,q1; z) 

q q(zo,z1; Po,qo,P1,q1; z) 

and these equations represent a light ray which leaves thE; object plane with 
the direction p 0 , q 0 and intersects the image plane with the direction p1,q1. 
We introduce these functions in the integral (19.27) and obtain V as the 
function 

(20.421) 
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From (19.31) it follows that 

(20.43) 

By introducing the functions 

(20.441) 

in 

T = V - XJ.P1 - Y1q1 + XoPo + Yoqo (20.44) 

we obtain a function T 
to (24.43), is given by 

T(z 0,z1; p 0,q 0,p1,q1) whose differential, according 

(20.45) 

It follows that 

aT aT 
H1 

aT 
Xo apo ' Xt apt ' az1 ' 

(20.451) 
• aT aT 

Ho 
aT 

Yo ' Yt = -
' 

= 
aqo aq1 azo 

The first two columns (20.451), and (19.33), and (20.44) show that V and - T 
are related by the Legendre transformation 

av av aT aT 
- -Po = +- P1 = 

' Xo = 
' 

Xj 
axo ' ax1 apo apt 

av av aT aT 
- qo 

' 
qt = 

' Yo = 
' Yt = 

ayo ay1 aqo aq1 

with respect to the variables (x 0,y 0,x1,Y1) and (- Po, - qo, Pi, q1), 
respectively. 

' 
(20.46) 



106 MATHEMATICAL THEORY OF OPTICS 

The last column (20.451) yields two partial differential equations for T: 

which, in the case 

becomes 

8T 
az 0 

( 8T 8T ) 
H 8p o , 8q o ' po , q o ; z o ' 

(20.47) 

H(x,y ,p,q; z) ✓n2 (x,y,z) - p2 - q2 ' 

8T 
az 0 

(20.48) 

For the geometric interpreta­
tion of T, let us construct the 
tangents of the light ray at P 0 

and P 1, and drop the perpen­
diculars from 0 0 and 0 1 to 
these tangents. Let Q 0 and 
Q1 be the foot points of these 
perpendiculars. Then 

(20.49) 
Figure 47 

which is the optical distance 
from Q O to Q 1 if the straight 

sections on the tangents are measured with the indices n 0 and n1 at the 
points P 0 , P 1 respectively. 

20.5 The special significance of the angular characteristic T rests 
upon the fact that the dependance on the variables z 0 and z1 is linear in 
practical cases. Let us assume that the medium is homogeneous outside a 
given domain of the space. For example: 

n = n 0 

n = n1 

constant for z < 1 0 

constant for z > 11 
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Obviously this is the case in 
almost all optical instruments. 
We assume the planes z 0 and 
z1 in these homogeneous parts 
of the space, i.e., z 0 < 10; 

Z1 > 11 • 

Figure 48 Let now T = T(z 0 ,z1; 
Po,qo,Pi,q1) be the angular 

characteristic for the planes z 0 and z1, i.e., the optical distance between the 
foot points Q O and Q1. 

For anoth~r pair of reference planes z0 and- z1 we have an angular 
characteristic T, and the relation between both is given by 

(20.51) 

However, we have 

(20.52) 

Hence it follows that 

(20.53) 

We can express this result as follows: The function 

T ,Ii 2 2 2 ✓ 2 2 2 + Zo no - Po - qo - Z1 n1 - P1 - q1 = To (20.54) 

is independent of z 0 and z1 i.e., of the choice of the reference planes. In 
other words: T is a linear function of z 0 and z1: 

(20.55) 

provided that both "object space" and "image space" are homogeneous. 

We can expect that the function T O itself will be of significance for 
finding properties of the optical instrument and its image performance which 
apply to any choice of object the image plane. 

§21. INTEGRAL INVARIANTS. 

21.1 Fields of light rays. A set of wave fronts 1/J(x,y,z) = a constant 
defines, by its orthogonal trajectories, a two-parameter manifold of light rays. 
In general, we call a two-parameter set of light rays a congruence of rays. 
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Figure 49 

Figure 50 
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The special congruences which are formed 
by the orthogonal trajectories of a set of 
wave fronts are known as normal congru­
ences. If a domain D is covered by the 
rays of a normal congruence such that, at 
every point P of D, we have one and only 
one ray through P then we say that the 
light rays form a field in D. The quantities 
p, q, and ../ n2 - p2 - q2 = r determine 
a vector field in D. (p,q,r) is called the 
field vector. 

Let us derive the condition which 
determines a normal congruence of light 
rays. We can characterize a congruence 
of rays as follows: We consider a surface 
~ in space given in parametric form 
X = X(~, 11 ); or explicitly: 

X = f(~,11) 

y (21.11) 

Through any point (~, 11) of this 
surface we construct a light ray such that 
its optical direction cosines 

p, q, r = ..; n2 _ p2 _ q2 

are determined by given functions 

p = p(~.11), q = q(~,11). 

These rays can be found in the same manner as in §9 as the solutions, 
X(~,11,T), of the differential equations 

x nnx 

y where x d 2x 
etc. (21.12) nny 

dT 2 ' 

z nnz 
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which satisfy the boundary conditions 

x(;,1) ,0) 

y(;, 1) ,0) 

z(;, 1) ,0) 

f(;,1)) ' 

g(;, 1)) ' 

h(;,1J) ' 

x(;,1J ,o) 

y(;,1) ,0) 

z(;,1J ,0) 

We make the assumption that the Jacobian 

8(x,y,z) -f. 0 
8(;,1),T) 

p(;,1)) ' 

q(;,1)) ' 

r(;,1)) . 
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(21.13) 

in a neighborhood of ~; all the following considerations refer only to such 
domains D which lie in this neighborhood. 

Let us now assume that the rays X = X(;,1) ,T) form a field in the 
neighborhood of ~- Then there exists a set of surfaces r to which the rays 

Figure 51 

and has the derivatives 

are normal. We consider one of these surfaces 
r 0 • We can, with the method of §9.4, construct 
a function l/J(x,y,z) such that l/J = 0 on r 0 and 
such that l/J satisfies the differential equation 

The surfaces l/J = a constant are normal to the 
light rays, and we have, at any point (x,y,z), 
the relations 

X=gradl/J. (21.14) 

On ~ the function l/J assumes the values 

F(;,1J) = l/J(f,g,h) , 

(21.15) 

These last equations demonstrate that 

dF = pdf + qdg + rdh 

must be a total differential on ~ . 

(21.16) 
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On the other hand, if on a given surface l'! the differential expression 
pdf + qdg + rdh is a total differential, dF = Ft d; + F JJ d77, then the con­
gruence of light rays satisfies the conditions 

(21;17) 
FJJ pfJJ + qgJJ + r~ 

on l'!, and by §9.3 we obtain a solution of 1/i} + ¢/ + ¢/ 

T 

1/i F(;,T/) + J n 2 dT , 

n 2 in the form 

0 

such that the surfaces 1/J = a constant are intersected at right angles by the 
rays of the congruence. Hence the congruence is normal. 

We can formulate the statement: A congruence of light rays forms a 
field in D if, and only if, the expression pdf + qdg + rdh is a total differen­
tial on an arbitrary surface x = f(;,77), y = g(s,7]), z = h(;,7]) in D. 

From the above considerations it follows that the normality of a con­
gruence of rays is insured if the differential pdf + qdg + rdh is total on one 
particular surface l'! 0 in D. 

Figure 52 

This gives the theorem of Malus: 

If a normal congruence of straight lines 
is submitted to an arbitrary number of 
refractions then the final congruence is 
still normal. 

Indeed, this follows from the pre­
ceding remark if we assume that object 
and image space are homogeneous, i.e., 
the light rays are straight lines. We 

remark that Malus' theorem is true also in case of reflections or combinations 
of refractions and reflections. 

We next consider a closed curve C: X = X(s) = (x(s), y(x), z(s)) on 
a surface l'!. Since pdx + qdy + rdz is total, it follows that the line integral 

J p dx + q dy + r dz = O • 
C 

Since l'! is arbitrary, this yields: The line integral 

J p dx + q dy + r dz 
C 

is zero for any closed curve C which lies in the field D. 

(21.18) 
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The quantities (p,q,r) at a point (x,y,z) are the optical direction cosines 
of the field ray which goes through this point. If the closed curve C is given 

in the form X = X(s), where s is the 

Figure 53 

length on the curve, we can write (21.8) in 
the form 

J n cos 0 ds = 0 , 
C 

(21.181) 

0 being the angle between the tangent of 
the curve and the direction of the field ray 
at this point. 

Finally, in (21.18) we may introduce 

the expression r = .../ n 2 - p 2 - q2 = - H, 
and consider a curve C which connects two points P 0 and P 1 in the field. 
It follows that the integral 

P1 
V 1 (p dx + q dy - H dz) 

Po 
(21.19) 

is independent of the path between P O and P 1, and thus determines a function 
V (P O, P 1) of the end points alone. In order to determine this function 

Figure 54 

V (P O, P 1) let us choose a special path 
between P O and P 1 which consists of a 
section P 0P of the field ray through P 0 
such that P lies on the surface 1/J = I/J(P1) 
through P 1. The section PP 1 may be an 
arbitrary curve on the surface 1/J = I/J(P1). 
The expression (21.181) shows that the inte­
gral on PP1 is zero and that on P 0P it 
determines the optical length 1/J(P) - 1/J(Po) 
of this section. Hence the result 

P1 
f (p dx + q dy - H dz) 
Po 

(21.191) 

is independent of the curve which connects P O and P 1• 

This integral is nothing but Hilbert's invariant integral determined for 
our special optical problem of variation. It allows us to find the wave fronts 
1/J(x,y ,z) which belong to a given field of light rays. 
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Let us for example consider the normal congruence of rays which go 
through a given point (x 0 ,y0 ,z 0). The problem is to determine the corre­

sponding wave fronts 

p V(x 0,y 0 ,z 0 , x,y,z) = ct, 

i.e., Huyghens' wavelets. 

By our former method 
in §9.5 we have to determine 
the light ray through P O and 
a point P = (x,y,z), and then 
calculate the integral (9.55) 

Figure 55 along this light ray. By our 
result (21.191) we can avoid 
the determination of the light 

ray, but we are permitted to integrate (21.191) over an arbitrary curve 
between P 0 and P: 

p 

f (p dx + q dy - H dz) 
Po 

(21.192) 

21.2 In the case of a congruence of rays which is not normal the above 
results are of course not valid. It is however possible to derive a number of 
interesting results about integrals on closed curves. We derive these results 
for solutions of canonical equations in general. 

Let us assume that a surface ~ is given in the form 

(21.21) 

Through the points of this surface we construct a two parameter manifold of 
curves such that their direction on ~ is given by two arbitrarily chosen 
functions 

Figure 56 

Po Po(Xo.Yo) 
(21.22) 

The curves and their directions 
are represented by the solu­
tions x(z), y(z); p(z), q(z) of 
the canonical equations 

x 

y 
which satisfy the above 
boundary conditions. 

(21.23) 
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We obtain four functions 

(21.231) 

q q(xo.Yo, z) 

which determine a congruence of curves. 

We consider a domain D of the space such that through every point P 
of D goes one and only one ray. We thus assume in D that the Jacobian 

so that we can relate to every point (x,y ,z) a corresponding point 
(x 0 ,y 0 ,z 0 == f(x 0 ,y 0)) on the surface 2: with the aid of the first two equations 
(21.231). The optical distance of a point (x,y ,z) from its corresponding point 
(x 0 ,y 0 ,z 0) is given by Hamilton's point characteristic V(x 0 ,y0 ,z 0 , x,y,z). By 
introducing in this function 

x 0 x 0(x,y ,z) , 

Yo Yo(x,y,z) ' 

z 0 f ( x 0(x,y ,z),y0(x,y ,z)} == z 0(x,y ,z) , 

from (21.231) and (21.21), we obtain a function of x,y,z alone, namely, 

V*(x,y,z) == V(x 0(x,y,z),y 0(x,y,z),z 0(x,y,z);x,y,z) 

The differential of this function can be found with the aid of 

(21.232) 

dV* == - p 0dx 0 - q 0dy 0 + H 0dz 0 + pdx + qdy - H dz . (21.24) 

In this formula we have to interpret Po, q 0 , H 0 as functions of (x,y,z) which 
can be obtained by introducing (21.232) in (21.22) and in 
H 0 == H(x 0 ,y 0 ,p 0 ,q 0 ,z 0). The differentials dx 0 , dy 0 , dz 0 are the differentials 
of the functions (21.232) i.e., linear combinations of dx,dy ,dz. 

We integrate the equation (21.24) over an arbitrary closed curve C in 
D. It follows that 

0 == - J (p 0dx 0 + q 0dy 0 - H 0dz 0) + J (pdx + qdy - Hdz) , (21.25) 
C 0 C 
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where C O is the curve on E which is formed by the corresponding points to 
the points of C. The equation (21.25) demonstrates that the integral, 

J = fc p dx + q dy - H dz (21.251) 

has the same value for all closed curves C which have the same correspond­
ing curve C 0 on E. Let us now consider a "tube" of light rays, i.e., the 

Figure 57 

surface which is formed by the rays 
through a closed curve C O on E. All 
closed curves C which go around the 
cylindrical wall of this tube have C O as 
a corresponding curve. Hence it follows: 
The integral 

J = f (p dx + q dy - H dz) 
C 

has the same value for all closed curves 
C around a given tube of rays. It is an 
invariant of the tube.t 

We can easily obtain the results of 21.1 even in a more general form. 
Indeed, if on E the functions p 

O 
, q 

O 
, and z 

O 
= f (x 

O 
, y 

O
) are such that the 

expression Po dx 0 + q 0 dy 0 - H 0 dz 0 is a total differential, then J has the 
value zero for all curves C. 

Congruences of rays of this type are called transversal; or, the rays 
form a field. It is possible in this case to construct a set of surfaces 
1/)(x,y ,z) = a constant, such that every surface is intersected in the "trans­
versal" direction p,q. This direction is defined by those p,q on the surface, 
for which 

p dx + q dy - H dz 

for all increments dx, dy, dz on the surface 1/J 
which satisfy the condition 

We obtain two equations for p,q: 

P 1/Jz + H 1/Jx = 0, 

t Poincare's invariant 

0 (21.26) 

0, i.e., for all dx, dy, dz 

0 . (21.261) 

o. (21.262) 
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In case H = - ✓n 2 - p2 - q2 ' we find readily 

1/Jx 
p n 

✓I/Jx2 + 1/J/ + I/Jz2 
(21.263) 

1/Jy 
q n 

✓I/Jx2 + 1/J/ + I/Jz2 

as a solution of (20.262). This shows that the transversal direction has the 
direction of the surface normal in the optical case. 

We finally mention an interesting geometrical interpretation of the 
integral invariant (21.251) which was given by Prange. Let us consider the 
case of optics where, as we have seen above, the integral (21.251) can be 
written in the form 

J 

Figure 58 

J n cos 0 ds , 
C 

(21.27) 

0 being the angle between curve tangent 
and light ray. We choose a curve C 
which intersects the rays of the wall of 
the tube at right angles. We can in gen­
eral not expect that this curve is closed 
but will reach the light ray through the 
starting point P O at a point P1 different 
from P 0• We close the curve, however, 
by the section P 0P 1 on the ray, on which 
cos 0 = - l. It follows that 

P1 

J J n ds . (21.28) 
Po 

Since J is invariant, we find that the optical path between P O and P 1 

is the same wherever the beginning, P O, of such a curve lies. By continuing 
the curve C, we obtain a spiral around the tube which divides every light ray 
in parts of the same optical length. The spiral becomes a closed curve in 
case of a normal congruence of rays. 

We also may consider a spiral which intersects the rays of the tube at 
an arbitrary but fixed angle 0 0. Let C be the curve which consists of one 
turn P 0P 1 of the spiral and the section P 1P 0 on the light ray. From (21.27) 
it follows that 

P1 

n ds - J 
Po 

n ds J . (21.29) 
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Let L be the optical length of one turn of the spiral and 1. the optical length 
of the width of the "thread" on the ray through P O• It follows that 

L cos 0 0 = J + 1.. (21.291) 

If we consider m turns of the spiral and denote by L the total length of 
the m turns and by 1. the length of the thread, we find 

L cos 0 0 = mJ + 1. . (21.292) 

In case of J = 0, i.e., if the rays of the tube belong to a normal con­
gruence, we obtain the interesting relation 

L cos 00 = 1.. (21.293) 

We observe that the above results refer actually not to congruences of 
rays, but to any one parameter manifold of rays through a closed curve in 
space. If the medium is homogeneous (n = 1) then L and 1. are geometrical 
lengths and our results refer to tubes whose walls are formed by a set of 
straight lines through a closed curve. 

§22. EXAMPLES. 

22.1 Mixed characteristics for stratified media. Let us consider the 
case of a stratified medium in which n = n(z). The optical designer fre­
quently has to deal with this case. If an optical instrument contains a number 
of 45° prisms, it is possible to replace it by a fictitious instrument which 

Figure 59 

contains a corresponding 
number of parallel plates 
lined up on the same axis. 
The thickness of the plates 
must be equal to the path 
along the axis of the instru­
ment which originally is 
broken into several reflec­
tions. The mixed characteristic 
W(z

0
,z

1
; x

0
,y

0
,p

1
,q

1
) satisfies 

the partial differential 
equations (20.191). The 
second of these equations 
becomes, in·our case, 

aw 
az 0 

(22.11) 
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We can determine W as a solution of this equation which satisfies the 
boundary condition 

w - (xoPt + Yoqt) 

at z 0 = z1. 

Yt 

Indeed, in case z 0 = Zt we have Po 
y 0; hence by (20.18): 

aw aw 
ax0 

- Pt , apt 

aw aw 
ayo - qt ' aqt 

which yields (22.12). 

Pt, qo 

- Xo 

- Yo 

(22.12) 

qt, and Xt Xo, 

A solution W(z 0 ,zt; xo,Yo,Pt,qt) with these boundary values can be 
found easily. We introduce a function of the type 

W = a(zo) - XoPt - Yoqt 

in (22.11) and find the condition 

i.e.' 
Zo 

J ✓n2 (z) - Pt2 - q 12dz + a(zi) . 
Zt 

The boundary condition (22.12) requires a(zt) O; hence 

Zt 
W = J ✓n2 (z) - Pt2 - qt2 dz - XoPt - Yoqt 

Zo 

is the desired solution. 

(22.13) 

(22.14) 

(22.15) 

(22.16) 

The image functions of our instrument are determined by the general 
equations (20.18). The result is: 

Zt dz 
Xt = Xo + Pt J , Po Pt 

zo ✓n2 (z) - Pi2 - qi2 
(22.17) 

Zt dz 
Yt = Yo + qt J 'qo qt 

zo ✓n2 (z) - Pi2 - qi2 
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The equation (22.16) is also valid in case n is discontinuous. For example, 
in the case of a system of parallel plates of thickness P. 1 and index n1 we find 

.1.0 .e, ,12 ,t.3 

"o n I n 2 n 3 

Figure 60 

n = I 

Figure 61 

w 
k 

L P.1✓n12 - Pt2 - ql 
1= 0 

- (XoPt + Yoqt). (22.18) 

This last result makes it 
obvious that the optical coor­
dination of rays is completely 
independent of the order in 
which the plates are arranged. 

We apply our result to 
the following problem. Let us 
consider a stratified medium 
such that n(z) is different 
from 1 only in the region 
L 0 :§ z :§ Lt, Outside the 
region we have n(z) = 1. 

We consider all the light 
rays which originate at the 

z I point x 0 = Yo = 0 of the plane 
z O and determine the corre­
sponding rays after passing 
the region L 0 :§ z :§ Lt, The 
equations (22.17) demonstrate 
that the refracted ray is 
parallel to the incident ray: 

its intersection with the plane z = Zt, 
Pt = Po; qt = q 0 , and that 

is given by 

[
Lo - z 0 + Zt - Lt Lt dz 

- ... ] Xt Po + J 
✓1 - Po2 - qo2 L 0 ✓n2 - Po2 

(22.19) 

[
L 0 -z 0 + Zt - Lt Lt dz, 

- ... ] Yt = qo + J 
✓1 - Po2 - qo2 Lo ✓n2 - Pl 
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The ray in the region z > L1 is clearly a straight line and its equation 
is: 

[ 
Lo - zo + z - L1 L1 dz ] X = Po + J 
✓1 - Po2 - qo2 Lo ✓n2 - Po2 - qo2 

(22,191) 

[
Lo - z 0 + z - L1 L1 dz 

- q,' ] 
y qo + J . 

✓1 - Po2 - qo2 Lo ✓n2 - Pa2 

We wish to investigate whether this two-parameter bundle of straight 
lines still has a common point of intersection or, lf not, how much it departs 
from such a bundle. From (22,191) it follows that all rays which include the 
same angle 0 with the z-axis intersect each other at a point Z of the z-axis. 
Introducing 

cos 0 , 

we obtain 

z z o + L1 - L 0 - cos 0 (22,192) 

Since Z is a non-constant function of 0, we see that the refracted 

0 

Figure 62 

az Z Z - fL1 (-1-
- 0 - n(z) 

Lo 

bundle of rays has no common point 
of intersection but is of the type 
illustrated in Figure 62. The inter­
section point Z O in the case where 
0 - 0 is given by 

L1 d J ~. 
Lo n 

(22,193) 

The difference Z - Z O is called the 
Spherical Aberration of the bundle. 
We find 

~===- dz. cos 0 ) 

✓n2 (z) - sin2 0 
(22.194) 
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L1 
This is a monotonic function of 0 which increases from O to J dz if 0 

Lo n 
goes from Oto rr/2. We notice that it is independent of the position z 0 of 
the object point. 

In case of a single plane parallel plate of constant n and of thickness 
.R. L1 - L 0, we find 

AZ = z - z o = .R. (.! - cos 0 ) 
n ✓n2 - sin2 0 

(22.195) 

as the expression for the spherical aberration. 

Figure 63 

22.2 The angular character­
istic in the case of a spherical 
mirror. We determine next the 
angular characteristic of a concave 
spherical mirror. First, let us 
assume that the two reference 
planes z = z O, z = z1 coincide at 
the center O of the mirror, i.e., 
z 0 = z1 = 0. Let T 0 be the 
angular characteristic for this 
choice of reference planes. We 
consider a light ray, from a point 
x 0 ,y O of this plane, having a 
direction 

(22.21) 

It reaches the sphere at the point P and is reflected in the direction 

S1 = (pi,qi, - ✓1 - P12 - q12) (22,211) 

We have found in (14.28) that S1 and S0 are related by the equation 

(22,212) 

where M is the normal unit vector at P, and r the quantity 

r = - 2 cos a = - 2(S 0 • M) . (22.213) 
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The angular characteristic T O is given by the optical distance between 
the base points Q 0 and Q1 of the perpendiculars dropped from O to the ray 
before and after reflection. We find 

To= 2(QoP) = 2R(So•M) = -Rr (22.22) 

where R is the radius of the sphere. From (22.212) it follows that 

1 s
0 

• s
1 

= 1 + r (S
0 

• M) = 1 - 2 r 2 

, 

and hence 

(22.23) 

This is the desired expression. With the aid of (22.21) and (22.211) it follows 
that 

We see that T 0 depends only on the three combinations 

which, incidentally, is the case in any optical instrument of rotational 
symmetry. With this notation, we have 

(22.241) 

(22.25) 

In order to find the characteristic for any pair of reference planes z 0 

and Zi, we apply the same method as in (21.5). From Figure 64 it follows 
that 

T 

or explicitly, 

T (22.26) 
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The intersections (x O ,y O), 

(xi,y1) with the planes z 0 ,zi, 
respectively, are given by the 
formulae 

x1 - 2(TwPo + TvP1) , 
(22.27) 

On the other hand, these 
equations represent the coor­
dination of the incident ray 
(x o ,yo ,Po ,q o) and the reflected 
ray (x1,Y1,P1,q1), 

Figure 64 We investigate in detail 
the case of small mirrors 
where we are allowed to 

develop T in a power series with respect to u,v ,w and neglect all terms of 
higher than first order. 

We find from (22.25) and (22.26): 

(22.28) 

where 

2R - z 0 - z1 

1 1 
2 Zo - 4 R' 

(22,281) 

1 1 
B3 = 2 z1 - 4 R. 

In practice, it is customary to measure the position of the reference 
planes (z 0 ,z1) from the vertex of the mirror and to introduce 

(22,282) 
R. 
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The coefficients (22,281) become 

ao R 
-+-
2 4 ' 

R 
4 ' 

a1 R 
B = -+-

3 2 4 

(22.283) 

For this first-order approximation, we obtain from (22.27) the linear 
image functions 

(22.29) 
Yo Y1 

We can use these equations to express X1,Y1,P1,q1 as linear functions of 
(xo,Yo,Po,q 0). It follows that 

(22.291) 
1 B1 

P1 = 2 B2 Xo - B2 Po , 

and similar equations for Y1,q1 as functions of (y
0
,q

0
) • 

These equations show that x1 and y1 are independent of the directions 
(p

0
,q

0
) of the incident rays from a point (x

0
,y

0
) if 

(22,292) 

In this case all rays from any point (x 0,y 0) of the object plane intersect 
at the corresponding point (x1,y1) of the image plane. Planes of this relation-

Figure 65 

ship are called conjugate planes 
of first-order optics. By in­
troducing the expressions 
(22,283) in (22,292), we find a 
condition for conjugate planes: 
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or 

2 
R 
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(22,293) 

This equation is called the mirror equation. 

Finally, we introduce the notation 

f = - 2 B 2 ' 
(focal length) 

(22,294) 

M 
B3 B2 

= - B2 B1 ' 
(magnification) 

and obtain (22.291) in the simple form 

x1 = M x 0 Y1 
(22,295) 

1 1 1 1 
P1 = - f xo + M Po , q1=-fyo+Mqo, 

which determines the image formation for conjugate planes. The location of 
conjugate planes follows from_ the equation 

1 
f 

Magnification and focal length are given by 

CONVEX 

Figure 66 

f 
R 
2 

1 
ao ' 

1 +-
f 

(22,296) 

22.3 Angular characteristic 
for a refracting spherical surface. 
By a similar method we can find 
the angular characteristic in the 
case of a single spherical surface 
which separates two homogeneous 
media of index n 0 and n1. Such a 
surface can be either convex or 
concave towards the light. We can 
treat both cases simultaneously by 
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introducing the convention of assigning a positive value to the radius R if the 
surface is convex and a negative value otherwise. This means, mathematically, 
that we represent the surface by the equation 

Figure 67 

chosen at z = z 0 and z = z 1 • 

(22.31) 

In order to avoid ambi­
guities, we prefer not to 
obtain the characteristic T by 
its geometrical interpretation 
but by the original definition 

T = V + XoPo + Yoqo - X1P1 

We assume the center 
of the sphere is at the point 
z = 0 of the axis. The refer­
ence planes are arbitrarily 

We consider a light ray P 0PP 1 and characterize its directions by the 
unit vectors 

2 2) Po - qo 

(22.32) 

At P the surface normal M points toward the right so that the scalar 
products (S 0 • M) = cos 1' 0 and (S1 • M) = cos 1' 1 are not negative. The 
vectors S0 and S1 are then related by the equation 

(22.321) 

Furthermore, we introduce the vectors X0 = (x 0 ,y 0 ,z 0) and 
X1 = (x1,yi,z1) directed toward the object and the image points respectively. 
We easily verify the relations 

(22.33) 

0' 

where X0 and X 1 measure the length of the sections P 0P and P P 1 respec­
tively. We remark explicitly that the relations (22.33) are valid for concave 
and convex surfaces if the above sign convention is applied. 
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The optical path V between P O and P 1 is given by V = n 0X O + n1X1 . 
From (22.33) it follows that 

(22.331) 

and hence 

R r. 

On account of (22.32) this yields 

(22.34) 

It remains to express r in terms of p 0 ,q 0; p1,q1• From (22.321) it follows 
that 

r (S 0 • M) , 
(22.35) 

and hence 

(22.351) 

or 

(22.352) 

The last equation shows that r 2 never reaches the value zero, its minimu~ 
being given if S0 -s1 = 1, i.e., r;in = (n1 - n 0) 2 • We conclude that r is 
either always positive or always negative; from (22.321) it follows, for the 
case S0 • S1 = 1, 

Since M • SO > 0, this yields 

sign r 

and hence 

r 

(22.353) 

sign (n1 - n 0) , (22.354) 

(22.355) 
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We again introduce the notation 

w (22.36) 

and obtain the following expression for the angular characteristic T: 

T = T 0 - z 0 ✓n 02 - u - z 1 ✓n12 - V ' (22.37) 

where 

The case of surfaces of small diameter can be treated as the case of 
the small mirror. We develop T with respect to u,w,v and use only·the 
linear terms: 

T (22.38) 

We find: 

Bo n1z1 - noz o + (n1 - n 0 )R , 

B1 1 ~ n1 
R)' - Zo + 

2n O n1 no 
(22,381) 

B2 
1 R 
2 n1 - n 0 ' 

B3 = 1 ( no - - Z1 + 
2n1 n1 - no R) 

If the position of the reference planes is measured from the vertex of 
the surface, i.e., if we introduce 

Zo ao - R' 
(22.382) 

Zj a1 - R' 

we have 

1 ~ ao) Bo n1a1 - noao ' B1 - f +-
2 n 0 

1 .! ~f - !:!_) B2 - 2f' Bs 2 n1 

(22.383) 
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in which 

f = 
R 

We now can repeat the same considerations as in 22.2. The equations 
(22.29) and (22.291) apply directly to our present case. The condition for 
conjugate planes (22.292) gives the lens equation, 

or 
1 
f 

(22.39) 

If conjugate planes are chosen as reference planes, we obtain the first 
order image functions 

where f 

Xj Myo ' 

R 
is the focal length of the refracting surface, and 

n1 - no 

M 
1 
ao 

1 +­
fno 

1 

the magnification of the conjugate planes. 

(22.391) 

(22.392) 



CHAPTER Ill 

APPLICATION OF THE THEORY TO SPECIAL PROBLEMS 

§23. PERFECT CONJUGATE POINTS. CARTESIAN OVALS. 

23.l We call two points P 0 and Pt perfect c2njugate points if all rays 
through P O intersect each other at Pt. When we speak about "all the rays 
through P O" we shall mean all the rays of a finite bundle a ~ p O ~ b; 
a ~ q 0 ~ b with b > a. The limits a and b are determined by the optical 

instrument, for example, by 

Figure 67 

Xt = 

x I the aperture of the lenses. 

Yt = 

Let us assume that two 
points (x0, y 0) and (xi, y 1) of 
the object plane z = z 0 and 
the image plane z = Zi, re­
spectively, are perfectly con­
jugate. We consider Hamilton's 
mixed characteristic 
W = W(xo, Yoi Pi, qt; zo, z1) 
for the point (x 0 ,y 0). If x 0 , 

Yo, zo, and Zt are fixed, then 
W is a function of Pt and qt . 
The intersection of a ray, 
originating at (x 0 ,y 0) with the 
image plane is given by 

(23.11) 

Our assumption means that Xt and Yt are constant for a finite (p1, q1) 
region. Hence it follows: 

(23.12) 

where C is a constant with respect to Pt and qt. 

The expression W + XtPt + y1qt is, according to (20.182), nothing but 
the point characteristic V, i.e., the optical length of the light ray (x 0 , Yo, pi, 
qt) from (x 0 , Yo, z 0) to the intersection point (xi, Yi, Zt) with the image plane. 

129 
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From (23.12) follows: If P 0 and P 1 are perfect conjugate points then all the 
rays through these points have the same optical length, i.e., Fermat's integral 

Figure 68 

(23.13) 

has the same value for all rays 
of the bundle. 

We can also derive this 
theorem with the aid of the 
integral invariant 

J = Jen cos e ds (23.14) 

of §21. Let us assume that the 
rays of the bundle determine a 
field of light rays in the inte­
rior of a domain D which has 
P O and P 1 on its boundary. 
This is the case if, through 

every interior point of D, there goes one and only one ray. The other con­
dition that the congruence of rays is normal is satisfied since the rays are the. 
orthogonal trajectories of the spherical wave fronts around P O• It follows 
that fc n cos 0 ds = 0 for any closed curve in D. If we choose a curve C 

formed by two rays C' and C11 connected by two arbitrarily short arcs Yo 
and y 1 in the neighborhood of P O and P 1 it follows that 

J n ds - J n ds + J n cos 0 ds 0 (23.15) 
C' C 11 Yo + Y1 

and hence, in the limit y 0 O; Y1 ...... 0: 

J n ds = J n ds (23.16) 
C' C11 

23.2 Cartesian ovals. We can use the above theorem to construct 
simple optical systems in which two given points P O and P 1 are perfect 
conjugate points. Without loss of generality, we consider the two points 
z 0 = 0 and z = a > 0 on the z-axis. The optical instrument consists of 
two homogeneous media of refractive index n 0 and n1 which are separated 
by a surface w (x,y ,z) = 0. The problem is to find w such that all rays from 
(0,0,0) in the medium of index n 0 , after refraction, converge towards the 
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point (0,0,a) in the medium of index n1. The optical length of a ray which 
intersects the surface at the point x,y ,z is given by 

Since this length must be constant, we find the equation for w 0: 

We can choose the vertex of the surface at an arbitrary point A of the axis 
between 0 and a. If A is chosen, we have explicitly 
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n 0 ✓x2 + y 2 + z 2 + n 1✓x2 + y 2 + (z - a) 2 = n 0A + n1(a - A). (23.23) 

This is the equation of a surface of revolution which is obtained by rotating 
the curve 

(23.24) 

around the z-axis. We can eliminate the radicals and obtain an algebraic 
curve of the fourth order which is known as the Cartesian Oval. We remark 
however that only those branches of the algebraic curve can be used for our 
purpose which satisfy the condition (23.24) with a positive sign for the 
radicals. 

We finally show that the necessary condition (23.22) is also sufficient, 
i.e., that on the surface (23.23) the rays are refracted according to Snell's 
law. This is an immediate consequence of the following interpretation of the 
problem. The wave fronts in the first medium are given by the function 

(23.25) 

and in the second medium by a function of the type 

(23.26) 

which represents spherical waves converging towards the point (0,0,a). If, 
on the surface w = 0, z/J = z/J', then z/J and z/J' represent a solution of 
z/!x2 + zfJ/ + z/J/ = n 2 which is continuous in the neighborhood of w = 0. We 
have seen that Snell's law is a consequence of this continuity of z/J. However, 
z/! = z/!' on w = 0 yields the equation (23.22). 

Cartesian ovals can easily be obtained graphically by the intersection 
points of circles around P 0 and P 1 with radii r 0 and r 1 = ~ - r 0 no, 

3 1 n1 n1 
respectively. The case n 0 = 1, n1 = 2, a = 1; A = 2 is shown in 
Figure 69, 
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Figure 69 

23.3 Object at infinity, We consider next the problem of constructing a 
refracting surface such that the rays of a parallel bundle intersect each other 
at a given point P 1 after refraction. The wave fronts in the first medium of 
index n 0 are given by the function 

(23.31) 

and in the second medium by the converging spherical waves 

(23.32) 

The condition of the continuity of the solution 1/J of 1/J} + lfJ/ + 1/Jz2 n2 
leads directly to the equation of the surface: 1/J 1/J' or 

C . (23.33) 

By taking the vertex of this surface of revolution at z 0, we obtain 

(23.34) 

This is a surface generated by rotating the curve 

n 0z + n1 ./x2 + (z - a) 2 = n 1a (23.35) 

around the z-axis. One sees immediately that (23.35) represents a conic 
section. By eliminating the radical, we find 

( z - a n1 :1 no) 2 x2 

2 ( n1 ) 2 + a 2 n1 - no 
a n1 + n 0 n1 + no 

1 (23.36) 

which is an ellipse if n1 > n 0 and a hyperbola if n1 < n 0 • 
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The axes A and B of the ellipse, in case n1 > n O, are given by 

A2· = a2 ( n1 )2 
n1 + no 

n1 - no 
B2 = a2 ---- (23.37) 

and the center M and the eccentricity e = ✓ A 2 - B 2 by 

M a , 
n1 + no 

Figure 70 

(23.371) 

It follows that M + e 
= a1. Hence the point a 
coincides with the second 
focal point of the ellipse. 

Similar formulae 
can be found for the 
hyperbola in case 
n1 < n 0 • We have 

(23.38) 

M 
n1 

a---· 
n1 + n O ' 

e2 

( no ) 2 
- a2 ---

n1 + no 

Figure 71 
Hence M + e = a, i.e., 
the point a coincides 

with the focal point of the hyperbola, which is enclosed by the other branch. 

23.4 Virtual conjugate points. If a bundle of rays, originating at a point 
P O, is transformed by refraction into a bundle such that the backwards ex­
tensions of the rays intersect at one and the same point P 1, then we call P 1 
a virtual conjugate point to P O• In order to determine a refracting surface 
w = 0 to which two given points P O and P I belong as virtual conjugate points 
we consider the diverging spherical waves 
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1/J nov1x2 + y2 + z2 

1/J' n 1 ✓x2 + y
2 + (z - a)

2 + C 
(23.41) 

in the two media separated by the surface w = 0. The condition of continuity 
on w = 0 yields immediately the equation 

(23.42) 

By choosing the vertex of the surface at an arbitrary point z = A > a of the 
axis, we obtain 

i.e., a surface of revolution generated by the curve 

n 0A - n1(A - a) , 

(23.43) 

(23.44) 

Elimination of the radicals leads again to an algebraic curve of the 
fourth order. We notice that the same algebraic equation is obtained from 

and 
C 

C 
(23.45) 

This demonstrates that our present problem is solved by surface sec­
tions which belong to the same algebraic surfaces as in the case of the problem 
(23.2). It is however another branch of these surfaces which we have to use 
now. An example is illustrated in Figure 72 for the case: n 0 = 1, n1 = 3/2; 
a = 1/2; A = 1. The construction is carried out similarly as in 23.2 with the 

aid of two circles of radius r 0 and r 1 = J r 0 - ¾ about the points z = 0 

and z = ½, respectively. 

Figure 72 
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23.5 If the object is at infinity, i.e., if parallel wave fronts have to be 
transformed into diverging spherical wave fronts, we obtain by our principle 
of continuity the equation 

We take the point P 1 at z = - a with a > O. The curve 

n 0z - n1Jx2 + (z + a) 2 

(23.51) 

(23.52) 

which generates the surface of revolution (23.51) is an ellipse in the case 
n1 > n 0 and a hyperbola if n1 < n 0 • The equation of the conic is given by 

(z + a ni ) 2 

n1 + no + __ x_2 __ 

2 ( n1 ) 2 a 2 n1 - no 
a n1 + no n1 + no 

1' (23.53) 

which differs from (23.36) only in the quantity a which is replaceq by - a. 

Consequently, the axes A, B and the eccentricity e are determined by 
the formulae (23.37) and (23.38). The center M is found by replacing a by 
- a in these formulae, i.e., 

n1 
M = - a--­

n1 + no 
(23.54) 

The point z 
and 74. 

a is one of the focal points as is illustrated in Figures 73 

' ' ' \ 
\ 

z =-<1 / 
I 

I 
I 

I 

Figure 73 Figure 74 
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23.6 The aplanatic points of a sphere. If the vertex A in (23.44) is 
chosen so that the right side is zero, i.e. , if 

A = n1 ---a 
n1 - no 

(23.61) 

then the curve (23.44) is a circle and therefore the surface (23.43) is a 
sphere. We find from (23.43) and (23.61): 

x2 + y2 + /z - n1 A) 2 
\ n1 + no 

--- R---+ 

no 2 ( )
2 

n1 + no A • (23.62) 

The sphere has its center at 
the point 

---------+-------1A m 
n1 

---A<A, 
n1 + no 

(23.63) 
0 d m 

Figure 75 

---

R 

its radius is 

R 
no 

---A<A. 
n1 + no 

This shows that the spherical 
surface is concave. 

(23.64) 

Let us now consider a given 
concave spherical surface of radius 
R, which separates two optical 
media of index n 0 and ni, respec­
tively. The center of the sphere is 
taken at z = 0. From the above 
it follows that there exist two points 
z = z 0 and z = z1 on the z-axis 

Figure 76 such that a spherical wave from z 0 

is transformed into a spherical wave 
diverging apparently from z1. In 

other words z 0 and z1 are virtual conjugate points. One calls these points 
the aplanatic points of the sphere. 

In our above notation we have z 0 = - m and z1 

follows from (23.61), (23.63), and (23.64) that 

n1 
--R 

no 

no 
R . 

a - m. Hence it 

(23.65) 
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The point z 0 is called the aplanatic object point and z1 the aplanatic 
image point. The location of these points for the two cases n1 > n 0 and 
n1 < n 0 is shown in Figures 77 and 78. 

Figure 77 Figure 78 
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By reversing the direction of the light in the above figures, we see that 
convex spherical surfaces can be used to transform converging spherical 
waves into perfect spherical waves of the same type but with a different point 
of convergence. 

On account of. the symmetry of the sphere we have not only two aplanatic 
points but infinitely many, located on two concentric spheres of radius 
n1 no 
- R and - R, respectively. We can use this result for a simple graphical 
no n1 
method of constructing the refracted rays on a sphere if the incident rays are 
given. Let us consider a convex spherical surface S and let n1 > n 0 • We 

n1 no 
construct the two aplanatic spheres of radius - R and -. R. We extend the 

no n1 
incident ray until it intersects the aplanatic object sphere at A 0 • We know 
that all incident rays aiming towards A0 must be refracted towards the con­
jugate aplanatic point A1. We find this point by connecting A 0 with M. This 

line intersects the aplanatic image sphere of radius no R at the point A1. 
n1 

Hence P A1 is the refracted ray. 

The aplanatic points of a sphere are used in the construction of micro­
scope objectives of high aperture. The object is submerged in oil which has 
nearly the same refractive index as the front lens of the objective. Hence we 
may consider the object as being located in a medium of an index of refraction 
greater than one. The front surface of the objective can be chosen arbitrarily 
but is in general made plane for practical reasons. The back surface of the 
front lens is chosen in such a manner that the object point P O coincides with 
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the aplanatic object point 
of this sphere. The 
result is that a wide 
bundle of rays with a 
numerical aperture 
sin 00 almost equal to 1 
leaves the front lens 
without any spherical 
aberration but with a 
smaller aperture 
sin 01 = l/n1. The next 
surface is chosen con­
centric to the point P 1 
from which this bundle 
seems to diverge such 
that the bundle enters 
the glass again without 
spherical aberration. 
We then insert again a 

Figure 79 spherical surface with 
P 1 as the aplanatic object 
point. Hence the bundle 

leaves this surface with decreased aperture sin 0 = - 1-. By this con-
n1 n2 

struction one is in the position to decrease the steepness of the bundle without 
introducing spherical aberration until finally one or two cemented lenses 
transform the resulting bundle into a converging bundle. This succession of 
aplanatic lenses explains the characteristic construction of a microscope 
objective as shown in Figure 80. In practice this construction is not carried 
out rigorously. However the departures from the above principle are never 
considerable. 

---

Figure 80 
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§24. FINAL CORRECTION OF OPTICAL INSTRUMENTS BY ASPHERIC 
SURFACES. 
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The usefulness of single aspheric surfaces of the type discussed in §23 
is very limited in practice. It is true that we are in the position to eliminate 
one aberration with these surfaces, but the effect on other aberrations is not 
favorable. In other words, if we study the refraction of spherical wave fronts 
which originate at a point (x 0 , y 0) of the object plane different from 
x 0 = Yo = 0, we would find great departures from perfectly converging 
spherical waves after refraction, even if the surface produces a perfectly 
sharp image of the point x 0 = y O = 0. 

However, an aspheric surface can be used successfully in combination 
with spherical surfaces in order to eliminate the last trace of a remaining 
spherical aberration, for example. Let us assume that an optical system of 
spherical surfaces has been found which is nearly correct in the sense that a 
considerable part of the object plane is sharply imaged if the system is used 
with small apertures. The use of large apertures is prohibited by a rapidly 
increasing spherical aberration. If it is then possible to eliminate this aber­
ration by replacing the last spherical surface of the system by an aspheric 
surface which departs only slightly from the original spherical surface, we 
can expect that no detrimental effect will be introduced with regard to the 
aberrations of oblique bundles of rays. This procedure can be applied suc­
cessfully, for example, in certain simple types of photographic objectives 
known as Cooke Triplets. These objectives consist of nyo positive lenses with 
a negative lens between them. It is easily possible to find combinations of 
this type which would produce excellent images if the objective is used at a 
"speed" not greater than F: 4.5t. The design of such objectives for greater 

speeds however is difficult 
because of the spherical aber­
ration which rapidly assumes 
large values. On the other 
hand, it is of course desirable 
for the photographer to have 
an objective of as great a 
diameter as possible, in order 
to decrease the time of ex-
posure. Hence we are led to 

Figure 81 the attempt to prevent the 
rapid increase of spherical 
aberration by employing an 

aspheric surface as the boundary of the last lens. 

tThe "speed" or F-number of a photo-objective is defined by the ratio f:d of focal 
length to diameter of the front lens. 
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24.2 In principle the solution of the above problem is simple. Let us 
consider the spherical wave fronts originating at the point P O on the axis. 
We remove the last surface of the instrument and determine the wave fronts 
of the bundle through P O in the still unlimited glass medium of the last lens. 
Let n be the index of refraction of this medium. These wave fronts are given 
by the function 

V = V(P 0; x,y,z) = ct, (24.21) 

where V is nothing but Huyghens' wavelet function or Hamilton's point char-
acteristic for the points P 0 
and a point (x,y ,z) in the glass. 
Let us assume that this func­
tion is known. The problem is 

p A 
0 

pl to determine a surface 
I 

w(x,y,z) = 0 such that, by 

Figure 82 
refraction on this surface, the 
wave fronts V = V(x,y ,z) are 
transformed into wave fronts 

(24.22) 

which converge towards the point P 1 = (O,O,z 1). The condition of continuity 
of V and z/1 on w = 0 yields the equation of the aspheric surface directly: 

(24.23) 

The constant C is determined when the vertex A of the aspheric surface has 
been chosen. We have 

C V(O,O,A) + z1 - A , (24.24) 

and hence the equation 

V(x,y,z) + ✓x2 + y 2 + (z - z1) 2 = V(O,O,A) + z1 - A. (24.25) 

It is quite clear that V(x,y,z) depends only on p = ✓ x 2 + y 2 and z 
if the optical instrument is symmetrical with respect to the axis. In this case 
(24.25) represents a surface of revolution generated by the curve 

V(x,O,z) + ✓x2 + (z - z1) 2 = V(O,O,A) + z1 - A.· (24.26) 

24.3 In general it is not easy to find explicit expressions for the 
function V(x,y,z). Therefore, another procedure of finding the surface w = 0, 
in which Hamilton's mixed characteristic W(z 0 , z; x 0, Yo, p,q) is used, is 
preferable. The surface, w = 0, is then obtained in parametric form. We 
have the relation 
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V=W+xp+yq 
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(24.31) 

where W is a function of (z,p,q) since (x 0 ,y 0 ,z 0) are considered as given. 

From 

(24.32) 

it follows that 

(24.33) 

in which W0 W 0(p,q) is independent of z. Furthermore, we have 

aw aw 0 p 
X = - + z 

ap ap ✓n2 - p2 - q2 

aw aw 0 q 
y 

aq aq 
+ z 
✓n2 - p2 - q2 

(24.34) 

Hence we obtain 

aw 0 aw 0 n 2 
V = W O - p -- - q -- + z--;::::=========-

ap aq ✓ n 2 _ P2 _ q 2 
(24.35) 

as a function of p, q and z. 

We finally introduce (24.35) in (24.23) and get 

aw 0 aw 0 
Wo-Pap-qaq+z 

✓ n2 _ p2 _ q2 

n2 

(24.36) 

The equations (24.34) and (24.36) represent two linear and one quadratic 
equation for x,y,z as functions of p and q. The solution gives the surface 
w = 0 in parametric representation. 

Let us now assume that our instrument is symmetrical with respect to 
the z-axis. The surface w = 0 is a surface of revolution, and it is sufficient 
to determine its cross section with the xz-plane. We thus assume y = q = 0 
in the above formulae and obtain 
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n2 ~------
W0(p) - p W0'(p) + z---_-_-_-_-_ + ✓x2 + (z - z1)2 = C, 

✓n2 _ P2 
(24.37) 

p 
x = - W01(p) + z-r--...,.-----....,-_-

✓n2 _ p2 

i.e., one quadratic and one linear equation for x and z as a function of p. 
The functions x(p) and z(p) give the curve in parametric form. 

It is not difficult to determine the function WO (p) in any actual case. 
Let us choose the vertex of the aspheric surface as the point z = 0. By 

z=O 

Figure 83 

tracing rays from P O through 
the system we are able to cal­
culate the intersection x1 with 
the plane z = 0 and the direc­
tion p of a ray at z = 0. By 
correlating the results x1 and 
p for a number of rays, we 
obtain a function x1 = x1(p) 
which can be fitted, for 
example, to a polynomial 

(24.38) 

If we let W 0(0) = 0, it follows from x1 = - W o'(p) that 

(24.381) 

... ) . 
The equations (24.37) become 

C 

(24.39) 

Let us develop x x(p) and y = y(p) in power series 

x = p(Bo + B1P2 + ... ) ' 
(24.391) 

The coefficients of the power series can be readily determined from (24.39). 
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24.4 Instead of the characteristic W we can also use the angular 
characteristic T. This is especially advantageous if the point P O is at 
infinity as in a photographic objective. We have 

and hence, since Po 

V=T+xp+yq. (24.41) 

We can repeat the same considerations for T as for the case of W. The 
result is formally the same as before. The cross section of the aspheric 
surface with the xz-plane is given by the equations_ 

C, 

(24.42) 
p 

x = - T 01(p) + z-~----_-_-_-_ 
✓n2 _ P2 

Figure 84 

In order to find T 0(p) a 
number of parallel incident 
rays have to be traced through 
the system. Let x1 and p be 
the intersection and direction 
of a ray at the plane z = o. 
We obtain 

(24.43) 

and hence the same formulae 
as in (24.39). 

24.5 We shall apply the 
preceding methods to a number 
of simple examples. A lens of 
index of refraction n has to be 
found which consists of a plane 
surface and an aspheric sur-

Figure 85 face. It is required that a 
spherical wave from a point 
P O be transformed into a plane 

wave after refraction. Let a be the distance of P O from the plane surface and 
t the thickness of the lens on the axis. 
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The characteristic W(p,z) in the medium n is given by 

(24.51) 

as we have seen in §22.1. The point characteristic V follows from 

v = w aw 
- P ap (24.52) 

as a function of p and z. Since V = a constant represents the wave fronts 
in the medium n, and 1/J = z + C represents the required wave fronts in the 
final medium, we can apply the condition of continuity and find 

V - z = C (24.53) 

as the equation for the aspheric surface. With the aid of (24.52) this yields 

a _ z (1 
fi"7 

(24.54) 

From x - ~; it follows that 

X = ap 

./17 
(24.55) 

From (24.54) and (24.55) we find x = x(p) and z = z(p), i.e., the cross 
section of the aspheric surface in parametric form. The result is 

X = 

C ___ a __ 

z = ✓1 - p2 
n2 

- 1 

The constant C is given by the condition that z 
obtain 

C n a + (n - 1) t . 

(24.56) 

a + t for p 0. We 

(24.57) 
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24.6 As the next example we consider a lens which consists of one 
spherical surface and one aspheric surface. It is required to find a lens which 

transforms a plane wave into a 
converging spherical wave. 
Let us assume that the center 

z I of the sphere is at z = O. The 
angular characteristic T(z,p) 
in the case where p O = 0 is 
given by 

T =R✓l+n2-~ 
Figure 86 

(24.61) 

which follows from (22.3). If z1 is the desired focal point, we obtain directly 
by (24.42) the equation of the aspheric surface: 

n2 
To(P) - PTo'(p) + z -,_-..,,.-------...,,,-_ 

✓n2 _ p2 

p 
x = - To'(p) + z 

✓ n2 _ P2 

These equations can be simplified by introducing 

p=nsina 

C, 

and letting R = 1. With this we can write (24.62) in the form 

(24.62) 

(24.621) 

(24.63) 

n(x sin a + z cos a) + ✓ x 2 + (z - z1) 2 = C - ✓1 + n 2 - 2n cos a , 

(24.64) 

n(x cos a - z sin Cl! ) 
n sin a 

✓ 1 - n 2 - 2n cos a 

The constant C is given by the position z = t - 1 of the vertex of the 
aspheric surface. Letting a = x = O; z = t - 1 in the first equation of 
(24.64), we find 

C = (n - l)t + z1 . (24.65) 

The formulae (24.64) allow us to find, without difficulty, the coefficients of 
the development of the functions x = X(O!) and z = z(O!) in powers of a. 
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24. 7 Schmidt Camera. A combination of an aspheric surface and a 
spherical mirror characterizes the construction of the astronomical camera 
which is known as the Schmidt camera. This camera, first constructed by B. 
Schmidt in 1930, has become justly famous in recent years. This fact can be 
readily understood if one considers earlier astronomical cameras of high 
speed which could be used for angular fields of only a few degrees. With 
Schmidt's construction however, we can photograph an angular field of more 
than 15°. 

The fundamental principle of this camera can be derived as follows. 
Let us consider a spherical mirror of radius R = 1 and of large angular 

Figure 87 

opening 80• A bundle of rays 
parallel to the z-axis is re­
flected at the mirror. Con­
sider a ray of this bundle 
incident at the angle iJ with 
the z-axis. After reflection 
it intersects the z-axis at the 
point 

z 1 
2 cos iJ/2 

(24.71) 

The difference 

~z = Z(iJ) - Z(O) =(-2
1 l 1) cos 1'/2 - (24.711) 

measures the spherical aberration of the mirror. This expression increases 
rapidly with iJ and excludes the use of spherical mirrors for critical photo­
graphic purposes. However, such a mirror has the advantage that an oblique 
bundle of parallel rays is reflected as a bundle which is congruent to the re­
flected bundle of rays parallel to the z-axis. This follows from the fact that 
the z-axis is in no way distinguished from another diameter of the sphere of 
the mirror. We can express this fact by stating that the image formation of 
the spherical mirror is uniformly bad over a considerable angular field. If 
a parabolic mirror is used instead of the spherical mirror, we obtain a flaw­
less image for bundles parallel to the axis, but oblique bundles are worse than 
before so that a parabolic mirror can only be used for a very narrow angular 
field. 

We next consider a spherical mirror in combination with a thin plane 
parallel plate placed at the center of the sphere perpendicular to the z-axis. 
Obviously the bundle parallel to the axis is undisturbed. Oblique parallel rays 
are only shifted sideways by a small amount but arrive at the mirror still 
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Figure 88 
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parallel and consequently 
possess a reflected bundle 
which is congruent to the re­
flected bundle of the rays 
parallel to the z-axis. 

Let us now assume that 
it is possible to eliminate the 
spherical aberration of the 
rays parallel to the z-axis by 
replacing one of the plane 
surfaces of the plate by an 
aspheric correction surface 
which departs only slightly 
from a plane surface. Then 
we can expect that the spherical 
symmetry of the instrument is 
not seriously impaired and that 
the correction plate has a 
similar beneficiai effect on the 
oblique bundles whose inclina­
tion is not large. This expec­
tation is indeed verified by 
experiment, as well as by 
theoretical investigation.t 

24.8 The correction 
plate of the Schmidt camera. 
Let V(0,0,a; x,y,z) = V(x,y,z) 
be the point characteristic of 
a spherical mirror of radius 
R, i.e., the optical distance of 
a point (x,y ,z) from a given 
point (0,0,a) on the z-axis. 
Our aim is to find a surface 
w = 0 such that the wave 
fronts V(x,y,z) = a constant 

Figure 89 are transformed, by refraction 
on w = 0, into plane wave 

fronts lf! = C - nz in the glass part of the correction plate. If the other 
surface of the correction plate is made plane, then the plane waves leave the 

tcaratheodory, Elementare Theorie des Spiegelteleskops von B. Schmidt, Hamb. 
Math. Einzelschrifte, 1940 

Synge, Theory of the Schmidt Telescope, Journal Optical Society of America, Vol. 33.3 
pp. 129-136. 
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plate undisturbed. The condition V 
aspheric surface, namely, 

1/J on w = 0 gives the equation of the 

V(x,y,z) + nz = C. (24.81) 

The surface is a surface of revolution. Therefore it is sufficient to 
determine its cross section with the xz-plane. If the vertex of the surface is 
assumed to be at z = 0, we obtain C = 2 - a and hence: 

V(x,0,z) + nz = 2 - a (24.811) 

is the equation of the generating curve. 

We can find a comparably simple equation for the aspheric surface by 
expressing V(x,0,z) as a function of z and the distance p from the point 
(0,a) to the point (x O ,y O ). (x O ,y O ) is the point where the ray passing through 
(x,z) and (0,a) is reflected on the mirror. 

Let us assume R = 1. From Figure 90 it follows that 

X 

Figure 90 

It follows that 

p sin (3 

p 2 = 1 + a 2 - 2a cos 8 ; 

1 + a2 - P2 
i.e., cos 8 = 2a 

(24.82) 

Therefore the quantity cos 8 
is a rational function of p. 

We next express the 
quantities sin (3 and cos (3 as 
functions of p. (3 is the angle 
of reflection at (x O ,z O ). We 
have the relations: 

a sin 8 
(24.83) 

p cos (3 + a cos 8 1 . 

• (3 a • 8 sin p sin ' 

cos (3 .! (1 - a cos 8) . 
p 

(24.831) 
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With the aid of these formulae we can express the distance Pt from 
(x 0 ,z 0) to (x,z) as a function of z and p. We have 

since cos (0 - {3) 

Zo - Z 
Pt = cos (/3 - 0) 

cos 0 - z 
cos (/3 - 0) ' 

cos (/3 - 0) and hence from (24,831), 

cos 0 - z 
P1 = P cos 0 - a cos 20 (24.84) 

since both cos 0 and cos 20 = 2 cos 2 0 - 1 are rational functions of p, we 
observe that Pt itself is a rational function of p; thus it follows: The function 
V(x,O,z) = p + Pt is a linear function of z and a rational function of p. We 
have 

V( ) [i cos 0 - z ] 
z,p = P + cos 0 - a cos 20 • (24.85) 

Finally we introduce (24.85) in (24,811) and obtain z as a rational 
function of p. The result is 

nz = 2 - a - p - p F(p) , 

where F(p) is defined by 

F( ) _ n cos 0 + p + a - 2 
P - n(cos 0 - a cos 20) - p 

By introducing the relationship (24.82), we obtain explicitly: 

(24.86) 

(24,861) 

(24,862) 

This function, incidentally, is nothing but the ratio p 1 / p for the points (x,z) 
of the aspheric surface. Indeed, this follows from 

nz + p + Pt = 2 - a 

and from (24.86). 

In order to find x as a function of p, we write 

x = sin 0 - Pt sin(0 - /3) . (24.87) 
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With the aid of (24,831) this becomes 

X = sin 0 [1 + :! (1 - 2a COS 0 )r (24,871) 

(24,872) 

We summarize our result: The aspheric surface of the Schmidt camera 
is given by the equations: 

z = ¾ [2 - a - p - pF(p)] , 

x = G(p) [ 1 + (p 2 - a 2) F(p)] , 
(24.88) 

where F(p) is the rational function (24,862) and G(p) = sin 0 is the function 

(24.881) 

It can be shown that this curve is a section of an algebraic curve of the tenth 
order. 

We can use the formulae (24.88) to compute points of the curve ac­
curately. It is however preferable to develop the functions z(p) and x(p) 
in a power series with respect to the variable 

t = p - (1 - a) , (24.882) 

which varies from O to 2a if p varies from its smallest value 1 - a to its 
largest value 1 + a; i.e., if the point (x 0 ,y 0) travels over the circle of the 
mirror. One can simplify the practical computation even more by determining 
a sufficiently large number of the coefficients of the development of z in 
powers of x with the aid of (24.88). In the case where a = ½ this develop­
ment tt is given by 

(n - 1) z = .!_ X4 + ~ XS + 45 X 8 + 
4 8 64 ''. (24,883) 

i.e., by a fourth order parabola in the neighborhood of the z~axis obtained by 
neglecting higher powers of x. 

tP1 
- = F (p). 
p 

tt Caratheodory, loc. cit. 
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We can easily determine the extreme values of the function z = z(x). 
The ray which goes through points (x,z) on the curve where ~ = O must be 

Figure 91 

parallel to the z-axis, i.e., 
f3 = 0. This implies that 
p = a. From (24.862) and 
(24.881) it follows that 

F (a) 

and 

n + 2a(2a - 2) 
2a 2 (n - 1) 

G(a) =~ 

Hence by (24.88): 

x= ~2 v .l - 4a2 , 

(24.89) 

and (24.891) 

(n - l)z = 2 - 2a - ..!... 
2a • 

An extreme value is obtained only in the case where a > ¾. The cor­

responding value of z is negative, i.e., the curve has the form indicated in 

Figure 91. In the case where a < -½ the curve has the form shown in Figure 89. 

§25. THE ANGULAR CHARACTERISTIC FOR A SINGLE REFRACTING 
SURFACE. 

25, l In the case of a single reflecting or refracting surface it is 
possible to formulate a simple method for determining the angular character­

X 

z 

Figure 92 

istic T(z 0 ,z1; p 0 ,q 0 ,pi,q1). Let 
us assume that the surface is 
given in the form 

z = f(x,y) . 

Let the homogeneous media 
separated by this surface have 
the indices n 0 and n1. We 
consider two points (xo,Yo,zo) 
in the medium of index n O and 
(x1,yi,z1) in the medium of 
index n1. If (x,y,z) is the 
point between (x 0 ,y 0 ,z 0) and 
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(xi,y1,z1) where the light ray intersects the surface z = f(x,y), then the 
optical path V(x 0 ,y 0 ,z 0 ,x1,y1,z1) is given by the equation 

V = no✓<x - xo)2 + (y - Yo)2 + (z - zo)2 

+ n1✓(x - X1) 2 + (y - Y1) 2 + (z - z1)2 (25.11) 

The point (x,y ,z) can be found from the condition that V as a function of 
(x,y ,z) has an extremum. By differentiation, we obtain 

✓(x - Xo) 2 + (y - Yo) 2 + (z - Zo) 2 

✓ex - X1)2 + (y - Y1)2 + (z - Z1)2 

no(y - Yo) + no(z - zo) fy 

n 1(y - y1) + n1(z - z1) fy 
+ -----::======================­✓ c x - X1)2 + (y - Y1)2 + (z - Z1)2 

0 ' 

(25.12) 

0 . 

We now introduce the optical direction cosines (p 0 ,q 0 ,r0) and (p1,q1,r1) of 
the ray. This yields 

25.2 The angular characteristic T(z 0 ,z1; p 0 ,q 0 ,P1,q1) is given by 

T = V + XoPo + Yoqo - XtPt - Ytqt • 

We know that T is a linear function of z O and z1 which has the form 

(25.13) 

(25,21) 

(25.22) 

where incidentally T O is the optical path between the base points Q O and Qi 
of the perpendiculars dropped onto the ray from the point x'. = y = z = 0, 
By introducing (25,22) in (25.21), we obtain the equation 

(25.23) 
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The left side is entirely independent of the position of the points (x O ,y O ,z O) 

and (Xt,Yt,Zt) on the ray. Hence we can let both points coincide with the point 
(x,y,z) on the refracting surface. This yields 

(25.24) 

since V(x,y,z; x,y,z) = 0 on the surface. We understand that x,y and 
z = f(x,y) are expressed as functions of (p 0 ,q 0 ,r 0) and (pi,qt,rt) with the 
aid of (25.13). 

We can formulate this result in a different way. Let us introduce in 
(25.24) 

Po - Pt 

qo - qt - - (ro (25.25) 

z = f (x,y) . 

We obtain 

(25.26) 

The equations 

11 (25.27) 

X fx + y fy - f , 

represent a Legendre transformation of the function f(x,y). Hence we can 
interpret the conditions (25.25) and (25.26) as follows: The angular character­
istic T 0(p 0 ,q 0 ,pi,qt) of a surface z = f(x,y) is given by the expression 

T _ ( . )n ( Pt - Po • qt - qo) 
o - rt - r o •• - ' - ' rt - ro rt - ro 

(25.28) 

where Q = Q(~,11) is obtained from f(x,y) by the Legendre transformation 
(25.27). The quantities r 0 and rt are functions of (p 0,qo) and (Pt,q1), 
respectively, namely, 

ro = ✓no2 - Po2 - qo2 

rt = ✓ ni2 - Pt2 - q12 
(25.281) 
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The angular characteristic T(z 0 ,z1,p 0 ,q 0 ,p1,q1) for reference planes 
z = z O and z = z1 then follows by (25.22); i.e., 

(25.29) 

The formulae (25.28) and (25.29) also hold for a reflecting surface z = f(x,y). 
However, in this case we have to use the relations 

assuming n 0 = 1. 

ro = ✓1 - Po2 - qo2 

r1 = -✓1 - Pi2 - q12 
(25.291) 

25.3 Surfaces of revolution. By applying Legendre's transformation to 

a surface of revolution z = f(p) where p = ✓x 2 + y 2 , we obtain a function 

Q (A) where A = ✓~ 2 + 7) 2 . The transformation is given by the equations 

/1. f'(p) 
(25.31) 

Q(A) pf'(p)-f(p). 

The angular characteristic of the surface thus has the form 

This is a function of the three combinations 

w (25.33) 

V = Pi2 + qi2 , 

namely, 

(25.34) 

For refracting surfaces: 

For reflecting surfaces: r 0 = ~ r1 = ~ 

where n is taken to be equal to unity. 
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25.4 We consider again the example of a spherical surface. We repre­
sent the sphere by the equation 

~ 
z = f(p) = a - Ryl - R2 (25.41) 

with the convention of §22.3 that the surface is convex if R > 0 and concave 
if R < O. Legendre's transformation leads to 

(25.42) 

Hence, we obtain the angular characteristic 

or 

(25.43) 

We verify readily that sign (r1 - r 0) = sign (n1 - n 0) in the case of re­
fraction, and sign (r1 - r 0) = - 1 in the case of reflection. Hence it follows 
that 

For refraction: 

(25.44) 

For reflection: 

(25.45) 

where n 0 = 1. Both formulae are identical with the expressions derived in 
§22 by other methods. We remark that the result (25.45) applies to convex and 
concave mirrors if the above convention with respect to R is applied. 
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25,5 Let us next apply our method to the elliptic or hyperbolic 
paraboloid 

1 z = 2 (Ax 2 + By 2) • (25.51) 

Legendre's transformation yields 

(25.52) 

It follows that 

T 

Figure 93 (25,53) 

In the special case B = A = - a, where a > 0, we obtain a concave 
paraboloid of revolution. The reflection on such a surface is determined by 
the characteristic 

or 

T 
1 U + V - W ~ ~ 

- Zt V 1 - V - Zo V 1 - U , 
2a ~ + ~ 

(25,54) 

(25.55) 

§26. THE ANGULAR CHARACTERISTIC FOR SYSTEMS OF REFRACTING 
SURFACES. 

26. 1 Let us consider an optical instrument which consists of a number 
of surfaces z = f 1 (x,y) with homogeneous media between them. We assume 
that the reference planes, z 0 and z1, coincide at z = 0. Let T 1(p 0,q 0,p1,q1) 

be the angular characteristic of the first surface, T 2(P1,q1,p 2 ,q 2) that of the 
second surface, and in general T;(Pi-t, q 1_ 1, p 1 , q;) that of the i th surface. 
T 1 is the optical length of a ray between the base points Q 0 and Q1, T 2 the 
path between Q1 and Q 2 , etc. It follows that the angular cp.aracteristic of the 
combined surfaces is given by the sum 

T 

k 

L TdP1-1, qi-1, Pi, q;) • 
I=! 

(26,11) 
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and in general 

It follows that 

Figure 94 

Xt 

Yt 

8Ty 
Xy 

apy 

8Ty 

Yy aqY 

8(T y + Ty+t) 

8py 

8(Ty + Ty+t> 

8qy 
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The final function T must 
be a function of the initial and 
final variables Po, qo and Pk, 
q k• Hence it is necessary to 
eliminate the intermediate 
variables Py, qy, y = 1, ... 
k - 1 on the right side of 
(26.11). We find the equations 
which are necessary for this 
elimination as follows: Let 
(X1,Y1) be the point where the 
straight line P 1P 2 intersects 
the plane z = 0, (x 2,y 2) the 
intersection of the line P 2P 3 
and in general (xy,Yy) the 
intersection of P yP y + 1. We 
have the relations 

8T1 8T 2 

8p1 8p1 
(26.12) 

8T1 8T 2 

8qt 8qt 

8Ty+t 
--

apY 
'Y 1,2, ... , k-1 (26.13) 

8Ty+t 
--
8qy 

0 ' 

'Y 1,2, ... , k-1 (26.14) 

0. 

In principle these 2(k - 1) conditions allow us to express the 2(k - 1) 
intermediate variables Py, qy, as functions of the initial and final variables, 
Po, q 0 , Pk, qk. The function T(p 0 , q 0 , Pk, qk) is then obtained by introducing 
these functions in (26.11). 
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We can interpret the conditions (26.14) in a different manner. The 
variables Py and qy are contained only in the two characteristics Ty and 
Ty+ 1 and not in the other functions T ; where i is different from y and 
y + 1. Hence we can write (26.14) as follows: 

k k 

T; 0. (26.15) 

1=1 

k 
These equations express the fact that the function T = ~ T I has a station-

!=! 
ary value with respect to the 2(k - 1) variables Py, qy; y = 1, ... , k - 1. 
Thus the problem of finding the angular characteristic T is equivalent to the 
problem of finding a stationary value of the sum (26.14) in the domain of the 
variables Py, qy. This value is a function of the quantities Po ,q 0 ,Pk,qk. 

The individual functions T I are given by the expression 

(26.16) 

where Sl 1(~,7J) is obtained from f (x,y) by Legendre's transformation. Thus 
we are led to the problem of finding a value of the sum 

T 

k 

I (r1 - r1-t>Sl1 [- P1 - P1-1 
r 1 - r1-1 ' 

i=1 

(26.17) 

stationary with respect to variables Py, qy, ry, y 
satisfy the conditions 

1, ... , k - 1, which 

n 2 y y = 1, ... , k 

and with given boundary values Po, q 0 , r 0 = ✓n 02 - p 02 - q 02 and 

Pk, qk, rk = ✓nk2 - Pk2 - qk2 • 

(26.18) 

26.2 In the case of a medium with continuous index n = n(x,y ,z) we 
can consider the surfaces n(x,y ,z) = a constant as a continuous set of re­
fracting surfaces. Let us assume that these surfaces are given in the form 
z = f(x,y;s) in which s is a parameter. The sum (26.17) becomes the 
integral 

T = 1 r Sl - ~ , - ~ , s ds , 
s1 ( • • ) 

s 0 r r 
(26.21) 
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where p' == ~ q· - ~ i: 
ds ' - ds ' 

dr 
ds. f!(~,71,s) is obtained from f(x,y,s) by the 

Legendre transformation 

7j (26.22) 

fl ~ + Y7J - f . 

The problem is to determine functions p(s), q(s), r(s) which satisfy the 
relation p 2 + q 2 + r 2 == n 2(s) and the boundary conditions 

p(so) Po p(st) Pt 

q(so) qo q(s1) qt 
(26.23) 

r(s 0) ro Jno2 - Pc2 qc2 

Jni2 r(st) = r1 = - Pi2 - qi2 ' 

such that the integral (26.21) assumes a stationary value. This stationary 
value T(p O, q O, Pi, qt) is then the angular characteristic of the medium. 

26.3 It is possible to characterize the angular characteristic by another 
problem of variation. We consider first a finite number of refracting surfaces 
z = f 1(x,y). Let us denote by 

the coordinates of the point P 1 (refer to Figure 94) where a ray intersects 
the surface z = f 1(x,y). The optical length of the ray between the base points 
Q 0 and Qk of the perpendiculars dropped from the point (0,0,0) onto the 
initial and final ray is given by the expression 

k-1 

T L n1J(x;+1 - x;) 2 + (Y;+1 - Y;) 2 + (z1+1 - z1) 2 

i==1 

(26.31) 

We eliminate the variables x;, y 1, z;; (i = 1, ... , k) by means of the 
condition that the sum (26.31) shall have a stationary value with respect to the 
variables x 1 , y;, z 1 under the condition 

(26.32) 
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This new problem of variation leads to the same function T(p O ,q O; p k•q k) 
as the problem (26.17). Both problems are related to each other by the trans­

formation of Friedrichs.t We 
demonstrate this fact by the 
analogy of the problem (26.31) 

Figure 95 

in the case of a continuous 
medium. Let 

z = f(x,y,s) s 0 ~ s < s 1 

(26.33) 

be a continuous set of re­
fracting surfaces, i.e., surfaces 
n(x,y ,z) = a constant. We 
denote by n(s) the value _of 
n(x,y ,z) on the surface 
z = f(x,y,s). A ray intersects 
the boundary surfaces s O and 
s 1 at P 0 and P 1 with the 
directions p O , q O , r O and 

Pi, q1, r1, respectively. The optical path between the base points Q 0 and Q1 

of the perpendiculars from O is given by 

(26.34) 

We now consider the problem of variation of determining a stationary 
value of (26.34) with regard to the functions x(s), y(s), z(s) which satisfy the 
condition 

z(s) = f ( x(s), y(s), s) . (26.35) 

26.4 Our aim is to show that the problem can be transformed into the 
problem (26.21) by the transformation of Friedrichs. For this purpose we 
introduce four Lagrangian multipliers 

p(s), q(s), r(s), and i\(s) , (26.41) 

t Courant-Hilbert, Methoden der Math. Physik, Vol. 1, 2nd Ed. pp. 199-209. 
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and write (26.34) in the form 

T 1 St [n✓u 2 + v 2 + w2 + p(x - u) + q(y - v) + r(z - w) 
So 

+ ll.(f - z)] dz: x(s 0)p 0 + y(s 0)q 0 + z(s 0)r 0 - x(s1)P1 

- y(s1)q1 - z(s1)r1 

161 

(26.42) 

in which x(s), y(s), z(s), u(s), v(s), w(s), and ll.(s), p(s), q(s), r(s) are now 
treated as variables in the variation problem. 

By carrying out the variation with regard to these functions, we obtain 
the conditions 

u 
0 ' ll.fx - p 0 ' n - p 

✓u2 + v2 + w2 

V 
0 ' ll.fy - q 0' n - q ./i ., + v2 + w2 u· 

w 
0' - A. - r 0 ' n - r 

✓u2 + v2 + w2 
(26.43) 

p(so) Po p(st) Pt 

q(so) qo q(sl) qt 

r(s 0) ro r(s1) r1 

and 

x - u 0 ' 

y - V 0' z - f(x,y,z) 0 (26.44) 

z - w = 0 ' 

We can impose any of these conditions upon the problem (26.42) without 
influencing the solution since the solution of (26.42) must necessarily satisfy 
all conditions (26.43) and (26.44). If we impose the conditions (26.44), we 
obtain our original problem (26.34). The equations (26.43) then become the 
Euler equations of the problem (26.34). If, however, the conditions (26.43) are 
imposed upon (26.42), we obtain a new problem of variation which has the same 
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extremum V as the problem (26,34). The Euler equations of this problem are 
precisely the equations (26.44), i.e., the conditions which were formerly 
imposed. This transformation of the original problem is the transformation 
of Friedrichs. 

We consider first the integral 

(26.45) 

By introducing p,q,r from (26.43), we obtain the value zero for this integral. 
The integral 

can be transformed into 

S1 

1 (px + qy + rz) ds 
So 

St S1 - fa O (xp + yq + zr)ds + [ xp + yq + rz] . 
So 

Hence it follows, with the aid of the last three rows of (26.43), that the 
expression (26.42) assumes the form: 

S1 

T = - fs O [ xp + yq + zt - 11. (f - z)] ds . 

We finally introduce 

and obtain 

t, p 

St 

T = 1 t (x fx + y fy - f) ds , 
So 

or with the aid of the function n (t7J ,s) defined by (26.22): 

s1 ( • • ) 
T = 1 t n - ~ , - ~ ds . s 0 r r 

(26.46) 

(26.461) 

(26.47) 

(26.471) 

(26.48) 

The functions p,q,r which are admissible in (26.48) must satisfy the relation 

p2 + q2 + r2 = n2 (26.481) 
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and the boundary conditions 

Po Pt 

qo (26.482) 

as follows from (26.43). This however is our former variation problem 
(26.21) for the function T. 

It follows from the general theory of the above transformation that the 
stationary value of (26.48) is a maximum if the stationary value of (26.34) is 
a minimum and vice versa. 

26.5 Systems of spherical surfaces. In the case of spherical surfaces 

(26.51) 

we have obtained, for '2 1 (~,77), the expression 

(26.52) 

and thus 

T 1 - a1(r1 - r1-1) 

+ R1 sign (r1 - r;_i)✓(p; - P1-d2 + (q1 - q1-d2 + (r; - r1-d2. 

By introducing the quantity 

(26.53) 

we are led to the problem of variation of finding a stationary value of the sum 

k 

T L [ K1 ✓(P; - P;-d 2 + (q1 - q;_i) 2 + (r1 - r;-d2 

1=1 

(26.54) 

under the conditions that 

(26,541) 

and that Po, q 0 , r 0; Pk, qk, rk have given values. 
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For a continuous set of spherical surfaces 

-0 x2 + y2 
z = a(s) - R(s) 1 - R 2(s) 

the problem is to find a stationary value of the integral 

where 

and where p(s), q(s), r(s) have given boundary values 

p(so) Po p(s1) 

q(so) 4o q(s1) 

r(s 0) ro r(s1) 

The function K(s) is defined to be 

K(s) = R(s) sign n'(s) . 

§27. MEDIA OF RADIAL SYMMETRY. 

(26.55) 

(26.56) 

(26.561) 

Pt 

41 (26.562) 

r1 

(26.57) 

27 .1 Optical media in which the index of refraction is a function of the 
radius alone are of considerable theoretical interest. It is possible to inte­
grate the differential equations of the light rays by quadratures and to deter­
mine optical systems of this type which represent, in a certain sense, perfect 
optical instruments. 

The light rays in a medium of index n = n(r) are plane curves; this 
can be shown by the same method as for a particle moving in the field of a 
central force. Without loss of generality we thus can limit the investigation 
to rays which lie in the xy-plane, i.e., to the problem of integrating the 
equation 

(27.11) 

Let us assume that n(r) is a continuous function. If ljJ ljl(x,y;K) is a 
set of solutions of (27.11) which depends on the arbitrary parameter K then 
all the light rays of the xy-plane are given by Jacobi's theorem in the form 

(27.12) 
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where OL is an arbitrary constant. We can easily find such a set of solutions 
by introducing in polar coordinates in (27 .11) 

X = r COS 0 
(27 ,13) 

y r sin 0 

It follows that: 

1 ,1,/ + - ,1, 2 
'I' r2 '1'0 (27.14) 

which possesses the solution 

r~K2-
1/J = K 0 ± J n 2 - - 2 dr r 0 r 

(27.15) 

with an arbitrary constant K. 

By applying (27.12) we obtain the result: The light rays in the xy-plane 
are given by the equation: 

r 
0 - 0 0 = ±Kl 

ro 
dr 

(27.16) 

The integration constants 0 0 , r O determine the origin of the ray, the 
constant K its direction at this point. Indeed from (27 .16) it follows that 

d(0 - 0 0) 
0' = 

dr 

and hence 

K = = ± nr sin rp 

X (27.18) 

Figure 96 where rp is the angle which the ray 
makes with the radius vector. The 
equation (27.18) states that the ex­

pression nr sin rp is constant along one and the same ray. We notice that 
r sin rp is the length OQ of the perpendicular dropped from O onto the tangent 
of the ray at P. 

Let us now determine the equation of a ray which originates at a point 
P O of the negative side of the x-axis and includes an angle OL O with the x-axis. 



166 

y 

0 

Figure 97 

Figure 98 

0 - 'Ir 

In both cases 

K 

i.e., 
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Since 0 0 = 1r and K = n Or O sin a 0 
we find from (27 .16) 

0 - 'Ir (27.19) 

If a 0 < ~ it is clear that both 

0 and r decrease at the beginning; 
hence the ray is represented by 

r 
0 - 7r = + Kj dr 

r o r ✓nr-2_r_2 ___ K_2 

(27 .191) 

7r However, if a 0 > 2 then 0 decreases 
and r increases. Hence 

(27.192) 

(27,193) 

(27 .194) 

27 .2 We have to expect in general that r reaches a maximum or 
minimum along a given ray. From 

(27 .21) 

if n(r) is continuous it follows that :; is a continuous function. Hence :; = 0 

determines a point where r(0) reaches an extreme value. We cl'.Snclude that 
the extreme values of r must be solutions of the equation 

(27 .22) 
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This result allows us to determine the general form of the light rays in our 
medium by the structure of the function 

p (r) = nr . (27.23) 

We illustrate this for two types of this function. 

1. p = nr is an increasing monotonic function. 

K 

* r r 0 

Figure 99 

0 

Figure 100 

p 

r** r 

Figure 101 

Let r = r* be the solution of the 
equation p 2 = K 2. In the case of 

a 0 < ~ t~e integral in (27.191) has 

to be taken for values r < r O until 
the minimum value r* is reached 
at a point P*. The angle 0* belong­
ing to r* is given by the integral 

r* 
0*=1r+K..(_ dr .(27.24) 

o r ,jp,..,2.--_-K--..-2 

On the section of the ray beyond P * 
the radius vector r increases again. 
Consequently this part of the ray is 
given by the integral 

r 
0 = 0 * - K f dr (27 .25) 

r* r,lp2 _ K2 

At no point of the ray do we have 
p 2(r) = K 2 again, i.e., r(0) in­
creases monotonically. The two 
branches of the ray are symmetrical 
to the line OP*. 

In case a 0 > f the integral 

(27 .192) has to be taken for values 
r > r 0. Consequently no solution 
r* of p 2(r) = K2 is found on the 
path of integration, i.e., r(0) in­
creases monotonically. The two 
cases are illustrated in Fig. 100. 

2. The function P = nr has a 
maximum and converges to zero if 
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The equation p 2 = K2 has two solutions r* and r**· The quantity K 
must be chosen so small that r* ~ r 0 ~ r** which is the case if K satisfies 
the inequality (27.194). Let us consider the case a 0 < ·r On the initial part 
of the ray, we have 

0 - 'Ir 
r dr 

K fro .Ji 2 2 r p - K 
(27.26) 

with decreasing values of r. The radius r(0) reaches its minimum r r* 
at the angle given by 

0* 7r + K 
r* 

J dr 
(27 .261) 

ro 

and then increases according to the equation: 

r 
0 = 0* - K 1 dr 

r* /,...,2,---K-2=-r v p -

(27 .27) 

This equation represents the ray until r reaches its maximum r** at the 
angle 

0 ** 0* - K 
r** 

J r* 

dr (27.271) 

After this r(0) decreases again and the ray is given by 

r 
0 = 0** + K j 

r** 

dr 
(27.28) 

9"* r** 
The curve r = r(0) is 

symmetrical to both angular direc­
tions 0 * and 0 **. This obviously • 
means that r(0) is a periodic func­
tion of 0 which has the period 

r** 
__ .._.£...~--~----1--..,_ ___ p 2K j dr 

r * r ✓p,....,2,....(-r)---K-2=-

Figure 102 

(27 .29) 

The ray is a curve which oscillates 
back and forth between two circles 
of radius r* and r** and which are 
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touched by the ray at equal angular intervals. This curve is closed if ~ is a 

rational number. In the case where a 0 > ~ we obtain in principle the same 

result. Starting from P O the ray now reaches first the maximum r ** instead 
of the minimum r* as above. 

27 .3 Let us consider the special case 

1 
n 2 = C + - . 

r 
(27 .31) 

The light rays in this medium are identical with the paths of particles which 
move in a Coulomb field of potential cp = - 1/2r,_and with the energy C/2. 
From (27 .16) we obtain 

0 - 11" (27 .32) 

as the equation of the light rays. To evaluate the integral, we introduce 

K 1 
r 2K z = 

~ 
(27.321) 

as the variable of integration. 

We have 

dz 

and (27.322) 

1 - z2 

From (27 .322) it follows that 

arc sin z 0 - arc sin z . 
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We denote the constant arc sin z 0 by (3 - rr/2 and obtain 

z = cos (0 - (3) (27 .33) 

i.e. 

r = 
2K 2 

1 + j1 + 4CK 2 cos (0 - (3) 
(27 .34) 

as the equation of the light rays. The curves represented by (27 .34) are conic 
sections. In order to determine the type of these conics, let us assume (3 = O. 

All other light rays can be obtained from this one parameter set of curves by 
rotating the whole set about the origin. 

or 

We introduce x = r cos 0, y = r sin 0, and find from (27 .34) 

J x 2 + y 2 + J l + 4CK 2 x = 2K 2 , 

For a given C all these conics have the same principal axes A 
The eccentricity e is given by 

(27 .35) 

1 
2C" 

Hence it follows that the point x = y = 0 is a common focal point of all the 
conics. 

In the limit when C 0 equation (27 .35) becomes 

y2 = 4K2 (K2 _ x) 

which represents parabolae with the focal point at x = y = O. 

(27 .36) 

We summarize our result as follows: The light rays in a medium of 
refractive index 

n2 

are given by the following curves: 

1 C+­
r 
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C > 0: Hyperbolae with the same principal axes A 
x = y = 0 as common focal point. 

Figure 103 

½ C and the point 

C 0: Parabolae with x y 0 as common focal point. 

Figure 104 

171 



172 MATHEMATICAL THEORY OF OPTICS 

1 
C < 0: Ellipses with the same principal axes A = -- and x = y = 0 as 21c1 common focal point 

Figure 105 

The three different cases are shown in Figs. 103, 104, and 105 with the 
understanding that all light rays will be obtained by rotating the set of curves 
about the point x = y = 0. In case C < 0 no light ray can penetrate into 

the region r > - 2~ . 

§28. MAXWELL'S FISHEYE. 

28.1 We shall consider in this section an optical medium which is 
characterized by the index of refraction 

n = a/ ( b2 + r 2) , (28 .11) 

where a and b are constants. This optical system is known as Maxwell's 
fisheye. Without loss of generality we assume a = b = 1 and thus have 
the problem of determining the light rays for the case 

n = 1/ ( 1 + r 2) . (28 .12) 

There exists a certain relationship between this medium 'and the example dis­
cussed in 27 .3 where n2 = C + 1/r. The equation of the wave fronts in the 
latter case is given by 

1 
C +-;===== 

Jx2 + y2 + z2 
(28 .13) 
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Let us transform this equation by Legendre's transformation: 

~ 1/Jx X Wt 

11 1/!y y Wry 1/! + w x~ + Y71 + Z/; (28.14) 

/; l/lz z wi; 

whence 

~2 +712 + i;2 C+ 
1 

(28.15) 
✓ws2 + w 2 + w 2 

ry /; 

or 

wl + wry2 + wf = 
(-c+~2:712+i;2r 

(28.16) 

In the case where C = - 1 this equation is identical with the equation 
for the wave fronts in a medium of index of refraction, 

n = 1 + ~ 2 + ~ 2 + /; 2 , i.e., in Maxwell's fish eye. By submitting the wave 

fronts of the "potential field" n 2 = ! - 1 to a Legendre transformation, we 
r 

obtain the wave fronts of Maxwell's fish eye. 

28.2 By applying the formula (27.191), we obtain the light rays in our 
medium, 

0 - 1f 
Jr K(l + r 2)dr 

ro rJr2 - K2(1 + r 2)2 
(28.21) 

:tr: s::ad(i;r ~e~ified t~at the)~t::::, is the derivative of the function 

r 1-4K2 

r 2 - 1 j1 - 4K 2 . (0 C) --- = ~--- Slil - 7r + r K 
(28.22) 

where C is a constant. Let us denote this constant by fJ - ~1r • This yields 

✓1 4K2 
r 2 - r ~ cos (0 - fJ) - 1 0 (28.23) 

as the equation of the light rays in our medium. 
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fu order to determine the type of curves given by (28.23) let us assume 
(:J O and introduce Cartesian coordinates 

X r COS 0 

y r sin 0 

From (28.23) we obtain 

Letting R 

( _ J1 - 4K2 ) 2 
x 2K 

2~ , we obtain 

+ y2 1 
4K 2 

(~ -✓R2 - 1)2 + y2 = R2 .. 

(28.24) 

(28.25) 

This is the set of circles which go through the points y ± 1 of the y-axis. 
The entire manifold of light rays in the xy-plane thus is found to be given by 

the set of all circles which go 
Y through two points on opposite ends 

of a diameter of the unit circle. 

28.3 Let us now consider the 
bundle of rays through a given point 
x 0 of the x-axis. By introducing 
Cartesian coordinates in the general 
equation (28.23), we find a general­
ization of (28.25), namely, 

( x - JR2 - 1 cos (:J) 2 

+ (y -~ sin(:J) 2 = R 2 . 

Figure 106 (28.26) 

The points of intersection of these circles with the x-axis satisfy the 
equation 

(x - ✓R2 - 1 cos(:J) 2 + (R 2 - 1) sin2 (:J = R 2 

or 

x 2 - 2x ✓R 2 - 1 cos (:J - l = 0 . (28.27) 

For the product of the two solutions x 0 and x1 of this quadratic equation, we 
obtain 

- 1 (28.271) 



APPLICATION OF THE THEORY 175 

i.e., a relation independent of the particular parameters R and fJ of the ray. 
This demonstrates that all rays through the point x 0 intersect each other at 

Figure 107 

the point x1 = - 1/x0• The 
same consideration can be 
carried out for points of any 
straight line through the origin 
other than the x-axis. Thus 
we have the result: All the 
rays through a point x 0 , Yo 
intersect each other at the 
point 

Xo 
Xt - ~ 

(28.28) 
Yo 

Yt = - ro2 

i.e. every point x 0 , Yo possesses a perfect conjugate point x1, y 1 which lies 
on the same radial line as x 0 , Yo, but on the opposite side of the origin. The 
distances of the two points from O are related by the equation 

(28.281) 

To any sphere of radius r 0 there belongs a conjugate sphere of radius 
r 1 = 1/r0 which is a perfect and undistorted optical image of the sphere of 
radius r 0 • This image, of course, is inverted; its magnification is 
M = - r 1/ro. 

28.3 The surprising properties of an optical medium of refractive 

index n = 1 ~ r 2 find their explanation by the fact that the line element 

ds2 = 4 dx2 + dy2 
(1 + r2)2 

(28.31) 

can be interpreted as the line element of the sphere. We can map the points 
of a unit sphere by a stereographic projection on the points of the xy-plane. 
Let us determine the formulae which represent this projection. From Figure 
108 it follows that 

X y 
x, ---- y 

1 - Z 1 - Z 
(28.32) 

Hence 

x2 + y2 1 - z 2 r 2(1 - Z) 2 (28.321) 

in which r 2 x2 + y2 
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Figure 108 
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This yields 

and 

r2 = 1 + Z 
1 - Z 

z r 2 - 1 
r 2 +-1 

(28,322) 

By introducing this expression for 
Z in (28.32), we obtain 

2x 
X = 1 + r2' 

y = 2y 
1 + r 2 ' 

r 2 - 1 z - ---- r 2 + 1 (28.33) 

We can consider these f~rmulae as a parametric representation of the 
unit sphere with the coordinates x,y as parameters .. The line element of the 
sphere in these parameters is given by 

ds 2 = dX 2 + dY 2 + dZ 2 = 4 (d l:r2)2 +4 (d l~r2f + (d~: ~ ~)
2 

which gives 

ds 2 (28.34) 

We recognize that ds 2 has the form of an optical line element 

where n = -1 
2 

2 is identical with the function n(r) which characterizes 
+ r 

Maxwell's fisheye with the exception of an insignificant factor. 

The light rays in this medium therefore must be those curves which are 
stereographic images of the geodetic lines of the unit sphere, that is, of great 
circles. We know that the great circles passing through a point (X 0,Y 0 ,Z 0) 

of the sphere intersect each other again at the point 
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The stereographic images of this set of circles are the light rays through the 
point 

Xo 
Xo = 1 - Z O ' Yo = 1 - Zo (28.35) 

of the xy-plane. It follows that these rays intersect each other again at the 
point 

Z0 + 1 ' Yt Z0 + 1 • (28.36) 

Hence 

Xt Y1 1 - Zo 
Xo Yo 1 + Zo 

or, from (28.322): 

~= Y1 1 -
ra2 Xo Yo 

(28.37) 

This, however, is the result expressed in (28.28). 

From the fact that the stereographic image of an arbitrary circle on the 
sphere is a circle in the xy-plane it follows that in particular the light rays in 
Maxwell's fisheye are circles. Since a great circle intersects the equator at 
two opposite points, we find that all light rays must intersect the unit circle 
(the image of the equator) in points on opposite ends of a diameter. 

Let us now consider a curve C on the sphere. It is clear that the con­
jugate curve C ', i.e., the "antipode" of C has the same length as C. Let c 
and c' be the stereographic images of C and C' Ill: the xy-plane. This means 
that c' is the optical image of c, i.e., the curve which is formed by the points 
c~njugate to the points of c. From 

J ds = J ds' 
C C' 

on the sphere we obtain 

J n ds =: J n' ds' , 
C c' 

i.e., conjugate curves have the same optical length. 
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We have demonstrated this result only for curves in the xy-plane. It is, 
however, easy to prove it more generally for any curve c in the x,y,z space. 

28.4 Perfect optical instruments in the xy-plane. The stereographic 
projection of the sphere is a conformal projection. This follows from the 
result (28.34) that the line element ds 2 = dX~ + dY 2 + dZ 2 of the sphere 
has the form Ji. (x,y) (dx2 + dy 2) which is characteristic of conformal mapping 
in general. Let us now map the x,y-plane conformally upon itself, i.e., a 
transformation 

X = U(;,7)) , 
(28.41) 

where u and v are the real and imaginary parts of an analytic function 

z = f(; + i 7J) = u(;, 7J) + iv(;, 7J) 

It follows from the Cauchy-Riemann equations that 

(28.42) 

The line element (28.34) in these new coordinates assumes the form, 

ds2 = 4 lf'l2 (d;2 + d7J2)' 
(l + r2)2 

(28.43) 

of an optical line element in the ; 7J -plane with the index of refraction 

2 2 
n(;,7)) = (1 + r2) lf'I = l + lfl2 lf'I • (28.44) 

The light rays of this medium are the curves into which the great circles of 
the sphere are transformed by applying stereographic projection and the con­
formal transformation (28.41) in succession. 

Obviously it is still true that all the rays through a point (; 0 , 7J O) inter­
sect each other at a conjugate point (; 1,7) 1). Hence it foll<?ws that every 
medium in the xy-plane which has an index of refraction 

_ 2 lf'(z>I . 
n - 1 + lf2(z)I' z = x + iy (28.45) 

where f(z) is analytic, represents a perfect optical instrument in the following 
sense: Every point x 0 ,y 0 of the xy-plane has a perfect conjugate point x1,y1 

in the plane. 
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The light rays in all these media can be obtained by conformal mapping 
of the sphere onto the plane, namely as curves which correspond to the great 
circles of the sphere. With the aid of (28.26) one can easily prove that these 
rays are given by the equation 

I fl 2 + (af + a£) - 1 = o 

where a = Cl! + i{3 is an arbitrary complex number. 

Let us consider the function 

f(z) = zY, y ~ 1 

as an example. We obtain a medium of radial symmetry, namely 

- 2yrY-t 
n(r) - 1 + r2Y ' 

The light rays in this medium are the curves 

r 2Y + rY A cos (0 - /3) - 1 = 0 

where A and {3 are arbitrary real constants, as follows from (28.46). 

(28.46) 

(28.47) 

(28.471) 

(28.472) 

Since n(r) is a function of ✓x2 + y 2 in the xy-plane we conclude that 
a medium of refractive index 

rY-t 
n = 

1 + r2Y 

in the xyz-space with r =Jx2 + y 2 + z 2 is perfect in the sense of our above 
definition not only for points of the xy-plane but for any points of the x,y,z 
space. Obviously, our result is a direct generalization of Maxwell's fisheye 
which is obtained by taking y = 1. 

Another example is given by the function 

f(z) = e iz • 

This gives the refractive index 

n 

The rays satisfy the equation 

1 
cosh y 

sinh y = A sin(x + Cl!) 

with arbitrary constants A and Cl! • 

(28.48) 

(28,481) 

(28.482) 
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A straight line x = x 0 has a perfect image on the line x = x 0 + 71"; a 
point of the "object line" x = x 0 has a perfect image at the point y1 = - Yo 

Yo 

y 

X 

Figure 109 

of the "image line", x = x 0 + 71", 

This example applies only to 
the xy-plane. Contrary to the 
former example it is not 
possible to find a medium in 
the x,y ,z-space which cor­
responds to this example and 
forms a perfect optical instru­
ment in the x,y ,z-space. 

28.5 Light rays which 
remain in one and the same 
plane play an important part 
in the investigation of optical 
instruments of revolution. Let 
us assume that a medium is 
symmetrical with respect to 
the x-axis so that 

n = n ( x,~ ). Every 
ray which intersects the x-axis 
is plane, i.e., lies in a meridi­
onal plane through the axis of 
the instrument. We may 
assume that this plane is the 
xy-plane. The rays in this 
plane, which is often called 
the primary plane of the in­
strument, are given by the 
geodetic lines of the line 
element 

ds 2 = n 2(x,y) (dx2 + dy 2) . 

(28.51) 

Figure 110 Let x = x(u,v), y = y(u,v), 
z = z(u,v) be the parametric 
representation of a surface in 

the x,y ,z space. Its line element ds 2 has the form 

ds 2 = E du 2 + 2F du dv + Gdv 2 (28.52) 

where E,F,G are functions of u and v. 
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One can show that it is possible by a transformation of the parameters 

u u(x,y) 

v = v(x,y) 

to transform the line element (28.51) into the form of an optical line element 

(28.53) 

The corresponding parametric representation of the surface 

X = X(x,y); Y = Y(x,y); Z = Z(x,y) (28.54) 

can be considered as a conformal mapping of the surface onto the xy-plane. 
Thus the light rays of a medium of refractive index n(x,y) in the xy-plane are 
the images of the geodetic lines of a surface projected conformally onto the 
plane. 

As in the case of the sphere there exist many conformal projections 
(28.54) for a given surface. From one projection (28.54) we can find others 
by a conformal transformation of the plane onto itself. If x = u(!;,11), 
y = v(!;,11) are the real and imaginary parts of an analytic function 

f(t) = u(!;,11) + iv(!;,11); t = !; + i11 

we obtain a new conformal projection by introducing u and v in (28.54). The 
line element (28.53) becomes 

which corresponds to an optical medium of refractive index 

n*(!;,11) = n ( u(!;,11) , v(!;,11)) lf'I 

If the light rays of (28.53) are given in the form 

g(x,y ,a,b) = 0 

(28.55) 

(28.56) 

(28.57) 

with arbitrary parameters a,b then we obtain the light rays of the medium in 
the form 

g (u(!;,11), v(!;,11), a, b) = 0. (28,571) 

The results derived in (28.4) are a special application of this theorem. 
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Let us now consider the case of a homogeneous medium where 
n(x,y) = 1. The rays of this medium have the form 

x cos rJ + y sin -rJ = C 

where C and rJ are arbitrary constants. From (28,56) and (28,571) it follows 
that the light 'rays of a medium of refractive index 

(28.58) 

are given by the curves 

u cos rJ + v sin rJ = C (28.581) 

in which u and v(~,TJ) are real and imaginary part of the arbitrary analytic 
function f = u + iv. 

The problem of optical design is to find a medium such that the light 
rays through an arbitrary point of a finite section of the object plane intersect 
each other at a conjugate point of the image plane. This necessarily implies 
the same condition for the plane rays of the xy-plane and hence for the 
geodetic lines of the surface (28.54). We therefore recognize the close 
relationship of the problem of optical design to a problem in differential 
geometry which could be formulated as follows: To determine surfaces such 
that the geodetic lines through at least a one-parameter set of points on the 
surface intersect each other in a set of perfect conjugate points. The sphere 
is the simplest example of such a surface. 

Any surface of this type determines an instrument of revolution such 
that the rays of the primary plane produce a sharp image of a certain curve 
in this plane. Among these instruments we have to determine those in which 
the skew rays, i.e., the rays which do not intersect the axis focus at the same 
points as the primary rays. Only if this additional condition is satisfied can 
the instrument be considered as perfect. 

§29. OTHER OPTICAL MEDIA WHICH IMAGE A SPHERE ONTO A SPHERE. 

29,1 We have found in Maxwell's fisheye an optical instrument which 
forms a perfect image of an arbitrary sphere about the origin. Both the 
object and the image sphere are located in a region where the index of re­
fraction varies. This leads us to the question of whether it is possible to find 
a medium which is homogeneous inside this sphere such that two given spheres 
in the homogeneous part are perfect conjugate spheres. We shall see that the 
answer is in the affirmative and that the problem can be solved in many ways. 
We remark that our condition refers only to two given spheres and requires 
nothing of other spheres. 
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Let us assume that the boundary of the non-homogeneous medium is a 
sphere of radius 1. Let r 0 be the radius of the object sphere and r 1 the 
radius of the image sphere. The index of refraction shall be a function of 
y,n = n(r), r < l; n = 1, r ~ 1. We assume n(l) = 1 so that n(r) is a 
continuous function. On account of the radial symmetry of the medium it is 
sufficient to require that all rays passing through a point x 0 = - r 0 ; Yo = 0 
which enter the glass sphere pass through the point x1 = ri, y1 = O. 

Figure 111 

Since r = 1 at the points P O and P 1 where a ray enters and leaves the unit 
sphere, we conclude that r(0) must reach a minimum r* at a certain angle 
0 *. Let us simplify our problem by excluding functions n(r) which introduce 
more than one extreme value r* along the rays. In other words, let us 
assume that the function p = rn(r) increases monotonically so that the 
equation 

p 

K 

r* 

Figure 112 

K2 = r 02 sin2 a 0 (29.11) 

has only one positive solution r* < 1. 
The equation of the light ray for 
0 < 0 * is given by equation (27 .25) 
namely: 

(29.12) 

in which 

7r + K 

(29.13) 
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It follows that the ray intersects the positive side of the x-axis at a point 
0 = 0, r = r 1 where r 1 satisfies the equation 

- 7r = K . (29.14) 

If p = nr is given then this equation determines the intersection r 1 with the 
axis as a function of K = r 0 sin Cl! 0 , i.e., of the direction of the incident ray. 
If, however, r 1 is a given constant then (29.14) represents an integral equation 
for the function p = p(r) for r < 1. For r ~ 1 we have p = r. Since 

K f dr 

r✓r 2 - K 2 

from (29.14) we obtain the condition 

1 
J dr 

K --,_-.,...--:_-_-_-_-_-_-.,....-
r * r✓p2(r) - K2 

where f(K) is the function 

. K arcsm -
r 

f(K) 

f(K) 1 ( • K . K 2 • K ) = -2 1r + arcs1n - + arcsm - - arcs1n . 
r1 ro 

(29.15) 

(29.16) 

29.2 In order to transform (29.15) into an integral equation of a known 
type, let us first introduce the variable 

T = log r. (29.21) 

Then it follows that 

f(K) . (29.22) 

We now define the measure function n (p) as the measure of all T-regions in 
the interval -oo < T ~ 0 where p(T) > p. Since we have assumed that p = p(r) 

p and hence p = p(T) is a monotonic 
function, we see that in our case 
n (p) is nothing bu1: 

n (p) = - T(p) = - log r(p) , 

(29.23) 

_______ __. ___ ....... ___ ...;- i.e., the abscissa - T(p) where the 
0 

Figure 113 
T curve p(T) reaches the distance p 

from the T-axis. Evidently, we have 
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n (p) = 0 for p ~ 1. The difference 

measures the T interval where Pt < p(r) ~ p 2• 

With the aid of this function n (p) we can write (29.22) in the form 

- K J,1 d n (p) = f(K) . 
K ✓p2 - K2 

(29.24) 

This is an integral equation of Abel's type. 

29.3 For the solution of this equation we shall prove the following 
theorem. 

If the function f(K) is defined by the integral 

f(K) = - K /' d n (p) 
K ✓p2 _ K2 

in the interval O i K i 11. then n (p) is determined by the integral 

S2(p) - S2(11.) = ~ IA f(K) dK . 
1T p ✓K2 _ p2 

(29.31) 

(29.32) 

We prove this inversion theorem as follows: We multiply (29.31) by 
---2-- and integrate with respect to K from p to 11.. It follows that 
✓K2 _ p2 

(29.33) 

By interchanging the order of integration we obtain 

(29.34) 

We transform the inner integral by introducing the integration variable z 
given by 

(29.35) 
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and the consequent relations 

We obtain 

2KdK 

K2 _ p 2 (s 2 - P 2)z ' 

(s 2 - p 2) (1 - z) 

>c t d J d n(s) J z 
P O ✓ z(l - z) 

>c 
= 1r J dn (s) 

p 

whence we obtain (29.32). 

29.4 We carry out the integration (29.32) first for the function 

cp (K) = i - arc sin K 

which is a part of the function (29.16). We can write cp (K) in the form 

cp(K) = + K i t dp 

K pJK2 _ p2 

l t d log p 
+K 

K JK2 _ p2 

(29.36) 

(29.37) 

(29.41) 

(29.42) 

By applying the inversion theorem to the special case of (29.31), in which 
n = log p, we obtain 

2 J,1 cp(K) - log p = - dK . 
7r P ✓,-K~2-_ -p~2 

(29.43) 

With the aid of this result and by applying our theorem to the function (29.16) 
we obtain: 

n (p) - n (1) = - log p + .! / (arcsin K + arcsin K ) dK . (29.44) 
1r p r1 ro JK2 _ p2 

Let us introduce the function 

w(p,a) dt . (29.45) 
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Since n (1) = 0 and n (p) = - log r(p), from (29.44) we obtain: 

p 
log - = w(p,r 0) + w(p,r1) 

r 

By introducing p nr this yields the relation 

log n = w(p,r 0 ) + w(p,r1) 

This equation together with p = nr determines the function n 
parametric form: 
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(29.46) 

(29.47) 

n(r) in 

(29.48) 

29.5 Let us consider the case when r 0 

example. We have w(p,00) = 0 and 
co and r 1 1 as an 

w(p,l) 1 J1 arcsin t dt . 
7r P ✓t2 _ p2 

(29.51) 

We can evaluate this integral explicitly with the aid of the relation (29.43). 
We obtain the relation 

2w(p,l) log p + J i dK 

P ✓K2 _ p2 

i.e., 

(29.52) 

The two equations (29.48) give for n(r) the explicit expression 

(29.53) 

This is a function which decreases gradually from the central value n = .f2 
to n = 1 at r = 1. 
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Figure 114 

§30. OPTICAL INSTRUMENTS OF REVOLUTION. 

Almost every optical instrument is symmetrical with respect to an a.xis. 
Let us assume this a.xis to be the z-a.xis of our coordinate system. The index 
of refraction is a function 

n = n(p,z) 

of z and p = ✓ x 2 + y 2 • 

30.1 Let us first consider Fermat's integral 

Zt 

V = f n(p,z) ✓1 + x2 + y2 dz 
Zo 

and introduce polar coordinates 

X = p COS 0 , 

y p sin 0 . 

It follows that 

The variation with respect to 0 yields 

0 

(30.11) 

(30.12) 

(30.13) 

(30.14) 
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and hence 

h, 

where h is a constant. 

We can interpret this result as follows: We introduce the optical 
direction cosines 

p 
x 

n -;.::.::.::.:::.:::::::::::::::::= 
✓ 1 + x2 + :v2 

Then it follows that 

xq - yp 

and with the aid of (30,12) 

xq -yp 

q 

h . 

This means: The expression xq - yp is a constant along a given ray. 
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(30.15) 

(30,16) 

(30.17) 

(30.18) 

30.2 We can use the above result to transform Fermat's problem into 
a problem of variation for the function p(z) alone. We proceed in a manner 
similar to that used before by applying Friedrich's method of transformation. 
The problem is to find two functions p(z) and 0(z) with given boundary values 

P1 
(30.21) 

such that the integral (30.13) assumes an extremum. We eliminate the 
boundary conditions for 0(z) by introducing Lagrangian multipliers a, (3. We 
also replace iJ in (30.13) by an independent function u(z) and add a new 
integral to (30.13) with h(s) (0 - u) as integrand, where h(s) is another 
multiplier. The result is 

V 
z 

Jzo [ n./1 + p2 + p 2u 2 + h(s) (0 - u)] dz 

+ a (0(z 0) - 0 0) - {3 (0(z1) - 01) • (30.22) 
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Euler's equations with respect to u(z), 0(z), h(z) and the constants a, fJ lead 
to the conditions 

Cl! 

- h O; h 0; (30,23) 
fJ 

and 

0-u=O; (30.24) 

Instead of imposing the conditions (30.24) upon (30.22) which would lead 
us back to the original problem (30.13), we impose (30.23) and obtain an 
equivalent problem V with p(z) and h(z) as variable functions. Since Ii = 0 
implies that h(z) is a constant, we shall find a problem of variation for a 
function p(z) and a constant h. 

Let us first consider the integral 

(30.25) 

By introducing h from the first equation (30.23), we obtain the integral 

(30,251) 

in which u has to be expressed as a function of p and h with the aid of 
(30.23). We find 

u = 

and hence 

- n./I02 
-~, 

v n2 -:1" 
p 

(30.26) 

(30.27) 

From the elimination of 0 in (30.22) by partial integration, we obtain the 
problem of variation 

(30,28) 
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with 

p(zo) = Po ; Pi 

as the only boundary conditions. 

The variation with respect to h yields 

dz, (30.281) 

and the variation with respect to p(z) yields 

0 (30.282) 

where 

(30.29) 

30.3 We can interpret this result as follows: Skew rays in a system of 
rotational symmetry can be treated as primary rays (h = 0) if, in the pz­
plane, the index of refraction n(p,z) is replaced by m(p,z) given by (30.29). 

Let us consider the following problem: To find a ray which intersects 
the plane z = z O at the point 

Xo = p O COS 0 0 , Yo = p 0 sin 0 0 

with a direction p O, q O• First we determine the quantity by 

h = xoqo - YoPo • 

(30.31) 

(30.32) 

The problem remains to find p(z) as a solution of 30.282 with the initial 
values 

p(zo) Po 

XoPo + Yoqo 
(30.33) 

✓ 2 2 2 po no - Po - qo 
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This last condition follows from 

pp = xx+ yy 

with the aid of the definition (30.16) of p and q. 

(30.34) 

Finally the functions x(z) and y(z) of the light ray are obtained in the 
form 

x = p(z) cos 0(z) 

y p(z) sin 0(z) 

where 0(z) is given by the integral 

Jz~ 
0(z) = 0 0 + h 2 dz 

zo P m 

(30.35) 

(30.36) 

Our results allow us to formulate the condition for perfect optical 
instruments more precisely than at the end of §29. Let us assume that the 
line element ds 2 = n 2(p,z) (dz 2 + dp 2) is that of a perfect optical instru­
ment in the p ,z-plane. In order to have a perfect instrument of revolution we 

must also require that all line elements ds 2 = (n2 - :: ) (dz 2 + dp 2 ) with 

arbitrary h be perfect with the same location of conjugate points on z = z 0 

and z = z1. Furthermore, the integral (30.281) must have a constant value 
for all values of the parameter h. 

30.4 The characteristic functions. We have found in examples that 
Hamilton's characteristic functions for systems of rotational symmetry de­
pend only upon three combinations which are invariants of rotation about the 
z-axis. Let F(a0b 0;a1b1;z 0z1) be one of the four characteristics V, W, W*, 
and T. The variables a 0 ,b 0 ; a1,b1 will represent the two pairs of the vari­
ables x 0 ,y 0; p 0 ,q 0; x1,y1; pi,q1 on which the particular function depends. We 
shall prove that F depends only on the combinations 

(30.41) 

Let us first consider the function W(x 0 , y 0 , p1, q1; z 0 , z1) in which case 

(30.42) 
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We can characterize W as a solution of the partial differential equation of 
first order: 

aw 
azo 

which satisfies the boundary condition at z 0 = z1 

(30.43) 

(30.44) 

We make the assumption that this boundary value problem has a unique 
solution. This assumption is certainly true for the function n(u,z) in the 
neighborhood of the boundary plane z1 under very general conditions. This 
follows from the general theory of partial differential equations of the first 
order. Let us now introduce in (30,43) a function 

W = n (u,w;z 0) • (30.45) 

We obtain the equation 

aazno = - ✓n2(u,z) 4(un 2 + vn 2 + wn n ) - •• u •• w •• u •• w (30.46) 

by using the fact that n = n(x,y,z) is a function of u = xa2 + Ya2 and z. 
The quantity v = Pi2 + qi2 in this equation is a constant parameter. Let us 
again assume that the solutions of this equation are uniquely determined by 
the boundary values on z 0 = z1. Let Sl(u,w,z 0) be the solution with the 

boundary values n = - ½ w. This is a function of u,w,z 0 and the parameters 
v and z1. 

On the other hand the function W = Sl(u,v,w;z 0 ,z1) which is obtained by 
introducing the expressions (30.42) is a solution of the problem (30.43) and 
(30.44) and therefore must be the desired characteristic W. This, however, 
proves our statement that W depends only on u,v,w and z 0 ,z1. 

This result gives us another proof of the invariance of the expression 
xq - yp along a light ray. Indeed, we have 

aw 
= - 2(xoWw + WvP1) , 

aw 
- 2(Wuxo + WwP1) , 

ap1 Po - -
axo 

Yt 
aw 

- 2(yoWw + Wvq1) , 
aw 

- 2(WuYo + Wwq1) 
aq1 

qo 
ayo 

(30.46) 
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It follows that 

and hence 

(30.47) 

30.5 The characteristic V(x
0
,y

0
; x

1
,y

1
; z

0
,z

1
) can be obtained from W 

by the Legendre transformation 

V-W 

Y1 = 

We use these relations to demonstrate that V depends only on 

u' u = xa2 + Yo2 

v' 

We have 

Y1 

V-W 

From the first equations (30.53), we obtain the following relations: 

1 
-w' 
2 

(30.51) 

(30.52) 

(30.53) 

(30.54) 

These equations allow us to express v and w as functions of v', w', 
and u = u'. We introduce these expressions in 

(30.55) 

and obtain V as a function of u', v', w'; z
0

, z
1

. We have to assume of course 
that the eliminations in (30.54) can be made. 
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Similar considerations can be applied to the case of the remaining 
characteristics W* and T. We summarize the result as follows: 

Point characteristic: V V(u,v,w;z 0,z1) ; 

u = xo2 + Yo2 ; V = xi2 + Yi2 ; w 2(xox1 + Y 0Y1) . 

Mixed Characteristic: w W(u,v ,w;z 0 ,z1) ; 

u = xo2 + Ya2 
' 

V = Pi2 + qi2 
' 

w 2(XoP1 + Yoq1) • 

Mixed Characteristic: W* W*(u,v,w;z 0,z1); 

u = Po2 + qo2 
' 

V xi2 + Yi2 ' 
w 2(pox1 + qoY1) • 

Angular Characteristic: T T(u,v,w;z 0,z1); 

u = Pa2 + qa2 
' 

V = Pi2 + qi2 
' 

w = 2(PoP1 + qoq1) • 

Our results are quite clear from a geometrical point of view. In the 
case of the point characteristic V, for example, it is easy to see that the 

Figure 115 

optical path between two points 
(x 0,y 0) and (x1,y1) depends 
only on the distances p O = -fu 
and p 1 = .fv of the two points 
from the axis and on the abso­
lute value I 81 - 8 0 I of the 
angular difference. This last 

z statement is equivalent to the 
relationship 

w =--

(30.56) 

so that V is determined by the three quantities u,v,w. In other words: The 
value of the function V(x0,y 0,xi,y1) is unchanged if the coordinates (x0,y 0) 
and (xi,y1) are submitted to simultaneous rotations or reflections on planes 
through the z-axis. Therefore it can only depend on the three invariants of 
these transformations u, v, w. 

§31. SPHERICAL ABERRATION AND COMA. CONDITION FOR COMA FREE 
INSTRUMENTS. 

31.1 In this section we shall investigate the image of a small part of the 
object plane located about the axial point x 0 = Yo = 0. The instrument is 
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assumed to be symmetric 
x I with respect to the z-axis. 

It is a remarkable and 
important fact that it is 

--,~~====+-+====;~:s;~..J z (0) possible to determine the 

Figure 116 

:z 1 image of such a surface 
element from the one 
bundle of rays which 
originates at the point 
x 0 = y O = O. Let us 
first consider this bundle, 
the so called axial bundle. 
The intersections xi, y 1 

of a ray of this bundle with the image plane are functions of its optical direc­
tion cosines pi, q1 after refraction. These two functions are given by the 
derivatives 

8W 0 
X1 

8p1 
(31.11) 

8W 0 
Y1 8q1 

of the mixed characteristic W0 = W(0,0; p1,q1; z 0 ,z1) belonging to the point 
x 0 = Yo = 0. Since the instrument is symmetric with respect to the z-axis, 
we know that W0(pi,q1) depends only on the expression 

We introduce 

P1 p cos cp 

q1 p sin cp 

and thus obtain from (31.11) the relations 

The function 

X1 - W o'(p) COS cp, 

Y1 - W 0'(p) sin cp. 

.l ( p) W o'(p) 

(31.12) 

(31.121) 

(31.13) 

(31.14) 
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is called the lateral spherical aberration of the bundle. It determines the 
radius of the circle in which the image plane is intersected by rays of the 
axial bundle which include an angle at with the axis, where at is given by 

(31.15) 

The function 1 ( p) can be found by tracing rays through the system. We 
remark that W 0( p) can be obtained by integration if 1 ( p) is known, namely, 

Wo(p) = Wo(O) + JP 1(p) dp . 
0 

(31.16) 

Let Z(p) be the intersection of the ray with the z-axis. It is given by 
the equation 

z 

or, from (31.13), by 

Z(p) - Zt = .!iel Jn2 _ p2 . 
p 

(31.17) 

We assume that Z(p) reaches a finite limit Z(O) if p -- 0 and that the image 
plane is chosen at this point so that Z(O) Zt, 

In general, we call the difference 

L(p) = Z(p) - Z(O) (31.18) 

the longitudinal spherical aberration. It is related to the lateral spherical 
aberration .t(p) by the equation (31.17), i.e., by 

J n2 _ p2 
L(p) = ---'-1 (p) . 

p 
(31.19) 

31.2 Let (p 0 , q 0) and (pi, qt) be the optical direction cosines of a ray 
of the axial bundle before and after refraction. Then we have the relation 

Po 
Pt 

(31.21) 

which follows from the symmetry of the ray bundle with respect to the z-axis. 
This ratio determines another function of p namely 

Po 
M(p) = -

Pt 
(31.22) 
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which we shall call the zonal magnification of the bundle. In general this 
function converges to a finite limit M(O) = M O which, as we shall see in the 
next chapter, is equal to the Gaussian magnification of the object plane. M(p) 
and the difference 

.6.M = M(p) - Mo (31.23) 

are explicitly known when the rays of the axial bundle have been traced. 

31.3 We can now demonstrate that the two functions 1(p) and M(p) 
which are given by the axial bundle of rays through x 0 = y O = 0 allow us 
to determine not only the image of the point x 0 = Yo = 0 but also the image 
of points x O, y O -/- 0 near the axis. Let us consider the mixed characteristic 
W(x 0 ,y 0; p1,q1) for the two planes z = z 0 and z = z1. We develop this 
function in a Taylor series with respect to x 0 and Yo with coefficients de­
pending on Pt and qt and disregard all terms which are non-linear in x 0 and 
y 0 . Since W depends only on u = x 02 + y 02 , v = p/ + q/ = p 2 , and 
w = 2(x 0p1 + y 0qt), we develop with respect to u and w and disregard all 
terms involving u, and all powers of w higher than the first power. It 
follows that 

The function WO obviously is identical with (31.16) given by the lateral 
spherical aberration of the axial bundle. 

We use the general relation 

Po = 
aw 
ax 0 ' 

in order to find Wt(P), It follows that 

(31.31) 

(31.32) 

where the dots indicate terms which are homogeneous functions of x 0 and Yo 
of at least first order. Letting x 0 Yo 0, we obtain 

Po 
- 2 W1(p) = -

Pt 
= M(p) (31.33) 

where M(p) is the zonal magnification defined for the axial bundle. We thus 
have the result 

(31.34) 

which allows us to investigate the images of points x 0 , Yo in the neighborhood 
of the axis, in other words the image of a surface element about the point 
xo = Yo = O. 
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31.4 The ray intersection with the image plane is given by 

Without loss of generality we may assume y O = O; hence in this case 

a 
x1 = - .£ (p) cos cp + x 0 -8 (p1M) 

P1 

Y1 = -.l(p) sin cp + XoP1 aaM . 
q1 
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(31.41) 

(31.42) 

A perfect image of the point (x 0 , 0) would be obtained if x 1 = M 0x 0 

and y1 = 0, The aberrations from this ideal are given by the differences 
ax1 = x1 - M 0x 0 ; ay1 = y1 - M 0y 0 = y1. Hence we obtain 

where !/J (p) is defined by 

1 
!/J(p) = Mo (M(p)-M(O)) 

aM 
M" 

We readily find from (31.43) that 

or 

ax1 -.l(p) cos cp + M 0x 0 (¢ + p!/i' cos 2 cp) 

ay1 - .l (p) sin cp + M 0x 0 p!/i' sin cp cos cp 

ax1 - .l (p) cos cp + m + R cos 2 cp 

- .l ( p) sin cp +Rsin2cp 

where m ( p) and R( p) are. the functions 

m(p) M 0x 0 (¢ + ½ p!/J') 

R(p) Moxo½ p!/i' 

(31.43) 

(31.44) 

(31.45) 

(31.46) 
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Let us first assume that .t (p) = 0 so that the bundle is free from 
spherical aberration. We see from (31.45) that this alone is not sufficient to 
guarantee that even a small surface element about the center is sharply imaged. 
However this is the case if and only if the function 1/J is zero. We have thus 
obtained the Sine condition of Abbe: A surface element (x 0 , y 0) of the object 
plane is imaged sharply if and only if the condition 

n 0 sin O!o 
M(p) - M(0) = . - Mo 

n1 sm 0!1 
0 (31.47) 

is satisfied by the rays of the axial bundle. 

Figure 117 

Let us now investigate what 
type of aberration is introduced 
if the condition (31.47) is not 
satisfied. We still assume 
.t (p) = 0. We consider the 
rays which form the surface 
of a cone of angular opening 
p = n 1 I sin O!iJ • The rays of 

this cone intersect the image plane in the circle 

Lix1 m + R cos 2 cp 
(31.48) 

LiY1 R sin 2 cp 

of center m(p) and radius R(p). We notice that this circle is described twice 
if cp goes from 0 to 21r. In fact rays which are at opposite ends of the cone 
(at cp and cp + 1r) have the same intersection point. Since m and R vary with 
p we obtain different circles for different bundles p. By superimposing these 
different circles, we get the light spot which is the image of the point (x 0 , 0). 

Figure 118 

In general a figure of the type 
shown in Figure 118 is pro­
duced. In view of the charac­
teristic shape of this figure, 
this aberration is known as 
Coma. 

For small apertures the 
function 1/J can be replaced by 
the quadratic function 

z/J = B p2 • 

We find in this case 

m 2BM 0x 0 p2 

R = B M 0x 0 p2 
(31.49) 



APPLICATION OF THE THEORY 201 

i.e., m = 2R. The envelope of the circles in Figure 118 is given by two 
straight lines which include an angle of 30° with the ill!:1 direction. 

Coma flare in case 1/>. 

Figure 119 

For larger apertures 
this simple relation is not 
valid any more as can be seen 
in the example shown in Figure 
119 for the case 1/> = p2 - p4• 
The relations (31.46) allow us 
to construct the comatic 
pattern rigorously in this case. 

In the presence of 
spherical aberration, i.e., if 

.11 ( p) "=/= 0, we obtain a more 
complicated set of curves. 
For a given p these curves 
are represented by the equa­
tions (31.45). We can construct 
these curves as follows: We 
consider first a circle of radius 
.11 ( p) and center m( p). The 
center P of another circle of 
radius R moves once around 
the circumference of the first 
circle while the second circle 
rotates twice around P. A 
point Q on the second circle 
describes an epicycle which 
determines the intersection 
curve (31.45). Its shape de­
pends, of course, on the 
relative size of the quantities 

.11 and R. 

31.5 A generalization of 
Abbe's sine condition is ob­
tained by the following consid­
eration. The axial bundle of 

Figure 120 rays is a symmetrical bundle 
with the z-axis as the axis of 
symmetry. An oblique bundle 

originating at a point (x 0 ,0) of the object plane has in general only a plane of 
symmetry, the xz-plane, but not an axis of symmetry. The aberration caused 
by this asymmetry is called the coma of the oblique bundle if the point (x 0 ,0) 
lies in the immediate neighborhood of the point x 0 = y O = 0. 
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Figure 121 

If the total bundle from (x 0 ,0) after refraction is symmetrical at all then 
there must exist a ray in the xz-plane such that this ray is an axis of revolu­
tion for the bundle. In this case we can introduce a new coordinate system 
with a z11-axis given by the above ray and an x11y11-plane normal to it. The 
origin of this system is the point (X1,0) where the above ray intersects the 
image plane. Let p11,q11 ,r11 be the optical direction cosines of a ray in this 
new coordinate system and 

(31.51) 

its intersection with the new Xt'Yt'-plane. 

Then it is clear that the ray bundle can be symmetrical to the z1' -axis 
if and only if the functions (31.51) are odd, i.e., do not contain any terms of 
even power of Pt' and qt'. 

This consideration leads us to the following procedure of investigating 
the asymmetry of an oblique bundle. We select a ray from (x 0 ,0) which lies 
in the primary or the xz-plane. Let 01 be the angle of this ray with the z-axis 
and (X1,0) its intersection with the image plane. We assume that both X1 and 
0 1 are functions of x 0 such that Xt --- 0 and 0 1 --- 0 if x 0 --- 0, in order to 
insure that the selected rays tend to the position of the z-axis if x 0 --- 0. For 
small values of x 0 these functions have the form 

(31.52) 

z' 
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The constant M O is the Gaussian magnification because we have chosen the 
plane z = z1 at the point z1 = Z(O) where narrow bundles from the point 
x 0 = Yo = 0 come to a focus. The constant µ is determined by the relation 

1 
µ 

l lim Z* 
Mo x 0-----o 

(31.53) 

where Z* is the point at which 
the selected ray from x 0 in­
tersects the z-axis after re­
fraction. In optical practice 
one calls this special ray the 
principal ray of the oblique 
bundle and Z * the pupil point. 
In general this point is deter­
mined by the center of a dia­
phragm for which the principal 
ray is a ray in the central part 
of the bundle. 

We now introduce a new 
Figure 122 coordinate system with (X1,0) 

as origin and the principal ray 
as z'-axis. The y'-axis of this 

system is parallel to the original y-axis; the other axes are rotated by the 
angle 0 1 with respect to the x and z axes. We express the coordinates x1• 
and y1' of the point of intersection with the x'y'-plane as functions of p1• and 
q1' and determine the even terms in these functions. These terms then 
determine the asymmetry of the bundle. 

31.6 In order to carry out the above program, we make use of the fact 
that the relations 

aw 
X1 = - ap1 ' 

aw 
Y1 = - aq1 ' 

aw r - --1 - az1 (31.61) 

are invariant with respect to orthogonal transformations of the coordinate 
system (x,y ,z) in the image space. This is to be understood in the following 
way. Let x1', y 11 be the intersection of a ray with the plane z' = z1' of a 
new coordinate system and W' the optical path from (x O ,Y O) to the base point 
Q 1' of the perpendicular dropped from the point x1' = y 1' = 0 of the plane 
z' = z1' onto the ray. Then x1•,y1•, are again given by the relations 

aw• 
Y1' = - aq1' (31.62) 
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and we have 

(31.621) 

p1', q1', r 1' are the optical direction cosines of the ray in the new coordinate 
system. 

For the proof of this theorem let us first consider the point character­
istic V(x

0
,y

0
,z

0
; xi,y

1
,z

1
) for a fixed 

Figure 123 

point x 0 , Yo, z 0 . We have 

(31.63) 

By introducing new Cartesian coordinates, x1' ,Yt' ,z1' ,p1' ,q 1' ,r1', we obtain 
immediately 

(31.64) 

since the expression P1dx1 + q1dy1 + r 1dz1 is an invariant under orthogonal 
transformation. We introduce the mixed characteristic W' as in §20.1 by the 
relation 

(31.65) 

and this gives the equations (31.62) and (31.621). W' = V' - x1'p1' - y11q11 

can be interpreted as the optical path to the base point Q1' of the perpendicular 
from the origin of the plane z' = z11 • 
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31. 7 From Figure 123 it follows that 

W' = W + X1P1 

205 

(31. 71) 

Let us develop W' in a Taylor series of powers of x 0 • Since X1 = M 0x 0 + ... 
and by (31.34): 

W Wo(p) - XoP1M(p) 

we obtain 

W' = Wo(p) - XoP1 (M(p) - Mo) 

in which new direction cosines Pt' and q 1' are to be introduced by the 
relations: 

Pt Pt' cos 01 + r 1' sin 01 

In the case of small angles 01 we have 

q 

or, from (31.52): 

(31. 72) 

(31. 73) 

(31. 74) 

(31.75) 

We introduce these expressions in (31. 72) and neglect powers of x 0 higher 
than the first. It follows that 

(31. 76) 

where 
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From 

we obtain 

and hence 

8Wo(P') 
r1'---

8pt' 

Pt' - w '(p') = p' 0 
~ .f( ') p' p 

rt' 
Pt' - .f(p') 

p' 
Pt'L(p') 

W' = Wo(p') + XoP1' [M(p') - Mo - µL(p')] , 

31.8 We now define the function 

c/>(p') = ~o [~M - µL(p')] 

(31.77) 

(31. 771) 

(31. 78) 

(31.81) 

which is a generalization of the definition (31.44) of 1/J(p). The characteristic 
W' becomes 

w• = W0(p') - M0x 0pt'cf>(p') 

and gives the ray intersection with the x1' ,Y 1• plane by differentiation with 
respect to Pt' and qt'. It follows that 

Xt' -.f(p') cos cp + m + R cos 2 cp 
(31.82) 

y 1' - .f ( p ') sin cp + R sin 2 cp 

where m(p') and R(p') are functions similar to (31.46) namely 

(31.83) 

R 

The curves of intersection with the x1 'Yt' plane represented by (31.82) for a 
given value of p' are of the same type as those discussed in (31.4). They are 
symmetrical if and only if 

cf> = ~o (~M - µL(p')) = 0 . (31.84) 

This is the condition of Staeble-Lihotzki: An oblique bundle of rays can be 
symmetric with respect to a given principal ray if the expression (31.84) is 
identically zero. 
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Since both L and .6.M can be found simply by tracing the rays from the 
axial point x 0 = y O = O this is one of the most valuable criteria in optical 
design. If c/>(p') is not zero we are in a position to construct the intersection 
curves, and hence the light distribution, with the aid of (31.82) and (31.83). 

If the principal ray is not given, i.e., if the question is whether there 
exists a ray to which the bundle is rotationally symmetric, we can find directly 
from (31.84) that: A bundle from a point (x 0 ,0) near the z-axis possesses an 
axis of revolution if and only if the two functions AM and L of the axial 
bundle are linearly dependent. 

In this case there exists a constant µ such that cp = O. 

We remark explicitly that approximations in the above equation have 
been made only with respect to the variables x O ,y O but not with respect to 
p1 and q1. In other words our result holds for instruments in which a small 
field is imaged by a large bundle of rays. Microscopes are instruments of 
this type. 

31. 9 The aplanatic points of a sphere are perfect conjugate points in 
which Abbe's sine condition is satisfied. In fact, from (23.42) and (23.61) it 
follows that 

and from Fig. 76: 

i.e., 

M 

and .6.M = 0. 

no 

n1 

sin a 0 

sin a 1 

n 0 sin a 0 

n1 sin a 1 

(31. 91) 

(31.92) 

(31.93) 

By using aplanatic lenses in the front part of a microscope objective 
(Fig. 80) we can thus decrease the angular opening of the axial bundle without 
introducing spherical aberration or coma. 

In general, two perfect conjugate points on the axis of revolution of an 
optical medium are called aplanatic if the sine condition (31.47) is satisfied. 
For example, the conjugate points in the case of Maxwell's fisheye are 
aplanatic. 
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It is possible to obtain optical instruments consisting of two aspheric 
surfaces such that two given points P O and Q O are aplanatic points of the 
instrument. We illustrate this by describing a graphical construction of two 
aspheric mirrors of this type. 

A2 L~-+------t-_7~:::::::182 
Al 

Aoao Qo 

Figure 124 

Bo z 

Let A 0 and B 0 be the vertices of the two mirrors. First we construct 
a set of radial lines through P 0 and Q 0 such that the sines of the angles ay 

and f3y with the axis form arithmetic progressions, sin O!y = -yh; sin f3y = -yk. 
We draw two lines A 0A1 and B 0B1 normal to the z-axis and connect A1 with 
B1. We now construct a line through A1 normal to the bisecting line of the 
angle P 0A1B1. Let A 2 be its intersection with the second radial line through 
P 0. Similarly, a line is drawn through B1 normal to the bisecting line of the 
angle Q 0B1A1 giving the point B 2 • We connect A 2 and B 2 and repeat the 
procedure. The results are two curves consisting of a number of straight 
sections. These curves are approximations to two aspheric curves which are 
obtained in the limit for h - O; k - 0 where h/k is kept constant. t 

A similar construction can be carried out for two refracting aspheric 
surfaces. 

31.95 Th!:) case where the object is at infinity can be treated in a manner 
similar to the above by developing the angular characteristic T(p 0 ,q 0; p1,q1) in 
powers of Po and q 0 • By neglecting powers of higher than first order, we 

tin the case for the point P0 at infinity the analytic solution of the problem is given 
by Schwnrzschild; Unters. zur Geom. Optic II Abb. der Ges. d. Wiss. Goettingen 
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obtain an angular characteristic which allows us to investigate the images of 
parallel incident bundles which subtend a small angle with the z-axis. High 
speed photographic objectives of small angular field are examples of this case. 

x, 

Figure 125 

We give without proof the following results which are modifications of 
the above: 

Let us first consider the axial bundle of rays parallel to the z-axis. We 
choose a reference plane at an arbitrary point z = z 0 of the axis. Lateral 
and longitudinal spherical aberration, i.e., i(p) and L(p) where 
p =✓pt2 + qt2 are defined as before. However, instead of M(p) we now 
consider the function 

f(p) = 
Xo 

Pt 
Yo 
qt 

(31.951) 

This function is called the zonal focal length of the axial bundle. The value 
f(O) = f 0 defines the equivalent focal length of the optical system. 

With the aid of the two functions .e (p) and f(p) of the axial bundle, we 
obtain the angular characteristic T for small inclinations (p 0 ,q 0 = 0) in the 
form 

where 

1/J( p) 

T = To(p) - foPol/J(p) 

1 (f(p) - fo) . 
fo 

(31.952) 

(31.953) 
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The aberrations 

AX1 - fo 
Po 

Xj 

✓no2 - Po2 - qo2 
(31.954) 

AY1 - fo 
qo 

Y1 
✓ no2 - Po2 - qo2 

of an oblique bundle of small inclination Po and q 0 = 0 are then given by 

AX1 -.1.(p) cos <p + m + R cos 2 <p 

(31.955) 
- .I. (p) sin <p + R sin 2 <p 

in which 

(31.956) 
1 

R = foPo 2 P l/J' 

If .I. (p) = 0, i.e., if the axial bundle is free of spherical aberration then 
we conclude: Oblique bundles of small inclination can give sharp images if 
and only if the condition 1/i(p) = 0 is satisified by the axial bundle. 

This is Abbe's sine condition for an infinitely distant object 

Xo 
= - fo n1 sin a 1 • 

(31.957) 

The question of rotational symmetry of the refracted bundle leads 
to a modification of the condition of Staeble-Lihotzki. We consider a principal 
ray of the oblique bundle which, after refraction, intersects the z-axis at the 
exit pupil point Z*. Let 01 be the angle it makes with the axis, and X1 its 
intersection with the image plane. X1 and 01 are functions of Po which for 
small values of Po have the form 

X1 foPo + • • • 
(31.958) 

01 µPo + • • • 

As before, we find 

1 1 X1 1 lim Z* lim -
µ fo Po-0 01 fo Po-0 
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By introducing a new coordinate system with the principal ray as the 
z'-axis, we obtain for the intersection with the xi ,Yi-plane the formulae 
(31.82) and (31.83) with a modified definition of cf>, namely, 
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cf> = f: (M -µL(p')) . (31.959) 

Hence, the refracted bundle is symmetric to the principal ray if and only if 
<I> = 0. It possesses an axis of revolution if and only if the two functions Af 
and L(p) of the axial bundle are linearly dependent. 

§32. THE CONDENSER PROBLEM. 

32.1 In the problem of designing condenser systems one is led to a 
condition similar to the condition (31.84) of Staeble-Lihotzki. 

Figure 126 

A condenser is a lens system which transforms the rays diverging from 
a filament, P O, into a convergent bundle. It is required that the illumination 
of a section of a given plane Z* shall be uniform and that the convergence is 
as good as possible. The condition of uniform illumination is the important 
one. The other condition actually requires only that, if possible, all light of 
the condensed bundle enters an objective which is placed in the region of con­
vergence. For objectives with small apertures the spherical aberration of 
the condenser must be small; this is not necessary in the case of objectives 
with large apertues where a large amount of spherical aberration can be 
allowed without loss of efficiency. The main problem, therefore is to find a 
lens system which illuminates a section of the plane z = Z* uniformly. 
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We analyze this problem in the case of small filaments. We can 
characterize the light emission from such a filament by a function 

I = !(0 0 , cp 0) 

which determines the energy flux in the solid angle sin 0 0d0 0 dcp0 by 

The function !(0 0 ,<Po) is called the intensity of the filament. 

(32.11) 

(32.12) 

We now consider the axial bundle of rays from the point x 0 = Yo = 0 
of the filament. Let Z(01) be the point where the z-axis is intersected by a 
ray which subtends an angle 0 1 with the axis after refraction. In order to 
find Z(01) it is sufficient to trace rays in the xz-plane. We can assign positive 
and negative values to 0 1 in this plane by using the customary convention of 
analytic geometry. Let us choose the Gaussian point z = Z(O) as the zero 
point of the z-axis so that the spherical aberration of the bundle is given by 

A ray of this bundle intersects the plane z = Z * at the point 

X* (Z* L) tan 01 cos cp0 

Y* (Z* L) tan 0 1 sin <Po 

We introduce the constant 

µ = 
Mo 
Z* 

in analogy to the definition (31.53). We introduce the function 

and write (31.14) in the form 

1 
X* = - G(01) cos <Po µ 

(32.13) 

(32.14) 

(32.15) 

(32.16) 

(32.17) 

If E(X*,Y*) is the illumination of the surface z 
through the surface element dX*dY* is given by 

Z * then the flux 

1 
dF = E dX*dY* = 2 E G G' d01d<Po . 

µ 
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This flux, on the other hand, must be equal to the flux (32.12) through the 
corresponding solid angle sin 0Od0OdcpO of the incident bundle. 

or 

Hence, we have the equation 

1 
2 E G G'd0 1 = !(00 ,cp0) sin 00d00 µ 

(32.18) 

(32.19) 

32.2 One easily verifies from (32.18) that the illumination at the center 
of the plane z = Z * is determined by 

i.e., by the quantity 

M2 
µ 2 - _o 

- Z*2 (32.21) 

It increases with the square of the magnification of the filament and decreases 
inversely as the square of the distance of the slide from the Gaussian image 

point. I The relative illumination J* = E(~,O) and the relative intensity 

J = I(O) are consequently related by the equation 

sin 0Od0O 
J* = J(0o,<Po) GG'd01 (32.22) 

We can use this equation to determine J* numerically if J(00 ,cp0) is known. 

32.3 The illumination of the plane is uniform if J* = 1. Equation 
(32.22) shows that this is possible only if J(00 ,cp0) is independent of cpO• If 
this is the case, we find from (32.22) 

(32.31) 

or with the aid of (32.16) 

o. (32.32) 
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In analogy to (31.84), let us introduce the notation 

1 [ 1 cp-- --
Mo tan 01 

(32.33) 

We then find that the necessary and sufficient condition for uniform illumina­
tion is that the rays of the axial bundle must satisfy the equation c/> = 0. 

In case the filament is a point source we have J(00) = 1 and hence 

( 
0o ) 1 2 sin 2 

cp = - --- - Mo - µL(01) 
M 0 tan 0 1 

(32.34) 

If the filament emits light according to Lambert's law 

J(00) = cos 00 

we obtain 

1 (sin 00 \ 
cp = Mo tan 01 - Mo - µL(01)/ • (32.35) 

Neither of these two conditions can be satisfied if the condenser is coma free, 
i.e., if 

1 (sin 00 ) cp = -M -.-0- - Mo - µL(01) = 0 . 
o sm 1 

(32.36) 

It follows that uniform illumination can only be obtained if the condenser has 
coma. 

The position, Z*, of the plane appears in (32.33) and in the formula 
(32.22) for the relative illumination, J*, only in form of the combination 

M 
µL(0 1) = - Z: L(01). It follows that J* is independent of the position of the 

plane if the condenser has no spherical aberration. 

If for such condensers the illumination is uniform for one position of the 
slide then it is uniform for all poisitions. 

32.4 In general it will be impossible to satisfy the condition cp = 0 
with a finite number of lenses with spherical surfaces. It is, however, possible 
to design the condenser in such a manner that cJ,(01) = 0 for a certain angle 
0 1 = a. 
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The illumination J*, of course, is not uniformly equal to one but we can 
show that the departure from one is zero in the average, the average being 
taken over the section of the plane which is determined by the rays of angle 
01 = Q!. Indeed, by (31.22) it follows that 

(J* - l)GG'd0 1 = J(00) sin 0Od0O - GG'd0 1 . 

Hence with the aid of 

dx* dy* 

we find the relation 

µ2 ff (J* - l)dx* dy* 
01~0! 

1 
2 GG 1d01d<,00 µ 

The right side is zero, if c/)(0!) = O. Therefore, in this case: 

ff (J* - 1) dx* dy* = 0. 
01~0! 

(32.41) 

(32.42) 

This indicates that the best compromise will be obtained if c/)(0!) = 0 at the 
maximum angle 01 = Cl! corresponding to the boundary of the circular section 
of the plane z = Z* which is to be used. 



CHAPTER IV 

FIRST ORDER OPTICS 

§33. THE FIRST ORDER PROBLEM IN GENERAL. 

33.1 Let us consider an optical medium which is homogeneous outside 
the domain £ 0 ;;_ z ;;_ £1 of the xyz-space. Thus we 

assume 

Figure 127 

n(x,y,z) 

n(x,y,z) 

and call the space z < £ 0 the object space and the space z > .t1 the image 
space. The light rays in the object and in the image space are sections of 
straight lines. The optical instrument, i.e., the medium between £ 0 and £1 

determines a transformation of the straight lines of the object space into the 
straight lines of the image space. 

In view of this fact it is convenient to consider not only the sections of 
these stl'aight lines which as light rays have physical. reality, but al.so their 
total extensions. We call these extensions the virtual part, and the original. 
sections the real part of the rays. A similar extension can be made for the 
object and image space. The half space z > £ 0 is the virtual object space, 
the half space z < £1 the virtual image space. A bundle of rays is said to 

216 
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belong to a real object point, if it originates at a point of the real part of the 
object space, to a virtual object point if the rays converge to a point of the 
virtual part. In a similar manner we define real and virtual image points in 
the image space as the points of intersection of real or virtual parts of a bundle 
of rays, respectively. 

We now take two reference planes z = z 0 and z = z1 in object and image 
space, respectively. These planes can be chosen in the real or virtual parts 
of their spaces. The transformation of the object and image rays is then given 
by four functions: 

Xt Xt (xo, Yo, Po, qo) 

Y1 Y1 (xo, Yo, Po, qo) 
(33.11) 

Pt Pt (xo, Yo, Po, qo) 

qi 41 (xo, Yo, Po, qo) 

which determine the direction p1, q1 of an image ray and its intersection with 
the plane z = z1 as functions of the corresponding coordinates of the object 
ray. We have seen that this transformation (33.11) is a canonical transforma­
tion defined by the condition that the differential expression 

(33.12) 

is a total differential. 

This result was a consequence of the more general theorem: Let V (x0 , 

Yo, z 0 ; xi, Yi, z1) be the optical distance of two points (x 0 , Yo, z 0 ) and (x1, y1, 
z1) of object and image space, respectively. Then we have 

(33.13) 

where p 0 , q0 , r 0 are the optical direction cosines of the object ray and Pi, q1, 
r 1 those of the image ray. In the special case that z 0 and z1 are constants we 
obtain the statement (33.12). 

33.2 The differential expression (33.13) remains invariant if other 
Cartesian _coordinate systems are introduced, either in object or image space 
or in both. This implies the invariance of the statement (33.12), thus: Let x 0 , 

Yo be the point of intersection of an object ray with a plane, z 0 = a constant, of 
an arbitrary Cartesian coordinate system and Po, q0 its optical direction 
cosines in this system. Let x1, y1, p1, 41 be analogous coordinates in the image 
space with respect to another arbitrary coordinate system. Then the functions 
(33.11) must satisfy the relation 

(33.21) 



218 

Yo 

Figure 128 
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We have already made use 
of this fact in § 31 and 
have seen that a similar 
invariant character is 
connected with the other 
Hamiltonian character­
istics W, W*, T and 
their differentials. 

33.3 The condition 
(33.21) requires that the 
partial derivatives of 
the functions (33.11) must 
satisfy certain relations. 
For the derivation of 
these conditions, let us 
consider general canoni­
cal transformation, i.e., 
transformations 

1, ... , n (33.31) 

which transform a pair of conjugate vectors x = (x1, ... , Xn) and p = (p1, 
... , Pn) into the vectors X = (X1, ... , Xn) P = (P1, ... , Pn) so that the condi-
tion 

n 

dV 
i =1 

is satisfied. 

We write the differentials of the functions (33.31) in the form 

dX=Adx+Bdp 

dP=Cdx+Ddp 

where A, B, C, Dare the matrices 

(33.32) 

(33.33) 

(33.34) 
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Our aim is to show that (33.32) implies that these matrices must satisfy 
the relations 

A'C-C'A=0 

B'D - D'B 0 (33.35) 

D'A - B' C 1 

where A' ,B' ,C' ,D' are the transposed matrices of A,B,C,D. 

From (33.32) if follows that 

n 

pi dV 

i = 1 

or 

dV. (33.36) 

By temporarily introducing the notation 

(33.37) 

we obtain from (33.36) the relations 

aRk aR 11 
0 ' 

8xll 8xk 

aRk as 11 

0 ' 8pll 8Xk 

ask as11 

8pll 
0 

' 8pk 
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which leads to 

0 

2 (
aP; ax; aP; ax;) = {O; 

k -/ 11 

apu 8xk 8xk apu 1; k = II 

2 ( 
aP; axi aP; ax;) = 0 . 
apu 8pk apk apu 

If we use the notation of the Lagrangian Brackets: 

n 

"" a (X; , P;) 
[u,v] = L, a(u,v) ' 

i=1 

we can express the above equations in the form 

[xk, XZI] = 0 

={o, 
k f, v 

[xk,. Pu] 
1, k = V 

If, however, the notation (33.34) is introduced, we obtain 

2 (C; 11 A;k - C;k A; 11 ) = 0 

i 'f' V 

= V 

i.e., the relations (33.35). 

(33.38) 

(33,381) 

(33.382) 

(33,383) 

We therefore recognize that the matrix conditions (33.35) are nothing 
but another form of writing Lagrange's conditions (33.382). 
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We can use the relations (33.35) in order to invert the linear equations 
(33.33). In fact, it readily follows that: 

dx D' dX - B'dP, 
(33.39) 

dy - C' dX + A' dP. 

This shows that the determinant 

(33.391) 

of the linear equations (33.33) cannot be zero under any circumstances. One 
can prove, incidentally, that ~ = 1. 

33.4 We now consider a single light ray which passes through the optical 
instrument. We choose two coordinate systems in object and image space such 

Figure 129 

that the z
0 

and z
1 

axes 
coincide with the object 
and the image ray, re­
spectively. This ray 
shall be called the prin­
cipal ~ in the following: 
The problem of first order 
optics is to investigate 
the properties of the four 
parameter manifold of 
rays which lie in the im­
mediate neighborhood of 
a given ray, i.e., of the 
principal ray. In this 
neighborhood we can 
replace the general for­
mulae (33.11) by linear 
relations 

(33.41) 

where X
0

, P
0

; X
1

, P
1 

are the vectors (x 0 , y
0

); (p
0

, q
0

); (xi, y
1

) and (p
1

, q
1
), 

respectively, and A,B,C,D are the matrices 

(33.42) 
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The mathematical problem is to study the linear transformations (33.41) 
where the matrices A,B,C,D satisfy the conditions (33.35) and to interpret the 
results optically as to the formation of images by the narrow bundle. 

The easiest mathematical approach to this problem is given by 
Hamilton's method of characteristic functions. However, this advantage in­
volves a certain loss of generality as we have to assume that not all of the 
determinants IAI , IBI , IC I, ID I of the matrices (33.42) are zero. In fact, the 
conditions (19.25), (20.11), (20.35) and (20.41), necessary for the existence of 
the corresponding characteristic function, lead to the following conditions for 
the use of characteristic functions in our present problem: 

Point characteristic V IBI ,J 0 

Mixed Characteristics w I DI ,J 0 
(33.43) 

W>!< IAI ,J 0 

Angular Characteristics T IC I ,J 0 

It is possible to give examples where all determinants are zero and 
yet the matrices A, B, C, D satisfy the conditions (33.35) t . 

33.5 By excluding these exceptional cases we shall, however, make use 
of Hamilton's method in deriving the essential results of first order optics. 
Let us, for example, assume that ICI ,J ott. It is then possible to express 
X 0 and X1 in (33.41) as functions of P 0 and Pi, namely 

We write this in the form 

where 

A* = - c-1n, B* = c-1 , 

C* = Ac-1n - B , D* = - Ac-1 

tcaratheodory, Geometrische Optik, pp. 51-57, Erg. der Math. and ihrer 
Grenzgebiete, Bd IV, Berlin 1937. 

(33.51) 

(33.52) 

(33.53) 

ttThe following considerations cannot be applied to the case of telescopic systems, 
in which C = 0, i.e., P 1 = DP0 . 
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With the aid of the relations (33.35) it is easy to show that A* and D* 
are symmetrical matrices and that 

B* = (C*)' . 

We are, however, in a position to obtain this result directly by deriving 
the equations (33.52) with the aid of the angular characteristic. We have seen 
that the function T (p O , Pi, q 0 , q1; z O, z1) has the form 

T = To (po, 4o; Pi, 41) + z1 Jn12 - P12 - 412 - zoJno 2 - Po2 - 4o2 
(33.54) 

in which T O is independent of z O and z1. 

We write, for small values of Po, q 0 , Pi, 41: 

1 
To - To (0) = 2 (A11Po 2 + 2A12Po4o + A224o 2) 

and 

The formulae 

aT 8T 
Xo - X1 

GPo ' GP1 ' 

Yo = 8T - Y1 
EI_ 

8qo ' 841 ' 

lead directly to the relations 

(33.55) 

(33.56) 

(33.57) 
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or in matrix notation 

X 0 = (A + :: E)Po - FP1 

.:.L P1 , 
n1 

- X1 = - F'Po + ( C - :: E)P1 

where A and Care the symmetrical matrices 

E the unit matrix 

and F a matrix 

which, in general, is not symmetric. 

(33,581) 

(33,582) 

(33,583) 

(33.584) 

The equations (33.581), however, express our above statement. We 
note in passing that one can use these equations in order to prove the matrix 
conditions (33.35) independently of the former derivations for systems in 
which I c I f,. o. 

33.6 We know that, by a rotation of the coordinate systems about the 
z 0 and z1 axes, it is possible to transform the two quadratic forms 

(33.61) 
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into the normal form 

(33.62) 

Without loss of generality we can therefore assume that A and C have this 
form in our chosen coordinate system. 

Hence our problem is to investigate linear transformations of the general 
type: 

Xo = (A1 + :: ) Po - F11P1 - F12Cl! 

Yo = ~2 + :: ) qo - F21P1 - F22Cl! 

Finally we note that we can choose the origin z 0 

coordinate systems in such a manner that 

With these choices there are six constants left: 

(
F11 

a, c, and 
F21 

(33.63) 

0 and z1 = 0 of the 

(33.64) 

(33.65) 

which determine the optical properties of the manifold of rays. The linear 
relations (33.63) become 

( :: -a) qo - F21P1 - F22Cl! 

(33.66) 

C) Ch • 
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The matrix F is of special significance; for reasons which will become obvious 
in the following pages we shall call it the matrix of the focal lengths of the 
system. 

§34. GAUSSIAN OPTICS. 

34.1 In the case when the principal ray of an infinitesimally narrow 
manifold of rays is the 
axis of a system of 
revolution we obtain 
Gauss' first order optics. 
For applications this is 

__ .._.._~z-
0
----t~,t---------;i,--- z I the most important case. 

We have seen in §29 that 
Yi T is a function of 

Figure 130 
(34.11) 

w = 2 (poP1 + qo41) • 

It follows that the matrices (33.58) have the form 

(34.12) 

The equations (33.63) become 

xo = (a+ ::)Po 

- x1 = - fp 0 + (c 

Yo = ( a + :: ) qo - fq1 , 

-y1 = - fqo + (c - : : ) 41 , 

(34.13) 

which shows that x 0 , xi, Po, p1 are related by the same equations as Yo, y1, 
q0 , q1. Hence it is sufficient to study only the first set of equations (34.13). 

We are still at liberty to choose the origins, z 0 = 0 and z1 = 0, of the 
coordinate systems at our convenience. Let us make this choice so that the 
determinant 

a -f 
0 . (34.14) 

-f C 

This obviously is always possible. 
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34.2 We first consider the images of points of the plane z 0 
plane z1 = 0. We have 

from which follows 
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0 on the 

(34.21) 

(34.22) 

This shows as a consequence of the condition (34.14), that the planes 
z O = 0 and z1 = 0 are conjugate planes. All rays from a point x 0 , y O of the 
plane z O = 0 intersect each other at the conjugate point 

C 
X1 = f Xo ' 

C 
Y1 = f Yo 

of the plane z1 = 0. Let us, therefore, introduce the notation 

C f 
Mo = - = -

f a 

(34.23) 

(34.24) 

as the magnification of the plane z 0 = 0. It follows from (34.13) that the 
coefficient of p1 in the first equation (34.21) and of Po in the second has the 
value f independent of z O and z1• This coefficient must therefore represent 
a physical property of the instrument which is invariant with respect to the 
choice of the reference planes. It is called the equivalent focal length of the 
system. 

By introducing these notations in (34.21) and (34.22) we obtain 

(34.25) 

- X1 = f (- Po + MoP1) , 

and 

Xo 1 
P1 = f + Mo Po (34.26) 
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and, of course, similar equations for Yo, Y1; q0 , q1. 

34.3 We consider next another pair of reference planes z 0 and z1. The 
equations (34.13) become 

xo = ( Mfo + :: ) Po - fp1 , 

- X1 = - fpo + ( Mof - :: ) P1 

(34.31) 

The two planes z 0 and z1 are conjugate if the determinant of these equations is 
zero. This leads to the Lens equation 

or 

( Mof - ~) (-f 
n1 Mo 

+ - = f2 Zo) no , 

1 no 

Mo zo 
1 
f 

Equation (34.33) determines the position of any pair of conjugate planes 
relative to a given pair of conjugate planes. 

(34.32) 

(34.33) 

The magnification, M, of the plane z 0 is obtained by writing (34.31) in a 
form analogous to (34.25): 

f 
xo = M Po - fp1 , 

and comparing coefficients with (34.31) it follows that 

and hence 

M = M 0 

M 0 - M 
----f' 

MoM 

(Mo - M)f . 

1 

(34.34) 

(34.35) 

(34.36) 
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The last equations give the positions of the object and image planes which 
belong to a given magnification M. From (34.36) we conclude the useful 
relation 

(34.37) 

between the magnifications and positions of two pairs of conjugate planes. 

The coordination of the rays with z 0 and zi as reference planes is given 
by equations similar to (34.26), namely 

Xi= Mxo , Yi = Myo , 
(34.38) 

Xo 1 Yo 1 
Pi = + M Po ~ = -- + M qo f f 

Figure 131 

These equations indicate a simple method of determining the focal length f of 
the system and the magnification M of a plane z 0 : 

For any ray which is parallel to the z 0 axis in the object space the ratio 
x'o 

gives the focal length f of the system. 
Pi 

For any ray which originates at the point z O; x 0 = y 0 

determines the magnification M of the plane z 0 • 

Po 
0, the ratio -

Pi 

34.4 It is customary to use as the original pair of conjugate planes the 
so-called unit planes of the system. This is the pair of conjugate planes for 
which M0 = 1. The points z 0 = 0 and zi = 0 are then the unit points of the 
system. We obtain the special lens equation 

no 1 
Zo - f 

(34.41) 



230 MATHEMATICAL THEORY OF OPTICS 

The equations (34.36) become 

(1 - M)f , (34.42) 

and the relation (34.37) 
becomes 

M = ~ I ~ . (34.43) 
n1 no 

Un it points However, it is often more 
convenient to use the 
general equation (34.33) 
and determine the posi-

Figure 132 tion of conjugate planes 
with respect to a known 
pair of magnification M0 • 

Let us, for example, 
consider the nodal planes of the sy§tem as planes z 0 = z1 = 0. The axial points 
of these planes are called the nodal points of the instrument and are defined as 

follows: A ray of direction !:g_ through the nodal point of the object space 
no 

leaves the instrument with the same direction, i.e., for x 0 0 we have 

Po = no or - = Mo 
P 1 n1 

The Lens equation with respect to the nodal points becomes 

Equation (34.37) yields 

1 
f 

M = z1 / z 0 . 

(34.44) 

(34.45) 

(34.46) 

Unit points and Nodal points are called the cardinal points of the lens system. 

In order to find the position of the cardinal points relative to each other, 
let us introduce M = 1 in (34.46). It follows that z1 = z 0 , and hence from 
(34.45) 

(34.47) 
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is the distance of the 
unit points from the 
corresponding nodal 
points. This equation 
shows that unit points 
and nodal points coincide 
if object and image space 
have the same index of 
refraction. 

Figure 133 34.5 Focal points; 
Newton's Lens equation. 
Every lens system of 

revolution has two focal points F 0 and F1. An object ray through F 0 leaves the 
instrument parallel to the axis; an object ray parallel to the axis intersects it 
at F1 after refraction. Let us determine the locations of these points 'relative 
to the unit points. Letting z O = F O, z1 -= 00, and z O = 00, z1 = F 1, we obtain 
from (34.41): 

Figure 134 

(34.51) 

The equation (34.32) 
for M0 = 1 assumes 
the form 

or with the aid of 
(34.51): 

(zo -Fo) (z1-F1) 

Hence, if we determine the position of conjugate planes by their distances 

Zo = zo - Fo • 

from the respective focal points we find Newton's lens equation 

(34.54) 
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The correlation between conjugate points thus can be characterized as an 
inversion on the points ± Jn0 n1 f. 

We mention finally that the relations (34.42) also assume an extremely 
simple form if the distances Z O and Z1 are introduced; we readily find: 

f 
M 

(34.55) 

34.6 An optical instrument of revolution can be considered as a perfect 
optical instrument in a first order approximation. Every real or virtual ob­
ject point possesses a conjugate point in the image space, either in its real 
or its virtual part. The original transformation of object rays into image rays 
thus introduces a transformation of the points (x 0 ,Y O ,z O) into the points (xi, 
yi,zi) of the image space. This transformation is given by the formulae x1 = 
Mx

0
, y1 = My O, if we introduce for M its expression in z

0
• With the focal 

points as reference points on the z-axes we obtain from (34.54) and (34.55) 

(34.61) 

and hence the transformation formulae 

Xo 
X1 nofz ' 0 

Yo 
Yi nofz ' 0 

(34.62) 

Z1 = 
non 1f 2 

Zo 

The last equation follows from the lens equation (34.54). 

The transformation (34.62) is a collineation since planes are transformed 
into planes, and consequently straight lines are transformed into straight 
lines since any straight line is formed by the intersection of two planes. 

We can use this result to determine the image of a plane 

x 0 = (z 0 - O!o) tan 00 (34.63) 

which subtends an angle 00 with the optical axis but is not normal to it. The 
axial point z 0 = O! 0 is transformed into the point 

(34.64) 
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An infinitely distant point of the plane (34.63) becomes a finite point 

X1 n 0f tan 00 

0 

233 

(34.65) 

of the image space. The image surface of (34.63) must be plane and normal 
to the x1, Z1 plane; it goes through the points (34.64) and (34.65). The angle 01 
subtended with the z-axis is given by 

tan 01 

or from (34.61) by 

n 0tan 00 
n 1 tan 01 

M. (34.66) 

Thus for very large values of IM I we find 01 considerably decreased. If the 
oblique object plane is covered by the lines of a rectangular coordinate system 
we obtain two sets of lines on the image plane of which one is parallel to the 
y-axis. The lines of the other set form a plane bundle through the finite point 
(34.65) which is a point of the focal plane F1. 

Figure 135 
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§35. ORTHOGONAL RAY SYSTEMS IN FffiST ORDER OPTICS. 

35.1 A generalization of the Gaussian optics is obtained in the case of 

Figure 136 

a bundle of rays about 
an oblique meridional 
ray in a system of 
revolution. We choose 
our coordinate systems 
such that the x 0 - and 
xi -axes lie in the plane 
of the ray.· The angular 
characteristic T must 
then be an even function 
of q0 and ~ which 
excludes the presence of 
linear terms of q0 and 
qi in the development 
(33.55). It follows that 
the matrices A,B, and 
C have the form 

A = (ai O )• B = ( F O )• C =(ci O ) 
0 ~ Of O C2 

(35.11) 

and hence the equations: 

Xo = (ai + ::) Po - Fpi, 

- xi= - Fpo + (ci -:~)Pi, -yi = - fqo + (c2 - =~)qi 

(35.12) 

We still obtain two independent sets of equations for the c0ordinates (x 0 ,Po ,xi, 
Pi) and y O ,q0 ,Yi,qi). However, these equations are no longer identical as in 
the Gaussian case. First order ray systems of the type (35.11) are called 
orthogonal systems. 

35,2 Let us first consider the two plane bundles of rays q0 = ~ = 0 
and Po = Pi = 0 which originate at the point x 0 = Yo = z 0 = 0. We obtain 

0 = aip o - Fpi , 

- xi = - Fpo + (ci - : :) Pi 

(35.21) 



FIRST ORDER OPTICS 235 

in the first case, and 

(35.22) 

in the other case. 

Every bundle clearly has a pair of conjugate points z1 and z2, which can 
be determined by letting the determinant of the equations (35.21) and (35.22) 
be zero. However, these two points z1 and z2 are not identical in general. 
They are known as the primary or tangential and secondary or sagittal foci 
of the point z O = 0. The difference z2 - z1 is called the 

Figure 137 

astigmatic difference of the bundle. 

35.3 We consider next all the rays through the point x 0 Yo 

Since Po = + K._ Pt and q0 = + 1.... q1 we obtain from (35.12): 
a1 a2 

- Xt (c1 
- F2 - ~) Pt 

ai n1 

- Y1 = (c2 _f._~)q1 
a2 n 1 

0. 

(35.31) 

If we introduce p1 = p cos cp, 41 = p sin cp we recognize that the intersections 
with the plane z1 of rays which have a given inclination p form an ellipse. The 
axes of this ellipse are linear functions of z1, the position of the reference 
plane. At a certain position we have a circle instead of an ellipse, namely if 
z1 satisfies the condition 

(35.32) 
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The other two positions z1 and z2 are distinguished by the fact that the ellipse 
degenerates into a section of a straight line. These two "focal lines" are 
normal to each other. The refracted bundle thus consists of all straight lines 
which intersect two line segments which are normal to each other. 

Let us now assume that the point z1 of (35.32) is the origin z1 = 0 of our 
coordinate system, so that the coefficients of (35.12) satisfy the condition 

c2 - .f_ = - (c1 - F22 ) = i\o . 
a2 ai 

(35.33) 

We shall see presently that 2i\ 0 is closely related to the value which we have 
introduced above as the astigmatic difference. By similar considerations as 
in 34.2 we are led to introduce the constants 

f 
(35.34) 

We shall call M0 and m 0 the primary and secondary magnifications 
respectively and F and f the primary and secondary focal lengths of the system. 

By expressing the coefficients in (35.12) in terms of i\o and the constants 
(35.34) we find 

Xo ( F Zo) - +- Po 
Mo no 

- X1 -Fpo + (MoF 

Yo = (~o 

- Y1 = 

- Fp1 ' 

- - - i\o P1 Z1 ) 
n1 

- 1 + i\o) ~ 
n1 

(35.35) 

(35.36) 

35.4 Let us now investigate the images of the points of the plane z 0 = 0 
at different positions of the plane z1. From (35.35) and (35.36) it follows that 

X1 = Moxo + (~ 
+ i\o) P1 , n1 

(:: - i\o)~ 

(35.41) 

Y1 moYo + 
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• • • 
• • • 
• • • 
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Let us use as a "test object" a system of 
points on a square plate. 

We chose first z1 = 0 and find 

X1 Moxo + AoP1 
OBJECT (35.42) 

• • • 
• • • 
• • • 

I I I 
I I I 

I I I 

Figure 138 

Y 1 moY o - Aoq1 

A given point x 0 , y O thus is imaged in the 
form of a circular spot. The radius of 
this circle is proportional to Ao and its 
center is at the-point M

0
x

0
, m

0
y

0
• The 

square assumes the form of a rectangle. 

At the position z1 = - n1A. 0 we have 

(35.43) 
Y1 moYo 

and thus we obtain as images horizontal 
sections of straight lines which are parallel 
to the Yi- axis. The location of the images 
is the same as in the former case. 

Finally we obtain for z1 = + n1A. 0 z2 
the image functions 

(35.44) 
Y1 moYo , 

which represent vertical sections of 
straight lines about centers which are 
located as above. 

The difference z2 - z1 = 2A. 0n1 of 
the last two positions obviously is equal to 
the astigmatic difference of the bundle from 
x0 = Yo = 0. At other positions z1 we find 
elliptical spots as images; we see that no 
plane z1 exists where the definition is sharp. 

35.5 The preceding considerations show that the images of points of the 
plane z O = 0 depend upon five first order coefficients MO, m 0 ; F, f, and Ao. 
The quantities F and f are independent of the choice of the reference plane 
z 0 = 0 and thus represent geometric characteristics of the whole manifold of 
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rays. However, the quantities M0 , m 0 , and Ao are different for another object 
plane and are thus functions of its position, z 0 • The position z1 of the plane 
where circular images are obtained also varies with z 0 • We conclude the 
investigation of orthogonal systems by deriving these functions. 

We know that the plane z1 = 0 is the image plane of the plane z 0 = 0 in 
the sense that circular images are obtained. The equations (35.35) and (35.36) 
for z O = z1 = 0 assume the form 

Xo 

(35.51) 

f 
Yo mo qo - f41 , 

(35.52) 

If in the case where z 0 f 0, the position of the image plane, understood 
in the above sense, is given by z1, then the general equations (35.35) and (35.36) 
must assume the same form as (35.51) and (35.52) provided M 0 , m 0 , and Ao 
are replaced by the new quantities M, m and A. 

This leads to the relations 

F F +2 
M M0 n 0 

f f Zo 
+ 

m mo no 
(35.53) 

MF - A= M 0 F ~ - Ao 
n1 ' 

mf + A = m 0f - ~ - Ao 
n1 ' 

i.e., four equations for the four unknown quantities M, m, A, and z1. 

The first two equations give the functions M and m directly, namely 

Mo 
M=--:-::'--­

Mo 
1 + -F Zo 

no 

m= 
(35.54) 
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We also obtain from these equations the relation 

M 0 - M m 0 - m 
MMo F = mmo f. 

The last two equations (35.53) lead to 

71. - 71.o 
1 Zo 
2 (mm 0 - MM0 ) -

no 

1 Zo 
2 (MM 0 + mm0 ) -

no 

and hence, with the aid of (35.54) we find 

Mo2 mo2 
2(71. - 71.o) = - ---- + ---­

n 0 + _M_o n 0 m 0 

Zo F Zo + f 

+ 
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(35.55) 

(35. 56) 

(35.57) 

All these formulae are generalizations of the corresponding formulae 
in the case of Gaussian optics. The last equation (35.57) replaces the lens 
equation (34.33). 

In the case of an infinite object point z 0 = 00 we obtain 

2 
n1 

(35.58) 

Since the reference plane z 0 = 0 is not distinct from other reference planes 
we conclude from (35.58) the following relations: 

- MF + mf + 271. = 271.00 , 

(35.59) 

which are valid for any object plane z O• 

By letting 71. = 0 in (35.57) we obtain a quadratic equation for z 0 • The 
solutions of this equation, if real, determine the so-called stigmatic points on 
the principal ray, i.e., points without astigmatism of the refracted bundle. The 
associated planes z 0 are imaged sharply but not necessarily undistorted. 
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§36. NON-ORTHOGONAL SYSTEMS. 

36.1 It is not difficult to treat general first order manifolds of rays in 
a manner similar to the preceding special cases. Bundles of this type are 
obtained if the principal ray is a skew ray in a medium of rotational symmetry 
or, more generally, if it is a ray in an asymmetrical optical system such as 
the human eye. A complete theory of the image formation of such general 
systems of rays was first developed by A. Gullstrand. 

For a detailed derivation of Gullstand' s results we refer the reader to 
his original papers or to modern expositions of his results. t Here we will 
only demonstrate what type of image formation can be expected in general. 
Let us assume that the ray coordination in our manifold can be represented 
by the mixed characteristic 

for a certain choice of z 0 and z1. We consider z 0 as fixed and z1 as variable. 
The problem is to determine the images of a point x 0 ,Y O of the object plane 
z O = 0 on different image planes z1. 

We develop Win a power series with respect to x 0 ,y O ,Pi,41 and consider 
only second order terms. By using the fact that W is a linear function of z1 
which has the form 

Wo = W (xo,Yo; Pi,q1) + z1Jn12 - P12 - 412 , (36.11) 

we write 

(36.12) 

That the quadratic forms A [ x 0 ,Y 0] and C [p1 ,q1J contain no mixed terms 
is the result of a suitable choice of the x 0 ,Y O and x1,y1 axes of our coordinate 
systems on the ray. 

t Herzberger, Strahlenoptik 
Caratheodory, Geometrische Optik. 
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From (36.12) we obtain the first order relations between the coordinates 
of the ray in the form 

(36.13) 

36.2 We first consider the bundle of rays from the point x 0 = y 0 0. 
We obtain 

Po 

(36.21) 

which represents an astigmatic bundle in the image space of the type inves­
tigated in §35. The zi axis is intersected by the rays of two plane bundles, 
determined by Pi = 0 and 41 = 0. 

Figure 139 

These two bundles are normal to each other. The focal points of these bundles 
are given by 

qi = 0, Pi 0, (36.23) 



242 MATHEMATICAL THEORY OF OPTICS 

However, contrary to the case of orthogonal systems, we find that the corre­
sponding plane bundles in the object plane are not normal to each other but 
are given by 

Po 

Po 

M11P1; qo 

qo 

in the case qt 

in the case Pt 

0 

0 
(36.24) 

If they are normal to each other then 

(36.25) 

which is not true in general. 

36.3 We next consider the images of points x 0 ,y 0 of the plane z 0 0. 
We have by (36.13) 

• • • 
• • • 

Figure 140 

(36.31) 

Let us again use a square with a number of points 
as a test object. We choose first the position 
z1 n1C1, It follows 

(36.32) 

The test points are imaged as sections of hori­
zontal straight lines. The centers of these 
sections are located at points which are related 
to the object points by the linear relations 

(36.33) 

The original square is transformed into a paral­
lelogram, i.e., a sheared image of the object. 

z 1 C1 + C2 
At - = 2 we obtain circular 

n 1 

images with centers in the same locations as 
above. 
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Finally at z1 = n1C2 we obtain sections of vertical straight lines. At 
intermediate positions we obtain elliptical images. 

243 

36.4 The main difference from the orthogonal systems is the torsion of 
the projected image. In both cases sharp definition of the images of points is 
prohibited by astigmatism. But the optical projection of the object points dif­
fers principally in our last case. No torsion can be observed in orthogonal 
systems. 

We observed that the image distortion (36.33) is closely related to the 
formulae (36.21), namely 

(36.41) 

in the case of x 0 = Yo = 0. 

As a consequence of these equations we found that the plane bundles 
through x 0 = y O = 0 which correspond to the principal astigmatic bundles 
p1 = 0 and q1 = O in the image space are not orthogonal to each other. The 
non-orthogonality of these bundles and the torsion of the image thus are equiv­
alent phenomena. For this reason Gullstrand uses the angle between these 
bundles as a criterion to determine the principal types of optical systems with 
respect to formation of images. 

In a more complete investigation of non-orthogonal systems one has to 
determine how the constants which characterize the image formation change 
when the position of the object plane is varied. This involves a discussion of 
the general formulae (33.63) along similar lines to those we have carried out 
in §34 and §35. 

§37. DIFFERENTIAL EQUATIONS OF FIRST ORDER OPTICS FOR SYSTEMS 
OF ROTATIONAL SYMMETRY. 

37.1 In the preceding sections we have studied the different types of 
first order image formation which can be expected in general optical systems. 
All our results have been derived from the sole hypothesis that the transfor­
mation of object rays into image rays is a canonical transformation. In the 
important case of Gaussian optics we have seen that the image function of the 
ray bundle can be described by three essential constants; the focal length f of 
the system and the locations of the unit points. The manifold of rays in the 
neighborhood of the axis of an optical system of revolution determines a 
Gaussian system. In the case of more general first order systems, of course, 
a greater number of constants is needed to characterize the image formation. 

In this section we shall be concerned with the problem of determining 
these constants explicitly. We will find that this leads to the problem of 
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integrating certain linear differential equations or linear difference equations, 
depending upon whether the medium is continuous or discontinuous. We shall 
treat only the Gaussian case but we note that similar considerations can be 
carried out in general. We consider continuous media first. 

37 .2 The canonical variables x, y, p, q as functions of z satisfy the 
canonical equations 

p 
(37.21) 

y 

where the Hamiltonian H is given by the expression 

H = -✓n2 (x,y,z) - p2 - q2 (37.22) 

We introduce v = p2 + q2 and u = x2 + y2 and use the fact that, in systems of 
revolution, n is a function of the two variables z and u. 

From (37.21) it follows that 

p 
(37.23) 

y q = 

We consider x, y, p, q as small quantities and develop H with respect to powers 
of u and v. Letting 

n(u,z) = n 0 (z) + n1 (z)u + 

it follows that to a first order approximation 

V 
H = - n 0 - n 1u + --

2no 

(37.24) 

(37.25) 

We now replace the original problem (37.22) by an "osculating" canonical prob­
lem in which the Hamiltonian (37.22) is replaced by the Hamiltonian (37.25). 
We again obtain a system of canonical equations: 

. 1 
X = - p' 

no 

q = 2n1Y . 

(37.26) 

The solutions of this problem can be considered to be approximations of 
the exact light rays in the neighborhood of the axis. Therefore, these equations 
are called paraxial equations and their solutions paraxial rays. The solutions 
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x, y, p, q of (37.26) are not small quantities, however, but finite. Only those 
solutions which lie close to the axis can be considered as approximations of 
the solutions of (37.21). 

y 

It is not difficult to find a geometric representation of these solutions. 
Let x(z), y(z) be a solution, 
represented by a curve in 

x a, b, c space. The quantities 

dx 
P = no(z) dz ' 

~------------...... ~z 
- ~ q - no (z) dz ' 

can then be interpreted by 

Figure 141 a 
p = n 0 (z) ~ , 

(37.27) 
b 

q = n
0
(z) ~ , 

where a,b,c are the direction cosines of the curve at a certain point P. For 
the exact solutions, however, we know that p = na, q = nb. 

If the curve lies in the x,z-plane then!!:. = tan 0, where 0 is the angle 
C 

made by the tangent to the curve and the z-axis. If, for example, the medium 
is homogeneous, with n = 1, then we have p = tan 0 for rays in the x,z-plane. 
The interpretation of p in the exact case is p = sin 0. 

37.3 Since (37.26) is a system of canonical equations, all conclusions 
which we have drawn with regard to solutions of canonical equations apply to 
our paraxial rays. We can consider (37.26) as Euler's equations belonging 
to the problem of variation 

Zt 

(xp + yq - H)dz = f [ xp + yq + n1 (x2 + y2

) - 2!
0 

(p2 + q2

)] dz 
Zo 

(37.31) 

for the functions x, y, p, q. By introducing p = n
0
x and q = n

0
y from (37 .26) 

we obtain a problem of variation for x and y alone, namely 

(37.32) 
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which corresponds to the original Fermat problem. The last integral, of 
course, could be omitted since it is a constant. 

The quantity V can be considered as a function of the points x 0 ,Yo ,z 0 

and xi,yi,z1. Its differential is given by 

(37.33) 

V satisfies two partial differential equations 

(37.34) 

av H < > ( 2 2 1 (V 2 + v 2) . = o = - no zo - n1 Xo + Yo ) + 
azo 2no(zo) Xo Yo 

We remark explicitly that the "wave fronts" 

V (x0 ,y 0 ,z 0 ; x,y,z) = C 

about a point x 0 ,Y O ,z O are "transversal II to the paraxial rays in accordance 
with the definition (21.262) but are no longer normal. 

We finally mention that one can often make use of Jacobi's general 
theorem for solving the paraxial equations: This theor.em statest: If 1/J(x,y,z; 
a,b) is a solution of the Hamiltonian differential equation 

a¢ + H (x y z · a¢ a¢ ) = 0 
az '''ax'ay 

which depends on two parameters, a, b for which the Jacobian 

1/Jxa 1/Jxb 
,J O ' 

1/Jya 1/Jyb 

then the solution of the canonical equations is given by 

a¢ a¢ 
aa = a, ax = P ' 

a¢ = 13, a¢ 
ab ay q. 

tcourant-Hilbert, Methoden der math. Physik, Vol. II, pp. 91-95. 

(37.35) 

(37.36) 

(37.37) 
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In our case the equation (37.35) becomes 

2nol/Jz + l/Jx 2 + l/Jy 2 = 2no2 + 2non1 (x2 + y2) . (37.38) 

The term 2n 02 on the right side can be omitted since the function 

z 

l/J - J n 0dz 
0 

gives the same result as l/J alone when substituted in (37.37). Thus we obtain 
the Hamiltonian equation 

(37.39) 

as equivalent to the paraxial equations (37.26). 

37.4 Interpretation of the function n1(z). The function n1(z), defined by 
the equation (37 .24) has a simple physical meaning. Let us consider the sur­
faces. n(u,z) = C and assume that these surfaces intersect the optical axes at 
right angles. We thus exclude from this consideration media in which the 

Figure 142 

n=C 

Zo 

Figure 143 

refracting surfaces n = C 
have the z-axis as an asymp­
tote. The refracting surface 
which intersects the axis at 
a point z 0 is given by 

n(u,z) = n(O,z 0) = no(zo) 
(37.41) 

We develop the left side with 
respect to u and z - z O in 
order to find an equation of 
the surface in the neighborhood 
of its vertex z O• It follows 
that 

Hence 

(37.42) 

This is the equation of a paraboloid 
which has the radius of curvature at 
its vertex, 

R(z 0 ) (37.43) 



248 MATHEMATICAL THEORY OF OPTICS 

This is also the radius of curvature of the surface (37.41). Hence we obtain 

(37.44) 

We remark that R > 0 means that the surface is convex towards the incident 
light. 

The expression 

no 
D =­

R 
(37.45) 

is called the refracting power of the surface or simply the surface power. 

By using this notation in (37.26) we obtain the canonical equations 

. 1 . 
x=-p, p=-Dx, 

n 

. 1 . 
y=~q, q=-Dy, 

(37.46) 

- n(z) 
where n = n(z) is the refractive index on the z-axi.s and D(z) - R(z) the power 
of the refracting surface. 

The equivalent Hamiltonian equation (37 .39) assumes the form 

(37.47) 

The problem of solving this partial differential equation can be reduced to the 
corresponding problem for the equation 

2rufiz + 1/Jx 2 + nDx2 = 0 . (37.48) 

In fact, if 1/J = 1/J (x,z,a) is a solution of (37 .48) which depends upon an arbitrary 
parameter a, then 

1/J(x,y,z; a,b) = 1/)(x,z,a) + 1/J(y,z,b) (37.49) 

is a solution of (37.47) which depends on two arbitrary parameters a and b. 

37.5 The functions x(z), p(z) and the functions y(z), q(z) satisfy the same 
differential equations. Therefore it is sufficient to study one of the two sets, 
for example, the equations 

. 1 . 
x=~p, p=-Dx. (37.51) 
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The general solutions of these equations can be expressed as a linear combi­
nation of two linearly independent particular solutions. 

We choose these particular solutions as follows: 
(1) The Axial Ray: Let z 0 be the position of an arbitrary reference plane 

X 

Figure 145 

normal to the optic 
axis. We define the axial 
ray as the solution 

x = h(z) , 

P = t1 (z) 
(37.52) 

of (37.51) which, at z = z 0 

assumes the boundary 
values 

h(z 0 ) = 0 , 
(37,521) 

(2) The Field Ray: A second solution of (37.51) is chosen quite arbitrarily: 

X = H(z) , 

p = 0(z) 
(37.53) 

For our present purpose we select this solution by the boundary values 

H(z 0 ) = 1 , 

0(z 0)=O 
(37,531) 

Thus the axial ray is a par axial ray which originates at the point z O of 
the axis. The above field ray is a paraxial ray which leaves the object plane 
z 0 parallel to the axis. 

With the aid of these two rays we can express any other paraxial ray 
in the form 

x(z) = x 0H(z) + p 0h(z) , 

p(z) = x 0 0(z) + p 0 t1(z) , 

y(z) = y 0H(z) + q 0h(z) , 

q(z) = Yo 0(z) + q0 i,(z) , 
(37.54) 

with arbitrary constants x 0 , Po, Yo, q 0 • Indeed it follows from (37.521) and 
(37.531) that (37.54) is a ray which leaves the object plane z 0 at the point 
x

0
, y 

O 
with the direction Po, q

0
• 
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Let us now assume that the axial ray x = h(z) intersects the axis again 
at a point z = zi, i.e., h(z1) = 0. From (37 .54) it follows that the coordinates 
x1 = x(z1), Y1 = y(z1); P1 = p(z1), q1 = q(z1) of any other paraxial ray on the 
plane z = z1 are given by 

y 

Figure 146 

(37.55) 

These equations demon­
strate that the two planes 
z = z O and z = z1 are 
conjugate planes: Every 
par axial ray x 0 ,Y O of the 
object plane intersects 
the image plane z = z1 
at one and the same 
point 

where M is determined 
by the value H(z1) of the 
above field ray. By 

comparing the equations (37.5l?) with the equations which hold in general for 
Gaussian conjugate planes, namely 

(37 .56) 
Xo 1 

P1 = - f + M Po , 

we obtain the Gaussian constants Mand f of the medium between z 0 and z1 
from the boundary values of the axial and field ray: 

(37.561) 

The above considerations allow us to formulate the following statement: 
If an arbitrary paraxial ray x = h(z), p = 11 (z) intersects the z-axis at two 
different points z 0 and zi, then the planes z = z 0 and z = z1 are conjugate 
planes with magnification 

(37 .57) 
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X 

Figure 147 

Figure 148 

x(z) = x0H(z) + 1:h(z) , 

p(z) = x 0 0(z) + 1: 1'(z) , 

z 
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37.6 In many cases it is 
advantageous to choose the 
axial and field rays in a dif­
ferent manner. Let us assume 
that a diaphragm is placed at 
a point t; of the optical axis 
between z 0 and z1. We define 
the axial ray h, t'J by the 
conditions 

_ h(z 0 ) = 0 

h(t;) = 1 

and the field ray by 

H(z 0 ) = 1 , 

H(/:) = O . 

(37 .61) 

(37.62) 

Hence the field ray goes through 
the center of the diaphragm. 
We now obtain the general 
solution of equations (37.46) 
in the form 

y(z) = y 0H(z) + 77h(z) , 

q(z) = Yo0(z) + 77{J(z) 
(37.63) 

These equations represent a paraxial ray which originates at a point x 0 ,Y O of 
the object plane and intersects the plane of the diaphragm at the point 1: ,1). 

37. 7 Lagrange's invariant. Two solutions x,p and X,P of the equations 
(36.61) are related to each other by a simple expression which is known as 
Lagrange' s invariant. The solutions satisfy the equations 

. 1 
X=-P 

n ' 

p=-Dx, 

P = - DX 

We readily conclude from these equations that 

Px-pX=O, xP-Xp 0, 

(37.71) 

(37. 72) 
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and hence 

It follows that the determinant 

d 
- (Xp - xP) = 0 . 
dz 

X p 

(37. 73) 

r (37.74) 
X p 

of two arbitrary solutions has a constant value r. We call this determinant 
the Lagrangian invariant. 

In the case of the axial and field rays, for example, we find with the aid 
of the boundary conditions (37.521) and (37.531) that 

H {} - h0 = 1 . (37. 75) 

We can use this result to show that it is possible to find the field ray and 
thus any other paraxial ray by a quadrature if the axial ray is known. The 
equations (37.72) applied to h, {} and H,0 give 

19h - {J H = O; HJ - h0 

From 

it follows that 

and hence 

Since 0(z 0 ) = 0 this yields 

HJ - h0 = 0 , 

H{} - h0 = 1 , 

0{} {}() 
{} 

h ' 

0 . (37. 76) 

(37. 77) 

(37. 78) 



FIRST ORDER OPTICS 253 

By introducing t'J = - Dh in the first integral, we find 

z 
0 = - t'J (z) J 

D 
--;f2 dz . (37.781) 

Zo 

The integrals (37. 78) are improper since h(z 0 ) = 0. The convergence at 
z = z 0 , however, is ensured by the form of (37. 781) which is a proper integral. 
If 0(z) is found by these integrals we obtain H(z) with the aid of the invariant 
(37. 75). 

We can easily generalize the result expressed by the formulae (37.78) 
and (37.781). Let us consider an arbitrary solution x = x(z), p = p(z). We 
have the relationships 

Hp - xfi 0 , 

Hp - x0 = r , 

where r is a constant. By letting z = z 0 we find r = Po. As above it follows 
that 

(!) = Po 
p 

xp2 ' (37. 79) 

and hence 

Jz 1 (1) Jz D(z) 0(z) = - PoP - d - = - PoP - 2- dz . (37.791) 
Z X p z p 

0 0 

This demonstrates that the integrals on the right side define the same function 
0(z) for all solutions x(z), p(z) of our differential equations, i.e., they are 
invariant integrals. 

Let us assume that p(z) f,. 0 in the interval z 0 :5 z :5 Z1- Since 0(z1) 
- 1/f we find the interesting relationship 

1 Z1 D(z) Z1 1 (1) f = PoP1 J 7 dz = PoP1 J x d p 
zo zo 

(37.792) 

The focal length of the medium between z 0 and z1 can be found by the integrals 
(37. 792) from an arbitrary paraxial ray x = x(z), p = p(z), provided that 
p(z) f,. 0. 
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Figure 149 

Figure 150 
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37.8 The problem of 
integrating the two linear 
equations 

. 1 . 
X = n p; p = - Dx (37.81) 

can be reduced to the problem 
of integrating one quadratic 
differential equation of 
Riccati' s type. Let us con­
sider the ratio 

x(z) 
S(z) = -

p(z) 
(37 .82) 

which determines by z - nS(z) 
the point where the tangent to 
the ray intersects the z-axis. 
We find 

(37 .83) 

This gives because of (37.81) 
the Riccati equation 

• 1 2 
S=-+DS n . (37.84) 

Let us assume that we know the solution S(z) which, for z = z 0 assumes the 
boundary value S0 = ;~ . From (37.81) it follows that 

and hence 

- J~1 DS dz 

P = Poe 

i> 
p - DS , 

x = p 0Se 

(37.85 

DS dz 

(37 .86) 

i.e., the solutions x(z) and p(z) can be found by quadratures if we know the 
solution S(z) of (37.84) which satisfies the boundary condition S(zo) = ?a 
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§38. THE PATH OF ELECTRONS IN THE NEIGHBORHOOD OF THE AXIS OF 
AN INSTRUMENT OF REVOLUTION. 

38.1 In the original definitions of the functions n(z) and D(z), the func­
tions n 0 (z) and n1(z) are in general not related, but can be assigned arbitrarily. 
This, however, is not the case for an electron-optical instrument of revolution. 
We assume that only electrostatic fields are used in the instrument. The path 
of the electrons in this case can be found mathematically in the same manner 
as the light rays in a medium of rotational symmetry, provided that the index 
of refraction n(x,y ,z) satisfies the differential equation 

(38.11) 

Let us now assume that the electrostatic potential cf, is known on the axis; then 
we know n2(0,0,z) = f(z) on the axis because of the relation n2 = 2(C - Kcp) 
which we have derived in §17.3. Our problem is to find the function n2 = U(z,p) 
which satisfies the equation .6.U = 0 and assumes the values U = f(z) for p = 0; 

pis the distance from the axis, i.e., p = Jx2 + y2 • We assume that f(z) is an 
analytic function of z. The problem then has a simple solution, namely 

1 21T 
U(z,p) = 2,r J f(z + i p cos <p)d<p . 

0 
(38.12) 

It is clear that u(z,0) = f(z), and we have to show that .6.u = 0. One easily 
verifies the equations 

1 211 
Uzz = 2,r J f"(z + i p COS <p)d<p , 

0 

1 1 f 211(i cos q, ) 
U + u - u + - u - - ----'-f' - cos2<pf" d<p, xx yy - PP p P - 2,r p 

0 

and hence 

.6.U = i1r ~
211 ~in2<p f" (z + i p cos <p) + i ;os <p f' (z + i p cos <p)] d<p . 

(38.13) 

The integrand is the derivative with respect to <p of the expression 

i sin <p 
-P-- f' (z + i p cos <p) . 

Hence NJ = 0 since (38.14) is periodic in <p with period 21r-. 

(38.14) 
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We thus obtain the "index of refraction" n(z,p) in the form 

1 2'1T 
n2 = 2 1T J f (z + i p cos cp) dco . 

0 

38.2 By developing n2 with respect to powers of p we find 

1 
n2 = f(z) - 4 f"(z)p2 + ... , 

(38.15) 

(38.21) 

or, by introducing p2 = u1: 

2 f !!_ f"( ) n = (z) - 4 z + .... 

This yields for u = 0: 

....Q.. n2 = 2n 0n1 = - .!. f"(z) au 4 

and hence by (37.44) we obtain the following expression for the refractive 
power of the equipotential through the axial point z: 

1 f"(z) 
D = - 2n1 = + 4.ji(z} 

Figure 151 

(38.22) 

The refracting power D of an 
equipotential surface is thus 
completely determined by the 
values of the field on the axis 
of symmetry. By introducing 
(38.22) and n = ..ff in the 
general equations (37.46) we 
obtain the paraxial paths of 
the electron as solutions of 
the differential equations 

..ff x = p , 4Vf p = - f(z)x , 
(38.23) 

..ff y = q , 4Vf q = - f(z)y 

By eliminating p and q we get two second order equations for x(z) and y(z), 
namely 

4f(z)x + 2:f(z)x + f(z)x = 0 , 

4f(z)y + 2f(z)y + f(z)y = 0 
(38.24) 
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38.3 The integration of these differential equations is equivalent to the 
same problem for the Hamilton-Jacobi equation (37.47) which in our case is 

2~) IPz + I/Jx2 + 1/J/ + ¼f"(z) (x2 + y2) = 0 . (38.31) 

We can reduce the number of variables in this equation immediately by the 
theorem: If 1/J(x,z;a) is an integral of the equation 

2~) IPz + 1/Jx 2 + ¼x2f"(z) = 0 (38.32) 

which depends on the arbitrary parameter a, then 

1/J(x,y,z;a,b) = 1/J(x,z;a) + 1/J(y,z,b) 

is an integral of (37.591) which depends on two parameters a and b. The 
equivalent Riccati equation (37.84) for the quantity S = ~ becomes in our case 

-ff s 1 + 1 ·f·s2 
4 (38.33) 

§39. DIFFERENCE EQUATIONS FOR A CENTERED SYSTEM OF REFRACTING 
SURFACES OF REVOLUTION. 

39.1 We consider next the case of an optical instrument which consists 
of a number of refracting surfaces of revolution. We assume that the system 
is centered, i.e., that the surfaces have the z-axis as a common axis of revo­
lution. Instead of the canonical differential equations (37.46) we shall obtain 
a system of canonical difference equations. We will find that it is possible to 
repeat the above theory almost in every step. 

Let us first introduce a suitable notation. The paraxial rays are con­
tinuous curves x(z) and y(z) which consist of sections of straight lines. The 
derivatives of these curves are discontinuous at points of the z-axis which 
are given by the vertices z; of the refracting surfaces. It is now extremely 
convenient to use only even subscripts i in connection with data referring to 
the surfaces and odd subscripts for data which are connected with the media 
between the surfaces. 

For example we denote by 

the position of the vertices of the surfaces 

the radii of curvature of the surfaces on 
the axis 

the values of x(z) and y(z) at the points Z; . 
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and by 

the axial separations of the surfaces 

the indices of refraction 

Pt, Pa, Ps, • • ·, Pi.-1 , Pi.+1 
the canonical variables which give 

the direction of the paraxial rays, i.e., the quantities 

(39.11) 

where a;, bi, ci are the direction cosines of the ray. 

We also extend the above notation to both the object and the image plane. 
Let z 0 and zk+2 be t'1e position of these planes and t1 and 1:it+t the distances from 
the first and last surface respectively. We shall, however, take the freedom 
to denote the coordinates x 0 , y 0 ; p1, ~ and xk+2 , Yk+2, Pk+1• qk+1 in object and 
image space simply by 

x,y,p,q 
and (39.12) 

x'' y'' p'' q' 

I I 
XI y 

x,y 

Zo • • • 
• • • 

Figure 152 

39.2 We now establish the difference equations which connect the quan­
tities xi, Yi, Pi, qi. These equations are closely related to the canonical 
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equations (37.46). In fact, from the first column in (37.46) it follows by inte­
gration - since p and n are constant between two surfaces i-1 and i+l - that 

(39.21) 

Y1+1 - Y1-1 n; Y; ' 

These equations are geometrically evident from the interpretation (39.11) of 
the quantities P; and q;. 

E 

Zj 

Figure 153 

We can use the second 
column in (37.46) in order to 
derive the additional relations. 
Let us assume for a moment 
that n(z) is continuous in the 
neighborhood of the point Z; 

but increases rapidly from 
n;_ 1 to n1 + 1 if z goes from 
z1 - E to Z; + E. Let R(z) be 
constant in this interval and 
equal to R 1 , the radius of 
curvature of the surface. From 
(37.46) it follows that 

(39.22) 
x(z*) 

= - ~ (n;+1 - n1-1) 
i 

where z* is a certain point in the interval of integration. 

The curve x = x(z) is assumed to approach the paraxial ray in case 
E -o, i.e., a continuous curve which consists of two linear sections joined 
together at z1 . Clearly x(z*) -x1 and in the limit we obtain the relation 

and simil.arly (39.23) 
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where 

(39.24) 

is the power of the i-th surface. 

We finally introduce the so-called "optical separations" of the surfaces 

(39.25) 

and obtain the following set of canonical difference equations 

(39.26) 

Yi+1 - Y1-1 

The coefficients 

(39.27) 

are given directly by the data of the instrument. 

a z· I 

Figure 154 

a 

The physical meaning of 
the equations (39.26) can be 
found readily. The first column 
expresses, as we have seen, a 
simple geometrical fact. The 
second column is equivalent to 
the lens equation for one re­
fracting surface. In fact let us 
consider the ratios 

a ~ 
ni-1 P1-1 

(39.28) 
a' ~ 

n1+1 P1.+1 

for a ray in the x,z plane. Then a and a' are nothing but the distances of the 
points where the ray intersects the axis before and after refraction, from the 
vertex z1 • From (39.26) it follows 

(39.29) 
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This, however, is the lens equation which we have derived in §21.39 for the 
case of a spherical surface. 

39.3 The equations (39.26) are especially convenient for the problem of 
paraxial ray tracing, i.e., for the problem of determining a paraxial ray which 
has given initial data x 0 ,y 0 ,Pi,'h• We remark again that the quantities x1 ,y1 , 

p1 ,q1 are not infinitely small but finite. The meaning of paraxial rays is that 
both paraxial rays and the light rays of the instrument have a first order mani­
fold of rays in common in the neighborhood of the optical axis. 

The problem of variation (37.31) becomes an ordinary extreme value 
problem for the quantities x1 ,yi ,p1 ,qi, namely 

k+i 

V 

l =1,3, .. , 

1 
2 

k 

(39.31) 

l=2,4, ... 

The canonical equations (39.26) are the "Euler equations" of this problem. We 
can replace this "canonical" extreme value problem by a problem for the 
quantities xi and Yi alone, by introducing 

It follows that 

k+i 

V 

P1 

41 

1 
(Xi+i - X1-1) 

oi 

1 
CY1+1 - Y1-1) 

01 

k (39.32) 

~ I Extr. 

i=2 4 ' ' ... 

39.4 The general solution of the equations (39.26) can be expressed as a 
linear combination of two particular linearly independent solutions, which we 
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call Axial ray and Field ray. The axial ray is x1 = hi ; p 1 = 1' 1 defined by 
the initial values 

ho 0 
(39.41) 

"1 1 

and the field ray x1 H1; P1 = 01 by 

Ho 1 
(39.411) 

01 0 

With the aid of these two rays we obtain every other paraxial ray in the form 

(39.42) 

The image plane zk+2 is conjugate to the object plane z 0 if hk+2 = h' 
this case the equations (39.42) give 

0. In 

x' = x 0H' , y' = YoH' , 
(39.43) 

p' = xo0' + Po 1'' , q' = Yo0' + qo 1' , 

which shows, as before, that the focal length f of the instrument and the magni­
fication, M, of the object plane are given by the quantities 

M = H'; 

Figure 155 

1 
0' = - f; "' = ...l M 

(39.44) 

If the instrument contains a 
diaphragm at a certain point 
/; of the axis it is preferable to 
define axial ray and field ray 
by the following conditions: 

h 0 0 
(39.45) 

hm 1 

H 0 1 
(39.46) 

H(l) 0 
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so that the field ray goes through the center of the diaphragm. The general 
solution of (38.26) then is given by 

(39.47) 

which represents a ray which intersects the object plane at the point x0 ,Yo and 
the plane of the diaphragm at ~ ,1/. In this form one can make good use of 
paraxial rays for approximately solving vignetting problems, i.e., the problem 
of determining the manifold of rays which passes through the instrument. 
Indeed, the quantities X; and y 1 approximate the points where the actual light 
rays intersect the lens surfaces. In many cases this approximation is suf­
ficient. 

39.5 Lagrange's invariant. 

Two solutions x 1 ,p1 and X 1 , P 1 of the difference equations 

(39.51) 

are related to each other by an invariant similar to that of solutions of the 
corresponding differential equations. We conclude from 

X1+1 - X1-1 X1+1 - X1-1 
151 = = i = 1,3,5, ... 

P1 pi ' 
(39.52) 

P1+1 - P;-1 P1+1 - pi-1 - D1 i = 2,4,6, ... 
Xi X1 

that 

i = 1,3, ... (39.53) 

and 

= Il ,i = 2,4, .... (39.54) 
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By introducing even subscripts i in (39.53) we obtain 

i = 2,4, ... (39.55) 

and hence by comparing with (39.54) we obtain the identity 

, i = 2,4, ... (39.56) 

or Ii = Ii- 2. We conclude from this that the Ii have the same value r for all 
i. Therefore our result is: The determinants 

r (39.57) 

have the same value r for all surfaces, i. 

In the case of the rays (39.41) and (39.411), for example, we have 

1 . (39.58) 

39.6 We can use the above invariant to express the data H1 ,01 of the 
field ray by the data h1 , 17 1 of the axial ray. We write (39.58) in the form 

(39.61) 
1 

and obtain by subtraction 

(39.62) 



FIRST ORDER OPTICS 265 

This gives 

(39.63) 
V=2 

i.e., 01+ 1 is given by the data h1 , 1' 1 of the axial ray. By introducing (39.63) 
and (39.61) we obtain H1 expressed by the data h1 , 17 1 . 

Letting i = kin (39.63) we find an expression for the total power D = T 
of the k refracting surfaces. In fact, since D = f = - 0k+1 we obtain 

k 

D = 1'k+i 2 h~ ( 1'~+1 - 1'v
1
-1 ) (39.64) 

ll=2 

We can carry out the above considerations for an arbitrary par axial ray, x 1, 

p1 , instead of the axial ray. The result is: 

k 

D = Pi.Pi.:+t 2 x
1
v ( Pv~t - Pv~i ) • (39.65) 

lJ=2 

By introducing Pv-t - Pv+i = Dvxv we can replace (39.65) by the equivalent 
formula: 

k 

, Dv 

L, Pv-1Pv+1 
ll=2 

39. 7 We can use the difference equations 

F 

Figure 156 

(39.66) 

(39. 71) 

to derive expressions for the 
Gaussian constants of a lens 
system, i.e., for the focal length 
f = 1/D and the location of the 
unit points. Let us illustrate 
this with the example of asingle 
lens with two spherical surfaces. 
Through the lens we "trace" a 
paraxial ray from infinity with 
the initial data Pt = 0, x2 = 1. 
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From (39. 71) it follows that 

(39. 72) 

We know by the initial conditions that p 5 = Hence 

(39. 73) 

where 

(39. 731) 

The distance of the focal point F from the surface 4 is given by the ratio 

(39.74) 

Let j' be the abscissa of the unit point of the image space relative to the sur­
face 4. We know that the focal point has the distance F = n5f = f from this 
unit point. Hence t 5 - j' = f or j' = (x4 - l)f. From (39. 72) it follows that 

(39.75) 

By tracing a paraxial ray backwards through the system so that p 5 = O; x4 = 1 
we can obtain the unit point of the object space by similar considerations. The 
result is 

(39. 76) 

where j is the abscissa of the unit point relative to the surface 2. The above 
method can be applied, of course, to optical systems of any number of surfaces. 
However, the resulting formulae rapidly become complicated and unsuited for 
numerical computation. A direct numerical computation of the quantities x1 , 

p1 with the aid of the linear equations (39. 71) is actually incomparably simpler. 

39.8 First Order Design of Optical Instruments. The equations (39. 71) 
provide us with a simple method of constructing optical instruments which 
satisfy given first order conditions. These first order conditions, as, for 
example, magnification, focal length, location of object and image plane, can 
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be expressed by quite simple conditions for the data of paraxial rays. Very 
complicated formulae are obtained, however, if the geometrical data of the 
lenses are introduced. This fact suggests the use of the paraxial rays as 
intermediate parameters of the system in optical design. Let us consider, 
for example, the k + 1 parameters h1 , " 1 of the axial ray. We can assign 
these parameters and the refractive indices n1 arbitrarily and then determine 
an optical instrument which possesses the assigned axial ray. Indeed, from 

(39.81) 

we obtain 

(39.82) 

i.e., the optical separations and the surface powers of the system. The geo­
metric separations and the radii of the surfaces are given by 

ti = ni 151 ' (39.83) 

R1 
ni+ 1 - ni-1 

D1 

Thus we find that an arbitrarily given paraxial ray represents an optical 
system which is uniquely determined when the indices of the media are chosen. 

We illustrate this method with a simple example. We want a lens which 
forms a real magnified image of a given plane on another given plane. Let 
M = - 5 and L = 500 mm. be the distance from the object to the image plane. 
We also give the "working distance", i.e., the distance t1 of the surface 2 from 
the object plane and the thickness t3 of the lens: t1 = 80 mm.; t 3 = 10 mm., 
t5 = 410 mm .. Let n = 1.5. The problem has a unique solution. We 

BO 10 410 

Figure 157 

arbitrarily choose " 1 = 5 and 
thus have " 5 = - 1 in order to 
obtain the magnification M = 
- 5. It follows that h2 = 400, 
h4 = 410 and hence 

" = !.&_ (410 - 400) 1 5 3 10 = • • 

The data of the axial ray are 
therefore known and we are 
in the position to determine 
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the geometrical data of the lens. The results of the different steps are as 
follows 

1', 1 5 01 80 t1 80 

h2 400 D2 0.00815 R2 57.14 

"3 1.5 03 6.6667 t3 10 n3 1.5 . 

h4 = 410 D4 = 0.00610 R4 = - 82.0 

175 = - 1 05 = 410 t5 = 410 . 

If the lens consists of more than two surfaces our method can still be used but 

500 

Figure 158 

it leads to many solutions. 
Indeed, our conditions are 
satisfied as long as the axial 
ray has the values 17 1 = 5 and 
t7k+1 = - 1 and intersects the 
axis at two points which are 
500 mm. apart. Any broken 
line curve which satisfies these 
conditions represents an optical 
system which satisfies our 
conditions. We can impose 
other first order conditions, 
for example, that the optical 
system has a given focal length 
f. Then we can make use of the 

formula (39.64) which expresses D = 1/f by the quantities h 1 , 1' 1 and take care 
to select only such sets h1 , 1' 1 which satisfy this condition (39.44). 

Any additional degree of freedom can be used by the designer to decrease 
the aberrations of the lens combination. The advantage of characterizing a 
lens system first by the intermediary parameters h1 , 1' 1 becomes even more 
evident in connection with the aberration problem. We shall see in the next 
chapter that it is possible to express the 3rd order aberrations as functions 
of the data of paraxial rays and that these functions are relatively simple and 
are well suited for numerical calculations. 



CHAPTER V 

THE THIRD ORDER ABERRATIONS IN SYSTEMS OF ROTATIONAL SYMMETRY 

The problem of this chapter is to develop the image functions 

one step beyond the first order development in the neighborhood of the princi­
pal ray. In general this leads to certain algebraic functions which are of 
second order in the initial ray coordinates x 0 ,Yo ,Po ,q0 • If we call the departure 
from the first order functions the aberrations of the rays, then the second 
order aberrations Ax1, Ay1; Api, Aq1 are given by homogeneous quadratic 
polynominals of x 0 ,Yo ,Po ,qo. 

In the case that the principal ray is the axis of an optical system of 
revolution we will obtain no second order aberrations. This follows from the 
fact that the above image functions are odd functions of x O ,y O ,P O ,qO• The 
development of the image functions one step beyond the first order gives alge­
braic functions of third order. The departures Axi, Ayi, Ap1, A41 from the 
Gaussian approximations are determined by certain homogeneous third order 
polynomials of x 0 ,Yo ,Po ,q0 • These polynomials represent the third order 
aberrations of the instrument. In this chapter we shall be concerned with the 
theory of these aberrations. 

§40. GENERAL TYPES OF THIRD ORDER ABERRATIONS., 

40.1 We first derive the possible types of aberrations which we must 
expect in the third order approximation. For this purpose we make use of 
Hamilton's mixed characteristic W(xO ,Y O ,pi,q1) from which we obtain the 
image functions in the form 

aw aw 
X1 

8P1 
Po axo ' 

(40.11) 

aw aw 
Y1 aq1 ' qo = 

8Yo 

269 
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We know that W is a function, W (u,v ,w) of. the invariants of rotation, 

(40.12) 

w = 2(xoP1 + YoCii) 

Figure 159 

Let us assume that the refer­
ence planes z = z 0 and z = z1 
are conjugate in the Gaussian 
optics of the instrument. 

This means, according 
to our results in §34, that the 
image functions of first order 
have the form 

M 
Po = T xo + MP1 , 

Y1 = Myo , 

and hence, that W(u,v,w) can be developed in the form 

(40.13) 
M 

qo =y Yo+ MClJ. 

(40.'14) 

The expression W2(u,v,w) represents a homogeneous polynomial of 
second order in u,v,w. The third order aberrations of our system, i.e., the 
departures 

Ax1 = X1 - Mxo .6.po = M 
- Mp1 

' Po - T xo ' 
(40.15) 

.6.y1 = Y1 - Myo .6.qo = M 
- Mq1 ' ' 

qo - T Yo 

from the functions (40.13) are determined by the polynomial W2(u,v,w). We 
obtain 

Ax1 ( 8W2 
2 aw xo + 

8W2 ) 
~P1 .6.po = ( 8W2 

- 2 au xo + 
8W2 ) 
aw P1 

(40.16) 

.6.y1 ( 8W2 8W2 ) 
2 a:;; Yo+~ q1 , .6.qo = ( 8W2 8W2 ) 

- 2 - Yo+ - Cl! au aw 
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40.2 We assume that W2 Cu,v,w) has the form 

W = - -Fu2 + -Av2 + -- w2 + -Duv + -Euw + -Buw [1 1 C-D 1 1 1 ] 
2 4 4 8 2 2 6 ' C40.21) 

where A,B,C,D,E,F are certain constants depending on the instrument and on 
the choice of object and image planes. By applying C40.16) we obtain the fol­
lowing expressions for the third order aberrations: 

Axi = [Eu+ ½Bv + ½cc - D)w] Xo + [nu+ Av+ ½Bw] Pi , 

ayi = [Eu+ ½Bv + ½cc - D)w] Yo + [nu+ Av+ ½Bw] ~ , 

C40.22) 

apo= [Fu + Dv + Ew] x 0 + [Eu + ½Bv + ½ CC - D)w] Pi , 

aqo= [Fu+ Dv + Ew ]Yo+ [Eu+ ½Bv + ½cc - D)w] ~ 

The quality of the image is determined by the two functions Axi and ayi. We 
see that only the five coefficients A,B,C,D,E enter in these functions. This 
shows that, in the realm of third order optics, five different types of aberra­
tions have to be considered. The sixth coefficient F, however, is necessary in 
order to characterize the complete manifold of rays into which the rays of the 
object space are transformed by the optical instrument. By knowing F in addi­
tion to A,B,C,D,E we are, for example, in a position to determine the quality 
of images for any object plane, not merely for the object plane which was 
chosen originally. 

For the physical interpretation of the five coefficients A,B,C,D,E we may 
assume Yo = 0 without loss of generality. Thus we introduce in C40.22): 

Yo = 0 , 

w = 2x0pi , 
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and obtain, by arranging with respect to powers of x 0 : 

(40.23) 

Let us first consider the special set of light rays which lie in the "pri­
mary plane", i.e., in the meridional plane through the point (x0 ,0). Since y1 = 
~ = q0 = 0, we obtain from (40.23): 

(40.24) 

This equation demonstrates that five of the 3rd order aberrations, namely 
those connected with the coefficients A,B,C,E,F, can be observed by investi­
gating meridional rays alone. Only one aberration is reserved for skew rays 
alone, namely that determined by the coefficient D. For an optical system 
which is perfectly corrected in 3rd order for meridional rays we have A = 
B = C = E = F = 0. In this case the image functions (40.23) become 

Figure 160 

(40.25) 

The points of the object plane 
are imaged as sections of lines which 
are normal to the optical axis. In 
many problems connected with third 
order aberrations we can limit our­
selves to considering only the func­
tions (40.24) for meridional rays. 
This is justified since we shall find 
that C and D are related to each other 
by a simple equation, the so called 
Petzval equation (§42.) which allows 
us to determine D as soon as C is 
known. 
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40.3 For the interpretation of the quantities A,B,C,D,E let us consider 
the following optical instrument. 

A small diaphragm is placed at the first focal point F 0 of the objective. 
This diaphragm selects a narrow manifold of rays which are nearly parallel 

Figure 161 

to the axis after refrac­
tion. If, in (40.23) we 
let p1 = ~ = 0, we obtain 
a bundle of rays which 
are parallel to the axis 
after refraction. Ob­
viously this can be inter­
preted as physically 
closing our diaphragm 
down to the limit so that 
only a one parameter 
manifold of rays passes 

the objective. We have called this bundle the bundle of field rays selected by 
the diaphragm. 

The aberrations AX1 and Ay1 in (40.23) can be considered as a superpo­
sition of different types of aberrations. Let us study these types separately. 

Spherical Aberration: The image of the axial point x 0 = y O = 0 is given 
by the expression 

AX1 = Ap3 cos cp , 

Ay1 = Ap3 sin cp , 

if we introduce polar coordinates p,cp by 

P1 = p cos cp 

q1 = p sin cp 

(40.31) 

(40.32) 

We have represented the spherical aberration of the axial bundle §31.14 
by the expressions 

AX1 - p, (p) cos cp , 
(40.33) 

Ay1 - J, (P) sin cp , 

and introduced J, (p) as the lateral spherical aberration. By comparing (40.33) 
and (40.31) we obtain 

J, (p) - Ap3 (40.34) 
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which represents the exact function P,(p) for small values of p. The longitudi­
nal spherical aberration L(p) is related to P,(p) by (31.19). We find, therefore, 

(40,341) 

in the neighborhood of p = 0. 

Coma: We consider next the functions 

(40.35) 

which represent the aberrations of our instrument for small quantities x 0 if 
the system is free of spherical aberration. In polar coordinates we have 

(40.351) 

Let us consider the manifold of rays from (x0 ,0) for which p has a con­
stant value. Physically we may obtain these rays by placing a ring diaphragm 
at the focal plane F 0 , i.e., a diaphragm which stops all rays except those 
through a narrow circular ring. The intersection figure with the image plane 
of these rays is then given by a circle which, according to (40.351), has its 

Figure 162 

center at 

and the radius (40.352) 

The superposition 
of the circles which be­
long to different values 
of p yields the character­
istic coma figure which 
we have already studied 

in §31. By comparing the above expressions form and R with those obtained 
in §31 for wide apertures, p, we find 

B = - p2 
3M 0 

(40.353) 
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which is the development of 1/J(p) in the neighborhood of p = 0. 

Astigmatism and Curvature of Field. If the optical system is corrected 
for spherical aberration and coma, i.e., if A = B = 0, then we obtain from 

(40.36) 

the aberration which appears first if x 0 increases. The intersection figure of 
the rays through our ring diaphragm is an ellipse with axes Cxa2p and Dx02p. 
This aberration is caused by the fact that first order bundles of rays taken 
about a given field ray as a principal ray are astigmatic after refraction as 
we have seen in §35. In order to find the position of the primary and secondary 
focal lines on the field ray from (x0 ,0), let us determine the intersection 
figure with a reference plane at a small distance z1 from the image plane. We 
have 

M 0x 0 + ( Cxa2 + :~ ) p cos cp , 

(40.361) 

(nx02 + :: ) p sin rp 

i.e., again an elliptic cross-section. 

The positions of the focal lines are determined by those values z1 for 
which one of the axes of these ellipses becomes zero. We find 

Primary focus 
(40.362) 

Secondary focus 

The two sets of focal lines on the field rays determine the field curves 
of the optical instrument. We obtain the e~ation of these curves in the neigh­
borhood of x1 = y1 = 0 by introducing x 0 = iir x1 in (40.362). This gives 

n1 2 
- M2 Cx1 : Primary field curve 

(40.363) 

n1 2 - M2 Dx1 Secondary field curve . 
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Figure 163 
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The two surfaces of revolution 
which are given by these field 
curves are the curved image 
surfaces of the object plane. 
The distance 

n1 2 
z2 - z1 = - M2 (D-C)x1 meas-

ures the astigmatism of the 
instrument; the mean value 
1 1 n1 2 
2(z2 + Z1) = - 2 M2 (C+D)X1 , 

the curvature of field. 

Distortion. By closing 
the diaphragm down to its limit 

so that only the field rays pass the objective, we obtain a certain optical pro­
jection of the object plane. This projection, however, does not give a true 
image in general. From (40.23) we find for p1 = ~ = 0 that 

or 

(40.37) 

(40.371) 

Y1 = 0 • 

The departure of the projected point x1 from the point Mx 0 of an undis­
torted projection increases as Ex 0 3• From 

ille1 E -- -x 2 
X1 - M 0 

(40.372) 

it follows that the image point is moved away from the axis if ! > 0 and towards 

the axis if! < 0. The two cases are known as pin cushion and barrel distor­

tion respectively, as is illustrated by the distorted images of a square in 
Fig. 164. 

D D 
Figure 164 
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40.4 The Combined Effect of Third Order Aberrations. Let us finally 
consider the case where all third order aberrations are present. We introduce 
polar coordinates in (40.23). This yields 

(40.41) 

For a constant p these equations represent a certain algebraic curve 
which can be constructed as follows. We consider an ellipse which has its 
center at the point 

(40.42) 

and axes given by the coefficients of cos cp and sin cp in (40.41). The center m 

Figure 165 

of a circle of radius 
B 

R = 3 p2x 0 moves once 

around this ellipse while 
a point on the circle 
ro.tates twice about m. A 
point P on the cir cum -
ference of the circle then 
describes the curve 
(40.41). The shape of the 
curve depends on the 
relative size of the axes 
of the ellipse and the 
radius R. Two curves 
which are obtained if the 
ellipse degenerates into a 
straight line are shown in 
Fig. 166. It is easy to 

observe these curves with ordinary lenses by placing a ring diaphragm in 
front of the lens and using a small light source as an object. 

40.5 In order to give a direct physical interpretation of the coefficients 
A,B,C,D,E in (40.23) we have considered an optical instrument with a diaphragm 
placed at the first focal point of the instrument. The coefficients B,C,D,E are 
then directly connected with the aberrations of coma, curvature or field, 
astigmatism, and distortion, for the instrument 'With the diaphragm. The posi­
tion of the diaphragm is, however, not without influence on the aberrations of 
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Figure 166 

the instrument, especially 
if small diaphragms are 
used. The action of a 
small diaphragm is to 

~-------:::.,,,,.,:.~t--E=::=:;;~~====~==lx' select a certain manifold 
of rays from the total 

Figure 167 

manifold of object rays. 
These selected rays are 
then used for the forma­
tion of images. By mov­
ing the diaphragm to a 
new position we obtain 
from the same object 
point a selected manifold 
of rays which is different 
from the original one 
(Fig. 167). This new 
manifold passes through 
different parts of the 
instrument and thus is 

differently refracted. Consequently, we have to expect a considerable influence 
on the quality of images of off-the-axis object points if we shift the diaphragm. 
In fact, it is possible to remove certain types of aberrations simply by shifting 
the diaphragm along the z-axis. 

Mathematically we can express this situation by the fact that in (40.23) 
we can introduce new coordinates ~1 , 17 1, instead of Pt, q1 by certain linear 
transformations which leave the general form of these equations unchanged. 
Let us first consider a diaphragm in the real part of the image space. A ray 
in this space is completely determined by its intersections x1,y1 and ~1, 171 
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with these two planes. Let /;1 by the z coordinate of the ~ 1 , 17 1 plane of the 
diaphragm relative to the image plane z 1 = 0. Then we have the relations 

Figure 168 

linear relations 

(40.51) 

which we can use to in­
troduce ~ 1 and 17 1 instead 
of Pt and q1 in (40.23). 
Since we are interested 
only in third order ap­
proximations we can use, 
instead of (40.51), the 

(40.52) 

which are first order approximations of (40.51). In other words, if we introduc 
in the first two equations of (40.23) the quantities ~ 1 , 17 1 by means of the rela­
tionships 

n1 
Pt = - (~ 1 - Mxo) , 

I: 1 
(40.53) 

we obtain the third order development of ill!:1 and ~y 1 as functions of x 0 ,y O and 

~1•171· 

We can verify without difficulty that ill!:1 and ~y 1 assume the same form 
as they had in (40.23), namely, 

(40.54) 
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where A,B,C,D,E are new coefficients which are linear combinations of the 
original coefficients. 

This can be seen without calculation as follows. We know that dW = 
- x1 dpt - Y1 dq1 - Podxo - y 0dy 0 is a total differential. By introducing 

we obtain 

or 

It follows that the right side is a total differential of a function W. This func­
tion depends only on the invariants of rotation u = xa2 + y a2, v = ~ i2 + 71 i2, 
w = 2(x 0~ 1 + y 0711) and hence we are in a position to repeat the derivation of 
the formulae (40.22) and (40.23) directly for the coordinates x 0 ,y O, ~ 1,71 1, with 
the same general result. 

In order to obtain the new coefficients A,B,C,E, we can make use of the 
observation that these coefficients appear in the formula (40.24) for the aber­
rations of meridional rays. Consequently, letting T = IT, we have the identity 

(40.56) 

from which follows 

(40.57) 
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For the coefficients A,B,C,D,E we can give the same physical explanation 
as above. The only difference is that the bundle of field rays is now determined 

by the center of a dia­
phragm at a position dif­
ferent from the former 
one. The formulae (40.57) 
show that there always 
exists one position for 
which B = 0, when the 
image is coma free. 
There are possibly two 
!,!'la! values of T with 
C = 0, and at least one 
position where the instru -
ment has no distortion. 

The above results 
are valid also if z = t 1 . 

lies in the virtual part of 
Figure 169 the image plane. This 

corresponds physically to 
the case where the dia­
phragm is placed so that 

the instrument produces a virtual Gaussian image at z = t 1 . 

§41. THE THIRD ORDER COEFFICIENTS AS FUNCTIONS OF THE POSITION 
OF OBJECT AND PUPIL PLANE. 

41.1 The coefficients A,B,C,D,E which determine the image fo:rmation 
of a given instrument with respect to a particular object plane and pupil plane 
vary if we change the positions of these planes. If the object plane is unchanged, 
and only the pupil plane is displaced, the variation of the third order coeffi­
cients is given by the formulae (40.57). In the following we shall derive the 
algebraic functions which determine the 3rd order aberrations of a given opti.­
cal instrument for any choice of object or pupil plane. 

We consider only the coefficients A,B,C,E, and use the Petzval equation 
(§42.62) to find D for a known C. Let U O and U1 be the unit points of the instru­
ment and z 0 ,z1 the positions of the object and image planes which are assumed 
to be conjugate. The object and image spaces shall be homogeneous with con­
stant indices of refraction n 0 and n1 respectively. We can characterize the 
positions z 0 and z1 by the magnification, M, of the object plane. If f is the 
focal length of the instrument we have 

zo = 1-M f. z1 = (1-M) f . 
n 0 M ' n1 

(41.11) 
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Xo ,"' , I 
I 
I 
I 

Yo 
I 
I 
I 
I , 
:,,' 

Figure 170 

Next we consider two other pairs of conjugate planes at the points 1: 0 and 
1;1. These planes are called the entrance pupil plane and the exit pupil plane.· 
Physically these planes are determined by the position of a diaphragm in the 
instrument. If the diaphragm is placed in the real part of the object space, 
then it coincides with the entrance pupil plane. Its Gaussian image gives the 
exit pupil plane. If the diaphragm is in the real part of the image space, then 
it coincides with the exit pupil plane; its conjugate plane in the object space is 
the entrance pupil plane. If, finally, the diaphragm is inside the instrument 
entrance and exit pupil planes are given by the Gaussian images of the dia­
phragm in the object and image spaces respectively. Let us assume that m 
is the magnification of the entrance pupil plane. Then we have 

to. 
no 

1-m /;, 
-f ·-"-'- = (1-m)f. 

m 'n1 
(41.12) 

41.2 Since the aberrations A,B,C,E are determined by the meridional 
rays of the instrument, in this section we consider only light rays which lie 
in the x,z plane. Instead of characterizing these rays by the canonical vari­
ables x 0 ,Po; xi,p1 we shall use the intersections x 0 .~ 0 and x1,~ 1 with the above 
conjugate planes. To _a first order approximation these different variables 
are related by the formulae 

(41.21) 

or on account of (41.11) and (41.12) by 

Po 
Mm ~o - xo 

M-m f 
(41.22) 
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Our aim in this section is to determine the third order aberration polynomials 
.ruc1 = x1 - Mx0 and A~ 1 = ~1 - m~ 0 which we assume are in the form 

(41.23) 

The first polynomial gives the aberrations of the object plane, the second poly­
nomial the aberrations of the entrance pupil plane. 

41.3 We base our investigation upon Hamilton's angular characteristic. 

Figure 171 

Let TO (p 0 ,p1) be the angular 
characteristic of the instrument 
with the unit points as refer­
ence points. It determines the 
optical distance of the base 
points Q 0 ,Q1 of the perpendicu­
lars dropped from the unit 
points onto a ray in the x,z 
plane. Since the unit planes 
are conjugate with the magni­
fication M = 1 we obtain from 
(34.34), the first order relations 

(41.31) 
- x'= - f(po - P1) , 

if x and x' are the intersections of the ray with the unit planes. This implies 
that the function T O (p O ,p1) must have a development of the form: 

(41.32) 

where P(p 0 ,p1) is a homogeneous polynomial of 4th order. We assume that P 
is given by 

(41.33) 

The coefficients, P1 , are determined by the optical instrument. 

The angular characteristic T(p 0,p1;z 0 ,z1) which belongs to the object and 
image planes is given by the general formula 

(41.34) 
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By developing the right side with respect to Po and Pt and disregarding terms 
of an order greater than the fourth we obtain, with the aid of (41.11) and (41.12), 

f 2 f [1 - M P o4 Pt 4] T = - (po - Mpt) - fp + - -- -2 - (1 - M)-2 . 
2M 8 M n 0 nt 

(41.35) 

The intersections x 0 and Xt of the ray with the object and image planes are 
obtained by 

which gives 

(41.36) 

By introducing (41.35) in this equation we find 

(41.37) 

41.4 The right side in (41.37) is a homogeneous polynomial of third order 
in Po and Pt• We obtain the aberration .ru!:t as a function of the variables x 0 .~ 0 

of the ray by replacing Po and Pt in (41.37) by the expressions (41.22). We are 
allowed to use these first order approximations of the functions Po (x 0 .~ 0 ) and 
Pt (x0 .~ 0 ) because higher order terms in them would contribute only terms of 
higher order than 3 in (41.37). We therefore have the result: The third order 
polynomial 

(41.41) 

for an object plane of magnification Mand an entrance pupil plane of magnifi­
cation m can be found from (41.37) by replacing Po and Pt by the expressions 

_ Mm ~o - xo 
Po - M - m f 

1 m~o - Mxo 
Pt=M-m f (41.42) 

and arranging the result in the form (41.41). 

By repeating the same procedure for the pupil planes we obtain the 
additional result: The polynomial 
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is given by the polynomial 

1 aP aP 1 (Pt3 Po 3 ) 
-6./;1 = - + m- + -2 (1 - m) -2 - -2 
f 8P1 8P o n1 no 

(41.43) 

if the expressions (41.42) are introduced on the right side. 

41. 5 One verfies readily that 

and (41.51) 

Hence we can summarize our results in the following form: The aberrations 
6.x1 and 6.1;1 are given by the expressions 

1 1 r 1 aQ 1 ( 3 3 3 3)~ 
f6.x1= (M _ m)sfs L;;_a/;o + 2(1 - M) Mm (1; 0 - x 0 ) - (m/; 0 - Mx0 ) ~ 

(41.52) 

[- ~ ::O + ½(l - m) (M3m 3(/;o - Xo)3 - (m/; 0 - Mx0 )3)] 

where Q is the polynomial 

Q = P(Mm(/; 0 -x0 ),m/; 0 -Mx0 ) (41. 53) 

By arranging the right sides in (41.52) in the form of (41.23) we obtain the 
coefficients A,B,C,E and a,b,c,e as algebraic functions of the two magnifica­
tions M and m. These functions are known explicitly as soon as the five coef­
ficients P 0 ,Pi,P2,P3,P4 of the expression (41.33) have been found. They allow 
us to determine the aberrations of a given optical instrument for any object 
plane and for any entrance pupil plane. 

41. 6 We can use the formula (41.37) to investigate the third order aber­
rations A,B,C,E for the case that the entrance pupil plane is at the first focal 
point of the instrument. The function 6.x1 then assumes the form 

(41.61) 
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which we originally obtained in §40. This polynomial is gotten from (41.37) by 
replacing Po by the expression 

Letting f = 1 and n O = n1 = 1 we find 

and hence 

C = ~; f oM2 + 2P1M + P 2] 

E = ~ 3! f o M + P J 

-¾(1 - M)M3 , 

-¾(1- M)M3 , 

_ l(l - M)M3 
2 

(41.62) 

(41.63) 

(41.64) 

We can demonstrate with the aid of these formulae that it is impossible to 
correct an optical instrument for all pairs of conjugate planes simultaneously. 
Let us assume that the unit planes are aberration free. It follows that 
P 0 + P 1 = O; P 1 + P 2 = O; P2 + P3 = O; P 4 + P3 = 0 and hence 

(41.65) 

It obviously is impossible to choose P 0 so that the polynomials (41.65) are 
identically zero which would be necessary for an instrument which is corrected 
for all pairs of conjugate planes. 
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§42. INTEGRAL EXPRESSIONS FOR THE THIRD ORDER COEFFICIENTS. 

42.1 In this section the problem is to find explicit expressions for the 
third order coefficients A,B,C,D,E which determine the image quality for a 
given pair of conjugate planes. We shall solve this problem for the case of a 
continuous medium, but the resulting integral formulae can be applied directly 
to discontinuous media and lead to summation formulae in that case. 

Let us assume that two planes z = z 0 and z = z1 in an optical medium are 
conjugate in the realm of first order optics. The paraxial rays in this medium 

are the solutions of the linear 

e 
~ 
I 
I 
I 

differential equations 

. 1 . 
X = n p, p = - Dx , 

(42.11) 
. 1 . 

-~"-------...;::,~-----~""-- y = n q, q = - Dy 

Figure 172 

We represent solutions of 
these equations by two partic­
ular solutions h, 1' and H,0 
which satisfy the boundary 
conditions 

h(z 0 ) = O , H(z 0 ) = 1 , 

h( t) = 1 , H( t ) = 0 
(42.12) 

The plane z = t is the pupil plane of the medium which may be determined 
physically by the position of a diaphragm. For our purpose we can consider 
it simply as a third reference plane. A paraxial ray which intersects the plane 
z = z 0 at the point x 0 ,y 0 and the plane z = 6 at ~.7) is then given by the expres­
sions 

x = x 0H(z) + ~h(z) , 

y=y 0H(z)+7Jh(z), 

p=x00(z)+~iJ(z), 
(42.13) 

Let us now consider the actual light rays of the medium. We shall denote them 
by X(z),Y(z),P(z),Q(z) to distinguish them from the paraxial rays. The func­
tions X,Y ,P ,Q, are solutions of the canonical equations 

Y = 2HVQ , 

where U = X2 + Y2 and V = p 2 + Q2• 

Q = - 2Hu Y , 
(42.14) 
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A special light ray shall be characterized by the points of intersection x 0 ,Y 0 

and ~ ,T/ with the planes z = z O and z = t respectively, so that X, Y ,P ,Q can be 
considered as functions of z and the parameters x 0 ,Yo.~ ,T/. We develop these 
functions in a Taylor series with respect to x 0 ,Y O.~ ,T/ and write 

X=X1+X3+ X5 + ... 

y = Y1 +Ya+ Y5 + ... 
(42.15) 

p = P1 + Pa+ P5 + ... 

Q = Q1 + Q3 + Q5 + ... 

where X 1 ,Y 1 ,P 1 ,Q 1 are homogeneous polynomials of degree i in the param­
eters x 0 ,Yo.~ ,T/. The coefficients of these polynomials are functions of z. 

42.2 We now develop the Hamiltonian H(U,V,z) with respect to U and V. 
We write 

(42.21) 

where the coefficients H1 and Hilt are certain functions of z which we shall 
determine later. We introduce both this expression and the series (42.15), in 
the canonical equations (42.14). Let us consider the first equation for example. 
We have 

(42.22) 

or 

(42.23) 

The omitted terms on both sides of this equation represent polynomials 
in x 0 ,Y O.~ ,T/ of a degree higher than three. An identity between homogeneous 
polynomials can only be true if the polynomials of the same degree on both 
sides are identical. Thus it follows that 

(42.24) 
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Similar considerations can be carried out for the other three equations (42.14). 
We obtain the first order equations 

(42.25) 

and the third order equations 

X3 2H2P 3 + 2(H12U1 + H22V1)P1 
(42.26) 

Y3 2H2Q3 + 2(H12U1 + H22V1)Q1 

P3 2H1X3 - 2(H11U1 + H12V1)X1 
(42.261) 

Q3 2H1Y3= -2(H11U1 + H12V1)Y1 

The first order equations (42.25) are of course identical with the paraxial 
equations (42.11), i.e., we have 2H1 = D(z) and 2H2 = ~(z) . Hence the general 

solution of (42.25) is given by the paraxial rays x(z), y(z), p(z), q(z) and can be 
expressed by the formulae (42.13). 

The third order equations (42.26) can be written in the form 

(42.27) 

Pa + DX3 = - 2(H11U + H12V)x 
(42.271) 

where U = x2 + y2 and V = p2 + q2. 

The third order aberrations X3, Y3; P3, Q3 are the solutions of a system of 
nonhomogeneous equations. The nonhomogeneous terms are known functions 
of z once the solutions x(z), y(z), p(z), q(z) of the paraxial equations are known. 
The differential operators on the left side are the same operators which de­
termine the homogeneous canonical equations for the paraxial rays. 

Our original problem was to find a solution X,Y,P,Q of the canonical 
equations (42.14) which satisfies the boundary conditions 

(42.28) 
Y(zo) = Yo , Y(/;") = 7) 
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If we determine the first order polynomials X1 = x, Y1 = y, P1 = p, Q1 = q by 
the equations (42.13), then these boundary conditions are satisfied by the func­
tions (42.15) when the higher order polynomials X1 ,Y1 ,P1 ,Q1 satisfy the 
boundary conditions 

(42.29) 

This leads us to the following problem for the third order polynomials X3,Y3, 

P 3,Q3: To find a solution of the nonhomogeneous canonical equations (42.27) 
and (42,271) which satisfies the boundary conditions 

(42,291) 

42.3 We solve this problem as follows. We consider the two equations 

(42.31) 

h(z) and 1' (z) represent the paraxial ray defined in (42 .12). From these equa­
tions it follows that 

(42.32) 

In a similar manner we conclude from 

(42.33) 
1' + Dh = 0 

that 

(42.34) 

Hence by adding (42.32) and (42.34) we obtain 

(42.35) 

We integrate this equation from z 0 to z1 and make use of the condition X3(z 0 ) = O; 
h(z 0 ) = h(z1) = 0. We obtain 

(42.351) 
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and similarly, 

(42.352) 

These integrals represent the desired third order aberration in the image plane 
z = z1. Let us introduce 

(42.36) 

and the Lagrangian invariant r =I:: I of the two paraxial rays H,0 and h, 1'. 

For z = z1 we have r = H(z1) 1' (z1) = M 1' (z1). Hence it follows from the above 
integrals that 

2M Zt fi ~J 
~1 = r f ~H12U + H22V)p 1' + (H11U + H12V)~J dz 

2M 
~y1= - r 

Zo 

(42.37) 

The right sides become third order polynomials of x 0 ,Yo.~ ,7) if instead of x,y, 
p,q we introduce the expressions 

and hence, for U = x2 + y2 and V = p2 + q2, we have the expressions 

The quantities u,v ,w are defined by 

u = x/ + Yo2 

V = ~2 + 7j 2 

w = 2(x 0 ~ + Yo7J) 

(42.38) 

(42.39) 

(42.391) 
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42.4 In order to determine the third order coefficients explicitly we use 
the result of §40 which is an expression for ~ 1 in the form of the following 
polynomial 

(42.41) 

By introducing p = x 00 + i; "• x = x 0H + i;h in the first equation (42.37) we ob­
tain 

(42.42) 

and hence, by comparison with (42.41), we obtain the formulae 

These equations give the coefficients A, ... ,E directly if we replace U and V 
by the expressions (42.39). The result is 

C = ~ J Zi [Huh2H2 + 2H12Hh0 "+ H2202" 2] dz + 2 r J Zi H12dz , 
zo zo 

(42.44) 
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E = ~ f z1 [H11hH3 + H12H0 (H iJ +he)+ H2203 iJ] dz , 
Zo 

The third order coefficients are thus given by certain integral forms of 4th 
order of the functions H(z), 0(z); h(z), iJ (z), i.e., of the paraxial rays which we 
have defined above. 

42.5 The quantities Hilt are given by the second derivatives of the 
Hamiltonian H = - ✓ n2 (u,z) - v with respect to u and v for u = v = O. Letting 

we obtain 

n(O,z) = n(z) , 

n,,u (O,z) = n2(z) , 

H11 = - n2(z) , 

H22 = 

Z=g(u) 

Figure 173 

1 
4n3 

(42.51) 

(42.52) 

We can express n1 and n2 by 
the geometric characteristics 
of the surfaces n(u,z) = const., 
the refracting surfaces of the 
medium. Let Z = g(u) be the 
refracting surface which passes 
through the point z of the z 
axis. Then we have the iden­
tity 

n (u,g(u)) =n(O,z) (42.53) 

By differentiating and then 
letting u = 0 it follows that 

n1 + ng' (0) = 0 , 
(42.54) 

n2 + 2n1g'(O) + i:i(g'(O)) 2 + ng"(O) = 0. 
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We represent Z = g(u) in the neighborhood of u = 0 by 

g(u) = z + .J:!.. + ~u2 + 
2R 2 (42.55) 

where R(z) is the radius of curvature of the surface at its vertex, and a(z) = 
g"(O) is the coefficient of u2 in the development (42.55). We then obtain 

and hence 

• 1 ( :ii)" 
H11 = an - 4 R2 ' 

1 1 (1)" 
H12 = - 4 R ;;: ' 

42.6 Petzval 's theorem. By (42.44) we obtain the equation 

6 Zt Zt 

3D - C = r f (H" - h0)2H12dz - 2 rf H12dz 
zo zo 

Since H"- h0 = r this yields 

Z1 

3D - C = 4r f H12dz , 
Zo 

and hence by (42.57) 

1 Zt 1 (1) -(C - 3D) = f - d -r. R n 
Zo 

(42.56) 

(42.57) 

(42.61) 

(42.62) 

This relation between C and D is known as the equation of Petzval. It is of 
great importance for optical design. In fact, we conclude that both C and D 
can be zero only if the Petzval sum 

(42.63) 



THIRD ORDER ABERRATIONS 295 

An optical instrument which is corrected for Astigmatism and curvature 
of field is called an anastigmat. The condition (42.63) is a necessary condition 
for such instruments. 

Let us assume that object and image space are homogeneous so that 
n 0 = nt = 1. One verifies by a consideration similar to that in §40.36 that the 
two field curves of the optical instrument are given by the parabolas 

(42.64) 

in the neighborhood of Xt = O. The curvatures of these parabolae are equal to 

!_ = _ 2C 
Pt r 

!_ = _ 2D 
P2 r (42.65) 

respectively. By introducing these radii in (42.62) we find Petzval 's theorem 
in geometrical form: 

3 1 Zt 1 1 
---=2J -d-. 
P2 Pt R n 

Zo 

(42.66) 

42. 7 The quantities Hik in the case of an electrostatic field. The inte­
gral expressions for the third order coefficients can be applied directly to the 
problem of finding the aberrations of an electron optical instrument, provided 
that only electrostatic lenses are used. The "index of refraction" n(u,z) 
satisfies the equation 6.n2 = 0 and is given by the integral 

1 211 
n2(u,z) = -2 J f (z + tVu cos cp) dcp 

7f 0 
(42.71) 

as we have seen in §38. As before we develop this function one step further 
so that we may determine the quantities Hik by (42.52). It follows that 

and this gives 

1 f"(z) 
4 rr 
1 (f")2 - ff"" 

32 lfi 

(42. 72) 

(42.73) 
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hence we obtain by (42.52): 

1 (f11) 2 - ff!! II 

2H11= 32 /ii 

- 1 f" 
2H12- S Iii 

, 

1 1 
2H22= 2 Iii 

(42. 74) 

42.8 Spherical surfaces. Let us assume that the refracting surfaces in 
our medium are spherical. We represent these surfaces in the form 

Z = g(u) = z + R(l -~) , (42.81) 

and determine the coefficients of u and u2 in the power development of the right 
side. It follows that 

_1.... +-1-2+ g(u) = z + 2R u 8R3 u . . . , (42.82) 

1 
and hence a= 4R3 . With the aid of the general formulae (42.57) we obtain 

(42.83) 

It is possible to simplify the integral formulae for the Seidel coefficients 
A,B,C,E considerably in this case, so that they become extremely well suited 
for numerical computation. This simplification is obtained by replacing the 
quantity R in (42.83) by the data of the paraxial ray h,17. We have the equation 

J = _!!. h 
R 

and hence 

1 " (42.84) 
R nh 
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By introducing this in (42.83) and subsequently in the integral formulae (42.44) 
we obtain the coefficients A,B,C,E expressed by the two paraxial rays h,1' 
and H,0 and by the index of refraction n(z) on the axis. We give the result with­
out the details of the derivation. 

Let S,P and w be defined by the formulae 

Then we obtain the coefficients A,B,C,E of the poly~omial 

which determine the aberrations of meridional rays, by the formulae: 

1 Zt 
A=--f Sdz 2r ' 

Zo 

3 Zt 

B = --f Swdz 2r 
Zo 

3 Zt 1 Zt 
c = - - J Sw2dz - - rf P dz 2r 2 

zo zo 

1 Zt 1 Zt 
E = - - J Sw3dz - - rf Pwdz 

2r 2 
zo zo 

If we have C we get the coefficient D by Petzval 's equation (42.62). 

(42.85) 

(42.86) 

42.9 A finite number of spherical surfaces. In the case of an optical 
instrument which consists of a number of spherical surfaces, i.e., of ordinary 
lenses, the above integral formulae when rewritten in the form of Stieltjes 
integrals lead directly to summation formulae. These formulae may also be 
derived independently by the method of difference equations. The result is 
completely analogous to (42.85) and (42.86). 
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We define, for every surface i of the system, the quantities 

(~. l). w = 
l n , (42.91) 

The coefficients A,B,C,E of the polynomial 

(42.92) 

are then given by the sums: 

(42.93) 

For the numerical computation of these coefficients it is only necessary to 
compute the data hi , iJ i and Hi ,0 i of two paraxial rays with the aid of the 
recursion formulae 

(42.94) 

These rays must satisfy the boundary conditions 

h 0 = 0 , H 0 = 1 , 
(42.95) 

h(/;)=1, H(i:) = 0 

We are then in a position to determine the quantities S1 ,Pi and Wi and finally, 
by summation, the coefficients of the polynomial (42.92). 

We mention, however, that the only essential conditions in (42. 95) are 
h 0 = O and H ( /;) = 0 which require that the axial ray h1 , iJ 1 , passes through 
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the object point and the field ray Hi ,0 1 passes through the pupil point. If 
h(t) f. 1 and H(z 0) f. 1 then by (42.93) and (42.91) we may obtain the coefficients 
of the polynomial 

.!. ~• = At'3 + Bt'2x' + Ct'x' 2 + Ex' 3 Mis so so o, (42.96) 

§43. CHROMATIC ABERRATIONS. 

43.1 The index of refraction of an optical medium is a function of the 
wave length of light. The aberrations caused by this dependence on wave length 
are called chromatic aberrations. It is customary to consider the index of 
refraction which corresponds to the wave length 

:>.. = 5896 A. 

of the sodium D line as the normal index. The correction of the instrument is 
carried out on the basis of this index for the monochromatic aberrations which 
we have discussed above. By combinations of Flint and Crown glasses it is 
possible to eliminate the chromatic aberrations to a certain extent. In general 
it is sufficient to investigate the instrument for two additional wave lengths, 
the C and F lines of the solar spectrum, for which :>.. = 6563 A and :>.. = 4861 A 
respectively. 

The chromatic aberrations affect even the Gaussian optics of an instru­
ment. The elimination of this part of the chromatic aberration thus is the 
first necessary step in optical design. In the following we investigate how the 
Gaussian optics of a medium is affected if the function n(z) is replaced by a 
function n + &l in the canonical equations. We assume that &l is sufficiently 
small so that we can neglect terms in which (&1)2 , (&1)3, etc. appear. 

43.2 From the canonical equations 

(43.21) 
p = - Dx 

it follows that 

(43.22) 
b.p = - D~ - xb.D 
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Figure 174 

MATHEMATICAL THEORY OF OPTICS 

where t.x and t.p 
give the departure 
of a paraxial ray in 
the medium n + t.n 
from the corre­
sponding ray in the 
medium n. We 
mean by corre­
sponding ray the ray 
which has the same 
boundary values 
x 0 and Po at the 
plane z = z 0 • Thus 
the functions t.x 
and t.p are the 
solutions of the 

nonhomogeneous canonical equations (43.22) which satisfy the boundary condi-
tions 

t.x=Oatz=z 0 , 

(43.23) 
t.p = Oat z = z 0 

We solve this problem in the same way as the similar problem in §42.3 We 
consider the first equation (43.22) and the equation for the axial ray 

(43.24) 

As in §42.3 it follows that 

(43.25) 

From the second equation (43.22) and the relation 

1' = - Dx (43.26) 

we find similarly that 

(43.27) 

and hence 

(43.28) 
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With the aid of the boundary conditions Ax= h = 0 at z = z 0 and h(zi) = 0 this 
yields by integration 

(43.29) 

By introducing the invariant r = H {} - h 0 = H(z1) {} (z1) = M {} (z1) we can write 
this in the form 

(43.291) 

43.3 The original paraxial ray x(z),p(z) is given by 

x = x 0H(z) + ~h(z); p = x 00(z) + ~ {}(z) 

as a linear combination of the two paraxial rays H(z),0(z) and h(z), {J(z) defined 
by the conditions (42.12). By introducing these expressions in (43.291) we ob­
tain a linear polynomial in x 0 and ~, namely 

(43.31) 

where K and L are given by the integrals 

(43.32) 

The quantity K is called the Axial Color of the medium since it determines the 
chromatic aberrations of the axial bundle from point x 0 = O. The coefficient 
L measures the Lateral Color of the medium, namely the chromatic aberra­
tions of the bundle of field rays ~ = 0. 

43.4 It is possible to simplify the expressions for Kand L. We have 

An An 
and AD= R = DT (43.41) 
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Figure 175 

and hence 

(43.42) 

We introduce D = - t and ; = li. It follows that 

(43.43) 

By partial integration of the second term, using h(z 0 ) = h(z1) = 0, we obtain 

(43.44) 

This however can be written as follows 

(43.45) 

In a similar manner we obtain 

(43.46) 
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The function 

D.n ni\_ (z) - Di\.o (z) 
µ. = --;- = ni\.o (z) (43.47) 

measures the dispersion of the optical medium. It is closely related to 
Abbe's v-value 

(43.48) 

which is used in practice to characterize the dispersion of optical media. 
Indeed, letting i\. 0 = i\. 0 and i\. = i\. F and then i\. = i\. c we obtain 

(43.481) 

By introducingµ. (z) in (43.46) we find 

(43.49) 

If the optical instrument consists of a finite number of refracting surfaces 
with homogeneous media between them, we obtain, instead of (43.49), the 
summation formulae 

K = lLh (D. -.!!) D-1/J, 

r I i n 1 ' 
D-1 n 

(43.491) 

L = !_Lh (D. fl) D-1/J, 

r i i n 1 
D-1 n 

These formulae can be used with advantage to determine the chromatic aber­
rations of an optical system numerically. We mention explicitly that h(z), 
iJ (z), 0 (z) in (43.49) and h1 , iJ 1 , 01 in (43.491) are the paraxial rays for the 
normal index of refraction for D-light. By considering h1 , iJ I as parameters 
which determine an optical system (refer to §39.8) we pan interpret the 
relations (43.491) for given values of Kand L as conditions which must be 
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satisfied by these parameters. On the basis of these conditions and other 
conditions derived from the equations (42.93) for Seidel coefficients it is pos­
sible to solve many problems in optical design by direct algebraic methods. 
For details we refer to the extended literature of technical optics. 

We only mention that it seems to us that by using the parameters hi, 
"; in any application one obtains these conditions in the simplest mathematical 
form. To introduce the geometric parameters R 1 , ti of the system in the 
above formulae invariably complicates the algebraic equations. 

43.5 "Chromatic" Aberrations in electron optics. The same general 
method of correcting chromatic aberration can be applied to electron optics. 
If only electrostatic fields are present the index of refraction is defined by 

n2 = 2(C - K0) (43.51) 

where C is proportional to the original kinetic energy of the electrons. When 
the electrons have different original speeds we will have an analogue to chro­
matic aberration. We assume that the departures from a constant C are 
small. Unlike the optical case, the curvature 1/R of the "refracting surfaces" 
depends on C and the derivation of (43.49) does not apply. Instead, from 
(43.51) we obtain nD.n = ~C, and from (43.51) and (38.22) together, 
~D + DD.n = O. Proceeding as before, we obtain from the general formula 
(43.32) 

~C Z1 1 [hi} -hJ] K=-r f ~ dz_, 
Zo 

Z1 
(43.52) 

L= _~C 1 [lie - H~] J ~ dz . r 
Zo 

The electron-optical instrument thus is "chromatically" corrected if the inte­
grals in (43.52) are zero. In this case it is corrected for all values of C in 
the neighborhood of C0• The electron optical instrument differs in this respect 
from an achromatic optical instrument. If an optical instrument is corrected 
for two wave lengths it is in general not corrected for other wave lengths. It 
requires special glass combinations such as Flint, Crown, and Fluorite to 
obtain correction for even three colors simultaneously. The so-called 
Apochromatic microscope objectives are optical systems with this latter 
type of chromatic correction. 



CHAPTER VI 

DIFFRACTION THEORY OF OPTICAL INSTRUMENTS 

§44 FORMULATION OF THE PROBLEM. 

44.1 The propagation of light waves in a nonhomogeneous optical medi­
um is called the diffraction theory of optical instruments. Let us assume that 
there is a periodic oscillator at a certain point in the medium. We expect that 
the electromagnetic field which is finally established by the oscillator will be 
periodic in time and will have the form 

E = ue -iwt ' 

(44.11) 
H = ve -iwt 

u and v are complex vectors which satisfy the equations 

curl v + ikEU = 0 , 
(44.12) 

curl u - ikµ v = O . 

The frequency of the oscillator is given by 

W C 

21r 71. ' 
(44.13) 

k is the quantity 

w 21r k=-=-. 
C 71. 

(44.14) 

44.2 We have derived in §16 the simplest type of progressing wave which 
can be interpreted as the electromagnetic radiation from a dipole in a homo­
geneous medium E = µ = 1. The result was 

( 1 i ~ "k 
u = ;- + kr2J (m x p)e' r 

(44.21) 

V = p x u - [k~3 - (k~r3 - ::2) (m. p)p] eikr 

where m =a+ ia* is a given complex vector and pis the unit vector} (x,y,z). 

305 
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For small values of i\, i.e., large values of k, the principal part of the 
wave is given by 

1 ikr 
Uo = r(m X p)e 

(44.22) 

This electromagnetic field (44.22) thus represents the approximate solution 
which belongs to geometrical optics. We observe, however, another fact which 
is of importance in the following: The vectors (44.22) give the principal term 
of the wave (44.21) not only for large values of k but also for large r. We can 
express this as follows: The wave (44.21) and the solution (44.22) of geomet­
rical optics have the same boundary values at infinity in the sense that 

lim r(u - u 0 ) = 0 , 
r-oo 

(44.23) 

lim r(v - v 0) = 0 
r-oo 

44.3 Let us next consider a medium which is homogeneous in the two 
half spaces z < £ 0 and 

n(x,y,z) 

z > £1. The index of 
refraction in these half 
spaces shall be n 0 and 
n1 respectively. In the 
domain £ 0 ~ z :5 £1 we 
assume n(x,y ,z) to be 

______ _,._ _______ ___,.,__ ____ ~ z sectionally continuous. 

P. o P. 1 The problem is to find a 
solution of the equations. 
(44.12) which represents 
the radiation from a 
periodic oscillator placed 

Figure 176 at the point (x 0 ,y0 ,z 0 ) of 
the object space z < £ 0 . 

Of special _interest is the 
electromagnetic field in the image space z > £1. A complete solution of this 
problem is very difficult. Even in comparatively simple geometrical config­
urations, for example a single lens, we obtain the vectors u(x,y,z) and v(x,y,z) 
as the superposition of infinitely many particular solutions which correspond 
to the internal reflections inside the lens. A similar complication is found if 
the medium is continuous. It is true, as we have seen in Chapter I, that the 
field of geometrical optics does not show· any external or internal reflections. 
An equivalent result was obtained for the propagation of sudden discontinuities 
of the field, light signals. However this does not preclude the existence of 
scattered reflected waves as part of the complete solution of our problem. In 
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Figure 177 
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the case of a stratified 
medium the existence of 
these scattered reflected 
waves can be demon­
strated directly by an 
explicit solution of the 
problem. In fact, these 
waves are used today to 
eliminate the reflections 
from a single air-glass 
surface by interference 
with the aid of film layers 
evaporated on the sur­
face. 

In general, we are 
not interested in the 
complete solution u(x,y, 
z) and v(x,y ,z) of the 

above problem. The wave trains which reach the image space after one or 
more internal reflections or by scattering do not contribute to the image for­
mation of the instrument. For this reason one carefully tries to eliminate 
these waves either by absorption or today by coating the surfaces with thin 
films. Of prime interest, however, is the wave which is transmitted directly 
without any internal reflections. Our problem is to determine only those parts 
of the wave from an oscillator which represent transmitted waves of this type. 

44.4 The solution (44.21) for a homogeneous medium is a wave of the 
above type. We can write this solution in the form 

(44.41) 

V ikn0r V ik•1• v= e = e .,, 

where 1/J n 0r = n0✓(x-x0 )2 + (y-y 0)2 + (z-z 0 )2 is the solution of the equation 

(44.42) 

which determines the spherical wave fronts about the point x 0 ,y 0 ,z 0 • We 
expect therefore that we can represent the transmitted waves in a nonhomo­
geneous medium by the expressions 

u = ue'-kl/J 

v = Veik 1/J 

(44.43) 
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where 1/J (x0 ,y 0 ,z 0 ; x,y,z) satisfies the equation 

✓1/Jx2+ipy2+ipz2 =n(x,y,z) (44.44) 

and determines the "spherical" wave fronts in the medium about the point x 0 , 

y O ,z O• By assuming (44.43) in § 16 we have derived the electromagnetic field 

(44.45) 

which is associated with geometrical optics. We have found that the complex 
vectors U O (x,y ,z) and V O (x,y ,z) satisfy a system of linear differential equations 
along a light ray, namely 

(44.46) 
dV o 1 ( grad n) - + -A •1•V + V • grad,,, = 0 
dT 2 €'I' n ° n "' 

where the parameter 7' is defined by ndT = ds where s is the geometrical length 
of the rays. If the light ray passes a surface of discontinuity in n(x,y,z) then 
these differential equations have to be replaced by difference equations namely 
the two of Fresnel's formulae (16.55) which give the transmitted part of the 
vectors U O and V O. With the aid of these formulae we are in a position to 
determine the field U O (x,y ,z) and V O (x,y ,z) in the image space z > .e 1 if the 

Figure 178 

field U O ,V O in the object space z < £ 0 is known. We then have from 

(44.47) 
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an approximation of the exact solution which is the better the greater the 

frequency ;,r = !~ of the oscillator. 

44,5 The exact solutions u(x,y ,z) and v(x,y ,z) in the image space € = n12, 

µ. = 1) must satisfy the equations 

curl v + ikn/u = 0 
(44.51) 

curl u - ikv O 

where n1 is a constant. It follows that u is a solution of the second order 
equation 

(44.52) 

such that 

div u = O . (44.53) 

We consider now not only the real part z > .t1 of the image space but also its 
virtual part z ~ .t1. We also extend the electromagnetic wave 

E = U(x,y,z)eik( ,f,- ct) 

H -V( ) ik(,f,-ct) - x,y,z e 
(44.54) 

backwards into the virtual part of the image space. In other words we regard 
(44.54) as part of a progressing wave which is defined in the image space as 
a whole. 

...... ...... ....... .,.. ....... 
I t' ......_ 

I I 
--- I I I ,---.1 

1 I I 

I I I 

Figure 179 
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In a similar way we can supplement the electromagnetic field (44.47) by 
a virtual extension. Let us consider for example a wave front 1/J = 1/Jo in the 
neighborhood of the plane z = .e 1. The light rays are given by the normals of 
this surface. We first construct the virtual extension of these rays and then 
the surfaces parallel to 1/J = 1/Jo which are normal to these ray extensions. With 
the aid of the differential relations 

dU0 1 
+ -6.1f.,U 0 = 0 

dT 2 

dVo 1 
+ -6.1f.,V O = 0 

dT 2 

(44.55) 

we finally obtain the vectors U0 and V O on the fictitious wave fronts in the 
virtual image space. 

44.6 We are now in a position to formulate the hypothesis which is the 
basis of all the following considerations. 

The light wave which is directly transmitted into the image space can be 
expressed in the form 

E = ue-ikct 

H = ve-ikct 
(44.61) 

where u and v are solutions of the equations (44.51) which satisfy the following 
conditions 

a) u(x,y ,z) and v(x,y ,z) are regular at any finite point of the x,y ,z space. 

b) The boundary values of u and v at infinity are given by the functions 

(44.62) 

which represent the electromagnetic field of geometrical optics. The boundary 
values are attained in the sense that 

(44.63) 

lim 1/J(v - v 0 ) = O . 
1/J--+-± 00 

Both hypotheses can be made physically plausible. The assumption b) is sup­
ported by the evidence in the case of the spherical wave (44.21) in a homo­
geneous medium. 
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The condition a) however may be considered with an element of doubt. 
Let us, for example, assume that our optical instrument has two perfect 

Figure 180 

conjugate points at P O and 
P 1. We consider P 0 as 
a point source which 
emits a light wave given 
by the expressions (44.21) 
for u and v. Both u and 
v tend to co if the point P 0 

is approached. After re­
fraction however we 
exclude singularities by 
the condition a). In view 

of the fact that P 1 is a perfect conjugate point to P 0 it does not seem to be a 
condition which is self evident. On the other hand, this condition has consid­
erable optical consequences. Indeed, it excludes a complete reconcentration 
of radiated energy even at points which are perfectly conjugate in the sense of 
geometrical optics. The impossibility of perfect definition i.e., a limit for the 
resolution of any instrument therefore is introduced in our theory from the 
very beginning. 

We shall assume the two hypotheses in the following to be true and 
determine the solution of (44.51) which satisfies the conditions a) and b). We 
remark, however, t.hat it must be possible either to prove or to disprove both 
conditions by mathematical considerations namely by a construction of the 
transmitted wave inside the optical medium. 

§45 THE BOUNDARY VALUE PROBLEM OF THE EQUATION Dou+ k2u = 0 
FOR A PLANE BOUNDARY. 

45.1 In order to solve the problem formulated in §44 we derive the fol­
lowing boundary value problem: To find a f~ction u(x,y ,z) which satisfies 
the equation 

(45.11) 

in the half space z > O and which attains given boundary values 

u(x,y ,0) = f(x,y) . (45.12) 

We assume that f(x,y) is sectionally continuous in the xy plane. Outside acer­
tain circle of radius R 0 f(x,y) shall be continuous and shall have continuous 
derivatives such that 

(45.13) 
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where R = -J x2 + y2 and B is a constan~ independent of x and y. We require 
moreover that the solution u(x,y ,z) is regular for z > 0 and satisfies the fol­
lowing conditions 

a) In the domain R = -J x2 + y2 + z2 > Ro of the half space z > 0 there 
exists a constant C such that u and the derivative ~ satisfy the inequalities 

C 
IUI <R C 

<­
R 

(45.14) 

b) In any solid sector - f + o < 0 < f -o of the domain R > R 0 ; z > 0 

there exists a constant D(o) such that 

Figure 181 

for all points (x,y ,z) of the sector we 
have 

(45,141) 

where R = -J x2 + y2 + z2 

These last conditions are essential 
for the uniqueness of the solution of 
the boundary value problem. In fact, 
we can easily find solutions u which 
are zero on the plane z = 0, for 
example 

u = sin kz. (45.15) 

Hence, if u 0 (x,y,z) is a solution with the boundary values f(x,y) then all func­
tions u = u 0 + a sin kz are solutions with the same boundary values. Functions 
of the type (45.15) are however excluded by the conditions (45.14). In other 
words we shall see that the only solution of (45.11) which satisfies the condi­
tions (45.14) and (45.141) and has the boundary values f = 0 is the function 
u(x,y ,z) = 0. 

The condition (45.141) moreover insures that u represents, as z-oo, a 
wave of the type of an outgoing spherical wave. Indeed, in the case of 

we have 

1 ikr 
u = re 

au 1 'k -iku=- 2 e•r 
ar r 
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i.e., 

I au - ikul ~ l . 
er r 2 

(45.16) 

It is physically plausible that we will have to deal with waves of this type in our 
problems. Let us for example assume that f(x,y) = 0 outside the circle 
✓x2 + y2 = a. The light wave which is sent out from such a circular surface 
will assume more and more the form 9f a spherical wave the greater the dis­
tance z from the plane z = O. 

45.2 Let us assume that u(x,y ,z) is a solution of the above problem. We 

<xo,Yo,-zol (xo, Yo, zol 

Figure 182 

consider a point x 0 ,y 0 ,z 0 of the half space z > 0. Let r be the distance of a 
point (x,y,z) from (x 0 ,y 0 ,z 0) and r 1 the distance from the mirror image (x 0 ,y 0 , 

-z 0 ) of (x0 ,y 0 ,z 0 ). The function 

1 ikr 1 ikr1 v(x y z) = -e - -e ' ' r r 1 
(45.21) 

is then a solution of the equation (45.11) which is zero on the plane z = 0 and 
regular in the half space z > 0 with the exception of the point x 0 ,Y O ,z 0 . Now 
let D be the domain which is obtained by removing a· small sphere of radius E 
about the point (x 0 ,y 0 ,z 0) from the interior of a hemisphere of radius R about 
the origin. We assume of course that R is so great that this point lies inside 
the hemisphere. We denote the plane section of the boundary rof D by r 0 , the 
hemisphere by r 1 and the sphere of radius Eby re . We apply Green's theorem 
to the domain D: 

J J J (u~v - v~u) dxdydz = - J J (uev - v~uv) do 
D r ev u 

(45.22) 
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where a~ means differentiation in the direction of the interior normal of r. 
Since u.6.v - v.6.u = 0 and u = f, v = 0 on r 0 it follows that 

ff (u8av - ~)do+ ff (u8
8v - ~)do= - f ffaav dxdy 

Il v a1.1 r€ v a1.1 ro z 
(45.23) 

This equation holds for all values R > 0 and E > 0 and remains true in case 
R__, andE-0 provided that the three different integrals converge to definite 
limits. 

First we consider the integral over r. . Let v 0 = !.eikr and v = Leikri 
~ r 1 r1 

and hence v = v 0 - v1. Since v1 is regular at (x 0 ,y 0 ,z 0 ) we have 

(45.24) 

Furthermore 

where dw is the surface element of the unit sphere. It follows that this integral 
has the limit - 4iru(x0 ,y 0 ,z 0 ). We thus obtain the equation 

4iru = ffr av dxdy + ff (u av - v au) do 
ro az Il a1.1 a1.1 

(45.25) 

which is valid for all hemispheres which include the point x0 ,y 0 ,z 0 . 

One verifies readily that the derivative :~ on r 0 has the value 

8v 2zo _.£_ (!. ikr) 
az = - r ar re (45.26) 

For r > 1 this yields the inequality 

lavl 2c1+lkl) 
az < r2 zo (45.261) 

and hence it follows from (45.13) that the first integral in (45.25) converges if 
R-oc,. We therefore conclude that the integral over Il must also tend to a 
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finite limit if R-oc,. We show next that this limit is zero as a consequence 
of the conditions (45.14). 

Figure 183 

Let us first consider the 
integral 

1 "k where Vo = re' r. Since 

we have 

I 0 = R2 ff [ u( ~2 - i:) cos 1' 
w 

315 

+ - - e' raw 1 au] "k 
r aR 

(45.27) 

where dw is the surface element of the unit sphere w. We write this in the form 

I = R2 ff fu cos 1' + ik (1-cos 1') u + _! ( au - iku)~ eikr dw 
o [ r 2 r r aR J 

w 
(45.271) 

2 
and remark that cos{}> 0 and thus 1 - cos{} ~ 1 - cos2 {} ~ fi" . We divide the 

domain of integration into two parts, Wt and w2, separated by the conical sur­

face of angular opening! - o (refer to Fig. 183). We assume that R > R 0 so 
that on Wt the conditions (45.14) are satisfied and on w2 both conditions (45.14) 

and (45.141) are satisfied. Since~ -1 if R -oc,we conclude from (45.271) and 

the inequalities (45.14), (45.141) that Io can be estimated as follows: 

(45.28) 

The constant A 0 is independent of a and Rand At (a) is independent of R. Thus 

if we choose a such that A0 a < f and then R such that½ At (a) < f we find 

IIol < eWhere e > 0 can be arbitrarily small. This means that I 0-o if R -oc,. 



316 MATHEMATICAL THEORY OF OPTICS 

The same estimates can be carried out in the case of the integral 

with the result that I1--o if R -- 00• 

The formula (45.25) thus yields the following representation of u(x 0 ,Yo, 

4iru = J Jr:: dxdy 

or with the aid of (45.26): 

2 ( ) Jfoof ( ik 1 ) ikr dxdy iru x 0 ,y 0 ,z 0 = - z 0 (x,y) :;:r - 7 e (45.29) 
-co 

This result demonstrates the uniqueness of the solution of our boundary value 
problem. Let us assume that u(x,y ,z) is a solution of (45.11) which satisfies 
the conditions (45.14) and (45.141) and has the boundary values f = 0. Since u 
must satisfy the relation (~5.29) we find that u = O for z > 0. 

45.3 It is not difficult to prove that the integral (45.29) represents the 
solution of our problem for any function f(x,y) which satisfies the conditions 
(45.13). Let us write the integral in the form 

00 
( 'k 1) 2iru(x,y ,z) = - z J J f (~ ,7)) 1r 2 - r 3 e ikr ~d71 

-co 

where r =./(~ -x)2 + (71 -y)2 + z2 • 

We verify directly that 

1 (ik 1 ) K(~ ,7) ;x,y ,z) = - 211" z :;:r - ;a 

1 8 (erikr ) 
= - 2ir az 

(45.31) 

(45.32) 

is a solution of ~K + k2K = 0 for any values of ~ ,7). By differentiating with 
respect to x,y ,z under the integral in (45.31) we obtain integrals which con­
verge uniformly because of the first condition (45.13). This insures that the 
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derivatives of u(x,y ,z) in (45.31) can be obtained by differentiating under the 
integral signs. Hence 

(45.33) 

i.e., u is a solution of (45.11). 

45.4 We show next that u(x,y,z) assumes the boundary values f(x,y) if 
z-0 at any point (x,y) where f(x,y) is continuous. We write (45.31) in the form 

27rl.l(x,y,z) = - zf J7 (x + ~. y + 77)} a~-(e:r) d~dr, 
-00 

where r =✓~ 2 + 77 2 + z2 and introduce the mean values 

Q(x,y;p) = 2~ J21rf(x + p coscp, y + p sincp) dcp 
0 

(45.41) 

(45.42) 

of the function f on a circle of radius p about the point (x,y). It follows that 

(45.43) 

in which now r =~. 

Instead of p we can introducer as the variable of integration. This yields 

00 
( r;--; ) a (eikr ) u(x,y ,z) = - z ~ Q x,y ,vr2 - z2 ar -r- dr (45.44) 

Finally, letting r = zs we may write 

u(x,y ,z) = - ~ 00 

Q ( x,y ,z~) a! ( ei;zs ) ds . (45.45) 

This last expression allows us to prove formally that u(x,y ,0) = f(x,y). Indeed, 
letting z = 0 in (45.45) we obtain 

u(x,y ,z) = - Q(x,y ,0) J1
00 

a! (;) ds = Q(x,y ,0) (45.46) 

However, Q(x,y ,0) = f(x,y) if f(x,y) is continuous at the point x,y. 
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45.5 The above formal proof that u(x,y,0) = f(x,y) can easily be completed 
with a rigorous consideration. First we consider only a finite part of the 
interval of integration in (45.41) namely a circle of radius z-JT 2 - 1 where T 
is a number which can be chosen arbitrarily large. By transformations 
similar to the above we can write this part of the integral in the form 

T a (eikzs ) - J Q(x,y,z~)- -- ds . 
1 ~ s 

(45.51) 

The remaining part of the integral is estimated as follows. From the first 
condition (45.13) we conclude that a constant B exists such that 

(45.52) 

On the other hand for r = -J p2 + z2 > 1 we have 

< 1 + I k I < ~ 
rz = P2 

and we thus conclude that the remaining part of the integral is not greater than 

(45.53) 

where B1 is another constant independent of z and T. Hence we obtain the 
inequality 

I 
T a (e ikzs ) I 

u+~ Q(x,y,z~) as -s- ds < (45. 54) 

which is valid for all values of z and T. We choose a sequence z-0 such that 
u(x,y ,z) converges to a certain limit u *(x,y ,0). For any sequence z-0 the 

integral in (45.54) converges towards the value - Q(x,y ,0) ( 1 - ½) . Hence 
we obtain the inequality 

(45.55) 

which holds for all values of T. This is only possible if u* = Q(x,y,0), i.e., 
if u(x,y,z) -Q(x,y,0) for any approach z-0. 

45.6 Thus we have demonstrated that the function u(x,y ,z) defined by 
the integral (45.31) is a solution of (45.11) which assumes the boundary values 
f(x,y) at any point where f is continuous. It remains to be shown that u also 
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satisfies the conditions (45.14) and (45.141). If the function f(x,y) is zero out­
side a certain finite domain these conditions follow directly from the fact that 
the kernel 

z 8 ( 1 ·k) 
K = - 2irr ar -;_:-e' r (45.61) 

satisfies these conditions. For functions f(x,y) which satisfy only the condi­
tions (45.13) one has to proceed in a manner similar to the above by consid­
ering first a finite domain of integration and then estimating the rest. 

45.7 The corresponding boundary value problem for Maxwell's equa­
tions. 

By a similar consideration to the above we can solve the problem of 
finding a function u(x,y ,z) which satisfies the differential equation ~u + k2u = 0 
for z > 0 such that on z = 0 the normal derivative : (x,y,0) assumes given 
boundary values g(x,y). Instead of (45.21) we now consider the function 

1 ikr 1 ikr1 v = -e + -e r r 1 
(45.71) 

av We now have az = 0 on z = 0. With the aid of Green's theorem we obtain the 
solution in the form 

00 ikr 

2iru(x,y ,z) = - J J g(~ ,77) 7 d~d77 (45. 72) 

where r = ✓(x-~ )2 + (y-77 )2 + z2 . In this case we have to assume that g(x,y) 
satisfies the condition 

lg<x,y>I 
B < _ . R2 = x2 + y2 
R2 ' (45.721) 

in order to insure the convergence of the integral (45.72). Otherwise the same 
requirements for u(x,y ,z) are made as before, namely the conditions (45.14) 
and (45.141). We can use the expression (45.72) to find the solution in the half 
space z > 0 of Maxwell's equations 

curl v + iku = 0 
(45. 73) 

curl u - ikv = 0 
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which assumes given boundary values on z = 0. These boundary values are not 
arbitrary. However, we can give the components 

u1 (x,y ,0) = f(x,y) 
(45. 731) 

provided that f and g have continuous derivatives and satisfy the conditions 
for R > R 0 : 

B lfl < -R 

B 
lgl < R 

B 
< R2 

B 
< R2 

(45. 74) 

au3(x,y ,0) 
Since div u = 0 we have az = - (fx + gy)• With the aid of (45.31) and 

(45. 72) we obtain the solution of our problem by 

(45. 75) 

where r =✓(x-02 + (y-77 )2 + z2 . It is easily verified that div u = 0 for all 
x,y ,z. Thus if the vector u has been found we obtain v from ikv = curl u. If 
f(x,y) and g(x,y) are only assumed to be sectionally continuous with sectionally 
continuous derivatives then we obtain the vector u by the integrals 

(45. 76) 

These formulae are identical with (45.75) if f(~ ,77) and g(~ ,77) have continuous 
derivatives. We remark that in (45.76) we can loosen the restrictions (45.74) 
and assume only that 

B 
<­

R 
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§46. DIFFRACTION OF CONVERGING SPHERICAL WAVES. 

46.1 Let us assume that P 0 and P1 are perfect conjugate points on the 

Figure 184 

axis of rotation of an optical instrument. We consider the spherical wave 
fronts which converge after refraction to the point P 1. The equation of these 
wave fronts is given by Hamilton's point characteristic 

ifi(x,y ,z) = V(O,O,z 0 ; x,y ,z) = C 

and must have the form 

ifi(x,y,z) = C - Rn1 (46.11) 

where R =✓x2 + y2 + z2 is the distance from P 1 and the constant C is the 
optical distance of the points P 0 and P 1. Let us assume that we know the 
vectors U0 ,VO on one of these wave fronts, for example on ifi(x,y ,z) = C - n1 

of radius R = 1. The vectors U 0 and VO are electromagnetic vectors of the 
geometric optical approximation. On any other of the spherical wave fronts 
after refraction and also on those which are obtained by virtual extension we 
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then obtain the corresponding vectors U 0* and V 0* simply by the relations 

(46.12) 

where ",cp are polar coordinates of the unit sphere. We choose the point P1 
as origin of a cartesian coordinate system so that 

x = R sin " coscp 

y = R sin " sincp (46.13) 

z = - R cos " 

Our problem is to find a solution u,v of Maxwell's equations (44.12) which has 
the same boundary values at infinity as the solution of geometrical optics 

1 ( ,tt. ik(C - n1R) 
uo = R Uo ,,,-,,,e 

(46.14) 

which means that 

lim R(u - u 0 ) = 0 
.H.-oo 

(46.15) 
lim R(v - v 0 ) = 0 . 

R-oo 

46.2 We solve this problem as follows. We consider a plane in the 
image space normal to the z axis at z = - D. The geometric optical field on 
this plane has the vectors 

(46.21) 

The vector u must be a solution of the equation 

(46.22) 
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We determine first the solution which has the boundary values (46.21) on the 
plane z = - D. If a limit of these solutions u O (x,y ,z) is obtained as D-oo then 
we can expect that this limit represents the desired wave. 

From (45.31) it follows that 

ikC ff -ikn (R-r) (ikn1 1 ) dtd 
27rUo (x,y,z)= - (D + z)e U0e 1 7 --;a T 

We introduce the polar coordinates ,'} ,rpby 

~ = D tant7 cos rp 

T/ = D tan t7 sin rp . 

Thus we obtain 

dtdn - D2 sin ,'}d {}dp 
., ·• - cos3 ,'} 

D R=--
cos" 

r = ✓cz + D)2 + D2tan2 t7 - 2Dtan t7 (x cos rp + y sinrp) 

and one verifies readily that 

D R =cos" 

D r -cos" 

r - R-z cos t7 - sin 1'(x cosrp + y sinrp) 

in case D-oo. The integral (46.22) converges as D- 00 ; the result is 

(46.221) 

(46.23) 

(46.24) 

(46.25) 

( Z) = _ ikn1 ikCJJu ( 17 ) -ikn1 [sin t7 (x cos rp +y sin rp)- z cos"] . "d "d u x,y, 2,r e O , rp e sm rp . 

(46.26) 

This integral is known as Debye's solution. 
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By introducing cartesian coordinates 

~ = sin1'coscp 

11 = sin 1'sin cp 

/; = - cos 11 

on the unit sphere w we can write our result in the form 

( ) _ ikn1 ikC [Ju -ikn1 (x~ + YT/ + Z/;) d u x,y ,z - - 271'" e . 0e w . 

w 

We notice immediately that div u = O; indeed we have 

(46.27) 

(46.28) 

(ikn1)2 ikCjj 1 2 U 3 ) -ikn1 (x~ +YT/+ z/;)d divu=-~ e (~U0 + 71U 0 + /; 0 e w 
w 

(46.281) 

where u/,u02,U03 are the components of the vector U0 • We know that U0 is 
tangential to the unit sphere, hence ~ U O 1 + 11 U O 2 + /;U O 3 = 0 and therefore 
div u = 0. 

In a similar way we can construct the vector v (x,y ,z) as a solution of 
the equation Av + k2n/v = O. It follows that 

(46.29) 

We now find that the vectors u and v satisfy Maxwell's equations (44.12) in 
consequence of the relations (16.28) for U O and V O, namely 

(46,291) 
grad 1/J x U O - V O = 0 

§47. DIFFRACTION OF IMPERFECT SPHERICAL WAVES. 

47 .1 The method of §46 can be applied almost directly to wave fronts 
which are not perfectly spherical. Let us therefore consider an optical 
instrument which transforms a set of diverging spherical wave fronts into a 
converging set of wave fronts which are not aberration free. The wave fronts 
are given by Hamilton's point characteristic 

I/J(x0 ,y0 ,z 0 ;x,y,z) = C 
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Figure 185 

The object point (x0 ,Y O ,z O) is not restricted to an axial location. The wave 
fronts in the image space are a set of parallel surfaces with common normals. 
These normals are the light rays of the bundle. As before we construct the 
virtual extension of this set of wave fronts by first extending the light rays and 
then drawing the orthogonal surfaces efJ = canst. in the virtual image space. Let 
us consider the surface elements du which are determined by a narrow tube 
of light rays. We call such elements corresponding surface elements of the 

wave fronts. The ratio ddu of two such surface elements is equal to the ratio 

I
K I uo ~ where K0 and K are the Gaussian curvatures of the wave fronts at the 

points in which these surfaces are intersected by the rays of the tube. 

Figure 186 

We now choose a certain wave front efJ = C0 as a reference surface and 
assume that this surface is so far away from the region of convergence that 
it has no singularities. Let R 1 and Ri be the principal radii of curvature on 
ifJ = C 0 , i.e., 

1 
Ko = R1R2 (47 .11) 
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The Gaussian curvature Kofa virtual wave front 1/J = C0 - Allt which has a 
distance 71. from CO is then given by the function 

(47 .12) 

Let us now assume that the vectors U0 and V0 are known on the surface C0 • 

With the aid of the result in §16.5 we obtain the corresponding vectors U0* 
and Vo* on any other wave front, namely 

Uo* = N.f Uo 

Vo*= N.f Vo 

(47 .13) 

where 

K R1R2 (47 .14) 
Ko (R1 + 71.) (R2 + 71.) 

In other words: The vectors u 0 and v 0 which represent the electromagnetic 
field of geometric optics on the wave front 1/J = CO - 71.n1 are given by the 
expressions 

(47.15) 

The problem is to find a solution u,v of Maxwell's equations (44.12) which has 
the same boundary values at infinity as (47.15), i.e., 

lim 71.(u - u 0 ) = 0 
71.-00 

(47.16) 

lim 71.(v - v O) = 0 . 
71.-00 

47 .2 We solve this problem as before by first determining the solution 
u O (x,y ,z) which has· the boundary values (47 .15) on the plane z = - D. This 
solution is given by the integral 

ikC ff," @1 -ikn (71.-r) (ikn1 1) 27J1l 0 (x,y,z) = - (z + D)e O '\/!Kol U0e 1 7 - ~ d~d7J (47 .21) 
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where r = ✓(~ -x)2 + (71 -y)2 + (z+D)2 and 71. the distance of the point~ ,7) from its 
corresponding point ~ 0 ,7J O on 1/J = C0. The point ~ ,7J on z = - D and its corre­
sponding point ~ 0 ,7J O on the surface C0 are related by the equations 

X 

7J = 7JO + 71.b 

-D = /;o + 71,c 

(47.22) 

where a,b,c are the direction 
cosines of the surface normal 

--+-----+---------..._- z at ~ o ,7Jo ,/; o' i.e.' 

y 

-D 

Figure 187 

1 
a= - n1 P1 

1 
b=--~ 

n1 
(47 .23) 

We transform the integral (47.21) into an integral over the surface C 0 by 
introducing the expressions 

(47.24) 

This yields 

(47.25) 

It remains to determine the limit of this integral as D - 00 , i.e., 71.-00. 

We conclude from (47.14) that 

(47.250) 

and from (47.22) we find that 

D 
-.,.... - C 

71. 
(47 .251) 
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and from (47 .24) that 

(47 .252) 

Furthermore 

from which it follows that 

(47.26) 

With the aid of these relations we readily verify that the integral (47 .25) tends 
to a limit if ll. ...... 00 • The result is 

(47.27) 

We can simplify this integral by introducing the optical direction cosines p,q,r 
of the rays. Then we recognize that the expression 

(47.28) 

is nothing but Hamilton's mixed characteristic W which is the optical length 
between the object point P O and the base point Q1 of the perpendicular dropped 

Figure 188 

from the point x=y=z=O onto the ray. By introducing this function in (47.27) we 
obtain the solution 

U ik[ W+ px+ qy+ rz] 
0e dCTo (47 .29) 



DIFFRACTION THEORY OF OPTICAL INSTRUMENTS 329 

We verify as before that div u = 0 as a consequence of the fact that the vector 
U O is normal to the ray, i.e., pU /+qU a2+rU O 3 = O. If we define the magnetic 
vector v by 

ikn111· !iv=7" 
v= -~ vlKoJ 

then u and v are solutions of Maxwell's equations 

curl v + ikn/u = 0 

curl u + ikv = 0 

(47.291) 

This follows, because, on the wave front CO , U O and VO satisfy the relations 

grad 1/J x VO + n/u O O 

gradl/J x U0 0 

47 .3 The integrals (47 .29) and (47 .291) are independent of the particu­
lar wave front 1/J = C0 over which the integration is carried out. Indeed we 
transform to another wave front by introducing 

dcr0 = 1:01 dcr 

and 

Uo =~ Uo* 

(47 .31) 

It follows that 

U = _ ~:1 J J,jjiq U o*eik[ W+ px+ qy+ rz] dcr (47.32) 

which is the same integral form as before. We can summarize our results 
as follows: The solution of Maxwell's equations which corresponds to a 
geometric optical wave in the sense that both waves have the same boundary 
values at infinity is givl;ln by integrals over an arbitrary wave front; namely 

v = _ ikn1 J j,v'11(1 V oeik[ W+ px+ qy+ rz] dcr 
21r 

(47.33) 

U O and VO represent the electromagnetic vectors of geometric optics on the 
wave front, dcr is the surface element and K the Gaussian curvature of the 
wave front. Finally W(x0 ,Yo ,z0 ;p,q) is Hamilton's mixed characteristic. 
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The integrals (47 .33) are the basis of the diffraction theory of optical 
instruments. 

47.4 Parametric representation of the wave fronts. 

For the evaluation of the integrals (47 .33) we have to determine one of 

, 

Figure 189 

y = - Wq + 71.q 

, , 
, 

the wave fronts l/) = C. 
These surfaces are 
given by the character­
istic function W(x 0 ,y 0 ,z 0 ; 

p,q). Let us consider 
a light ray of direction 
(p,q,r). Its intersection 
with the plane z1 = 0 is 
given by the functions 

(47.41) 

and hence we obtain the 
intersection x,y,z with 
a wave front by 

(47.42) 

where 71. = 71.(p,q) is a function of p and q. Since the wave fronts are normal to 
the light rays it follows that the two vectors (~ ,Yp ,zp) and (xq ,Y q ,zq) where 

z = p 

+ ¾ q y q = - W q q + 71. + 71.q q 

z = q 

are normal to the vector (p,q,r). This yields the relations 

n271.q = pW pq + qW qq 

(47.43) 

(47.44) 
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and hence 

(47.45) 

where i\o is an arbitrary constant. 

Let us consider the special wave front which belongs to i\o = 0. By 
introducing i\ from (47.45) into (47.42) we obtain the parametric representation 

n2x = (p2 - n2)Wp + pqW q - pW 

n2y = pqWP + (q2 - n2)W q - qW 

n2z = rpWP + rqWq - rW 

in which r =✓n2 - p2 - q2 . 

(47.46) 

47 .5 We can use the above result to transform the integrals (47 .33) into 
a simpler form. Let X(p ,q) = (x,y ,z) be the parametric representation of the 
wave front (47.46). The normals to this surface are given by the vector 

1 
~ (p,q) = n (p,q,r) . 

We consider the two quadratic differential forms 

dX2 = Edp2 + 2Fdpdq + Gdq2 

- (dX . ~) = Ldp2 + 2Mdpdq + Ndq2 

(47.51) 

(47.52) 

The Gaussian quantities E,F,G and L,M,N are given by the scalar products 

E=X 2 • F=X. X • G=X 2 
p ' p q ' q 

(47.53) 

and thus can be found by (47 .46) if W(p,q) is known. 
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With the aid of these quantities we obtain the Gaussian curvature K by 

LN-M2 
K = EG - F 2 

and the surface element do- of the wave front by 

do- =✓EG - F2 dpdq 

It follows that 

.JiKI do-= ✓ILN - M21 dpdq 

and hence by introducing this in (47.33) we find: 

U = - ~~J J✓n2 !LN - M21 Ueik(W+xp+yq+zr) dpdq 

V = - :: J J../42 ILN - M21 Veik(W+xp+yq+zr) dpdq 

(47.54) 

(47.55) 

(47.56) 

It is not difficult to obtain explicit expressions for L,M,N. The result is: 

We introduce the two vectors 

P*(p,q) = - ✓n2 ILN - M21 U 

Q*(p,q) = - ✓n2 ILN -M21v 

(47.57) 

(47.58) 

which are constant along a given light ray (p,q) in the image space. Our 
integrals assume the form 

u = :: J JP*(p,q)e ik(W+xp+yq+zr) dpdq 

(47.59) 

v = :: J J Q*(p,q)e ik(W+ xp+yq+ zr) dpdq 
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over a certain domain D in the p ,q plane which lies inside the circle p2 + q2 = n2• 

q 

n 

Figure 190 

The vectors P* and Q* are re­
lated to the unit vectors P 
and Q which we have intro­
duced in §16.41; the difference 
is that, in general P* and Q* 
do not have the absolute value 
1 as do P and Q. One can 
show with the aid of the re­
lations 16.5 that IP*l 2 and 
IQ* 12 determine the intensity 

of the refracted wave, i.e., 

the-flux~ per unit of solid 

angle w. We find 

(47 .591) 

where r 2 = n2 - p2 - q2• 

§48. DIFFRACTION OF UNPOLARIZED LIGHT. 

48.1 We can assume that the vectors P* and Q* in (47.59) have the 
form 

P* = (m X p)</)(p,q) 
(48.11) 

Q* = p X P* = (mp2 - (m • P)P) </J(p,q) 

where p is the vector p = (p,q,r) and where m = (mi,m2,m3) is an arbitrary 
unit vector. The components m 1 (p ,q), m 2 (p ,q), m3 (p ,q) of m are functions of 
p and q such that 

(48.12) 

The vector m determines the polarization of the electromagnetic field of 
geometrical optics which corresponds to the field given by (47.59). Conse­
quently it also determines the polarization of (47. 59) at infinity. Finally, 
the scalar function </) (p ,q) is a measure of the intensity of the wave at infinity. 

The wave u,v is linearly polarized at infinity if m is a real unit vector. 
In fact, we have linear polarization at infinity according to (2.69) if U satis­
fies the condition U x U = 0. This implies 

(m X p) X (ID X p) = 0 
or (48.13) 

(m x p) . m = (m x m),p = 0 
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This condition, however, is satisfied, if m is a real vector or proportional to 
a real vector. 

48.2 In what is to follow we investigate the special types of waves which 
are obtained if a constant real unit vector mis introduced in (48.11). For 
physical reasons these waves can be considered to represent qualitatively the 
converging waves which leave an optical instrument after refraction. As we 
have seen in §44, the magnetic field of a dipole attains the boundary values 
m x p, where mis constant, at infinity. For a linearly polarized dipole the 
vector mis real. We can expect that the structure of this wave is not changed 
essentially if the wave passes through an optical instrument. We should how­
ever consider the following results with the reservation that they refer only 
to idealized waves which represent the actual situation approximately. 

48.3 We introduce the expression 

P* = (m X p)cp(p,q) 
(48.31) 

Q* = (mp2 - (m • P)P) cp(p,q) 

in (47 .59) and we assume m is constant. It is easy to verify that the result can 
be written in the following form 

u = m x grad F 

v = i~ [:rrillF - grad (m • grad F)] 
(48.32) 

where F is the scalar function 

F(x,y,z) = ;1T J J cf>(p,q)eik(W+xp+yq+zr) dpdq (48.33) 

The equations (48.32) assume an interesting form if we introduce the differ­
ential operator 

1 ;\ 
"il= - grad= - grad 

ik 2ri 

and instead of F we write the function 

It follows that 

F* = 2ri F 
;\ 

u = m X "ilF* 

v = m"i12F* - "il(m • "ilF*) 

(48.34) 

(48.35) 
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The wave which corresponds to an electromagnetic field in geometric optics 
of the form 

P* = (m x p) cf, 
(48.36) 

Q* = (mp2 - (m . p)p) cf, 

thus can be found by replacing the vector p in (48.36) by the operator 

(48.37) 

and the function cf, by the transformed function 

F* =½ J J cf, (p,q)eik(W+xp+yq+zr) dpdq (48.38) 

48.4 We consider an unpolarized light wave as an assembly of linearly 
polarized waves of the above type (48.32) in which the unit vectors mare 
distributed at random. Let us determine the average energy and the average 
flux of this assembly of waves. The electric energy of an individual polar­
ized wave is given by the expression 

(48.41) 

We take the mean value of this function of mi,m2,m3 over the unit sphere 
m 12 + m 22 + ma2 = 1. Since 

l {O, if- k - J J m 1 I¾ dw = 
4 7!" 1/3,i=k 

(48.42) 

it follows that the average density of the electric energy is given by 

(48.43) 

Now let us consider the energy which is contained in a domain D of the x,y ,z 
space. From Green's theorem we have 

n2 n2 8F 
J J J 7.,f Edxdydz = - 24 J J J F LlF dxdydz + 24 J jF "'v dcr 

1T D 1rr 0 

(48.44) 
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where r is the boundary surface of D. Since F satisfies the equation .6.F = 
- k2n2F we obtain 

k2n4 JJJ n2 aF J J J 'W'Edxdydz = u IFI 2dxdydz + -24 J j"F -8 da 
D 7r D 7r II 

(48.45) 

From the definition (48.33) of F it follows that the derivative aF on ris of the 
av 

order of magnitude of k = 211.1r . This implies that the surface integral in (48.45) 
is of the same order of magnitude and is consequently small compared with 
the first integral in (48.45) if the wave length is small. Since this is the case 
in optical problems we can consider the electric energy of an unpolarized 
light wave to be given to a sufficient approximation by the expression 

(48.46) 

48.5 The average magnetic energy of the unpolarized wave can be ob­
tained in a similar manner. In (48.32) we replace .6.F by - k2n2F and deter-

mine the expression, l~1r lvl 2, which gives the magnetic energy of an indi­

vidual polarized wave as a quadratic function of mi,m2,m3. We then take the 
mean value of this function over the unit sphere and obtain the average energy 
in the form 

(48.51) 

By Green's formula we find 

(48.52) 



DIFFRACTION THEORY OF OPTICAL INSTRUMENTS 337 

and conclude for reasons similar to the above that 'W' H is given in sufficient 
approximation by 

(48.53) 

To the expression IF xi 2 + IF YI 2 + IF zl 2 we apply the result of the preceeding 
section 48.4. This yields 

4k2 
'W'. = !!.._ IFl 2 

H 24ir (48.54) 

which demonstrates that we can consider the average electric and magnetic 
energies of an unpolarized light wave to be equal. The electromagnetic energy 
'W' ='II.IE +ul' H thus is given by the formula 

4k2 
uJ' = ~2ir IFI 2 . (48.55) 

48.6 We finally consider the flux vector l~ir (u x V+ ux v). 'rhe com­

ponents of this vector are quadratic functions of m1,m2,m3. We determine the 
mean values S1,S2,S3 of these functions and obtain a vector 

(48.61) 

which we interpret as the vector of average flux of the unpolarized light wave. 
We find, for example, the expression for the component Si 

C 

81 = 48irik (48.62) 

In order to simplify this result for the case of small wave lengths let us 
determine the flux through a finite section rof a plane, which is normal to the 
unit vector (a1,a2,as). The flux is given by 

ff(S1ai + S2a2 + S3a3)dcr = ffs1dydz + ffs2dzdx+ ffs3dxdy (48.63) 
r Ii Il! rs 

where IJ.,Il!,I's are the projections of ronto the three coordinate planes. With 
the aid of the relations 

(48.64) 

ff - - ff- f- aF (FyFx y + Fz Fxz )dydz = - Fx (Fyy + Fzz)dydz + Fx av ds 
Ii Ii ~ 
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we find 

(48.65) 

As before we conclude that the predominant contri­
bution in (48.65) is given by the first integral on the 
right side. This allows us to consider the expression 

(48.66) 

to be a sufficiently good approximation to the component 81. By assuming F 
in the form 

F = IFI eikX (48.67) 

so that kX (x,y ,z) is the phase angle of the complex function F (x,y ,z) we can 
write (48.66) as follows 

(48.68) 

Similar results are found for the components S2 and S3 so that the aver­
age flux vector S is given, with sufficient accuracy, by the relation 

cu.I S =- gradX. n2, (48.69) 

Obviously this last relation is a direct generalization of the corresponding 

formula S = c2u./' grad l/J in geometrical optics. The vector grad X in (48.69) 
n 

however does not in general coincide with the direction of the light ray. This 
illustrates that by diffraction light may penetrate into the regions of geomet­
rical shadow. 

48.7 The above results allow us to investigate the diffraction phenomena 
of unpolarized light waves with the aid of the scalar function F defined by the 
integral (48.33). In order to get the observable characteristics of such a wave 
it is not necessary to determine the individual polarized elements of the 
wave, i.e., the vectors u and v as functions of m1,m2,m3. These wave charac­
teristics are completely determined by the scalar function F(x,y,z). The 
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distribution of the light energy is given by IFI 2 and the energy flux by the 
phase angle X of this function 

F = IFI eikX. (48. 71) 

The following applications of the theory are carried out on the basis of this 
result. 

§49. DIFFRACTION PATTERNS FOR DIFFERENT TYPES OF ABERRATIONS. 

49.1 Spherical aberration. First we consider the case of a point source 
o~ the axis of a system of 
rotational symmetry. The 
mixed characteristic W is a 
function of 

Figure 192 

We can assume that the func­
tion ¢(p,q) in (48.33) also 
depends on this combination 
alone. We introduce polar 
coordinates 

p = p cos cp 

q = p sin cp 

and obtain the integral 

Po ik lwrp) + z ~) 
F(r) = J ¢ (p)J O (kpr)e \ Vu- - P pdp 

0 

(49.11) 

(49.12) 

where r = ~ and J0 is Bessel's function of order zero. The limit of 
integration, p O, is determined by the aperture of the objective. We have 

Po = n sin 0 (49.13) 

where 0 is the maximum angle which is subtended by the refracted rays with 
the axis. 

The function W (p) can be obtained from the lateral spherical aberration 
£ (p) of the bundle with the aid of the formula (refer to §31.1) 

p 
W(p) = W(O) + I I, (p)dp . 

0 
(49.14) 
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If the Gaussian image plane is chosen as the plane z = 0 we have the develop­
ment 

(49.15) 

The coefficients a, (3 , ... can be found by determining several points of the 
curve£ (p) by tracing rays. 

In practice one generally assumes cp(p) = 1 and considers the integral 

(49.16) 

sufficient for calculating the light distribution of the refracted axial bundle. 

The diffraction pattern in the Gaussian image plane is given by 

JPo ikW 
F(r) = J O (kpr)e pdp . 

0 
(49.17) 

For a bundle which is free from spherical aberration, so that W = W O , we 
obtain 

ikW Po 
F(r) = e O J J O (kpr)pdp 

0 

or 

(49.18) 

where J 1 is Bessel's function of order one. The light energy W of the dif­
fraction pattern in this ideal case is given by 

(49.19) 

which follows from letting k = ~1T in (48.55). At the center r = 0 we have 

n41T Po4 
1.J' (O) = 12 7 (49.191) 



DIFFRACTION THEORY OF OPTICAL INSTRUMENTS 341 

which shows that the energy increases proportionally to the inverse square of 
i\ and proportionally to the fourth power of the aperture p O • The function 

measures the relative energy distribution D(r) =: ~:~ It attains the value 

zero at 

1.0 

0.8 

0.6 

2 4 6 

2J1 (x) 
The function -­

x 

Figure 193 

21r X p0r = (0.61) 21r 

i.e., at 

i\ 
r = 0•61 n sin0 (49.193) 

This value of r is often con­
sidered as the limit of reso­
lution for the reason that two 
point sources are difficult to 
separate if the diffraction 
patterns of their images are 
located so that the central 
maximum of the one lies over 
the first minimum of the other. 

The concentration of the 
energy of the diffraction pat­
tern deteriorates rapidly in 
the presence of spherical 

aberration. This is caused by the fact that the function eikW oscillates 
several times in the interval of integration if W(p) - W(0) reaches values 
greater than i\. The effect on F(r) is to decrease its values in the neighbor­
hood of r = 0. This effect however is not noticeable in practical observation 
if W(p) does not exceed the value 1/4i\. This gives us the so called Raleigh 
Limit: An objective can be considered as sufficiently corrected for spherical 
aberration if, in the interval O :<E p c:s Po, the function W(P) satisfies the 
inequality 

1 
IW(p) - W(0)I < 4 i\ . 
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If this condition is not satisfied it is still possible to obtain satisfactory 
definition by changing the location of the image plane to a position z a/ O. This 
leads to a generalization of (49.194): If there exists a value z such that 

(49.195) 

then we can consider the correction of the spherical aberration satisfactory. 

We mention that in photographic objectives one can allow a considerably 
greater tolerance, namely 4 or 5 wave lengths, without impairing the suit­
ability of the obje~tive for its purpose. 

49.2 Coma: We consider next a light wave which originates at a point 

Figure 194 

source at the point (x0 ,0) of the 
object plane. For small values of 
x 0 we have, according to §31.34, the 
expression 

w = Wo(P) - XoP M(p) 

p 
where W 0(p) = J P, (p) dp 

0 

(49.21) 

and where M(p) is the zonal magni­
fication. By introducing (49.21) in 
(48.33) we find 

F = {oJo (kp ../(x - xoM(p))2 + Y2)eik [wo(p) + z✓n2 - P2] pdp 

(49.22) 

assuming <P(p,q) = 1. If the axial bundle is free of spherical aberration we ob­
tain in the plane z = 0 the diffraction pattern of pure coma: 

ikW: Po (, ) 
F=e O ~ J 0 \kp ,J(x-x0M(p)) 2 +y2 pdp (49.23) 

The function M(p) has the development 

M(p) = Mo + OlfJ2 + (3p4 + ... (49.24) 

and can be determined numerically by tracing axial rays. 
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49.3 Astigmatism. We finally apply the formula (48.33) to an anastig­
matic bundle of rays. Let us assume that a narrow manifold of rays about a 

X 
principal ray is selected 
by a small diaphragm. 
The principal ray of the 
bundle shall be an oblique 
meridional ray in a 
system of revolution. We 
consider the wave which 
originates at a point 
source located at a point 
P n on the principal ray. 
The mixed characteristic 
W in this case can be 

Figure 195 developed in the following 
form (refer to §36.1) 

where the dots indicate polynomials of p and q of an order higher than 2. With 
a suitable choice of the origin of the coordinate system on the refracted 
principal ray we can assume that C1 = - C2 and thus we have without loss of 
generality 

(49.32) 

We introduce this expression in (48.33) and, letting cp(p,q) = 1, we find the 
integral 

1 ikW ik [½c(p2-q2)+xp+yq+zr~ 
F = 2,r e off e J dp dq . (49.33) 

We assume n = 1 and in the chosen approximation we may replace r by 
1 

1 - 2 (p2 + q2). It follows that 

1 ikl"IXT +z) ik [-½(z-C)p2-½(z+C)q2+xp+yql 
F = 2,re , .. o ffe J dp dq . (49.34) 

This integral can be reduced to a well known type if the diaphragm is rectan­
gular. In this case we find that the light distribution is proportional to the 
product of two functions: 

IFI 2 = IA(x)I 2 IB(y)J 2 (49.35) 
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where 

l Po ik [xp-½ (z-C)p~ 
A(x) = '2ir J e dp 

v- -Po 

1 q0 ik [yq-½ (z+C)q2] 

B(Y) = '2ir f e dq . 
v- -qo 

(49.36) 

In the plane z = C, i.e., at the position of the primary focal line we have 

~ sin kp 0x 
A(x) = y ,r kx 

1 qo ik f yq C 21 
B(y) = - J e ~ - q j dq . 

r,;1T • v- -qo 

(49.37) 

Similarly at the position z = - C of the secondary focal line: 

_ ~ sin kq0y 
B(y) -✓ ri ky • 

(49.38) 

The remaining integrals in (49.37) and (49.38) and the integrals (49.36) in 
case z ,f. ± C can be easily evaluated with the aid of the function 

Ju is2 
X(u) + iY(u) = Z(u) = e ds . 

0 

The curve x = x(u); y = y(u) which is determined by (49.39) is known as 
Cornu's Spiral. 

(49.39) 

§50. RESOLUTION OF TWO LUMINOUS POINTS OF EQUAL INTENSITY. 

50.1 The diffraction pattern of a wave which corresponds to a given 
system of wave fronts depends on the function q,(p,q) in (48.33), i.e., on the 
intensity and phase ·of the wave in the direction p,q. In this section we shall 
study the influence of the function q,(p,q) on the form of the diffraction pattern. 
Many ways exist in practice to change q,(p,q) without influencing the light rays 
or the wave fronts essentially, for example, by evaporating thin films of 
metallic or dielectric substances onto the lenses. 
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Let us therefore assume that W(p,q) is a given function. We choose a 
plane z = const. as the plane of observation and write our integral (48.33) in 
the form 

where 

F(~,TJ) = 21 ff A(p,q) eHp, + qJJl dp dq 
7r D 

and where ~ and TJ are· defined by 

X 
~ = kx = 21r -

X 

(50.11) 

(50.12) 

(50.13) 

Since <f>(p,q) can be assigned quite arbitrarily in practice we can consider 
A(p,q) itself as a function which we are free to choose in the domain D of inte­
gration. This domain Dis determined by the aperture of the optical instrument; 
we know that it must lie inside the circle p2 + q2 ::-:: n2. 

We may define A(p,q) as a function in the whole p,q plane which is zero 
outside D. The function F(x,y) then is obtained by a Fourier transformation of 
A(p,q). The manifold of all possible' diffraction patterns of an optical instru­
ment is thus given by the Fourier adjoints of all functions A(p,q) which are 
zero outside D. 

From a general theorem for Fourier integrals we conclude that 

f f001Fl 2 d~dTj =ff IAl 2 dp dq (50.14) 
-CO D 

which we can interpret as follows: The total light energy of the diffraction 
pattern is equal to the energy radiated through the aperture of the instrument. 

50.2 In the following we shall consider only the case of rotational sym­
metry, i.e., the diffraction patterns in the immediate neighborhood of the axis 
of an optical instrument. The domain D becomes a circle p2 + q2 ::-::p 02 and 
A(p,q) is a function A(p). In this case we obtain F as a function of 

r = ~ namely 

Po 
F(r) = J pA(p)J O (pr)dp 

0 
(50.21) 
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The energy relation (50.14) is replaced by 

(50.22) 

The light distribution in the diffraction pattern is proportional to D = IF 12

; 

we define the relative light distribution by the ratio 

D(r) 
R(r) = D(O) • 

In the special case A(p) = 1 the function R(r) is given by the expression 

(50.23) 

(50.24) 

50.3 Let us now consider two independent, i.e., incoherent point sources 
which are located symmetrically to the axis at two points of the object plane. 
Let us assume that both point sources are of equal intensity so that the energy 

distributions D ( .Jc~ -0)2 +77 2

) and D ( ✓<~+0)2+11 2 

) are determined by the 
same function D(r). The assumption that the point sources are incoherent 
has the consequence that the combined light distribution of both point sources 
is given by the sum of the energies: 

(50.31) 

i.e., the sum of the squares of the functions IFI. 

In the case of two coherent point sources, which may be obtained by 
illuminating two pin holes by a small source one can show that the combined 
light distribution has to be found from the expression 

(50.32) 

i.e., by the square of the sum of the functions F. 

On the line 7) = 0 which connects the two central maxima of the two 
individual diffraction patterns we have the light distributions 

D(~-c'J) + D(~+c'J) 

and (50.33) 

respectively. 
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ill both cases these curves have the form illustrated in Figure 196, 
namely a curve with two maxima if 6 is large enough and with only one maxi­
mum at~= Oif 6 is smaller than a certain value 6 0 . We can consider 26 0 as 
the limit of resolution. illdeed if 6 > 60 then the two bright maxima of the 
distributions (50.31) and (50.32) are separated by a strip of lower intensity. 
If 6 < 6 0 however, this strip is no longer present as is shown in Figure 196. 
The intensity curves (50.33) at ~ = 0 are concave in case 6 > 6 0 and convex 
if 6 < 6 0 . It follows that the second derivative at ~ = O must be zero for the 
curve which belongs to 6 = 6 0 . This leads to an equation for o O. For 

8>80 8< 80 

Figure 196 

incoherent sources we find 

D"(oo) + D"(-60) = 0 

or since D(O and D"(O are even functions we obtain the equation 

D"(o 0 ) = o. (50.34) 

ill other words: the limit of resolution, 26 0 , is given by the separation of the 
two inflection points of the intensity curve D = D(r) of a single point source. 
(Fig. 197) 

ill the case of coherent light sources we find by a similar consideration 
the condition 

0 . (50.35) 
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If F(r) is a real function then (50.35) reduces to F"(l5o) = 0, i.e., 215 0 is the 

Figure 197 

distance of the two inflection 
points on the curve F = F(r). 
Since D = F2 it is quite clear 
that the distance of the inflec­
tion points for D = D(r) is 
smaller than for F = F(r). This 
demonstrates that it will be 
more difficult to resolve 
coherent light sources than 
incoherent sources, i.e., self 
luminous points. We shall 
verify this result in the next 
section by another approach. 

If, for example, F(r) is given by the normal function 

we obtain 

2ir 
a) 215 0 = 0.8~ 

2ir 
b) 215 0 = 0.52 ~ 

in the case of non-self-luminous points 

in the case of self-luminous points. 

This leads to the following formulae for the limits of resolution: 

A 
a) ro=0.8nsin0 

A b) r 0 = 0.52 --. -
n sm 0 

(50.36) 

(50.37) 

where r 0 = ✓x2 + y2 = ½ ~. The last formula shows that the present 

limit of resolution is smaller than the one given in (49.193) which was based 
upon the distance of the first minimum of D(r)from the center. 

50.4 We continue the investigation of the integral (50.21). Let us 
assume that the functions A(p) satisfy the condition 

Po 
f P IA<P)I 2dp = 1 

0 
(50.41) 
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so that the total energy in our diffraction patterns has a given fixed value. By 
Schwartz's inequality it follows that 

or on account of (50.41): 

Po 
IF(r)I 2 ~ J pJ o2(pr) dp 

0 

This yields with the aid of the identity 

the inequality 

(50.42) 

(50.43) 

(50.44) 

i.e., all curves D = IFl 2 must lie in the domain of the D,r plane which is 
determined by the r-axis and the curve ½Po 2 (J02(p 0r) + J/(p 0r)) . For 
r = 0 we have 

(50.45) 

An equality can only be obtained if A = a constant. This means: Among all 
diffraction patterns (50.21) of equal total energy the highest central maximum 
is·obtained by the normal pattern (50.24) i.e. for A(p) = a constant. 

50.5 The normal curve (50.24) reaches its first zero at the point 

r 0 = 0.61 ;; . Let us attempt to increase the resolving power of our instrument 

by applying a "coat" A(p) to the aperture so that the corresponding function 
IFI 2 reaches its first zero at a point r = 01 < r 0 • From the above result it 

follows that such a function D = IF 12 must have a lower central maximum 
than the normal curve. We are of course interested in keeping the central 
maximum as high as possible. Thus we are led to the following problem of 
variation: 

To find a function A(p) which satisfies the conditions 

Po 1 PIA<P)l 2 dp = 1 
0 

Po f pA(p)Jo (pOI) dp = 0 
0 

(50.51) 
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such that the integral 

(50.52) 

assumes a maximal value. 

One can see easily that A(p) can be assumed to be real. All other solu­
tions are then given in the form cA(p) where c is a constant of absolute value 
le I = 1. 

We introduce two Lagrangian multipliers A andµ, and consider the 
problem of variation 

( 
Po ) 2 Po Po 

V = J0 PA(p) dp + A~ pA(p)J0 (pa)dp + µ, ~ pA2dp = Max. (50.53) 

Let us assume that A(p) is the solution of this problem. We choose an arbi­
trary function /;(p) and introduce in (50.33) the variation function A(p) +E!;(p). 
The integral V becomes a function V = V(E) which has a maximum for E = O. 
The necessary condition V'(O) leads to the following equation. 

Po { Po } J
0 

P/;(p) 2~ pA dp+ A J0 (pa) + 2µ,A(p) dp = 0 (50.54) 

which must be satisfied for every function /;(p). It follows that the bracket in 
(50.54) is zero. This means that A(p) has the form 

(50.55) 

where u and Tare constants, which can be found by introducing (50.55) in the 
equations (50.51). The second equation (50.51) yields 

Hence letting 

Q. 

T 
(50.56) 

(50.57) 
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we obtain for A(p) the expression 

(50.58) 

where the constant rhas to be found by the first condition (50.51). The dif­
fraction pattern F(r) is determined by the integral 

Po 
F(r) = r J P ( <To - To Jo (pa)) J0 (pr)dp . 

0 
(50.59) 

By a suitable choice of a it is indeed possible to decrease the limit of resolu­
tion 2o 0 of our instrument. A numerical investigation has shown however that 

for a < 0.31 !: the functions JFJ 2 have too low a central maximum. 

50.6 We can apply a more direct method of decreasing the limit of 
resolution 26 0 . Again let us consider only real functions A(p). We have seen 
that o O is a solution of the equation 

D"(oo) = F(o 0 )F"(o 0 ) + ( F'(o 0 )) 2 = o . (50. 61) 

By introducing the integral expressions for F we obtain the equation 

2 

D"(oo) = (f: 0
pA(p)Jo(p6o)dp) v:\3A(p)Jo"(Poo)dp) + (f: 0

p2A(p)Jo'(poo)dp) 0. 

(50.62) 

This is a condition for A(p) if o 0 is pre-assigned. Again we have to expect a 
decrease of the central maximum of IF(r)I 2 if o0 is chosen smaller than the 
corresponding value in the case of the normal curve (50.35). Therefore we 
try to find the function A(p) which satisfies (50.62) and which makes IF(0)i 2 

as great as possible. This leads us to the following problem of variation: 

To find a function A(p) which satisfies the equation (50.62) and the 
condition 

such that the integral 

Po 
f P IAI 2dp = 1 

0 

I Po 12 
IF(0)i 2 = Jo pA(p)dp 

assumes a maximal value. 

(50.63) 

(50.64) 
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We introduce two Lagrangian multipliers;>,. andµ, and consider the 
problem 

( Po ) 2 Po 
V = J0 pA(p)dp + ;>..D"(o 0) + µ, J

0 
pA2c1p = Extr. (50.65) 

where D"(o 0) is the quadratic form (50.62). 

We assume that A(p) is the solution and introduce the variation function 
A(p) + E?;(p). The condition V' (0) = 0 leads to the equation 

Po { Po ( Po Po 
J pt;(p) 2J pAdp + ;>.. J0 (po 0)J p3AJd'dp + p2Jd'J PAJodp 

0 0 0 0 

(50.66) 

which must hold for every function t;(p). It follows that the {} bracket is 
identically zero thus yielding the following expression for A(p): 

with constant values of cr1 . 

We conclude from (50.66) that cr1 ,cr2,cr3 satisfy the equations 

Po 
J pAJo <Poo)dp 

0 

Po 
2 J p2 AJo (poo)dp 

0 

Po 
J PAJo <Poo)dp 

0 

(50.67) 

(50.68) 

By introducing the expression (50.67) in these equations and in (50.62) 
and (50.63) we obtain four quadratic equations which allow us to calculate the 
constants cr0 ,cri, cr2,cr3 for any given o0 and Po. 

50.7 Finally we mention a third method of finding functions A(p) which 
give an increased resolution. We consider a circle r < o in the ; ,Tl plane. 
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The total energy contents of this circle is proportional to the integral 

{j 

uJ = f IF! 2 r dr 
0 

353 

(50.71) 

We introduce the integral expression (50.21) for F and obtain the quadratic 
form 

Po 
w- = ff K(p,p')A(p)A(p') dp dp' 

0 

where the Kernel K(p,p') is the symmetrical functfon 

{j 

K(p,p') = pp' f rJ 0 (pr)J 0 (p'r) dr 
0 

(50. 72) 

(50.73) 

Instead of requiring that the value IF2(0)I of the central maximum is as high 
as possible we can ask that the energy contents of a given circle r < o shall be 
as great as possible. We thus obtain the following maximum problem: To 
find among the functions A(p) which satisfy the condition 

Po 
f PIAl 2 dp = 1 

0 
(50. 74) 

a function for which the quadratic form (50.72) assumes its maximum value. 

We introduce the Lagrangian multiplier i\ and consider the problem 

Po Po 
V = ff K(p,p') A(p) A (p') dpdp' - i\ f p IAl 2 dp = Extr. (50.75) 

0 0 

By applying our method of variation we obtain A(p) as the solution of the 
homogeneous integral equation 

Po 
i\pA(p) = f K(p,p') A (p') dp' 

0 
(50. 76) 

where i\ is the greatest characteristic value of the Kernel K(p,p') and A(p) the 
corresponding characteristic solution. 
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§51. RESOLUTION OF OBJECTS OF PERIODIC STRUCTURE. 

51.l We have found in the preceding section that the limit of resolution 
can be decreased by "coating" the aperture with a function A(p). This result 
was obtained for an object which consists of two separated luminous points. 
With the aid of the "improved"functionD(r)= IFI 2 we can now calculate the 
light distribution which belongs to a larger number of object points, lined up, 
for example, on the ~ - axis. If the points are equidistant we have the light 
distribution on the ~ - axis 

(51.11) 

Let us assume that the distance o of the image points is considerably smaller 
than the limit of resolution obtained from the normal function (50.35). Let 
D(r), however, be a function which allows us to resolve two points of distance 
o if no other points are present. By calculating (51.11) we would find that the 
improvement of the resolution becomes practically unnoticeable if a greater 
number of points are considered. The strips of low intensity which separate 
the bright maxima disappear gradually when more points are added. 

51.2 Therefore in this section we shall consider the problem of resolu­
tion from a more general point of view. We assume a distribution of self 
luminous objects in the object plane which is characterized by a function 
U O (x 0 ,Yo). In the image plane we obtain a perfect reproduction of the object 
if the light distribution in this plane is proportional to the function U(x,y) = 

U O ( ~ , ~) where M is the magnification. 

Let us assume that the image of a self luminous point (x 0 ,Yo) is given by 
the light distribution 

(51.21) 

where F(x,y) is the integral 

F(x,y) = 2\ J J A(p,q)eik(xp+yq)dpdq (51.22) 

It follows that the image V(x,y) of the object U O (x 0 ,Yo) is represented by the 
integral 

V(x,y) = j j U(~ ,71) D (x - ~, y - 71)d~d71 . (51.23) 

51.3 If the object U O (x0 ,Y O) is not self luminous but illuminated by a 
wave from a point source, then we do not obtain the image V(x,Y) by super­
position of the energy functions D = IFI 2 from the different points but by 
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superposition of the corresponding functions F. The light from the different 
object points is coherent in this case and interference of the wavelets F is to 
be expected. We obtain 

(51.31) 

i.e., the "square of the sum" of the wavelets F instead of the "sum of the 
squares" as in (51.23). 

51.4 In many cases we have to deal with objects which consist of 
similar elements distributed regularly or at random. A network of cells for 
example or a group of stars. We may consider the function U(x,y) in these 
cases as periodic or at least as almost periodic. In the following let us there­
fore study the images V(x,y) which belong to objects of periodic structure. We 
develop U(x,y) in a Fourier series 

.27r 1£ (vx + µ. y) 
U(x,y)= Iuvµe (51.41) 

where I, is the period of the structure. First we treat the case of self lumi­
nous objects. We introduce (51.41) in (51.23) and obtain 

.27r ) 1-y(vx+µ.y 
V(x,y) = L Uvµ Dvµe (51,42) 

v,µ 

The quantities Dvµ are given by the integrals 

• 21r ( ) 
. -1 T "~ + µ.r, 

Dvµ = j f D(~ ,17)e d~dr, (51.43) 

The equation (51.42) demonstrates that a complete reproduction of the object 
U(x,y) can only be obtained if all the quantities Dvµ are equal to unity. This 
however is never the case. In fact we will find that only a finite number of 
the Dvµ's are different from zero so that (51.42) represents a trigonometric 
polynomial of finitely many members. 

By applying Fourier's inversion theorem to the expression (51.22) we 
obtain 

A(p,q)= ~: ff F(x,y)eik(xp+yq) dxdy . (51.44) 
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In order to determine the quantities Duµ we make use of the following relation 
which is a direct consequence of (51.44); 

J, ('. - k2 ff I I 2 -ik(xs+ yt) JA(p + s,q + t)A(p,q)dpdq = 271" F e dxdy (51.45) 

Since D(x,y) = IF(x,y)I 2 we obtain 

Duµ = t1 ff A (p + t1r£ 11, q + !; µ) A(p,q)dpdq 

or letting k = 2; we obtain the equation 

(51.46) 

The function A(p,q) is zero outside a certain domain r of the (p,q) plane which 
is given by the aperture of the optical instrument. Therefore we can interpret 
the integration (51.46) as follows. We shift the domain without rotation to a 
new position, rvµ, in the p,q plane such that the point p = q = O goes over into 

the point p = }11, q= ~µ.We define the function Avµ (p,q) by 

r 

(51.47) 

so that Avµ in rvµ has the same values as A at 
the corresponding points in r. The integral 
(51.46) becomes 

A.2 ff -Duµ= 271" Avµ(p,q)A(p,q)dpdq (51.48) 

Figure 198 
and is different from zero only if the domains 
rand rvµ overlap. This is possible, however, 

only for a finite number of integers 11 andµ . 

51.5 The smaller £ is the fewer of the domains rvµ overlap the domain 
r, i.e., the more coefficients are zero. This means that the image V(x,y) 
given by (51.42) shows less and less detail of the structure of the object. If 
finally£ is so small that no domain rvµ overlaps r then we have V = U O 0D0 0 , 
i.e., a constant light distribution. The optical instrument cannot resolve any 
detail in the object. The limiting value £ 0 determines the limit of resolution. 
It depends only on the aperture r and cannot be decreased by changing the 
function A(p,q) inside r . This means that; It is impossible to increase the 
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resolving power with regard to periodic structures by coating the aperture of 
an optical instrument. 

Let us now assume that the domain r is a circle of radius Po= n sin 0 . 

r 

Figure 199 

A circle rvµ can overlap the circle r only 
if 

(51.51) 

It follows that those Dv µ are zero for which 
we have 

(51.52) 

No detail will be observed if this last inequality holds for v = 1; µ = 0 and 
v=O;µ =1,i.e.,if 

(51.53) 

The limit of resolution, P, 0 , of objects of periodic structure is thus given by 
the formula 

i\ 
£0 = 0.5 --. -0 

nsm 
(51.54) 

Let us consider P, as given but Po= n sin 0 as variable, i.e., let us ob­
serve a given object with an optical instrument of variable aperture (dia­
phragm). 

For Po<½~ we obtain V = U00 D00 , i.e., uniformity without any detail. 

1 i\ 1 P, 
For 2 ""i < Po < 2 ,/2 i we have 

(51.55) 

This is a sinusoidal light distribution which indicates the periodicity of the 
object. 

By increasing Po we observe gradually more and more detail since more 
terms appear in the trigonometric polynomial.. However, since Po ~ n1 we can 
never obtain infinitely many terms which demonstrates that it is impossible 
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by optical means to observe details of the structure which are smaller than 
a certain constant. 

By choosing different "coating functions" A(p,q) we can vary those 
coefficients Duµ which are different from zero. The resolving power of the 
instrument is not affected by this, the contrast of the image however can be 
varied considerably. 

51.6 Non self luminous objects. We treat the case of objects which are 
not self luminous in a similar manner. The image distribution is given by 
V = IGI 2 where G is the integral 

(51.61) 

We introduce the Fourier series (51.41) and obtain 

where 

.21r ) 
G = "\' U F /T (vx + µ. y 

L, vµ vµ 

On account of (51.44) this yields 

(51.62) 

(51.63) 

(51.64) 

Only finitely many quantities F v µ are different from zero, namely those for 
which the lattice points 

r 
Figure 200 

;\ ;\ 1· • "d th d • ,;v, ,;µ. ie ms1 e e omam r. 
For a circular domain r of 
radius Po we have F vµ = 0 if 

(51.65) 

The function G becomes a 
constant if 

P, < ~=_;\_ 
Po n sin0 

(51.66) 

i.e., the limit of resolution of 
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non-self-luminous objects is given by the formula 

;\ 
P,=--

0 n sin 0 

It is twice as great as the limit of resolution for self-luminous objects. 
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(51.67) 

This limit cannot be decreased by a different choice of A, i.e., by coating 
the aperture. The only effect of changing A inside the domain is to produce 
images of different contrast. 



APPENDIX I 

VECTOR ANALYSIS: DEFINITIONS AND THEOREMS 

I.1 Let A be a vector in the three dimensional space. We write 

(I.11) 

where Ai, A2 , A3 are the components of the vector A in a given Cartesian 
coordinate system. 

B 
The scalar product of two vectors A 
(Bi, B 2 , B3 ) is defined by 

(I.12) 

It follows A• B = B • A. The length or absolute value of a vector A is given 
by the expression 

(I.13) 

The angle between two vectors A and B follows from the equation 

A- B = IA! IBI cos 1' ; 0 ~ 1' ~ 1r • (I.14) 

Two vectors A and B are orthogonal if 

A·B = 0 (I.15) 

The vector product A x B of two vectors A and 
B is a vector whose components are equal to the sub­

determinants of the matrix of the components: 

i.e. 

AxB (I.16) 
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This vector A x B is orthogonal to both A and B: 

A· (A x B) = B • (A x B) = 0 . (1.161) 

Its length is given by 

(I.162) 

It follows from (I.16): 

AxB = -BxA. (I.163) 

Three vectors (i ,j ,k) of unit length, which point in the direction of the 
three axes of a Cartesian coordinate system, form an orthogonal system of 
unit vectors. They satisfy the relations: 

i X j k 
i2 = j 2 = k2 = 1 

j xk i (1.17) 
i. j = j ·k = k· i = 0 

kx i j 

Every vector A can be represented by a linear combination of these three unit 
vectors: 

(1.18) 

I.2 Vector identities. The scalar product of the two vectors Ax B and 
C is equal to the determinant of the components of the three vectors A, B, 
and C: 

(Ax B) • C (I.21) 

Hence: 

(A x B) • C = (C x A) • B = (B x C) • A . (I.22) 

The vector product of the two vectors A x B and C is a linear combina­
tion of the vectors A and B: 

(Ax B) x C (AC)B - (BC)A . (I.23) 
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The vector (A x B) x C is normal to the vector A x B. Thus it must 
lie in the plane determined by A and B; i.e., it must be a linear combination 
of A and B. We write 

(A x B) x C = etA + {JB • 

Scalar multiplication of C with equation (I.24) gives 

et (A· C) + {l(B • C) = 0 

and hence 

where 11. is a certain factor. It follows 

(I.24) 

(I.25) 

The left side and the bracket on the right side represent three homogeneous 
polynomials of the components Ay, By, Cy, The identity (I.25) thus is possible 
only if 11. is a constant, independent of Ay, By, Cy, We can find its value by 
introducing special vectors A, B, C, for example, A = i, B = j, C = i. 
It follows 11. = 1. 

The square of the vector product A x B can be written in the form 

Indeed, on account of (I.22): 

(A x B) • (A x B) ( (A x B) x A) • B . 

Hence, by applying (I.25): 

From (I.26) follows Schwartz's inequality, 

I.3 Vector fields. A manifold of vectors A whose components are 
functions of x,y ,z is called a vector field: 

(I.26) 

(I.27) 

A(x,y ,z) = ( A1(x,y ,z), A2 (x,y ,z), A3 (x,y ,z)) . (I.31) 
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The divergence of a vector A(x,y ,z) is the scalar function, 

d . A . aA . aA k aA 
IV = 1 • - + J • - + • -

ax ay az 

aA1 aA 2 aA3 
-+--+-­
ax ay az 

The curl of a vector A(x,y,z) is a vector defined by the equations, 

1 A . aA . aA k aA oor =1x-+Jx-+ x-
ax ay az 

A vector field A(x,y ,z) is called 

solenoidal, if div A = 0 ; 
lamellar, if curl A = 0 . 
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(1.32) 

(1.33) 

(1.34) 

A solenoidal field A is obtained if A(x,y ,z) is the curl of a vector W: 

A = curl W 

where W(x,y,z) is an arbitrary vector field with continuous second derivatives. 
One proves easily 

div curl W = 0 , 

Let cp(x,y,z) be a scalar function with continuous derivatives. The 
gradient of this function at a point x,y',z is the vector 

d -( ,1,)--M -M kM gra cp - 'Px• 'Py, 'i'Z - 1 ax + J ay + az • 

(1.35) 

(I.36) 

This vector grad cp is a function of x,y ,z and thus determines a vector field; 
this vector field is lamellar. From a simple calculation it follows: 

curl grad cp = 0 (I.37) 

provided that cp has continuous second derivatives. 

The divergence of a gradient field is given by the Laplacian operator, 

f::i.cp = 'Pxx + 'Pyy + 'Pz z = div grad cp . (1.38) 
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Hence: A gradient field A = grad cp is both solenoidal and lamellar if cp is 
a solution of Laplace's differential equation 6.cp = O. 

I,4 Vector identities. Let f(x,y,z) be a scalar function and A(x,y,z) a 
vector field with continuous first derivatives. Then w_e have the following 
identities: 

div fA = f div A + (grad f) • A 

curl fA = f curl A + (grad f) x A 

Indeed, from the definition (I.32) it follows: 

( aA1 aA2 aA3) af af + A af div f A = f - + -- + -- + A1 - + A 
ax fJy az ax 2 fJy 3 az 

From (I.33): 

curl fA 

f div A + (grad f) , A . 

i x (fA)x + j x (fA)y + k x (fA)z 

(I.411) 

(I.412) 

f [i X Ax + j X Ay + k X Az] + (ifx + jfy + kfz) X A 

f curl A + (grad f) x A . 

Let f(x,y,z) be a scalar function with continuous first derivatives and 
A(x,y,z) a vector field with continuous second derivatives. Then 

curl (f curl A) = -£6.A + f grad div A + (grad f) x curl A 

In order to prove this identity, we first apply (I.412): 

curl (f curl A) = f curl curl A+ (grad f) x curl A 

This leaves us to show that 

curl curl A = -6.A + grad div A 

On account of the definition (I.33): 

curl curl A 

+ j X (i X Ayx + j X Ayy + k X Azy) 

+ k X (i X Axz + j X Ayz + k X Azz) 

(I.42) 

(I.43) 
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Finally with the aid of the identity (1.23): 

a 2A a 2A a 2A 
curl curl A = - Axx + i--1- + j--1- + k--1-

ax2 ax ay ax az 

a2 A2 a2 A2 a2 A2 
- Ayy + iaxay + jay°2 + kayaz 

a2Aa a2Aa a2Aa 
- A + i-- + J·-- + k--

zz axaz ayaz az 2 

This however can be written as follows: 

curl curl A = - t::.A + i :x (div A) + j :y (div A) + k :z (div A) 

- t::.A + grad div A . 

If A(x,y,z) and B(x,y ,z) are two vector fields with continuous first 
derivatives, then the following three identities are satisfied: 

div (A x B) B • curl A - A • curl B 

curl (AX B) aA - aB + A div B - B div A 
8(3 80! 

AX curl B +BX curl A = - (aB + aA) + grad (A· B) . 
80! 8/3 

In these formulae the differential operators :O! and :(3 are defined by 

a a a a A1 - + A2 - + A 
az ' 80! ax ay 3 

a a a a 
B1 - + B2 - + B 

8(3 ax ay 3 az 

Hence .£... denotes differentiation in the direction of the vector A and 8
8 

~ (3 
differentiation in the direction of B. 

We prove first the identity (I.44). We have 

B • curl A = (i x Ax)· B + (j X Ay) • B + (k x Az) • B 
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(I.44) 

(I.45) 

(I.46) 

(I.47) 
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Hence by applying (I.22): 

B • curl A = (Ax x B) • i + (Ay x B) • j + (Az x B) • k . 

We interchange A and B: 

Hence 

A· curl B = (Bx x A)· i + (By x A)· j + (Bz x A)· k . 

B • curl A - A • curl B (A x B)x • i + (A x B)y • j + (A x B)z • k 

div (A x B) . 

The second identity (I.45) follows from the definition (I.33): 

curl (A x B) i x (Ax x B) + i x (A x Bx) 

+ j x (Ay x B) + j x (A x By) 

+ k X (Az X B) + k X (A X Bz) 

with the aid of the relation (I.23). We find 

curl (A x B) B1Ax + B 2Ay + B 3Az + (div B)A 

- A1Bx - A 2By - A3Bz - (div A)B 

which yields (I.45) if the notation (I.47) is introduced. 

The last identity (I.46) can be found in a similar way. We have 

A X curl B = A x (i X Bx) + A X (j x By) + A x (k x Bz) 

or by applying (I.23): 

Ax curl B 

- A1Bx - A2By - A3Bz 

We interchange A and B and add both equations. It follows: 

A x curl B + B x curl A = - ( :: + :: ) + (A• B)xi +(A• B)yj +(A· B)zk 

which is the identity (I.46). 
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For the purpose of a later application, by adding (1.45) and (1.46), we 
obtain the following identity: 

curl (A x B) + A x curl B + B x curl A 
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2 :: - B div A + ( A div B + grad (A· B)) (1.48) 



APPENDIX II 

TRACING OF LIGHT RAYS IN A SYSTEM 
OF PLANE REFLECTING OR REFRACTING SURFACES 

II.1 The vector form of the laws of reflection and refraction which we 
have derived in § 14 can be used with advantage in practical problems of ray 
tracing. Both laws have the same mathematical form 

S' = S + rM . (Il.11) 

The vectors S and S1 are defined by S = nT and S1 = n'T' where n and n' 
are the indices of refraction and T and T' are unit vectors in the· direction of 

s 

s' 

r(p) = - 2p 

the rays. M is a unit vector normal to the 
surface and r is a scalar function of the 
angle of incidence, {}. By introducing the 
variable 

p = n cos {} = (S • M) (Il.12) 

instead of {} we find from (14.191) and 
(14.28) that 

in case of reflection 

r(p) =✓n•2 - n 2 + p 2 

- p , in case of refraction 
(II.13) 

Il.2 Let us now consider the problem of tracing a ray through a number, 
k, of plane surfaces L 0 , Li, L 2 , ... ,Lk _ 1. These surfaces may be either 

Refraction Reflection 

reflecting or refracting surfaces. 
Any prism system is an example of 

Mi this case. Let us assume that the 
normals, M1 , of these surfaces are 
known. On L1 we denote the incident 
vector by S1 and the reflected or 
refracted vector by S1 .. 1. The index 
of refraction of the medium with 
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which the vector S1 is associated is 
called n1. If L1 is a reflecting sur­
face we have, of course, n1 = n1 ... 1 • 
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The vectors Si are then related by the system of recursion formulae 

(Il.21) 

in which Pi = Si • Mi and 

if Li is a reflecting surface, 

(II.22) 

if Li is a refracting surface. 

The equations II.21 allow us to find the vectors Si successively if the initial 
vector S0 is known. 

II.3 Of special interest is, of course, the last vector Sk which deter­
mines the direction of the ray in the final medium. From (Il.21) it follows 

k=1 

So + L r;(pi)Mi (II. 31) 

I =0 

which demonstrates that the vector S k is completely known if we have found 
the scalar quantities Pi = SiMi. 

Our aim is to show that the quantities Pi can be found by a system of 
scalar recursion formulae. We form the scalar product of a vector Mu with 
the equation (Il.21). We find 

(II.32) 

and hence by summation from i = 0 to i = v - l we obtain 

u- 1 

So ·Mu + L r;(pi) (Mi ·Mu) (11.33) 

i=O 

or 

U-1 

Pu (So ·Mu)+ L r;<P;> (Mi ·Mv> . (II.34) 

; =o 
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This is the desired recursion formula; it determines the value Pu if the 
preceding quantities p 1,p 2 , .... ,Pu-1 are known. 

II.4 The equations (II.21) and (II.34) are especially simple if all the 
surfaces L; are reflecting surfaces. Since r 1(p;) = - 2P; we have 

u- 1 

(S O ·Mu)-2 L (M;•Mu)P; 

i =O 

(II.41) 

i.e., a system of linear recursion formulae for the quantities Pu . The final 
vector Sk is then given by 

k-1 

S O - 2 L P;M; • 

i =O 

(II.42) 

II.5 As an example we consider a set of three mirrors at right angles to 
each other. We choose a cartesian coordinate system so that the normals M; 
of the mirrors have the direction of the unit vectors T, T, k, i.e., 

M O = i, (II.51) 

Since M; •Mu 0 it follows that 

(II.52) 

and hence 

or 

(II.53) 

Thus any ray which enters this sytem of three mirrors comes back on itself, 
except for a lateral shift. 

II.6 We consider next a 90° roof prism of the type illustrated in the 
following figure. Let us assume that a parallel bundle of rays enters the glass 
body normal to the first surface and therefore is unchanged in its direction. 
The bundle then is reflected on the surfaces L 0 and L1 of the roof. Let M 0 
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or 

and M1 be the normals of these surfaces. 
One part of the bundle is first reflected on 
L 0 and then on Li, another part first on 
L 1 and then on L O• Let us consider the 
rays of the first part. We have 

(II. 61) 

and 

(II.62) 

The vector 8 2 determines the direction of the rays in the glass after the two 
reflections. 

The corresponding vector 8 2' of the other part of the bundle, which is 
reflected first on L1 and then on L 0 is obtained by interchanging M0 and M1 

in (II.62). The difference 821 - 8 2 therefore is given by the ~xpression 

8 21 - 8 2 = 4(M 0·M1) [(8 0·M1)M 0 - (8 0•M 0)M1] (II. 63) 

It follows that the two reflected bundles are parallel to each other only if 

(II.64) 

i.e., if the two roof surfaces are at right angles. In any other case these 
bundles are not parallel; if a distant object is viewed through such a prism it 
will appear as double. 

II. 7 For practical purposes it is important to know the departure from 
parallelism of the two bundles if the roof angle is not exactly 90°. Let us 
therefore assume that 

M O• M1 = cos(90 + E) = - sin E = - E 

where E is a small quantity. From (II.63) it follows that 

8 2' - 8 2 = - 4E [(8 0 ·M1)M 0 - (8 0·M 0)M 1] 

(II. 71) 

(II. 72) 
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In the bracket we may introduce the data M O and M 1 of the exact roof prism. 
By orienting the roof prism as illustrated in the following figure we have -k 1 .... .... 

Mo = - (- i + k) 
..f2 

M1 
1 .... .... 

..f2 (i + k) (II. 73) 

~ 
I 

So _!!_ <f + k> 
..f2 

and hence by (II. 72): 

S I s 4n • 
2 - 2 = {2 El • (II. 74) 

The angular deviation IS 21 - S 2 I is thus given by 

(II. 75) 

Assuming n 1. 5 we obtain 

(II. 76) 

which demonstrates the accuracy to which the roof angle has to be held if 
noticeable doubling is to be avoided. The formula (II. 76) refers to the rays 
inside the prism. However, one proves readily that no additional deviation is 
introduced by refraction on the last prism surface. This follows from the fact 
that in the exact roof prism the rays pass at right angles through this surface. 
For small values of E this surface is passed almost at right angles. The 
refracted rays S31 and S3 differ then from S21 and S2 only by terms of order 
E 2 • Thus for the final bundle we have the same formula: 

(II. 77) 



SUPPLEMENTARY NOTE. NO. I 

ELECTRON OPTICS 

INTRODUCTION 

In electron optics it will be found that much the same problems occur as 
in ordinary optics and similar methods may be used to treat them. It is the 
purpose of this appendix to develop the theory of electron optics through the 
close parallelism of the two fields. 

The subject deals with the behavior of electrons in an electromagnetic 
field. To discuss the theory rigorously, it would be necessary to consider 
Schroedinger's wave equation, or for fast electrons, Dirac's. However, as in 
geometrical optics, certain simplifying approximations can be made. The 
electron is considered to be a particle with an associated charge and mass and 
the "ray" will be its path in a given electromagnetic field. 

It is possible to obtain the approximation of Geometrical Electron Optics 
from the wave equations of Quantum Mechanics by letting Planck's Constant 
h - o.t We may then treat Dirac's wave equations in precisely the same way 
as Maxwell's Equations in §16. Furthermore, it is then possible to construct 
a diffraction theory analagous to that of Chapter VI for electron optical instru­
ments. Since the wave lengths of electrons are much smaller than those of 
visible light, the limits of resolution obtained will be much smaller. It is for 
this reason that electron optics takes on such importanc·e in microscopy. The 
diffraction theory of such instruments will not be developed here, but we shall 
consider only the geometrical theory of electron optics. 

The discussion will begin with a derivation of a variation principle 
analogous to Fermat's problem in optics: 

V = J n ds = Extremum. 

However, because of the presence of a magnetic field, the electron optical 
"index of refraction" will be found to depend on the direction as well as the 
position. This corresponds to the non-isotropic, non-homogeneous case in 
ordinary optics. 

t See W. Pauli, Die Allgemeinen Principien der Wellenmechanik, p. 240 ff. 
Handbuch cler Physik, Bd 24.1, 1933 
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§1. THE EQUATIONS OF MOTION 

1.1 We consider an electron with a mass, m, and a charge, e, moving 
in an electromagnetic field. The field is defined by its potentials, the electric 
potential cp(x,y,z), a scalar, and the magnetic potential A(x,y,z), a vector. 
The field vectors are given by the equations 

.... 
E grad cp 

.... .... 
H curl A 

From Maxwell's equations it is found that 

.... 
and t::.A 

- 47rp 

471" 7 
-1 
T 

(Poisson's Equation) 

.... 
div A 0 

(1.11) 

(1.12) 

where p = p(x,y,z) is the electric charge density and i is the vector of 
current density and direction. We are mostly concerned, however, with parts 
of the electromagnetic field in which there is no charge and no current. t The 
equations (1.12) then become 

t::.cp 0 

t::.A 0 ' 
.... 

div A = 0 . 
(1.13) 

The force, F = (F 1, F 2 , F 3 ), acting upon the electron is th~ sum of the 
electric force eE, and the Lorentz force of the magnetic field, ~ (X x H). 

[.... 1 ~ .... 7 
F = e E + c (X x H~ (1.14) 

.... 
where X = (x,y ,z) is the velocity vector of the electron and the dot denotes 
differentiation with respect to the time parameter, t. 

The kinetic energy of the electron may be written in the form 
T(x,y,z; x,y,z) = T(xi,x;). (i = 1, ... ,3) where X1,X2,X3 are written in 
place of x, y, z. For this problem T is a function of x, y, z only. For slow 
electrons we have the classical expression 

(1.15) 

t Since the charge density is not zero in the neighborhood of the cathode of an 
instrument, this assumption is not always valid. cb must then be determined as a 
solution of Poisson's Equation. 



ELECTRON OPTICS 375 

whereas for high velocities we must apply the relativistic mechanics of a 
particle t in which 

T 

2 l • 2 
(3 = c2 ~x1 

For small values of (3 this reduces to (1.15). 

( 1.16) 

1.2 Knowing the kinetic energy we may write Lagrange's equations of 
motion 

d BT 
dt 8x 1 

(1.21) 

which are valid for any field of force. The kinetic potential of the system 

(1.22) 

is determined if the system has a generalized potential U such that 

F; 
au d au 

(1.23) +-
8x 1 8x 1 dt 

The scalar expression ecp 
e ... ~ 

- 0 (A, X) (1.24) 

is a generalized potential, U, since it does give the vector F as can be 
verified by direct computation. From (1.21) and (1.23) we obtain Lagrange's 
equations in the form 

(1.25) 

Hence, the equations of motion of an electron in an electromagnetic field may 
be given in terms of the Lagrangian function or kinetic potential, L(x 1 ,xi), 
where 

(1.26) 

t See 0. Halpern, Relativita'.tsmechanik,Handbuch der Physik, Bd. 5, 1927 
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1.3 Now the equation (1.25) is precisely Euler's equation for the problem 
of variation 

w Extremum. (1.31) 

Hence the existence of L means that we may inte:qJret the functions xi(t) as 

)t 

z 

y 

extremals of the problem where only those 
x; (t) which pass through two given points, 
P

0 
= (0!

1
,0!

2
,0!

3
) and P 1 = ({3

1
,[3

2
,[3

3
) are 

admitted. In other words we admit only 
those curves satisfying the boundary con­
ditions 

(1.32) 
/3 i 

The extremals of this problem give not only 
the path of the electron but also its motion 
as a function of t. 

1.4 The function L in (1.26) does not depend explicitly upon the time but 
only on X; and X;, From this it is shown that the expression 

. aL L 
~xi -a· -

xi 
(1.41) 

is a constant along the path of a moving electron, for we have 

d ~ . aL 
- L] ( .. aL . d BL ) Ex-~- E .. ~ 

dt Exi axi = E xi ax . + xi dt ax . xi a· 
1 1 

lax; X; 

xi [! :~i - :~J 
O by (1.25) 

Hence, . BL L C (1.42) ~xi-a• - = 
xi 

This is the general principle of conservation of energy. The special case 

L = ; Ex;2 - U(x;) yields the familiar equation, ; Ex;2 + U = C, namely 

the sum of the kinetic and potential energies is constant. 
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From this general result we will derive a problem of Fermat's type in 
the next section. 

§2. THE ASSOCIATED FERMAT PROBLEM. 

2.1 Consider a mechanical problem which has a Lagrangian function 
L(xi, x;) that does not depend explicitly on t. The expression (1.41) is a 
constant along any actual path. We shall consider only those paths for which 

(2.11) 

where C is a given constant. We want to pick out the path from among these 
which passes through two given points P0 and P 1• In other words a solution 
of Lagrange's equations (1.25) is sought which satisfies the condition (2.11) 
and passes through the points P0 and P 1• This problem differs from that of 
(1.31) in that it is not required that the points P0 and P 1 be passed at the 
particular times t 0 and t1, but that the particle has the given energy C. 

This new problem can be characterized as a variation problem as we 
now show. Let x 1 = xi(s) be a curve passing through the points P0 and P 1. 

The parameter, s, is chosen so that xiCO) = ai and xi(l) = {31 where ai 
and /3i are the respective coordinates of P0 and P 1. The time when the 
electron reaches a point xi(s) on the curve is expressed as t = t(s). The 
Lagrangian function L(x1 , xJ of the electron becomes a function of ~ 

where the prime denotes differentiation with respect to s. The solution of this 
problem is the solution of problem of variation: To find functions xi (s) 
satisfying the boundary conditions 

xi(O) = ai (2.12) 

for which the integral 

V (2.13) 

is an extremum. Note, in particular, that there are no boundary conditions 
upon t(s). 

Variation with respect to xi yields 

0 (2.14) 
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where Ldx1,xd 
equations (2.11). 

-a~ L 1(x1,xi). lfwe divide by t' we recognize the 
xi 

Let us take the variation function of t, t + E /;. This gives 

for any function t(s). Integration by parts yields the equation 

But /; is arbitrary, hence 

:s ta~• (t'L)] = 0 

and __£_(t'L) + C = 0 for s = 0 and s = 1, therefore 
at• 

a xl 
at' (t'L) + C = L - I:t' Li + C = 0 for all values of s. 

I 
Xi 

However, t' xi which gives the energy condition 

• aL L C I:xi -a· - = , 
Xi 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The special condition (2.11) is therefore obtainable from (2.13) by variation 
with respect to the time t(s). 

2.2 It will be shown now that the variation problem (2.13) can be trans­
formed into an integral of Fermat's type 

1 
V = J F(x;,x1')ds 

0 
(2.21) 

where F(x 1 , x ;') is homogeneous of the first order in x I'. In order to do this 
the function t(s) must be eliminated in (2.13). 

Consider the equivalent problem of variation 

V = ~1 [L (xi, :i') + p(s) (p - t') + Ct•] ds = Extremum (2.22) 
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where p(s) is a Lagrangian multiplier.t Variation with respect to p gives 

+ p(s) 0 . (2.23) 

Variation with respect to t gives 

p'(s) = 0 and p(l) p(O) C . (2.24) 

Variation with respect to p(s) gives 

p - t' = 0 . (2.25) 

The conditions (2.23), ... ,(2.25) may be placed upon (2.22) without 
affecting the solution of the problem. The condition (2.25) gives the original 
problem (2.13), however we obtain a new problem by imposing the other 
conditions. From (2.24) 

p(s) C (2.26) 

and hence by (2.23) 

:Pp [c + L 1 (x;, x/)] = o . 

(2.27) 

This gives 

(2.28) 

where p may be eliminated by means of the condition (2.27). 

2.3 The problem of variation has been expressed in the equivalent form 

1 
V = J F(x;, x 1' )ds = Extremum 

0 

and where p = p(x 1 ,xi') is determined by the equation 

t Compare the similar procedure for the elimination of O(z) in §30.2. 

(2.31) 

(2.32) 
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(2.33) 

It will now be shown that F(x;,x;') is homogeneous in x 1' to the first order. 

G(x 1 , x ;', p) satisfies the relation 

as we may easily verify. Now from (2.32) and (2.33) it follows that 

Hence ~x;' Fx-' 
we obtain 1 

Fx;' 

G - pGP. Since GP = 0 and G 

which is Euler's condition for homogeneity of the first order in xi'. 

(2.34) 

F, 

(2.35) 

In summary: The paths of particles of a given energy C in a mechanical 
system which possesses a Lagrangian function of the form L(x 1, X;) are 
extremals of the Fermat problem 

V = f F(x;,x 1')ds (2.36) 

where the function F(x 1 , x ;1) is homogeneous of the first order in x ;' and can 
be obtained by eliminating p from the equations 

(2.37) 

We note that this definition of F is equivalent to the definition by the Legendre 

transformation :p [pL (xi, : 1)] = -C; pL + F = - Cp. 

2.4 Consider the example of the case where the kinetic energy is a 
quadratic form in the velocities T = ~g;kxixk, and the potential is a function 
only of the position, U(x 1). Then L = T - U or 

(2.41) 

which gives the function F through the equations (2.37) 
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F 

(2.42) 

We obtain the Jacobi principle of mechanics 

(2.43) 

2.5 The case of electron optics. The general result immediately yields 
the electron optical Fermat problem. From (1.26) we have the Lagrangian 
function 

I X-1 

where {3 2 = 2 Ex}. The substitution of ~ for x; gives 
C p 

(2.52) 

which we write in the form 

G ( /.. 1 2 ) -- 1 me= cp 1-yl - p 2C2 ExI + (a•X') + 2 pccp (2.53) 

The vector a and the scalar cp(x,y ,z) are defined by 

(2.54) 

_ 2(C - ep) 
cp - mc 2 • 

In these expressions the right sides are dimensionless. 

The extremals of the variation problem (2.26) are not changed by 
multiplying the function F(x 1 ,x;') by a constant. So that the index of re­
fraction may be a dimensionless number, the function F is defined by the 
equations 

1 
F = - G(x 1 ,x;', p) 

me 

~ __!_ G( ' ) 0 "' X;,X;, p 
up me 

(2.55) 
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through the elimination of p we obtain the equation 

(2.56) 

F is, in fact, homogeneous of first order in X;1 , 

The paths of electrons of energy C are the extremals of the variation 
problem 

V = JF(x;,x;')ds J~ ✓x' 2 + y' 2 + z' 2 + (a1 x' + a 2 y' + a 3 z•~ ds 

(2.57) 

in which cp and a; are the dimensionless quantities of (2.54). If the parameter 

s is chosen as the length of the curves X(s) we can write 

V = J n ds = Extremum (2.58) 

where the "index of refraction", n, is given by the formula 

(2,581) 

and (~, T) , /;) is a unit vector in the direction of the path. 

For slow electrons we obtain a new formula by means of the classical 

expression for the kinetic energy T = ½ m 'E.x}, namely 

n = -.✓cp + (a1 ~ + a 2 n + a 3 /;) (2,582) 

which is obtained from (2.581) by dropping the¼ cp2 from the radical. 

2.6 If a vector of length ¾ is drawn in any direction (~,Tl, /;) we obtain 
a surface closely related to Fresnel's ray surface in crystal optics. An 

electromagnetic field can thus be interpreted 
as an optical crystal whose properties vary 
from point to point. To each point there is 
then an associated ray surface which is 
given by 

-.✓cj ✓x2 + y 2 + z 2 + a1 x + a 2 y + a 3 z = 1 . 

(2.61) 
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This is the equation of an ellipsoid which is symmetric with respect to the 
vector a. The center is offset in the same direction. In case a = 0 the 
ellipsoid becomes a sphere. 

§3. THE CANONICAL EQUATIONS OF ELECTRON OPTICS. 

3.1 The parameter in the variation problem is now taken to be the 
coordinate z. The problem has become 

V 
Z1 . 

J F(x,y ,z,x,y)dz 
Zo 

= Jz1 [~~ + (a1x + a2Y + as>] dz 
Zo 

(3.11) 

h • dx d" ~ w ere x = dz an y dz . 

Our aim is to transform this problem into canonical form. In §18.37 it 
has been shown in general that the canonical form is obtained by introducing 
the quantities x,y,p,q,H in (3.11). In place of x,y,x',Y',F through the Legendre 
transformation, 

8F 
p ax ' q 

F+H=xp+yq 

3.2 Let us adopt the notation 

8F 
ay 

N(x,y,z) =~ 

giving F 

whence 

Nx 
p + a1 

✓1 + x2 + y2 

q N;y + a2 
✓1 + :x:2 + y2 

From this it follows that 

x y 

(3.12) 

(3.21) 

(3.22) 

(3.23) 
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If these expressions are introduced in H = xp + yq - F they yield the 
Hamiltonian function 

H -✓N2 - (p a1)2 - (q - a2)2 - a3 

or H = -✓Cp + ¾ cp2 - (p - a1)2 - (q - a2)2 - a3 

For slow electrons this reduces to 

The quantities x,y,p,q satisfy the canonical equations 

x 

y 

p 

q 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

These equations will be used to derive the theory of first and third order 
electron optics by methods identical to those of Chapter IV and V to obtain 
similar results. 

No use will be made of Hamilton's characteristic functions V, W, and T 
since the results of the following sections may be derived without them. The 
general theory of these functions developed in § §19-21 may be applied directly 
to the present problem since we based the theory upon canonical equations in 
general. 

§4. ELECTROMAGNETIC FIELDS OF ROTATIONAL SYMMETRY. 

4.1 Most electron optical instruments are, like ordinary optical instru­
ments, symmetric about an axis of rotation. Let this axis be the z-axis of the 
coordinate system. The electric potential, q,(x,y,z), must then be a function 

of z and of p = ✓ x 2 + y 2 . Hence this is true for the function 

(4.11) 

and for 

_N(p,z) =~. (4.12) 

It is easy to verify that in a magnetic field of rotational symmetry the com­
ponents (Ai,A 2 ,A 3) satisfy the conditions 

0 (4.13) 
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and that Ai2 + Al is a function of p and z. In other words the vectors A are 
tangent to the circles x 2 + y 2 = p2 

of the planes z = const. It follows 
that the same conditions are satisfied 

z 

by the dimensionless vectors 

a i = ~·Ai. If these conditions me 
are satisfied, the vector a has the 
form 

i = (-ya,xa,O) 

where a = a(p,z) is a scalar 
function. 

(4.14) 

4.2 The Hamiltonian (3.24) in systems of rotational symmetry is given 
by the expression 

H -✓N 2 (p,z) - (p + ya) 2 - (q - xa) 2 

or (4.21) 

But, since N(p,z) and a(p,z) are even functions of p = ✓x2 + y 2 , this 
means that H may be written as a function H = H(z;u,v,w) of the three 
combinations 

u = x2 + y2 

V = p2 + q2 

w 2(xq - yp) 

(4.22) 

If no magnetic field is present H does not depend on w but only on u 
and v. This corresponds to the ordinary optical case. The canonical equations 
become 

x 

y 

whence we obtain 

2(Hv p - Hwy) ; p 

q 

xq - YP 

xq - yp 

- 2Hw(xp + yq) 

+ 2Hw(xp + yq) 

(4.23) 

(4.24) 
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and hence 

d 
dz (xq - yp) = 0 . 

This yields the same result as in optics. The expression xq - yp 
constant along any given electron ray. 

(4.25) 

4.3 It is assumed in the following that the charge density p = 0. Thus 
cp and hence cp are solutions of Laplace's equation t::..cp = 0. We have seen 
in §38.1 that the solution cp = cp(p,z) which assumes the boundary values 

cp(O,z) = f(z) 

on the z-axis is expressed by the integral t 

1 2rr 
cp( p ,z) = -2 J f(z + ipcos cp)dcp 

71" 0 

(4.31) 

(4.32) 

The function, f(z) may be expressed in terms of the potential on the axis, 
cp(O,z) 

f(z) = m! 2 [c - ecp(O,z)] (4.33) 

where the constant C is the kinetic energy of the electron C ½mv 02 in 

those parts of the field where the electric potential is zero. Hence from (4.33) 

Vo2 2e 
f(z) = - 2 - - 2 cp(O,z) . 

c me 
(4.34) 

The formula (4.32) may be used to derive a power series for cp(p,z). With the 
aid of the relations 

1 27r (2v)! J cos 2vcpdcp 
271" 0 22v(v!)2 

(4.35) 
1 27r 

271" 
j cos 2 v+t cp dcp 0 
0 

t Scherzer, Z. Physik 80, 193, 1933. 
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we obtain 
00 

cp( P ,z) (4.36) 

or 

(4.37) 

4.4 The vector a = (- ya(p,z), xa(p,z), o) must satisfy the conditions 

.6.a = o, div a = 0 (4.41) 

by (1.13). By computation it is easy to see that div a = 0 for any choice of 
the scalar function a( p ,z) and that .6.a = 0 if a( p ,z) satisfies the differential 
equation 

(4.42) 

In a way similar to that for cp(p,z) (compare §38.1) it may be verified 
that the integral 

1 2'1T 
a( p ,z) = -2 J g(z + ip cos cp)sin 2 cp dcp 

.,,. 0 
(4.43) 

is the solution of (4.42) which satisfies the boundary condition 

2a(0,z) = g(z) (4.44) 

on the z-axis. 

To interpret the function g(z) physically let us derive the magnetic field 
of the system 

e --H 
mc 2 

-curl a (4.45) 

It follows that on the z-axis 

m: 2 H = (o, 0, 2a(O,z)) (o, o, g(z)) . (4.46) 
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This means that g(z) depends on the component H3 of the magnetic field along 
the z-axis, namely 

e 
g(z) = --2 H3(0,z) . 

me 

Note that g(z) is not dimensionless but has the dimension 1/cm. 

(4.47) 

A power series for a(p,z) may be derived from the integral formula 

_!_ f2rr 2v . 2 d - (211)! 
2 cos cp sm cp cp - 22u+1 '( 1)' • 

71' 0 JI. JI + . 
(4.48) 

This gives 

a(p,z) 1 "" (-l)u 
= 2 L, v!(~ + 1)! 

( p)2V 2 g(2v) (z) (4.49) 

or 

( ) 1 ( ) _!_ 2 "( ) a p ,z = 2 g z - 16 p g z + . . . . (4.491) 

The principal result of these last two sections is that the electromagnetic 
field is completely determined by two analytic functions f(z) and g(z) which 
are given by the electric potential cp(O,z) and the magnetic vector component 
H3 (0,z) along the axis of rotation. 

§5. FIRST ORDER ELECTRON OPTICS IN SYSTEMS OF ROTATIONAL 
SYMMETRY. 

5.1 As in optics the first order equations may be obtained by ta.king the 
first order development of the Hamiltonian 

H(z;u,v,w) = -✓N 2 - a 2u + aw - v 

in powers of u, v, and w. N and a are functions of z and u 
Now, to the first order we have 

(5.11) 

x2 + y2. 

(5.12) 

where H0 , H1, H2, H3 are certain functions of z. Consider the canonical 
equations for the Hamiltonian (5.12) 

x 

y 

p 

cj_ 

(5.13) 
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The solutions x(z), y(z), p(z), q(z) of these equations are called the 
paraxial electron rays. Now for reasons which will become obvious later we 
introduce the notation 

D(z) 2H1 

1 
n(z) 

dw 
dz = w(z) 

The Hamiltonian (5.12) assumes the form 

H = H0 + ½ (nu + ~ + ww) 

and the canonical equations become 

x 1 
~P - wy, p - nx - wq 

y <i = - Dy+ wp 

5.2 The equations (5.16) may be written as follows 

d [ex + iy)e -iw(z)] .! (p + iq)e -iw(z) 
dz n 

d [<P + iq)e -iw(z)] = - D(x + iy)e -iw(z) . 
dz 

This result suggests the introduction of the complex notation 

X(z) (x + iy)e•iw (z) 

P(z) (p + iq)e -iw (z) 

Hence we may express the canonical equations (5.21) in the form 

P - DX 

(5.14) 

(5.15) 

(5.16) 

(5.21) 

(5.22) 

(5.23) 
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which is a system of equations of the same type as the paraxial equations of 
geometrical optics (37 .46). Therefore in the investigation of these equations 
the methods of §37 may be applied. 

5.3 The coefficients D(z), n(z) and w(z) are determined by the values 
of the functions f(z) and g(z) defined in §4. From (5:11) we obtain 

Furthermore differentiation yields 

1 
H -o n - 1 

Now, since N2(u,z) = rp(u,z) + ¾rp 2(u,z) we obtain 

( aN2) 1 -8 = cpu(O,z) + -2 rp(O,z) 'Pu(O,z) and hence by (4.37) 
u U=O 

( aN 2) 1 ( 1 ) _ - = - - 1 + -f(z) f"(z) . 
8U U=O 4 2 

(5.31) 

(5.32) 

(5.33) 

The function ~ g(z) a(O,z) is introduced, thus giving the following result: 

D(z) 

w(z) 

1 
f" + g 2 + -ff" 1 2 

4~ 

- - l g(z) 

2~ 

(5.34) 

For slow electrons (non-relativistic motion) the second order terms f 2 and 
ff" may be neglected to give the simplified formulae: 
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D(z) 
1 f" + g2 

4 ff 

n(z) = ff 

w(z) - - .! ~ 
2 ff 

391 

(5.35) 

The formulae for purely electrical. fields (g = 0) have already been derived 
in §38. 

5.4 The general solution of the canonical. equations (5.23) can be written 
in the form of a linear combination of any two particular linearly independent 
solutions. As in §37 .5 the particular solutions chosen are: 

The axial ray h(z)," (z) defined by the boundary conditions 

(5.41) 

and the field ray H(z), 0(z) defined by the conditions 

0(z 0 ) 0 

z 

(5.42) 

The general solution of (5.23) 
can be expressed in terms of 
these two rays, namely 

X(z ) = X0H(z) + P 0h(z) 

(5.43) 

P(z ) = X 00(z) + Po" (z) . 

This ray satisfies the boundary 
conditions 

(5.44) 

where X0 and P 0 are arbitrary complex numbers. 
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To obtain the solution of the original paraxial equations (5.16) from 
(5.43), let us define w(z) in accordance with (5.34) by the integral 

z 
w (z) = _ .! J g(z)dz 

2 zoJ7¥ 

(5.45) 

so that w(z 0) 0. 

Now Po + iqo 

and X (x + iy)e•iw (z) , p (p + iq)e -i w (z) 

and hence by (5.43) 

X + iy 

p + iq 

e iw [<x 0 + iy 0)H(z) + (Po + iq 0)h(z)] 

e ;w [<x0 + iy 0)0(z) + (Po + iqo)tJ(z)] 
(5.46) 

Thus these equations represent the ray x(z), y(z), p(z), q(z) which has 
the coordinates x 0 ,y 0 ,p 0 ,q0 at z = z 0 • 

5.5 Conjugate planes. Assume that the axial ray h(z) intersects the 
z-axis at the point z = z1 so 
that h(z 0) = 0 and h(z1) = 0. 
The coordinates x1,y1,pi,q1 of 
an arbitrary ray are then re­
lated to those at z = z O by 

Zo 

h(z) the equations 

Xt + iY1 

= eiw(z1) [<xo + iyo)H(z1)] 

(5.51) 

Pt+ iqt 

iw (z1) r, 
e ~x 0 + iy 0)0(z1) 

+(po+iqo)tJ(z1)]. 

As in §37.5 we introduce the quantities 

M, 

F' 
1/M 

(Magnification) 

(Equivalent focal length) (5.52) 
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This yields the relations 

(5.53) 

The first equation shows that all the paraxial rays from a point (x0 ,Yo) of the 
plane z = z O intersect in a point on the plane z = z1, namely 

x1 M(x 0cos w - y 0sin w) 

Yt M(x 0sin w + y 0cos w) 
(5.54) 

This means that, in the paraxial region, the instrument produces an image of 
the plane z = z 0 on the plane z = z1 which is enlarged M times and rotated 

through an angle w(z1). 

Yo 

The :planes z O and 
z1 are conjugate planes 
of first order optics and 
we may make the state­
ment of §37: If a real 
solution h(z) of the 
equations (5.23) intersects 
tl;te z-axis at two different 
points z 0 and z1, then 
the planes z = z O and 
z = z1 are conjugate 
planes. 

The existence of a solution h(z) of this type depends on the functions 
D(z) and n(z), that is, on the functions f(z) and g(z) which characterize the 
electromagnetic field. A proper choice of either f or g or of a combination 
of f and g can be made so that solutions h(z) of the desired type are always 
obtained. Thus the focusing action of fields of rotational symmetry may be 
demonstrated. 

The magnetic field not only contributes to the focusing effect but also 
produces the rotation of the image. The angle of rotation is, in fact, given by 
the integral 

(5.55) 

which vanishes with the magnetic field. 
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§6. THE GAUSSIAN CONSTANTS OF AN ELECTRON OPTICAL INSTRUMENT. 

6.1 In this section formulae will be derived which determine the first 
order imagery of an electron optical instrument. These formulae are perhaps 
of less interest mathematically than as a means of practical computation. 

Consider an electromagnetic field which practically vanishes outside a 
given region O :S z :S i.. This means that g(z) = 0 and f(z) is a constant in 
the regions O > z and z > i. . Since the angular rotation of the image for all 
conjugate planes is given by the integral 

w 1 li. g(z) dz 

2o~ 
(6.11) 

all other first order character­
istics can then be derived with 
the aid of the real solutions of 
the differential equations 

X = ..!.p 
n 

P - DX 

(6.12) 

The theory of these equations is the same as in ordinary Gaussian optics. 

Denote the constant values of the function n(z) = ~ in the 

regions z < 0 and z > i. by n O and n1 respectively. From the general 
theory of Gaussian optics we know that the first order imagery can be charac­
terized by three constants: the equivalent focal length F, and the positions 
F 0 and F 1 of the focal points of the instrument. The position of conjugate 
planes is given by Newton's lens equation 

(6.13) 

where Z 0 and Z1 are the positions of the conjugate planes relative to the 
focal points. The associated magnification M of these planes is obtained from 

no 
M =-F 

Zo 

6.2 Denote the distance of the focal point in the object space from 

(6.14) 

z = 0 by F O , and let F 1 denote the distance of the focal point in the image 
space from z = i.. In general, we have F 0 < 0 and F 1 > 0. Now consider 
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a ray which has the coordinates X 0 and P 0 at z = O. With the aid of the 
axial ray and the field ray this ray can be represented in the form 

X(z) X 0H(z) + P 0h(z) 
(6.21) 

P(z) X 00(z) + P 0 t7 (z) 

The coordinates of this ray at z = i. are therefore given by the linear 
equations 

X(i.) X 0H(i.) + P oh(i.) 
(6.22) 

The determinant of these equations, H (i.) t7 (i.) - h(i. )0 (i.), is equal to one as 
was shown in §37. 75. By means of this result the equations (6.22) may be 
written in the form 

X(i.) 

P(i.) 

0 

(6.23) 

These equations may be 
verified by considering 
two special rays 

a) x 0 = 1; P 0 o 

b)X(i.)=l;P(i.) 0. 

The intersections of these 
rays with the axis are the 
focal points F O and F 1. 

In addition we have 

P(i.) = - i for the first 
1 

ray and P 0 = F for the 

second. These conditions give the coefficients of the above equations directly. 

6.3 A similar representation of the ray coordinates X(i.) and P(i.) may 
be obtained from the canonical equations (6.12). By integration 

z 1 
X(z) - X 0 = J -() P(s)ds 

0 n s 
P(z) - Po 

z 

l (- D(s)) X(s)ds 
0 

(6.31) 
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which gives the following integral equation for X(z) and P(z): 

l z ds J z ds1 J s1 X X 0 + P 0 - + - (-D)X ds 2 
0 n O n 0 

(6.32) 
Z Z St 1 

P = P
0 

+ X
0 

J (-D)ds + J (-D)ds1 J -P ds 2 . 
0 0 O n 

We will try to solve these equations by the method of iteration. Con­
sider the sequence of functions X 11 (z), P 11 (z) defined by the recursion 
formulae 

(6.33) 

and the conditions X
0
(z) = X

0
, P

0
(z) = P

0
. The convergence of the sequence 

X 11 , P 11 may be demonstrated under quite general assumptions about D(z) and 
n(z). 

The functions X 11 (z) and P 11 (z) may be seen to have the form 

(6.34) 

where the functions T i and rr i are defined by the iterated integrals 

rro = 1 To 1 

J 
z ds1 z 

rr1 Tj Jo (-D)ds1 
0 n 

z J s2 ds1 z ds2 s2 
rr2 J (-D)ds 2 T2 l - j (-D)ds1 

0 0 n 0 n 0 

Z ds 3 S3 s 2 ds1 Z S3 ds2 82 
rr3 J - J (-D)ds 2 J T3 J (-D)ds 3 J - J (-D)ds1 

O n O 0 n 0 0 n 0 

(6.35) 



ELECTRON OPTICS 397 

Assuming convergence, the coordinates X(l) and P(l) may be written 
in the form 

(6.36) 

By comparison of these formulae with (6.23), the quantities F, F 0 , F 1 are 
obtained from the infinite series 

1 
F 

(6.37) 

The quantities CTi and Ti are expressed in terms of the integrals (6.35) for 
z = 1. 

-0 1 

It is often preferable to 
use the unit points as reference 
points instead of the focal 
points. The position of the 
conjugate planes is then de­
termined by the lens equation 

1 
F 

(6.38) 

Let J O and J 1 be the distances of the unit points from z = 0 and z 1 
respectively. This gives the relations 

(6.381) 

and hence from (6.37) we obtain the equations 

(6.39) 
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6.4 For a first approximation we take only the first member of these 
series. The smaller the electron optical lens, that is, the smaller J., then the 
better is the approximation. The first approximation gives the formulae 

1 J. 

F 
= [ D(z)dz 

• 0 

J1 = -11. dz z 

n1F n Ia D(s)ds 
0 

(6.41) 

Jo J. z ds 
n 0F { D(z)dz { n(s) 

where the functions n(z) and D(z) are given in (5.34). 

f" + 
1 

D(z) - 4 

1 
g2 + -ff" 

2 

(6.42) 

n(z) =~. 

§7. THffiD ORDER ELECTRON OPTICS IN FIELDS OF ROTATIONAL 
SYMMETRY. 

7 .1 The third order theory of electron optics will be developed here by 
considerations like those of §42. 

X = Xt + X3 

y Yi + Y3 

p Pt + P3 

q qi + q3 

Let us assume that the 
two planes z = z 0 and 
z = z1 are conjugate planes 
in the first order theory. Let 
xo ,Yo ,Po ,qo be the coordinates 
of an electron ray at z = z 0 
and x(z), y(z), p(z), q(z) its 
coordinates at an arbitrary z. 
Consider a development of 
these functions into series of 
the form 

+ X5 + 

+ Ys + 
(7.11) 

+ Ps + 

+ q5 + 
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where the functions x; ,y; ,p 1 ,q; are homogeneous polynomials of order i in 
the initial coordinates x 0 ,y O ,P O ,q O• The coefficients of these polynomials are 
functions of z such that at z = z O the conditions 

and the conditions 

0 (i 2:: 3) 

are satisfied. 

1) 

(7.12) 

(7 .13) 

7 .2 The canonical equations in the system under consideration have the 
form 

x 

y 

p 

q 

From the first order development of the Hamiltonian 

These equations may be written in the form 

(7.21) 

x + iy - w(x + iy) - ..!_(p + iq) = 2(Hv - H2HP + iq) + 2i(Hw - H3)(x + iy) 
n 

(7 .22) 

p + iq - w(p + iq) + D(x + iy) = - 2(Hu - H1)(x + iy) + 2i(Hw - H3)(p + iq) . 

By introducing the complex functions 

X (x + iy)e•i w(z) 

p (p + iq)e•i w(z) . 
(7 .23) 

These yield the complex equations 

(7.24) 
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The quantities u,v,w can be expressed directly in terms of the complex 
functions X and P, namely 

u = x 2 + y 2 IX12 

V = p2 + q2 IPl 2 

w 2(xq - yp) = i(XP - XP) 

so that the equations (7 .24) may be considered as a pair of differential 
equations for the complex functions X(z) and P(z). 

(7.25) 

Now, as we have shown in §4.2 the quantity w does not depend upon z. 
Hence 

w = 2(xoqo - YoPo) · 

Now the angle w(z) is defined by the integral (5.45) so that w(z 0 ) 

therefore 

Xo = xo + iyo, Po = Po + iqo • 

(7 .26) 

0 and 

The development in (7.11) of the functions x,y,p,q may be replaced by 
a corresponding development of the complex functions 

(7 .27) 

where the Xi and P 1 are homogeneous polynomials of the i th order in the 
quantities x 0 ,Yo ,Po ,q 0 with coefficients which are complex functions of z. 
Further, we have 

and (7 .28) 

0 ' p i(Zo) 0 for i 2:: 3 . 

7 .3 Let us introduce the development (7 .27) into the equations (7 .24) 
and equate the polynomials of the same order. This yields a set of equations 
for the polynomials X 1 ,P I• For 1 we find 

(7.31) 
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and for i 3 

2(H12u1 + H22v1 + H 23 w1)P1 + 2i(H13u1 + H23v1 + H33w1)X1 

(7 .32) 

P3 + DX3 = - 2(H11u1 + H12V1 + H13w1)X1 + 2i(H13U1 + H23V1 + H33W1)P1 

where the coefficients H I k are functions of z which are defined by the de­
velopment of the Hamiltonian to the second order in u,v,w: 

(7.33) 

The coefficients will be determined later. 

The right hand members of the equations (7.32) are known functions of 
z if we have the first order polynomials X1 and P 1. In fact, we have 

(7.34) 

The solutions X1 and P 1 may be expressed in terms of the two particular 
first order rays: 

The axial ray: h(z), "(z) 

and the field ray: H(z),0(z) 

which are defined by the boundary conditions (5.42) and (5.43) and hence 
satisfy the relation 

I
H(z) h(z) 

1 . 
0(z) " (z) 

The planes z 0 and z1 are conjugate, hence 

H(zi) M, h(z1) 0 , 

0(z1) 
1 

" (z1) 
1 

- - F' M 

(7 .35) 

(7 .36) 
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The polynomials X1 and P 1 are then given by the functions 

X 1 = X 0H(z) + P 0h(z) , 
(7 .37) 

whence it follows that 

(7 .38) 

w1 2(xoqo - YoPo) 

7 .4 We wish to determine the third order departure x 3 ,y 3 of the inter:... 
section of the ray with the image plane from the ideal first order intersection 
by means of the quantity 

(7.41) 

It is even preferable to determine the departures l).~ and l).TJ given by 

(7 .42) 

where these are the departures measured in a coordinate system which is 
rotated through the same angle w(z 1) as the first order image. 

Now X 3 may be found by the method of §42.3. From the two equations 

1 
X3 - -Pa n _2(H12U1 + H22V1 + H32W1)P1 + 2i(H13U1 + H23V1 + H33W1)X1 , 

it follows that 

Similarly, from the second equation (7 .. 32) and the equation i'J + Dh 
follows that 

(7 .43) 

(7.44) 

0, it 

(7 .45) 
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The sum of the left sides of (7 .44) and (7 .45) is :z (X3 1' - hP 3). Hence using 

the relations h(z 0) = h(z1) = 0, X3(z 0) = 0, 1' (z1) = ~ it follows that 

J z1 r. 
2 ~H12U1 + H22V1 + H23W1)P1t7 

Zo 

+ (Huu1 + H1 2V1 + H13w1)X1h] dz 

(7.46) 

If the expressions (7 ,37) and (7 .38) are introduced the right side becomes a 
cubic polynomial in x 0 ,y 0 ,p0 ,q 0 • Since w1 and X1 t7 - P 1h = X0 are inde­
pendent of z the integral may be written in the form 

A~ + iA17 

M 2 J zi ~H12u1 + H22 v1)P1 t7 + (H11u1 + H12v1)X1h] dz 
Zo 

(7.47) 

7 .5 The first of these integrals is the same as the integral (42,352) of 
the corresponding optical problem. Now, if no magnetic field is present all 
the coefficients H; 3 vanish so that only the first integral remains. The cubic 
polynomial defined by this integral must therefore be of the same form as in 
geometrical optics. Without loss of generality it may be assumed that Yo = 0 
which gives this polynomial in the form 

The coefficients are given as the same integrals as (42.44) with r 1, 
namely 
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A 2 1z1 
[Huh' + 2H12h21' 2 + H22 1' 4 ]dz , 

Zo 

Z1 
[Huh3H + H12ht?(H1' + h0) + H2 201' 3]dz, B = 6 J 

Zo 

C 6 1z1 

Zo 
[H11h 2H2 + 2H12Hh01' + H22 021' 2]dz + 2 Jz:1 H12dz, (7.52) 

E 2 JZt [HuhH3 + H12H0(H1' + h0) + H220 31' ]dz, 
Zo 

D 2 JZj [H11H2h2 + H12(H21'2 + h202) + H2292172]dz. 
Zo 

The other integrals in (7.47) represent aberrations which are introduced 
with the magnetic field. In the investigation of these integrals only results 
will be stated since the procedure requires only simple algebraic manipulation. 
Again let us take y O = O. For the sum of these integrals we obtain the 
polynomial 

where the coefficients (3, y, 6 , E are given by the integrals 

Zj 
y 4 f (H13Hh + H 23 0t7)dz, 

Zo 
(7 .54) 

6 
Z1 

4 f H33 dz . 
Zo 
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The complete third order polynomial X3 = Ll.~ + iA7) is the sum of the 
polynomials (7.51) and (7.53). Hence we have the general expression for the 
third order aberration of an electron optical system with reference to an 
object point (x ,0): 

~ A(Po2 + qa2)po + ½xo [B(3Po2 + qo2) + 2f:lpoqo~ 

+ xo2 f Po + yqo] + Exo3 , 

A(Po2 + qo2)qo + ½xo ~Bpoqo + /:l(Po2 + 3qa2}] 

+ Xo2 ['YPo + D~o] + EXo3 

The quantity D* is then defined as 

D* = D + o , 

that is 

(7 .55) 

(7 .56) 

(7 .57) 

From the formula (7 .55) we see that an electron optical instrument has, in 
general, eight types of third order image aberrations given by the eight 
coefficients 

A, B, C, D*, E; f:l, y, E . (7 .58) 

7 .6 To complete the foregoing considerations we shall determine the 
explicit form of the functions Hik(z) in terms of the functions f(z) and g(z) 
which characterize the electromagnetic field. The functions H ik are the 
second derivatives at the point u = v = w = 0 

of the Hamiltonian (5.11). The function H is given by the expression 

1 
+ - cp 2 - ua 2 + aw - v 

4 

(7 .61) 

(7 .62) 
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and the functions a(u,z) and cp(u,z) by the power series 

a(u,z) 
1 u 
2g(z) - 16g"(z) + • • · ' 

cp(u,z) = f(z) - ¾uf"(z) + : 4 u 2f (4)(z) . , . 

Elementary calculation will yield the result: 

1 
2n2 D' 

(7,64) 

2H23 

The expressions for n(z) and D(z) 

n(z) = ~. D(z) _.!... (f" + g2 + .!ff") 
4n 2 

(7 .65) 

should be introduced in the formulae. 

For slow electrons (non-relativistic motion) the terms ½ff"" and f 112 

in the formula for H11 and the terms ¾f2 and ½ff" in the expressions for 
D(z) and n(z) may be dropped, that is, all quadratic combinations involving 
the function f vanish. The formulae obtained in this case for g = 0 are 
the same as in (42.75) from Chapter V. 

7. 7 Petzval' s Equation: A generalization of Petzval' s equation in 
geometrical optics (see §42.6) may be obtained from the foregoing results. 
From (7.52) and (7.57) it follows that 
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3D* - C 

Introducing the expressions (7 .64) we find 

or explicitly 

1 Z1 1 ( 1 ) 3D* - C = 4 f n 3 f" + 4g2 + 2ff 11 dz 
Zo 

3D* - C 
f" + 4g2 + !ff" 

2 
_(_f _+_¾_f_2)-3/-2 - dz • 

407 

(7.71) 

(7. 72) 

(7. 73) 

Hence in an electron optical system in which D* = C = 0 this integral must 
be zero. Note that the presence of a magnetic field makes a positive contribu­
tion to the integral and thereby decreases the chance of satisfying Petzval' s 
condition. 

§-8. PHYSICAL DISCUSSION OF THE THIRD ORDER ABERRATIONS OF AN 
ELECTRON OPTICAL INSTRUMENT. 

In conclusion we shall discuss the different types of aberrations and 
their physical appearance. The several aberrations will be considered in 
groups according to the exponent of the variable x 0 in the different terms of 
(7.55). 

8.1 Spherical Aberration. The terms in (7 .55) which do not depend on 
x 0 are 

(8.11) 

By introducing 

Po p cos!/! , 
(8.12) 

q 0 p sin !fi • 

the image of a zonal bundle of rays of aperture p is obtained as a circle 

(8.13) 
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whose radius is proportional to the cube of the aperture p. Hence the entire 
bundle of rays from an axial object point intersects the image plane in a 
circular spot. This aberration is called spherical aberration as in optics. 

8.2 Coma. The aberration which is proportional to x 0 is given by the 
expressions 

(8.21) 

Using p and 1/J we obtain 

(8.22) 

By introducing 

R cos 2a 
(8.23) 

R sin 20! 

the equations (8.22) are obtained in the form 

~; 2R cos 2a + R cos 2(1/J - a) , 

~ 17 2R sin 2a + R sin 2(1/J - a) . 
(8.24) 

This is the equation of a circle of radius R with the point 2R cos 2a, 
2R sin 20! as its center. The quantity 

Electromagnetic Coma 

(8.25) 

increases with the square of the aperture 
p. The circles which belong to different 
apertures p, have their centers on the 
same straight line which includes an angle 
a with the ~; -axis. The superposition of 
all these circles produces a typical third 
order coma flare of ±30° angular opening. 
However, if (3 I= 0, that is, in the presence 
of a magnetic field, the flare no longer 
points to the center of the field. In 
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general it includes an angle with the radius towards the center as is shown in 
the above figure. The magnetic field affects the coma flares by deviating them 
from a central orientation. 

8.3 Astigmatism. Next we consider the terms 

Mxo2 [<CPo + yqo)] , 

MX02 ~'YPo + D>f<cio>] 

which are proportional to x 02 • In polar coordinates we have 

AT/ Mxa2p (y cos 1/i + D* sin 1/i) 

(8.31) 

(8.32) 

For a given value of p these equations represent an ellipse. This aberration 
is caused by the astigmatic character of the refracted bundle of rays. If 

y = 0, that is, in the absence of a 
magnetic field, these ellipses are 
symmetric to the radial lines of the 
field. The presence of a magnetic 
field, however, may cause the axes 
of the ellipse to take on any angle 
with the radius vector towards the 
center of the field. The ellipse 

Electromagnetic Astigmatism (8.32) degenerates into a straight 
line if the determinant of the coef­
ficients is zero, that is, when 

D*C = y2 . (8 .33) 

The line may include any angle with the radius toward the center. In optics 
and in electrostatic fields it must be either normal or parallel to the radius 
vector. 

8.4 Distortion. The final terms in (7 .55) give the aberration 

This aberration is obtained for bundles of extremely small aperture p. 
Therefore the definition is sharp but the resulting image is distorted. For 
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Electromagnetic Distortion 
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optical and electrostatic instruments 
we have e: = 0 which leaves an 
object consisting of radial lines 
undistorted. This is no longer the 
case with magnetic fields as appears 
from (8.41). The appearance of the 
image is shown in the figure. This 
type of distortion is sometimes 
referred to as Spider distortion. 
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SUPPLEMENTARY NOTE NO. II 

OPTICAL QUALITIES OF GLASS 

M. Herzberger, Kodak Research Laboratories 

Lecture given at Brown University, August 21, 1944 

SUMMARY 

Two graphs, one plotting reciprocal dispersion against v-value and the 
other plotting red and violet partials against v-value give all the data on glass 
useful to the optical designer. A short history of the development of optical 
glass is given and a dispersion formula developed which is satisfactory for all 
optical materials from;\= 0.365µ. to;\= 1.0µ.. 

Let us consider a single thin lens with a front curvature Pt and a back 
curvature p2. The power of the lens for the wave length D = 589.3 is 

where K = Pt - p2, and n 0 is the index of the glass for the wave length D. 

(1) 

If we have two or more thin lenses, the power of the combination is the 
sum of the powers of the simple lenses. Consider especially two lenses and 
assume them to be corrected for two colors, for instance for the lines C and 
F of the solar spectrum, corresponding to wave lengths of 656.3 and 486.1 mµ.. 
We then have 

(2) 

The solution is 

1 

(3) 

411 
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1 
n2c - n2F 

K2 
n2D - 1 n 10 - 1 <Po 

n2c - n2F n2c - n2F 

We introduce as abbreviations 

1 N = -=--- V = (4) 

and find 

(5) 

For a third wave length 71. we find the deviation 

(6) 

Abbreviating 

(7) 

we find finally 

<Po • (8) 

Formulas (5) and (8) suggest a practical way to plot the characteristics 
of glasses so as to show immediately the facts which an optical designer 
would like to know. 

If we plot N (the reciprocal mean dispersion) against the v-value (intro­
duced by E. Abbe), we can obtain immediately the values of K1 and K2 by an 
elementary construction (Fig. 1). t We find 

tThe figures are not consecutively numbered. The missing numbers are for 
projection slides which could not be reproduced. 

(9) 
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In the same way, if we plot PA against v, we find the deviation of the 
power for the wave length D again by a simple construction, (Fig. 2). 

(10) 

It will be sufficient, as we shall see later, to make such a plot for two 
wave lengths, the line A' (::\ = 768.2) at the red end of the spectrum, and the 
line h (::\ = 404.7) at the violet end of the spectrum. Both plots can easily be 
made on the same sheet if we use a different scale for PA, and Ph. Under 
these circumstances a glass is given by a vertical line (Fig. 3) an_d the tg (3 Ar 
characterizes the deviation at the red end, whereas tg (3h gives the deviation 
towards the violet end. 

Let us now sketch briefly the development of our knowledge of optical 
glass, insofar as this knowledge is of special interest to the optical designer. 
The knowledge of glass as a substance transparent to light of all colors is 
frequently ascribed to the Phoenicians. It was applied in the late middle ages 
to the manufacture of spectacles. The sixteenth century saw the invention of 
different types of optical instruments. The glass used was, in the main, what 
we today call crown glass, a mixture of sand, lime, and soda, properly heated 
and cooled, with a refractive index of about 1.5 and a reciprocal dispersion of 
about v = 55. In about 1666 Sir Isaac Newton found that glass had a different 
refractive index for light of different colors. His famous experiments in which 
a prism separates white light into light of the "seven colors of the spectrum" 
are well known to every scientist. Newton concluded from this that a simple 
lens must have chromatic aberrations. 

Measuring the dispersion of water, (comp. Fig. 4) which has av-value 
of 55.6, and comparing it with the available crown glass, the equality of the 
v-value for two such different materials made him surmise that all materials 
have the same relative dispersion, and he concluded from equation 2 that 
lenses could not be achromatized. For this reason he recommended and 
designed reflecting telescopes for astronomical purposes. However, in his 
lifetime prisms were made of glass of much higher dispersive power-the 
so-called flint glasses made by introducing lead into the usual mixture. 

An English Justice of the Peace, Chester Moore Hall, in 1733 was the 
first to design an achromatic objective, i.e., a lens system corrected for two 
colors. The systematic manufacture of such lenses was undertaken by 
J. Dollond who acquired the first patent in 1758. Variations in the proportion 
of lead made it possible to change the refractive index and the dispersion at 
the same time, but not independently, so that up to about 1830 a one-dimen­
sional manifold of glasses was known, the crown-flint series, such that to each 
refractive index belonged one, and only one, value of v. 

Joseph v. Fraunhofer (1787-1826) discovered the fixed dark lines in the 
solar spectrumt, and bright lines in the spectra of other light sources, which 

t See Table 1. 
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TABLE I 

Spectrum Lines for Refractometry 

Name Element Wave length (A) 

A' K 
7699.0 

7681.9 
7664.9 

b He 7065.2 

C H 6562.8 

D Na 
5895,9 

5892,9 
5890.0 

d He 5875,6 

e Hg 5460,7 

F H 4861.3 

gt Hg 4358,4 

G' H 4340.5 

ht Hg 4046.6 

(uv) Hg 3650,1 

t Unfortunately, g_ and !!, are each used for two different wave lengths. They 
were originally applied to two absorption lines in the solar spectrum, g_ being 
a calcium line at 4226,7 A, and !!_a hydrogen line at 4101.7. 

Kirchhoff and Bunsen soon tied up with the chemical constitution of the light 
sources. This made possible exact measurements of the refractive indices, 
and thus formed the basis for scientific measurement and production of glass. 
Table I gives a list of the most important emission lines now used in the 
optical industry, wave length, color, and the element producing it. 

Fraunhofer, Utzschneider, and Reichenbach built the first optical factory 
in Benedictbueren near Munich. One of their collaborators, the Swiss, 
P. Guinand, whose sons later founded the glass industry in France, perfected 
the art of glass melting to such a degree that disks for big telescope objectives 
could be made with the necessary optical quality. 

In the first half of the nineteenth century optical glass factories were 
built in France, Switzerland, and England. However, besides Fraunhofer's 
work, which we shall mention again, no significant process was made until 
1879 when E. Abbe, the founder of the Zeiss works in Jena, hired the chemist 
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Otto Schott, with the intention of investigating systematically the influence of 
different chemical elements on the optical and physical characteristics of 
glass. This marks the beginning of the study of the nature of glass, a study in 
which significant steps have been made in recent years. (I refer to the papers 
of Berger, the books of Morey, and the recent work of Huggins and Sun.) 
From an optical standpoint the most significant discovery was that for a given 
index widely different dispersions can_ be obtained. 

The use of boric acid and barium oxide proved especially advantageous. 
It lead to the borosilicate crowns, the barium crowns, and the barium flint 
types, and later on to the very important dense barium crown glasses (SK and 
SSK in the Schott catalogue). This development was crowned in recent years 
by the invention of the Eastman Kodak glasses whicn contain no silicon but 
certain rare-earth oxides. 

The construction shown in Fig. 1 indicates the important effect of an 
increase in refractive index for constant v-value. It means that all the curva­
tures of the lens system become smaller, i.e., we can use larger radii in the 
lenses. To every optical designer it is immediately evident that this means 
smaller zonal errors, or the possibility of increasing either field or aperture, 
or the quality of a lens system. 

These fundamental types of glasses are, with the exception of the Kodak 
glasses, now manufactured in all the large countries and, because of their 
importance for military instruments, their manufacture is frequently subsi­
dized by the government. In this country, Bausch and Lomb produce these 
types in sufficient varieties for all optical purposes, in England, G. B. Chance, 
in France, Parra-Mantois, in Germany, Schott, to name only the most impor­
tant manufacturers. Each manufacturer issues a catalogue which includes a 
chart in which the position of a glass is given by its refractive index and its 
v-value, a practice introduced by Abbe. 

However, if we investigated the partial dispersions of most of these 
glasses, we should find our hope of correcting an optical system for more than 
two colors is difficult to fulfill. (See Fig. 5.) 

For nearly all of the glasses, we find that (Fig. 14) 

(11) 

Glasses which fulfill this relation may be called ordinary glasses. Equation 
(10) teaches us that for them 

(12) 

which means that if we achromatize a lens for C and F, the aberration for any 
other color is determined. This aberration is called the secondary spectrum. 
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If we achromatize for two other colors, for instance i\ 1 and 71.2, we find 

(13) 

where A1, A2, B1, B2 designate the values of A and B for the two achromatized 
wave lengths. 

Figure 9 shows the secondary spectrum for different chromatic correc­
tions. 

Frequently attempts have been made to find substances that permit a 
better chromatic correction of lenses, i.e., glasses which have different par­
tial dispersion ratios. The first systematic experiments were made by 
Fraunhofer, and Fig. 10 shows the list of glasses which he investigated with 
their deviations from the normal. It is not known, however, whether these 
glasses were stable or not. 

The first catalogues of Schott show a number of fluoride phosphate 
glasses with unusual dispersion, but most of them were dropped in later cata­
logues because they proved to be unstable; they were either water-soluble or 
changed into the crystalline state, or discolored. Careful investigations in 
the last thirty years have proved that, for any combination of three or more 
substances, only a certain percentage of the parts leads to stable glasses 
(Fig. 11) (Berger and Morey). In any case all these glasses show only small 
deviations from the normal partial dispersions. Thus a combination with a 
normal glass leads to small 11-differences, and therefore very short radii of 
curvature. 

In 1883 Abbe introduced microscopic objectives containing fluorite. One 
glance at the partial dispersion plot shows immediately that here a significant 
step forward was made. A large difference in 11-value separates fluorite from 
comparable glasses, the only drawback being the large value N which demands 
relatively strong curvature for one of the elements. 

Attempts to find other materials with extraordinary secondary spectra 
have not been successful until now. Lithium fluoride is out of the ordinary, 
but we know that only water matches it; quartz, fused or crystalline, follows 
closely the dispersion of glasses. 

We saw in equation (11) that for ordinary glasses the 11-value is sufficient 
to give all partial dispersions. Investigation of the dispersion of a number of 
extraordinary glasses, fluorite, quartz, sylvin, water, etc., show that the 
knowledge of two partial dispersions, the red partial PA' and the violet partial 
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Ph , are certainly sufficient to give the remaining partials with all necessary 
accuracy. This means the existence of three universal functions CA, DA, EA 
(Fig. 15) such that 

(14) 

Tables IT and ill give this function from i\ = 365 rnµ to i\ = 1.µ , and Tables IV 
and V show for a number of extraordinary glasses and minerals the deviation 
from formula (11) and formula (14). The latter are well within the necessary 
accuracy for optical calculations. 

The question of a dispersion formula has been discussed considerably 
in the literature. We have plotted, for a number of typical glasses as well as 

nA-nF 
for water and fluorite and rock salt, n _ 1 against wave length (Fig. 13). 

D 
These curves of course are of the same type as nA against the wave length 
except that they go through the same point and are easier to compare. 

It is obvious that the dispersion curves of all glasses belong to the same 
family. It is obvious, too, that the other materials are different. 

It seems immediately apparent also that the famous Hartmann formula 

or its generalization 

A 
nA= --­

i\ - i\o 

A 
nA = (i\ - i\o )1.2 

(15) 

(16) 

can only be sufficient for a very small range of wave lengths. The dispersion 
curve is certainly not a hyperbola. 

From a physical and a mathematical standpoint, we can say that the 
Helmholtz-Ketteler formula, or a modification of it, proves best fitted. We 
assume glasses to have at least one absorption band in the near ultra-violet 
and one in the far infra-red. That leads to 

A B 
n = no + i\2 - i\a2 + i\2 - i\i2 (17) 

The red absorption band is, for the purposes of the part of the spectrum 
in which we are interested, far enough away to be replaced by the linear 
member of its development: 

(18) 
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TABLE II 

A B 

.3650 + 2.396 - .01090 

.4047 h + 1.246 - .00427 

.4340 G' + .679 - .00189 

4358 g + .650 - .00179 

.4861 F + .000 .00000 

.5461 e - .490 + ,00054 

.5876 d - .724 + .00048 

.5893 D - .732 + .00047 

.6563 C - 1.000 .00000 

.7682 A' - 1.275 - .00122 

.8 - 1.329 - .001.62 

.85 - 1.399 - ,00228 

.9 - 1.455 - .00298 

.95 - 1.500 - .00371 

1.0 - 1.537 - .00447 

p =A 
11. 11. 

+ B v. 
/... 



428 MATHEMATICAL THEORY OF OPTICS 

TABLE III 

D E C 

.365015 - 2.5101 + 3.3885 + 5.0023 

.404656 h .0 + 1.0 .o 

.434047 G' + .2833 + .3510 - .6002 

.435834 g + .2828 + .3269 - .6008 

.486133 F .o .o .o 

.546073 e - .3019 - .0348 + .8304 

.587562 d - .3067 - .0912 + 1.0908 

.589295 D - .3033 - .0185 + 1.0947 

.656279 C .o .o + 1.0000 

.706519 b + .4226 + .0050 + .6240 

.768194 A' + 1.0 .o .o 

.8 + 1.3664 - .0100 - .4257 

.85 + 2.0340 - .0457 - 1.2507 

.9 + 2.8501 - .1187 - 2.3253 

.95 + 3.8547 - .2407 - 3.7132 

1.00 + 5.0557 - .4135 - 5.4245 

p = DP A' + EPh + C. 
A. 
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TABLE IV 

Extraordinary Glass 

Residuals from p =A + B v 
"- "- "-

A' C D e G' L 

FK 4 .000 .000 -.001 .000 +.004 +.017 

SF 1 +.002 .000 .000 .000 +.001 +.007 

3 +.001 -.001 .000 -.001 +.003 +.010 

4 +.002 .000 .000 .000 +.004 +.012 

6 +.003 .000 -.001 -.001 +,007 +.019 

10 .000 .000 .ooo .000 +.007 +.020 

11 +.003 +.002 .000 ,000 +.015 +.037 

13 +.001 +.001 .000 .000 +.010 +.027 

14 +.003 +,002 .000 .000 +.014 +.033 

K.F 1 -.004 -.003 -.002 -.001 -.008 -.012 

2 -.010 -.003 .000 .000 -.008 -.014 

3 -.010 -.003 -.001 .000 -.010 -.013 

5 -.010 -.003 -.001 .000 -.010 -.017 

6 -.009 -.003 -.001 +,001 -.009 -.018 

PKS 1 +.003 +.001 .000 +.001 +,011 +.028 

PSKS 1 +.002 +.001 .000 +.001 +.006 +.018 

K.FS 1 -.015 -.004 .000 .000 -.016 -.029 

2 -.014 -.003 .000 +.001 +.013 +.023 

3 -.014 -.004 .000 ,000 -.012 -.020 

SFS 1 +.008 +.003 .000 -.001 +.022 +.054 

Quartz -.008 -.005 .000 +.001 -.009 -.009 

LiF .000 +.005 .000 +,008 +.038 +.095 

Fluorite +.059 +.018 +.004 -.002 +.073 +.149 

Sylvine +.021 +.004 .000 +.002 -.002 +,149 
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TABLE V 

Extraordinary Glass 

Residuals from P ;>,. = DP A + EPh + C 

G' g e d D 

FK 4 .000 +.001 .000 -.001 -.001 

SF 1 +.001 -.001 .000 .000 -.001 

3 .000 .000 +.001 +.002 .000 

4 +.001 .000 .000 -.001 -.001 

6 +.001 .000 .000 -.001 -.001 

10 +.001 .000 -.001 .000 -.001 

11 +.001 .000 .000 .000 -.001 

13 +.002 +.001 -.001 .000 -.001 

14 +.002 .000 .000 -.001 +.002 

15 +.001 .ooo .ooo .000 -.001 

K.F 1 -.001 -.002 +.001 +.002 -.002 

2 +.001 .000 +.001 +.001 .ooo 
3 -.002 -.002 .000 +.001 -.001 

5 .000 -.001 .000 +.001 -.001 

6 +.001 .000 -.002 +.001 -.001 

PKS 1 .000 -.001 +.002 +.001 +.001 

PSKS 1 -.001 -.002 +.001 .ooo .000 

K_FS 1 .000 +.001 .000 .000 .000 

2 .000 +.001 .000 .000 .000 

3 .000 .000 .000 .000 .ooo 

SFS 1 .000 +.001 .000 .000 -.001 

Amorphous +.002 -,.001 -.004 -.001 -.003 
Si02 

LiF .000 -.002 .000 -.001 .000 

Fluorite -.004 -.001 .000 +.001 .000 
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The absorption band i\o varies from glass to glass, but it is sufficiently near 
to i\2 = 0.035 to be replaced by 

n = i\2 - .035 + (19) 

Formula (19) leads to a four-constant formula, which is in agreement 
with our theory. Four data-refractive index, 11-value, and the partials for 
red and violet-are sufficient to describe a glass. The formula has been tested 
with many materials and has proved to give sufficient information from 365 mµ 
up to 1 µ for all the substances used in designing optical systems. 

Let us recapitulate. The lens designer has at-his disposal a great 
variety of optical glasses of high quality. The aim of the glass manufacturer 
must still be to give him crowns with higher refractive index in order to 
reduce the curvatures of the lenses used. 

There is a great need to reduce the secondary spectrum in optical 
systems. The discovery of the qualities of fluorite was a big step in the right 
direction. The attempts to make glass with special partial dispersions as yet 
have not been too successful. Here is an important field in which the tech­
nologist, chemist, physicist, and mathematician should work together. Success 
will mean a great step forward in the development of optical instruments. 



SUPPLEMENT ARY NOTE NO. 111 

MATHEMATICS AND GEOMETRICAL OPTICS 

M. Herzberger, Kodak Research Laboratories 

Lecture given at Brown University, August 23, 1944 

Mathematical disciplines are models for certain relationships. They 
are not necessarily independent of each other, even though their development 
has been independent. The discovery that two or more of them say the same 
thing in different languages, and the ability to translate one into the other 
makes the enormous wealth of experience ga_i!led in one field available to the 
other. A significant example is the transfer of Hamilton's ideas in the -
-;alcuius of variations to the theory of partial differential equations. The 
field of classical and modern theoretical physics is to the mathematician 
another example of such a series of models stating the same mathematical 
fact in different language. It is my feeling thaj;_science can be built up into a 
series of disciplines like a terrace where each level has a broader foundation 
than the preceding one and becomes identical with it, if we neglect certain 
quantities. Let us choose as an example the field of optics. The uppermost 
level is reserved for geometrical optics. Here we have light rays and waves 
along these light rays, and we investigate what happens to them in transversing 
all kinds of media. The light rays and waves form the fundamental skeleton of 
all optical problems. The next level could be assigned to Fresnel and 
Fraunhofer diffraction phenomena. We assume some impulses, periodic in 
time and space, moving along the light rays or waves. The investigation of 
what happens at a great distance from the source of disturbance is open to a 
mathematical analysis which is not too difficult. If the wave length "11. were 
zero, then the laws of geometrical optics would be accurate. Assigning this 
case to a lower level signifies that laws governing the upper one are applicable 
wherever the wave length can be neglected. 

The next lower level would be formed by the electromagnetic theory of 
light, which is able to explain the diffraction phenomena near the disturbing \ • •• 
object; but this is not the bottom level. The problem of emission, the quantum 
theory of light, and psychophysics form even more basic levels, each larger 
then the former, none identical with the absolute truth. 

I believe that a similar structure exists in all the physical sciences, and 
that mathematics, if it is really to help the physicist_ in his effort to understand 
nature, would do well to build the simplest and sharpest tools to deal with the 
problems in the different levels. 

432 
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I hope this paper will be regarded as a first attempt to f~;hi~n such a 
tool for the highest and easiest of the fields to be conquered. 

The history of geometrical optics up to the nineteenth century is the 
history of mathematics: Euclid, Hero of Alexandria, Ptolemy, the Arabs, 
Kepler, Galileo, Descartes, Fermat, Newton, Huyghens, the Bernouillis, 
D'Alembert, Clairaut, Euler, Lagrange, Gauss. This period ends with W. R. 
Hamilton, who has travelled far in the direction of our aim, much farther than 
is yet known to most comtemporary mathematicians. 

_, 

In the nineteenth century, which future historians might call the century 
of specialization, mathematics was divided into branches with mathematical 
specialists_. A few such speciaifots in the field ~f-ge~metrica(~ptics may be 
m·enti~~~d: G. B. Airy, L. Seidel, L. Schleiermacher, E. Abbe, T. Smith, 
A. Gullstrand, M. Boegehold. Occasionally some of the great mathematicians 
used geometrical optics as a field of application for their special field of 
interest. 

Malus, Gergonne, Dupin, and Charles Sturm applied the differential 
geometry of Monge to the problems of optics. Mobius took the image of rays 
near the axis as a good model for collinear transformation and applied the 
theory of contin,ued fractions to getfue fundamental data of an optical system. 
W. R. Hamilton developed the geometrical calculus of variations using optics 
as a model. E. Abbe, R. Straube!, and especially A. Gullstrand investigated 
the invariants of optical imagery. Lie and W. Bruns thought geometrical optics 
a good application for contact and canonical transformations. H. Poincare and 
G. Prange applied the theory of integral invariants. Caratheodory wrote a 
booklet on geometrical optics developing it as a parallel to his theory of partial 
differential equations, presenting both as applications of Huygens' principle of 
superposition of waves. A recent paper by Korringa applied the modern con­
cept of groupoids to solving a special problem of optics. In my own papers I 
have made use of such diverse fields of mathematics as matrix algebra, vector 
·algebra, Gaussian brackets, etc .. 

Geometrical optics thus owes a great debt of gratitude to mathematics. 
The correct understanding of the work of W.R. Hamilton and its extension here 
is a first attempt to try to repay this debt. 

The fundamental problem of geometrical optics is to trace a manifold of 
rays through a surface dividing two media of different refracting indices. Let 
a be the vector from an arbitrary origin to a point on one of these rays. Let 
ii be the vector along the ray, of length µ, µ being the refractive index of the 
first medium. Let 6' be the vector to the intersection point with the surface 
and a' the vector to an arbitrary point on the image ray. Let O be the unit 
vector in the direction of the surface normal, 71., 71.' the length from the 
starting surface, to the initial and to the final points, respectively. We then 
have 
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(1) 
(n1 - aj XO = 0 

Let us now assume we have a two-dimensional manifold of rays, i.e., 
a, ii, 0 and therefore a' n' are continuous functions of two variables u and v. 

An easy calculation leads us now to the fundamental differential invariant 

ii• a' V U 
(2) 

which, because of the generality of our derivation, is not only valid for one but 
any number of refractions. Formulas (1) and (2) contain formally also the 
laws of refraction in crystals, with the only difference that in crystal optics 
the vector ii, while well defined, no longer has the direction of the ray itself. 
If we consider media with continuously varying refractive index, the path of 
the light rays is no longer straight in any medium, but curved. If we choose 
a curve parameter t on each curve, we can easily see that equation (2) goes 
over into 

(3) 

A vector field inn-dimensional space coordinates to each point (vector a) 
a vector ii. Such vector fields have been studied to a considerable extent. The 
geometrical configuration which forms the basis of our problem is somewhat 
more complicated. We want to assume that at every point there belongs a 
vector to every direction through that point, i.e., we have through each point 
light rays in every direction, or in the language of mathematics, that to every 
fixed line element belongs one and only one vector ii. Such a vector manifold 
may be called a vector flux until a better name is found. 

A system of curves such that for any two-dimensional manifold (3) is 
fulfilled along these curves, I have called a system of transversal curves. 

That the condition (3) has a simple geometrical significance is obvious 
as soon as we restrict consideration to a vector field, i.e., we consider an 
n-dimensional submanifold of transversal curves so that to each point of a 
segment of space goes one and only one curve. Then (3) is equivalent to 

d -dt (curl n) = 0 . (4) 

For the benefit of those not quite familiar with vector analysis in n 
dimensions, it might be remembered that the curl in n-dimensional space is 

a (;) vector characteristic for a two-dimensional area. 
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Let us now assume a manifold of transversal curves. The maximum 

number of parameters is (;), therefore equation (2) can stand for 6 x (n:l) 

equations. We call the equation (3) the Lagrange bracket of our problem or 
the Lagrange invariant, Lagrange having been the first to make use of its re­
markable qualities. We carry out the differentiation and obtain, if we designate 
differentiation according to the curve parameter t by a point 

. . .. . 
nuav + n:av - nvau - nvau = 0 . (5) 

Equation (5) can be considered the integrability condition of four func­
tions, of which, however, one could be identical to zero. We then write down 
in order 

dL i da + i da 
' 

dH i da - a di, 
(6) 

dK ; dn + ; di 
. . 

dJ = adi - ida 

Equation (6) shows that there exists a function (L) of object point (a), and 
direction tr, such that 

(7) 

This function L is the refractive index µ in geometrical optics. If we 
know L, we find the components of the vector i and therefore the vector n 
itself, simply by the process of differentiation. i can be eliminated from (7) 
and we obtain Euler's differential equation characterizing a variation problem 
with L as the function under the integral, and with the transversal curves as 
extremals. 

From (6) we conclude immediately 

d - -dL = - (n da) 
dt 

(8) 

Integration of (8) along a series of extremals"between two curves a(u) and 
a' (u) leads to 

a' (u) 
E L L dt (9) 

a(u) 
with 

dE i 1 da' i da (10) 
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Equation (10), Hamilton's fundamental equation, is valid if a, a' and 
therefore E depend on any number of parameters. 

E in formula (10) is the characteristic function of Hamilton. Restricting 
a and a' to be two (n-1)-dimensional surfaces so that one and only one ray 
goes through a given pair of points (a, a') leads to the Eiconal of Bruns. In 
this case the two-point function is a function of 2(n-1) variables and completely 
characterizes our problem. We then obtain the vectors ii,n' simply by 
differentiation. 

A manifold for which (n da) = d\I> is a total differential, is called a 
normal system. The reason for it is that making in (1) E = 4> + const. leads 
to 

(11) 

i.e., we have found a system of surfaces a' which are perpendicular to the 
vector n of the transversal curve at the corresponding point. These surfaces 
are called the wave surfaces of the system of rays. This justifies the name 
normal system. We see immediately the rays coming from a point (da = O) 
always form a normal system. Moreover E determines a certain kind of 
metric in our normal system. We can say that in the sense of this metric two 
wave surfaces are equidistant on all rays (E2 - E1 ) = const .. 

Equation (10) is the starting point of Lie's theory of contact transfor­
mation. 

If 

then (12) 
n' da' = d(E + 4>) 

Let us now consider the second equation in (6). We have a function H 
of two vectors a and n, from which we can derive directly the change of a 
and n. We find 

8H d 
an"°"= dt(X1) 

I 

(13) 

Equations (13) are probably known to all present as the canonical 
differential equations, connected with the names Lagrange or Charpit. They 
show that 
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dH 
dt 
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(14) 

H is thus seen to remain constant along the transversal curves. It is what in 
physics usually is called the energy integral. Equations (13) are a system of 
(2n) ordinary differential equations. The solutions of these differential equa­
tions are the characteristics of a series of partial differential equations. 

This can be shown in the following way. Consider a normal system. For 
such a normal system, we have a function cp such that 

iida = dcp (15) 
or 

ni 
8'P 

(16) = ax1 

H is then a function of Xi and n1 = B'P , which stays constant along the 
Xi 

extremals. If a manifold had been chosen with less than n parameters, for 
which H was constant, then H would remain constant along each extremal 
starting from such a manifold. This construction corresponds to Cauchy's 
construction of the solution of a partial differential equation for given initial 
conditions. 

Fundamental equation (3) constitutes a differential invariant. A 
corresponding integral invariant results by integrating over u and v 

(17) 

The integral in (17) does not depend on the surface which intersects 
the manifold, but the boundary of the second surface must be chosen such 
that it contains the same rays that go through the first. If (17) is taken over 
a boundary, it can be transformed into a line integral under the same pre­
cautionary measures as are usually connected with Green's theorem. We 
find 

f f (n,, av - nv au) du dv (18) 
s 

For a normal system, of course, it follows that # ii da = 0. 

The two remaining functions in (6) are dual to the functions studied 
before. They make use of the fact that a and ii appear symmetric in the 
fundamental formulas (3). It is apparent from the duality inherent in the 
symmetry of equation (3) that the ii and a vectors are essentially 
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interchangeable. It is easy to imagine a thought experiment in which the former 
are the positional vectors and the latter the normal vectors. This would lead 
to a different variation principle, but to the same system of partial differential 
equations 

dK d - -= dt a dn , 

V = j K dt , (19) 

dV = ;, dn'- adi 

The investigation of the last equation in (6) and its geometrical signifi­
cance will be a problem for future consideration. 

If we assume (3) to be rigorously fulfilled, but, as we must, allow the 
transversal curves to have surfaces of discontinuity, our equation (10) gives 

or 
(n' - n)da = o 

(n'xO) = (nxo> 

(20) 

(21) 

Thus we have derived again the refraction law, using only the fundamental 
formula (3). 

If a point of discontinuity exists, equation (2) must be fulfilled for all 
values of da. That leads to n = n', i.e., the wave front is continuous in an 
isolated point of discontinuity of the rays. 

This paper does not claim to present new material but to derive certain 
well known mathematical facts by simple and straightforward reasoning. It 
attempts to show how different fields of mathematical endeavor tell the same 
story in different languages and it aims to make available the knowledge gained 
in one field to the students of another. 

Complete understanding of these problems can only be given in the frame 
of a generalized vector analysis of n-dimensions. 

The advantages of starting from Lagrange's bracket instead of the 
Hamiltonian function will be obvious if we generalize our methods to include 
as normal vectors bivectors or K-vectors corresponding to higher dimensional 
manifolds, or, regarded in another way, if we go from the investigation of 
systems of curves to the investigation of systems of surfaces, etc. This leads 
to variation principles with more than one independent variable and to partial 
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differential equations for more than one unknown function. Here most of our 
results can still be obtained, whereas it does not seem easy to generalize 
Hamilton's method. 

The aim of this paper is fulfilled if some of you feel that it might be 
worthwhile to reexamine the basic ideas in different fields of mathematics 
and physics with the express aim of finding the simplest model common to 
diversified investigation. 



SUPPLEMENTARY NOTE NO. IV 

SYMMETRY AND ASYMMETRY IN OPTICAL IMAGES 

M. Herzberger, Kodak Research Laboratories 

Lecture given at Brown University, August 25, 1944 

Every physicist knows Gaussian optics and most of them know the five 
Seidel aberrations, i.e., spherical aberration, coma, astigmatism, distortion, 
and field curvature. The general assumption is that these typical errors are 
sufficient to describe the quality of a lens with finite aperture and field. 

This is decidedly incorrect. The analysis of the complex image of an 
off-axis point in a system with axial symmetry requires a deeper understanding 
of image formation. It is the aim of this paper to amplify this statement. 

Another weakness of the ordinary method of lens designing seems to me 
to be the fact that only rays in the meridian plane of an optical system are 
traced, whereas obviously the skew ray errors are of the utmost importance 
for image formation. The difficulty has not been the tracing of skew rays; 
methods have been known for a long time for tracing such rays, and these 
methods have been perfected in recent years, but interpretation of the results 
of the trace has offered serious difficulty. Here, too, this paper will try to 
make helpful suggestions. 

The powerful new tool which we shall apply is the consistent use of the 
fact that an ordinary optical system has an axis of symmetry. Especially 
helpful will be the concept of "diapoint" introduced by the author in 1935, and 
repeated herein. 

An object point off axis and the axis of a rotation-symmetric optical 
system form a plane called the meridian plane of the object point. A ray from 
the object point in the meridian plane is called a meridian ray; a ray not in 
the meridian plane is called a skew ray. A meridian ray obviously remains a 
meridian ray after refraction according to the refraction law, since the 
meridian plane is the plane of incidence, and a skew ray remains a skew ray. 

The optical system which we investigate co-ordinates to each object ray 
an image ray. The point where the image ray intersects the meridian plane 
is called the diapoint of the object. 

Since we have a two-dimensional manifold of rays from a given object 
point, we shall in general have a two-dimensional manifold of diapoints. If we 

440 
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have a one-dimensional manifold of diapoints, i.e., if the diapoints form a 
segment of a curve, we shall say that the object point has a half-symmetric 
image; if the diapoints form the segment of a straight line, _we speak of a 
symmetric image; if all the diapoints fall together into a single point, we call 
it a sharp image. The importance of these conceptions will be better under­
stood if we state that optical laws demand that if all rays coming from an 
object point intersect a curve, then the rays meeting at each point of the curve 
form the same angle with the curve. Neglecting vignetting, we can therefore 
say that the image rays are split up into cones which have the curve tangent 
at their vertices as a structural axis (Fig. 1). 

It is easy to see that in this case the image in any plane perpendicular 
to the axis can be considered as originated by superimposing a one-dimensional 
number of eccentric ellipses, formed by the intersection of these cones with 
the image plane. An example of this kind of image formation is given by the 
well known coma figure for a point near the axis of an optical system for 
which the sine condition is not fulfilled. There the image consists of a series 
of eccentric circles with two common tangents forming an angle of 60 degrees 
(Fig. 2). There is no doubt that such an image formation is undesirable, but 
one who has seen images of off-axis points will agree that there are still more 
undesirable image errors in a lens system. We shall speak of these as errors 
of deformation and we shall say that a point which is half symmetrically 
imaged is free of errors of deformation. 

An object point is called symmetrically imaged if its diapoints form a 
straight line-segment. In this case all the rays can be separated into cones 
with the same axis, and the image consists of the superposition of a number 
of concentric ellipses. The image is still not a sharp image, but it has no 
more errors than an axial point. We say that such a point has no asymmetry 
errors. 

If all the rays that come from an object point intersect in a sharp image, 
then we can say that this image point is the diapoint for all object rays. The 
image is free from spherical aberration. 

Let us now assume that each point of an object has a sharp image. We 
still have two kinds of errors. These sharp points might or might not lie in 
a plane. The deviation from a plane is then a measure of field curvature. 
Even for a flat field we still need not have the same magnification as we have 
for rays near the axis. This leads to distortion errors. 

Before giving the analytical foundation of these facts let us take as an 
example the case of an infinite object, a case usually encountered in handling 
a photographic objective. An "infinite object point" stands for a bundle of 
parallel rays of a given direction. For such a point the plane through the 
axis parallel to the direction of the incident rays is defined as the meridian 
plane. If the image followed the laws of Gaussian optics, there would be only 
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THE HALF-SYMMETRIC IMAGE 

Figure 1 
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TH I RD ORDER COMA 

Figure 2 
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one diapoint. This point would lie in the focal plane and would have the 
distance h from the axis, where 

h=ftana (1) 

a being the angle of the incident ray with the axis, f being the Gaussian focal 
length of the system. 

We suggest putting the image co-ordinate origin at the focal point and 
choosing the zy plane as the meridian plane. The diapoints then have the co­
ordinates z and y, and if we plot z against M = ta:h -f, we obtain the aber-

ration vector for a single ray. For ta~ a we might introduce the name diafocal 
length. 

Tracing a finite manifold of rays, we can determine: (a) the best curve 
through the diapoints, (b) the best straight line through the diapoints, (c) the 
center of gravity of diapoints. 

The deviation from the best curve gives us a measure for deformation 
errors. The deviation of this curve from a straight line gives a measure for 
the asymmetry, the length of the straight line is a measure for the spherical 
a,berration, and the two co-ordinates of the center of gravity tell us about 
field curvature and distortion. 

Let us now find the mathematical formulation of these ideas and the 
differential equations that have to be fulfilled for special kinds of image for­
mation. Moreover, let us try to find the connecting link between the new kind 
of image theory and the one to which you are accustomed. 

The concept of the angle characteristic is well known. Let 0, 0' char­
acterize two axis points, one in object and one in image space. Let us choose 
a cartesian co-ordinate system such that the x,x' and y ,y' axes, respectively, are 
parallel and that the z,z' axis coincides with the optical axis. Let P(P') be the 
foot of the perpendicular drawn from origin to object (image) ray. Let T be 
the optical path length (sum of lengths in each medium multiplied by its re­
fractive index) from P to P' . W. R. Hamilton has proved that under these 
circumstances T is a function alone of the direction cosines ~ ,71,/; = ✓ 1-~2-712of 
object and ~•, 71 ', /;' = ✓ 1-~' 2- 11 ' 2 of image ray. 

The co-ordinates (x,y,x' ,y') of the intersection points with the plane 
z =: 0, respectively, z' - 0, are, according to Bruns, given by 

8T 
nx=-~, 

n'x' = 
BT 
a~ I' 

8T 
ny =-a;' 

n'y' = 

(2) 
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where n and n' are the refractive indices of object and image space. 

It can be shown in the case of an optical system with rotation symmetry 
that T can be considered a function of only three variables, namely the sym­
metric functions of ~,TJ,~',TJ': 

We find ~hen, instead of (2), the equations 

where Ta is an abbreviation for ~- Let us now consider an infinite object 
point(~ ,TJ constant, f ,TJ'variable, or~ constant,!!_,.£ variable). 

An arbitrary point on the image ray (distance z * from the origin, co­
ordinates x' *, y' *, z' *) is obviously given by 

n'x'* = n'x' + 71.~ , 

n'y'* = n'y' + 7'.TJ , 

n'z'* = 71.l;=ll.~. 

Elimination of 71. gives 

n'z'* 
n'x'* = n'x' + -====-~• J1=2c 

The point in question is the diapoint, if x'*/y'* = ~ /11. The necessary 
and sufficient condition is, of course, 

n'z'*=-T ~ c'VJ.. - "" , 

(3) 

(4) 

(5) 

(6) 

(7) 
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The tangent of the entering ray is tan u ~ , the intersection 

height is h' = ✓x•2 + y'2 • We therefore find for the diafocal length 

f = ...l!.'....... = Tb ~ z' = - T ~ s tan u 'I/ .1 - ~a ' c 'I/ .1 - ~a 

to recapitulate formula (7). 

For a given infinite object point (a = const.) f and z are functions of 
two variables b and c. 

(8) 

The condition that our system is free of deformation errors means that 

df' dz' df' dz' 
db ~ -~ db = O (9) 

which leads to 

(10) 

If equation (10) is fulfilled for all values of a, then every point of the infinite 
plane is imaged half-symmetrically. Integration of (10) leads of course to 

Tb= f(Tc~ a) • (11) 

The object point has a symmetric image if in (11) f is a linear function. This 
leads to 

Tb= A(a) Tc~+ B(a) . 

Elimination of A(a) and B(a) gives the differential equations 

1 
T cc - Tc 1 - 2c 

T _ Tbc 
bee 1-2c 

Tbbb 

Tbbc 

Every infinite point has a sharp image, if for all values of a 

Tb = c5(a) , 

Tc~= z(a) 

Equation (14) is equivalent to the differential equations 

(12) 

(13) 

(14) 

(15) 
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o(a) is a measure for the distortion, z(a) for the curvature of the image. The 
image is undistorted if 

o (a) = const. 

or 

Tba. = 0 . 

The image is plane if 

Tc~= const. 

or 

C 
Tea=~ • 

Let us now investigate how this new image error theory is connected 
with the old image error theory. 

(16) 

(17) 

In the ordinary theory we calculate the intersection point of the rays 
with the plane through the Gaussian focal point. Let us designate by the suffix 
zero to a function the value of the function for a= b = 0. 

The intersection with the Gaussian focal plane is then given by inserting 
into (6) 

That leads to 

If Gaussian optics held we would have 

witht;=.ji"--=-ia. 

~ 
n'x'* =T O -

0 b /; • 

n'y'* - T o .!L 0 - b /; 

TO] 
1 ~ 2c 

(18) 

C I To] 
1 - 2c 77 • 

(19) 
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The differences from Gaussian optics, the so-called image error, are 
therefore given by 

n'x'* - n'xb = [ Tb ~-Tbo] t + [Tc Ji--=Tc" -Ti] f, 

n'y'* - n'yb = [Tb~ - Tb0] f + [Tc~- Ti]~ 

The brackets, however, are exactly the functions which we investigated 
previously, so that we have 

~ ~I 

n'x' - n'xb = Md' - - Az' -
/; b /;' ' 

1)_ 11' 
n 'y' - n'Yo' = A.cd, Azr -

L.ll /; -,.,. b /;' 

Equation (21) shows that the investigation of Af' and Az' is sufficient and 
necessary for investigating the image errors. 

(20) 

(21) 






