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Divergence of perturbation theory: Steps towards a convergent series
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The mechanism underlying the divergence of perturbation theory is exposed. This is done through a detailed
study of the violation of the hypothesis of Lebesgue’s dominated convergence theorem using familiar tech-
niques of quantum field theory. That theorem governs the val{dityack of it) of the formal manipulations
done to generate the perturbative series in the functional integral formalism. The aspects of the perturbative
series that need to be modified to obtain a convergent series are presented. Useful tools for a practical
implementation of these modifications are developed. Some resummation methods are analyzed in the light of
the above mentioned mechanisf80556-282(197)04424-X]

PACS numbegps): 11.10.Jj

I. INTRODUCTION lations of the large order behavior of the perturbative coeffi-
cients [2] and general analysis of the structure of field

A typical quantity used to analyze the nature of the pertheoried 6], as well as improvements over perturbative com-
turbative expansion in quantum field theory is the partitionputations of different physical quantiti¢2].
function For all its power, it is fair to say that this argument, as is

typically the case with aeductio ad absurduntype of argu-
Z(\) = iJ [deple 4, 1) ment, fails to.point towards a splu_tion of the_problem of
Zy divergence. It is only through the indirect formalism of Borel
transforms that questions of the recovery of the full theory
with from its perturbative series can be discusgged,§.

In this paper an alternative way of understanding the di-
vergent nature of the perturbative series is presented. This
way of understanding the problem complements the tradi-
tional argument briefly described above, hopefully illuminat-
The normalization factor Zj is the partition function of the ing aspects that the traditional approach leaves obscure. In
free field —1 when\—0). The analysis of the perturba- particular, as we will see, the arguments in this paper point
tive expansion of any Green’s function goes along similardirectly towards the aspects of the perturbative series that
lines to that forZ. In the example above we consider a scalameed to be modified to achieve a convergent series. It is
field theory for simplicity. hoped that the way of understanding the problem presented

The traditional argument for understanding the divergenhere will help to provide new insights into the urgent prob-
nature of the perturbative expansion can be traced back tiem of extracting nonperturbative information out of quan-
Dyson[1]. Although the form was different, the content of tum field theories.
his argument is captured by the following statement: “If the In Sec. Il we develop our analysis of the divergence of
perturbative series were to converge to the exact result, theerturbation theory. In Sec. Il we point out the ingredients
function being expanded would be analytioNratA =0. But  that, according to the analysis of Sec. Il, a modification of
the function € for example is not analytic in\ at that perturbation theory would need to achieve convergence. We
value. Therefore, as a function ®f the perturbative series is also present a remarkable formulé4) that allows us to
either divergent or converges to the wrong answer.” implement such modifications in terms of Gaussian integrals,

Estimates of the large order behavior of the coefficients opaving the way for the application of this convergent modi-
the perturbative series showed that the first possibility is théied perturbative series to quantum field theories. The proof
one actually realizef?,3]. ThatZ, as a function o, is not  of the properties of the functiof®4) is given in Appendix A.
analytic atA =0 can be guessed by simply noting that if in In Sec. IV we analyze recent work on the convergence of
its functional integral representatigfq. (1)] we make the various optimized expansioi9-16| in terms of the ideas
real part ofA negative(though arbitrarily small the integral  presented here. In Sec. V we summarize our results and men-
diverges. In fact, there is a branch cut in the first Riemanrion directions of the work currently in preparation. Finally,
sheet that can be chosen to lie along the negative real axig) Appendix B, we apply the ideas of this paper in a simple
extending from\ = —o to A=0 [4,5]. but illuminating example for which we actually develop a

The above argument is very powerful and extends to theonvergent series by modifying the aspects of the perturba-
perturbative series of almost all other nontrivial field theo-tive series pointed out by our analysis as the source of diver-
ries. It has also motivated a series of very important calcugence.

1 1 A
E(ﬂﬂ¢)2+ §m2¢2+ Z¢4 : i)

S[(ﬁ]:fddx
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Il. LEBESGUE’'S DOMINATED CONVERGENCE THEOREM AND PERTURBATION THEORY
A. Wrong step in perturbation theory

Although the notation will not always be explicit, we will work in an Euclidean space of dimension smaller than 4 and in
a finite volume.
Let us remember how the perturbative series is generated in the functional integral formalism for a quariity like

zo\)zf [d¢]exp(—f ddx %(aﬁ)%%m%z —%f ddx¢>4) (3)
( J ddx¢>4> exp( f ddx (aﬁ¢)2+ m2¢>ZD (4
_2 ( fddx¢4) exp( J'dd ~(8,0)%+ m2¢ZD (5)

The final sum is in practice truncated at some finite ordetheory[8]. It is therefore especially well suited for a com-
N. The functional integrals that give the contribution of ev- parison between the traditional arguments and the ones pre-
ery ordern are calculated using Wick's theorem and Feyn-sented in this paper.
man’s diagram techniques with the corresponding renormal- Again we use the two-step process to generate the pertur-
ization. bative series. First the integrand is expanded in powels of

We see then that the generation of the perturbative seridsq. (7), and then the sum is interchanged with the integral
in the functional integral formalism is a two-step process.(8). In this simple example the perturbative coefficients can
First Eq. (4), the integrand, is expanded in powers of thebe calculated exactly for arbitrary. In the largen limit they
coupling constant, and then E¢), the sum, is interchanged become
with the integraf*

It will be convenient to have a simpler example in which 2
the arguments of this paper become very transparent. Con- ~V\5-(n—1)! when n—e.
sider the simple integral

(10

With such factorial behavior, the series diverges fonall
1 (=~ 2 4 different from zero as is well known. On the other hand, the
Z()\):\/_— ﬂcdxef[x ] (6)  function z(\), as defined in Eq(6), gives a well-defined
& positive real number for every positive real Therefore one
or both of the two steps done to generate the perturbative
series must be wrong.
Similarly, in the functional integral case normalized with

and its corresponding perturbative expansion

20 = — 1 (— 1) ( e_xz 7) respect to the free fieltl), Z is a well-defined number while
\/; —»  n=0 its perturbative series diverges. Again, one or both of the two
steps must be wrong.
(1) D The first step, the expansion of the integrand in powers of
_— dx ( 4) e ¥ (8) \, is clearly correct. As the integranghot the integral is
\/— — analytic in\ for every finite\, the expansion merely corre-
sponds to a Taylor series. The second step, the interchange
% of sum and integral, must therefore be the wrong one.

=D (—1)"c,\". 9) The next obvious step is then to recall the theorems that
n govern the interchange between sums and integrals in order
to understand in detail why this step is wrong in our case.
This simple integral has been used many times in the past ashe most powerful theorem for this purpose is Lebesgue’s
a paradigmatic example of the divergence of perturbationvell-known theorem of dominated convergence. In a simpli-
fied version, sufficient for our purposes, it says the follow-
ing.
Yin this paper we will often use the familiar word “integrand” to Let f\, be a sequence of integrable functions that converge
refer toe™ S or any functional inside the functional integration sym- pointwisely to a functiorf,
bol. It would be more precise to preserve this worddornt in the
measure defined by the free field. The terminology used here is, fy—f as N—oo, (11
however, common practice in the quantum field theory literature
and also helps to emphasize the similarities with the intuitive finiteand bounded in absolute value by a positive integrable func-
dimensional case presented below. tion h (dominatedk

I
o
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ate the way in which the successive approximations behave.

sl N e exactintegrand For smallx, anc_i up to some critit_:gl valueT that we c_agly,\,
T 222‘2,':32’,2':,‘; (where the subindeg stands forcritical while the subindex
5 4" order app. N indicates that this value changes with the oydbe per-

turbative integrands approximate the exact integrand very
well. Even morex. y grows withN. But for x bigger than
Xen @ “bump” begins to emerge. The height of these
bumps, as we will see in detail shortly, grows factorially
with the order, while the width remains approximately con-
stant. So the larger the order in perturbation theory, the
larger the region in which the perturbative integrands ap-
proximate the exact integrand very well, but the stronger the
upcoming deviation. As we will see shortly, it is precisely
. : " . . . this deviation that is responsible for the divergence of the
X perturbative series and the famous factorial growth. We will
also see that an exactly analogous phenomenon happens in
FIG. 1. Exact integrand, zeroth, second, and fourth perturbativéhe functional integral case and is again responsible for the
approximations =1. divergence of the perturbative series.
Returning to the problem of understanding the aspects of
lfal<h , VN. (12)  the dominated convergence theorem that fail in the perturba-
tive series, we will now show that the sequence of integrands
Then, it is true that of Eq. (14) and Eq.(15) converges, respectively, to the exact
integrands

lim J fN_J lim fN—J (13) 1 § 1 ) 1 ) s A i
N—o0 N—o = — — — — —_ —
F Zex;{ J'dxz(a#¢)+2m¢} 4fdx¢>
As a special case, if the convergeri¢d) is uniform and the (16)
measure of integration is finite, then the interchange is also

valid. It should be emphasized that Lebesgue’s theorem fol2nd
lows from the axioms of abstract measure theory. Therefore

of, | e W

if the problem under consideration involves a well-defined f— i — X2+ (M4)xY (17)
measure, as is the case for the quantum field theories consid- N '
ered herd16], the theorem holds.

In our case we can write, formalfy, but not in a dominatedway. That is, there is no positive

integrable functiorh that satisfies Eq(12).

R LIY "
ot1= 5 3, o5 [ )

><exp< - f d9x

B. Failure of domination in the simple example

1 1 That the sequence of integrands of Et¥) and Eq.(15)

E(a”¢)2+ §m2¢2D (14  converges, respectively, to the exact integrafi@s and(17)
is obvious, since, as mentioned before, for fintehey are

for the functional integral case and analytic functions (_)1>§ and so their Taylor expansiqns con-
verge(at least for finite field strengihTo see the failure of
N N\ the domination hypothesis it is convenient to analyze the
\/—_ E (4 ) e * (15  “shape” of every term offy. Namely, for the field theory
=0 case,

One important aspect of the dominated convergence theo- n[qb(X)]— >

rem approach to analyze the divergence of perturbation
theory is that it focuses on the integrands, objects that are [{ f g
X ex d

for the simple integral example. 1 (—1)"
- 4n< f ddx¢4

relatively simple to analyze. On the contrary, the analyticity
approach briefly described in the Introduction focuses on the
integrals which are much more difficult to analyze. So before (18
we try to understand the aspects of the dominated conver-
gence theorem that fail in our case, it will be useful to study*’
some properties of the integrand for the intuitive simple ex-
ample. In Fig. 1, the exact integrand, together with some (X)= — 1Y ( ) x4ng—x° (19
perturbative approximations, are displayed. We can appreci- Cn Jm nb 14 '

X ;(aM¢>2+ %m%ZD,

while for the simple integrand

In this section we analyze the failure of the domination hy-
2See previous footnote. pothesis for the simple exampl®) because it turns out to be
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does not have a successor to cancélntthe N—oo limit,
6l el sactiegand there is no last bump and the convergence is achieved for
every x). Consequently, beyond a certain valkgy, the
function f deviates strongly fronf and is governed by the
uncanceledNth bump, with height proportional toN—1)!
and finite variance. This is so because, since the height of the
bump grows factorially with the order, fod large enough
the last bump is far greater than all the previous ones and
remains almost completely uncanceled. Furthermore, since
the variance of the bumps is independent of the order, this
means that for every finite order, there is a regiorfioite
measurein which the perturbative integrand is of the order
of the height of the last bump. In Fig. 2 we can see how the
functionc,(x) is left almost completely uncanceled by(x)
X and dominates the deviation 6f from f.
That x. y (the value of|x| up to which the perturbative
FIG. 2. Exact integrand and fourth perturbative approximationintegrand very accurately approximates the exacj gnews
together with the third and fourth terms=1. with N, going to infinity whenN—®, is a simple conse-
quence of Taylor's theorem applied to the analytic function
remarkably similar to the field theory example analyzed ing—xx*4,

the next section. In Fig. 2 we can.examine the fun.ctions The above analysis makes clear the failure of the domi-
C3(Xx) andcy(x) for A=1 corresponding to the simple inte- \ation of the sequence of E@L5) towardsf [Eqg. (17)].

granﬁ c(:jas;a that we analyze first. The maximuntgi) is  |ndeed, any positive function(x) with the property
reached a

Xma= = (20) Y2 (20) [fn(¥)|<h(x), VN, (24)
There, for largen, the function takes the value fails to be integrable, since it has to “cover” the bump,
whose area grows factorially with. Therefore, although the
(—1)"(n—1)I\", 21) sequence of y(x)'s converges tdf(x), the convergence is
not dominated, as we wanted to show.
Equation(23), together with the above comments, indi-
On the other hand, the width remains constam @screases cates that the same reason for which the sequence of inte-
as can be seen by a Gaussian approximation around tlgrgands(19) fails to be dominated is the one that produces the
MaximumXpma= (2n) Y2 factorial growth in the perturbative series.
In the field theory case, although we cannot rely on fig-
ures such as Eqgsl) and(2) to guide our intuition, we will

Cn(Xmax) = 5312

Cn(X)=~ 5 55— D"(n—1)lexp{—2[x—(2n)"?JZ}\". see that the analogy with the simple integral example is so
™ 22) close that the interpretation is equally transparent.
The integration of this Gaussian approximation gives, for C. Failure of domination in quantum field theory
largen,

For quantum field theory, as for the simple example ana-
1v2 lyzed above, it is convenient to consider every term
f dXcy(x)~5 E(—l)n(n—l)”\n, (23 c[#(x)] [Eq. (18)] of the perturbative approximatiofy
[Eqg. (14)] to the exact integranfEq. (16)],
in accordance with EJ10) if we take into account the factor _1an
\ : 72 1(-1)
of 2 coming from the two maxima: (2n). clld(X)]== —exp< _f d9
The mechanism of convergence of thgs to f now be- Zo !

comes clear. Théy's are made out of a pure Gaussidhe
“free” term) plus “bumps” (the perturbative correctiops +nin
that alternate in sigsee Fig. 2 The height of these bumps
grows factorially with the order, while their width remains
approximately constant. More specifically, the Gaussian apwhere we have written thath power of the interaction in
proximation around the maximdg. (22)], which becomes exponential form. The mathematical analysis below follows
exact when the order goes to infinity, has a variance indeelosely the discussions in Chap. 38 of Ré&f. Although the
pendent of the order. For fixeld and forx smaller than a problem treated there is different from the one treated here,
certain value, the bumps exhibit a delicate near-cancellatiommany techniques used 8] can be directly applied here.
leaving only a small remnant that modifies the free integrand Forn large enough, the analysis of its “shape” reduces to
into the interacting one. However, for larger than that the familiar procedure of finding its maxima, as in the case
value, the last bump begins to emerge and, being the lastf the simple integrand. The equation determining the

1 1
5(0,0)%+ 5 M

(M@fd%¢4, (25)
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maxima ofc,[ ¢(x)] is the equation that minimizes the ex- from which we conclude in particular that the integral
ponent, and can be thought of as the equation of motion of

the effective action all , 1 5
) . f d% E(&Md)max) +§m brmax| =2n (34)
A
S[d)]:f d?| 5 (9, )%+ 5 m?¢?| —nin —f d9x¢?|,
2 2 4 is independent of the dimension. The relatid@2) and(33)
(26) can be explicitly checked in the cask=1 (quantum me-
which is chanicg, in which the solutions to Eq27) are known ana-
Iytically. They are
4n
—V2p+mPp— ——— ¢°=0. (27) a1, _( 3n)1’2 1 a5
[ @t U=\ 5m) Gosmit-tp] 0
Making the change of variables giving
fddX¢4 1/2 .
¢(x)=m( an @(mx) j dt(¢d-h2=n, (36)
4 1/2
—md2-1 n (mx) (28) 2 d=1y2
. ¢ , m= | dt(dmax)”=3N. (37)
f due”(u)

Since ¢(u), introduced in Eq.(28) and satisfying Eq.
(29), is dimensionlesgas isu=mx), and the corresponding
~V20(u)+ o(U)— ¢3(U)=0, u=mx (29) dmad{X) has finite action, the quantity

we find thate satisfies the equation

This equation corresponds to the instanton equation of the
negative masa ¢* theory. The analysis of its solutions can
be found in many places. We are interested in solutions with
minimal, finite action. For these solutions, in the infinite vol- js a finite, pure number greater than zdi®. For the
ume limit, scaling arguments provide very interesting infor-quantum-mechanical case mentioned abdéve4/3. For the
mation. We mentioned at the beginning of Sec. Il A that wecasesd>1, A is not explicitly known but, as noted, it must

work in a finite volume. However, if the volume is large pe a finite, positive, pure number. With the definiti88),
enough, the infinite volume arguments used below remairgq. (28) becomes

valid up to errors that go to zero exponentially fast when the
volume goes to infinity. n\ 12

Since the solutiong,.(x) (the subindex “max” indi- ¢max(X)=md’21(K> e(mx). (39)
cates that, in functional space,[ ¢#(x)] reaches its maxi-
mum at ¢.{X); this should not be confused with the fact
that the the actioi26) reaches itsninimumthere is a mini-
mum of the action26), then given an arbitrary constaat
S @ Pma{X)] should have a minimum at=1 [8,17]. This
implies the equation

-2 f dPup*(u) 39

Since ¢(mx) satisfies then-independent equatio(9), we
conclude that the field strength @b, grows with the
square root of the order.
Equation(34), together with the definitiori38) and the
relation (39), allow us to write an expression for the action
(26) at ¢= Pmax,
f dX(d,, a2+ M? f d¢2.,—4n=0. (30

md—4
— _ 2
Similarly, § ¢naf@x)] should also have a minimum at S #mad =2n—nin A n=|. (40
a=1, implying
The value ofc, [ ¢(X)] at = dnax then becomes, for large
(2=d) [ 4 2_m2 | qdy 42 _ n
. d%(d, Pmad“— M | dXep it 2n=0. '
(31) 1 (_1)n d—4

)\ n
c X) ]~ = (n—l)!( ) . 4
Solving the system of equatior30) and (31) we obtain ol $mao )] Zy 2w A

With the change of variables

f d%(d,dma0?=n d, (32
B(X) = PmafX) +mP2 L (mx), (42)

2 d 2 _ _
m f A" X Pma=n(4—0), (33 the Gaussian approximation of[ ¢] arounde .y is
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1(-1"
Cle(W]~Z (n—l)!(

the corresponding renormalization fa™>1, generates a
well-defined Gaussian measure in a finite volumenember

1( 4 s d<4). In fact, the determinant dd,,.,, has been calculated
xXex _Efd UrdUpdg(up{[—Vy, +1 many times in the pasf8], and a generalization of a
guantum-mechanical argument of R¢L8] indicates that

md—4) n Equationg(50) and(51) suggest that the operatbr, with

this is all we need to compute the determinantDdf. The
_3‘P2(“1)]5(“1_“2)}%(“2)) (43) argument goes as follow:s:p
1 ) , 1
xex;{ - EJ dduldduz¢q(u1) De'[D ]: De Dlocal+ K|U><U|
3 3 ! 1 r—1
X[(L/IA) @ (uy) @ (UZ)]d’q(uz) ) (44) =Def{ Djocal 1+K<U|Dlocal|v> . (52)

whereu=mxand¢(u), the solution of Eq(29), is related to  Since ¢(u) is orthogonal tod,,¢(u) (the zero modes ob
®max through Eq.(39). This Gaussian approximation be- andD ),
comes exact in the limih— o,

The second derivative operator, which we dlis, then, D/oca®=Diocap= —2¢°. (53)
D = Digcart Droniocan (45) The last equality follows from the definition @, in Eq.
with (46) and Eq.(29) satisfied bye. InvertingDy,.,; and remem-
bering the definition ofv) andA in Egs.(47) and(38), we
Digca= — V2+1—3¢? (46)  obtain
and (0] Dioealv)=—2A. (5

1 . . . .
Dnonlocalzz|v><v| with (u|v)=¢3(u) (47  Replacing this result in Eq52), we arrive at the result

andA given in Eq.(38). De{D’]=—De(Djqcal- (55)

The operatoD ., is well known (see, for exampld3]).

It hasd eigenvectorg0,,) with zero eigenvalues given by As already mentioned)jq, has one and only one negative

eigenvector; consequently its determinant is negative. Equa-
J tion (55) indicates then that DD’ ] is positive, as it should
(u|0#)= —o(u). (48) be according to Eq51). The effect of the nonlocal part is to
Ju change the sign of the determinant of the local part.
) The preceding equations allow us to integrate the Gauss-
These_vectors are also zero eigenvectord ods can be seen g approximation o[ ¢(u)] given in Eqs.(43) and (44).
by noting that|v) is orthogonal to them: Using the method of collective coordinates to project out the
B zero modes, the Jacobian of the corresponding change of
(v]0,)=0. (49 variables is, at leading order inrl/

They reflect the translation invariance of the acti@f). d
D)ocal IS @lso known to have one and only one negative J= H

eigenvector.D, on the contrary, is a positive semidefinite =

operator. We can prove this in a line-by-line analogy with

the corresponding proof foD,,,, Which uses Sobolev in-  where no sum over is implied.

equalities and is given in Appendix 38 of Ré8], It can be shown that the solutions of Eg7) correspond-

ing to minimal action are spherically symmetfig]. Equa-

112
, (56)

f (3, 20l

D=0, (50) tion (56) can then be written as

in the operator sense. 1 di2

Projecting out thed-dimensional eigenspace of eigen- J= _J ((9M¢max)2ddx , (57)
value zero, the resulting operator, which we @ll, is posi- d
tive definite: o )

where now a sum ovex from 1 tod is implied. Using Eq.
D'= Dl,ocal+ DnonlocaPO- (51) (32) we then find

This equation explicitly states that the projection over the J=n%2, (58)

strictly positive eigenvectors modifies on,.,. The non-
local part, as we saw, is a projector orthogonal to the zer®ith this expression, the functional integral@f ¢(u)] can
modes and is therefore not modified under that operation. be written as
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1 (—1)"
z;f[d¢h%[¢}= 5 (n—lﬂ(

(59) analogous procedure would give the large order behavior of
any Green’s function.
Dl/z Equations39), (41), (43), (44), (59), and(60) allow us to

)\md“‘)” tion about the analytic structure in [18]. A completely

’
D local

D draw an accurate picture of the mechanism underlying the
0

lack of domination(in the sense of Lebesgue’s theoneot

the convergence of the sequence of perturbative integrands
(14) towards Eq.(16), and consequently of the mechanism
underlying the divergence of the perturbative series. In fact,
this picture is very similar to the one described in the previ-
ous section for the simple integral example. This is perhaps
%ot surprising given the similarity of their large order behav-
ior.

In a finite volume, there is a region of finite measure in
eld space in which the perturbative approximation
fal@(x)] of Eq. (14) approximates the exact integrafitb)
with an error smaller than a given prescribed number. This

egion grows withN, becoming the full field space in the
N— oo limit. As in the simple example, this is a consequence
of Taylor's theorem applied to th@nalytig integrand(16).

The problem is that, for any finitsl, outside that region

X (Volmd)nd’2< - De\{
(60)

whereD,=—V?+1. The factors in the lin€59) correspond
to the value ot [ ¢] at ¢4, UP to the normalization ¥, as
can be seen in Eq41). The factor “Vol” arises after the
integration over the flat coordinates corresponding to th
center of gax. The n%2 comes from the Jacobian of the
change of variables as mentioned before. The faatdr
arises after the rescaling of the fields that makes them dime
sionless in botke, [ ¢] and Z,. This happens because there
ared more integration variables B, due to the integration
over the collective coordinates in the numerator. Finally, th
factor (—Def Dj,.o]) Y2 is the result of the integration over
the coordinates orthogonal to the zero modeDefwhile
(DefDg])*? is the dimensionless normalization facighe

mass dimension of both th_e numerator and the der?om_matqﬁe approximate integranth[ ¢(x)] strongly deviates from
was already taken care of in the temf). The minus sign is  pe exact one. This can be seen by noting that the maxima of
due to the ”Of."oca' part dd that, as proved above, S'mPIY every term offy grow factorially with the order. Therefore,
changes the sign of the determinant of the local part, makmgOr large enougtN, the last term is far greater than the pre-

it positive. _ vious ones at its maxima. Furthermore, as shown above, the
_ Equationg59) and(60) shogld agree with the correspond-  ssian approximation around that maxirfvehich be-

Ing res‘flt from Ref. [18] in the cased=1, where comes exact foN—o0) defines a measure that does not go to
—De{Djocaf Do]=1/12[8,18 and A=4/3. We see that the  ,orq a9\ [in fact, it is independent oK, Eqgs.(43) and
results are identical provided we take into account the dlffer(44)]. This means that for every finifs, there is a region of

ent normalization here and a factor of 2 that accounts for theite measure in field spadand this m’easure does not go to
undetermined sign of the solution of EQ7), allowing both ¢ asN—) in which the deviation between the perturba-
positive and negative solutions that contribute equally to the;,,o integrand and the exact one is of the order of the

functional integral. maxima of the last term offy, i.e., of the order of li—1)!.

Ford=2 or 3, the formal expressioriS9) and (60) need N5 jntegrable functional can therefore satisfy the property
of course to be renormalized. All the arguments in this S€C(12) of Lebesgue’s theorem.

tion remain valid for the theory with a Pauli-Villars regular-

" . This is the mechanism that makes the sequence of pertur-
ization[8]. The action(2) becomes

bative integrands, although convergent to the exact one, non-

dominated in the sense of Lebesgue’s theorem. It is therefore

¢+£¢4 also the mechanism that makes the sequence of integrals
4 (i.e., the perturbative serigsdlivergent. In fact, as Eq$59)

Lol —vey V4+ 2
29 TV R

STl [ a%

1 and(60) show, the famous factorial growth of the large order
+ —5m2(A)¢2}_ (61) coefficients of the perturbative series is a consequence, after
2 integration, of exactly this behavior.

The modification of the kinetic part of the action affects both
Eqg. (27) and the scaling arguments, but by an amount that
decreases ad ~2 when the ultraviolet cutoffA becomes It was mentioned in the Introduction that the analysis of
large. the divergence of perturbation theory presented in this paper
As shown in Ref[8], although the counterterm increaseswould point directly towards the aspects of the perturbative
with the cutoff, it is also proportional to at least one power ofseries that need to be modified in order to generate a conver-
\. Therefore if we take the smal limit before the large gent series. This is the topic of the present section.
cutoff limit, we are justified in ignoring the counterterm in  In the previous section we analyzed perturbation theory
Eq. (27) and in the scaling arguments. On the other hand, ifrom the point of view of the dominated convergence theo-
contributes to the result9) and (60) an amount that ex- rem. We have detected the precise way in which the conver-
actly cancels the divergence in the [2f,.,l, making the gence of the sequence of perturbative integrands to the exact
final expression finite as it should be. one takes place and the way this convergence fails to be
In the largen limit, where the Gaussian approximations dominated. We have learned that for any finite orletthe
(43) and (44) become exact, the expressiof®) and (60) field space naturally divides into two regions. In the first one,
give the large order behavior of the perturbative serieg of which grows with the order, eventually becoming the full
(up to the factor of 2 mentioned abgweithout any assump- field space(in the N—oo limit), the perturbative integrands

lll. STEPS TOWARDS A CONVERGENT SERIES
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very accurately approximate the exact one. In the other onghisticated machinery developed for perturbation théory
however, the deviation between the perturbative and exaatiuding all the perturbative renormalization methpd®uld
integrands is so strong that the sequence of integrals dautomatically be applicable. With this in mind, consider the
verges. function
It is then clear thatf we could somehow modify the inte-
grands, order by order, in the region where they deviate M (Mu)’
from the exact one, while preserving them as they are in the W(M ,U)EefMu._ i
other region, then, with a “proper” modification, such a =0
modified sequence of integrands would converge in a doml/'vhereM is a positive integer. Note th&/(M,u) arises from
nated way. According to the dominated convergence theol-:e—Mue+Mu by expanding. the second éxponential up to
rem, their integrals would then converge to the exact inte'orderM HereW(M,u) has the following remarkable prop-
gral, elljch!evinr? the desired goal of a convergent modifiederties_ ' '
perturbation theory. o .
Let )y be the region of field space in which thi¥th eé%:)evi\é(t/lrl’i?c))rglv\\;\iltr;\e&“g :rrorfgroi?]; Ltjo<zlér(-)rhaes conver
perturbative integrand approximates with a given prescribeg '
error the exact integran@l6). The characteristic function

, (64)

S : : 1 u
Ch(Qy ,{#(x)}) of that region is equal to 1 for field configu- R(M U)< eMlinu—(u-1)] ] 65
rations belonging to it and O otherwise: (M.w V2aM 1-u+1/M =
B 1 for{¢(x)}eQy, (2) W(M,u)— 0 whenM — oo for 1<u. The convergence
Ch(Qn . {o(x)})= 0 for{o(x)}e&Qy. (62 s also uniform, with an error of the form
One possible realization of the above strategy of modify- W(M,u)=eMiinu=t=l, (66)

ing the integrand$14) in the “bad” region of field space is

to make them zero there. We would have As we see, the exponent corresponds to the same function

in both cases. Fou>0, this function is always negative
N

1 (—1)" A n except at its maximum, at=1, where it is 0. Therefore the
fule(x)]= iR > ——e % —f ddx¢4> convergence is in both cases exponentially fasminwith
on=o0 N 4 the exponent becoming more and more negative, for a fixed
X Ch(Qy L (X)) 63) M, whenu differs more and more from 1. The proof of

properties(1) and(2) is in Appendix A.

If we replaceu by a positive definite quadratic form
(¢|D|¢)/Cy, then the insertion of Eq64) into the func-
;i_onal integral would effectively cut off the region of integra-

According to the analysis of the previous section, if we
choose()y appropriately, the sequence &f [ #(x)] will
exhibit dominated convergence, and the corresponding inte X
change between sum and integral will now be allowed. ation (#[Dl#)>Cy:
rigorous proof of this is left for a paper currently in prepa- N N
ration. For the purposes of the present argument, it is suffi- ZL[b(x)]= ij [do] (—Sind
cient to rely on the analysis of the previous section to assume N Zy n=o !
its validity. Also, in the next section we will analyze, along
the lines of the general ideas of this paper, some resumma- % &= [im W( M <¢|D|¢’>) 67)
tion schemes for which rigorous proofs of convergence have " Cy
recently been givef—16]. As that analysis will show, these
methods strongly rely on the general notions underlying Eq.

M — o0

n
(63). Their convergence supports, then, the validity of the :i > =Y lim j[d¢]
dominated nature of the convergence of &) towards Eq. Zon=o nb
(16).
An urgent issue, however, is the practical applicability of X e S(S,)"W| M <¢|D|¢>) (68)
the above strategy. To implement it, we need a functional nt " Cy '

representation of the characteristic functi@®) (or an ap-

proximation to i} that only involvesGaussian and polyno- Cy is a constant that changes with the ortleof the expan-
mial functionals. In the same way in which a functional rep-sion in X, increasing withN but in such a way that in the
resentation of the Dira@ function allows us to perform region wherd ¢|D|$)<Cy, the difference between the per-
functional integrals with constraints, the Faddeev-Popowurbative and the exact integrands is smaller than a given
guantization of gauge theories being the most famous exprescribed error. Since the convergenca\bfs uniform ac-
ample, a functional representation of the characteristic funceording to propertiegl) and (2), with errors given in Egs.
tion (62) would allow us to functionally integrate only the (65) and (66), the corresponding interchange between the
desired region of functional space. Since, basically, the funcsum in Eq.(68) and the functional integral is justified. The
tionals we know how to integrate reduce to Gaussians mulfact thatu becomes auadraticform implies that the result-
tiplied by polynomials, the desired representation of theing integrands are Gaussians multiplied by monomials.
characteristic function shoulohly involve those functionals. Therefore the familiar Feynman diagram techniques can be
Conversely, if it only involves those functionals, all the so-used to integrate them. It also implies that no new loops
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appear and the sum infrom Eq. (64) becomes an algebraic
problem. A typical functional integral to compute has the f/ \\

form

f [d¢1exp(—fddx ) | \
x(fddxd)“ n(f ddx¢D¢)m, (69) | o.al \

as can be seen by replacing the definitiéd) into Eq. (68) / 0.2 \
/)

1 2 1 2 42
5(0,9)2+ ZM?¢?+($D $ICy)

with u=(¢|D|¢)/Cy.

Note that at any given order iN it is not necessary in
principle to go to infinity inM. That would amount to re-
placing the perturbative integrands by zero in the region
(¢|D|p)>Cy, realizing the strategy mentioned before. But  FIG. 3. FunctionW(M,x,x n) with x¢ =1 for M=3 (dashed
since the convergence W is uniform, a finite, large enough Ilnt_e) gndM =_60 (solid I_me). The convergence towards the charac-
M (depending on the order in the expansion in the couplingeristic function of the intervajx| <x.  is apparent.
constant would suffice to tame the behavior of the perturba-
tive integrands and transform them intal@minatedconver- ~ demanding the validity of Lebesgue’s hypothesis and how
gent sequence. In fact, as we will see, many methods dhe N—o limit process captures the full nonanalyticity of
improvement of perturbation theory use effectively formulaz(\). The same method also works for the “negative mass
(64) without sendingM —< for any given finite order in case,” where the Borel resummation method fails. In Fig. 3,
perturbation theory. In any case, as already mentioned, thate can appreciate the convergencé\btowards the charac-
limit is in principle computable, since it does not involve teristic function of the intervalx|<x. y for X, y=1 for two
new loops. Work in this direction is in progress. different values oM.

The convergence of the sequer{68) towardsZ(\) may
be thought, at first sight, to be in conflict with our well-
establisr?ed knowledgrg about the nonanalyticity of this func- IV. IMPROVEMENT METHODS
tion atA=0. In fact, Eq.(68) seems to be a power series in OF PERTURBATION THEORY

A\ (the powers of\ coming from the powers d§;,); there- The analysis of the mechanism of divergence of the per-
fore, if convergent, that power series would define a functionurbative series presented in this paper, together with the
of X analytic at\ =0. It must be recognized, however, that formula (64) and its properties, offers a large range of pos-
the validity of Lebesgue’s dominated convergence theoremibilities to construct a convergent series. In the previous
is completely independent of any analyticity considerationsection we have shown how that formula can be used to
Therefore, if its hypothesis is satisfied, its conclusions musgffectively cut off the region of field space where the strong
be valid. This being said, the question of how to reconciledeviation between perturbative and exact integrands takes
the convergence of E¢68) with the nonanalyticity oZ(\)  place. But as we will see, this is only one possible way,
deserves an answer. To begin with, even at finite ordar,in among many, to use E64) to transform the sequence of
the function(68) is not necessarily analytic at=0 despite  perturbative integrands into a dominated one.
its analytic appearance. This is because the con€igmhay Another example of its possible use is the so-called “op-
have an implicit nonanalytic dependenceonin Appendix  timized § expansion”[19,20. In a series of paperf9—
B this is actually the case in the context of a simple examplel1,21], it was proved that such an expansion converges for
to which the present ideas are applied. But the mechanismhe partition function of the anharmonic oscillator in finite
that ultimately introduces the proper nonanalyticityNnis Euclidean time. The problem of convergence in the infinite
the limit processN—o. Given a nonanalytic function such Euclidean timeor zero temperatuydimit for the free energy
as Z(\) one can always construct a sequence of analytior any connected Green’s function is still under investiga-
functions that converge to it. Satisfying the hypothesis of theion, as well as its extension to quantum field theories
dominated convergence theorem is a way of achieving thaf10,12. The method was proved to generate a convergent
avoiding all the complicated anaiodel-dependerissues of  series for the energy eigenvalug$3,14], although such
nonanalyticity. Note that the validity of this hypothesis for a studies make heavy use of analyticity properties valid spe-
given sequence of integrands can be checked independentiifically in the models studied. In these works, it was real-
of any analyticity consideration. ized that many methods of improvement of perturbation
In Appendix B we prove the convergence of the generatheory, such as the order-dependent mappings of Refs.
strategy discussed here for the simple integral example an§22,23, possess the same general structure as the lifiear
lyzed in Sec(ll B). For that case, making=(x/xc,N)2, the  expansion. A considerable amount of work has been dedi-
function W(M,u) becomes in the limit the characteristic cated to investigating the virtues and limitations of the
function of the intervalx|<x. . We use this to explicitty method and extensions of[it1,15].
compute the nonanalytic functiaf\) [Eqg. (6)], calculating Although it is not appropriate to give a detailed analysis
only Gaussian integrals. We also show explicitly how aof these methods here, we would like to briefly indicate how
nonanalytic dependence ®f y on X naturally arises just by they can be understood in terms of the ideas presented in this

=2 1 1 2 3
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paper. In what follows, our analysis is restricted de 1
(quantum mechanigsvhere rigorous results about the con-
vergence of the methods considered here are available.
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Expanding the binomial and making some elementary
changes of variables in the indices of summation, we obtain
the expression

Let us consider the case of the anharmonic oscillator. Its

action is given in Eq(2) for d=1. The idea of the method is
to replace it by an interpolating action

Sﬁ:j th(dt(p)%% m?+ %a)&
5)\ a_ 2 2) 70
K Kl (70)

Clearly, the dependence on the parametemn S; is lost
whené=1. For that value, the actigi70) reduces to Eq.2).
However, if we expand up to a finite order ;hand then
make 5= 1, the result still depends am. The idea is to tune
«, order by order in the expansion & so that the result is

a convergent series. It was shown in the references men-

tioned above that the method worksdfis tuned properly.
For example, in Ref9], the asymptotic scaling=N?°was

used to prove the convergence of the method for the partition

function at finite Euclidean time.

It is interesting to note that, originall®,21], « was tuned
according to heuristic prescriptions such as the “principle o
minimal sensitivity” [20] (at any given order i, choosex
so that the result is insensitive to small changes)imitthe
criterion of “fastest apparent convergencéhe value ofa
at which the next order i vanishes But later[10,17, it
was realized that the best strategy was simply to leave
undetermined, find an expression for the erfttrat obvi-
ously depends omr), and then choose so that the error
goes to zero when the order éhgoes to infinity. It is clear

1 1
Z(m,)\,a,N)=Z—0f [dd)]exp[—fdt{z(dﬁ)z

el
{f o[ Elf o)

(72

This equation already shows some of the distinctive charac-
teristics of the method. As we see, th power of the
interacting action in the expansion ef Snt up to orderN is

r|]”nultiplied by
k
) ]

(73
fNote thatYW(N) corresponds to the functiow/(M,u) with
M=N (N is the order in the expansion @f Sn) and the
variable u replaced by the quadratic form
[(AN4m) [ $?]/Cy, where Cy=N/a. Taking, for example,
a=N??as in Ref[9] (where it was proved that with such a
scaling the method generates a convergent genes see
that, according to the previous sectiof)(N) is an approxi-
mation of thed function in the region of field space charac-
terized by

N—i N
= 4m

1
2 ki

W(N—i)zexp( —()\a/4m)f ¢>2)[

that a structural understanding of the convergence of the
method can help to construct the generalizations necessary to
overcome the difficulties associated with the convergence in
the infinite volume limit for connected Green’s functions, as
well as the extensions to general quantum field theories.

A
ﬁ f dxg?<N¥, (74)

Equation(72), however, shows that the mechanism used
To understand the “optimized expansion” in terms of to achieve dominated convergence cannot be reduced to a

the ideas presented in this paper, let us expand the functiongimpP!e insertiozn of the functioW(M,u) with M=N and
integral corresponding to the actiéf0) in powers ofs upto ~ U=[(A/4m)[#°]/Cy. That would be the case if all the

a finite orderN, and maked=1 as the method indicates, ~Powers of the expansion @ S up to orderN were multi-
plied by W(N). But Eq.(72) shows that théth power of the

interacting action is in fact multiplied byV(N—i).
At this point it is convenient to pause for a moment in our
study of the “optimizeds expansion” to give some useful

1 1
Z(m,)\,a,N)zz—of [dd)]exp{—fdt[z(dt(ﬁ)z

1 N N (—1)" definitions.
n _( M2+ —— d)zH[ > ' Let us callpassivemechanismgto achieve dominated or
2 2m n=0 N uniform convergence of a sequence of integrands to the exact

n oneg those that can be reduced to the product of Nth
fj * ¢2) } perturbative integrand and the characteristic function of a
4 region)y of field space for some sequen@,}.
Passive methods use only information that is already

The general analysis of the mechanism of divergence oévailable in the perturbative integrands; they just get rid of
perturbation theory of Sec. Il indicates that if the functionthe “noise” inherent to perturbation theory. Because of that,
(71) generates a convergent series withscaling properly in addition to defining a convergent series, they can also be
with N, then, barring miraculous coincidences, the correvery useful for studying perturbation theory itself. The func-
sponding integrands should converge in a dominated wation W(N,u), with u replaced by a properly selected qua-
(or, even better, uniformjytowards the exact integrarii4).  dratic operator, was specially designed to make passive
We want to obtain a qualitative understanding of how thismethods practical. In a sense, Sec. Il is a discussion of pas-
method achieves that. sive methods.

ANa

X
4m

(71)
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Active mechanisms are those that are not passive, as d
fined above. !

What kind of mechanism is the one underlying the “op- — ii:f.((’g
timized 6 expansion” method? 08 b oso 00
A trivial generalization of the proof, in the previous sec- ¢
tion, of the convergence &/(M,u) towards thed function 3 00015 I
for u>0 shows that the function g0 lexa ()~ fode (X
E
M—i ; - 0.001 |-
_ Mu)' A
W(M,u,i)=e MU ( . (75 g™
n=o0 I! = 5+107 |- .
also converges towards tigefunction foru>0 in the limit °2r . .
0 0.5 1
M—oo, i fixed. (76) ' ' . ' . ' '
0 0.2 0.4 0.6 0.8 1 1.2

In this sense, the “optimized expansion” method does
have passive aspects. As E(j&2) and(73) show, it amounts

to multiplying theith power of the expansion up to ordsr
PyIng P P P the fourth order optimized expansior(*ode” ) with respect to the

Wi _ 2 _
Of ent by w W'th u=[(A/4m)[ ¢°])/Cy and_C!\,— N/“_' same order perturbative approximation is evident. In the subgraph,
Since this function converges to the characteristic function of,o gifference between the “ode” and the exact integrand is plot-

the region characterized by E4), this means that the first teq, Note the difference in the scales of ghaxis of the main and
i terms of the expansion up to orddrof eSnt are effectively subgraph.

multiplied by the same functiofan approximate character-
istic function for i<N. Therefore, the first terms, with
i<N, use only the information available in the perturbative
series to converge to the exact integrand.

What about the other terms, i.e., the ones characterized by N
i=N? Surprisingly, these terms produce a convergence of l oge™ 2
the corresponding integrands towards the exact one that is n=o
faster than possible with only passive components.

Itis not the place here to study this aspect in detail, and s@jith a(N)= JN, for N=4.

let us simply show this “faster than passive” convergence e can see how accurate the convergencée,gfx) is,

for the simple integral example. even at this low order. In particular, when the perturbative
Applied to the “massless” version of the integr@), the  integrand begins to divergk,{X) continues to approximate

optimizeds expansion method was proved to generate a rapthe exact integrand remarkably well. In the inset, we can

idly convergent sequence in R¢R1]. That is, the sequence appreciate the difference betwebg{x) and | 4{X). Note

FIG. 4. In the main plot, the superiority of the convergence of

and the optimizeds expansion integrand

(—n"
n!

)\ n
e_“(N)x2<ZX4—a(N)X2) ' (81)

given by the difference in they axis scale of the main graph and the
N . . inset.
o= z (-1 f” dxe @N) X2 lx“—a(N)xz _ It i_s then clear thz_it the optimized expansion_ method,
NTE ont ) 4 with its subtle combination of passive and active compo-

(77) nents, manages to generate a sequence of integrands that
(uniformly) converges towards the exact one at a rate that far

was proved to converge to exceeds the possibilities within a purely passive method.
. From this qualitative discussion of the optimizé&xpan-
|= f dxe x4 (78  sion method we can deduce two general lesséhisAny
—o method of improvement of the perturbative series in a given

guantum theory, where a functional integral representation of
when a(N)= N with an error that goes to zero at the very the quantity under study exists, must rely, at the level of the
fast rate ofRy<CNY4e~ %66 whenN—c. C is a numeri-  integrands, on an improvement over the pointwise conver-
cal constant. gence of the Taylor series in the coupling constants of:
We are interested in understanding whether the corre() the problem of finding a convergent series reduces to the
sponding convergence of the integrands is faster than pagroblem of finding a dominated convergent sequence of in-
sive. For our qualitative purposes, it is enough to observe, ifiegrands towards™ 5. This second simple statement not only

Fig. 4, the convergence towards the exact integrand provides a guide to the construction of convergent schemes,
oA but also emphasizes the fact that, in principle, a dominated
lexd X) =€ (79 convergent sequence of integrands does not have to have any

relation whatsoever to the corresponding Taylor expansion.
In order to be able to use the usual techniques of quantum
N A1 AND field theory, it is reasonable to restrict the search for a con-
_ (—Ax7/4) vergent scheme to a sequence of integrands of the general
pert nZO n! 80 form

of both the perturbative integrand
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N erties of improvement methods, useful to generate new
fy=e %> a, nifn({#|Dnld)), (820  schemes, as well as to understand and improve old ones,
n=0 have been established.

where the functionalf, of the quadratic form(¢|D,| )
should take care of the nondominated convergence that is ACKNOWLEDGMENTS
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the convergence of the integrands —ariori connection
with any Taylor series is necessary. APPENDIX A
V. CONCLUSIONS In this appendix we will prove the two properties of for-
In this paper we have exposed the mechanism, at the Ievcra‘rllugie(gﬂlse foru>0 all the terms of the sum defining
of the integrands, that makes the perturbative expansion OfW(M ,u) are positive, we have trivially(M,u)>0. On the
functional integral divergent. We have seen in detail how thgipar hand, since in the Taylor expansion éf" all the
sequence of integrands violates the domination hypothesis Q{5 are positive, we ha®"_,(Mu)"/n! <eMY. Therefore

Lebesgue’s dominated convergence theorem. That theore%(M u)<1. So for everM and positive or zera we have
as is well known, establishes the conditions under which one ' '

is allowed to interchange an integration and a limit, in par- 0<W(M,u)<1. (A1)
ticular the interchange that takes place in the generation of
perturbation series. Consider first the case<Qu<1:
It was shown that at any finite order in perturbation
theory, the field space divides into two regions. In one re- “ o (Mu)"
gion, whose measure grows with the order, the perturbative 1-W(M,u)=e" M % Ny =R(M,u). (A2)
n=M+ :

integrands very accurately approximate the exact integrand.
In the other region, however, a strong deviation takes plac

It was shown that the behavior in this second region violate
the hypothesis of Lebesgue’s theorem and, consequently,
generates the divergence of perturbation theory. The famous MuM > M1

factorial growth of the large order coefficients of the pertur- R(M u):e—Mu( u) E (Mu)i————  (A3)
bative series was shown to be an effect, after integration, of ’ M = (J+M)!

the very mechanism that violates the hypothesis of the theo-

e will prove thatR(M,u)—0 whenM — o,
Changing variables tp=n—M, we get

rem. S _ S MM G (M)
All of the above was done explicitly without relying on e M M 2 M 1) (A4)
the particular analytic properties of the models studied. It is b= )
therefore natural to assume that similar mechanisms of the M
violation of Lebesgue’s hypothesis are present in any other $e_Mu(MU) u (A5)
quantum field theory, although for just renormalizable theo- M!' 1—-u+1M°
ries other mechanisms are responsible for renormalons. Stud-
ies in this direction are in progress. But MM/M!—eM/\/27rM for largeM, and so
The mechanism of divergence presented here points to-
wards a simple way to achieve a convergent series: Integrate 1 u
only in the “good” region of field space. Since this region R(M,u)<eMlinu=(u=1] 2aM I—u+ 1M (A6)

grows with the order, becoming in the limit the whole field
space, integrating in a correspondingly increasing region wi . L . .
would obtain a convergent series. A step towards a practicr;q he eﬁponfgt IS neganvg In ttr:]e reg|c‘>j|1e(0>< 1_Si'n(f|(_3hb0th
implementation of this program was made with the construcicr(;lrjean (—1) are negative there arjthu|>[u—1|. There-
tion of the functionW, Eq. (64). This function allows us to
introduce a Gaussian representation of the characteristic
function of regions of field space, in much the same way that
the imposition of constraints in the functional integral was
allowed by a functional representation of the Dir&dunc-
tion. A rigorous proof of the convergence of this practical
implementation of the above-mentioned strategy is in
progress. In Appendix B it was applied to a simple integral M
example. W(M,u)=e Mu>
Finally, a qualitative analysis of the optimizetiexpan- n=0
sion method of improvement of perturbation theory in terms
of the ideas of this paper was presented. Some general prop- <eMinu=(u=1] (A9)

R(M,u)—0 when M—o (A7)

in the region G<u<1 and property(1) is proved with an
exponentially fast convergence.
In the regionu>1, we have

n

YoM
<e MuyM>» — (A8)
A=o N!

(Mu)"
n!
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The first inequality is valid because>1 and the second a the Taylor series of the integrands converges uniformly.
becausee™>=M 'M"n!. The exponent is again negative. Therefore, as already said, the interchange between sum and
For u>1, both Iu and u—1) are positive, but now integral is legal. Finally, taking the limia— o, we would
[Inu|<|u—1|. So property(2) is also valid with an exponen- obtain the desired convergence towaz(s).
tially fast convergence. However, better use can be made of the information avail-
Foru=1 all we know is thatV is bounded by Eq(A1).  able inf for finite N. For example, for every finit&l, we
That is all we need. Numerics sugg&¥({M,1)—1/2 when  can choose, y So that
M — oo,
This finishes our proof. |f,’\‘(x)—f(x)|<26;—’N for [x|<Xen, (B5)
c,N

APPENDIX B
] . ) ] with e y going to zero asN—. Then, since we have
In this appendix we apply the strategy discussed in Sec.

Il to generate a series convergent to the functzfn) [Eq.

2 4 €
(6)]. This is done using the functio of Eq. (64) and com-  |fn(0)—f(0[se DentMa%enl= S for |X|>Xen,
puting exclusivelyGaussian integrals; therefore, we restrict (B6)
ourselves to using only those techniques that are also avail-
able in quantum field theory. the f{(x) will uniformly converge towards the exact inte-

As mentioned in Sec. lll, the simplest possible modifica-grand f(x) if Eq. (B5) is consistent withx, y—% when
tion of the perturbative integrand5) that would transform N— . Indeed, if this happens, we would have
the corresponding sequence into a dominated one amounts to
keeping them as they are fbq <x. y and replacing them by
zero for|x|>x. y. That is,

| r100-fuoon0x

<ernt e n—0 when N—oo,

N (B7)
(_1)n A " 2
2N T x4 e X for|x|<Xcn. . ,
fi= m ngo n (2% ¢ X< The term er y comes trivially from Eq.(B5), while €.y
0 for [x|>x comes from Eq(B6) and the inequality
c,N-
B o]
J’ 67[x2+(}‘/4)X4]dxse*[xg,NH)‘M)Xg,N]= €N (88)
In fact, choosingx. y S0 as to properly avoid the region in Xe N '

which the deviation takes place, the sequence pfcon- _
vergesuniformly towards the exact integrarid@7) as we will ~ valid for xc y>1. .
show shortly. Consequently, the corresponding sequence of Applying Taylor's theorem to the functioe **’4 one

integrals can easily show that the conditidB5) is satisfied if
© M N qyn n (N+1)11[4(N+5/4)]
f dxf,;:wflfzf °X’N danO( nf) (%x“) e (B2 Xe N= (N+1)!? (;) (B9)
- —Xe,N = '
N rxen (—1)"N A", Note that the nonanalytic dependencexgfy on N\ arises
=g 12y f dx— —x4> e X automatically from the imposition of E¢B5) to satisfy the
n=0J-xn nt 14 hypothesis of Lebesgue’s theorem.
(B3) Remember that the only condition as y (in order to
will converge to the desired integral achieve convergence of the sequence of integial® go to
zero whenN—o consistently withx, y—o in that limit.
o 2 4 Choosing, for example,
Z()\)Z 7771/2J dxef[x +(N4)X ]_ (B4)

ETNT e N (B10)

In Eg. (B2) the change in the limits of integration fromo
to * X, y is just due to the definition ofy in Eq. (B1). The
interchange between sum and integral in H§3) is now 14

allowed because in the regidr-X. y,Xcn] We have uni- Xen— (4N/EN) T (B1D)
form convergencedthis is a stronger condition than domi- This implies[through Eq.(B6)]

nated convergengeThe resulting integrals are not Gaussian
due to the finite limits of integration. We will show how they
can be calculated using only Gaussian integrals.

A trivial way to achieve convergence of the sequence Oquuations(Blo) and (B12) show the exponential rate at

integrals of thefy of Eq. (B1) towards Eq(B4) amounts to  \hich the convergence of the sequence of integrals takes
keepingx. y equal to a finite constant & independent of  pjace.

N, while taking the limitN— . Inzthis ”Tita Eq. (B3) be- Clearly the form(B10) for ey is not unique, nor even
comes identical tar~ Y22 _dxe X" T (MAXT “since for finite  the most efficient one, but enough to achieve convergence.

we obtain, asymptotically,

1/2
€C‘N4)e—(4N/e)\) —N/e. (BlZ)
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TABLE I. Integration over the small field configurations only M 1/ M \" e ,
produces a convergent series. In the last column the improvemenfim > —| — f o~ (L+MIxg )xPy2(n+1) gy (B17)
over the perturbative values can be appreciated. M—o N=0 nt C N —®
Exact value M
Order (A=4/10) Convergent series  Perturbative series = lim 2 ill"(n+t+1/2)
e N=0
2 0.837043 0.803160 0.848839 M "
4 0.837043 0.830264 0.854087 Xg N t+1/2 X§ N —(n+t+172)
6 0.837043 0.835516 0.901897 ( M ) 1+ M ) (B18)
8 0.837043 0.836667 1.316407
20 0.837043 0.837044 2.3378480°
M 1( )I+1/2 o ( 1)k
| | =m0 o 2,
In Table | one can appreciate the numerical convergence
for A=4/10. g k
Up to now we have proved that the general strategy of XTI'(n+t+k+1/2) (B19
Sec. lll does, in fact, generate a convergent sequence to-
wardsz(\). However, the resulting integrals in E@®3) are
not Gaussians, making the applicability of the method in 3 213 (=DF (X
guantum field theory dubious, to say the least. We will show =(Xe,N) &K (Kt 1)
now that the integrals of EqB3) can be computed, using
Eq. (64) with u=(x/x. y)?, calculating only Gaussian inte- (k+t+1/2) M I'(n+t+k+1/2)
grals. The steps involved are X I i & o . (B20)
X o)
f o" xre*XZdXZJ x'e ™ lim W(M,x,x.n)dx  (B13)  In Eqg.(B18) we have used the equation
~Xe,N —® M — o0
o I'(n+1/2
® ) f x2”e‘p"2dx= TSR (B21)
= |lim f x'e "' W(M,x,X¢ ny)dX —o p
M—owJ =%

(B14)  in Eq.(B19) we have expanded the last term of EB18) in
powers ofxéN/M and carried out some cancellations, and

1/ M % finally in Eq. (B20) we have interchanged thd —oo limit
= lim X —— f with the infinite sum ink.
M- N=0 TEA Xe N/ /= Comparing Eqs(B16) and(B20), we see that the validity
Xe_(ﬂM,Xg’N)XzXzﬂde (B15) of Eg. (B15) depends on the validity of the equation
M
The two properties ofV validate both equalitie§B13) and li (k*t+1/2) 2 F(n+k+t+1/2)
(because of the uniformity of the convergencéN (B14). Mo MKFEF12) 5=
In the last line, Eq(B15), we just make explicit the meaning )
of Eq. (B14). So it is clear that these two properties are =1 V integersk,t>0. (B22)

enough to prove the validity of E¢B15), where only Gauss-
ian integrals are present. But it is a good exercise to find dhat this identity holds for every integémandk can be seen
direct proof of it in the case at hand, where everything can by considering the following analytic function of the com-

computed exactly. We do this next. plex variablez:
Forr odd the integrals vanish, and so let us consider the
case where is even, that isf =2t, for any integett. o) I (1/2) %": I'(n+1/z) 573
On the one hand, we have (2)= m 382 Tt 1)1 (B23)
. -1 k 2k
en 4x=(x )2”12 ). _Xen) If the identities(B22) hold, this function must be identically
(X kI (k+t+1/2)° : : I -
_XcN k=0 ( 1, since for 1Z;=j+ 1/2 with | integer it reduces to them,

(B16) and for ever increasing we obtain a sequence accumulating

at z=0 on which the function should be 1.
where the necessary interchange between sum and integral to Conversely we will prove thab(z) is indeed identically
arrive at the result is allowed due to the uniform convergence as an analytic function of, proving in consequence the
of the Taylor series ofe™ in the finite segment identities(B22) for arbitraryt andk. Consider the sequence
[—XeN 1 XeN]- 1/zj=j+1 for j integer. This sequence also accumulates at
On the other hand, z=0, and for all its points we have
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o (j+1) S T(n+j+1)
O(l/(j+1))—'\/||lz’lw IEEY HE:‘,O F+D) (B24)
RS TS
_J'inw M(M)go IL_,(i+n) (B25)
= lim U+l % nl+O(ni—1)
=lm 255 2 (B26)
(i HD[MOTY N
—JITCDW(J_F—J_)'FO(M) — 1.
(B27)

ThereforeO(z) =1 for all z. This finishes the direct proof of
Eq. (B15).
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As was mentioned before, EdB9), derived indepen-
dently of any analyticity consideration, and only with the
purpose of satisfying the hypothesis of Lebesgue’s theorem,
introduces a nonanalyticity in the sequence of integral,of
even for finiteN. But even for the case whexg y is fixed to
a constanta, discussed before, in which the linfit—o is
taken first, and them is sent to infinity, and therefore the
sequence is made out of truly analytic functions, the conver-
gence towardg(\) is perfectly compatible with analyticity

considerations. The functior’vsfl’zfiadxe*[X2+("’4)X4] (the
result of theN—oo limit) are clearly analytic ir\. But they
converge to(in fact they defing the nonanalytic function
z(\) whena—o. The limit of an infinite sequence of ana-
Iytic functions does not have to be analytic.

Another important issue is that the same method also
works for the “negative mass case,” where the Borel resum-
mation method fails. Indeed, from the discussion of this ap-
pendix it must be obvious that, with a proper scalingof; ,
the f’s with a negative quadratic part of the exponent also
converge uniformly towards eX*~ 4T for x in

[—XcnsXen]. Therefore, the sequence of integrals is also
convergent.
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