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Abstract In the literature, there is no consensus on
the origin of the relativistic Sagnac effect, particularly

from the standpoint of the rotating observer. The ex-

periments of Wang et al. [1, 2] has, however, questioned

the pivotal role of rotation of the platform in Sagnac
effect. Recently, the relative motion between the re-

flectors which force light to propagate along a closed

path and the observer has been ascribed as the cause

of the Sagnac effect. Here, we propose a thought exper-
iment on linear Sagnac effect and explore another one

proposed earlier to demonstrate that the origin of the

Sagnac effect is neither the rotation of frame affecting

clock synchronization nor the relative motion between

the source and the observer; Sagnac effect originates
purely due to asymmetric position of the observer with

respect to the light paths. Such a conclusion is validated

by analysis of a gedanken Sagnac kind experiment in-

volving rotation.

Keywords Sagnac effect · STR · linear

1 Introduction

Sagnac effect is the difference in phase (or time of

arrivals) of two coherent light beams (originated from a

single light beam) propagating along a rotating closed

loop in opposite directions. The effect was first discov-

ered by Sagnac [3, 4]. The effect has been observed
experimentally in a wide range of wavelength bands,

from radio to x-rays as well as using matter waves

[5–9]. The Sagnac effect receives a lot of interest owing

to its practical use in Global Positioning System [10],
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fiber optic gyroscope, ring laser gyroscope, etc. which
are essentially Sagnac interferometers [11, 12]. The

effect also has applications in geodesy and seismology

[13]. The Sagnac interferometer is nowadays used as

a tool in civil aviation [11–13], to test gravitation
theories [14–18], to examine quantum properties [19].

The Sagnac effect, which is generally considered

as one of the basic experimental effects of STR, is a

first-order kinematic effect in v/c. Sagnac, however,
proposed the experiment in support of his ether model

and explained the effect without using relativity theory.

Since then numerous studies have been conducted on

the interpretation of the effect, particularly from the
viewpoint of the (co-)rotating observer [20] which

include standard special relativistic description [21],

general relativistic description [22–26], synchronization

issues in rotating frame [27–29], violation of relativity

in rotating frame [4, 30] etc. Most of such approaches
yield the correct magnitude of the Sagnac effect despite

their vast differences in the physical basis of the effect.

In the early part of the present century a cou-
ple of experimental studies have demonstrated that a

Sagnac like effect, which the authors called the gener-

alized Sagnac effect, occurs in a light waveguide loop

consisting of both linearly and circularly moving seg-

ments [1, 2]. Interestingly, it was found that both the
segments contribute to the generalized Sagnac effect

which implies that rotational motion is not essential

for the Sagnac effect. Sagnac type gedanken experiment

with linear motion (“Linear Sagnac Effect”(LSE)) was
probably first proposed by Ghosal et al., [31] and they

found that the Sagnac delay in the linear case perfectly

matches that of the original Sagnac effect when the re-
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Fig. 1 Linear Sagnac

sult is written in terms of the linear velocity without

using the area enclosed by the circuit.

Noting the experimental findings of Wang et. al.

[1, 2] recently, Tartaglia and Ruggiero [32] have pro-
posed a Sagnac-like thought experiment consisting of

a rectangular closed light path in which an observer is

moving along a side of the rectangle with a linear ve-

locity. They concluded that Sagnac effect occurs on the

closed path of light in space and when a relative mo-
tion exists between the observer and the physical device

(mirrors) restricting light to propagate along a closed

path.

An important point to be noted at this stage is that

in the original Sagnac experiment, both the observer
and the physical system employed to move light along

the circular path rotate with the same angular veloc-

ity. Hence, the existence of a relative motion between

the observer and the mirrors [32] cannot be the root

cause of the Sagnac effect. In this work, we argue that
the cause of the Sagnac or generalized Sagnac effect is

the non-mid point measurement of arrival times of the

counter-propagating light rays (causing unequal path

lengths traversed by the light rays in reaching the in-
terferometer), both in the lab frame and the Interfer-

ometer frame.

2 A Thought Experiment

Let us consider a simple gadanken experiment where

two light beams, originating from a single one, using

beam splitter, are allowed to propagate in two opposite

directions OA and OB (fig. 1) along closed linear paths
in the lab frame. For convenience, we choose our co-

ordinate system in such a way that the points A,O,B

are on the x-axis. O is the midpoint of AB so that

OA = OB = L. We shall take different situations in-

volving the dynamics of the detector and the reflecting
mirrors which are employed to restrict the motion of the

light rays in closed paths. The coordinates of the frame

of reference attached with the detector/interferometer

are denoted with primes as superscript.

In the first case let us consider the detector (I),
which was initially (i.e. at the time light rays start prop-

agating along OA and OB) at point Q where OQ = q,

moves with a linear constant velocity v with respect to

the lab frame along positive x direction. The mirrors

(reflectors), which are initially at A and B, also move

with the same velocity v along the same direction so

that no relative velocity exists between the observer at-

tached to the interferometer and the mirrors, as in the
original Sagnac effect. In the detector frame, the differ-

ence in arrival of time between the lights traveling the

path O′A′O′B′Q′ and O′B′O′A′Q′ will be

∆t =
2q

γc
, (1)

where γ ≡ 1/
√

1− v2/c2 is the Lorentz factor.

When q=0, i.e. when the detector at the mid point of

the light path O′A′O′B′Q′ (O′A′ = O′B′) there will

be no Sagnac effect. In general, for non-zero q (non-

mid point measurement) there will be a delay in arrival
times of two oppositely moving light rays. Such a de-

lay, however, does not depend on the velocity of the

observer. The same conclusion can be reached in the

Lab (un-primed) frame also.

Next, we consider the detector is moving, but the

mirrors are at rest in the Lab frame. This situation is

essentially similar to the rectangular closed path case

considered in [32]. Here, the trajectory for the light rays
that starts moving initially towards the negative x-axis

is OBOAD1 , where D1 is the position of the detector

when the light ray reaches the detector. The total time

taken by the stated light rays to reach the detector is

∆t− =
4L− q

c+ v
. (2)

For reaching the detector at D, the path of the light

rays that propagate towards positive x-axis initially is

OAOBOD2 and the total time taken in the process is

∆t+ =
4L− q

c− v
. (3)

The time difference of arrival of two opposite di-
rected light rays at the detector is

∆t = ∆t+ −∆t− =
8Lv + 2qc

c2 − v2
. (4)

Note that the measurement will be made by the

moving observer. Hence, applying the Lorentz transfor-
mations the time delay to be measured by the moving

observer, as inferred from the Lab frame will be

∆tobs =
8Lv + 2qc

γ(c2 − v2)
. (5)

When q = 0, one gets the usual generalized linear

Sagnac (like) effect. On the other hand, if q = −4Lv/c,
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Fig. 2 Original Sagnac Modified

there will be no Sagnac delay, implying that the mea-
surements of the arrival times are made exactly at point

O which is the mid-point of the light trajectories (be-

tween the mirrors).

In the primed frame, the detector is at rest. The mir-

rors are moving with a velocity v towards the negative
x-direction. The light path for the rays that starts mov-

ing initially towards the negative x-axis is O′B′

1OA′

2O
′,

where B′

1 is the position of the mirror when light

reached the reflector, which was initially at B. At that
moment, the mirror A was at A′

1 position. After reflect-

ing by the mirror at B′

1 the light ray will move towards

positive x-axis direction and reach the reflector A at

A′

2 position. Since O′B′

1 not equals to O′A′

2, O
′ is not

the mid-point of the light path. The detector bound ob-
server will find that the lengths contracted according to

STR. Accordingly, in the primed frame the difference in

time of arrival of two opposite directed light rays at the

detector will be

∆t′obs =
8Lv + 2qc

γ(c2 − v2)
. (6)

which is exactly what the Lab frame is interpreted.

The difference in arrival times of the two oppositely

moving light beams in the lab frame and the frame

attached to the detector are, thus, simply connected

by special relativistic time dilation as expected.

3 On the original Sagnac experiment

Now finally let us consider the original Sagnac experi-

ment as displayed in fig. 2. Here two light rays start to
move, say at time to, from the point O in opposite direc-

tions, clockwise and anti-clockwise along the perimeter

of a circle of radius r. At that instant, an observer with

an interferometer is placed at P , where the arc OP = p.

The whole set up is placed on a rotating disk/platform

having angular velocity ω (in lab frame) with the center

of the disk coincides with that of the circular path of

the light rays.
In the Lab frame, the difference in arrival time of

clockwise and anticlockwise light rays in the interfer-

ometer will be

∆t =
4πrv + 2pc

c2 − v2
. (7)

where v = rΩ, Ω being the angular velocity of the
rotating platform. Translating the above time delay to

the observation by the rotating observer is not straight-

forward. Some scientists suggest that relativistic kine-

matic transformations are valid not only between iner-

tial frames with uniform relative velocity but also for
reference frames undergoing acceleration [33]. Follow-

ing (i.e. essentially assuming that the Lorentz transfor-

mations hold between the Lab frame and the rotating

observer) [33], the difference in arrival time of clockwise
and anticlockwise light rays in the interferometer of the

rotating observer will be

∆t′ =
4πrv + 2pc

γ(c2 − v2)
. (8)

The above expression, which is obtained from Eq. 7

taking in to account the time dilation effect, generalizes
the one given in [33] for arbitrary initial position of the

observer. Again for p=0, one gets the usual expression

for the Sagnac delay. For p = −2πrv/c, i.e. when the

measurements are made at the point of initiation of the
journey there will be no Sagnac delay.

Several researchers prefer to explain the Sagnac ef-

fect in the purview of general theory of relativity (GR).

Langevin first explained the Sagnac effect from GR con-

sideration. The basic approach in GR based explana-
tion is to compute the difference of propagation times

in reaching the detector between counter-propagating

waves in the space-time metric that effectively repre-

sents the frame of reference attending rotation. In the
laboratory frame the space-time interval in cylindrical

coordinates (t, r, φ, z) is given by

ds2 = c2dt2 − dr2 − r2dφ2
− dz2 (9)

Now when the platform starts rotating with uniform

rotating velocity Ω along z-axis, the space time interval

associated with the platform (t′ = t, r′ = r, φ′ = φ +

Ωt, z′ = z) [23]

ds2 = (c2−r2Ω2)dt2−2Ωr2dφdt−dr2−r2dφ2−dz2 (10)
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The space time curvature vanishes for the above

space time metric implying that there is no gravita-

tional field associated with the metric. For the circular

(dr = 0) light trajectory (ds = 0) at rφ plane the eq.

(10) gives

dt′cl,acl =
±rdφ

c∓ rΩ
(11)

The subscript cl and acl denote clockwise and anti-

clockwise respectively. The total propagation time for

clockwise light rays to reach the observer

∆t′cl =

∫ 2π

−p

dt′cl =
2πr + p

c− rΩ
(12)

and that for anticlockwise light rays

∆t′acl =

∫

−2π

−p

dt′cl =
2πr − p

c+ rΩ
(13)

Hence the difference in arrival times between the

counter-propagating light rays is exactly the same to

eq. (8) as obtained in the Lab frame. However, one

may notice that the above derivation does not give
the time dilation effect. In his review article Post [6]

argued that the time coordinate should transform as

t′ = γt while switching over from Lab frame to station-

ary frame which leads to the time dilation effect.

A worthwhile point to be noted that the metric

given in eq. (10) is derived from the Lab frame space
time metric; it is the metric of the rotating frame ac-

cording to a Lab frame observer. Though mathemat-

ically it is fine but the physical understanding of the

effect from the standpoint of an observer attending the

rotation remains difficult. When p = 0, i.e. the observer
at the point of splitting remains on that point in the

rotating frame, why clockwise and anti-clockwise light

will take different times to reach the observer?

To understand the point mentioned above let us

first consider a Sagnac like thought experiment involv-

ing rectangular trajectories of light rays in the Lab
(inertial) frame as discussed in [32]. Say, ABCD is

a square/rectangle in an inertial frame S. Using a

beam splitter, a light signal is directed to move along

the paths ABCDA and ADCBA (reflectors placed at

points A,B,C,D). Both the light rays initially start
their motion from the same point A at the same time.

They are expected to meet at A, where an interfer-

ometer is placed, at the same instant. We allow the

interferometer, which was initially at point A at the
time of the two light beams started their journey along

ABCDA and ADCBA, to move along AB with a con-

stant velocity v. For simplicity of the calculation the

D C

BIA B

CD

A I

Fig. 3 As seen from Lab frame: (a) clockwise (b) counter-
colckwise

length of the sides and the velocity v are so chosen that
both the clockwise and anticlockwise light beams reach

the interferometer before it (interferometer) crosses the

B point i.e. AB/v > (3AB + 2BC)/c which implies

v < c/(3 + 2ξ) where ξ = BC/AB.

3.1 From the Lab frame

We shall now explore what will be the observations

of the lab frame and the observer attached with the

interferometer. From the viewpoint of the lab frame,

the light rays that travel along ADCBI path will reach
the interferometer (I) earlier than that propagate along

ABCDAI (please refer to figure 1(a)). Denoting the

length of the sides AB=CD=p and BC=DA=q, the dif-

ference in arrival times of the anticlockwise and clock-

wise moving light beams is

∆ξ =
4(p+ q)v

c2 − v2
(14)

which is similar to the Sagnac effect; the only difference
is that in the Sagnac effect the perimeter of a circle

occurs instead of a rectangle, as the light paths in the

Sagnac experiment are circular [32].

Now we consider the viewpoint of the observer O′

attached with the interferometer. For O′ the points
A,B,C and D are moving with a constant velocity ˘v.

In this frame the length AB and DC will be contracted

following the Lorentz contraction formula whereas the

length BC and AD will remain unaltered. The light
trajectories for clockwise and anticlockwise motion as

will perceive by O′ are shown in fig.(4).

Therefore, the arrival time difference of the an-

ticlockwise and clockwise moving light beams as be

viewed by O′ is:

∆ξ′ =
4(p+ q)v

γ(c2 − v2)
(15)

Here also the difference in arrival times of the an-

ticlockwise and clockwise moving light beams in the

lab frame and the frame attached to the detector are
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Fig. 4 As seen from observer frame: (a) clockwise (b) counter-
clockwise

simply connected by special relativistic time dilation as

expected. The most striking point of the above Sagnac

kind thought experiment involving rectangular trajec-
tories (in Lab frame) is that in the frame attached

with the interferometer, the geometries of the travelling

paths for the clockwise and the anticlockwise light rays

are not rectangular; they trace two different unequal
paths while moving from the point A to the Interfer-

ometer as shown in fig. (4).

So a relevant question is whether in original Sagnac

experiment the light trajectories are circular in the

frame attending the rotation? In the light of the so

called Ehrenfest paradox, a circle in the Lab frame is
unlikely to be perceived as a circle by the observer at-

tending the rotation.

4 Discussion

We conclude that the origin of the Sagnac Delay or
the phase difference in Sagnac or Sagnac-like exper-

iments is the non-mid-point measurement of arrival

times of counter-propagating waves leading to unequal

path lengths traversed by the oppositely directed light

rays in reaching the interferometer. It does not depend
exclusively on the rotation, as correctly pointed out in

[32]. The synchronization issues in the rotating frame

cannot be the cause as we have seen that zero Sagnac

delay is possible in the Sagnac experiment depending
on the arrival times measurement location. The relative

motion between the detector and the reflectors is also

not the reason for the Sagnac delay.

In the lab frame, the non-mid point position of the

observer and thereby inequality of the path lengths of

the two oppositely directed light rays in the Sagnac ex-
periment is straightforward. However, from the stand-

point of the rotating observer, the issue is quite difficult

to understand.

So we have considered a linear version of the Sagnac

experiment, where, because of the linear constant rela-
tive speed of the interferometer and mirrors, one can

easily deduce the light paths in the interferometer

frame. In the frame attached with the interferometer,

the oppositely directed light rays trace unequal paths

while moving from the point O to the interferometer,

if the observation is conducted any other point than

O. So from both the concerned frames, the underlying

reason for the observed phase difference is the same,
the non-mid point observation. If the detector has zero

velocity but the measurement is made at any non-mid-

point, there will be a Sagnac kind time delay but obvi-

ously, it (delay) will not depend on the velocity. Such
a linear version is not exactly the same as the Sagnac

experiment. In the proposed linear case there is a rel-

ative velocity between the detector and the reflectors

and the distance between the detector and the reflec-

tors continuously alters, unlike the Sagnac experiment
where such distances always remain the same, at least

in the lab frame. The gedanken original Sagnac kind

experiment involving rotation also validates the non-

mid-point measurement as the root cause of the Sagnac
effect in the Lab frame.

An interesting question is whether a time dilation

effect will be present in a Sagnac effect for the rotating

observer. The Lorentz γ-factor occurs for linear con-

stant relative speed between two inertial frames. For ro-
tating motion, there may be some modification in that

factor [31, 34]. This has been discussed in detail in view

of the Ehrenfest paradox using LSE in Ref. [31, 35].

The proposed thought experiment cannot say anything
about the appearance of the Lorentz γ-factor in a rotat-

ing frame. An experimental determination of this factor

would be of considerable interest.
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