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[TINERARY

120 ISH SLIDES (FAST)

« MAP PROJECTION LIVE DEMO (10 MINS)

« DATABASE SUPPLAMENT

« PROJECTED COORDINATE SYSTEMS AND TYPES OF PROJECTIONS
« TYPES AND EXAMPLES.

« SPECIAL INTEREST ON AE

« CELESTIAL COORDINATES AND BASED ON ANGLES TO STARS

« CELESTIAL CURVATUE

« GEOGRAPHIC TO CELESTIAL1TO 1

« ASTROGEODEDICS

« SPHERE TO HEMISPHERE, AND CIRCUMFERENCESS

+ COSMOGRAPHY SHOOTING FOR 90 MINUTES



L €5 @0 G0 €GP G2

- ) Feam I8

L | =l @Vl

D G

e aas BT PR 1 & TS Fexsm P
FPasas P 1

<2 &)

P = WY LR TEANFLes = =1

L o L NP Lgat Lam Ll weas

Feym FL ==ee M Feem P

P s F W

Gy &) &»




DO ALL MAPS PRIECT THE GLOBE?

Map projection

%A 54 languages v

Article Talk

From Wikipedia, the free encyclopedia

(Redirected from Map projections)

In cartography, a map projection is any of a broad set of transformations employed to represent the curved
two-dimensional surface of a globe on a plane.['II?I°] |n a map projection, coordinates, often expressed as
latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a

plane.Il] Projection is a necessary step in creating a two-dimensional map and is one of the essential
elements of cartography.

All projections of a sphere on a plane necessarily distort the surface in some way and to some extent.!©]
Depending on the purpose of the map, some distortions are acceptable and others are not; therefore,
different map projections exist in order to preserve some properties of the sphere-like body at the expense of
other properties. The study of map projections is primarily about the characterization of their distortions.
There is no limit to the number of possible map projections.l’l*1 More generally, projections are considered in
several fields of pure mathematics, including differential geometry, projective geometry, and manifolds.
However, the term "map projection” refers specifically to a cartographic projection.

Read Edit View history Tools w

A medieval depiction of the Ecumene
(1482, Johannes Schnitzer, engraver),
constructed after the coordinates in
Ptolemy's Geography and using his second
map projection



WHAT DO MAP PROJECTIONS ACTUALLY
‘PROJECT’
 ALL MAPS PROJECT COORDINATE SYSTEMS.

e MOST COMMON 1S THE GEOGRAPHIC COORDINATE SYSTEM AKA
(LATITUDE AND LONGITUDE)

* IN ADDITION OTHER COORDINATE SYSTEMS ARE:

e UTM (UNIVERSAL TRANSVERSE MERCATOR)

e STATE PLANE COORDINATE SYSTEM (SPCS)

e CARTESIAN COORDINATE SYSTEM

e MILITARY GRID REFERENCE SYSTEM (MGRYS)

« LOCAL COORDINATE SYSTEMS

e EARTH-CENTERED, EARTH-FIXED (ECEF) COORDINATE SYSTEM
« GEOCENTRIC COORDINATE SYSTEM



Projected coordinate system

Article Talk Read

From Wikipedia, the free encyclopedia

(Redirected from Grid reference system)

"Easting and northing" redirects here. Not to be confused with East north up.
For broader coverage of this topic, see Spatial reference system.

A projected coordinate system — also called a projected coordinate reference system, planar coordinate system,
or grid reference system — is a type of spatial reference system that represents locations on Earth using Cartesian
coordinates (x, ¥) on a planar surface created by a particular map projection.!’! Each projected coordinate system, such
as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific
parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and
a choice of unit of measure.[?) Hundreds of projected coordinate systems have been specified for various purposes in
various regions.

When the first standardized coordinate systems were created during the 20th century, such as the Universal Transverse
Mercator, State Plane Coordinate System, and British National Grid, they were commonly called grid systems; the term
Is still common in some domains such as the military that encode coordinates as alphanumeric grid references.
However, the term projected coordinate system has recently become predominant to clearly differentiate it from other
types of spatial reference system. It is used in international standards such as the EPSG and ISO 19111 (also published
by the Open Geospatial Consortium as Abstract Specification 2), and in most geographic information system
software.>ll]



COORDINATE SYSTEMS

BASED ON A DATUM

Coordinate conversions and coordinate transformations change coordinate values in one coordinate reference
system to coordinate values in another coordinte reference system. A coordinate system 1s a set of
mathematical rules for specifying how coordinates are to be assigned to points. It includes the definition of
the coordinate axes, the units to be used and the geometry of the axes. A coordinate system 1s an abstract
concept. unrelated to the Earth. A coordinate system i1s related to the Earth through a datum. The
combination of coordinate system and datum i1s a coordinate reference system (CRS). If a different datum

1s used, the coordinates of a point to change. Colloquially the term coordinate system has historically been
used to mean coordinate reference system.

Coordinates may be changed from one coordinate reference system to another through the application of a
coordinate operation. Two types of coordinate operation may be distinguished:
e coordinate conversion. where no change of datum 1s mvolved and the parameters are chosen and
thus error free.
e coordinate transformation, where the target CRS 1s based on a different datum to the source CRS.
Transformation parameters are empirically determined and thus subject to measurement errors.



A geographic coordinate system

Geographical COOl‘dina tes (GCS) is a spherical or geodetic

coordinate system for measuring
and communicating positions
a— directly on Earth as latitude and

longitude. It is the simplest,
oldest and most widely used of
| o the various spatial reference

, - Prime Meridian systems that are in use, and

1 Degrees Langitud .
S e e forms the basis for most others.

Although latitude and longitude
¢ Cquator form a coordinate tuple like a
WBSlY 0 Dogroos Latitude cartesian coordinate system, the
4 geographic coordinate system is
not cartesian because the
measurements are angles and
are not on a planar surface.

Peter H Dana 9/1/94
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Geographic Coordinates

. Latitude (y) - north-south distance from the
equator - the “origin”. Also called parallels.

* Longitude (x) - east-west angular distance
from a prime meridian - the “origin”. Also
called meridians.

. % Not a map projection - a set of spherical
coordinates used to reference positions on the
curved surface of the Earth for use in map
projections.

% Basis for projected coordinate systems

-




Latitude Longitude

(North/South) (West/East)
90°N

Geo-Referencing Systems

Equator || KW [ED

# Geographic Grid

- a.k.a Latitude & Longitude 45°

— Continuous, 3-D 90°5

- is geo-referenced... but not suitable for 2D mapping 2 o 02t
(nOt pla nar) North anrc)jOISeosuth at the Grgae:tw;rc}g E/(\)lelsio

Figure 2.5 The geographic
grid. Spherical grid system show-
Ing paraliels and meridians. Paral-
lels allow us to measure angular
distance north and south (lati-
tude) irom the equator (( degrees
latitude) up to a maximum of 50
degrees north (North Pole) and 90
degrees south {South Pole),
Meridlans start at the prime
meridian and allow us to measure
angular distance east and west
(longitude) up to a maximum of
180 degrees where they would
meet at the international date line.
Source: Robinson &t al, Elements of
Cartograpliy, 6th ed., John Wiley &
Sons, Ine,, New York, © 1995, modified
irom Figure 4.4, page 47. Used with
PErmission,

ErmuuCer i 26N _ | artiira 2 =



Map Projection

» The systematic mathematical
transformation of the thraa-dimensional o0rreN REFERRED TO AS CONFORMAL

curved surface of the spurre 2to the two-

CELESTIAL

dimensional flat surface of a map.

- Basically, it is how you “"show” the curved 3-D
Earth on a flat map.

%  Attempt to accurately depict the following

characteristics:
1. Direction
2. Distance
3. Area
4. Shape

* No Map Projection can accuracy depict
all four characteristics at once.

Every map projection will contain some
distortion.

1. AREA-PRESERVING PROJECTION -
ALSO CALLED EQUAL AREA OR
EQUIVALENT PROJECTION, THESE
PROJECTIONS MAINTAIN THE
RELATIVE SIZE OF DIFFERENT REGIONS
ON THE MAP.

2. SHAPE-PRESERVING PROJECTION -

OR ORTHOMORPHIC, THESE
PROJECTIONS MAINTAIN ACCURATE
SHAPES OF REGIONS AND LOCAL
ANGLES.

3. DIRECTION-PRESERVING
PROJECTION - THIS CATEGORY
INCLUDES CONFORMAL,
ORTHOMORPHIC, AND AZIMUTHAL
PROJECTIONS, WHICH PRESERVE
DIRECTIONS, BUT ONLY FROM THE
CENTRAL POINT FOR AZIMUTHAL
PROJECTIONS.

4, DISTANCE-PRESERVING PROJECTION
- KNOWN AS EQUIDISTANT
PROJECTIONS, THEY DISPLAY THE
TRUE DISTANCE BETWEEN ONE OR
TWO POINTS AND ALL OTHER POINTS
ON THE MAP.



% Not a map projection - a set of spherical
coordinates used to reference positions on the
curved surface of the Earth for use in map
projections. x Basis for projected coordinate systems

Latitude Longitude
« A function of the angle between * Comprises meridians (half circles)
the horizon and the North Star = Range: 0 - 180 degrees

«Range: 0 - 90 degrees % Origin: The Prime Meridian

«Origin: The Equator = "~~~ x Direction: East and N

« Direction: North (I T West of the origin
and South of the

origin




The Graticule

* The graticule is the gridded network of
latitude and longitude, the pattern that the
meridians of longitude and the parallels of
latitude form on the surface of the earth.

" 2 Parallels P -
. . of Latitude ' ,'=..":E
R L4 The
— 4 — A Graticule
L
Meridians

of Longitude Ll |




The Graticule

» Picture a light source projecting the shadows of the graticule

lines on the surface of a transparent globe onto the developable
surface ...

Cylinder Cone Plane

e )




COORDINATE SYSTEM & TRANSFORMATION

* Coordinate systems are defined as a system used to represent a point
In space

* Classified a Orthogonal and Nonorthogonal Coordinate system

* For orthogonal coordinate system, the coordinates are mutually
perpendicular. The orthogonal coordinate systems include
* Rectangular or Cartesian coordinate system
* Cylindrical or circular coordinate system
* Spherical coordinate system



The Graticule, Projected

CYLINDRICAL GRATICULE

Cone

ELOBE
GRATICULE

COMNIC GRATICULE
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Three-parameter methods

The simplest datum transformation method is a
geocentric, or three-parameter, transformation. The
geocentric transformation models the differences
between two datums in the XY Z coordinate system.
One datum is defined with its center at 0,000, The
center of the other datum is defined at some
distance (AX AY A¥) in meters away,

Z

A Output
coordinate
system

Input
coordinate :
system H d:; > Y

3

S

dy
X

Usually the transformation parameters are defined as
going ‘from’ a local datum ‘1o’ WGS 1984 or another
geocentric damm.

X AX X
Y =|AY |+| ¥
zmgw AZ zon'gnmf

The three parameters are linear shifts and are always
in meters.

Seven-parameter methods

A more complex and accurate datum transformation
is possible by adding four more parameters o a
geocentric ransformation. The seven parameters are
three linear shifts (AX AY AZ), three angular rotations
around each axis ( r!,r!,rtl. and scale factor(s).

X AX 1 rp -rny||X
Y =|AY |+(1+s5): |- 1 rp |-|¥
= new AL 5 T 1 1 original

The rotation values are given in decimal seconds,
while the scale factor is in parts per million (ppm).
The rotation values are defined in two different
ways. It's possible to define the rotation angles as
positive either clockwise or counterclockwise as you
lock toward the origin of the X,Y.Z systems.

The Coordinate Frame for Bursa- Woll) definition of the
rolation valies.

The equation in the previous column is how the
United States and Australia define the equations and
is called the Coordinate Frame Rotation
transformation. The rotations are positive
counterclockwise. Europe uses a different

convention called the Position Vector transformation.

Both methads are sometimes referred to as the
Bursa—Wolf method. In the Projection Engine, the
Coordinate Frame and Bursa—Wolf methods are the
same, Both Coordinate Frame and Position Vector
methods are supported, and it is easy 1o conven
transformation values from one method o the other
simply by changing the signs of the three rotation
values. For example, the parameters to convert from
the WGS 1972 datum to the WGS 1984 datum with
the Coordinate Frame method are (in the order. AX,
AY A Ll S ):

0.0, 0.0, 4.5, 0.0, 0.0, -0.554, 0.227)

To use the same parameters with the Position Vector
method, change the sign of the rotation so the new
PArdmerers are:

(0.0, 0.0, 4.5, 0.0, 0.0, +0.554, 0.227)

Unless explicitly stated, it's impossible to tell from
the parameters alone which convention is being
used, If vou use the wrong method, vour results can
return inaccurate coordinates. The only way 1o
determine how the parameters are defined is by
checking a control point whose coordinates are
known in the two sysiems,

Molodensky method

The Molodensky method converts directly berween
rwo geographic coordinate systems without actually
converting o an XY, Z sysiem. The Molodensky
method requires three shifts (AX AY AZ) and the
differences between the semimajor axes (Aa) and the
flattenings (Af) of the two spheroids. The Projection
Engine automatically calculates the spheroid
differences according to the damms involved.

(M + h)A@ = —sin @ cos AAX —sin @sin AAY

e” sin @ eos @

) F M
(1-¢”sin” @)""

+ cos pAZ +
. e AT b

+ sin @?cn:«;@!{M;+ N —)Af
a

(N + h)cos @ AA = —sin AAX + cos AAY

Ah=cos@cos AAX +cos@sin A AY
+sin@AZ —(1—¢" sin” @)"'* Aa

a(l-f)

+. 2 " )
(1—¢" sin” @)

172 sin” @ Af

h  ellipsoid height (meters)
o ladmde

longitude
4  semimajor axis of the spheroid (meters)
b semiminor axis of the spheroid (meters)
t  fattening of the spheroid
e eccentricity of the spheroid

ALL MAPS ARE THE PROJECTING THE GRATICULE

M and N are the meridional and prime vertical radii
of curvature, respectively, at a given latitude. The
equations for M and N are:

a(l—e”)

M= ¥ o« 0 172
(l—e sin" @) ~

N o

= T . 2 12
(l—e sin” @)

You solve for AL and A@. The amounts are added
automatically by the Projection Engine.

Abridged Molodensky method

The Abridged Molodensky method is a simplified
version of the Molodensky method. The equations
are:

MA@ = —sin @ cos AAX —sin @sin AAY
+ cos QAZ + (aAf + fAa)-2sin @ cos @

N cos p AL = —sin AAX + cos AAY

Ah = cos @ cos AAX + cos @ sin AAY
+sin @AZ + (aAf + fAa)sin”® @ —Aa



ALL MAPS ARE THE PROJECTING THE GRATICULE




Properties of the Graticule

Different ways
of creating 21y
great circles T~ 88\

See http://www.csulb.edu/~rodrigue/geog140/lectures/geographicgrid.htm|




Properties of the Graticule

# Great Circle - circle created by a plane that
intersects 2 points and the center of the Earth
(i.e. meridians or the equator)

# Small Circle - any circle created by an
intersecting plane that doesn’t cut through the
center of the Earth (any parallel other than ’
the equator)




In geodesy and navigation, a meridian arc is the curve between two points on the Eartf
longitude. The term may refer either to a segment of the meridian, or to its length.
4
The purpose of measuring meridian arcs is to determine a figure of the Earth. Oneg_'
arcs can be used to infer the shape of the reference ellipsoid that best approximate
measurement

approximate a geocentric ellipsoid intended to fit the entire world.

The earliest determinations of the size of a spherical Earth required a single arc. Accurate survey work
19th century required several arc measurements in the region the survey was to be conducted, leading to a
proliferation of reference ellipsoids around the world.

The latest determinations use astro-geodetic measurements and the methods of satellite geodesy to determine
reference ellipsoids, especially the geocentric ellipsoids now used for global coordinate systems such as WGS 84 (see

numerical expressions).



Great circles- pae -

Earth turns

“15°inonehour * AN iMaginary circle through

the center of Earth:

1. It divides Earth into equal
halves= hemispheres

. tis a circumference of

Earth — 1 degree of latitude=

69 mi or 111km
(40,000km/360 deg.=111km;
25,000mi/360 deg=69 mi)

. It marks the shortest routes
between locations on Earth

(with a string)

4. Circle of illumination

What other circles (latitudes) are important?

Only one latitude
line= parallel is a

| Great Circle. Which

one is it?

Mhe Equato*
All longitude lines=

meridians are half
Great Circles.



But what 1s a Meridian ér¢c ¢
GREAT CIRCLES DEFINITION:

A GREAT CIRCLE IS ANY CIRCLE THAT DIVIDES A SPHERE INTO TWO EQUAL HEMISPHERES AND IS THE LARGEST POSSIBLE CIRCLE THAT CAN
BE DRAWN ON A SPHERICAL SURFACE.
EVERY GREAT CIRCLE IS THE INTERSECTION OF THE SPHERE WITH A PLANE THAT PASSES THROUGH THE CENTER OF THE SPHERE.
EXAMPLES ON EARTH:

THE EQUATOR IS A NATURAL EXAMPLE OF A GREAT CIRCLE BECAUSE IT DIVIDES THE EARTH INTO THE NORTHERN AND SOUTHERN
HEMISPHERES.

MERIDIANS OF LONGITUDE ARE ALSO EXAMPLES OF GREAT CIRCLES AS EACH PASSES THROUGH THE NORTH AND SOUTH POLES, SPLITTING
THE EARTH INTO EASTERN AND WESTERN HEMISPHERES. EACH MERIDIAN AND ITS ANTIMERIDIAN (THE LINE OF LONGITUDE 180 DEGREES ON
THE OPPOSITE SIDE OF THE GLOBE) TOGETHER FORM A GREAT CIRCLE.

MERIDIANS
DEFINITION:

A MERIDIAN IS A LINE OF LONGITUDE, RUNNING FROM THE NORTH POLE TO THE SOUTH POLE. BY DEFINITION, IT CONNECTS ALL POINTS WITH
THE SAME LONGITUDE.

UNLIKE PARALLELS OF LATITUDE (EXCEPT FOR THE EQUATOR), ALL MERIDIANS ARE HALVES OF GREAT CIRCLES.

SIGNIFICANCE OF GREAT CIRCLES IN NAVIGATION

SHORTEST ROUTE: &

TRAVEL ALONG A GREAT CIRCLE IS THE SHORTEST DISTANCE BETWEEN TWO POINTS ON A SPHERE. THIS PRINCIPL
IMPORTANT IN AIR AND SEA NAVIGATION, WHERE FOLLOWING A GREAT CIRCLE ROUTE MINIMIZES TRAVEL TIME AND
NAVIGATION AND GPS:

MODERN NAVIGATION SYSTEMS, INCLUDING GPS, UTILIZE THE CONCEPT OF GREAT CIRCLES TO CALCULATE THE MO
ACROSS THE EARTH’S CURVED SURFACE.
VISUALIZING GREAT MERIDIANS AND GREAT CIRCLES
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Three Families of Projections

There are three major families of projections, each tends
to introduce certain kinds of distortions, or conversely
each has certain properties that it used to preserve (1.c.
spatial characteristics that it does not distort):

Three families: P

| { -. 00! ;&3 R
Azimuthal \ rf{hﬁiw L1 Y
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R e e .
. e

PROJECTION [ . N A AR e

1. Cylindrical projections

2. Conical projections

L] L - 1 I # | i .\3‘ :.5:&:"— i:‘:::--}r:}iﬂ;
3. Planar projections $ | B ey
| 1zl [l 123
| | |4 11 [ i 1
- e
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Ellipsoid i et T L
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Producing Projections

» Projections may be physically produced by “shining
| a light” from the center of the earth onto a
| developable surface that is being “wrapped
around” or “tangent to” the reference globe

A developable surface
(aka flattenable surface)
IS @ geometric shape
that may be flattened
without stretching its
surface - cones,
cylinders, and
planes

bl
k11




Producing Projections

Map Projection Surfaces

® ©

- % First step is to create

| one or more points of
contact between the
developable surface

i =y

| aﬁd the rEference E?Iﬁiém Conic Azimuthal

globe - these are S talian
called points of ,

tangency | . I

\/

¥ o

d J
% A tangent projection Transverse Oblique Tangent Secant
IS one where the
developable surface
touches in one location

EnvSd 360 - Lecture 3




Cylindrical Projection - Example
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Miller's Cylindrical Projection
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Cylindrical Projection - Example
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Cylindrical Projection - Example
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Cassini's projection is a transverse aspect,
here with central meridians at 70°E and 110°W




Producing Projections

» Where the dev. surface touches the globe is important -
this is a line of true scale, often referred to as a
standard line, such as a line of standard latitude
(standard parallel) or standard longitude (central
meridian)

* Distortion is zero along standard lines or points;
distortion increases away from these standard locations

Tangent at a selected line Secant along two lines

19




Producing Projections

# In a secant

projection the _:;-,r,;?}igﬂ;%
developable dag it e
surface S
intersects

the glUbE In Projection plane Secant lines

two places | — _—

| I-. Prﬂjﬁtiﬂﬂ-d L0 :

| Secant li 25 are the outside EHEHI'I'I
~only part of the projection makes features

plane without distortion. slightly [aj-'géi-_ .




Producing Projections

Developable surfaces Flat maps

Cylindrical
Mercator

Conical
Perspective Conic

Projection Concepts
Perspective Examples

Planar
Orthographic
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Tangent Projections Secant Pl‘OjeCﬁOHS

WX LR

Secant Planar Projection
Cylindrical Projection Surface

Secant Conic Projection

Secant Cylindrical Projection
Planar Projection Surface
Conical Projection Surface

*Secant projections have a single standard line (in the

«Tangent projections have a single standard point (in case of planar PI"’C’J"S‘\?ti‘Dljl surfaces) - m'ultiple s
the case of planar projection surfaces) or a standard standard lines (for conical and cylindrical projection
line (for conical and cylindrical projection surfaces) of > faces) of contact between the developable surface

contact between the developable surface and globe ang the gleie

lindrical Projection — Con I Vi
Cylindrical Projection - Conceptual View Cyiindrical Projectio onceptual View

David Tenenbawm - EEOS 28] - UMB Fall 2000

Transverse Cylindrical
Projection Surface

Cylindrical Projection Surface
(Tangent)

Secant Cylindrical Projection Oblique Cylindrical
Projection Surface

Conic Projection — Conceptual View

Conical Projection Surface

Secant Conic Projection



Near-side general perspective
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Three Families of Projections

There are three major families of projections, each tends wercator, anp mirier cyrinpricas
to introduce certain kinds of distortions, or conversely
cach has certain properties that it used to preserve (1.e.
spatial characteristics that 1t does not distort):

Three tamilies:
1. Cylindrical projections
2. Conical projections

3. Planar projections

Azimuthal

e

PROJECTION

q-

| D = o

| O 5

| T [l |2

| A I
Sphere e
pnr Cylindrical S LRSS
Ellipsoid

Conic

Figare 1.7 The earth can be progected i many winys, bul basscally omo three shapes that can be unrolled
ity 4 fat map: o et plane, a cvlinder, and a cone

1. CYLINDRICAL PROJECTIONS: THESE
PROJECTIONS INVOLVE WRAPPING A
CYLINDER AROUND THE EARTH AND

PROJECTING ITS FEATURES ONTO THE

CYLINDRICAL SURFACE. EXAMPLES ARE
THE MERCATOR, TRANSVERSE

PROJECTIONS.

CONIC PROJECTIONS: FOR THESE
PROJECTIONS, A CONE IS PLACED OVER
THE EARTH, AND ITS FEATURES ARE
PROJECTED ONTO THE CONICAL
SURFACE. COMMON EXAMPLES ARE THE
LAMBERT CONFORMAL CONIC AND
ALBERS EQUAL-AREA CONIC
PROJECTIONS.

AZIMUTHAL PROJECTIONS: ALSO
REFERRED TO AS PLANAR OR ZENITHAL
PROJECTIONS, THESE USE A FLAT PLANE

~ THAT TOUCHES THE EARTH AT A SINGLE

POINT, PROJECTING THE EARTH’S
FEATURES ONTO THE PLANE. AZIMUTHAL
EQUIDISTANT, STEREOGRAPHIC, AND
ORTHOGRAPHIC PROJECTIONS ARE
EXAMPLES.

PSEUDOCYLINDRICAL PROJECTIONS: THESE
PROJECTIONS RESEMBLE CYLINDRICAL PROJECTIONS
BUT EMPLOY CURVED LINES INSTEAD OF STRAIGHT
LINES FOR MERIDIANS AND PARALLELS. THE
SINUSOIDAL, MOLLWEIDE, AND GOODE HOMOLOSINE
PROJECTIONS ARE POPULAR EXAMPLES.
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Figure 2.9 Examples of projections classified by their distortions. Conformal projec-
tions preserve local shape, equivalent projections preserve area, while compromise
projections lie between the two. No projection can be equivalent and conformal.




Planar (Azimutnal) FProjection
- Conceptual View

Planar Projection Surface Secant Planar Projection

Secant Cylindrical Projection Cylindrical Projection Surface
(Tangent) |

Conical Projection Surface Secant Conic Projection




Distortion With Projections

# Shape (Conformality)
= Distance

. - - Different map projections preserve

i DI re Ct|0 N some of these properties or attempt to

" reduce the distortion of some or all of

R Area these properties, but NO map projection
preserves all these properties.

Scale also can be
distorted, or differ,
throughout a single map




. EQUAL-AREA (EQUIVALENT) PROJECTIONS: THESE PROJECTIONS
PRESERVE THE CORRECT PROPORTIONS OF AREAS, SUCH AS IN THE
ALBERS EQUAL-AREA CONIC AND MOLLWEIDE PROJECTIONS.

2. CONFORMAL (ORTHOMORPHIC) PROJECTIONS: THESE PROJECTIONS
MAINTAIN LOCAL ANGLES AND SHAPES, AS SEEN IN THE MERCATOR
AND LAMBERT CONFORMAL CONIC PROJECTIONS.

3. EQUIDISTANT PROJECTIONS: THESE PROJECTIONS RETAIN TRUE
DISTANCES FROM ONE OR TWO POINTS TO ALL OTHER POINTS, AS IN
THE AZIMUTHAL EQUIDISTANT PROJECTION.

4. AZIMUTHAL PROJECTIONS: THESE PROJECTIONS PRESERVE
DIRECTIONS FROM A CENTRAL POINT, INCLUDING SOME CONFORMAL,
ORTHOMORPHIC, AND AZIMUTHAL PROJECTIONS.

5. COMPROMISE PROJECTIONS: THESE PROJECTIONS ATTEMPT T0O
BALANCE VARIOUS DISTORTIONS INHERENT IN MAP PROJECTIONS,
SUCH AS THE ROBINSON AND WINKEL TRIPEL PROJECTIONS.



Equal-area Projections

» Equal-area projections preserve the relative area of
displayed features

- Every part on the map, as well as the whole, has the same
area as the corresponding part on the Earth, at the same
reduced scale

- Shape, angles,

scale may be  §/! [/ % \
distorted H ,mmﬂ - 1 JY

- Graticule lines I, § Y81 oot gy U /L
may not meet  WTE WA , B W oy
at 90-degree BB

angles

Albers Equal Area




Equidistant Projections

# Equidistant projections preserve the distances
between certain points

- Scale is maintained along certain lines on map in relation

to its reference globe; the distances along these lines are
true

- True distances only from
the center of the projection
or along special lines

- No projection is equidistant
to and from all points on a
map
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' True-direction Projections

» True-direction or azimuthal projections

preserve the direction of specified points on a

.i great circle

- The shortest route between two points on a curved

surface such as the earth is along the spherical

equivalent of a straight line on a flat surface - called

the great circle

- Great circle arcs are rectified, or shown as straight
lines

- Azimuths (angles from a point on a line to another
point) are portrayed correctly in all directions

See http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html for
a good list and examples of different projections

Lad |
|




Planar (Azimuthal) Projection - Example

oo,
D,

Example of a map produced
with a planar projection
centered on the South Pole

! Env5c 360 - Lecture 3 27
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Conformal Projections

# Conformal projections preserve local shape
— At every point the scale is the same in every direction
- Graticule lines intersect at 90-degree angles
- All angles between intersections of arcs are maintained

- Shapes of very small areas and angles with very short sides |
are preserved.

- Size of many
areas are
distorted

3 081

Stereodgraphic
Korth Folar Aspect




“"Compromise” Projections

# Neither true shapes, true directions, true areas, nor true
distances, but a compromise among these properties

| ® Attempts to minimize the distortions inherent in some of
these properties when others are made to be true

3 .08l

I F.l

Robinon Projection




Interrupted Projections

% A compromise projection, "cutting” i
the earth’s surface along arbitrarily |
chosen lines and projecting each

section separately, which results in
less stretching.
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Three-parameter methods

The simplest datum transformation method is a
geocentric, or three-parameter, transformation. The
geocentric transformation models the differences
between two datums in the XY Z coordinate system.
One datum is defined with its center at 0,000, The
center of the other datum is defined at some
distance (AX AY A¥) in meters away,

Z

A Output
coordinate
system

Input
coordinate :
system H d:; > Y

3

S

dy
X

Usually the transformation parameters are defined as
going ‘from’ a local datum ‘1o’ WGS 1984 or another
geocentric damm.

X AX X
Y =|AY |+| ¥
zmgw AZ zon'gnmf

The three parameters are linear shifts and are always
in meters.

Seven-parameter methods

A more complex and accurate datum transformation
is possible by adding four more parameters o a
geocentric ransformation. The seven parameters are
three linear shifts (AX AY AZ), three angular rotations
around each axis ( r!,r!,rtl. and scale factor(s).

X AX 1 rp -rny||X
Y =|AY |+(1+s5): |- 1 rp |-|¥
= new AL 5 T 1 1 original

The rotation values are given in decimal seconds,
while the scale factor is in parts per million (ppm).
The rotation values are defined in two different
ways. It's possible to define the rotation angles as
positive either clockwise or counterclockwise as you
lock toward the origin of the X,Y.Z systems.

The Coordinate Frame for Bursa- Woll) definition of the
rolation valies.

The equation in the previous column is how the
United States and Australia define the equations and
is called the Coordinate Frame Rotation
transformation. The rotations are positive
counterclockwise. Europe uses a different

convention called the Position Vector transformation.

Both methads are sometimes referred to as the
Bursa—Wolf method. In the Projection Engine, the
Coordinate Frame and Bursa—Wolf methods are the
same, Both Coordinate Frame and Position Vector
methods are supported, and it is easy 1o conven
transformation values from one method o the other
simply by changing the signs of the three rotation
values. For example, the parameters to convert from
the WGS 1972 datum to the WGS 1984 datum with
the Coordinate Frame method are (in the order. AX,
AY A Ll S ):

0.0, 0.0, 4.5, 0.0, 0.0, -0.554, 0.227)

To use the same parameters with the Position Vector
method, change the sign of the rotation so the new
PArdmerers are:

(0.0, 0.0, 4.5, 0.0, 0.0, +0.554, 0.227)

Unless explicitly stated, it's impossible to tell from
the parameters alone which convention is being
used, If vou use the wrong method, vour results can
return inaccurate coordinates. The only way 1o
determine how the parameters are defined is by
checking a control point whose coordinates are
known in the two sysiems,

Molodensky method

The Molodensky method converts directly berween
rwo geographic coordinate systems without actually
converting o an XY, Z sysiem. The Molodensky
method requires three shifts (AX AY AZ) and the
differences between the semimajor axes (Aa) and the
flattenings (Af) of the two spheroids. The Projection
Engine automatically calculates the spheroid
differences according to the damms involved.

(M + h)A@ = —sin @ cos AAX —sin @sin AAY

e” sin @ eos @

) F M
(1-¢”sin” @)""

+ cos pAZ +
. e AT b

+ sin @?cn:«;@!{M;+ N —)Af
a

(N + h)cos @ AA = —sin AAX + cos AAY

Ah=cos@cos AAX +cos@sin A AY
+sin@AZ —(1—¢" sin” @)"'* Aa

a(l-f)

+. 2 " )
(1—¢" sin” @)

172 sin” @ Af

h  ellipsoid height (meters)
o ladmde

longitude
4  semimajor axis of the spheroid (meters)
b semiminor axis of the spheroid (meters)
t  fattening of the spheroid
e eccentricity of the spheroid

ALL MAPS ARE THE PROJECTING THE GRATICULE

M and N are the meridional and prime vertical radii
of curvature, respectively, at a given latitude. The
equations for M and N are:

a(l—e”)

M= ¥ o« 0 172
(l—e sin" @) ~

N o

= T . 2 12
(l—e sin” @)

You solve for AL and A@. The amounts are added
automatically by the Projection Engine.

Abridged Molodensky method

The Abridged Molodensky method is a simplified
version of the Molodensky method. The equations
are:

MA@ = —sin @ cos AAX —sin @sin AAY
+ cos QAZ + (aAf + fAa)-2sin @ cos @

N cos p AL = —sin AAX + cos AAY

Ah = cos @ cos AAX + cos @ sin AAY
+sin @AZ + (aAf + fAa)sin”® @ —Aa



The Geographic Coordinate System

/1tewing latitude and longitude angles from a 3D perspective:

Tony Kirvan 11-8-97



LATITUDE AND LONGITUDE ARE INDEED BASED ON OBSERVATIONS OF THE SKY (CELESTIAL NAVIGATION) AND ARE
FUNDAMENTALLY TIED TO A SPHERICAL MODEL OF THE EARTH.

THE ENTIRE SYSTEM OF LATITUDE AND LONGITUDE IS BASED ON THE PREMISE THAT THE EARTH IS SPHERICAL. THIS IS
EVIDENT IN SEVERAL WAYS:

GREAT CIRCLES: BOTH LATITUDE AND LONGITUDE LINES ARE BASED ON THE CONCEPT OF GREAT CIRCLES THAT DIVIDE THE
GLOBE INTC EQUAL HALVES. THE EQUATCR AND ALL MERIDIANS ARE GREAT CIRCLES.

SPHERICAL TRIGONCMETRY: [ASTRONOMICAL TRIANGLE ]JTHE CALCULATIONS FOR DISTANCES AND ANGLES BETWEEN
DIFFERENT POINTS ON THE EARTH’S SURFACE USE SPHERICAL TRIGONCMETRY, ASSUMING THE EARTH IS A SPHERE.

NAVIGATION AND MAPPING: ALL NAVIGATIONAL AND MAPPING SYSTEMS THAT USE LATITUDE AND LONGITUDE TAKE INTO
ACCOUNT THE EARTH’S INFLICTED CURVATUREFROM THE GEOGRAPHIC COORDINATE SYSTEM IT IS PROJECTIONG

GREAT CIRCLES VS. CIRCLES: A GREAT CIRCLE IS THE LARGEST CIRCLE THAT CAN BE DRAWN ON A SPHERE'S SURFACE,

DIVIDING IT INTC TWO EQUAL HALVES. ON A SPHERE LIKE THE EARTH, THE SHORTEST DISTANCE BETWEEN TWO POINTS

LIES ALONG THE ARC OF A GREAT CIRCLE. IN NAVIGATICN, USING THE CONCEPT OF GREAT CIRCLES ACCOUNTS FOR THE
EARTH'S CURVATURE, PROVIDING THE MOST EFFICIENT AND SHORTEST PATH BETWEEN TWO POINTS.



Planar Coordinate Systems

* Once we start working with

projected spatial information, e
-~ Point with X and Y Coordinates

using latitude and longitude of X=+7 and Y = +6 |
. | d as Ordered Pair
becomes less convenient | B e P

» We can instead use a planar | EEEEE s \ :
coordinate system thathasxandy | [ |
axes, an arbitrary origin (a
Cartesian plane), and some
convenient units (e.g. ft. or m.)

* When applied 1n a geographic
context:

— Eastings are x values

Northings are y values | C G chslan Golordbhaths|t s ot
' _A Point Defined by X and Y Coordinates




Geometric Correction

* Three Types of Resampling

— Nearest Neighbor - assign the new
BV from the closest input pixel. ; o
This method does not change any %
values. U, | SO

— Bilinear Interpolation - distance-

weighted average of the BVs from 2° Y
the 4 closest mnput pixels

— Cubic Convolution - fits a L _J_Hﬂs
polynomial equation to interpolate L
a “surface” based on the nearest 16 A
mput pixels; new BV taken from : & | i 4

surface




Universal Transverse Mercator

* In order to minimize the distortion associated with the projection,
the UTM coordinate system uses a separate Transverse Mercator
projection for every 6 degrees of longitude = the world is divided
into 60 zones, each 6 degrees of longitude in width, each with 1its
own UTM projection:

UTM ZONES 1 -60

each 6 degrees wide




Universal Transverse Mercator

UTM Zone Numbers
010203 0405 0607 0809 1011 12 19141516 17 16 19 20212020 2425 26 7 282030 31 30 393435 3637 36 30 40 414240 44 45 46 4 484950 81 52 52 54555657 58 49 B0
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" 7 Universal Transverse Mercator (UTM) System
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Pole = 10,000,000 m N

s 84°N
- rf
Ti
Universal Transverse Mercator il
Foe
* The central meridian, which runs down Gonbal Vaenion centra
. . ) choe et 45“[‘4 meridian
the middle of the zone, 1s used to define : .
- o : 36°N Zone |
the position of the origin : origin Equator
: ke ?Umﬁglﬂ 000m S
. . - . 000,000 m
 Distance units in UTM are defined to be : o
in meters, and distance from the origin 1s : i rone MR o
. . . 13 A8 15
measured as an Easting (in the x- : boen i
direction) and a Northing (in the y- | ; al A /|
dlI'eCtlDIl) ' E Equator OmM 0verlap"'"
) - - = ) | Pole=0ms$S
* The x-origin 1s west of the zone (a false : Sl = Zone2s ... -
. - . 12°5 X=441.870 m = . m,, ¥=558.130 m ' EENEENSEANRENEY
easting), and is placed such that the : i [LLR T\ feraisiin | e
- 18°S Expressed as Ordered Pair
— : - (+7,16)
central meridian has an Easting of ; ™ T
500,000 meters E e sssoin gy cstoon Voay. | s A3 RanemaL
) 357 | xAXIS -104 L0
4. Universal Transverse Mercator (UTM) ; N NN S
42°S X=243.909m o oni X=756.091m
» Overview: UTM is a global map projection system that divides the world into a series of 6- 99 VY g veaamosom AON Fveaagrrsrm | 0N vaaasz 060m
degree longitudinal zones, each with its own central meridian. Each zone uses a transverse B
Y AXIS
Mercator projection. s
Cartesian C m)rrh‘natei lfl a P]ﬂ.lllé
Curvature Handling: The system reduces distortion within each zone by using a cylindrical vezziezeam 20N Vo amm T 20N Vaz2ia20am P Nl by e ans N dohinat
projection around a meridian (north-south orientation), unlike the standard Mercator which
projects around the equator. This localized approach greatly mitigates the error introduced by
Earth’s curvature in each zone, making it highly accurate for regional applications. Y=0000000m 0N V-o0d.000m Y=0.000.000m




UTM Zones in the Lower 48

10/ 11 2113114 |15 |16 |1 18




State Plane Coordinate Systems

 Each state in the U.S. has its own planar coordinate

system(s) known as State Plane Coordinate Systems
(SPCS)

* Depending on the size of the state, 1its coordinate system may
be divided into multiple zones (e.g. Alaska has 8 zones)

 These may make use of three different projections,
depending on the shape of the state:

e [ambert Conformal Conic
e Transverse Mercator

« Oblique Mercator
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True-direction Projections

= True-direction or azimuthal projections

preserve the direction of specified points on a
great circle

- The shortest route between two points on a curved
surface such as the earth is along the spherical

equivalent of a straight line on a flat surface - called
the great circle

- Great circle arcs are rectified, or shown as straight
lines

- Azimuths (angles from a point on a line to another
point) are portrayed correctly in all directions

See http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html for
a good list and examples of different projections

Lad
|



Measuring Distance

% The shortest distance between 2
points on a curved surface is the
great circle arc above the true
“connector line”

GGreat Circle arc

R

True connector line (underground)




>/ fx =ACOS(COS(RADIANS(90-C6)) *COS(RADIANS(90-C5)) +SIN(RADIANS(90-C6)) *SIN(RADIANS(90-C5)) *COS(RADIANS(D6-D5))) *3959

B c | D . E F G =

Haversine Formula

—_— 2 . P2 . 5 V2Y
-13.928661 |-155.078604 | sin® (2 1) + €05, C0SQ,Sin? (=)

'~ 15.000000 -155.078604 2 2

Angle of Haversine Formula

1998.90061

I J K L M N @] P Q

Latitude Longitude

1l

@ . 5 Y2—Y
“_) + Co5¢,c08@,sin? (=)

Let's introduce you to the parameters of the Haversine Formula. 2
@1 = Latitude of the first place

@2 = Latitude of the second place

Yy 1** = Longitude of the first place

y2** = Latitude of the second place

Now, Fll be showing you how to apply this formula in Excel step by step. ert the values into radians form and **COS** provides the cosine of the values, the cosines for latitude are multiplied then.
— e cosine value for the longitude difference between two locations.
eps:
First, make a cell to store the distance value and type the following formula in cell C8. 5 the diversion of longitudes from 90 in radians form and multlplled the sine values
=26400ASIN(SQRT((SIN(RADIANS((C6-C5)/2))) A2+ COS(RADIANS(C5)) COS(RADIANS(C6))
(SIN(RADIANS((D6-D5)/2))~2)) The spherical law of cosines is used to calculate the distance between two points on the surface of a

sphere, using their latitudes and longitudes. Here's how it's applied:

The formula uses ASIN, RADIANS, SQRT 7, SIN, and COS functions. It's pretty simple if you just
look at the Haversine Formula. We measure the distance in kilometers, so we put the radius of the
earth in kilometers which is 6400 km. ASIN refers to the inverse Sine or the ArcSine. If we d = r - arccos(sin(lat1) - sin(lat2) + cos(lat1) - cos(lat2) - cos(lon2 — lonl))

compare the parameter angles of the Haversine Formula with our Excel formula, we get,

Formula:

Where:
@1 = Latitude of Ohio (C5) « d is the distance between the two points on the sphere’s surface,
@2 = Latitude of Alaska (C6) * lat1 and lat2 are the latitudes of the two points in radians,
yI** = Longitude of Ohio (D5) « lon1 and lon2 are the longitudes of the two points in radians,
}’2** = Latitude afAIaska (D6) » 1 is the radius of the Earth, approximately 6371 km.

Example:

After that, press the ENTER button to see the distance between Ohio and Alaska in Kilometers. : . i : 3 !
Calculating the distance between Madrid and Hong Kong using their coordinates:

Thereafter, if you want to measure the distance in miles 7, use the following formula in cell C8.

=2#3959*ASIN(SQRT( (SIN(RADIANS( (C6-C5)/2)))*2+COS(RADIANS(C5))*COS(RADIANS(C6))* * Madrid: 40.50°N, 367°W

(SIN(RADIANS((D6-D5)/2)))"2))  Hong Kong: 22.28°N, 114.17°E



AZIMUTHAL EQUIDISTANT Projection

Classifications
Azimuthal

Equidistant
Monperspective

Graticule

Polar aspect (fig. 528):
Meridians: Equally spaced straight lines
intersecting at the central pole. Angles
between them are the true angles.
Parallels: Equally spaced circles, centered
at the pole, which is a point. The entire
Earth can be shown, but the opposite pole
is a bounding circle having a radius twice
that of the Equator.

Symmetry: About any meridian

Equatorial aspect (fig. 52C):
Meridians: Central meridian is a straight
line. Meridian 90° away is a circle. Other
meridians are complex curves, equally
spaced along the Equator and intersecting
at each pole.
Parallels: Equator is a straight line. Other
parallels are complex curves concave
toward the nearest pole and equally spaced
along the central meridian and the
meridian 90° from the central meridian.
Symmetry: About the central meridian or
the Equator

Oblique aspect (fig. 52D):
Meridians: Central meridian is a stralght
line. Other meridians are complex curves
intersecting at each pole.
Parallels: Complex curves equally spaced
along the central meridian

Symmetry: About the central meridian

Range
Entire Earth

Scale

True along any straight line radiating from
the center of projection. Increases in a
direction perpendicular to the radius as the
distance from the center increases.

Distortion

Figure 524 shows distortion for the polar
aspect. Other aspects have identical distortion
at the same distance from the projection
center. Only the center is free from distortion.
Distortion is moderate for one hemisphere but
becomes extreme for a map of the entire
Earth.

Special features

The distance between any two points on a
straight line passing through the center of
projection is shown at true scale; this feature
is especially useful if one point is the center.

Compromise in distortion between
Stereographic (conformal) and Lambert
Azimuthal Equal-Area projections

Usage

Commonly used in the polar aspect for maps
of polar regions, the Northern and Southern
Hemispheres, and the “aviation-age” Earth.
The obligque aspect is frequently used for world
maps centered on Important cities and
occasionally for maps of continents. The
ellipsoidal form is used for topographic
mapping of Micronesia and Guam.

Origin

Possibly developed in the polar aspect by
Egyptians for star charts. Several users during
the 16th century.

Other names
Postel (in France and Russia, for Guillaume

Postel, who was considered an originator,
although he first used it in 1581)

Zenithal Equidistant

Similar projections

Two-Point Azimuthal (p. 144) shows correct
azimuths {but not distances) from either of
two points to any other point.

Two-Point Equidistant (p. 146) shows correct
distances (but not azimuths) from either of
two points to any other point.

Chamberlin Trimetric (p. 170} shows
approximately true distances from three
chosen points to any other points (cannot be
exact). The three points are placed near the
edges of the region being mapped to reduce
overall distortion.

Airy (p. 140) and Breusing (p. 143) azimuthal
projections have spacings very similar to
those of the Azimuthal Equidistant if the extent
is less than one hemisphere.

Berghaus Star projection (p. 156) uses the Polar
Azimuthal Equidistant projection for the
Northern Hemisphere.

“Tetrahedral” projection (p. 114) combines the
Polar Azimuthal Equidistant projection with
an interrupted Werner projection.



On the face of the map proper, and within another circle (still toward the center) is
laid out the continents, principal islands, rivers and cities of the world; their latitudes
and longitudes corresponding to the latitudes and longitudes of all other first class
geographical globe maps or charts of the world.

On the face of the map are circular lines from the center or north pole to ninety
degrees south representing the latitudes of the earth, both north and south of the
equator. These circular lines are indicated by the letter, G'.

In operating with this map | employ two indicating arms G and H, pivoted together
by means of a pin, a, having a flange, I}, (see Fig. 3), the two arms G and H being
put on said pin above the flange, b, then a light spring washer H, in the top of the
arm H and the head of the pin riveted so that the two arms are held together by
friction and can be turned on each other back and forth.

In the centerof the mapis an eyelet, ¢, and into the opening (through the eyelet,
c),isput the lower end, d, of the pin, a, so that these indicating arms have two
movements, amovement one on the other and one or both together around the
center of the map, and may be detached at pleasure from the map if so desired,
and are also made easily removable by simply lifting the pin, d, out of the eyelet c.
On these indicating arms are numerals, J, indicating degrees of latitude
corresponding to the degrees of latitude as represented and marked on the map at
B at thirty degrees west of Greenwich. By bringing either of the indicator arms to
any given point, the latitude and longitude of the said point may at once be
determined without future computa- 8;, tion.

In order to ascertain the time of day or night, in any part of the world, corresponding
to your own meridian time; first: place the lower indicating arm, G',into the center
socket 0 or receptacle, letting the graduate edge of the arm be in line on your own
meridian time, for instance if it be New York, which is the fifteenth meridian: Now

weman el | oA A A s Ao oo Airmm Bmmm=s MNlAamns #lam oArmn L omen B e st Al men A F

In order to ascertain the time of day or night, in any part of the world, corresponding
to your own meridian time; first: place the lower indicating arm, G',into the center
socket 0 or receptacle, letting the graduate edge of the arm be in line on your own
meridian time, for instance if it be New York, which is the fifteenth meridian: Now
you wish Londons corresponding timez-Place the arm H, on 5 the meridian of
Greenwich, which is London, and marked, F, atthe same time holding the arm G in
its place. You have now got the absolute corresponding difference of time between
New York and London, which is five [00 hours in round numbers. Next look at your
own pocket time or clock, and if it be just eleven oclock; move the arm G to eleven
and the arm H, will still retain its relative position to arm G, (as the two arms are
held to each other by friction) and indicate six p. 1n. or the corresponding fractional
parts of an hour be it more orless. Thus the time stands all ready computed to any
child who is able to read the time of day from the face of an ordinary clock. Again,
in order to give the child the most simple lesson first | would get the difference of
the time between the two places as above mentioned, then placing the arm G at
twelve, of course the arm H will stand at five p. m. for London, and there is no
computation or counting for the child to make; he thus reads the hour and
fractional part thereof from the dial of the map. The utility of such a computating
map will be obvious, not only to the school child but for an adult or oflicial person.
The map is not so extorted as to lose the relative latitude and longitude of any
places on the land or sea, but retains all latitudes and longitudes of places agreeing
with other recognized authors; and as the proper relations of continents and
countries all stand in their relative position to each other, they are thus impressed
upon the mind of the student. The extorsion of the map from that of a globe
consists, mainly in the straightening out of the meridian lines allowing each to
retain their original value from Greenwich, the equator to the two poles.
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FIRST --—-Let 1f hc bone in mmd that the t;me d!’ll or disk n e'ﬁs twenty-—four hours, ﬁl the twentv-j'our %

'representmg the of dey and time of mght, there are! su&ty elmslons or mmutes to ’d'le hour marked on the AL

'Perrphery’t)fthearcle ¥ AL b A e S TR N R S R g

THiRD _I,ongltuee and time are reckoned lrom hreenwic,h Merldian marked “Noen Xll " Of the.

y cle oJ the twenty-four hours.

FOURTH —Let the student remember that there aré 15"’ tn the hour, and everv lourth dnris:on on the dial
or fourth minute sun time represents 1° of longitude; therefore, if four minutes of tlme-represent a degree,
one minute of time represents 15" arc or longitude. |

FiFTH. ~—In crder to procure the eorresponding time of day or night in any part of the world, first find
the meridian your time piece is regulated to, next place one of the index arms on that meridian, the other on
the place which you desire the corresponding time; you now have the difference of time between the two
places in question; next, with your finger on your own meridian pointer, carry it to the time of day or night
that your own watch indicates, and the pointer will stand at the corresponding time of day at the place desired.
Thus it will be seent that as soon as a piace can be located on the map, so soon the latitude, longitude and
time of day or night can be ascertained. |



ALTITURE O©OF THE SUN.

SixTH.~-The sun is always seen at an angle of 45° arc of the heavens; just 45° either latitude or iongitude
from his daily path. On the 21st and 22d of March it is vertical to the inhabitants of the Equator, and at
an angle of 45° arc to the inhabitants of 45? north and 45° south, simultaneously at 12 o’clock noen. We
will next notice the diagram at the top of the map, but first, will bear ir mind: there is no method known
by which an angle of 45° can be produced from the four guarters or cardinal points of a sphere or circle,
without placing the sun in just the relative distance from the carth or cnrcle that the above geometrlcal

| dmgram piaces 1t therefore,

SEVENTH.—If we take the two arms on the map and turn them, the two simultaneously, one to “A [X,”

the other to “‘A Il,” we will have the inkabitants at 45° north and 45° south, also the people on the Equator
{O—>5ee under “Morn.” or ““90”) beholding each their sun, thousands of miles apart, on parallel lines
which never converge, and never meet the required conditions, namely—all must see it af ‘‘E,” and not at
““S" for the south, “E” for the Equator and “*N ” for the north.

EIGHTH.—Now 1f we take the line ““B O B” and its intersections at ““A A” and view from the point of
intersection, the conditions required will be met, and under nc others can it be. The demonstration has
reference to either considerations: the earth a globe or a plane—take your cheice.
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DESCRIPTIVE KEY
New Standard Map of the World
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Does the Azimuthal Equidistant polar projection display the same distances as all the
other projections of the geographic coordinate system?

The Azimuthal Equidistant projection preserves true distances from the central point
to any other point on the map, and the great-circle distance formulas using latitude
and longitude apply universally across all map projections, including the Azimuthal
Equidistant projection.
Therefore, it displays the same accurate distances as other projections of the
geographic coordinate system.

The Haversine formula and the spherical law of cosines are standard methods used to
calculate great-circle distances between two points on the Earth's surface using their
latitude and longitude. These formulas provide accurate distance calculations.
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IF IT AINT THE EARTH, WHAT IS CURVED?
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Extremal directions curve One extremal direction Extremal directions curve
in opposite directions has zero curvature in the same directions

Hyperbolic (<0) Euclidean (=0)

Negative Curvature Zero Curvature Positive Curvature




COORDINATE SYSTEMS

BASED ON ANGLES TO THE STARS

Horizontal Coordinate System (Altitude-Azimuth):
- Coordinates: Altitude, Azimuth

Equatorial Coordinate System (Right Ascension - Declination):
- Coordinates: Right Ascension, Declination

Geographic Coordinate System
o longitude/latitude

Geocentric Coordinate Systems

Cartesian coordinates (X, Y, Z) or spherical coordinates (radius, latitude, longitude).

« X: Distance from the center of the Earth to the point in the plane of the equator, along the prime meridian.
« Y: Distance from the center of the Earth to the point in the plane of the equator, 90 degrees east of the prime meridian.
o Z: Distance from the center of the Earth to the point along the axis of rotation (positive towards the North Pole).

Ecliptic Coordinate System:

- Coordinates: Ecliptic Longitude, Ecliptic Latitude
Galactic Coordinate System:

- Coordinates: Galactic Longitude, Galactic Latitude
Supergalactic Coordinate System:

- Coordinates: Supergalactic Longitude, Supergalactic Latitude



Celestdal Equator

North Celestial
North Ecliptic Pole Morth Galactic

Pole Pole

MNCP

side wview

Celestial Sphere at 20" N in Hawai'i

5=180°
top view

Celestial Sphere at the Equator (0°)

Celestial Sphere at 20° S in *Atiu



CELESTIAL COORDINATES

Sun’s Path at North Pole

north celestial pole
| » Sun remains above
horizon from spring
equinox to fall equinox

Sun's path on June 21 -
; 231 :
54 5 © =« Altitude barely changes

S patr on i 21 8 Sep.2) during a day

—

"r-

4 Sun’s path on Dec. 21

south celestial pole
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HOW IS THE CELESTIAL SPHERE REPRESENTED?

Zenith

Hour angle (HA) of an object

Defined as:

The lapsed sidereal time since the object
reached its highest elevation as crossed
the meridian.

Can also be expressed in degrees by multiplying the
value by 15 (24 hrs = 360°). E.g.

HA of 2 hrs 20 mins

HA (in degrees) is 27°/.,x 15 = 35°

When it crosses the meridian the HA of an
object is O hrs

As the Earth rotates, the HA of an object
increases

'| YD) '9.04/25:16 » Hour Angle >







I Representing 3D points in
__ Spherical Coordinates

We use a method similar to the

method used to measure /atitude

and /ongitude on the surface of the
> Earth.

Next, we draw a horizontal circle
on the sphere that passes through
the point.



COORDINATE SYSTEMS

Alt-Azimuth Coordinate System

1. Horizontal Coordinate System (Altitude and Azimuth)

* Based on Celestial Observations: Yes.

» Details: Used primarily in astronomy, this system measures the altitude of celestial bodies
above the horizon and their azimuth, which is the angular distance measured along the

horizon from the north.

The Altitude-Azimuth coordinate system is the most familiar to the general public. The origin of
this coordinate system is the observer and it is rarely shifted to any other point. The fundamental
plane of the system contains the observer and the horizon. While the horizon is an intuitively
obvious concept, a rigorous definition is needed as the apparent horizon is rarely coincident with
the location of the true horizon. To define it, one must first define the zenith. This is the point
directly over the observer's head, but is more carefully defined as the extension of the local gravity
vector outward through the celestial sphere. This point is known as the astronomical zenith. Except
for the oblatness of the earth, this zenith is usually close to the extension of the local radius vector
from the center of the earth through the observer to the celestial sphere. The presence of large

masses nearby (such as a mountain) could cause the local gravity vector to depart even further

from the local radius vector. The horizon is then that line on the celestial sphere which is

everywhere 90° from the zenith. The altitude of an object is the angular distance of an object
above or below the horizon measured along a great circle passing through the object and the
zenith. The azimuthal angle of this coordinate system is then just the azimuth of the object. The
only problem here arises from the location of the zero point. Many older books on astronomy

will tell you that the azimuth is measured westward from the south point of the horizon. However,

ALTITUDE AZIMUTH / HORIZON

Altitude-Azimuth coordinate svstem

Based on what an observer sees in the sky.

Zenith = point directly above the observer (90°)

Nadir = point directly below the observer (-90°) — can’t be seen
Horizon = plane (0°)

Altitude = angle above the horizon to an object (star, sun, etc)
(range = 0°to 90°)

cenith
d1titude = 907

Azimuth = angle from
true north (clockwise)
to the perpendicular arc
from star to horizon
(range = 0° to 360°)

Horizon

iltitude = 0

Note: lines of azinmith
converge at zenith




ALTITUDE

Horizon Coordinate System

to north to # server's
celestial /\H
pole
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Right Ascension and Declination
Right ascension and declination are the celestial

equivalents of longitude and latitude, respectively.

north
celestial
pole

* Polaris

declination
angle with
respect to the
equator
vernal equinox
0° right ascension :
celestial pole scien

The Right Ascension - Declination Coordinate System
|. Equatorial Coordinate System (Right Ascension and Declination)

" Zenith

North celestial pole

Meridian l /

* Based on Cele
* Details: This s
bodies. Right a
to latitude. It ig

| other celestial
ation is analogous
tor.

This coordinate system} ngle, instead of

being measured from t ystem's equatorial
plane. Thus the declina’fs ly put, it is the

,, pquator of the

angular distance to thef§
_ >

pjects made from
f the earth. At
ashion. That is, if

earth as projected out
the earth, the origin of
least the ‘azimuthal’ an{s[iislss Daclinalion

one points the thumb ¢ —— Right ascension (measured from vernal equinox) [ilLNeIeliaifIsR ol

— local hour angle (measured from meridian) ight Ascension of

direction of increasing
rising or ascending stars increases with time. There is a tendency for some to face south and think
that the angle should increase to their right as if they were looking at a map. This is exactly the
reverse of the true situation and the notion so confused air force navigators during the Second
World War that the complementary angle, known as the sidereal hour angle, was invented. This

angular coordinate is just 24 hours minus the Right Ascension.



« X: Distance from the center of the Earth to the point in the plane of the equator, along the prime meridian.
o Y: Distance from the center of the Earth to the point in the plane of the equator, 90 degrees east of the prime meridian.
Z: Distance from the center of the Earth to the point along the axis of rotation (positive towards the North Pole).

e Radius (r): Distance from the Earth's center to the point. )
o Latitude (¢): Angle between the point and the equatorial plane. ¥

Longitude (7\): Angle from the prime meridian to the point's projection onto the equatorial plane. \ %
'/JI'{ I |
7

c. The Geocentric Coordinate System

Consider the oblate spheroid that best fits the actual figure of the earth. Now consider a radius
vector from the center to an arbitrary point on the surface of thaﬂ spheroid. In general, that radius
vector will not be normal to the surface of the oblate spheroid (except at the poles and the
equator) so that it will define a different local vertical. This in turn can be used to define a different
latitude from either the astronomical or geodetic latitude. For the earth, the maximum difference
between the geocentric and geodetic latitudes occurs at about 45° latitude and amounts to about
(11" 33"). While this may not seem like much, it amounts to about eleven and a half nautical miles
(13.3 miles or 21.4 km.) on the surface of the earth. Thus, if you really want to know where you are
you must be careful which coordinate system you are using. Again the geocentric longitude is
defined in the same manner as the geodetic longitude, namely it is the angle between the local
meridian and the meridian at Greenwich.



COORDINATE SYSTEMS

GEOGRAPHIC (LONGITUDE/LATITUDE)

The concepts of longitude and latitude are fundamentally based on measurements
derived from observing celestial bodies and are designed for a spherical model of the
Earth.

These geographic coordinates form a grid system used to pinpoint locations on the globe

(GRATICULE)

Latitude Longitude

Geographic Coordinate System (Latitude and Longitude)

Longitude and latitude form a coordinate system used to pinpoint locations on the Earth's surfacs

Latitude: Measures north-south position between the poles and the equator. The equator
represents 0 degrees latitude, while the poles are at 90 degrees north and south. Latitude lines

or parallels, run parallel to the equator.

Longitude: Measures east-west position and is expressed in degrees east or west from the
Prime Meridian, which passes through Greenwich, England. Longitude lines, or meridians, Equator
converge at the poles and are widest at the equator.

Lat/Lon Invariance: Both flat and spherical Earth models use latitude and longitude for navigatio

and mapping. The azimuthal transformation maintains these coordinates invariant, meaning they

do not change between models. This is crucial for preserving distances calculated by common

formulas like the Haversine, which calculates distances between two points on a sphere based on

their latitudes and longitudes.



COORDINATE SYSTEMS

GEOGRAPHIC (LONGITUDE/LATITUDE)

Latitude (y) - north-south distance from the
equator - the “origin”. Also called parallels.

Longitude (x) - east-west angular distance
from a prime meridian - the “origin”. Also
called meridians.

Not a map projection - a set of spherical
coordinates used to reference positions on thg
curved surface of the Earth for use in map
projections.

Basis for projected coordinate systems
The Geographic Coordinate System

/tewing latitude and longitude angles from a 3D perspective:

Latitude
(North/South)
90°N
45°
e
45° —

90°5

Latitude varies from 0°
at the equator to 90°
North and South at the
poles

Longitude
(West/East)

Longitude varies
from 0° at
Greenwich to 180°
East and West




Longitude

and Latitude are CURVED?

WITHOUT A DOUBT!

Both latitude and longitude lines are based on the concept of great circles that
divide the globe into equal halves. The equator and all meridians are great circles.

- The calculations for distances and angles between different points on
the Earth’s surface use spherical trigonometry, assuming the Earth is a sphere.

- Navigation and Mapping: All navigational and mapping systems that use latitude and
longitude take into account the Earth’s curvature. For example, flight routes and maritime
courses plotted using these coordinates reflect adjustments for the globe’s shape.

- A great circle is the largest circle that can be drawn on a sphere's
surface, dividing it into two equal halves. On a sphere like the Earth, the shortest distance
between two points lies along the arc of a great circle. In navigation, using the concept of
great circles accounts for the Earth's curvature, providing the most efficient and shortest
path between two points. In contrast, a circle (in the context of a two-dimensional plane) does
not account for the varying distances and directions encountered on a three-dimensional
spherical surface due to curvature



BASED ON ANGLES TO THE STARS

» Any rotating sphere has two poles at each end of the axis of rotation, and an equator which
bisects the sphere in a plane that is perpendicular to the axis of rotation. However, In reality,

 Inreality, we are only seeing a half sphere, or a hemisphere of stars at any one time. The tricky part is that
they, and everyone else, assume that when the celestial objects are out of sight, they are actually beneath
our feet, executing a perfect circle before returning the following day.

« Never the less, they have denoted both celestial poles and the celestial equator, imagining this sphere to
continue beneath your feat. The great part is that although the objects are actually across the earth, the
math for a sphere depeneding on angles taken from the bottom hemisphere actually work perfectly.

« That is to say, if you use math to predict when you will see objects return, they could be represented equally

well in either coordinate system.

***The celestial sphere conceptualizes imaginary lines inscribed on the celestial sphere
through the use of coordinate systems. These lines rotate with the celestial sphere, and
therefore do not depend on the observer's location, time of observation, or horizon, but

are linked to the axis rotation of the sky.



CO.ORDINAIREESNSIETMS

BASED ON ANGLES TO THE STARS

e THE NIGHT SKY LOOKS LIKE AN UPSIDE DOWN
BUT BOWL, AS IT TURNS AROUND DURING THE
NIGHT .... AND THIS MAKES IT IS EASY TO
THINK OF IT AS A GIANT SPHERE.




IN REALITY, WE ARE ONLY SEEING A HALF SPHERE, OR A HEMISPHERE OF STARS AT ANY ONE TIME. THE
TRICKY PART IS THAT THEY, AND EVERYONE ELSE, ASSUME THAT WHEN THE CELESTIAL OBJECTS ARE OUT
OF SIGHT, THEY ARE ACTUALLY BENEATH OUR FEET, EXECUTING A PERFECT CIRCLE BEFORE RETURNING
THE FOLLOWING DAY.

NEVER THE LESS, THEY HAVE DENOTED BOTH CELESTIAL POLES AND THE CELESTIAL EQUATOR,
IMAGINING THIS SPHERE TO CONTINUE BENEATH YOUR FEAT. THE GREAT PART IS THAT ALTHOUGH THE
OBJECTS ARE ACTUALLY ACROSS THE EARTH, THE MATH FOR A SPHERE DEPENEDING ON ANGLES TAKEN

FROM THE BOTTOM HEMISPHERE ACTUALLY WORK PERFECTLY. ..

North Ecliptic
Pole

THAT IS TO SAY, IF YOU USE MATH TO PREDICT WHEN YOU WILL SEE OBJECTS R\ETURN THEY COULD BE
REPRESENTED EQUALLY WELL IN EITHER COORDINATE S




Here s howitheseisystemsjincorporatecurvattiie

BASED ON'ANGLES TO THE STARS

o Celestial Sphere: All of these systems conceptualize the sky as a spherical surface with the observer at its center. This spherical model is critical as it
mirrors the true nature of the sky as observed from Earth, which appears dome-like due to the Earth’s curvature and the vast distances of celestial
objects.

« Observer-Centric Modeling: In systems like the Horizontal Coordinate System, the observer’s horizon and zenith define the fundamental plane and
the highest point directly overhead, respectively. This setup naturally forms a sphere segment from the observer’s perspective, reinforcing the idea
of curvature as it relates to the observer’s immediate environment.

« Spherical Geometry: The use of spherical geometry in these coordinate systems is crucial for managing angular measurements and relationships
between objects in the sky. Spherical trigonometry, which is employed to calculate positions and convert between coordinate systems, depends on
the principles of spherical geometry—confirming that the sky’s curvature is not merely perceived but geometrically integral to the systems.

« Reference Planes and Great Circles: Each coordinate system uses specific reference planes (such as the celestial equator or ecliptic plane) and
measures angles along these planes. These planes, intersecting the celestial sphere, create great circles that are the shortest paths between points on
the sphere, emphasizing the inherent spherical nature of the sky.

« Equatorial and Ecliptic Systems: These systems further underscore curvature by aligning their primary coordinates with Earth’s rotation axis and
orbit around the Sun, respectively. The Right Ascension and Declination in the Equatorial system, or Ecliptic Longitude and Latitude in the Ecliptic
system, are measured in terms of angles on the celestial sphere, consistent with spherical coordinates.






ILhe Ci ] Sphere

BASED ON ANGLES TO THE STARS

Coordinate systems based on angles to the stars, such as the Horizontal,
Equatorial, Ecliptic, and Galactic coordinate systems, inherently assume and
account for the curvature of the celestial sphere.

This curvature is essential for accurately mapping the positions and movements of
celestial objects as seen from an observer's vantage point on Earth.

This is the only thing in our world that IS CURVED! The celestial sphere (which
represents all tangent points from any observer and a fundamental plane
through the middle) inherently uses spherical trigonometry and a host of other
factors that require us to treat it as a curved sphere



ILhe Ci ] Sphere

BASED ON ANGLES TO THE STARS

Coordinate Systems and the Celestial Sphere: Takes into account the apparent
curvature of the sky as seen from the observer's vantage point.

Coordinate systems based on angles to the stars account for the curvature of the
celestial sphere by treating the sky as a spherical surface surrounding the
observer.

The altitude measures how high an object is in the sky, directly accounting for the
observer’s horizon.

- The azimuth provides the horizontal direction, with the horizon forming the
fundamental plane
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\GBD ON ANGLES TO Vi
Each system defines a fundamental plane (horizon, celestial equator, ecliptic, or
galactic plane) that helps in positioning objects on the curved celestial sphere.

Angles are measured relative to the fundamental plane and other reference
points (e.g., vernal equinox for right ascension, north point for azimuth).

Calculations on the celestial sphere use spherical trigonometry to account for
the curvature. This allows for accurate transformations between different

coordinate systems.

Transformation Equations: Equations transform coordinates between different
systems (e.g., from horizontal to equatorial coordinates).
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BASED ON ANGLES TO THE STARS

When you perform calculations such as distances using azimuthal
transformations, whether the Earth is considered flat or spherical in model, the
distances like those measured in nautical miles remain consistent.

This is because the formulas that calculate distances based on angles to the stars
(like the Haversine formula) remain valid regardless of the underlying shape
assumption of the Earth.

This means that for navigation and mapping, using either a flat or spherical
model does not impact the practical outcomes when using properly adjusted
coordinate transformations. Measurements like nautical and statute miles retain
their values and utility PRECISELY because their definition ties back to the
coordinate system (latitude and longitude), which remains invariant between
transformations.
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Geooraphical to Celestial

1 FOR 1

FOR EVERY POINT ON THE EARTH
(SPECIFIED BY ® AND A),
THERE IS A UNIQUE POINT IN THE SKY
(SPECIFIED BY A AND A)

CONVERSELY, EVERY POINT IN THE SKY
UNIQUELY CORRESPONDS TO A POINT ON THE EARTH'S

SURFACE
(AT A GIVEN MOMENT, DEPENDING ON THE OBSERVER'S
LONGITUDE, LATITUDE, AND THE SIDEREAL TIME)



Geooraphical to Celestial

1 FOR 1

BOTH SYSTEMS ARE BASED ON GREAT CIRCLES: LATITUDE AND DECLINATION ARE MEASURED FROM THE EQUATORIAL PLANES (EARTH’S EQUATOR AND
CELESTIAL EQUATOR), WHILE LONGITUDE AND RIGHT ASCENSION ARE MEASURED FROM PRIME MERIDIANS (GREENWICH FOR EARTH AND THE VERNAL
EQUINOX FOR THE SKY).

EACH USES A FNDAMENTAL CIRCLE (EQUATOR) AND A STARTING POINT FOR MEASURING EAST-WEST COORDINATES (GREENWICH MERIDIAN FOR LONGITUDE,
VERNAL EQUINOX FOR RIGHT ASCENSION).

TIME IS INTRINSICALLY LINKED TO THESE COORDINATE SYSTEMS. EARTH’S ROTATION, WHICH DEFINES THE MEASUREMENT OF A DAY, AFFECTS BOTH
LONGITUDE (THROUGH TIME ZONES) AND RIGHT ASCENSION (THROUGH THE SIDEREAL DAY, ABOUT FOUR MINUTES SHORTER THAN THE SOLAR DAY).

THE PRACTICE OF CELESTIAL NAVIGATION INVOLVES MEASURING THE ANGLES BETWEEN CELESTIAL BODIES AND THE HORIZON, AND COMPARING THESE
OBSERVATIONS WITH TABLES BASED ON RIGHT ASCENSION AND DECLINATION. THIS DATA CAN THEN BE TRANSLATED INTO TERRESTRIAL LATITUDE AND
LONGITUDE FOR NAVIGATION.

LATITUDE TO DECLINATION:
o THE CELESTIAL SPHERE USES DECLINATION
o (A) INSTEAD OF LATITUDE, BUT BOTH MEASURE THE ANGULAR DISTANCE NORTH OR SOUTH OF THE EQUATOR. THUS, EARTH'S LATITUDE IS DIRECTLY
PROJECTED ONTO DECLINATION:6=LATITUDE

LONGITUDE TO RIGHT ASCENSION:
o RIGHT ASCENSION
o (A) ISANALOGOUS TO LONGITUDE, ALTHOUGH IT IS MEASURED IN TIME UNITS (HOURS, MINUTES, AND SECONDS) ON THE CELESTIAL SPHERE.
o LONGITUDE IS CONVERTED TO RIGHT ASCENSION THROUGH A SCALING FACTOR(1 HOUR EQUALS 15 DEGREES).

THE RELATIONSHIP ALSO INVOLVES THE EARTH’S ROTATION AND THE POSITION OF THE VERNAL EQUINOX:a=GST+LONGITUDE
o (WHERE GST IS GREENWICH SIDEREAL TIME, ADJUSTED FOR THE EARTH'S ROTATION TO ALIGN WITH THE VERNAL EQUINOX).

o THE EARTH'S ROTATIONAL AXIS PROJECTS OUTWARD TO DEFINE THE NORTH AND SOUTH CELESTIAL POLES ON THE CELESTIAL SPHERE. IF YOU WERE
STANDING AT THE EARTH'S NORTH POLE, FOR INSTANCE, THE CELESTIAL NORTH POLE WOULD BE DIRECTLY OVERHEAD.

o THE EARTH'S EQUATOR PROJECTS DIRECTLY OUTWARDS TO FORM THE CELESTIAL EQUATOR. THIS IS THE FUNDAMENTAL PLANE OF THE CELESTIAL
COORDINATE SYSTEM, ANALOGOUS TO THE EQUATOR ON EARTH.



eooraphical to Celestia

1 FOR 1




ASTROGEODESIC USES

ASTRO-GEODETIC DATUM ORIENTATION

GEOID AND ELLIPSOID ARE QRIENTED SO THAT
THE SUM OF THE SQUARES OF SEVERAL
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ASTROGEODESIC USES

Coordinates

* Astronomic or “natural” coordinates

PERPENDICULAR
) ELLIPSOID

* Astronomic latitude and longitude: Which way is up?

* Orthometric height: How far have | traveled up or down from
the geoid?

i . s - : £ s '._7.
Geodetic coordinates SR OrEARIH £y \i a

- S RS 7 aof o \_....._v
* Geodetic or ellipsoidal latitude, longitude, and height: Where i e st T .
am | in three-dimensional space? i i fingas e
{ 7 )J : k‘*-.__ X
\ ~../ DEFLECTION N
; ; ; : / / UF THE VERTITAL - o T
* The deflection of the vertical gives the difference between : s _ A
astronomic and geodetic latitude and longitudes i stanenc.,/ / | %
(- EATHURE . ASTRONOMIC , "5
Ghi i SN N LATITUDE T\
] . . . . ] e = f — "-'"{_'F D T = o T e L
* The difference between orthometric and ellipsoidal heights is the & Eiat i s |

geoid undulation

1984, Geodesy for the Layman



ASTROGEODESIC USES

The deflection of the vertical (0) i1s the angular difference between the direction of
the gravity vector (g), or plumbline at a point, and the corresponding ellipsoidal
normal through the same point for a particular ellipsoid (Figure 1). Since the
plumblines are orthogonal to the level surfaces by definition, the deflection of the
vertical also gives a measure of the gradient of the level surfaces (including the
geoid) with respect to a particular ellipsoid. Accordingly, the deflection of the
vertical 1s classified as absolute when it refers to a geocentric ellipsoid and relative
when 1t refers to a local ellipsoid. Depending on the choice of ellipsoid, the
deflection of the vertical can reach 20™ in lowland regions and up to 70" in regions of
rugged terrain (Bomford, 1980). In Australia, the largest measured deflection of the
vertical with respect to the ANS 1s around 30" (Fryer, 1971).

ellipsoidal normal

A
level
surface
g (gravity vector)
(deflection of the vertical) |0
ellipsoid

Figure 1. The deflection of the vertical (0)

The deflection of the vertical, which is a vector quantity, is usually decomposed into
two mutually perpendicular components: a north-south or meridional component (&),
which is reckoned positive northward, and an east-west or prime vertical component
(n), which is reckoned positive eastward. In other words, the deflection components
are positive if the direction of the gravity vector points further south and further west
than the corresponding ellipsoidal normal (Vanicek and Krakiwsky, 1986), or the
level surface 1s rising to the south or west, respectively, with respect to the ellipsoid

Techniques used for the determination of the deflections of
the vertical and the geoid separation are reviewed. These may be
basically described as astro-geodetic, gravimetric, dynamic and

geometric satellite, and combination methods.

Vertical deflection

Article Talk

From Wikipedia, the free encyclopedia

For the CRT rastering method, see Cathode ray tube.

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection
of the plumb line and astro-geodetic deflection, is a measure of how far the gravity
direction at a given point of interest is rotated by local mass anomalies such as nearby
mountains. They are widely used in geodesy, for surveying networks and for geophysical
purposes.

The vertical deflection are the angular components between the true zenith—nadir curve
(plumb line) tangent line and the normal vector to the surface of the reference ellipsoid
(chosen to approximate the Earth's sea-level surface). VDs are caused by mountains and by
underground geological irregularities and can amount to angles of 10" in flat areas or 20-50"
in mountainous terrain).[c/ation needed]



ASTROGEODESIC USES

Vertical detlection

Article Talk

From Wikipedia, the free encyclopedia

For the CRT rastering method, see Cathode ray tube.

The vertical deflection (VD) or deflection of the vertical (DoV), also known as deflection
of the plumb line and astro-geodetic deflection, is a measure of how far the gravity
direction at a given point of interest is rotated by local mass anomalies such as nearby
mountains. They are widely used in geodesy, for surveying networks and for geophysical
purposes.

The vertical deflection are the angular components between the true zenith—nadir curve
(plumb line) tangent line and the normal vector to the surface of the reference ellipsoid
(chosen to approximate the Earth's sea-level surface). VDs are caused by mountains and by
underground geological irregularities and can amount to angles of 10" in flat areas or 20-50"

in mountainous terrain).[cation needed]

Vertical Deflection at the Earth’s Surface

The deflection of the vertical at the surface of the Earth (0¢) 1s defined by Helmert
(Torge, 1991) as the angular difference between the direction of the gravity vector
and the ellipsoidal normal through the same point at the Earth’s surface. This can
also be an absolute or relative quantity. The deflection of the vertical at the surface
of the Earth 1s of more practical use than the deflection of the vertical at the geoid,
because survey measurements are made at the Earth’s surface and are thus affected
by the deflection of the vertical at this point.

The deflection of the vertical at the Earth’s surface can be computed simply by
comparing astronomical and geodetic coordinates at the same point on the Earth’s
surface. The corresponding deflection of the vertical in the prime vertical i1s the
difference between astronomical latitude (@) and the geodetic latitude (@) of the same
point. Likewise, the deflection of the vertical in the meridian 1s the difference, scaled
for meridional convergence, between astronomical longitude (A) and the geodetic
longitude (A) of the same point. These are given, respectively, by

Es=D -0 (5)
Ns=(A-A)cos (6)

where the subscript s 1s used to distinguish these components of the deflection of the
vertical at the surface of the Earth, and it i1s assumed that the minor axis of the
ellipsoid 1s parallel to the mean spin axis of the Earth’s rotation (Bomford, 1980).

Probably the most important implication of the relations in equations (35) and (6) 1s to
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ASTROGEODESIC USES

measur emen’ra Gﬂhng was (1t111g were geudeh( a,ud o‘rhms a*-,tmnnnn( 1011 1’(11(1(3 dP-
terminations and that he, Gauf3, did not expect them to show the same IPHHHH He
11'1911‘[i011ed hi% forl'ner 1a‘rit11rle 1'119:1%111‘@1‘1‘1er1t'~'a in 1'101"(1191‘1‘1 Germmw (1(‘1“[{“‘1 no. 296,

1 t. His rrwasuu'nlmlta 1111t1ate(1 new qudlltv uf measur (*111011& H(' 10phed to Gdu{)
(letter no. 297, |Schafer 1927]): " If I must accuse myself here of gross error and lack
of fh(;‘r-?"'o'ur;h?’zr*t;a in applying your § [symbol refers to a section of Gaufl’ article from
1828], then pe rhups I can ﬁnd comfmf in Ham‘ fhrm are p;rnbubly "not five persons

erastina in. Furg 201) (i Lo 0P 5§ gp 18 _cpopnep 1 erelore dee

In terrestrial surveying, the deflection of the vertical has three primary

I. transformation of astronomical coordinates to geodetic coordinates;
2. conversion of astronomic azimuth to geodetic azimuth; and
=
k.

reduction of vertical and horizontal angles to the spheroid.

Transformation of Coordinates

The deflections of the vertical provide the transformation between astronomical
(natural) coordinates (P, A), observed with respect to the gravity vector, and the
desired geodetic coordinates (¢, A) on the ellipsoid. Rearranging equations (5) and

(6), and adhering to the same approximations, gives the coordinate transformation as
0=®-Gs (8)
f'..:f&—lT]E-_; sec 0) (9)

where the deflections of the vertical refer to the surface of the Earth, since this is the
point at which the astronomic coordinates are usually measured. If the deflections of
the vertical at the geoid are used in equations (8) and (9), the limitation imposed by
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1. Define the Geographic and Celestial Coordinate Systems:

* Geographic Coordinates: Latitude (@) and Longitude (A)
* Latitude measures north-south position with respect to the equator.
* Longitude measures east-west position from the Prime Meridian.

* Celestial Coordinates:
* Right Ascension (a) and Declination (6)

* Right Ascension Is equivalent to celestial longitude, measuring eastward along the
celestial equator.

* Declination is equivalent to celestial latitude, measuring northward or southward from the
celestial equator.

&

1. Relation via Projection:

* The celestial coordinate system can be thought of as a projection of the Earth's surface onto
the celestial sphere, with the north and south poles extending to the north and south celestial
poles, and the equator to the celestial equator.



Transform Geographic Coordinates to Celestial Coordinates:

* Assume a standard projection where:
* The celestial equator aligns with the Earth's equator.

* The Pnnme Meridian aligns with a fixed point in the sky, such as the vernal equinox (where
the sun crosses the celestial equator at the March equinox), which serves as the zero point
for right ascension.

* This setup implies that:
* Declination () is directly equal to the latitude ().

* Right Ascension (a) can be derived from the longitude (A) by considering the Earth's
rotation and the current sidereal time.



The Transformation Explained
Coordinate Systems

* Geographic Coordinates: These include latitude and longitude.

* Celestial Coordinates: These are typically right ascension (a) and declination (d).
Projection of Geographic Coordinates onto the Celestial Sphere**:

* Latitude to Declination: The celestial sphere uses declination
* (8) instead of latitude, but both measure the angular distance north or south of the equator.
Thus, Earth's latitude is directly projected onto declination:
* §=Latitude
* Longitude to Right Ascension: Right ascension
* () 1s analogous to longitude, although it Is measured in time units (hours, minutes, and
seconds) on the celestial sphere.
* Longitude I1s converted to right ascension through a scaling factor
* (1 hour equals 15 degrees).
* The relationship also involves the Earth’s rotation and the position of the vernal equinox:
* a=GST+Longitude
* (where GST is Greenwich Sidereal Time, adjusted for the Earth's rotation to align with the

vernal equinox).



* Sidereal Time at Greenwich (8¢) measures the right ascension directly overhead at the
Greenwich meridian. This time varies with Earth's rotation, accounting for the difference
between solar time and sidereal time.

* To find the right ascension corresponding to a particular longitude:
* a=0
* 0+

(where A is adjusted for the time of day and year, considering that Earth completes a full rotation

| Ermy ' | ] i W N | 1 1 L1

relative to distant stars appro)cimately {elt * Sidereal Time at Greenwich (8,) measures the right ascension directly overhead at the

Greenwich meridian. This time varies with Earth's rotation, accounting for the difference
between solar time and sidereal time.

* To find the right ascension corresponding to a particular longitude:

5. Proving One-to-One Corresp .,

* 0+4
) (where A is adjusted for the time of day and year, considering that Earth completes a full rotation
* For every Pomt on the Earth relative to distant stars approximately four minutes earlier than relative to the sun each day).

* (specified by @ and A),

» there is a unique point in the sky 5. Proving One-to-One Correspondence:

* (specified by & and a)  For every point on the Earth

- : . - * (specified by ¢ and A),

* when considering the sidereal time. peeliea By ane b
* there is a unique point in the sky

* (specified by 6 and o)

* when considering the sidereal time.

* Conversely, every point in the sky uniqg

given moment, depending on the obs¢ - Conversely, every point in the sky uniquely corresponds to a point on the Earth's surface at a

given moment, depending on the observer's longitude, latitude, and the sidereal time.



between solar time and sidereal time. Convert Earth Longitude to Right Ascension:

* To find the right ascension corresponding to a particular longitude:

*a=0 * Sidereal Time at Greenwich (o) measures the right ascension directly overhead at the
*0+4 Greenwich meridian. This time varies with Earth's rotation, accounting for the difference
(where A is adjusted for the time of day and year, considering that Earth completes a full rotation between solar time and sidereal time.
relative to distant stars approximately four minutes earlier than relative to the sun each day). * To find the right ascension corresponding to a particular longitude:
* qa=0
= 0+4

5. Proving One-to-One Correspondence: . , . ,
(where A is adjusted for the time of day and year, considering that Earth completes a full rotation

_ relative to distant stars approximately four minutes earlier than relative to the sun each day).
* For every point on the Earth

* (specified by @ and A),

* there is a unique point in the sky 5. Proving One-to-One Correspondence:
* (specified by & and a)

* when considering the sidereal time. * For every point on the Earth
* (specified by @ and A),
* Conversely, every point in the sky uniquely corresponds to a point on the Earth's surface at a * there is a unique point in the sky
given moment, depending on the observer's longitude, latitude, and the sidereal time. * (specified by & and o)

* when considering the sidereal time.

1. Define the Geog raphic and Celestial Coordinate Systems: Conversely, every point in the sky uniquely corresponds to a point on the Earth's surface at a
given moment, depending on the observer's longitude, latitude, and the sidereal time.

* Geographic Coordinates: Latitude (@) and Longitude (A)

* Latitude measures north-south position with respect to the equator. Transform Geographic Coordinates to Celestial Coordinates:

* Longitude measures east-west position from the Prime Meridian.

* Celestial Coordinates: * Assume a standard projection where:

UL (S (L 0 e e » The celestial equator aligns with the Earth's equator.

* Right Ascension is equivalent to celestial longitude, measuring eastward along the

. * The Prime Meridian aligns with a fixed point in the sky, such a:
celestial equator.

* Declination is equivalent to celestial latitude, measuring northward or southward from the the sun crosses the celestial equator at the March equinox), wi

celestial equator. for right ascension.

&

* This setup implies that:

1 Relation via Proiection: N B e



1. Define the Geographic and Celestial Coordinate Systems:

* Geographic Coordinates: Latitude (¢) and Longitude (})
* Latitude measures north-south position with respect to the equator.
* Longitude measures east-west position from the Prime Meridian.

* Celestial Coordinates:
* Right Ascension (a) and Declination (&)

* Right Ascension is equivalent to celestial longitude, measuring eastward along the
celestial equator.

* Declination is equivalent to celestial latitude, measuring northward or southward from the
celestial equator.

L]

1. Relation via Projection:

* The celestial coordinate system can be thought of as a projection of the Earth's surface onto
the celestial sphere, with the north and south poles extending to the north and south celestial
poles, and the equator to the celestial equator.

Transform Geographic Coordinates to Celestial Coordinates:

* Assume a standard projection where:
* The celestial equator aligns with the Earth's equator.

* The Prime Meridian aligns with a fixed point in the sky, such as the vernal equinox (where

the sun crosses the celestial equator at the March equinox), which serves as the zero point
for right ascension.

* This setup implies that:
* Declination (8) is directly equal to the latitude ().

* Right Ascension (a) can be derived from the longitude (A) by considering the Earth's
rotation and the current sidereal time.



v North and South Poles to Celestial Poles: The Earth's rotational axis projects outward to define
the north and south celestial poles on the celestial sphere. If you were standing at the Earth's
North Pole, for instance, the celestial north pole would be directly overhead.

4. Equatorial Projection:

* Equator to Celestial Equator: The Earth's equator projects directly outwards to form the
celestial equator. This is the fundamental plane of the celestial coordinate system, analogous to
the equator on Earth.

Visualizing the Transformation

Imagine the Earth surrounded by a giant, transparent sphere (the celestial sphere). If you extended
lines from the center of the Earth outward through every point on the Earth's surface, these lines
would intersect the celestial sphere. The points where they intersect would define the celestial
equivalents of the Earth’s geographical points:

* The line passing through any location on the Earth’s equator would intersect the celestial
sphere at the celestial equator.

* The lines from the geographic poles would meet at the celestial poles.

The Implications of Coordinate Transformation Equivalence

1. Equivalence in Different Models:

* When you perform calculations such as distances using azimuthal transformations,
whether the Earth is considered flat or spherical in model, the distances like those
measured in nautical miles remain consistent. This is because the formulas that calculate
distances based on angles (like the Haversine formula) remain valid regardless of the

iimndarhiinAa charna nccllmnfiLwn ~F +ha Earth






THE SPHERICAL LIMIT OF OUR VIEW

WHICH THEY USED TO FAKE THE GLOBE

Hemisphere and Sphere
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Corporate needs you to find the difference !

between thig picture and tlli13 picture
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Theyre the same picture



The Circumference

THE ONLY THING EVER MEASURED IN REALITY

A Full Circle is 360°

Half a circle is 180°

(called a Straight Angle )

180
o,
0

Quarter of a circle is 90°
(called a Right Angle )
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soonadmateiSystems
NOJREASEDIONEAN GIEESELOERHERSIFARS

The three best-known coordinate systems: the Cartesian, the circular cylindrical, and the spherical.

OOl Gt Al SRR Examples of orthogonal coordinate
1. Cartesian Coordinates ¢ | o
O z | POy SYStemS.

Rectanqular Coordinates
P (x,Y, 2) X

the Cartesian (or rectangular),
the circular cylindrical,
the spherical,
the cylindrical,
the conical,

the spheroidal,
and the ellipsoidal.

2. Cylindrical Coordinates
P(r,®,2)

X=r cos @,
Y=r sin O,
/=7

3. Spherical Coordinates

P(r,8,®)

X=r sin 6 cos P,
Y=r sin 6 sin @,
Z=z c0s 6
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TISSOT’S INDICATRIX WAS CREATED BY A FRENCH MATHEMATICIAN NAMED NICOLAS AUGUSTE TISSOT BETWEEN 1859-

AL AND MINIMAL POINTS ON A MAP.
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TISSOT FOUND A WAY TO INDICATE HOW MUCH A [MAP’S POINTS WERE DISTORTED USING HIS
SCALEJ(HTTPS:// WWW.GEOGRAPHYREALM.COM/CHANGING-MAP-SCALE-PANTOGRAPH/).
DISTORTION VARIES ACROSS A MAP, WHICH MAKES THE SCALE IMPORTANT FOR KNOWING
WHAT IS THE MOST DISTORTED AND WHAT IS ONLY SLIGHTLY DISTORTED.

THE BEST WAY TO VISUALIZE TISSOT’S INDICATRIX IS BY OVERLAYING CIRCLES ON TO A MAP.
WHEN TISSOT’S INDICATRIX IS APPLIED, THE CIRCLES ARE ALTERED IN SIZE AND/OR SHAPE
BASED ON HOW MUCH DISTORTION APPLIES TO THAT PART OF THE MAP

THE INDICATRIX NOT ONLY SHOWS WHERE THE MAP’S DISTORTIONS ARE, BUT HOW MUCH THEY ARE
DISTORTED USING A SCALE OF MAGNITUDE.
HTTPS://EN.WIKIPEDIA.ORG/WIKI/TISSOT'S_INDICATRIX
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