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We describe a nonlinear method for generating, nearly instantaneously, a time-reversed replica of any
monochromatic-beam wave pattern. The method employs the interaction of the incident beam, of arbitrary
wave front, with counter-propagating plane "pump" waves in a homogeneous, transparent, nonlinear medium.
Media are shown to exist in which time-reversed waves
laser pump sources.

can be generated with high efficiency using available

I. INTRODUCTION

For any electromagnetic wave that propagates through
an inhomogeneous, nonabsorbing, medium (having no
permanent magnetism), there can exist in principle a
time-reversed replica of this wave. This means, for
example, than an appropriately patterned but irregular
wave front can travel through a randomly inhomo-
geneous medium and emerge as a coherent uni-
form wave front, providing it is a replica, reversed in
time, of a coherent beam that is deformed by the same
inhomogeneous medium. Here we propose a new meth-
od for generating, nearly instantaneously, the time-
reversed replica of any monochromatic beam. Our
method employs the nonlinear refraction present in any
medium and is realizable with existing laser sources.

It is well known to be possible to generate a time-
reversed wave by nonlinear effects. Zeldovich et al. .
showed experimentally that a nearly "time-reversed"
wave was produced by stimulated Brillouin scattering
(SBS) in the backward direction of a ruby laser beam
whose phase front had been deformed by an inhomoge-
neous medium. This wave was not perfectly time re-
versed as it was slightly downshifted in frequency by
the acoustic frequency. Nosach et al. 2 used SBS to
restore the coherence of a laser beam that had been
amplified by an inhomogeneous amplifying medium.
Recently, Yariv has proposed to "undo" the distortion
of images transmitted by multimode optical fibers by
parametric mixing in an acentric crystal.3 He has
shown that the mixed wave would be a time-reversed
version of the propagated wave that, upon further prop-
agation in the fiber, would evolve back into the original
pattern at the entrance face of the fiber. 3 This mixing
process could also be used to produce an unguided,
time-reversed beam. In either case, limitations are
placed on the beam-acceptance angles in this process by
"phase-matching" requirements on waves that can mix
efficiently in the crystal. In the case of the technique
using nonlinear refraction, which we discuss below,
neither a frequency shift nor phase-matching need play
a role, thus allowing a more accurate time-reversed
replication than is possible with SBS or parametric
mixing. Also, on the basis of nonlinear optical coef-
ficients known to date, the effect we'discuss here can be
produced with less laser pump power than either of the
other effects.

In Sec. II we will show how, in the presence of
counter-propagating pump waves, a beam will cause
the generation of its time-reversed wave by the non-
linear refraction which exists in any medium. In Sec.
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III we show that the pump power levels required for ef-
ficient time-reversed generation are well within the
capability of available sources. We also suggest a
simple experimental arrangement for demonstrating the
generation of a time-reversed wave by nonlinear re-
fraction.

II. THEORY

Consider a monochromatic electromagnetic beam
that has a complex wave front and is incident from the
left on a transparent slab of nonlinear dielectric, as
shown in Fig. 1. We assume that this beam has an
electric field ReEl (r) eiwt whose complex amplitude
E (i=x,y,z) is known at every point r in space. We
will derive the amplitude Fi(r) of the field radiated by
the nonlinear electric polarization density RePNL(r) e-ivt
that is created in the nonlinear medium by the interac-
tion of this beam with strong forward and backward
plane waves at frequency w0 that also exist in the
medium. That is, we assume the following electric
field to be impressed in a homogeneous nonlinear me-
dium:

Re[Ei(r) etw+t +Gieikoziwot +Hie-iz-i wot]. (1)

By virtue of the (third-order) nonlinear susceptibility
that exists in any medium, we have, at v = 2wo - w,

PZ =Xij Et. (2)

Here, as throughout, the summation convention is used
for repeated space indices, and

Xij =6Ci k (- V, - wwo, w0 ) GkHj, (3)

where the Cisl are the nonlinear susceptibility coef-
ficients defined by Maker and Terhune4 and which are
known, at least approximately, for many materials. 5
We will call the oppositely traveling plane waves at w0

nonlinear
y '. medium

incident X pump wavevectors

(XI'Y11O)

time- ,
reversed ./

beam > S

0 Z z

FIG. 1. Schematic and nomenclature for calculation of time-
reversed wave fields.
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the "pump" waves, as their amplitudes determine the
magnitude of the nonlinear susceptibility X,,.

Now we wish to calculate the electromagnetic field
amplitude Fi generated at a point (x, y, z) far in front of
the medium by PyLy and show that, when a = w0, Fj is
proportional to the complex conjugate Et of the incom-
ing wave front at the same point. That is, the generated
wave is the "time-reversed" wave. We can, without
loss of generality, take the transverse frontal plane, in
which we will demonstrate this relation, to be at z =0,
as shown in Fig. 1. For simplicity we will assume that,
even though the nonlinear medium exists only between
z 1 <Z <Z2 (see Fig. 1), the linear refractive indices are
the same inside and outside the medium. (Corrections
for reflection and refraction at dielectric interfaces can
be made later.) The incident wave amplitude at a
point (4, i7, z) inside the nonlinear medium may then be
written simply in terms of its "initial" amplitude at the
point (xt,y',0). We assume these two points to be
separated by a distance r much larger than a wavelength
The Fresenel-Kirchoff diffraction formula gives

Ei (4 , e1, z) = - iRe ff dx'dy'E£1 (x',y', 0) Keikr/(2zrr), (4)

where k =n1 w/c, n1 being the refractive index for this
wave, and K = (1 + cose)/2, 0 being the angle between
the ray along r and the z axis, as shown in Fig. 1. The
nonlinear polarization density, which results from (4)
substituted in (2), will radiate to give an electric field
amplitude Fi at the point (x, y, 0) in its far field:

F1 (x, y, 0) = f 2 dz f f ddTi XjkE *X(4, 7, z) e QS/s.
21

(5)
Here q =n2 ./c, n2 being the refractive index for the
radiated wave at v, and s is the distance between (x, y, 0)
and (4, 27,z). The operator Tij takes the transverse
part of the vector source, which is essentially its pro-
jection on a plane perpendicular to the incident beam.

After substituting (4) into (5), one finds that the in-
tegral over 4 and 27 can be performed nearly exactly
under conditions which are commonly obtained in prac-
tice. To see this, we expand the phase function in
powers of [the transverse incident-beam coordinates
(4, 77) divided by the distance z between the radiating
and initial planes]

qs -kr=Akz +l(qp 2 -kp' 2 )/z +(kx' -qx) * 4/z

+ 1 Akua2 /z + 0[k 4/z 3 ] . (6)

Here, Ale =q - k and x, x', and t are two-dimensional
vectors, whose coordinates are (x,y), (x',y'), and (4, q7),
and whose magnitudes are p, p', and a, respectively.
The first two terms in the rhs of (6) are not functions of
4 and e1; the next is the important term. So that we
may neglect the terms in (6) of order ac2 and higher, we
will assume that the incident beam is contained inside
a circle of radius d in the i, a7 plane, and that both of
the following conditions are satisfied:

z >> d2Ak (7)

and
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z» >? /2, (8)

it is seen that, since Ak <le, these conditions require
that the nonlinear interaction region be a minimum
distance from the initial plane at z = 0, but not so far
as the Fraunhofer diffraction region. In performing
the integral over 4 and 27 we will assume that (rs)'1 does
not vary with 4 and ej within d and replace it by its
average, which we call (Ts)h'. We treat K similarly,
replacing it by K. Then, with (7) and (8), the integral
over 4 and y in (5) gives a delta function. When (4) for
E£ is substituted in (5), the (x', y') integral may be per-
formed trivially to yield

Fi(x,y, O) =2vriq2kl1fdz eiAkz 4(z)TijXjkE* R x, q Y,0 ),

(9)
where 4 =Kz2 /s . We have assumed that the product
GCHI of the amplitudes of the strong, oppositely travel-
ing, pump waves at w0 was independent of 4 and 71 at
given z, at least over the area of the incident beam E,.
However, the amplitudes Gi and Hi (and hence, X1 j)
may still vary with z and affect the integral in (9).

The important consequence of (9) is that F1 is propor-
tional to E* at the same point (if k =q), or at a nearby
point (if kZtq), in space. That is, if kl=q, a time-
reversed or phase-conjugate wave is generated in this
process. When k *q, a magnified and displaced replica
of this wave results. There are no phase-matching re-
quirements here, so a quite divergent beam can be
"time reversed. " We proceed to estimate the beam
powers that would be necessary to obtain a given effici-
ency of generation of the time-reversed wave.

III. NUMERICAL EXAMPLE

To estimate the pump-wave powers necessary to pro-
duce a desired time-reversed wave, consider the prac-
tical case where (1) the incident beam is nearly colinear
with the pump beams (0<< 1), (2) k =q, and (3) the pump
amplitudes do not vary appreciably in the region of the
nonlinear medium where they overlap the incident beam.
Then 4-1, Ak =0, Tij - 6ij, and (9) reduces to

Fi (r) = 2rikLXij E 1 (r). (10)

where L =z2 -az is the thickness of the nonlinear me-
dium, and r is assumed to be far enough in front of the
medium so that conditions (7) and (8) are satisfied.
From (10) we see that the ratio R of conjugate-wave
power to incident-wave power is

R-I= ,, 2L,

where

1 = j 967r
2 2

CCiJklf fe~jgkhl I -

(11)

(12)

Here, fi, eigi, hi are the complex, normalized, polariza-
tion vectors of the waves (ei EiE/I E7EI1 /2, etc. ), and
IG and 1H are the intensities of the forward and back-
ward pump waves. We have assumed that the time-
reversed wave has an intensity small enough so as not
to perturb appreciably the other wave intensities, i. e.,
R <1.

For CS2, one of the most optically nonlinear of
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FIG. 2. Schematic diagram of apparatus described in text for
observing generation of a time-reversed wave by nonlinear re-
fraction in medium A.

liquids, cco5 x(- w, - w, ,co) - 2 x 10-'3 esu. 5 At 6943 A
this would imply by (12) that 3- 6 X10- 3 cm/MW.
Grischkowsky and Armstrong have observed that for w
near the 2P1 /2 resonance in rubidium vapor, the c co-
efficient (and fi) was nearly four orders of magnitude
greater, implying J3- 30 cm/MW near 7950 A. 6 With
this latter figure as an example, we see from (11) that
to obtain 10% conversion to a time- reversed wave
(R = 0. 1) in a 10 cm length of medium, the pump inten-
sities required would be 'G - 1H 1 kW/cm2 . The 2 mm

diameter dye-laser beam of several kilowatts, which
was used in Ref. (6) to observe the nonlinear index,
would certainly satisfy this requirement.

In order to demonstrate the generation of a time-
reversed wave with a single monochromatic laser
source, one might employ an arrangement as shown in
Fig. 2. A single-mode monochromatic laser source
is directed into the nonlinear medium A. The mirror
M2 reflects this beam back through the medium creat-
ing forward and backward plane-pump waves of nearly
the same amplitude. Beam splitter BS1 and mirror Ml
direct a portion of the laser source through a phase-
distorting plate P and a focusing lens £ into the pumped
region of the medium. Cameras 1 and 2 record the in-
cident and backscattered beam patterns at beam splitter
BS2. Camera 1 should show the "single-mode" pattern
as in inset (a). If the nonlinear medium is removed and
a back -reflecting mirror M3 placed at the focal point of
lens 2, adistortedpattern, causedby double-passing P,

will be recordedby camera 2 as indicated in inset (b).
However, in the presence of the pumped nonlinear me-
dium, camera 2 should record the same single-mode
pattern (c) as recorded by camera 1. That is, the back-
scattered beam is re-formed by plate P to have a
smooth phase front and appear to be the time-reversed
image of the incident beam.

In an experimental arrangement such as in Fig. 2,
the linear refractive index of the medium A may not
match the index outside its front surface. In this case,
the length L of the medium must be long enough so that
condition (8) is met for most of the interaction volume
when the comparison plane z = 0 is considered to be just
inside the entrance surface of the medium (i. e., z1 =0
in Fig. 1). Then the time-reversed wave front will
have become well formed before exiting the medium A
and continue back toward lens C as a time-reversed
replica (except for the small reflections at the dielec-
tric interface which can be eliminated by coatings).
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