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Abstract In this paper, it is shown, using a geometrical approach, the isotropy
of the velocity of light measured in a rotating frame in the Minkowski
space-time, and it is verified that this result is compatible with the
Sagnac effect. Furthermore, we find that this problem can be reduced
to the solution of geodesic triangles in a Minkowskian cylinder. A re-
lationship between the problems established on the cylinder and on the
Minkowskian plane is obtained through a local isometry.
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1. Introduction

One of the most celebrated results of the Theory of Relativity is the
one known as the Sagnac effect [1], which appears when two photons de-
scribe, in opposite directions, a closed path on a rotating disk returning
to the starting point. Physically, the Sagnac effect is essentially a phase
shift between two coherent beams of light travelling along paths in oppo-
site senses in an interferometer placed on a rigidly rotating platform [2].
This phase shift can be explained as a consequence of a time delay, so
the Sagnac effect can also be measured with atomic clocks timing light
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rays sent, e.g., around the rotating Earth via the satellites of the Global
Positioning System [3]. From a geometrical approach, such phase shift
has also been related [4] to the fact that the time component of the an-
holonomity object, corresponding to the choice of an orthonormal frame
on the space-time, is different from zero.

The Sagnac effect outlines the problem of the isotropy of the velocity
of light with respect to a non-inertial observer fixed on the rotating disk.
This problem has been treated from different points of view. In [5], it is
pointed out that the Sagnac time delay, measured by one single clock,
is due to an anisotropy in the global speed of light for the non-inertial
observer, in contradiction with the local Einstein synchronization con-
vention. Another approach is found in [6]. There, the speed of light in
opposite directions is the same, both locally and globally. The proof is
performed using three clocks located at the initial and final positions of
the two photons, and by extrapolating point to point, the local Einstein
synchronization procedure to the whole periphery of the disk. The dis-
agreements between both approaches are connected with the problem of
the global time synchronization of points on the periphery of a rotating
disk. Only if this global synchronization were possible there would exist
a well defined spatial length between different points on the boundary
of the rotating disk.

In this paper we consider an ideal rotating disk with negligible gravi-
tational effects, thus the effects due to gravitational fields —that require
the application of general relativistic techniques as those in [7] or [8],
where exact and post-Minkowskian solutions are used— are not con-
sidered here. We will also show the isotropy of the velocity of light
measured in a rotating frame in the Minkowski space-time. We verify
that this isotropy is compatible with the Sagnac effect. For this we take
into account that every kinematical problem in special relativity can
always be translated into a geometrical problem on space-time.

Note on this respect that some authors have need to introduce some
dynamical explanations for explaining the rotating disk problem [9].

An outline of the paper is as follows. In Sec. 1.2 we give a brief account
of the technique used by Rizzi and Tartaglia [6] and describe how the
use of the hypothesis of locality, (see [10]) offers an explanation of the
Sagnac effect in the framework of special relativity, without using the
anisotropy of a global speed of light. In Sec. 1.3, we solve this problem
in terms of the world-function associated to the geodesic determined
by the world-lines of the observer and the photon and the simultaneity
space corresponding to the observer. In Sec. 1.4 a formulation of the
problem using the solution of geodesic triangles is obtained. Finally, in
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Sec. 1.5 a relationship between the problem stated on a Minkowskian
cylinder and on a Minkowskian plane is obtained.

2. The rotating disk and the Sagnac effect

Let D ⊂ R
3 be a disk of radius ρ, and let us denote by ∂D the circle

bounding D. We consider an inertial reference frame F : (O′, {ei}
3
i=1),

where O′ is the center of D and {ei}
3
i=1 is an orthonormal basis for the

Euclidean space R
3. In the coordinate system (x, y, z) associated to F ,

the points in D have coordinate z equal to zero. It will also be useful
to consider polar coordinates (r, θ) on D. Now we assume that the disk
D is uniformly rotating about the O′ axis, with angular velocity ω. In
the space-time (M,η) of Special Relativity in Minkowski coordinates,
with η = diag (−1,−1,−1, c2), the motion of the points P ∈ ∂D with
polar coordinates (θ, t), is given by world-lines γ

P
: t 7→ γ

θ
(t), that in

coordinates (x, y, z, t) can be expressed as

γ
θ
(t) : (ρ cos(ωt+ θ), ρ sin(ωt+ θ), 0, t). (1.1)

This congruence of time-like curves determines a cylinder C ⊂ M. On
the cylinder C both a metric g is induced by the metric η, which in
comoving coordinates (θ, t), reads

g = −ρ2dθ2 − 2ωρ2dtdθ + α2(ω)c2 dt2, (1.2)

where
α2(ω) := 1− (c−1ωρ)2, (1.3)

and a Killing vector field Γ given by a combination of a rotation and
a time translation, that, at each point P = (θ, t), is Γ(P ) = γ̇

P
(t), are

defined. The associated Killing congruence has non null vorticity within
the cylinder but is zero outside it. So, the vorticity and the 4-velocity
play an analogous role to the magnetic field and the 4-electromagnetic
potential, respectively, of the Aharonov-Bohm effect in electrodynamics,
[11]. The metric (1.2) is globally stationary and locally static; therefore
a local splitting of C can be obtained using local hypersurfaces locally
orthogonal to the trajectory of the rotating observer, as in [12]. Even a
global operational quotient space by the Killing congruence can be build,
by using the radar distance as a spatial distance [13].

In general, for every two points A,B, joined by a geodesic γ(u), being
u a special parameter with γ(u1) = A, γ(u2) = B, there is a function
Ω(AB) —the world function in Synge’s terminology, [14]— defined by

Ω(AB) := 1
2

∫ u2

u1

g(v,v) ds (1.4)
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where v = γ̇(u) denotes the tangent vector to the geodesic γ(u). Let us
now consider, at the time t = t1, a point O ∈ ∂D and the world-line γ

O
(t)

corresponding to a curve in the congruence (1.1), with θ = 0. On γ
O
(t)

one may build a field of non-inertial reference frames F ′(t). The proper
time interval between two events P0, P1 with coordinate times t1 and t2
measured by the observer F ′ is given in terms of the world-function (1.4)
as

τ2 − τ1 := c−1
√

2Ω(P0P1) = α(ω)(t2 − t1). (1.5)

Suppose that the rotating observer fixed on the circle ∂D carries a
device which emits, at the time t = 0, two photons in opposite directions
along the periphery of the disk. The world-lines of both photons are null
helices. Their equations in the inertial reference frame F read

γ
L±

(t) : (x
L
= ρ cos(±̟t), y

L
= ρ sin(±̟t), t = t) , (1.6)

where ±̟ denotes the angular speeds of the photons given by ̟ρ = c,
being the plus (resp. minus) sign associated to the photon moving in
the same (resp. opposite) sense as the rotating disk.

At the initial time t = 0 it is assumed that γ
O
(0) = γ

L
(0). The

world-line corresponding to each photon cuts the curve γ
O
at times t∗±,

for which it is satisfied the condition γ
L
(t±) = γ

O
(t±). Therefore one

obtains

t∗± =
2π

̟ ∓ ω
. (1.7)

The relationship between proper time on γ
O
and the inertial coordi-

nate time given in (1.5) establishes that the proper time in F ′ runs slow
with respect to an inertial one. Hence, using (1.7) one obtains

τ± = 2π
α(ω)

̟ ∓ ω
. (1.8)

The proper time increment measured by the observer F ′ among the
arrival times of the two photons P1 = γ

O
(t1) and P2 = γ

O
(t2) is (see,

e.g. [11]):

τ+ − τ− =
4ωS

c2
α−1(ω) (1.9)

that, in the limit of small rotational speeds, takes the classical form
given in [1]:

τ+ − τ− =
4ωS

c2
+O(c−4) (1.10)

where S = πr20 is the disk area.
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The Sagnac time delay is the desynchronization of a pair of clocks
after a complete round trip, which has been initially synchronized and
sent by the rotating observer to travel in opposite directions, [6]. In this
case, the time differences along a complete round trip on the periphery
∂D of the disk, are not uniquely defined and the measurement of each
one must be corrected by half the Sagnac time delay when compared
with an identical clock remaining fixed at the initial position. After this
correction is made, the global light speed is the same for the photon
moving on ∂D in opposite sense. This is in fact what is done in the
Global Positioning System, [3]. Note, on the other hand, that if the
readings of both clocks are not corrected by half the Sagnac time (1.9),
one obtains an anisotropic velocity of light, as in [5].

3. Measurement of relative speeds in Minkowski
space-time

Let us assume that at the time t = 0, in the inertial reference frame
F , a non-inertial observer F ′ at a fixed point P0 ∈ ∂C emits a pulse of
light in the same direction of the movement of the disk. The event P0

corresponds in the cylinder C to the point with cylindrical coordinates
(θ, t) = (0, 0). We now determine the relative speed of the ray of light
with respect to the non-inertial frame F ′.

The world-lines for the observer and the photon can be expressed in
cylindrical coordinates, in the form

γ
O
(t) : (θ = 0, t = t), γ

L
(t) : (θ = (̟ − ω)t, t = t) (1.11)

respectively. The curve γ
O
(t) is the time-like helix corresponding to a

non-inertial observer fixed at the point O on the disk. The curve γ
L
(t)

describes the null helix of the photon co-rotating with the disk.
On the world-line γ

O
one can determine a vector field Λ such that

the orthogonality condition, g(Λ, ˙γ
O
(t)) = 0, is satisfied. For each point

P on γ
O
, one builds a space-like geodesic γ

S
on the cylinder (C,g),

corresponding to the initial data P,Λ(P )

γ
S
:
(

θ = (̟2 − ω2)ω−1 (t− t0), t = t
)

. (1.12)

The geodesic γ
S
can be interpreted as the locus of locally simultaneous

events on an arc of the circle ∂C as seen by the rotating observer. For the
construction of the simultaneity space γ

S
, the hypothesis of locality given

in [10] is used, which establishes the local equivalence of an accelerated
frame and a local inertial frame with the same local speed. In this way,
a slicing of the cylinder C through a family of sections γ

S
orthogonal to

the congruence of curves γ
P
is obtained.



6

When the rotating frame reaches the point P1 = (0, t1) in the curve
γ
O
, the world-function Ω(P0P1) is the square of the proper time (up to a

constant factor) between the events P0 and P1 of space-time, measured
by the non-inertial observer. At the time t1 the photon lies on the point
P2 of the local simultaneity space relative to the non-inertial rotating
observer. Since both the non-inertial observer and the photon move on
∂C, the corresponding points in space-time remain on the Minkowskian
cylinder C. Consider the point P2 given by the intersection of the curves
γ
S
and γ

L
, (see Fig. 1.1):

P2 =
(

(̟2 − ω2)̟−1 t0, (̟ + ω)̟−1 t0
)

. (1.13)

P0

P2

P1

γ
S

γ
L

γ
O

1

Figure 1.1. Geodesic triangle on the cylinder (C, g). γ
O
, γ

L
denote, respectively, the

world-line of the observer and the photon. γS represents the simultaneity space at
the point P1.

Using the metric (1.2), the world-function corresponding to the pairs
of points (P0, P1) and (P1, P2), calculated along the curves γ

O
and γ

S
,

are
Ω(P0P1) = −Ω(P1P2) = ct0 α(ω). (1.14)

respectively. Therefore, taking into account (1.5), the relative speed of
the photon with respect to the non-inertial frame defined by

v2
L,O

:= −c2
Ω(P1P2)

Ω(P0P1)
, (1.15)

coincides with c2.
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4. Equivalent formulation of the problem

Result (1.15) can be compared with that obtained by using the solu-
tion of geodesic triangles on the semi-Riemannian manifold (S,g) For
this we consider a geodesic triangle P0P1P2 on a 2-manifold (S,g) as
shown in Fig. 1.2. For arbitrary points A and B, let Ωa(AB) denote
the covariant derivative of (1.4) with respect to the coordinates of A,
and denote by Ωa(AB) the vector associated to Ωa(AB) by means of
the metric g.

Let us assume that the Riemannian curvature of a surface S is small
and we will use the same notation as in [14], Chapter II. If {λ0(P0), λ1(P0)}
is an orthonormal basis on TP0

S, one can build a field of reference frames
on C by parallel transport of this frame along all geodesics xi(v) through
P0. On the field {λ0(P ), λ1(P )}, the vector field V i := ∂xi/∂v, tangent
to one of these geodesics on an arbitrary point, has constant components

V (a) = V iλ
(a)
i . On the other hand, the components of the symmetrized

Riemann tensor

Sijkl := −1
3(Rijkm +Rimjk), (1.16)

will be denoted by S(abcd).

P0(0, 0)

P1(u1, v̄)

P2(u2, v̄)
γ(u)

γ2
(v)

γ 1
(v

)

P (u, v)

1

Figure 1.2. Geodesic triangle on a surface with small curvature. The family of curves
γ(v) emanating from the point P0, are geodesics parametrized by u ∈ [0, v̄]. Transver-
sal curves are geodesics parametrized by u ∈ [u1, u2].

For the geodesic triangle determined by the curves P0P1 : γ1(v), P0P2 :
γ2(v) and P1P2 : γ(u) (with u ∈ [u1, u2], v ∈ [0, v̄], see Fig. 1.2) a
relationship between the world-functions of the sides of this triangle is
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obtained in [14]:

Ω(P1 P2) = Ω(P0 P1) + Ω(P0 P2)− Ωa(P0 P1)Ω
a(P0 P2) + φ, (1.17)

where

φ := 1
6

∫ v̄

0
(v̄ − v)3D4

vΩ dv (1.18)

and D4
vΩ denotes the covariant derivative of fourth order of the world-

function Ω(γ1(v), γ2(v)) for an arbitrary v ∈ [0, v̄]. An explicit approx-
imate expression for φ appears in [14] p. 73, written in terms of the
Riemann tensor and its covariant derivatives. An application of this
solution to build Fermi coordinates in general space-times of small cur-
vature is given in [15]. In general it is satisfied that

φ0 =
3

(u2 − u1)3

∫ v̄

0

∫ u2

u1

q(u, v) [1122] du dv, (1.19)

where q(u, v) is the polynomial

q(u, v) := (v̄ − v)3((u2 − u)2 + (u− u1)
2), (1.20)

and symbol [1122], defined as

[1122] := −1
3S(a1b1c2d2)V

(a1)V (b1)V (c2)V (d2), (1.21)

is constant on S, so that φ0 vanishes. In (1.21) V (i1), V (i2) are the
components of V at points P1, P2 respectively. In the problem considered
in this work, the metric (1.2) is uniform on the cylinder C, and the
Riemannian curvature is zero, therefore expression (1.18) vanish.

Therefore, one obtains for the solution of the same triangle in the
point P1

Ω(P0 P2) = Ω(P1 P0) + Ω(P1 P2)−Ωa(P1 P0)Ω
a(P1 P2), (1.22)

where the covariant derivatives are calculated now at the point P1. Now,
since the geodesic P0 P2 is null and the geodesics P1 P0 and P1 P2 are
orthogonal in P1; then, from (1.22) one obtains

Ω(P1 P2) = −Ω(P0 P1) (1.23)

Consequently, the ratio

v2
L,O

:= −c2
Ω(P1 P2)

Ω(P0 P1)
, (1.24)

coincides with (1.15).
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5. Reduction to the Minkowskian plane

In this section, we will see that the rotating observer on the disk has a
specific characteristic which other different non-inertial observers do not
have in general. In the first place, it is observed that expression (1.5),
which relates the proper time τ of a non-inertial observer fixed on the ro-
tating disk (moving with constant angular speed ω, such that ωρ = v) to
the coordinate time t, coincides with the expression relating the inertial
observer’s time to the time of another inertial reference frame boosted
with rectilinear speed v. Then one concludes that only by measuring
proper time, a rotating observer will not be able to determine the local
inertial or non-inertial character of the frame rotating uniformly on the
disk. The only magnitude that he will be able to measure in that case
is the speed modulus v.

Now, let us consider a boosted rectilinear inertial frame K. To mea-
sure the speed of a photon moving in the same direction as K with
respect to this frame we consider the configuration shown in Fig. 1.3.

P ′

0

P ′

1

P ′

2γ′

S

γ′

L
γ′

O

′

S

′

L

′

O

1

Figure 1.3. Geodesic triangle on the Minkowskian plane (P ,η). γ′

O
, γ′

L
denote, re-

spectively, the world-line of the observer and the photon. γ′
S represents the simul-

taneity space at the point P ′
1.

Here γ′
O

represents the straight line described by the observer (we are
assuming that the speed is v) in a Minkowskian plane (P,η). On the
other hand, the null straight line γ′

L
represents the trajectory that one

photon describes, and, finally, the line γ′
S
is the space-like straight line

of simultaneous events to the emission event of the photon. This line is
everywhere η–orthogonal to the observer line at the event P ′

1 : (vt0, t0).



10

Explicitly, taking P ′
0 = (0, 0), these curves are given by

γ
L
: (x = ct, t), γ

S
: (x = v−1c2(t− t0α

2(v)), t) (1.25)

where now α2(v) := 1− v2/c2. This can be verified directly from Figure
2.

Moreover, point P ′
2 at which γ′

S
cuts to γ′

L
has the coordinates

P ′

2 :
(

t0(c+ v), c−1t0(c+ v)
)

. (1.26)

Therefore, keeping in mind again that P ′
1 = (vt0, t0), one obtains that

the distances between P ′
1 and P ′

2 along γ′
L
and between P ′

0 and P ′
1 along

γ′
O
are

−Ω̃(P ′

1P
′

2) = Ω̃(P ′

0P
′

1) = α(v)ct0 (1.27)

where Ω̃(AB) denotes the world-function associated to points A,B and
the metric η. The relative speed between the light ray and the boosted
rectilinear inertial observer, defined through the ratio

v2
L,O′

= −c2
Ω̃(P ′

1P
′
2)

Ω̃(P ′
0P

′
1)
, (1.28)

coincides with c2.
The identity between these expressions and those obtained before in

Sec. 1.3 is clear. Indeed, if v is substituted for ωρ those expressions are
coincident. The fact that the values of Ω̃(P ′

0P
′
1) and Ω̃(P ′

1P
′
2) coincide

with the values Ω(P0P1) and Ω(P1P2) obtained in the problem solved on
the cylinder is due to a local isometry between the Minkowskian plane
(P,η), which contains the line of universe of the boosted rectilinear
inertial observer, and the Minkowskian cylinder (C,g), which contains
the world-line of the non-inertial rotating frame.

As pointed out at the beginning of this section, the non-inertial rotat-
ing observer on the disk has a specific characteristic which other different
non-inertial observers do not have, in general. In this case, the expres-
sion (1.5), relating the proper time τ and the coordinate time t, is the
same as in inertial frames. This allows to build an isometry between
cylinder C and the plane P as follows.

Let φ : U ⊂ C → P be a smooth map between a neighborhood of
U , which contains the geodesic triangle considered above, and the plane
P. Denote by TPC and Tφ(P )P the tangent spaces to C and P at the
points P, φ(P ) respectively. The map φ is such that its differential,
dφ : TPC → Tφ(P )P, is a linear isometry for every point P ∈ U :

η(dφ (v), dφ(w)) = g(v,w), (1.29)
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for every v,w ∈ TPC. Let us consider a map φ such that φ(t, θ) =
(t, x(t, θ)). We determine a function x(t, θ) satisfying condition (1.29).
This function is determined through the partial differential system

∂x

∂t
= ωρ,

∂x

∂θ
= ρ, (1.30)

whose solution is the function x(t, θ) = ρ(ωt+θ). Therefore an isometry
as

φ : (t, θ) 7−→ (t, ρ(ωt+ θ)) , (1.31)

maps (C;g) into (P;η), retaining the same coordinate time in both man-
ifolds.

The geodesic triangle of vertices P0, P1, P2 in C is mapped into the
straight triangle P ′

0, P
′
1, P

′
2 in P. Therefore, it is possible to translate the

problem of measuring the speed of light with respect to a non-inertial
reference frame, which describes a circumference rotating uniformly, to
the problem of measuring the speed of light by an inertial reference
frame, being the velocity equal to c in both cases. By means of this local
isometry, for the point P2 on the cylinder there exists a corresponding P ′

2
in the plane, which has the same coordinates as the event P2, obtained
in Sec. 1.3 by means of the hypothesis of locality with the slicing of C.

Returning to the initial problem of two photons describing the periph-
ery of a rotating disk in opposite senses, it is observed that one obtains
the same result for both photons, as it may be verified solving the cor-
responding problem on the Minkowskian plane, where the speed of light
is independent of the direction followed by the photons.

6. Concluding remarks

In [6], using the locus of locally simultaneous events to the non-inertial
rotating observer (given by space-like helices in a Minkowski space-time),
it is shown that the speed of light measured by a non-inertial observer
fixed on the disk rim always turns out to be c both locally and globally.
The local isometry (1.31), shows how this coincidence is obtained. In
fact, this local isometry allows to calculate relative speeds (1.24) and
(1.28) in the problem of the rotating disk, mapping the problem from
the multiply connected Minkowskian cylinder to another one established
in the simply connected Minkowskian plane.

From the above reasoning, one observes that although the observer is
non-inertial this is not reflected on the measurements of relative speeds.
This is because the module of the centripetal acceleration of the observer
ω2ρα−2(ω), coincides with the module of the normal curvature of the
world-line of the observer on the cylinder (C,g). A rotating observer
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corresponds to a Killing trajectory, so its world-line is a geodesic on this
cylinder. Moreover, the Gaussian curvature of the cylinder is zero. So,
the non-inertiality of the rotating observer is not reflected in the mea-
surement procedure, because this is only based on the first fundamental
form of C.

Finally, we remark that the frame of reference considered in the prob-
lem of a rotating disk is very special, so the problem can be established
on a circular cylinder. A more general case would be, for example, that of
a deformable closed loop filament moving and preserving a non-circular
shape.
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