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Preface to Volume Five

The attraction of gravitation is universal. Over the last few decades it has
led to a resurgence of interest in Einstein’s general theory of relativity, our
best theory of gravitation. In the mid-1980s, this interest began to extend
to the history of general relativity, which is now enjoying international at-
tention of unprecedented vigor and intensity. This volume represents the
latest outcome of this new interest. Most of the papers began as presenta-
tions at the Third International Conference on the History and Philosophy
of General Relativity and, after considerable development and revision,
have been brought to their present form. The conference was held at the
University of Pittsburgh at Johnstown, Pennsylvania (U.S.A.), June 27-30,
1991. Members of the local organizing committee were John Earman, Al
Janis, Michel Janssen, Ted Newman, John Norton, and Alan Walstad (Uni-
versity of Pittsburgh) and Clark Glymour (Carnegie—Mellon University,
Pittsburgh). Members of the National and International Committee were
Jean Eisenstaedt (Institut Henri Poincaré, Paris), Hubert Goenner (Univer-
sity of Gottingen), Joshua Goldberg (Syracuse University), Don Howard
(University of Kentucky), A.J. Kox (University of Amsterdam and Einstein
Papers, Boston), Jiirgen Renn (Einstein Papers, Boston), and John Stachel
(Boston University).

This is the third volume in the Einstein Studies series to be devoted to
the history of general relativity. There are now sufficiently many scholars
working in the area to support a series of conferences and volumes of
research articles explicitly devoted to the history of general relativity. John
Stachel was the first to tap into this interest when he organized the first



viii The Attraction of Gravitation

international conference on the history of general relativity at Osgood Hill,
Massachusetts (U.S.A.), May 8-11, 1986. He and Don Howard founded the
series Einstein Studies and edited its first volume, Einstein and the History
of General Relativity (Birkhiuser Boston, 1989), which contained papers
from the Osgood Hill conference and elsewhere. Following the success of
the first conference, Jean Eisenstaedt organized the Second International
Conference on the History of General Relativity, which was held at the
International Center of Mathematical Research (CIRM) at Luminy, France,
September 6-8, 1988. He and A.J. Kox edited a proceedings volume,
Studies in the History of General Relativity, which appeared as Einstein
Studies, Volume Three (Birkhéuser Boston, 1992).

The quality and diversity of papers in this volume demonstrate the ever
growing vitality of research in the history of general relativity. We have
divided the volume into five sections. The first group of papers deals with
disputes between Einstein and other figures in the history of general relativ-
ity. These papers remind us that science is a collaborative enterprise, even
in the case of general relativity, whose genesis is celebrated almost exclu-
sively as the work of just one person. The papers show us how disputes
might sometimes further the interests of science and other times not. John
Norton’s paper recounts how the prospects of a Lorentz covariant gravita-
tion theory were explored within an extended exchange between Einstein
and Nordstrém at the time that Einstein was laying down the foundations
of general relativity. Don Howard and John Norton’s paper recalls the
final dark months of Einstein’s struggle with general relativity, when he
still remained convinced through the hole argument that general covariance
was physically uninteresting. They conjecture that Paul Hertz at Géttingen
communicated a serviceable escape from the hole argument to Einstein—
which he misunderstood and brusquely rejected. The main focus of Carlo
Cattani and Michelangelo De Maria’s paper is the debate over the correct
formulation of conservation laws in general relativity. They show how
Einstein tenaciously defended his formulation against criticism from vari-
ous authors, foremost among them Tullio Levi-Civita. Peter Havas’ paper
portrays an accommodating Einstein entering a dispute with Ludwik Sil-
berstein over the two-body problem in general relativity. We follow the
dispute as it grows from a simple disagreement into an acrimonious quarrel
that surfaced in the popular press.

While general relativity is not celebrated for its intimate contact with
an empirical base, the second group of papers examines some episodes
related to the empirical evidence supporting the theory. John Earman and
Michel Janssen analyze Einstein’s perihelion paper of November 1915,
which was the work of only one week. They ask if Einstein achieved this
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speed by sacrificing mathematical rigor. A.J. Kox discusses Pieter Zeeman’s
little-known experiments on the equality of inertial and gravitational mass,
drawing on the recently discovered Zeeman Nachlass.

The mathematical complexity of general relativity stimulated consid-
erable research into the development of new and useful mathematical per-
spectives on general relativity. This is illustrated by two papers in the
third section, “Variational Principles in General Relativity” In the first,
S. Kichenassamy gives an overview of the early use of variational princi-
ples in general relativity, carefully distinguishing the different notions of
variation employed. Carlo Cattani’s paper on Palatini reveals that Pala-
tini’s contribution to general relativity is not exhausted by the celebrated
variational principle to which his name is attached. The reader may find it
helpful to read these two papers in conjunction with Cattani and De Maria’s
paper in the first section.

The largest group of papers in the volume addresses the reception and
development of general relativity. Karin Reich investigates the Ameri-
can reception and development of the theory of differential invariants, the
branch of mathematics essential to the historical foundation of general rela-
tivity and to its further development. Hubert Goenner dissects a less happy
episode in the reception of Einstein’s work, the malicious 1931 denun-
ciation A Hundred Authors against Einstein. Goenner exposes the often
murky background and motivations of the volume’s contributors. Silvio
Bergia gives an extensive survey of attempts to formulate unified field the-
ories along the lines suggested by general relativity. Bergia evaluates these
attempts with a carefully chosen set of criteria, articulated at the time of
the attempts, thus minimizing the danger of anachronism in his survey.

Gennady Gorelik recounts the life of one of the foremost Russian rel-
ativists, Vladimir Fock, revealing a fascinating and complex figure who
negotiated controversy within his home country and internationally with
dignity and principle. Kameshwar Wali explains why Chandrasekhar’s en-
try into active research in general relativity was delayed until the 1960s.
He then reviews Chandra’s substantial contributions from the 1960s to the
1990s, starting with relativistic instabilities and post-Newtonian approxi-
mations and continuing through rotating stars and black holes.

In the final section, papers by Jean Eisenstaedt and by George Gale and
John Urani explore the ever fertile interaction of cosmology and general
relativity. Eisenstaedt shows how Lemaitre’s interest in cosmology was
crucial for his important contribution to the modern interpretation of the
Schwarzschild solution. Gale and Urani maintain that E.A. Milne’s “kine-
matic relativity” was not merely a dead-end curiosity to be relegated to a
footnote in the history of 20th century philosophy. They argue that Milne’s



X The Attraction of Gravitation

program not only helped shape the debate about the nature of cosmology
but also played a direct role in the development of the Robertson-Walker
metric.

John Earman
Michel Janssen
John Norton

Fall 1693
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A NOTE ON SOURCES

In view of the frequent citations of unpublished correspondence or other
items in the Einstein Archive, we have adopted a standard format for such
citations. For example, the designation “EA 26-107" refers to item number
26-107 in the Control Index to the Einstein Archive. Copies of the Con-
trol Index can be consulted at the Jewish National and University Library
(The Hebrew University), Jerusalem, where the Archive is housed; and
at Mudd Manuscript Library, Princeton University, and Mugar Memorial
Library, Boston University, where copies of the Archive are available for
consultation by scholars.






Part I
DISPUTES WITH EINSTEIN






Einstein and Nordstrém: Some
Lesser-Known Thought Experiments
in Gravitation

John D. Norton

Late in 1907, Einstein turned his attention to the question of gravitation
in his new theory of relativity. It was obvious to his contemporaries that
Newton’s theory of gravitation required only minor adjustments to bring
it into agreement with relativity theory. Einstein’s first published words
on the question (Einstein 1907b, part V), however, completely ignore the
possibility of such simple adjustments. Instead he looked upon gravita-
tion as the vehicle for extending the principle of relativity to accelerated
motion. He proposed a new gravitation theory that violated his fledgling
light postulate and related the gravitational potential to the now variable
speed of light. Over the next eight years, Einstein developed these eatliest
ideas into his greatest scientific success, the general theory of relativity,
and gravitation theory was changed forever. Gravitational fields were no
longer pictured as just another inhabitant of space and time, like electric
and magnetic fields. They were part of the very fabric of space and time
itself.

In light of this dazzling success, it is easy to forget just how precarious
were Einstein’s early steps toward his general theory of relativity. These
steps were not based on novel experimental results. Indeed, the empirical
result Einstein deemed decisive—the equality of inertial and gravitational
mass—was known in some preliminary form as far back as Galileo. Again,
there were no compelling theoretical grounds for striking out along the path
Einstein took. In 1907, it seemed that any number of minor modifications
could make Newtonian gravitation theory compatible with Einstein’s new
special theory of relativity. One did not have to look for the relativistic
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salvation of gravitation theory in an extension of the principle of relativity.
Einstein himself would later label the motivations for his new approach
“epistemological” (Einstein 1916, section 2).

Through the years of his struggle to develop and disseminate general
relativity, one of Einstein’s greatest strengths was his celebrated mastery
of thought experiments. If you doubted that merely uniformly accelerating
your coordinates could create a gravitational field, Einstein would have you
visualize drugged physicists awakening trapped in a box as it was uniformly
accelerated through gravitation-free space (Einstein 1913, pp. 1254-1255).
Would not all objects in the box fall just as though the box were unaccel-
erated but under the influence of a gravitational field? Was not a state of
uniform acceleration fully equivalent to the presence of a homogeneous
gravitational field?

As vivid and compelling as Einstein’s thought experiments proved to
be, they still could not mask the early difficulties of Einstein’s precarious
speculations. Even a loyal supporter, Max von Laue, author of the earliest
textbooks on special and general relativity, had objected to Einstein’s idea
that acceleration could produce a gravitational field. How could this be
possible, he complained, since this gravitational field would have no source
masses.! Einstein’s evolving theory had to compete with a range of far more
conservative and more plausible approaches to gravitation, and it was to
these that physicists such as von Laue locked for a relativistic treatment of
gravitation. )

We must ask, therefore, about Einstein’s own attitude toward these al-
ternatives. In particular, what of the possibility of a small modification
to Newtonian gravitation theory in order to render it Lorentz covariant and
thus compatible with special relativity? Had Einstein considered this possi-
bility? What reasons could he give for turning away from this conservative
but natural path? It turns out that Einstein had considered and rejected this
conservative path in the months immediately prior to his first publication
of 1907 on relativity and gravitation. He felt such a theory must violate
the equality of inertial and gravitational mass. He was forced to revisit
these considerations in 1912 with the explosion of interest in relativistic
gravitation theories. He first continued to insist that a simple Lorentz co-
variant gravitation theory was not viable. In the course of the following
year, however, he came to see that he was wrong and that there were ways
of constructing Lorentz covariant gravitation theories compatible with the
equality of inertial and gravitational mass.

After an initial enchantment and subsequent disillusionment with Abra-
ham’s theory of gravitation, Einstein found himself greatly impressed by
a Lorentz covariant gravitation theory due to the Finnish physicist Gunnar
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Nordstrom. In fact, by late 1913, Einstein had nominated Nordstrom’s
theory as the only viable competitor to his own emerging general theory
of relativity (Einstein 1913). This selection came, however, only after a
series of exchanges between Einstein and Nordstrom that led Nordstrom to
significant modifications of his theory.

Einstein’s concession to the conservative approach proved to have a
silver lining; under continued pressure from Einstein, Nordstrm made his
theory compatible with the equality of inertial and gravitational mass by
assuming that rods altered their length and clocks their rate upon falling
into a gravitational field so that the background Minkowski space-time
had become inaccessible to direct measurement. As Einstein and Fokker
showed in early 1914 (Einstein and Fokker 1914), the space-time actually
revealed by direct clock and rod measurement had become curved, much
like the space-times of Einstein’s own theory. Moreover, Nordstrom’s
gravitational field equation was equivalent to a geometrical equation in
which the Riemann—Christoffel curvature tensor played the central role. In
it, the full contraction, the curvature scalar, is set proportional to the trace of
the stress-energy tensor. What is remarkable about this field equation is that
it comes almost two years before Einstein recognized the importance of the
curvature tensor in constructing field equations for his own general theory
of relativity! In this regard, the conservative approach actually anticipated
Einstein’s more daring approach.

Einstein now had an answer to the objection that general relativity in-
troduced an unnecessarily complicated mechanism for treating gravitation,
the curvature of space-time. He had shown that the conservative path led
to this same basic result: Gravitational fields come hand-in-hand with the
curvature of space-time.

Elsewhere, I have given a more detailed account of Einstein’s response
to the conservative approach to gravitation and his entanglement with Nord-
strom’s theory of gravitation (Norton, 1992). My purpose in this chapter is
to concentrate on one exceptionally interesting aspect of the episode. As in
Einstein’s better-known work on his general theory of relativity, the episode
was dominated by a sequence of compelling thought experiments.? These
experiments concentrate the key issues into their simplest forms and present
them in a way that makes the conclusions emerge convincingly and effort-
lessly. In this chapter I will review this sequence of thought experiments
as it carries us through the highlights of the episode.

In particular, we will see how one of the more arcane areas of spe-
cial relativistic physics proved decisive to the development of relativistic
gravitation theory. It emerged from the work of Einstein, von Laue, and
others that stressed bodies behave in strikingly nonclassical ways in rela-
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tivity theory. For example, a moving body can acquire energy simply by
being subjected to stress, even though it may not be deformed elastically
by the stress. Nonclassical energies such as these provided Einstein with
the key for incorporating the equality of inertial and gravitational mass into
relativistic physics.

1. First Thought Experiment: Masses Falling from
a Tower

The bare facts of Einstein’s initiation into the problem of relativizing grav-
itation theory are known. In late September 1907, Einstein accepted a
commission from Johannes Stark, editor of Jahrbuch der Radioaktivitdit
und Elektronik, to write a review article on the principle of relativity.? That
review (Einstein 1907b) was submitted a little over two months later, on
December 4, 1907. Its concluding part contained the earliest statement of
what came to be the principle of equivalence and of the bold conjectures
about gravitation that followed from it. What we know only from later
reminiscences by Einstein is that, in this brief period between September
and December, he considered and rejected a conservative Lorentz covariant
theory of gravitation.*

Einstein recalled that he knew how one could take Newton’s theory
of gravitation and render it Lorentz covariant with small modifications to
its equations. Newton’s theory is given most conveniently in the usual
Cartesian coordinates (x, y, z) by the field equation

¢ =4nGp D

for the gravitational field potential ¢ generated by a mass density p, where
G is the gravitational constant, and by the force equation

f=-mV¢ @)

for the gravitational force f on a body of mass m. The adaptation to special
relativity of the field equation to which Einstein alluded was obvious. One
simply replaces the Laplacian operator V2 of (1) with the manifestly Lorentz
covariant d’Alembertian [1? to recover
1 2

¢ = (v2 - g%)qs — 47 Gv, 3)
where v is an invariant mass density and ¢ the time coordinate. An analo-
gous modification of (2) would also be required. Einstein (1933, pp. 286~
287) continued to explain that the outcome of his investigations was not
satisfactory.
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These investigations, however, led to a result which raised my strong
suspicions. According to classical mechanics, the vertical acceleration
of abody in the vertical gravitational field is independent of the horizontal
component of its velocity. Hence in such a gravitational field the vertical
acceleration of a mechanical systern or of its center of gravity works out
independently of its internal kinetic energy. Butin the theory I advanced,
the acceleration of a falling body was not independent of its horizontal
velocity or the internal energy of the system.

This did not fit with the old experimental fact that all bodies have the
same acceleration in a gravitational field. This law, which may also be
formulated as the law of the equality of inertial and gravitational mass,
was now brought home to me in all its significance. I was in the highest
degree amazed at its existence and guessed that in it must lie the key
to a deeper understanding of inertia and gravitation. I had no serious
doubts about its strict validity even without knowing the results of the
admirable experiments of E&tvos, which-—if my memory is right—I
only came to know later. I now abandoned as inadequate the attempt to
treat the problem of gravitation, in the manner outlined above, within
the framework of the special theory of relativity. It clearly failed to do
justice to the most fundamental property of gravitation.

The result that troubled Einstein in the theory he advanced came from the
relativistic adaptation of the force law (2). As Einstein pointed out in his
reminiscences, this adaptation could not be specified so unequivocally. We
can proceed directly to the result, however, if we use four-dimensional
methods of representation not available to Einstein in 1907. The natural
adaptation of (2) is
du, ¢
M—

F, =m—* = _ ,
’ mdr ox,

CY

where F, is the gravitational four-force acting on a body of rest mass m
with four-velocity U, ; 7 is the proper time.> We can now apply (4) to the
special case of a body whose three-velocity v has, at some instant of time,
no vertical component in a static gravitational field. If the gravitational
field at that instant at the mass acts along the z-axis of coordinates, so that
the z-axis is the vertical direction in space, then it follows from (4) that the
vertical acceleration of the mass is given by

We see immediately that this vertical acceleration is reduced as the hori-
zontal speed v is increased, illustrating Einstein’s claimed dependence of
the rate of fall on horizontal velocity.
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The “old experimental fact,” which this result contradicts, surely be-
longs to the famous fable in which Galileo drops various objects of different
weights from a tower. Einstein and Infeld (1938, pp. 37-38) certainly iden-
tify this story when they wrote:

What experiments prove convincingly that the two masses [inertial and
gravitational] are the same? The answer lies in Galileo’s old experiment
in which he dropped different masses from a tower. He noticed that
the time required for the fall was always the same, that the motion of a
falling body does not depend on the mass.

We can combine these ingredients to make explicit the thought experiment
suggested by Einstein’s analysis. Masses are dropped from a high tower,
some with various horizontal velocities and some with none. According
to (5), the masses with greater horizontal velocity fall slower, contradicting
Einstein’s expectation and the familiar classical result that they should all
fall alike. See Figure 1.

Trajectories
after equal
times

Increasing ;.
horizontal ~
elocity

Figure 1. Vertical fall slowed by horizontal velocity in a Lorentz covariant theory
of gravitation.

2. Second Thought Experiment: Spinning Tops and
Heated Gases

It is not so obvious why Einstein found the outcome of this first thought
experiment to be so troubling that he felt justified in abandoning the search
for a Lorentz covariant theory of gravitation. The dependence is a minute
effect, second order in v/c. Indeed, one might well wonder how even the
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most ingenious experimentalist could compare the rate of fall of a mass with
that of another whizzing past at a horizontal velocity close to the speed of
light. Even if this were possible, the experiment had surely not been done
in 1907. How could Einstein reject this minute effect as incompatible with
an “old experimental fact” whose traditional origins lay with Galileo?

The answer resides in the.fact that Einstein derived the dependence of
vertical acceleration on the “horizontal velocity or the internal energy of
the system.” What Einstein meant by this was made clear in 1912 when the
Finnish physicist Gunnar Nordstrdm published the first of a series of papers
on a Lorentz covariant, scalar theory of gravitation (Nordstrom 1912). The
essential assumptions and content of Nordstr6m’s theory were contained
in equations (3) and (4) above. Nordstrom did correct, however, a problem
with (4). It turns out that this force law can only hold for a mass moving
so that the rate of change of the gravitational potential along its world line
is zero.® (This condition holds instantaneously for the special case used to
derive [5].) Thus the force law (4) requires modification if it is to apply to
masses along whose trajectories ¢ is not constant. Nordstrom found two
suitable modifications. He favored the one in which the rest mass m of the
body is assumed to vary with the gravitational potential ¢. In particular, he
readily derived the dependence

= mg exp(%), ©

where mg is the value of m when ¢ = 0.

By October 1912, when Nordstrdm sent his paper to Physikalische
Zeitschrift, Einstein’s novel ideas on gravitation had become a matter of
public controversy. In July, Einstein found himself immersed in a vitriolic
dispute with Max Abraham, who saw in Einstein’s admission of a variable
speed of light a “death blow” to relativity theory (Abraham 1912). In his
response, Einstein (1912, pp. 1062-1063) published his 1907 grounds for
abandoning Lorentz covariance in the most general form he could manage.
In any Lorentz covariant gravitation theory, he argued, be it a four-vector or
six-vector theory, gravitation would act on a moving body with a strength
that would vary with velocity. Any such theory was unacceptable, since it
viclated the requirement of the equality of inertial and gravitational mass.

Therefore it is not at all surprising that Nordstrdm attracted Einstein’s
attention when he published just such a theory. Finstein’s reaction was so
swift that Nordstrém was able to mention it in an addendum to his original
paper! The addendum began (Nordstrdm 1912, p. 1129):

Addendum to proofs. From a letter from Herr Prof. Dr. A. Einstein I
learn that he had already eatlier concerned himself with the possibility
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used above by me for treating gravitational phenomena in a simple way.
He however came to the conviction that the consequences of such a
theory cannot correspond with reality. In a simple example he shows
that, according to this theory, a rotating system in a gravitational field
will acquire a smaller acceleration than a non-rotating system.

Einstein’s reflection on the acceleration of fall of a spinning system is
actually only a slight elaboration of the situation considered in the first
thought experiment above. Each element of a suitably oriented spinning
body in a gravitational field has a horizontal velocity. Thus, according
to (5), which obtains in Nordstrém’s theory, each element will fall slower
than the corresponding element without that velocity, What is true for each
part holds for the whole. A spinning body falls slower than the same body
without rotation.

This example now makes clear Einstein’s remark about internal energy.
When the body is set into rotation, its parts gain kinetic energy, so its
overall energy and its inertia are increased. However, through (5), there is
a decrease in the gravitational force acting on it, so that its acceleration of
fall is decreased. That is, its rate of fall decreases as the internal energy
and inertia increases. Presumably Einstein thought the spinning body just
one example of a general effect of this type. In much later reminiscences,
Einstein used the example of a kinetic gas.” As the gas is heated, each
molecule moves faster and thus falls more slowly. Thus the aggregate of
molecules, the heated gas, falls more slowly than a colder gas. These two
examples comprise the second thought experiment. See Figure 2.

Einstein’s result in this form is a far greater threat to Lorentz covariant
theories of gravitation such as Nordstrém’s, for it points to effects that
might well be experimentally testable. Perhaps the effect might transcend
detection by a Galileo-like timing of the fall of spinning tops or hot gases,
but would it escape an apparatus similar to that of the E&tvos experiment?
Nordstrom seemed to think so, for he continued his appendix by dismissing
Einstein’s argument on the basis of the effect being “too small to vield a
contradiction with experience.” This dismissal depended on a rather bold
assumption: that there are no common systems of matter in which a great
part of the internal energy, and thus inertia, is due to the kinetic energy
of internal motions. Such systems, if they existed, would fall markedly
slower than others according to Nordstrom’s theory. Nordstr6m may well
have been right that no measurable effect would arise from the spinning of
a body, but could he be sure that the energy of commonplace matter did not
already have a significant kinetic component? The fundamental theory of
matter was then in a state of turmoil and scarcely able to assure him either
way. A more prudent Einstein was unwilling to take the risk. Should it turn
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not spinning

— " element has
U horizontal
velocity and

falls slower
ational gravitatiqnal
gf;iwl ear ;?ig; acceleration
accel

cold gas

gravitational k//i;(}igier
acceleration greale
horizontal

velocity

—_ and
falls slower

gravitational
acceleration ;

Figure 2. Spinning bodies fall slower than when not spinning. Hot gases fall slower
than cold gases, in Nordstrom’s theory.

out that a significant part of the total energy of various types of ordinary
matter was due, in different proportion, to an internal kinetic energy, then
Nordstrom’s theory might well be refuted by simple observations of the fall
of different substances from a tower.

By the time of submission of his next paper on the theory in January
1913, Nordstrém had become more wary (Nordstrém 1913a). While stili
insisting (p. 878) that no observable effect would arise in the case of spinning
bodies, he was prepared to raise the question of whether the “molecular
motions of a falling body” would influence the rate of fall. He did not state
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directly that the effect might be measurable, but the effect did worry him,
since he began to speculate on a way of incorporating the effect into his
theory.

3. Third Thought Experiment: The Energy of
a Stressed Rod

Nordstrom’s paper of January 1913 was devoted to a question that would
ultimately completely alter the direction of development of his theory. The
paper asked which quantity represented the inertial mass of a body. The
question was far from trivial. Recent work in the relativistic theory of
continua had shown that there were inertial effects that arose when a body
was stressed for which there were no classical analogs. Nordstrom ob-
served (1913a, p. 856) that it had proved possible to ignore this question
and develop a complete mechanics of extended bodies without explicitly
introducing the concept of inertial mass. This luxury could no longer be
afforded, he continued, when one worked in a relativistic gravitation the-
ory, because of the very close connection between inertial and gravitational
masses. One had to represent the inertial mass of a body in a way that al-
lowed for inertial effects in stressed bodies that cannot be attributed directly
to an individual mass.

The body of results to which Nordstrom referred had reached its mature
form in the work of von Laue (1911a, 1911b). There von Laue essentially
presented the modern theory of relativistic continua, introducing the no-
tion of the general stress-energy tensor of matter. The results to which
Nordstrom alluded took the following form. If one applied a stress to a
body without deforming it or setting it into motion, then both the energy
and momentum of the body would remained unchanged in its rest frame.
However, if one viewed this same process from a frame of reference in
which the body was in motion, then the energy and momenturm of the body
might change. For example, if the body was influenced by a shear stress®
pgy in its rest frame and then viewed from a frame of reference moving at
velocity v in the x direction, then in that frame the body would acquire a
momentum in the y direction. The momentum density g, due to the stress
is given by’

. v,
8y =V Pry (7N

If the stress was a normal stress p?_in the rest frame, then, when viewed in
the relatively moving frame, the body would have acquired both energy and
an x-directed momentum. The energy density W and momentum density
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g acquired is given by

20 2V 0
W:y zipxx’ gxzy ;—ipxx' (8)

These are the effects for which there are no classical analogs. They proved
decisive in the relativistic analysis of a number of celebrated thought ex-
periments and real experiments, most notably the Lewis and Tolman bent
lever and the Trouton—Noble capacitor.'0

One of the clearest and earliest analyses of these nonclassical effects
is due to a thought experiment of Einstein (1907a, section 1; 1907b, sec-
tion 12) and was given in the context of his discussion of the inertia of
energy. He imagined an extended body at rest carrying a charge distribu-
tion. He then imagined that, at some definite instant in its rest frame, the
body comes under the influence of an external electromagnetic field. The
net external forces are assumed to balance so that the body remains at rest.
The effect of the continued action of the forces, however, is to induce a state
of stress in the body. Einstein now redescribed this process from a frame in
which the body moved uniformly. Because of the relativity of simultaneity,
the body does not come under the influence of the external field at one
instant. For a brief period, some charge elements are under the influence of
the field and some are not. During this period, the external forces exerted
by the field do not balance, so that there is a net external force exerted on
the body. Work is done on or by the force as the body moves, and there
is a net transfer of energy. This energy is the energy described in (8) and
associated with the induction of a stressed state in the body.!!

The beauty of this thought experiment is that it derives the effects of
equations (8) directly from the most fundamental, nonclassical effect of spe-
cial relativity, the relativity of simultaneity. Forces applied simultaneously
in one frame of reference need not be seen as applied simultaneously in
another. The resulting temporary imbalance leads to an energy and momen-
tum transfer in the latter frame only and these transferred quantities emerge
as those of (8). Einstein’s analysis is mathematically quite complicated,
however, since he considers a body of arbitrary shape and charge distribu-
tion. Recapitulating Einstein’s analysis for a simpler case is sufficient to
reveal the essential physics. That case is a rod of uniform cross section
with equal charges at either end. This is the third thought experiment. See
Figure 3.

The rod has rest length /, cross-sectional area A, and extends from
x’ = 0to x’ = [ inits rest frame (x’, ¢'). At a specific instant ' = 0 in its
rest frame, the rod comes under the influence of a field that applies equal but
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Figure 3. Stressing a moving rod changes its energy and momentum.

oppositely directed forces F to the charges. For concreteness, assume the
forces are directed away from the rod along its length. The forces induce a
tensile stress on the rod in its rest frame!?

pY =—F/A.

If we redescribe this stressing of the rod in a frame (x, #) 13 in which the
rod moves at velocity v in the +x direction, we find that the two forces are
not activated simultaneously because of the relativity of simultaneity. The
force F on the trailing end is activated at a time y -/ earlier than the force F
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on the leading end. For this short time period the external force F on the
trailing end is not balanced by the other external force. As a result, work is
done by the motion of the rod against the force. The resulting loss of energy
from the rod is FI y% and the loss of momentum Fly 5. Recalling the
above expression for p? and that the volume of the rod in the frame (x, t)
is V = Al/y, we recover expressions for the energy £ and x-momentum
G, gained by the rod in the process of being stressed:

2
v v
E = }/zgpng and G, = )/ZC—Z“ng v.

Division of these expressions by the volume V yields (8).

4. Fourth Thought Experiment: Radiation in
a Massless, Mirrored Box

Inhis paper (1913a), Nordstrom had asked the right question. What quantity
represents the total inertial mass of a body, including contributions to its
inertial properties that arose from stresses? He sought his answer in the
form of the source density v for equation (3), and he looked in the right place
for his answer. He expected this density to be a quantity derived from the
stress-energy tensor 7,,,, recently introduced by von Laune. After extensive
discussion, he settled upon 1/c? times the rest energy density of the source
matter as his source density v. The rest frame required for this choice was
the instantaneous local rest frame of a continuous matter distribution—
“dust”—which Nordstrém assumed contributed to the source matter. We
would now express Nordstrdm’s choice in manifestly covariant form as

1
p o= —ZTM\,B#}BW ®

where B, is the four-velocity vector field of the continuous distribution of
matter.

Nordstrom’s answer was close to the correct answer—but not close
enough, as was pointed out by Einstein, in section 7 of his physical part of
Einstein and Grossmann (1913).'* He reported that von Laue himself, also
in Zurich but at the University of Zurich, had pointed out to Einstein the
only viable choice, the trace of the stress-energy tensor

T =T,

Einstein proposed to call this scalar “Laue’s scalar.” What was distinc-
tive about this choice was that it enabled a gravitation theory that employed
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it to satisfy the requirement of the equality of inertial and gravitational mass,
at least “up to a certain degree,” as Einstein put it. This degree included
examples such as those in the second thought experiment above, as we shall
Nnow see.

The key result that enabled satisfaction of this equality was due to
von Laue. Von Laue (1911a) had found a single general solution to a range
of problematic examples within relativity theory. They all involved systems
whose properties appeared to violate the principle of relativity. For exam-
ple, on the basis of classical electromagnetic theory, Trouton and Noble
(1903) believed that a charged, parallel-plate capacitor would experience
a net turning couple if it was set in motion with its plates oblique to the
direction of motion—although their experiment yielded a celebrated null
resuit. Again, Ehrenfest (1907) had raised the possibility that a nonspher-
ical or nonellipsoidal electron could not persist in uniform translational
motion unless forces are applied to it. In both cases the projected behavior
would provide an indicator of the uniform motion of the system, violating
the principle of relativity.

What these examples had in common was the presence of stresses within
the systems and, with the proper treatment of these stresses, the threat to
the principle of relativity evaporated. Von Laue noticed that these systems
were all what he called “complete static systems,” that is, they maintained
a static equilibrium in inertial frames of reference without interacting with
other systems.!> The basic result characterizing these systems was that, in
their rest frames,

f pjdv°® =0, (10)

where the integral extends over the rest volume V0 of the whole body.
It follows from (10} that the energy and momentum of a complete static
system transforms under Lorentz transformation exactly like the energy
and momentum of a point-imass. Since the dynamics of a point-mass was
compatible with the principle of relativity, so was the dynamics of a com-
plete static system, and one could not expect a violation of the principle of
relativity in the dynamics of these systems.

Von Laue’s analysis was very general and powerful because it needed to
ask very little of the inner structure of the systems. All one needed to know
was whether the system was a complete static system. If it was, one could
ignore the further details and simply imagine a black box drawn around the
system. Its overall dynamics was now determined.

In effect, what Einstein was able to report in Einstein and Grossmann
(1913, section 7) was that von Laue’s machinery could be applied directly



Einstein and Nordstrém: Thought Experiments 17

to the problem of selecting a gravitational mass density. If one chose T
as the gravitational mass density, von Laue’s result (10) entailed that the
total gravitational mass of a complete stationary system in its rest frame
was equal to its inertial mass. For, using (10), for such a system we have!®

simiont — [ 7av0 = [ (684 4y + T AV

an
:ﬁT& dVO — total __ total

energy ~  inertial mass’

where I follow Einstein in simplifying the analysis by neglecting factors of
c?, so that energy and inertial mass become numerically equal.

The power and subtlety of this rather beautiful result stood out clearly
in the example that Einstein employed in his discussion. This example is
our fourth thought experiment. The trace T for electromagnetic radiation
vanishes. Thus it would seem that electromagnetic radiation can have no
gravitational mass.!” But what of a system of electromagnetic radiation
enclosed within a massless box with mirrored walls? Would such a system
have any gravitational mass? The radiation itself would not, although that
radiation would exert a pressure on the walls of the box. These walls would
become stressed and, simply because of this stress, the walls would acquire
a gravitational mass. Since it is a complete static system, we need do no
direct computation of the distribution of stresses in the walls, The result
(11) tells us immediately that the total gravitational mass of the system in
its rest frame is given by the system’s total inertial mass. See Figure 4.

The same reasoning can essentially be applied to the spinning bodies
and heated gases of the second thought experiment, if they are set in a
gravitation theory that uses 7 as its source density. Molecules of gas with
horizontal motion will fall slower than those without this motion, thus they
do have a smaller effective gravitational mass. They exert a pressure on the
walls of the containing vessel, however, which becomes stressed. These
stresses alter the value of T and thereby contribute to the gravitational mass.
Since (11) applies here, we read immediately from it that the gravitational
mass of a gas enclosed in a vessel in its rest frame is given by the inertial
mass of the whole system.

Similarly, the individual masses comprising a spinning body do have a
smaller effective gravitational mass because of their motion, but the spin-
ning body is stressed by centrifugal forces. We know from (11}, without
calculation, that the contribution of the stresses to the total gravitational
mass exactly compensates for the reduction due the motion of the individ-
ual masses. As before, the total gravitational mass is given by the total
inertial mass.
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Figure 4, Equality of inertial and gravitational mass for complete stationary systems
in a gravitation theory with source density 7.

5. Fifth Thought Experiment: Lowering and

Raising Radiation

At this point, one might anticipate that Einstein would have to capitulate
and cease his opposition to Lorentz covariant gravitation theories. His ob-
jection to these theories had been that they failed to satisfy the requirement
of equality of inertial and gravitational mass. Most damaging was his con-
clusion that this equality would fail in the type of cases dealt with in the
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second thought experiment above. But now his analysis of the choice of T
as source density showed how a Lorentz covariant, scalar theory of grav-
itation could escape Einstein’s objection in exactly those most damaging
cases.

Einstein was in no mood for retraction, and with good reason. Having
presented T as the only viable choice of gravitational source density, he
proceeded to argue that the choice was a disaster. A theory that employed
T as the gravitational source density must violate the law of conservation of
energy. Einstein’s argument was presented within a thought experiment—
our fifth thought experiment—and it was beguilingly simple. See Figure 5.
He imagined electromagnetic radiation trapped in a mirrored, massless box.
We shall assume it cubic in shape for simplicity. The system is lowered into
a gravitational field. Since it has gravitational mass, an amount of energy
proportional to this mass is extracted.

Einstein now introduced another apparatus to raise the radiation. He
imagined a mirrored shaft extending out of the gravitational field. Within
the shaft are two mirrored, massiess baffles, firmly fixed together. The
radiation is introduced into the space between the baffles and is raised out
of the gravitational field as the baffles are raised. We shall again assume
for simplicity that the space between the baffies is cubic.

We have aiready seen that the gravitational mass of the mirrored box
used to lower the radiation is due entirely to the stresses in its walls. It
now follows immediately that the system of radiation and baffles has only
one-third the gravitational mass of the radiation/box system, for in elevating
the radiation trapped between the baffles, one need move only one-third as
many stressed members.'® Only one-third as much energy need therefore be
supplied to raise the radiation in the baffle apparatus as is released when the
radiation is lowered in the box. Since no energy is involved in raising and
lowering the massless box and baffles when devoid of radiation, a complete
cycle of raising and lowering the radiation yields a net gain of energy. This
violates the law of conservation of energy.

Einstein must have been very pleased with this outcome. In a single
blow, it ruled out not just Lorentz covariant, scalar theories of gravita-
tion, but any relativistic gravitation theory that employed a scalar potential.
Thus the “undeniable complexity” (Einstein and Grossmann 1913, part 1,
section 7) of Einstein’s second-rank tensor theory seemed unavoidable.

6. Sixth Thought Experiment: Lowering and
Raising a Stressed Rod

Einstein’s triumph was short lived. In July 1913, Nordstr6m (1913b) sub-
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Figure 5. Trace T as source density violates energy conservation.

mitted his so-called “second” theory to Annalen der Physik. This theory
- used the trace T as its gravitational source density and fully exploited the
opportunities it provided for enabling the equality of inertial and gravita-
tional mass. Moreover, it was able to incorporate an escape from Einstein’s
attack on all relativistic scalar theories of gravitation.

The basic equations of the theory remained (3) and (4), except that the
four-force F,, was replaced by a four-force density K,

3% % 3% 0%
5}{7"'@;{‘*‘“‘;*‘@7—8(@1},
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= _gipw22
Ku=—g@vy=,

where u = ict.

The major alteration was the inclusion of the gravitation factor g (¢). Iis
purpose was to allow for the fact that the total inertial mass and energy of a
system must vary with the gravitational potential, whereas the gravitational
mass of the system will be independent of the potential. If a system had
inertial mass m when in an external gravitational field of potential ¢, then
its gravitational mass M, was given by

Mg = g(gp)m. (12)

If we now considered a matter distribution whose parts lay in regions
of differing gravitational potential, the gravitational mass of the whole
distribution would be given by a g-weighted integral over its volume

M, =/g(qb)vdV.

At this point, the expressions for both g(¢) and the source density v re-
mained undetermined. Nordstrém now reversed the direction of Einstein’s
reasoning. Einstein had shown that choosing T as source density enabled
the equality of inertial and gravitational mass for complete static systems.
Nordstrém postulated this equality and from it derived Einstein’s choice
for source density

1
V= —ZZ-T
and an expression for g
(¢) = i
Y= Ax e

The constant A could be set arbitrarily as a gauge freedom. Under the
natural choice A = 0, which yielded the potential ¢’, Nordstrém’s second
theory now provided a very simple relationship between the energy E,
inertial mass m, and gravitational mass M, of a complete stationary system

E=mc* =M.

This dependence of the energy and mass of a system on the gravitational po-
tential ¢’ was closer to familiar classical expressions than the corresponding
result (6) of Nordstrom’s first theory.
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Satisfactory as these results were, they did not yet provide an escape
from Einstein’s objection to all relativistic scalar theories of gravitation. It
is odd that this objection is mentioned nowhere in NordstrSm’s paper, even
though a major part of the paper is devoted to developing effects that were
able to defeat that objection. These effects emerged from a long series of
analyses of different gravitational systems, including Nordstrdm’s model
of the electron, stressed rods, light clocks, gravitation clocks, and harmonic
oscillators. Nordstrom found that a very wide range of physical quantities
would depend upon gravitational potential. These included the lengths
of bodies, times of processes, masses, energies, and stresses. When these
dependencies were taken into account, it turned out that Einstein’s violation
of the law of conservation of energy no longer arose.

A simple thought experiment illustrates most simply how the depen-
dence arises in the case of the lengths of bodies and how this dependence
defeats Einstein’s objection. This is our sixth thought experiment. Nord-
strom attributed the thought experiment to Einstein although Einstein pub-
lished it nowhere himself. Since Nordstrém (1913b) was submitted from
Zurich, the home of both Einstein and von Laue, this raises the question
of precisely who developed the ideas that enable escape from Einstein’s
objection.

Einstein’s thought experiment cuts directly to the heart of the mecha-
nism that allowed a violation of energy conservation in the fifth thought
experimém. A body gains gravitational mass upon being stressed. This
additional gravitational mass generates energy when the body is lowered
into a gravitational field. That gravitational mass disappears when the body
is unstressed. If we raise the unstressed body, we create a cycle that yields
a net gain in energy. The radiation in the fifth thought experiment actually
only plays an incidental role in providing a mechanism for stressing bodies
that were to be raised and lowered.

The escape Nordstrém and Einstein now offered is ingenious. If a
stressed body expanded upon being lowered into a gravitational field, then
energy would be absorbed as the work required to expand the body against
the stresses. Could the expansion be so adjusted that it absorbed exactly
all the energy released in the fall of the gravitational mass of the stresses
themselves? If so, the construction of an energy-generating cycle would be
blocked. Nordstrém’s (1913b, pp. 545-545) account of Einstein’s thought
experiment shows us that this adjustment is easily achieved (see Figure 6).
He wrote:

Herr Einstein has proved that the dependence in the theory developed

here of the length dimensions of a body on the gravitational potential
must be a general property of matter. He has shown that otherwise
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Figure 6. Gravitational potential dependence of length restores energy conservation.

it would be possible to construct an apparatus with which one could
pump energy out of the gravitational field. In Einstein’s example, one
considers a non-deformable rod that can be tensioned movably between
two vertical rails. One could let the rod fall stressed, then relax it and
raiseitagain. Therod has a greater weight when stressed than unstressed,
and therefore it would provide greater work than would be consumed in
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raising the unstressed rod. However because of the lengthening of the
rod in falling, the rails must diverge and the excess work in falling will
be consumed again as the work of the tensioning forces on the ends of
the rod.

Let § be the total stress (stress times cross-sectional area) of the rod
and [ its length. Because of the stress, the gravitational mass of the rod

is increased by
1
8Pg-Lg,

c2 ¢/
In falling [an infinitesimal distance in which the potential changes by
d¢’ and the length of the rod by d/], this gravitational mass provides the
extra work

1 !
- 5’- Slde'.
However, at the same time at the ends of the rod the work
Sdi

is lost [to forces stressing the rod]. Setting equal these two expressions

provides
1 1
——d¢' = ~di,
@' l

which yields on integration

l¢' = const.,

Thus simply requiring that the length of a body vary inversely with the
gravitational potential ¢’ is sufficient to preserve the conservation of en-
ergy against the threat of Einstein’s earlier thought experiment. Einstein
clearly accepted this escape, as he acknowledged within his exposition of
Nordstrom’s theory (Einstein 1913, p. 1253) and again more briefly in his
addendum to the journal printing of Einstein and Grossmann (1913).

7. Conclusion

With the intrusion of these kinematical effects into Nordstrém’s theory, it
ceased to be a conservative, Lorentz covariant theory of gravitation and
became more akin to Einstein’s own theory, in which gravitation, space,
and time were intimately intermingled. Just how close if had come to
Einstein’s theory was revealed by Einstein and Adriaan D. Fokker in a
paper the following February (Einstein and Fokker 1914). Since the times
of all processes and the lengths of all bodies were affected equally by the
gravitational potential ¢, the times and spaces of the background Minkowski
space-time had ceased to be directly measurable by real rods and clocks.
Instead they revealed a non-Minkowskian space-time with the characteristic
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property that there exist preferred coordinate systems (x, v, z, #) in which
the invariant interval is given by

ds? = ¢*(dx? 4 dy? + dz? — 2 dr?). (13)

After postulation of this basic property for space-time, the theory de-
veloped in a remarkably similar way to Einstein’s theory. The trajectory
of a body in free fall in the gravitational field was a geodesic of the space-
time. The law of conservation of gravitational and non-gravitational energy-
momentum was given by the vanishing of the covariant divergence of the
stress-energy tensor. Finally, the field equation of Nordstrdm’s second
theory proved to be just

’ R =kT,

where R is the curvature scalar and k a constant. Einstein was not able to in-
troduce generally covariant field equations based on the Riemann curvature
tensor into his own gravitation theory until November 1915.

In 1914, Einstein could not offer decisive grounds for picking between
his and this final version of Nordstrdm’s theory. The strongest argument
he could muster against Nordstrdm’s theory was that it failed to satisfy
the requirement of the relativity of inertia, a requirement whose essential
content would be transformed into Mach’s principle. The presence of the
preferred coordinate systems (x, y, z, £) in (13) was judged by Einstein as
a residual, absolute element that had to be jettisoned if the principle of
relativity were to be generalized to accelerated motion.

The three soon-to-be classic tests of general relativity could offer no
help in deciding between the two theories. Both Einstein’s and Nordstrdm’s
theory predicted a red shift in light from the sun and of equal magnitude.
Unlike Einstein’s theory, Nordstrom’s theory predicted no deflection in a
beam of starlight grazing the sun. However, the world would still wait five
years for Eddington’s celebrated expeditions. Finally, accounting for the
anomalous motion of Mercury had not yet emerged as a sine qua non of any
new gravitation theory. Einstein’s theory of 1913 actually failed to account
for this anomalous motion, a shortcoming that was oddly never mentionedin
Einstein’s publications of this period. Nordstrém (1914) analyzed planetary
motions according to his theory. He found that it predicted changes in
planetary orbits that were very small in comparison with the perturbations
due to other planets and thus felt justified in concluding that this theory was
“in the best agreement with experience” (p. 1109).

What decisively changed the standards for evaluation of gravitation
theories was a result communicated by Einstein (1915) to the Prussian
Academy on November 15, 1915. He showed that his gravitation theory,
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now equipped with generally covariant field equations, was able to ac-
count almost exactly for the anomalous advance of Mercury’s perihelion.
Overnight, the margin of error in astronomical prediction allowed a gravi-
tation theory dropped by at least an order of magnitude. As von Laue noted
in his sympathetic review (1917, p. 305), Nordstrém’s theory was no match
for Einstein’s when it came to Mercury, for Nordstrom’s theory predicted
a slight retardation of the planet’s perihelion. The failure was now deemed
so complete that von Laue did not even bother to report the magnitude of
the retardation.

After the excitement of Eddington’s eclipse expedition and the public
acclaim of Einstein and his theory, the fate of Nordstrom’s theory was
sealed. It could offer little competition to the seductive charms of Einstein’s
theory. By the time of Pauli’s authoritative survey (1921, section 50), in less
than a paragraph Nordstrom’s theory was dismissed briefly and decisively
as a viable gravitation theory.

NOTES.

! M. von Laue to A. Einstein, December 27, 1911, FA 16-008. For further
discussion, see Norton (1985, section 4.1).

2 For philosophical analyses of thought experiments from various perspectives,
see Horowitz and Massey (1991), which contains Norton (1986), and see also Brown
(1991)-and Sorensen (1992).

3 Einstein to J. Stark, September 25, 1907, EA 22-333.

4 One of the most informative is Einstein (1933, pp. 286-287).

5 Here and henceforth, Greek indices will vary over 1, 2, 3, 4 and Latin indices
over 1,2, 3. I will employ the coordinate system (x;, x5, x3, X4) = (x, y, 2, u = ict)
as was common in four-dimensional physics in the early 1910s. Summation over
repeated indices will be implied.

¢ From the orthogonality of four-velocity U,, and four-acceleration dU,, /dt, we
infer from the contraction of (4) with U,, that

99 4,9

0=F, U, =— = ,
ko maxu dr "

so that d¢ /dt = 0.

7 In a lecture given on April 14, 1954, according to notes taken by Wheeler (1979,
p- 188).

8 p?, is the (three-dimensional) stress tensor.

5y =1/ /T= /.

19 See Norton (1992, section 9), and Janssen (manuscript).

H Einstein’s analysis did not consider the corresponding exchange of momentum
associated with the temporary imbalance of external forces, which would lead to
the momentum expression in (8). I add this to my analysis below since it is a trivial
and obvious extension of Einstein’s original thought experiment.
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12 1 follow Einstein in assuming that we are treating a case in which the forces
between the charges on the body are small compared with the external forces and
can be neglected.

13 As usual, we have t = y(t' + (v/c*)x") and x = y(x’ + vt’), where y =
1/4/1 —v?/c.

14 One obvious problem with (9) that Einstein did not mention is that it is ill-
defined for source matter that, unlike dust, has no natural rest frame.

15 Yon Laue’s (19114, section 5) definition was unnecessarily restrictive and did
not include bodies rotating uniformly about their axes of symmetry. Nordstrém
(1913b, pp. 534-535) quietly extended the analysis to “complete stationary” sys-
tems, which did include such rotating bodies.

16 Under Nordstrom’s choice of coordinate system, with x, = ict, Tyy = —(ener-
gy density), whereas under Einstein and Grossmann’s (1913) choice of metrical
signatare (—, —, —, +), T4 = +(energy density). I have also followed Einstein in
simplifying the analysis by ignoring the fact that the total energy of a system must
vary with gravitational potential, whereas its gravitational mass will not. Thus
the expression for the proportionality of the inertial and gravitational mass of a
system must contain a factor that is a function of the gravitational potential. This
effect is explicitly incorporated into Nordstrém’s (1913b) second theory through
the factor g(¢), and the proportionality is expressed as relation (12) of Section 6
below. For the analysis of this section and the following, this g factor can be taken as
approximately constant and its effect absorbed into other constants in the equations.

17 This conclusion holds for free radiation, and for this reason there is no gravi-
tational bending of light in Nordstrém’s (1913b) second theory, since it employs 7'
as its source density.

18 To see this most clearly, imagine that each pair of opposing walls of the box
are held together by a slender rod that carries all the stresses needed to hold the
walls against radiation pressure. One set of opposing walls and rods forms the set
of baffles. Three identical sets can be fitted together to form the cubical box.

REFERENCES

Abraham, Max (1912). “Relativitdt und Gravitation. Erwiderung auf einer Be-
merkung des Hrn. A. Einstein.” Annalen der Physik 38: 1056-1058.
Brown, James R. (1991). Laboratory of the Mind: Thought Experiments in the
Natural Sciences. London: Routledge.

Ehrenfest, Paul (1907). “Die Translation deformierbarer Elektronen und der Flich-
ensatz.” Annalen der Physik 23: 204-205.

Einstein, Albert (1907a). “Uber die vom Relativititsprinzip gefordete Trigheit der
Energie.” Annalen der Physik 23: 371-384.

— (1907b). “Uber das Relativititsprinzip und die aus demselben gezogenen
Folgerungen.” Jahrbuch der Radioaktivitit und Elektronik 4: 411-462; 5:
98-99.

——— (1912). “Relativitdt und Gravitation. Erwiderung auf eine Bemerkung von
M. Abraham.’ Annalen der Physik 38; 1059-1064.



28 John D. Norton

——— (1913). “Zum gegenwirtigen Stande des Gravitationsproblems.” Physika-
lische Zeitschrift 14: 1249-1262.

—— (1915). “Erkldrung der Perihelbewegung des Merkur aus der aligemeinen
Relativititstheorie.” Koniglich Preussische Akademie der Wissenschafien
(Berlin). Sirzungsberichte: 831-839.

——— (1916). “Die Grundlage der aligemeinen Relativititstheorie.” Annalen der
Physik 49: 769-822; translated without p. 769 as “The Foundation of the
General Theory of Relativity” in The Principle of Relativity. Hendrik A. Lo-
rentz, Albert Einstein, Hermann Minkowski, and Hermann Weyl. New York:
Dover, 1952, pp. 111-164.

———— (1933). “Notes on the Origin of the General Theory of Relativity.” In Ideas
and Opinions. Carl Seelig, ed. Sonja Bargmann, trans. New York: Crown,
1954, pp. 285-290.

Einstein, Albert and Fokker, Adriaan D. (1914). “Die Nordstromsche Gravitations-
theorie vom Standpunkt des absoluten Differentiaikalkiils.” Annalen der
Physik 44: 321-328.

Einstein, Albert and Grossmann, Marcel (1913). Entwurf einer verallgemeinerten
Relativitditstheorie und einer Theorie der Gravitation. Leipzig and Berlin:
B.G. Teubner (separatum). Reprinted with added “Bemerkungen” by Ein-
stein in Zeitschrift fiir Mathematik und Physik 63: 225-261.

Einstein, Albert and Infeld, Leopold (1938). The Evolution of Physics. Cambridge:
Cambridge University Press.

Horowitz, Tamara and Massey, Gerald, eds. (1991). Thought Experiments in Science
and Philosophy. Savage, Maryland: Rowman and Littlefield.

Janssen, Michel (manuscript). “Condensers, Contraction and Confusion: Accounts
of the Trouton—Noble Experiment in Classical Electrodynamics.”

Nordstrom, Gunnar (1912). “Relativitdtsprinzip und Gravitation.” Physikalische
Zeitschrift 13: 1126-1129.

—— (1913a). “Trige und schwere Masse in der Relativitdtsmechanik.” Annalen
der Physik 40: 856-878.

——— (1913b). “Zur Theorie der Gravitation vom Standpunkt des Relativitétsprin-
zip.” Annalen der Physik 42: 533-554.

——— (1914). “Die Fallgesetze und Planetenbewegungen in der Relativititstheo-
rie,” Annalen der Physik 43: 1101-1110.

Norton, John D. (1985). “What was Einstein’s Principle of Equivalence?” Studies
in History and Philosophy of Science 16: 203-246. Reprinted in Einsiein
and the History of General Relativity: Einstein Studies, Vol. 1. Don Howard
and John Stachel, eds. Boston: Birkhiuser, 1989, pp. 3—47.

——— (1986) “Thought Experiments in Einstein’s Work,” presented at the work-
shop “The Place of Thought Experiments in Science and Philosophy,” Center
for Philosophy of Science, University of Pittsburgh, April 17, 1986; pub-
lished in Horowitz and Massey (1991).

——— (1992). “Einstein, Nordstrom and the Early Demise of Scalar, Lorentz Co-
variant Theories of Gravitation.” Archive for History of Exact Sciences 45:
17-94.



Einstein and Nordstrom: Thought Experiments 29

Pauli, Wolfgang (1921). “Relativititstheorie.” In Encyklopddie der mathematischen
Wissenschaften, mit Einschluss an ihrer Anwendung. Vol. 5, Physik, Part 2.
Arnold Sommerfeld, ed. Leipzig: B.G. Teubner, 1904-1922, pp. 539-775.
[Issued November 15, 1921]. English translation, Theory of Relativity. With
supplementary notes by the author. G. Field, trans. London: Pergamon, 1958;
reprint New York: Dover, 1981.

Sorensen, Roy A. (1992). Thought Experiments. New York: Oxford University
Press.

Trouton, Frederick T. and Noble, H.R. (1903). “The Mechanical Forces Acting on
a Charged Condensor Moving through Space.” Philosophical Transactions
of the Royal Society of London 202: 165-181.

von Laue, Max (1911a). “Zur Dynamik der Relativititstheorie.” Annalen der Physik
35: 524-542.

——— (1911b). Das Relativitdtsprinzip. Braunschweig: Friedrich Vieweg und
Sohn.

——— (1917). “Die Nordstromsche Gravitationstheorie.” Jahrbuch der Radioakti-
vitéit und Elektronik 14: 263-313,

Wheeler, John A. (1979). “Einstein’s Last Lecture.” In Albert Einstein’s Theory of
General Relativity. Gerald E. Tauber, ed. New York: Crown, pp. 187-190.



Out of the Labyrinth? Einstein, Hertz,
and the Gottingen Answer to the
Hole Argument

Don Howard and John D. Norton

In his lifetime, Einstein became a living oracle. We are told time and time
again of lesser-known scientists grappling with overwhelming problems
who made the pilgrimage to consult Einstein, perhaps just for encourage-
ment or endorsement, or perhaps in the hope that he might hand them the
thread that would lead them out of their labyrinth. Our paper tells the
story of a scientist who had become hopelessly lost in a labyrinth of his
own making as he struggled with the most important discovery of his life.
A correspondent gives him the thread that could be followed out of the
labyrinth, but the scientist impatiently dismisses this gift as a confused dis-
traction, only to discover a similar way out a few months later. What makes
our story special is that the scientist was not just anyone—it was Einstein
himself—and the discovery was general relativity.

The time was 1915. Einstein’s correspondent was Paul Hertz, then a
physicist working in Gottingen and taking regular part in the activities of the
group centered around David Hilbert. The problem was the so-called hole
argument, through which Einstein had convinced himself that no physically
acceptable version of his still-incomplete general theory of relativity could
be generally covariant. We will conjecture that Hertz provided Einstein
with a serviceable and sophisticated escape from this ill-fated conclusion,
and that Finstein misunderstood and dismissed it, only to arrive at a similar
escape a few months later in the form of his point-coincidence argument.
Finally, on the basis of an intriguing similarity in wording and timing, we
will suggest that Einstein may have drawn immediate inspiration for the
final formulation of his point-coincidence argument from another hitherto
unrecognized source.
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Our argument for our main conclusion will be somewhat unusual, rest-
ing, as it does, upon our conjectural reconstruction of letters from Hertz
to Einstein on the basis of Einstein’s surviving replies to Hertz. Such an
approach raises obvious methodological and historiographical questions
about the use of evidence that is as much conjectured as discovered. How-
ever, in the absence of more direct evidence, our only alternative is to say
nothing at all; but this is an issue too interesting and important to pass over
in silence.

1. Background: General Covariance Lost and Regained

In the summer of 1915, when our story is set, Einstein’s long struggie
toward his general theory of relativity was drawing to a close. Roughly
two years earlier, he and Marcel Grossmann had published the first outline
of the theory, complete in all essential details excepting the gravitational
fields equations offered, which were not generally covariant (Finstein and
Grossmann 1913). To make matters worse, Einstein soon suppressed his
concern over this lack of general covariance by convincing himself that any
generally covariant field equations that one might propose must be physi-
cally uninteresting. His principal argument for this surprising conclusion
was the “hole argument,” published in its final and most complete form in
Einstein 1914b, pp. 1066-1067 (see Norton 1987, Stachel 1989).

In the hole argument, Einstein considered a “hole,” a region of space-
time devoid of “material processes” (the stress-energy tensor 7;; = 0),anda
solution g, in a coordinate system x™, of supposedly generally covariant
field equations for the metric tensor g;, given a matter distribution that
is nonvanishing only outside the hole. He then showed that the general
covariance of the field equations allowed him to construct a second solution,
with components g;,, in the same coordinate system x™, that agreed with the
first solution g;;, outside the hole but came smoothly to differ from it within
the hole. Einstein found the existence of two such solutions in the same
coordinate system unacceptable, for he took it to violate the “principle
of causality,” which seemed here to amount to the requirement that the
field and matter distribution outside the hole should determine uniquely the
processes or events within the hole. His presumption, apparently, was that
there is a unique, real state of affairs within the hole (and elsewhere) that is
supposed to be described, uniquely, by a theory of gravitation (see Howard
1992).

In brief, Einstein constructed these two solutions by means of a transfor-
mation from the original coordinate system x™ to a new coordinate system
x™ that agreed with the original outside the hole but came smoothly to
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differ from it within the hole. Under this transformation the first solution
gik, in x™, becomes g/, in x™, which general covariance guarantees is also
a solution of the field equations. To recover the second solution mentioned
above, Einstein looked upon the components g/, as ten functions of the
arguments x™ and imagined that these arguments were replaced by numer-
ically identical values of the original x™ without changing the functional
form of g;,. The result is two differing solutions of the field equations in
the same coordinate system x™. (See Figure 1.)

It will be important for later discussion to pause here and note that these
two solutions have the following characteristic property, although Einstein
did not stress this fact: There exist two coordinate systems x™ and x™' that
agree outside the hole but come smoothly to differ within the hole, such
that the components of the second solution, in the coordinate system x™,
are precisely the same functions of the coordinates as are the components
of the first solution, in the second coordinate system x™’.!

For example, in the case of the two-dimensional space-time of Figure 2,
if the matrix of values of the second solution is [ (1) _02] at (1, 1) in the first
coordinate system, then the matrix of values of the first solution is also
[(1) _02] at (1, 1) in the second coordinate system. Notice, however, that if
(1, 1) are the coordinates of a point p inside the hole, then, by construction,
(1, 1) in the second coordinate system will be the coordinates of a differenz
point, p’, in the hole.

The hole argument forced Einstein to limit the range of coordinate
systems used in his theory in such a way that, for any arbitrarily selected
region of space-time, he could not use two coordinate systems that agreed
outside but came smoothly to disagree within the region. To see how
close the covariance of his 1913 theory came to this limit, Einstein defined
the notion of the “adapted coordinate system,” analyzed most completely in
Einstein 1914b. The coordinate system adapted to a given field was defined
by a variation principle so contrived that it selected a single coordinate
system from all those that came smoothly to agree on the boundary of
any given region of space-time. This entails a result that will become
important below: For any region of space-time, it is impossible for there 1o
be rtwo different adapted coordinate systems thas come smoothiy to agree at
the boundary. Einstein could also show that his 1913 field equations were
covariant under transformations between these adapted coordinate systems,
so that while these field equations were not generally covariant, they had
at least the maximum covariance permitted by the hole argument.?

Einstein’s failure to offer generally covariant field equations was a great
worry and embarrassment to him. His frequent protestations of the unac-
ceptability of generally covariant field equations, however, such as Ein-
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stein 1914a, and his publication in October 1914 of a lengthy review article
(Einstein 1914b) of the theory suggested that he felt the theory had achieved
some stability in its then non-generally covariant formulation.

In late June and early July of 1915, Einstein visited Gottingen and
gave six lectures on his theory to a group including David Hilbert, Felix
Klein and, more likely than not, Emmy Noether and Paul Hertz. Einstein
described this visit to several correspondents. Thus, on August 16, he wrote
to Berta and Wander Johannes de Haas: “To my great delight, I succeeded
in convincing Hilbert and Klein completely” (EA 70-420).3 And one month
earlier, on July 15, Einstein had reported enthusiastically to Sommerfeld:

In Gottingen I had the great pleasure of seeing everything understood,
down to the details. I am quite enthusiastic about Hilbert. A man of
consequence. (EA 21-381; reprinted in Hermann 1968, p. 30)*

That report to Sommerfeld, however, also showed that Einstein was not yet
entirely reconciled to his new theory. He wrote Sommerfeld that he would
prefer not to include one or two papers on his new theory (Einstein 1911b,
1914b) in the collection Das Relativititsprinzip, since none of the current
presentations were “complete.”

As it turned out, Einstein had been understood in Géttingen even better
than he realized. Hilbert was particularly excited, writing to Karl Schwarz-
schild on July 17, 1915: “During the summer we had here as guests the
following: Sommerfeld, Born, Einstein. Especially the lectures of the last
on gravitational theory were an event” {(quoted in Pyenson 1979a, p. 193,
n. 83). The excitement in Gottingen was tempered, however, by a widely
shared belief that Einstein’s mathematical abilities might not be up to the
task of perfecting the new theory of gravitation. Typical of this attitude are a
couple of remarks found in Felix Klein’s lecture notes on general relativity
from the summer of 1916. Thus, on the first day of the lectures, July 15,
1916, Klein remarked to his audience that, in the popular mind, relativity
theory was surrcunded by a “fog of mystery” [Nebel der Mystik], adding:

Einstein’s own way of thinking is partly to blame for this mystery, for it
starts out again from the most general philosophical speculations and is
guided, above all, more by strong physical instinct than by clear mathe-
matical insight.3

More to the point, however, is a remark later in that same lecture, in the
middie of a section entitled “On the Choice of Coordinates Encountered
in Einstein.” In Einstein’s new theory, Klein tells his students, we enter
upon the terrain of arbitrary coordinates, “familiar” to us from the work of
Lagrange, Gauss, and Riemann, where the g,, and the ds? must be treated
according to the rules of Ricci’s absolute differential calculus, or “maore
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objectively expressed,” according to the rules of the theory of invariants
of the group of arbitrary point transformations applied to the differential
invariant ds?. Everything we learned about Lagrange, Gauss, and Riemann
may be clear in itself, says Klein. Still,

It is nevertheless a good idea to explain it further, because there are here,
in Einstein’s work, imperfections [Unvollkommenheiten], which do not
impair the great ideas in his new theory, but hide them from view.

This is connected with the repeatedly mentioned circumstance that
Einstein is not innately [von Hause aus] a mathematician, but works
rather under the influence of obscure [dunkelen], physical-philosophical
impulses. Through his interaction with Grossmann and on the basis of
the Zurich tradition he has, to be sure, gradually become acquainted
with Gauss and Riemann, but he knows nothing of Lagrange and over-
estimates (parenthetically) Christoffel, under the influence of the local
Zurich tradition.

One senses in Klein’s words a hint of jealousy, but they still help us under-
stand how members of the G&ttingen group may have regarded Einstein’s
mathematical failings with more than a little condescension.

Undeterred by the hole argument, and determined, perhaps, to demon-
strate how the vaunted Géttingen expertise at the mathematics of mathemat-
ical physics might yield dividends of akind not yet achieved by the “obscure
physical-philosophical impulses” of Einstein, Hilbert himaself turned to the
task of finding generally covariant field equations for his version of Ein-
stein’s theory, a fusion of Einstein’s gravitation theory and Mie’s matter the-
ory. He communicated the modern gravitational field equations of general
relativity to the Gottingen Gesellschaft der Wissenschaften on November
20, 1915 (Hilbert 1915). Meanwhile, Finstein had lost confidence in the
lack of general covariance of his theory and returned to the quest for gen-
erally covariant field equations. He arrived at the same gravitational field
equations as Hilbert, and they were communicated to the Prussian Acad-
emy on November 25, 1915, five days after Hilbert had communicated the
same equations in Gottingen.’

Einstein soon turned to the task of informing his correspondents of how
he reconciled his hole argument with his return to general covariance by
means of a consideration now known as the “point-coincidence argument.”®
The latter was first published in Einstein’s comprehensive 1916 review ar-
ticle, “Die Grundlage der allgemeinen Relativititstheorie” (Einstein 1916,
pp. 117-118). Whereas previously he had argued that generally covariant
equations typically can be made to yield different solutions for one and the
same coordinatization of the physical space-time, Einstein now argued that
while the two solutions g;; and g, may be mathematically distinct, they
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are not physically distinct, for both solutions catalogue the identical set of
space-time coincidences, which exhaust the reality captured by the theory.
Thus, Einstein wrote to Paul Ehrenfest on December 26, 1915:

The physically real in the world of events (in contrast to that which is
dependent upon the choice of a reference system) consists in spatiotem-
poral coincidences.” Real are, e.g., the intersections of two different
world lines, or the statement that they do not intersect. Those statements
that refer to the physically real therefore do not founder on any univo-
cal [eindeutige] coordinate transformation. If two systems of the g,
(or in general the variables employed in the description of the world)
are so created that one can obtain the second from the first through
mere space-time transformation, then they are completely equivalent
[gleichbedeutend]. For they have all spatiotemporal point coincidences
in common, i.e., everything that is observable.

*Jand in nothing else! (EA 9-363)

An example of these space-time coincidences would be the collision of two
point-masses.

We illustrate Einstein’s point-coincidence argument in a way that will
be suggestive below. Let two point-masses originate at a point-event g
outside the hole, separate, and then collide at some point-event within the
hole. See Figure 3. According to the second solution, g;,, the particles will
collide at the point{-event] with coordinates (1, 1) in the first coordinate
system, x™. According to the first solution, g;, the particles will collide at
the point with coordinates (1, 1) in the second coordinate system, x™'. As
illustrated in Figure 2, Einstein had earlier assumed that the two sets of co-
ordinates would represent different point{-event]s, p and p’, in the physical
space-time. He now understands that, on the contrary, they must repre-
sent the same point[-event], because the two sets of trajectories agree in all
physically significant quantities and thus cannot pick out physically differ-
ent point[-event]s. For example, measurements of physical time elapsed
along the trajectory gap as determined by the first solution g;; would be
identical to that along gap’ as determined by the second solution g; k.9

2. Letters from Paul Hertz

Einstein later recalled the infense emotions that simmered and boiled within
himself through the years of his struggle with general covariance when he
wrote of the episode: “But the years of anxious searching in the dark,
with their intense longing, their alternations of confidence and exhaustion
and final emergence into the light—only those who have experienced it
can understand that” (Finstein 1934, pp. 289-290). Into this emotional
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and intellectual cauldron around August 1915 was added an exchange in
correspondence with Paul Hertz, just a few months before the struggle drew
to its dramatic close that November.

Hertz was born in 1881 in Hamburg. In 1915 he was a Privatdozent at
Géttingen and a member of the group clustered around Hilbert and Klein.
He had taken a degree at Gottingen in 1904 under Max Abraham, with
a dissertation on discontinuous movements of an electron (Hertz 1904).10
After publishing a few additional studies on electron theory, he turned his
attention to the foundations of statistical mechanics, an interest that cul-
minated in his seminal 1916 monograph in the Repertorium fiir Physik
(Hertz 1916), and also led to his acquaintance with Einstein. This ac-
quaintance was a direct result of Hertz’s critical remarks (Hertz 1910) on
Einstein’s early papers on the subject (Einstein 1902, 1903, 1904), re-
marks to which Einstein replied in a short note in the Annalen in 1911
(Einstein 1911a). They had begun corresponding by August 1910 and had
become personally acquainted no later than early September 1910, at a
meeting of the Schweizerische Naturforschende Gesellschaft in Basel.!!
Hertz was by this time acquainted with several of Einstein’s closer friends
and colleagues, most importantly Paul Ehrenfest, who had been a student
in Géttingen at the same time as Hertz,'? and Jakob Laub, another fellow
student from G6ttingen, who was a colleague of Hertz’s in Heidelberg from
1909 to 1911.13 In 1921, Hertz finally received an appointment as Ausseror-
dentlicher Professor in Gottingen, the same year that he and Moritz Schlick
published their influential edition of Helmholtz’s epistemological writings
(Helmholtz 1921). And in later years, Hertz turned his attention to various
topics in the philosophy of science, including pioneering studies, very much
in the Géttingen tradition, of the formal axiomatics of scientific theories.!*
Einstein provided a letter of recommendation for Hertz after his emigration
to the United States (EA 12-221). He died in Philadelphia in 1940.

We do not know for certain that Hertz was present when Einstein lec-
tured in Gottingen in late June and early July of 1915. Given the nature
of the previous relationship between Hertz and Einstein, given Hertz’s role
in the group around Hilbert, and given the character of Heriz’s correspon-
dence with Einstein later that summer, it is more than likely, however, that
he was present.

We know of the letters that Hertz wrote to Einstein only because Ein-
stein’s replies still exist (EA 12-201 and EA 12-203). Einstein’s letter
EA 12-203 is dated “22. VIII” (August 22). The content is compatible
only with the years 1913-1915. The year must be 1915 because of the
mention in a postscript of a coming visit to Zurich (“Aug. 26 to about Sep-
tember 157), the address of his friend Heinrich Zangger being given for
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correspondence. Einstein made a visit to Zurich fitting this description in
1915.15

Einstein’s letter is written in a friendly and encouraging tone. It reflects
on the great problems Einstein had faced in finding a way to restrict the
coordinate systems of his theory and sketches the difficulties still facing the
theory in this area. The letter begins:

One who has himself poked about so much in the chaos of possibilities
can understand very well your fate. You haven’t the faintest idea what
I, as a mathematical ignoramus, had to go through until T entered this
harbor.

And about his specific restriction to “adapted” coordinates, he comments:

How can one pick out a coordinate system or a group of such? It appears
not to be possible in any way simpler than that which I have chosen. I
have groped about and tried everything possible.... The coordinate
restriction that was finally introduced deserves particular confidence be-
cause it can be brought into connection with the postulate of the complete
determination of events.

This last remark alludes to the fact that adapted coordinate systems were
first introduced by Einstein in order to block the conclusion of the hole
argument.

The letter’s primary purpose, however, is to respond encouragingly
to an idea of Hertz’s alluded to in the first paragraph, which presumably
concerns the restriction of the coordinate systems. Hertz’s idea is presum-
ably also the one that Einstein refers to in both the opening sentence—“A
surface-theoretical interpretation of preferred systems would be of very
great value”—and the closing sentence of paragraph five—*“Perhaps one
could get an overview on the question if one succeeded in finding the geo-
metrical interpretation for which you seek”—for such an interpretation is
not given or even mentioned by Finstein anywhere else in the letter. And
Einstein’s other letter, EA 12-201, contains a response to a proposal by
Hertz that is cast in the older language of the theory of two-dimensional
Gaussian surfaces.'®

Einstein’s EA 12-201 is dated “Berlin, Saturday” but, because of the
close similarity of content, it was quite plausibly written at about the same
time as EA 12-203. The earliest possible date is August 14, since Hertz’s
son, Hans, who is mentioned at the end of the letter, was born on Sunday,
August 8.7 The letter was probably written no later than about Saturday,
October 9, since it betrays no doubts on Einstein’s part about the restricted
covariance of the Einstein—Grossmann (1913} theory, whereas by Octo-
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ber 12 Einstein is writing to Lorentz that he now realizes that something is
amiss with the theory.

The letter responds to another proposal by Hertz, but, as we shall see, itis
written in a very different tone. The letter is at times impatient, discouraging
and almost hostile—Einstein did not like Hertz’s proposal! On the basis of
Einstein’s reply in EA 12-201, we reconstruct Hertz’s proposal to amount
to an escape from the hole argument, coupled with a proposal for setting up
generally covariant gravitational field equations. The reconstruction that
follows is the only one we have found that is compatible with the entirety
of Finstein’s response.

At this point, some readers might like to scan ahead and read the letter
EA 12-201, which is quoted in full in Section 4, in order to see the raw
material upon which our reconstruction is based. Readers who like puzzles
might even want to try to build their own reconstruction before reviewing
the one we offer below in Section 3.

3. Our Reconstruction of Hertz’s Proposed Escape
from the Hole Argument

Hertz tried to show Einstein that he should not be troubled by the dif-
ferences between the two solutions considered in the hole argument. He
considered the hole argument for the case of a two-dimensional Gaussian
surface. We would now write the line element of such a surface in the
quadratic differential form ds? = g;(dx')? 4+ 2g1p dx! dx? + gy (dx?)?,
where Hertz used the older notation introduced by Gauss, wherein one
writes ds? = E du® 4 2F du dv + G dv?. In the case of variable curvature,
this geometry seems to allow the defining of a special coordinate system
(u, v), whose curves are the curves of constant curvature and of maximum
curvature gradient, and are thus adapted to the geometry. We shall call such
systems “Hertz-adapted” to avoid confusing them with Einstein’s “adapted”
coordinate systems. Presumably such coordinates were proposed because
they would be defined in terms of invariant features of the surface and be-
cause they might be proved to exist for spaces of both positive and negative
curvature, unlike isometric coordinates.

Hertz, examined the two solutions of the hole argument in the way
outlined in Section 1 above. He considered one solution with coefficients
E, F, and G in his original coordinate system (u, v) and the other with
coefficients £*, F*, and G* in the second coordinate system (u*, v*) so
that the E,'F, and G are the same functions of the variables u and v as
the functions E*, F*, and G* are of the variables u* and v*.!® Moreover,
Hertz ensured that the coordinate system (u, v) is Hertz-adapted to the
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geometry represented by £, F, and G, which entails that the coordinate
system (u*, v*) is also Hertz-adapted to the geometry represented by E*,
F*,and G*.

He then asked after the nature of the underdetermination of the ge-
ometry revealed by the admissibility under general covariance of the two
solutions constructed in the hole. To do so, he asked after the geometry
within the hole according to the two solutions at two points that correspond
in the sense that the coordinates of the first point in the first coordinate sys-
tem (¢, v) are numerically equal to the coordinates of the second point in
the second coordinate system (¢#*, v*). To find the points, one must follow
the two coordinate curves corresponding to the coordinate values selected
and pursue them until they meet in the hole. Since the two coordinate
systems are Hertz-adapted to superficially different geometries, the coordi-
nate curves must diverge upon entering the hole, according to whether the
system was adapted to the first or second solution of the field equations.
For the coordinate system adapted to the first solution, the curves would
meet at the point P (u, v). For the coordinate system adapted to the second
solution, the curves would meet at the point P*(u*, v*). See Figure 4,
which is our rendering of the diagram Einstein gives in his letter (which is
reproduced as Figure 5).

But what are the differences between the two solutions revealed by the
construction? Hertz could point to no geometrically significant differences.
Spelling out the argument in a way that employs the equations Einstein
writes in his letter EA 12-201, the points selected by the construction would
have the same coordinate values in each of the geometrically significant
Hertz-adapted coordinate systems so that

w* =u and v*=w.

Moreover, the geometries at each point in the corresponding solutions are
the same. For if E, F, and G are the coefficients assigned by the first
solution to P, and if E*, F*, and G* are the coefficients assigned by the
second solution to P*, then the geometries at the two points are the same
insofaras E* = E, F* = F,and G* = G."°

Perhaps Hertz might now have said that the two solutions are geo-
mefrically the same in every respect, for these identities would hold for
corresponding points covering every point of both solutions. We can think
of each solution as representing a different geometric surface. The con-
struction shows how one of them can be mapped into the other by the map
that takes point P to point P* while preserving all geometric properties. In
modern language, the two are isomorphic.
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First coordinate
system (x,v) in
which first solution
has coefficients
E,F,and G

Curve of
constant u, u*

Second coordinate
system (1%, v*) in
which second solution
has coefficients

EX, F* and G*

Figure 4. Interpretation of figure in Einstein’s letter (cf. Figure 5).

We might rephrase this last point using the only direct quotation Fin-
stein gives of Hertz: Since the two solutions amount to the same surface
geometrically, we merely recall that, by the construction, this surface “is
developable [i.e., isomorphically mappable] into itself,” a clumsy but in-
telligible way of making the point. This usage of the term “developable”
as meaning isomorphically mappable was standard at the time and was
even applied to precisely the case Hertz treats using exactly the same set of
equations.

Consider, for example, the discussion of two two-dimensional Gauss-
ian surfaces embedded in a three-dimensional space that is found in Jo-
hannes Knoblauch’s Grundiagen der Differentialgeometrie (Knoblauch
1913, pp. 121-124), then regarded as a standard text in Gottingen.? If
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the two surfaces could be laid upon one another without deformation, they
are said to be “developable onto one another.” The two surfaces have this
property if they both admit two-dimensional coordinate systems (u, v) such
that at corresponding points on the two surfaces, where the coordinate val-
ues are the same, the coefficients E, F, and G of one surface have the same
values as the coefficients E, Fi, and G, of the second surface. Knoblauch
wrote this requirement in the now-familiar equations:

Eyz=E, FN=F G =¢G.

4. Einstein’s Immediate Response

The escape from the hole argument sketched above is obviously very close
in strategy to the escape Einstein himself would offer shortly as the point-
coincidence argument, but Einstein’s immediate response to Hertz’s pro-
posal was just a list of protests and complaints. Einstein took Hertz-adapted
coordinates to be the same as the adapted coordinates Einstein himself had
defined (see Section 1 above). The letter from Einstein began with the
protest that Hertz had misrepresented Einstein’s adapted coordinate sys-
tems, since he had failed to retain the crucial property stressed in Section 1
above, namely that two different (Einstein-)adapted coordinate systems
could not come smoothly to agree on the boundary of some region of space-
time. And in any case— whether or net the two coordinate systems were
adapted—they were supposed to have properties that, in general, could not
obtain. Einstein wrote:

Berlin, Saturday
Dear Herr Hertz,

If T have understood your letter correctly, then you make a completely
erroneous representation of that which I call “adapted coordinate sys-
tems.” How do you come to require that a pair of coordinate systems
[Figure 5 = figure from Einstein’s letter] should exist, such that for

ut=u
v =
one has also
E*=E
F*=F
(GF=G)¢* =¢
and over and above this they agree on the boundary of the region?
I am rather convinced that (excepting perh.[aps] quite special fields)
this is never allowed to be possible. 1 have never posited the existence
of systems equivalent in this sense.”!
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Figure 5. Diagram in Einstein to Hertz, “Berlin, Samstag” [1915] (EA 12-201).

We can only conjecture about how Einstein came to see the adapted
coordinates of Hertz’s proposal as being the same as the adapted coordi-
nates he himself had defined for his 1913 theory. Both would use the term
“adapted” naturally as an appropriate term for coordinate systems that they
define in a way that responds to the geometry of the metric field, but it
is hard to see that the use of the term alone would be sufficient to lead
to this misunderstanding. Recall that in EA 12-203 Einstein had encour-
aged Hertz in his attempts to find a “surface-theoretic interpretation” of
the preferred systems of coordinates of Einstein’s theory. If EA 12-203
was written before EA 12-201, we could well imagine Einstein anticipat-
ing such a proposal from Hertz when he received EA 12-201. Or, even if
EA 12-201 did predate EA 12-203, Hertz himself might have thought his
adapted coordinates would serve as the surface-theoretic interpretation of
Einstein’s adapted coordinates and offered them as such. Finally, 2 minor
factor that might well be crucial in such circumstances: Einstein complains
later in the letter that he cannot read Hertz’s handwriting on page five of
his letter. We might well wonder, then, how clearly written the other pages
were.

Einstein’s more general complaint about the inadmissibility of the two
coordinate systems (u*, v*) and (u, v) is readily explicable. All he need
assume is that both coordinate systems with their components (E*, F*, G*)
and (E, F, G) are coordinate systems and components of the same field,
not of two different fields as is crucial to both the hole argument and the
proposal of Section 3 above. (Perhaps this is already assumed in Einstein’s
objection that the two systems cannot both be adapted coordinate systems.)
As Einstein points out, only quite special fields can be transformed in
the way indicated. A coordinate transformation in general produces a
quite different set of components for the field that will fail to match in the
indicated way.
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Einstein continued in what seems to be an attempt further to worry
Hertz’s proposal. He pointed out that the defined special coordinate system
would become degenerate in the case of a space of constant curvatare and
then mentioned the problem of extending the definition of these coordinate
systems to the four-dimensional case in a way that suggested some doubt
about its feasibility. If Einstein did intend doubt here, he was shortly proven
wrong about the general program of finding four-dimensional coordinate
systems that fit the natural structure of a region of space-time, for less than
two years later Kretschmann showed how a four-dimensional coordinate
system could be constructed in general relativity from curvature invariants
(Kretschmann 1917, pp. 592-599).22 The search for coordinates somehow
“adapted” to the intrinsic geometry of the space was, in any case, char-
acteristic of the G&ttingen approach to general relativity, as reflected in
Hilbert’s employment of what he termed “Gaussian coordinates” (Hilbert
1916, pp. 58-59), which are now commonly designated geodesic normal
coordinates.?> The passage quoted above continues thus:

Independently of this, I understand how you establish a special coor-
dinate system on a two-dimensional manifold by curves of constant
curvature and those of maximal curvature gradient. What is problematic
[verddchtig] about this, however, is that, in regions of constant curva-
ture, the (surfaces) curves (or surfaces) of constant curvature are shifted
infinitely far away from one another. The difference, in principle, of
the two coordinates that have been introduced is also problematic. You
could, nevertheless, attempt to see whether such a thing can be done in
a four-dimensional manifold.

Hertz had apparently also coupled his analysis with a proposal for a
generally covariant field equation. Einstein replied sharply, asking whether
or not Hertz agreed with the need to restrict the covariance of his theory,
which again suggests that Hertz had been less than clear in explaining that
the proposal, as outlined in Section 3, was intended as an escape from the
hole argument. Einstein wrote:

I have not understood the proposal for the setting-up of a gravitation
law, because I cannot read your writing on page 5. After all, [ have said
in my work that a usable gravitation law is not allowed to be generally
covariant. Are you not in agreement with this consideration?

Einstein then returned to his earlier objection about the two coordinate
systems that Hertz had introduced and closed with these words:

So once again: I would not think of requiring that the world should be
“developable onto itself,” and I do not understand how you require such
a dreadful thing of me. In my sense, there is certainly a huge manifold
of adapted systems that do not, however, agree on the boundary.
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With best regards to you, your wife, and your gentleman son, who is
already surprisingly affable and fond of writing, I remain, riveted upon
your further communications, yours

A. Einstein

Einstein had understood, in effect, that Hertz required the transforma-
tion relating the two coordinate systems to be an isometry of the surface,
so that he could say that the surface could be developed onto itself by
the transformation. As Einstein had pointed out, surfaces admitting such
isometries are exceptional and, in any case, the transformation could not be
between Einstein’s adapted coordinate systems, since such systems would
never agree on the boundary of the region in the way Hertz required.

5. Einstein’s Eventual Assimilation of
the Lessons Hertz Tried to Teach Him

Even though Einstein’s immediate response to Hertz was so prickly and
defensive, he eventually came to appreciate and advocate Hertz’s central
point: If a system is developable onto another, the two represent the same
reality. This advocacy is nowhere more in evidence than in Einstein’s
correspondence with Ehrenfest in late December and early January 1916.
Ehrenfest was reluctant to accept the generally covariant form of the theory
of gravitation announced by Einstein in November 1915, and he pressed
his reservations by reminding Einstein, as had other correspondents, of the
earlier hole argument. More specifically, in a letter that no longer exists

%‘i&m

Figure 6. First diagram in Einstein to Ehrenfest, January 5, 1916 (EA 9-372).
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from late December 1915, Ehrenfest evidently asked Einstein to consider a
situation in which light from a distant star passes through one of Einstein’s
notorious holes and then strikes a screen with a pinhole in it that directs the
light onto a photographic plate.?* Given that generally covariant equations
allow for two different solutions, gﬁv and gllfv, inside the hole, Ehrenfest
asks how we can be sure that light from the distant star following different
paths through the hole determined by the two different solutions can be
guaranteed to strike the same place on the plate.?

We quote the relevant section of Einstein’s detailed answer in its en-
tirety:

In the following way you obtain all of the solutions that general co-
variance brings in its train in the above special case. Trace the little
figure above [see Figure 6] on completely deformable tracing paper.
Then deform the tracing paper arbitrarily in the paper-plane. Then again
make a copy on stationery. You obtain then, e.g., the figure [Figure 7].
If you now refer the figure again to orthogonal stationery-coordinates,
then the solution is mathematically a different one from before, naturally
also with respect to the g,,. But physically it is exactly the same, be-
cause even the stationery-coordinate system is only something imaginary
[eingebildet]. The same points of the plate always receive light. . ..
What is essential is this: As long as the drawing paper, i.e., “space,”
has no reality, the two figures do not differ at all. It is only a matter of
“coincidences,” e.g., whether or not the point on the plate is struck by
light. Thus, the difference between your solutions A and B becomes a
mere difference of representation, with physical agreement. (EA 9-372)
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Aside from the talk of “coincidences,” Einstein’s point here is exactly
Hertz’s, namely, that one can have two solutions that are mathematically
different, while being physically or geometrically (they come to same thing
in this context) indistinguishable,

6. Hilbert’s Escape from the Hole Argument

The reconstruction of what Hertz wrote to Einstein as conjectured in Sec-
tion 3 above was based on an analysis of Einstein’s letters. We then sought
some independent evidence for our conjecture, but the existing documenta-
tion provided none. There is additional correspondence between Einstein
and Hertz from early October 1915, concerning whether or not Hertz should
resign his membership in some society seemingly concerned with political
matters. And something that Einstein wrote in this connection so irritated
Hertz that he threatened to break off the correspondence, an eventuality that
Einstein earnestly sought to avoid.?6 Further communication was no doubt
made even more difficult by the fact that Hertz soon found himself in the
military, posted to a flight school in Posen.?’

If we could not confirm independently that Hertz suggested such an
escape from the hole argument, then, we asked ourselves, could we at
least determine whether or not such an escape was common knowledge
in Géttingen at the time so that Hertz was either initiating or reflecting a
standard response? To our surprise and pleasure we found—after we had
completed the construction of the conjecture of Section 3—that Hilbert
had offered almost exactly the escape in the second of his famous papers
on general relativity and the foundations of physics (Hilbert 1916).

The relevant remarks are found in Hilbert’s somewhat labored discus-
sion of the “causality problem” in general relativity, the designation Ein-
stein often used for the hole argument (Hilbert 1916, pp. 59-63).% Hilbert
points out that the Cauchy problem is not well posed for his own gen-
erally covariant version of general relativity (Hilbert 1915). That theory
has fourteen independent variables—the ten gravitational potentials, g,
and the four electromagnetic field potentials, g, —but the gravitational field
equations and Maxwell’s equations provide only ten independent field equa-
tions. Hilbert illustrates this underdetermination with a pair of solutions,
the first of which represents an electron at rest throughout all time, with
the gravitational and electromagnetic fields everywhere time-independent.
In a manipulation reminiscent of the hole argument, the second solution
is obtained by a coordinate transformation that is the identity for the time
coordinate x4 < 0, but comes to differ for x4 > 0. In the second solution,



50 Don Howard and John D. Norton

the electron adopts a nonvanishing velocity and the fields become time-
dependent after x; = 0. While the possibility of such different solutions at
first seems to threaten the principle of causality, however, Hilbert proposes
to rescue it by offering a definition of what it means for an object, a law, or
an expression to be “physically meaningful.” According to Hilbert, some-
thing should be regarded as physically meaningful only if it is invariant
with respect to arbitrary transformations of the coordinate system. And in
this sense, the causality principle is satisfied, since, he asserts, all physi-
cally meaningful expressions, which is to say, all invariant expressions, are
unambiguously determined by the generally covariant equations.?’

Itis at this point in Hilbert’s exposition that his argument converges upon
what we believe Hertz proposed to Einstein. Hertz, we believe, exploited a
geometrically adapted coordinate system to display the essential agreement
between the two solutions E, F, G and E*, F*, G*. Hilbert summarized
his basic claim and then promised to prove the claim by exploiting the
geometrically adapted Gaussian coordinate system:

The causality principle holds in this sense:

From a knowledge of the 14 physical potentials, g,,, g;, follow all
assertions about them for the future necessarily and uniquely, insofar as
they have physical significance.

In order to prove this claim, we employ the Gaussian space-time
coordinate system. (Hilbert 1916, p. 61; Hilbert’s emphasis)

Hilbert begins by noting that the selection of Gaussian coordinates provides
the four extra constraints needed to ensure that the fourteen potentials are
determined uniquely by fourteen equations. The Gaussian coordinate sys-
tem is uniquely defined, and, most importantly, the unique assertions then
made about the potentials in the Gaussian coordinate system are of invari-
ant character. Thus, the present can uniquely determine the invariant and
therefore physically meaningful content of the future and no contradiction
with the causality principle remains. '

Hilbert proceeded to indicate three ways in which invariant assertions
can be given mathematical expression. Reminiscent of our reconstruction
of Hertz’s proposal, the first two of Hilbert’s ways resorted to specially
adapted coordinate systems.>® The first recapitulated the use of invariant
coordinate systems, such as what he termed Gaussian (geodetic normal)
coordinates, and elaborated on its application to the example of the electron
at rest. The second allowed invariant character for an assertion that there
exists a coordinate system in which some nominated relation holds. As
an illustration, he resorted again to the case of the electron and claimed
invariant character for the assertion that there exists a coordinate system
according to whose x4 time coordinate the electron is at rest.
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That Hertz, as we reconstruct him, and Hilbert, both working in Géttin-
gen, should rely so heavily on specially adapted coordinate systems to reveal
the physically significant elements of a theory provides strong evidence for
our reconstruction. It also raises the further question of the origin of these
ideas. Were they Hertz’s own? Or was he acting, in effect, as a spokesperson
for Hilbert and the Gottingen group?

7. Other Influences on Einstein’s Resolution of
the Hole Argument

Hertz’s proposal to Einstein—as reconstructed by us—would have pro-
vided a serviceable escape from the hole argument. The escape route ac-
tually followed by Einstein, however, his point-coincidence argument, dif-
fered in crucial ways from that of Hertz and the Gottingen group. The latter
was the mathematician’s escape, relying principally on the mathematical
notion of invariance; the former was the physicist’s escape, relying prin-
cipally on general dicta about physical reality. Was the point-coincidence
argument another unprimed outpouring of Einstein’s genius? Or can we
identify who primed the pump? We believe that there are at least two
plausible candidates.

The first of these, chronologically, is Joseph Petzoldt, a Privatdozent
at the Technische Hochschule Berlin—Charlottenburg, founder in 1912 of
the Gesellschaft fiir positivistische Philosophie (of which Einstein was a
founding member), and author of numerous books and articles promoting
a point of view that Petzoldt labeled “relativistic positivism,” a mélange of
ideas from Mach and Einstein, the chief aim of which was a critique of the
traditional metaphysical notion of substance. Petzoldt’s most important
contribution for the purposes of our discussion was his introduction in
1895 of what he termed “Das Gesetz der Eindeutigkeit” (“The Law of
Uniqueness” or “Univocalness”) (Petzoldt 1895), according to which, in
one of its forms, a theory would be acceptable only if it determined a unigue
model of the reality it aimed to describe. Petzoldt’s “law of uniqueness”
and the major discussion stimulated by it form an essential part of the
background to Einstein’s hole and point-coincidence arguments, since it is
this very methodological principle that lies at the root of both.!

By 1915, Einstein and Petzoldt were in personal contact with one an-
other. There is evidence that Petzoldt was attending Einstein’s lectures
on relativity in Berlin in either the winter semester of 19141915 or the
summer semester of 1915, A postcard from Einstein to Petzoldt in late
1914 or early 1915 makes it clear that Einstein had been reading Petzold{’s
work and approved of its general tendency: ‘“Today I have read with great
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interest your book in its entirety, and I happily infer from it that I have for
a long time been your companion in your way of thinking” (EA 19-067);
the book was most likely Petzoldt’s Das Weltproblem vom Standpunkie des
relativistischen Positivismus aus, historisch-kritisch dargestellt (Petzoldt
1912b).3?

Against this background, one may wonder whether Einstein had ab-
sorbed the point of view exemplified by a remark in Petzoldt’s “Die Rela-
tivititstheorie im erkenntnistheoretischer Zusammenhang des relativistis-
chen Positivismus” (Petzoldt 1912a), which would have appeared early in
1913 in the proceedings of the Deutsche Physikalische Gesellschaft. The
relevant remark concerns the way Petzoldt’s epistemological perspectival-
ism is allegedly embodied in special relativity. Petzoldt writes,

The task of physics becomes, thereby, the unique [eindeurige] general
representation of events from different standpoints moving relative to one
another with constant velocities, and the unique setting-into-relationship
of these representations. Every such representation of whatever totality
of events must be uniquely mappable onto every other one of these rep-
resentations of the same? events. The theory of relativity is one such
mapping theory. What is essential is that unique connection. Physical
concepts must be bent to fit for its sake. We have theoretical and tech-
nical command only of that which is represented uniquely by means of
concepts. :

' Better: representations of events in arbitrarily many of those systems
of reference that are uniquely mappable onto one ancther are representa-
tions of “the same” event. Identity must be defined, since it is not given
from the outset. (Petzoldt 1912a, p. 1059)

Tt is the footnote that grabs one’s attention, for it expresses a fundamental
presupposition of Einstein’s point-coincidence argument. What is interest-
ing about Petzoldt’s remark is that this way of talking about identity under a
mapping, especially of what are clearly, from context, Minkowskian point-
events, was not commonplace in the pre-1915 literature on relativity.

To appreciate the role of the second figure possibly influencing Ein-
stein’s formulation of the point-coincidence argument, recall that Einstein’s
struggle to find generally covariant field equations came to a close with his
November 25, 1915 communication to the Prussian Academy (Einstein
1915b). Already in his immediately preceding communication of Novem-
ber 18, 1915, he remarked that through general covariance, “time and space
have been robbed of the last trace of objective reality” (Einstein 1915a,
p. 831), by which he meant that “the relativity postulate in its most general
formulation . . . turns the space-time coordinates into physically meaning-
less parameters” (Einstein 1915b, p. 847). This makes it clear that, at this
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time, in Iate November, Einstein was in possession of an answer to the
hole argument involving essentially the idea that coordinatizations are not
sufficient for the individuation of points in the physical space-time. Curi-
ously, however, when he begins informing his correspondents about these
developments in late December, he adds, for the first time, the talk of co-
incidences so characteristic of the familiar form of the point-coincidence
argument.

It seems likely to us that Einstein’s immediate inspiration for the point-
coincidence talk came from the work of Erich Kretschmann. His 1915 es-
say, “Ober die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme
beliebiger Relativititstheorien,” is a lengthy and labored discussion of the
determination of coordinate systems in which the notion of spatiotemporal
coincidence plays a prominent role. The paper clearly anticipates essen-
tial elements of the point-coincidence argument, as Kretschmann himself
seemed to think when, in a later publication, he cited his own 1915 paper
“for further details” (Kretschmann 1917, p. 576) on the point-coincidence
argument, citing Einstein’s version of the argument solely for the introduc-
tion of the German term “Koinzidenzen,” replacing Kretschmann’s 1915
“Zusammenfallen” (see below).3?

In his 1915 paper, Kretschmann argues that only what he calls “topolog-
ical” relations in the form of coincidences have empirical significance, since
all observation requires that we bring a part of the measuring instrument
into contact with the measured object:

What is observed here—if we neglect, at first, all direct metrical determi-
nations—is only the completely or partially achieved spatiotemporal co-
incidence [ Zusammenfallen] or non-coincidence [ Nichtzusammenfallen}
of parts of the measuring instrument with parts of the measured object.
Or more generally: topological relations between spatiotemporally ex-
tended objects. (Kretschmann 1915, p. 914)

A similar insistence on the observability of coincidences figures promi-.
nently in the best-known of Einstein’s statements of the point-coincidence
argument, where Einstein writes:

All our space-time verifications invariably amount to a determination
of space-time coincidences [Koinzidenzen].... Moreover, the results
of our measurings are nothing but verifications of such meetings of the
material points of our measuring instruments with other material points,
coincidences [Koinzidenzen] between the hands of a clock and points on
the clock dial, and observed point-events happening at the same place at
the same time. (Einstein 1916, p. 117)*

There is, to be sure, the one difference noted later by Kretschmann, which
is that Einstein uses the term “Koinzidenzen,” not Kretschmann's “Zusam-
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menfallen.” The former term is more suggestive of the topologist’s notion. -
of the intersections of lines at extensionless points, whereas the latter is
more suggestive of macroscopic congruences of bodies at the level of ob-
servational practice. Thus, Kretschmann can talk more comfortably of
“completely or partially achieved coincidences [Zusammenfallen].” The
similarity is nonetheless striking.

Kretschmann proceeds in the 1915 paper to develop now-familiar ideas
concerning coordinate systems. In particular, he urges on the basis of his
earlier assertions on coincidences that, “in no case can a soundly based
decision be made, through mere observations, between two quantitatively
different but topologically equivalent mappings of the world of appear-
ance onto a space-time reference system” (Kretschmann 1915, p. 916).
An immediate application of Kretschmann’s remark (but not offered by
Kretschmann) is the case of the two solutions, g and g;, (in the same
coordinate system x™) of the hole argument. They are “two quantitatively
different. .. mappings of the world of appearance onto a [single] space-
time coordinate system.” Nonetheless, they are “topologically equivalent,”
since they agree on all point-coincidences, and hence observation allows
no soundly based decision between them. But if observation reveals no
difference, does there remain any factual difference between them? If
we pursue the development of Kretschmann’s ideas, we find that what-
ever differences obtain between the two solutions, gix and g/, must be
merely matters of convention: “Insofar as the kinematical assertions of a
system of physical laws cannot be reduced to purely topological relations,
they are henceforth to be considered as mere—at most methodologically
grounded-—conventions” (Kretschmann 1915, p. 924).%

Of course, there is no reason to think that Kretschmann intended his
discussion to be applied to Einstein’s hole argument. However, the similar-
ity between Einstein’s expositions of the point-coincidence argument and
Kretschmann’s discussion is so striking that it cannot be (dare we say!) a
mere coincidence and must have resulted from some sort of connection be-
tween Einstein and Kretschmann. The only question to be resolved is the na-
ture of that connection. What is extremely suggestive is that Kretschmann’s
paper appeared in an issue of the Annalen der Physik that was distributed
on December 21, 1915, five days before the earliest of the surviving let-
ters in which Einstein articulates the point-coincidence argument, his letter
to Ehrenfest of December 26 (EA 9-363). We are unaware of any similar
invocation of point-coincidences in the corpus of Einstein’s writings—
both published and unpublished—prior to this letter. What is more, when,
in a letter of December 14, 1915 (EA 21-610), Einstein informed Moritz
Schlick about the exciting developments of November 1915, he remarked
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only on space and time having lost the last vestige of physical reality, with
no mention of point-coincidences. These facts make almost irresistible the
conclusion that Einstein read Kretschmann’s paper or learned of its content

“when it appeared, found the ideas on coincidences extremely congenial, and
turned to refine and exploit them to explain to his correspondent Ehrenfest
where his hole argument had failed.

Other paths of transmission of these ideas between Einstein and Kretsch-
mann are possible, but seem less likely. Kretschmann completed his Ph.D.
in 1914 under Max Planck and Heinrich Rubens in Berlin, standing for the
Promotionspriifung on February 5 of that year. But Kretschmann reports
that he finished his studies in Berlin in 1912 (see the Lebenslauf at the end
of Kretschmann 1914), and the manuscript of his 1915 paper was submitted
from K&nigsberg, where he had finished Gymnasium in 1906 and where he
became a Privatdozent in 1920. Were he present in Berlin after Einstein’s
arrival in April 1914, it is plausible that he might have had some contact
with Einstein, through which contact Einstein may have supplied the ideas
about coincidences to or learned them from Kretschmann. Whatever con-
tact they may have had in Berlin, however, cannot have been extensive or
engaging to Kretschmann as far as Einstein’s still incomplete general theory
of relativity was concerned. While he was elsewhere rather long-winded,
Kretschmann’s 1915 paper contains only a brief discussion of Einstein’s
theory (pp. 977-978), citing just two of the earlier joint publications by Ein-
stein and Grossmann (Einstein and Grossmann 1913, 1914), and omitting
the major review article of November 1914 (Einstein 1914b). The discus-
sion is sketchy and fails to make any serious contact with the idea of adapted
coordinates, an idea that was a major focus of Einstein’s Berlin work on the
theory at that time and very relevant to the subject of Kretschmann’s paper.
Finally, of course, the possibility of such earlier transmission completely
fails to explain the extraordinary fact that the point-coincidence argument
and mention of space-time coincidences in this general context appear for
the first time in a letter of Einstein’s of December 26, 1915, only days after
the issue of the Annalen containing Kretschmann’s paper was distributed.3®
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NoOTES

I To see this, note that the first solution transformed from x™ to x™' has the
functional form g], of the coordinates x™’, which is the same functional form as the
components of the second solution in the coordinate system x™.

2 For a summary of the mathematical machinery Einstein used to analyze his
adapted coordinates, see Norton (1984, section 6).

3 This letter is dated on the basis of its place in a sequence of letters discussing
the shipment of the de Haas’s furniture from Berlin to the Netherlands, the shipment
being overseen by Einstein.

4 For more on this visit, see the discussion in Pais 1982, pp. 250 and 259.

3 Cod. Ms. Klein 21L, p. 63, Niedersichsische Staats- und Landesbibliothek
Gottingen.

6 Cod. Ms. Klein 21L, p. 69, Nledersachmsche Staats- und Landesbibliothek
Géttingen.

7 This timing, the fact that Einstein and Hilbert engaged in an intense corre-
spondence through November 1915 and then had a brief falling out after that cor-
respondence, has raised the possibility that Einstein stole the field equations from
Hilbert. We do not take this possibility senously for the reasons given in Norton
(1984, pp. 314-315).

8 See, for example, Einstein to Paul Ehrenfest, December 26, 1915 (EA 9-363),
December 29, 1915 (EA 9-365), and January 5, 1916 (EA 9-372), as well as Einstein
to Michele Besso, January 3, 1916 (EA 7-272; reprinted in Speziali 1972, pp. 63—
64).

? Notice that such magnitudes as “time elapsed” are in turn reducible to space-
time coincidences. A crude physical time could be measured by an idealized light
clock, which is a small rigidly co-moving rod along whose length a light pulse is
repeatedly reflected. The time elapsed is measured by the number of collisions of
the light pulse with the mirrored ends of the rod.

19 Hilbert was the titular director of Hertz’s dissertation, but Hertz actually did
the work under Abraham, who was then Privatdozent; see Pyenson 1979b, p. 76.

11 See Einstein to Hertz, August 14, 1910 (EA 12-195) and August 26, 1910
(EA 12-198). For more on the beginning of their acquaintance, see Stachel et al.
1989, p. 44, and Klein et al. 1993, p. 315.

- 12 See the Hertz-Ehrenfest correspondence in the Ehrenfest scientific correspon-
dence in the Archive for the History of Quantum Physics.

13 See Pyenson 1990, as well as Laub to Einstein, May 16, 1909 (EA 15-465),
Einstein to Laub, May 19, 1909 (EA 15-480), and Einstein to Laub, October 11,
1910 (EA 15-489), November 4, 1910 (EA 15-491).

14 See, for example, Hertz 1923, 1929a, 1929b, 1930, 1936a, 1936b.
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15 See Clark 1971, p. 184. The chief purpose of Einstein’s trip was to meet
the novelist Romain Rolland at Vevey, this as part of Einstein’s efforts to promote
international intellectual cooperation in spite of the barriers raise by World War L
For more on the meeting with Rolland and Einstein’s related activities, see Nathan
and Norden 1968, pp. 12-18. The year could not be 1913, because Einstein was
then still in Zurich, and such a trip would not likely have been undertaken in late
August 1914, immediately after the outbreak of the war.

16 See below. In particular, Hertz uses the older “E, F, and G” notation for what
we would now call the components of the metric tensor.

17 Rudolf Hertz (Paul’s son), private communication,

18 Tg see the correspondence between our account of the hole argument in Sec-
tion 1 and Hertz’s construction, notice that our second solution, g/,, in the first
coordinate system, x™, corresponds to Hertz’s E, F, G in (i, v), while our first
solution, g;;, in the second coordinate system, x™’, corresponds to Hertz’s E*, F*,
G* in (u*, v*). Of course, there is the inconsequential change of context. Einstein’s
argument is formulated in a space-time with an indefinite metric, whereas Hertz’s
argument is formulated for the space of a two-dimensional Gaussian surface.

19 Obviously, this construction and the point-coincidence argument have the
following in common: They pick out a point in the physical space by the intersection
of curves with invariant geometrical properties. In Hertz’s case, the curves are
curves of constant curvature and maximal curvature gradient; in the case of the
poing-coincidence argument, they are geodesics.

2 In his Vorlesungen iiber die Entwicklung der Mathematik im 19. Jarhundert
(Klein 1927, pp. 147-148), Felix Klein lists Knoblauch 1913 as one of the “great
textbooks” appearing around the turn of the century, along with Darboux’s Lecons
sur la théorie générale des surfaces (Darboux 1914-1915) and Bianchi’s Vorlesun-
gen tiber Differentialgeometrie (Bianchi 1910). Although first published in 1927,
Klein’s lectures were delivered in the years 1915 through 1917.

2! Einstein’s replacing of G, the g, component of the metric, by ¢ is explicable
in terms of his 1913 theory. In Einstein’s 1913 theory, the gw«ime «imer COMponent
of the metric in a static field in a suitably adapted coordinate system represents the
single gravitational potential of the field, commonly represented by ¢. Note that
the angle brackets indicate a strikeout in Einstein’s original.

22 In a footnote, Kretschmann comments that the possibility of finding “absolute”
coordinates, meaning coordinates picked out uniquely by the geometry of the space
being thus coordinatized, had been pointed out to him already in a letter from Gustav
Mie in February 1916; see Kretschmann 1917, p. 592, n. 1.

23 For more on Hilbert’s introduction of “Gaussian coordinates,” see Stachel
1992, pp. 410-412. :

24 The approximate date of Ehrenfest’s letter to Einstein can be determined from
his remark, in a letter to Lorentz of December 23, 1915, that he had invited Einstein
to spend the holidays in Leiden. Einstein’s reply to Ehrenfest’s thought experiment
is contained in the same letter of January 5, 1916 (EA 9-372), in which he explains
that the border’s being blocked was the reason why he could not have come to
Holland at that time. We thank A.J. Kox for making available transcriptions of
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the Ehrenfest-Lorentz correspondence, these from his forthcoming edition of the
scientific correspondence of Lorentz.

25 The reconstruction of Ehrenfest’s thought experiment is based upon Einstein’s
reply of January 5 (EA 9-372) and on the description found in Ehrenfest’s letter to
Loreniz of January 9, in which he enclosed Einstein’s letter, asking for Lorentz’s
opinion.

26 See Einstein to Hertz, undated 1915 (EA 12-205), October 1915 (EA 12-206),
Hertz to Einstein, October 8, 1915 (EA 12-207), and Einstein to Hertz, October 9,
1915 (EA 12-208). Though the dating of some of these letters is problematic, they
seem clearly to form a sequence written over a short period. It should be noted that
most of Hertz’s are missing, the letter of October 8 having survived because Hertz
retained a copy in his files.

27 See Hertz to Hilbert, February 17, 1916 (Cod. Ms. Hilbert 150, Handschriften-
abteilung, Niederséchsische Staats- und Universitétsbibliothek Gottingen).

28 Hilbert’s only footnote in.this section of the paper (Hilbert 1916, p. 61) cites
Einstein’s most complete version (1914b, p. 1067) of the hole argument.

» For more on Hilbert and the causality principle in general relativity, see Stachel
1992, pp. 410-412. :

30 The third merely allowed invariant character to a fully covariant law, such as
the law of conservation of energy-momentum expressed as the vanishing covariant
divergence of the stress-energy tensor..

31 For more on Petzoldt and a more detailed bibliography of his writings, see
Howard 1992.

32 For the dating of Einstein’s postcard to Petzoldt and other details about their
relationship, see Howard 1992.

33 For more on Kretschmann’s papers, see Norton 1992, pp. 295-301.

34 See Howard 1992, n. 25, for a critical discussion of Friedman’s (1983, pp. 22—
25) interpretation of this passage as anticipating the verificationist theory of meaning
that later became popular among the logical positivists.

35 In a footnote to the word “convention,” Kretschmann carefully indicates the
precise sense of the word intended. It is to mean that which is not demonstrable
through observation, rather than something arrived at by some kind of free agree-
ment.

36 We might also conjecture that Einstein was asked to review the paper by
Planck, the editor of Annalen. Kretschmann’s paper is dated October 15 and was
received on October 21. If it was sent out for review, Einstein would have been the
obvious reviewer. The short time between submission and publication, October 21
to December 21, suggests that, even though Kretschmann was a first-time author in
the Annalen, the manuscript was not sent out for review, since a two-month period
between submission and publication was more or less normal for established authors
(see Pyenson 1983). This would not be surprising, since Planck had supervised
Kretschmann’s Ph.D., was presumably confident of Kretschmann’s scholarship,
and possibly already familiar with the work submitted.
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Conservation Laws and Gravitational
Waves in General Relativity
(1915-1918)

Carlo Cattani and Michelangelo De Maria

1. Introduction

This chapter deals with two closely related debates in general relativity in
1916-1918, one on gravitational waves, the other on the correct formulation
of conservation laws. Both issues involve the definition of a quantity rep-
resenting the stress-energy of the gravitational field. Such definitions were
typically proposed in the context of deriving the gravitational field equa-
tions from a variational principle. A proper understanding of the debates
on gravitational waves and conservation laws therefore requires some dis-
cussion of the rather complicated history of attempts to derive gravitational
field equations from a variational principle.!

We will trace Einstein’s work on gravitational waves and his work
on conservation laws during the years 1916-1918 in this more complex
network, We will look at objections to Einstein’s approach from Levi-
Civita, Schrédinger, and Bauer; at alternative approaches suggested by
Lorentz and Levi-Civita;, and at Einstein’s response to all of them. In
particular, we will examine the 1917 correspondence between Einstein
and Levi-Civita. We will see how Levi-Civita’s criticism of Einstein’s
formulation of conservation laws strengthened Einstein in his conviction
that physical considerations force one to adopt a noncovariant formulation
of conservation laws for matter plus gravitational field.

2. The Importance of the Conservation Laws in
Einstein’s 1914 Gravitational Theory

In Einstein and Grossmann 1914 and Einstein 1914, Einstein used a vari-
ational method to derive the field equations of limited covariance of his
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so-called Entwurf theory (Einstein and Grossmann 1913). He used conser-
vation of energy-momentum of matter plus gravitational field—the stress-
energy of the latter being represented by a pseudotensor rather than a ten-
sor—to define the Lagrangian H for the gravitational field and to restrict
the covariance of his theory. Einstein believed he had found a very general
argument to fix the Lagrangian for the gravitational field. This Lagrangian
leads to the field equations of the Entwurf theory.

By substituting the gravitational tensor into the law of conservation of
energy-momentum of matter (with stress-energy tensor 7,,"), Einstein was
able to derive certain constraints on H that he thought uniquely fixed its
form. Imposing conservation of energy-momentum of matter and unaware
of the contracted Bianchi identities, he obtained a set of equations to be
satisfied by the gravitational field:

.
=S =B, =0, (@v,...=0,1,23)
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Then Einstein showed that both B, and Ss" must vanish:
BN = 07 Sa’v = 07 (3)

and used these conditions to define the form of H. He finally obtained the
Entwurf field equations in the form®

gy = —x(T" + 1), @)
where the stress-energy tensor” ¢,” for the gravitational field is defined as

- “/_( “Tf, Tl — $ 82 g™ T4, Tl ), ®
I/ being the Christoffel symbols. Differentiating equation (4) with respect

to x" Einstein obtained the conservation law for matter plus gravitational
field in the form

2V 1,") = 0. ©)

It must be stressed, however, that, already in 1914, Einstein noticed that
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t,¥ does not transform as a tensor under arbitrary justified transforma-
tions, but only under linear transformations; nevertheless, we will call
t,” the [stress-]energy tensor’ of the gravitational field. Something anal-
ogous holds for the components I'}, of the gravitational field strength.
(Einstein 1914, p. 1077) ‘

In the spring of 1915, in private correspondence with Einstein, Levi-Civita
sharply attacked Einstein’s proofs of the covariance of certain fundamental
quantities of his Entwurf theory (Cattani and De Maria 1989b); however,
he did not explicitly criticize the pseudotensor character of 7,”.

3. Lorentz’s Variational Approach (1915)

In 1915, Lorentz published a paper (Lorentz 1915) in which he criticized
both the Entwurf theory and the variational formulation Einstein had given
to it in 1914. In the second part of his paper, Lorentz proposed a more
general variational derivation of gravitational field equations. Lorentz did
not specify the form of the Lagrangian; he just assumed it to be a function
of the metric tensor and its first-order derivatives. Requiring that the action
integral be stationary not only for arbitrary infinitesimal variations of the
coordinates, as Einstein had required, but also for arbitrary infinitesimal
variations of the components of the metric tensor, Lorentz obtained the
gravitational field equations in the form

aR* ] <8R*>=_X oM

e | —— , ’7
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where R* and M are the Lagrangians for the gravitational field and mat-
ter, respectively. Furthermore, Lorentz showed that equations (7) turn
into the Entwurf field equations when the function H chosen by Einstein
is substituted for R*. As is well known, Einstein himself later realized
that his choice of a Lagrangian was, in fact, quite arbitrary (Cattani and
De Maria 1989b). Unlike Levi-Civita, Lorentz at this point was unaware of
the mathematical mistakes Einstein made in his early variational approach,
and praised him for “his ingenious mode of reasoning” (Lorentz 1915, p.
1089).

4. Hilbert’s Variational Approach (1915)

On November 20, 1915, Hilbert presented a paper, entitled “The Founda-
tions of Physics” (Hilbert 1915), in which he discussed a variational princi-
ple for general relativity. Hilbert cited both Einstein (1914, 1915a, 1915b,
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1915¢) and Mie (1912), the former for his gravitational field equations,
the latter for his work on nonlinear electrodynamics and his electromag-
netic theory of matter. Like Mie, Hilbert restricted his investigation to the
sitnation of an electromagnetic field in the presence of a gravitational field.

Hilbert was critical of Einstein’s 1914 variational approach as the fol-
lowing quotation from his paper illustrates:

Einstein gave the fundamental original idea of general invariance a sim-
ple expression; however, for Einstein the Hamilton principle only plays
a subordinate role and his function H is not at all generally invari-
ant. Moreover, the electrical poteniials are not included [in his theory].
(Hilbert 1915, 1, p. 396, footnote)

Hilbert proceeded as follows. He assumed that the quantities char-
acterizing the fields are the ten gravitational potentials g, and the four
electromagnetic potentials g,,. He defined a unique invariant world func-
tion according to the following axioms:

Axiom 1 (of Mie about the world function). The law of physical events
is determined through a world function [Lagrangian] H = ./—gH that
contains the following arguments:

aguv azguu . aﬁ
9x*’ Dx*dxP’ o> Gxa
and specifically the variation of the action integral must vanish for
[changes in] every one of the 14 potentials g,., 4.
Axiom 2 (of general invariance). The world function H is invari-

ant with respect to arbitrary transformations of the world parameters
[coordinates] x”. (Hilbert 1915, I, p. 396)

gulh

He then defined two Lagrangian functions, one for the gravitational field
and one for matter. For the gravitational field he used the Riemann curvatare
scalar R. For the matter part he introduced a function M. As long as the
gravitational field equations contain no derivatives of g,, higher than of
second order, the total Lagrangian H must be the direct sum of these two
functions:

H=R+ M. 8)

By evaluating the “Lagrangian derivatives” (Hilbert 1915, I, p. 397) of H
with respect to the various variables, Hilbert obtained the evolution equa-
tions for both gravitational and electromagnetic potentials. His next step
was to show that Axiom 2 allows one to give an explicit proof of the covari-
ance of these evolution equations. Splitting the Lagrangian into two parts,
the scalar curvature invariant for the gravitational field and a Lagrangian for
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the electromagnetic field, Hilbert arrived at the correct gravitational field
equations:

Tuvs ®

where
def

Gu = Ruy — 2 Rgu0. (10)
Finally, Hilbert obtained the evolution equations for electrodynamics in
a curved space-time by generalizing Mie’s derivation for flat Minkowski
space-time.
In conclusion, we want to stress the limits of Hilbert’s method:

(1) Hilbert derived the field equations in the context of Mie’s electro-
magnetic theory of matter. As a consequence, his variational method
could not readily be generalized to other matter. To accomplish that,
one would have to specify how the matter Lagrangian depends on the
gravitational potentials g, .

(2) Although Hilbert obtained generally covariant field equations, he made
use of Lagrangian derivatives that were not generally covariant.

(3) Hilbert was unaware of the contracted Bianchi identities, so that he
arrived at the explicit form of the gravitational tensor in a rather clumsy
way.

5. Lorentz’s Variational Approach (1916)

In 1916, Lorentz published a Iong paper in four parts on general relativ-
ity (Lorentz 1916, I-IV). In part III, he derived the correct gravitational
field equations and an expression for the “stress energy complex” for the
gravitational field. In part IV, he discussed the conservation law for the
gravitational field.

As opposed to the unspecified Lagrangian of his 1915 article, Lorentz
now chose the Riemann curvature scalar R as the Lagrangian for the grav-
itational field. He had come to realize that the Lagrangian has to be a
generally covariant scalar (Lorentz 1916, I, p. 248, p. 251; see also Janssen
1992). ‘ '

Lorentz split the variation of the action R into two parts. The first part,
which is no longer a scalar quantity, leads to gravitational field equations;
the second part vanishes identically on account of the boundary conditions.
Moreover, he showed that the form of his gravitational tensor coincided
with Einstein’s “only for one special choice of coordinates” (Lorentz 1916,
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p. 281, italics in the original). Lorentz obtained the correct gravitational
field equations (Lorentz 1916, II, p. 285). We want to stress, however, that
Lorentz made some mathematically unwarranted assumptions in deriving
his results. He assumed that the infinitesimal variations of the components
of the metric tensor have tensor character. Moreover, he had to make a
special choice of coordinates.

Lorentz also discussed the conservation of energy-momentum of matter
plus gravitational field, and arrived at the equations (6) obtained by Einstein
in 1914 (Lorentz 1916, 111, p. 292). Lorentz too was aware of the fact that
the complex t," is not a tensor (Lorentz 1916, III, p. 294). Whereas this
was perfectly acceptable to Einstein, Lorentz wrote that

[elvidently it would be more satisfactory if we could ascribe a stress-:
energy-tensor to the gravitation field. Now this can really be done.
(Lorentz 1916, I11, p. 295, italics in the original)

A “natural” candidate for this tensor, according to Lorentz, was the gravita-
tional tensor G, of Einstein’s generally covariant field equations. There-
fore he suggested one interpret these equations as conservation laws. In
Lorentz’s opinion this interpretation of the field equations

and the conception to which they have led, may look somewhat star-
tling. According to it we should have to imagine that behind the directly
observable world with its siresses, energy etc. the gravitation field is
hidden with stresses, energy etc. that are everywhere equal and opposite
to the former; evidently this is in agreement with the interchange of mo-
mentum and energy which accompanies the action of gravitation. On the
way of a lightbeam, e.g., there would be everywhere in the gravitation
field an energy current equal and opposite to the one existing in the beam.
If we remember that this hidden energy-current can be fully described
mathematically by the quantities g,, and that only the interchange just
mentioned makes it perceptible to us, this mode of viewing the phenom-
ena does not seem unacceptable. At all events we are forcibly led to it
if we want to preserve the advantage of a stress-energy-tensor also for
the gravitation field. (Lorentz 1916, III, p. 296, italics in the original)

In part IV of his paper, Lorentz compared his definition of the stress-
energy components of the gravitational field with the definition given by
Einstein. While his expression contained first and second order derivatives
of the metric, “Einstein on the contrary has given values for the stress-energy
components which contain the first derivatives only and which therefore are
in many respects much more fit for application” (Lorentz 1916, IV, p. 297).
Thus Lorentz defined a stress-energy complex with components 1, ¥ that are
homogeneous and quadratic functions of the first-order derivatives of the
metric and do not contain any higher-order derivatives. The divergence of
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Lorentz’s complex coincides with the divergence of Einstein’s #,¥. Lorentz
showed that when ./—g = 1 and g,s = 8,p his complex is the same as
Einstein’s. He added that “it seems very probable that the agreement will
exist in general” (Lorentz 1916, IV, p. 299).

In conclusion, we want to stress that Lorentz showed, for the first time,
that the quantity representing gravitational stress-energy was not uniquely
defined.

6. Einstein’s Variational Approach (1916)

In 1916, Einstein returned to a variational approach to derive his gravi-
tational field equations. He remarked that both Lorentz and Hilbert had
succeeded in giving general relativity a clear form by deriving the field
equations from a single variational principle. His aim now was to present
the basic relations of the theory as clearly as possible and in a more general
way. In fact, he considered his new approach more general and “in contrast
especially with Hilbert’s treatment” (Einstein 1916b, p. 1111), since he
rejected some of Hilbert’s restrictive hypotheses on the nature of matter.

His starting point was the universal function H EH +/—g&, assumed
to be a function of the metric tensor and its first-order derivatives and a
linear function of its second-order derivatives. Furthermore, he generalized
the variational principle to any physical phenomenon by assuming H to be
dependent on matter variables g, (not necessarily of electromagnetic origin)
and their first-order derivatives. Thus, he replaced his 1914 Lagrangian by

g gt Bgp )
3x7  dxPoxc’ 17 xa )’

H="H(g", (1)
Integrating a Lagrangian of this form with the usual boundary conditions,
one arrives at the variational principle

ajfﬁ* dr =0, (12)

where H* no longer depends on the second-order derivatives of the metric.
Einstein had to start from a function of the form of (11) because, according
to his principle of general relativity, the Lagrangian H must be invariant
under arbitrary coordinate transformations. However, the reduction of H
to H* (i.e., the reduction to a quadratic function of the metric’s first-order
derivatives) enabled Einstein to make use of the mathematical machinery
developed in his 1914 paper. Meanwhile, the problems he had struggled
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with in 1914 had been overcome: the theory was now generally covariant
and his choice of a Lagrangian was no longer arbitrary (Norton 1984;
Cattani and De Maria 1989b).

Einstein’s next step was to split, like Hilbert, the Lagrangian into a
gravitational and a matter part (see equation (8) above). Einstein concluded
that in order to satisfy his principle of general relativity, the gravitational
part of the Lagrangian “(up to a constant factor) must be the scalar of
the Riemann curvature tensor; since there is no other invariant with the
required properties” (Einstein 1916b, p. 1113). Closely following his 1914
variational approach, Einstein showed, using an infinitesimal coordinate
transformation x#’ = x* -+ Ax*, that the condition B8, = 0 (see equation (3)
above) still holds. In fact, Einstein proved that this condition could be
obtained by showing that A [ Rdt = A [ R*dr where

= V=gg" (T8, o + T2, Thy ).

Therefore, the relation 5, = 0 now holds in every coordinate system, due
to the invariance of R and to the principle of general relativity. B, played a
fundamental role in Einstein’s new derivation of the conservation laws. In
fact, according to Einstein, the gravitational equations could be explicitly
written as equations (7). These equations allowed him to obtain, in a very
straightforward way, the conservation laws. By multiplying equations (7)
by g** he obtained

a (OR*
— =g = (Y + 1), 13
w7 (5rr8") = 1 (" 1) (13
where M
V=gt 14
iy (14)
and 1 /9> oR*
y def uv IW)
o (aguo g(x + ag“” g °
When conditions (2)—(3) are imposed, it follows that
aR*
1 * QU o
= E(R 6(7 - éggvg”“>' (15)

When equation (13) is differentiated with respect to xV, the lefi-hand side
turns into B,. Since B, vanishes, the relation obtained in this way is just
equation (6), expressing conservation of total energy-momentum.
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As in his previous theory, Einstein identified 7, as representing the
stress-energy density for matter and ¢,” as representing the stress-energy
density of the gravitational field (Einstein 1916b, p. 1116). He concluded
that although #,” was not a tensor, the equations expressing the conserva-
tion of total energy-momentum are generally covariant, since they were
obtained directly from the principle of general relativity (Einstein 1916b,
p. 1116). As we shall see, this claim led Levi-Civita, in 1917, to dispute not
only the tensor character of #,” but also the equations Einstein used as his
conservation laws for matter plus gravitational field (Cattani and De Maria
1989a).

7. Einstein’s First Paper on Gravitational Waves (1916)

In another paper from 1916, Einstein tried to compute the components of
t,” for the special case of a weak field, and in doing so discovered the
existence of gravitational waves. The metric for the weak field is written,
as usual, in the form

v = Ny + V> (16)

where 7, is the Minkowski metric and y,,, (and its first-order derivatives)
are infinitesimal quantities. In the weak-field approximation the field equa-
tions reduce to

4 82 !
Y
2 ez = 20T, (17)
a=1 -
where st
! [
Vo = Vv — 5¥8, ¥ = VI (18)

The quantities V;,w are defined only up to a gauge transformation. Einstein
therefore imposed the gauge condition

In this way, he found solutions of the weak-field equations, vanishing at in-
finity, that are the analogs of retarded potentials in electrodynamics. There-
fore, according to Einstein, “gravitational fields propagate as waves with
the speed of light” (Einstein 1916a, p. 692). Multiplying equation (17)
by dy,,/0x?, Einstein obtained the conservation law for the total energy-
momentum in the usual form (6), where

1 Wap Wap 3ip\
by = @[Z T DM ] (19)
af aft
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In deriving the conservation law, however, Einstein made a trivial math-
ematical error (he used y’ % instead of y*# in the conservation law for
matter). As we shall see, two years elapsed before Einstein discovered
this “regrettable error in computation” (Einstein 1918b, p. 154). The error
caused some “‘strange results” (Einstein 1916a, p. 696). Einstein obtained
three different types of gravitational waves compatible with equation (17):
not just longitudinal and transversal ones but also a “new type” of wave
(Einstein 1916a, p. 693). Using equation (19) to compute the energy carried
by these waves, he found the paradoxical result that no energy transport
was associated with either the longitudinal or the transversal waves. He
tried to explain this absurdity by treating these waves as fictitious:

The strange result that there should exist gravitational waves without
energy transport . . . can easily be explained. They are not “real” waves,
but “apparent” ones, because we have chosen as the coordinate system
the one vibrating as the waves. (Einstein 1916a, p. 696)

Einstein found that only the third kind of waves transport energy. He
concluded, however, that the mean value of the energy radiated by this new
type of waves was very small, because of a damping factor 1/c* and because
of the small value of the gravitational constant x (= 1.87 - 10~%7) that
entered into its expression. Still, the possibility of gravitational radiation
was bothersome. As Einstein stated in his paper:

Nevertheless, due to the motion of the electrons in the atom, the atoms
should radiate not only electromagnetic¢ energy, but also gravitational
energy, though in a little quantity. Since, this does not happen in nature,
it seems that the quantum theory should modify not only the electrody-
namics of Maxwell, but also the new theory of gravitation. (Einstein
1916a, p. 696)

8. Levi-Civita’s 1917 Article

Einstein’s choice of a noncovariant stress-energy complex (Einstein 1916b)
and his strange results on gravitational waves (Einstein 1916a) motivated
Levi-Civita to try and find a satisfactory definition of a gravitational stress-
energy tensor in Einstein’s theory (Levi-Civita 1917). In Levi-Civita’s
opinion, it was Einstein’s use of pseudotensor quantities that led to his
physically unacceptable results on gravitational waves. He wrote:

The idea of a gravitational [stress-energy] tensor belongs to the majestic
construction of Einstein. But the definition proposed by the author is
unsatisfactory. First of all, from the mathemaiical point of view, it lacks
the invariant character it should have in the spirit of general relativity.
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More serious is the fact, noticed also by Einstein, that it leads to a clearly
unacceptable physical result regarding gravitational waves. He thought
that the way out of this last problem was through the quantum theory. . ..
Indeed, the explanation is closer at hand: everything depends on the
correct form of the gravitational [stress-energy] tensor. - (Levi-Civita
1917, p. 381)

In Levi-Civita’s opinion, general relativity called for a generally covariant
gravitational stress-energy tensor. Since no differential invariants of the
first order exist, one cannot have a stress-energy tensor containing only first-
order derivatives of the metric; and, since the definition of #,” in (Einstein
1916b) only contains first-order derivatives, Levi-Civita concluded that
“Einstein’s choice of the gravitational tensor is not justified” (Levi-Civita
1917, p. 391). Levi-Civita, in fact, showed that Einstein’s stress-energy
complex was covariant under linear transformations only. He proposed a
new candidate for the gravitational stress-energy tensor, and, consequently,
a new candidate for the conservation law.

Starting from the Ricci tensor R, Levi-Civita, like Hilbert in 1915,
defined G,y = Ry — % 8uv R and wrote the gravitational field equations
in the form of (9). Using, for the first time, the contracted Bianchi iden-
tities, Levi-Civita showed that the covariant divergence of G,” vanishes:
V,G," = 0. Consequently, V,7,” = 0. This conservation law for matter
will hold, Levi-Civita pointed out, since “7," includes the complete con-
tribution of all phenomena (but gravitation) which take place at the point
in time under consideration” (Levi-Civita 1917, p. 389).

Levi-Civita now made a move similar to the one we saw Lorentz make
earlier: he proposed to interpret equation (9) both as field equations and as
conservation laws. Defining the stress-energy tensor for the gravitational

field as

1
Ay = ;gl“’ =—Tw = Anw+7,=0, (20

he identified

A,, as the components of a [stress-Jenergy tensor of the space-time
domain, i.c., depending only on the coefficients of ds?. Such a tensor
can be called both gravitational and inertial, since gravity and inertia
simultaneously depend on ds?. (Levi-Civita 1917, p. 389)

According to Levi-Civita, A,, completely characterizes the contribution of
gravity to the local mechanical behavior. With this interpretation, it follows
from equation (20) that no net flux of energy can exist. This equilibrium is
guaranteed by the “real” existence of both quantities which, being tensors,
are independent of the choice of coordinates. Hence,
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[n]ot only the total force applied to every single element vanishes, but
also (taking into account the inertia of the A,,) the total stress, the flux,
and the energy density. (Levi-Civita 1917, p. 389)

So, for Levi-Civita, the gravitational stress-energy is characterized by the
only element independent of the coordinates, the Riemann tensor.

In Levi-Civita’s approach, the problems that Einstein ran into are
avoided. Einstein had to admit the possibility that gravitational waves
transporting energy are generated in the absence of sources. Einstein’s
weak-field equations have solutions for 7, = 0 representing such spon-
taneous gravitational waves. Moreover, the energy flux, computed on the
basis of equation (17), could be zero in one coordinate system and nonzero
in another. Einstein invoked the help of quantum theory to solve these
problems. Levi-Civita claimed that it was enough to define the gravi-
tational stress-energy tensor the way he suggested and to reinterpret the
field equations accordingly. This precludes all counterintuitive situations
of the sort Einstein encountered, for, according to (20), the gravitational
stress-energy tensor A, vanishes whenever the stress-energy tensor 7T,
for matter vanishes.

9. Einstein’s Response to Levi-Civita

In the summer of 1917, the Great War still raging on, Einstein went on
a vacation trip to his home country, neutral Switzerland. While there, the
mathematician Adolf Hurwitz gave him a copy of Levi-Civita’s paper (Levi-
Civita 1917), which had just been published in Rendiconti dell’ Accademia
dei Lincei. From Lucerne, on August 2, 1917, Einstein wrote a long letter
to Levi-Civita,® still in Padua (which was very close to the war front), in
order to rebut the latter’s criticism of his theory, especially his use of a
pseudotensor to represent gravitational stress-energy. Einstein gave some
physical considerations to show that the stress-energy of the gravitational
field cannot be represented by a generally covariant tensor.

Einstein began his letter expressing his admiration for Levi-Civita’s
“beautiful new work™:

I admire the elegance of your method of calculation. It must be nice
to ride through these fields upon the horse of true mathematics, while
people like me have to make their way laboriously on foot.... I still
don’t understand your objections to my view of the gravitational field.
I would like to tell you again what causes me to persist in my view.
(Einstein to Levi-Civita, August 2, 1917, p. 1)
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He then proceeded to discuss the example of a counterweight pendulum
clock to show that Levi-Civita’s choice of a tensor to represent the stress-
energy of the gravitational field is problematic from a physical point of
view: ~

I start with a Galilean space, i.e., one with constant g,,. Merely by
changing the reference system [i.e., by introducing an accelerated ref-
erence system], I obtain a gravitational field. If in K’ a pendulum clock
driven by a weight is set up in a state in which it is not working, grav-
itational energy is transformed into heat, while relative to the original
system K, certainly no gravitational field and thereby no energy of this
field is present.” Since, in K, all components of the energy “tensor” in
question vanish identically, all components would also have to vanish in
K', if the energy of gravitation could actually be expressed by a tensor.
(Einstein to Levi-Civita, August 2, 1917, p. 1)

If gravitational stress-energy could be expressed by a tensor, no gravita-
tional process could occur in K’, in which case, contrary to experience,
gravitational energy could not be transformed into heat. In short, the pen-
dulum clock example shows that it should be possible for the components of
gravitational stress-energy to be zero in one reference frame and nonzero in
another. Therefore, gravitational stress-energy cannot be represented by a
generally covariant tensor. Notice how Einstein’s reasoning here is deeply
rooted in his conception of the equivalence principle.

To the physical argument of the pendulum clock, Einstein adds an ar-
gument against the tensor character of gravitational stress-energy of a more
mathematical nature:

In general, it seems to me that the energy components of the gravitational
field should only depend upon the first-order derivatives of g, because
this is also valid for the forces exerted by the fields.? Tensors of the
first order (depending only on dg,,/9x” = g~"), however, do not exist.
(Einstein to Levi-Civita, August 2, 1917, pp. 1-2)

In his letter, Einstein went on to criticize Levi-Civita’s interpretation of
the gravitational field equations (20) as conservation laws. Einstein gave
some examples showing that such conservation laws would have strange
and undesired consequences. He wrote to Levi-Civita,

You think that the field equations . .. should be conceived of as energy
equations, so that [Qﬂ would be the [stress-]energy components of the
gravitational field. However, with this conception it is quite incompre-
hensible how something like the energy law could hold in spaces where
gravity can be disregarded. Why, for example, should it not be possible
on your view for a body to cool off without giving off heat to the outside?

(Einstein to Levi-Civita, August 2, 1917, p. 2)
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On Levi-Civita’s proposed definition of the conservation laws, the only way
for matter to lose energy, it seems, is to transfer it locally to the gravitational
field. Tt does not seem to allow for the possibility of energy transfer from
one place to another.

At the same time, Levi-Civita’s proposal did seem to allow for processes
one would like to rule out. Einstein wrote:

The equation
G+ Tr=0 2D

allows 7,' to decrease everywhere, in which case this change is com-
pensated for by a decrease of the, physically not perceived, absolute
value of the quantity G;. ... I maintain, therefore, that what you [Levi-
Civita] call the energy law has nothing to do with what is otherwise so
designated in physics. (Einstein to Levi-Civita, August 2, 1917, p. 2)

On these grounds, Einstein rejected Levi-Civita’s interpretation of the
field equations as conservation laws, and held on to his earlier formula-
tion of the conservation laws (6). He argued that this formulation was
perfectly sensible from a physical point of view, even though it invelved a
pseudotensor representing gravitational stress-energy:

[My] conclusions are correct, whether or not one admits that the ¢] are
“really” the components of the gravitational [stress-Jenergy. That is to

say, the relation
: d
gl [t suyav] =0

holds true with the vanishing of 7" and &,” at [spatial] infinity, where
the integral is extended over the whole three-dimensional space. For
my conclusions, it is only necessary that T.* be the energy density of
matter, which neither one of us doubts. (Einstein to Levi-Civita, August
2,1917,p.2)

Finally, Einstein pointed out that, in his definition, the gravitational
stress-energy exhibits the desired behavior at spatial infinity:

... (in the static case) the field at infinity must be completely determined

by the energy of matter and of the gravitational field (taken together).
This is the case with my interpretation.... (Einstein to Levi-Civita,
August 2, 1917, p. 2)

10. Levi-Civita’s Response to Einstein

At the end of August 1917, Einstein received Levi-Civita’s answer,’ full of
flattery as well as criticism:



Conservation Laws and Gravitational Waves 77

I am very grateful that you kindly appreciate the mathematics of my last
articles but the credit of having discovered these new fields of research
goes to you. (Levi-Civita to Einstein, August 1917, draft, p. 1)

In his letter, Levi-Civita criticized Einstein’s definition of the gravitational
field energy, wondering why a function of first-order derivatives of the
metric tensor shouid be taken as stress-energy (pseudo)tensor, and asking
for a more convincing motivation of this choice.

On the other hand, Levi-Civita granted Einstein that his interpretation
of the field equations as conservation laws was not very fecund:

I recognize the importance of your objection that, in doing so, the energy
principle would lose all its heuristic value, because no physical process
(or almost none) could be excluded a priori. In fact, [in order to get any
phiysical process] one only has to associate with it a suitable change of
the ds?. (Levi-Civita to Einstein, August 1917, draft, p. 1)

Levi-Civita seems to be referring to Einstein’s example of a stress-energy
tensor for matter whose energy component decreases everywhere, Ein-
stein’s conservation laws (4) rule out such a stress-energy tensor. It looks
as if Levi-Civita’s conservation laws, i.e., the gravitational field equations,
do not. Ttlooks as if it would be possible for almost any matter stress-energy
tensor to find a metric field such that the field equations are satisfied. The
conservation laws thus seem to lose their “heuristic value” of restricting
the range of acceptable matter stress-energy tensors. Of course, through
the contracted Bianchi identities, the field equations do, in fact, restrict the
range of acceptable matter stress-energy tensors.

In his letter, Levi-Civita stressed having no prejudice against a definition
of gravitational stress-energy dependent on the choice of coordinates, or,
as he put it,

dependent on the expression of ds2, in analogy with what happens for
the notion of force of the field. . .. In the case of the equations of motion,

written in the form

d’x” v ] dx® dx”

ds? op| ds ds’
one can explicitly connect the right-hand side (which does not define
either a covariant or a contravariant system) with the ordinary notion of
force. According to you, the same should happen for your #,* (which
do not constitute a tensor). I am not in principle opposed to your point
of view. On the contrary, I am inclined to presume that it is right as are
all intuitions of geniuses. But I would like to see each conceptual step
[canceled: logical element] to be clearly explained and described, as is -
done (or, at least, as is known can be done) in the case of the equation
above, where we know how to recover the ordinary notion of force.
(Levi-Civita to Einstein, August 1917, draft, pp. 1-2)
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Atthe same time, Levi-Civitainsisted that, at least from a logical point of
view, there was nothing wrong with his own choice of a generally covariant
tensor to represent gravitational siress-energy:

[canceled: Let me add some opinions for a logical defense]. While I
maintain an attitude of prudent reserve and wait, I still want to defend the
logical flawlessness of my tensor G,,. (Levi-Civita to Einstein, August
1917, draft, p. 2)

Next, Levi-Civita attacked the counterweight pendulum-clock example:

I want to stress that, contrary to what you claim, there is no contradiction
between the accounts of the pendulum-clock in the two systems K and
K', the first one fixed (in the Newtonian sense), the second one moving
with constant acceleration. You say that:

(a) in K, the energy tensor is zero because the g, are constant;

(b) in K’, this is not the case; instead, there is a physical phenomenon
with an observable transformation of energy into heat;

(¢) due to the invariant character of a null tensor, the simultaneous
validity of (a) and (b) implies that there is something wrong with
the premises.

I contest (a), since we can assume that g, are constant outside of the
ponderable bodies, but [not] in the space taken up by your pendulum-
clock. (Levi-Civita to Einstein, August 1917, draft, p. 2)

In other words, Levi-Civita denied that Einstein’s pendulum clock example
is incompatible with the tensor character of A, observing that since the
pendulum is not massless, strictly Euclidean coordinates cannot be assumed
in K. Therefore, the energy tensor for gravitational field is different from
zero both in K and in K.

Finally, Levi-Civita responded to Einstein’s comment on the behavior
of the gravitational field at infinity:

With regard to the last consideration of your letter (point 4), if I am
not wrong, it [the behavior of the gravitational field at infinity] is not
a consequence of the special form of your #,”, but is equally valid for
my A,,. It seems to me that the behavior at infinity can be obtained
from [our equation (20)] by using the circumstance that the divergence
of the tensor A, is identically zero; therefore, the divergence of 7,

. . d
also vanishes, and it reduces asymptotically to ZTTIW = 0, because
X

the g, tend to the values ¢, [i.e., the constant Minkowski values of the
metric tensor]. (Levi-Civita to Einstein, August 1917, draft, p. 2)

So, Levi-Civita invoked the contracted Bianchi identities to show that his
conservation laws, like Einstein’s, exhibit the desired behavior at spatial
infinity.
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In an addendum, Levi-Civita finally remarked:

An indication in favor [of our equation (20)] is the negative value of the
energy density of the gravitational field Ag (assuming g9 > 0). This is
in agreement with the old attempts to localize the potential energy of a
Newtonian body, and explains the minus sign as due to the exceptional
role of gravity compared to all other physical phenomena. (Levi-Civita
to Einstein, August 1917, draft, p. 2)

11. Einstein’s Second Paper on Gravitational Waves (1918)

After Levi-Civita’s August 1917 letter, the polemic between the two scien-
tists stopped until Einstein in 1918 published a new paper on gravitational
waves (Einstein 1918b). In the introduction, he recognized that his earlier
approach to gravitational waves (in Einstein 1916a)

was not transparent enough, and it was marred by a regrettable error
in computation. Therefore, I have to turn back to the same-argument.
(Einstein 1918b, p. 154) :

Because of this error, he had obtained the wrong expression for his stress-
energy complex. Correcting the error, Einstein could easily derive the
correct expression for the stress-energy complex. As a consequence, he
obtained only two kinds of waves, thereby resolving all the physical para-
doxes of his previous results. Einstein could now assert with confidence
that

[a] mechanical system which always maintains its spherical symmetry
cannot radiate, contrary to the result of my previous paper, which was
obtained on the basis of an erroneous calculation. (Einstein 1918b,
p. 164)

In the last section of (Einstein 1918b), entitled “Answer to an objection .
advanced by Mr. Levi-Civita,”'® Einstein publicly gave his final reply to
Levi-Civita’s old objections. Einstein gave improved versions of some of
the arguments already given in his August 1917 letter to Levi-Civita. He
stressed that at least the time component of equation (6) must be locked upon
as the energy equation, even if the tV; cannot be considered components of
a tensor. )

In this section of his paper, Einstein gave ample credit to Levi-Civita
for his contributions to general relativity:

In a recent series of highly interesting studies, Levi-Civita has con-
tributed significantly to the clarification of some problems in general
relativity. In one of these papers [Levi-Civita 1917], he defends a point
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of view regarding the conservation laws different from mine, and dis-
putes my conclusions about the radiation of energy through gravitational
waves. Although we have already setiled the issue to the satisfaction
of both of us in private correspondence, I think it is fitting, because
of the importance of the problem, to add some further considerations
concerning conservation laws. ... There are different opinions on the
question whether or not ¢, should be considered as the components of
the [stress-]Jenergy of the gravitational field. I consider this disagreement
to be irrelevant and merely a matter of words. But I have to stress that
[our equation (6)], about which there are no doubts, implies a simplifi-
cation of views that is important for the significance of the conservation
laws. This has to be underscored for the fourth equation (¢ = 4), which
I want to define as the energy equation. (Einstein 1918b, p. 166)

Without entering into the mathematical details of ts”, Einstein defended
his energy equation with the following argument:

Let us consider a spatially bounded material system, whose matter den-
sity and electromagnetic field vanish outside some region. Let S be
the boundary surface, at rest, which encloses the entire material system.
Then, by integration of the fourth equation over the domain inside S,
we get

_Iiz f (7?14 + 1‘44) dV = f (1‘41 cos(nxy) + 14 cos(nxy) + 4’ cos(nm)) do.
v S

One is not entitled to define #4* as the energy density of the gravitational
field and (t4', 4%, t°) as the components of the flux of gravitational
energy. But one can certainly maintain, in cases where the integral of 4%
is small compared to the integral of the matter energy density 7;*, that
the right-hand side represents the material energy loss of the system. It
was only this result that was used in this paper and in my first article on
gravitational waves. (Einstein 1918b, pp. 166-167)

Einstein then considered Levi-Civita’s main objection against his choice of
conservation laws:

Levi-Civita (and prior to him, although less sharply, H.A. Lorentz) pro-
posed a different formulation . .. of the conservation laws. He (as well
as other specialists) is against emphasizing [equations (6)] and against
the above interpretation because #," is not a tensor. (Einstein 1918b,
p. 166)

Although Einstein obviously had to admit that #,” is not a tensor, he con-
cluded:

I have to agree with this last criticism, but I do not see why only those
quantities with the transformation properties of the components of a
tensor should have a physical meaning. (Einstein 1918b, p. 167)
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Finally, Einstein stressed that, even though there is no “logical objection”
Einstein 1918b, p. 167) against Levi-Civita’s proposal, it has to be dis-
missed on physical grounds.

I find, on the basis of [equation (20)], that the components of the total
energy vanish everywhere. [Equation (20)], (conirary to [equation (6)]),
does not exclude the possibility that a material system disappears com-
pletely, leaving no trace of its existence. In fact, the total energy in
[equation (20)] (but not in [equation (6)]) is zero from the beginning;
the conservation of this value of the energy does not guarantee the per-
sistence of the system in any form. (Einstein 1918b, p. 167)

In fact, this result is due to the algebraic form of Levi-Civita’s “conser-
vation law” (according to which the total stress-energy is equal to zero
everywhere). In Levi-Civita’s opinion, the local vanishing of the matter
stress-energy does not allow any energy flux. From a mathematical point
of view, Levi-Civita’s approach, with a generally covariant gravitational
stress-energy tensor, was certainly more general than Einstein’s, and ap-
parently more in line with the spirit of general relativity. Einstein’s choice,
on the other hand, was more convincing on the basis of physical arguments,
as Levi-Civita himself admitted. At the time, Einstein stood alone in his de-
fense of a noncovariant definition of gravitational energy. Modern general
relativists, however, follow Einstein’s rather than Levi-Civita’s approach to
conservation laws.

12. Schrédinger’s Example against Einstein’s
Stress-Energy Complex and Einstein’s Reply

Lorentz and Levi-Civita were not the only two scientists to criticize Ein-
stein’s definition of gravitational stress-energy. In November 1917, Erwin
Schrodinger showed, in a straightforward calculation, that, given a symmet-
rical distribution of matter, Einstein’s gravitational stress-energy complex
t” can be zero in a suitable coordinate system. Schrodinger evaluated the
stress-energy complex, starting from the Schwarzschild metric for the case
of an incompressible fluid sphere of matter, and noticed that

to determine f,", we must always specify the coordinate system, since
their values do not have tensor character and do not vanish in every
system, but only in some of them. The result we get in this particular
case, i.e. the possibility of reducing #,” to be identically zero, is so
surprising that I think it will need a deeper analysis. . .. Our calculation
shows that there are some real gravitational fields whose [stress-Jenergy
components vanish; in these fields not only the momentum and the
energy flow but also the energy density and the analogs of the Maxwell
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stresses can vanish, in some finite region, as a consequence of a suitable
choice of the coordinate system. (Schrodinger 1918, p. 4)

Thus, Schrédinger concluded,

This result seems to have, in this case, some consequences for our ideas
about the physical nature of the gravitational field. Since we have to
renounce the interpretation of #,” ... as the [stress-Jenergy components
of the gravitational field, the conservation law is lost, and it will be our
duty to somehow replace this essential part in the foundation [of the
theory]. (Schrodinger 1918, pp. 6-7)

About two and a half months later (on February 5, 1918), Einstein replied to
Schrodinger in the same journal (Einstein 1918a). Oddly enough, Einstein
started by raising further doubts about his choice of the quantities ¢,V to
represent gravitational stress-energy:

Schridinger’s calculations have shown that in a suitably chosen coordi-
nate system all [stress-]energy components £, of the gravitational field
[generated by a] sphere vanish outside of this sphere. Understandably,
he was puzzled by this result, and so was I at first; in particular, he
wondered whether 7,” should really be interpreted as [stress-Jenergy
components. . .. To these doubts I can add two more:

(1) the [stress-]Jenergy components of matter 7,” represent a tensor,
. while this is not true for the “[stress-Jenergy components” of the
gravitational field 77 ,; Rt

(2) the quantities 7,; = > 7T."g, are symmetric in the indices o and
7, while this not true for t,; = ) 15" gue.

For the same reason as mentioned in point (1), Lorentz and Levi-Civita
also raised doubts about interpreting ¢, as the [stress-Jenergy compo-
nents of the gravitational field. Even though I can share their doubts, I
am still convinced that it is helpful to give a more convenient expression
for the energy components of the gravitational field. (Einstein 1918a,
p. 115)

Einstein then offered the following explanation for Schridinger’s appar-
ently strange result. He pointed out that a gravitational field generated by
only one body, as in Schrodinger’s example, is different from physical grav-
itational fields that always involve more than one body: “in gravitational
fields mediating exchange effects between different bodies the quantities
t?, cannot vanish identically” (Einstein 1918a, p. 115). As an example,
Einstein considered two material bodies, M| and M-, connected by a rigid
rod. Using his conservation law, he found that since the stresses for matter
are nonzero, the gravitational energy flux is nonzero as well. Therefore,
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[t]hese considerations hold mutatis mutandis in all those cases where
the field transmits exchange effects between different bodies. But this
is not the case for the field considered by Schrodinger. (Einstein 1918a,
p-116)

He concluded peremptorily:

Hence, the formal doubts (1) and (2) cannot lead to a rejection of my
proposal for the expression of the energy-momentum. It does not seem
justified to put any further formal demands [on the properties of a quantity
representing gravitational stress-energy]. (Einstein 1918a, p. 116)

13. Bauer’s Example against Einstein’s
Stress-Energy Complex and Einstein’s Final Reply

About one month after Einstein’s reply to Schrodinger, Hans Bauer at-
tacked Einstein’s choice of 17, (Bauer 1918). He discussed an example
complementary to Schrodinger’s. Schrodinger had shown that Einstein’s
gravitational stress-energy sometimes vanishes despite the presence of a
gravitational field. Bauer now showed that it does not always vanish in the
absence of a gravitational field. He stressed that

the partial nonvanishing of the [stress-lenergy components has nothing
to do with the presence of a gravitational field, but it is due only to the
choice of a coordinate system. ... This behavior is not surprising, since
t?, is not a tensor. (Bauer 1918, p. 165) .

So, Bauer thought he had thrown another stone at the physical plausibility
of Einstein’s proposal:

we have to conclude that the “[stress-]Jenergy components” 9, are not
related to the presence of a gravitational field as they depend only on
the choice of coordinates. They can vanish in presence of a field, as
shown by Schrodinger, and do not always vanish in absence of a field,
as shown below. Hence, their physical significance seems to be very
dubious. (Bauer 1918, p. 165)

Einstein replied to Bauer’s criticism without delay. In May 1918, he pub-
lished a new reply to Schrodinger and Bauer (Einstein 1918c). He once
again justified his choice with physical arguments. In his opinion,

the theory of general relativity has been accepted by most theoretical
physicists and mathematicians, even though almost all colleagues stand
against my formulation of the energy-momentum law. Since [ am con-
vinced that T am right, I will in the following present my point of view
on these matters in more detail. (Einstein 1918c, p. 448)
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Einstein reminded his readers how special relativity combines the ordinary
conservation laws of energy and momentum into one differential equation
(i.e., the vanishing of the four-divergence of the stress-energy tensor) which
is equivalent to the integral form of these conservation laws verified in
experience. The generalization of this conservation law to general relativity,
he explained, was particularly delicate. Einstein showed how, with his
choice, “the classical concepts of energy and momentum are established as
concisely as we are accustomed to expect in classical mechanics” (Einstein
1918c, p. 449). Then he demonstrated that the energy and momentum of a
closed system are uniquely determined only when the motion of the system
(considered as a whole) is expressed “with respect to a given coordinate
system” (Einstein 1918¢, pp. 449-450). In particular, he showed that the
stress-energy of such closed systems can only be expected to transform
as a tensor under certain coordinate transformations, viz. those coordinate
transformations that reduce to the identity transformation at infinity. The
transformations used in Schrédinger and Bauer’s examples do not meet this
requirement, so they do not count as counterexamples.

After this article by Einstein, the debate on the correct formulation of
conservation laws in general relativity apparently came to the end.

14. Conclusions

In this chapter, we have described the polemic between Einstein and Levi-
Civita on the correct formulation of conservation laws in general relativity
during the years 1917-1918. Prompted by a mistake Einstein made in his
first paper on gravitational waves, Levi-Civita criticized the use of non-
covariant quantities in a generally covariant theory. This, in tum, stimu-
lated Einstein to give a new and correct description of gravitational waves.
Meanwhile, Lorentz had shown that there is no unique definition of the
stress-energy of the gravitational field in general relativity. Following up
on this insight, Lorentz proposed to interpret the field equations as con-
servation laws. Levi-Civita independently made the same proposal in a
mathematically more satisfactory way, using the contracted Bianchi iden-
tities. Einstein held on to his old formulation of the conservation laws
involving the pseudotensor ,” to represent the gravitational stress-energy.
Schrédinger and Bauer showed that, in certain cases, Einstein’s choice of
t," led to paradoxical results.

This episode makes for an interesting case study in the history of general
relativity for at least two reasons: (1) it clarifies the connections between
variational methods and conservation laws in general relativity and their
cross-fertilization; (2) it shows the extent of Einstein’s scientific isolation
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in his efforts to complete the edifice of general relativity during 1916-1918.
Some of the most celebrated mathematical physicists, such as Lorentz and
Levi-Civita, attacked his choice of a pseudotensor to represent gravitational
stress-energy on the basis of formal mathematical arguments very much in
the spirit of general relativity. Moreover, two young theoretical physicists,
Schrédinger and Bauer, came up with some apparently damning counterex-
amples against Einstein’s choice. Yet Einstein, masterfully exploiting the
equivalence principle as a heuristic tool, stubbornly defended his choice
and justified it with strong physical arguments. By today’s standards, he
was right.
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NOTES

1 See also Cattani’s chapter “Levi-Civita’s Influence on Palatini’s Contribution
to General Relativity” in this volume.
2 With his 1914 choice of H, B, explicitly is

32
= 0xvox®
3 For a more extensive discussion of these calculations, see Norton (1984).
4 Einstein defined the pseudotensor ¢ as (Einstein 1914, p. 1077)

el wAHE U,BH<—g>”2)
LA X 8 ager a dgar ’
in order to show explicitly its dependence on H.

5 In this period physicists meant siress-energy tensor when they said energy-
tensor.

6 Einstein to Levi-Civita, August 2, 1917, Einstein Archive, Boston (EA 16-253).
English translation by J. Goldstein and E.G. Straus with some modifications.

7 Let us examine Einstein’s pendulum clock example a little more closely. In K,
the reference frame in which there is no gravitational field, the clock is not working
since the counterweight that should drive it is not subjected to a gravitational field.
Let us take a concrete example. Suppose our clock is in a spacecraft far from any
masses with its engines turned off (frame K). In this case, the clock is in a situation
of “absence of weight,” and consequently cannot work. When the engines are
turned on, the spacecraft accelerates (frame K'). Consequently, all objects inside
the spacecraft experience an apparent gravitational field. Our clock will want to
start working under the influence of this field. If, in X', we want to prevent this,
the clock’s gravitational energy will be transformed into heat.

8 Here Einstein presumably alludes to the fact that in general relativity grav-
itational forces are expressed in terms of the Christoffel symbols, which contain
first-order derivatives of the metric only.
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? Levi-Civita to Einstein, August 1917. Only a draft of this letter survives
(Levi-Civita Papers, Accademia dei Lincei, Rome). It seems reasonable, though,
to assume that the actual letter was not all that different from the draft.

10 “Antwort auf einen von Hrn. Levi-Civita herrithrenden Einwand,” Einstein
1918b, pp. 166-167.
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The General-Relativistic
Two-Body Problem and the
Einstein—Silberstein Controversy

Peter Havas

1. Introduction: The “Problem of Motion” in
the General Theory of Relativity

In 1933, Ludwik Silberstein, a Polish physicist, wrote Einstein that he
had found an exact solution of the field equations of the general theory of
relativity for the problem of two masses at rest. A lengthy correspondence
ensued, which became more and more acrimonious and finally spilled over
into the newspapers. To be able to understand the details of this controversy,
it is necessary to outline earlier work on this problem, both by Finstein
himself and by other scientists. ‘

The two-body problem is an important part of the “Problem of Motion”
in the general theory. I gave a talk on the early history of this problem at our
1985 conference, of which a slightly extended version is being published in
the Proceedings (Havas 1989). To understand the problem under consider-
ation and to put it in its proper historical perspective, it will be necessary,
however, to repeat some of the earlier discussion as well as to elaborate on
part of it and to provide some technical details.

In his initial formulation of the general theory, Einstein had assumed
that—just as in Newtonian mechanics—the laws of motion are independent
of the force laws or field equations responsible for the interactions between
bodies, and he had postulated that a single mass point would move along
a geodesic of the metric g, describing the field. For a single body at
rest, this assumption poses no difficulties, and the exact solution for such a
body, obtained very early on (Schwarzschild 1916; Droste 1916a), remains
untouched by the subsequent investigations of the problem of motion.
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The first attack on the two-body problem is also due to Droste, a student
of H.A. Lorentz who, in accordance with Einstein’s ideas, assumed that it
was possible to solve the field equations under the assumption that the
bodies were permanently at rest and thus their field was static. He obtained
an approximate solution (Droste 1915); he also obtained an approximate
solution for n slowly moving bodies (Droste 1916b), but did not proceed
far enough to realize that his method would lead to inconsistencies. Both
Droste 1916a and 1916b were based on his University of Leiden thesis,
which he defended in December (Droste 1916¢). He briefly continued
working with Lorentz; their important joint paper (Lorentz and Droste
1917) is discussed in Havas 1989. But then he moved into mathematics
and did not publish anything further in relativity.

The general theory was developed and the investigations mentioned
were carried out while the First World War was raging in Europe.
Schwarzschild died shortly after finding his solution. Of the other early
investigators in general relativity, Lorentz and his school were working in
neutral Holland, Einstein in Berlin, Eddington and others in England. Al-
though they were not completely isolated from each other, communication
was difficult, and it is not possible to establish when (or sometimes if) they
became aware of each other’s results. De Donder, on the other hand, was
working in complete isolation in German-occupied Belgium; although he
seems to have obtained some important results before anybody else, he
was not able to communicate them even to Lorentz in neighboring Holland
without delays of many months.

Eddington was able to complete a report on the general theory of rela-
tivity for the Physical Society of London by June 1918 (Eddington 1918).
From general considerations he came to the conclusion (p. 65) for particles
of matter considered as singularities of the field that “the laws of motion
of the singularities must be contained in the field equations.” He later pub-
lished a popular discussion of the theory of relativity in Space, Time and
Gravitation, the French edition of this book (Eddington 1921) contained
a 149-page mathematical supplement (apparently completed in October
1920) in whose section 1v a much more detailed derivation of the law of
motion is given.

This book was used in the preparation of an excellent introduction to
relativity by Jean Becquerel, based on a course given by him for several
years, whose section 87 is entitled “The law of motion of the free mass point
is contained in the law of gravitation” (Becquerel 1922)! and essentially
repeats the derivation given in Eddington 1921.

Thus, through both a French textbook and a French edition of an English
book, French scientists had had access to this important result of the general
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theory of relativity for a year by the time Einstein visited Paris in 1922.
However, there is no indication that Einstein himself was aware of it then
or that it had been pointed out to him during his visit, although his host,
Paul Langevin, had written the introduction to Eddington 1621. It is also
doubtful that he ever studied Eddington’s contributions to his theory in any
detail.

Eddington was by no means the only scientist who had realized the
connection between the field equations and the laws of motion by 1921. It
was clearly recognized by De Donder in Belgium, whose derivation of the
geodesic law from the field equations (De Donder 1919) is also presented
in chapter m1 of his exposé of Einstein’s theory (De Donder 1921). A
derivation from the variational principle underlying the field equations was
given by a Swiss physicist working in Géttingen (Humm 1918). The most
important contributions, however, are due to Hermann Weyl, a German
mathematician who was a professor at the ETH in Zurich from 1913 to
1930. He was therefore a colleague of Einstein before he left for Berlin,
and since Switzerland was neutral during the war, they also had no difficulty
communicating later.

2. Static Solutions in General Relativity

Initially, Weyl was concemed with static axially symmetric exact solutions
of Einstein’s field equations (Weyl 1917, 1919b; Bach 1922) (as was the
Italian mathematician Levi-Civita [1917-1919]). In the course of this work
he came to realize that two bodies interacting only gravitationally cannot
be in equilibrium. More precisely, this is always the case for two extended
bodies that can be separated by an open surface; if this is not possible, i.e., if
one body encloses the other, equilibrium may be possible [the latter case was
discussed much later in Marder (1959)]. This is exactly analogous to the
situation in Newtonian mechanics. Weyl, however, was mainly concerned
with bodies considered as singularities of the field (which of course can
always be separated by a plane) and the remainder of this paper will be
restricted to this case,? as well as to purely gravitational interactions; in
the presence of other interactions, again just as in Newtonian mechanics,
equilibricm may be possible.

In his first paper discussing axially symmetric static solutions, Weyl
(1917) assumed that the bodies were held at rest by stresses counteracting
the gravitational forces, without going into any detail. = After the paper
was criticized by Levi-Civita, he elaborated on this and indicated how the
stresses can be calculated (Weyl 1919b). It is implicit in these papers that
in Einstein’s theory bodies cannot be in equilibrium under the influence
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of gravitational forces alone, but somewhat surprisingly it was nowhere
stated that the fact that this follows from the field equations alone is an
important new result of this theory. This was only done explicitly in Weyl’s
“Addendum” to R. Bach’s paper on new solutions of Einstein’s equations
(Bach 1922),> which discussed “The Static Two-Body Problem” in full
generality. After showing that Bach’s calculations imply that two mass
points are attracted by a force that, for masses whose gravitational radii are
small compared to their separation, reduces to that given by Newton’s law,
Weyl concluded that

The physical importance of this result should not be exaggerated; for the
solution of the real two-body problem, the determination of the motion
of two gravitationally attracting bodies, nothing is gained by it.

Nevertheless, the importance of his proof that there is no static solution
for two masses that are free to move was widely, though not universally,
recognized.

Within the next few years, a number of scientists attacked the static
two-body problem, not always realizing the need for stresses to maintain
equilibrium. (This requirement is now frequently stated as the need for a
“strut” or “rod” between the bodies.) At about the time of the publication
of Bach 1922, but clearly not aware of it and of earlier results by Weyl,
a German mathematician published a paper claiming an exact solution
for the static field of two mass points (Trefftz 1922). This claim was
immediately disputed by Einstein himself (Einstein 1922) who showed that
if one attempted to interpret Trefftz’s solution as the field of two massive
spheres, this would require the presence of a true singularity of the field
outside the two masses and that

therefore it is not permitted to continue the solution up to that spot. In
reality it presupposes the existence of other extended masses distributed
with spherical symmetry, as already shown by H. Weyl.

No reference to Weyl is given, and the papers by Weyl referred to earlier
do not put his results into this form. Nevertheless, this passage shows
that in late 1922 Einstein was aware of some of Weyl’s work, although
he did not realize that (just like Eddington’s results) it implied that the
field equations contained the equations of motion. Weyl had attacked the
problem of finding the explicit form of these equations earlier within the
context of his own generalization of Einstein’s theory (Weyl 1919a) and
elaborated on it in Weyl 1921a and in the third, more clearly the fourth,
and especially in the fifth addition of his book Raum-Zeit-Materie (Weyl
1919c¢, 1921b, 1923). In the third and fourth editions, this elaboration was
still done in the context of his own theory, which attempted to geometrize
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the electromagnetic field in addition to the gravitational one; however, a
careful reading of his presentation leaves no doubt that all the mathematical
and physical arguments remain valid in the absence of the electromagnetic
field, in which case Weyl’s theory reduces to Einstein’s. In the fifth edition,
however, Weyl considered the problem of motion purely in the context of
Einstein’s theory. Nevertheless, Einstein, having raised various objections
to Weyl’s theory earlier, apparently did not recognize the validity of Weyl’s
considerations on the problem of motion within his own theory and did not
realize the connection between his field equations and the laws of motion
until 1927.

In that year, he and his assistant Jakob Grommer published a paper
containing a derivation of the geodesic law (Einstein and Grommer 1927)
which until recently has been widely credited with being the first to rec-
ognize the connection between the field equations and the equations of
motion. It also contained a discussion of Einstein’s reasons for not hav-
ing recognized this connection earlier. No discussion of earlier work was
given, showing that he had not been aware that this connection had been
discussed even in several standard presentations of his theory. This paper
and the various arguments presented by Einstein are discussed in some
detail in Havas 1989, and I shall not repeat this discussion here. I shall
only note that Weyl reacted to the paper as soon as he had seen the galleys
(shown to him by Herglotz) and wrote Einstein that “I must confess that I
did not understand what in it goes beyond my earlier developments™ (letter
by Weyl, February 3, 1927, EA 24-086, in German). He then referred to his
“Addendum” and to Weyl 1923, and to make sure that he would not be mis-
understood he outlined the arguments given there in some detail. Einstein
responded almost three months later, raising objections which only refer
to electrically charged particles (EA 24-088), although Weyl’s derivation
was only concerned with neutral ones, apparently still under the impression
that Weyl’s treatment was restricted to his extension of Einstein’s theory.
Weyl’s answer appears lost. In any case, in his later work Einstein never
acknowledged the priority of Weyl’s or any other author’s contributions to
recognizing that the field equations imply the laws of motion.

. As noted before, much work on the relativistic two-body problem con-
tinued after Weyl’s fundamental work. In 1922, the American mathemati-
cian Horace Levinson obtained his Ph.D. at the Department of Astronomy of
the University of Chicago with a thesis on the gravitational field of masses
at rest (Levinson 1922); the next year he received a Doctorat d’Université
from the University of Paris with a thesis on the field of two mass points
at rest (Levinson 1923a). Both theses derive only approximate solutions
and show no recognition of the problem of motion, nor do his publications
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on the subject (Levinson 1923b, 1628). Although at least one of the ex-
aminers, Elie Cartan, was quite familiar with general relativity, clearly no
objections were raised.*

Levinson continued investigations in general relativity as a sideline
while working in business; his most significant contribution was a letter to
Einstein (August 25, 1948, EA 16-300) criticizing the mathematical meth-
ods used in the famous EIH paper (Einstein, Infeld, and Hoffmann 1938) and
its sequel (Einstein and Infeld 1940) to derive the approximate equations of
motion of n bodies from the field equations. This criticism, discussed fur-
ther in a lengthy correspondence, prompted Einstein to take up the problem
again and, together with Infeld, to devise an alternate derivation (Einstein
and Infeld 1949). '

The problem of determining the field of two bodies at rest was also
attacked in Palatini 1923 and Chazy 1923a, 1923b, 1924, apparently with-
out any knowledge of Bach and Weyl’s work or recognition of the need
for stresses. Both authors gave exact solutions, but it was pointed out by
Chazy that Palatini’s solution did not reduce to Schwarzschild’s if the two
masses coalesced, while Chazy’s did. The need for stresses was explic-
itly realized by Straneo (1924a, 1924b, 1924c). An excellent discussion
of the early work on the two-body problem was given a few years later in
a slender French monograph on general relativity (Darmois 1927). Some
mathematical problems of the n-body problem were discussed in a thesis
at the University of Paris (Racine 1934), which apparently has been uni-
versally overlooked, although the examination committee consisted of the
most knowledgeable French physicists—Cartan, Chazy, and Darmois; this
may be considered as divine retribution for the fact that it did not contain
a single reference to non-French papers, except for Levi-Civita's, not even
Weyl’s.

The n-body problem was also treated by the British mathematician
Harry Curzon (1880-1935), who had been “Recognized Teacher of Math- -
ematics” at Goldsmiths’ College of the University of London since 1906.
His papers (Curzon 1924a, 1924b), his only contribution to physics, do not
contain any references, and it seems that he was not aware of any previous
work on the problem. However, he used the same method as Weyl and
Levi-Civita to obtain static axially symmetric solutions, which leads to a
two-dimensional Laplace equation in cylindrical coordinates. But while
Weyl and Levi-Civita had recognized that the solution corresponding to
that of Schwarzschild and Droste required a line singularity on the axis in
the particular coordinate system employed, Curzon, without any comment,
used point singularities instead, which, transformed to spherical coordi-
nates, do not describe mass points but what later became known as Curzon
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singularities.” He also treated the case of such singularities carrying electric
charges for which, as noted before, equilibrium is possible without the need
for stresses. However, this problem was not discussed there. Curzon also
does not seem to have recognized that his solutions did not represent mass
points.

Curzon’s one- and two-body solutions were rediscovered later by Sil-
berstein, and will therefore be discussed in the context of the latter’s con-
troversy with Einstein.® It appears that Curzon’s paper was totally ignored
for a decade and not referred to in the literature before 1936.

3. The Einstein—Silberstein Controversy:
A Tragicomedy of Errors in Two Acts

3.1 DRAMATIS PERSONAE

Ludwik Silberstein was born in Warsaw in 1872. After initially studying in
Cracow, he continued on to Heidelberg and Berlin, where he obtained his
Ph.D. in 1894. He was Assistent in physics at the University of Lemberg
(now Lvov, Ukraine) from 1895 to 1897, but was apparently unable to
obtain a permanent position in Poland. He was Libero Docente (lecturer)
in mathematical physics at the University of Bologna from 1899 to 1903,
and from 1903 until 1912 he was at the University of Rome in the same
capacity. Whilein Italy, he wrote a number of excellent texts in mathematics
and physics (in Polish). In 1912 he moved to London, lectured on relativity
at University College, and wrote one of the first treatments of the special
theory of relativity (Silberstein 1914). It should be noted that he was one of
a very small number of physicists working in relativity who was older than
Einstein. He lectured on relativity and gravitation at Cornell University in
1920 and at the Universities of Toronto and of Chicago in 1921. Based
on these lectures he wrote Theory of General Relativity and Gravitation
(Silberstein 1922).- In all of his writings, he showed great originality and
revealed an independent and critical mind, occasionally more critical than
the facts warranted.

At that time Silberstein was certainly not antagonistic either toward the
theory of relativity or toward its creator. On the contrary, he wrote in the
introduction of his book on general relativity: '

Some of my readers will miss, perhaps, the enthusiastic tone which
usually permeates the books and pamphlets that have been written on
the subject (with the notable exception of Einstein’s own writings). Yet
the author is the last man to be blind to the admirable boldness and
_the severe architectonic beauty of Einstein’s theory. But it has seemed
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that beauties of such a kind are rather enhanced than obscured by the
adoption of a sober tone and an apparently cold form of presentation.

Nevertheless, Silberstein remained skeptical and ambiguous in his at-
titude toward Einstein’s theory. Quite early he attempted to formulate a
theory of gravitation that was generally covariant, but did not contain the
principle of equivalence, which he considered to be the weak point of Ein-
stein’s theory on both theoretical and observational grounds (Silberstein
1918), no red shift having yet been observed. Here and on other occasions
he was ready to accept experimental results uncritically if they seemed to
contradict either the special or the general theory’s predictions.

Silberstein stayed in London until 1920 and became a British subject.
During his stay he continued working on relativity and earned his living
as “Scientific Advisor” for Adam Hilger Ltd., a leading optical instrument
maker, from 1915 until 1920; his expertise in optics dated to a period
(1898-1899) as scientific codirector of an optical firm in Warsaw. (Some of
the biographical information is taken from an undated—19217—Iletter by
Silberstein, University of Toronto Archives A67-0007/65 Falconer Papers.)
In 1920 he was invited to join the research laboratory of Eastman Kodak as
their leading scientific advisor. He moved to the United States in June and
stayed with Eastman Kodak until his death in 1948—seven years before
Einstein, but at the same age. It is not clear whether he went into industry
by choice or, more likely, because he was unable to obtain a permanent
academic position either in Britain or in the United States, possibly due his
age and to the prevailing anti-Semitism at British and American universities
between the two world wars. At Eastman Kodak he worked mostly in optics,
but he maintained his interest in relativity.

Einstein and Silberstein had corresponded at length since 1918, most-
ly on inquiries by Silberstein concerning the theory of relativity, but also
on various other matters, and appear to have become quite close. After
Silberstein’s move to the United States they met during Einstein’s trip to
this country in the cause of Zionism in the spring of 1921, at Princeton and
possibly in Chicago. Although itis not directly related to our topic, I would
like to discuss one exchange of letters just after Silberstein’s stay at the
University of Chicago, as it shows both the close relationship of the two men
and their attitude toward the situation in Germany at the time, and reveals a
little-known offer to Einstein. Having just returned to Rochester, Silberstein
wrote on September 4,1921 (EA 21-046, in German; underlinings, here and
in all subsequent quotations, in the original; signatures omitted):

On September 1st, Dr. Gale (full professor, coordinated with Millikan
at the Ryerson Lab, and Dean of the Science Faculty, Univ. of Chicago)
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has asked me and urgently requested to feel you out “informally”
whether you would be inclined to accept a position as professor in the
Physics Department (seat of the Ryerson Lab), as “head” (leader) of
studies and investigations in theoretical physics (not necessarily lectures,
as long as it does not suit you) and, more or less, what your conditions
would be. ... You would receive all conceivable support enabling you to
devote yourself freely to your research, in completely free cooperation
with the experimental physicists in the Ryerson Lab. You would have
to devote only as much (or as little) time to lectures as is convenient for
you—especially as the faculty intends to engage an Assistant Professor
of Theoretical Physics in America to help you*

(Added in a footnote: “* Dr. Gale offered me the prospect of this position;
I told him I would be ornly too happy to work with you as my superior.””)

whose duties would include systematic lecturing in agreement with you.
In short, you would have ideal conditions for your investigations.

For my part, I would like to urge you to say “yes,” the more so [the
last three words in English] since I have recognized in Chicago in the
past three months that the intellectual and also the social atmosphere
there is really excellent. Instead of envy and hostile demonstrations you
would find in Chicago the best sympathy, veneration, and friendship—
and these are important factors for such an ideal (and affectionate) and
sensitive man as you are. :

Although Frau Einstein had told me (in Princeton) that you had a
moral “duty” (a perfectly mystical concept in the present case) [the
phrase in parentheses in English] “not to leave the Germans who have,
after all, lost almost everything” just now. But I am deeply convinced
that Germany is not the right place for you.

(Added as a footnote: “By this I mean the atmosphere of the German
professors, the Geheimriithe, the Hofrithe, etc.—since the working class
in Germany is free of Junkerdom and other dirt.”

The Lenards, the Gehrkes, etc.—their name is legion—(possibly with
the exception of Planck and the late Rudolph Virchow) are peity and
simultaneously brutal individuals, Junkers and simultaneously miserable
slaves of the Kaiser regime.’

The letter continued in the same vein, expressing sentiments exactly like
those expressed by Einstein about Germany after the next world war—and
about the German academic atmosphere since his early youth. Neverthe-
less, Einstein answered almost immediately, on October 4 (EA 21-048, in
German): ‘

I was very touched that colleagues Gale and Michelson [note that Silber-
stein had mentioned Millikan, not Michelson] are ready to offer me this
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wonderful position. The prospect of working with these men and espe-
cially with you in close cooperation is extraordinarily attractive to me.
I am also convinced that such a cooperation would be very satisfactory
and fruitful. But still I cannot accept this beautiful call. While it is true
that I have experienced some evil by my colleagues and students here,
still I am rooted here so firmly by family and friendship ties that in the
absence of a real emergency I could not make the decision to move to a
totally new, even if very tempting, environment. If one has lived so long
and has acquired human relationships, one would leave behind a large
piece of oneself, and at my age I am not able to regenerate sufficiently
to change my environment so completely without significant damage.
Please transmit my heartfelt thanks to the colleagues; they will certainly
be able to appreciate the inner conflict which does not permit me to make
such a radical decision.

The attitude expressed here was not uncommon among assimilated Jews
in Central Europe before Hitler came to power, especially within intellectual
circles and among individuals active in the trade unions and in the various
political parties of the left. But it is noteworthy because Einstein’s letter
was written precisely at the time he had embraced Zionism, completed a
propaganda tour for it, and elsewhere—but nowhere in this letter—put
more and more stress on his Jewishness.

Chicago’s offer and Einstein’s refusal are not mentioned in any of his
biographies, as far as I am aware, nor in Millikan’s antobiography (Millikan
1950) or in Michelson’s biography by his daughter (Livingston 1973). The
prospective offer of a position for Silberstein was never mentioned by him
again and seems to have been entirely contingent on Einstein’s acceptance.

Silberstein answered Einstein’s letter on December 11 (EA 21-051, in
German), writing that he had passed on the letter to Dean Gale and had
only received an answer two days earlier, from which he concluded that
Einstein’s “words had reached him and he had liked them very much in
spite of the result which is sad for all of us.”

3.2 PROLOGUE

During his stay in Chicago, Silberstein had suggested to Michelson that
he undertake a new test of the hypothesis that the ether is carried along
by the earth, essentially a repetition of Sagnac’s experiment with more
powerful methods, and even promised to pay for it (Livingston 1973), an
offer possibly made on behalf of Eastman Kodak. Michelson wrote later
(Michelson 1925):

... at the urgent instance of Dr. Silberstein the writer was convinced of
the importance of the work, notwithstanding serious difficulties which
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were anticipated in the way of raising the necessary funds.... Funds
for this experiment, amounting to about $17,000, were furnished by the
University of Chicago, with an additional contribution of $491.55 made
through the efforts of Dr. Silberstein.

After unsuccessful open-air experiments had been performed at Mt. Wilson
in the summer of 1923, the funds provided allowed the construction of a
pipeline one mile long and a foot in diameter that could be evacuated. It
was installed in Clearing, Hlinois, and Silberstein wrote to Einstein on the
progress of the experiment on April 15 (EA 21-052). It was carried out in
late 1924 in his presence (Michelson and Gale 1925).°

The results of this experiment, like those of all of Michelson’s previous
ones, were in full agreement with those expected from the special theory of
relativity. However, other results obtained by a former collaborator seemed
to contradict the theory (Miller 1925). At the request of Science Service,
a Washington-based organization that published a science news bulletin,
Silberstein wrote a brief analysis of the as yet unpublished results, which
appeared in the bulletin under the headline “NEw EXPERIMENTS MEAN
DowNFALL OF RELATIVITY” provided by the editor (EA 21-053), stating
that those results could be explained “by means of the Stokes ether concept,
as modified by Planck and Lorentz.”” A similar comment appeared in a
letter to Nature (Silberstein- 1925a), which was contradicted in Eddington
1925 prompting a brief rejoinder by Silberstein (1925b), and caution in
any interpretation was advised in Giorgi 1925. Giorgi had simultaneously
written to Einstein about this, asking his opinion (letter of July 14, 1925,
EA 21-054, in Italian). Miller’s results were reanalyzed much later and
finally discounted (Shankland et al. 1955).

" Tronically, Silberstein had written to Einstein as early as March 10,
1920 (EA 21-041), about the Stokes—Planck—Lorentz ether theory, sending
him a reprint on the subject (Silberstein 1920) and asking his opinion. No
answer has been preserved. The Miller controversy does not seem to have
affected the tone of Silberstein’s letters to Einstein, which had always been
friendly and frequently quite deferential, even when he informed him that
he had submitted a paper with the “impertinent” title “SPECIAL RELATIV-
1Ty OVERTHROWN BY DOUBLE STARS” (EA 21-044, 21-045) to a journal
(he withdrew it before publication). An example of his deference is the
beginning of the letter quoted earlier (EA 21-051):

Dear Herr Kollege!
If T address you like this, copying your own letter, this is only for the
sake of the sacred principle of equality and comradeship, even though 1
_ had really “Most revered master” in mind.
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There was no indication anywhere in their exchanges over two decades of
any latent hostility or veiled irritation. They continued their correspon-
dence, though sporadically, for the next decade.

Eleven years after refusing Chicago’s offer, Einstein found himself in
the presence of “a real emergency,” which forced him to abandon Germany
even without the inducement of an offer and made him renounce his former
pacifism and adopt a permanent hostility toward Germany. Being eleven
years older, he—like thousands of other refugees—was even less able “to
regenerate without significant damage” than he had been at the age of 48,
but he had no choice anymore.

3.3 Act I

Shortly after arriving in the United States, Einstein received a letter from
Silberstein (December 3, 1933, EA 21-059). It started out in German:

Dear Professor Einstein,

First of all, I would like to greet you most heartily on the occasion
of your arrival and settlement in America. Everybody here reveres and
loves you, so that you without any doubt will feel very happy in your
new home country. Furthermore I would like to beg you for your kind
instruction in a question of relativity which has haunted me for some
time and which seems to me to be fundamental. But since little by little
I have lost fluency in the German language, I take the liberty of writing
in English, the more so since you yourself probably use this language
more and more.

This last assumption can only induce a smile in anybody who met
Einstein in this country; he never became comfortable with the English
language, and wrote all his letters in German, having them translated if nec-
essary. Nevertheless, from this point on Silberstein always wrote in English
and Einstein always answered in German; therefore no further reference
will be made to the language of the various guotations. As to Silberstein’s
assertion, it should be kept in mind that his German was flawless, at least
in writing, although it was not his native language; his English, on the
other hand, was not, and all the awkward turns of phrase, occasional wrong
choices of words, as well as the British spelling, in subsequent quotations
are his own.'”

Silberstein continued:

A “free particle” placed in a metrical field g,, describes a geodesic in that
field. Outside of matter, and rejecting the A-term, the field is determined
by

Gy =0 O
These are two main assumptions of your theory.
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Now suppose we have found a solution of (1), g, = gu(x1, ...,
x4), which has one or more singular “points” (or rather, four-dimension-
ally, singular lines), suche.g. as r = O for all x4 in the case of the familiar
Schwarzschild solution. Such a singular point can be interpreted as a
mass-centre or particle. Are we entitled to consider itas a “free particle”?
If so, then it should describe a geodesic of the field. In other words,
the singular lines of the solution g, ought to be geodesics of the field
&.. [All underlinings are Silberstein’s.] In fact, in the simplest, radially
symmetric case corresponding to a unique mass-centre the singular line
(r = 0, any x,) is a geodesic, i.e., satisfies X, + { “Lﬂ }fc,,fcﬂ = 0. Butcases
of two or more mass-centres have not been analyzed from this point of
view (quite apart from the difficulty of producing such solutions).

I would greatly appreciate your opinion on this matter. Such consid-
erations may perhaps be helpful also for establishing your law of motion
of free particles not by an independent act, but in intimate connection
with the field equations themselves. I believe that you have yourself
expressed the desirability of some such unification, though on different
lines.

I have in mind non-stationary fields corresponding to at least two
mass-cenires. I am fully aware, of course, of the insuperable math-
ematical difficulties in constructing such solutions. But it should be
possible to read off the properties of such singular lines from the dif-
ferential egs. G, = 0 without ever solving them.... The problem,
restated concisely, is: It being assumed that a field g, satisfying G, =
0 has singularities distributed along lines, to find the differential prop-
erties, of 2nd order, of these lines.*

(Added in a footnote: “# Without introducing, of course, a tensor of matter.
The vanishing of the divergence of such a tensor for a pressureless medium
readily gives (under certain conditions about p) for each element of the
medium the equations %, 4+ {“Lﬂ }iats =0.)

If this yielded the geodesics, it would be an elegant result. But the

problem is much beyond my power, & I would greatly appreciate to
have your views on the whole question.

Before continuing with Silberstein’s letter, two comments are in order.
First, Silberstein was clearly aware of the possibility of deriving the ge-
odesic law in the presence of a matter tensor, an approach taken, e.g., in
Eddington 1918, whether or not he knew of this or similar derivations by
others. Second, he appears to have shared Einstein’s view that one should
work with the vacuum field equations alone, and probably also shared his
failure to see that such equations with a singularity actually correspond to
singular energy-momentum tensors, a point which is discussed in detail in
Havas 1989.

Now Silberstein came to the crucial problem:



The Two-Body Problem and the Einstein-Silberstein Controversy 101

In connection with this subject, I should like to ask a somewhat different
question, namely, about the physical admissibility of solutions of G,, =
0. Consider a stationary axially symmetric field corresponding to two
mass-centres. Levi-Civita’s general ax. symmetr. sclution is

ds® = e dx; — e[ (dx] + dxd) + 1} dx} ]
where v is any solution of the ordinary cylindrical Laplacian equation
Vi = ;%5%7()‘1;7‘)1) + gi;;— = (0 and

0 0
dp = 2 g+ 2B gy,
8x1 axz

T/ B \? v \? v dv
=al(5) - (@) vt e
(this being a total differential in virtue of VZv = 0). The solution
corresponding to a single mass-centre is immediate. Passing to two
mass-centres, i.e. putting

@

My M,

TR T
I find by some simple artifices, as a solution of (2),

x2 ¢ M? M? 2M M. a’x?
u=——‘(———4‘+—f)+ - 2[ 1——1—1].
2 \r r a

?

This is accompanied by a sketch showing that Silberstein was using bipolar
coordinates and that a is the separation of the two centers.

In the above, Silberstein had rediscovered the solution given in Curzon
19242 and 1924b and had fallen into the same trap. He then continued:

This field v, u is, then, a rigorous solution of G, = 0, and it has only
the two singular points r; = 0 and r, = 0, in fine, the mass-centres
themselves. The field being stationary, the mass-centres will remain at
rest, at an x,-distance a, instead of falling towards each other, as we
know, unofficiaily, from Newtonian physics. Now, it does not seem
satisfactory to imagine that M; & M, are forced to remain at relative
rest by a stress-system (as does Dr. Weyl; “stuetzende Spannungen”;
R.Z.M., Sthed., p. 257) [Weyl 1923] or say by a stiff rod placed between
them. For this would mean the existence of a material tensor 7, i.e.
G, # 0 within the rod, and even if the rod is made ideally thin, it would
mean that the field has singularities all along the segment M, M, of the
axis, whereas such is not the case; the solution becomes at any point of
theaxisv = — 4L — Y2, — 0, and this is singular only at My, M,, and

r r

perfectly regular a]oné the included segment.

This passage is crucial for the following discussion, and therefore it had
to be quoted in full. It shows that Silberstein was fully aware of Weyl’s
results, but thought that he had found a counterexample.

He continued:
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Such being the case, this field v, . seems to be entirely inadmissible
and yet it is a rigorous solution of the eqs. G, = 0. Whence the
moral: not every solution of the field-egs. is admissible. Now, in this
flagrant case we happen to know (not from Relativity) that the solution
is inadmissible. But there might be other, more subtle, cases in which
no such extraneous knowledge would warn us.

It would, therefore, seem necessary to set up some more general
criterion of admissibility or non-admissibility of a solution of the field
equations,—always supposing that the Theory of Relativity is to be a
self-contained doctrine not borrowing special information from other
sources.

You would greatly oblige me, dear Professor Einstein, by giving me
your views on these two points, and especially on the first one.

Apologizing for my prolixity in stating these subjects,

with kind regards, yours sincerely,

The tone of this letter is that of a disciple asking his master for advice,
the same tone as had been adopted by Silberstein in all previous correspon-
dence. This was soon to change, however. _

Einstein responded two weeks later, on December 17 (EA 21-061):

At first I was taken aback by your static example with two masses, since
I believed you that the space outside the mass points is regular. I was
even more astonished since I myself had shown earlier that singularities
will appear already in calculating the second approximation.

Actually, however, the solution given by you is singular, as shown by
the following consideration. Your spatial line element is given by

U (dxf + dxg) + e*x] dxf = do®.

Einstein then proceeded to calculate the ratio of the circumference to the
radius of a circle perpendicular to the axis and surrounding it. The details
will not be given here, since he had already made a trivial error.in the
equation quoted above, as noted in Silberstein’s response. Einstein then
continued, having obtained the value e 2 - 27 for the ratio:

But this ratio would have to be 2 for an infinitely small circle in the
limit, which is not the case here for the x,-axis. The field calculated
therefore is singular everywhere on the x-axis.

From this, first of all, it follows that your example is not valid. It
would be more interesting to prove the nonexistence of a static solution
(whose singularities have the character of simple poles). I have shown
this earlier at least for the second approximation (and also that for a
“correctly” accelerated mass the singularity disappears). It can thus
hardly be doubted that the field equations contain the law of motion, so
that the geodesic hypothesis is unnecessary.

However, a really complete theory would exist only if the “matter”
could be represented in it by fields and without singularities.
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With thanks also for your friendly personal words and with friendly
regards
Your

Einstein clearly had put his finger on one crucial error in Silberstein’s
argument; however, his own “consideration” was wrong, as immediately
noticed by Silberstein. It should also be noted that Einstein did not rec-
ognize that the proof he had asked for as being more interesting had been
provided by Weyl more than a decade earlier—in spite of the fact that
Silberstein had mentioned Weyl’s work in his letter.

Silberstein answered by return mail on December 20 (EA 21-062):

I wish to thank you for your kind letier of December 17th. Your verdict,
however, I am sorry to say, is quite wrong. You have inadvertently
misplaced the two exponents v and (.

As in my first letter

ds® = ¥ dx} — & {e?#(dx] + dx}) + x{ dx3}. )
Thus the circumference of the circle you are contemplating is
C=2nrRe™?,
and its radius,
p = Re"™,
whence,
Clp=2rme™ (note’2m).
Now,
x? (M? M2 2M; M. a’x?
wen Gl o

vanishes rigorously for x; = R — 0, so that

lim E =27,
o
Thus the solution (1), with (2) and v = —M;/r; — M,/ r,, satisfies also
your own requirement of regularity (elementally Euclidean behaviour).!!
The statements made in my first letter remain, therefore, in full rigour.
Against your expectations, a statical solution with two (and, similarly,
3 or more) “singularities of simple pole character” does exist and, in
view of its physical implications, it is imperative to deal with it in a
fundamental way in order to uphold your gravitational theory.
1 shall expect, with much interest, your views on this matter.

Einstein scribbled some calculations on this letter about the metric com-
ponents and the Christoffel symbols as “First approximation” to check Sil-
berstein’s assertions; having found that, in this approximation, indeed

PR PR
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he wrote stimmt (correct) at the bottom. He then immediately, on Christmas
eve, wrote to Silberstein (EA 21-063):

I beg you to excuse my mistake. So it is true that there exists a static
solution with only two pointlike singularities. What does this signify
for the general theory?

First of all it is clear that the general basis of the theory implies the
correct law of motion.

He then proceeded to insist that

Singularities must be excluded in principle in a field theory.... In any
case, your investigation shows clearly how carefully one has to handle
singularities and how empty is a field theory which allows singularities
without precisely stipulating their character.

As mentioned in the discussion of Curzon’s papers before, the singu-
larities introduced by Curzon and Silberstein are not simple poles of the
field. It is surprising that Silberstein still considered them to be such poles
since he was familiar with at least some of Wey!’s work on the two-body
problem, as well as with Levi-Civita’s. Einstein, who was not, seems to
have fully accepted in the first paragraph of his letter Silberstein’s charac-
terization of his results, and then to have hedged on this issue, but did not
guestion directly their significance as interpreted by Silberstein. Neither of
them knew of Curzon’s papers.'?

On December 30, Silberstein replied (EA 21-064):

Many thanks for your excellent letter of the 24th. I fully agree with
you. It seems that, for the present, the best plan is to make the complete
field-eqgs (i.e. with T, # 0) the master equations of the theory, and if
somebody finds solutions of R, = 0 with singularities, he has to test
them by considering these singularities as small regions (slender world
tubes), seats of T,. ... This settles, for the present, the subject proposed
in my first letter, and I wish once more to thank you most cordially for
the patience and kindness with which you have discussed it with me.

The curtain falls on a scene of mutual kindness and reconciliation built
upon a shared error.

3.4 ENTR’ACTE -

In the same letter (EA 21-064) Silberstein discussed at some length “a cer-
tain result which I have found a few days ago and which seems to me very
remarkable (so far as I know, it is new).” This result was, as he showed in a
two-page calculation, that the most general spherically symmetric solution
of R, = 0 is “a statical field (the familiar Schwarzschild field) around a
centre of necessarily constant ‘mass’ m.” He then quoted from Einstein’s
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previous letter a suggested requirement that the singularities should have
temporally constant and spatially central symmetric character and stated
that “in view of my result it is enough to make them rad. symmetrical,;
for then they will, eo ipso, also be constant in time.” Einstein’s answer of
February 13, 1934, is lost, but Silberstein’s belated response of Septem-
ber 16 shows that he had suggested that Silberstein should “correspond with
Levicivita [sic] for the possibly existing literature on the subject & then,
perhaps, publish my proof if it differs from the others.” Obviously neither of
the two had heard of Birkhoff’s theorem, which was already known when
Silberstein 1922 was published (Jebsen 1921; Alexandrow 1921; Birkhoff
1927). For whatever reason, Silberstein only published his result four years
later: it will be discussed in Section 3.6.

These subjects were put aside at that point; the next few exchanges
were mainly concerned with the problem of helping Hitler’s victims. The
situation of the Jews in Germany in 1933, still eight years away from
the Holocaust, appears to have affected Silberstein psychologically more
than Einstein, as seems evident from a 13-page rambling letter Silberstein
himself called “passionate,” wriiten on September 23, 1934 (EA 21-070), in
a haphazard mixture of German and English and in a handwriting differing
from that of all other letters.

Although not returning to it in their correspondence, Einstein clearly
was deeply disturbed by Silberstein’s results and felt that the entire problem
of interacting masses had to be treated in a different manner. This was
done jointly with one of his current assistants, Nathan Rosen. In early
May 1935, they submitted the manuscript of the famous “bridge” paper
to The Physical Review, which appeared in the July 1 issue (Einstein and
Rosen 1935). Silberstein’s results were fully accepted and given as the
prime motivation for the investigation. In the Abstract they described their
method and results as having been

led to modify slightly the gravitational equations which then admit reg-
ular solutions for the static spherically symmetric case. These solutions
involve the mathematical representation of physical space by a space of
two identical sheets, a particle being represented by a “bridge” connect-
ing these sheets.

In spite of this different approach, to which they did not return in later
years, Einstein and Rosen also continued to work on the problem of motion
with particles treated as singularities. On vacation, Einstein wrote to Rosen
in Princeton (September 8, 1935, EA 20-209) that he had found a “better
form for the calculation of the many-body problem in first approximation.
I believe that Lanczos'® has once published something similar, but don’t
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know it anymore exactly.”” Rosen commented on this method on the 20th
(EA 20-210, in German), and added:

Now I am trying the following: One can easily generalize the (isotropic)
Schwarzschild solution for the case of a uniformly moving particle. . ..
With this solution as model I am now looking for a solution of the equa-
tions for two particles which move along a line (of course not uniformly).
Probably nothing will come of it.

Nothing did.
But he added, returning to Einstein’s calculation:

I am of the opinion that we have to start from the ordinary Schwarzschild
solution, even though it is not singularity-free, because it is necessary
to have the functions appearing in the equations as simple as possible to
be able to find solutions.

Nothing came of these calculations either.

3.5 AcT II

In 1935-1936, Silberstein again spent some time at the University of
Toronto. He invited Einstein for a visit during the meeting of the American
Astronomical Society, but nothing came of it. On September 23, 1935, he
wrote him again (EA 21-074), requesting a reprint of Einstein and Rosen
1935, which he had seen in manuscript form, and mentioning that

Paul Epstein (Pasadena) asked me to disclose to him how I got the
complete solution of your field-eqs for two mass-points. This I sent
him.... In reply he wrote me...saying that this is a “very important
contribution” and urging me to publish it in detail.... I shall write
out the whole investigation and send it as a paper to Phil. Mag. but
before doing so I would like to hear your opinion: Is this solution (with
two singularities, point singularities, which necessitated a revision of
your whole theory and gave rise to your new attempts, is it in itself
important enough to be worth a publication—in toto? Or should I
merely publish the result, i.e. the final ds?, axially symmetrical, with
two point singularities?

Apparently not waiting for an answer, he sent off the paper containing all
the details to The Physical Review in November, where it was received on
the 25th, and informed Einstein of its submission.

- Maybe Einstein was stung by the suggestion that he had revised his
whole theory; in any case, this letter induced him to take another look at
Silberstein’s calculations. He wrote him on December 21, 1935 (EA 21-
076), that “I also have to inform you that your example of the two mass-
points at rest (calculated by the method of Weyl and Levi-Civita) has a
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critical flaw.” Then he proceeded to repeat precisely the same mistake he
had made when he had first looked at Silberstein’s calculations and repeated
the same objection as in his letter of December 17, 1933 (EA 21-061). He
added that “If it would be possible for you to withdraw your publication on
this matter, it would be better.” '

Not surprisingly, Silberstein hit the ceiling; and, having realized that
the master was not infallible, from then on he changed the tone of his letters
from that of a disciple to that of a rival. On December 28, he responded
(EA21-077):

I am greatly puzzled by your statement. ... Is it possible that you have
quite forgotten that you have made the very same “objections” in De-
cember 1933 and that I have then shewn to you that you have just made
a “clerical” error (misquoting my formula), nay, that you have then (Jan.
1934) written me a long letter apologizing heartily for your mistake?!
And now you repeat exactly the same thing.. ..

He then repeated his calculation of EA 21-062.
At last, Einstein really took a close look at the problem. On December
30, he replied (EA 21-079):

Dear Mr. Silberstein:

Now I remember very well that you already informed me of your ar-
gument concerning the two-body problem after I had claimed the appear-
ance of a singularity along the axis. However, I let myself be convinced
incorrectly, since this proof was wrong.

You claim that

[ = xlz M12 M22 2M1M2 1 (AB)ZX% 1
=\ T )t == I
1 2 AB nr

vanishes everywhere outside the singularities on the axis x; = 0. But
this presupposes that (without violating continuity) one can take the
square root as positive everywhere.

That this, however, is not the case, one can recognize thus: Calling
o the angle between r; and r, and A the triangle [showing the sketch of
a triangle with one side A B opposite the angle «, and clearly meaning
that A is the area], then

2A = rifs sina = ﬁx;,

{}:\/l—siﬁa—l::pcosa—l.

The sign of cosa can be freely chosen, but one has to take it as the
same in all of space, if one does not want to introduce a discontinuity in
the first derivative. However one chooses the sign, one can not achieve
that [ vanishes everywhere on the axis.

thus
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He then elaborated on this argument, but Silberstein did not accept it. He -
replied on January 3, 1936 (EA 21-080):

Dear Professor Einstein,
Many thanks for your prompt answer to my letter. I am sorry to say
that you are again wrong. . .. Of course I assume v/ tohaveafixed sign,
-namely +1, once for all, i.e. between A & B and outside the segment
AB.
Now, such being the case, we have not, as you put it,

€}=coscx—1,

{ } = |cosa|—1,
and therefore forae = 0,aswellasfora =7, o = Ogoz =mo= 0,_

=

Perimeter
Diameter

but

for x; = 0, A — 0, and
settle the matter.

of circle equal 7. This, I hope, will

Einstein, however, did not accept this. He responded on the 8th (EA 21-
081):

Dear Mr. Silberstein,
‘I am not yet giving up the hope of convincing you of your error. You
think that you can put in your /-expression

{ }: jcosar| — 1.

I already mentioned that the first differential quotient of this function
is discontinuous (in @ = (2n + 1)7). One must consider & = Z
[accompanied by a sketch]. In this surface the differential equations are
violated by your solution.

If you still don’t admit your error, I will write nothing about it any-
more. I only beg you not to conclude from such silence that I assent.

With friendly greetings

Silberstein answered on January 15 (EA 21-082) that “University lectures
& some social pastimes have delayed a reply to your letter of Jan. 8, all
these days. I am now ready to answer it.” He then proceeded with a lengthy
discussion, concluding: »

In fine, the g,.’s become infinite only at A, B and their derivatives
are discontinuous at a certain surface passing through them. What of
that? Why don’t you consider this as an admissible gravitational field
~ surrounding two mass-centres? The Schwarzschild solution for one
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centre. .. (S) has a much more formidable singularity at the sphere r =
2M, namely
g =0, gn=o9,

yet neither you nor any other relativist has ever hesitated to use the line-
element (S) as representing the field around a mass-centre.... If we
apply to M; -+ M, the same leniency as to a single M (Schwarzschild so-
Iution), we must admit that your field-equations, R, = 0, misrepresent
fact and experience—giving two stars placed opposite each other.

Einstein, as promised, did not answer. This is unfortunate, since it
would have been important to stress the difference between a coordinate
singularity and a real one, e.g., by providing an invariant characterization.
This difference had been recognized for the Schwarzschild solution at least
since Eddington 192314

Silberstein wrote him again on February 10 (EA 21-083):

I pointed out to you that your invocation of these little singularities is but
a “futile exercise,” and a quite hair-splitting one. ... Now, it greatly sur-
prises me that instead of answering my letter of Jan. 15 ... you have told
some reporters at Princeton (Feb. 9) that my conclusion “was based on
an error,” etc. .. . I am sorry to say that, while our correspondence in the
past has been just & unimpeachable, your behaviour now in relation to
my last letter and to your Princeton reporters strikes me as quite unfair.
And T say this with much regret because I have always had the high-
est opinion of your objectivity and fairness in scientific polemics.. .. It
is quite possible that the reporters have distorted your (Feb. 9) state-
ments, as they certainly have distorted or exaggerated of late some of
my statements in this matter.

Einstein again did not answer, and Silberstein grew frantic. On March 6
he wrote him again (EA 21-084):

I desire to remind you that my letters. .. have been left unanswered by
you. And as they were preceded by some unfair and, in part, nonsensical
remarks which you have given out to some Princetonreporters (published
by the press in Feb. 9), I feel justified in assuming that you do not desire
to continue any direct correspondence with me and that you prefer to
drop vour previous principle of fair scientific discussion and to embark
on a non-geodesical (in plain English, crooked) way in dealing with your
previous friend, and with the radical defect of your “great” gravitation
theory. )
I shall thoroughly conform my further actions to this assumption
which (in view of your silence) I consider to be true to actual facts.
Yours faithfuily,

The paper Silberstein had submitted in November appeared in the Feb-
ruary 1 issue of The Physical Review (Silberstein 1935). It carried the
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provocative title “Two-Centers Solution of the Gravitational Field Equa-
tions, and the Need for a Reformed Theory of Matter,” and stated that the
solution “has singularities at A and B only, and not (as in R. Bach’s and
H. Weyl’s physically trivial solution) along the straight segment joining

Peter Havas

these two points” and that it had been communicated

It was the publication of this article which had brought the reporters to

to Einstein, pointing out, rather emphatically, that this is a case of a per-
fectly rigorous solution of his field equations and yet utterly inadmissible
physically, so that one cannot henceforth treat “matter particles” as sin-
gularities of the field. This has, in fact, induced Einstein to attempt, in
collaboration with N. Rosen, a new theory of matter.

Einstein’s door.

The article prompted Einstein and Rosen to submit a letter to the editor
on February 17, which appeared in the March 1 issue (Einstein and Rosen
1936). After repeating the arguments of Einstein’s letter to Silberstein of

December 30, 1935 (EA 21-079), it stated that

Lanczos had written to Einstein on February 15 (EA 15-256, in Ger-
man): “The last issue of Phys. Rev. contains an article by Mr. Silberstein,
which is in complete opposition to the general expectations.” After briefly
outlining his own earlier approach to the problem of motion, concluding

that

a-closer investigation shows that the calculation can be carried through
without the introduction of the square root and the resultant ambiguity
of sign. One then finds that in the correct solution
[ ] =cosa — 1.
This, however, also fails to satisfy the regularity conditions.. ..
- We should like to remark that, as shown in a letter to one of us,

Professor C. Lanczos of Purdue University has independently recognized
the error in Silberstein’s paper.

While the indeterminacy of the field due to the omission of the matter
tensor is quite large, one can nevertheless derive center-of-mass theorems
which are largely analogous to the usual mechanical theorems for rigid
bodies,

he continued:

That the singularity concept is insufficient and would cause a large in-
determinacy in the field, we all know, of course. But one can not forge
a weapon against this conception out of the gravitational field alone, as
this yields approximately the same as one would expect on the basis of
classical physics.

The fallacy in Mr. S.’s paper is contained in the square-root term in
formula (10}, p. 270.
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He then provided a proof that this term leads to a discontinuity and that
“one obtains again the usual mass line, which prevents the two masses from
falling on each other.” The proof is substantially the same as that given by
Einstein in EA 21-079.

Neither Lanczos’ letter nor the Einstein-Rosen letter to the editor men-
tions that the mass centers do not correspond to simple poles, nor is there
any discussion of the difference between the line singularity of Silber-
stein’s solution and the coordinate singularity of Schwarzschild’s. None of
them mention Curzon; on the other hand, the Science Abstracts summary
of Silberstein’s paper, written by McVittie, states at the outset that it had
“rediscovered” the Curzon solution (McVittie 1936).

On March 7, 1936, a note appeared in The Evening Telegram of Toronto
with the headline “Fatal Blow to Relativity Issued Here” and the subtitle
“Told by Einstein That He’s Wrong, Toronto Savant Makes New Attack on
Theory.” It started with

Relatively speaking, the battle between Professor Einstein and Dr. Lud-
wik Silberstein, visiting lecturer at the University of Toronto, over a
theory is warming up to frizzling point.

It then summarized Silberstein’s article as showing that

Einstein’s gravitational theory was invalid and that the general theory
of relativity hadn’t a leg to stand on. Professor Einstein agreed that
his gravitational theory required revision, but, answering the criticism
in the current issue of the Physical Review, he charged Dr. Silberstein
with conjuring “mathematical spooks” which had nothing to do with
relativity.

(Actually, no such “spooks” are mentioned in the Einstein—Rosen letter.)
Then it mentioned that Silberstein had sent another paper “to the Physical
Review yesterday. ... It’s a follow-up which Dr. Silberstein contends gives
the coup-de-grace to Einstein’s gravitational theory.”

Silberstein enclosed this note in a letter (EA 21-085) addressed to
“Messrs. Einstein, Rosen, & Lanczos” and mailed to Lanczos. He wrote:

Gentlemen,

The new paper by the undersigned (mentioned in the attached clipping
from Evening Telegram) fully disposes of Dr. Einstein’s & Dr. Lanczos’
rash & foolish objection to my solution of Feb. 1 (Phys. Rev.).

After adding a few calculations and again concluding that there is “No
‘matter’ between the centres,” he ended by “Einstein and Rosen’s idea of
calling my solution ‘mathematical spooks,” etc., is as foolish as it is unfair.
E. & R.s attitude strikes me as also vulgar. They will soon repent it.”
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This letter was transmitted to Einstein by Lanczos as requested on
March 12, together with a lengthy letter of his own (EA 15-257, in German),
starting:

Dear Mr. Einstein! Dutifully, I am sending you the enclosed letter, asitis
also addressed to you and Mr. Rosen. The situation with Mr. Silberstein
is very regrettable, since he is obviously more and more doggedly stuck
with these fixed ideas. In a further letter to me he informs me of his
additional results regarding axially symmetric solutions (especially, that
for certain Ansdtze of the line element there exist only static solutions
[but setting the g;4 = 0!]), but which, it seems to me, are all well known
through the papers of the Italian school. Thave tried as gently as possible
o point out his error concerning the problem of motion, but given his
high-strung state all this will not help much. Given the rigorous criticism
common for American journals possibly his paper for Phys. Rev. will
not even be accepted, which I am almost afraid of, since the rejection
might cause the total collapse of his mental vigor. It is sad that in such
cases one cannot do anything sensible, but after all one can not demand
that one should swallow obvious errors for humane reasons.

(The Lanczos—Silberstein correspondence is not available, nor are Ein-
stein’s answers to the two letters from Lanczos.)

Before Einstein had received Lanczos’ letter containing Silberstein’s,
however, he had already dashed off an irate response to Silberstein’s letter
of March 6 (EA 21-084) on March }p (EA 21-087):

Dear Mr. Silberstein,

T have alerted you in two letters in detail to your mistake, and advised
you to withdraw publication. In addition, the newspaper contained the
idiotic claim that I had revised the general theory of relativity because
of an earlier letter by you. By this you made it necessary for me to
correct your errors publicly. Pauli told me, e.g., that I should absolutely
do this, since the error was not so obvious that it could be noticed by any
knowledgeable reader. Whether I will answer later publications by you
on this subject will depend on whether I consider it necessary.

With friendly greetings

Silberstein responded on the 17th (EA 21-088):

Sweet Mr. Einstein,

Your letter of Mar. 10 to hand. Its tone, and the “airs” you give
yourself therein, greatly surprises me. But let us adhere to the principle
of “sense of humour,” especially cultivated by the Anglo-Saxons. And

" so, instead of barking at you, I send you herewith a refutation of your
- objections which is yet simpler than my proof (given in a paper sent a
week ago to Phys. Review) thatall R, = Oontheaxis AB,&allT,, =0
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(no “matter” between the centres A, B).... This, I trust, fixes you up
(U.S.A. slang) once & for all.

With friendly greetings,

Yours sincerely

“The rest is silence” (Shakespeare 1602). Silberstein’s solution was
never mentioned again, and no letters were exchanged for five years.

3.6 EPILOGUE

During those five years Nazi Germany had remilitarized the Rhineland,
the civil war in Spain took its course, Austria suffered the “Anschluss,”
Munich produced the annexation of the Sudetenland and subsequently the
occupation of all of Czechoslovakia, the attack on Poland started World
War II, and, within less than a year, half of Europe had been occupied by
Nazi Germany and the Soviet Union. Nuclear fission had been discovered,
and Einstein had been induced to write to President Roosevelt about it.

Einstein, and probably also Silberstein, spent more and more time trying
to help the victims of world events. But while they previously had on
occasion collaborated in these efforts, they did not communicate even on
these subjects now.

The paper mentioned in Silberstein’s last letter (EA 21-088) and in the
Toronto Telegram article was never published; whether it was withdrawn
or rejected by The Physical Review is not known. Rosen left Princeton to
accept an appointment at the University of Kiev and did not return to the
problem of motion for more than a decade. The scientific public accepted
the Einstein—Rosen letter as the final word on Silberstein’s claims. As many
Jewish and anti-Nazi scientists had to worry more about survival than about
their research, and some of those who escaped as well as their former or
new colleagues on both sides devoted their energies to war work, very little
effort went into investigations of fundamental problems.

Silberstein had mentioned results on spherically symmetric solutions to
Einstein in his letter of December 30, 1934, and similar results on axially
symmetric solution in a (lost) letter referred to by Lanczos on March 12,
1936. He submitted an extended version to The Philosophical Magazine in
November 1937, which was published shortly thereafter (Silberstein 1937).
It had two parts: Part I (whose results, he noted, had been “communicated
to Dr. Einstein in a private letter of December 1933”), consisted of the proof
that any spherically symmetric solution of R, = 0 can be put in a static
form, without giving any references to previous work; this indicates that
Silberstein had not gotten in touch with Levi-Civita (and that the referee also
was not aware of Birkhoff’s theorem, which by then had become quite well
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known and was, e.g., accorded a section in Tolman’s famous monograph
(Tolman 1934)). ‘

Part II first gave a proof that if one assumes the form of the axially
symmetric line element to be that which had been proved by Levi-Civita
to be the most general static one, this form allows only static solutions of
R, = 0. This seems to be the same proof Silberstein had mentioned to
Lanczos. But then he went on to give a “proof” that all axially symmetric
solutions are static, and thus, in particular, there does not exist a solution for
two mass centers moving along a line. This resultis nonsense, on the face of
it. In spite of this, it not only got past the referee, but it apparently has never
been challenged directly in the literature. It probably escaped attention for
a few years because of world events, and then was not noticed by the next
generation of relativists—or by Weyl, who had also ignored Silberstein
1936. Although Weyl later joined Einstein in Princeton, nobody seems
to have drawn his attention to Silberstein’s claims. Of course, numerous
examples of explicitly time-dependent solutions have been exhibited by
several authors in the last fifty years, indirectly disproving Silberstein’s
result.

This was Silberstein’s last publication in the area of relativity, although
he published dozens of papers on other subjects, mostly in optics, between
1937 and his death eleven years later.

In the meantime, Einstein, in collaboration with Banesh Hoffmann and
Leopold Infeld, had attacked the problem of motion from a different angle.
The result, which they called the “new approximation method” for obtaining
the equations of motion of n slowly moving particles, was published in 1938
(Einstein, Infeld, and Hoffmann 1938). Three years later, on February 8,
1941, Silberstein wrote to “Drs. A, Einstein, L. Infeld, and B. Hoffmann”
(EA 21-089):

Gentlemen,

On Jan. 26th I have pointed out to Prof. Veblen certain fundamental
objections to the method of attacking the “Problem of Motion” adopted in
your paper of Jan. 1938.. . . namely the non-existence of spherically sym-
metrical point singularities, i.e. their incompatibility with the very struc-
ture of Einstein’s gravitational field equations,—singularities which,
nonetheless, you assume throughout your investigation.

My impression is that this essential objection still holds and it has
seemed worthwhile of bringing it directly to your notice, as the authors
of that otherwise very interesting (although, by necessity, extremely
laborious) method.

He then stated that he had written Veblen again on January 27 telling
him the result of his computation of the perihelion motion, which differed
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from Einstein’s both in sign and in magnitude, but then had found an error
and now agreed with the old result as well as the one obtained in Robertson
1938 on the basis of the EIH equations, but “Since my own derivation of
it seems to be more Jucid than Robertson’s, I give it here, in toto, in the
belief that it may interest you. ...” He ended the letter with “Nonetheless,
the objection as to the rigorous non-existence of spherically symmetrical
point singularities persists.” Then he added a p.s. containing a calculation
claiming the existence of a secular acceleration of the center of mass for
two comparable masses.

Einstein replied on February 18 (EA 21-090), apologizing for the delay.
He then wrote: "

Your computation of the two-body problem is pretty. But in the present
case it is important to give the solution for nonvanishing mass ratio.
Now as to your objection concerning the spherical symmetry of the
singularity. Here it should be noted that the main interest of the entire
consideration is that only that part of the space matters in which the field
is regular (surface conditions). ... Of course, in a complete field theory
the positing of singularities is altogether forbidden. In the present case
the introduction of singularities is justified because it allows treatment on
the basis of the gravitational field alone of a problem of which “matter”

is a part, without having to use a theory of the latter.
Infeld and Hoffmann are no longer in Princeton, and I preferred not

to bother them for the time being.

With friendly greetings,
Yours,

Silberstein was delighted. He replied immediately (February 21, EA
21-091):

Dear Professor Einstein,

Your letter of Feb. 18 has given more pleasure than I can say in words.
The very fact that you have written to me at all after my discourteous
letter of 1937 (or so), the outcome of a momentary passion, and thus
have forgiven me, is a precious gift to me. For, having been since
1921, instinctively, your true friend, I have these last four years often
reproached myself bitterly for that explosion of bad temper (originated in
the two mass-centres problem). Well, I thank you most heartily for your
spirit of goodwill and forgiveness. ... I am naturally glad that you have
found my treatment of planetary motion (m, > m;) “pretty”. .. and that
you have recognized the validity of my objection, viz. the non-existence
of radially symmetrical point singularities in a field R,, = 0. I accept, at
the same time, your views as to the (practical) necessity of working—
with your method—with just such singularities. ...

He then added more than four pages describing various results he had
obtained using the EIH equations, raising various objections in that context,
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Einstein replied on March 4 (EA 21-093):

It has to be said again that I cannot see it as an objection that the gravita-
tional interaction disturbs the central symmetry of the fields surrounding
the particles. ... Now I come to your new objections. ... You conclude
that for the motion along a line. .. the “mass center” is not in uniform
motion. But you have to bear in mind that our coordinate system has no
absolute significance. ... Something similar occurs in your application
of II to the motion of the “mass center” of the masses circling one an-
other with constant separation. This result would show the absurdity of
our formulae if it would not rest on an error in the calculation. ... Thus
the objections amount to nothing.

Silberstein responded on March 8 (EA 21-094) with an eight-page letter
which started with “Many thanks for your interesting, and actually instruct-
ing, letter” and concluded with “Please, Prof. Einstein, have patience with
me and teach me to conquer my ignorance in dealing with these intricate
subtleties.” It does not appear that he meant this ironically. In an undated
reply (EA 21-095), Einstein wrote that he did not have the time to work
through all the details of Silberstein’s letter, but elaborated further on the
significance of coordinates. The correspondence continued until the end
of 1946, dealing with various topics, including Silberstein’s questioning of
the universal validity of E = mc?; the tone was generally friendly.

Sometime in early 1941 Infeld received two letters by Silberstein, ap-
parently containing objections to the method of EIH. He wrote to Einstein
(undated, probably March 1941, EA 14-055): “Of course he is wrong.
But I doubt that you will be able to convince him, because he is mentally
unbalanced as I learned from people who know him well.”

Given Infeld’s style, this judgment should probably not be taken liter-
ally. What is surprising is that his letter gives the impression that he did not
know Silberstein personally; both were of Polish origin, although one gen-
eration apart, and since 1938 Infeld had been at the University of Toronto,
where Silberstein frequently had visited from Rochester, just across Lake
Ontario. Thave been unable to question anybody who actually knew Silber-
stein in his later years; however, Lanczos’ “high-strung” comment seems
to be justified on the basis of the tone of some of Silberstein’s letters.

Tt is also quite clear from the correspondence between Einstein and Sil-
berstein, however, that here were two proud and stubborn men—Silberstein
even more so than Einstein, even less inclined to accept criticism of his work
and, after the break in 1936, incapable of taking the initiative and apolo-
gizing to Einstein, although he knew that he was at fault; both frustrated,
Silberstein by the lack of recognition of his by no means insignificant ear-
lier work, attempting to show his mettle by using every opportunity to try
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to prove that Einstein’s theory was inadequate (various ether-drift exper-
iments, double star and red shift observations, the two-body metric and
other axially symmetric solutions), Einstein by his failure to find the pure
field theory; both—perhaps because of their strong belief in their own men-
tal powers—persisting in some easily correctable errors, having stopped
reading the relevant literature as well as having failed to consuli with easily
accessible scientists who had worked in the same area, such as Weyl and
Levi-Civita.
“Finita la commedia” (Alighieri 1321).

4. Conclusion

Scientifically, it is clear that Silberstein was wrong on the main issue, his
solution for the two-body problem; but Einstein was not completely right
either. His dislike of singularities (and vain search for a “pure” field the-
ory of matter) made him go off on tangents repeatedly, without realizing
that even Silberstein’s one-center solution was not what it was purported
to be, since it did not describe the field of a spherically symmetric source.
Thus, the extended correspondence and the associated publications (Ein-
stein and Rosen 1936; Silberstein 1936, 1937), while shedding much light
on the modes of thinking and the character of the men, fundamentally added
nothing to clarifying the problem of two particles.

In 1927, Darmois had summarized the status of that problem as follows
(Darmois 1927, p. 44), after landing Wey[’s contribution (given en frangais,
because it sounds so much better than any translation could):

Mais le veritable probléme du mouvement libre de deux masses, éxigeant
par conséquent un ds” & deux tubes massiques, n’est nullement resolu.
Méme pour le probléme de deux masses égales, tournant circulairement
autour du centre de gravité, on ne sait encore rien.">

And the conclusion in 19887 “Plus ¢a change, plus c’est la méme
chose” (Karr 1849).
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1 All translations are my own.

2 We shall also restrict ourselves to singularities corresponding to positive masses.
Negative masses were considered much later in Synge 1960; Hoffmann 1962; Is-
rael and Khan 1964; the general case of equilibrium configurations with multipole
singularities along an axis was treated in Szekeres 1968.

3 “R. Bach” is really Rudolf Forster; I am indebted to A.J. Kox for drawing my
attention to the Forster correspondence in the Einstein Archives. Forster obtained
a doctorate in mathematics and physics at the University of Leipzig in 1908. For
a time he was an assistant at the Technische Hochschule Danzig (now Gdansk)
according to the eulogy quoted below; I am indebted to Prof. L. Kostro of the
University of Gdansk for his help in trying to verify this, but unfortunately we
were unable to do so. During World War I he was a research engineer at Krupp.
He started working in general relativity in total isolation and corresponded with
Einstein in 1917-1918." As he wrote on December 28, 1917 (EA 25-065), his
contract prohibited any outside writing, “the fate of the ‘industrial slave,” and
therefore he chose to publish under a pseudonym. After leaving Krupp, Forster
worked at Ziindapp and, from 1924 until his death in 1941, at Siemens-Schuckert in
Nuremberg. Although his work as “R. Bach” was known to his last employer, and,
in the eulogy by a Dr. Bohloff (November 2, 1941, EA 25-070, in German), this use
of a psendonym was ascribed to his modesty rather than to any outside pressure (and
lauded—without mentioning that relativity was proscribed in Nazi Germany), he
did not publish anything after 1922. However, according to his widow, who wrote
to Einstein after the war (January 20, 1948, EA 25-068, in German), he did continue
his scientific work until his death. She asked Einstein for permission to send him
Forster’s notes, but Einstein apparently never answered. None of Einstein’s earlier
letters to Forster are known to survive, but it is clear from Forster’s that his various
results as well as his questions were taken quite seriously. Furthermore, Forster’s
widow stated that Einstein once had written: “Isee from your letter that I am dealing
with a man of unusual theoretical talent. It would be regrettable if you would not
have enough leisure to think about these beautiful problems.” This was probably a
quote from the lost letter of February 19, 1918, since, in his answer of March 19
(EA 25-067, in German), Forster wrote:

Concerning my profession, I can only tell you that I am very satisfied with
it and would not exchange it with that of a teacher, not even an academic
one, quite apart from the strangely low pay. At most, I might be tempted
by a position at a research institute. The results of my work here have
only a very distant relation to the mass murder of the nations. I do not
construct any cannons, but am occupied with electrical measurements,
apparatus, electrical propulsion of mechanical apparatus, etc.

Since in the above-mentioned eulogy Forster’s work at Krupp was described as
involving “controls for artillery,” the letter may well represent only an apologia
for war work directed to a man known for his opposition to the war raging at the
time. Forster’s most important work (Bach 1922) unfortunately is reprinted in
Weyl’s collected papers (Weyl 1968) as if Weyl were the author, and “Bach” is not
mentioned editorially at all.
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4 The other members of the examination committee were M. Brillouin and Emile
Borel (chairman). According to Levinson’s CV, he was working under Brillouin.

3 For later discussions of the Curzon singularity, see Mysak and Szekeres 1966;
Gautrean and Anderson 1967; Stachel 1968; Cooperstock and Junevicus 1974.

6 A good discussion of the Weyl-Levi-Civita method and of Curzon’s paper is
given in Synge 1960, chapter vi; there is no mention of Silberstein, however.

7 Philipp Lenard (1862-1947) at the time was a professor at the University
of Heidelberg and director of the Physics and Radiology Institutes there; he later
wrote the infamous four-volume Deutsche Physik. Ernst Gehrcke (1878-1960) was
director of the State Physical-Technical Institute in Berlin and a. o. Professor there;
he had published Die Relasivitiitstheorie, eine wissenschaftliche Massensuggestion
a year before Silberstein’s letter. (That same year had seen a right-wing coup
attempt, the Kapp Putsch, which was defeated mainly through a general strike.)
Both were leaders in the campaign against Einstein, which is discussed in detail in
this volume (Goenner 1993). Rudolph Virchow (1821-1902) is considered to be
the father of modern pathology. In evaluating Silberstein’s comments, it should be
kept in mind that he had not lived in Germany for more than a quarter century. This
may explain the inclusion of Virchow, who had been dead for almost two decades,
as one of only two “good Germans.” Possibly Silberstein had known him in his
student days.

8 This period in his life is discussed in detail in Stachel 1990. In contrast to
several treatments of Einstein’s relation to Judaism and Zionism which were written
by religious Jews or Zionists, this paper provides an excellent balanced survey,
although it does not give full weight to the degree of assimilation and the frequently
total absence of religious feelings among many Central European Jews, who were
often not even “Jews in name only.” In the 1920s and early 1930s, after the Nazis
had given the broadest and vaguest possible “racial” labeling of “Jews,” an extensive
discussion took place in the German and Austrian press, in books, and in meetings
of the left and the right about “What Is a Jew?” A few years later, Einstein wrote
an article (Einstein 1938) containing a section with the same title, which totally
ignored that discussion and the arguments given there, actually echoing the Nazi
line of “Once a Jew, always a Jew” without realizing it. This is briefly discussed in
Havas 1980. After coming to power, the Nazis, in the Nuremberg laws, had to give
up any attempt at a racial definition, and had to resort to using the religion of one’s
four grandparents as the only criterion.

° In Livingston 1973, p. 310, this is described as follows, based on an interview
with Tom O’Donnell, a collaborator of Michelson:

Dr. Silberstein arrived from Rochester at a time when Michelson was not
well enough to meet him. Henry Gale took Silberstein out to Clearing
and disliked him immediately.... Gale loved his liquor, but disliked
Silberstein and would only drink with “friends.”

This sounds as if Gale had met Silberstein only then, while he had known him for
at least three years, and well enough to consider offering him a position. On the
other hand, any dislike on Gale’s part would explain why he did not maintain his
offer to Silberstein once Einstein was out of the picture.
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10 The problem Silberstein experienced with the German language was, however,
clearly stated by him in a later letter (September 23, 1934, EA 21-071, in German,
with the two words in square brackets in English):

This time I will try to write to you in German (although, through Hitlerian
association, even the language itself [itself] sounds hateful [odious] inside
my “soul.” I shall only insert English words here and there.

1 n Silberstein 1922, p. 13, the term “elementally flat” was used equivalenily
with locally Minkowskian. Apart from the unusual spelling (curiously, the index
of the book refers to “elementary flatness™), this is the first use of the term in the
literature that I am aware of. This is rather ironic, given that it is precisely the
question of elementary flatness that would be at issue in the entire controversy.

12 The most detailed discussion of the question whether a given space-time
actually is spherically symmetric is given in Takeno 1952, where it is proved that the
one-body solution of Weyl and Levi-Civita is indeed spherically symmetric, whereas
that of Silberstein (and thus of Curzon, whose paper was apparently not known to
Takeno) is not. The most recent discussion of the line singularities of Curzon’s
and Silberstein’s two-body solution is contained in Schleifer 1985a, 1985b. There
it is shown that, although all scalar invariants vanish everywhere outside the two
centers, the region between them along the axis does not constitute a Lorentzian
manifold. .

13 Cornelius Lanczos had been Einstein’s assistant in Berlin in 1928-1929. At
that time Einstein was working on a unified field theory, and Lanczos had vainly
attempted to interest him in the problem of motion (Havas 1989). He left Germany
in 1931 and became a professor at Purdue University.

14 A detailed discussion of the difference between real and coordinate singulari-
ties is given in Szekeres 1960; cf. also Mysak and Szekeres 1966.

15 «“Buyt the real problem of the free motion of two masses, which thus requires a
ds? of two mass tubes, is not at all resolved. Even about the problem of two equal
masses rotating around the mass center in a circle one knows as yet nothing.”
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Part 11

THE EMPIRICAL BASIS
OF GENERAL RELATIVITY






Einstein’s Explanation of the
Motion of Mercury’s Perihelion

John Earman and Michel Janssen

1. Introduction!

On November 18, 1915, Einstein presented to the Berlin Academy a paper
containing three predictions of his still incomplete theory of gravitation
(Einstein 1915c). The verification of the three predicted effects—the grav-
itational red shift, the bending of starlight passing near the sun, and the
advance of the perihelion of Mercury-—became known as the “classical
tests” of the general theory of relativity (GTR). Einstein had previously
predicted the first two effects using heuristic arguments based upon his prin-
ciple of equivalence. The red shift prediction had already been confirmed,
or so Einstein claimed, by Erwin Freundlich, the Babelsberg astronomer
and confidant of Einstein. However, Freundlich’s analysis of the spectral
lines of stellar sources was criticized by Seeliger (1916),? while other exper-
imentalists, such as St. John at the Mt. Wilson Observatory, were unable to
confirm Einstein’s red shift prediction for the sun.? Thus, this first classical
test threatened to be a failure rather than a success. Einstein also stated that
his theory yielded a deflection value of 1.7” of arc for starlight grazing the
sun, which was twice the previous 1911 prediction based on the principle
of equivalence. Freundlich had set off into Russia in 1914, hoping to use a
solar eclipse to test this earlier prediction; but perhaps fortunately for the
nascent general theory, the hostilities of the First World War broke out, and
Freundlich’s equipment was seized and he was briefly interned by the Rus-
sians. An expedition from the Lick Observatory met with rainclouds rather
thanrifles. It was thus left to Arthur Stanley Eddington, whose England was
bitterly at war with Einstein’s Germany, to complete the second classical
test.* In the November 18 communication Einstein noted that in contrast to
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the deflection of light, the value of the red shift was not changed by his new
theory “because this result depends only on gs44” (Einstein 1915¢, p. 834).
This remark is a little misleading since, as we will see below; Einstein most
likely used the red shift to help him guess the form g44 should take.

Einstein’s third prediction was a new one, requiring deduction from a
formal theory rather than the heuristic reasoning which led to predictions
of the first two effects. Einstein found that the perihelion advance of a
planet per orbit should be 67 G M /a (1 — e*)c?, where G is the gravitational
constant, M is the solar mass, ¢ is the semi-major axis of the planetary
orbit, e is the eccentricity of the orbit, and ¢ is the velocity of light. For
the planet Mercury, the predicted advance is 43" per century, which is in
striking agreement with the actual value of the anomalous advance that
had exercised some of the most acute minds in astronomy for over half
a century. The resolution of this anomaly was the first solid triumnph for
Einstein’s GTR, and after nearly three-quarters of a century of careful and
detailed scrutiny, the triumph remains untarnished.’

The manner in which this trivmph was initially achieved is a story that
has received surprisingly little attention. The details of Einstein’s expla-
nation of the perihelion advance form a fascinating web of mathematical
analysis and physical intuition. They reveal a delicate, almost precarious
path of reasoning. Inthese same circumstances, many able physicists would
have lost their way, and some actually did.

2. Mercury’s Perihelion: @bser;vm@n

According to G.M. Clemence,

Observations of Mercury are among the most difficult in positional as-
tronomy. They have to be made in the daytime, near noon, under un-
favorable conditions of the atmosphere; and they are subject to large
systematic and accidental errors arising both from this cause and from
the shape of the visible disk of the planet. (Clemence 1947, p. 361)

In addition, the observations “are affected by the precession of the equi-
noxes, and the determination of the precessional motion is one of the most
difficult problems in positional astronomy, if not the most difficult” (ibid.,
p. 361). Finally, the anomalous advance of Mercury’s perihelion is a theo-
retical value that is arrived at by subtracting estimates of the perturbations
on Mercury’s orbit caused by other planets from the observed advance of
some 570" of arc per century.® Given all of these hazards and the smallness
of the residual—some few dozens of seconds of arc per century—it is
remarkable that astronomers were able to agree on a definite value for the
anomaly.’
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The first systematic investigation of the problem was undertaken in
the 1850s by Le Verrier, who found an anomalous advance of 38.3” per
century.® Le Verrier was able to demonstrate to his satisfaction that fiddling
with the values of the planetary masses would not produce agreement be-
tween observation and Newtonian theory. For example, increasing Venus’
mass estimate by some 10% would explain away the anomaly, but such
an increase would have, according to the Newtonian laws of gravitation,
other consequences that contradicted observation. Since a knowledge of
the main features of planetary orbits was deemed secure, the discrepancy
had to be due to some as yet unknown source of perturbation or else the
blame had to be placed at Newton’s doorstep.

The next major advance in the analysis of the observations was due
to the American astronomer Simon Newcomb. Whereas Le Verrier had
based computations of secular perturbations on different mass values for
the same planets in different parts of the computation, Newcomb sought a
consistent set of planetary masses. He estimated masses independently of
the problem of secular perturbations by means of observations of satellites
of the planet, deflection of passing comets, and periodic perturbations on
other planets. Einstein, though probably not familiar with the primary
literature, was well aware of Newcomb’s accomplishment. Writing to his
friend Besso on December 10, 1915, Finstein explained that the knowledge
of the value of the perihelion advance is “perfectly assured from the point
of view of astronomy, because the determination of the masses of the inner
planets has been made by Newcomb from the periodic perturbations (and
not the secular)” (Speziali 1972, p. 60).

Using his mass estimates for the planets, Newcomb (1895) arrived at
a value of 8.48” +.43” for the product of Mercury’s eccentricity and its
anomalous perihelion advance per century, a figure repeatedly cited in the
literature. What is more than a little puzzling are the different values for
the advance bandied about in the secondary literature. The range of figures
from the period immediately surrounding Einstein’s perihelion paper is
indicated by the following list: Jeffreys (1919), 417 Silberstein (1917),
42.9" Droste (1915), 44" and Einstein (1915¢), 45" +5". Jeffreys’ value
is understandable if the favored modern value of ¢ = .2056 is used in
conjunction with Newcomb’s product figure, yielding a centennial advance
of 41.24" which Jeffreys presumably rounded off to 41”. The most plausible
explanation of Silberstein’s value is that he confused the observed value
of the anomaly with the theoretical value predicted by GTR. We find
Droste’s value of 44" inexplicable. And Einstein’s value of 45"+ 5”is even
more mysterious since he gives 43” as the theoretical prediction, which he
presumably arrived at by using e = .2056. Nor is the 45" figure due to a
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slip of the pen, for Einstein repeats it in a letter to Sommerfeld written two
weeks after his perihelion paper (see Hermann 1968, p. 32, and Section 4
below). ‘

There are similar but less severe discrepancies in the quoted values
of the theoretical prediction of GTR, the most popular value being 43.03”
(see, for example, Clemence 1947 and Weinberg 1972), while 42.9” (Mgller
1972) and 42.95” (Will 1981) are also cited. It is somewhat disconcerting
to find such divergences on both theory and observation in a topic that turns
on a small handful of seconds of arc per century.

To set the record straight, the correct theoretical value is 42.98".° The
observational estimates have remained remarkably consistent, although
there is a slight upward tendency from Newcomb (1895) 41.24" +2.09",
to Clemence (1947) 42.56"” +.94”, to Shapiro et al. (1976) 43.11" £.21”,
More to the point of the present work, when Einstein offered his explana-
tion of the motion of Mercury’s perihelion, Newcomb’s work was generally
regarded as reliable, and thus there was general agreement both that there
was an anomaly and that the product of the anomalous centennial advance
and the eccentricity of Mercury’s orbit is given by Newcomb’s figure of
8.48"+.43".

3. Mercury’s Perihelion: Theory

The anomaly in Mercury’s perihelion documented by Newcomb left as-
tronomers with two main choices: either continue to maintain Newton’s
laws of motion and his 1/r? law of gravitational attraction and search for
additional sources of secular perturbation on Mercury’s orbit, or else mod-
ify Newton’s second law or his law of gravitation or both. The various
attempted implementations are described in Roseveare’s splendid study,
Mercury’s Perihelion from Le Verrier to Einstein (1982), in this section
we will simply summarize some of his findings, leaving it to the reader
interested in further details to consult his work.

The most obvious candidates for additional sources of perturbation were
solar oblateness and intra-Mercurial matter. The results of 19th century
optical measurements of the photosphere of the sun were summarized in
1895 by Newcomb:

The general result is that the mean of the equatorial measures are [sic]
slightly less than the mean of the polar measures, the difference, however,
being within the probable errors of the results. I conclude that there can
be no such non-symmetrical distribution of matter in the interior of the
Sun as would produce the observed effect. (Newcomb 1895, pp. 111-
112)
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As for intra-Mercurial matter, the simplest hypothesis would have been an
~ extra planet in an orbit between the sun and Mercury. Various claims to
have observed such a planet “Vulcan” were reported in the 19th century,
* and astronomers continued searching for the hypothetical Vulcan well into
the 20th century. But by 1915 this hypothesis was not taken seriously,
both because the probability was low that a Vulcan sufficient to account
for the perihelion anomaly could have eluded observation and also because
theorists had convinced themselves that this Vulcan would engender other
anomalies. This left Seeliger’s (1906) hypothesis of bands of diffuse intra-
Mercurial matter, a hypothesis that received independent observational sup-
port from the existence of zodiacal light and that was flexible enough to
hold out the promise of a consistent, anomaly-free account of planetary mo-
tions in Newtonian terms. Seeliger’s account will receive more attention
below, but we now turn to a summary of attempts to-deal with the perihelion
anomaly in non-Newtonian terms.
Proposed modifications of Newtonian theory can be conveniently di-
vided into four ciasses.

Nonrelativistic theories. At least two modifications of Newton’s 1/r2 law
received serious attention. The first, initially proposed by Clairaut in 1745
in connection with the moon’s perigee, would add to Newton’s 1/r? gravi-
tational force law a term C/r*. To understand this proposal, recall that one
of Newton’s demonstrations of his law of gravitational attraction combined
the assertion that the apsides of the planets are quiescent with the proof
that if the central force law differed from 1/r? the apsides would rotate.
This was a double-edged argument. The moon’s perigee was known to
rotate some 3° per orbit, the obvious cause being the attraction exerted by
the sun. However, when Clairaut, d’ Alembert, and Euler tried to calculate
the influence of the sun, they could only account for half of the observed
3° advance.!® Newton’s demonstration would then seem to imply that a
departure from the 1/r? law was involved. The anomalous motion of Mer-
cury’s perihelion can be accounted for by inserting Clairaut’s proposed
force law into Newton’s second law and adjusting the value of C. As New-
comb (1882) noted, however, at small distances the 1/r* would dominate,
producing effects that would contradict Cavendish type experiments. In a
sense, Einstein’s GTR revives Clairaut’s law (see Section 6, Eq. (43)).
Another ad hoc modification, proposed by Hall (1894) and initially
championed by Newcomb, replaced 1/r% by 1/r®*®, Newcomb (1895)
found that § = .0000001574 would account for an advance of 42.4” per
century in Mercury’s perihelion. But it was difficult to believe that such an
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ugly faw could be true, and in any case De Sitter (1913) showed that such
a law would lead to problems with the motion of the Moon’s perigee.

More radical modifications of Newtorian gravitational theory were in-
spired by the work of Weber, Gauss, Riemann, and Clausius on action-
at-a-distance electrodynamics. Applying their velocity dependent force
laws to gravitation gives values for Mercury’s perihelion advance ranging
from 7" to 14” per century. Gerber (1898, 1902) also published a velocity-
dependent force law and derived from it a formula for the perihelion advance
of 24734/ T?V?(1 — €2), where T is the orbital period of the planet and V
is the velocity of propagation of the gravitational potential. If V is identified
with the velocity of light ¢, Gerber’s formula is exactly the one that appears
in Einstein’s 1915 paper. No one, however, pretended to be able to find a
coherent physical foundation for Gerber’s theory. Ritz’s theory of electro-
magnetism and gravitation (1909) also employed velocity dependent force
laws. His gravitational force law contained a free parameter that could be
adjusted so as to yield the correct advance for Mercury’s perihelion and
that, when so adjusted, gave reasonable values for the perihelia advances
of Venus and Earth. But after the success of Einstein’s special theory of
relativity (STR) few could take seriously Ritz’s emission theory of light
and the electromagnetic basis of his law of gravitation.!!

Transitional theories. If Newtonian mechanics is modified by adding Lo-
rentz’s mass transformation m = mg+/1 — v?/c?, the result is somewhat
analogous to the velocity-dependent laws mentioned above. The upshot is
an advance in Mercury’s perihelion of 7” per century.

Special-relativistic theories. Both Poincaré (1906) and Minkowski (1908)
offered Lorentz-invariant forms of Newton’s 1/r? law using a retarded
action-at-a-distance scheme. De Sitter (1911) found that Minkowski’s ver-
sion of this scheme gave no secular advance to Mercury’s perihelion while
Poincaré’s gave 7.15" per century. He also found that Poincaré’s law could
casily be generalized by multiplying by an integral power of a certain factor,
in which case the secular advance would be n x 7.15". Choosingn = 6
gives 42.9”. However, De Sitter mentioned the generalization only in pass-
ing, and neither he nor anyone else offered n = 6 as an explanation of the
anomaly—at least, that is, until Silberstein (1917) rediscovered a version
of De Sitter’s finding (see Section 8 below).

Post—special-relativistic theories. By 1907 Einstein was hard at work on a
theory of gravitation, and he managed to convince himself, essentially on
the basis of considerations of the principle of equivalence, that a successful
theory of gravitation could not be constructed within the confines of STR.
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His first formal theory of gravitation (Einstein 1912a, 1912b) relied upon
the notion of a variable speed of light, a notion that from the modern per-
spective is either incoherent or else implicitly involves a bimetric approach,
with a curved space-time metric on top of a flat background metric. On
one construal, this theory gives a perihelion advance for Mercury of 28.7”
per century (Whitrow and Morduch 1960, 1965). In the same year, Max
Abraham also concocted two theories (1912a, 1912b, 1912¢) inveolving a
variable speed of light; the first gives an advance of 14.52” (Pavanini 1912,
1913), and the second yields a retrogression of 3”(Roseveare 1982, p. 152).
Nordstrom (1912, 1913) likewise offered a pair of theories, both of which
yielded a retrogression for Mercury’s perihelion (Roseveare 1982, p. 153;
Whitrow and Morduch 1965). No perihelion prediction was worked out
in Mie’s theory (1913), but presumably it does not give a secular advance
since it posits a Newtonian attraction. Finally, the Einstein-Grossmann
theory (1913) predicts an advance of 18” per century (Droste 1915).

Though brief to the point of superficiality, this summary serves to establish
that prior to Einstein’s general theory, no modification of Newtonian theory
that did not contemplate additional sources of perturbation offered a non-
problematic resolution of the perihelion anomaly. In particular, it seemed
that special-relativistic laws of gravitation would not suffice without resort
to ad hoc trickery, and among the post-special-relativistic theories that en-
deavored to build gravitation upon new first principles, not one came within
hailing distance of the observed anomaly.

4. Preliminary Remarks about
Einstein’s Perihelion Paper

Einstein’s November 18 paper (1915c), to which we will refer as the “per-
ihelion paper,” marks the first occasion on which the perihelion problem
appears in Einstein’s published work. The first known mention occurs in
1907, the year in which he began to think seriously about a relativistic
theory of gravitation, in a letter to Conrad Habicht: “Now I am busy on
a relativistic theory of the gravitational law with which I hope to account
for the still unexplained secular changes of the perihelion movement of
Mercury. So far I have not managed to succeed” (Seelig 1956, p. 76). But
as far as we are aware, there is no other mention of the perihelion problem
in Einstein’s correspondence prior to late 1915,

It is now known that this apparent neglect of the perihelion problem
between 1907 and 1915 is only apparent. A recently discovered manuscript
of some 50 pages, partly in Einstein’s hand and partly in Michele Besso’s,
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shows that, probably during a visit from Besso to Einstein in Zurich in late
May or early June 1913, Einstein and Besso collaborated on calculations
of the perihelion motion of Mercury.!? Although these calculations were
based on the Entwurf theory (Einstein and Grossmann 1913), a theory
that Einstein abandoned in 1915, some of the techniques developed in
the Einstein—Besso collaboration were put to good use in the November 18
paper (see Sections 5—7 below). This paper was apparently produced within
the span of a week, an impressive feat even for someone of Einstein’s ability.
The fact that Einstein was not calculating de nuovo does not diminish the
magnitude of his achievement, but it does make it more comprehensible.

The neglect of the problem in his published writings does call for some
comment. The cynical explanation of his failure to mention the result of
the Einstein—Besso calculation based on the Entwurf theory would be that
the result was wrong. As mentioned earlier, the Entwurf theory predicts
a perihelion advance of 18” per century. The figure given in the Einstein—
Besso manuscript is 1800”. The manuscript gives the correct formula for
the perihelion advance, the erroneous factor of 100 is due to a mistake
that occurs when actual numbers are inserted into this formula. There are
several indications in the manuscript that Finstein and Besso discovered
this mistake, but the correct figure is not explicitly stated. The so-called
“scratch notebook” (EA 3-013), dated 1909-1914, also has Einstein insert-
ing numbers into a formula for the perihelion advance equivalent to the one
given in the Einstein—Bessc manuscript except for the fact that the orbit’s
eccentricity is neglected. This time Einstein does not make any mistakes
and he arrives at the figure of 17”13

The neglect of the perihelion problem in published writings seems to
have been fairly general in this period. Ofthe seven post—special-relativistic
theories mentioned in the preceding section, a formula for the perihelion
advance of a planet is worked out in only one case by the primary author—
Nordstrom in the case of his second theory (Nordstrém 1914)—and in that
case no numerical value for the predicted perihelion shift of Mercury is
given. Once again, a cynical explanation is suggested by the fact that none
of these theories gives anything like the correct value. While a touch of
cynicism is perhaps healthy, 2 much more plausible explanation has been
offered by Roseveare (1982, pp. 156ff.); namely, that while the advance
of the perihelion of Mercury was an anomaly for Newtonian gravitational
theory, it was not generally regarded as an effect that had to be explained on
the basis of new principles since Seeliger’s hypothesis was widely accepted
as offering the means of a satisfactory resolution. Newcomb, who had
initially adopted Hall’s hypothesis, felt that he was “forced back upon the
hypothesis of a mass of matter surrounding the Sun sufficient to cause the
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motion of the perihelion of Mercury” (Newcomb 1912, p. 227). In lectures
given in 1906-1907, Poincaré (1953) endorsed a ring of matter as the
probable cause of Mercury’s perihelion shift. De Sitter, who, to judge by

 the number of publications and the respect with which they were received,
was regarded as an authority on this matter, adopted Seeliger’s explanation
as a working hypothesis:

Can we, then, consider the problem as finally solved [by Seeliger]?
I think not. One more step remains to be done. The fate of Hall’s
hypothesis should be remembered. It is true that Seeliger’s explanation
differs from Hall’s hypothesis in being vastly less hypothetical; in fact,
it may be considered as nothing more nor less than a determination of
mass of a material body whose existence is known beforehand. But,
taking this point of view, we cannot consider that determination as final
before it has been ascertained that it is not in contradiction with other
possible determinations; in other words, before it has been verified that
the attraction of the zodiacal masses does not give rise to other effects,
which might be in contradiction with observations. (De Sitter 1913,
pp- 302-303)

Across the English channel Harold Jeffreys was at work, also trying to show
that the attraction of zodiacal masses sufficient to account for Mercury’s
perihelion shift would not give rise to other effects in contradiction with
cbservations (Jeffreys 1916, 1918).

But if Seeliger’s hypothesis was generally accepted as a working hy-
pothesis, why did Einstein concern himself with the perihelion problem in
November 19157 No doubt part of the answer lies in Einstein’s healthy dis-
respect for generally accepted wisdom; but that part of the answer does not
speak to the timing factor. To deal with that factor we need to remind our-
selves that for the past two years Einstein had been struggling with his new
gravitational theory. By means of a mistaken but ingenious and ultimately
profound argument, Einstein had managed to convince himself that suitable
gravitational field equations could not be generally covariant.'* According
to a letter to Sommerfeld, dated November 28, 1915, Einstein’s dissatisfac-
tion with the results of his experimentation with non-generally covariant
equations was connected with the perihelion problem. One of the three rea-
sons he gives for abandoning the Einstein—Grossmann theory is that “The
motion of the perihelion of Mercury yields 18”instead of 45" [sic].”'> One
should perhaps not attach too much weight to this retrospective assessment,
made in the flush of the success of the deduction of the missing 43”. Of
course, once Einstein had abandoned his previous efforts, there would have
been an understandable desire to convince himself that the new approach
he was exploring toward the end of 1915 was not also heading up a blind
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alley. Meeting the challenge he had set for himself in 1907 —accounting
for the “still unexplained secular changes in the peribelion movement of
mercury”’—would restore confidence. Meeting this challenge would also
serve to establish priority for the still developing theory, a concern one can
reasonably attribute to Einstein since he knew that Hilbert was also at work
on the same problem. '

A third possible factor relevant to the timing issue was the appearance
of a paper by Freundlich attacking Seeliger’s hypothesis (Freundlich 1915).
Freundlich’s paper is cited as a “noteworthy article” in a footnote in Ein-
stein’s perihelion paper.!” However, in a letter to Sommerfeld, written in
February 1916, Einstein gives the impression that he was not much influ-
enced by Freundlich’s critique, which he likened to “kicking in an open
door” (Einrennen einer offenen Thiir), a standard German idiom for mak-
ing much to do about something that was completely obvious to begin with
(Hermann 1968, p. 39). Apparently, Einstein was confident that a correct
theory of gravitation would render the hypothesized zodiacal matter super-
fluous, at least insofar as it affected the perihelion problem. It is not clear,
though, how Einstein could have been so confident that this was indeed an
open door until he had the 43”1in hand.

By the same token, if the other two hypothetical motivations of restoring
confidence and establishing priority were to be served, it was essential to
predict an advance close to the observed value. In the next section we will
see another equally compelling reason why Einstein had to come close to
the accepted value of the advance.

In the end, however, it may be a mistake to look for any deep moti-
vation behind Einstein’s perihelion paper. In that paper he mentions that
an application of Huygens’ principle and a “simple calculation,” which is
omitted, show that a light ray passing a distance A from the sun will suffer
an angular deflection of 4G M/ Ac?, as opposed to his earlier prediction of
2G M/ Ac?. Tt was only natural for him to wonder whether his new theory
would also increase the previous prediction of the perihelion advance.

5. Finding an Approximate Solution for
the Gravitational Field of the Sun

In the next three sections, we will closely examine the logic of Einstein’s
perihelion paper. The argument naturally breaks down into two parts:
finding a solution of the field equations representing the gravitational field
of the sun and finding the perihelion motion of planetary orbits in this field.
Einstein tackles these tasks respectively in section 1 (“The Gravitational
Field”) and section 2 (“The Motion of the Planets”) of his paper. Our
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discussion will likewise be divided into two parts. In this section, we will
Took at how Einstein calculated the field of the sun; in Sections 6 and 7, we
will analyze his calculation of the perihelion motion in this field. In both
cases we will pay special attention to the various approximations Einstein
makes along the way.

When writing the perihelion paper, Einstein had not yet arrived at the
final field equations, but he does refer in a footnote to a “forthcoming
communication” on this matter so that we can infer that he was at work on the
paper that was presented to the Berlin Academy on November 25 (Einstein
1915d) and that contains what are now called Einstein’s gravitational field
equations.'® In his communication of November 11 he had taken as his field
equations (Einstein 1915b, p. 800):

Gy = —«Tyy, ey

where G, is the Ricci tensor, 7),, is the energy-momentum tensor of the
gravitational sources, and « is a constant. For the exterior field of a massive
body, such as the sun, Eq. (1) reduces to

Guu =0, (2)

which coincides with the implications of the final Einstein field equations.
The Ricci tensor can be split into two parts (Einstein 1915a, p. 782,
1915b, p. 800; cf. Norton 1984, p. 269, pp. 304£f.):

Gim = Rim + Sim, &
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where both Latin and Greek indices take on the values 1, 2, 3, and 4. In
modern notation, the Christoffel symbols { } are defined as
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In equation E.2'° Einstein defines the components I}, of the gravitational
field as minus these Christoffel symbols (Einstein 1915c, p. 832, 1915a,
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In coordinate systems satisfying the coordinate condition E.3

where g = detg,,, the second part of the Ricci tensor, S;;, vanishes, as
follows from the relation {*”} = 8, log./=g. So, with this coordinate
condition, the field equations (2) reduce to R,, = 0, or, with the help of
Egs. (4) and (6), to equation E.1:

o2, .
> yrert, =0 ®
af
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Egs. (7) and (8) are the relations Einstein used in the explanation of Mer-
cury’s perihelion motion.?® The unphysical coordinate condition Eq. (7) not
only simplified the field equations but was turned to other advantages that
will become evident below.

Einstein sought a space-time metric g, satisfying Egs. (7) and (8) and
the following conditions, which are obvious posits for the exterior field of
the sun:

(C.1) The space-time metric is stationary;
(C.2) itis spherically symmetric;

(C.3) it is time orthogonal;

(C.4) it is asymptotically Minkowskian.?!

Ideally, one would like to find first an exact solution to the field equations,
or rather a family of exact solutions parameterized by the value of the
central mass, and then to demonstrate that this is the unique family of
solutions satisfying (C), as was, in effect, accomplished shortly afterward
through the work of Schwarzschild and Droste. Einstein did not attempt to
produce an exact solution. Instead he used a somewhat tricky variant on the
iterative approximation procedure that he and Besso had used in their 1913
calculations on the perihelion problem. Moreover, he essentially simply
bracketed the uniqueness problem.

After writing down equations E.1 and E.3—our Egs.(8) and (7)—
Einstein briefly addresses the uniqueness problem:

However, one should keep in mind that the g,,, for a given solar mass are
not fully determined mathematically by the equations (1) and (3). This
follows from the fact that these equations are covariant under arbitrary
transformations with determinant 1. It might, however, be justified to
assume that all solutions can be reduced to one another by such transfor-
mations and that they therefore (given the boundary conditions) differ
only formally, not physically. Following this conviction, I am satisfied,
for the time being, to derive one single solution, without entering into
the issue of whether it is the only possible one. (Einstein 1915¢, p. 832)
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So, on the one hand, Einstein seems to have been clearly aware of the fact
that there might be a uniqueness problem over and above the trivial non-
uniqueness of the solution’s coordinate representation; on the other hand,
he felt perfectly comfortable ignoring any such complications.

This gives another reason, beyond the ones already given in Section 4,
why it was important for Einstein to get very close to 43”. One can well
imagine how his derivation of the perihelion motion could have been crit-
icized for relying on a solution that not only is approximate rather than
exact, but that might not be unique either. However, since Einstein found
the magic 43" in the end, all worries, it seems, were laid to rest. A stupen-
dous stroke of ill fortune would seem to be needed to make some flawed
approximation procedure yield exactly the right value; and in the brilliance
of the moment the uniqueness problem recedes into the background where
it can be left until a better opportunity arises to tackle it.

Einstein’s pleasure over the perihelion result is evident from his letter
to Sommerfeld of December 9, 1915: “The result for the motion of the
perihelion of Mercury fills one with great satisfaction. How we are helped
here by the pedantic precision of astronomy, which I often secretly poked
fun at!” (Hermann 1968, p. 37; translation by H. and R. Stuewer). What
does not come through in this letter is the psychological drama of the
moment when Einstein inserted the numbers into his perihelion formula and
the 43” popped out. Something of the drama is conveyed by A.D. Fokker’s
report that Einstein suffered heart palpitations following the discovery.??
Little wonder then that the psychological resolution of the above problems
sufficed for the time being.

Einstein computed the field of the sun in Cartesian coordinates (x, y,
z, ct). This means that to lowest order the metric field g,, is the usual
diagonal Minkowski metric 7, = diag(-1, -1, —1, 1) as specified in
Einstein’s equations E.4 and E.4a. Then follows a rather cryptic paragraph
in which Einstein explains his iterative approximation procedure:

In the following, we assume that the g,, differ from the values given
in equation (4a) only by quantities that are small compared to unity.
We will treat these deviations as small quantities of “first order,” and
functions of the nth degree in these deviations as “quantities of nth
order.” Equations (1) and (3) [our Egs. (8) and (7)] enable us, starting
with equation (4a), to calculate through successive approximations the
gravitational field up to quantities of nth order. In this sense we will
speak of the “nth approximation.” The equations (4a) form the “zeroth
approximation.” (Einstein 1915c, p. 833)?

We need to look carefully at this paragraph. First, notice that itis ambiguous
whether “gravitational field” refers to the quantities I'};, or to the metric



142 John Earman and Michel Janssen

field g,,. Given Einstein’s definition of the gravitational field earlier (see
Eq. (6)) and given his usage of the term elsewhere in the paper,?* one would
be inclined to say that the reference is to I',. On the other hand, the two
references in this passage to equation E.4a, in which Einstein gives the
Minkowski metric, suggest that by “gravitational field” he means g, here.

Unfortunately, this is not the only ambiguity in this passage. Still, there
seem to be enough clues—mainly coming from a careful analysis of the
actual application of the approximation procedure outlined here—to make
a solid case for the following interpretation. In presenting this interpretation
it will be helpful to introduce some additional notation to distinguish the
different orders of approximation.

First, we contend, Einstein assumes that the metric field can be written
as a rapidly converging power series, where as his expansion parameter
he takes the leading terms in the deviation of the metric field g,, from
its Minkowski values. Using superscripts to distinguish terms of different
order and suppressing all indices, we can write:

© [¢)] @

g=g+g+g+---, ®

where (fg) = diag(—1, —1, —1, 1), where ig contains the leading terms in the
deviations from Eé) produced by the gravitational field of the sun, and where

? (or more generally, ?) contains terms of second (nth) order in (é)

We realize that, when taken in isolation, the first two sentences of the
passage quoted above are perhaps more naturally interpreted in a somewhat
different way. Instead of a power series, Einstein could have had in mind
something of the much simpler form g,, = 1, -+ 8,,, where the quantities
8, are used as expansion parameters for functions of g,,, but not as the
leadoff terms in a power series for g, itself. Clearly, it is crucial for this
interpretation that “gravitational field” in the passage quoted above refers
to I'y, rather than to g,,,. As we just saw, it is not clear whether this is true.
The interpretation also seems hard to reconcile with two other passages
where Einstein talks about the metric to first order in a way that strongly
suggests that there are higher-order terms.?> Actually, we do not need to
consider such subtleties to decide against this interpretation. It has some
very serious difficulties, which will emerge below. For the time being, we
will just list some independent support for our interpretation.

As we mentioned earlier, what Einstein in all likelihood is doing in
his perihelion paper is applying the method he used in his 1913 perihelion
calculations with Besso in the context of his new theory. Although this
is not the place to substantiate this claim,? it is clear that in those earlier
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calculations Einstein and Besso were actually working with a power series
expansion for g,,,. It is no coincidence that this is more easily seen in these
1913 calculations than in Einstein’s 1915 perihelion paper. In 1913, the
gravitational field was represented directly by g,,, whereas in 1915 it had
come to be represented by I'jj, (see Eq. (6)). As a consequence, Einstein
was now only interested in the quantities '}, giving a perihelion motion,
not in the g, corresponding to I'},. In fact, the only metric field that is

explicitly given in the paper (apart from 5,,,) is what in our notation would

be (§? + 27) On the face of it, this would lend support to the reading that

Einstein is not thinking in terms of a power series at all. Given his interest
in Ff‘w rather than g,,,,, however, it is perfectly understandable that he does
not bother to compute the higher-order terms in the expansion of g,,. On
the basis of these considerations and others that will be brought out below,
we feel strongly justified reading the passage quoted above as a somewhat
cryptic explication of the approximation scheme we suggest.

We continue our exposition of this approximation scheme by looking
at the relevant functions of the metric field. In our skeletal notation, the
gravitational field I'},, to what Einstein calls first and second order can be

written as?’

O o ,m

['=gaeg, (10)

© M), B O,

2)
F=(g+g)ig+gog. (11)

@ O]
" contains corrections to I" of the order of ig}) Notice that in the reading we
@
just rejected, the last term in I’ would not be present. The importance of
this observation will become clear below.
The field equations can likewise be written to first and to second order

respectively as
O]

ar =0, (12)

@ m

sl +TT =0. (13)
)
From these equations it is clear that Einstein can compute I" without com-
)
puting zw) One simply substitutes the solution I' of Eqg. (12) into Eg. (13)

)] .
and solves for I'. Since the geodesic equation likewise only depends on the

metric field through I'; ,, there is no need to compute fé) explicitly to find
the perihelion motion.

We are now ready to tackle the remainder of section 1 of Einstein’s
paper, which comprises two subsections called “First Approximation” and

“Second Approximation,” respectively.
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In E.4b, directly under the heading “First Approximation,” we find

. . . © O] .
an expression for—in our notation—g,, + g,,. We offer the following

reconstruction of how Einstein arrived at this metric. In the paper on the
Entwurf theory mentioned earlier, Droste goes over a simple argument to
establish the form of a static spherically symmetric metric in Cartesian
coordinates (Droste 1915, pp. 999-1000).28 A sketchy version of the same
argument can be found in the Einstein-Besso manuscript, on a page in
Einstein’s hand. The argument runs as follows.

Suppose we want to find the static spherically symmetric metric g,
at a point P with Cartesian coordinates (x, y, z). To this end we rotate
the coordinate system in such a way that the x-axis now goes through
P. In the new, rotated coordinate system, P will have coordinates (x’ =
G+ yr+ D2,y =0,7 = 0). In this special coordinate system, the
metric at P will have a very simple form. From its static character and
spherical symmetry, it follows that all off-diagonal components are zero
and that g5, = g3,. Hence, g, at P can be written as

g, = diag(4, B, B, ), (14)

where A, B, and C are as yet undetermined functions of the coordinates.
Transforming back to the arbitrary Cartesian coordinates we started from,
we find that g, at P can be wriiten as

' xixd

gij = Blij+ —5-(A—B), gu=gua=0 gu=C, (15)
where i and j take on the values 1, 2, and 3. Since g, is asymptotically
Minkowskian, it follows that B = —1. Moreover, Einstein knew that
in order to recover both Newton’s theory in the weak-field, slow-motion
approximation and the desired result for the gravitational red shift, C had
tobe setequalto 1 — a/r, witha = 2GM/c? and r = (x2 + y* + 22)1/2,
The third constant, A, is then fixed by the coordinate condition E.3. From
+/—g = 1tofirst order in ¢/ r, and

g =detgy, = detg), = ABC = A(1-2), (16)
r

it follows that o
A:-(H;). a7

Inserting these values for A, B, and C into Eq. (15), we arrive at the first-
order metric in equation E.4b, corresponding to the line element:
iy]

ds? = (1 - %)czdtz - ;(&j +a%) deldxl.  (18)
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Presumably, Einstein arrived at equation E.4b in a similar way. To make
Eq. (18) more perspicuous, transform to spherical coordinates, in which the
line element becomes
ds? = (1= 2)e2ar? = (14 =) ar? = r* (do* +sin20 dg?) . (19)
r r

which is the first-order in a/r approximation to the exact Schwarzschild
line element?

o AN
a? = (1= D)2 = (1= =) ar? = 12 (d6% +sin?0 dg?) . (20)
r r
Notice that Einstein cannot use spherical coordinates at this point, because
they do not satisfy the coordinate condition ./—g = 1.
Einstein still has to show, of course, that this metric field is a solution
of the field equations to first order. He leaves it to the reader to verify this,

giving only the field equations to first order (cf. Eq. (12)). One easily checks
m
that the metric field in Eq. (18) is indeed a solution by computing I'},, and

[¢3} O]
showing that 3,I'};, = 0. Expressions for the various components of I'},,

are given at the end of the “first approximation” subsection (cf. equations
E.6a% and E.6b):

M k [y
rk — _el_x_(g(gij — 3x_§_>9
r ’ 21

where i, j, and k take on the values 1, 2, and 3. When either one index or

all three indices are equal to 4, %zv vanishes.

As John Norton has argued, the form of the weak static metric field
in Eq. (18) freed Einstein from a prejudice: weak static fields need not be
spatially flat to recover the correct Newtonian limit (Norton 1984, p. 257,
p. 261, pp. 278-279, pp. 310-311). As Norton also pointed out, and as
we just saw, the coordinate condition ./—g = 1 played a central role in
obtaining this result. Immediately after giving the first-order metric in E.4b,
Einstein addresses the worry that a reader with his own old prejudice would
have at this point:

From our theory it follows that, in the case of masses at rest, the compo-
nents gy through g3 are already different from zero in quantities of the
first order. We shall see later that through this no contradiction arises
with Newton’s law in the first approximation. (Einstein 1915c, p. 834;
quoted in Norton 1984, p. 311)
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The first sentence provides strong textual support for our interpretation of
the approximation procedure. Translated into our notation, what Einstein

seems to be saying is that the components }?i ; are already nonzero, not just

the higher-order terms (?i ;, etc.). Einstein will make good on the promise
in the second sentence at the beginning of section 2 of his paper, where
he will show that for slow motion the geodesic equation to lowest order of

M,
approximation—in which only the components I'j, play a role—reduces
to Newton’s second law.

In the Entwurf theory (using Cartesian coordinates), only the 44 compo-

nent of ?,w differs from zero. As in the 1915 theory, the geodesic equation
to lowest order of approximation reduces to Newton’s second law. The
perihelion motion of 18" per century predicted by the Entwurf theory is
completely due to second-order terms in the power series expansion of gys.
In this respect the situation in the 1915 theory is very different. As Einstein
explained to Besso in a letter from January 3, 19163

The strong increase of the effect compared to our calculation [on the basis
of the Entwurf theory] stems from the fact that, according to the new
theory, the g1;—g33 occur among the quantities of first order as well [i.e.,
along with g44] and thus contribute to the perihelion motion. (Speziali
1972, p. 63)

It is important to keep straight which effects are found at which order
of approximation in which theory (and, as we will see below, in which
coordinates). In the 1915 theory, using Cartesian coordinates, the situation
is as follows. The contribution of the first-order terms in the metric to
the perihelion motion, to which Einstein is referring in his letter to Besso,

W, @
comes from the I'}; terms and from some Egl?afgl? terms in I" (cf. Eq. (35) in
Section 6). It seems natural to assume that the magic 43" are due partly to

these terms and partly to the (gg) 8? terms in iz’) From the phrasing of the Ietter
to Besso—especially from the word “contribute” (beitragen)—and given
Einstein’s experience with the Entwurf theory, it seems safe to conclude
that Einstein tacitly made this assumption. Notice that this would go against
the alternative interpretation of the approximation procedure, according to

@
which there are no (§) 8? terms in I'. On the other hand, the assumption that

both the ((é) 8? and the (27) aﬁ? terms contribute to the magic 43" gives rise to
a little puzzle. We have seen that Einstein’s first-order metric is just a first-
order approximation to the Schwarzschild metric in Cartesian coordinates
(see Egs. (18)-(20)); and in the usual derivation of the perihelion motion
we do not have to go beyond first order. In particular, we do not need any
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?8? terms. The solution of this little puzzle will further strengthen the
case for our interpretation of Einstein’s approximation procedure.

In order to find the perihelion motion, Einstein needs the components

r 54 (i = 1,2,3)tosecond order. These are computed in the short subsection

“Second Approximation.” Einstein writes down the relevant components
) ay

of the second-order field equations 31" + I'T" = 0 (see Eq. (13)). Using

®)
Eq. (21) for the relevant I components, one obtains>?

@, o?

I, = -5 (22)

@),
One easily verifies that, up to some divergence-free term, I'y, has to be
. o,
equal to o>x’ /2r*. The divergence-free term, of course, is just Iy. Sowe

arrive at

(Z)i (l)i O{z Xi (l)l- o o xi 04
Dy =T+ 55 = r(1- ;) = —-Er—3(1 - ?). 23)

@,
Notice that we indeed have a correction of the order of ?g) here to I'y, (cf.
Eq. (11)). N
There is another way of deriving this expression for ['},. This method

is suggested by the alternative interpretation of Einstein’s approximation
procedure, according to which Einstein simply meant to write the metric

@

field as g,y = 1w + 84y, Recall that in this interpretation I would not
)

contain terms of the form ?a? Instead of I in Eg. (11), we would have

@ © | My D
I =(g+g)dg, 24
where we used ['* to indicate that we are dealing with an alternative in-
terpretation of the approximation procedure. We can directly compute the

@
components of ['* from the first-order metric Einstein gives in E.4b (cf.
Eq. (18)). For instance, we have

0)) [¢)]
)

I S
T =Ty — 38" (20480a — Ougaa (25)

where we used that I'* = I' to first order. Since the metric is static, 84%) uh =
0. Moreover, one easily verifies that 3; Gas = axi/r3and 8 = axixi /r3.
Inserting these relations into Eq. (25}, we obtain:

o, , a? xt

Fa' =T+ 5. (26)
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Comparing Egs. (23) and (26), we see that (12‘)24* and %24 are equal o one
another.

This result solves the little puzzle we drew attention to earlier, namely,
that it is strange that we should consider a second-order approximation at all
given that the line element in Eq. (18) is just the Schwarzschild line element
to first order—-albeit in Cartesian rather than spherical coordinates—from
which we usually derive the perihelion motion without ever having to worry
about second-order terms. Contrary to what Einstein presumably thought,

the magic 43" are due solely to the (é) terms, the %) terms only contribute in
@
higher and completely negligible order, not via the ? 8%) terms in I".

The result ironically brings out a serious difficulty for the interpretation
of Einstein’s approximation procedure that inspired its derivation. The

problem is that the equality of (1224* and (1224 only holds in certain coordinate
systems. So, in this interpretation we have to ascribe a considerable amount
of good fortune to Einstein, He just happened to pick a coordinate systemin
which the assumption that the metric field can be written as g,y = 9y +8,,
is compatible with the relevant components of the “second order” field
equations. In many coordinate systems this would not be the case and
the approximation procedure, in this reading, would be inconsistent. In
our interpretation, on the other hand, Einstein’s approximation procedure
works, at Ieast in principle, in arbitrary coordinates. So, on top of the
considerations we already gave in favor of our interpretation, the alternative
makes for a very uncharitable reading of Einstein’s text.

To conclude this section, we will show that the equality %24* = (12'224 that
we found in Cartesian coordinates does not hold in isotropic coordinates.
These coordinates will be used again in the next section to show that it is
a coordinate dependent matter whether the perihelion motion comes out
as an effect of the first- or the second-order terms in some power series
expansion of the metric field. '

In isotropic coordinates (r, 9, ¢, ct), the Schwarzschild line element
has the form (see, e.g., Adler et al. 1975, p. 198, Eq. 6.69)*

1 —o/dr\2 o\
2 V242 24 2402 0 22 a2
ds (1+a/4r>c t + - (dr® + r* d6* + r* sin® 6 d¢?)

27
To first order in o/ 7, the line element in Eq. (27) is

ds? = (1= )t = (14 2) (@2 + 1207 +r*sin 0 d4?) . (28)
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@, @
To show that I'};* # I'}, in isotropic coordinates, we need to show that the

relevant ? a? terms do not vanish. This means that we need to show that

[¢)]

£ 8181 # 0. 29)
Using this criterion, one immediately sees that the alternative interpretation
of Einstein’s approximation does work in Schwarzschild-Droste coordi-
nates, even though these coordinates do not satisfy Einstein’s coordinate
condition ./—g = 1. Since the 44 component of the Schwarzschild met-
ric is simply 1 — a/r (see Eq. (20)), there are no second- or higher-order
terms in gq4, and the quantities on the left-hand side of Eq. (29) vanish. In
isotropic coordinates, however, they do not. To second order in e/r, the
44 component of the metric in Eq. (27) is given by (cf. Misner et al. 1973,
p- 1097, Eq. (40.1)):
_1-24 e 30

gas = ~ o (30)
Inserting the o2/r? term of Eq. (30) into Eq. (29), and using that g'! = —1,
we find that

© @11 d

- 1 a? o?
U 9 = ——(———)=—. 31
g 08u =8 |53 P (3D

, . . @, @,
This last expression clearly does not vanish, which shows that I',,* # T},
in isotropic coordinates.

6. Deriving the Equation of Motion

In Einstein’s general theory the first step toward predicting the perihelion
shift consists of deriving the equation of a timelike geodesic for the given
line element, for the theory postulates that test particles freely falling in a
gravitational field will trace out timelike geodesics of the metric g,,,, solving
the field equaﬁons, and for purposes at hand we may treat the planets as
test bodies moving in the gravitational field of the sun.

Almost half of section 2 of Einstein’s perihelion paper is devoted to
evaluating the leading terms in the geodesic equation. Using Eq. (6) to
replace the Christoffel symbols in the geodesic equation with minus the
components of the gravitational field, we arrive at equation E.7 (summation
over repeated indices being understood):

d2xH y dx? dx?

ds? "7 ds ds

(32)
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We need to examine the order of magnitude of the various terms on the
right-hand side of Eq. (32).
First, depending on whether u =4 oru =1, 2, 3, dx*/ds is of order 1

or of order (a/r)!/?, respectively. This can be seen as follows. Since

g v = Ny, dx*/ds = 1tothe lowest order of approximation (x* = ¢t), and

dx’/ds =~ v'/c, where v’ is the ith component of the ordinary three velocity.
It follows from the virial theorem for gravitationally bound systems that
in the weak-field, slow-motion approximation we are considering here,
(v /¢)? is of the same order of magnitude as a/r.3*

We now turn to the components of the gravitational field. The leading
terms in [}, are of order c/r* (see Eq.(21)). Terms of this order of
magnitude occur for components with either no or two indices equal to 4.
Terms with one or three indices equal to 4 are zero to this first order of
approximation. Only the I}, components will be needed to a second-order
approximation with terms of order o2/r> (see Eq. (23)).

Given these considerations, Eq. (32) to the lowest order of approxima-
tion becomes (cf. equation E.7a):

$Exr w®
g (33)

ds? 44
For o = 4, the right-hand side vanishes, and it follows that to this order
of approximation the arc length s can be set equal to x* = ct. For u = i,
the right-hand side can be written as (a/2) 9;(1/r) (cf. Eq. (21)). With the
help of these relations, the § components of Eg. (33) can be rewritten as:

dzxi . 8@1\; 34
dr2  3xi’ G4

where ®y = —ac?/2r. Inserting o = 2GM/c?, one sees that $y is the
ordinary Newtonian potential —GM /r. Hence, Eg. (34) is just Newton’s
second law, and to this order of approximation there will be no perihelion
motion.

Einstein moves on to the next order of approximation of Eq. (32):

Ext @, defdet oo, detdx’ o, dif dod .
o T We o T Ty @Y

Y] [¢5]
For . = 4, we have T'j, = Flfj. = 0. The second-order terms in I';, are of

(1) R
order /7, a factor o/ar/r smaller than products of the form I'}; dx’ /ds.
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So, for i = 4, only the second term on the right-hand side of Eq. (35) comes

W
into play. Inserting I" jfl. =153 ?44 and %)44 = —uo/r into this equation,
one easily verifies that to this order of approximation (cf. equation E.9),

dx* o
—_— =14 — (36)
ds r

¢}
For it = k, we have I'%, = 0, so now only the first and the third term on the
right—hand side of Eqg. (35) come into play. Notice that the «/r corrections
to (12124 in Fk4 in the first term are of the same order of magnitude as the
products I‘f.‘j dx’/ds dx/ /ds in the third term. With the help of Egs. (21),
(23), and (36), the k components of Eq. (35) can be written as

d2xk k

_ax xixd N dxt dxd
ox - 1 28, — 322 ———§ 3
ds2 273 E s +( i r2 >ds ds @7

Using §;; dx’/ds dx’ /ds = u? and x' dx’/ds = rdr/ds, we can rewrite
Eq. (37) as (cf. equation E.7b)

d2xk o xk dr
— =1 2u? -3 :
ds? 2r3 ( tot (d ) ) (38)

The first conclusion Einstein draws from Eq. (38) is that the area law holds
to this order of approximation when time is measured in terms of proper
time along the orbit. He does not pause to justify this claim, presumably
because he thought the matter too obvious. The correctness of the claim
simply follows from the linear dependence of the acceleration on x'. In
polar coordinates (r, ¢), the area law can be written as

28

=B
s , (39)

where B is some constant. Einstein now takes advantage of the fact that
the factor in front of the expression in parentheses on the right-hand side
of Eq. (38) is of order o/, This means that the expression in parentheses
itself only needs to be evaluated to the lowest order of approximation, in
which, as we saw above, the familiar Newtonian results are recovered. In
particular, Einstein can use Newtonian energy conservation

Vou? + @y /= A, (40)
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where A is another constant. Since ®y/c? = —a/2r (see Eq.(34)),
Eq. (40) is equivalent to a/r = u? — 2A. Substituting this expression for
o/ r into Eq. (38), along with u? = (dr?+r*d¢?)/ds* and r dp/ds = B/r,
one obtains Pk o ok .

F=—57(1—2A+3———> 41)
This equation can be cast into the form of the Newtonian law Eq. (34). To
this end, Einstein first divides both sides of Eq. (41) by the factor 1 — 24,
rescales the proper time by the factor /1 —2A and absorbs the factor
1/+/1 — 24 into the area law constant B.33 Eq. (41) then turns into

d?xk o x* B2
=25 (1435). 42
ds? 2 ( * r? “2)
This equation can be written as (cf. equation E.7¢36)
d2x* d®g o B?
exr _ S g E—_(l —). 43
ds? dxk £ 2r + r? “3)

Eq. (43) shows that Einstein’s general theory revives, in a sense, Clairaut’s
1745 hypothesis that the perihelion advance is due to the presence of an extra
1/7* term in the gravitational force law. The sense is a rather attenuated
one, however, since the area law constant B in Eq. (43) is not a universal
constant but depends on the orbit.

With Eq. (43), finding the penhehon motion has become an exercise in
Newtonian mechanics with a somewhat different force law. The perihelion
motion is derived from energy conservation, Uou? + & = A, and from
the area law Eq. (39).7 When u? is expressed in polar coordinates, energy
conservation can be rewritten as:

dr? + r? d¢? o oaB?
——&sz—¢=2A—2®E=2A+}—+r—3. (44)

Eliminating ds in favor of d¢ with the help of the area law and introducing
x = 1/r, one arrives at equation E.11:

(%)2 = T3t gpx = A b’ 45)

T B2 B?
As Einstein points out, the only difference with the Newtonian equation is
the presence of an x> term on the right-hand side of Eq. (45).
In the next section, we will see how Eq. (45) can readily be integrated
to find the perihelion motion. In the remainder of this section, we will
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discuss a simple alternative derivation of Eq. (45). This discussion serves
two purposes. First, it will make Eq. (45) more perspicuous. Second, it may
help us appreciate why Einstein derived Eq. (45) in what by comparison
may seem a rather cambersome fashion.

To first order in o/ r, the Schwarzschild line element in the usual spher-
ical coordinates (ct, r, 6, ¢) is given in Eq. (19). As we saw in Section 5,
this line element is equivalent to Einstein’s first-order metric E.4b (cf. our
Eq.(18)), the only difference being that Einstein used Cartesian instead of
spherical coordinates. Starting from the line element in Eq. (19), the time-
like geodesics representing planetary orbits follow from the variational
principle

aj/f {(1 — 9‘—)c2i2 - (1 + 9‘;);}2 — 26+ sinzeq'ﬁ)} ds =0, (46)
r r
where the dots represent differentiation with respect to arc length s. The

motion can be arranged to take place in a plane of fixed angle 6. With the
choice & = m /2, one of the Euler—Lagrange equations is the area law

d
r2—¢ = B, )
ds
where B is a constant. Another is
(1 - g)ci =C, (48)
r
where C is another constant. Inserting these relations into the identity
1= (1 - 5)(:2:'2 - (1 n g)ﬁ =y (49)
r r

and introducing x = 1/r, results in

2 2_
(%) (1—a?x?) = CBZ Sy %x —x? +ax®, (50)
If the o®x? term on the left-hand side is neglected, Eq. (50) becomes the
exact equation of motion for the Schwarzschild line élement Eq. (20). With-
out the o?x? term, Eq. (50) is also the same as equation E.11, our Eq, (45).
At first sight, it looks as if the constant terms in the two equations are dif-
ferent. On closer examination, however, we see that they are both equal to
zero. Consider the constant term in Eq. (50) first. From Eq. (48) it follows
that to first order in /7, ¢f = C(1 + a/r). Comparing this relation with
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ct = (1 4+ a/r) (Eq.(36)), one sees that C has be to equal to 1. Hence,
the constant term in Eq. (50) is zero. To see that A = 0 in Eq. (45), start
from the identity in Eq. (49). Insert Eq.(36) and 72 = 2A — 2®p — r2¢?
(cf. Eq. (44)) into this identity. The constant term on the right-hand side
of the identity will be 1 — 2A; all other terms contain at least one factor
a/r. Since the left-hand side is 1, A must be zero. So, apart from the
a?x? term, Eq. (45) and Eq. (50) are indeed the same. As an aside, we
want to mention that this last calculation also demonstrates that Einstein’s
rescaling maneuver in Eqgs. (41)—(42) was, in fact, redundant. To lowest
order of approximation—and recall that the lowest order was all that was
needed in the expressions in parentheses in Eqgs. (41) and (42)—the con-
stant A in Eq. (40), expressing Newtonian energy conservation, is equal to
the constant A in Eq. (44), expressing energy conservation in the relativistic
setting. ,
Returning to the main point, we see that Einstein’s first-order metric
directly leads to Eq. (45) or, equivalently, Eq. (50) without computing any
Christoffel symbols. Itis true that in the Cartesian coordinates that Einstein
used the derivation does not run as smoothly as in the spherical coordinates
used above. In particular, the area law does not drop out as one of the
Euler-Lagrange equations. However, nothing prevents us from switching
from Cartesian to spherical coordinates once the solution to the field equa-
tions has been found, even though spherical coordinates do not satisfy the
coordinate condition imposed in finding the solution. Since Einstein, as we
saw, switches from Cartesian to polar coordinates, the coordinate condi-
tion /=g = 1 would not have stopped him from deriving the equation for
(dx/d¢)? the way we did in Egs. (46)—(50), had he thought of that possi-
bility. What would have stopped him, though, is a tacit assumption that we
made, namely, that for finding the perihelion motion it suffices to compute
the metric to first order. As we argued in Section 5, Einstein felt he needed
to take into account the effect of second-order terms in the metric, some-

thing he did by solving the second-order field equations Eq. (13) for—in

(29 + ?) a‘é’ + ? 8?. We also saw in Section 5

),
that it was a coordinate-dependent matter whether the components Iy, the

only components playing arole in the equation for (dx /d¢)? (see Eq. (37)),
actually depend on second-order terms in the metric or not. In Cartesian
and Schwarzschild-Droste coordinates they do not; in isotropic coordinates
they do. v ‘

To emphasize that we have to be careful about neglecting second-order
terms, we will go through the argument in Eqgs. (46)—(50) in isotropic co-
ordinates. The Schwarzschild line element in isotropic coordinates to first

)
our skeletal notation—1I" = (
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order in o/ r is given in Eq. (28). In the variational problem for this line el-
ement the counterpart of Eq. (47)is (1 +a/ ryr2¢ = B and the counterpart
of Eq.(48) is (1 — a/r)ct = D, where D is a constant. Using these results
in the counterpart of Eq. (49) gives

dx\2  D*(1 1
(__> _Ddtoen (tax) ., 1)
i) = B —ax) B?
Expanding in ox and neglecting r2x? terms reduces Eq. (51) to
de\2 D*P—1 a(@D?-1) )
(@) =g + 7 x—x“. 52

Eg. (52} is of Newtonian form and, consequently, predicts a null perihelion
shift.

Writing in the Philosophical Magazine in 1920, Prof, A. Anderson of
University College, Galway, concluded from his analysis of motion in Ein-
stein’s general theory that “Mercury, unfortunately, is left with the advance
of his perihelion unexplained” (Anderson 1920a, p. 628). Anderson’s mis-
take lay in trying to draw conclusions from an unfortunate approximation
similar to the one above.”® In fact, the move from Eq. (51) to Eq. (52) is
illegitimate. It follows from Eq. (51) that the first-order metric in isotropic
coordinates gives a perihelion shift for Mercury of 4/3 the final GTR value,
or some 57" of arc per century (see Misner et al. 1973, pp. 1110-1116).%°

The perihelion advance is, of course, an intrinsic effect, depending on
the line element but not on the coordinate system in which the line element is
expressed. But approximation procedures that use coordinate language are
not intrinsic, and what is a good approximation in one coordinate system
may be a disastrous approximation in another. In the case in point, the
Schwarzschild-Droste coordinate system has the fortunate feature that the
perihelion advance is a “first order” effect—neglecting o?/r? terms in
moving from the exact line element in Eq (20) to the approximate line
element in Eq. (19) and neglecting :?/r? terms in the equation of motion
Eq. (50) that follows from Eg. (19) does not disturb the prediction of the
advance. By contrast, in isotropic coordinates the perihelion shift is a
“second order” effect—neglecting a®/r? terms in the isotropic expression
for the Schwarzschild line element in Eq. (27) to arrive at Eq.(28) leads to
a perihelion advance that is too large by one third, and neglecting o /72
terms in the equation of motion Eq. (51) that follows from Eq. (28) leads to
the prediction of no advance.

The upshot of these considerations is that the quick derivation of equa-
tion E.11, our Eq. (45), in Egs. (46)—(50) is essentially just a lucky shot. It
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only gives the right answer in certain coordinate systems. Without having
the exact solution in hand, there is no way to tell whether the terms that are
neglected do or do not give a nonnegligible contribution to the perihelion
advance. Einstein’s own more labyrinthine derivation seems to be far more
reliable.

7. The Perihelion Shift Formula

Two main methods for deriving the shift of the perihelion of a planet with an
elliptical orbit are found in the textbooks. One starts from the second-order
equation of motion. This equation is found by differentiating Eq. (45) with
respect to ¢:

o
2u'u = Ez—u/ — 2uu’ + 3ou’y’, (53)
where we introduced the notationu = x = 1/r and u’ = du/d¢. Ifu’ = 0,
the motion is circular, so we can assume that i’ £ 0, with the result that

” o Ja ,
= — 4 —u". 4
W= s (54)
A perturbation approach is then used to solve Eq. (54) to first order and to
show that the shift per revolution is

67 G2 M?

B2 (55)

Einstein’s own method starts from the first-order equation Eq. (45). The
idea is to find the perihelion shift by computing the deviation from 7 in the
angle between aphelion and perihelion. To this end the equation for dx /d¢,
or rather its reciprocal d¢/dx, is integrated between the values x takes on
at aphelion and perihelion, respectively (see Einstein 1915c, p. 838):

= &
"~ Ju JQA/BY F (0/BDx — 22+ axd

(56)

where ¢ is the angle between the radius vectors from the sun to the planet
at the times of aphelion and perihelion, and oy and a5 are the roots of the
cubic equation 0 = (24/B?%) + (a/B%)x — x* 4+ ax?, which correspond to
the roots of the classical quadratic equation 0 = (2A/B?%) + (a/ B?)x — x2.
Classically, the orbit is some fixed ellipse. Hence, the roots «; and o must
be the reciprocals of the distance of the planet to the sun at aphelion and
perihelion, respectively. Without the rescaling maneuver in Egs. (41)-(42),
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the coefficient of x in the cubic equation above would be ar(1 — 24)/B?
instead of or/B%. At first sight, it looks as if the roots oy and o, of this
cubic equation would be different from the roots of the classical quadratic
equation. As we saw in Section 6, however, A can be set equal to zero, so
we get the same results with or without rescaling proper time.

The method Einstein uses here in his perihelion paper is essentially the
same as the method he and Besso used in 1913. In the Einstein—Besso
manuscript, the law of energy conservation and the area law are derived
and written in polar coordinates, ds is eliminated from these equations, and
the resulting equation for d¢p/dr is integrated between the values r takes
on at perihelion and aphelion. There are some minor differences,*® but the
basic strategy is exactly the same. A modern discussion of the method can
be found in Maller (1977, pp. 496-497). We have been unable to track
down a source from which Einstein may have learned the method, but we
strongly suspect it was fairly standard at the time.

The upshot in the perihelion paper is an advance per orbit of (see equa-
tion E.13)

3o
a(l —e?)’

Inserting o = 2GM/c? into Eq.(57) and the classical relation B> =
GMa(l — €*) into Eq.(55), we see that these two equations are equiv-
alent. Introducing the orbital period T through the Kepler relation allows
the advance to be alternatively expressed as (see equation E.14):

(57

24m3a?

T2c2(1 — e2) (58)

Equation E.14, our Eq. (58), is the last to appear in Einstein’s perihelion
paper, and when he says that “The calculation yields . .. 43" per century”
(Einstein 1915c¢, p. 839), he is presumably referring to the result of inserting
the planetary data into Eq. (58). But why do the calculation from Eq. (58)
rather than Eq. (57), and, for that matier, why introduce Eq. (58) at all?
Perhaps Freundlich, who supplied Einstein with the data, saw the orbital
pericd T as having a more direct observational significance than GM, or
perhaps he was influenced by Gerber’s formula, which has the same form
as Eg. (58). ’

To conclude our discussion of Einstein’s perihelion paper, it seems
appropriate to emphasize Einstein’s impressive accomplishment in this pa-
per. Within the space of a few days Einstein produced, by means of the
most ingenious reasoning, the essentials of the solution to one of the great
puzzles of astronomy. And whatever gualms one might have felt about
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Einstein’s derivation were shortly to be swept away when Schwarzschild
(1916) produced an exact solution to the field equations and produced it in
a way that made it clear that it was the most general solution satisfying the
requirements Einstein laid down (see C.1-C.4, p. 140 above). A nonprob-
lematic derivation of the perihelion shift was now possible, which Schwarz-
schild duly supplied.*! Droste’s identical solution appeared in print after
Schwarzschild’s (Droste 1917), but since Droste proceeded independently,
the solution should rightly be called the Schwarzschild-Droste solution.
Birkhoff (1923) showed that the assumptions C.1 of stationarity and C.3 of
time orthogonality can be dropped without loss of generality: any spheri-
cally symmetric solution of the exterior field equations must be a piece of
Schwarzschild space-time.

8. Reactions to Einstein’s Perihelion Explanation

Some of the negative reactions to Einstein’s explanation are amusing, others
are simply silly, and still others have serious substance. Taken together,
they are revealing of the attitudes toward and the levels of understanding
of the general theory of relativity in the decade following its introduction.
These reactions can be conveniently grouped into five categories.

Anti-relativity invective. Gehrcke, a sponsor of the anti-relativity campaign
in Germany, attempted to revive Gerber’s theory (Gehrcke 1916), which
was then republished in the Annalen der Physik (Gerber 1917). Outside
Germany there was no coordinated anti-relativity campaign, but Charles
Lane Poor, a professor of astronomy at Columbia University and former
head of the astronomy department at Johns Hopkins, waged his own cam-
paign, charging that Einstein’s derivation of the perihelion advance was
incoherent and that Newtonian gravitation together with a form of Seel-
iger’s hypothesis would suffice to provide an explanation (Poor 1921, 1922,
1925, 1930). In a communication to the Astronomische Nachrichten, Poor
focused his criticism of Einstein’s derivation on the rescaling maneuver
discussed above in Sections 6 and 7. Poor argued that if the unit of time
is changed, then there must be a corresponding change in the unit of mass,
and that as a result of the latter change the constant o becomes, in “rel-
ativistic units,” & = «o (1 +3C?%/ rz). So according to Poor’s viewpoint,
Einstein’s equation of motion should be written as X' = —ax’/2r3, whose
“solution is identically the same as that of Newron: a fixed ellipse” (Poor
1930, p. 170). Poor concluded that “the so-called relativity rotation of
planetary orbits is only a mathematical illusion.... The Newtonian law
has not been abolished: there is no Einsteinian law of gravitation” (ibid.).
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That the Astronomische Nachrichten should publish such an articie is a sad
commentary on the politics of German science in 1930.

Challenging the data. Ernst Grossmann argued (1921) that a reanalysis
of the astronomical data used by Newcomb leaves a residual advance for
Mercury’s perihelion of between 29” and 38" per century. Wiechert (1920)
set the anomalous advance at 34” per century and claimed as a result that
Einstein’s theoretical value was too high. Von Gleich (1923) also used the
discrepancy between Einstein’s prediction and the figures of Grossmann
and Wiechert to raise serious doubts about general relativity. (See also
Lecornu 1922.) «

Misunderstandings. As already mentioned, Anderson (1920a) claimed that
no perihelion advance is predicted by Einstein’s theory. His error was
quickly discovered (see Pearson 1920), and Anderson himself published a
correction (1920b). Le Roux (1921) complained that the perihelion advance
“a bien été obtenu 4 propos de la théorie de la relativité, mais qu’il n’en est
pas une conséquence et ne constitue méme pas un argument en sa faveur”
(Le Roux 1921, p. 1227). His complaint centered on the fact that the
integration of Einstein’s field equations for the static spherically symmetric
case contains an undetermined constant of integration. Thus; the solution
is not unigue: “En réalité, il y a une infinité de solutions” (ibid., p. 1230).
But an infinity of solutions is exactly what one wants, since the intended
interpretation is the exterior field of a central body which may take on a
continuum of mass values. This interpretation is confirmed by taking the
weak-field, slow-motion approximation and verifying that the Newtonian
equations of motion are obtained just in case the constant of integration
equals twice the value of the central mass, something Einstein had already
done in his perihelion paper.

A misunderstanding with more serious consequences was fostered by
Allvar Gullstrand, professor of ophthalmology at Upsalla and the recipient
of the 1911 Nobel Prize in physiology and medicine. Gullstrand claimed
(1922, 1923) that the Schwarzschild metric was not the unique static so-
lution of Einstein’s field equations for a central mass and that the general
solution contains, in addition to o, another parameter 8 that affects the
value of the perihelion shift. As aresult, Gullstrand thought that Einstein’s
perihelion explanation was merely an artifact of the coordinate system Ein-
stein had employed. Under pressure from Kretschmann (1923a, 1923b),
Gullstrand was forced to retreat, but the damage was already done by his
1921 report to the Nobel Committee for physics and by an updated version
in 1922 which concluded that acceptance of Einstein’s special and general
theories of relativity was “a matter of faith.”*? This is undoubtedly part of
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the reason why Einstein’s Nobel award does not mention his work on grav-
itation and was given “for his services to theoretical physics and especially
his discovery of the law of the photoelectric effect” (quoted in Pais 1982,
p. 510). In addition to Gullstrand’s report, two other countervailing forces
were at work. On the one hand, the Nobel Institute was influenced by philo-
sophical objections to Einstein’s special theory, most probably by Bergson’s
in particular.43 On the other hand, there was an attempt, spearheaded by
C.W. Oseen, to turn Swedish physics from a primarily experimental ori-
entation toward a more theoretical outlook.** Trying to discern how these
three factors interacted is a nice exercise that will not be attempted here.*

Alternative theories. This category can be subdivided, somewhat subjec-
tively, into the uninteresting and the relatively more interesting. In the
former belongs Wiechert’s 1916 attempt to retain the ether and to explain
the perihelion motion on the basis of an electromagnetic theory of grav-
itation. In the latter category belong two theories of Ludwik Silberstein.
Although he found Gerber’s theory “untenable,” Silberstein (1917) could
not resist labeling Eq. (58) “(G)” for Gerber. As for Einstein’s general
theory itself, Silberstein was skeptical:

...notwithstanding its broadness and mathematical elegance, it [Ein-
stein’s general theory] certainly offers many serious difficulties in its
very foundations, while none of its predictions of new phenomena, as
the deflection of a ray by the sun, have thus far been verified. And even
the fact that Einstein’s new theory gives Gerber’s formula, and there-
fore the full excess of 43" for Mercury, does not seem to be decisive in
its favor. As far as I can understand from [Harold] Jeffreys’ investiga-
tion [of Seeliger’s hypothesis], it would rather alleviate the astronomer’s
difficulties if the Sun by itself gave only a part of these 43 seconds.
(Silberstein 1917, p. 504) '

Under these circumstances Silberstein thought it worthwhile to investigate
how much of the anomalous advance could be accounted for on the basis
of Einstein’s “old” theory of relativity. Silberstein proceeded to rediscover
a version of De Sitter’s 1911 result; namely, that by introducing a factor
of y", y = /1 — v?/c?, into the special-relativistic force law, the perihe-
lion shift formula becomes 4nm3a?/T2c2(1 — €2). If the entire excess of
Mercury’s perihelion is to be attributed to the sun, then n = +6. Silber-
stein confessed that he did not know why the value of  is just 6. But, he
added, in self-defense, “as little do we know ‘why’ the exponent of r [in
Newton’s law] is ‘just’ or exceedingly nearly equal [to] —2,” and, besides,
“[sluch a naturalistic method of improving Newton’s law of gravitation
seems a great deal safer than those based on fantastic constructions or rash
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generalizations” (1917, p. 509). In periods of scientific revolution, how-
ever, small improvements in old laws may in fact be less safe than fantastic
constructions, at least if an Einstein is the constructor.

In 1918 Silberstein published his own theory of gravitation, which he
called “general relativity without the equivalence hypothesis” (Silberstein
1918). Einstein’s progress toward his general theory had been guided from
the start by the principle of equivalence, but what Einstein took to be a
foundation stone, Silberstein perceived as sand. The principle of equiva-
lence was vulnerable, according to Silberstein, because “of its very special
nature and the great number of assumptions which it tacitly implies” (ibid.,
p. 95). In addition, serious doubts arise about its acceptability because it
leads directly to the gravitational red shift prediction which is contradicted
by the “obstinately negative results quite recently obtained by St. John
at the Mount Wilson Observatory” (ibid., p. 95). And the prediction of
the bending of light, Silberstein noted, “still awaits its verification” (ibid.,
p. 96). Even the one “conspicuous and fascinating success” of Einstein’s
theory—the deduction of the 43”"—is tainted by the fact that the secular
motion of the perihelion “is most vitally conditioned by . . . g44, which—to
everybody’s regret—has thus discredited itself at the Mount Wilson Ob-
servatory” (ibid., p. 96). Silberstein’s own alternative theory, based on the
postulate that space-time has a fixed constant curvature, regardiess of the
nature and distribution of the gravitational sources, gives a secular perihe-
lion motion of —4m3a?/ T?c*(1 —€?), i.e., aretrograde motion of one-sixth
Einstein’s value. This feature was not regarded by Silberstein as a defect
of his theory since he was able to refer to the forthcoming work by Jeffreys
(1918), which attempted to show that a version of Seeliger’s hypothesis
would bring Silberstein’s predictions into harmony with the observed sec-
ular motions of the inner planets. In the following year, however, Jeffreys
abandoned his Seeligerizing.

Objection to the completeness of Einstein’s explanation. The Italian para-
doxer Burali-Forti (1922-1923) complained that Einstein’s derivation did
not really explain Mercury’s perihelion motion because it did not contain an
account of the perturbations of the other planets, showing that these would
add up to the five hundred and seventy-some seconds of arc per century.
One could respond that the fact that general relativity yields the Newtonian
equations of motion in the weak-field, slow-motion approximation makes
it plausible that the general-relativistic perturbations can be well approxi-
mated by the Newtonian ones. However, Einstein had shown this only for
the Schwarzschild metric, whereas the relevant metric for computing, say,
the perturbation on Mercury’s orbit caused by Jupiter certainly will not be
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of Schwarzschild form. Without giving any reason, Burali-Forti claimed
that as a result the Einstein value for Jupiter’s perturbation will be different
from the Newtonian value, leading to a discord between the GTR and the
observed 570" of arc per century.

If Burali-Forti had wanted to create a paradox, he could have argued as
follows. Inthe case of the Schwarzschild metric, where there is a stationary,
nonrotational timelike vector field, the notion of the perihelion shift can be
given an invariant meaning. But in the N-body case, needed to give the full
general-relativistic explanation of the observed 570" of shift, stationarity
and the other nice features will presumably be lost, and thus it becomes
difficult to say precisely what the perihelion shift means.*®

Positive reactions to Einstein’s resolution of the perihelion anomaly were
swift in coming, and they came from influential sources. De Sitter declared
that “Seeliger’s explanation of the anomalous motion of the perihelion of
Mercury by the attraction of nebulous matter in the neighborhood of the
Sun now becomes superfluous” (De Sitter 1916, p. 728). This declaration
was contained in a lengthy three part review article detailing the principles
and consequences of Einstein’s general theory. Appearing in the Monthly
Notices of the Royal Astronomical Society, the article served during the war
years as the chief source of knowledge of Einstein’s theory for scientists in
England. It was read by Eddington, who was to become the most effective
of the early champions of general relativity.

Harold Jeffreys did not give up on Seeliger’s hypothesis until 1919,
after Eddington had reported the verification of Einstein’s light deflection
prediction. Jeffreys (1919) argued that the numerical agreement between
experimental values and Einstein’s predictions for Mercury’s perihelion and
the deflection of light could not be counted as confirmation of the general
theory until other potential causes of these effects had been eliminated.

Suppose, for instance, that a true cause was known that would produce
amotion of 10”per century in the perihelion of Mercury; then Einstein’s
theory would predict the total excess motion to be 53" per century, which
differs from the observed 41”by more than the permissible error of obser-
vation. Such a discovery would be fatal to a theory such as Einstein’s,
which contains no arbitrary constituent capable of adjustment to suit
empirical facts. Now a sufficient amount of gaseous matter within the
orbit of Mercury would be capable of producing the first two of Ein-
stein’s effects [perihelion advance and bending of light] —the first by its
gravitation, and the second by its refraction; and such a matter is known
to exist, causing the solar corona and the zodiacal light. It is therefore
desirable to inquire whether its quantity is sufficient to invalidate the
. theory. (Jeffreys 1919, pp. 138-139)
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Jeffreys proceeded to argue that an analysis of the observations of the solar
corona and the luminosity of the zodiacal light shows that whatever intra-
Mercurial matter exists will not appreciably affect either the secular motion
of Mercury’s perihelion or the displacement of star images taken during a
solar eclipse. Thus ended the serious Seeligerizing in England.

The interaction among the classical tests of Einstein’s general theory
is a topic that deserves detailed study, but one facet of the interaction is
already evident: the negative resuits of the early red shift measurements
led some, such as Silberstein, to question Einstein’s perihelion explanation,
while the success reported by the English eclipse expeditions helped others,
such as Jeffreys, to accept the explanation.

9. Conclusion

In the decades following 1915, the solar red shift measurements stubbornly
refused to conform to Einstein’s prediction, and the deflection of light
measured by several eclipse expeditions exceeded the theoretical value. In
this context, the resolution of the perihelion anomaly served as the main
observational anchor of the general theory, but this anchor has always been
a potential Achilles heel. As explained in Sections 4 and 5, it was doubly
important in 1915 that Einstein obtain the 43" per century or close to it, first
to overcome worries about the validity of approximations and second to
render superfluous Seeliger’s hypothesis. The fact that the theory does give
the 43" leaves no room for maneuver if additional sources of perturbation
of Mercury’s perihelion are found, as Harold Jeffreys noted. What is so
stunning about the explanation of the 43" is that it was achieved without
the Ieeway of any adjustable parameter, but it is exactly this feature of
the theory that makes it vulnerable. In the 1960s Dicke tried to pierce this
Achilles heel (see Dicke and Goldenberg 1967, 1974), claiming that optical
measurements revealed a solar oblateness that would account for 35" of
the advance and would thus throw the general-relativistic prediction into
doubt. The controversy that ensued had no clean resolution, but insofaras a
consensus developed, it is in favor of orthodox relativity. At the same time,
the two other “classical tests” have been perfected and stand solidly behind
the theory, and new tests, such as the radar delay measurements, together
with a deeper appreciation of the range of possible alternative theories of
gravity that are eliminated by actual or feasible experiments have greatly
strengthened the case that Einstein’s theory of gravitation will prove to be
as durable as Newton’s.*’ It would thus be ironic indeed if the perihelion
problem were to prove to be an Achilles heel. While claiming no powers
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of prognostication in this matter, we must state our opinion that such an
irony would be most unseemly.
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NOTES

! As the basis for this chapter, we used a paper written by one of us (JE) in
collaboration with Clark Glymour, which was presented at the Second International
Conference for the History-of General Relativity held in Luminy, France, in Septem-
ber 1988. The so-called Einstein—Besso manuscript, discovered shortly afterward
by the editors of The Collected Papers of Albert Einstein, made it clear that this
1988 paper contained some serious errors, especially in its analysis of Einstein’s
perihelion paper of November 1915. In this new version we have tried to correct
those errors.

2 Einstein found Seeliger’s critique so caustic that he wrote to Sommerfeld: “Tell
your colleague Seeliger that he has a horrible disposition. I had a taste of it recently
in areply to the astronomer Freundlich” (Hermann 1968, p. 37; translated by H. and
R. Stuewer).

3 For an account of the early tests of the gravitational red shift, see Earman and
Glymour (1980a).

4 An analysis of the eatly eclipse tests and their role in the reception of Einstein’s
general theory is given in Earman and Glymour (1980b).

3 With a possible exception mentioned in Section 9 below.

6 If an earth-based coordinate system is used, the observed is some 5500” per
century. ,

7 The agreement, however, was not unanimous; see Section 8 below.

8 A detailed study of the work of Le Verrier and Newcomb is to be found in
Cohen (1971).

% The 42.95" figure is due to a round-off error, while the more popular 43.03" is
due to the use of nonstandard values for the astronomical unit and the velocity of
light; see Nobili and Will (1986). We are grateful to Professor Will for bringing
this matter to our attention.

10 They neglected the component of the sun’s force exerted in a direction per-
pendicular to the radius vector from the earth to the moon; see Waff (1976).

‘1 Roseveare (1982) also notes that Ritz’s theory predicts a deflection of 1.31” for
starlight grazing the sun, a prediction contradicted by the majority of solar eclipse
observations. »

12 This so-called Einstein-Besso manuscript will be published in Klein et al.
(forthcoming). ‘

13 We are grateful to Jiirgen Renn for drawing our attention to this calculation.
The “scratch notebook” will be published in appendix A of Klein et al. (1993).

14 See Norton 1984, 1987 and Earman and Norton 1987.
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15 In more detail, Einstein’s three reasons for rejecting the Einstein—Grossmann
theory are as follows:

(1) I proved that the gravitational field for a uniformly rotating system
does not satisfy the field equations.

(2) The motion of the perihelion of Mercury yielded 18" instead of 45" per
century.

(3) The covariance requirement in my paper of last year did not yield
the Hamiltonian function. It permits, if appropriately generalized, an
arbitrary H. This led to the conclusion that the covariance with respect
to “‘adapted” coordinate systems is a failure. (Hermann 1968, pp. 32—
33; translation by H. and R. Stuewer)

16 See Pais 1982, pp. 257-261.

17 Footnote 2 in Einstein’s perihelion paper reads: “E. Freundlich recently wrote
a noteworthy article on the impossiblity of satisfactorily explaining the anomalies
in the motion of mercury on the basis of Newtonian theory” (translation by Doyle,
1979a).

18 See Norton 1984 for a detailed account of how Einstein reached his final field
equations.

1% The notation E.n will be used to refer to equation number » in Einstein’s
perihelion paper.

20 Binstein’s exposition is somewhat curious at this juncture. He writes down
the field equations E.1 and then introduces the coordinate condition E.3; but, as we
just saw and as is clear from the discussion in Einstein’s previous paper (Einstein
1915b), equation E.1 actually presupposes equation E.3.

2! In coordinate language, which Einstein was using, condition (C.1) means that
88un/0x* =0 (u, v =1,2,3,4), and (C.3) means that gy = g4, = 0(i = 1,2, 3).
A metric is static when it satisfies both (C.1) and (C.3).

22 See Fokker 1955. This reference is taken from Pais (1982), whose account
of Einstein’s explanation of the perihelion anomaly should also be consulted. Pais
continues that what Einstein told de Haas “is even more profoundly significant:
when he saw that his calculations agreed with the unexplained astronomical obser-
vations, he had the feeling that something actually snapped in him. ..” (Pais 1982,
p. 253).

23 Since we will discuss some fine points of this passage, the reader may want to
look at the German:

Wir setzen nun im folgenden voraus, dass sich die g,, von den in (4a)
angegebenen Werten nur um Grossen unterscheiden, die klein sind gegen-
iiber der Einheit. Diese Abweichungen behandeln wir als kleine Gris-
sen “erster Ordnung,” Funktionen nten Grades dieser Abweichungen als
“Grossen nter Ordnung.” Die Gleichungen (1) und (3) setzen uns in den
Stand, von (4a) ausgehend, durch sukzessive Approximation das Gravita-
tionsfeld bis auf Grossen nter Ordnung genau zu berechnen. Wir sprechen
in diesem Sinne von der “nter Approximation”; die Gleichungen (4a)
bilden die “nullte Approximation.”
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24 Yor instance, Einstein writes: “Now that we have found 8uv to first order,
we can also compute the components T, of the gravitational field to first order”
(Einstein 1915¢, p. 834). “T 7 clearly is a typographical error and should be I'; .

25 The opening of the sentence quoted in the preceding note—*“Now that we
have found g, to first order . .. ”—is one of those passages. We wiil have occasion
to quote the other passage below.

% See the editorial note on the Einstein-Besso manuscript in Klein et al. (forth-
coming).

O o, L .
ByT = g) 0 g we mean that to the lowest order of approximation I'? is a sum

uw
of terms (g"‘ﬂ 6M(§)ﬁv, etc. The terms (é) 6’2’) and (:é) 8? represent similar terms. These
terms are smaller than the ones in % by a factor of the order of ié)

28 Incidentally, Droste’s paper alsc contains a clear exposition of the approxima-
tion procedure Einstein used both in 1913 and in 1915. Droste says he learned this
method “from oral communications of Professor Lorentz” (Droste 1915, p. 999).
Droste explicitly says that the solution for g, “is obtained in the form of a power
series” (ibid.). :

2 Actually, the coordinate system used in Eq. (20) is due to Droste (1917).
Droste’s radial coordinate rp is related to Schwarzschild’s radial coordinate rg by
rp = (r} + &)'/3; see Bisenstaedt (1982) for details.

30 This equation should have 1/7> in the first term on the right-hand side instead
of 1/72.

3 We are grateful to John Norton for drawing our attention to this passage.

32 Cf, the second equation on p. 835 in Binstein 1915¢. There is a minus sign
missing on the right-hand side of Einstein’s equtaion.

3 Of course, the r in Bq. (27) is not the same as that in Eq. (20).

34 Einstein clearly states this on p. 836 of his paper, where he writes; ... dass die
Produkte % % mit Riicksicht auf (8) als Grossen erster Ordnung anzusehen sind.”
Equation 8 contains the Newtonian law for energy conservation. The subscript “r”
is a misprint and should be “z.”

3 We will show below that A can be set equal to zero, which renders this
rescaling maneuver, for which Einstein would be criticized by Charles Lane Poor
(see Section 8), superfluous.

36 A factor 1/7 is missing in the expression for &.

37 Bq. (39) still holds even though the meaning of B and s has changed meanwhile.
Because of the redefinition of the area law constant in Eq. (42), B in Eq. (39) should
be replaced by B+/1 — 2A. The square root is absorbed into ds on the left-hand
side of Eq. (39) to rescale the proper time as in Eq. (42). '

38 It should be mentioned that in an otherwise useless paper, Anderson gives
what is perhaps the first prediction of black hole formation in general relativistic
space-times:

...if, in accordance with the suggestion of Helmholtz, the body of the
sun should go on contracting, there will come a time when it will. be
shrouded by darkness, not because it has no light to emit, but because its
gravitational field will be impermeable to light. (Anderson 1920a, p. 627)
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For an analysis of Anderson’s prediction, see Eisenstaedt (1982).

¥ We are grateful to Professor H. Goenner for bringing this point to our attention
and for correcting an error in an earlier version of our paper.

40 The derivation of energy conservation is different, there is no switch from
r to 1/r, and the roots are expressed in terms of the coefficients of the relevant
(fourth-order) equation rather than simply set equal to the distance of the planet
from the sun at perihelion and aphelion. Further details will be provided in the
editorial apparatus for the Einstein-Besso manuscript in Klein et al. (forthcoming).

41 Schwarzschild wrote:

It is always pleasant to have at one’s disposal a rigorous solution of sim-
ple form; it is more important that the calculation produce, at the same
time, the unequivocal determination of the solution. Einstein’s treatment
still leaves some doubt, and, as is shown below, this unigueness could be
proved only with difficulty by his method. This solution therefore man-
ages to let Einstein’s result shine through in increased purity. (Translation
from Doyle 1979b)

42 As quoted by Friedman (1981, p. 3) from the Protokoll, Nobelkommitteen for
fysik, September 6, 1922. See also Eisenstaedt 1982.

43 As remarked by A.IL Miller, Luminy Conference. Cf. Pais 1982, p. 510.

4 As remarked by S. Sigurdsson, Luminy Conference.

45 See Friedman 1981 for an overview of the issues.

46 We thank Professor J. Winicour for bringing this point to our attention.

47 For a review of the recent experimental work, see Will 1981, 1984; a popular
exposition is given in Will 1986.
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Pieter Zeeman’s Experiments on
the Equality of Inertial and
Gravitational Mass

A.J. Kox

1. Introduction

In the years 1917-1918 the Dutch experimental physicist Pieter Zeeman
(1865-1943) performed a series of experiments to test the equality of inertial
and gravitational mass for radioactive and anisotropic bodies. Zeeman, the
discoverer of the Zeeman effect and one of the first recipients of the Nobel
Prize for physics, had a reputation for designing and carrying out precision
experiments, and his work on the equality of inertial and gravitational mass
is typical of his choice of problems and his style of work. In this chapter I
will discuss these experiments; in addition I will comment on the reasons
that led Zeeman to perform them and on their reception by the physics
communmnity.!

2. Zeeman and Relativity

Zeeman is, of course, best known for his work on the Zeeman effect, which
was discovered by him in the fall of 1896. Less known is that he was also
interested in what one might call experimental relativity. His interest was
at first focused on special relativity, but later included general relativity as
well.

In the field of special relativity, Zeeman performed a series of experi-
ments during the years 1914-1923 on the propagation of light in moving
transparent media. He started by repeating an experiment first performed
by the Frenchman Hippolyte Fizeau in the middle of the nineteenth century,
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namely the determination of the speed of light in running water. Zeeman
was motivated by an apparent discrepancy between the theoretical predic-
tion and the best available experimental data.

Thirty years after Fizeau’s work, Albert Michelson and Edward Morley
had repeated the experiment with much greater accuracy (see Michelson
and Morley 1886). Like Fizeau, they had found excellent agreement with
the existing theoretical prediction, due to Augustin Fresnel. His expression
for the speed of light in moving media was derived in the framework of an
ether theory and included his well-known “dragging coefficient.” In 1895,
however, Hendrik Antoon Lorentz used his electron theory to derive a new
expression in which a dispersion term occurred, in addition to the dragging
coefficient (see Lorentz 1895, section 71). For the speed of light in running
water, ¢’, he found:

., ¢ ( 1 w_ dp
=—xwi{l—-—}F-T—,
TR u2>q:u dr W

where w is the speed at which the water is running, T is the period of
vibration, and yu is the index of refraction; the upper sign corresponds to
light and water moving in the same direction. The second term is Fresnel’s
dragging coefficient, the third term the dispersion term. Several years
after 1895, the same result was found in the framework of the special
theory of relativity (see, e.g., von Laue 1907). When Lorentz’s new and
supposedly more accurate expression was compared with Michelson and
Morley’s data, however, worse agreement was found than with the original
formula. Zeeman’s aim was to provide new and better data, so that it could
be decided whether Lorentz’s formula was correct or not. To that end he first
repeated Fizeau’s experiment and subsequently measured the speed of light
in moving glass and quartz. In spite of many experimenta! difficulties, he
succeeded with a high degree of accuracy and found his data in agreement
with Lorentz’s theoretical prediction.? :

Although it would be going too far to say that Zeeman’s work provided
an experimental confirmation of special relativity, if only because it did
not discriminate between electron theory and relativity, his results were
received with enthusiasm. Einstein wrote that Zeeman’s experiment filled
“a still-existing unpleasant gap.” '

Apparently inspired by the success of the Fizeau experiments, Zeeman
decided to apply his experimental skills to another precision experiment in
the field of relativity, namely the testing of the equality of gravitational and
inertial mass, with the explicit goal of providing a more solid foundation for
general relativity. He set himself two tasks: first to reach a higher degree
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of accuracy than in earlier experiments, and second to extend the measure-
ments to crystals (to determine a possible anisotropy in the gravitational
interaction) and, more importantly, to radioactive substances.

3. Inertial and Gravitational Mass

The history of experimental tests of the equality—or rather the universal
proportionality—of gravitational and inertial mass goes back to Newton,
who performed pendulum experiments to investigate a possible dependence
of the period of a pendulum on the composition of the bob. - It is easy to
show that, for a bob with gravitational mass m and inertial mass m;, the
period T of a pendulum of length [ is given by

T =2m+/1/g /mi/m,. 2)

By comparing the periods of pendulums of equal lengths but different com-
positions, differences in the ratio of inertial and gravitational mass for dif-
ferent substances can be determined. As Newton reports in his Principia,
he found the same ratio for all substances he investigated. His accuracy was
approximately 1 : 10%. A more accurate repetition of Newton’s experiment
was carried out by Bessel around 1830 (see Bessel 1832). He reached an
accuracy of 1 : 5 x 10%,

The next major step forward was taken in the 1880s by the Hungar-
ian physicist Lorand (or Roland) von E6tvds (Ettvos 1890). He used a
different and much more accurate method, based on the measurement of
the torque exerted on a beam at each end of which a mass was hung. The
beam was suspended on a wire attached to its center. If the gravitational
accelerations of the two bodies were different, the horizontal component
of the centripetal acceleration of the earth would exert a slight torque on
the beam, which would reverse in sign if the apparatus were turned through
180°. The effect was greatest when the beam was oriented in the east—west
direction.* The great advantage of this kind of experiment was that it was
a null experiment, allowing for much greater precision than in the case
of pendulum experiments. Etvos succeeded in achieving an accuracy of
1:2x 107,

The outcome of the Edtvis experiment not only had connections with
general relativity’ but also with special relativity, in particular through the
mass-energy equivalence. This was pointed out, in particular, by Einstein
in 1912 (Einstein 1912, p. 1062). He gave the following argument (which
he ascribed to Langevin): if the loss of energy and thus of inertial mass
suffered by decaying radioactive substances would not be accompanied by
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a proportional decrease in gravitational mass, the acceleration of a body in
a gravitational field would depend on its composition.

Interestingly, not very long after the appearance of Einstein 1912, in
a letter to Wilhelm Wien of July 10, 1912, Einstein raised the question of
whether it would be possible to test the universal proportionality of gravita-
tional and inertial mass for radioactive bodies with the help of a pendulum
experiment of sufficient accuracy. From a calculation, he had concluded
that the relative difference in period between a uranium pendulum and a lead
pendulum would be approximately 2 x 1074, so that an accuracy of 1 : 10°
would be sufficient. In a postscript to the letter and as an afterthought, he
very surprisingly proposed the same experiment that E6tv6s had performed
more than two decades earlier. Apparently, Einstein did not know of the
experiment at that time.® Someone, perhaps Wien, must have subsequently
drawn Einstein’s attention to EStvos’ work: when he discussed the equiv-
alence principle the next year in the introductory section of Einstein and
Grossmann 1913, he cited E6tvos® work as experimental evidence for this
fundamental principle.

It is thus not surprising that the idea came up to test the proportionality of
gravitational mass and inertial mass for radioactive substances, all the more
so because a test that would confirm the universal propottionality would also
support the mass—energy equivalence in an indirect way. The first person to
do so was Leonard Southerns in 1910 (Southerns 1910). Southerns worked
in J.J. Thomson’s laboratory and followed up on earlier experiments by
Thomson himself.” He used specially constructed pendulums in a Newton-
like experiment and came to the conclusion that the ratio of the two masses
was equal for lead and uranium up to 1 : 2 x 10°.

4. Zeeman’s Experiment

Zeeman’s experiment is essentially analogous to the one by E6tvés. One
difference is that his torsion balance was much smaller than the one used by
Ebtvos, and the weights were smaller as well.® As Zeeman writes in the pa-
per he published on his experiments in the fall of 1917 (Zeeman 1917), the
physics laboratory in Amsterdam was unsuitable for performing the exper-
iment with the accuracy he had in mind. For instance, the regularly passing
streetcars produced vibrations that interfered with the experiment. At first
Zeeman tried to construct a special housing for the apparatus, consisting of
a container of thick oil in which a second container was floating, but to no
avail. It was impossible to suppress the disturbing influence of vibrations
with a period of 300 or 400 seconds that turned out to be present day and
night. Zeeman wrote: “It was therefore hopeless to work with the torsion
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balance in Amsterdam, and [ resolved to continue my experiments in the
cellar of a country house near Huis ter Heide” (Zeeman 1918, p. 547). The
house was in fact Zeeman’s own country house in the province of Utrecht in
which the Zeeman family usually spent its summers. The house had been
built with part of the Nobel money won in 1902 and stood on very solid
sandy soil. Tests showed that there were no disturbing vibrations, and, as
Zeeman relates, even stomping on the floor had no effect at all.

In the summer of 1917 Zeeman started his measurements, first in the
cellar, but later also in the hallway of the house. The latter series was kept
short, however:

Several excellent series of observations were obtained. As they extended,
however, over the whole day and the principal entrance of the house was
then put out of use, I restricted these observations to a rather limited
number of days. (Zeeman 1918, p. 547)

The outcome of the experiments was that for anisotropic bodies the influ-
ence of the orientation on the ratio of inertial and gravitational mass was
less than 1 : 3 x 107, For uranyl nitrate a difference of less than 1 : 5 x 10°
was found. Results for uranium oxide that seemed to indicate a difference
in inertial and gravitational mass were rejected on the grounds that the sam-
ples were probably contaminated with iron, so that magnetic effects came
into play. The samples were not tested for the presence of iron, however.

The above figures show that only for radioactive substances did Zeeman
reach a much higher degree of accuracy than had been the case in previous
experiments; in particular, the accuracy of E6tvos’ results from 1891 was
not significantly exceeded.

Unfortunately, Zeeman was ignorant of other, much more accurate work
by E6tvos and his group. In the first decade of the century, E6tvos and his
collaborators Pekdr and Fekete had performed a series of new experiments
that greatly improved on E6tvds’ earlier work. The results of the investiga-
tion had been submitted as a prize essay to the the Gottingen Philosophical
Faculty. It concerned the Benecke Prize for 1906, which was to be awarded
for a detailed test of the proportionality of inertial and gravitational mass.
In its report, the jury summarized the experimental results® and pointed out
that the essay—the only one submitted—fully deserved being awarded
the prize, in spite of certain shortcomings. Still, the work by Edtvds and
his collaborators remained unknown to most people, including Zeeman,
until a full publication appeared in 1922, three years after EStvos’ death
(Eotvs et al. 1922). Publication had been postponed because even more
accurate experiments were planned. In the end nothing came of these, and
the original prize essay was published in a somewhat abbreviated form. In
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these experiments the proportionality of inertial and gravitational mass was
establishedupto1: 2 x 108, markedly more accurate than Zeeman’s data.
For a radioactive substance, the difference is 1 : 4 x 109, the same order of
magnitude as Zeeman’s result.

The situation is intriguing, because in the published paper from 1922
no mention is made either of Southerns’ work or of Zeeman’s experiments.
It seems that Zeeman’s work had not made a great impact. This impression
is reinforced by the fact that most textbooks, both from that time and more
modern ones, mention EStvis’ pioneering work, and sometimes also the
1922 publication, but do not cite Zeeman. Wolfgang Pauli, for instance,
only mentions E6tvos (including the 1909 jury report) and Southerns in his
review paper (Pauli 1921). Von Laue, on the other hand, mentions Etvis
and Zeeman together in his textbook (von Laue 1921), but it should be
kept in mind that its first edition appeared before the publication of Edtvas’
later experiments. In modern textbooks Zeeman is often not cited either:
Misner et al. 1973 and Weinberg 1972 only list EStvos. And when in the
sixties Roll, Krotkov, and Dicke performed an improved E6tvSs experiment
with an accuracy of 1 : 10!}, in their discussion of previous experiments
Zeeman’s work was not mentioned at all (see Roll et al. 1964)). Given the
accuracy of Zeeman’s results this lack of attention is not very surprising
insofar as nonradioactive substances are concerned. For his results for
radioactive substances it can only be concluded that the work was apparently
not considered sufficiently significant. An additional factor for the lack of
attention may have been that Zeeman’s work was published during World
War I, when international scientific contacts were severely disrupted.

There is perhaps another reason why Zeeman’s work on the eguality of
gravitational and inertial mass did not create the same enthusiasm as his
experiments on the dragging coeffient. The experiments did not really test
general relativity, as the three “classic” tests did, by testing a prediction
made by the theory; they simply tested its foundations by reestablishing
an equality that had already been established with great precision and in
which most physicists tended to believe anyway. Not long after Zeeman’s
work, the results of the 1919 eclipse measurements gave such strong sup-
port to general relativity that the issue of the universal proportionality of
gravitational and inertial mass as a foundation of general relativity became
of minor importance. !

"~ In this respect, Einstein’s reaction to Zeeman’s results is illustrative. In
January 1918 he wrote Zeeman a letter, in which he first thanked Zeeman
for sending him some reprints, including some further work on the Fizeau
experiment, which Einstein characterized as “your beautiful papers on the
dragging coefficient””!! He then continued:
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Of your new investigations, I am mainly interested in the ones on the
inertial and gravitational mass of uranyl nitrate. For the investigations
on weight and inertia of crystallic substances I miss the theoretical view-
points that have led to the formulation of the problem.'?

Einstein is right in questioning Zeeman’s theoretical viewpoints, as is borne
out by the text of the opening paragraph of Zeeman 1918:

Our ideas concerning gravitation have been so radically changed by
Finstein’s theory of gravitation that questions of the utmost interest in
older theories are now simply discarded or at least appear in a changed
perspective. We cannot try anymore fo form an image of the mechanism
of the gravitational action between two bodies, and we must return to
the older theories in order to justify the suspicion, that the structure of
substances might influence their mutual attraction. In most crystalline
substances the velocity of propagation of light, the conduction for heat
and the dielectric constant are different in different directions, and we
might then suspect that the lines of gravitative force spread out from a
crystal unequally in different directions. (Zeeman 1918, p. 542)

This quotation can hardly be called a convincing motivation for the inves-
tigation of anisotropic substances and betrays, moreover, a lack of under-
standing of the foundations of general relativity. But that was of course not
unusual in those days, especially among experimenters.

From the further history of Zeeman’s work on inertial and gravitational
mass one might conclude that the experiments feli short of Zeeman’s own
expectations as well. At the end of his paper, Zeeman announced a planned
improvement of his apparatus that would increase its accuracy at least
tenfold. From correspondence with one of the laboratory technicians it
becomes clear that in the summer of 1918 a new instrument was constructed
and that it was tested with satisfactory results, but it apparently did not lead
to a new series of experiments. Perhaps the desired accuracy was never
reached; another possibility is that Zeeman was discouraged by the lack
of response to his earlier work. In any case, the work was ended, and no
further publication resulted.

ACKNOWLEDGMENTS. [ am grateful to the Hebrew University of Jerusalem
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NOTES

! This chapter is partly based on material present in the Zeeman Archive, which
was discovered in the fall of 1989. Tt is now located in the Rijksarchief Noord-
Holland at Haarlem, The Netherlands. See Kox 1992 for a recent biographical
sketch of Zeeman, based on the new material. Several publications on Zeeman’s
work, including one on the discovery of the Zeeman effect, are in preparation.
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2 See Zeeman 1927 for a detailed review of the experiments.

3 “Bine bisher unangenehm fiihlbare Liicke,” Albert Einstein wrote to Zeeman
on August 15, 1915. Zeeman Archive, Haarlem.

4 See, for instance, Weinberg 1972, pp. 11-13, for an elementary discussion, and
von Laue 1921, section 1, for a more sophisticated calculation.

5 The statement that all bodies fall with the same acceleration is sometimes
called the “weak equivalence principle” and is an essential part of the more general
equivalence principle. See, e.g., Will 1981, section 2.4 for a discussion of E6tvos-
like experiments as tests of the weak equivalence principle.

6 See Illy 1989 for a detailed discussion of the letter and its historical context.

7 It should be noted that these experiments were motivated by purely classical
ether-theoretical considerations concerning the relation between energy and mass,
in particular by the argument that the existence of electromagnetic mass suggests
a general relation between potential energy and mass. The relativistic relation
between mass and energy is not mentioned at all.

8 Eotvos’ balance was 25-30 cm long, and he used weights of 30 g; Zeeman’s
weights were about 1.5 g and were about 10 cm apart.

® The jury cited an accuracy of 1 : 2 x 107 for the single radioactive substance that
was tested and 1 : 2 x 10® for other materials. See Nachrichten von der Koniglichen
Gesellschaft der Wissenschaften zu Gottingen. Geschdftliche Mitteilungen 1909,
pp- 37-41.

10 fronically, the actual accuracy of the eclipse results never warranted the crucial
importance attached to them; see, e.g., Will 1981, section 7.1, for a discussion of
light-bending experiments and their accuracy.

1 “Thre wundervolle Abhandlungen iiber den Mitfiihrungs-Koeffizienten,” wrote
Albert Einstein to Zeeman, January 18, 1918. Zeeman Archive, Haarlem.

12 “yon Ihren neuen Untersuchungen interessieren mich hauptsichlich diejenigen
tiber die triige und schwere Masse des Uranylnitrats. Bei den Untersuchungen iiber
die Schwere und Triigheit kristallinischer Substanzen fehlen mir die theoretischen
Gesichtspunkte, welche die Fragestellung veranlasst haben” (ibid.).
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Variational Derivations of
Einstein’s Equations

S. Kichenassamy

1. Introduction

Variational derivations of the relativistic gravitational field equations pro-
ceed from the adaptation of the Hamilton principle of classical mechanics
to field theories, as is illustrated in the case of the electromagnetic field
(Larmor 1900, p. 167; Schwarzschild 1903). Since its use by Einstein
and Grossmann (1914) to determine the restricted covariance group of the
Entwurf equations (Einstein and Grossmann 1913), now abandoned, and
by Hilbert (1915) to obtain the correct field equations in the presence of
an electromagnetic field, the variational principle remains an “unusually
impressive mathematical” tool (Sommerfeld 1652, p. 208) in the search for
field equations in the presence of sources, as well as in the source-free case.

The derivation of the field equations from a variational principle has the
advantage that the compatibility of the resulting equations is assured
[when an extremum can exist] and that the identities connected with
general covariance, the “Bianchi identities” as well as the conservation
laws result in a systematic manner. (Einstein 1955, p. 154)

Field equations were derived, taking as gravitational variables (Kiche-
nassamy 1986)

(1) the metric g;; and its derivatives (Hilbert- or g-variation);

(2) the metric g;; and the connection I jk (and its first derivatives), con-
sidered as independent (g—I" variation) or constrained by the Ricci
identity Vig;; = 0 (C-variation);

(3) the connection alone, with or without a soldering metric (affine vari-
ation), as in gauge theories or purely affine theories.
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In this chapter, we comment on some of the earlier derivations, hoping
that this will throw some light on the emergence of the present formulation
of general relativity. Indeed, most of the papers discussed here originated in
the difficulties encountered by Einstein and others to understand the details
of Hilbert’s 1915 paper. Tricky points include the meaning of Hamilton’s
principle in field theories and the nature of the variation involved. This
chapter is therefore organized as foliows:

o Section 2 briefly recalls the specific features of Hamilton’s princi-
ple, which distinguish it from other integral variational principles of
mechanics.

o Section 3 describes the three types of variation considered in the vari-
ous papers (the functional, label, and Lie variations) and discuss their
implications. ‘

o Section 4 includes comments on the papers of Einstein and Gross-
mann (1914), Einstein (1914), Lorentz (1915), Hilbert (1915), Ein-
stein (1916a), Lorentz (1916), Einstein (1916b), and Palatini (1919).
Some modern trends are also indicated.

o Section 5 gives a brief conclusion.

2. Integral Variational Principles of Mechanics

Integral variational principles are used to derive the equations of motion
of a system by requiring the action integral to be stationary. The action
integral has the form

143
I= jf L, ¢"(®), ¢" @) dr, ¢y

13}

where g“(t) are the generalized position coordinates of the system, de-
pending on the parameter ¢, and g*(¢) := dg®(¢)/d¢. One can distinguish
two principles of this kind: Hamilton’s principle and the principle of least
action. Historically, the latter came first (see Sommerfeld 1952, p. 181).

2.1 HAMILTON’S PRINCIPLE

Hamilton’s principle says that we obtain the equations of motion by re-
quiring that I = O for any variations 8q¢ satisfying the following two
conditions:
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(1) they are taken at constant time

8t =0 2

(2) they vanish at the endpoints:

(&i’a =0, Sqa = 0)t=t1,t2~ (3)

Condition (2) ensures that ¢ on the original path and g* -+ 8¢ on the varied
path belong to the same time ¢, so that

d

8% = —8q°. 4
9 =% 4

When these conditions are satisfied, the requirement that 8/ = 0 leads to
the Euler—Lagrange equations

3L d 3L _
dg®  drdge

a =

The term ( ;’ q.La 5q“)2 vanishes on account of (3).
When 8L /3¢ = 0, L is invariant under the translation ¢ — ¢ + u, and

we have conservation of energy (H = Energy):

dH aL
— =0, H=—4¢"-1L
dr ag®

Even when L explicitly depends on 7, the function H can be defined by the
same relation and is called the Hamiltonian associated to L. L is sometimes
called Hamilton’s function, not to be confused with the Hamiltonian.
When constraints reduce the number of degrees of freedom of the sys-
tem, one may keep all the variables ¢* independent through the use of
Lagrange multipliers; these may be interpreted as the reaction to the con-
straints, as in hydrodynamics (the pressure versus the incompressibility).

2.2 PRINCIPLE OF LEAST ACTION OF MAUPERTUIS -

The principle of least action can be derived from §1 = 0 for conservative
systems with L = T — V (kinetic energy minus potential energy) when we
keep condition (3) and replace (2) by

SE:=8(T+V)=0. &)
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It must be noted that g% and g% + §¢% no longer correspond to the same

time; we have g 4
5¢% = —8g% — g*—8¢,
=31 "1y

and 61 = O reduces to the Maupertuis principle:

7]
8/ 2T di = 0.

4]

2.3 REMARK

As the evolution of adynamical system is obtained not from its present state,
but from both its past and future states, these integral variational principles
were for a long time considered to be “teleological” rather than “causal,”
i.e., “shaped by a purpose” or even “best expressing the Wisdom of the
Creator” (see Sommerfeld 1952, section 37; for a more elaborate philo-
sophical discussion, see Gueroult 1934 and Dugas 1950 [part III, chapter
51). From the beginning of this century onward, however, they have simply
been locked upon as an important mathematical tool, refined more than
once by Weierstrass (1927), Hilbert (1906), Tonelli (1921-1923) and oth-
ers (see any standard treatise on the calculus of variations, e.g., Gelfand
and Fomin 1963). Note that Hilbert (1899) gave the first existence proof
for an extremum of a definite integral (see Bolza 1904, pp. 245-263), and
that the calculus of variations is the object of three of his famous problems:
5th (vole of Lie groups without differentiability assumptions), 19th (ana-
Iyticity of solutions of “regular” problems), and 23rd (developments of its
methods).

3. Hamilton’s Principle in General-Relativistic
Field Theories

Hamilton’s principle has been extended to field theories on a space-time
manifold M with metric g;; by substituting the coordinates x* (Hilbert’s
world parameters) (( = 0, 1, 2, 3) for ¢, and the field variables @, (x)
(A standing for a collection of indices) for the position coordinates g%(z).
The action / is replaced by the functional Iy (®) over the domain U C M:

Iy(®) = / L{x, ®(x)) d*x, 6)
Q

where Q C R* is the image of U by the homeomorphism y assigning
coordinates x* to the points of U; where ®(x) := {®4(x) and its derivatives
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up 1o a certain order}; where d*x := dx® A dx! A dx? A dx?; and where [,
is used rather than L to indicate that we are dealing with a density.

Now, what is meant by the variations of ®4(x)? We may consider at
least three different kinds: functional variations, label variations, and Lie
variations.

3.1 THE FUNCTIONAL VARIATION §

The functional variation ¢ is the one used in the calculus of variations. It
is obtained by considering a smooth one-parameter family of field config-
urations @4 (x, A) such that ®4(x, 0) = ®4{x) and

Dalx, M) = Pa(x) +Ada(x) + -+ -,

where ¢4 (x) are arbitrary. The functional variation d® 4 (x) is now defined
as

d
8@,4(){:) = ﬁ'@/‘(xv )\')|)\.=09 (7)

where x is held fixed (just like ¢ in Hamilton’s principle). From (7), it is
clear that

§@i(x) = (8@4()) ;, (8)

where ; := 3/9x'.
The variation of Iy (®), assumed to depend on derivatives @4 ; and
by ;j, 18 given by

51y = _/ (450, + 8,501 d, ©
Q
with
50F = [ai/acm,i —Z(aﬁ/a%,ﬁ),i]a@AJr( 5%)
dPa,;j JJ
Under the conditions
(8®A(X), 8®A,i(x))|ag = 07 (10)

the requirement 8 fy = 0 leads to the field equations

LA =8L/ady — (BL/3®4) i + (BL/8D4 ), =O.
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3.2 THE LABEL-VARIATION A

The label-variation A is induced by a local coordinate transformation or a
relabeling of points of U:

(P —» A (PY=x"(P)+pv' )+,

i.e., a transformation of R* inducing an isomorphism of the tangent spaces
T, and T,». This variation A depends on the nature of the geometric
object. For a scalar L, defined as a one-component quantity independent
of the orientation of the local frame,

AL =0, | (1D

from which we may derive, by standard methods, the label-variation for
other quantities. Thus, for a covector A;,

AA; = — At (12)

and we have
AA,'!]' == (A\A,‘),]’ —_ Ax,-,kv",j. (13}

As A®d, is merely due to the relabeling of the points of the underlying
topological space M, all physical descriptions should be independent of it.
This label-invariance is the basis for the coordinate covariance principle,
considered to be trivial by Kretschmann (1917) and admiited to be so by
Einstein (1918).

Consequently, one should require that [y be a number and therefore
that L be a scalar density:

LT = Lx),

where J := det|J]'| with J}' := 8x%/3x*. In other words, L = L././=g
is a scalar:
L{x', ®'(x)) = L{x, ®(x)) or AL=0.

This has many consequences, such as the coordinate covariance of the field
equations. It also provides some insight into the structure of the Lagrangian
L.

Coordinate covariance. As Iy is label-invariant, f o LAsD A d*x should be
label-invariant, and it follows thatif §® 4 is a tensor of type (%, {), A //—8
should be of type (i, k). Hence, we have coordinate covariance of the field
equations.
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Structure of L. Under a local coordinate transformation
' =x 4 pri 4,
a scalar L should satisfy
dL/3v' ; =0, dL/3V ;1 =0,.... (16)
This has important consequences for the structure of L. We give two

examples below:

(1) Hilbert—Mie type electromagnetic Lagrangian Lep.
This Lagrangian is of the form Lem = L(g", A;, Ay j), where gV and A;
are the gravitational and electromagnetic potentials. Using the variations
(12), (13), and - o o
Ag” — glh'U],h +g’”v’,h,

we have:

3L =< oL oL )A,-:O, an

avi,jk 3Aj’k 3Ak’j

i.e., the components A; ; enter L only through M;; = A;; — A; ;, and from

AL/ ;=0

we find _ -
2g%9L/0g" — A;dL/3A, — M;;dL/dMy; =0

or

R aL | R aL aL
Ti k— —-—fgjk = %(L(Sk - ——Ai —_ Wk—MU) (18)
]

This relation between d L /3g" and Mie’s electromagnetic energy tensor
emerging from Ley, (which is a scalar and which is only a function of g/
and not of its derivatives), led Hilbert to describe it as “a circumstance
which first brought my attention to the very close and unavoidable relation
between Einstein’s theory of general relativity and Mie’s electrodynamics,

and which gave me the conviction that the theory here developed was indeed
correct” (Hilbert 1915, p. 404). ’

(2) Einstein—Grossmann type Lagrangian Lgg.
This Lagrangian is of the form

Lec = +/—gL(g", g" 1),
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where L is only a linear scalar. Using the variations (16) and

Ag = (A7) — g ok, (19)
we get
IAL = 5% o + L i, (20)
with
oL ; ;
sit = agh "Lt — %Ljhkgjh,i»
. . ‘ oL
Li* = gh iy, Lyt = ——.
agY k

Under linear transformations (v’ jk =0), AL = 0 leads to
¥ = 0. (21)
Can L be a scalar under some more general class of transformations
(v} jx # Oforaclassof v')? Inthatcase, we should have, since 8L /3v j; =

0 for such v’ s, that
Ljik + Lkij — 0’

where Liit .= gih i % Hence, L satisfies
L% = L/* and L/* = -, 22)

the first equality following from g/ being a symmetric tensor. Such an
object must be zero by the “braid lemma.” Indeed,

Lk — _pki — _piki — piki _ pkii o _piik — _pijik _ g (23)
Therefore, L can be at most a linear scalar.

3.3 THE LIE-VARIATION £

The Lie-variation £ is induced by a one-parameter group of diffeomor-
phisms of (M, g;;) generated by a vector field v' on M. Let h, be such a
diffeomorphism of M: ‘

hg: xi I—>hg(xi)zxi(g)zxi+6‘vi+-.._
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The Lie-variation of &, is
d *
LW)Dy = E(h_g D 4)e=0 (24)

where h*_ is the natural pull-back associated to the diffeomorphism. We
thus have, for a scalar P,

LW = v*D (25)
for a covector A;,
LW)A; = vh A + Ak (26)
and V
LW)A;; = (E(U)Ai),j. @n

As the Lie-variation defines an equivalence of manifold structures
(M, ®4) — (M, hd,), one may require the general invariance of physical
descriptions under the diffeomorphism pseudogroup. In that case, points of
the underlying topological space lose their individuality and the geometry
of the space-time manifold reduces to the geometry of the metric field struc-
ture (M, g;;), in the spirit of the generalized Erlangen program (cf. Veblen
and Whitehead 1932). This was, in fact, the endpoint of Einstein’s search
for general covariance (in late 1915 and early 1916), as is argued in some
very important papers by Stachel (1979, 1989) and Norton (1984) on the
“hole argument.” The general invariance may be considered as generalizing
the Lorentz invariance, and thus corresponds to Einstein’s relativity princi-
ple (1918). However, it must be stressed that space-time can no longer be
thought of as an arena for physics, as in special relativity.

On the other hand, it is well known (see, e.g., Hilbert 1915, Noether
1918) that the general invariance of Iy leads to the covariance of the field
equations under diffeomorphisms, which can be seen in the same way as
in the case of A-variation, by showing that 3;(£Q’) vanishes whenever v’
and its derivatives on 9$2 vanish; to the generalized “Bianchi” identities,
which follow from LAL®, = 0; and to the conservation laws related to
assumed symmetries of the fields. In short:

(1) The functional variation § leads, through the requirement that /;; be
stationary, to the field equations.

(2) Thelabel-variation A helps define the coordinate covariance, and leads
to conditions on the structure of the Lagrangian.

(3) The Lie-variation £ determines the general invariance of Iy, and leads
to conservation identities and conservation laws.
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With the above considerations on the three kinds of variation and their
different roles, we are now in a position to comment on some of the early
variational derivations of the field equations of general relativity.

4. Comments on Some Variational Derivations
of Einstein’s Field Equations

4.1 COVARIANCE GROUP OF THE Entwurf EQUATIONS

The route followed by Einstein toward general relativity is now fairly well
known, thanks to many historical investigations by Mehra (1973), Earman
and Glymour (1978a, 1978b), Stachel (1979, 1989), Pais (1982), and Nor-
ton (1984). By 1913, Einstein felt compelled to abandon the postulate
of general covariance, and proposed with Marcel Grossmann (Einstein and
Grossmann 1913) the Entwurf equations. In Einstein and Grossmann 1914,
they derived these field equations from the Lagrangian

Lgg = %V—g g gnii ghk,j

with the help of Paul Bernays (Einstein and Grossmann 1914, p. 119, foot-
note). Paul Bernays was a mathematician of the Gottingen school. The year
before, he had written a paper in which he gave a competent exposition of
the special theory of relativity, even though he rejected it on philosophical
grounds (Bernays 1913). Much later, lie would coauthor Grundlagen der
Mathematik with Hilbert (Bernays and Hilbert, 1934/1939).

The idea behind Einstein and Grossmann’s 1914 paper and a subse-
quent paper by Einstein alone (Einstein 1914), which has a more general
Lagrangian L = L(g”, g/ ;), was to restrict the “covariance” group of
the Entwurf field equations to a “justified” group, more general than the
linear group. The coordinate transformations in this “justified” group were
to relate “adapted” coordinate systems determined by the condition

B»—(alz b0) =0 29
;= ag"i,hg P (29)

This condition is obtained from —%Aﬁ = LIyt jn (modulo S;*, which is set
equal to zero) through integration by parts, the divergence terms cancelling
on the assumption that (v', v’ x)jpq = 0. We can make two remarks:

(1) Condition (29) may be satisfied by L/;" + L*;/ = 0, in which case,
as we showed in Section 3.2, L is independent of g/ ;.
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(2) The field equations 8L./8g = 0 are indeed covariant under the linear
group, for Aj8ly = 0. But with respect to the larger “justified
group,” when it exists, Ajgdly # 0, since L is not a scalar under this
larger group of transformations; and there is no apparent reason why
AjustSZA, /8g% should be zero, i.e., why the field equations should be
covariant.

Cattani and De Maria (1989) have given an analysis of part of the
1915 epistolary controversy between Einstein and Levi-Civita on the re-
stricted covariance of the Entwurf field equations. It appears essentially
that the main observation of Levi-Civita concerned the nontensor character
of those field equations. This correspondence, his visit to Gbttingen in
late June and early July 1915, and a number of points of dissatisfaction
with the introduction of “adapted” coordinates, led Einstein to believe that
a “more far-reaching covariance, where possible general covariance, must
be demanded” (Einstein to Lorentz, January 1, 1916; as quoted in Norton
1984, p. 299).

We should note that Lorentz brought “simplicity and clearness” to some
parts of Einstein’s variational paper (Einstein and Grossmann 1914), basing
it on a principle similar to that of Hamilton, so much so, in fact, that
“Hamilton’s name may properly be connected with it” (Lorentz 1915, p.
229; see also de Donder 1921, pp. 21-31)). Two essential features of
Lorentz’s paper were:

(1) the variations of the field variables are quite arbitrary and not related
to any other procedure, such as a coordinate transformation;

(2) the Lagrangian of a system depending on several field variables is the
sum of the Lagrangians corresponding to each of them.

On the other hand, when Lorentz related the covariance of the field
equations to the “invariant” character of L d*x under any change of coor-
dinates, he simply remarked, without further comment, that the covariance
of the gravitational equations “is a consequence of the invariancy [sic] of
[s f £, d*x], which Einstein has proved by an ingenious mode of reasoning”
(Lorentz 1915, p. 245).

4.2 HiLBERT’S “DIE GRUNDLAGEN DER PHYSIK”

Hilbert’s derivation of the field equations is based on two axioms:

Axiom 1. The Lagrangian is the world-function (i.e., a scalar) L =
LAgki, 8uvi» 8 ij» Aiy Aij), where g;; and A; are the gravitational and elec-
tromagnetic potentials, which gives the field equations sk /égij = 0 and
SL/SA; = 0;
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Axiom 2. (Axiom of general invariance.) L is invariant with respect to an
arbitrary transformation of coordinates;

while the Finstein Lagrangians are “in no sense invariants, nor do they
contain electric potentials.” Although not explicitly stated, it is clear from
the text that Hilbert used the functional variation § to get field equations, the
label-variation A to ascertain the scalar character of L, and the Lie-variation
L to derive conservation identities. Hilbert considered the introduction of
the electromagnetic energy-momentum tensor as the derivative of Ley, with
respect to the gravitational potentials g/ (see Section 3.2) as the triumph
of axiomatics. It seems that this resuit, following simply from L being a
scalar, has never been well understood. Not only did Einstein and Lorentz
make no use of i, there was also some debate in the 1960s as to why the
Eulerian (3L /3g') and the canonical energy-momentum tensors in field
theories are equivalent, an equivalence here noted by Hilbert.

With the help of a third axiom, L = R + Lem, where R is the curvature
scalar, and assuming that L., contains no derivatives of g/, Hilbert obtains,
using now standard procedures, the field equations

Rij — 3Rgij = (Tij)em,
,{Mtem ( oL )
8A,~ 8Ai,j J

=0,

and shows that “four of them are always a consequence of the remaining
n — 4, in the sense that between the n differential equations and their total
derivatives, four combinations, independent from each other, are always
identically satisfied” (Hilbert 1915, p. 397). The four relations Hilbert
is talking about here are, of course, just those following from Noether’s
theorem on pseudogroups (Noether 1918).

4.3 BEINSTEIN’S “THE FOUNDATIONS OF THE
GENERAL RELATIVITY THEORY”

In his 1916a, Einstein ignored Hilbert’s paper and gave the “Hamiltonian
function” for the gravitational field as

L =gtk rly,
g 8 1L jk (30)

~—g=1.
He allowed the condition /—g = 1 as “a hypothesis as to the physical

nature of the continuum under consideration, and at the same time a con-
vention as to the choice of coordinates” (Einstein 1916a, p. 130). The field
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equations, in the presence of “matter,” become:
~(Tk) e+ Thinl e = —k(Ty; — $Tgi)). (31)

Itis easy to verify that the left-hand side is the Ricci tensor for ,/—g = 1, so
that these equations are almost generally covariant, i.e., they are covariant
under unimodular transformations, transformations with J = 1.

Why did Einstein not consider the Hilbert Lagrangian in this 1916 pa-
per? Was he technically handicapped because of the second-order deriva-
tives in the Lagrangian, as one might suspect from Hilbert’s remark: “Every
boy in the streets of Gottingen understands more about four-dimensional
geometry than Einstein. Yet, in spite of that, Einstein did the work and
not the mathematicians” (Reid 1986, p. 142)? Why did he insist on the
condition ./—g = 1? Was it because it implied, as Einstein had shown in
his November 11, 1915 paper (Einstein 1915), that T, = 0 and because it
would have been satisfactory if all matter were electromagnetic in nature
(see Norton 1984, p. 308)? Was he hoping to find a new physical argument
to support his assumption against the mathematician’s view of nature? Or
was it simply because the details of Hilbert’s paper were still obscure to
him, as it appears from his letters to Hilbert in May—-June 1916 (see, es-
pecially, Einstein to Hilbert, May 30, 1916, EA 13-102; see Norton 1984,
p. 315)7

I will now show that the condition ./—g = 1 is not that innocent.
Consider the constrained Lagrangian

L =RJ/=g+ (/=) (32)

where A* is a Lagrange multiplier, and the second term is not a scalar
density. The gravitational field equations become

{(v—g),k =0 (33)
Rij — $Rgi; + (Vidh)gi; = 0,
the second equation being manifestly covariant. We now have two options:
to recover Egs. (31) by requiring V; AF = 0, i.e., by requiring that M admits
a one-parameter volume-preserving group generated by AX, or to interpret
the extra term as a reaction to the constraint ./—g = const.

4.4 LORENTZ’S “ON EINSTEIN’S THEORY OF GRAVITATION”

In a series of four papers, H.A. Lorentz considers the variational deriva-
tions of Einstein and Hilbert and gives his own version of the gravitational
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equations in the presence of incoherent matter and electromagnetic field. I
will comment only on the gravitational part (see also Kox 1988 and Janssen
1992).

In the first paper, Lorentz gave the geometric interpretation of the cur-
vature scalar as the sum of mean curvatures in the directions A,’, where the
Aq form an orthogonal basis (see, e.g., Ricci 1904). (Recall that the mean
curyature m,) in the direction A,’ is defined by

Ri 7 )\ai)“aj
Mgy = —FT—7 1
8ijha' Aa’
and R = ), m(.) In the third paper, he adopted Lgay = R, and he
showed that the term R
: 8L

| VT g
in the field equations (with 8 = g'./=g) is, in fact, equal to the Ricci
tensor R;; in a particular coordinate systemin which g;; = n;; and g;;, = 0,
and equal to X

8L

o /=8 (Rij — 3Rgij)
in an arbitrary system of coordinates. In the last part of his third paper,
Lorentz considered an additional electromagnetic field, but unlike Hilbert
he did not obtain the corresponding energy-momentum tensor as the deriv-
ative with respect to g;;. Lie variation is used to get conservation identities.
At the end of the third paper and in the fourth paper, different candidates for
the gravitational energy-momentum pseudotensor are proposed and com-
pared to Einstein’s.

4.5 BINSTEIN’S “HAMILTON’S PRINCIPLE AND THE
GENERAL THEORY OF RELATIVITY”

At the very beginning of his paper (Einstein 1916b), Einstein admitted that
“the general theory of relativity has recently been given in a particularly
clear form by H.A. Lorentz and D. Hilbert, who have deduced its equations
from one single principle of variation” (Einstein 1916b, p. 167). His aim
is now to “do the same thing,” making “as few specializing assumptions as
possible, in marked contrast to Hilbert’s treatment of the subject,”and with
“complete liberty in the choice of the system of coordinates” (ibid.).
However, using the relation

R=E+F, (34)
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with
E =g (@, — TR T ),
F= @Tk -8 T e =9 0,

he adopted the first-order gravitational Lagrangian £ (g, g/ ;), equivalent
to R, so that the total Lagrangian is

L=E+M=R+M-F,

the matter part M = M(g", g;, ¢ ;) depending only on g/ as in Hilbert’s
paper. The field equations are

. 3F dE oM
-ty (2H0),

— - 35

ag" x agl ogY =

( oM ) M _0 36)
0gix/ k  0g;

Since
6},/ﬁd“x=8j§[(é+M)d4x=8/(ﬁ+M)d4x
Q Q Q

under the conditions 8g” |50 = 88" ;|se = 0, and since R and M are
scalars, we can infer that ‘

jf(Eij + Myj)8g" d*x = j[ [(Ryj — LRgy) + My;18g" d*x,
Q Q
where M;; = 3M /dg", so that we get
— 5R&; = —My, (37
which is manifestly covariant.

By performing a local infinitesimal coordinate transformation such that
“Ax' differ from zero only in the interior of a given domain [Q], but in
infinitesimal proximity to the boundary [92] they vanish,” Einstein then

convinced himself that “the value of the boundary integral [ fQ F d*x] does
not change” (Einstein 1916b, p. 171), and he concluded that

Af}%d“x:AjafEd‘*x:o. (38)
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Since E and F = 0 Qi are not scalar densities, however, one should be
careful in applying Stokes’ theorem. Substituting x’ — x% = x! + Ax/,
we have, by virtue of (14),
JE +8,0")=E+93,0"
+ AE — (Qlek,l + §iijk,,~j - gikAxh,ih),k. (39)

Since, on the other hand, J I%(x’) = I%(x) =E+ O Q", we have in £:

—(Q'axk + 3T axk ;- gFAxP ) = 0. (40)
This means that

n AE is not vanishing, but is compensated by terms originating in F=
3 Q since Q’ is not a vector density;

(2) under the conditions imposed on Ax* and its derivatives on 3%,

A/ Ed*x =0,
Q

as asserted in (38), since, by virtue of (40), AE is equal to a diver-
gence. The first-order Lagrangian of general relativity, E, therefore
has the following peculiar property: although it is not a scalar density,
E vields an equivalent Lagrangian under a local coordinate transfor-
mation.

One can then use the second part of (38), as Einstein did, to derive “the
conservation of momentum and energy” (Einstein 1916b, p. 172), expressed
by

(" + 5" =0, (41)
where . .
Mih = Mug", (42)
3E E IE
~ho_ jh ik ( h jk )
2 — 3; . . 43
i <ag11,,€g ,k+ 257 g \} TR (43)
The second equality in (43) comes from the vanishing of
3E .,  QE 3E
ah_ ih Jh S ik {

which follows from the fact that £ is a linear scalar density (cf. Equation
(21)). Eguation (40), combined with the field equations (35), leads to the
conservation of the energy-momentum tensor:

v, M;* =0.

Einstein then concluded:
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It is to be emphasized that the (generally covariant) laws of conservation
(21) and (22) [here (40) and (45)] are deduced from the field equations
(7) of gravitation [here (36)], in combination with the postulate of gen-
eral covariance (relativity) alone, without using the field equations for
material phenomena. (Einstein 1916b, p. 173)

It should be noted that the conservation laws (40) and (45) are a consequence
of the label-variation A of the Lagrangian and of the gravitational field
equations (35), while the Lie-variation £ leads to four identities between
those field equations, as was first shown by Hilbert. Did Einstein really
distinguish between these two kinds of variation in the years 1914-19187
When did he fully understand the implications of the failure of the “hole
argument,” i.e., the necessity of the general invariance of the space-time
manifold structure? Obviously, these considerations are not at variance
with Stachel and Norton’s historical analyses of Einstein’s struggle with
the “hole argument.”

4.6 PALATINI'S “INVARIANT DERIVATION OF
GRAVITATIONAL EQUATIONS FROM HAMILTON’S PRINCIPLE”

After noting that Hilbert (1915) and Weyl (1917) used “non-invariant for-
mulae” (Palatini 1919, p. 203) in their derivations, Palatini showed that

SR = R;;88Y,

§8R;; contributing only a divergence V¥, by virtue of Vig;; = 0. The
Palatini variation is in fact a device to get the field equations by varying
only g as in Hilbert’s g-variation (see Ferraris et al. 1982; Goenner 1979;
Stephenson 1958).

4.7 GENERAL REMARKS ON OTHER VARIATIONAL DERIVATIONS

Constrained variation. The Palatini device was historically followed by P-
variation, i.e., the independent variation of g”/ and I'';;. Although g- and
P-variation yield equivalent results for the Lagrangian of general relativity,
they generally give different field equations for more general Lagrangians
(see, e.g., Kichenassamy 1986). The use of Lagrange multipliers to cope
with the Ricci constraint V; g;; = 0 removes this discrepancy and brings a
wealth of useful information (Kichenassamy 1986). The general gravita-
tional Lagrangian is

L =A(g,T,0T) + B(g, @4, VO,4) + C(g, 3g, ). (46)

The equation 8C = 0 restores the constraint. In a Lorentzian manifold; in
which case A = R and 3B /9I""j; = 0, we get the Einstein equations (see,
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e.g., Ray 1975). The cases in which 3B Jor jk 7 O (minimum gravitational
coupling) include more elaborate “matter” configurations.

The constraints may also restrict the independence of “matter variables.”
In this context a very important literature is now developing on perfect and
dissipative fluids.

From Lagrangian to Hamiltonian. With a view toward quantizing general
relativity, much work has been done to derive the Hamiltonian from the
gravitational Lagrangian. An important problem arises from the fact that
the boundary integral cannot be made to vanish by assuming that 8g/, but
not 8g"/ 1, vanish on the boundary 3€2. As a consequence, the Lagrangian
has to be modified before the transition to Hamiltonian formalism can be
made.

Extensions of general relativity. Variational methods are used to obtain
generalizations of Einstein’s theory: unified field theories, Einstein—Cartan
theory, and gravitational gauge theories (see Kichenassamy 1986).

5. Conclusion

From the various contributions to the variational formulation of general
relativity that I discussed in this chapter, the following picture emerges. On
the one hand, we see how Einstein, through a hard struggle, with miscon-
ceptions and misleading techniques, was slowly led to a fundamental model
of physical description, with the help of Grossmann, Lorentz, Ehrenfest,
Levi-Civita, Sommerfeld, and others. On the other hand, we have Hilbert,
well acquainted with Einstein’s work, who could anticipate the exact math-
ematical structure of this model. Unfortunately, Hilbert was preoccupied
more with the foundations of physics than with physics itself, whereas in
Einstein’s case one can seriously doubt whether he fully understood the
implications of his theory in the period 1915-1918 that I considered here.

Anyhow, I hope to have shown in this chapter that the variational ap-
proach leads to some valuable insights into the foundations of general rel-
ativity, and that it raises some interesting historical questions about how
Einstein coped with his theory.
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Levi-Civita’s Influence on Palatini’s
Contribution to General Relativity

Carlo Cattani

1. Introduction

In the years 1913-1918, Albert Einstein made every effort to give a rigor-
ous variational formulation of his gravitational field equations and to find
solutions of these equations in some special cases. In this way, he hoped
to clarify the physical significance of his new gravitational theory. During
the years 1915-1925, the Italian mathematician Tullio Levi-Civita and his
follower Attilio Palatini made a number of fundamental contributions to
the new theory that were very important for such clarification. The most
important of these were:

(1) Levi-Civita’s proof, in 1915, of the mathematical inconsistenéy of
Einstein’s early gravitational theory (see Cattani and De Maria 1989b),

(2) the correct definition of the conservation of the gravitational stress-
energy tensor through the contracted Bianchi identities (Levi-Civita
1917a),

(3) ‘the correct variational formulation of the final version of the gravita-
tional field equations (Palatini 1919),

(4)-a profound discussion of gravitational energy (see Cattani and De
Maria 1989a, and my chapter with De Maria in this volume),

(5) a series of investigations into problems of static gravitation (Levi-
Civita 1917b, 1917/19; Palatini 1918, 1919/20, 1921a, 1921b, 1923a,
1923b).
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In each of these cases, Levi-Civita and Palatini challenged such authorities
as Einstein, David Hilbert, Hermann Weyl, and Hendrik A. Lorentz, and
proposed original points of view that came to be internationally recognized.

Palatini is best remembered for his variational method (Palatini 1919},
but the main focus of his research was, in fact, on finding solutions of
the gravitational field equations. This part of his work is quite unknown.
Palatini was introduced to general relativity by Levi-Civita, his former
teacher, who, for at least ten years (from 1913 until 1923), had a strong
influence on his scientific work. Their correspondence! clearly shows how
Levi-Civita stimulated Palatini’s interest in general relativity, making him
aware of the progress in the field, how he suggested new problems to work
on, and how he acted as an adviser for Palatini’s work. In 1923, after a
bright initial career, Palatini’s star slowly started to fade. No longer in
direct contact with Levi-Civita, he was unable to produce any interesting
new results in general relativity. In this chapter, we will trace how Palatini
entered the Buropean debate on variational formulations of general relativity
and how he subsequently contributed, with Levi-Civita, to the study of static
solutions of the gravitational field equations.

2. Early European Debates on Variational Principles
in General Relativity, 1913-1916

Before discussing Palatini’s 1919 variational method, I briefly want to dis-
cuss the earlier uses (and misuses) of variational principles in general rel-
ativity (see also my chapter with De Maria in this volume).

In Einstein and Grossmann 1914 and Einstein 1914, Einstein had al-
ready used a variational principle to derive the field equations of the so-
called Enrwurf theory (Einstein and Grossmann 1913). This theory was
marred both by the restricted covariance of its gravitational field equations
and by some mathematical mistakes in one of its crucial proofs.? In their
variational derivation of the field equations, Einstein and Grossmann made
use of a noninvariant Lagrangian density H, thus obtaining the equations
of limited covariance of the Entwurf theory. In his October 1914 article,
Einstein tried to make the covariance properties of the Entwurf equations
more explicit, using a generalized version of his previous variational ap-
proach. Although he believed he had found a more satisfactory derivation
of the gravitational field equations in this way, namely, a derivation “in a
purely covariant theoretical form” (Einstein 1914, p. 1030), he was forced,
one year later, to abandon the Entwurf theory. It has been shown that Levi-
Civita played an important role in convincing Einstein of the mathematical
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defectiveness of his Entwurf theory (Cattani and De Maria 1989b), leading
him to redirect his steps toward general covariance.

Levi-Civita showed that Einstein, at a crucial point in his 1914 reason-
ing, confused invariance and covariance. Looking at the transformation
properties of both the action integral and the Lagrangian function, Ein-
stein found that the invariance of these quantities and the covariance of
the gravitational field equations were limited to the so-called “justified”
transformations, i.e., transformations satisfying the condition that a certain
vector B, defined as

2 /
Bu_ i Qg

dx% x¢

maH«/:E)’

8g[’,w

vanishes (Einstein 1914, p. 1070; Einstein and Grossmann 1914, p. 218).
Contrary to what Einstein thought, however, it does not follow that the field
equations are invariant under these justified transformations. With four
conditions B, = 0 on the coordinates, one cannot have both independence
and covariance of the field equations. In the course of his correspondence
with Einstein between March and May of 1915,> Levi-Civita discovered this
gap in the argument. Einstein was eventually forced to accept the validity
of Levi-Civita’s cbjections, and, in particular, to admit that his proof was
incomplete.*

In the same year, Lorentz published a paper criticizing Einstein’s vari-
ational formulation of the field equations, and proposing “a more correct
approach” (Lorentz 1915, p. 1073). He derived the gravitational field equa-
tions without specifying the form of the Lagrangian H, simply assuming
H to be a function only of the metric tensor and its first order derivatives.
Hence, H is still not invariant under general transformations. It should be
stressed that Lorentz was perfectly aware of the limited covariance of the
field equations he obtained in this way (which are just the Entwurf equa-
tions). He accepted this result without question, however, and considered
Einstein’s proof of it (which Levi-Civita had shown to be wanting) as an
example of his “ingenious mode of reasoning” (Lorentz 1915, p. 1089).

Only in November 1915 did Einstein write a sequence of papers (Ein-
stein 1915a, 1915b, 1915c¢) in which he finally succeeded in obtaining the
correct. generally covariant field equations. He did not use a variational
method, however, and, in order to obtain conservation of energy, he was
forced to adopt the hypothesis that all matter is electromagnetic and the
coordinate condition ./—g = 1.

In the meantime, on November 20, 1915, Hilbert had presented the first
of a two-part paper (Hilbert 1915), in which he tried to unify gravitational
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theory with the electromagnetic theory of matter advanced by Gustav Mie
(Mie 1912). In this paper, Hilbert showed that Einstein’s gravitational field
equations can easily be obtained from a variational principle, at least in the
presence of an electromagnetic field (Hilbert 1915). Hilbert assumed that
the quantities characterizing the field are the ten gravitational potentials
guv and the four electrodynamic potentials g,,, which are the fundamental
variables of a generally invariant “world” function H. In his opinion,

Einstein gave the fundamental original idea of general invariance a sim-
ple expression. However, for Einstein, the Hamilton principle (only)
plays a subordinate role, and his function H is not at all generally invari-
ant. Moreover, the electrical potentials are not included [in the theory].
(second footnote to Hilbert 1915, (1), p. 396)

Splitting the Lagrangian into two parts—the curvature scalar R for the
gravitational field and a Lagrangian M for the electrodynamic field—and
evaluating the corresponding functional derivatives, Hilbert obtained Ein-
stein’s gravitational field equations as well as the equations of motion of
electromagnetic matter in a curved space-time.

In 1916, Lorentz published a long paper in four parts (Lorentz 1916),
in which he used a variational principle to obtain the gravitational field
equations, the “stress-energy complex,” and the conservation laws for the
gravitational field. Contrary to his previous article, Lorentz now identified
the Lagrangian density as the curvature scalar R. By coupling R with
several kinds of matter variables, Lorentz obtained the correct gravitational
field equations. He made some mathematically unwarranted assumptions,
however, such as the assumption that the infinitesimal variations of the
metric tensor have tensor character. Moreover, the generality of his proof
was limited by a special choice of coordinates.

In November 1916, Einstein once again used a variational method in
general relativity. He claimed that his approach was more general than and
“especially in contrast” with Hilbert’s, since he rejected Mie’s hypothesis
about the fully electromagnetic nature of matter (Einstein 1916b, p. 1111).
He conceded, however, that Lorentz and Hilbert had given general relativ-
ity an especially transparent form by deriving its equations from a single
variational principle. Contrary to his earlier claims in the context of the
Entwurf theory, Einstein now admitted that, in order to satisfy the principle
of general relativity, the Lagrangian for the gravitational field “must be the
linear invariant of the Riemann curvature tensor since there is no other in-
variant that has the required properties” (Einstein 1916b, p. 1113). In line
with his previous variational approach (Einstein and Grossmann 1914; Ein-
stein 1914), Einstein showed (Einstein 1916b) that the correct gravitational
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field equations could be obtained from a noninvariant Lagrangian,’ and that
by using a suitable infinitesimal coordinate transformation, the condition
B,, = 0 could still be satisfied.

Einstein’s persisting uncertainties about coordinate conditions and gen-
eral covariance led him, in 1917, to start a new polemic with Levi-Civita.
Einstein’s misconceptions (Einstein 1916b) about the covariance of the
stress-energy tensor for the gravitational field along with some incorrect
conclusions about gravitational waves (Einstein 1916a, 1918),° motivated
Levi-Civita to study the correct analytical form of the gravitational stress-
energy tensor (Levi-Civita 19172). In Levi-Civita’s opinion,

the idea of a gravitational [stress-energy] tensor belongs to the majestic
construction of Einstein. However, the definition proposed by the author
is unsatisfactory. Firstof all, from the mathematical point of view, itlacks
the invariant character it should have in the spirit of general relativity.
(Levi-Civita 1917a, p. 381)

Tn his paper, Levi-Civita showed, among other things, that some differential
relations holding for the gravitational field equations plus the conservation
law for the stress-energy tensor for matter were identically fulfilled by
the metric tensor (the so-called contracted Bianchi identities, still ignored
by Einstein at the time). Since these identities are generally covariant,
Levi-Civita pointed out, Einstein was mistaken in thinking that energy-
momentum conservation calls for a restriction on the choice of coordinates
(Levi-Civita 1917a).

3. Palatini’s 1919 Variational Principle

In 1913, Attilic Palatini received his Bachelor’s degree in mathematics
from the University of Padova. His thesis, written under supervision of
Levi-Civita, dealt with fluid mechanics. In the following years, under the
scientific influence of Levi-Civita, Palatini wrote his more important arti-
cles on general relativity. His first article on relativity, in 1917, dealt with
the perihelion motion of Mercury and the bending of light beams in grav-
itational fields (Palatini 1917). One year later, he investigated dynamical
paths for a stationary metric (Palatini 1918). In 1919, encouraged by Levi-
Civita, Palatini proposed a new approach to the variational formulation of
gravitational field equations (Palatini 1919). In this brilliant article, he
rebutted the early variational approaches of Einstein and Grossmann (Ein-
stein and Grossmann 1914; Einstein 1914) and improved on the variational
methods developed since (Einstein 1916b; Hilbert 1915; Lorentz 1916). In
Palatini’s words:
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Since Einstein’s discovery of the gravitational equations, many efforts
were made to derive them from a variational principle just as one de-
rives the equations of Lagrange from Hamilton’s principle in classical
mechanics. This goal was accomplished by Einstein himself establish-
ing, a new version of Hamilton’s principle, though subsequently, more
precise adjustments were made by Hilbert and Weyl. However, these
authors do not conform to the spirit of the absolute differential calculus,
because they obtained invariant equations (with respect to changes of
the variables) via some formul® lacking in such invariance. (Palatini
1919, pp. 203-204)

Like Hilbert, Palatini began with a first axiom:

Any physical law is dependent on a sole universal function H. Such a
function is invariant with respect to any coordinate transformation; it de-
pends on the gravitational potentials g*”, on the corresponding Christof-
fel symbols, and on those parameters [g,,] charactetizing any physical
event as well. (Palatini 1919, p. 204)

Following Hilbert again, Palatini split H into two parts: the curvature scalar
R and a function M representing matter, i.e., everything not intrinsically
included in the space-time structure. Palatini felt that,

at least from a speculative point of view, it seems desirable to attribute
to all these manifestations (directly or not) the same electromagnetic
origin. The explicit form of the Lagrangian cannot be given as a function
of the parameters [g,,], due to the complicated form of this dependence,
thetefore, some restrictions on the representation of the Lagrangian [for
matter] M are needed. (Palatini 1919, p. 204)

Rather than making specific assumptions about the nature of matter, Palatini
justassumed that matter can always be represented by an energy-momentum
tensor T},,, which macroscopically describes the stress-energy components
for matter. Once the components T, are given, M can be expressed as

M=xTwg wy
where 7),, are independent of the variations §g"” of the metric tensor,’ i.e.,
8(v/=8 Tu) = 0.
The next step was to evaluate the infinitesimal variation of the connection,
as well as of the curvature tensor, with respect to arbitrary variations §g*" of

the metric tensor that vanish on the boundary of the space-time integration
domain.® He considered both the metric tensor and the affine (symmetric)
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connection as independent val'iables, and rederived Einstein’s field equa-
tions together with a set of conditions on the affine connections that reduce
them to the Christoffel symbols.

The main results of Palatini’s variational method were the following
(see Ferraris et al. 1982; see also Wald 1984, pp. 450—459). First, he pre-
served the tensor character of all equations at each step of his derivation.
Second, he showed, for the first time, that the variations of the Christoffel
symbols are the components of a tensor. Moreover, his method of varying
the Riemann curvature tensor was independent of any particular choice of
a symmetric affine connection. Finally, he was the first to give an exam-
ple of a metric/affine variational principle though he was working in the
framework of a theory traditionally phrased in terms of a metric variational
principle. This important result, based on his choice of the connection as an
independent variable, opened up a new and important field of research that
would be fully exploited later in Einstein’s unified field theories (Einstein
1925; see Ferraris et al. 1982).

4. Levi-Civita and Palatini’s Contribution
to Einstein’s Statics, 1917-1923

The inspiration that Palatini drew from Levi-Civita in his work on vari-
ational principles is just an example of the fundamental role Levi-Civita
played, during the years 1917-1919, in organizing an enthusiastic and am-
bitious research program in general relativity in Italy. This program was
aimed at (a) strengthening the physical basis of general relativity and raising
the standards of mathematical rigor in order to make the theory acceptable
to a hostile scientific environment and (b) minimizing the gap between clas-
sical and relativistic mechanics. In particular, Levi-Civita wanted to show
that relativity formed a natural progression from classical mechanics.

During this period, Levi-Civita therefore worked hard on rederiving
classical results from a first order static approximation to Einstein’s equa-
tions. He started in 1917 (Levi-Civita 1917b), studying Einstein’s gravita-
tional field equations for static’ phenomena and the motion of a particle in
a static field, with a view to linking Einstein’s theory to Newton’s. Starting
from a given static distribution of matter'® and neglecting the influence of
a test particle on the gravitational field, Levi-Civita obtained the relative
gravitational field equations and the relative motion of a test particle in a
weak static field.!! In this way, he was able to show how, in a first ap-
proximation, relativistic particle motion coincides with particle motion in
ordinary mechanics (Levi-Civita 1917b).
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In along article, in nine parts, presented to the Accademia dei Lincei be-
tween December 1917 and January 1919 (Levi-Civita 1917/19), Levi-Civita
continued his study of first order sclutions to Einstein’s field equations. He
proposed an intrinsic approach in terms of independent congruences,!?
using a conformal transformation of the static metric, and also consid-
ered some conformal metrics as well as the so-called Weyl metric (Weyl
1917, 1918).13 Levi-Civita was able to evaluate the geometrical structure
of the space-time for the case of a cylindrical matter distribution. In par-
ticular, he showed that the longitudinal solutions!# include the Einstein—
Schwarzschild solutions (which are special cases of the Weyl metric). These
solutions prompted Levi-Civita to study a particular field generated by a
symmetric source, that is, a homogeneous cylinder. He also elaborated on
the result of his paper (Levi-Civita 1917b, p. 464) that, in an empty static
space-time, Einstein’s equations reduce to seven equations which allow
for considerable further simplification (Levi-Civita 1926, p. 381; Palatini
1921a, p. 464)." The resulting equations, as Levi-Civita put it, “reduce the
Einsteinian statics to the three dimensions of the associated space. Their
form is invariant with respect to the metric of this space” (Levi-Civita 1926,
p. 381). Moreover, Levi-Civita showed that the square root of the time—
time component of the metric is a harmonic function. The next step was
to integrate a similar system of differential equations for a region of space
in which the components of the stress-energy tensor do not all vanish. In
doing so, one must assume that the metric differs by “very little” from the
Euclidean type. Levi-Civita evaluated both the scalar potential (i.e., the
time-time component of the metric) and the spatial metric to first order
(Levi-Civita 1917b, 1926, pp. 383-392). Palatini went up to second order
(Palatini 1921a). Levi-Civita and Palatini showed that the solutions de-
pend on the arbitrary choice of a harmonic function and, in second order,
on ordinary potentials that are a function of the density.'®

Meanwhile, Palatini was slowly losing contact with Levi-Civita. Levi-
Civita had moved to Rome in 1918, leaving Palatini behind in Padova. In
1920, on Levi-Civita’s recommendation, Palatini was offered the chair of
mechanics in Messina. Palatini at first was pleased with the offer, as can
be gathered from his reply to the letter in which Levi-Civita informed him
of the “unexpectedly”!” good news. Palatini’s letter, dated April 17, 1920,
also bears testimony of the great esteem in which he held the addressee:

My very highly honored Teacher.... Let me express my respectful
affection'® and remind you of my gratitude for your constant and en-
couraging help, as well as for your manifold and continuous advice
while I was studying. Your trust has given me much support, especially
recently, over the last few years, when I had to get over many crises. I



214 Carlo Cattani

will forever be very grateful [to you]. (Palatini to Levi-Civita, April 17,
1920,p. 1)

In 1921, Palatini actually moved to Messina. It did not take long before he
started to feel very isolated. As he wrote to Levi-Civita, “I cannot move
from here, because the journey is too uncomfortable.... I am very sorry
because I could have had the pleasure of some talks with you” (Palatini to
Levi-Civita, March 28, 1921, p. 4).

Despite this intellectual isolation, Palatini continued to study the so-
lutions of Einstein’s equations, without concealing his difficulties to his
“teacher” Levi-Civita:

Two years have elapsed since you suggested to me to solve the problem of
cylindrical potentials within the Einstein theory. Again and again, I have
strained myself to come up with the solution. As youknow, Lhave studied
this argument in second order approximation. Taking into account these
results, I have recently reached some conclusions that I would like to
submit to you for your judgement. But I must confess thatIlook upon my
conclusions with distrust, because they are extremely simple. Although
they might be easily criticized for their extreme simplicity, I cannot find
anything wrong with them myself. If, however, it turns out that my
considerations are right, their simplicity is not only a consequence of
the fact that what 1 was seeking was concealed for a long time, but it
also explains why all my previous atterpts stubbornly led me to the ds?
of Weyl. (Palatini to Levi-Civita, March 28, 1921, pp. 4-5)

Just one month before this letter, Palatini had delivered a paper (Palatini
1921b) dealing with the second order solutions for the cylindrical poten-
tials he and Levi-Civita had been looking at. Palatini showed that in a static
weak field with the harmonic function independent of one of the spatial
coordinates, the spatial potentials depend only upon the remaining spatial
coordinates. Furthermore, to second order, the approximated axial sym-
metric potentials derived by Palatini coincide with the exact solutions for
the static spherical and symmetric potentials previously obtained by Levi-
Civita (Levi-Civita 1917/19, VIII). These results encouraged Palatini to
try to work toward the exact solution of the cylindrical potentials. In fact,
the correspondence up to second order between symmetric potentials'® and
cylindrical potentials should, in Palatini’s opinion, be valid in general, and
the required metric?®® should depend only on a pair of harmonic functions of
two spatial coordinates. In the letter to Levi-Civita quoted above, Palatini
suggested a simple form for these two functions (Palatini to Levi-Civita,
March 28, 1921, p. 5). He later realized that they could not have this simple
form (see Palatini 1923a, p. 266).
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In a letter to Levi-Civita of January 22, 1922, and in subsequent papers
(Palatini 1923a, 1923b), Palatini returned to the problem. To Levi-Civita,
he wrote:

I went back to the gravitational equations again: I may be wrong to be
so one-sided, but I am driven first by the desire to reap some benefits
of my long study of Einstein’s equations, and second by the fact that I
do not find the necessary feedback here [in Messina]. In particular, as
I said to you, I don’t have access to [scientific] publications, so that I
never know what is being done and said in the mathematical field and,
in particular, in mechanics. (Palatini to Levi-Civita, January 22, 1922,

p. D

Once again, we see Palatini’s dissatisfaction with the scientific and cultural
life in Messina cropping up in this passage. In the same letter, Palatini
writes:

I live with the wish to leave Messina, for the reasons you know; besides,
I am disgusted by the low and petty university environment. . .. T heard
a rumor about new transfers: hopefully, there is something for me in it
as well. (Palatini to Levi-Civita, January 22, 1922, p. 1)

I do not want to draw general conclusions about the consequences of the
environment on Palatini’s scientific work, but it is clear that he missed the
strong direct influence of Levi-Civita.

Still, this same letter contains Palatini’s evaluation of a symmetric po-
tential belonging to the class of Schwarzschild solutions. Without any
substantial changes, these considerations appeared in the article published
in 1923 (Palatini 1923a), in which Palatini addressed the problem of longi-
tudinal solutions within the Weyl solutions. As he reported to Levi-Civita,
Palatini wanted to show that “in first approximation, from a relativistic
point of view, matter distributed over a round ellipsoid behaves like mat-
ter distributed inside a sphere of some suitably chosen radius” (Palatini to
Levi-Civita, January 22, 1922, p. 5), and, more generally, that solutions for
a symmetric distribution of matter over a round ellipsoid are Weyl solu-
tions. Hence, the longitudinal solution (of Schwarzschild) is a particular
case of the Weyl solutions. Moreover, since the Weyl solutions correspond
to symmetric solutions, Palatini was able to give an explicit expression
for the potential?! in the symmetric solutions of the Schwarzschild type.
Further attempts by Palatini to demonstrate the correspondence between
longitudinal and symmetric solutions in general can be found in follow-up
letters to Levi-Civita,?? who apparently was not satisfied by them. In the
process, Palatini obtained the nonphysical case of matter distributed at in-
finity and sought Levi-Civita’s advice. In this letter, Palatini is lamenting
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over his situation in Messina again: “I cannot continue to go deeply into
this question. I implore you to give me some suggestions. Forgive me if I
continue to disturb you. You can surely imagine how painful this loneliness
is for me” (Palatini to Levi-Civita, March 28, 1922, p. 6).

In a letter from April 1922, Palatini asked Levi-Civita to choose be-
tween two titles he had come up with for his papers on the subject (Palatini
1923a, 1923b).23 This is the last reference to the problem in the existing
correspondence between the two men. Palatini’s desire to move away from
Messina is mentioned a few more times in the course of 1922. In April,
Palatini wrote to Levi-Civita, “T have always kept you informed of my steps
to gobackto. .. thecivilized world” (Palatini to Levi-Civita, April 28, 1922,
p. 3), and, in August, he wrote, “I trust in your help and I still believe in
a favorable solution, although, due to the circumstances, my hopes have
been greatly reduced” (Palatini to Levi-Civita, August 2, 1922, p. 3).

Palatini would soon leave Messina to go to Parma, where he lived from
1922 to 1924, and then to Pavia, where he stayed the rest of his life ¢he
died in 1949). By the time he left Messina, Palatini had exhausted most
of his relativistic inspiration, certainly due in large measure to the lack of
direct influence from Levi-Civita. With the exception of one paper in 1929
(Palatini 1929) and a review article in 1947 (Palatini 1947), Palatini did no
further work in the field of relativity. After 1923, six years elapsed before
Palatini published another article on general relativity. Despite this long
public silence on the subject, Palatini in 1929 still boasted the formal rigor
learned at “Levi-Civita’s school,” as the following comment on a paper by
Einstein shows:

With all due respect, Einstein is a muddler. Mixing up covariant compo-
nents with invariant components has given rise to formal complications,
which prevent both Einstein and Weitzenbdch from reaching definitive
results. (Palatini to Levi-Civita, March 23, 1929, p. 1)

Then Palatini became so involved in other problems {(mainly of a private
nature), that he was no longer able to meet the challenge of relativistic
guestions. As a resuit of the growing interest in the theory, these questions
multiplied and required quick answers, while Palatini by his own admission
“could not work any faster” (Palatini to Levi-Civita, May 6, 1927, p. 2).
His 1929 article on Einstein’s unified field theories wounld remain his last
contribution to the field.

5. Conclusion

In this chapter, a very short segment of the Italian history of general rela-
tivity is reconstructed, singling out the role played by Levi-Civita in Pala-
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tini’s contributions during the years 1919-1923. Levi-Civita’s two main
concerns were with variational formulations of the gravitational field equa-
tions and with approximate solutions of these equations in some special
cases. On the latter problem, Levi-Civita and Palatini worked intensively
for a period of nearly five years. The fruits of their labor were discussed
in Section 4. The former problem led Levi-Civita into a short but sharp
polemic with Einstein in 1915, which helped to convince Einstein that his
Entwurf theory was untenable (see Cattani and De Maria 1989b); it led
Palatini to a new fully invariant variational method. Before Palatini, the
variational method for gravitational field equations was studied by Lorentz,
whose 1915 paper on the subject was marred by its unspecified Lagrangian;
by Einstein, facing problems with coordinate conditions and a noncovari-
ant Lagrangian (Einstein 1916b); and by Hilbest, adopting rather restrictive
hypotheses on the nature of matter (Hilbert 1915). Nonetheless, by 1916
their efforts had resulted in a self-consistent, covariant, and by and large
satisfactory formulation of a variational principle for the gravitational field
equations (Lorentz 1916, Einstein 1916b). Their approaches, however,
were not considered satisfactory by Levi-Civita and Palatini, so it hap-
pened that Palatini, a relatively unknown Italian mathematician, was the
first to show, in 1919, that the variations of the Christoffel symbols were
covariant, thereby securing, at last, formal invariance at each and every step
of the variational method. He also showed that a more general variational
principle could be formulated, adopting as fundamental variables not just
the components of the metric tensor but the components of the affine con-
nection as well, This opened up an entirely new field of research. Palatini’s
contribution was immediately acknowledged by Weyi?* and Pauli (Pauli
1921, p. 621, footnote 5). Einstein also gave credit to Palatini by giving the
new variational principle his name (Einstein 1950, appendix I, p. 141).
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NOTES

1 A, Palatini to T. Levi-Civita, Levi-Civita Papers, Accademia dei Lincei, Rome.

2 In their 1913 article, Einstein and Grossmann tried to argue that their grav-
itational theory cannot be generally covariant. For a critical discussion of these
arguments, see, e.g., Cattani and De Maria 1989b and Norton 1984.

3 A. Einstein to T. Levi-Civita Correspondence, Levi-Civita Papers, Family col-
lection, Rome.

4 Einstein to Levi-Civita, May 5, 1915. For a more detailed analysis, see Cattani
and De Maria 1989b.
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5 The form of the noninvariant Lagrangian, H*, obtained after boundary is, in
terms of the Christoffel symbols I,

H* = /g 8" (T Tup® — T T

6 Cattani and De Maria 1989a. See also my chapter with De Maria in this volume,

7 In the following years, Palatini tried to eliminate this restriction on matter, but
in spite of many efforts he eventually had to recognize his failure in a letter to the
Italian mathematician Roberto Marcolongo: “Once again I have tried to get rid of
this condition even by using some of my drafts of the time I studied the derivation
of the gravitational equations. I did not succeed and I do not pursue my attempt
any longer, because I am convinced that is impossible to avoid it.” (A. Palatini to
R. Marcolongo, May 10, 1922, Marcolongo Papers, Department of Mathematics,
University “La Sapienza,” Rome.)

8 By applying the variational principle to the integral

fH\/——gdf=f(R_*'XT#vglw)\/—gdf’
T P2

it follows that

jj SRy/—g + R8\/—g + x8(To/—2)8"" + x (Tuvy/~8)8g" dr =0,
z

so that he obtains

5/ H,/—gdr = / (Ryuy — LRguy + Ty )8g" dr +J/P J—gf’ dw, =0.
% z ax

Since the last integral vanishes on the boundary and the g/ are arbitrarily chosen,
the gravitational field equations easily follow.

? A metric field that is time-independent (i.e., dgix = 0, (i, k = ©,...,3)) is
called stationary. A stationary metric field with vanishing time-space components
(i.e., gox = 0) is called static.

1080 that the four-dimensional line element reduces to

ds? = 2 dr? — dP?, di? =y dx' dxt,

where the coeffient ¢? and the coefficients of the spatial line element y;; are functions
of the space coordinates only.

1 Because of the time-independence of the three-dimensional metric, Levi-Civita
was able to split the four-dimensional space-time into a three-plus-one structure: the
relative three-dimensional space plus time. The ten gravitational equations reduce
to only seven equations. In fact, the equations corresponding to mixed terms 01,
02, 03 vanish because in the static case there are no fluxes of energy.

12 e., referring to four independent vector fields.
13

ds? = 2 dr* — e P[P (dr? + dZ?) + 2 dx?],
where v = v(r, 2) is a symmetric potential, and A is known when v is given.

14 where the metric tensor depends only on two coordinates, and the spatial metric
is orthogonal with respect the third coordinate.
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15

~ VU - ,
Rut—5—=0 OR=0, ~AU=0 Gk=123).

16
U2 =21 +20 +2I'%),  yy = 83 (1 — 20 + 212 — ™) + 1},

where n* = y"‘ ;. and the arbitrary harmonic function I' with the coefficients 7},

fulfill a set of cond1t1ons as shown by Palatini in 1921a, p. 476.

17 Palatini to Levi-Civita, April 17, 1920, p. 2.

18 Palatini’s sincere gratitude and respect for Levi-Civita are expressed more
or less explicitly in all subsequent letters. Palatini was always very thankful for
Levi-Civita’s help; he once started a letter with: “Many thanks for your suggestions
which I will use for further study of the question I am working on” (Palatini to
Levi-Civita, May 6, 1927, p. 1). In a subsequent letter to Levi-Civita, he wrote “I
have written two papers that I am submitting to you, I want you to decide if they
should be published or not in Lincei. . .. As your respectful pupil I am always ready
to accept your verdict” (Palatini to Levi-Civita, May 28, 1928, pp. 1-2).

19 of the same kind as Weyl 1917.

20 That Palatini wrote in the form (Palatini to Levi-Civita, March 28, 1921, p. 5)

do?=¢? [e‘z’\(du2 + dv?) + A? dx32].
21 palatini to Levi-Civita, January 22, 1922, p. 2, Palatini 1923a, p. 265:

L @+ —a2
v=;log 12
C2+1)y" —af2
C being a constant and t the parameter of a family of round ellipsoids.

22 As he wrote to Levi-Civita, “I intend to investigate whether the longitudinal
solutions are included in the binary Weyl solutions” (Palatini to Levi-Civita, March
28,1922, p.2).

23 “Which title do you think more suitable? Sopra i potenziali simmetrici che
conducono alle soluzioni longitudinali delle equazioni gravitazionali [or] Legame
tra le soluzioni longitudinali delle equazioni gravitazionali e le soluzioni binarie di
Weyl-Levi civita?” (Palatini to Levi-Civita, April 28, 1922, p. 9).

2 See Weyl 1921, p. 216, with the corresponding note 6 on p. 292. (See also
Weyl 1952, p. 238, and the corresponding note 6 on p. 322.)
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The American Contribution to the

Theory of Differential Invariants,
1900-1916

Karin Reich

Summary. The father of the theory of differential invariants was Gauss,
who developed the first examples. The development of a calculus was due
to Christoffel and, especially, Gregorio Ricci, who regarded it as a formal
calculus comparable to the calculus of forms in algebraic invariant theory.
Then came many contributions to the new theory of differential invariants.
The first textbook was written by Joseph Wright. While European mathe-
maticians favored a generalization of of the theory of differential invariants,
the Americans also tied new links: they combined it with vector calculus
and regarded vector and tensor calculus as the foundation of differential
geometry. Unfortunately, Wilson and Moore’s publication on this subject
came too early to include general relativity and too late to influence Einstein.

1. Preliminaries

Tensor calculus in the form of absolute differential calculus is due to Gre-
gorio Ricci (1853-1925); thus it was also called Ricci calculus. In 1901
Ricci published a comprehensive paper of nearly 80 pages together with his
former student Tullio Levi-Civita (1873-1941). Their paper “Méthodes du
calcul différentiel absolu et leurs applications” had appeared in a broadly
recognized journal, the Mathematische Annalen. This paper played a cru-
cial role for Einstein; by means of it he became familiar with tensor calculus,
which is regarded as the fundamental mathematical tool in his general rel-
ativity. Along with relativity theory, Ricci, who had been a professor in
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Padua since 1880, also became famous and was finally honored by gaining
membership to several academies.

But what about Ricci’s recognition before Einstein? Several historians
think that Ricci was not a well-known scientist; this also meant that his
tensor calculus was not widely known and respected. The following state-
ments illustrate this: “Their [Ricci’s and Levi-Civita’s] seventy-six page
memoir attracted little attention from mathematicians outside of Italy, while
Einstein, in 1912, made it the starting point for his own work in general
relativity” (Goodstein 1982/3, p. 247). LE. Wright’s textbook, Invariants
of Quadratic Differential Forms (1908), was “perhaps the first book deal-
ing with the calculus of Ricci and Levi-Civita” (Guth 1970, p. 203). This
was also a common opinion at the time of Finstein’s relativity; Wilson and
Moore, for example, stated that “the few authors who cite Riccido soin a
manner which suggests strongly that his method was practically unknown”
(Wilson and Moore 1916a, p. 274).

This impression was supported by the fact that Ricci had twice tried
to win the royal prize of the Accademia dei Lincei, but in vain. He was
rejected. Beltrami defeated his application in 1887, Luigi Bianchi in 1901.
Beltrami and Bianchi were the leading Italian mathematicians of their time;
both worked in the field of differential geometry. Bianchi’s argument was
that tensor calculus “could not conceivably be of any use, even for a differ-
ential geometer” (Roth 1942, p. 266). With their denials it was revealed that
tensor calculus was not thought to be of essential importance in differential
geometry.

Ricci himself had not believed that his calculus was a part of differential
geometry. According to him, tensor calculus was a formal calculus that
could be adopted by several fields, in differential geometry as well as in
other mathematical or physical disciplines such as, for example, in elasticity
theory or heat propagation. Ricci’s starting point was invariant theory; he
wanted to transfer the methods of algebraic invariant theory to differential
invariants. His aim was a new theory of differential invariants, i.e., a
calculus of differential forms and not a contribution to differential geometry.

Invariant theory was one of the most important mathematical disci-
plines of the 19th century; Sylvester had defined the terms invariant, co-
variant, and contravariant (Sylvester 1852) and had introduced the calculus
of forms (Sylvester 1853). Invariant theory belonged to algebra; the idea of
covariance was well established in algebra before Ricci started with his in-
vestigations. The history of tensor calculus has to be regarded as the history
of differential invariants, cultivated in Italy and other European countries.
The theory of invariants was also propagated in the U.S. The Americans
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contributed not only the largest number of papers but also the most eminent
ones.

2. History of Differential Invariants

Gauss is thought to be the father of differential geometry (Wrede 1972,
p. 197). This evaluation is based on his article “General Investigations of
Curved Surfaces” (Gauss 1828). With this paper Gauss also became the
father of differential invariants. Assuming the linear element of a surface
to be ds? = 8ik dxidx*, i, k = 1, 2, he defined the curvature of his surface
as
R or oT . .
le = axzfl - axl;l + Tl = Til'sy

(modern notation). This is the first example of a differential invariant;
it only depends on the g, and their first and second derivatives. Gauss
emphasized its invariant character by means of his main theorem, which
he called “theorema egregium”: “If a curved surface is developed upon
any other surface whatever, the measure of curvature in each point remains
unchanged” (Gauss 1828, section 12). In the original Latin version one
reads the word “invariata” instead of “unchanged,” which fits much beiter.

In the following chapter (section 13) Gauss defined surfaces from a new
point of view, i.e., a two-dimensional manifold. Gauss again used the term
invariant as well as the expression absolute when he spoke of properties
that do not depend on the form into which the surfaces can be bent without
tension (“qualitates superficiei. .. absolutae sunt, atque invariatac manent,
in quamcunque formam illa flectatur”). Gauss had used the term absolute
even earlier in some notes from the time between 1822 and 1825; he spoke
of absolute curvature regarding the geodesic curvature (Gauss 1900, p. 387).
The Gauss curvature was the firstexample of a differential invariant. Further
examples were the so-called differential operators that Eugenio Beltrami
had introduced (Beltrami 1864/65). Beltrami distinguished between the
relative properties and the absolute properties of surfaces. His differential
operators were absolute, because they were not dependent on the special
form of the surface.

Gauss’s ideas were further developed by Bernhard Riemann (1826-
1866). In his lecture of 1854, “On the Hypotheses Which Lie at the Foun-
dation of Geometry,” he extended two-dimensional surfaces, i.e., the man-
ifolds of Gauss, to n-dimensional manifolds and, accordingly, the Gauss
curvature to what was later called Riemann curvature:

YT
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Riemann regarded his curvature as a geometric magnitude; he did not use
the terms absolute or invariant, and his point of view was merely geomet-
rical. Neither Elwin Bruno Christoffel (1829-1900) nor Ricci shared Rie-
mann’s geometrical standpoint. They referred to the ideas and vocabulary
of algebraic invariant theory when describing differential forms (quantics),
covariants and invariants, and the calculus of these newly developed magni-
tudes. In his paper “Ueber die Transformation der homogenen Differential
ausdriicke zweiten Grades,” Christoffel had algebraic invariant theory in
mind when he determined Ryy;; as a result of integrability conditions; there
is no hint of curvature. In consequence, Christoffel introduced a process
that allowed the creation of a series of differential covariants, which was
his aim:

da;,...; s
ail...ir,i = al)lcl. LA Z (ll‘l...,'m_l Rima1-ir F!:,,i
m=1
(Christoffel 1869, p. 57). He called the a;,..; a “system of transformation

relations,” i.e., tensors.

In 1884, Riccibegan a series of papers referring especially to Christoffe]
and Beltrami, that is, to his differential operators and their significance as
absolute functions. In 1887 Ricci introduced the term covariant derivation
to describe Christoffel’s process and derived the following very important
theorem: The second covariant derivation enjoys the property of commu-
tativity only in the case of the plane, i.e., Euclidean manifolds; this implies
a connection between the covariant derivation and the Riemann tensor:

s
Oy ij = Oy, ji = R 1Oy s mygrom,

(Ricci 1887, p. 203). In 1893, Ricci used the term absolute differential
calculus for the first time (Ricci 1893). A summary of these results was
first published outside of Italy in the French language as early as 1892,
An extensive presentation followed in 1901. Felix Klein (1849-1925) had
asked Ricci for this full-length paper.

The term differential invariant was created by Sophus Lie (1842-1899),
In 1884, the same year in which Ricci started with his papers on differential
forms, Lie published his memoir “Ueber Differential-invarianten,” where
he quoted Lie, of course (group concept), but also Beltrami and Christof-
fel on the one hand (differential forms) and Arthur Cayley, James Joseph
Sylvester, Siegfried Aronhold, Alfred Clebsch, and Paul Gordan on the
other hand (invariant theory). He considered the quantities x; - - - x,21 - - - 24,
which are connected with the new variables x| - -+ x,2 - - - z; by special
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transformation equations forming a group. The function

L P )
"axl 0x,0Xm

is called a differential invariant of the regarded group in the case that

9z 3%z; 87, 827
SR x 0x; 0%, FL dx| 8x;8x),

Lie’s definition also included differential invariants that were dependent on
even higher derivatives. His fundamental theorem stated: Each finite or
infinite continuous group defines an infinite series of differential invariants
that can be interpreted as solutions of complete systems (Lie 1884, p. 539).

In the following years, the group concept and the idea of differential
invariants became very important. One of the first mathematicians who
reacted to Lie’s newly introduced concept was Kasimir Zorawski (1866—
1953), a Polish scientist who worked in Warsaw. Asexamples of differential
invariants, Zorawski mentioned Gauss curvature, Beltrami operators, and
Minding’s geodesic curvature. Similar to Lie, he asked for the number
of invariants of different orders (Zorawski 1892/93). From then on, two
concepts played a major role within the theory of differential invariants:
the concept of the absolute differential calculus, initiated by Ricci, and
the group concept that was introduced by Lie and improved by Zorawski.
Levi-Civita, for example, made use of both concepts in his very important
paper “On Absolute Invariants” (Levi-Civita 1893/4).

For a long time there were practically no links between differential in-
variants and geometry, and there were no allusions to vector calculus. The
theory of differential invariants became what its contributors intended it to
be—a formal theory that developed as a discipline within algebra, that is,
invariant theory. The papers on differential invariants were immediately and
regularly reviewed in the Jahrbuch iiber die Fortschritte der Mathematik
under the heading “Algebra: Theory of Forms (Invariant Theory): Theory
of Differential Forms (Differential Invariants).” The theory of differential
forms soon became a well-established discipline, contributions came from
all over the world: from Austria, Emil Waelsch; from Belgium, Théophile
de Donder; from Germany, Gerhard Hessenberg, Johannes Knoblauch,
Hermann Kiihne, and Rudolf Rothe; from Great Britain, Andrew Russell
Forsyth; from Italy, Tullio Levi-Civita, Ernesto Pascal, Gregorio Ricci,
Luigi Sinigallia, Carlo Somigliana, and Guido Tognoli; from Norway, So-
phus Lie; from Poland, Kasimir Zorawski; from the USA, Charles N. Hask-
ins, Louis Ingold, Edward Kasner, Gilbert N. Lewis, Heinrich Maschke,
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Clarence L.E. Moore, James B. Shaw, Edwin B. Wilson, and Joseph E.
Wright. Most of these authors cited the absolute differential calculus or
used its ideas indirectly. This means that Ricci’s tensor calculus was well
recognized not only in Italy but internationally, as was mentioned before.

3. The American Contribution

Mathematicians involved in the theory of differential invariants followed in
the steps of Ricci and Lie; both sides of the Atlantic adopted, combined, and
extended their theories. Two mathematicians invented a new symbolism.
The first attempt was made by a German, Gerhard Hessenberg, who was not
very successful with his presentation. The other attempt was due to Heinrich
Maschke, who was American. Seyeral mathematicians succeeded Maschke
and followed his approach. Some mathematicians tried to generalize the
methods and results of their predecessors. There were mainly three types
of generalization:

(1) the.question of differential parameters of higher than second degree;

(2) thequestion of differential invariants on the base of a not only quadratic
linear element, i.e., the general differential form

F = gy ndx’ dx* dx! .- dx"
Several results could be achieved in the case n = 3.

(3) the quadratic linear element was generalized by neglecting its condi-
tion of symmetry, g;r 7 k-

These generalizations were mostly the domain of European mathemati-
cians, but there were two new directions favored especially by American
mathematicians. Later, after Einstein’s general relativity theory, the fol-
lowing directions became the main paths of development:

(1) The combination of the theory of differential invariants with vector
calculus. Though Ricci and Levi-Civita had given first applications
(Ricci and Levi-Civita 1901, pp. 135-137), these ideas did not become
fruitful immediately.

(2) The combination of tensor calculus with differential geometry. Ricci

had mentioned differential geometry as a possible field of application.

- Healso had written a textbook on the subject (Ricci 1898), but not only

was he not successful, he was rejected by the traditional differential

geometers (Reich 1989, pp. 282-285, 295). The first positive ideas

concerning differential geometry on the basis of tensor calculus were
presented on the occasion of the St. Louis Congress in 1904.
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3.1 THE COMBINATION OF THE ABSOLUTE DIFFERENTIAL CALCULUS
AND THE GROUP CONCEPT: HASKINS

Charles N. Haskins, bornin New Bedford, Massachusetts, in 1874, attended
MIT, where he graduated in 1897. He continued his studies at Harvard and
received the degrees of Master of Science, in 1899, Master of Arts, in 1900,
and Doctor of Philosophy, in 1901. Before he became an assistant professor
at the University of Illinois in 1906, he held a teaching position at Harvard.
In 1909 he left for Dartmouth College, where he was promoted to professor
of mathematics in 1916. In 1920 he was nominated vice-president of the
American Mathematical Society, where he had been a council member
from 1914 to 1916. In 1928 he was awarded the honorary degree of Doctor
of Science (Haskins 1928). He was 68 years old when he died in 1942
(Haskins 1943).

For his Ph.D., Haskins had written a 109-page memoir, On the Invari-
ants of Quadratic Differential Forms (Haskins 1901). This was also the title
of two articles published later in the Transactions (Haskins 1902; 1904).
Lie’s continuous groups were the background; Haskins quoted Zorawski
but also Ricci and Levi-Civita. He determined the number of invariants of
the general quadratic differential form in » variables

d) = ZZaik(xl, e ,x,,)dx,- dxk.
i,k=1

In the second part, Haskins asked for the number of differential parameters
of quadratic differential forms. At about the same time he examined forms
of a degree higher than two (Haskins 1903). In his article “On the Dif-
ferential Invariants of a Plane” (Haskins 1906), he summarized the results
of Andrew R. Forsyth, which had only been published recently, compared
them with the corresponding results of Ricci in 1885; this was of special
interest because Forsyth and Ricci had achieved different results for the
same problem, Forsyth in considering the complete system of linear partial
equations, Ricci by his method of absolute differential calculus.

3.2 THE SYMBOLIC METHOD: MASCHKE

Heinrich Maschke was born in 1853 in Breslau (Wroclaw), Germany.
He studied in Heidelberg and in Berlin, mainly under Leo K&nigsberger,
Leopold Kronecker, Ernst Kummer, and Karl Weierstrass. In 1878 Maschke
finished in Berlin after an examination qualifying him as a teacher. Lec-
turing in a Berlin high school, Maschke wrote a thesis entitled On Triply
Orthogonal Systems of Surfaces, which was accepted by the University of
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Gottingen (Maschke 1880). This work is closely connected with the work
of Gaston Darboux, the author of many papers and even a textbook on
triple orthogonal systems of surfaces (Darboux 1897). In 1886, Maschke
left Berlin for one year, which he spent in Géttingen. There, he continued
his studies under the auspices of Felix Klein, according to whom Maschke’s
main field became group theory. Because it was hopeless to obtain a posi-
tion at a German university at that time, Maschke emigrated to the United
States in 1891, where he finally got a position as an assistant professor at
the newly founded University of Chicago in 1892. Later, he became an
associate and then a full professor (Bolza 1908).

Maschke gave lectures on nearly all fields. During a lecture on dif-
ferential geometry-in 1899-1900, he invented a new symbolic method for
treating quadratic differential forms. This new symbolism soon became
his main field of investigation. He published his first results in his paper
“A New Method of Determining the Differential Parameters and Invari-
ants of Quadratic Differential Quantics” (Maschke 1900). He quoted Luigi
Bianchi.as the leading mathematician in differential geometry, as well as
Gerhard Hessenberg and Johannes Knoblauch, whom he knew from his
time in Berlin. Maschke started his article with the following remarks:

I propose to exhibit in a preliminary way a symbolic method, in close
analogy with the symbolism used in the algebraic theory of invariants, for
the construction and investigation of invariants of quadratic differential
quantics. The method proves to be fully as successful as in algebra,
the chief advantage lying in the fact that after the establishment of the
fundamental principles of the method further reference to the formulas
of transformation becomes unnecessary. (Maschke 1900, p. 197)

In the following, Maschke considered A = ZIZ =1 @ik dx; dx and denoted
the derivatives of the function f by f; fi = ai; this meant da;;/0x; =
fi fu + fi fu. In this new symbolic system, the Christoffel symbols 'y, =
[kll] were presented by

1 aa,-k aa,-l aakl
fifia = 2( 9x;  dxx  Ox; )
Maschke showed that his method Ied easily to the formation of expres-
sions remaining invariant with respect to the transformation of quadratic
differential forms. ?

In his first paper Maschke had only treated the case n = 2; in his

next paper, “Invariants and Covariants of Quadratic Differential Quantics
of n Variables” (Maschke 1903/4), he considered the general case and also
showed the usefulness of his new method for Riemann’s curvature, which
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he called “quadrilinear covariant.” These investigations were continued in
“A Symbolic Treatment of Invariants of Quadratic Differential Quantics
of n Variables” (Maschke 1903). Here, Maschke expressed in words the
advantages of his denotation in form of the following theorems:

The value of an invariant expression in symbolic form is not changed
if two equivalent symbols are interchanged. An invariant expression in
symbolic form vanishes if by the interchange of two equivalent symbols
its sign is changed. (Maschke 1903, p. 449)

In quoting Ricci’s first publication in French (Ricci 1892), Maschke also
treated covariant differentiation and its significance for the quadrilinear
covariant, i.e., Riemann’s curvature. After also considering higher covari-
ants, Maschke discussed all possible kinds of invariants. This paper was
reviewed in detail (two pages!) in the Jahrbuch by Franz Meyer, who lec-
tured in Konigsberg (Kaliningrad). Meyer was an outstanding specialist
of invariant theory and also the author of the exhaustive “Report on the
Actual Situation of Invariant Theory” (Meyer 1890/91). Meyer concluded
his review with the remark, “The whole makes it possible to realize the
fertility of the symbolic method” (Meyer 1903).

Later, Maschke also generalized the theory of differential parameters
by means of his new symbolic method (Maschke 1906). Maschke belonged
to the small, elected group of invited speakers at the St. Louis Congress
in 1904 (see Section 3.4). Unfortunately, Maschke died young, suddenly,
in 1908. '

3.3 ON THE WAY TO THE FIRST TEXTBOOK: WRIGHT

Born in Liverpool in 1878, Joseph Edmund Wright entered Trinity College
in Cambridge in 1897. He was senior wrangler in 1900 and elected fellow
of Trinity in 1903. In the same year, he emigrated to the U.S. He got
a position as associate professor at Bryn Mawr College where he stayed
for seven years; it was his period of highest productivity (Scott 1910). In
the monograph series of his college, Wright published 11 works, most of
them exhaustive textbooks on invariant theory, differential invariants, group
theory, differential equations, and differential geometry (Wright 1904—
1908). In connection with these works, Wright also wrote several papers
that appeared in common mathematical journals and were reviewed. Wright
died in 1910, at only 31!/ years old.

Wright was familiar with the actual situation in invariant theory; this is
proved by his paper “Covariants of Power Series” (Wright 1905b), where
he tried to treat forms of arbitrary order #n by means of the Aronhold sym-
bolism. From invariant theory Wright moved to differential invariants. In
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his article “On Differential Invariants” (Wright 1905¢) he summarized the
results of Lie, Zorawski, and Forsyth before he determined all first-order
invariants in the case of contact transformations. In his paper “The Differ-
ential Invariants of Space,” Wright at first defined his understanding of an
invariant as including “the whole class of Gaussian invariants, parameters
and covariants” and continued with the determination of invariants, con-
sidering the problem to be solved “when a method is given for determining
a complete functionally independent set of invariants by direct processes”
(Wright 1905a, p. 323). He also applied the theory of differential invariants
to triply orthogonal systems of surfaces. Darboux had proved that such a
family of surfaces must satisfy a third-order differential equation given in
the form of a determinant; Wright showed that this determinant could be
considered to be a differential invariant expressible as an algebraic invariant
of certain forms (Wright 1906).

Wright’s most outstanding contribution was his 90-page monograph
Invariants of Quadratic Forms (Wright 1908), the first textbook on this
subject. In the preface, Wright pointed out that “the aim of this tract is to
give, as far as possible in so short a book, an account of the invariant theory
connected with a single quadratic differential form.” In the first chapter, he
outlined the history of differential invariants. Invariance was necessarily
connected with the idea of transformation, and it was therefore clear that
every invariant was invariant under a group of transformations. According
to Wright, there were “three main methods of attack.” The first was due
to Christoffel and owed its further development to Ricci and Levi-Civita;
Wright referred to it as “the method of Christoffel.” In the preface he char-
acterized it as “the most successful method.” The second method had its
roots in Lie’s group theory. The third was that of Heinrich Maschke, who
had introduced a symbolism similar to that of algebraic invariants. In the
text that followed, Wright devoted a whole chapter to the presentation of
each of these methods. The exhaustive chapter 5, dealing with geometri-
cal and dynamical applications, was very appealing. In the introduction,
Wright pointed out that

the geometry of the manifold thus breaks up into two parts:

(1) thedetermination of all invariants and all relations connecting them;
(2) the geometrical interpretation of all these invariants in the manifold.

(Wright 1908, p. 4)
It was an exceptional point of view at that time, to think of a geomet-

rical interpretation of the invariants, a challenge that was accepted only
much later. In this fifth chapter Wright emphasized once again the close
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relationship between differential geometry and differential invariants: “we
have now...to interpret geometrical magnitudes in terms of invariants”
(Wright 1908, p. 52). In his later paper “Corresponding Dynamical Sys-
tems,” Wright focused again on the dynamical applications (Wright 1909).

Franz Meyer reviewed Wright’s works in the Jahrbuch, among them
Wright’s textbook. Meyer’s review was very detailed; he concluded with
the remark that a monograph like this was desirable because it was easy to
handle, cheap, and easy to read. According to Meyer the reader was offered
such a rich amount of material in an elegant way; it also should be possible
to publish something equivalent in German (Meyer 1908).

Luther Pfahler Eisenhart’s main field of investigation was differential
geometry (Lefschetz 1969, pp. 72-77). In 1900 Eisenhart had become
an instructor at Princeton University. He became familiar with absolute
differential calculus during his visit to Padua in 1905, where he had met
Levi-Civita. From 1909 onward (he was promoted full professor in that
year), he also gave lectures on Ricci’s calculus (Ruse 1953). Eisenhart
wrote an extensive review, 11 pages long, on Wright’s book (Eisenhart
1911). In complaining about the tooc numerous mathematical publications,
Eisenhart remarked, “one is delighted to find here and there a digest of the
work in a particular field.” But Eisenhart had to conclude his review with
the sad announcement of Wright’s death:

It is impossible to close this review without remarking the loss to Amer-
ican mathematics by the death of Mr. Wright. His brilliant record at
Cambridge and his subsequent career in this country had won for him a
high place in his field.

It is surprising and remarkable that several physicists knew Wright’s
textbook. Harry Bateman quoted it in his paper “The Transformations of
Coordinates which Can Be Used to Transform One Physical Problem into
Another” (Bateman 1910, p. 472). Friedrich Kottler, an Austrian physicist,
who among others worked on relativity theory, also knew it. He mentioned
Wright’s book seven times in his paper “OCn the Space-Time Lines in the
Minkowski World” (Kottler 1912, pp. 1666-1689).

3.4 THE ST. Louis CONGRESS, 1904

In 1904, the World Fair took place in St. Louis, between September 19
and 24; it was accompanied by the “International Congress of Arts and
Sciences.” The sciences were arranged in seven sections; mathematics was
a part of the so-called normative sciences. Mathematics had three parts:

(1) Algebra and Analysis, with invited speakers E. Picard from Paris and
H. Maschke from Chicago University;
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(2) Geometry, with invited speakers G. Darboux from Paris and E. Kasner
from Columbia University;

(3) Applied Mathematics, with speakers L. Boltzmann from Vienna and
H. Poincaré from Paris.

Part (3) as well as Picard’s talk “On the Development of Mathematical Anal-
ysis and Its Relation to Other Sciences” may be omitted here. H. Maschke
delivered the address “On Present Problems of Algebra and Analysis”; he
immediately specialized in the theory of invariants and quadratic differen-
tial quantics:

Invariants suggest at once algebra, differential quantics: analysis. Atthe
same time the subject also leads into geometry—it contains, for instance,
a great part of differential geometry and of geometry of hyperspace. But
is there, indeed, any algebraic or analytic problem which does not allow
geometrical interpretation in some way or other? And when it comes to
geometry of hyperspace,—it is then only geometrical language that we
are using,—what we are actually considering are analytic or algebraic
forms. (Maschke 1905, p. 518)

He emphasized that the presentation of the theory of differential invariants
is “in strict analogy with the algebraic theory of invariants” and summarized
its development. He started with the differential quadratic quantics as they
occurin geometry, he quoted Gauss, Belirami, Codazzi, Riemann, Darboux,
and others and continued with the purely analytic representation according
to Christoffel, Ricci, Levi-Civita, Lie, and Haskins. Maschke distinguished
between the three methods: the absolute differential calculus, his symbolic
method, and Lie’s theory of continuous groups. He suggested that in the
future a combination of two or all three methods would be favored, aforecast
that turned out to be wrong. Maschke finished with the statement: “But
here, as always, it is the man, not the method, that solves the problem”
{(Maschke 1905, p. 530).

To clarify the connection between the differential invariants and differ-
ential geometry was unusual among European mathematicians. Maschke’s
address was very different from Gaston Darboux’s (1842-1917). Darboux
was a typical European differential geometer. He was totally convinced of
the effectiveness and usefulness of geometry; his standpoint was a purely
geometrical one. He began his address, “A Survey of the Development
of Geometric Methods,” with a detailed history. According to Darboux,
Lagrange became tired of research in analysis and mechanics and therefore
turned to chemistry. The reason was that the program of investigations
opened up by the discovery of the calculus was nearly exhausted. Only at
the end of the 18th century was geometry able to celebrate a triumphant
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comeback; Darboux called Monge “the regenerator of modern geometry”
(Darboux 1905, pp. 518-519). Monge’s successors, for example, Dupin,
Chasles, and Poncelet, directed the field and generated a movement toward
geometry. Only in passing did Darboux mention the theory of quantics
and Lie’s group concept. This homage to geometry was underlined by
reproaches for analysis. Darboux regretted that, although the number of
mathematical contributions grew exponentially on all sides, the number of
those in which pure geometry was cultivated was very limited:

This is a danger against which it is of some importance to gnard....
It was in the school of geometry that we have learned, and there our
successors will have to learn it, never blindly to trust to too general
methods. ... Therefore, let us cultivate geometry, which has its own
advantages, and this without wishing to make it equal in all points to its
rival. (Darboux 1905, pp. 542-543)

And Darboux compared geometry with Mother Earth; other mathematical
branches, symbolized by the giant Antaeus, regained their strength only in
touching their Mother Earth, geometry.

Like Darboux, Edward Kasner delivered an address within the division
of geometry: “On the Present Problems of Geometry” (Kasner 1905), but
he did not share Darboux’s narrow idea of pure geometry, being closer to the
view of Maschke. Bornin 1878 in New York City, Kasner began his studies
at City College; as a graduate student, he went to Columbia, where he
received an M.A. in 1897 and aPh.D. in 1899. His doctoral dissertation was
The Invariant Theory of the Inversion Group: Geometry upon a Quadric
Surface (Kasner 1900). As was usual at that time, he went abroad for one
year, completing his studies in Gottingen, where he attended lectures of
Kiein and Hilbert. Returning to Columbia in 1900, Kasner became a tutor
in mathematics, then an instructor in 1905, an adjunct professor in 1906,
and a full professor in 1910. Differential geometry became his main field
of study; he even founded a seminar on differential geometry. Kasner was
on good terms with Eduard Study and Levi-Civita, who sent him reprints
of their publications (Douglas 1958).

It was a great honor for Kasner to be selected as a principal speaker for
the St. Louis congress. He was the youngest speaker, and even Poincaré
was among his andience. Kasner’s address was a complete success, arous-
ing interest even abroad, where it was also published in a Polish translation
(Douglas 1958; p. 190). For Kasner, geometry included more than Dar-
boux would have allowed; he considered the domain of geometry to be
intermediate between analysis on the one hand and mathematical physics
on the other. As examples, Kasner mentioned the concepts of transforma-
tion and invariant, the space of n dimensions, etc., which owe their origin
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to analysis, and the theory of vector fields, questions of applicability and
deformation of surfaces, which began in mechanics. Kasner spoke further
about the foundations of geometry as well as the geometry of multiple
forms and on natural and intrinsic geometry (Kasner 1905, pp. 287, 297,
300). For him, the basis of natural geometry was essentially the theory of
differential invariants, and he quoted Bianchi as well as Ricci, Maschke,
and Lie. Kasner also mentioned vector fields together with tensor fields
(sic), which arose in Maxwell’s theory of electromagnetism (Kasner 1905,
pp. 312f). The phrase tensor field is remarkable. The term tensor had been
introduced in 1898 by Woldemar Voigt, a professor of crystallography in
Gottingen. It is probable that Kasner had learned about tensors during his
stay in Gottingen. He belonged to the very small group of non-German
scientists who were familiar with Voigt’s tensors (Reich 1993, table VII).

Maschke and Kasner pursued the correct course, and subsequent de-
velopments justified their attitudes. Darboux, on the contrary, hoped for a
new Monge, who did not arrive.

3.5 DIFFERENTIAL INVARIANTS IN CONNECTION WITH VECTORS

At the beginning of the 20th century, mathematicians, especially European
mathematicians, had a major problem with vector calculus; some accepted
it, and some only regarded it as a kind of notation, not able to offer new
results. There was no question that nevertheless vectors had become quite
common in physics, mostly in electrodynamics. Kasner had added a new as-
pect when he brought the theory of differential invariants into direct contact
with vector and tensor fields. This aspect bore within it the germ of future
development. In Europe, only Emil Waelsch, an Austrian mathematician,
had made an attempt to combine his so-called binar analysis (derived from
binar forms) with vector calculus. In America, however, several important
papers were published on this subject.

Louis Ingold, born in 1872 in Luray, Missouri, had received his B.A.
in 1901 and his M.A. in 1902 from the University of Missouri, where he
worked as an instructor from 1905 to 1906 and as an assistant from 1906 to
1910. He got his Ph.D. from the University of Chicago in 1910, at the same
time that he became a professor in Missouri. Ingold had worked under
the auspices of Heinrich Maschke. His paper, “Vector Theory, in Terms
of Symbolic Differential Parameters,” was presented on March 30, 1907,
to the Chicago section of the American Mathematical Society; this paper
was published in somewhat different form in 1910 under the title “Vector
Interpretation of Symbolic Differential Parameters.” Ingold intended
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to establish a relation between the symbolic theory of invariants of dif-
ferential forms, due to ... Maschke, and the theory of extensive quantity
(vectors), due to Grassmann. It will be shown that those symbolic ex-
pressions used by Maschke which lacked an interpretation in his theory,
may be represented as vectors of the Grassmann type, and that all of
Maschke’s expressions, including his actual differential parameters, are
expressible in the vector system. The theory of such vectors will be
extended, new formulas in the symbolic theory will be obtained and
applications to geometry will be made. (Ingold 1910, p. 449)

James Byrnie Shaw (1866-1948) had studied at Purdue University, In-
diana, where he had also written his thesis on “I. Algebra. II. Mathematics.
The Science of Algorithms” (Shaw 1893). In early 1890 he became a
professor of mathematics at the Central University in Pella. After several
changes he became an assistant professor at the University of Urbana (I1i-
nois) in 1910, associate professor in 1915, and professor in 1918. Besides
the philosophy of mathematics, his main fields were algebra, associative
algebras, and quaternions.

In 1913 Shaw published his memoir “On Differential Invariants,” which
was read in part before the Chicago section of the American Mathematical
Society, as Ingold’s paper had been (Shaw 1913, p. 395). Shaw wanted
to present the expressions of certain differential operators and differential
parameters in vector form. As predecessors he mentioned Ricci, Levi-
Civita, Maschke, and Ingold. Shaw started with a chapter on vector algebra
of n dimensions (Shaw 1913, pp. 393-399). After this, he treated, among
others, the Codazzi equations, the so-called Christoffel expression (i.e.,
the Riemannian curvature), covariant differentiation, and the differential
operator A. The last chapter was devoted to symbolic invariants. As
Ingold had, Shaw proved that Maschke’s symbolic method could easily be
transferred into vector notation.

3.6 DIFFERENTIAL GEOMETRY ON THE BASIS OF VECTOR AND
TENSOR CALCULUS: WILSON AND His COLLABORATORS

Edwin Bidwell Wilson (1879-1964) had been the last student of Josiah
Willard Gibbs (Hunsaker and MacLane 1973, p. 287). In 1899 he graduated
from Harvard; in 1901 he got his Ph.D. at Yale, where he had worked as
an instructor since 1900. He spent the following year, 1902-1903, in Paris
to complete his studies at the Ecole Normale Supérieure. Back at Yale,
he became an assistant professor in 1907. A year later he left Yale for
MIT, where he started his career as an associate professor, becoming full
professor in 1911. He had only held positions as a mathematician when in
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1917 he also became a professor of mathematical physics and head of the
department of physics.

In his textbook, Elements of Vector Analysis, Gibbs presented three-
dimensional vectors and a vector calculus equivalent to modern vector
calculus (Gibbs 1881/84). He had also introduced linear vector functions,
which he called dyadics. A dyadic was a linear mapping of a vector with
another vector, its components being transformed like tensor components.
Based on Gibbs’ papers, Wilson produced a new edition, which appeared
in a revised form in 1913 (Wilson 1901). In this book, which became a
standard text, Wilson extended Gibbs’ idea of dyadics in creating triadics,
tetradics, and polyadics, but he did not develop a calculus of these higher
vector functions, i.e., tensors. He provided a sophisticated theory in han-
dling the properties of linear transformations in invariant form. According
to Wilson, vector calculus was as important a tool for physics as invariant
theory was for geometry (Schlegel 1902).

In the same year (1901), areview of Ricci’s textbook Lezioni sullateoria
delle superficie was published in Bulletin of the American Mathematical
Society (James 1901). The author gave an impression of the essentials of
Ricci’s absolute differential calculus:

The method leads to formulae and equations always presenting them-
selves under the same form for any system of independent variables,
and the difficulties which are incidental and formal rather than intrinsic
are thus to some extent done away with, and the research assumes a
uniformity absent in other methods.The entire discussion is based on
the properties of differential quadratic forms.

James also stated that Ricci’s calculus had a wider applicability than only
differential geometry; it allowed many questions of pure mathematics and
of mathematical physics to be treated advantageously.

In 1912, Wilson and Gilbert N. Lewis (1875-1946) published a de-
tailed paper on special relativity (Wilson and Lewis 1912; Hildebrand 1958,
p. 211) that included a four-dimensional vector analysis. Wilson had writ-
ten many reviews for the Bulletin, more than 30 during the years 1911-
1914 on various subjects. In 1914 he reviewed Einstein and Grossmann’s
“Entwurf einer verallgeminerten Relativititstheorie und einer Theorie der
Gravitation” (Wilson 1914). Wilson thought the mathematical part of their
theory especially interesting for those familiar with quadratic differential
forms and Ricci’s absolute calculus. More than a year later, during the
twenty-second annual meeting of the American Mathematical Society in
New York on December 27-28, 1915, Wilson read a paper entitled “Ricci’s
Absolute Calculus and Its Applications to the Theory of Surfaces” (Wilson
1916), which obviously was not published. With that paper Wilson tried
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to call attention to “Ricci’s generally neglected absolute calculus and to
its suggestiveness as an implement of research in developing the theory of
surfaces of two dimensions in Euclidean space of n dimensions” (Wilson
1916). During this meeting, Clarence Lemuel Elisha Moore (1876-1931)
was also present; in the following year Wilson and Moore published a sum-
mary (Wilson and Moore 1916b) and an exhaustive paper on differential
geometry on the basis of Ricci’s calculus (Wilson and Moore 1916a). The
authors complained that Ricci’s Lezioni sulla teoria delle superficie (Ricci
1898) was only available in very few American libraries and therefore they
thought it to be necessary to give a detailed presentation of Ricci’s absolute
differential calculus. ‘

Within differential geometry on the basis of Ricci’s calculus, Wilsen
and Moore also integrated vector calculus. For them, Ricci’s absolute
differential calculus was nothing more than a generalized vector analysis.
They mentioned that other differential geometers like Johannes Knoblauch
(1855-1915), for example, did not accept Ricci’s calculus because geomet-
ric magnitudes were described only as “systems of coefficients.” Wilson
and Moore, however, hoped to obviate this difficulty by using the notations
of multiple algebra, i.e., vectors (Wilson and Moore 19162, p. 294). At
this time vector notation was not generally used in differential geometry.
Therefore it is quite remarkable that Wilson and Moore presented this com-
bination: surface theory, vector calculus, and absolute differential calculus.
With it they delivered the mathematical background of general relativity.

In the same year that Wilson and Moore published their memoir, Ein-
stein published his theory of general relativity (Einstein 1916). It is known
that Einstein first developed the new physics without being able to transfer
it into mathematical language. To fill this gap he looked for a special calcu-
lus; he had in mind a generalized vector calculus. With the help of Marcel
Grossmann, Einstein became acquainted with Ricci’s differential calculus
through Ricci’s and Levi-Civita’s paper of 1901. Einstein and Grossmann
transformed this calculus into a generalized vector calculus and created a
new form: tensor calculus; they denoted Ricci’s systems as tensors. Ein-
stein also tried to give tensors a more geometric interpretation but this
goal was fully achieved only by Hermann Weyl (1855-1955), who gave
an excellent presentation of general relativity on the basis of differential
geometry in his textbook Space, Time, Matter (Weyl 1918). Wilson and
Moore had pursued a similar direction but, since it was chronologically not
possible, their work did not include general relativity and did not influence
Einstein.

It is quite remarkable that, in 1916, Wilson practically stopped his
mathematical work and changed to physics, his interest shifting away from
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geometry toward mechanical problems. Several weeks before his death,
Wilson mentioned this shift in a letter to Saunders MacLane (November 4,
1964):

C.L.E. Moore and I did a Differential Geometry of Two-Dimensional
Surfaces in Hyperspace . . . (November 1916) which was all new original
stuff and in a subsequent review of the literature many years later was
cited as the most important contribution in the field. It was about the last
thing I did in pure mathematics. (Hunsaker and MacLane 1973, p. 291)

4. Conclusion

The development of the theory of differential invariants was promoted inter-
nationally, although European mathematicians pursued different directions
than Americans. There were almost no examples or even hints of how to
combine vector calculus, tensor calculus, and differential geometry. It was
typical that Ricci’s absolute differential calculus was not acknowledged
among geometers; it was not allowed to be brought into connection with
differential geometry. The most famous differential geometers of the time,
Luigi Bianchi and Gaston Darboux, did not include tensor calculus in their
work; they also did not recognize vector calculus as an important mathemat-
ical tool. American mathematicians, however, were prepared and willing
to accept the above-mentioned combination of vector calculus, tensor cal-
culus, and differential geometry. As early as 1904 Maschke and Kasner
closed the first links between the theory of differential invariants and ge-
ometry. This was an important step toward the geometrization of tensor
calculus.

The University of Chicago played a main role in the connection of the
theory of differential invariants with vector calculus. Though Maschke
had died in 1908, his student Louis Ingold and also James B. Shaw pre-
sented major papers on the subject there. In Europe vector calculus was
favored mainly by physicists and not primarily by mathematicians. Phys-
icists applied it to elasticity theory and, especially, electromagnetism. In
physics, vector analysis was comparatively widespread, but at the same
time, physicists were generally not acquainted with Ricci’s absolute dif-
ferential calculus. The first physicists to mention it before Einstein were
Max Abraham in 1901, Orazio Tedone in 1906, Harry Bateman in 1910,
and Friedrich Kottler in 1912. ‘

For further development, it became crucial to emphasize the relation-
ship between vector calculus, tensor calculus, and differential geometry.
Einstein and Grossmann achieved the combination of vector calculus and
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Ricci’s absolute differential calculus, and Hermann Weyl took care of its
geometrization, i.e., he presented general relativity within differential ge-
ometry and vice versa. Only looking at mathematics, however, Wilson and
his collaborators reached the same goal. Unfortunately, Wilson and Moore
published their paper at the wrong time, too late to be mentioned by Einstein
in his theory of general relativity and too early to itself include general rel-
ativity. Otherwise, perhaps, Wilson and Moore’s contribution could have
played the role of Hermann Weyl’s Space, Time, Matter. Nevertheless,
Wilson and Moore were the first who presented differential geometry, the
foundation of which was vector and tensor calculus.
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The Reaction to
Relativity Theory in Germany, III:
“A Hundred Authors against Einstein”

Hubert Goenner

1. Introduction

It is known that the theory of relativity was quickly accepted in Germany by
theoretical physicists and most of their experimental colleagues. Notable
opponents were the experimental physicists Philipp Lenard, winner of the
Nobel Prize of 1905, and Ernst Gehrcke. Inthe politically and economically
unstable Berlin of 1920 a public attack on Einstein and his theory was
mounted by the right-wing political agitator and anti-Semite Paul Weyland,
founder of the Association of German Scientists for the Preservation of
Pure Science.! In the same year, a scientific discussion between Einstein
and Lenard during the 86th meeting of German Researchers in the Exact
Sciences and Physicians in Bad Nauheim resulted in the weakening of the
anti-relativistic campaign and induced a steady decline of the opposition to
relativity theory as time went by. The term anti-relativists refers to all those
who opposed special or general relativity as a whole, not just a particular
feature of it or some technical detail.

In 1922, Lenard, Gehrcke, and 17 others, mostly physicists, mathemati-
cians, astronomers, and philosophers, signed a public protest against the
theory of relativity on the occasion of the centenary celebration of the As-
sociation of German Researchers in the Exact Sciences and Physicians, in
Leipzig. The protest was distributed at the meeting and printed in the press.?
A formal reason for this protest was the fact that the organizers had allowed
a talk on the theory of relativity during the main plenary session—much to
the discomfort of Lenard and Gehrcke.?
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Figure 1. Title page of “A Hundred Authors against Einstein.”

In the following years, public interest in the theory of relativity waned.

Also, a majority of theoretical physicists in Germany moved away from
a theory with little potential for experiments and testable consequences.
Instead, they took part in the development of quantum theory and its appli-
cation to atomic and nuclear physics.

In 1931, two years before the Nazi takeover, a booklet (see Figure 1) of
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roughly ahundred pages with the title “A Hundred Authors against Einstein”
(abbreviated HAE in the following) was published (Israel et al. 1931). It
represented the last joint public appearance of some of Einstein’s opponents
during the Weimar republic. In the book, 28 signed, short contributed
statements against relativity theory (special or general) were collected. A
list of 92 further authors declared by the editors to be opponents [of Einstein]
is given, 20 of whom had already died. (A list of all names appearing in
HAE is given in this chapter’s Appendix.) Of these 92 authors, another 19
were selected and presented with excerpts opposing the theory of relativity.
The book definitely does not reflect an intraphysics dispute but rather the
reaction of part of the academically trained middle class of German society.

A. Pais suggests (Pais 1982) that HAE is related to Weyland’s infamous
association referred to above. An indication in this direction may be seen
in a reference, in the book’s preface, to the public protest of 1922 in Leipzig
by the group including Lenard and Gehrcke. In fact, five of the protest’s
signers are among those contributing actively to HAE. With the exception
of three (L. Glaser, R. Orthner, and J. Riem), all the others are included in
the list of 92 authors assembled by the editors. Neither Lenard nor Gehrcke
were active contributors to HAE, however. Lenard, since 1924, had openly
backed Hitler and his National Socialist Movement but did not engage any
further in public anti-Einstein activities.* From the correspondence of Ernst
Gehrcke with Nobel prize winner Johannes Stark® during the years 1924—
1931, we know that Gehrcke permanently watched and complained about
what he called “Einstein-billing” (Einstein-Reklame). He tried to rally op-
position against Einstein and the theory of relativity, openly, by writing a
book (Gehrcke 1924) and, covertly, by trying to pull strings to influence
newspapers through the right-wing magnate Stinnes,® and get Lenard or
Stark on the Board of the Physikalisch-Technische Reichsanstalt in Berlin.
Gehrcke wanted a counterweight for the then acting president Paschen,
whom he disqualified as “a philo-Semite and democrat.”” In the correspon-
dence, Stark suggested that Gehrcke write another brochure against Einstein
for the general public and offered to recommend the manuscript to the pub-
lisher of the Nazi movement.® According to Gehrcke’s working schedule
he felt unable to finish such a book before 1932.° HAE is not mentioned
in the correspondence of 1931 despite its earlier appearance and the prior
publication of two book reviews. It appears unlikely to me that Gehrcke
or Lenard stood behind HAE. The same can be said of Weyland, who had
no further political use for the theory of relativity after 1925 (cf. Goenner
1993). Stark had claimed earlier that Gehrcke could not become a full
professor, in Germany, because of his fight against the theory of relativity
(Stark 1922).
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The referencing journal of the German Physical Society, Physikalische
Berichie, printed a brief notice on BAE signed by its junior editor. He
noncommittally reprinted two sentences from the book’s preface describing
its rationale: “It is the aim of this publication to confront the terror of the
Einsteinians with an overview of the quality and quantity of the opponents
[of the theory of relativity] and opposing arguments. It is also our goal to
enlighten the general public and to assist in the solution of the problems
under debate.”

Hans Reichenbach, in his usual role as intellectual bodyguard for Ein-
stein and his theories, wrote a report on HAE for the entertainment section
of the Berlin daily Vossiche Zeitung (Reichenbach 1931). In it, be ridiculed
the book as “a magnificent collection of naive mistakes” and as “unin-
tended droll literature.” His technique was to guote and comment on some
of the most bizarre statements in the book without disclosing the particular
authors. He also wondered why the well-known publisher Voigtlidnder in
Leipzig had bothered to offer HAE to the public.

A more detailed report was given by the astronomer A. von Brunn
{von Brunn 1931), an unpaid collaborator in the Einstein observatory in
Potsdam and co-worker of Freundlich and van Kliiber. Von Brunn earlier
had successfully challenged a note of Einstein in the Sitzungsberichte of
the Prussian Academy of Sciences concerning irregular fluctuations in the
moon’s position (Einstein 1919; von Brunn 1919). Von Brunn characterized
HAE as a pamphlet “of such deplorable impotence as occurring elsewhere
only in politics” and “a fallback into the 16th and 17th centuries.” He asked
whether, perhaps, weltanschauliche antipathies were the unique motive
of the book. Under weltanschauliche we must not understand the Kantian
philosophy ascribed by him to most of the contributors, but rather an allusion
to political and ethical views. His scathing report ends with the remark: “It
can only be hoped that German science will not again be embarrassed by
such sad scribblings.”

Although both reviewers are perfectly right in discrediting HA E in terms
of scientific and scholarly value, I think that neither of them managed to
leave the narrow angle of his discipline. To me, the book is an example of a
committed but inadequate reaction by the educated middle class in Germany
(Bildungsbiirgertum) to a topic in the exact sciences without immediate
economical or technological consequences: relativity theory. There are not
very many examples of such an interaction; in the 19th century, Darwin’s
evolution theory would be an example; in our times, maybe, the crisis in
the foundation of mathematics as felt by its ripples through society in the
form of the “new math.” In the following, I will try to convince you that the
inclusion of sociological and psychological aspects in the history of physics
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can be helpful for a better understanding of the motives of past actions.
We can see clearly that three themes are hidden behind much of the anti-
relativistic thinking in HAE: the dispute about the relationship between
“objective reality” and physical theory, the lack of knowledge about the
manner by which public consent among scientists required for the validation
of a scientific theory is established, and the question of what possible role
nonscientists can play in this process. Intertwined with these intrascience
problems are questions of scientific style, e.g., personality cult and the
intrusion of advertising into science; social siatus—in Germany during
the first decades of this century, teachers at the higher schools preparing
students for university studies were losing both prestige and contact with
university research; political and moral conservatism, and finally, racial
prejudice (anti-Semitism).

2. Einstein’s Opponents

In order to substantiate my thesis I will ask some obvious questions, i.e.,
what made the editors band together, who were the contributors to HAE, and
what were their problems in understanding special and general relativity?
My first surprise came when I found out that none of the editors of HAE
was a practicing scientist and, moreover, none was working in a profession
close to physics or to any other of the exact sciences, although all three of
them had obtained Ph.D. degrees. The senior editor (Schriftfiihrer), Rudolf
Weinmann (1870-7) wrote his thesis in Munich, in 1895, under the guid-
ance of the philosopher and psychologist Stumpf on “the concept of specific
sense energies” (Weinmann 1895). In it, he investigated a hypothesis made
in the first third of the 19th century by Johannes Miiller, i.e., that particular
energies mediating perception exist in each sensory organ. Weinmann con-
cluded that the concept of “specific sense energies” is of no epistermnological
significance. Four years later, Weinmann became an actor in Heidelberg
and, subsequently, in Graz, Ko6ln, Vienna, Dresden, and Berlin, In 1913
he published an adaptation for the stage of Friedrich Schiller’s drama, Die
Réuber. Weinmann became a member of the Deutsches Theater in Berlin
and is listed as an actor in the Berlin address book as late as 1928.1° In 1935,
he described his interests as epistemology and relativity theory.!! Before
1931, in addition to his Ph.D. thesis, Weinmann had published five book-
lets with four of them directed against relativity theory (Weinmann 1922a,
1922b, 1923, 1926a). He also published five articles criticizing relativ-
ity theory in philosophical and general culture journals (Weinmann 1926b,
1927, 1929a, 1929b, 1930). Weinmann solicited contributions for HAE,
sometimes unsuccessfully as in the case of the philosopher Hugo Dingler.
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Dingler, in 1930, refused to participaie because he had the impression that
“something is put to a majority vote which can only be decided upon by
scientific arguments.”!? Already in April of 1930, Weinmann, at the end
of his paper on “the fallacy of the special theory of relativity” (Weinmann
1930), listed 21 anti-relativists, 10 of whom were o contribute actively to
HAE.

Erich Ruckhaber (1876-1956) worked as an interpreter, first private,
then official (amilich), and translator in Berlin.!* He had a foible for phi-
losophy as well as for poetry and drama. While he expressed his literary
ambitions in 3 volume on the awakening of the world spirit (Ruckhaber
1919), his philosophical interests led to books on the mechanism of hu-
man thinking, memory and thinking as a function of the system of muscles
(Ruckhaber 1910, 1911, 1915) and to a doctorate degree in 1927, i.e., when
he was 51 years old. His thesis was concerned with logic (Ruckhaber
1927). Relativity theory seems to have been only one of his numerous
other interests reaching from writings on the cause of aging (Ruckbaber
1938) to the discovery of a coding machine for military use'* (Ruckhaber
1924) and the teaching of shorthand writing (Ruckhaber 1924) (o present-
ing “world wisdom in 100 theses” (Ruckhaber 1939). On relativity, he
wrote a satirical essay and a brochure aimed at refuting the special theory
of relativity by a logical argument (Ruclchaber 1928, 1929a). Ruckhaber
also ventured into microphysics by unearthing Descartes’ theory of ether
eddies. He transformed it by postulating that the attraction and repulsion
of atoms are not explained by electromagnetism but by a sort of spin—spin
interaction between vortices in the ether (Ruckhaber 1953). His pamphlet
concerning planetary science, i.e., the ether mechanics of the solar system
(Ruckhaber 1941) drew a devastating critique in the journal of the German
Nazi student movement (Korn 1941). Worse still, Ruckhaber suggested a
proof that imaginary numbers do not exist (Ruckhaber 1929, 1930).

The youngest of the editors, Hans Israel (1881-7), first obtained adegree
in engineering (Dipl. Ing.) and then, in 1905, wrote his Ph.D. thesis in the
chemisiry laboratory of the University of Rostock on the theory of flow time
(of a fluid from a vessel). In it he considered the time needed by a fluid in
a container to stream out through a hole and studied its dependence on the
goemetry of the container (Israel 1905). Years later, Israel returned to his
native Berlin, where he made his living as a drugstore owner and chemist.'
He must have felt, though, that his vocation was philosophy, because he
published two books concerned with Kant’s critique of pure reason (Israel
1911, 1925). In them, he tried to “link successively the systems of physics,
logic, and ethics. It also will prove advantageous to join esthetics....” A
closer look reveals him as a genuine crackpot, who set out to show “that
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the truth of the world integral withstands all Kantian arguments against
a solution of the deepest metaphysical questions.”'® His “world integral”
derived from the limit equations 0 - co = const, an equation tc be handled
with extreme mathematical care for it to make sense. According to his
report, he had come upon and been puzzled by this equation in the course
of his Ph.D. work. I consider his philosophical writing to be sheer fantasy,
sometimes bordering insanity.

Obviously, these three men were united not only by their common in-
terest in philosophy and opposition to relativity theory but also by their
incompetence in the fields of mathematics and physics. Israel, the only one
of the editors with a background in engineering, chemistry, and physics, was
not an exception. A brief reading of his brochure against special relativity
theory shows this (Israel 1929). In discussing Michelson’s interferometric
experiment, Israel claims to have derived, for the reflected beam parallel
to the velocity of the earth, a factor in the Lorentz transformation of the
form (1 + (v/c)*)~"/% in place of the usual (1 — (v/c)*)~"/2. His deriva-
tion contains at least two obvious errors. The well-known astronomer E.F.
Freundlich wrote a report on Israel’s brochure for the Prussian Minister of
Science, the Arts, and General Education.!” He concluded that “the publi-
cation belongs to the kind of anti-relativistic writings in which pathological
parts and contributions resuiting from misunderstandings can be discerned
only with difficulty.... In any case, the objections against the theory of
relativity [in Israel (1929)] cannot be taken seriously.”

Which respected academic would join forces with such editors? Unbe-
lievably, two of the 28 contributors to HAE receive international recognition
even today: the German philosopher Hans Driesch'® (1867-1941) and the
Finnish mathematician Hjalmar Mellin'® (1854-1933). We also should not
forget the other university professors who joined the lot, i.e., the philoso-
phers O. Kraus and P. Linke, and the theoretical physicist J. LeRoux.

H. Mellin is known for the Mellin transform, an integral transforma-
tion equivalent to the Laplace transformation. In his exchange with Hans
Reichenbach, Mellin described himself as a conventionalist in the spirit of
H. Poincaré. For him, the objects of mathematics are purely mental: “There
is no bridge between mathematics and reality” (Mellin 1931). Therefore,
asking whether space is Euclidean or non-Euclidean does not take make
sense to him. Moreover, if this question could be given a meaning, accord-
ing to his opinion empirical experience cannot form a truth criterion for
geometry. Mellin also blamed Gauss as well as other workers in the field of
non-Euclidean geometry (Bolyai, Riemann, Helmholtz) for having made
the mistake of an incomplete logical disjunction: space could be neither
Euclidean nor non-Euclidean.
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Also, Mellin does not accept Reichenbach’s definition of time-ordering
through causality. Possibly he has a point here, because we cannot discern
between cause and effect without an arrow of time. By pointing out that
time has to be defined before we speak of clocks, Mellin shows that he
did not distinguish between the undefined terms, in an axiomatic approach,
from the definitions given with their help (Mellin 1933).

Hans Driesch, professor of philosophy at the University of Leipzig,
is considered the outstanding representative of neovitalism. Nevertheless,
Driesch was also a critical realist and an “inductive” metaphysician along
the lines of Aristotle and Leibniz. It is thus no wonder that he character-
ized Einstein as “a contemporaneous physicist in the grip of a functional-
mathematical view of the world” in contrast to his own view, which he called
“causal, of natural logic” (Driesch 1924). Nevertheless, Driesch protected
Einstein from the vulgarizers of his theory of relativity by commenting that
“Einstein and Spengler have as much in common as the critique of pure
reason and the main railway station of Leipzig.”?"

Driesch had studied zoology with Weisman and Haeckel and experi-
mented intensively with the embryonic development of sea urchins. By this
experience, he broke away from Haeckel’s mechanistic interpretation of the
organism and replaced it with the assumption of some nonmechanical holis-
tic factor in nature. The organism is not just the sum of its parts but the sum
of some holistic causality. In dealing with the mind and the unconscious,
Driesch believed that we may find, in parapsychological phenomena, traces
of a supraindividual wholeness (Driesch 1932). Such studies of occult phe-
nomena did not make him friends among physicists. In fact, von Brunn, in
his book review of HaE, without explicitly using Driesch’s name, referred
to him as “one who does not even know the borderlines between exact
science and an idie pastime.” This is an arrogant statement indeed, in view
of Driesch’s extensive experimental work in biology. Ironically, the Nazis
did not let him preside at 2 meeting of the International Society for Psychic
Research in Oslo, in 1935,

Driesch states that he does accept the special theory of relativity as
mathematically consistent physical theory but disputes its value for an inter-
pretation of the world. He could not swallow the principle of the constancy
of the velocity of light, i.e., its independence of the light source. Accord-
ingly, for him, the Michelson experiment finds its explanation in the model
of an ether carried along by the earth. Special relativity just deals with
constraints on measurements that are logically thinkable but almost never
realized in practice. From the point of view of ontology, Driesch rejected
the assumption of different times for different observers. As to general
relativity, he confessed “that I do know only a few things as securely as I
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know of the absolute validity of Euclidean geometry for physics” (Driesch
1924).

Occasionally, though, Driesch had insights that were physically well
founded. At the time, there was a debate on whether the Michelson exper-
iment should be carried through with a light source not moving with the
earth; e.g., with light from a star. Driesch concluded that there could be no
such external light source. This amounts to saying, in modern language,
that the extinction length for visible light in air is smaller than the thickness
of the earth’s atmosphere.

After this brief encounter with the two most prominent contributors
to HAE, we come back to the question of what induced the editors and
contributing authors to work together on this book. It seems not unlikely
that the editors got to know each other through their common publisher,
0. Hillmann, Leipzig, or possibly through joint membership in the Berlin
section of one of the philosophical clubs popular at the time, i.e., the Kans-
gesellschafi or Schopenhauergeselischaft, and then decided to battle jointly
with Einstein and his theory of relativity. It is also not excluded that one
of the phﬂosophers involved in the fight with relativists, notably Professor
Oskar Kraus of the German University in Prague, brought forth the idea
for the book. I have not yet located correspondence that might clear up
this point. Kraus, one of the contributors 1o HAE, published in the journals
Kanistudien and Annalen der Philosophie, the organ of the fictionalists—as
did the editors. Kraus referred to Weinmann in his brochure “Open Letters
to A, Einstein and M. von Laue,” in 1925 (Kraus 1925). With the exception
of two (Wachreiner and Strehl) all German and Austrian contributors are
linked through their publishers. One of them, G. Wendel, retired principal
of a gymnasium in Frankfurt/Oder was also president of a German writers
union.?! Until further evidence appears, I am inclined to conclude that the
philosophical outlook and the journalistic interests of the majority of the
28 contributing authors of HAE form their common denominator.

This judgment does not exclude further motives for bringing together all
these men. Itis interesting to note that, even before A. von Brunn’s alleged
weltanschauliche antipathies of anti-relativists, the philosophers O. Kraus
and H. Driesch had expressly excluded nonscientific motivations. During
the Nazi rule, Driesch, who felt akin to Einstein “as a human being and in
ethical-political outlook,”?? was characterized as inclined to “political lib-
eralism, cultural cosmopolitanism, and a restrained pacifism” in a popular
encyclopedia.?’ He was prematurely placed in emeritus status by the Nazi
government (Oppenheimer 1970). Kraus, in trying to fend off the criticism
he expected concerning political antipathies, referred to his bock dealing
with the law of nations and world peace that had appeared during World
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War I (Kraus 1915). I suspect that most of the contributors had similar con-
servative political opinions (with the exception of Driesch and de Hartog),
but I cannot now give proper evidence.?*

We briefly look at some of the data concerning the group of people
actively involved in HAE and also those listed there as alleged opponents
to the theory of relativity by the editors. The group of 28 contributors is
academically well trained, with 24 of them having obtained Ph.D. degrees.
However, only slightly more than a third of them received this training in
physics (4), mathematics (4), or other exact sciences (2). The majority
came from the humanities (7), law (4), theology (1), and medicine (1).
A minority made its living as university professors (6) or as teachers in
schools leading to university (5). At the time of publication of HAE, only
two were working in physics.

One of them was Jean LeRoux (1863-1949), professor at the faculty
of sciences of Rennes, in Brittany, France, whose specialty seems first to
have been mathematical methods applied to physics and, then, the theories
of special and general relativity. In 1922, he received the Grand Prix des
Sciences Mathématiques of the Academy of Science in Paris. He also
wrote a Gaelic novel and was a member in the council of the national as
well as local offices for the orphans of World War 1.2 The other physicist,
Karl W. Strehl (1864-7), a Bavarian, specialized in optics, had retired from
teaching physics and mathematics at the Gymnasium in 1923, and worked
on as a private scholar,?®

Four contributors to HAE were freelance writers. One of them wrote
a book that I encountered first as a student in the library of the Gottingen
mathematical institute. Emanuel Lasker (1868-1941) was the mathemati-
cian and chess world champion from 1894 to 1921. (The book in the library
was about chess.) Lasker had received his Ph.D. at the University of Er-
langen and taught mathematics at the University of Manchester.?’ Later, he
lived in Berlin and wrote many books on chess and other games (Lasker
1907, 1919, 1925, 1926, 1929, 1931a, 1931b, 1931c). In philosophical
thinking, he was a Bergsonian (Lasker 1913, 1916). Lasker was honored
by a postal stamp in the former GDR. To HAE he contributed a mere eight
lines, criticizing Einstein for giving a finite value to the velocity of light.

The other writer whose thread I found without knowing his anti-relativ-
ity stand was Salomo Friedlidnder (1871-1946), better known under his pen
name Mynona (which is “anonym,” i.e., anonymous, reversed): [ bought his
book entitled Kant for Children (Friedlidnder 1924). Friedldnder received
his Ph.D. at the University of Jena in 1902 with the thesis “A critique of
Schopenhauer’s position with regard to the epistemological foundation of
the critique of pure reason” (Friedlinder 1902). In 1932, he published
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a booklet against the theory of relativity (Friedldnder 1932). Although
he also wrote a biography of Julius Robert Mayer, the pioneer of energy
conservation (Friedldnder 1905), Mynona was better known by his widely
read novels, short stories, essays, and droll stories (Friedldnder 1914, 1919,
1921, 1922, 1924, 1931, 1935). He also published a book related to a
well-known antiwar novel of Remarque (Remarque 1929; Mynona 1929)
and an “Anti-Freud” paper (Mynona 1925), thus placing himself near the
conservative sector of the political spectrum. Friedldnder is remembered
even today (Jiger 1991).

Friedlinder disputed Einstein’s claim that the velocity of light in vac-
uum does not depend on the observer measuring it: “His claim that the
motion of light is independent and does not play a special role relative to
other motions is unfounded and cannot be understood; therefore the whole
theory is untenable.” In this regard he follows an esteemed friend and fellow
Kantian judge, E. Marcus, who had criticized Einstein on logical grounds
(Marcus 1926; Friedlinder 1930).

Two-thirds of the contributing authors were from Germany, with the
majority living in Berlin and North Germany (Prussia). I do not know
who established contacts with the authors coming from France, the Nether-
lands, Sweden, Finland, and the U.S.A. Possibly Hugo Dingler was one
of the middlemen. In 1921, he had corresponded with A. Reuterdahl, then
dean of the Department of Engineering and Architecture at the College
of St. Thomas in St. Paul, Minnesota. Reuterdahl had invited Dingler to
contribute to his planned book, Fallacies of Einstein. He was also in con-
tact with another contributor to HAE, Dr. Sten Lothigius of Stockholm, who
backed a mechanical theory of light (Lothigius 1920). There exist traceable
connections to Austria and Czechoslovakia.

The age distribution of those contributing is revealing: of the ~ 90%
whose birth year I found, less than a third fall into the same age bracket
(i.e., £ 3 years) as Einstein, while 57% are older (up to 26 years). Only two
men were considerably younger (by 6 and 19 years, respectively).

Life is not as one-dimensional and streamlined as to facilitate the writing
of history. Four of the 28 contributing authors were Jewish; the three
of them still alive when power was handed over to the Nazis left Berlin
and Prague (Friedlinder, Lasker, Kraus).?® Two group members were or
became outspoken anti-Semites, interestingly, an Austrian, L. von Mitis,
(von Mitis 1936), and a U.S. citizen of Swedish origin, Reuterdahl.?’ There
are indications that four others collaborated with the Nazi movement, Del-
Negro, Petraschek, Rauschenberger, and Vogtherr. Coeditor Ruckhaber
also might have had more than just a philosophical resentment when writing:
“The fanatics of relativity theory have been cured, more or less, by the
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number of logically thinking opponents, from their delusion that the great
messiah of philosophy has come.”*°

Del-Negro’s affinity to the Nazi movement seems to follow from his
biographical data.®! Born in 1898, he advanced in 1940 from a teacher at
a Gymnasium to a university lecturer (Universititsdozent) in philosophy at
the University of Innsbruck; he held this post until 1945 (Del-Negro 1926,
1942). It was only 20 years later, however, that he again obtained a similar
position at the University of Salzburg. In between, he worked as a geologist
(Del-Negro 1949).

W. Rauschenberger (1880-7), director of the Senckenberg library in
Frankfurt, received his Ph.D. degree in law (Rauschenberger 1906). After
some publications concerning questions of federal jurisdiction, he devoted
himself tc the study of heredity and race. He had an illustrious ancestor him-
self: Andreas Osiander, a Lutheran professor of divinity in the 16th century
involved in the dispute between the reformers Luther and Zwingli.?? It was
this A. Osiander who wrote the anonymous preface to “De revolutionibus
orbium celestium” of N. Copernicus, in which he reduced to mere hypothe-
ses the revolutionary facts Copernicus tried to establish. Rauschenberger
is the author of such writings as The Philosophical Genius and His Racial
Descent (Rauschenberger 1922a), The Characterological and Racial Mean-
ing of the Fagle Nose (Rauschenberger 1922b), and Hereditary and Racial
Psychology of Creative Personalities (Rauschenberger 1942). In this last
book, within a chapter on Nietzsche, he confesses that “all democratical
and socialistic teachings and systems derive in the end from Christian think-
ing and thus from the middle-Eastern and oriental race. ...” Karl Vogtherr
(1882-7), a physician for railway personnel, wrote articles on the measure-
ment of time, simultaneity, and the theory of relativity in philosophy and
physics journals, and also a book on simultaneity (Vogtherr 1933). Two of
his articles appeared in the journal of the Nazi student movement (Vogtherr
1937/38, 1944). He used a supernova explosion that was given different
dates by observers in relative motion as an example of the alleged incon-
sistency of Einstein’s theory of special relativity because “one real unique
event cannot happen at two different times in one and the same real world.”

Considering now the list of 92 authors referred to as “further opponents
or authors of opposing publications,” we notice immediately that it must
have been assembled without sufficient knowledge of the scientific com-
munity and without the consent of those grouped together. Twenty people
on the list had died prior to the publication of HAE. The list given includes
the names Max Abraham, Friedrich Adler, Henri Bergson, Paul Ehrenfest,
Ernst Mach, Paul Painlevé, Henri Poincaré, Wilhelm Wien, Otto Wiener,
Emil Wiechert, Erich Kretschmann, and Ernst Reichenbiicher. From these
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and other names on the list we infer that the editors did not distinguish
between a scientific debate with, possibly, disagreement on particular tech-
nical questions and ouispoken disbelief and opposition. It may be that, in
the editors’ minds, the list is meant to be an appeal to authority: 55% of
those listed were university professors, lecturers, and other scientific work-
ers. About one-half worked in physics, astronomy, and mathematics; a
sizable fraction were philosophers, but we also find colleagues from chem-
istry, forestry, pedagogy, anatomy, physiology, biology, and engineering.
Not more that 10% of the names collected belong to outright dilettantes.
The age distribution corresponds closely to that of the actual contributors
{0 HAE.

Among the names quoted, we find Philipp Lenard and some of his
colleagues and collaborators at the Physics Institute of the University of
Heidelberg, such as A. Becker, R. Tomaschek, and E. Rupp. Rupp later
was involved in a scientific fraud that he tried to cover up by presenting
a medical referee report concerning a nervous disease.’> While J. Stark is
not included in the list, we find the mathematician G. Hamel (1877-1954),
who did not hide his sympathy for the Nazi rule (Hamel 1938; Lindner
1980). T also traced three outspoken anti-Semites (Gartelmann, Stickers,
Ziegler), none of whom belonged to the group of academics. Gartelmann
and Stickers were teachers,>* Ziegler a successful inventor in dye-chemistry
turned private scholar (Saager 1930). Stickers and Ziegler were Swiss citi-
zens. All three wrote pamphlets against the theory of relativity and Einstein
(Gartelmann 1920, 1934; Stickers 1922; Ziegler 1923). Another name to
be added here is that of the industrialist, Nazi politician, and economics
expert A. Pfaff, a descendant of the famous mathematician Pfaff.35 Further
research may well reveal anti-Semitism among the academic colleagues of
Einstein. Dingler’s opportunistic turn from methodological to racial argu-
menis against the theory of relativity is well documented (Wolters 1992).
Wolters also produced, from Dingler’s diary, anti-Semitic remarks by the
astronomer Hugo von Seeliger, who was included in the list of 92 authors.

3. On the Thinking of the Anti-Relativists

We now again address the question of what the opponents of relativity theory
contributing to HAE thought. As a guiding principle, [ use W. Wien’s list
of three possible ways for disproving the theory of relativity (Wien 1921):

(1) the uncovering of contradictions within the mathematical formulation;

(2) the demonstration of consequences that are falsified by empirical
evidence;
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(3) proof that the theory is unsuitable for representing the laws of nature
because simple conceptual foundations have been given up.

We combine the first two lines of argument under the label intrascience
arguments from mathematics or physics. Some of the contributors to HAE
must have believed that they had satisfied some or all of these criteria.

The claim of mathematical inconsistency of Einstein’s theory was made
by H. Israel, while a physical inconsistency, i.e., a conflict between the
basic postulates of special relativity—the relativity principle and the prin-
ciple of the constancy of the velocity of light—was seen by O. Kraus and
G. Wendel. Theoretical physicist J. LeRoux thought that Einstein’s general
relativity predicted the wrong value for the perihelions shift because he
forgot to subtract the shift due to the Newtonian many-body interactions.
It is interesting that H. Keller anticipated an observable consequence of
relativity theory: trips around the world in easterly or westerly directions
take different times. This effect was measured by Hafele and Keating car-
rying atom clocks on transworld flights in the 1960s. For Keller, such a
consequence was mere fantasy and enough reason to declare the theory
of relagivity to be contradiciory. Reuterdahl, as well as Walte, put into
guestion whether any of the three effects in the planetary system had been
measured. Wendel joined them with regard to red shift and light deflection.
This argument concerned only the empirical status of the theory at the time
and is much weaker than the argument Wien asked for. A similarly weak
point of view is represented by Keller, who criticized the special theory
of relativity for not being helpful in atomic physics. All contributing au-
thors claiming that Michelson’s experiment could be explained without the
special theory of relativity (Kraus, Rauschenberger, Weinmann, Walte) did
not satisfy Wien’s demand. Wien’s third line of argument possibly was
meant to be an intrascience argument as well, but I will bring it together
with philosophical arguments against relativity theory. As seen through
the eyes of the physicist S. Valentiner (Valentiner 1921), philosophers “in
the majority of cases do not try to contradict the foundations of relativity
theory from its foundations, but aim at proving the theory as unimaginable
(unvorstellbar) and, consequently, impossible.” In particular, he mentions
four points occurring regularly (and in HAE as well), i.e.:

(1) Time dilation and length contraction are construed as conflicting with
the necessity of cause and effect;

(2) Absolute simultaneity must be preserved. This view is represented by
Gimmerthal, Mellin, Rauschenberger, Vogtherr, and Wendel;3¢

(3) Non-Euclidean space is unacceptable.
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Valentiner’s last point concerns an argument that makes an appeal to au-
thority:

(4) Einstein’s theory contradicts Kant’s a priori judgments concerning
space and time, and hence cannot be accepted. Friedlinder and Gold-
schmidt, both devout Kantians, as well as Nachreiner, use this kind of
reasoning.

Perhaps we should not give too much weight to this classification of
philosophical arguments by a physicist. A philosopher, P. Linke (1876-
1955), discussed the epistemological foundations of special relativity, in
particular the operational fixing of simultaneity, and found them unaccept-
able. He considered problematic the concept of simuitaneity of events at
the same place because it depends on the concept of time and “there exist
various times on an-equal footing according to the theory of relativity. In the
sense of which of these times de we introduce simuitaneity?” Others, like
Driesch and Del-Negro or Weinmann saw ontological blunders as well as,
for example, an infinity of “realities,” referring to the infinity of observers
in place of the unique objective reality. Often, philosophers (trained or
untrained) endeavored to prove the logical inconsistency of the theory of
relativity. Not being equipped with sufficient mathematical knowledge,
however, they had to confine themselves to verdal fencing without any
chance of reaching the body of the theory attacked. I do not need to go into
details here; Klaus Hentschel, in his voluminous book, broadly discussed
the various misinterpretations of the theory of relativity by philosophers
(Hentschel 1990).

What neither Wien nor Valentiner cared to mention were the arguments
advanced against relativity theory following from the ignorance (and the
lack of mathematical competence) of some of the opponents of relativity
theory. One of these self-made problems concerns semantical misunder-
standings. As an example, we note Minkowski’s famous statement on
the union of space and time which was misconstrued (e.g., by Driesch) to
signify full equivalence of space and time and thus rejected as foolish.

Here, a subtle point should be discussed, concerning the obvious dis-
crepancy between the often stated claim that the theory of relativity requires
for its understanding the highest intellectual abilities and the endeavor of
Einstein (and his continued support for others with the same intention) to
bring his theories to the attention of a wider public with only preuniversity
knowledge of physics and mathematics. Oskar Kraus®” was an example
of a professor of philosophy trapped between such an invitation to the ed-
ucated layman (i.e., someone {rying to understand relativity theory) and a
cold warning sign held up when he raised questions: “No entrance without
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knowledge of mathematics.” In addition, Kraus may have been irritated by
Einstein’s attack on philosophers (Einstein 1960). Kraus considered him-
self “as someone convinced by a priori truths.” He saw a conflict between
the principle of relativity and the principle of the constancy of the veloc-
ity of light. He complained bitterly about being prevented from answering
von Laue or Reichenbach in physics and philosophy journals of good stand-
ing (Zeitschrift fiir Physik, Logos) (Kraus 1925). The incommensurability
of Kraus’ philosophical thinking with the approach of physicists such as, for
example, Philipp Frank, is shown clearly by Hentschel (Hentschel 1990).

For him, “the breakdown of relativity cannot be avoided. The enemies
of German culture will then wish to triumph in view of this scientific em-
barrassment.” He goes on to say “that then this shame will be reduced by
the fact that a few critical people on the German side [like himself] did
discover immediately the erroneous foundation of the theory of relativity.”

Another group of arguments may be called extrascience. It includes the
well-known debate, convincingly documented by Hentschel, about whether
relativity theory conforms to common sense. Again, within this group of
extrascience arguments, semantical misinterpretations lead to opposition
against the theory of relativity. For example, relativity theory was made
responsible for the extrapolation of the concept “relative” to ethics (“all is
relative”) and then condemmed as “the sick product of a sick time.”®® The
Dutch theologian de Hartog expressly stated that his only motivation for
contributing to HAE was the objection to this sort of moral relativity—not
the wish to dispute Einstein’s great gifts and importance in science.

Another item on the list of extrascience arguments against Einstein and
his relativity theories is the discussion about priorities, or worse, the plagia-
rism charge made against Einstein. As to priorities, Geissler, Richter, and
Reuterdahl each claimed to have been first. Geissler in HAE: “As early as
1900, I published a comprehensive, general “possible” theory of relativity
in space, time, etc., while Einstein published some particulars on relativity
from 1905 on without referring to my book” (Geissler 1921). The book
referred to is Geissler 1900. Geissler thought that he was first in suggesting
the relativity of time. Richter flatly stated: “Without having heard of Ein-
stein, already 10 vears ago (i.e., 1911), I reached the same final results as
he did through pure philosophical reasoning without needing the relativity
of time” (Richter 1921). And finally, Reuterdahl (in HAE): “The writer
of the present contribution sketched, in 1902, the thought of unitary field
comprising all kinds of forces.... In 1913 [ coined the hyphenated ex-
pression ‘space-time’ which received the copyright in 1915.... Einstein’s
molluscous reference system has been built after the plan of my system
of potential zones. .. .” Reuterdahl also suggests Paldgyi, von Soldner, and
Gerber as Einstein’s precursors.
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Another line of argumentation against relativity theory and Einstein
foreign to science stems from the presentation of the theory in public, i.e.,
the advertisement it received, the style of some publications (including
Einstein’s frontispieces), and the appraisal of the theory as one of the finest
achievements in science of mankind well before its empirical basis was
secure enough. Einstein himself sometimes was declared free of guilt in this
context (Driesch 1924). Reuterdah! did not shy away from invectives and,
in HAE, once called him the “Barnum of science.” It is hard to imagine the
extent to which, in the 1920s, Einstein’s theory of relativity must have been
the talk of the town. To some, the popular acclaim the theory received just
was too much: “He who does not understand the least of his theory professes
Einstein, professes the theory of relativity. He owns a Weltanschauung of
relativity, a positive belief in relative nothingness; he is mor Catholic than
a Roman Catholic; he is a follower of Einstein: credo quia absurdum”
(Lewin 1932).

4., Conclusion

The opponents of relativity theory and Einstein gathered in HAE form a
group of ambitions, extroverted people with broad intellectual interests. It
is surprising to me that the majority of them made contact with the theory
of relativity. Their professional flexibility and experience was a poor match
for the philosophical and ethical rigorism expressed; it also contrasted with
their technical incompetence in matters of physics and mathematics. Within
the politically and economically highly unstable environment of the Weimar
Republic they could not adapt to the changes brought to our world view
due to Einstein’s special and general theory of relativity. In this sense, it
was both nonacceptance and lack of understanding that made these men
anti-relativists.

In their interaction with the theory of relativity, these people, scien-
tists or not, lacked the delicate balance between a healthy feeling of self-
assurance and the well-developed sense of self-criticism necessary for cre-
ative work. In about half of the contributors to HAE, the discrepancy be-
tween technical incompetence in physics and mathematics is compensated
by either hubris (Einstein and relativists are making trivial mistakes) or by
the feeling of being repressed and censored (relativists form a gang teiror-
izing those with differing opinions). HAE is a classic piece of evidence for
the fact that the validation of a theory in the exact sciences can be achieved
only from within the body of experts. What is required is a sufficient knowl-
edge of the methods for gaining empirical data, for relating these data by
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self-consistent mathematical models, and for reaching public consent—
always revisable—on the explicatory and predictive value of the resulting
theory. By “public” here the public of scientists is meant. Acceptance or
nonacceptance of the theory by the general public is irrelevant, including,
up to a point, the criticism by and the evaluations through other scientific
disciplines, such as, for example, the philosophy of science. AlthoughHag
does not exactly present an encouraging case of the interaction of theoreti-
cal physics and the educated layman, it nevertheless indicates clearly that
the history of science cannot be separated from the general cultural and
social environment of science.
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Attempts at Unified Field Theories

(1919-1955). Alleged Failure and
Intrinsic Validation/Refutation Criteria

Silvio Bergia

1. Introduction

In the 1970s and 1980s, the success of gauge theories has prompted many
authors! to point out that the idea of gauge invariance, although originally
with a different meaning, was first expressed in 1918 by Hermann Weyl
in his attempt to formulate a unified geometrical theory of gravitation and
electromagnetism along the lines opened up by general relativity. On the
other hand, the revival of attempts at formulating multidimensional uni-
fied theories a la Kaluza—Klein has had the effect that the formalism first
proposed by these authors was rediscovered and developed and that the
original papers have received many citations.?

However, despite the acknowledgment of some of these investigations
as the historical antecedents of modern attempts at unified field theories,
the general feeling is that one is dealing with a set of premature approaches,
doomed to failure essentially because in those days no adequate view of
the interactions operating in nature had been acquired.® Most of the authors
involved can be criticized for actually refusing to deal with interactions other
than gravitation and electromagnetism though the time seemed ripe to do
so* (the only point that occasionally received some attention was how to
include matter fields). Early attempts at unification have also been criticized
for their purely classical approach. In particular, the link between the
electromagnetic field and complex fields describing the particles established
by the gauge viewpoint could not be perceived from a purely geometrical
viewpoint.>
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No one today, however, would dream of criticizing Maxwell’s unifica-
tion of electricity and magnetism for ignoring the electroweak unification.
Moreover, it can be speculated that unification at the classical level would
in any case be necessary as a preliminary to the formulation of a unified
quantum theory. It therefore seems fair to subject these theories to more
intrinsic tests, such as their ability to reproduce the Einstein—-Maxwell the-
ory in first approximation, to predict new effects, etc. A whole set of
increasingly stringent criteria of this kind was formulated by, among oth-
ers, Weyl, Pauli, and Lichnerowicz. Einstein himself was keenly aware of
the necessity of high epistemological standards in this field.5

In this paper, I first summarize these criteria (Section 2); I then briefly
review the attempts at unified field theories (UFTs) based on extensions of
Riemannian geometry, from Weyl’s first “attempt at a final synthesis” of
1918 to the late efforts of Einstein and Schrddinger, discussing the extent
to which they conform to the criteria (Section 3). Theories such as Nord-
strom’s (1914) and Hilbert’s (1915), therefore, will not be dealt with. (For
an account of these theories and for a general presentation of the genesis
of the unified field program the reader is referred to Vizgin 1989; see also
Sigurdsson 1991, especially pp. 109-114 for an account of Mie’s matter
theory.) A short section is devoted to a discussion of the so-called Blackett
effect, which has implications for some of the proposed theories (Section 4);
finally (Section 5), the attempts previously examined are synoptically com-
pared to each other and evaluated in the light of the criteria.

An alternative view on unification was introduced by Rainich’ (1925;
see also Rainich 1950), and elaborated upon by Misner and Wheeler (1957).
It emerges from the following approach: consider the set consisting of
Maxwell’s and Einstein’s equations (with the electromagnetic field as the
only source termy); then solve the latter for the electromagnetic field in
terms of the contracted curvature tensor, and substitute this solution into
Maxwell’s equations. The result is what Misner and Wheeler call “an
already unified field theory,” in which “electric and magnetic fields are not
signals to invent a unified field theory or to introduce one or another new
kind of geometry.” Rather, the theory “describes electric and magnetic fields
in terms of the rate of change of curvature of pure Riemannian geometry,
and nothing more” (Misner and Wheeler 1957, p. 530).

This is by no means intended as a comprehensive review of the UFTs
worked out in the period considered. A general presentation aimed at
providing the background to Einstein’s own efforts is given in chapter 17 of
Pais’s biography (Pais 1982; see also Vizgin 1989). The rich geometrical
structure of UFTs from Eddington’s theory to the theories of the present
time is thoroughly analyzed in Goenner 1984. An analysis of the early
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attempts at UFTs, which pinpoints their highest achievements from the
point of view of mathematical physics, has been carried out by Ferraris and
Francaviglia (1986).

2. Validation/Refutation Criteria

What should be asked of a purely classical theory aiming at giving a unified
field picture of gravitation and electromagnetism? The following list of
requirements is an elaboration of the criteria indicated by various authors.

6y

@

Let us define, as is customary, an Einstein~-Maxwell theory as a theory
that describes the electromagnetic field in terms of the Maxwell equa-
tions and the gravitational field in terms of the Einstein equations, the
latter having the energy-momentum tensor of the electromagnetic field
as the source term in the absence of matter; then, as the first requirement,
one should ask that the theory contain the Einstein-Maxwell theory as
a limiting case.
The mere reproduction of the Einstein—Maxwell theory, however, is not
sufficient, as stressed, for instance, by Lichnerowicz, Pauli, Weyl, and
Einstein.

According to Lichnerowicz, one can stipulate to call a theory unified
in a broad sense

if, in the representation of the fields and in the formation of the equa-

tions, it attributes symmetrical roles to the gravitational and the elec-

tromagnetic fields; in particular; since the gravitational field, in the

conceptions of general relativity, is linked to the geometrical structure

of the universe, it will be desirable to choose a structure such that the
two fields emanate from the same geomeiry.

One can, on the other hand, stipulate to call a theory unified in a strict
sense
to the extent that the exact equations govern a non-decomposable
hyperfield,? and that they can only approximately be decomposed into
propagation equations of the gravitational and the electromagnetic

fields when the physical conditions are such that one of the fields
dominates the other. (Lichnerowicz 1955, p. 152)

The sense in which the nondecomposability of the hyperfield should
be intended was formalized by Pauli. He expressed the viewpoint that
a unified theory should conform to the “principle that only irreducible
quantities should be used in field theories.” Not only is this principle
“satisfactory from a formal point of view,” it has also “been verified
empirically without exception in physics until now.” “Therefore,” Pauli
continues,
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I believe that cogent mathematical reasons (for instance invariance
postulates of a wider group of transformation) have to be given why
a decomposition of the reducible quantities used in the theory (for
instance Ry, gix, and ka ) does not occur. (Pauli 1958, p. 226)

As is well known, there are theories in which the gravitational and
electromagnetic fields form the symmetric and antisymmetric part of a
tensor respectively, a tensor which, therefore, is not irreducible; it is to
such theories that Pauli’s remark applies. It should be noted that the
invariance under a symmetry group reducing to a direct or semidirect
product cannot represent a solution, being a purely formal expedient.
Pauli often made such harsh comments aimed at attempts to formulate
unified theories. Weyl recalls that he used to express his skepticism with
the aphorism: “Men shall not join what God has torn asunder” (Weyl
1950[1968, p. 431]; translation as in Pais 1982, p. 350). Weyl expressed
himself in terms similar to Pauli’s.” Einstein formulated the criterion of
irreducibility quoting the covariant formulation of electromagnetism as
an example:

The unification here [is] that the entire field considered is described as
a skew-symmetric tensor. The basic group of Lorentz transformations
does not enable us to split this field independently of the system of
coordinates, into an electric and a magnetic one. (Einstein 1954,
p. 578)

As a final specification concerning this second criterion, one may
add that the equations ruling the hyperfield should be derived from a
variational principle, formulated in terms of a Lagrangian made plau-
sible on a physical and/or geometrical basis. The Lagrangian or the
Hamiltonian function should not be the sum of several invariant parts
(Einstein 1945, p. 578). This criterion can be met even if the require-
ment of irreducibility of the field is not. A theory of this kind would be
considered “unified only in a limited sense” (Finstein 1945, p. 578).

(3) A theory satisfying the second criterion also satisifes, as a consequence,
another requirement of an epistemological character: that of not rep-
resenting a mere recodifying of the existent. The third requirement
that must be formulated is that some explicit predictive power should
correspond to this feature. That is, the theory must predict new physi-
cal effects, such as the electromagnetic waves predicted by Maxwell’s
theory, capable of refuting or corroborating it.

(4) Finally, as is obvious, the observed effects should agree with the pre-
dictions.
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3. Attempts at Unified Field Theories

3.1 WEYL’S “ATTEMPT AT A FINAL SYNTHESsIS”?

In his basic paper on the subject (Weyl 1918), Weyl began with the state-
ment that it is the infinitesimal displacement of a vector that should be taken
as the basic concept for the natural construction of Riemannian geometry.'!
Since the displacement is non-integrable, i.e., different paths between two
points lead to different orientations of the final vector, Riemannian geom-
etry is a “geometry of the nearby” (Nahe-Geometrie). However, a residual
element of a “geometry of the faraway” (Fern-Geometrie) has survived
in this geometry—on no objective ground, as far as he could see—viz.
that the length of a vector is integrable under parallel displacement. In his
view, there is no reason “why the problem of the displacement of a length
from one point to another at a finite distance should be assumed to be inte-
grable more than the problem of the displacement of the direction” (Weyl
1918 [1968, p. 148]). How should a geometry of this kind be characterized?
Since the comparison of lengths is still possible iocally, the manifold should
be endowed with a metric tensor. However, one should not require con-
servation of lengths and scalar products under parallel displacement, i.e.,
the metricity condition. This does not mean that the connection is purely
affine. Actually, one assumes a (path-dependent) rescaling determined by
a covariant vector field ¢,,, proportional to the initial length. The result is
a connection (Weyl’s connection), determined by the fields g and ¢y, that
may be called semimetric.'?
The connection is invariant under the simultaneous tranformations

gu.v e )‘guv (1)
1 aA

where A is a positive function of the point on the manifold.

In such a theory, therefore, the fields g and ¢, are not uniquely defined
in each point: they are subject to simultaneous rescaling. Weyl referred
to this property as Eichinvarianz or Mafistabinvarianz, which were later
rendered as gauge invariance. Gauge invariance, as expressed by Egs. (1)
and (2), must be considered to be on the same footing with the general
transformations of coordinates; the arbitrariness in the choice of the gauge
factor corresponds to the arbitrariness in the choice of the coordinate system.

The enlarged version of Riemannian geometry considered by Wey! al-
lows the introduction of new physical quantities (the potentials ¢,), side
by side with the gravitational potentials expressed by the components of g.
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The quantities ¢,, are the natural candidates for expressing the electromag-
netic potentials: one immediately observes that Eq. (2) has the form of a
gauge transformation for the potentials. The form

F,uv = au¢v - av¢u

is therefore gauge invariant and represents the electromagnetic field. (For
more details on Weyl’s theory, see Vizgin 1989.)

Weyl’s theory satisfies Lichnerowicz’s definition of a unified theory in
the broad sense, since both the gravitational and the electromagnetic field
emanate from the same geometry; the two fields, however, do not form a
nondecomposable hyperfield, so that the theory cannot be considered uni-
fied in the strict sense. Moreover, they do not form an irreducible tensor
(actually, they do not form a tensor at all), and do not satisfy Pauli’s criterion.
The field equations can be derived from a variational principle, simultane-
ously invariant under the group of general relativity (general coordinate
transformations) and the group of the transformations (1). As pointed out
by Vizgin, the latter demand led to Lagrange functions quadratic in the
curvature scalar or bilinear in the Riemann tensor (Vizgin 1989). Pauli was
able to show (Pauli 1921 [1958]) that one still obtained the Schwarzschild
solution, so that the theory gave the usual general relativistic results for the
well-known classical effects. Quadratic Lagrangians, however, produce
various difficulties (Vizgin 1989). As far as the criteria about predictivity
and experimental controls are concerned, the situation is very interesting.
The nonintegrability of the norm implies the nonintegrability of proper
time intervals; this, in turn, implies that the rate of relativistic, or standard,
clocks should depend on their world lines. If it is assumed, as is customary,
that the clocks provided by the atomic spectral lines provide an example
of standard clocks, very stringent bounds are imposed on this path depen-
dence by the precision with which the spectral lines are known. Hence,
it turns out that Weyl’s theory satisfies the purely epistemological require-
ment of predicting new effects, but unfortunately not the requirement that
its predictions be in agreement with experiment. The weak point of the
theory was immediately spotted by Einstein. His first reaction to Weyl’s
paper was enthusiastic (“It is a stroke of genius of the highest order”!?),
and he accepted the responsibility of communicating Weyl’s paper to the
Prussian Academy. “Your ideas show a wonderful cohesion,” he wrote,
“apart from the agreement with reality, it is at any rate a grandiose achieve-
ment of the mind.”'* Agreement with reality, however, was impossible to
achieve according to Einstein. “However beautiful your thought is, T must
admit frankly that, according to my opinion, it is impossible that this the-
ory corresponds to nature,”’> he wrote to Weyl in a subsequent letter, in
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which he gave the argument outlined above, to conclude: “if agreement
with ruler and clock measurements is dropped, the theory of relativity loses
its empirical meaning in general "' Weyl’s paper was published immedi-
ately followed by a critical note from Einstein (Einstein 1918). In reply,
Weyl stated that Einstein’s argument “was not an objection to the theory
since the latter [was] not concerned with the behavior of real rulers, clocks,
and atoms” (Weyl 1920 [1968, p. 141]). Pauli’s comment on the way out
proposed by Weyl was: “this relinquishment seems to have very serious
consequences. While there now no longer exists a direct contradiction with
the experiment, the theory appears nevertheless to have been robbed of
its inherent convincing power from a physical point of view” (Pauli 1958,
p. 196).

It should perhaps be mentioned that Weyl’s way out has subsequently
been proposed by various other authors. Ehlers, Pirani, and Schild, for
instance, after stating that Weyl’s theory must be abandoned “if equality of
gravitational time . . . and atomic time is assumed,”!” ask: “How compelling
is the time-equality postulate?” (Ehlers et al. 1972, p. 82). A similar way out
was suggested by Dirac in the framework of his “large number hypothesis”
and the time variation of the gravitational “constant” he derived from such
a hypothesis. Einstein’s theory of gravitation must then be modified. Dirac
proposed a modification in the direction of Weyl’s geometry; Einstein’s
argument against it could be overcome, in his view, by disassociating the
line element dealt with by the theory from the line element dealt with by the
theory from the line element measured by some “atomic apparatus” (Dirac
1973).

Another way out of the difficulty encountered by Weyl’s theory was
discussed by D.K. Sen, who traced its origin back to a 1951 paper by Lyra
(see Sen 1968 and references therein). This approach is based on the intro-
duction of a gauge function on an otherwise structureless manifold. Field
equations identical to Weyl’s, apart from a cosmological term and constant
factors, are thus obtained, but no difficulty connected with nonintegrability
of length transfer arises (Sen 1968, p. 85).

The fate of Weyl’s idea has been tracked by FEW. Hehl, I.DD. McCrea,
and E.W. Mielke in a recent paper (Hehl et al. 1988). The authors recall
how the Bjorken scaling law verified in the deep inelastic electron-nucleon
scattering brought new life to the idea of scale or recalibration invariance
as a broken symmetry of the physical world (Hehl et al. 1988, p. 244).
On the other hand, the classical Hilbert—Einstein action is not scale invari-
ant and, as a consequence, general relativity does not exhibit approximate
Bjorken-type scaling, a property which is believed to be indispensable for
renormalizability. A clue for a possible way out of the difficulty encoun-
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tered by the theory from a modern point of view might be the local extension
of space-time symmetries, such as Lorentz’s and, in fact, scale invariance
(Hehl et al. 1989, p. 1075). The Noether current associated to this local
symmetry requires an additional current, i.e., a material dilation current; it
is to this current, and not to the electric current of Maxwell’s theory that
the Weyl vector is coupled. The essential idea behind Weyl’s theory would
thus survive, although with a completely different outlook compared to his
original theory (Hehl et al. 1988, p. 244).

As is well known, modermn gauge theories owe a lot to Weyl’s idea of
Eichinvarianz. After the formulation of wave mechanics, Fritz London
(London 1927), V. Fock, and others realized that the rescaling of the metric
tensor had to be replaced by a phase transformation of Schrédinger’s wave
function for the electron:

Yx) — P'(x) = e Oy ).

As is universally known, the fundamental step toward the non-Abelian case
was taken by Yang and Mills (1954).

3.2 EDDINGTON’S FIRST AFFINE THEORY

Weyl had shown how one could disassociate the connection theory from
the metricity condition, even though his unified theory was, as we said,
still semimetric. The first to try to exploit this freedom in formulating a
unified theory on a new basis was Eddington. In Eddington’s space-time
only a (symmetric) linear connection is initially defined. In Weyl’s theory,
he observed, a “particular standard of length should only be used at the
time and place where it is.” Nevertheless, “we do compare lengths on the
sun and the earth.” This means that there exists a “natural gauge system”
determined by physics. And in fact it is the introduction of the natural
gauge system that “marks the transition from pure geometry to physics”
(Eddington 1921, p. 105). According to Eddington, the gauge system can
only be determined by the “gauging equation”

G;w = )‘-guv,

which coincides with the equation governing De Sitter’s universe. The pos-
sibility of formulating a unified theory in this framework arises from the
fact that in Eddington’s theory the Ricci tensor contains an antisymmetric
part, which Eddington thought could be identified with the electromag-
netic field. It is therefore clear from the start that the theory does not
satisfy Lichnerowicz’s second criterion. In its original formulation, it is
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also unsatisfactory because it does not specify the equations governing the
dynamics of the connection considered as a field variable. Such equations
were given by Einstein in three papers of 1923 (see, for instance, Einstein
1923), whose content was further elaborated in Eddington’s book of 1924,
The Mathematical Theory of Relativity (Eddington 1924). Einstein was
the first to point out clearly the necessity of starting from a Lagrangian
depending only on a linear connection and its first derivatives, taking the
variation directly with respect to the connection. This approach was further
developed by Schrodinger several years later, as will be discussed below.

3.3 FIVE-DIMENSIONAL THEORIES

The starting point of Kaluza’s'® attempt was the speculation that the elec-
tromagnetic field tensor might be a truncated Christoffel symbol. Since, in
a four-dimensional world, these symbols are saturated by the components
of the gravitational field, one is led “to the extremely odd decision to ask
for help from a new, fifth dimension of the world” (Kaluza 1921, p. 967;
translation by Muta, in Lee 1984).

In order to understand Kaluza’s point, one may compare the expressions
for the electromagnetic field tensor

Fuv = ¢u,v - d)v,,u
and for a Christoffel symbol

F[.IL\V = gAG(gVU,M + opv — guv,d)

for fixed A.

The outlined possibility could be implemented by assuming propor-
tionality of the electromagnetic potential to the mixed (45) components
of the metric. Kaluza’s article contained almost all essential points of
what we now call a Kaluza—Klein theory, namely the field equations of
the Einstein—-Maxwell theory (plus a scalar equation for the (55) compo-
nent of the metric), the particle world lines resulting from the projection of
the five-dimensional geodesics, the interpretation of the electric charge as
the fifth component of the momentum (“a further fusion of two formerly
heterogeneous basic concepts...” Kaluza 1921, p. 969), and the charge
conservation along the world lines.

“From a formal point of view, however, Kaluza did not quite work out the
theory such as we know it. First of all, he did not introduce the constraint
referred to as Klein’s constraint,

myss=0, M=1,..,5 3)
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but only the condition
' dsymy =0 @)

(which he called the “cylinder condition”). Moreover, and this is a point that
has not received due consideration, he did not have the correct metric for
the ordinary four-dimensional space-time manifold. In his own words “the
fundamental metric tensor...becomes the gravitational tensor potential
framed by the electromagnetic four-potential” (Kaluza 1921, p. 968). This
means that, denoting the metric of Rs as y and of R, as g, Kaluzahad g,,, =
Yuv- Apart from this detail, it must be observed that Kaluza’s theory satisfies
Lichnerowicz’s definition of a unified theory in the broad sense, since the
gravitational and electromagnetic fields emanate from the same geometry.
It also satisfies (though only formally, as I will argue) Pauli’s criterion of
irreducibility, since both fields appear in the theory as components of a
symmetric metric tensor. However, it does not satisfy the criterion required
for a unified theory in the strict sense, since it gives nothing more than
the Einstein-Maxwell theory.!® (Note, by the way, that this result appeared
important enough to Salam to speak of the “Kaluza—Klein miracle” [Salam
1980, p. 20]). Actually, any trace of the fifth dimension disappears from the
final field equations, so that it may be said that itis a four-dimensional theory
in disguise. This is what induced Pauli to state that “Kaluza’s geometric
form of the generally covariant laws of the electromagnetic field. .. is in no
way a ‘unification’ of the electromagnetic and gravitational field. On the
contrary, every theory which is generally covariant and gauge invariant can
also be formulated in Kaluza’s form” (Pauli 1958, p. 230).

The story of the fifth dimension was to have a further important develop-
ment in 1926 thanks to O. Klein. His work was not motivated by Kaluza’s,
which he apparently did not see until completion of his first paper on the
subject (according to his own testimony [see Klein 1969; see also Kragh
1984]). Rather, Klein was striving, in a way not dissimilar from the path
de Broglie was independently following in those years, to find support for
the idea that the propagation of a wave could be associated with the motion
of particles, or in his words, “to find a wave background to the quantization
rules” (Klein 1969, p. 63). So, he

played with the idea that waves representing the motion of a free parti-
cle had to be propagated with a constant velocity, in analogy with light
waves—Dbut in a space of four dimensions—so that the motion we ob-
serve is a projection on our ordinary three-dimensional space of what is
really taking place in four-dimensional space. (Klein 1969, p. 63)

Klein’s starting point (Klein 1926a) was the observation that in a five-
dimensional space-time, as a consequence of the independence of the met-
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ric’s components of the fifth coordinate, allowed coordinate transformations
are those of the product group of the group of transformations of the usual
four-dimensional theory G4:

Xt — x™ =M (") (5a)
and the group S of the transformations
5 5 _ 1.5 v
x> — x” =bx” + ¢ (x") (5b)

(where b is a positive constant, and where a change of scale for the time
parameteris allowed for). Sinceitcan easily be verified that yss isnot altered
under the transformations (5), Klein observed that it can be assumed to be
constant; he then observed that the quantities
do = dx® + Blax¥
Vss

and

<pr _ ySu)’Sv)dxM do”
Vss

are invariant under the transformations (5). The quantities (y,, — ﬁy:’%)
could thus be identified with the components of the four-dimensional metric
(in this way Klein introduced for the first time the correct projected metric).
From the invariance of dé it follows that, at fixed x>, the four quantities
s, transform like a four-vector. They can then, as in Kaluza’s 1921 paper,
be taken as proportional toc the components of the electromagnetic poten-
tial. In modern notation, one would set ys, = o ¢y, with k = 87 G
(G = gravitational constant). Their transformation properties under S
show that this group may be considered as the geometrized version of the
local electromagnetic gauge group. One may note that, since the form of
the five-dimensional metric is not preserved under a general coordinate
transformation in five dimensions but only under the transformations of the
product group, Egs. (5a, 5b), Pauli’s irreducibility criterion is only formally
satisfied.

As is well known, Klein obtained what we would today call a stationary
“Klein-Gordon” eguation as the projection of a five-dimensional wave
equation, thus achieving his original goal. The details of the derivation are
not of interest to us here; what is of interest here, though, is that Klein’s
particle quantum theory is characterized by a natural mass unit, e?/2x =~
10'8 Gev. Subsequent analyses showed that considering Klein’s fields leads
naturally to masses of charged particles (which cannot be massless) that are
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multiples of this fundamental mass. This can to some extent be considered
as a prediction of the five-dimensional theories, and would appear to refute
them altogether. During the revival of multidimensional theories in the
early 1980s, the problem of the mass spectrum was also addressed. The
author finds it difficult to say what the conclusions were (if any).2’

In a subsequent short paper (Klein 1926b), Klein stressed that in his
first paper on the subject, the classical equations of motion of the charged
particles had been obtained as projections of the geodesics of the five-
dimensional space-time, by choosing

Ne
\/2/(()7

where Ne is the particle’s charge and « = 87 G. To begin with, this
suggests that the fifth component of the momentum be associated with the
charge. But there is more to it: the formula suggests, in the author’s words,
“that the atomicity of electricity may be interpreted as a quantam theory
law” (Klein 1926b, p. 516). In fact, if the five-dimensional space is assumed
to be closed along x> with period [, and the usual quantization rule due to
periodicity along the fifth dimension is applied, the possible values of Ps
are given by

Ps = ©)

h
Ps =N7 N

where N is now a quantum number accounting for the structure of Eq. (6).
From Egs. (6) and (7) it follows that the “fiber’s length” { is given by

hea/2k
e

[ = =0.8-107¢cm.

Klein was thus led to the conclusion: “The small value of this length to-
gether with the periodicity in the fifth dimension may perhaps be taken as
a support of the theory of Kaluza in the sense that they may explain the
nonappearance of the {ifth dimension in ordinary experiments as the result
of averaging over the fifth dimension” (ibid.). The “reality,” or “observ-
ability,” of extra spatial dimensions is philosophically interesting. Klein’s
hypothesis may be seen as an ad hoc removal of the problem set by their
actual inobservability. It is not, therefore, a prediction; it is rather to be
considered as a reformulation of the theory under the pressure of a pre-
diction refuted by the observations. Compactification of the extra space
dimensions into some compact “small” manifold, like Klein’s fiber, does
not eliminate in principle their observability; however, it does so in practice,
since they could be explored only by means of probes with energies in the
order of 10'8 Gev.
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3.4 EINSTEIN AND THE FIFTH DIMENSION

Several years after he first became involved with five-dimensional theories,
Einstein wrote a paper with P. Bergmann that shows his concern about
the possible “reality” of the fifth dimension and its actual inobservability.
Section 2 of the paper, in fact, begins with the following passage:

If Kaluza’s attempt is a real step forward, then it is because of the intro-
duction of the five-dimensional space. There have been many attempts to
retain the essential formal results obtained by Kaluza without sacrificing
the four-dimensional character of physical space. This shows distinctly
how vividly our physical intuition resists the introduction of the fifth
dimension. But by considering and comparing all these attempts one
must come to the conclusion that all these endeavors did not improve the
situation. It seems impossible to formulate Kaluza’s ideas in a simple
way without introducing the fifth dimension. (Einstein and Bergmann
1938, p. 688)

Einstein’s interest in the five-dimensional approach dates from the very
beginning, since it was Einstein to whom Kaluza turned when, in 1919, he
thought of publishing his paper in the proceedings of the Prussian Academy.
The story of the exchange between Einstein and Kaluza and of the delayed
publication has been told elsewhere (see Lee 1984; Middleton 1991). Ein-
stein produced two short notes “on Kaluza’s theory” after the appearance
of Klein’s paper; the few additional elements set out in these papers are
not of interest to us here. He came back to Kaluza’s theory in 1931, in
collaboration with W. Mayer (Einstein and Mayer 1931, 1932). The au-
thors presented a new formalism that, however “psychologically related”
to it, “avoids the extension of the physical continuum to five dimensions”
(Einstein and Mayer 1931, p. 541). The basic idea is to associate with
the four-dimensional continuum a five-dimensional vector space Ms. The

implementation of the theory is achieved by prescribing the embedding of -

the Minkowskian local approximation to the five-dimensional space-time
in Ms, and the way tensors of Ms decompose with respect to My. The
connection must now specify how the M5 vector spaces associated with
different points of R4 relate to each other. It therefore becomes, so to
speak, five-dimensional; the appearance of an antisymmetric part of its
four-dimensional projection makes it possible, in principle, to identify this
part with the electromagnetic field . It must, however, be assumed that ¥
is arotational. This theory is hardly relevant for our purpose, the main point
of interest arising from the fact that it cannot be derived from a variational
principle.?!

The so-called projective relativity, which was developed from 1930

onward by several authors,? is to some extent related to the Einstein—
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Mayer theory. The basic idea is to treat the continuum as four-dimensional,
but to introduce, as in projective geometry, five homogeneous coordinates:
values of the coordinates differing by a common factor belong to the same
point of the continuum. For the purposes of this paper, it seems we do not
have the look into these theories.

The paper by Einstein and Bergmann, mentioned above, is slightly more
interesting from our point of view. Its apparatus is close to that considered
by Klein: space curls and closes up along the fifth dimension; as in Klein,
the apparent four-dimensionality of space-time is recovered if the length
of the fiber is very short; as in Klein, yss5 is assumed to be constant. How-
ever, a dependence of the other metric components on the fifth coordinate
is considered. One must then consider metric fluctnations around the back-
ground value obtained by averaging over the fifth dimension, to which full
physical existence is thus attributed. Metric components have a Fourier
expansion with respect to the fifth coordinate. According to Bargmann
and Bergmann,?? Einstein thought the higher Fourier components could in
some way be related to quantum fields, which, by the way, is the modern
view. In this respect, it can be said that the theory may predict new physical
effects, although at the time it was not elaborated to the level of making
explicit predictions. The situation is discussed in a fairly recent paper by
Appelquist and Chodos (1983).

3.5 THE JORDAN-THIRY THEORY

Another extension of the Kaluza-Klein scheme that has had a notable im-
pact on recent developments is associated with the names of Jordan and
Thiry. The Jordan-Thiry development was , in fact, implicit in Kaluza’s
original formulation, in which, as we have pointed out, constancy of the 55
metric component was not required. After imposing Kaluza’s constraint,
that makes it independent of the fifth coordinate, the 55 component be-
comes a scalar field on the space-time manifold. This idea was further and
independently explored by Jordan and Thiry.

The starting point of the German author, well known for his contri-
butions to the formulation of quantum mechanics, was Dirac’s idea?* that
the gravitational “constant” may actually not be a constant, but subject to
variations on the cosmological scale, thus becoming a scalar field on the
space-time manifold (Jordan 1946). To Jordan, a five-dimensional scheme,
with a variable 55 metric component, seemed to be a natural framework
for implementing Dirac’s idea. Jordan favored, in particular, the projective
version of the theory.?

Thiry’s motives were completely independent. He gave a formal anal-
ysis, using techniques previously developed by Lichnerowicz and Cartan
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(his note was presented by the latter}, of a Kaluza-Klein scheme, in which
the Klein constraint was not implemented, to analyze the structure of the
theory’s field equations (Thiry 1948).

The Jordan-Thiry field has, first of all, a gravitational role. In this sense,
the Jordan—Thiry theory anticipates the Brans—Dicke scalar—tensor theory
of gravitation (Brans and Dicke 1961}, which, however, had an independent
motivation in the author’s desire to incorporate Mach’s principle in a metric
theory of gravitation.

As a unified theory, the Jordan—Thiry theory from the very beginning
appears to be more satisfactory from an epistemological point of view than
the Kaluza—Klein theory, in that it predicts new effects, event though they
may be hard to detect. These new effects are (Tonnelat 1955, p. 8)

(1) the variability of the gravitational “constant” x;

(2) the presence of extra terms in the equations for the gravitational and
electromagnetic fields; such terms are linked to the variability of x; if x
is constant, the classical equations are recovered (Einstein-Maxwell’s
theory);

(3) afifteenth field equation is added to the fourteen equations ruling the
gravitational and electromagnetic fields. It implies that a magnetic
field may be created by (moving) matter, even in the absence of elec-
tric charges. One is thus led to the prediction of 2 mechano-magnetic
effect, which may arise, in particular, in the presence of a rotating body.
This effect is, of course, completely foreign to the body of familiar
physical effects, to the point that one would be tempted to discard the
theory right away on the basis of this prediction. A moment’s reflec-
tion, however, will convince us that any attempt at a not merely formal
reunification of gravitation and electromagnetism necessarily implies
a link, whatever its nature, between gravitation and electromagnetisim, 7
and hence between matter and the electromagnetic field. Since a sim-
ilar prediction also obtains in the asymmetric theories, which will be
discussed in the next sections, I postpone its discussion until after the
presentation of these theories.

Jordan’s approach was developed and extended by various authors (see
Just 1954 and references therein®®). Just was particularly concerned with
the problems set by the corrections to general relativity in connection with
the solar system effects. In a series of papers (see Just 1956 and references
therein), he used in particular the conditions set by the agreement of gen-
eral relativity with the data on Mercury’s perihelion shift to discriminate
between possible versions of the theory.
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In France, attention was focused on a difficulty of the theory related
to the identification of the space-time manifold with the four-dimensional
guotient space identified by the theory’s isometry group. The problem
was tackled, and a solution was proposed, by F. Hennequin and later by
P. Pigeaud (see Pigeaud 1963 and references therein).?’ In the final part
of his thorough study, Pigeaud treated the Schwarzschild problem in the
generalized theory according to the proposed solution, finding in particular
the exact Einstein expression for the perihelion shift. In conclusion, he
stated that, in the absence of an electromagnetic field, the theory accounted
for the whole set of relativistic phenomena (Pigeaud 1963, p. 216).

3.6 EINSTEIN’S METRICO-AFFINE THEORY

I have already mentioned that Einstein contributed several critical remarks
or developments to the approaches to unified theories followed by various
authors. It was only in 1925, however, after some 10 years of gestation, as
pointed out by Pais (1982, p. 382), that he attempted to formulate a unified
theory of his own. I will give a fairly detailed outline here of this first
attempt (Einstein 1925), since it presents some of the features common
to subsequent attempts at formulating asymmetric theories, by Einstein
himself and by other authors.

In the theory, it is assumed that a connection and a fundamental tensor
g"?, both nonsymmetric, are given as independent variables in space-time.
Itis, of course, the symmetric part of the fundamental tensor g,,,, introduced
through g,,08"" = 8uu8”" = 9, thatis identified with the metric, while the
antisymmetric part is the natural candidate to represent the electromagnetic
field. It is, first of all, the introduction of these two fields as independent
quantities, a feature retained in subsequent attempts, that we will examine
here. They belong to the class of the metrico-affine theories, even if the
term is mostly used in theories of pure gravitation.

It must be stressed that in his first paper Einstein considered only one
connection, I', while it would be legitimate to consider also its transposed
I, defined as?®

(T ap = (T*) o

On this basis, the Riemann and Ricci tensors are evaluated, and the scalar
density g*”R,, is formed. It should be noted that these cases present
the possibility of a further independent contraction of the Riemann tensor,
which gives rise to a simple expression in the derivatives of the connection.
Taking into account the “transposed” connection as well, one has, in princi-
ple, a total of four second-order contracted curvature tensors, for which no
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a priori selection criterion exists. In his first paper, however, Einstein con-
sidered only the usual Ricci tensor, as mentioned above. He then required
the vanishing of the corresponding action integral under independent vari-
ations of the fundamental tensor and the connection. This is considered to
be “the first rigorous formulation of a metrico-affine variational principle
with a nonsymmetric connection.”?

It should be mentioned that nonsymmetric connections had first been
introduced by Cartan (1922); Einstein’s work, however, was independent.°

The variational procedure leads to 16 4- 64 field equations for as many
field variables. Obviously, to recover the purely gravitational limiting case,
symmetry of the fundamental tensor is required; the connection then turns
out to by symmetric as well, and is determined to be the Levi-Civita con-
nection. However, the symmetry condition is not sufficient; the vanishing
of a certain vector field, a function of the metric and the connection, is
also required. In the general case, the field equations are unwieldy, and
Einstein had to take recourse in a weak field approximation, considering
(small) symmetric and antisymmetric (¢, ) corrections to a unit fundamen-
tal tensor. The set of field equations then gives rise to three subsets: the
vacuum field equations of gravitation, the Maxwell equations expressing
the vanishing of the four-divergence of the field ¢,,, as one should have in
the source-free case, and finally the equations

2 (B | W Heuy

Jxy \ 0x¢ dxt oxV

Therefore, the expression

a¢uv ad)va 8¢au.
ox® + Ixt + dx?

]

which is identically zero in Maxwell’s theory, does not necessarily vanish
in the theory; only its four-divergence vanishes identically. Because of this
result, Einstein abandoned this first version of an asymmetric theory soon
after its publication.

Einstein resumed his work on asymmetric theories in 1945 and contin-
ued studying them until his death. As stressed by Pais,>! Einstein’s efforts
in this field in the last decade of his life were much more elaborate than his
efforts in 1925; several successive versions were produced. I have chosen
not to follow the evolution of Einstein’s thoughts; I simply want to single
out the common basis of the various versions. This will be enough for
my purpose, which is not so much that of giving a full historical account,
but rather isolating common points for comparison with epistemological
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standards. In this presentation, I will follow closely Kaufman (1956) and
Tonnelat (1955).

From aformal point of view, all attempts show that Einstein had become
aware of the possibility of having two distinct connections and, as a con-
sequence, four contracted second-order curvature tensors. What changed
over time was his attitude toward the problem of what the most suitable
prescription was for eliminating the ambiguity. In the last version of the
theory, developed by Einstein in collaboration with Kaufman (Finstein and
Kaufman 1955), it was expressed in terms of the requirement of transpo-
sition invariance of the Lagrangian, which Einstein tried to link with the
physical requirement that the theory be invariant under the change of sign
of the electric charge.?? A version of this theory appeared in the 1953 edi-
tion of Einstein’s only technical book on general relativity (Einstein 1953).
There he made a remark of epistemological interest. He first observed that
each of the two parts of his fundamental tensor

is by itself a tensor, i.e., under a coordinate transformation, the com-
ponent of each part transforms independently of the components of the
other part, [so that,] considered from the point of view of the relativistic
group, the nonsymmetrical g;; is not an irreducible quantity but an arbi-
trary and unjustified combination of two entities of different nature. ...
This would seem to be a grave objection. . .. It should be noted, however,
that the group-theoretical point of view is not the only relevant one from
which to judge the “uniformity” of the concept of the nonsymmetrical
tensor field. [In fact, in Riemann’s theory,] the determinant of the g
makes it possible to correlate a contravariant g'* to the covariant tensor
gix according to the equation
8is8" =8, = 88",

where &} is the Kronecker tensor. This correlation, which plays a fun-
damental part in the theory of the symmetrical field, can immediately
be taken over in the case of the nonsymmetrical field.... [The only
difference is that] in the latter case...the order of the indices must be
preserved. This represents one argument indicating that, in spite of the
objection expressed above, it is indeed natural to introduce the nonsym-
metrical tensor field as a generalization of the symmetrical one. [More-
over, the equation given above] makes it possible to raise and lower the
tensor indices, [although] in the case of the nonsymmetrical field . . . this

operation is no longer defined a priori (A,g** and ‘A,g* are not equal
to each other). (Einstein 1953, p. 135)

I emphasize that the one-to-one correspondence established between vec-
tors and one-forms by a nondegenerate (g) tensor expresses a premetric,
and therefore a more general geometrical property of the tensor than the
metric properties introduced when the symmetry condition is added. Pauli
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took notice of the attention Einstein had paid to the objection against re-
ducibility of the fundamental tensor in his theory: “Einstein...was well
aware of this objection, which he weighed carefully in his later work” (Pauli
1958, p. 226 [footnote]*?).

Let us now examine in some detail the novel elements introduced in the
last version of the theory compared to the Einstein—-Maxwell theory (see
Tonnelat 1955, p. 10).

{1} In the general case, due to the unwieldiness of the field equations, the
occurrence of a magneto-mechanical effect is not immediately evident;
the effect, however, is clearly obtained in the particular cases of a field
exhibiting cylindrical or spherical symmetry. In Section 3 below, we
shall see how this relates to the studies carried out independently by
Blackett.

(2) The electromagnetic laws derivable from the theory are nonlinear, thus
implying, in principle, light-light scattering at the classical level.

(3) The theory’s nonlinearity allows, in principle, for the possiblity of
deriving, in accordance with Einstein’s view, a field theory in which
particles may be reproduced as spherically symmetric singularity-free
solutions. The actual possibility appeared doubtful in 1955 (Tonnelat
1955), and as far as [ know has never been realized.

In the late 1960s, a detailed exposition of this theory was given by
D.K. Sen. Sen reviewed at some length the attempts at obtaining a rigorous
solutions in simple special cases and the discussions of weak-field approx-
imations of various orders (see Sen 1968 and references therein). Since
the symmetric part of the static, spherically symmetric solution did not co-
incide with the corresponding solution of the Einstein—Maxwell equations
(Sen 1968, p. 102), the question was raised as to whether the symmetric
part of the fundamental tensor represented the real metric of the physical
space-time (Sen 1968, p.104). In view of the incompatibility of the re-
sult with general relativity, the identification was still considered an open
question (Sen 1968, p. 105).

3.7 EINSTEIN AND TELEPARALLELISM

Starting in 1928, Einstein tried a different approach, which despite its fail-
ure to achieve a satisfactory unified theory is interesting for a number of
reasons. In a paper of a purely mathematical character (Einstein 1928), he
introduced a new geometry, characterized by the property of distant par-
allelism, expressed in terms of n-beins, i.e., orthogonal tetrads. The latter
element is interesting in and of itself, and received attention for various
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reasons and purposes. N. Wiener and M.S. Vallarta observed that it permit-
ted the introduction of spin (Wiener and Vallarta 1929). Many years later,
W.H. McCrea and F.J. Mikhail discussed the possibility of using a tetrad
vector field in order to provide field equations admitting the creation of
matter according to Hoyle’s version of the steady state theory (McCrea and
Mikhail 1955). Actually, geometries characterized by distant parallelism
had already been introduced by Cartan and developed by other authors. Af-
ter the publication of Einstein’s paper, Cartan pointed out to Einstein that he
had mentioned them in a conversation they had in 1922,3* something Ein-
stein had apparently forgotten. This minor controversy was settled when,
on Einstein’s invitation, Cartan wrote a historical note on the notion of ab-
solute parallelism.>® A physical application of this geometry, an attempt at
aunified theory, was proposed by Einstein in subsequent papers. He gave a
particularly clear exposition of it in a lecture delivered at the Poincaré Insti-
tute in November 1929. The contact with physics is essentially established
through the antisymmetric part of the connection, A, which, Einstein ob-
served, has a tensorial character and 6 X 4 = 24 independent components,
a promising feature in view of the unification program. In first approxima-
tion, the antisymmetric set of the field equations gave Maxwell’s equations;
the symmetric set turned out to be compatible with the Newtonian theory,
but not identical to that obtained within the standard Riemannian approach
(Einstein 1930, p. 23). Einstein’s new attempt attracted a lot of attention.
Eddington, in particular, wrote a short note stressing the aspects in which
the new theory differed drastically from existing unified field theories, in
particular from his cherished affine theory (AT) (parallel transport is inte-
grable in Einstein’s theory, while it is essential that it be nonintegrable in the
AT, the connection is symmetric in AT, while it is essential that there be an
antisymmetric part in Einstein’s theory; finally, the curvature tensor, which
provides the field variables in AT, vanishes identically in Einstein’s geom-
etry, while it is Einstein’s new tensor A that vanishes identically in AT). In
Eddington’s view, the new approach did not offer enough to compensate for
the drastic change of viewpoint it implied: “Perhaps one who believes that
Weyl’s theory and its affine generalization afford considerable enlighten-
ment may be excused for doubting whether the new theory offers sufficient
inducement to make an exchange” (Eddington 1929, p. 281). Einstein’s
theory was developed and defended against criticism, as expressed in par-
ticular by Eddington, by R. Zaycoff in a series of papers (Zaycoff 1929a,
1929b, 1929¢, 1929d). Zaycoff gave an interpretation of the new geometry
maintaining that, although Einstein’s world is flat, because of the vanishing
of the curvature tensor, “it is not Euclidean in the usual sense, but only as
a consequence of the nonvanishing torsion, so to speak, in a nonholonomic
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sense.” In other words, “the Riemannian curvature is compensated by the
torsion curvature” (Zaycoff 1929d, p. 724).36 ’

From our epistemological viewpoint, the most interesting feature of
Einstein’s new theory is that, in principle, since the space-time manifold
is not endowed with a nonvanishing curvature tensor expressed in terms
of the connection, it does not contain general relativity as a limiting case,
contrary to all attempts mentioned so far. Pauli wanted to know what had
happened to Mercury’s perihelion and to the deviation of light rays.?” Years
later Einstein had to admit, “Sie haben also recht gehabt, Sie Spitzbube!”38

Notwithstanding its various drawbacks, Einstein’s theory continued to
receive attention over the years (a generalized field theory based on the use
of a tetrad space was elaborated by F.I. Mikhail and M.I. Wanas as late as
1977 [Mikhail and Wanas 1977]). Needless to say, the notion of torsion was
to prove central in the so-called Einstein—Cartan theory (for a review, see
Hehl et al. 1976), which is, however, an extended theory of gravitation and
not an attempt at a unified theory. It acquired a deeper physical meaning>’
through the work of Kondo (1955; see also Kroner 1981; Ross 1989), where
the torsional defect produced by spin in the geometry is assumed to be a
multiple of the Planck length.

3.8 SCHRODINGER’S ATTEMPTS

In the later part of his life, in particular from 1943 to 1951 (Bertotti 1985,
p. 87; Moore 1989, p. 385), Schrodinger dedicated most of his time to
studies on unified theories.

Schrodinger’s first attemnpt (Schrodinger 1943) was along the lines that
had first been indicated by Eddington and Einstein. Like Eddington, he
believed the connection to be a more fundamental notion than the met-
ric. Like Einstein, in his development of Eddington’s ideas, Schrodinger
started from a variational principle with the connection as his only variable.
Schrodinger explored first of all what could be derived from the sole as-
sumption that the Lagrangian is an unspecified function of the components
of the contracted curvature tensor constructed from a symmetric connec-
tion. Direct and inverse metrics were introduced through the symmetric part
of the Lagrangian’s functional derivative. Despite Schrédinger’s claim that
this was “already sufficient to produce from pure and straightforward affine
geometry the complete system of the differential equations of the combined
gravitational and electromagnetic field” (Schrodinger 1943, p. 43), the inter-
pretation of the set of equations is by no means obvious. The specification of
a Lagrangian determined a system of equations in which terms of the Born—
Infeld nonlinear electromagnetic theory, which had caught Schrodinger’s
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interest as early as 1935, could be identified. Schrodinger expressed the
belief that the mesonic field could be accounted for side by side with the
electromagnetic field by introducing a second symmetric connection. At
the end of the article, he pointed out that “his friend” A.J. Connell had drawn
his attention to the fact that, on the one hand, the duplication of the con-
nection appeared fairly strange, while on the other hand the requirement of
symmetry was perhaps unnecessary. Schrodinger was to make good use of
these observations in his subsequent studies. He returned to the subject the
following year, during the course of which he also published a paper with
Connell, in which he attempted to find some experimental support for his
theory. As mentioned by Moore (1989, p. 417), a finite range w! for the
electromagnetic interactions (or equivalently, a massive photon) was pre-
dicted; the authors were able to extract a lower bound of £~! > 15,000 km,
or u < 0.67-107"m™! from the data on the earth’s magnetic field. In 1968
this limit was improved to & < 1.15 - 10~8m~! by Goldhaber and Nieto
(Goldhaber and Nieto1968; see also the discussion in Breitenberger 1971).
(Today the theory would be immediately discarded: Moore points out that
the data sent by the Voyager probe during the 1979 fly-by of Jupiter have
reduced the upper bound by several orders of magnitude, “incidentally falsi-
fying the 1943 prediction from Schrédinger’s unified field theory” [Moore
1989, p. 453].) From the epistemological point of view, the situation is
therefore similar to that of Weyl’s theory.

Schrodinger resumed work with new enthusiasm after the end of the
war, partly due to the renewal of his correspondence with Einstein (Moore
1989, p. 424). In 1947 he published a paper with the significant title of “The
Final Affine Field Laws (I)” (Schrédinger 1947). He must have felt strongly
that he had made substantial, even decisive progress. Indeed, in the paper
one can read statements like: “Now the correct Lagrangian is found, the fog
sinks and everything becomes much simpler” (Schrédinger 1947, p. 163),
and: “T am inclined to believe that the field equations (18) are the uitimate
word that can be said on the physical fields, short of introducing the quantum
aspect” (ibid., p. 169). What was this all about? Schridinger claimed in
the paper he had not deviated “a line’s breadth” (ibid., p. 163) from the
program he had set himself. And indeed his approach was still formulated
in purely affine terms, with a fundamental tensor derived according to the
same procedure he followed in 1943. The connection, however, was no
longer symmetric, and consequently neither was the fundamental tensor.
The Lagrangian is chosen as the square root of the determinant of the Ricci
tensor. Eddington’s relation,

Gu = 2gu,
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though with asymmetric G and g, emerges naturally in this approach.

The field equations have, of course, the correct general relativistic limit.
As far as electrodynamics is concerned, the interpretation, once again, is
not so immediate. Nevertheless, as Schrodinger writes, “it clearly tran-
spires . . . that the ‘true’ electrodynamics really is of the type indicated by
Max Born as early as 1934” (ibid., p. 169). Here, however, stress is on the
mechano-magnetic effect.

If these equations embody what they purport to embody, viz. the genuine
union of the field of matter and the electromaguetic field, they ought inter
alia to explain the magnetic field produced, as we know but completely
fail to understand, by a rotating mass as the earth or the sun.... There
can, I think, be little doubt that the magnetic field is a direct consequence
of the mass rotation. ... I have no reasonable doubt that the equation
(18) will account for the mechano-magnetic phenomenon. (Schrodinger
1947, pp. 169-170)

In the course of the paper, Schrédinger proves “the remarkable fact” that
Einstein’s recently formulated asymmetric theory could be obtained from
his own in the limit A — 0. In the symmetric case, as Schrodinger com-
ments, the term A “is known to have . . . little practical significance, except
in the cosmological problem” (ibid., p. 167). It becomes fundamental in
the affine theory where it produces “the genuine affine form of the field-
equations” (ibid.). As a matter of fact, as stressed by Bertotti (1985), the
cosmological term is the only real difference with Einstein’s theory. In
a letter of February 1947, Einstein commented *. .. your theory does not
really differ from mine, only in the presentation and in the ‘cosmological
term,” which mine lacks. In mine, in the absence of electromagnetic forces
(and matter), space is planar, in yours it is a De Sitter space (due to the
cosmological constant}” (quoted in Moore 1989, p. 434).

In the second part of the paper, “The Final Affine Field Laws (II)”
(Schrodinger 1948a), Schridinger, without adding much from the physical
point of view, provides a general introduction, didactically very valuable, to
the metrical, affine, and metrico-affine theories. Schridinger has also left
s a classic textbook that shows his deep mastery of the geometrical aspects
surrounding these theories (Schrodinger 1950). The third part (Schrédinger
1948b) investigates some formal aspects. Written work by Schrédinger on
the affine theory ends with two studies on the weak-field approximation
(Hittmair and Schrddinger 1951; Schrodinger 1951).

4. The Blackett Effect

As already mentioned several times, a mechano-magnetic effect emerges,
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albeit with different features, as a prediction of some unified theories (Jor-
dan~Thiry, Einstein, Schrodinger). The year 1947 seems to have been a
crucial one for studies on this hypothetical effect. During the year, the ef-
fect not only received the attention of some of the authors quoted, but was
also the object of an independent investigation by the distinguished British
physicist PM.S. Blackett. In a paper published in Nature (Blackett 1947),
Blackett recalled the relation

G2

in which G and c have the usual meanings and g is a constant of the order of
unity), which had long been known to hold between the magnetic moment P
and the angular momentum U of both the earth and the sun. From the
measurement that year of the magnetic moment of a certain star it could be
concluded that the relation, to a good approximation, was valid in that case
as well. From the fact that the relation appeared to hold on very different
scales, Blackett was led to conclude that it had to be “taken seriously as a
possible general law of Nature for all massive rotating bodies” (Blackett
1947, p. 658). “Perhaps,” he added, “this relation will provide the long-
sought connection between electromagnetic and gravitational phenomena”
(ibid.). This hypothesis was supported, in his opinion, by the fact that the
formula contained only the constant G'/2/c, a circumstance that appeared to
exclude specific properties of the rotating body, while suggesting a general
role of gravitation.

In his article, Blackett summarized the long history of investigations
and discussions on the magnetic fields of the earth and sun, going over
the difficulties met in the very natural attempt to explain them in terms
of a separation of positive and negative charges within these bodies. It
is worth mentioning that, for Blackett, it was “clear that no adequate real
charge separation can exist [if] the normal electro-magnetic equations are
assumed valid” (ibid., p. 664). Therefore, he wrote, “some alteration in the
fundamental equations seems inevitable” (ibid.). Blackett cited an attempt,
along similar lines, by H.A. Wilson, but did not make any explicit reference
to unified theories.

Blackett’s paper caught the attention of those interested in terrestrial
magnetism, and did not pass unnoticed between those interested in unified
theories, as documented by the reference made to it in Tonnelat’s treatise
of 1955. No fruitful dialogue seems to have developed among the two
communities, however. In this respect, an episode mentioned by Moore is
significant: at the 8th Solvay Conference, in 1948, “Blackett gave a lec-
ture [published as Blackett 1949] on the magnetic field of massive rotating
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bodies; . . . surprisingly, Schrédinger did not comment on this problem, al-
though his unified field theory had dealt with it explicitly” (Moore 1989,
p. 444).

It should be mentioned that, already in 1946, Elsasser had formulated
the “dynamo hypothesis,” as an alternative to those being discussed. “A
possible explanation in terms of a dynamo produced by lunar tides” today
seems “to emerge ineluctably” (Gregori 1990, p. 57). Moreover, Runcorn
et al., as early as 1950, showed that the increase of the strength of the
geomagnetic field with depth contradicted Blackett’s hypothesis (Busse
1980). It does not seem possible to isolate a particular moment at which the
predictions of unified theories about the mechano-magnetic effect have been
refuted experimentally. It must be admitted, though, that these predictions
have never been particularly precise.

5. Conclusions

We may summarize the situation in the following terms. In the first place,
as one would have expected (with some exceptions, like Einstein’s first at-
tempt of 1925 and his theory based on teleparallelism), nearly all attempts
satisfy the first criterion, that of reproducing the Einstein—-Maxwell theory
in first approximation. This, by the way, in the case of the five-dimensional
theories, looked so impressive to Salam as to make him baptize the result
“the Kaluza—Klein miracle.” Secondly, one can observe that the formal cri-
teria for an effective unification are very often or nearly always met as well.
From this point of view, perhaps to our surprise, Einstein and Schrodinger’s
asymmetric, and Jordan and Thiry’s five-dimensional theories are in better
shape than the better-known theories by Weyl and by Kaluza and Klein.
The situation is far worse from the fundamental point of view of the rela-
tion with experiments. Even here, perhaps not without some surprise, we
nonetheless discover, or rather rediscover, that some of these theories were
not empty, which is in itself a positive feature. They are, however, either
refuted by the experiment, as is the case with Weyl’s theory (apart from
possible, but not very plausible, escamotages [sleights of hand]), or do not
make sufficiently accurate and stringent predictions, as in the case of the
mechano-magnetic effect. In the latter case one is faced with the situation,
which is remarkable and worth stressing, that one cannot yet say about
some of the proposed unified theories that they have been experimentally
refuted.
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NOTES

1 See, for instance, Yang 1975 and Drechsler 1986.

2 English versions of the original papers by Kaluza and Klein appeared in de Sab-
bata and Schmutzer 1983 (translated by C. Honselaer), and in Lee 1984 (translated
by T. Mura); a collection of the most relevant papers on the Kaluza—Klein theory
has been edited by Appelquist et al. 1987; reprints or excerpts appear also in Charap
and Okun 1986; comments on work by Kaluza and Klein can be found in Bergia
1987; Bergia et al. 1986; Carazza and Guidetti 1980.

3 One element of this feeling is certainly “the majority’s disbelief in the explana-
tory power of UFTs [unified field theories] in the realm of elementary particles”
(Goenner 1984).

41 am indebted to F. Rohrlich for a comment on this point.

5 “It is...the current opinion that this purely geometrical scheme is not rich
enough. For example, electromagnetism is not seen as the skew part of a fundamen-
tal tensor, but, stressing its gauge invariance, is considered in conjunction with a
complex scalar (or spinor) field; such a field needs a special affinity to be transferred
from place to place and the integrability of this transport operation is determined
just by the electromagnetic field” (Bertotti 1985). UFTs have a “geometrically over-
loaded but physically undernourished structure” (Goenner 1984, p. 192).

6 Finstein’s guidelines are summarized in Goenner 1984. I am indebted to
H. Goenner for stressing to me the relevance of Einstein’s epistemological contri-
bution. Goenner’s paper also gives an up-to-date analysis of the general principles
to be satisfied by a unified field theory.

71 wish to thank F.W. Hehl for calling my attention to Rainich’s approach.

8 In Einstein’s own words, the field must “appear as a unified covariant entity.”
The classic example is “the unification of the electric and the magnetic fields by the
special theory of relativity” (Einstein 19453, p. 578).

® 1 am grateful to J. Ehlers for pointing out to me the relevant passages of Weyl
and Lichnerowicz.

10 The expression appears in Weyl 1921, p. 282.

11 YWeyl 1918, p. 148; Weyl was thus opening a new chapter in the history of
the relationship between geometry and relativistic theories. As has been stated by
Chern:“It soon became clear that in the applications of Riemannian geometry to
relativity, the Levi-Civita parallelism, and not the Riemannian metric itself, plays
the crucial role” (Chern 1980). Weyl had in fact improved on Levi-Civita’s defi-
nition o parallel displacement of a vector (Levi-Civita 1917). The “various factors
that conditioned the emergence” of Weyl’s theory (like “the Géttingen tradition
in mathematical physics,” “Weyl’s contacts with Einstein,” and “his philosophical
interests”) are analyzed in Vizgin 1989. The influence of similar and other factors
on Weyl is also discussed in Sigurdsson 1991. The particular influence of Husserl’s
thought on the way in which Weyl attacked the crisis of the foundations of mathe-
matics is analyzed in Tonietti 1988.
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12 For this terminology, see Drechsler 1986; Fulton et al. 1962.

13 Einstein to Hermann Weyl, April 6, 1918. Translation as in Sigurdsson 1991,
p. 163.

14 Binstein to Hermann Weyl, April 8, 1918. Translation as in Pais 1982, p. 341.

15 Binstein to Hermann Weyl, April 15, 1918. Translation as in Sigurdsson 1991,
p. 164.

16 Einstein to Hermann Weyl, April 15, 1918. Einstein gave the same argument
in a letter to Besso (Einstein to Michele Besso, August 20, 1918). Permission for
quotations from the letters mentioned in Notes 13 to 16 granted by the Albert
Einstein Archives, The Hebrew University, Jerusalem.

17 See the fine discussion in Moeller 1955. T thank S. Kichenassamy for directing
my attention to Moeller’s paper.

18 The story of the delayed acceptance of Kaluza’s paper and an analysis of the
reasons for the difficulties met by his idea and for the apparent lack of personal
recognition was told by E.W. Middleton (1991).

9 This conclusion can be questioned on the basis of some recent results. J.A. Fer-
rari (1989) has investigated the static, spherically symmetric solution of the five-
dimensional Kaluza—Klein equations (in the case of a spherical charged system),
and found that it does not approximate the Reissener—Nordstrom solution in the limit
r — 00. J.A. Ferrari, J. Griego, and E.E. Falco claim that “the Kaluza—Klein theory
goes beyond merely ‘reproducing’ classical electrodynamics,” insofar as it pro-
vides “very simple explanations of the Aharonov—Bohm and Meissner—Ochsenfeld
effects” (Ferrari et al. 1989, p. 70), the essential reason being that the prescription
x> = const fixes the gauge in which the potential is expressed.

2 The issue has been recently addressed by D.K. Ross. Ross observes that the
Lagrangian density for Klein’s fields is-customarily assumed to be invariant un-
der general coordinate transformations in a general five-dimensional Riemannian
manifold. However, as I pointed out eatlier, the theory is only invariant under the
transformations of the product group, Egs. (5a, 5b). If this circumstance is duly
taken into account, one “does not get superheavy masses and in fact no mass at all,”
so that “an invariant mass term can be put in by hand, giving the charged particles
the mass we like” {Ross 1987, p. 2170).

21 As stressed by Pais, 1982, p. 334.

22 Starting with Veblen and Hoffmann 1930; Schouten and van Dantzig, Pauli
and others extended the idea; see, in particular, Schouten and van Dantzig 1932.

23 As reporied in Pais 1982, p. 335.

24 Gee, for instance, Dirac 1937.

25 See, for instance, Jordan and Miiller 1947.

% ] thank S. Kichenassamy for drawing my attention to Just’s contributions.

27 1 wish to thank S. Kichenassamy for drawing my attention to this work.

2 See the discussion in Tonnelat 1955, p. 18.

2 Ferraris and Francaviglia 1986, p. 12; this is what is usually referred to as
“Palatini’s method.”

30 See Pais 1982, p. 344.

31 See Pais 1982, p. 348.
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32 Kaufman 1956, p. 228. See, however, Goenner’s statement: “I am unaware of
any testable or (at least) convincing physical argument for transposition invariance
despite . . . Einstein’s claim, endlessly repeated, . . . that it stands for the invariance

“of the field laws with respect to the sign of electricity” (Goenner 1984, p. 187).

3 In the footnote, Pauli referred to Einstein 1953 and Einstein and Kaufman
1955.

34 Elie Cartan to Einstein, May 8, 1929. In Debever 1979.

35 The exchange between Einstein and Cartan on this subject is discussed in
Biezunski 1989.

36 1 wish to thank F.W. Hehl for calling my attention to Zaycoff’s papers.

37 Quoted in Pais 1982, p. 347.

3 “You were right after all, you rascal!” (translation as in Pais 1982, p. 347).

3 1 wish to thank F.W. Hehl for stressing this point to me.
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Vladimir Fock: Philosophy of Gravity
and Gravity of Philosophy

Gennady Gorelik

Vladimir Aleksandrovich Fock (1898-1974) was one of the main partici-
pants in the history of the general theory of relativity (GTR) in Russia. His
teachers, A.A. Friedmann and V.K. Frederiks, were the pioneers of GTR
in Russia (Vizgin and Gorelik 1987). He studied the famous Friedmann
paper on nonstatic cosmology in manuscript form and translated it, at the
author’s request, into German. He elaborated a description of the spinor
field in GTR (Fock 1929). In 1935 he was an “opponent” (judge) of Matvey
Bronstein’s thesis—the first deep investigation of quantum gravity. He in-
dependently of Einstein, Infeld, and Hoffman (1938) solved the problem
of motion in GTR. He is the author of the first Soviet monograph on GTR.
And, finally, he was an energetic and tireless participant in the discussions
during the 1950s and 1960s on understanding GTR.

However, despite Fock’s authority in physics due to his scientific abil-
ities, his attitude toward GTR was not shared by many even in the USSR.
This concerned his attitude toward cosmology, the role of coordinate con-
ditions and especially privileged systems of reference, the principles of
relativity and equivalence and the philosophical status of GTR.

His stand on the last issue seems to be the most enigmatic because he
unequivocally declared his adherence to dialectical materialism and con-
nected it with his understanding of GTR. Such an attitude did not attract
sympathy among physicists, although Fock’s human dignity and honesty
were beyond doubt. Besides, in Stalin’s time, Fock was the main defender
of quantum and relativistic physics in the USSR.

This situation has already attracted the attention of historians (Graham
1982, 1987). Here I shall try to reveal the roots of Fock’s position in his
scientific activity proper and to analyze the nature of the communication
gap between Fock and his physicist colleagues.
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To do this, it is necessary to take into account the following factors:
Fock’s specific methodological stand, which was intermediate between
theoretical physics and mathematics; his predisposition to a philosophi-
cal world view; his inclination to schematism or mathematization in life
outside natural science; and finally the relatively narrow empirical basis
of GTR in the 1930s to 1950s. It is not easy to discuss these factors in
academic terms since they manifested themselves in horrible social cir-
cumstances. They were embodied concretely in Fock’s personality—he
was an honest, dignified, fearless and, strange as it may seem, law-abiding
person. Toreveal these elements of the explanation and to connectthemina
united scientific-psychological complex, one should consider the evolation
of Fock’s views. '

1. First Steps in the General Theory of Relativity
Fock (1963) recalled the following of his early acquaintance with GTR:

A.A. Friedmann and V.K. Frederiks, professors in Petrograd University,
were the first who familiarized Russian physicists, who worked in Pet-
rograd, with the theory of gravitation recently created by Einstein. This
was at the very beginning of the 1920s when the blockade of Soviet
Russia had just been broken and scientific literature from abroad began
to arrive. In the Physical Institute of the University a seminar gathered
where, among other things, lectures on Einstein’s theory were delivered.
The participants of the seminar were teachers and students in their last
year (and at that time there were very few). The basic speakers on the
theory of relativity were V.K. Frederiks and A.A. Friedmann, but some-
times also Yu.A. Krutkov, V.R. Bursian and others spoke. I remember
the talks of Frederiks and Friedmann clearly. The style of these talks
was different: Frederiks deeply understood the physical side of the the-
ory, but did not like the mathematical computations; Friedmann stressed
not physics, but mathematics. He strived for mathematical rigor and
attributed great importance to the fuil and exact formulation of the ini-
tial preconditions. The discussions that arose between Frederiks and
Friedmann were very interesting.

This recollection, with its “duet of acting characters”—mathematics
and physics—as we shall see, can tell us much about Fock’s position itself.
In spite of the important role of Frederiks in the assimilation of GTR in
Russia, one may doubt the depth of his physical comprehension of GTR. On
the other hand, “the full and exact formulation of the initial preconditions”
was very characteristic of Fock himself,

The earliest documented testimony of Fock’s interests in GTR is his
handwritten summary of his lecture in a philosophical circle dated 1922.



310 Gennady Gorelik

What should be noted especially is that this summary is half philosophical.
Fock begins with:

I am going to give an account of the physical foundations of the theory
of relativity and to point out some contacts with philosophical problems.
But I consider myself to be an ignoramus in philosophy, and therefore 1
do not claim to solve, or even to put philosophical questions in correct
form. In this respect I wait for the assistance of my listeners.

After a few words about the historical origins of GTR, Fock turns to

the leading thread: the search for the really existing in the nature. The
really existing is defined as being perceived by all identically. Examples:
(a) an object being seen from different viewpoints;
(b) anobjectbeing seen by moving observers; its mass and dimensions.
If two observers see differently, it is clear that they see not the whole
object but facets of it.
One had to admit as really existing not space and time separately but
their combination; instead of 72 and ¢ the interval r* — c*1* really exists.

Fock summarizes the content of general relativity in the following way:

Geometry has absorbed physics. From the formal point of view it is all
the same, but it is more satisfactory for our intuitions. As well now the
physicist believes in the existence of atoms and electrons neither more
nor less than in the existence of common “large” objects. If he was a
“naive realist,” he has remained the same. But he replaced entities that
he considered before as really existing. It is possible to go further.

Physics strives to break up phenomena into the simplest elements.
But the simplest elements are not commonplace to us; besides that, they
(as the simplest) are undefinable. The familiar (i.e., having properties of
familiar objects) are only rather complex combinations of these elements.
But so far as we have not given definitions for elements, there are no
definitions for these combinations either.

And we give a definition for the latter. We take the quantity G,,,. We
do not say that it is equal to zero when matter is absent, but in another
way: being equal to zero means that matter is absent, i.e., absence of
matter is a symptom of G,,, being equal to zero.

From this short text one can draw some important conclusions.

In 1922 in Soviet Russia the philosophical approach to natural science
was still a purely private affair. To lecture at a philosophical circle meant a
certain predisposition to a philosophical outlook. It is difficult to attribute
Fock’s view in 1922 to some -ism (e.g., to intersubjective idealism or math-
ematical realism), but one can definitely say that in Fock’s position there
is no dialectical materialism (which he would master and appropriate in
the mid-1930s). His striving to comprehend the epistemological bridge
between physical reality and theory is beyond doubt.
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In the philosophical viewpoint of the 24-year-old theorist, it is possible
to see some ideas of the classics of relativity. However, Fock’s approach
to GTR seems highly independent (unlike the first Russian review on GTR
by Frederiks (1921)). Instead of the ideas of general relativity, covariance
and equivalence, which were usual for the majority of accounts of GTR,
in Fock’s account what prevails is the geometrical approach, based on
the concept of absolute space-time. The other interesting feature is this:
Fock mentions “the possibility of finite but boundless space” and does not
mention the possibility of a nonstatic universe, while Friedmann’s popular
(1923) book was finished the day (!) before Fock’s lecture, and it talked
about this new possibility with enthusiasm. Friedmann’s famous paper
(1922) was dated May 29.

2. One and a Half Decades under the Symbol 7 and
the Year 1937 under the Banner of Marxism

In the following one and a half decades Fock was busy with quantum theory
on the whole. His important work on including the Dirac equation into GTR
(1929) did not concern questions of principle in GTR.

Some interesting traits for the relativistic portrait of Fock may be re-
vealed in his participation in the defense of M.P. Bronstein’s thesis in 1935
{Gorelik and Frenkel 1985). Fock assessed highly this investigation, which
was concerned mainly with the quantization of weak gravitational fields.
He did not, however, attach importance to one of Bronstein’s conclusions,
which may have been the most interesting from the general physical and
philosophical points of view, but the least definite mathematically. Based
on a quantum-relativistic analysis of the measurability of the gravitational
ficld (beyond its weakness and nongeometrical character), Bronstein de-
duced that, in a complete theory of quantum gravity, the concepts of space
and time would have to be generalized radically. In Fock’s words of 1935,
one can see some distrust of GTR: he admits that the theory (of strong fields)
may be changed and doubts the special role of the gravitational radius. (See
Gorelik and Frenkel 1985.)

Fock took up the Einstein theory of gravitation in full measure at the
end of the 1930s, preceded by some important events in his philosophical
and social biography. )

At the beginning of the 1930s, Fock discovered dialectical materialism
for himself (hereafter I shall use the common Soviet abbreviation Diamat).
We know from A.D. Aleksandrov’s testimony (Aleksandrov 1988, 1989)
that Fock read Lenin’s book Materialism and Empirio-Criticism in 1932
and found in it something interesting and important for him (and he regretted
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that this book was inculcated in a “police” way). Two decades later Fock,
in the introduction to his book on GTR, remarked:

The philosophical side of my views on the theory of space, time and
gravitation was formed under the influence of Lenin’s Materialism and
Empirio-Criticism. The doctrine of dialectical materialism helped me
to approach critically Einstein’s point of view on the theory created by
him and helped to comprehend it anew. This doctrine also helped me
to understand correctly and to interpret new results obtained by me. I
would like to state this here, though properly philosophical questions
are not touched upon in this book. (Fock 1955, p. 16)

Before considering the interaction between Fock, Diamat, and the the-
ory of gravity, let us get acquainted with some facts from Fock’s biography
which may seem to be irrelevant at first glance.

In answering an official questionnaire in 1938, Fock wrote that he was
descended from nobles, although he could have given a much less dangerous
reply, because his father was a scientist—forester. Fock also informs us:
“Since birth I have lived in Leningrad, did not take part in the revolutionary
movement, ..., was not repressed by Soviet power.”!

There are some inexactitudes here. In the first place, having entered
Petrograd University in 1916, Fock in 1917 voluntarily joined the artillery
school and then went to the war front (in 1918 he was immobilized because
of advancing deafness). In the second place, Fock was arrested twice: in
1935 for one day and in 1937 also foronly a few days (in the latter case he
was released as a result of P. Kapitsa’s courageous letter “upstairs”).

For Fock, 1937 was also filled with many other events that were not very
scientific. He was active in preventing a special session of the Academy of
Sciences concerned with the philosophical basis of modern physics (Gorelik
1990). The initiator of this session was the 65-year-old electrical engineer
academician, V.F. Mitkevich. Having old-fashioned (meta-)physical views
and having obtained new-fashioned political skills, he officially proposed
organizing a special meeting “for the struggle for the materialistic founda-
tions of physics and against physical idealism.” He had named V.A. Fock
(together with LE. Tamm and Ya.l. Frenkel) as a physical idealist and an
opponent of Diamat.

Before 1937 Fock did not express his philosophical views publicly but
had expressed unequivocally his opinion about the poor scientific level of
books by Mitkevich and his fellow campaigner A.K. Timiryazev in a review
(Fock 1934) published in the leading popular-scientific journal.

It was this review that was attacked (three years later!) by an aggressive
and prolific journalist, V.E. Lvov. He seemed to take into account Fock’s
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arrest and charged him not only with idealism but also with adherence to
fascist methods!

Fock had to defend himself and his science. He sent three letters.
In the first one, addressed to the Leningrad public prosecutor, Fock de-
manded prosecution of Lvov for libel and defamation. The second let-
ter was addressed to the Central Committee of Communist Party, and
there Fock wrote about the harm done by Lvov to Soviet science. In
the third, a seven-page letter of February 13, 1938 to the Presidium of
the Academy of Sciences, Fock, without any delicacy, expressed his mis-
givings about Mitkevich’s efforts and insisted on abolishing a (quasi-)
philosophical academy session devoted to physics. Judging by all that
is known, it was Fock who was the main force in preventing this harmful
session (Gorelik 1990).

In the same letter, Fock wrote about the desirability of good philosoph-
ical discussion of the new physics based on Diamat. He was sincere in
writing these sentiments, for we have Fock’s manuscript “Does Quantum
Mechanics Contradict Materialism?” (23 pp.), dated November 1937. The
discussion of 1937 became the subject of the article (Fock 1938a) published
in the journal Under the Banner of Marxism.

In 1937 Fock was parted from many of his colleagues, who became
the victims of the Great Terror. In August, M.P. Bronstein was arrested.
When Fock heard about this he went personally to Bronstein’s home to
learn exactly what had happened (Gorelik and Frenkel 1990). In 1937, this
was a very courageous and unusual act. He also signed letters in defense
of repressed scientists.

Ten years later Fock wrote the official review of works by D. Ivanenko
and A. Sokolov on quantum gravity, which were being presented for the
Stalin prize. In this review Fock mentioned the name of M.P, Bronstein,
then “an enemy of the people,” many times. In particular,

Whatever causes compelled the authors to avoid mentioning Bronstein’s
achievements, their work may not be considered as the construction of the
quantum theory of gravitation, for this theory was created by Bronstein
11 years earlier.

The facts pointed out here provide a social portrait of Fock and will
help us to understand his attitude to GTR better.

3. Fock’s Work on Motion in GTR

The year 1939 was a landmark in Fock’s biography. He became a full mem-
ber of the Academy of Sciences and his interests in fundamental physics
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had moved from guantum theory to gravitation. In 1939, Fock (1939a)
published a long paper on motion in GTR. Without discussing the entirety
of this important work (Havas 1989}, I shall single out only a few essential
points for our theme.

Fock begins with the difference between his and Einstein’s points of
view on GTR as a whole. For Fock, GTR is the foremost theory of grav-
itation and therefore must be applied to phenomena in which gravitation
dominates, “i.e., to phenomena of an astronomical scale,” but not to prob-
lems on an atomic scale. But at the same time he assesses very skeptically
(or worse) “the so-called cosmological problem”: “In the modern state of
knowledge, any attempt to consider the Universe as a whole has to be of a
speculative character.”

Fock based his approach on the following: “in the atomic world it is
observed that electrical forces greatly dominate the forces of gravity,” “the
great successes of quantum mechanics during the last 10-15 years and the
complete fruitlessness of Einstein’s attempt to explain elementary particles
by means of a unified field theory.” Nevertheless, Fock concludes:

One should admire the creation of Einstein’s genius, which is so rich in
physical content in spite of its seeming abstractness. I hope this paper
will help to reveal the physical content of this remarkable theory.

In a popular article, dedicated to Einstein’s jubilee, Fock (1939b) ex-
pressed his position in stronger words, both in criticism in relation to
cosmology and in appreciation of Einstein: “one of the greatest modern
scientists, whose name is known and dear to every educated man and is
shining equally as the name of Newton.” In 1939 such enthusiastic appre-
ciation of a “bourgeois” scientist known for his “idealistic” philosophical
and “bourgeois-liberal” political views, was already very exotic.

Now let us return to Fock’s paper itself, to one of its elements which was
of a purely mathematical nature but later acquired considerable physical and
even philosophical meaning. This element is the coordinate condition

Ox, = 0,

where [ is the covariant D’Alembertian (there are different forms of this
condition). The corresponding coordinate systems are called harmonic.
One of the main peculiarities distinguishing Fock’s work from Ein-
stein—Infeld—Hoffmann’s corresponding work is its view on the choice of
coordinate systems. The physical statement of the problem, with the aim of
correlation with Newton’s equations of motion and post-Newtonian terms,
leads to such conditions as the weakness of the gravitational field, its insular
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character (planetary system), and Euclidean character at infinity. But to
solve the field equations of GTR itis necessary to add coordinate conditions,
having chosen sufficiently definite coordinate systems.

For Einstein, with his understanding of GTR, the choice of coordinates
was a question of technique or mathematics. And Einstein’s choice leads
to such a laborious pathway to the solution that the computations could not
go into the publication and were cited from a complete manuscript in the
Princeton Institute.

Fock, having chosen harmonic coordinates, found, as he wrote, “a much
simpler” pathway to the solution. Already in the paper of 1939 he attempted
to base his choice on more than mathematical grounds.

Having mentioned de Donder and Lanczos, “who first (in 1921, 1923)
had pointed out the simplification reached by means of harmonic coordi-
nates,” Fock does not limit himself to pure mathematics. In his words,

Harmonic coordinates are the nearest in their properties to ordinary rect-
angular coordinates and ordinary time in the Minkowski “world.”” That
is why, in these coordinates, the GTR formulas are the clearest.

Fock supposes that the harmonic coordinate system “deserves the name of
inertial,” because he considers it

most probable that from Euclideanness at infinity and from its harmonic
character (in connection possibly with some additional conditions like
the radiation condition), our coordinate system is defined uniquely, with
the indeterminacy of an ordinary Lorentz transformation. . .. Asitseems
to me, the possibility of introducing, in the general theory of relativity,
uniquely defined inertial coordinate system deserves to be noted.

Judging from the content of Fock’s paper (1939a), it seems that the
paper is not merely the solution of a certain problem, but the beginning of a
large program of work. The war interrupted this work, however, and Fock
came to be busy with more applied physical problems.

4. The Contribution of Nikolaus Copernicus
to the General Theory of Relativity

The first postwar testimony of Fock’s reflections on gravity is his rather
short paper (1947) dedicated to Copernicus’s jubilee. Why did he write on
Copernicus? There are no other traces of Fock’s interest in the history of
science outside the twentieth century.

It is possible to point out several very different causes. In theideological
life of the postwar USSR, the most “militant materialism” reigned. Idealism
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(crossed with antipatriotism and cosmopolitanism) was attacked in different
fields of science. Debates over the state ideclogy of Marxism—Stalinism
became very leaden, strictly black and white, or, more exactly, red and
white. The list of saints and enemies of progress had been formed, and
Copernicus had one of the most respectable places among the heroes of
science. The state attention to the great Polish founder of the new astronomy
was strengthened by state political interests in Eastern Europe.

In Soviet ideology, the positive Copernicus was indissolubly connected
with the negative Ptolemy. In a paper, the first in the jubilee volume, Idelson
(1947), side by side with a profound analysis of Copernicus’s works, had
to mention also “the wise words of comrade 1.V, Stalin,” which consisted
only of the phrase “decayed system of Ptolemy.”

And it is the pair “Ptolemy—Copernicus” that cast a shadow on general
relativity. Of course, the shadow was due not to these classics themselves
but to the soldiers of the cause of the one true philosophy. Being ignora-
muses in physics, they looked for philosophical mistakes only in popular
texts. In such texts dealing with GTR, in order to explain the basic ideas
(or for effect), the equal correctness of Ptolemy’s and Copernicus’s points
of view was asserted, e.g., Friedmann 1923; Einstein and Infeld 1938.

In contrast with other articles of the jubilee volume, Fock did not base
his article on an appropriate historical interest in 400-year-old events. In
spite of the title of his article, it was not his aim to illuminate the relationship
between Copernicus and Ptolemy by means of GTR. To the conirary, he
preferred to use a controversy, solved long ago, in order to illuminate his
understanding of GTR as a geometric theory of gravity. A second and no
less important aim was to defend Einstein’s theory against ignorant and
malicious critics.

In short, in Fock’s article of 1947 were present all the main elements
of his treatment of GTR (which henceforth he named “Einstein’s theory of
gravity”):

(1) the radical devaluation of the principles of general relativity, covari-
ance and equivalence;

(2) the possibility of introducing

as space and time coordinates those variables which are quite analogous

to the rectangular Cartesian coordinates and the time coordinates of the
special theory of relativity (harmonic coordinates).... The essential
condition for this is the requirement of pseudo-euclidean geometry of
space-time at infinity . ..; this requirement is satisfied for systems of
masses like a solar system. (Fock 1947, p. 185)
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Based on this, Fock firmly rehabilitated “the immortal creation of Coper-
nicus—the heliocentric theory of the solar system.”

Fock’s argumentation, which has been recounted many times since, is
well known due to his monograph of 1955 (2nd edition in 1961 and English
editions in 1959, 1964). That is why we may consider only the principal
relevant circumstances from 1947 to the mid 1950s.

5. Fock’s “Theory of Space, Time and Gravity” against
the Background of His Gravity, His Time, and His Space

The next publication on the theory of gravitation that Fock prepared was
in 1948. It was based on his prewar work. In addition to concrete results,
he also developed his understanding of the fundamental ideas of Einstein’s
theory. Admitting the historical, heuristic role of the principle of equiva-
lence, Fock denies its validity in the complete theory. He also denies any
particular physical role of covariance and general relativity as a more gen-
eral relativity than in the special theory of relativity. For Fock, Einstein’s
theory is solely a geometrical theory of gravity. In his words: “I gave a
detailed account of my point of view on Einstein’s theory of gravity be-
cause Einstein’s point of view, which I consider as wrong, is dominant up
to today” (Fock 1950, p. 70).

The end of the 1940s and the beginning of the 1950s in the USSR were
not very suitable years for pure, subtle theory. Soviet physics found itself
under the strongest social pressure. After a notorious session of VASHNIL
in 1948 had devastated Soviet biology, a similar session was prepared for
physics. The unhealthy ambitions of some physicists in unhealthy social
conditions were embodied in the struggle against “physical idealism, an-
tipatriotism and cosmopolitanism.” In this struggle, V. Fock was of course
on the side of genuine science, defending relativistic and quantam physics
and scientific ethics (Gorelik 1991). He based this activity also on Diamat
(Fock 1949).

It was at this same difficult time that discussion of the foundations
of relativity was revived by publication in 1950 of lectures delivered by
L.I. Mandelstam in the 1930s (Mandelstam died in 1944). In these lectures,
in particular, an operational approach to physical concepts was used and
attention was paid to conventional elements in the definitions of the special
theory of relativity. Fock, in his review (1951), gave a high estimate of the
scientific and pedagogic significance of Mandelstam’s lectures but criticized
the operational and conventional elements.

The guestion, however, which had been the subject of a methodolog-
ical analysis of a physical theory for Fock, became a crime for ignorant
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philosophical overseers. They attacked “bourgeois idealism” on the whole,
“reactionary Einsteinism” (Maksimov 1952) in particular and Mandelstam
with his school as “the seed-bed of idealism in USSR” especially; to “physi-
calidealism” it was easy to add also anti-“cosmopolitan” arguments because
there were a great many Jews among Soviet physicist—theorists. One of the
highest ranking among these philosophical overseers was A.A. Maksimov
(1891-1976).

The main defender of genuine science was the academician Fock, whose
arguments were both scientific and Diamatic. He demolished Maksimov
in the leading philosophical journal (Fock 1953a)—and Maksimov was on
the journal’s editorial board.

It was in just such a social atmosphere that Fock went on to elaborate
his treatment of Einstein’s theory of gravity.

In a sense, 1955 became the year of summation. In that year Fock’s
monograph The Theory of Space, Time and Gravity was published, but for
our theme a much less scientific article written by Fock for the principal
Sovietnewspaper Pravdais more interesting. This article was entitled “Half
a Century of Great Discovery. About the Theory of Relativity by Albert
Einstein.” We have the good fortune of looking at this article through the
eyes of two remarkable contemporaries—academicians Igor Tamm and
Vladimir Fock-—because of letters they exchanged on November 13 and
17, 1955.
~Judging from the correspondence they kept (the earliest letter is dated
1929) and the testimony of their colleagues, these outstanding Soviet the-
orists were connected by a mutual respect in both scientific and moral
spheres. ‘

The manuscript of Fock’s article was sent to Tamm from Pravda for
his information. It was his reaction to this article that led to Tamm’s letter.
Having recalled Fock’s anti-Maksimov article of 1953 approvingly, Tamm
expressed his doubts about the appropriateness of a polemic with Einstein
and the discussion of his philosophical errors in a jubilee newspaper article.
In the same letter Tamm invited Fock (with great respect for his “funda-
mental works in quantum electrodynamics and theory of space and time™)
to take part in investigations on quantizing space-time. This idea attracted
Tamm’s attention very much then.

Fock’s letter, clear and detailed, answers all Tamm’s remarks in the
following way. He had not intended to write a praising, jubilee article, he
explained, but a critical review of a published book (the Russian translation
of Einstein’s The Meaning of Relativity). The article turned out to be rather
difficult, but its subject was fairly difficult too. “Einstein is a great physicist,
but he is not a very good mathematician,” Fock wrote.
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His mathematical errors have to be pointed out. For Einstein’s reputation
it is useful to cleanse his theory of erroneous statements. It would be a
tactical mistake to keep silent about Einstein’s erroneous philosophical
statements. The only way for physics to get immunity from philosophical
attacks is to admit philosophical errors by physicists themselves and to
separate these errors from the entity of theory.

Fock concluded:

Publication in a leading newspaper of an article about Einstein signed
by me—independently of its intelligibility—1I consider as very useful
because:

(a) it amounts to official recognition in our country of the theory of
relativity as a great discovery and great achievement of human
genius,

(b) this recognition is made without grovelling and with reasonable
criticism,

(c) the philosophical sins of Einstein are mentioned but have been
forgiven.

In these letters the discussion concerned only the social status of GTR. But,
in just a few weeks, the possibility had arisen of giving an account of their
true scientific views.

On November 30, 1955 there was an open session of the Academy of
Sciences of USSR, dedicated to the 50-year jubilee of the theory of rela-
tivity. An introductory speech was made by Tamm. His closest colleague,
V.L. Ginzburg, delivered the paper “Experimental Testing of the General
Theory of Relativity,” and Fock delivered a paper on the equations of mo-
tion. These papers, together with some others, comprised the memorial
volume Einstein and Modern Physics. Fock’s viewpoint is represented in
the volume very lucidly and in a way that is especially convenient for us.
It is in two components: critical and constructive.

The volume includes Einstein’s “Autobiographical Notes,” which were
translated and commented on by Fock. He begins with Einstein’s philo-
sophical views; however, his reduction of the many-colored ("extremely
inconsequent”) philosophical palette of the great physicist into the sharp
dichotomy of the terms “materialism—idealism” seems to be a ritual duty.
In considering Einstein’s pathway to the theory of gravity, Fock does with-
out philosophy at all. He criticizes Einstein’s reasonings, “which finally
led him to his gravitation theory of genius,” and criticizes his “logical in-
consistencies,” “incorrect use of terms,” etc. The questions are, as before,
in relativity, covariance, and equivalence (Fock 1956b).

Fock’s paper on the equations of motion contains the following con-
structive statements. For isolated (insular) systems, it is possible to state
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“conditions determining the coordinate system uniquely, with an indetermi-
nacy up to a Lorentz transformation (harmonic coordinates).” For Einstein’s
theory, the harmonic coordinate system has a significance in principle, be-
cause “the existence of such a system reflects the objective properties of the
space-time continuum.” The introduction of harmonic coordinates allows
the recovery of the equations of motion of masses taking into account their
inner structure, all ten classical integrals of motion including relativistic
corrections, and the gravitational potentials at large distances.

What reception did Fock’s position find with his colleagues?

In Tamm’s article there is only one phrase indicating that “ ‘the special
and general theories of relativities’ may be not very good terms.” In op-
position to Fock, one can see the great importance attached by Tamm to
cosmology.

A more definite opinion was expressed in Ginzburg’s paper, although
he also avoided “fundamental questions on space and time, geometry and
the theory of field in their connection with the general theory of relativity.”
According to Ginzburg (1956), GTR is “first of all a relativistic theory
of gravity” for which the principle of equivalence is “the basic physical
statement,” and the principle of general relativity in itself is not physical.
Nevertheless, referring to Einstein, who had to admit this last point in 1918,
Ginzburg stated that he does not agree with “the opinion of Fock, who
says that the ‘theory of gravity was incorrectly understood by its author’ ”
(Ginzburg 1956, p. 136). .

A straightforward opponent of Fock (and possibly more Einsteinian
than Einstein himself) was L. Infeld, who, in the same memorial volume,
wrote:

I am not in agreement with Professor Fock that one should add certain
conditions to the theory of relativity, the conditions picking out harmonic
systems. During my visit in the Soviet Union (1955), I, to my great
surprise, have been convinced that Professor Fock stands apart in this

question, and that physicists of such caliber as Landau, Tamm, and
Ginzburg are in disagreement with his attitude. (Infeld 1956, p. 238)

This discrepancy, this communication gap between Fock and his phys-
icist colleagues, was maintained for many years, up to his death, in spite of
his persistent efforts to elucidate his viewpoint (Fock 1967; Ginzburg 1973).
One may find clear testimony of the failure of his efforts in the volume pub-
lished in the USSR on Einstein’s centenary that collected major works in
the theory of gravity (Albert Einstein i teoria gravitatsii, 1979). This vol-
ume contains two of Fock’s papers (1929, 1939a), but on the volume’s
jacket there is the phrase: “... general theory of relativity, i.e., mechanics
of arbitrary accelerated system. ...”
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6. Principles of Relativity and Complementarity
for the History of Physics

Thinking over the communication gap between Fock and Tamm (as ex-
pressed in their letters), or, more generally, between Fock and his physicist
colleagues, both in scientific-methodological and in social-philosophical
spheres, one should avoid a quick and simple judgement over who was
right and who was wrong. Both positions were pure and honest, but the
difference that could not be removed stemmed from the difference in their
personalities.

To comprehend this situation, a historian of physics might take a lesson
from the experience of 20th-century physics. In our case one might take
a lesson from a short article written by Fock himself. While summing up
the theory of relativity and quantum mechanics epistemologically, and their
experience of dealing with nonabsolute truths, Fock concluded:

As the history of the development of science shows, general principles
established for one field of knowledge may be applicable also in other
fields. I believe that such general character is possessed by the principle
of relativity to the means of observation. In this is its philosophical
meaning. (Fock 1971)

Of course, in the history of science, to determine a “frame of reference”
or “means of observation” for an outstanding scientist is much more dif-
ficult than in special relativity or in quantum mechanics. But only after
having determined the “direction vectors” of the scientist’s world view and
having tied these vectors to his unique personality can a historian hope to
comprehend his life path.

Now it is time to connect the fairly heterogeneous events from Fock’s
biography as described above. To connect them with one life line, first
of all, it is necessary to describe his frame of life references. One should
begin with the vectors characterizing his scientific standpoint, because, for
a genuine scientist, and for Fock especially, these vectors are the most
important.

According to the prominent experimental physicists P. Kapitsa and
D. Rozhdestvensky, who knew Fock very well, “This is a man detached
from common life due to his almost absolute deafness. The whole of his
life is persistent work with scientific problems”; “Fock thinks by mathe-
matical images and it is very difficult for him to go deeply into the mentality
of an experimentalist or average man, in spite of his permanent readiness to
help everybody who asks him” (Kapitsa 1989, p. 124; Frenkel 1990, p. 150;
[Personal File of V.A. Fock] Archives Russian Acad. Sci. 411-14-127,p. 6
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[note 1]). This is why one should turn to Fock’s philosophy and social
conduct only after having considered his scientific psychology.

If one had to characterize the foundation of Fock’s frame of mental
references in two words, they seem to be “mathematicity and sobriety.”
One may consider as key his phrases such as “The correct mathematical
framing of a physical problem always must ensure the uniqueness of a
solution” (Fock 1956¢, p. 160). Mathematicity itself does not exclude a
romantic attitude to physics (e.g., H. Weyl), but Fock was an antiromantic.

Without taking this into account, it would be rather comical to see
Fock criticizing Einstein’s intermediate inferences that led to his theory
of genius. Here Fock recalled Einstein’s confession that his mathematical
intuition was not sufficiently strong (Fock 1956b, p. 79). But a physicist
would prefer to recall other words of Einstein: “Unless one sins against
logic one generally gets nowhere; or, one cannot build a house or construct
a bridge without using a scaffold which is really not one of its basic parts”
(Einstein 1953, p. 147).

Fock had “the means of observation” to appreciate Einstein’s achieve-
ments of genius and he did admit that Einstein had achieved his results by
means of these “incorrect” concepts and inferences, but to go mentally into
this incorrect practice was, for Fock, precluded by his mathematical pow-
ers. It was quite clear to Fock (as well as to his colleague-geometricians)
that in Riemann geometry, the zero-curvature case has the most symmeiry,
that the principle of equivalence cannot be formulated inside GTR.

If there are perfect, exactly defined mathematical structures, why should
one not set aside logically dubious constructs without exact mathematical
meaning, regardless of their historical merits? If the building is finished,
why should one not take the scaffold away?

This applies to the principle of equivalence and to the idea of general
relativity, which were important for creating GTR but then dissolved in
its mathematical structure. The same applies to the operational analysis
of definitions, by means of which L. Mandelstam introduced the special
theory of relativity (STR) in his lectures. For a mathematician, in the latter
case, to describe Minkowski space is quite enough. But for a physicist,
even aside from pedagogics, it is not enough.

Einstein modeled physics with the following epistemological scheme:

E—A—§—E,

where F is the variety of immediate experiences of the senses, A is a system
of axioms, and § are statements deduced (Einstein 1952, p. 137). Mathe-
matical physics (as represented by Fock) reigns over the section A — §,
while theoretical physics deals with the sections £ —> A and § — E.
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Fock reproached Einstein by saying “his general inferences proceed as
if they did not take into account that any physical theory is approximative
in essence” (Fock 1956b, p. 74). The physicist-theorist looking for a new
system of axioms certainly does have to forget that it is approximate. At
the same time, in order to be prepared for the coexistence and succession
of different axiom systems, he should pay special attention to the section
E — A.

Fock’s attitude toward cosmology was especially revealing, if one re-
members that nonstatic cosmology was born in front of him. Of course, his
concern was not with the mathematical side of cosmological solutions, but
rather with their physical meaning. In 1939 he disassociated himself from
cosmological speculations and even reproached them. Later, and up to the
end of his life, Fock mentioned formally or described very briefly the math-
ematics of cosmological applications of GTR, but certainly, in his heart,
there were no kind feelings for relativistic cosmology. Cosmology as “a
model of the world on the whole” he considered philosophically unsatisfac-
tory; he wrote about “risky extrapolation” and questioned the applicability
of GTR to “cosmologically huge regions of space and time” (Fock 1955,
p. 464; 1967, p. 33; 1973, p. 72).

What were the causes of such an attitude to cosmology, besides the
well-known discrepancy of the Hubble age with the data of geo- and as-
trophysics? (It had to be especially important for the sober-minded Fock.)
One can see the main causes in his “mathematical sobriety” and in the
pressure of his own scientific experience.

It is difficult to read without a smile Fock’s explanation for his col-
leagues:

In any field theory, formulated by means of partial differential equations,
boundary conditions (or conditions which can replace them) are as im-
portant as the equations themselves; without such conditions the field
cannot be determined. (Fock 1956b, p. 79)

—isn’t this a student’s question?!

To be important for mathematical uniqueness is not equivalent to being
important in the history of physics. But for Fock, who was sure that the
mathematically correct formulation of a problem is unique, the absence of
boundaries and the non-unique extrapolation of cosmological conditions
could not replace the clear boundary conditions in the island problem (iso-
lated system).

The theoretical necessity of the relativistic generalization of celestial
mechanics was based on a centuries-old, solid foundation, but behind cos-
mology stood only irresponsible speculations.
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Such a position had to be strengthened by Fock’s scientific success in
solving the island problem. And his attitude toward harmonic coordinates,
by means of which he had solved the island problem, had to be strengthened
also by his results concerning the conservation laws for the insular system.

Let us pay attention to what Fock said about the ten conservation laws
(commonly, in other treatments of GTR, only four laws of conservation of
energy and momentum are discussed). In classical mechanics and STR the
existence of ten conservation laws is connected with the 10-dimensionality
of the Galileo and Poincaré groups, or with the 10-dimensionality of the
set of Cartesian inertial frames of reference, and, finally, with the four-
dimensionality of space-time. This connection is produced in a most clear
and profound way by Noether’s theorem (which Fock, however, did not
use).

Generalizing the equations of motion and conservation laws for insu-
lar systems placed Fock’s results on a solid, historically scientific base (in
which Fock included also Copernicus’s theory). This stimulated Fock to
“ontologize” his successful method of solving the problem—harmenic co-
ordinate systems. It is impossible, however, to build Fock’s analysis (of
the insular system by means of harmonic coordinates) straightforwardly in
a cosmological setting. A Euclidean character at infinity is incompatible
with any nontrivial cosmology. “So much the worse for cosmology,” Fock
thought, perhaps.

Some elements of Fock’s understanding of GTR were adopted, espe-
cially by geometrically orientated physicists (the meaning of the principle
of equivalence and general covariance, necessity of coordinate condition).
Fock’s belief that harmonic coordinates were privileged in principle and
comparable with Einstein’s equations in significance remained unadopted.

(Fock’s interpretation of GTR allows, however, for adaptation to com-
mon modern treatments necessarily including cosmology. Harmonic coor-
dinates may be transformed into the idea of a standard coordinate system
generated by the inner metrical structure of the given space-time [such
coordinates were first introduced by Riemann himself]. Based on met-
rical coordinates, it is possible in a general geometry to introduce a 10-
dimensional quasi-group, generalizing the ordinary Poincaré group for the
variable curvature case. With the help of this construction, one can realize
the correspondence between GTR, STR, and Newtonian gravity in terms of
the island situation and the ten conservation laws of energy—-momentum-
moment {Gorelik 1988].)

Having described the scientific part of Fock’s frame of reference, we can
pass to its social-ideological part. The latter occupied, of course, not much
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time. From Fock’s texts and from testimonies of those who knew him
(Aleksandrov 1988, 1989; Feinberg 1990; Fock 1991, 1993) emerges the
image of a scholar absorbed in his science and, beyond science, honest and
self-respecting, responsible and fearless, sympathetic and rather schematic,
or mathematical.

If a man belongs to science with his whole mind and heart, it seems
probable that, in his life outside science, he is guided by his professional
methodology as far as possible. But what if his professional methodology
proves to be insufficient in his scientific field? What if, for example, he fails
to find a common language with colleagues in spite of great efforts? There
is no other way to explain this failure apart from some external factors,
though Fock himself hardly would have attributed philosophy to external
factors.

Fock learned Diamar at the beginning of the 1930s. His textbook was
Lenin’s Materialism and Empirio-Criticism. It is difficult to reconstruct
exactly Fock’s understanding of Diamat from his texts, which contain few
quotations. Undoubtedly Fock found in Diamat something important and
interesting for himself, in spite of police inculcation, a flood of quasi-
philosophy, abusive polemics, and anachronisms.

Fock was not alone in his relation with Diamat. There is no room in
this chapter for a general discussion of Marxist philosophy, its natural-
scientific roots, and the socialist prejudices of physicists. Here one must
notice only that, among Soviet physicists, there existed various individual
combinations of attitudes to different components of Marxist or Soviet
ideology, to dialectical and historical materialism, and to the theory and
practice of Soviet socialism. Adherence to one part might be accompanied
by indifference to another and hostility to a third.

Fock belonged with those who, being predisposed to a philosophical
view, found a good base in Diamat. Behind Fock’s Diamat, however, one
could, with some imagination, recognize something close to Platonic (true
mathematical) idealism: Fock believed in the existence of one true philos-
ophy as the most general scheme or quintessence that uniquely realized the
evolution of scientific knowledge.

Such an attitude radically differs from the one of (the physicist) Einstein,
who supposed that the physicist has the right (or even obligation) to philo-
sophical opportunism, taking, depending on circumstances, the positions
of realist, idealist, positivist . .. (Einstein 1949).

In speaking about Fock’s social psychology, one should take into account
that, to Niels Bohr, he seemed to resemble Pier Bezukhov. Perhaps due
to Fock’s European roots, to the honest, fearless, and profound hero of
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L. Tolstoy, one should also add a somehow not-so-Russian respect for law,
regularity, and stubbornness.

Fock seemed to be satisfied with the theoretical postulates of Soviet
power. To judge the conformity of beautiful schemes with social practice
was more difficult for Fock than for his colleagues (most of whom kept
social illusions for a long time). Apart from the previously mentioned
“detachment from life” and deafness, his own biography might prevent
him from seeing social reality. Was he not twice arrested and did not
justice “triumph” twice?!

Fock perceived the Stalinist terror (the true scale of which was un-
known) as a natural disaster, saying that “cowardice does not influence the
probability of arrest” (Aleksandrov 1988, p. 489), and he fearlessly de-
fended those who found themselves under this probability. When social
reality (personified, for example, by A. Maksimov) invaded his science,
Fock acted resolutely and, as his letter to Tamm shows, rather deliberately.
But beyond his own science his judgements were fairly schematic. He
wrote in this schematic way, for example, about the conservation of energy
in Fock 1949. Some of his judgments in the social field were even more
schematic and conforming to the “logic” of Soviet newspapers.

Having limited ourselves to this description of Fock’s frame of reference,
let us, based on this frame, ook at the last three decades of Fock’s life in
the theory of gravity.

Fock persistently, without sparing effort, explains his (true) understand-
ing of Einstein’s theory of gravity, including also certain mathematical
clarifications (Fock 1953b, 1956a, 1956b, 1967). The answer to Fock
was silence or evasive words or repetition of old words, mathematically
meaningless, although sanctified by the great physicist. When, in scien-
tific discussion, scientific arguments are exhausted, additional reasons are
sought beyond science. And the direction of the search is prompted by the
socio-cultural atmosphere around the scientist through his own world view.
As aresult,

It is possible that the difference between the points of views of the two
schools [Einstein’s and Fock’s] on given, concrete questions is not inci-
dental but connected with the difference in their general philosophical
directions. (Fock 1955, p. 472)

With regard to another frame of reference (call it “Tamm’s”), one must
say that, among its inhabitants, there were no specialists in GTR compa-
rable with Fock. These inhabitants were physicist-theorists who could not
ignore the laboratory-Newtonian experience behind the abstract Riemann-
ian constructions of GTR and could not look at the physical world from
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inside Riemannian space-time. Apart from this, these physicists could not
see through the mud just recently thrown at “reactionary Einsteinism.”

A historian who has attempted to account for a communication gap be-
tween outstanding scientists and has found an explanation in the difference
of their frames of mental references runs the danger of being accused of
superciliousness. After all, he claims to see what the scientists in question
failed to see.

To ward off such accusations one can recall once more Fock’s article of
1971 and designate as complementary scientific creativity and the ability
to shift easily from one scientific frame of reference to another. The former
demands of a scientist to stand firmly within his own frame of reference.
There is no doubt that Fock’s frame of reference led him to outstanding
scientific achievements, and the cooperation of different frames of mental
reference is necessary for the successful development of science.

NOTES

This chapter is an abridged version of Gorelik 1993.
! [Personal file of V.A, Fock.] Archives Acad. Sci. USSR 411-14-127.
2 Ibid. 1034-1-549.
3 Ibid. 1034-3-691: 31-32; 1034-3-160: 8-10.
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V.A. Fock
Chronology (Gravitational, Philosophical, Social)
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1917
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1922
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1929
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1934
1935

1937
1938

1939

1946
1947

1940s—
1950s

1955

1960s

1974
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Enters Petrograd University

Volunteers for frontline of World War

Returns to the University
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Rockefeller grant-holder in Géttingen and Paris
Riemannization of Dirac’s equation

Corresponding member of Academy of Sciences USSR
Professor at Leningrad University

Publishes the first Russian textbook on QM
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Second (five-day) arrest
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. Full member of Academy of Sciences USSR
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Jubilee article about A. Einstein
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Formulates in the main his own attitude to GTR
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super-materialism
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Takes part in the Bern jubilee conference on GTR

Monograph Theory of Space, Time and Gravitation

Article “Halfcentury of the Great Discovery” for newspaper Pravda

Persistently explains his attitude to GTR and expresses his adherence
to Diamat

Dies
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S. Chandrasekhar’s Contributions
to General Relativity

Kameshwar C. Wali

Chandrasekhar’s approach to relativity is his own: He entered it as a
mature scientist, unlike most of the rest of us who were educated in one
of the major “schools” of the subject.

Kip S. Thorne

S. Chandrasekhar (known simply as Chandra to most of the scientific world)
was introduced to general relativity in his first year as a graduate student at
Trinity College, Cambridge, England, in 1930-1931, by none other than Sir
Arthur Stanley Eddington: Charmed though Chandra was by Eddington’s
exposition of relativity, full of fun and humor, he shied away from a serious
study of relativity for over 30 years. In his student years and afterwards,
Chandra distanced himself from general relativity. This was, as he recalls,
partly because of “the veiled contempt” that physicists like Bohr and others
had for the work of Eddington related to his fundamental theory and of
Milne for his kinematical relativity, and partly because, at the time, relativ-
ity did not seem to be relevant for problems of stellar structure, the internal
constitution of stars, and other down-to-earth problems in astronomy. Re-
calling an occasion from those years, Chandra remembers Dirac asking him
why he was doing astrophysics, remarking that if he (Dirac) ever became
interested in astronomy, he would engage himself in cosmology. Chandra’s
reply was, “I would rather have my feet on the ground” (Chandrasekhar
1990). Subsequently, even until the late 1950s, Chandra continued to shy
away from relativity. Once when the physicist Gregor Wentzel, Chandra’s
colleague and friend at the University of Chicago, asked him why he had
not worked in this field, he replied, half jocularly, that relativity had proved
to be the graveyard of many theoretical astronomers and that he was not
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prepared for a burial—not yet (Chandrasekhar 1990). In a more serious
vein, he felt that astronomers who went into general relativity were prone
to play for high stakes and that his own approach to science was more
conservative.

Notwithstanding this early attitude, Chandra could have made an official
entry into the circle of relativistic astrophysicists as early as 1935, if not for
the unexpected encounter and controversy with Eddington, concerning the
role of special theory of relativity in understanding the structure of white
dwarfs and the discovery of the celebrated “Chandrasekhar limit.” Since
an account of this encounter and controversy are documented in sufficient
detail elsewhere (Wali 1990), I will not dwell on it here, except for the sake
of historical interest to remark that, in all probability, the chronological
account of the role of relativity in astronomy and astrophysics might have
been different if this controversy had not occurred and if Eddington had
recognized the validity of the Chandrasekhar limit, instead of dismissing it
as “Reductio ad absurdum behavior and ‘stellar buffoonery.”” As Chandra
says,

Suppose, just for a moment, Eddington had accepted my result, suppose
he had said, “Yes, clearly the limiting mass does occur in the Newtonian
theory in which it is a point-mass. However, general relativity does not
permit a point-mass. How, then, does general relativity take care of
that?” If he had asked this question and worked on it, he would have
realized that the first problem to solve in that connection is to study
radial oscillations of the star in the framework of general relativity. It’s
a problem I did in 1964, but Eddington could have done it in the mid-
1930s! Not only because he was capable of doing it—he certainly
had mastered general relativity—but also because his whole interest in
astrophysics originated from studying pulsations of stars. And if he
had done it, he would have found that the white dwarf configurations
constructed on the Newtonian model became unstable before the limiting
mass was reached. He would have found that there was no reductio ad
absurdum, no stellar buffoonery! He would simply have found that stars
become unstable before they reached the limit and that a black hole
would ensue. Eddington could have done it. (Wali 1990, p. 143)

Chandra could have done it, too, but he made a personal decision at the
time. He felt that astronomers without exception thought he was wrong
and that they considered him to be a sort of Don Quixote trying to kill
Eddington. Faced with the very discouraging experience of finding him-
self in a controversy with the leading figure in astronomy and having his
work completely and totally discredited, he decided to discontinue research
connected with white dwarfs altogether and went on to do something else.
He had begun some work with John von Neumann using the fully rela-
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tivistic equations of state, which would certainly have led to the study of
equilibrium conditions of stellar configurations within the framework of
general relativity. This study, as we know, was undertaken a few years later
by J. Robert Oppenheimer and George M. Volkoff who wrote their classic
paper on neutron stars (Oppenheimer and Volkoff 1939). Chandra’s own
entry into general relativity was postponed for over 30 years until the early
1960s.

Chandra’s distinctive pattern of research, as is widely known, has en-
compassed several areas, each of which occupies a particular period in
time.! In each epoch, as Goldberger says, “Chandra has produced an infi-
nite series of papers followed by an infinitely thick book on the subject”
(Wali 1990, p. 23). After the completion of his work on hydrodynamic and
hydromagnetic stability (1952-1961), Chandra decided to turn to general
relativity and, in his typical fashion, began the summer of 1960 with an
intense study of the subject followed by teaching an advanced course on it
the following fall semester. In 1962, he attended the Warsaw Conference on
general relativity, as an observer, mainly to get a feeling of “what the experts
were thinking.” In 1964, he produced, what was to prove to be an extremely
important paper titled, “The Dynamical Instability of Gaseous Masses Ap-
proaching the Schwarzschild Limit in General Relativity” (Chandrasekhar
1964). After that a steady stream of papers followed, and, as Kip S. Thome
has said, “Nobody has done more than S. Chandrasekhar to bring general
relativity to its ‘natural home, astronomy.” Volumes 5 and 6 of Selected
Papers, S. Chandrasekhar are devoted to this vast body of work. In what
follows, I can only provide an overview.

A convenient source for Chandra’s research publication is the set of
six volumes of Selected Papers, S. Chandrasekhar (Chicago: University of
Chicago Press, 1990). I have used this source, referred to hereafter as SP x:
p. y, unless specifically stated otherwise. For some accounts, I have also
used material from S. Chandrasekhar, “A Scientific Autobiography, 1943—
1990,” unpublished manuscript, S. Chandrasekhar Papers, Box 1, Folder 1,
The University of Chicago Archives.

1. The 1960s: Relativistic Instabilities
and Post-Newtonian Approximations

I.I RELATIVISTIC INSTABILITIES

Chandra’s entry into general relativity could not have been more opportune
than when it occurred in 1964. First of all, rapid discoveries were taking
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place in astronomy; quasars, pulsars, radio galaxies, cosmic x-ray sources,
cosmic microwave background, and proclaimed detection of gravity waves
created a new arena of research for practical-minded relativists. On the
theoretical side, a new discipline, relativistic astrophysics, was shaping up;
it was dominated by youthful personalities, including Kip Thorne, Roger
Penrose, James Hartle, James Bardeen, Stephen Hawking, Brandon Carter,
and others. “Chandra was our young-at-heart co-worker,” says Thorne,
“as new to relativity as we. We had the flexibility of youth, freedom from
preconceived notions that is a modest compensation for lack of experience.
Chandra had the wisdom of decades of research in fundamental, Newto-
nian physics and astrophysics—a wisdom that gave him guidance on what
problems were worth studying and how to approach them” (SP 5: xii). Sec-
ondly, the problem mentioned earlier, the problem of radial oscillations of
a star within the framework of general relativity, which Eddington should
have and could have studied in the 1930s, was still waiting! Now, with new
discoveries, it had assumed immensely increased significance.

In Newtonian theory, a nonrotating spherical gaseous mass of perfect
fluid in equilibrium under its own gravitational forces and internal pressure
and energy would be stable against radial perturbations provided y, the
adiabatic exponent (the average ratio of specific heats), was >%3. Since
this was likely to be the case in stellar configurations, especially in massive
stars, Newtonian theory predicted that, no matter what the mass of the star,
it could be in a stable configuration with finite radius that decreased with
increasing mass, reaching zero only when the mass was infinite. Chandra
showed that this was no longer the case within the framework of general
relativity. In addition to y, the stability depended on the radius of the
star, as well. Therefore, stars that could be considered stable in Newtonian
theory would become unstable in general relativity!

To be more specific, it was known that a spherical mass in hydrostatic
equilibrium giving rise to the well-known Schwarzschild metric external
to itself would become unstable, no matter how high the value of y, if the
radius

R < %Rs,

where Rg (Schwarzschild radius) = 2GM/c?. As y — oo, the radius
9 Rg defined, in fact, the minimum radius that any gravitating mass in
hydrostatic equilibrium could have in the framework of general relativity.
Chandra was able to sharpen this result further and show that if y differed
from and was greater than 43 only by a small positive constant, then the
instability would set in for a radius R much larger than 93 Rs. He showed
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that, as y — 9/, instability for radial perturbations will set in for all

where K is a constant that depends on the structure of the star.> Con-
sequently, for values of y slightly in excess of 43, dynamical instability
would set in well before the mass reached the Schwarzschild limit, and
also well before degenerate configurations such as white dwarfs reached
their limiting mass. For example, for a super massive star of M = 10 solar
mass and an estimated value of (y — 43) ~ 7.2 x 107, it followed that
Rc = 1.6 x 10*Rs, which was approximately 0.5 light years, a radius of
correct order for a quasar of 10 solar masses. This estimate of radius was
in agreement with estimates from other considerations. Further, Chandra’s
analysis of normal modes of the radial oscillations of electron-degenerate
configurations (white dwarfs) showed that, due to the relativistic instability,
the period of oscillations reached a minimum and then tended to infinity as
the degenerate mass approached its limiting mass. Such a minirmum period,
calculated to be about seven-tenths of a second, was nonexistent in a New-
tonion framework. Since pulsars of a much shorter period were known to
exist, one could rule out the possiblity that they were white dwarfs, a result
of obviously great significance in understanding the nature of quasars.
Although explicit results in these pioneering papers were derived start-
ing from the idealized model of a star consisting of homogeneous com-
pressible fluid, the principle conclusion—namely, according to general
relativity, a massive star would become unstable long before its mass con-
tracted anywhere near the Schwarzschild limit—became incontrovertible
because most of the estimates of the instabilities were underestimates and
not likely to be altered in more realistic models. Such a picture had tremen-
dous implications on the fate of massive stars. A massive star must collapse
once it has exhausted its nuclear source of energy. If it had to collapse into
the dimensions of some 10 to 20 kilometers to form the stable configuration
of a neutron star, it had to eject a substantial fraction of its mass (which is
processed matter through nuclear reactions) into interstellar space. Such
ejection could be a cataclysmic event, such as a supernova explosion. If
the remnant mass was within a narrow permissible range, it would then
settle into a stable state of a neutron star and become a pulsar. But why
would every massive star of 10 or more solarmasses eject the right amount
of its material so that it is left behind with a mass of the right range? As
Chandra says, “It is more likely that the star ejects an amount of mass that
is either too large or too small. In such [latter] cases the residue will not
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be able to settle into a finite state; and the process of collapse must con-
tinue indefinitely until the gravitational force becomes so strong that what
Eddington concluded as a reductio ad absurdum mus? in fact happen: the
gravity becomes strong enough to hold the radiation. In other words, a
black hole must form.”? [Italics are mine.] Thus, if general relativity had a
say in the matter, the existence of black holes in the astronomical universe
had to be accepted as a reality.

1.2 POST-NEWTONIAN APPROXIMATION SCHEME

The dynamical instability due to relativity that Chandra discovered was one
in which relativistic corrections were in effect small. That is, there were no
constituent motions that involved relativistic energies or other relativistic
kinematical or dynamical factors. Further, the problem of radial oscillations
of a spherically symmetric perfect fluid body that he had solved exactly was
a particularly simple one and also far from a realistic working model for
stars that occur in nature. For further progress, it was imperative that one
consider nonradial oscillations and rotating perfect fluid bodies to serve
as models for rotating stars, as well as the all too important problem of
gravitational radiation and its reaction on the emitting bodies.

In the Newtonian theory, given the interactions and external forces,
one can in principle write a complete set of equations of motion for every
constituent particle if one is dealing with a system of discrete particles or for
an element of fluid if one is dealing with a hydrodynamical system. Chandra
realized that such an exact set of equations cannot be written—at least
explicitly—in the framework of general relativity. Even if such equations
were written, finding their solutions presented formidable difficulties if
one had no presupposed symmetry as in the case of nonradial oscillations.
Under the circumstances, a more modest inquiry would be to ask specific
questions:

(1) Since relativistic corrections were small, could one develop a well-
defined scheme of successive post-Newtonian approximations, in
which a set of explicit equations would govern the departures from the
Newtonian motions resulting from the effects of general relativity?

(2) Since it is generally believed that gravitating systems emit gravita-
tional radiation, could one write these approximate equations to a
high-enough order that terms representing the radiation reaction of
the system occur explicitly in them and could be unmistakably recog-
nized as such?

A scheme of this sort existed in the pioneering work of Einstein, Infeld,
and Hoffman (1938) in the case of a gravitating system of NV point-particles
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(N-body problem).* They had, for example, derived a post-Newtonian La-
grangian that differed from a Newtonian Lagrangian by quantities of the first
order in v?/c? and U/c? (U = gravitational potential); this was sufficient
to derive precession of the Keplerian orbit of two finite mass points about
one another. However, there was no satisfactory treatment of higher-order
terms. They had attempted to calculate radiation reaction but had either
failed or obtained ambiguous resuits. Their treatment suffered from math-
ematical difficulties because of a point-particle assumption alien to general
relativity. Chandra’s idea was to develop a relativistic hydrodynamics of a
perfect fluid and devise a post-Newtonian approximation scheme to answer
the question raised above, which he did (Chandrasekhar 1965).

The physical basis for the approximation scheme was the fact that under
conditions of common occurrence in the universe, the rest energy of the
systems by far dominated other forms of energy such as the kinetic energy
of mass motion, the gravitational potential energy, or the internal energy.
Therefore, one could use “smallness” parameters and distinguish orders
of successive approximations by the powers of 1/¢ terms retained in the
ensuing equations of motion. Secondly, the equivalence principle provided
the starting point for the metric in the space-time geometry to be associ-
ated with the Newtonian theory of gravitation, namely, the departure of the
metric from the Minkowskian one. The dominance of rest energy over all
other forms of energy and the minimum departure from the Minkowskian
metric dictated by the equivalence principle provide a starting point; then
the corrections of successive higher powers in 1 /¢ in the metric coefficients
and the energy momentum tensors are played against each other to reveal
departures from the Newtonian theory due to general relativity. Having
established the formalism, Chandra applied it to uniformly rotating per-
fectly fluid bodies as models for rotating stars. He had concurrently just
completed the classical work with Norman Lebovitz on the equilibrium of
rotating Newtonian spheroidal and ellipsoidal bodies within the framework
of Newtonian theory. In a series of papers, he derived the consequences
of post-Newtonian effects due to general relativity on uniformly rotating
Maclaurin spheroids, Jacobian and Dedekind ellipsoids, and on the model of
arotating star due to Roche, consisting of a tenuous, centrifugally deformed
envelope in the gravitational field of a massive, undeformed core.® In all
cases, he found huge departures from the Newtonian theory and relativistic
instabilities where Newtonian theory predicted stable neutral modes.

Two other important problems that Chandra solved successfully in the
post-Newtonian framework need to be mentioned. One was the identifica-
tion of conserved quantities in successive approximations,’ and the second,
more important, was the radiation reaction terms. In the latter case, all pre-
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vious attempts had failed or led to ambiguous results. Chandra, along with
his student, Paul Esposito, was able to carry out the post-Newtonian scheme
to the necessary high order (2.5 order, meaning retaining consistently all
terms of order ¢=°), was able to derive these terms correctly, and to dis-
cover a new dramatic kind of instability in rotating bodies caused by these
terms (Chandrasekhar and Esposito 1970). In the case of the Maclaurin
spheroid, for instance, radiation reaction made it unstable beyond the bi-
furcation point. Likewise, the triaxial Jacobian ellipsoid was driven toward
increasing angular velocity exponentially approaching the bifurcation point
where it ceased to radiate. Commenting upon the astrophysical significance
of these findings and their relevance to the theory of gravitational collapse
after a supernova outburst, Chandra, toward the end of this classic paper,
says,

A rapidly rotating highly condensed configuration may, in the first in-
stance, form as a result of the collapse; and it is not unlikely that the
rotating configuration may, in fact, be similar to a Jacobian ellipsoid
at the limit of its stability. Then by gravitational radiation, its angular
velocity will increase and the object will approach a point of bifurca-
tion where the object becomes spheroidal and nonradiating. But once
it reaches the point of bifurcation, radiation reaction will make the con-
figuration secularly unstable, and it is possible that further development
may proceed in the direction of fragmentation. In any event, the fact that
radiation reaction can induce secular instabilities must have an impor-
tant bearing on what may happen during the late stages of gravitational
collapse.?

In the relativistic theory of stellar pulsations with which Chandra ear-
nestly began his journey into relativity in 1964, two discoveries are identi-
fied as major in review literature of the late 1980s: the relativistic instability
against gravitational collapse in massive star and the radiation reaction
induced instability in rotating stars. It is remarkable that both these dis-
coveries are Chandra’s (see Schutz 1986, p. 123). Further, as Kip Thorne
says, “The post-Newtonian and post-post-Newtonian formalisms that he
(Chandra) developed have become standard working tools of physics and
astrophysics. Over the past two decades, they have been used in studies
of stars, star clusters, gravitational-wave generation, and the motions of
the planets and the moon” (SP 5: xvii). In the form of parameterized post-
Newtonian formalism, it has become an invaluable tool to confront not only
Einstein’s general theory of relativity to experimental tests, but other metric
and nonmetric theories of gravity (see Will 1981). In spite of this monu-
mental contribution, Chandra did not edify the work with a monograph as
he did with the ending of his other “periods.” According to him, he did not
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have that “aesthetic feeling of completeness and coherence” in this sphere
of his research.

2. The 1970s: Rotating Stars and Black Holes

2.1 RELATIVISTIC STARS

In the summer of 1970, with the work on post-Newtonian approximation
carried out as far as he was interested, Chandra began to think about a
future direction for his research. Partially toward this end, he organized
a private summer school with Brandon Carter, George Ellis, and Robert
Geroch. While two months of intense “schooling,” occupied with semi-
nars and writing notes of lectures by Geroch and Ellis, proved strenuous,
Chandra says, it did not prove very helpful at the time to chart his next
“period.” It had already occurred to him that a systematic exploration of
homogeneous uniformly rotating masses within the framework of general
relativity was the next venture to undertake. The intimate knowledge of the
Newtonian situation would prove again to be of immense help in formulat-
ing the problem. He could project the extensive work involved and sought
the collaboration of John Friedman, who had just completed his first year of
graduate studies. Together they wrote a series of papers in the first half of
the 1970s, setting up a formalism for studying axisymmetric perturbations
of rotating stars in the framework of general relativity, a formalism that
closely paralleled the Newtonian theory and revealed departures from it.

In the Newtonian theory, there existed a rigorcus formula for the fun-
damental frequency o of the axisymmetric pulsation of a slowly rotating
star in the form

o? = of + Q%a} + 0(QY),

where © was the frequency of uniform rotation of the body and oy was the
frequency of radial pulsation of the nonrotating star; o) depended only on
the amplitude of the radial pulsation associated with oy and the spherically
symmetric distortion caused by the rotation. And the instability condition
for the nonrotating star was modified to be

QZ
< 0.

= 4
— 5 -+ const
Y —3 Gp

The rotation had a stabilizing influence on instability. Chandrasekhar and
Friedman found that a formula exactly analogous to the above inequality
could be derived in the general relativistic case for slow enough uniform
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rotations and establish quantitatively the stabilizing influence on the rel-
ativistic instability. This was possible because under the assumption of
slow rotation, neglecting gravitational radiation reaction terms that were
normally an integral part of the theory was justified. The slow rotation case
was first studied by Hartle (1967), and Hartle, Chitre, and Thorne (1972)
used the theory to model rotating neutron stars. Commenting upon the
comparison of their work with that of Chandrasekhar and Friedman, Kip
Thorne says, “The slow rotation case was studied independently by James
Hartle, Kumar Chitre, and me, using the computer to do the complex alge-
bra. The ability of Chandrasekhar and Friedman to do their calculation by
hand and get results which agreed with ours is an amazing tribute to their
computation abilities. We had not thought it possible” (SP 5: xviii).

In the process of setting up the formalism for relativistic rotating stars,
the Chandrasekhar-Friedman papers also gave rise to the idea of studying
deformations of vacuum solutions external to a black hole to which Chandra
turned his attention.

2.2 THE MATHEMATICAL THEORY OF BLACK HOLES

Chandra’s study of black holes, which began with an analysis of the equa-
tions governing the perturbations of the Schwarzschild black holes (Chan-
drasekhar 1975) was to develop into a complete body of work of his own to
be edified in the form of a treatise (Chandrasekhar 1983). This study was
important, since one of the best ways to find some of the physical attributes
of a system is to find out how it reacts to external perturbations and, in the
first instance, to infinitesimal perturbations. The study of such infinitesi-
mal perturbations by studying how a black hole reacts to incident waves
of different sorts throws light on the stability of the black holes. In spite
of a great deal of earlier work, there were elements of mystery shrouding
the subject. There was more than one way of analyzing the perturbations
leading to radial equations. One was known as the Zerilli equation that
was of Schridinger type with a real potential. Another equation known as
the Bardeen and Press equation was characterized by a complex potential.
And a determination of the reflection and transmission coefficients for in-
cident plane waves with varying wave numbers enabled one to determine
the evolution of any initial perturbation of the black hole. This prompted
Chandra to seek a “coherent, self-contained theory of the perturbations
of the Schwarzschild black hole,” which he did, and clarified the relation
between the Zerilli and Bardeen—Press equations and also the relation be-
~ tween the Regge—~Wheeler and Bardeen-Press equations. He followed that
up, along with S. Detweiler, by studying the quasi-normal modes of the
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Schwarzschild black hole (Chandrasekhar and Detweiler 1975). With the
study of Schwarzschild black hole perturbations completed, Chandra then
set forth to analyze the Kerr and the Reissner—Nordstrom black holes. Two
major papers on the Newman-Penrose gravitational perturbations of the
Kerr space-time followed (Chandrasekhar 1978). As Basilis Xanthopou-
los says, “He [Chandra] considered both the metric and Newman-—Penrose
perturbations, established the equivalence of the axial and the polar scat-
terings, and investigated issues such as the decoupling of gravitational and
electromagnetic waves and the transformation of one kind of wave to the
other in the scattering process” (SP 6: xii).

A problem of side interest, but one that gave Chandra immense satisfac-
tion, was his successful separation of the Dirac equation. This would later
lead to the separation of the Dirac equation in Minkowskian space-time in
prolate spheroidal coordinates and the development of a new theory on the
separability of partial differential equations. It also led to his own work
on the two-component neutrino equation and the study of reflection and
transmission of neutrino waves by a Kerr black hole (Chandrasekhar and
Detweiler 1977).

To complete the story of this period, one must mention Chandra’s one
failure, namely, the failure to separate the Kerr—Newman perturbations. Re-
marking on this failure, Basilis Xanthopoulos says, “Since Chandra failed,
no one seems to be willing to give this problem a serious try, and the pertur-
bations of the Kerr—Newman solution have remained an unsolved problem
for the dozen years since Chandra gave up. Perhaps for the sake of science,
he should have kept his failure a secret. On the other hand, it is very likely
that the KN perturbations cannot be separated and his documented failure
has saved many scientific years of fruitless effort” (SP 6: xii).

3. The 1980s: Colliding Waves and the Two-Center Problem

After the completion of Mathematical Theory of Black Holes, Chandra
briefly entertained the notion of separating himself from serious research,
but that expectation and hope did not last very long. Soon thereafter he got
himself involved in as serious a scientific effort as he ever had. One may
at least partially credit or blame this renewal of effort on the two young
collaborators he found in Basilis Xanthopoulos and Valeria Ferrari.

- The best account of Chandra’s renewed effort during the 1980s is his
own, to be found in the proceedings of the Yale symposium in honor of the
150th anniversary of the birth of J. Willard Gibbs (Chandrasekhar 1989).
Entitled “How One May Explore the Physical Content of the General The-
ory of Relativity,” Chandra discusses the inner coherence and richness of
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the exact general theory of relativity and how its physical content can be
explored by allowing “one’s sensibility to its aesthetic base guide in the
formulation of problems with conviction in the harmonious coherence of
its mathematical structure” (Chandrasekhar 1989, p. 250).

3.1 COLLIDING PLANE WAVES

Khan and Penrose (1971) had discovered, in the collision of two gravita-
tional waves with plane wave fronts and parallel polarizations, a space-like
singularity as a result of collision. The nature of this singularity was very
much like the one in the interior of a black hole. This was the conse-
quence of the exact theory and not to be found in the linearized version.
Penrose had emphasized this fact and had suggested that possibly new
physics of general relativity had yet to be explored. Matters stood there
until Chandra became seriously interested in the problem in 1984 after he
completed his book. In the meantime, the work of Khan and Penrose was
extended to include nonparallel polarizations of the impulsive waves by
Chandra’s former student Yavuz Nutku along with Halil (Nutku and Halil
1977}. Furthermore, Penrose, in a letter in 1984, had raised the problem
of how to describe coupled gravitational and electromagnetic impulsive
waves. Unlike the case of gravitational waves, one could not construct in
a straightforward manner impulsive electromagnetic wave fronts since it
required the square root of a é-function in the field variables in order to
have a §-function in the energy profile of the impulsive wave front. The
square root of a §-function, however, was not a mathematically permissible
or physically sensible concept.

Since this did not make sense, some new idea was necessary. What was
needed, Chandra thought, was a rigorous mathematical theory of colliding
waves patterned exactly after the mathematical theory of black holes. With
Ferrari and Xanthopoulos, he reformulated the theory for colliding waves
showing the underlying structural similarity of the mathematical theories
describing the colliding waves and the black holes. The same set of two
equations known as Ernst equations governed the two cases. One could
write identical solutions in both the cases using different combinations of
metric functions. Thus the Khan—Penrose solution for colliding waves cor-
responded exactly to the Schwarzschild black hole solution and the Nutkuo—
Halil solution to that of the Kerr—Newman black hole (Chandrasekhar and
Ferrari 1984). The «/8-type singularity problem in the case of coupled
gravitational and electromagnetic colliding waves was also sidestepped by
seeking solutions to the Einstein—Maxwell equations that reduced to an ap-
propriate black hole solution when the electromagnetic field was switched
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off. “The problem is not a straightforward one,” says Chandra, “since in
the framework of the Einstein—Maxwell equations, we do not have an Ernst
equation which reduces to the Emst equation for the particular combina-
tion of the metric functions that is appropriate for the Nutku-Halil vacuum
solution” (Chandrasekhar 1989, p. 235). The technical problems, how-
ever, were successfully overcome, and a physically consistent, satisfactory
solution was obtained (Chandrasekhar and Xanthopoulos 1985).

The discovery of an underlying unity in the mathematical description of
black holes and colliding waves has led Chandra and his young collabora-
tors to the discovery of new solutions to the Einstein-vacuum and Einstein—
Maxwell equations describing space-times with totally unexpected features.
They have found colliding wave solutions that have no curvature singular-
ities during the process of collision, but solutions that are characterized by
the formation of event horizons and a space-time domain which is the mirror
image of the space-time that was left behind. “It is remarkable,” Chandra
says, “that a space-time resulting from the collision of waves should bear
such a close resemblance to Alice’s anticipations with respect to the world
through the looking glass. ‘It [the passage in the Loocking-Glass House] is
very much like our passage as far as we can see, only you know it may be
guite different on beyond’” (Chandrasekhar 1989, pp. 236-237). Indeed,
one may expect a great deal of new physics of general relativity implied by
these solutions summarized in a three-page table in Chandrasekhar 1989,
pp- 239-242.

3.2 BINARY BLACK-HOLE SOLUTIONS

If gravitational forces were the only forces, it is clear that one cannot have
a completely static configuration of matter. Problems with fixed centers
of gravitation, therefore, are somewhat artificial, aithough their solubility
in certain cases have attained a certain amount of celebrity (see Whittaker
1937). The problem, however, can be made conceptually plausible by
introducing Coulomb electric forces of repulsion. Thus, we can envisage
static configurations of any number of mass points My, M,, M3, ..., M,,
at arbitrary locations, with charges @y, @5, ..., O, all of the same sign
such that M;~/G = Q; (i = 1, 2, ..., N, and where G denotes the
constant of gravitation). The Newtonian attraction is then balanced by
the Coulomb repulsion leading to a static equilibrium configuration. The
same static configuration is allowed in the framework of general relativity
as a solution of the Einstein—Maxwell equations as shown by Majumdar
(1947) and Papapetrou (1947) and is the only static multiple biack-hole
solution compatible with the smoothness of the space-time external to the
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event horizons and asymptotic flatness. (Hartle and Hawking [1972] have
interpreted the solution as representing an assemblage of extreme Reissner—
Nordstrom black holes.)

Having discovered the unity in the underlying mathematical description
of black holes and impulsive colliding waves, Chandra was attracted to the
fixed center problem in the framework of general relativity. The unity was
displayed in the solutions of the complex Ernst equation governing the
axisymmetric vacuum. Chandra had an alternate formulation of the same
problem in terms of two real equations denoted by him as the X- and Y-
equations. Chandra believed that the solutions to the X- and Y -equations
should provide, in a suitable context, a space-time of some real significance.
But the X - and Y -equations had remained “like Cinderella,” says Chandra,
“the ignored stepsister of the Ernst equation” (Chandrasekhar 1989, p. 243).
Like Cinderella, they had to be rescued.

The rescue came about in the context of the Majumdar—Papapetrou
solution for stationary or static Reissner-Nordstrom black holes alluded
to before. Imagine for simplicity two such black holes placed at a finite
distance apart at rest. One can then specify the metric for a static Einstein—
Maxwell space-time in terms of a scalar potential function that obeys a
three-dimensional Laplace equation. Chandra has shown that this scalar
potential is his X- or ¥-function that satisfies equations following from a
metric that corresponds to a stationary axisymmetric vacuum space-time.
This meant that one could pass freely from the Majumdar—Papapetrou met-
ric appropriate as a solution of the Einstein—Maxwell equations to a metric
appropriate as a solution of the stationary Einstein vacuum equations, and
conversely. Describing the one-to-one correspondence as a manifestation
of a natural and harmonious blending of Einstein’s relativity and Maxwell’s
electrodynamics in a single unified structure, Chandra makes an analogy
with the description of a mythical hall in the Indian epic The Maha-bharata,
and says, “when wandering through the great hall of general relativity, that
what one had believed to be Einstein’s hall, is in fact a corridor leading to
Maxwell’s hall; and when one is certain that one is examining the gems
in Maxwell’s hall, one has inadvertently slipped into Einstein’s hall. ‘So
much is the beauty’ that Einstein has ‘imparted’ to it” (Chandrasekhar 1989,
p. 248).

Extending this work further, Chandra and his collaborators have found
two classes of solutions. In one case, solutions describing two stationary
Reissner—Nordstrom black holes go over to solutions that describe two
static non-Abelian magnetic monopoles. In the second case, the solutions
that describe two static Dirac monopoles of opposite charge held in place
by a connecting string go over to binary black hole solutions with strings.
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4. Concluding Remarks

The broad overview presented here, needless to say, does only partial justice
to the enormous body of Chandra’s work and its broad implications. As
an astrophysicist, he began his research in general relativity by considering
perfect fluid solutions. The new type of relativistic instabilities led him to
develop the needed post-Newtonian approximation scheme to study them
in detail. When he became convinced of the reality of black holes in
the astronomical universe, he delved into the vacuum Einstein equations
with new mathematical and physical insights. Won over by the geometrical
structure and the richness of the general theory, his innate and characteristic
drive for completeness drove him from approximate techniques to exact
solutions, from charged black holes to colliding waves, and from colliding
waves to black holes with strings. The saga is by no means at an end. The
newfound techniques in the study of colliding waves find themselves under
a new harness in the study of nonradial oscillations of a star.

A unifying mathematical structure governing a diverse set of phenom-
ena emerged from Chandra’s exploration of general relativity. Studying
this structure, one is reminded of the well-known Monet serial paintings—
paintings in which the same scene is depicted over and over again under
different natural illuminations and seasonal variations. The valley, the trees,
or the fields or the grain stacks are the same. The paintings, however, ra-
diate totally different aesthetic content. In his case, seemingly the same
equations and solutions describe different physics.
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NOTES

This chapter is based on a talk at the Third International Conference on the History
and Philosophy of General Relativity, University of Pittsburgh at Johnstown, June
27-30, 1991.

! In the Nobel lecture reprint that includes a brief autobiographical account,
Chandra says, “There have been seven periods in my life. They are briefly: (1) stellar
structure; including the theory of white dwarfs (1929-1939); (2) stellar dynamics,
including the theory of Brownian motion (1938-1943); (3) the theory of radiative
transfer, the theory of illumination and the polarization of sunlit sky, the theories
of planetary and stellar atmospheres, and the quantum theory of the negative ion
of hydrogen (1943-1950); (4) hydrodynamic and hydromagnetic stability (1952-
1961); (5) the equilibrium and the stability of ellipsoidal figures of equilibrium
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(1961-1968); (6) the general theory of relativity and relativistic astrophysics (1962~
1971); and (7) the mathematical theory of black holes (1974-1983).”

2 For more details, see Chandrasekhar 1984.

3 Chandrasekhar 1972, p. 524. It should be pointed out, however, that the precise
manner in which extreme conditions develop in the interior of stars leading to insta-
bilities of various sorts and supernova phenomena are not completely understood.
For massive stars, theory suggests that a relativistically degenerate core with a mass
approximately that of the limiting mass (equal to 1.4 M, for 4, = mean molecular
weight per electron = 2) is formed at the center. Then instability of some sort is
expected to set in followed by gravitational collapse and the phenomenon of the
type I supernova. In some instances, the highly degenerate core of approximately
1.4 M will be left behind as aneutron star. That this does indeed happen sometimes
is confirmed by the fact that in those cases where reliable estimates of the masses of
pulsars exist, they are remarkably close to 1.4 M. In other instances, what is left
behind will have masses in excess of that allowed for stable neutron stars and the
formation of black holes is an inevitability. For further details, see Chandrasekhar
1984.

4 Lorentz and Droste were the first to obtain the post-Newtonian equations of
motion for a number of bodies interacting gravitationally (Lorentz and Droste 1917).
For an outline of the history of the post-Newtonian problem, see, for instance, Pascoe
etal. 1976. I am indebted to Professor Stachel for bringing to my attention the early
history of the problem.

5 For original papers on this subject, see SP 4, Part 3. See also Chandrasekhar
1969a.

% A series of six papers beginning with paper 18 in SP 5, p. 234.

7 While Chandrasekhar obtained the conservation laws by direct integration of
the equations of motion (see Chandrasekhar 1969b), Pascoe and Stachel (1969)
obtained these laws from space-time symmetry properties of a Lagrangian known
as the Plebanski~Bazanski Lagrangian.

8 Chandrasekhar 1970, p. 195
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Lemaitre and the Schwarzschild Solution

Jean Eisenstaedt

1. Introduction

In several papers (Eisenstaedt 1982, 1987, 1989a), I discussed the early
pragmatic (as I called it) interpretation of the Schwarzschild solution. In
this paper, I want to turn my attention to the emergence of the modern
interpretation that came to be accepted in the 1960s. In particular, I want
to look at work done by Georges Lemaitre in the early 1930s that, I claim,
was of fundamental importance for this new interpretation. !

The Schwarzschild solution, the reader will recall, is the spherically
symmetric exterior solution of the field equations of general relativity.? One
of the most interesting aspects of the solution is what in the old days was
called the “Schwarzschild singularity,” the early, pragmatic, interpretation
of which was that of an impenetrable sphere of radius 2Gm /c? at the center,
a singular sphere on which matter and light aggregate without penetrating
it; a “magic circle” as Eddington called it (Eddington 1920, p. 98). Itis
now generally called the “Schwarzschild horizon.”

In the papers mentioned above, I discussed the arguments underpinning
this interpretation in considerable detail. Here I just want to make a few
comments. First, most of these arguments, it turns out, strongly depend
upon the particular choice of coordinates.’ Not all of them do, though.
In particular, there is an argument based on the interior Schwarzschild
solution that does not. This argument will be of some importance to our
present analysis. Second, since one believed that the density in nature, in
stars and atoms alike, was too low—and this still is an open question—
the “Schwarzschild singularity” was thought to stay deeply hidden in the
material; it was thought to remain virtual,

In this paper, I will discuss the first steps toward the modern interpreta-
tion of the Schwarzschild solution. My main point will be that Lemaitre’s
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work, especially his 1932 article,* constitutes one of very few milestones in
the comprehension, in the reinterpretation, of the Schwarzschild solution;
not just because he demonstrated, as is well known, that the Schwarzschild
singularity is fictitious, but also because he invented a tool—the so-called
dust solution’ —that enabled Oppenheimer and Snyder to give a correct and
simple description of star collapse at zero pressure. In fact, I will show that
Lemaitre stood at the origin of some of the main developments of general
relativity in the 1930s. The fact that he was a cosmologist is, I think, and
I will develop the point below, no coincidence in this context. But first, let
me go over some points concerning the history of cosmology around the
1920s.

2. Singularities and Mass-Horizons

The issue of singularities, discontinuities, horizons—as such objects have
been called—has been of central importance to cosmology. To provide
some background to Lemaitre’s work, I will briefly discuss how the issue
came up and how it developed in the early years of general relativity.

Einstein was puzzled by the fact that solutions of his general relativity—
Schwarzschild’s and De Sitter’s—could contradict his interpretation of
Mach’s principle. Thus, in a letter to Schwarzschild in January 1917,
Einsteinexpressed his concern about the incompatibility of Schwarzschild’s
solution of the vacuum equations of general relativity on the one hand
and his interpretation of Mach’s principle on the other.” On the basis of
Einstein’s Machian prejudices, one would not expect to find solutions of
the field equations describing curved space-times in the absence of matter
or in the presence of just one single body. In Einstein’s view, the existence
of such solutions was—as John Stachel put it (Stachel 1979, p. 440)—a
“scandal.”

. The issue of singularities came up explicitly in a cosmological context,
just after the publication of the Kosmologische Betrachtungen (Einstein
1917), in the Einstein—De Sitter controversy. Einstein had just received
De Sitter’s letter of March 20, 1917 (EA 20-545) in which De Sitter com-
municated his solution to Einstein. Einstein quickly responded (Einstein to
De Sitter, March 24, 1917, EA 20-547). He argued that De Sitter’s model
has a closed singular surface at a physically finite distance, and that the
solution therefore “does not correspond to any physical possibility.”® What
lies behind this objection are Einstein’s early Machian conceptions, as is
clear from a paragraph in the same letter quoted by De Sitter at the end of
the article in which he published his solution. Einstein wrote:
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In my opinion, it would be unsatisfactory if there were a possible world
without matter. The g, -field must rather be determined by matter with-
out which it can not exist. This is the core of what I mean by the demand
of relativity of inertia.’

The following year, Einstein published a paper attacking De Sitter’s solution
(Einstein 1918). Although far more precise, it is pretty much along the same
lines as his 1917 letter to De Sitter. Once again, Einstein raised the question
of whether the discontinuity in De Sitter’s solution occurs at a “physically
finite” distance.

In his paper, Einstein gave an interesting definition of regularity. Ashe
put it, the field equations must be valid at every point at a finite distance
and this could only be the case “if the g,, as well as the corresponding
contravariant components gV (and their first-order derivatives) are contin-
uous and differentiable; thus, in particular, the determinant g = | g,“,| must
never vanish at a finite distance.”'® After having defined what he meant by
a "finite distance,”!! Einstein elaborated on his definition of regularity to
make it compatible with general covariance:

Moreover, the condition of continuity for the g,, and the g should
not be taken as saying that there has to be a coordinate system such
that continuity holds throughout space[-time]. Clearly, one only has to
require that in the neighborhood of every point there exists [my emphasis]
a coordinate system such that continuity holds in this neighborhood. '

Of course, the important point here is the word exists: it implies the demand
of regularity in at least one coordinate system.'? Einstein is fully aware of
this point: “this restriction on the demand of continuity follows naturally
from the general covariance of the [field] equations.”!*

Einstein wrote the line element of the De Sitter solution in the form!3

ds? = cos® x ? dt* — a*(dx® + sin® x (d9* +sin*0 d6%)). (1)

He then pointed out that its determinant,

g= —c?a® sin? @ sin* X cos? X 2)

vanishes for x = 0 and 6 = 0, at the origin of the coordinate system.
Einstein noted that this behavior is only apparently problematic, and that it
is simply due to the use of polar coordinates. It is easy to find a different
coordinate system in which the discontinuity does not appear. This is a
simple but ingenious application of his definition of regularity. Unfortu-
nately, there is another discontinuity. The determinant (2) also vanishes at
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x = /2, and this discontinuity occurs at a finite distance. Hence, in Ein-
stein’s words, “it looks as if this discontinuity cannot be eliminated by any
choice of coordinates.”1® Of course, there is still room for doubt. After all,
Einstein has not shown that no such coordinate system can be found. He had
to be careful in conclusion: “Until there is evidence to the contrary, one has
to accept that the De Sitter solution has a real singularity.”!” Einstein noted
that on the singular surface x = /2 in the De Sitter solution “the compo-
nent g44 of the gravitational potential vanishes” just as in “the immediate
neighborhood of a gravitating mass point.”!® This comparison seems to be
an obvious reference to the Schwarzschild solution.. Einstein concluded
that “De Sitter’s system does not correspond to the case of a universe with-
out matter, but rather to a universe in which all matter is concentrated on
the surface y = 7/2.”'° The essential point for Einstein was not so much
to give a clear definition of regularity, but rather to show that some matter
existed on the horizon of a De Sitter universe. Rather than allowing for the
possibility that the De Sitter singularity might be an artifact of the chosen
coordinate system, a possibility opened up by his own careful definition of
what constitutes a singularity, he jumped at the seemingly singular surface
to save his beloved Machian principle. - This principle is reiterated at the
end of the paper: “no g,,-field, i.e., no space-time continuum, is possible
without the matter that generates it.”2° Basically, it was Einstein’s view that
gravitationally structured solutions of the exterior field equations can only
existif they have singularities. These singularities could then be interpreted
either as a sign that matter was present or as a sufficient ground for discard-
ing the solution as being nonphysical. Einstein’s stance on this issue shows
his strong commitment to the Machian notion that gravitational or inertial
fields should be determined by matter, matter that can somehow be hidden
by singularities. This was the reason for Einstein’s search for matter—and
singularities—in a De Sitter universe.

Questions about singularities touch on the very foundations of general
relativity and would become the object of important subsequent research.
Einstein himself came back to these issues at various times, as did a number
of other experts. It was not until 1939, howevet, that André Lichnerowicz
demonstrated in his dissertation®! that there can be no nonsingular (spa-
tially) asymptotically flat stationary solutions to the exterior equations of
general relativity.??

" The evidence that Einstein’s considerations on the singular character of
the surface y = /2 were not correct was to come soon. In a letter from
Gottingen written on June 16, 1918, Felix Klein, referring to Einstein’s
criticism of De Sitter, which had just been published, showed that the surface
was not singular at all. Einsteinimmediately accepted Klein’s resuits. “You
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are completely right,” he wrote?® in reply to Klein on June 20, 1918. Heeven
agreed that his own article needed a rectification, although he never actually
published one. And he did stress that De Sitter’s solution cannot correspond
to a physically possible universe: “So there really exists a singularity-
free solution of the gravitational [field] equations without matter. Such a
world, however, cannot be considered as a physical possibility.”?* In two
papers published in late 1918 (Klein 1918a, 1918b), Klein would rewrite the
De Sitter solution as a four-dimensional hypersphere of constant curvature
x2+y2+zz+w2—c2T2 =a2,
in a five-dimensional pseudo-Euclidean manifold, with a line-element that
can be written as

ds? = 2dT? — (dx* + dy* + d2? + dw?).

Klein drew the following conclusion:

All of these results are in complete agreement with De Sitter’s own ex-
position. However, they contradict the objections that Einstein raised
against De Sitter in his contribution of March 1918 and that Wey! sup-
ported with detailed calculations in his book as well as in a remarkable
article in Physikalische Zeitschrift.>

As can be gathered from the passage quoted above, Weyl developed Ein-
stein’s interpretation of the surface y = /2 as a “mass-horizon” at length.
The source of the gravitational field of the De Sitter solution is matter that is
supposed to be concentrated on the singular horizon.?® In the article quoted
by Klein, Weyl asserted that the velocity of light vanishes on the equator
of the sphere and that the “fundamental metrical form of the [De Sitter]
universe will thus be singular” (Weyl 1919, p. 31). Then he performed
an—erroneous—calculation of the mass present in the immediate vicinity
of the horizon. As Klein pointed out, this line of reasoning can still be
found in the first edition of his Raum-Zeit-Materie, where he concludes his
calculation saying that “there must at least be masses on the horizon’?’

De Sitter reacted cautiously to Einstein’s criticism. Essentially, he
accepted that the surface ¥ = n/2 is singular, but insisted that it was
“physically inaccessible.””?® In a letter to Einstein, he made it clear that
he doubted the Einstein—Weyl interpretation in terms of a “mass-horizon”
(De Sitter to Einstein, April 10, 1918, EA 20-565).

In 1922, Lanczos wrote two papers (Lanczos 1922a, 1922b) which are
essential to the history of singularities. In the first one—which dealt primar-
ily with the well-known coordinate condition now known by his name—he
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showed how a mere coordinate transformation could turn a regular line
element into a singular one (Lanczos 1922a).?° This cast some doubt on
the accepted interpretation of the “Schwarzschild singularity.” In a second
paper (Lanczos 1922b), written shortly afterward and entitled “Bemerkung
zur De Sitterschen Welt,” Lanczos showed that the De Sitter solution was
regular everywhere and concluded that Weyl’s result concerning the “mass-
horizon” in the De Sitter universe was mistaken. Referring to Klein 1918b,
he performed a coordinate transformation from Klein’s form of the De Sitter
line-element to

ds? = c*dr? — cosh® 7 (dyr* + sin® ¥ (d6? + sin® 0 dg?)).

In this coordinate system the singularity is eliminated, which means that
the singularity, as Lanczos pointed out, “can only come from the system of
coordinates used.”3® In Lanczos’s global coordinate system, the De Sitter
universe is clearly seen to be an FLRW3! geometry with positive curvature.

3. Eddington on Singularities

Before turning to Lemaitre, I briefly want to discuss some of Edding-
ton’s contributions just because Eddington greatly influenced the young
Lemaitre.>® In 1923, Eddington published The Mathematical Theory of
Relativity, perhaps the most important textbook on relativity published be-
tween the two world wars. Lemaftre, who was in Cambridge at the time
of its publication, carefully studied Eddington’s book. In the book, Ed-
dington brought up two fundamental issues that Lemaitre would develop
later on: the issue of singularities and what became known as “Eddington’s
problem.”

In his 1923 book, Eddington was very cautious in his discussion of the
issue of singularities. What we get are not results from research he himself
did on the topic but rather an exposition of the results of others, not always
mentioned by name, as seen from Eddington’s point of view. In the chap-
ter devoted to the “properties of De Sitter’s spherical world” (Eddington
1923, pp. 164-166), Eddington gave Klein’s embedding of the De Sitter
line element in order “to obtain a clearer geometrical idea of De Sitter’s
world.”>® Curiously enough, he did not seem to realize that this embedding
shows directly that the horizon in the De Sitter solution is regular. Instead,
he embarked on a discussion of the alleged mass-horizon in De Sitter’s
world. In an earlier chapter of his book, Eddington had given the solution
representing the gravitational field in a De Sitter universe containing just
one single particle. This solution is, in fact, just the Schwarzschild solution
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for the case where the cosmological constant has a nonvanishing value.?*
Eddington compared the Schwarzschild singularity to the De Sitter singu-
larity. Given the apparent mass-horizon in the latter case, he asked, “must
we not suppose that the former singularity also indicates matter—a ‘mass
horizon’ or ring of peripheral matter?” (Eddington 1923, pp. 165). This
is an implicit reference to Eddington’s own interpretation of the Schwarz-
schild singularity. This interpretation to which he generally referred as “the
magic circle” (Eddington 1920, p. 98),33 is very similar to the mass-horizon
interpretation of the De Sitter singularity. In both cases, matter is supposed
to be concentrated on the singularity (Eddington 1923, pp. 100-101).

However, after having introduced the mass-horizon theme, Edding-
ton—following Lanczos?3®*—went on to stress that “a singularity of ds?
does not necessarily indicate material particles, for we can introduce or
remove such singularities by making transformations of coordinates.” Ed-
dington continued, “It is impossible to know whether to blame the world-
structure or the inappropriateness of the coordinate-system” (Eddington
1923, p. 165). It would seem, however, that Eddington is fundamentally
stuck because he only allowed himself to use well-behaved one-to-one
transformations.’” As he put it, “all the transformations (even a change of
origin) introduce a singularity somewhere” (Eddington 1923, p. 166), a
remark from which he quickly drew the conclusion that “it is impossible to
find any coordinate-system which represents the whole of real space-time
regularly” (Eddington 1923, p. 166).

Still, Eddington clearly realized that even though the coordinate ex-
pression of the De Sitter line element may look singular, the De Sitter
world itself is not. “The whole of De Sitter’s world can be reached by a
process of continuation,” he wrote, and he concluded the chapter stating
his belief “that the mass-horizon is merely an illusion of the observer at
the origin” (Eddington 1923, p. 166). Thus, it looks as if Eddington was
keenly aware of the fact that he was dealing with a question on the border
between topology and coordinate representation.

Eddington’s discussion of this issue is typical of his general style of
doing physics. He had a broad vision of the subject, and, in a very creative
manner, approached it from various different angles. Curiously enough,
Eddington did not try to reach a definite point of view, a strict coherence of
the subject; he allowed for some imprecisions and even some contradictions;
still, his opinions, though a far cry from a formal solution of the problem,
were rich and to the point, his conclusions accurate and fair. Of course,
he did not come to some final verdict on the issue; nobody did at the time.
One can see how Eddington’s discussion would set a student reading his
book (such as Lemaitre) thinking about the issue.
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In 1924, in an article in which he compared the line elements in Ein-
stein’s and Whitehead’s theories for a particle at rest at the origin, Eddington
gave a regular form of the Schwarzschild line element—essentially Finkel-
stein’s 1958 line element—without making any special comment on it.?8
Moreover, in the German edition of his Mathematical Theory of Relativ-
ity, published in 1925, he worked out the radial light trajectories in these
coordinates (Eisenstaedt 1987, p. 324).

4. Lemaitre: From De Sitter’s Universe to Einstein’s

Just after having been ordained a priest in the fall of 1923, Georges Le-
maitre,® went to Cambridge, England, with a traveling grant from the
Belgian government, to study general relativity with Eddington. As early
as 1924, he published his first paper on the subject in the Philosophical
Magazine with a foreword by Eddington (Lemaitre 1924). Eddington was
impressed with Lemaitre, and, after Lemaitre had left, he wrote a letter to
de Donder praising him highly.

In the fall of 1924, Lemaftre went to Cambridge, Massachusetts, where
he worked with Shapliey on the theory of variable stars. During this pe-
riod, he attended several conferences in the United States and in Canada.
Lemaitre was affiliated with the Harvard College Observatory but worked
on his Ph.D. in astronomy at M.LT. under Vallarta. He gave a presenta-
tion on his thesis on November 19, 1925, although he would only submit
it in 1927 during a second trip to the United States (Lemaitre 1927a). It
consisted of three parts, respectively entitled “The Gravitational Field in
a Fluid Sphere of Uniform Invariant Density according to the Theory of
Relativity,” “Note on De Sitter’s Universe,” and “Note on the Theory of
Pulsating Stars.” The last part seems to have gotten lost.

Thus, already in his thesis, Lemaitre took up the difficult subject of the
interpretation of the De Sitter solution. He published this part of his the-
sis in 1925 in the Journal of Mathematics and Physics (Lemaitre 1925a).4°
Lemaftre pointed out that the form (1) of the De Sitter line element is some-
what misleading, since it suggests that the solution has some preferred cen-
ter. Looking for an alternative expression that would reflect the symmetry
of the solution, he was led to a homogeneous, nonstatic, Euclidean metric
field corresponding to the line element:

ds? = c?di? — &2/*(dF? + F2(d6? + sin® 6 dg?)),

which is the FLRW Euclidean (k¢ = 0) form of the De Sitter solution. The
most important point is its nonstatic character,*! a feature Lemaitre thought
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to speak “perhaps rather in favor of De Sitter’s theory” because it “gives
a possible interpretation of the mean receding motion of spiral nebulae”
(Lemaitre 1925a, p. 192).*? On the other hand, Lemaitre thought that it was
“completely inadmissible” (Lemaitre 1925a, p. 192) that the solution was
Euclidean.

It is not entirely clear which sources Lemaitre used for his 1925 pa-
per. He probably did not read Lanczos 1922b; he certainly was strongly
influenced by Eddington 1923, the only reference he gave.** What is more
important, though, is that by 1925 Lemaltre had already developed his own
views on the subject, views that would become more pronounced in the
following years. Lemaitre had a combination of talents that was fairly rare
in general relativity at the time. He had an excellent background in mathe-
matics, especially in differential geometry, and a strong physical intuition.
It seems very likely that this first piece of work had a major impact on
Lemaitre’s subsequent thinking about singularities. We will keep that in
mind when analyzing Lemaitre’s 1932 article.

In 1927, independently of Friedman’s 1922-1924 articles, Lemaitre
published a paper—in French and in an “obscure journal”**—in which he
proposed a dynamical model of the world (Lemaitre 1927b).% The proper-
ties of Lemaitre’s model—which starts off as a static Einstein universe and
asymptotically changes into a De Sitter universe—are remarkably close
to what Eddington expected in 1923: “It seems natural to regard De Sit-
ter’s and Einstein’s forms as two limiting cases, the circumstances of the .
actual world being intermediate between them” (Eddington 1923, p. 160).
Despite this comment, Eddington did not pay any attention to Lemaitre’s
paper at the time. At the meeting of the Royal Astronomical Society on
January 10, 1930, however, he “called attention to the need for intermediate
solutions.”*® Eddington then decided to work on the question of the stabil-
ity of Einstein’s universe in collaboration with McVittie. It was “at once
apparent” from Lemaftre’s paper that Einstein’s universe would be unsta-
ble (Eddington 1930, p. 668). In fact, Lemaitre, upon reading the issue of
the Observatory in which Eddington suggested to investigate intermediate
solutions, had sent a few copies of his 1927 paper to Eddington. The letter
Lemaitre enclosed—a draft of which survives in the Lemaitre Archives—

sheds some light on discussions he had on the topic with Einstein:*’

1 had occasion to speak of the matter with Einstein two years ago. He
told me that the theory was right and is all which [needs] to be done,
that it was not new but had belen] considered by Friedman, he made
critic[ism]s against which he was obliged to withdraw but that from the
physical point of view it was “tout  fait abominable.”*
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Eddington decided to publish Lemaitre’s paper in an English translation
(Lemaitre 1931).%° From that point onward, the problem of nonstationary
universes got more attention, and Lemaitre’s 1927 solution, which had been
neglected for more than two years, finally got the praise it deserved. Ed-
dington suggested that the actual universe may be considered as expanding
from an initial state like an Einstein universe toward a state that in the limit
becomes a De Sitter universe. If this picture were accurate, any initial
disturbance would cause the universe either to expand or to contract. Ed-
dington suggested that local condensation of matter in the universe actually
provided such initial disturbances. In the following years, McCrea and
McVittie studied nonstationary universes with a single instance of matter
condensation at the origin (McCrea and McVittie 1931).° A substantial
number of papers were published on this topic. It was probably this work
that sparked Lemaitre’s interest in the problem of condensation in an ex-
panding universe, a problem discussed at length in his 1932 paper.

Another theme of Lemaitre’s 1932 paper—a theme he already ad-
dressed in his Ph.D. thesis—is what is known as “Eddington’s problem.”
This has to do with the so-called Schwarzschild limit. In the interior
Schwarzschild solution, matter is described by a fluid sphere of constant
densityp and radius r = a (Schwarzschild 1916). Schwarzschild noticed
that, in his model, the pressure becomes infinite at the center as soon as the
radius of the sphere is equal to the Schwarzschild limit. Since the radius
2Gm/c? of the Schwarzschild singularity is smaller than the Schwarz-
schild limit, the latter could be used to lay worries about the former to rest.
The Schwarzschild singularity, it seems, will be physically inaccessible.
Schwarzschild availed himself of this strategy: “Thus, there is a limit con-
centration above which an incompressible fluid sphere cannot exist.””®! For
a long time, Schwarzschild’s limit was considered to be very important be-
cause it seemed to provide a physical explanation of the inaccessibility of the
Schwarzschild singularity. In the early 1920s, Einstein himself defended
this interpretation of the Schwarzschild limit.5? It seems that Lemaitre did
not believe in this interpretation of the Schwarzschild limit. He felt that
the Schwarzschild limit was not physically invariant in the sense that it de-
pended on a particular solution, namely the interior Schwarzschild solution.
In the introduction of his thesis, he wrote,

The gravitational field within a fluid sphere of uniform density has been
" the subject of many investigations, especially by Schwarzschild (1916),
Nordstrom (1918) and de Donder (1921, p. 169) and was considered as
a solved problem until Eddington made some fundamental objections
against the solution of these authors. (Lemaitre 1927a, pp. 1-2)°
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In short, the question raised by Eddington was whether the invariant density
T = p — 3 p, the trace of the stress-energy tensor, or just p, the “Schwarz-
schild density” as he called it, should be taken as the “true representation
of the density” (Lemaitre 1927a, p. 2). What really interested Lematftre in
his dissertation, I think, was not Eddington’s problem, merely formal, but
rather the consequences of the answer to the question for the interpretation
of the Schwarzschild singularity. Lemaitre would have liked to show that
no such limit as Schwarzschild’s existed at all in the context of a solution
of Eddington’s problem. This, however, could not be done in 1925. Not
only did Eddington’s problem not have an exact solution, it turns up another
fundamental “difficulty more striking than in Schwarzschild’s solution.”>*
As Lemaitre put it in the introduction of his thesis, “It is unfortunate that the
solution breaks down for large spheres, because the existence of a limit to
the size of the sphere is one of the most interesting objects of the research”
(Lemaitre 1927a, p. 3). This clearly shows Lemaitre’s disappointment.
But it shows, too, that what lies behind Lemaitre’s interest in Eddington’s
problem is his interest in the Schwarzschild limit. Thus, his dissertation
gave Lemaitre two reasons to believe that the Schwarzschild singularity is
apparent: from his study of the De Sitter solution he knew that a singularity
may be only an horizon, and from his study of Eddington’s problem he
knew that the Schwarzschild limit is not a necessary feature of any interior
solution to Schwarzschild’s exterior solution.

5. Lemaitre’s 1932 Paper and the Schwarzschild Solution

By 1932, Lemaitre had become very expert in the field of the general theory
of relativity. The 1931 translation of his 1927 paper had just been published,
and had brought him some attention. His paper “L’univers en expansion”
(Lemaitre 1932)°° gives an overview of the development of Lemaitre’s
specific interests in the field. The main focus of the paper, however, is on
the question of condensation in an expanding universe.

In the first chapters, Lemaitre looked for a convenient formulation of
the field equations of general relativity in the case of spherical symme-
try—including, of course, the cosmological constant A of which he was
a lifelong supporter.”® Lemaitre was looking for general dynamical solu-
tions for the spherical case and as his energy-momentum tensor he used the
energy-momentum tensor for a perfect fluid with energy density p(yx, #)
and pressure p(x, ¢).’ In the co-moving coordinate system he chose, the
line element has the form

ds? = c?dr? — a?dy? — r?(do? + sin? 6 d¢?), 3)



364 Jean Eisenstaedt

where ¢, a, and r are functions of x and t, and the only nonvanishing
components of the energy-momentum tensor are

T=p, T'=12=T"=p.

Lemaitre now wrote down the field equations in a very elegant fashion; it
was the first time that general nonstatic equations in the spherical symmet-
rical case were given.’® What is more, the equations were given in a very
simple form.”

Lemaitre also found some interesting solutions to these equations.
These solutions were among the first exact nonstatic solutions of the field
equations of general relativity, together with the Friedman-Lemaitre cos-
mological solutions and the Einstein—Rosen cylindrical waves solution
(Beck 1925; Einstein and Rosen 1937). In the introduction to his paper,
Lemaitre, in fact, stressed his special interest in exact solutions:

The theory [of general relativity] may be developed in two different
ways: through the study of exact solutions of the equations of gravita-
tion, using simplified models, or through approximations to the solution
for more complicated problems. I think it is important not to mix up
these two methods. In this paper, we will concern ourselves only with
mathematically exact solutions.5

This emphasis on exact solutions is a good example of Lemaitre’s realistic
and precise approach to problems in general relativity. It is also a further
reason for Lemaitre to be interested in the Schwarzschild solution, which at
that time was still one of the few exact solutions known in general relativity.

Lemaitre now looked at some special cases. First, he looked at the case
in which the energy-density is uniform, while the pressure is a function of
x and ¢. With the help of his clever formulation of the field equations, he
found another new solution (with uniform energy-density and a transverse
pressure) that he used to prove that the Schwarzschild limit “vanishes when
we do not impose the condition on matter that it is in the fluid state,”! a
result, I trust, that he had long felt should hold.

In the next sections of his paper, Lemaitre gave a short exposition of
the main results of his Ph.D. thesis and discussed the instability of Ein-
stein’s universe. In section 8, entitled “Condensations in the Expanding
Universe,” Lemaitre gave—for the first time—the general solution of the
field equations when we have spherical symmetry and no pressure. It is
interesting to see Lemaitre’s arguments dealing with the pressure-free case.
Asis often the case with Lemaitre, they are ingenious and Iucid at the same
time:
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In applications involving the actual universe, the pressure is generally
negligible compared to the density. In cases where we have equilibrium,
we had to take it into account, since the study of the breakdown of
equilibrium will naturally involve very small forces. When we study the
expansion of the universe, however, and the occurrence of condensation
in the course of the expansion, we can neglect it.%

Lemaftre was able to integrate his general field equations for the pressure-
free case in a very simple way, and to express his results in a surprisingly
simple form.5 In fact, what Lemaitre found is just what has become known
as the Tolman-Bondi solution, because of two papers by these authors deal-
ing with this solution (Tolman 1934b; Bondi 1947).% Lemaitre then showed
that one obtains Friedman’s universe (the elliptical case) as a special case
of his general solution. Then he finally turned to the study of condensation
in an expanding universe.%

For cur purposes, the most interesting part of Lemaitre’s 1932 article
is his demonstration that the Schwarzschild singularity is only an apparent
singularity. Lematre was the first to prove this explicitly and consciously.5
As he stated the result himself, “The singularity of the Schwarzschild field
then is a fictitious singularity, analogous to the one appearing on the horizon
of the center in the original form of the De Sitter universe.”®” Before giving
his demonstration, Lemaitre explained what motivated him to look at this
problem: “The equations of the Friedman universe admit. . . solutions in
which the radius of the universe goes to zero. This contradicts the gen-
erally accepted result that a given mass cannot have a radius smaller than
2Gm/c? %8 Thus, on the basis of his results, Lemaitre understood that
Friedman’s solution was a possible interior solution to Schwarzschild’s
exterior solution. It follows from this simple but important observation
that there cannot be a physical or mathematical limit that prevents such an
interior solution from collapsing. On the other hand, the Schwarzschild
singularity seems to impose a lower boundary on the radius of a star that
does not show up in the (Friedman) interior solution. Lemaitre’s way out
of this dilemma was to deny the latter claim. The question then becomes:
what is the status of the space between a collapsing interior mass and the
Schwarzschild singularity, i.e., the space between r = O and r = 2Gm/c??
Lemaitre’s solution can help to answer this question. It should be possible
to write down the exterior solution in terms of the coordinates in which
Lemaftre expressed his interior solution. This exterior solution shouid be
identical to the Schwarzschild solution, which, by virtue of Birkhoff’s theo-
rem, is unique. In Lemaitre’s coordinates, there cannot be any gap between
the collapsing sphere and the Schwarzschild singularity. In other words,
the Schwarzschild solution has to be valid in this no man’s land. The basic
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idea here is simply to deal with the interior and exterior solution in a single
coordinate system. Even though one does not explicitly find this train of
thought in Lematre’s paper, it was probably the guiding idea for him.%

Let us see how Lemaitre technically works out his idea. Lematftre now
had to look for the expression of the Schwarzschild solution in his own
system of coordinates. He found that he had to perform the coordinate
transformation )

G 2
T i sinh( 3): (r — X)> 4)

to obtain the Schwarzschild line element in his own coordinates:

Ac? 2G
ds? = 2 dr? — (%rz + Tm) dy? — r2(d6? + sin® 6 dg?). (5)

Hence, Lemaitre had found a form of the Schwarzschild line element that
explicitly shows that the only singularity of the solutionis atr = 0. There is
no singularity at r = 2Gm/c?. Atthe same time, Lemaitre had generalized
his result to the case with a nonvanishing cosmological event.

Finally, Lemaftre showed that by performing the transformation

/2Gm+k_r2
df —edp 4+ L€ "3 4 6
c _CT+1_ZG_m__&:Z 7, (6)
rc? 3

one recovers the “classical” form of the Schwarzschild solution written in
Droste’s coordinates: 70

2Gm dr?
ds? = (1_ —lkr2>cz dr?— —r2(d6?+sin® 6 d¢?).
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For A = 0, the transformation (6) is integrable, and (4) reduces to
P32 = %»\/2Gm(t - %).

Robertson’s form of the Schwarzschild line element,

ds? = 2 dr? — 2 dp? — r2(d6? + sin 0 dg?), (7
r

is obtained by setting A = 0 in Lemaitre’s line element (5) and by using the

coordinate transformation
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As we will see later on, Lemaftre Robertson met in the early 1930s, and
most likely Lemaitre had a direct influence on Robertson’s understanding of
the Schwarzschild solution.”' Robertson’s remarks on the issue in Toronto
in the late 1930s in turn aroused Synge’s interest.

Thus, Lemaitre explicitly showed, in a very nice way, that the so-called
Schwarzschild singularity was not a singularity at all, even though it would
continue to be called that for decades. Furthermore, our analysis shows
that Lemaitre’s result was much more than just a mathematical derivation.
Not only was Lemaitre aware of the fictitious character of the Schwarz-
schild singularity before he had demonstrated it mathematically, he was
also aware—and this point deserves to be stressed—of what was respon-
sible for this tricky problem. As he put it right at the beginning of his
demonstration, “we will show that the singularity of the field is not real but
the result of using a coordinate system in which the field is static.”’? The
important word here is static. Lemaitre’s insight has to be at least partly
understood as coming out of his understanding of the dynamical/static char-
acter of the De Sitter solution that he worked out in 1925. Such insight
was rare and would not return until years later. In fact, it would only return
in Finkelstein 1958 and in Kruskal 1960, but the dynamical character of
the Schwarzschild solution inside the horizon would take much more time
to become truly accepted. In short, Lemaitre’s mathematical demonstra-
tion was backed up by a deep conceptual understanding of some of the
fundamental features of Einstein’s theory.

6. The Reception of Lemaitre’s 1932 Article

In 1934, Richard Tolman, about to publish his book Relativity, Thermody-
namics, and Cosmology, wrote a short article, in which he studied the “Ef-
fect of Inhomogeneity on Cosmological Models” (Tolman 1934b). In this
article, Tolman referred to Lemaitre’s dust solution (Lemaitre 1932), which
he rederived using Dingle’s formulae. He then applied the dust solution to
“distorted” uniform models of the universe and showed that disturbances
from originally uniform distributions will in general increase with time. It
is no coincidence that Tolman was aware of Lemaitre’s 1932 paper. Tolman
had worked with Lemaitre during the latter’s 1932-1933 trip to the United
States. As Deprit recalls it, Lemaitre left Europe in August 1932 to go to
Montreal. As usual, he had a very busy schedule. He participated in a solar
eclipse expedition and went to M.LT. to work with Vallarta on cosmic rays.
Afterward, he gave a seminar at Princeton at the invitation of Robertson,
and he spent the winter in California where he gave two seminars, one on
the expanding universe and one on cosmic rays as fossils of the Big Bang
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(Deprit 1984, pp. 373-375). He also met Hubble and worked with Tolman
for two months at the California Institute for Technology. It is very likely
that during this collaboration Lemaitre explained his new solution to Tol-
man. In all likelihood, Lemaitre had written his 1932 paper and had sent it
off for publication before he traveled to the United States.

Tolman’s paper attracted far more attention than Lemaiftre’s. In fact,
Lemaitre’s 1932 pressure-free solution is usually attributed to Tolman or to
Bondi, sometimes to Datt, but never to Lemaitre. Only the demonstration of
the nonsingular character of the Schwarzschild solution is-—sometimes—
attributed to him.”® Tolman’s paper stimulated Synge to write an interesting
paper, entitled “On the Expansion or Contraction of a Symmetrical Cloud
under the Influence of Gravity” (Synge 1934b). In this paper, Synge “do[es]
not pursue the method of Tolman but suggest[s] another point of view, which
has much to recommend it on the score of mathematical simplicity” (Synge
1934b, p. 635). The mathematical tools he used are indeed remarkable:
invariant equations, congruences, Riemannian curvature, and last but not
least, the equation of geodesic deviation, an early application of one of
Synge’s favorite tools in the context of general relativity.”*

Synge was especially interested in the equation that controls the expan-
sion or contraction of a small cloud of particles. The equation he arrived
at, in terms of the radius of the sphere, expressed in Droste’s coordinates,
is in fact the equation for the radial orbit of a particle moving in a Schwarz-
schild field with cosmological constant. Moreover, the equation is exactly
the same as the corresponding Newtonian equation, with Newtonian abso-
Iute time replaced by proper time. It is easily seen that this equation is not
singular on the Schwarzschild singularity and that the cloud collapses up
to its center. Synge—following his contemporaries—did not mention this
feature.” He carefully studied the evolution of the cloud, though, and con-
cluded that there can be no oscillation of the cloud: its radius can only have
one extremum. More precisely, the evolution depends on the value of the
quantity (3m G/ Acz) 173, Depending on the value of this quantity, the cloud
either expands steadily and indefinitely or collapses into a point. This re-
sult shows in a very simple way that—at least in the pressure-free case—a
collapse beyond the Schwarzschild singularity is possible. I find it strange
that this useful paper has almost never been cited.”® Synge himself did not
cite it in his fundamental paper on the “Gravitational Field of a Particle,”
the first paper on the topology of the Schwarzschild field (Synge 1950)"7
after the Einstein and Rosen article (Einstein and Rosen 1935). This is very
unfortunate, because these early caiculations might have been very helpful,
for instance, to Oppenheimer and Snyder. Had Synge forgotten about his
1934 paper in 19507 Or did he think the result was not worth mentioning
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in the context of the topological problems he addressed in his 1950 paper?

Synge did give Lemattre’s line element (5) in his 1950 paper, for which
he referred to Lemaitre’s 1932 paper,’® as well as Robertson’s line ele-
ment (7). Synge acknowledged “Professor G.C. McVittie for recalling
this reference” (Synge 1950, p. 84), and also mentioned that “Professor
H.P. Robertson had drawn attention to [Lemaftre’s article] in a lecture in
Toronto in 1939” (Synge 1950, p. 84). I came across a letter that Synge
wrote to Robertson in late 1938.7° In this letter, Synge raises questions
about the recent demonstration by Einstein, Infeld, and Hoffmann that the
gravitational equations for empty space are sufficient to determine the mo-
tion of matter represented as point singularities of the field (Einstein et al.
1938).30 From this letter, one gathers that Robertson, who had been aware
of the apparent character of the Schwarzschild’s singularity for quite some
time,3! told Synge about it during a meeting “at State College” Synge,
however, was not completely convinced. He added, “I must think more
about this, because I am not clear on the point, and I don’t think you have
published anything on it” (Synge to Robertson, October 31, 1938). This
clearly shows how difficult this point was to one of the best relativists of
the time—a geometer, moreover—and thus how difficult it must have been
to anybody in the field. Some years ago, I wrote to Synge and asked him
about his recollection of these issues. He did not remember much about it,
but he told me that he “never thought much about very dense concentration
of matter” and that “perhaps [his 1950 paper] was better than [he had] re-
garded it for 38 years” (Synge to Eisenstaedt, May 16, 1988). This seems
to indicate that despite his extensive work on the problem and despite the
importance of the questions he raised, Synge was not satisfied with what he
had accomplished in these matters. This attitude, I may add, is very typical
of Synge.

In 1936, Paul Drumaux, in an otherwise quite interesting paper (Dru-
maux 1936), contested Lemaitre’s views concerning the apparent character
of the Schwarzschild singularity (Eisenstaedt 1587, pp. 316-317). It seems
that Drumaux and Tolman were the first and, at the time, only experts to cite
Lemafire’s 1932 paper. However, thanks to Tolman and thanks to his 1934
account of Lemaitre’s solution, this situation would change. I am thinking
here in particular of the influence of Lemaitre’s “dust solution” on one of the
most important pieces of work in general relativity, the article published in
1939 by J. Robert Oppenheimer and H. Snyder (Oppenheimer and Snyder
1939). A few months earlier, as is well known, Oppenheimer had published
an article in collaboration with G.M. Volkoff (Oppenheimer and Volkoff
1939), in which they studied the gravitational equation for a neutron star. In
particular, they showed that for masses greater than 3/4 solar masses there
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were no static equilibrium solutions. It turns out that both Volkoff and
Oppenheimer collaborated with Tolman. In the Tolman papers, one finds
some letters that Tolman and Oppenheimer exchanged in late 1938 con-
cerning this work. Tolman and Oppenheimer tried to find a solution “with
agreeable properties”? to describe the gravitational equilibrium of a neu-
tron star. Tolman’s contribution, some “static solutions of Einstein’s field
equations for spheres of fluid” (Tolman 1939), was published separately
in the same issue of Physical Review in which Oppenheimer and Snyder’s
paper appeared.®? A few months later, Oppenheimer and Snyder published
a paper entitled “Continued Gravitational Contraction,” in which they cal-
culated the collapse up to the gravitational radius®* of a pressure-free fluid
sphere. As they explained in the abstract of their paper, Oppenheimer and
Snyder showed that:

When all thermonuclear sources of energy are exhausted a sufficiently
heavy star will collapse. . . the radius of the star approaches asymptoti-
cally its gravitational radius; light from the surface of the star is progres-
sively reddened, and can escape over a progressively narrower range of
angles. . .. The total time of collapse for-an observer comoving with the
stellar matter is finite . . . an external observer sees the star asymptotically
shrinking to its gravitational radius. (Oppenheimer and Snyder 1939,
p. 455)

Oppenheimer and Snyder derived these important results using the Le-
maitre—Tolman “dust solution.”®> I want to emphasize the importance of
Lemaitre’s solution for Oppenheimer and Snyder’s work. As I mentioned
before, Lemaitre’s solution is not only one of the very first®® general dynam-
ical solutions with spherical symmetry in general relativity, it also allows
us to describe the complete evolution of a star, its interior as well as his
exterior gravitational field, in a single coordinate system. As I have already
said, this last aspect, of course, was what allowed Lemaitre to demonstrate
the fictitious character of the Schwarzschild singularity. This property of
the coordinate system is of crucial importance for dealing with the tricky
question of the boundary conditions between the interior and exterior so-
lutions on the surface of the star. Oppenheimer and Snyder stated that they
followed the “earlier work of Tolman,” and they “thank Professor R.C. Tol-
man and Mr. G. Omer for making this portion of the development available
to [them], and for helpful discussions” (Oppenheimer and Snyder 1939,
p- 457). Thus, it is clear that Lemaitre’s sclution, through Tolman, played
a very important role in Oppenheimer and Snyder’s work.

At the end of the 1930s, there was great interest in matters of relativistic
astrophysics, in neutron stars, in equilibrium of stars, and in star collapse.
Tolman and Zwicky?’ were working in this field at the California Institute
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of Technology, Baade at Mount Wilson Observatory, and the members of
the Oppenheimer team, Snyder and Volkoff, at the University of Califor-
nia at Berkeley. Around the same time, Robertson was working on the
interpretation of the Schwarzschild solution and lectured on it. These lec-
tures would be published after his death by his assistant Thomas Noonan
(Robertson and Noonan 1968). I analyzed this paper elsewhere (Eisen-
staedt 1987, pp. 328-338), and I will just outline my conclusions here. In
his lectures, Robertson used the line element (7) which can easily be de-
rived from Lemaitre’s line element (5). Although we do not have absolute
evidence that this is in fact how Robertson got it, [ think it is very likely that
Robertson borrowed Lemaitre’s nonsingular Schwarzschild metric, which
he had heard about during Lemaitre’s 1932 visit to Princeton, and used it
to derive some of his very interesting results.’® The detailed analysis of
the trajectories in a Schwarzschild field, however, that he offered to his
students in the late 1930s, is probably entirely his own (Robertson and
Noonan 1968, p. 250). Robertson had a detailed understanding of the be-
havior of incoming as well as outgoing particles.?® Thus, some of the points
that Oppenheimer and Snyder made in 1939 had already been discussed
by Robertson in his lectures. For instance, Robertson had already given
the description of a particle falling toward the Schwarzschild radius from
the point of view of an observer situated at infinity and in terms of the red
shift of light rays emitted during the particle’s fall. In Robertson’s lectures,
one also finds the description in proper time of the particle passing through
the Schwarzschild horizon. Even more interesting is the fact that his de-
scription implies the necessity of a topological view of the Schwarzschild
field. This follows from the lack of symmetry in the behavior of ingoing
and outgoing particles that is illustrated in his diagrams. In fact, it seems
that many results given in (Finkelstein 1958) had already been known to
Robertson.

Robertson’s office was situated close to Einstein’s in Fine Hall at Prince-
ton. Einstein, like Robertson, was very interested in singularities. I will not
discuss Einstein’s numerous contributions to the subject, which seem to be
totally independent of Lemaitre’s. However, I do want to quote from the
conclusion of a paper Einstein published in 1939, entitled “On a Stationary
System with Spherical Symmetry of many Gravitating Masses” (Einstein
1939). Einstein wrote: ’

This investigation arose out of discussions the author conducted with
Professor H.P. Robertson and with Drs. V. Bargmann and P. Bergmann
on the mathematical and physical significance of the Schwarzschild sin-
gularity. The problem quite naturally leads to the question, answered by

this paper in the negative, as to whether physical models are capable of
exhibiting such a singularity. (Einstein 1939, p. 936)
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Thus, in spite of the discussions mentioned in this paragraph, Einstein
continued to be of the opinion that the Schwarzschild singularity was a real
singularity that just happened not to be realized in nature.

7. The Meaning of Lemaitre’s Work

In the preceding sections, we saw how—thanks in large measure to Tol-
man—Lemaitre’s results became well known among experts on general
relativity in the years immediately preceding World War II, and how these
results provided them with some fundamental tools for the analysis of the
Schwarzschild solution. We saw that Lemaitre was, in fact, the great fore-
runner of Oppenheimer and Snyder, providing them with the right tools
for their seminal work on star collapse. Moreover, we saw that Lemaitre
understood the inevitability of collapse to zero volume and the fictitious
character of the Schwarzschild singularity, insights that even Oppenheimer
and Snyder failed to reach. It would be a mistake, however, to restrict our
analysis to Lemaftre’s technical accomplishments. In this final section, I
want to take a step back from the specific results Lemaitre obtained and
take a look at the general approach he took in arriving at them.

One of the most important characteristics of Lemalitre’s approach, 1
think, is the subtle interplay between local and global concerns in his work:
the stars and the cosmos, contracting nebulae and the expanding universe,
the condensation of a star and the collapse of the universe. In a way,
Lemaitre was able to describe the local in the global: a star is embedded
in the universe, and the Schwarzschild solution is described in the same
coordinates as Friedman’s solution. This tendency to combine the local
and the global, the awareness of the parallels between cosmology and the
treatment of an individual star, enabled Lemaltre to view things in new
and unexpected ways, to look, so to speak, at the Schwarzschild singu-
larity from the interior, or at the universe from the exterior. Tt was this
general approach and his extraordinary facility in delicately manipulating
the equations of the universe that enabled Lemaitre to shake off the dogma
of the impenetrability of the Schwarzschild singularity. One should keep
in mind that most relativists at the time were working on problems that
were almost classical. They were using the methods of post-Newtonian
approximation, constructing and endorsing a neo-Newtonian interpretation
of -general relativity.” It fell to cosmologists such as Lemaitre to develop
the sort of global descriptions we have been looking at in this paper, and a
crucial factor, in my opinion, was the sort of freedom that being a cosmol-
ogist afforded him, a form of independence vis-a-vis various conformist
visions and traditional interpretations. Cosmology, so to speak, provided
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him with a space for work, for thought, a space of the dimensions of the
whole theory. It is above all to this freedom of thought, I feel, that we owe
the beautiful results that Lemaitre gave us, results that collide head-on with
the neo-Newtonian interpretation that would remain dominant for about 30
more years.

Lemaftre, one might add, did not seem to be at all intimidated by the
cosmological dimensions of the problems he chose to work on. The con-
fidence of youth may have been a factor here, but I would like to venture
that his vocation played a role here as well: as a priest he probably felt a
closeness to God that may have given him a feeling of freedom in front of
Creation. As I said above, Lemaitre aimed at combining the global and the
local: is there a question more suitable for a priest? To be sure, his answers,
it seems, were strictly physical and mathematical. And it seems to me that
Lemaitre cannot be accused of confusing science and religion. As Kragh
put it:

Lemaitre was an epistemic optimist who believed that God would hide
nothing for the human mind and that consequently there could be no con-
tradiction between Christian belief and scientific cosmology.... This
does not mean that Lemaftre’s cosmology was designed to fit cosmo-
logical views or that he used it in defending such views. (Kragh 1987,
p. 133)

To conclude this paper, I want to look somewhat more closely at an
aspect I touched upon above, namely the small butimportant role cosmology
played in the early history of general relativity. During the years 1925-
1955, i.e., during what I have called the “low water mark” period of general
relativity (FEisenstaedt 1986 and 1989b), a “nec-Newtonian” interpretation
dominated the field. In those circumstances, cosmology was the only place
where one could genuinely think about relativity.’! As Bargmann put it:

For many reasons, the history of general relativity (from 1920 to 1960)
has been much less spectacular. The one field on which it had a decisive
and most stimulating influence is cosmology. Its influence on the rest of
physics, however, has been slight, notwithstanding the profound changes
in our fundamental concepts which it had brought about.”

Likewise, in the conclusion of his textbook, Tolman, in trying to justify
his interest in cosmology, gave an interesting analysis of the influence of
cosmology on general relativity. In cosmology, he wrote, one expresses
one’s “natural interest and intellectual pleasure” in developing mathemat-
ical assumptions “without reference to possible physical applications.”>
Moreover, he felt that the work done in cosmology would “inform,” “lib-

eralize,” and “illuminate our thinking.*%*
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This certainly comes as a surprising declaration from the ultrapositivist
America of the 1930s; a declaration that nonetheless has to be taken se-
riously, 1 think, since it comes from a scientist who cannot be suspected
of blind idealism. Lemaiftre’s work, it seems to me, provides a very good
illustration of Tolman’s ideas. The fact that he worked in a universe whose
structure was not given in advance, but had to be constructed or invented,
gave Lemaftre a new point of view and a considerable freedom. As I have
written elsewhere (Eisenstaedt 1989¢), cosmology provided—and contin-
ues to provide to this very day—*“a space for thought in general relativity.”
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NOTEs

! Many articles have been written on the topic; I will cite them as we go along.
Right now, I just want to mention the comprehensive discussion of Lemaitre’s
contributions to general relativity by Odon Godart, who worked with Lemaitre
(Godart 1992). My aim in this paper, however, is rather different from Godart’s,
and this study is to be understood as complementary to his.

2 The uniqueness is guaranteed by Birkhoff’s theorem; see Goenner 1970.

3 In fact, they depend upon the very frequently used Droste coordinates, for long
improperly called “Schwarzschild’s coordinates.” In particular, Droste’s coordinate
time ¢ was generally thought of as the absolute time (in a Newtonian sense). See
Eisenstaedt 1982, p. 167.

4 Lemaitre 1932 was first published in Publication du Laboratoire d’Astrono-
mie et de Géodésie de I’Université de Louvain, an internal publication, and then
reprinted in 1933 in Les Annales de la Société Scientifique de Bruxelles, a rather
“obscure” journal. Still, if the article is referred to at all, the reference usually is to
this 1933 reprint. I will go by the year of the original publication.

5 Contrary to common belief, the dust solution is neither due to Tolman nor to
Bondi and still less to Datt. As we shall see later on, Lemaitre 1932 is never even
cited except in Tolman 1934b. More on this below.

6 Accounts of parts of this episode can be found in many books and articles, such
as Ellis 1989; Eisenstaedt 1989c; Kerszberg 1989a, 1989b; Merleau-Ponty 1965;
North 1965; Smith 1982; Stachel 1979; and Tipler et al. 1980. For a thorough
discussion of the technical issues involved, see Rindler 1956, 1977 and Schridinger
1956.
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Kerszberg has given two rather different analyses of the Einstein—De Sitter con-
troversy, one in the Osgood Hill proceedings (Kerszberg 1989a), the other in his
book (Kerszberg 1989b). I prefer the former analysis. Kerszberg’s book was
harshiy-——but, I think, fairly—criticized in a review by Goenner (Goenner 1991).

7 Einstein to Schwarzschild, January 9, 1917 (EA 21-561), quoted in Eisenstaedt
1989a, p. 219. For a more extensive discussion of the issue, see Stachel 1979.

8 “Hs scheint mir deshalb, das ihrer Losung keine physikalische Moglichkeit
entspricht.” Einstein to De Sitter, March 24, 1917 (EA 20-547).

? “Es wire nach meiner Meinung unbefriedigend, wenn es eine denkbare Welt
ohne Materie gibe. Das g,,-Feld soll vielmehr durch die Materie bedingt sein,
ohne dieselbe es nicht bestehen konne. Das ist der Kern dessen, was ich unter der
Forderung von der Relativitit der Trigheit verstehe” (De Sitter 1917a, p. 1225) and
Einstein to De Sitter, March 24, 1917 (EA 20-547). The emphasis is Einstein’s.

10 “wir werden es als Forderung der Theorie zu bezeichnen haben, dass die
[Feld]Gleichungen fiir alle Punkte im Endlichen gelten. Dies wird nur dann der Fall
sein kdnnen, wenn sowohl die g,,,, wie die zugehdrigen kontravarianten g*” (nebst
ihren ersten Ableitungen) stetig und differenzierbar sind; im besonderen darf also
die Determinante g = f g,w| nirgends im Endlichen verschwinden” (Einstein 1918,
p. 270). Even now, there is no generally accepted definition of a real singularity.
By modern standards, neither the vanishing of g nor a discontinuity of any g,
constitute a “real” singularity. One way to determine whether a singularity is real
or apparent is to maximally extend the space-time under consideration. If the
De Sitter space-time is maximally extended, one sees that it does not have any real
singularity at all. However, one can say that there will be a physical singularity
if the stress-energy tensor becomes infinite somewhere (for example, if the matter
density becomes infinite somewhere). Concerning this question, see Tipler et al.
1980, p. 139, where the question of the definition of a singularity is considered.

11 The question still remains what he meant by a physical distance. Curiously
enough, this fundamental concept was not yet clearly defined in general relativity,
and it became an object of dispute between Einstein and De Sitter how to define
it (Tipler et al. 1980, p. 100). For a discussion of the difficulties surrounding the
definition of physical concepts in general relativity, see Eisenstaedt 1986, 1989b.

12 “Ferner is die Stetigkeitsbedingung fiir die g,,, und g*” nicht so aufzufassen,
dass es eine Koordinatenwahl geben miisse, bei welcher ihr im ganzen Raum Geniige
geleistet wird. Es muss offenbar nur gefordert werden, dass es fiir die Umgebung
eines jeden Punktes eine Koordinatenwahl gibt, bei welcher fiir diese Umgebung
der Stetigkeitsbedingung geniigt wird . ..~ (Einstein 1918, p. 270).

13 In 1917, Hilbert also proposed a definition of regularity compatible with covari-
ance, but he stipulated that one should get it through an “invertible and one-to-one”
transformation (Eisenstaedt 1982, p. 172). It is to be emphasized that Einstein’s
definition is more suitable in this context since he did not specify the nature of
the allowed transformations. The class of transformations allowed by Hilbert is
too narrow. If, on some part of space-time, one has a regular line element and one
asks which coordinate transformations preserve regularity, Hilbert’s stipulations are
perfectly acceptable and are, in fact, at the origin of the idea of “admissible coor-
dinates” (see Lichnerowicz 1955, p. 5). If, however, on some part of space-time
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one has a nonregular line element, Hilbert’s one-to-one coordinate transformations
will always leave us with a nonregular line element and nothing is gained. This
is what happens, for instance, when we go from Droste’s system of coordinates
(Eisenstaedt 1982, p. 168) to an isotropic system of coordinates. In order to gettoa
well-behaved coordinate system—a coordinate system in which the line element is,
say, as regular as possible—one should be allowed, at first, to perform a coordinate
transformation that is not necessarily one-to-one. This is the case, for example, for
the Eddington—Finkelstein or the Lemaitre coordinate transformations. The idea is
to introduce a new system of coordinates.and it does not matter how you introduce
it as long as the new line element is a solution of Einstein’s field equations. After-
wards, in order to preserve regularity, one must only use one-to-one—in fact, C?
piecewise (Lichnerowicz 1955, p. 5)—coordinate transformations. The question
is also linked to the question for which region of space-time the new expression of
the solution is valid and to the problem of extension. Concerning these questions,
see also Tipler et al. 1980).

14 “diese Einschrinkung der Stetigkeitsforderung ergibt sich naturgemiiss aus der
allgemeinen Kovarianz der [Feld]Gleichungen” (Einstein 1918, p. 271).

15 This form of the line element was first given in De Sitter 1917b, p. 230. It is
the line element in a Schwarzschild-like static frame of reference, which can readily
be seen by introducing the coordinate » = a sinc.

16 «ynd zwar scheint es sich hier um eine Unstetigkeit zu handeln, die durch
keine Koordinatenwahl beseitigt werden kann” (Einstein 1918, p. 271).

17 “Bis zum Beweise des Gegenteils ist also anzunehmen, dass die De Sittersche
Losung in der im Endlichen gelegenen Fliche y = m/2 eine echte Singularitiit
aufweist” (Einstein 1918, p. 271). It is to be remarked that Einstein calls disconti-
nuity (Unstetigkeif) what can be eliminated; if it cannot, it comes to be a singularity
(Singularitdr).

8 “Dort wird—wie in unmittelbarer Nihe eines gravitierenden Massenpunk-
tes—die Komponente g4 des Gravitationspotential zu null” (Einstein 1918,
p. 272).

19 “Das De Sittersche System diirfte also keineswegs dem Falle einer materielo-
sen Welt, sondern vielmehr dem Falle einer Welt entsprechen, deren Materie ganz
in der Fliiche x = m/2 konzentriert ist” (Einstein 1918, p. 272).

20 “Egs darf also kein g,,-Feld, d. h. kein Raum-Zeit-Kontinuum, méglich sein
ohne Materie, welche es erzeugt” (Einstein 1918, p. 271).

A Lichnerowicz 1939. See also Einstein 1941 and Einstein and Pauli 1943. For
a discussion of this point, see Tipler et al. 1980, p. 108.

22 With the obvious exception of Minkowski space-time. Lichnerowicz’s theo-
rem, of course, does not apply to the De Sitter solution, since this solution is not
asymptotically flat.

23 “Sie haben volkommen recht.” Einstein to Klein, June 20, 1918 (EA 14-408).
I owe this reference to John Stachel.

24 “Es existiert tatsdchlich eine singularititsfreie Losung der Gravitationsgle-
ichungen ohne Materie. Aber diese Welt diirfte als physikalische Moglichkeit
keinesfalls in Betracht kommen.” Einstein to Klein, June 20, 1918 (EA 14-408).
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25 “Alle diese Resultate sind in voller Ubereinstimmung mit De Sitters eigenen
Angaben. Sie widersprechen aber dem Einwande, den Einstein in seiner Mitteilang
vom Mirch 1918 gegen De Sitter erhob und den dann Weyl in seinem Buche, sowie
neuerdings in einem besonderen Aufsatz in der physikalischen Zeitschrift durch
ausfiirhrliche Rechnungen gestiitzt hat” (Klein 1918b, p. 422). This is the first time
that Klein explicitly cites Weyl’s work on the mass-horizon problem (Weyl 1918,
1919). See also Weyl to Einstein, May 19, 1918 (EA 24-036).

26 This very curious story is treated at length in Kerszberg 1989b. Unfortunately,
Kerszberg’s analysis—as in many other parts of his book, see Goenner 1991 —is
problematic. Thus, in the relevant chapter (chapter 4), Kerszberg does not refer to
Einstein 1918, which is analyzed in half a page in the preceding chapter (Kerszberg
1989b, p. 207), nor to Einstein’s criticism of De Sitter, nor to the correspondence be-
tween Einstein and De Sitter. Meanwhile, Kerszberg discusses some crucial points
that have their very origin in Einstein 1918, such as “the physical nature of the mass
horizon” (Kerszberg 1989b, pp. 262-266), and cites the related correspondence
between Einstein and Klein (Kerzsberg 1989b, pp. 266-275).

21 «“Zum mindesten am Horizont miissen sich Massen befinden” (Weyl 1918,
p. 225). This passage was only modified in the fifth edition (Weyl 1923).

2 De Sitter 1918, p. 1309. On this point, see Tipler et al. 1980, p. 100. There is
an error in the date given for De Sitter’s article in virtually all secondary literature.
De Sitter’s “Further Remarks...” (De Sitter 1918) was published in 1918, not in
1917. The error probably stems from a typo in the heading of the article, which
stated that it was communicated in the meeting of April 26, 1917. This should have
been 1918.

2 This point is discussed in Eisenstaedt 1982, pp. 172-173.

30 “cine etwaige Singularitit des Linienelement [kann] nur von dem benutzten
Koordinatensystem herrithren” (Lanczos 1922b, p. 540).

3 The standard form of the homogeneous universe is sometimes called FLRW
(Friedman-Lemaitre-Robertson-Walker) after the main cosmologists who succes-
sively worked out the cosmological solution. The standard and general form of its
line element can be written as

ds? = *de® — R*(r)(dr® + f2(r)(d6* + sin® 0 dg*)),

where f(r) is a function which is sinh r in the elliptical case (k = —1); sin# in the
spherical case (k = +1); and simply r in the Euclidean case (k = 0). See, e.g.,
Ellis 1989, p. 368.

32 These contributions are of two different kinds. Not only did Eddington make
a number of important technical contributions, which I will refer to as we proceed;
he also put forward opinions, ideas, and images having to do with the formation
of physical concepts in his days, i.e., he also much contributed to what I would
like to call the ideology of technical relativity, or the heuristics of the field. For
a discussion of Eddington’s more technical contributions to relativity, see Stachel
1986.

33 In fact, Eddington gave the central idea of Klein’s embedding of the De Sitter
line element (a restriction of two dimensions: the time and the radial coordinate)
without citing Klein and Lanczos (Eddington 1923, p. 164).
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34 This solution was first published by Weyl (1918, pp. 225-226), although his
paper contained an error. In the same year, the solution was independently published
by Kottler (1918, p. 443), and a whole set of spherically symmetric static solutions
with a cosmological constant was published by Bauer (1918). The solution is also
reported in a letter from Wey! to Einstein of May 19, 1918 (EA 24-036).

35 See Eisenstaedt 1989a, pp. 220-221.

3 Eddington’s view is so close to Lanczos’ that one suspects that Eddington
actually read Lanczos 1922a. To be sure, there is no independent evidence for
this suspicion. If the suspicion is correct, Eddington may also have gotten Klein’s
transformation of the De Sitter line element, for which he does not give a reference,
from Lanczos’ paper.

37 See Note 13.

38 Of course, Eddington’s transformation of coordinates is nonregular on and
inside the Schwarzschild singularity; worse, as it is proportional to In(r — m), it is
not even defined for » < m. All of this was not clear to Eddington, who was even
unconscious of having discovered a well-behaved system of coordinates at r = 2m;
see Eisenstaedt 1982, note 82, and Note 13 above. In any case, Eddington was not
the first scientist to discover a regular line element at the place of the Schwarzschild
singularity; as I have shown elsewhere, Paul Painlevé and Allvar Gullstrand also
exhibited such line elements. Of course, like Eddington, Painlevé and Gullstrand
were unaware of having discovered a well-behaved system of coordinates (Eisen-
staedt 1982, pp. 173-179). For more on these technical questions concerning the
Schwarzschild solution, see Rindler 1977, pp. 149-165.

% For biographical information on Georges Lemaitre, see Deprit 1984; Godart
1984; and Kragh 1987, p. 116-117; see also Godart and Heller 1979 and Godart
1992. Deprit 1984 has the best bibliography.

40 It was reprinted in the same year in Publication du Laboratoire d’Astronomie
et de Géodésie de I’ Université de Louvain. Moreover, a short abstract of the paper
was published (Lemaitre 1925b). The paper has been analyzed by several authors;
see Ellis 1989, p. 373; Godart 1992, p. 438; and Kragh 1987,'p. 119.

41 This feature can also be read off from the form of the De Sitter line element
given by Lanczos. Lanczos did not draw attention to it. He only wanted to show
that the De Sitter solution was regular and that the Einstein—Weyl mass-horizon
interpretation was in error. Notice that Lemaitre’s space-time is geodesically in-
complete: only half of the De Sitter hyperboloid is covered. On this point, see Ellis
1989, p. 373.

2 Eddington was of the exact same opinion, and Lemaitre, in fact, quoted from
Eddington here (Eddington 1923, p. 161).

43 Kerszberg has claimed that “Lanczos is the author that has directly influenced
Lemaitre” (Kerszberg 1986, p. 84), a claim contested by Kragh on grounds that it
“seems to lack documentation” (Kragh 1987, p. 135, note 17). I agree with Kragh.
However, as I indicated above, Eddington may well have read Lanczos 1922b, and
Eddington certainly had a big influence on Lemaitre. Moreover, there is a reference
to Lanczos 1922b in Lemaitre 1927b, p. 51.

4 Tipler et al. 1980, p. 103, and elsewhere. The “obscure journal” is Annales
Scientifiques de Bruxelles, published in French. The “obscurity” of the journal —
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and the language!—is sometimes put forward as an explanation of why Lemaltre’s
1927 work “was ignored for several years” (Tipler et al. 1980, p. 103). I certainly
believe there is some truth to that, but one should not forget that Friedman’s articles
were also ignored for years, even though they were published in Annalen der Physik,
as were comments on them by Einstein. I'believe that the neglect of both Friedman’s
and Lemaitre’s papers has more to do with the fashion—in fact, the ideology—in
physics at the time. As always, a paper on a fashionable topic in a fashionable
journal is read, even if it is a bad paper, whereas a good paper on a topic that is not
in vogue may not be read at all. What determines fashion in physics? How does
it develop? These are serious questions. In the case of relativistic cosmology, the
topic became quite fashionable in the late 1930s (for good observational reasons).
Before that time, apart from the Einstein—De Sitter controversy, it was not. Another
factor that may have been responsible for the lack of interest in both Friedman’s
and Lemaitre’s articles is that they dealt with a nonstatic solution, while only static
solutions were deemed to be physically significant at the time. I will come back to
this point below.

45 This paper, like Lemaitre 1925a, has been analyzed by several authors: Ellis
1989, p. 380; Godart 1992, pp. 440-443; and Kragh 1987, pp. 123-125.

46 Eddington as quoted by Ellis 1989, p. 380.

47 Kragh writes: “Tt is remarkable that apparently Lemaitre did nothing to make
his [1927] theory known outside Belgium” (Kragh 1987, p. 136, note 34). I disagree
with Kragh’s assessment. Lemaitre sent copies of his 1927 article to Eddington in
1930, along with a letter. He participated very actively in discussions and meetings.
He had discussions with Einstein on various occasions (in 1927 at the Solvay con-
gress, in 1931 in California, in 1932 and 1933 in Belgium, and in 1935 at Princeton).
He arranged to visit De Sitter in 1928. It also seems that he regularly sent copies of
his articles to his colleagues. For example, I own a reprint of his 1927 article with
an hommage de ’auteur to Elie Cartan. In general, I would say that Lemaitre was
a very dynamic, outspoken, and extroverted scientist. This picture emerges very
clearly, for instance, from Deprit’s biography (Deprit 1984).

4 1 emaitre to Eddington, draft, early 1930 (Lemaitre Archives, Louvain-la-
Neuve). The English is Lemaitre’s, the transcription is mine. Apparently, Lemaitre
met Einstein while he was attending the Fifth Solvay Conference in October 1927.
A. Deprit—who was Lemaitre’s secretary—tells the story in a slightly different
way, but she does not mention her sources (Deprit 1984, p. 371). She probably
quoted from “Rencontres avec A. Einstein,” the transcript of a radio broadcast in
Belgium of April 27, 1957. This is what Lemaitre had to say about this meeting with
Einstein: “After some favorable technical remarks [concerning his 1927 article],
he {Einstein] concluded by saying that from the physical point of view it appeared
to him to be completely abominable” (Lemaitre Archives, Louvain-la-Neuve, my
translation). The reason for quoting Lemaitre’s 1930 recollection of this meeting
with Einstein—which would seem to be more reliable than his recollections nearly
20 years later—is that it indicates that it was not so much Lemaitre’s results that
Einstein found “abominable,” but also Friedman’s results, i.e., more generally, the
existence of nonstatic solutions of his cosmological equations. Einstein would
change his mind (Einstein 1931) after Hubble’s celebrated article (Hubble 1929).
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His extreme reluctance to accept nonstatic solutions before Hubble’s results is still
poorly understood.

49 This is not an exact translation of Lemaitre 1927b. Some interesting comments
on empirical data have been omitted, in particular an analysis of two articles by
Hubble and Stromberg. Moreover, important parts of pages 55-56 in the original,
as well as a paragraph on page 58, are missing in the translation.

50 For a discussion of this work, see Peebles 1980, p. 14.

51 «Eg ist damit eine Grenze der Konzentration gegeben iiber die hinaus eine
Kugel inkompressibler Fliissigkeit nicht existieren kann.” (Schwarzschild 1916,
p- 434).

52 The early history of the Schwarzschild limit is discussed in Eisenstaedt 1989a,
p. 216. The idea is still considered to be respectable; see Misner et al. 1973,
pp. 609-612).

53 Eddington’s problem was introduced in Eddington 1923, p. 121 and p. 169.
In the 1920s, quite a few papers were published on the problem, e.g., Nuyens 1927
and de Donder 1930.

54 Lemaitre 1927a, p. 3. In fact, Lemaitre came to a “paradoxical result,” to put
it in his own words: he showed that when the invariant density is supposed to be
constant, there exists a maximum radius and the pressure remains finite. But what
happens if matter is nevertheless added to the sphere? Schwarzschild’s way to elude
the difficulty in suggesting that “the equations cease to keep their physical meaning”
is of course excluded because the pressure is finite (Lemaitre 1927a, Summary and
p. 27).

55 It was published in French. In fact, only 19 out of the 101 publications by
Lemaitre listed in Godart 1984 were written in English, and those are all from before
the war. -

56 On this issue, see Lemaitre’s contribution to the Schilpp volume (Lemaitre
1949), Einstein’s reply (Einstein 1949, p. 684), and the correspondence between
Lemaitre and Einstein that resulted from these contributions.

57 Initially, Lemaftre introduced a transverse pressure as well.

58 These calculations can be found in Godart 1992, p. 446

39 One may recall that Dingle’s calculations of the Christoffel symbols for a
“line element of considerable generality” would only be published the following
vear (Dingle 1933), and Tolman’s textbook in which Dingle’s calculations were
given two years later (Tolman 1934a, pp. 253-257).

60 “La théorie peut &tre développée de deux fagons différentes: par I’étude de
solutions exactes des équations de la gravitation, fournissant des modeéles simplifiés
ou par le développement approché de la solution de problémes plus complexes. I
nous parait utile de ne pas mélanger ces deux méthodes, et dans ce travail nous
ne nous occuperons que de solutions mathématiquement exactes” (Lemaftre 1932,
p. 51).

61 “la limitation plus sévére du rayon d’une masse donnée introduite par la
solution du probléme intérieur s’évanouit lorsqu’on n’impose pas a la matiére la
condition d’&tre 2 I’état fluide” (Lemaitre 1932, p. 51).

62 “Dans les applications 4 ’univers réel 1a pression est généralement négligeable
vis-2-vis de Ia densité. Dans le cas de I’équilibre nous avons bien d@ en tenir compte,
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puisque I’étude d’une rupture d’équilibre dépend naturellement de forces minimes,
mais pour I’étude de 1’expansion de I’univers et le développement de condensations
au cours de I’expansion, nous pouvons la négliger” (Lemaitre 1932 p. 68).

8 See equations (25), (30), and (31) in Godart 1992, pp. 446-447.

% Temaftre’s article is quoted by Tolman, and Bondi in turn acknowledged
Tolman, so Lemaitre’s priority was never in dispute. The question remains why this
important solution was named after Tolman and Bondi and not after Lemaitre. This
probably has to do with the visibility of the actors: in the 1950s and 1960s, Tolman’s
textbook was still widely used, and Bondi was a well-known active researcher in the
field. Lemaitre was not nearly as well known among general relativists. Relativists
were not that interested in Lemaitre’s general way of doing physical cosmology or
in his primeval atom hypothesis. The Bondi-Gold steady-state theory, on the other
hand, was very much in fashion. The fact that Lemaitre wrote in French may also
have played a role.

We are dealing here with what I would like to call “structural cosmology”: the
study of the geometrical structure of the universe. Lemaitre’s impact in this field
certainly has not been as important as his impact on the field of physical cosmology.
In a well-documented article, Peebles, a leading physical cosmologist, stresses the
importance of Lemaftre’s 1932 paper. “This paper is remarkable for the freshness
and clarity and depth of the ideas,” he writes (Peebles 1984, p. 25). Peebles does
not address the question of why the paper was hardly ever cited at the time.

65 Lemaitre returned to these calculations in two papers he published in 1933 in
the proceedings of the Paris Academy of Science (Lemaitre 1933a, 1933b). Let me
just say that in the following sections Friedman’s equations are integrated with the
help of Weierstrass’s elliptical functions. For a discussion, see Peebles 1984, p. 28.

6 Before Lemaitre, Painlevé, Gullstrand, and Eddington exhibited Schwarzschild
line-elements with no Schwarzschild singularity (see Note 38).

67 «La singularité du champ de Schwarzschild est donc une singularité fictive,
analogue a celle qui se présentait a I’horizon du centre dans la forme originale de
Punivers de De Sitter” (Lemaitre 1932, p. 82).

68 «I es équations de I’univers de Friedman admettent pour une masse non nulle,
des solutions ol le rayon de 'univers tend vers zéro. Ceci est en contradiction
avec le résultat généralement admis qu’une masse donnée ne peut avoir un rayon
plus petit que 2Gm /c?” (Lemaitre 1932, p. 80). In the following section, Lemaitre
would prove that Friedman’s universe can collapse to zero volume and disappear.

% There is no explanatory text in Lemaitre’s paper at this juncture. He simply
continues his calculation. Still, I feel that the reconstruction I have given provides
the underlying structure of his technical argument.

70 In fact, Schwarzschild’s solution in Painlevé’s coordinates is an intermediary
step between Droste’s and Lemaitre’s. It just comes outin the (r, 8, ¢, t) coordinate
system:

26 2G
ds? = (1 _ ——2"1)c2 d? — dr? + 2¢, | 00 dr dt — r2(d6% + sin® 0 dg?).
re rc

Clearly, like Eddington’s, it is a well-behaved system of coordinates except for
r=0.




382 Jean Eisenstaedt

"L For a discussion of Robertson’s ideas and calculations about the Schwarzschild
solution, see Eisenstaedt 1987, chapter 6, entitled “Les silences de Robertson.” The
line element (7) was also published by Narlikar and Karmarkar in 1946. They
called it the “Geodesic Form of Schwarzschild’s External Solution” (Narlikar and
Karmarkar 1946).

72 “Nous nous proposons de montrer que la singularité du champ n’est pas réelle et
provient simplement de ce qu’on a voulu employer des coordonnées pour lesquelles
le champ est statique” (Lemaitre 1932, p. 80).

73 In Misner et al. 1973, for instance, Tolman (1934b) and Datt (1938) are cited
for their “analytic solutions for pressure-free collapse” (Misner et al. 1973, p. 859).
Axelrad (1964) and Pachner (1966) cite Datt 1938. Lemaitre’s 1932 paper is cited
only for its proof of the nonsingular character of the Schwarzschild horizon (Misner
et al. 1973, p. 822). No mention is made of the fact that Lemaftre’s demonstration
was based on the “dust solution.” For an account of the question of the gravitational
collapse based on the Lemaitre solution, see Misner and Sharp 1964, where Bondi
1947 is acknowledged.

74 Synge had essentially developed the idea of geodesic deviation in the context
of Newtonian mechanics. Earlier in 1934, he had written a paper (Synge 1934a)
specifically dealing with geodesic deviation in general relativity; see also Synge
1926.

75 See chapter 5 in Eisenstaedt 1987, entitled “L’impasse (ou les relativistes
ont-ils peur de la chute?).”

76 1t is not cited in Misner et al. 1973, for instance.

77 T will not analyze this important paper here. Synge did include his 1934 paper
in the comprehensive bibliography of his textbook Relativity: The General Theory
(Synge 1960). ]

78 In a short paper (Synge 1949), Synge had also referred to Lemaitre.

7 Synge to Roberison, October 31, 1938, from the Papers of Howard P. Robert-
son, Box 4.47. Inthis letter, Synge invited Robertson to come to Toronto. Robertson
accepted, and it was during this visit that Robertson actually talked to Synge about
Lemaftre’s demonstration. I thank Professor Peter Havas for bringing this letter to
my attention.

8 Concerning this question, see Havas 1989,

81 See Fisenstaedt 1987, chapter 6.

8 Tolman to Oppenheimer, November 9, 1938, from the Papers of Richard
Tolman, Box 3.20. Tolman showed that the interior Schwarzschild solution has the
paradoxical property that the pressure becomes negative when some mass is added
after the Schwarzschild limit has been reached.

83 Tolman cites Lemaitre’s 1932 paper not for its “dust solution” but for its
so-called “layer solution” (Tolman 1939).

8 The gravitational radius is nothing but the Schwarzschild singularity. Op-
penheimer and Snyder still believed that the Schwarzschild singularity was indeed
singular. Evidently, they had not read—and certainly did not cite— Lemaftre 1932.
They simply used Lemaitre’s solution as given by Tolman, who probably was not
interested in Lemaftre’s use of it in showing that the Schwarzschild singularity is
only apparent.



Lemaitre and the Schwarzschild Solution 383

85 Contrary to what is said in Misner et al. 1973, p. 620, Oppenheimer and
Snyder’s model is not homogeneous: the pressure is zero everywhere but the density
is a function of r and ¢. They do use in full Lematfire’s “dust solution.”

86 That is, if we do not count Friedman’s solution.

87 Zwicky and Baade had predicted the existence of neutron stars in Baade and
Zwicky 1934.

8 Tn 1935, Robertson was aware of Lemaitre’s 1932 article. In a letter he wrote
to Lemaitre on July 19, 1935, he asked him to send a reprint of his 1932 article to
Dr. PY. Chou who “recently sent [him] a reprint along the same line” (Lemaftre
Archives, Louvain-la-Neuve). Most likely, this is Chou 1936, which unfortunately
I have not been able to get a copy of so far. I thank Professor Peter Havas for this
reference.

8 See Robertson’s diagram concerning the “trajectories near the Schwarzschild
singularity” (Robertson and Noonan 1968, p. 251); see also Eisenstaedt 1987, p. 333.

% Concerning this concept, see Eisenstaedt 1986, p. 149.

91 1 first made this point in Eisenstaedt 1986, and I developed it in Eisenstaedt
1989c.

9 Quoted in Eisenstaedt 1989c, p. 292.

93 Quoted in Eisenstaedt 1989¢, p. 293.

°4 Tbid.
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E.A. Milne and the
Origins of Modern Cosmology:
An Essential Presence

John Urani and George Gale

1. Introduction

When it is remembered at all, E.A. Milne’s kinematic relativity is remem-
bered as a quirky, even “oddball,” dead-end offshoot of relativistic cosmol-
ogy. This view is mistaken. Not only is it unfair to Milne, it also presents
a completely Whiggish revision of the actual history of early modern cos-
mology. From the moment of its first appearance on the scene, kinematic
relativity was accepted as an alternative to cosmologies based upon the gen-
eral theory of relativity. Moreover, and perhaps more importantly, Milne’s
ability to embed his program in solid philosophical foundations shaped the
form and content of the debate about the nature of cosmology as a science.
His attack upon the “bunkum” of curved and expanding space-time in fa-
vor of operational definitions based upon the primitive experience of the
passage of time constrained the more effusive proposals of others such as
Jeans and Eddington. His vigorous arguments supporting rationalist epis-
temology and hypothetical-deductive methodology created tolerance for
subsequent efforts—steady state cosmology, for example—based upon
these philosophical positions. And, ultimately, his theory that all sciences
developed naturally from inductive empiricism toward free-standing ax-
iomatization forcefully shaped the self-conception of cosmologists about
their own practices.

In addition to these more general, philosophical contributions to modern
cosmology, Milne’s work contributed to one particularly important substan-
tive development: the Robertson—Walker metric. Itis well known that A.G.
‘Walker and H.P. Robertson developed, independently, the space-time met-
ric that bears their pames. What is not so well known is the important role
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played by E.A. Milne in this development. Milne’s influence upon Walker
is direct: Walker was Milue’s student and colleague. As Walker himself
has recently noted,

[With] regard to the so-called Robertson—Walker metric, it was just a
perfectly natural kind of thing when one deals with the ideas of Milne
using, you might say, a complete symmetry in the space. When you have
the kind of group of motions that is required by Milne’s kinematics, the
natural thing is to look at it as a group, a Lie group, and the metric drops
out of it because the Lie group has got a natural metric associated with
it—and that is the Robertson—Walker metric. (Walker 1990)

Robertson’s case is more complicated. Robertson was clearly—and self-
admittedly—attracted by Milne’s methods and philosophical foundations.
Perhaps of equal importance is that Robertson’s mathematical development
of the groundwork of his version of the metric is directly and explicitly
fashioned as a counterpart to Milne’s own development of central themes
in space-time frameworks. Thus, in the cases of both Walker and Robert-
son, Milne’s work provided the point of departure for the genesis of today’s
standard cosmological metric. Analyses of published works, personal cor-
respondence, and interviews will be used to demonstrate these points.

2. Beginnings

Milne had no cosmological theory to begin with. There is no doubt about
that whatever. When the cosmology community gathered on September
29, 1931 to agree that it had reached consensus about what later came to
be called the Big Bang model, Milne attended, but played no role save
that of an astrophysicist (Dingle 1931; Milne 1931). Indeed, it was as
an astrophysicist that Milne had become highly regarded, especially for
his work on the internal constitution of stars (Milne 1929a). So far was
cosmology from Milne’s interest that even in his wide-ranging position
paper “On the Aims of Mathematical Physics” — written for his inaugural as
Rouse Professor of Mathematics at Oxford—not even the slightest whiff of
cosmology was evinced (Milne 1929b). As we shall soon see, astrophysicist
Milne’s interest in cosmology was not to be piqued until seven months after
the September consensus meeting, and then only by an especially singular
event, But in the meantime, a community had coalesced solidly around a
particular version of cosmology.

Modern theoretical cosmology began in 1917, when Einstein proposed
a model based upon his general theory of relativity (GTR), a proposal soon
countered by De Sitter’s competing model (De Sitter 1931a). The problem,
however, was that neither model seemed very likely to have much of a future:
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Einstein’s model predicted that the universe was full but static; De Sitter’s
proposed a universe that was but Pickwickianly “static,” and this solely in
virtue of its emptiness. The observed universe of course was neither full nor
empty. When Hubble announced his red shift findings 12 years later, it was
apparent that something different needed proposing, namely, a solution that
Eddington called intermediate, due to its falling as it must mid-way between
De Sitter’s emptiness and Einstein’s fullness (Eddington 1931). As is now
well known, Lemaitre had described just such a model two years earlier,
in 1927, and had sent it to Eddington, who read it and promptly forgot all
about it (McVittie 1987). In early 1931 an embarrassed Eddington, by now
fully refreshed in memory, announced Lemaitre’s results via a translation
of the paper in question (Lemaftre 1931). The stage was thereby set for the
September 29 special session of the British Association devoted to the topic
“The Evolution of the Universe.” Present at that session were all the main
participants—De Sitter, Dingle, Eddington, Jeans, McCrea, McVittie, and
as noted earlier, Milne. Consensus formed around what came to be called
relativistic cosmology (RC). RC held that the universe began in a static
Einstein state, suffered an indeterminate period of “stagnation,” a state
terminated by one of McCrea and McVittie’s “condensations,” this latter
soon followed by a period of expansion as described by Lemaftre. It was
believed that near its end the universe would enter the De Sitter state, with
galaxies spread out so thinly that a virtual emptiness would result (De Sitter
1931b). )

Involved in accepting RC as the consensus model was implicit accep-
tance of the philosophical commitments of GTR. Metaphysically, GTR was
committed to belief in four-dimensional space-time; and so, thereby, were
the proponents of RC. The general philosophy underlying this relation-
ship might fairly be called theoretical realism, the view that commitment
to a theory implies commitment to the theory’s realities as well. Hence,
since GTR was committed to the reality of a four-dimensional space-time,
four-dimensional space-time is real for anyone committed to GTR. This
metaphysical stance was most certainly the one adopted by all the major
figures on the RC side.!

Epistemologically, the situation was not nearly so clear. Initially, it
seemed to involve commitment at least to a vague sort of inductive em-
piricism. According to this view, successful hypotheses based upon direct
observational evidence are generalized into laws of nature. While their gen-
eral allegiance to this view is evident, it is not terribly clear to what degree
or to what specificity the major figures were committed (De Sitter 1931b:
Dingle 1933; Tolman 1932). Clarity did not enter the epistemological situ-
ation until several years later, when the battle between Milne, Dingle, and
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nearly every other practicing cosmologist was well and truly joined. At
the start it was metaphysics, and metaphysics alone, that awakened Milne
from his astrophysical slumbers, catapulting him against the metaphysical
bulwarks of the RC community.

3. Milne’s Theory

3.1 PHILOSOPHY AND PHYSICS

The strength of these bulwarks was revealed in a loud debate that broke out
in the pages of The Times seven months after the BA meeting, in May 1932
(Jeans 1932). During the exchange, Sir James Jeans took on all comers,
defending with vigor and polemical skill the reality of an expanding, curved,
four-dimensional space-time. Since it was this exchange that catapulted
Milne into cosmology, it is worth looking into in some detail.

3.2 METAPHYSICAL MOTIVATIONS

The exchange began on May 14, when Stephen Coleridge of The Ford,
Chobham, asked

Sir James Jeans says “the Universe is expanding.” What does he mean
by “the Universe”?...Then we are told that space “must necessarily
curve back on itself.” This means nothing unless space is something
quite inconceivable to the human mind. Space being manifestly infinite
cannot curve; a thing without limit can have no shape. . .. “The Universe
is doubling its dimensions once every 1,300,000,000 years.” What is
doubling? Into what is, whatever it is, doubling? (Jeans 1932, May 14,
1932)

Jeans responded in immediately recognizable theoretical realist fashion:

But a flat map of this kind [Mercators projection the earth] does not
correspond to reality. ... Geography tells us that only a curved and finite
representation of the earth’s surface can be true to Nature, and present-
day science conjectures that the same is true of space. Justas we can only
make the countries of the world fit properly together on a globe, so we
can only fit the parts of space properly together in a finite, curved whole.
It is not a matter of common sense or the reverse, but of interpreting
ascertained facts of Nature. (Jeans 1932, May 14, 1932)

On May 23, Jeans replied to yet another sally. This time, his answer
took on a bit of stridency, which perhaps is what ultimately piqued Milne’s
response. Note, in particular, Jeans indictment of common sense. The
respondents, he said,



394 John Urani and George Gale

want to impose the newly discovered properties of space onto an out-of-
date concept of the nature of space which is not flexible enough to receive
them. We must make our views of space conform with the ascertained
properties of space, and not attempt the reverse process. When the
scientific and common sense views clash, the latter must obviously yield
to the former, since science has knowledge of all the facts known to the
man-in-the-street, and a host of others as well. The man-in-the-street
may nevertheless prefer to retain his old common sense view of space;
it will serve for his everyday requirements. (Jeans 1932, May 23, 1932)

Although there are obvious difficulties in understanding precisely what
Jeans here meant by “newly discovered properties of space,” there is no
gainsaying his enthusiasm for the completely up-to-date space of GTR.
Milne read The Times, and, within 10 short days,2 had his own response to
Jeans’ plumping for cosmological modernity: a new, and highly original
theory of relativistic cosmology, motivated in large part by his disagree-
ment with the theoretical realism of Jeans and his RC colleagues.?> Milne
himself was in absolutely no doubt about the philosophical foundations
of his proposal. “I don’t know,” he told his brother Geoff at the time,
“whether you understand how very deep it goes—it destroys at one swoop
much of the recent much-advertised work of Einstein, Jeans & Edding-
ton.” We can only surmise here, of course, that an element of the “recent
much-advertised work” would include Jeans’ letters to the editor. But this
surmise is grounded a bit more firmly as Milne continued his comments to
his brother, leading them directly into philosophical territory. His theory,
he claimed, “gives the only satisfactory (philosophically satisfactory) pic-
ture of the universe & of the content of reality which I am acquainted with”
(Milne 1932b, August 10, 1932; emphasis added). In metaphysical partic-
ulars, he went on to say, his theory “destroys time and space as legitimate
objective conceptions & brings the light of cold reasoning into the fantastic
medleys of thought created by J & E” (Milne 1932b, August 10, 1932).4

Milne first aired his theory at a colloquium at Wadham College, Oxford,
on June 7, 1932. A synopsis of this paper appeared almost immediately in
Nature, July 2, 1932 (Milne, 1932a). Since we will save discussion of the
physical motivations and details of the theory until the next section, at this
point we need only note that Milne led his presentation with an attack upon
the metaphysics of RC and the claim that his theory was simpler.

Milne’s claimed virtues for his new theory go beyond mere simplicity—
it is metaphysically superior: “This common-sense explanation” he asserts,
“has many advantages in addition to that of rendering unnecessary the in-
troduction of a curved ‘space’ and a non-static metric” (Milne 1932a, ibid.,
emphasis added). Milne actually made two important points here. First,
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his new explanation was a common sense explanation, a point directed un-
erringly at the precise target presented by Jeans’ comment that relativity
theory was scientific and not common sense.” Secondly, if Milne’s new
theory “rendered unnecessary” curved space and expanding space, then,
needless to say, there could be no question about their reality. Thus was in-
troduced Milne’s metaphysical minimalism, but his minimalist metaphysics
was not an unprincipled one. Near the end of the brief article, Milne told
why he could not abide the “fantastic medieys” of relativistic space:

We cannot observe space. We observe point-events. . . . It seems best to
avoid the phrase “the structure of space” or of “space-time” and consider
simply the structure of the hyper-complex of world-lines which can be
reconstructed from our observations. (Milne 1932a, p. 10)

Space, as far as Milne was concerned, was not an observational ob-
ject. Point-events are, and from them, “we can recognize the continued
existence of material objects” (Milne 1932a, ibid.). But space is not a ma-
terial object, period. What Milne was introducing into cosmological theory
was a rigorous connection between observation and metaphysical commit-
ments. Rather than the loose connection between commitment to theory
and commitment to metaphysics as evidenced in the theoretical realism of
proponents of RC, Milne wanted to argue that a strict observationalist crite-
rion should precede any metaphysical commitments to, e.g., spaces, times,
or even space-time. Throughout the ensuing debate, Milne was never to
relinquish his hold upon this view.

Although Milne did not go any further to develop his observationalist
criterion, he had discussed it earlier in other places. In one of his first
major papers on stellar interiors, he laid out a rigorous observationalist
metaphysical criterion:

Contemporary physics makes progress by discarding ideas correspond-
ing to quantities which experience shows can never be observed. The
“velocity of a system through the aether” proves to be an “unobserv-
able”; consequently a dynamics must be constructed which avoids this
concept. ... [T]he physical content of the assertion which results from
a piece of mathematico-physical reasoning must be a relation between
observables only. . .. Theory is enriched by being pruned of unnecessary
assumptions. (Milne 1929a)

Geometry, for Milne, was theory. Thus, if a piece of geometrical rea-
soning is to acquire any metaphysical significance, it can do so solely by
being linked to observation, to experience. He said this very precisely in a
letter to Walker written a year or so after his Nature paper appeared:
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You can only get physical results from geometrical formulation of prob-
lems by stating explicitly the bridge relating the geometrical embodiment
to experience. It is essential to start with experience. The general theory
of relativity is capable of criticism in the regard. (Milne 1933-1951)

The strongest and clearest statement in a scientific context of this philo-
sophical point was made in a letter written to Observatory at the same time
as the above to Walker.® Milne started out with the claim that “assignments
of distances, epoches, densities and so on are at bottom all conventions,
and we do not get much further by discussing conventions” (Milne 1934a,
p. 25). So far, no problem; these comments are quite consistent with what
we’ve just seen regarding the link between geometry and physics. Milne
continued on to make an astonishing statement. “But what are independent
of conventions,” he asserted, “are the observed phenomena. Theories differ
simply and solely when their predictions as to phenomena differ” (Milne
1934a, ibid., emphasis added). If this claim were generally accepted as
true, then there would be no possibility for two theories to differ formally.
Clearly, Milne was indicating a breathtakingly strong commitment to ob-
servationalist metaphysics. Just what this commitment came to in practice
was laid out in a few simple, straightforward sentences:

Now what Dr. Hubble, Dr. Shapley, and their co-workers actually ob-
serve may be described as follows. A certain area on a photographic plate
is taken, representing a certain solid angle in the sky, and attention is
fixed on a number of small nebulous patches and their spectra. For each
patch its Doppler shift s and apparent brightness b are measured, and
the patches are counted. . . . Every solution of the cosmological problem,
every world-model, predicts in principle the smoothed-out values to be
expected for f(sy, ¢) for a given patch, and the brightness and distribu-
tion functions b(s, ) and n(s, t) for different patches. Two theories differ
when their predictions of these functions differ. This method of com-
parison avoids all reference to distance-assignments, world-geometry,
schemes of projection or the like. (Milne 1934a, p. 25, emphasis added)

Having forcefully stated his observationalist position, Milne now took
out after his detractors. First came Eddington, Jeans, and their ilk: “The
neo-relativists have been so busy with discussing geometry that they have
overlooked the necessity for discussing what should be observed” (Milne,
1934a, p. 26). Moreover, Milne declared with a certain waspishness, “it
is greatly to be wished that the expounders of all world-models, static or
expanding, would eliminate their differing geometries and reduce them
to statements concerning the observables f(so, t), b(s, t) and n(s, t) ds”
(Milne 1934a, ibid.). Eddington himself comes in for a certain amount of
fire, too: “Sir Arthur Eddington asks me to project. But the boot is on the
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other leg; I have no intention of projecting. The non-Euclidean geome-
ters must state what they expect to observe” (Milne 1934a, ibid.). Milne
concluded with the reminder—as if one were needed—that he wrote the
letter, “not to advocate the kinematic model, but to point out that geometry
is irrelevant in the ultimate comparison of theories, and that comparison
may be and should be made purely in terms of observables” (Milne 1934a,
ibid.).

His heroic interpretation of the relationship between physics—real,
natural-world-based observational physics—and geometry was to haunt
Milne throughout his life. He began his own cosmological research during
the initial explosion of enthusiasm for relativity theory, with its concomitant
exploitation of new geometrical ideas. But Milne never did infer from the
success of GTR its truth. This point is made simply and elegantly by Walker
and Whitrow in their unpublished obituary:

At that time the relativistic models of the expanding universe were still
fairly new, and their success taken to support the belief that the essential
structure of the universe is geometrical—that physics is subordinate to
geometry. This idea, however, contradicted all that Milne had come to
believe about the nature of physical phenomena and the relation between
physics and mathematics. (Walker and Whitrow 1951)

It is clear that Milne’s attack upon RC was based upon an explicit
and deep-seated philosophical position: a metaphysical commitment to the
observable world and to the reality of that world alone. What is now needed
is an explanation of exactly how Milne brought this commitment to fruition
in his cosmological theorizing. We turn now to that topic.

3.3 METAPHYSICS BEGETS PHYSICS

In the first published version of his theory, the June 7 synopsis in Nature,
Milne came directly to the physical point. Although the received cosmol-
ogy accounted for the observations, namely, that “the most distant nebulae
appear to be receding from us, and the velocity of recession is proportional
to the distance,” the theory had certain problems, among the most diffi-
cult of which figure the points “that it has been impossible to explain why
‘space’ is expanding and not contracting” and “that at the present moment
it is impossible to determine the algebraic sign of the curvature of ‘space’”
(Milne 1932a, p. 9). Given these problems, Milne proposed an alternative
explanation:

A much simpler explanation of the facts may be obtained as follows. The

explanation abandons the curvature of space and the notion of expanding

space, and regards the observed motions of distant nebulae as their actual
motions in Euclidean space. (Milne 1932a, ibid.)
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The upshot of Milne’s approach was this: Even as he rejected the curved
space and expanding space concepts arising in relativistic cosmology, he
maintained special relativity as the primary mathematical basis for his “sim-
pler explanation of the facts” of astronomical observation. Making full,
and in fact ingenious, use of special-relativistic methods in constructing re-
lated statistical and hydrodynamic cosmological models, Milne studiously
avoided not only tensor analysis but also covariant notation in most of his
published work. The theory almost immediately came to be known as kine-
matical relativity, a curious label, oddly akin to the use of the misnomer
general relativity to describe Einstein’s theory of gravitation.

Although special relativity was undeniably a cornerstone of Milne’s
mathematical methodology, he also generally avoided speaking of space-
time as a four-dimensional real continuum, preferring to discuss the motion
of matter in Euclidean space. Milne also assailed RC for its claimed use
of global time, but in his own models he routinely used Lorentz trans-
formations that were applied globally to all points in his flat, Lorentzian
space-time. In short, Milne’s cosmology is difficult, even annoying, to
read. This is probably not an attempt to obfuscate but rather a need on
Milne’s part to reiterate and accentuate his rejection of geometric methods
even while, at the same time, he was constructing a practical and accessible
theory. Yet, even given the inherent annoyances in Milne’s presentation, it
is manifestly clear that Milne’s colleagues were simply bowled over, once
the masterful completeness and elegant simplicity of Milne’s constructions
were finally appreciated. a

In its earliest formulation (Milne 1932a), KR was based on two pos-
tulates, the first being the constancy (Lorentz invariance) of the speed of
light. This is tantamount to accepting special relativity fully, which is not
at all unusual given that Milne, by default, had formulated his cosmology
in flat Lorentzian space-time. Milne’s second postulate asserted that two
observers in relative motion should have identical views of the universe
(both local and inferred global views). The notion behind this postulate is
usually described as related to Einstein’s extended principle of relativity
or Robertson’s principle of uniformity (Robertson 1933). A third major
assumption, a postulate for Milne’s statistical cosmology (Milne 1933), is
the constancy along particle world lines (& la Liouville) of the distribution
of points in phase space. This additional restriction was seen by Milne to be
necessary to obtain spatial distributions of particles in his spatially uncon-
fined system. Massive amounts of computation (Milne 1933) led Milne to
the inevitable Boltzmann equation that enforced the necessary phase space
density requirement.

The key element of Milne’s cosmological models is, however, the
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shrewd physical observation that an initially concentrated system of parti-
cles with negligible collision losses and sufficient kinetic energy to over-
come binding (gravitational) forces will naturally sort itself out into a corre-
lated spatial-velocity distribution as (global) time progresses to asymptotic
extremes. The particle swarm will ultimately approach a Hubble-like state:
essentially all velocities are radial, with the faster particles arrayed at greater
distances from the initial concentration according to a distribution r = v/¢
for fixed ¢. Milne noted the variability of the proportionality factor (1/1)
as a significant difference between KR and RC. Milne also noted the clear
time-reversibility of this inevitable sorting phenomenon, while leaving un-
touched the question of the beginning of things as represented by the initial
concentration (Milne 1933).

Having found this highly plausible velocity-sorting mechanism, Milne
then applied the requirement of local Lorentz invariance to the distribution
function, f(u, v, w), of particle velocities at an arbitrary spatial point. Here
u, v, and w are not-too-convenient Cartesian velocity components. Requir-
ing Lorentz invariance of the local particle number f(u, v, w) du dvdw in
an infinitesimal volume dV = du dv dw immediately led Milne distribution
law,

Be

(2 — 42 — v2 — w2)2’

fu,v,w) =

where B is the local particle density at some fixed time. This velocity
distribution function, singular as speeds approach c, indicated to Milne that
the universe could contain objects with speeds approaching the speed of
light. By 1931, apparent recession speeds had already been identified to be
as high as ¢/15 within the known limited viewing range of Mt. Wilson, a
fact that Milne took to be quite encouraging for his model (Milne 1932a).

Following a busy leave of absence at the Einstein Institute at Potsdam
(late fall and winter 1932), Milne published the resuits of extensive work
that he had completed there on statistical and hydrodynamic cosmological
models (Milne 1933). The resulting 95-page tome covered virtually every
aspect of KR. With the exception of some philosophically driven results
having to do with time scales and clock graduations (to be briefly noted in
the final section of this paper), Milne’s later versions of KR did not differ
substantially from that published here. Of particular interest was that both
models led to identical velocity distribution functions, the aforementioned
f(u, v, w), and to the same particle spatial distribution function,

Dt

P=owC 7222’
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with D constant and p = 0 for r > c¢. The particle density distribution
then exhibits a feature in addition to the velocity-sorting mechanism that
produces the Hubble-like velocity—distance relation for any given large
t-value, namely, a clear size for the matter universe.

The surprising singularity of the particle density function as r — ¢t for
¢t > 0, while consistent with the velocity distribution function’s singularity
as speeds approach ¢, immediately raises the suspicion that Milne’s model
might possess a catastrophic Olbers phenomenon. A diverging density at
r = ¢t could imply an infinite radiant flux upon interior points, r < ct, if
the particle density represents luminous matter.

Milne treated this problem with his typical thoroughness (Milne
1933), showing that the divergent particle density was, in fact, more than
compensated for by the Doppler red shift of spectra of any luminous matter
near r = ct, which must then have v — c¢.

Despite Milne’s thoroughness, KR was still somewhat susceptible to
questions concerning the specific role of gravity in the dynamics of the
mafter in the universe. These questions were to be addressed by Milne and
many others over the next several years, e.g., Dingle 1933; Kermack and
McCrea 1933; McVittie 1933; Robertson 1933; and McCrea and Milne
1934, to cite only a very few. The attention that KR received was truly
remarkable. Milne’s initial formulation of a kinematical theory of cosmol-
ogy must be considered as spectacular for both its physical insight and its
comprehensive mathematical formulation. Even more significant was its
immediate inspirational effect on the cosmological community, influencing
the work of McCrea (Kermack and McCrea 1933), McVittie (1933), and
especially the foundational work by Walker (1937) and Robertson (1935).
We turn now to discussion of this reception of KR,

4. Reception of Kinematic Relativity

Milne introduced his theory in June of 1932. During the next eight years, 70
papers related to the theory in one way or another were published in physics,
mathematics, and philosophy journals. This constitutes the vast majority
of cosmologically oriented papers published during the period. Probably
the major reason underlying the strength of this response to Milne lies in
the fact that his proposals were not simply physical ones, but rather were
physical proposals presented in conjunction with a full-blown philosophy:
metaphysics, epistemology, and philosophy of science. Hence, in order
to understand the reception of Milne’s theory correctly, we must neces-
sarily understand not only the reception of its physical aspects but of its
philosophical aspects as well. We begin with the former.
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4.1 RECEPTION OF KR’S PHYSICAL ASPECTS

From the very first, Milne’s theory was taken seriously. Most perceived it
as an ingenious rival to RC. McVittie’s comments are typical. Following
his judgment that “the basic idea of this theory is both simple and ele-
gant,” McVittie goes on to note the difficulty of choosing between the rival
theories:

Both theories are in accordance with observation and it seems impossible
to decide definitely for or against either so long as the phenomenon of
the recession of the nebulae, in isolation from all other phenomena, is
to be the only criterion. (McVittie 1933, p. 534)

Whittaker, after remarking that Milne’s “working out of the new concepts
has the unmistakable stamp of originality and power,” concludes that “the
cleavage between relativistic cosmology and kinematical relativity is fun-
damental” (Whittaker, 1935, p. 180). Dingle, who responded along with
Robertson to Milne’s first extended presentation of the theory (Milne 1933),
was no less positive:

In a recent number of Zeit. fiir Astrophysik, there appeared an exceed-
ingly ingenious paper by Professor Milne.... [W]e can hardly avoid
regarding it as an alternative theory [to RC,] .. . the article is therefore of
fundamental importance and demands careful and critical examination.”
(Dingle 1933, p. 167)

Robertson’s response was more complicated. In the first place, he
did not view Milne’s theory as an alternative to RC. Rather, he claimed,
either Milne’s theory was the “kinematical preliminary to the dynamical
problem. .. completely solved [by RC]” oritis a

special case of the alternate theory in which the influence of matter on
the structure of the universe is considered negligible. The gravitational
extension of Milne’s solution. from this latter point of view, leads to
an expanding universe which differs inappreciably from it, unless the
density of all matter in the universe exceeds Hubble’s lower limit by at
least a hundred-fold. (Robertson 1933, p. 153)

Robertson was never to swerve from this interpretation of the purely phys-
ical aspects of KR; he quite simply found them unattractive. Another
aspect of Milne’s work caught Robertson’s eye right from the start, how-
ever, generating an interest that was to deepen over the next two years,
eventually leading him to produce his version of what we now know as the
Robertson-Walker metric. The aspect of Milne’s work Robertson found
attractive was the use of purely operational methods to define theoretical
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primitives, whereby Milne satisfied his metaphysical desires to avoid un-
observable entities in theorizing. We shall examine this part of the story in
the next section.

Yet, even though Milne’s theory received a generally widespread wel-
come, not everything was rosy. A major difficulty nearly everyone con-
fronted while trying to assess KR involved its mathematical expression. As
we saw earlier, Milne had refused to frame his theory in the usual differ-
ential geometric form, choosing instead to stick to algebra. This irritated
his colieagues no little bit, with the result that they refused essentially en
masse to respect Milne’s decision to avoid geometry.” In nearly every dis-
cussion of KR, the first move was to attempt to translate Milne’s algebra
into some sort of geometrical analogue. Often the result of this translation
was the conclusion that KR was equivalent to an RC model with k = —1
(cf., for example, Kermack and McCrea 1933 and Walker 1935).19 Some-
times, however, more intriguing possibilities were suggested, as when first
Walker and then Hosokawa suggested that KR exhibited Finslerian geom-
etry (Walker 1934, 1935; Hosckawa 1938).

As these examples show, despite the generally positive tone, a major
theme in the reception of KR’s physical aspects was the difficulty of de-
ciding, in the very first place, how it was to be assessed. Eddington’s
comments sum up the case well: “Most of his critics have occupied them-
selves with the question, not whether Milne’s theory is right, but whether it
differs from current relativity cosmology” (Eddington 1935, p. 635). Some
aspects of Milne’s proposals. received a much less ambiguous reception:
most, Robertson and Walker in particular, found Milne’s operationalism
attractive.

4.2 RECEPTION OF KR’S OPERATIONALISM

Although Milne had argued in favor of the operational definition of theoret-
ical primitives in his earliest papers, it was not until his article Milne 1934b
that he worked out in full detail how the procedure would work. Inter-
estingly enough, the procedure was presented in an essay entitled “Some
Points in the Philosophy of Physics: Time, Evolution, and Creation,” pub-
lished in the journal Philosophy. In exquisite detail Milne described how
an observer, starting simply from his own “definite temporal experience”
of before and after, may build up the operations necessary to carry out
cosmological observations. Equipment used in the procedure consists of
some arbitrarily running clock, whose only function is to put the sequence
of events at the observer in association with the real numbers, and some
sort of signaling device.!! The signalling device acts as an “echo-locator,”
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whose pulse—light or otherwise—is timed at its moments of origin and
echo-reception.'? Dingle’s later description and assessment of this aspect
of KR provides a useful summary of the situation:

kinematical relativity rests on the postulate that the whole of physical
law must be deducible from the characteristics of our awareness of the
passage of time; accordingly, the only measuring instruments to be used
are clocks.... Distances as well as times are measurable in terms of
the same clock readings. On this simple basis Milne constructed a
highly elaborate system of cosmology expressed primarily in purely
mathematical terms. This was a magnificent achievement. (Dingle
1951)

It was Robertson, however, who was {o pay the first tribute to Milne’s
inspiration.

4.3 ROBERTSON—WALKER METRIC

4.3.1 Robertson’s operational inspiration. Robertson’s first close contact
with Milne’s system occurred during the winter of 1933. In early No-
vember of 1932, Milne had submitted his first extended description of his
theory and its philosophical context to Zeir. fiir Astrophysik. The article,
a 95-page opus entitled “World-Structure and the Expansion of the Uni-
verse,” was published the following July (Milne 1933); Robertson’s reply
appeared in the next number of ZfA (Robertson 1933).!3 Robertson’s re-
sponse to Milne’s theory, as we have already seen, focused for the most part
on showing that KR was no rival to RC but more like a special case of it.
Other efforts included analysis of Milne’s “extended” principle of relativity
(which will be discussed below), and repulsing Milne’s attacks on the or-
thodox RC metaphysics of expanding and curved real space. Conspicuous
by its absence is any mention—on either man’s part—of operationalist
procedures. Milne had not coupled his critique of real space to any re-
placement; Robertson hadn’t commented on the fact. At the time of his
next interaction with Milne’s theory, however, Robertson not only com-
mented upon Milne’s operationalism, he adopted it. And in so doing, he
produced the work he is remembered for.

In a remarkable series of three papers entitled “Kinematics and World
Structure” (Robertson 1935, 1936d, 1936¢), Robertson responded to
Milne’s issuing “a challenge which cannot be ignored,” namely, determin-
ing “to what extent, then, must a strictly operational attack on the problem,
with the aid of the ‘cosmological principle,” necessarily lead to Milne’s
conclusion?” (Robertson 1936b, pp. 65-66). Robertson’s goal in the three
papers was stated succinctly: “We propose to analyze the general prob-
lem ab initio, using the operational methodology throughout and avoiding
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what Milne chooses to call the ‘conceptual terms’ of the general theory of
relativity” (Robertson, 1935, p. 287).! The operational methodology was
straight from Milne: nebulae were replaced by “fundamental particle ob-
servers,” each of whom would be “equipped with a clock, a theodolite, and
apparatus for sending and receiving light-signals—these latter considered
as corpuscular impulses” (Robertson 1935, p. 285). According to Milne’s
procedure, “briefly stated, the operational viewpoint restricts the observa-
tions of each of these fundamental observers to such as can be made on
events on his own world-line with the aid of these instruments” (Robertson
1935, ibid.).

But not only had Milne set Robertson the general challenge “of deter-
mining the most general kinematical background suitable for an idealized
universe in which the cosmological principle! holds,” he had set him an-
other, quite specific task. Robertson introduced the task by noting that
Milne had initiated “a promising attack on the problem of collinear ob-
servers suffering relative acceleration,” but failed “to extend the results
there obtained to the full three-dimensional problem” (Robertson 1936b,
p. 61). Having said this, Robertson now issues the fateful promissory note:

As Thope to show elsewhere in this Journal, Milne’s failure to obtain the
solution of the problem in which the observers are relatively accelerated
is attributable to his imposition of restrictions foreign to the general
nature of the prograrn, and that on avoiding them one is led directly to
the invariant theory of that general line element on which the general
relativistic theory of cosmology is based. (Robertson 1936b, p. 62)!5

Robertson here identified the most significant weakness that Milne’s KR
embodies in trying to be a comprehensive theory of “world structure.” De-
spite Milne’s insistence that his theory was grounded solely in empirical
methodology, we must infer that by “world structure” Milne meant a self-
evident topology for the universe (three-dimensional real space with a time
axis adjoined), a geometry of the universe (flat Lorentzian geometry), an
obvious invariance group for that geometry (the proper Lorentz group ap-
plied on a global basis) along with physically motivated “principles” such
as a cosmological principle and a Hubble expansion principle.

Milne’s immediate embracing of the above bedrock mathematical as-
sumptions, which to him seemed obvious or at least more sensible than
some general Lorentzian manifold structure of relativistic cosmology, in
fact deprived the theory of sufficient tools to enforce consistency between
its mathematical foundations and its physical assumptions and predictions.
It is most likely that this is the point Robertson made above when he at-
tributed Milne’s failare to solve the problem of accelerated observers to
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“his imposition of restrictions foreign to the general nature of the program”
{Robertson 1936b, p. 62). Robertson’s first move was to avoid them,

Milne’s use of global Cartesian coordinates, and Lorentz transforma-
tions thereof, made it essentially impossible for him to deal consistently
with arbitrarily moving observers. Yet, as Robertson pointed out (Robert-
son 1936b), in the end Milne was able to make at least a certain amount of
headway in treating collinear observers with relative accelerations. Milne
recognized that for a pair (or discrete array) of such observers, general
invertible (nonlinear) coordinate transformations were necessary in order
to enforce a cosmological principle. In fact, a group structure was im-
plied for the transformation functions relating observations made by pairs
of observers. Milne’s immediate difficulty was that of trying to impose
Lorentz invariance on a coordinate-based speed of light, a property he was
potentially willing to abandon. Robertson and Walker, on the other hand,
since each was firmly committed to a differential-geometric formulation of
cosmology, were both able to see that the key to a consistent treatment of
accelerating observers, especially within the context of a cosmological the-
ory with a “uniformity” requirement, was to relax Milne’s global Lorentz
transformation requirements.

Robertson, the consummate general relativist, exploited Milne’s col-
linear observers’ group requirements. He passed to a continuum of ob-
servers, thereby inducing a Lie group structure on the operationally based
transformation functions between the observers. He then showed that sim-
ple local generator properties (forcing isotropy), in league with Milne’s
cosmological principle (forcing homogeneity), together mandated, via the
Helmholtz-Lie theorem, that his (Robertson’s) space-time carry a local
metric structure of constant spatial curvature. (In this case, since scalar cur-
vature equals sectional curvature, no confusion results concerning which
curvature is intended.) The great power of Robertson’s general mathemat-
ical arguments is evident in his masterful derivation of the metric form
with which his name came to be associated. What has hardly been ap-
preciated to this point is that the original spark of interest in kinematical
methodology-—which inevitably led to their independent discovery of the
metric-—was kindled in Robertson and in Walker by the foundational work
of Milne. Robertson’s familiarity with the work of Milne was strictly
through the professional literature, which makes Robertson’s inspiration
by Milne’s writings all the more surprising since Milne’s published work
was so generally difficult to endure by those who had embraced the newer
tensor methods.

As we shall see shortly, Milne, through personal contact as well as
professional collaboration, had a profound influence on Walker’s work in
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cosmology and in the general treatment of observers. This influence, we
shall find, was even more significant and productive in Walker’s case than
it had proved to be in Robertson’s.

4.3.2 Walker’s personal inspiration. A.G. Walker first encountered Milne
during his last spring as an Oxford undergraduate, in 1931, when he took
one of Milne’s seminars. The following autumn, Walker went to work on his
Ph.D. under Whittaker. From Whittaker he received a thorough grounding
in mathematics and relativity, especially in differential geometry (Walker
1990). Walker soon proved to be quite a talent. Even though he was just
a young research student, Walker’s physical sophistication and mathemat-
ical depth were amply displayed in his first publication, a discussion of
general relativistic observers (Walker, 1932). In that paper, the problem of
assigning coordinates to events in some open tubular neighborhood of an
arbitrary observer moving along a smooth time-like curve is treated using
orthonormal tetrads along with their associated (frame-bundle) connection,.
This work is among the first in the mathematical physics literature to em-
ploy Cartan moving-frame methods. Later work in this area, in which
he generalized Milne’s kinematical methods to general relativity (Walker
1940), led Walker to ideas that anticipated the subsequent efforts by many
others on the treatment of torsional space-times. Because of this antici-
pation, Walker’s name came to be associated with what we now call the
Fermi—Walker transport formalism. But all of this lay in the future.

Walker finished his thesis in early 1933. Then, in late spring, he decided
to return to Oxford and work with Milne. Milne was only too pleased to
* acquire the cooperation of such a talented young mathematician:

I have a number of potential ideas on gravitation which I do not know
how to work out, and on which your own thinking would be valuable.
There are firstly a number of problems arising out of my paper [most
probably this is Milne 1933]—though I have of course gone a good way
lately with some of them. Still there are many left over.... I am no
expert on differential geometry, but I saw your thesis and admired it.
(Milne 1933-1951, June 12, 1933)!7

Walker went that autumn to Oxford, where, in addition to working
further on topics from his thesis, he began a long-term, comprehensive in-
vestigation of KR and its implications for generally relativistic observers
and-cosmological models. Notably, and probably in deference to Milne,
essentially all of Walker’s published work on KR is in Cartesian coor-
dinate notation,'® thereby avoiding the overt appearance of grafting KR
onto generally relativistic cosmology but, without doubt, at the same time
accomplishing the task.
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An example of Walker’s investigation of some of the intrinsic properties
of KR is found in a 1934 paper (Walker 1934) on least actionin KR. Walker
began the discussion with a restatement of one of Milne’s fundamental
proposals, namely, that the theoretician began his work in the face of a
choice. According to this view, one may either first specify a geometry and
subsequently infer the physics intrinsic to that geometry, or alternatively
one may first specify physical laws and subsequently determine within
which geometric setting(s) such laws would consistently reside. Walker
argued that Milne’s KR represents an example of the first option, while GR
represents an example of the second.

After this beginning discussion, Walker, again following Milne, then
reiterated the possibilities for constructing particle equations of motion:

(1) Modify the intrinsic line element ds, thereby altering the implied ge-
ometry and adopting the new line element as the integrand in a sta-
tionary integral for particle trajectories;

(2) Retain the intrinsic geometrical line element ds, but use a weighted
action integral integrand, W ds, to obtain particle trajectories.

Attributing the first choice to general relativity, Walker then pursued the
second possibility in a KR setting and inferred that such a structure implied
an underlying Finsler'® basis for the basic Lorentzian (Gaussian) geometry
of Milne’s KR. Soon afterward, in January of 1935, Walker published his
first investigations of the formal comparison of KR and generally relativis-
tic cosmology (Walker 1935). Here Walker considered the gravitational
properties that Milne’s fundamental particle congruence must have when
embedded in a general-relativistic metric formalism with an appended cos-
mological principle. Relying solely upon Milne’s idealized operational
method of local time-keeping for distance assignments, Walker found that
only the £ = —1, open homogeneous isotropic universes, were consistent
with both Milne’s particle distribution and his use of global Lorentz trans-
formations. Walker also found that a global time variable must exist in the
general setting in order for the chronological operationalism of KR to be
implemented. Milne adamantly denied that KR implied a basic, underly-
ing global measurable time. The saving qualifier, of course, was the term
“measurable,” this because special relativity in flat' R* possesses a global
time variable as an example of a stably causal Lorentzian manifold.
While the aforementioned papers by Walker constitute, on their own,
an impressive body of work in special and general relativity, the paper that
caused Walker’s name to be permanently affixed to the important class
of cosmological space-times of constant spatial curvature (the Robertson—
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Walker cases) was yet to come. This paper was entitled “On Milne’s Theory
of World Structure” (Walker 1936).

Walker had largely completed his work on the implications of Milne’s
operationalism for generally relativistic cosmologies satisfying a cosmo-
logical principle, which constituted the groundwork for this paper, by the
summer of 1935. He had in fact lectured on various aspects of the subject
on several occasions some time before Robertson’s parallel work apply-
ing Milne’s kinematical methods appeared in a three-part series during late
1935 and early 1936 (Robertson 1936¢, 1936d, 1935). At Milne’s urging,
Walker presented his results in several stages of development, the ultimate
presentation occurring before the London Mathematical Society in June of
1935; the Society’s Proceedings appeared early in 1936.2

Walker’s approach was to generalize Milne’s arguments and kinematical
methods to determine the requirements that a fully relativistic cosmological
metric must satisfy to support a cosmological principle. Realizing that
Milne’s global Lorentz transformations could not generally be applied in
general relativity, Walker, like Robertson, made extensive use of local (Lie)
groups of motions, both translational and rotational (on level 3-surfaces of
a global time function). The requirements of isotropy and homogeneity on
level time surfaces produced Killing equations which, taken together with
null geodesic requirements adapted from Milne’s time-keeping methods of
distance measurement, restricted the metric on the space-time to be of the
Robertson—-Walker form.

In addition, Walker demonstrated the consistency of an isotropy crite-
rion coupled with a cosmological principle and a least-action principle for
the fundamental particles of such a theory. Finally, Walker showed that
Milne’s fundamental particle distributions were consistently classified as
k = —1 space-times because the least-action principle implied for such
cases does not necessarily lead to gravitational geodesic equations.

4.4 OUTCOMES

Walker was to continue his work with Milne for several more years, ever
remaining a staunch defender of his inspirational mentor and life-long
friend.?! Robertson, on the other hand, never again wrote about the kine-
matical aspects of cosmology.?? Yet the two men, each in his own way
inspired by Milne, will be forever linked by the space-time they separately
found together.

5. The Reception Sours: Philosophical Controversy

Milne’s book appeared in 1935. In substance, the book represented not
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much that was new; rather, ideas expressed in his earlier papers merely
received fuller, and in some cases sharper, expression. During the long
run-up to the book’s appearance, however, an idea occurred to Milne that
was to shape his thoughts, and their reception, throughout the rest of his
life. Unfortunately, it is this idea and its consequences that have endured
until today, altering, indeed, destructively deforming, the opinion we hold
of him and his work. This idea was new to Milne. As he notes to Chandra,
“I have not developed these ideas in the book—they have only occurred
to me since I finished it” (Milne and Chandrasekhar 1929, September 27,
1934). Two weeks earlier, as the idea first occurred to him, he had written
to Walker, “I begin now to see that my theory is an approach to the ideal
of deducing so-called laws of nature without any appeal to experience
whatever—merely the embodiment of the compatibility or self-consistency
of different observations by different observers of the same phenomena.”
Then, prophetically, he goes on to say, “I shall develop this idea later in some
lecture or another” (Milne 1933-1951, September 12, 1934). The “some
lecture or another” soon became a series of paragraphs, then a paper, several
papers, a huge controversy, and in the end a virtual obsession, separating
Milne from his colleagues and their now flourishing research program in
cosmology. Yet, although we must say that, for Milne, on the whole,
the results of his obsession were negative, it would be unfair to leave it
there, for it is also true that at least some consequences of cosmological
practice at large were quite positive.? Details of the situation are so rich,
and the historical dynamic so complex, that it would be quite impossible
to attempt anything other than a cursory survey here. Even such a survey
provides insight into the richness of the situation, however. As always, it is
Milne’s complicated admixture of physics and philosophy that generates the
problem. We have already noted the role played in KR’s earlier reception
by some of the physical virtues of Milne’s KR scheme as begot by his
philosophical drive toward metaphysical minimalism and its operationalist
manifestation. KR'’s later reception, on the other hand, was driven by
yet another kind of philosophical drive, namely, Milne’s penchant for a
mathematician’s epistemology—methodology.

5.1 MILNE’S EPISTEMOLOGY—METHODOLOGY:
Axioms, MODELS, DEDUCTIONS, AND EXPERIENCE -

Milne’s new idea was a polymerization of previously disconnected strands
of his thought. The first strand was axiomatization. From his earliest
days, Milne had been committed to the goal that physics, including astro-
physics and cosmology, should become an axiomatized theory.>* Appar-
ently, this commitment derived from an early reading of Whitehead and
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Russell (Crowther 1970, p. 12). Taken by itself, this commitment would
be quite uncontroversial. The second of Milne’s early commitments, how-
ever, was controversial, at least among his astrophysical-cosmological col-
leagues. Milne believed strongly, unswervingly, in a particular mode of do-
ing theoretical physics, a mode we today would call hypothetico-deductive.
He described his belief—three years prior to his KR proposal-—in no un-
certain terms:

It is the prime business, then, of theoretical astrophysics to suggest not
one hypothesis in any given field, but many. The duty of the theoretical
astrophysicist is to construct models, and rigorously infer their proper-
ties. ... The peculiar contribution [that] the theoretical astrophysicist can
make to his science is a set of models constructed on as many different
plans as he can conceive, with a corresponding set of consequences. It
is of little importance in the first instance whether the models reproduce
nature or not. (Milne 1929b, p. 26)

Models thus generated are to be tested against the facts. In contrast to
his colleagues, whom Milne disparaged as Baconian inductivists, facts are
used to test theoretical models, not to generate them: “What are large
collections of facts for? To make theories from, says Bacon; to try ready-
made theories by, says the history of discovery” (Milne 1935, pp. 125-126).
Milne believed that there were essentially no constraints upon the creativity
of the theoretician imagining models; since, ultimately, the consequences
of the models would be compared to observable facts, and constraint would
enter only at a late stage of the process (Milne 1929b, p. 19).

The third philosophical strand leading to Milne’s new idea can only be
called rationalism, that is, the view that the source of theoretical concepts
is within the mind, as opposed to within experience. Clearly, Milne’s view
on this developed in counterpoint to his hypothetico-deductivism. If, as he
believed, the theoretician was unconstrained in his creation of models, then
pure reason could serve as a source of models. Milne stated his view in
no uncertain terms: “It is, in fact, possible to derive the laws of dynamics
rationally . . . without recourse to experience” (Milne 1937, p. 324).

In the end the three philosophical strands—axiomatization, hypothet-
ico-deductivism, and rationalism—came together in a coherent view of
theory construction, a view that Milne vigorously opposed to the views of
his colleagues:

Now the methods of theoretical physics seem to be reducible to two
species, the method of starting with concepts and the method of start-
ing with things observed.... When a subject is developed from con-
cepts the concepts play the part of the terms occurring in the axioms
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of geometry. ... The concepts are undefined save as being governed by
propositions of which they are subjects. (Milne 1934b, p. 19)

The concepts themselves, the sources of the axioms, come from intuitive
ideas:

That is, in short, to use only such brute facts, such irreducible facts,
as are of the intuitive sort or do not rest on the questionable principle
of induction, and thus to appeal to no empirical “laws of nature” of a
quantitative kind. (Milne 1940, p. 132)

Milne’s cosmological principle was an instance of such an “irreducible
fact.” Any observer, Milne believed, must observe exactly the same uni-
verse. Moreover, any observer must begin, according to the operationalist
metaphysics, with his own internal sense of the passage of time. From these
two “facts,” all the rest—KR—followed. Milne described his first real-
ization of the consequences of his new synthesis of the three philosophical
strands in a letter to Chandra. “I believe,” he said, “I have established kine-
matic theorems of the same validity as the theorems of pure geometry. The
only appeal to experience is the existence of a temporal sequence for the
individual, necessary in order to introduce time” (Milne and Chandrasekhar
1928, September 27, 1934). On the basis of this experience is constructed
the first set of axioms describing a model universe, which is then compared
with the facts. Purther work should result in a reduction of the number
of axioms. This, according to Milne, is the normal process of science, a
process that, in the end, raises a fascinating question:

The tendency of all scientific theory is to reduce the axiomatic basis,
to deduce more and more phenomena from fewer and fewer statements
of general principles. When will this process stop? Can we reduce the
axiomatic basis to zero? My work strongly suggests that we can. ...
(Milne and Chandrasekhar 1929, September 27, 1934)

Here we see expressed the ultimate Holy Grail of rationalism: to generate
a theory of the universe from the merest wisp of formal requirements, to
show that “laws of nature are. .. but inevitable general relations following
from the condition of the compatible observation by different observers”
(Milne and Chandrasekhar 1929, September 27, 1934). Similarly, as Milne
wrote to his brother Geoff, “I have to explain how probably all ‘laws of
nature’ are not fiats, but the conditions of creation itself” (Milne 1932b,
April 10,1936).

Milne’s colleagues reacted violently to his new philosophy, especially
to his postulation of the cosmological principle. He was surprised at the
fuss: although “this was the most natural condition in the world to impose,”
he was “still amazed at the outcry it caused” (Milne 1944, p. 128). It
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seemed to him completely intuitive that there was only one universe, and
that all systems of observations of it must be compatible. Moreover, having
granted this, and the deductive consequences which follow, “their study and
subsequent comparison with the world of nature was a perfectly legitimate
procedure” (Milne, 1944, p. 128). Yet, because of this, “I was accused of
abandoning the scientific method, of imposing a form on the world” (Milne
1944, p. 128).

Dingle led the opposition. The major bout occurred as an exchange in
the pages of Nature and ultimately involved essentially all the first-ranked
scientists in England. From his firstencounter with KR, Dingle had objected
to Milne’s hypothetico-deductivism and presagings of rationalism. Milne’s
cosmological principle, Dingle held, got things wrong right from the start.
There is, he said, a

fundamental distinction between Milne’s principle and the generally ac-
knowledged principles of world structure, such as the principle of rela-
tivity and the laws of thermodynamics; namely, that the former [Milne’s
principle] requires the events of nature to conform to it, whereas the
latter are abstractions which are true (or false) whatever the events of
nature are. (Dingle, 1933, p. 178)

Science, good science, legitimate science, according to Dingle, begins with
observations and only later, much later, is abstracted into a law or principle
of world structure.?> Milne’s hypothetico-deductivism not only got things
the wrong way around, it violated scientific method:

The spirit of relativity is simply a reaffirmation of Newton’s principle
of induction from phenomena.... Milne approaches the problems of
physics in precisely the opposite way. He starts, not with phenomena, but
with a hypothetical smoothed-out universe which must obey an arbitrary
principle. ... It would seem that the general course of Milne’s theory is
at variance with the fundamental principles of scientific method. (Dingle
1933, p. 178)

Dingle’s view on this question never changed in content, but the tone
became more strident. Inhis 1937 Nature article “Modern Aristotelianism,”
Dingle sallied forth once more from his bastion within inductive empiri-
cism. According to him, 17th century science held that “the first step in
the study of Nature should be sense observation, no general principles be-
ing admitted which are not derived by induction therefrom” (Dingle 1937,
p. 784). Opposed to this was “Aristotelianism . . . the doctrine that Nature
is the visible working-out of general principles known to the human mind
apart from sense perception.” Although Dingle obviously confused Aris-
totle with Descartes, his point is clear enough: Milne, and other moderns
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" of his ilk such as Eddington and Dirac, were, as he later said, “traitors” to
the virtues of the Galilean scientific method (Dingle 1937, p. 385). The
issue is sharply defined: “The issue between Galileans and Aristotelians
is still sharply defined: . .. Should we deduce particular conclusions from a
priori general principles or derive general principles from observations?”
Milne, especially, is guilty of creating, via his cosmological principle, an
imaginary world. But

the position must not be misunderstood. We are not dealing here with le-
gitimate imagination transcending the temporary limits of exact demon-
stration. ... Instead of the induction of principles from phenomena we
are given a pseudoscience of invertebrate cosmythology. (Dingle 1937,
p. 786)

In the end, Dingle concludes, “the question presented to us now is whether
the foundation of science shall be observation or invention.”

Dingle’s polemic ignited an instant outburst of clangor. Indeed, the
outburst was so immediate, so vigorous, and so widespread, that Nature
had no recourse but to publish an entire supplement to contain the response
(Milne et al. 1937). Virtually the entire population of first-rank British
scientists joined the battle over the philosophical credentials of induction
vs. deduction, of empiricism vs. rationalism. In general, it is safe to say
that the result of this debate was a breaching of the dogmatic foundations
enshrining inductive empiricism as a basis for cosmology. Ten years later,
Bondi and the other steady-staters were to capitalize on this point (Bondi
1948).

6. Conclusion

Modern cosmology’s first decade was marked by a curious mix of confident
success and vigorous debate. In a fashion often seen during the initial events
of a new science’s emergence, the controversial elements of modern cos-
mology’s genesis exhibit a distinct philosophical tone. For the most part,
E.A.Milne’s determined commitment to operational metaphysics, ratio-
nalist epistemology, and a hypothetico-deductive, axiomatic methodology
both drove the debate and shaped its eventual outcome. Chandra, in an
appraisal given many decades later, justly summed up Milne’s contribution
to these formative years (Chandrasekhar 1990). Milne, he noted, demon-
strated clearly that RC was not necessarily the only theory that could explain
the cosmological observations. This fact alone would be worthy of our re-
spect. Yet this was by no means his only contribution. Of perhaps equal
value was his devising a simple kinematic model capable of representing
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the basic details of the expanding system of nebulae. Milne’s model will
always remain a basic element of expanding universe theories. Even more,
as we hope our account demonstrates, we must admit our debt to Milne as
one who inspired others, particularly Robertson and Walker, in their own
contributions to our present outlock on the universe.

NoOTES

! Besides himself, Whittaker includes in this group “Einstein, De Sitter, Fried-
man, Lemaitre, Weyl, Eddington, Robertson and others” (Whittaker 1935, p. 179).

2 During which, as he remarked to his brother Geoff, “I was definitely visited by
10 days of inspiration—it was like the flinging aside of a curtain” (Milne 1932b,
August 10,1932).

3 Walker and Whitrow, in their unpublished obituary, clearly note, first, that Milne
came late to cosmology, and, second, that it was the stimulus of Jeans’ exchange
that had done it: “It was however, not until early in May, 1932, that Milne was
provoked and stimulated by letters, published in The Times, on the subject of the
curvature of space” (Walker and Whitrow 1951).

4 The letter’s context (and orthographic style) strongly suggest that “J & E” here
refers to Jeans and Eddington, whom Milne quite often ran together with only the
“&” to keep them apart.

3 Jeans states: “when the scientific and commonsense views clash, the latter must
obviously yield to the former, since science has knowledge of all the facts known
to the man-in-the-street, and a host of others as well. The man-in-the-street may
nevertheless prefer to retain his old commonsense view of space; it will serve for
his everyday requirements” (Jeans 1932, May23, 1932). According to the criteria
Jeans gives here, Milne is not only a “man-in-the-street,” but also one who attempts
to serve his everyday requirements and those of the most contemporary science as
welll

6 As will be evident, Milne’s statements in this letter are particularly hard-nosed
and uncompromising. We think that this severity can be accounted for simply by
noticing that Milne is responding to some of Eddington’s criticism of an earlier
Milne R.A.S. presentation, criticism to which Milne had had “no opportunity of
replying” at the time (Milne 1934a, p. 24).

7 One obvious explanation for this astonishing view is tied directly to Milne’s
hypothetico-deductivism. Although we will save major discussion of his methodol-
ogy until a later section of this essay, it is useful to note here that Milne simply didn’t
care about the truth or falsity of any given theoretical hypothesis. He viewed them
all indifferently as “models,” whose only role was to imply observational phenom-
ena. This point was stated with admirable precision in his Oxford inaugural address
“The Aims of Mathematical Physics: “It is the prime business, then, of theoretical
astrophysics to suggest not one hypothesis in any given field, but many. The duty
of the theoretical astrophysicist is to construct models, and rigorously infer their
properties. ... The peculiar contribution which the theoretical astrophysicist can
make to his science is a set of models constructed on as many different plans as he
can conceive, with a corresponding set of consequences. Itis of little importance in
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the first instance whether the models reproduce nature or not. A model which fails
to reproduce nature is really more valuable than one which does—it at least shows
what nature is not like, whilst a successful model leaves it an open question which
of its characteristics is responsible for its success” (Milne 1929b, p. 26). Milne’s
falsificationist position here should also be noted.

8 Milne’s use of shudder quotes around “space” is entirely germane to our ar-
gument above, namely, due to its entraining a metaphysics he abhorred, Milne is
reluctant to even use the term.

® Robertson hated it: “But undoubtedly the greatest drawback in the exposition,
for the mathematically expert and inexpert alike, will be found in the cumbrousness
and obscureness of the mathematical parts. Instead of applying fundamental results
long established by invariant and group theory, Milne plows through pages of com-
plicated analyses, involving mainly functional and differential equations, which are
in effect but roundabout proofs, for the specific cases in point, of these well-known
results” (Robertson 1936b, p. 65).

10 Milne always objected strenuously to these attempts. In particular he denied
that, since he held that geometry was conventional, he had in any sense chosen his
system to be k = —1: “Thope you don’t mind my objecting to your statements that
I choose k = —1 (made in various places in your writings) but I honestly cannot
see that I ever do any choosing. In my line of attack, starting from purely physical
(not merely logical) considerations, alternatives simply do not occur. My work can
be considered as either resting on the assumption of the Lorentz formulae, or going
behind these & establishing them from light-signalling” (Milne 1933-1951, April
9, 1945). Here we see again Milne’s view that geometry depends upon physics, and
not vice versa.

11 Although he never departed from the basics of this account, Milne continued
to sharpen his procedure throughout the next decade. His ultimate versions appear
in Milne 1940 and Milne 1941.

12 This method will be familiar to anyone who has been caught speeding. Bondi
is quite firm in awarding Milne credit for discovery of this method (Bondi 1988).

13 Tt is clear from the reception dates that Robertson saw a preprint of Milne’s
paper. What is not clear is where he got it. Perhaps ZfA sent it to him. Examination
of Robertson’s papers should clear this up.

4 Milne from the earliest distinguished between concepts and experiences.
Among the fundamental notions of physics, Milne especiaily emphasized the con-
ceptual status of “space” and “space-time.” Both, for him, were constructs of the
most abstract sort ( cf., e.g., Milne 1933, p. 31). Indeed, “space-time is a con-
cept of which we have no experience, a mathematical invention, useful solely for
correlating experiences” (Milne 1934b, p. 26).

15 Tt’s not entirely clear who named the principle. Robertson apparently thought
Milne had named it, and indeed thought well of the name itself: “The uniformity
postulate, which Milne fittingly calls ‘the cosmological principle,” asserts that the
description of the whole system, as given by A in terms of his immediate mea-
surements, is to be identical with the description given by any other fundamental
observer A’ in terms of his own measurements” (Robertson 1935, p. 285).



416 John Urani and George Gale

16 Robertson here was speaking in his review of Milne’s World Structure. Through
a fluke of publication, the review was published later than the first member of Robert-
son’s “Kinematics and World Structure” series.

17 He certainly had seen the thesis, since, as he later admitted to Walker, he had
been on a committee reviewing it for an award!

18 Walker confessed that he and Milne often disagreed, and strongly, over Milne’s
refusal to adopt geometry as his vehicle: “He always preferred algebraic expression”
(Walker 1990).

19 Walker’s suggestion was picked up by Hosokawa, who promptly generalized it,
showing that such a relationship held in all Finslerian geometries (Hosokawa 1938).
Unfortunately, Hosokawa’s work apparently never penetrated the later controversy.

20 Walker apparently was a bit slow in getting the work into print. On November
28, 1935, Milne wrote to Walker, “I should be interested in your views of Robertson’s
paper in the new number of the Astrophysical Journal. Does it partly anticipate
your work on cosmology that you gave an account of at our colloquium last year?
I think you ought to get this written up at once and published.” The colloquium
here mentioned had occurred the preceding April 28. Milne had set McCrea up for
Walker’s presentation: “It is probable, or at least possible, that McCrea will be up
in Oxford next Tuesday, and if so I shall bring him to the colloguium at which you
are to speak. I hope you will not mind this. I have no doubt that you will have
some good stuff for him to think about. Make it as hard, abstract, and provocative
as you can!” (May 22, 1935). Walker was obviously a great success: “McCrea
was very complimentary about your paper last night—said he greatly admired the
power of your methods” (May 29, 1935). Milne encouraged Walker at the same
time to present his work at the upcoming autumn British Association meeting: “By
all means read a paper at the Norwich B.A. Whitrow has been asked similarly. It
will do hardened relativists good to see your method of building up a universe. I
expect that that is the one [the paper] you will choose” (April 20, 1935).

2! Yet, in terms that might sound strange to the ear of an American-educated
physical scientist, Walker strongly denies ever having any but a purely mathematical
interest in Milne’s (or for that matter, anyone else’s) cosmology. He was always a
mathematician, Walker says. And it is obvious when talking to him that, for him,
relativity theory is a mathematical theory, period (Walker 1990).

22 And Milne never forgot that Robertson had written about the kinematical as-
pects of cosmology! Although he at first thought that Robertson’s work encroached
upon Walker’s (November 28, 1935), Milne soon came to believe that it encroached
upon his own as well. (McCrea obviously agreed with both assessments: Referring
to Robertson’s work, he remarked, “Actually a similar conclusion had been pre-
viously announced by A.G. Walker, though details of his work have not yet been
published. . .. It is only fair to recognize that this paper is a modified discussion
of work-already described by Milne in his book World-Structure and elsewhere”
[McCrea 1936, p. 203]. This verdict is important, since it came as an editorial in
Observatory, of which McCrea was then the editor.) Ultimately, however, what
galled Milne was not only that Robertson seemed to have adopted his operationalist
methods without enough credit being given but that Robertson (to Milne’s mind)
had slighted Milne’s book in a review (Robertson 1936b). Many years later, a still
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smarting Milne wrote to Chandra, “I have no objections to E.L. Hill’s review at
all, though it is not a very favourable one But it is not irritating or depreciatory, as
HPR’s was. ... I met HPR several times over here during the war and I remained
perfectly friendly. But I always thought that he owed me an apology for running
down World Structure and then with very little acknowledgement trying to make a
development of the same ideas” (October 29, 1949).

23 Since these consequences will be developed at length in another essay, we will
provide here only the briefest of mentions. Milne’s view of the natural evolution of
physical theories from an inductive-empiricist origin to stand-alone axiomatization
was adopted by cosmologists as essentially an official story of their community’s
development (cf., especially, McCrea 1939 and Whittaker 1941). Additionally,
Milne’s firm avowal of the right of a physical scientist to use rationalist sources—
the second “species” of physics’ methods (Milne 1934b, p. 19)—Iled straightaway
into Bondi’s cosmological methodology (cf., for example, Bondi 1948).

24 Walker recently noted how Milne’s enthusiasm and commitment to axiomati-
zation had ignited in him, Walker, a similar life-long commitment (Walker 1990).

25 Dingle was always suspicious of mathematical theorists. For him, mathematics
had no role to play in discovery, and indeed functioned solely to effect economy of
thought about the observations. He and Milne were thereby completely at odds on
this question (Whitrow 1990).
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