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On a Relativistically Invariant Formulation of
the Quantum Theory of Wave Fields.*

By S. TomoNnaGa

(Received "May 17, 1946)

§1. The formalism of the ordinary quantum
theery of wave fields.

Recently ¥ukawa™ has made a comprehensive consideration about the
basis of the quantum theory of wave fields. In his article he has pointed
out the fact that the existing formalism of the quantum field theory is not
yet petfectly relativistic.

Let v(xyz) be the quantity specifying the field, and A(zy2) denote its
cahonical conjugate. Then the quantum theory requires the commutation
relations of the form:

{[v (xp28), v(x'y's't)]=[2(xpz?), A(2'y'2'2)]=0
[v(zps), A(&Y'20)|=ihd(x—2)8(y—y) 8 (2—2"),

but these have quite non-relativistic forms.

The equations (1) give namely the commutation ielations between ‘the
quantities at different: points (#p2) and (#/y'2’) at the same instant of time
4. The concept * same instant of time at different points” has, however,
a definite meaning only one specifies some definite Lorentz frame of reference.
Thus this is not a relativistically invariant concept.

Further, the Schrédinger equation for the ¢-vector representing the
state of the system has the form;

@

(7e 4o ®

* Translared from the paper, Bull. 1. P. C. R. (Riken-iho), 28 (1943), 545, appeared
originally in Japanese.

** [4, Bl=AB—2B.4. We assume that the field obeys the Bose- statistics. Our consi-
derations apply also to the case of Fermi statistics.
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28 S. TomonaGa

where H is the operator representing the total energy of the field which is
given by the space integral of a function of » and A4 As we adopt here
the Schrédinger picture, v and 4 are operators independent of time. The
vector representing the state is in this picture a function of the time, .and its
dependence on # is determined by (2).

Also the differential equation (2) is no: less non-relativistic. In this
equation the (time variable 7 plays a role quite distinguished from the (space
coordinates (#, » and 2. This situation is closely connected with the fact
that the notion of probability amplitude does not fit with the relativity
theory.

As is well known, the vector ¢ has, as the probability amplitude, the
following physical nieaning : Suppose the representation which makes the
field quantity v(xpz) diagonal. Let ¢[/(xp2)] denote the representative of
¢ in this representation.* Then the representative ¢[/(xp3)] is called
probability amplitude, and its absolute square

W' (zp2)]= | flv/ (2p2) ] 3

gives the relative probability of »(xyz) having the specified functional form
v/ (xp2) at the instant of time 2 In other words: Suppose a plane** which
is parallel to the zyz-plane and intersepts the time axis at 2 Then the
probability that the field has the specified functional form ?/(xyz) on this
plane is given by (3).

As one sees, a plane parallel to the xyz-plane plays here a significant
role. But such a plane is only defined by referring to a certain frame of
reference. Thus the probability amplitude is not a relativistically invariant
concept in the space-time world.

§2. Four-dimensinal form of the
commutiation relations.

As stated above, the laws of the quantum theory of waves fielas are

* We use the square blackets to indicate a functional. Thus ¢{2/(xyz)] means that ¢
is a functional .of the variable function z/(xys). When we use ordinary blackets ( ), as
(@ (xy3)), we consider ¢ as an ordinary function of the function ”(xys). For example:
the energy density is written 'as AH{(v(xyz), A(xy3)) and this is also a function of x, y

and 2, whereas the total energy A = { A («(xys), Axys))dv is a functional of z(xys) and

A(xys) and is written as & [o(xyz), A(xpz)].
** We call a three-dimensional minifold in the four-dimenstonal space-time world simply
“ surface .
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On a Relativistically Invariant Formulation 29

usually expressed as mathematical relations between quai ties having their
meanings only in some specified Lorentz frame of referenc¢. But since it is
pro@ed that the whole contents of the theory are of cource relativistically
invariant, it must be certainly possible to build up the theory on the basis
of concepts having relativistic space-time meanings. Thus, in his considera-
tion, Yukawa has required with Dirac® to generalize the notion of probabi-
lity amplitude so that it fits with the relativity theory. We shall now show
below that the generalization of the theory on these lines is in fact possible
to the relativistically necessary and .sufficient extent. Our results are,
however, not so general as expected by Dirac and by Yukawa, but are
already sufficiently general in so far as it is required by the relativity theory.

Let us suppose for simplicity that there are only two fields interacting
with each other. The case of more number of fields can also be treated in
the same way. Let-7; and v, denote the quantities specifying the fields.
The canonically conjugate quantities be 4, and Z respectively. Then between
these quantities the commutation relations

(2 (xp28), v (#y'5'2)]=0
[A.(zyzt), 4,(2y'2'8) =0
(v (zp2), L(#Y#D)]=iH8(x—2)8(y—y)8(z—) 8,

r,s=1, 2 “)

must hold. The ¢-vector satisfies the Schrédinger equation
T 5 LB 9
(1{1+H,+ Hot 4= )9=0. )

In this equation &; and A, mean respectively the energy of the first and
the second field. %, is given by the space integral of a function of », and

A, H by the space integral of a function of #, and A. Further, &, is the
interaction energy of the fields and is given by the space integral of a func-

tion of both ,, 4 and z,, 4. We assume (i) that .the integra.nd of Hy,
i, e. the interaction-energy density, is a scalar quantity, and (ii) that the
energy densities at two different points (but at the same instant of time)
commute with eath other. In general, these two facts follow from the
single assumption : the interaction term in the Lagrangean does not contain
the time derivatives of 7; and #,.

If this energy density is denoted by Ay, then we have
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30 S. ToMONAGA .

Hy=§ Hodx dy dz. (6)

As we adopt here the Schrddinger picture, the quantities \w and 2 in Hj,
H, and H,, are all operators independent of time.

Thus far we have merely summarized the well known facts. Now, as
the first stage of making the theory relativistic, we suppose the unitary
operator

U=exp|{-+(A+H)} M

and infroduce the following unitary transformations ot » and 4, and the cor-
responding transformation of ¢:

r=1, 2

Vi=Uv U™, A4,=U3U"
. ®

F=U.

As stated above, v and 4 in (§) are quantities independent of time.
But V and 4 obtained from them by means of (8) contain ¢ through U.
Thus they depend on Z by

ﬁ”}r'—“ K[-!:_E‘V'r
{ r=1, 2 )]

iﬁ/ir=Ar[_{;—1?rAr'
These equations must necessarily have covariant forms against Lorentz
transformations, because they are just the field equations for the fields when
they are left alone without interacting with eath other.
Now, the solutions of these * vacuum-equations ”’, the equations which
the fields must satisfy when they are left alone, together with the commu-
taion relations (4), give rise to the relations of the following forms :

Vilayst), Viey#t)l= (et g 2= 1)
[A,(apst), A(#Y?E)]=Bolrmt's y—y/, 2=, 1—2) (10)
Vi(apzt), A,(&Y2)]=C(x—2, y—5, 2—2, t=1)

where 4,,, B,, and C,, are functions which are combinations of the so-cal-
led four-dimensional d-functions and their derivatives.®-One denotes usually
these four dimensional d-functions by D(xy2?), r=1, 2. They are defined
by
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On & Relativistically Inaariant Formulation 31

_ 1 ek xthyy+hy 2+che £)
D, oyt =gz [ [{ 7,
(g st by y+ by s—che 2)
- o } b rar,  (10)
with
b=vVEtB+E+E, (12)

x, being the constant characteristic to the field . It can be easily proved
that these functions are relativistically invariant.*

Since (10) gives, in contrast with (4), the commutation relations bet-
ween the fields at two different world points (wy2¢) and (2'3/2’7), it contains
no more the notion of same instant of time. Therefore, (10) is sufficiently
relativistic presupposing no special frame of reference. We call (10)
fourdimensional form of the commutation relations.

One property of D(xyzf) will be mentioned here: When the world
paint (xyef) lies outside the light cone whose vertex is at the origin,
then D(xyzf) vanishes identically :

D(zyzt) =0 for 2+ +5—~£2>0. (13)

It follows directly from (13) that, if the world point (#¥'#’#") lies outside
the light cone whose vertex is at the world point (ay#z), the right-hand
sides of (10) always vanish. In words: Suppose two world points P and
P’. When these points lie outside each other’s light cones, the field quan-
tities at P and field quantities at P commute with eath other.

§3. Generalization of the Schrodinger equation.

Next we observe the vector ¥ obtained from ¢ by means of the unitary
transformation . We see from (), (7) and (8) that this ¥, considered as

* Suppose that a surface in the #g 4,4, 4-space is defined by means of the equation
A=p; + 4% 4% 4«2 Then this surface has the invariant meaning in this space, since
A2y + £ + B, — A is invariant against Lorentz transformations. The area of the sur-

. A [ OB\ [ OF \T (0% \
face element of this surface is given by 4S= ~/ (-—M—’) + '57,,— +( 5 é') 1 dk; dky dk,

=,gM§lﬁ'_. Now, since 45 has the invariant meaning, we can thus conclude that
dky db, dkg
£

is an invariant, and tlis results that the function defined by (11) is inva-

riant,
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32 S. TOMONAGA
a function of ¢, satisfies

{[Fraviaren, Marmn), Vitores), Aoy dy ds

& 9
+5 2lr=0. 9
One sees that 2 plays also here a role distinguished from 2, y and #: also
here a plane parallel to the xzyz-plane has a special significance. So we
must in some way remove this unsatisfactory feature of the theory.

This improvement can be attained in the way similar to that in which
Dirac®® has built up the so-called many-time formalism of the quantum
mechanics. We will now recall this theory.

The Schrédinger equation for the system containing N charged partic-
les interacting with the electromagnetic field is given by

{7+ 33 Halgun 20 0(g)) + - Llp=0. @

Here A, means the energy of the electromagnetic field, , the energy of
the »-th particle. A, contains, besides the kinetic energy of the -th
particle, the interaction energy between this particle and the fie]ld through
a(7,), ¢a being the coordinates of the particle and a the potential of the
field. 2. in (15) means as usual the momentum of the n-th particle.

We consider now the unitary operator

4= exp { -—;—-—17,3} (16)
and introduce the unitary transformation of q:

A=nan"’ 17
and the corresponding transformation of ¢:

O=ug. (18)

Then we see that @ satisfies the equation
K]
{Z#n 2o Ao 43 LJo=0. a9

In contrast with a, which was independent of times (Schradinger picture), %
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On a Relativistically Invariant Formulation 33

contains # through #. To emphsize this, we have written ¢ explicitely as
argument of ¥. We can prove that ¥ satisfles the maxwell equations in
vacuum (accurately speaking, we need special considerattons for the equa-
tion div E=0).

The equation (19) is the starting pomnt of the many-time theory. In
this theory one introduces then the function @(g:, ¢2%, ..., ¢x, Zy) contain-
ing so many time variables #, %, ...... Zy as the number of the particles in
place of the function @(gy, ¢4, .., gm #) containing only one time variable,*
and suppose that this @ (g, ge%, ..., ¢x'y) satisfies simultaneously the fol-
lowing .V equations ;

{H»(q.» tnr U(gns 7)) +»—’;— —:-:}'P (@t getes +-s ga¥n) =0
n=1, 2. ..., N. (20)
This &(4, %, ---» 2y), which is a fundamental quantity in the many-time
theory, is related to the ordinary probability amplitude @(¢) by
0D =0 ¢, ..., 7). (21)

Now, the simultaneous equations (20) can be solved when and only
when the A? conditions

(H.H, W — If,"ﬂ ) @ (913'1 s Galay oony ?NtN) =0 (22)

are satisfied for all pairs of #» and #. - If the world point (g.%) lies
outside the light cone whose vertex is at the point (g./4/), we can prove
HH)~HJH,=0. As the result, the function satisfying (20) ¢can exist
in the region where

(9a—24)* =" (= 2/)°20 (23)

is satisfied simultaneously for all values of 7 and »’.
According to Bloch® we can give @(g#y ¢ufs, -+, gafy) 3 physical
meaning when its arguments lie in the region given by (23). Namely

Wi(g:it, gotos -.-. QNtN)——"i w(%tb Qoley ooy 9};’21)12 (24)

gives the relative probability that one finds the value ¢, in the measurement
of the position of the first particle at the instant of time 4, the value ¢, in

* Here we suppose the representation which makes the coordinates g, s =+ gn dia-
gonal. Thus the vector @ is represented by a function of these coordinates.
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34 S. TomonaGa

the measurement of the position of the second patticle at the instant of
time %, ... and the value gy in the measurement of the position of the N-
th particale at the instant of time 2z,.

This is the outline of the many-time formalism of the quantum
mechauics.

We will now return to our main subject. If we compare our eguation
(14) with the equation (19) of the many-time theory, we notice a marked
similarity between these two equations. In (19) stands the suffix #, which
designates the particle, while in (14) stand’ thevariables x, » and 2, which
designate the position in space. Further, @ is a function of the V indepgndent
variables ¢, @e, ..., g3 ¢a giving the position of the s-th particle, while ¥
is a functional of the infinitely many * independent variables” #;(xyz) and
v (ay3), v(xy2) and 2,(xp2) giving the fields at the position (xy#). Cor-
responding to the sum Y4, in (19) the integral {H . dzdydz stands in (14).
In this way, to the sufﬁx » in (19) which takes the values 1,28, .., 4N
correspond the variables #, ¥ and # whice take continuously all values from
—c0 to -+ co

Such a similarity suggests us to intrgduce irifinitely many time varjables
Z,» which we may call local time * each for one position (xyz) in the space
as we have introduced NV time variables, particle times, %, &, .... Zy, each
for one particle. The only difterence consist in that we use in our case
infinitely many time variables whereas we have used AV time variables in
the ordinary many-time theory

Cortresponding to the transition from the use of the function with one
time variable to the use of the function of V time variables, we must now
consider the transition from the use of 7 (#) to the use of a functional ¥Tz,,.]
of infinitely many time variables £,,.

‘We regard now ¢4, as a function of (xyz) and consider its variation
€., which differs from zero only in a small domain J4 in the neighbour-
hood of the point (xu2). We will define the partical differential coeffi-
cient of tlie functional ¥[4,,] with respect to the variable ., in the
following manner :

or =i g[tzyz + eap:]"‘“ v [tmyt]
oo B .'IEEE) §§Veudr dy dz (25)

* The notion of local time of this kind has been occasionary introduced by Stuecker-
berg.©®
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On a Relativistieally Ivaviant Formulation 35
We then generalize (14), and regard

R L (@6)
the infinitely many simultaneous equations corresponding to the N equations
(20), as the fundamental equations of our theory. In (26) we have written,
for simplicity. Hy, (%, y, 2, #) in place of A, (Vi(xyz, 2), V,(xps, ), ...... ).
In general, when we have a function F(V, 4) of V and A, we will write
simply F(x, 3, 2, £) for F(V(xyz, 8,,), A(zye, 1,,)), or still simpler F(P)
P denoting the world point with the coordinates (xyz, %,,). Thus F(P")
means F(+', ¥, &, ¢} or, more precisely, F(V(£'VZ, bupa), (XY, wyrer))-
We will now adopt the equation (26) as the basis of our theory. For
Vi(P), Vi), 4,(P) and Ay(P) in H) the commutation relations (10) hold,
where D(xy2¢) has the property (13). As the consequence, we have

Hy(P) Hig(P') — Hy(P’) Hig((P) =0 @7

when the point P lies a finite distance apart from 7’ and outside the
light cone whose vertex is at P. Further, from our assumption (ii) the
relation (27) holds also when P and P’ are two adjacent points approach-
ing in a space-like direction. Thus our system of equations (26) is integrable
when the surface defined by the equations ¢=4,,, considering 2, as a func-
tion of x, ¥ and 2, is space-like.

In this way, a functional of the variable surface in the space-time world
is determined by the functional partial differential equations (26). Corres-
ponding to the relation (21) in case of many-time theory, ¥[%,,] reduces
to the ordinary ¥(#) when the surface reduces to a plane parallel to the
ryz-plane.

The dependent variable surface 7=%,, can be of any (space-like) form
in the space-time world, and we need not presuppose any Lorenz frame of
reference to define such a surface. Therefore, this ¥1#,,] is a relativistically
invariant concept. The restriction that the surface must be space-like makes
no harm since the property that a surface is space-like or time-like does
not depend on a special choise of the reference system. It is not neces-
sary, from the stand-point of the felativity theory, to admit also time-like
surfaces for the variable surfage, what was required by Dirac and by Yukawa.
Thus we consider that ¥[z,,] introduced above is already the sufficient
generalization of the ordinary ¢-vector, and assume that the quantum-
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36 S. ToMONAGA

theoretical state* of the fields is represented by this functional vector,

Let C denote the surface defined by the equation #=#,, Then ¥ is
a functional of the surface C. We write this as #[C]. On C we take a
point P, whose coordinates are (xyz, 4,,), and suppose a surface €’ which
overlap C except in a small domain about P. We denote the volume of
the small world. lying between C and €’ with dwp. Then we may write
(25) also in the form:

[C]_ 1o FICT-T[C]

P clsC dwp (28)
Then (26) can be written in the form:
% 0 _

{#ru(2)+-2- a—c;}sr[c]_o. @9,

This equation (29) has now a perfect space-time form. In the first
place, H,; is a scalar according to our assumption (i); in the second place,
the commutation relations between V(P) and A(P) contained in Hj, has
the four-dimensional forms as (10), and finally the differentiation
defined by (28) quite independently of any frame of reference.

A direct conclusion obrained from (29) is that ¥[C’] is obtained from
¥[C] by the following infinitesimal transformation :

s .
ic, s

P[C)={1-F-Hu(P)dw, } FIC], (30)

When there exist in the space-time world two surfaces €, and G a
finite distance apart, we need only to repeat the infinitesimal transformations
in order to obtain P[(,] from ¥[C]. Thus

o .
FGl=1l{1— Ha(P)d, 1G] @1
The meaning of this equation is as follows: We devide the world region

lying between C; and C, in small elemdnts dwp (it is necessary that each
world element is surrounded by two space-like surfaces). We consider for

* The word state is here used in the relativistic space-time meaning. Cf. Dirst’s book
(second eddition) 3 6.
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each world element the infinitesimal transformation 1-—%—17,,(P)dw_',-. Then

we take the product of these transformations, the order of the factor being
taken from C; to (. This product transforms then ¥[(] into Z[C].

The surfaces €; and €, must be here both space-like, but otherwise
they may have any form and any configuration. Thus C, does not neces-
sarily lie afterward against C;; € and C; may even cross with each other.

The relation of the form (31) has been already introduced by Heisen-
berg.® It can be regarded as the integral form of our generalized Schrédin-
ger equation (29)

§4. Generalized probability amplitude.

We must now find the physical meaning of the functional #[C]). As
regards this we can make a similar consideration as Bloch has done for the
case of ordinary many-time theory. Besides the fact that in our case there
appear infinitely many time variables, one point differs from Bloch’s case
that in (16) the unitary operator # is commutable with the coordinates g,
Goy wveee gm our U is not commutable with the field quantities »,(xyz) and
2,(xzy2). Noting this difference and treating’ the continuum infinity -as the
limijt of an ennumerable infinity by some artifice, for instance, by the procedure
of Heisenberg and Pauli,® Bloch’s consideration can be applied also here
almost without any -alteration. We shall give here only the results.

Let us suppose that the fields are in the state represented by a vector
¥F[C]. We suppose that we make measurments of a function f(21, 7, 4, 4;)
at every point on a surface C; in the space-time world. Let P, denote the
variable point en €, then, if f(P) at any two ‘“values” of A, commute
with each other, the measurement of f at each of these two points do not
interfere with each other. Our first conclusion says that in this case the
expectation value of f(B) is given by

APY=(¥1a), 7F)TLCD) (32)

where f(P) means f(Vi(P), -..... ) according to our convention on page
35, and the symbol ((4, B)) with double blackets is the scalar product of
two vectors 4 and B. It is impossible in case of continuously many
degree of freedom to represent this scalar product by an integral of the
product of two functions. For this purpose we must replace the continuum
infinity by an at least ennumerable infinity.
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More generally, we suppose a functional 7 [ f(P)] of the independent
variable function f(2,), regarding f(P,) as a function of . Then the ex-
pectation value of this F is given by

FLAP) =¥[G], FIAP)IFIGD) G

A physically interesting F is the projective operator M[z/(P), #'(P) ,
Vi(P), V2(F)] belonging to the * eigen-value ” v/ (P), v/(P) of Vi(A),
Vo(P). Then its expectation value C

M[w/(P), v (F); Vi(P), Va(P)]
=¥[G], M2/ (P), w/ () ; Vi(R), Va(P)JFLC]D) (3D

gives the probability that the field 1 and the field 2 have ‘respectively the
functional form zy/(P) and #/(P) on the surface (. As C; is assumed
to be space-like, the measurement of the functional M is possible (the
measurements of V;(P) and V,(F) at all points on €; mean just the
measurement, of M),

Thus far we have made no mention of the representation of #[C]. We
use now the special representation in which V,(2) at all points on C; are
simultaneously diagonal. It is always possible to make all P5(Z) and
V.(P) diagonal when the surface C; is space-like. In this representation
¥[C] is represented by a functional ¥[v/(B), #/(P); C] of the eigen-
values 2,"(2) and z/(B) of V;(P) and V;(P). The projection operator
M has in this representation such diagonal form that (34) is simplified as
follows

W' (£), o/ (P)]=M[v/ (£), o/ (P); Vs (B (P)]
=| ¥[='(P), »'(A); Gl (35)

In this sence we can call ¥[v/(R), v/(H); (] “generalized probability
amplitude .

§ 5. Generalized transformation functional.

We have stated adove that between ¥[(y] and ¥[C,] the relation (31)
holds, where €} and C; are two spece-like surfaces in the space-time world.
We see thus that the transformation operator
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71G; C] =c{°i(1—%m,dw) (36)

plays an important role, It is evident that also this operator has a space-
time meaning.

Similarly as the special representative of the ¢-vector, the probability
amplitude, has a distinct physical meaning, there is & special representation
in which the representative of the transformation operator 77¢,; (i] has
a distinct physical meaning.

We introduce namely the mixed representative of 7[C,; (;] whose
rows refer to the represéntation in which Vj(£) and V,(A) at all points
on C; become diagonal and wlose column refer to the representation in
which V;(F,) and V4(F,) at all potnts on C; become diagonal. We denote
this representation by

[o/"(P), w" (B | I[G; G]| o' (R), &/ (P)], (8N)*
or simpler:
[v" (F), v (8) | o' (P), ' (P)] (38)*

If we note here the relation (35), we see that we can give the matrix
elements of this representation the following meaning : One measures the
field quantities ¥; and V; at all points on  when the fields are prepared
in such a. way that they have certainly the values 2,(Z) and z,/(£) at
all points on ;. Then

Wiv/"(Fo), w"(P) ; v/ (B), o/ (P)]
= | [/ (R), =" (B)| v/ (P), ' (P)]I (39

gives the probability that one obiains the result #,"/ (%) and 2,//(B) in this
measurement, In this proposition we have assumed that (, lies afterward
against C.

From this physical interpretation we may regard the matrix element
(87), or (38), considered as a functional of v/ (B), %/ (£) and #/(R),
v/ (P), as the generalization of the ordinary transformation function (g, |
9’1,) .

* As the matrix elemants are functionals of »(P), we use here the square blackets.
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As a special case it may happen ¢
that C; lies apart from C; only in S,
a portion S, and a portion S; of G s
and G, respectively, the other parts :
of € and C§ overlapping with.each
other (see Fig. 1). o . T
In this case the matrix elements
of 7[G:; G] depend only on the L
values of the fields on the portions
S; and S; of the surfaces ¢ and (. In this case we need for calculating
7[G:; ] to take the product in (36) only in the closed domain surrounded
by S, and S,, thus

it ]
71Ss5 Sil=1i(1-+5-Hredo). (40)

The matrix elements of the mixed representation of this 7" is a functional
of o/ (), ¥/ (#) and 2/'(p.,), v (#;) where g, denots the moving point
on the portion S,, and g, the moving point on the portion S;. This matrix
is independent on the field quantities on the other portions of the surfaces
G and G,

The matrix element of 7TS;; S,] regarded as a functional of 7,(#;),
2/ (#) and 97/ (#s), v (p:) has the properties of g.t.f. (generalized trans-
formation functional) of Dirac. But in defining our g.t.f. we had to restrict
the surfaces S; and S; to be space-like, while Dirdc has required his g.t.f.
to be defined also referring to the time-like surfaces. As mentioned above,
however, such a generalization as required by Dirac is superflous so far as
the relativity theory concerns.

It is to be noted that for the physical interpretation of [v//(P), v/'(P)
v/ (B), v/(P)] it is not necessary to assume £; to lie afterward against
C:. Also when the inverse is the case, we can as well give the physical
meaning for W of (39): One measures. the field quantities ¥; and ¥ at all
points on C; when the fields are prepared in such a way that they would

have certainly the values ,/(P,) and z,/(P) at all points on C if the fields

were left alone until () without being measured before on (. Then w
gives the probability that one finds the results 7,/ (#£) and % (#) in this
measurement on C;.
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§6. Concluding remark.

We bave thus shown that the quantum tneory of wave fields can be
really brought into a form which reveals directly the invariance of the theory
against Lorentz transformatians. the reason why the ordinary formalism
of the quantum field theory is so unsatisfactory lies in the fact that one has
built up this theory in the way which is too much analogous to the ordin-
ary non-relativtstic mechanics. In this ordinary formalism of the quantum
theory of fields the theory is devided into two distinct sections: the section
giving the kinematical relations between various’ quantities at the same in-
stant of time, and the section determining the causal relations between
quantities at different instants of time. Thus the commutation relations (1)
belong to the first section and the Schrodinger equation (2) to the second.

As stated defore, this way of separating the theory into two sections
is very unrelativistic, since here the concept *“same instant of time” plays
a distinct role.

Also in qur formalism the theory is devided into two sections. But
now the separafion is introduced in another place: In our formalism the
theory consists of two sections, one of which gives the laws of behavior of
the fields when they are left alone, -and the other of which gives the laws
determining the deviation from this behavior due to interactions. This way
of separating the theory can be carried out relativistically.

Although in this way the theory can be brought into more satisfactory
form, no new contents are added thereby. So, the well known divergence
difficulties of the theory are inherited also by our theory. Indeed, our
fundamental equations (29) admit only catastrophal solutions as can be seen
directly in the fact that the unavoidable infinity due to non-vanishing zero-
point amplitudes of the fields inheres in the operator A,(P). Thus, a more
profound modification of the theory is required in order to remove this
fundamental difficulty.

It is expected that such a modification of the theory would possiblly
be introduced by some revision of the concept of interaction, because we
meet no such difficulty when we deal with the non-interacting fields. This
revision would then result that in the separability of the theory into two
sections, one for free fields and one for interactions, some uncertainty would
be introduced. This seems to be implied by the very fact that, when we
formulate the quantum field theory in a relativistically satisfactory manner,
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this way of sevwaration has revealed itself as the fundamental element of the

theory.

§Y)
2)
(3)
€)]
()]
(6)
O
®
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