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FOREWORD 

I wish to express ray gratitude to the Dartmouth Eye Institute 
especially to Professor Adelbert Ames, Jr., and to Mr. John Pearson. 
The following pages would not have been written without their hospi¬ 

tality which I had the privilege of enjoying at the Institute and 
without the interest they accorded this mathematical theory. 

In particular I have to thank Professor Ames for many stimu¬ 
lating discussions and demonstrations. His thesis that our sensations 
are related to the outside stimulus patterns but cannot be derived 

from them has been a guiding line in the following considerations. 

To Dr. Anna Stein (Bureau of Visual Science, American Optical 

Company), assistant to Professor Ames, I am greatly indebted on the 

mathematical side. Her critical help has been invaluable in the dis¬ 

cussion and solution of the following mathematical problems, and last 
but not least, in the preparation of the manuscript. 

I also wish to express my thanks to Mrs. Alice Weymouth for 
her work of typing the various drafts of the following text with its 
many mathematical formulae. 

December 26, 19^6 

Rudolf Luneburg 

Dartmouth Eye Institute 
Hanover, N. H. 
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INTRODUCTION 

0ur a^m ln the following investigation is to develop a mathematical theory 

oi visual perception. In particular we are concerned with binocular vision, i.e. 
with the perception provided by the concerted action of two eyes. We hope to dem¬ 
onstrate that certain observations analyzed from a general geometrical point of * 

view lead to a theory of binocular vision, which has some rather interesting con¬ 
sequences and.which gives a natural explanation to certain well-known phenomena 

oi visual optics. Before developing this theory in detail, we shall outline the 
general premises upon which our solution of the -problem is based. 

1* i‘,T<3 recognize, by binocular vision, that we are surrounded by a three- 
dimensional manifold of objects. These objects have, besides characteristic qual¬ 
ities of color and brightness, form and localization. In a visual sensation we 

thus are not only immediately aware of a distribution of colors and brightnesses 
but also of the fact that certain of these qualities are combined to unities 

namely, objects, which have a definite geometrical form and a definite localiza¬ 
tion in a three-dimensional space. We shall call this space the visual space. 

Our problem is to investigate its geometrical character, i.e., the qualities of 
for>rn and localization in visual sensations. 

The concept of the visual space becomes clearer from the following consid¬ 
eration. .We can coordinate the "sensed" points in a particular visual sensation 

to the points of a three-dimensional geometrical manifold. This of course can 

be done in many different ways. We shall call the result of such a coordination a 
geometrical map of the visual sensation. Consider, for example, the coordination 
which is the basis of the projection theory of binocular vision. A sensed point 

s represented by.the intersection point of two projection lines which are drawn 
from lwo fixed points of the Euclidean space. The base points are the centers of 

rotation of the eyes and the projection lines the optical axes. 'We obtain by this 

construction a Euclidean map of the visual sensation. However, we cannot be sure 

that the map.represents truly the sensed qualities of form and localization of the 

objects* Thls would be the case the apparent distance of any two sensed points 
were aiways proportional to the geometrical distance of the associated points of 
the Euclidean map. 

Clearly, this is not true. Astronomical objects like the sun or the moon 
are seen at finite distances; their sensed size is also finite and in no way pro¬ 

portional to astronomical dimensions. Even the sky itself gives the impression of 

a dome ol unite radius. It certainly does not introduce any special size sensa¬ 

tion comparable to Euclidean infinity in its relation to finite Euclidean size. 

These considerations indicate our actual problem: To find a coordination 

° .- i'°into 1 a v]’-:jual sensation to the points of a geometrical manifold 
suci that the apparent distance of any two sensed points is always proportional to 

the geometrical distance of the correlated points. A coordination of this' type is 

called a psychometric coordination. Whether or not such a coordination is possible 
is a psychological problem which requires a special consideration. Certain basic 

psychological facts which we shall discuss in § 1 indicate, however that in the 

case of visual sensations, a psychometric coordination is possible! Moreover, we 
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2 MATHEMATICAL ANALYSIS OF BINOCULAR VISION 

shall prove from these facts that the geometric manifold in which a psychometric 

map of visual sensations can be obtained Is uniquely determined. The geometry In 
this manifold then represents the visual qualities of form and localization in 

mathematical formulation. It establishes the possibility of measuring in the vis¬ 
ual space. 

Our above discussion of the Euclidean map obtained by projection from two 
centers does not prove that the visual space is a non-Euclidean manifold. It 

only shows that this method of coordination yields a map which is not psychometric. 
There could still exist other coordinations of sensed points to points of the 

Euclidean space which lead to psychometric map3. However, such a coordination 
will be impossible, If the visual space should be non-Euclidean. 

Let us illustrate this situation by the two-dimensional non-Euclidean man¬ 
ifold of points on the sphere. We can coordinate the points of the sphere to the 
points of the Euclidean plane and thus construct a plane map of the sphere. We 
may study the spherical geometry by the plane map and Its principle of construc¬ 
tion. However, we must not try to judge the actual 3ize or shape of objects on 
the sphere by the Euclidean size and shape of their images on the map. A map on 
which this is allowed is called Isometric and the coordination an Isometric trans¬ 

formation. In our example such a transformation Is imposoible: A sphere cannot be 
mapped isometrically to a plane. 

Instead of the spherical geometry let us consider the geometry on a cylin¬ 

der or on a cone. In these cases it is possible to construct isometric maps. We 

also may say that a cylinder or cone can be applied to a plane without "stretch¬ 

ing" the material from which It is made. 

The problem of Isometric mapping occupies a significant position in mathe¬ 

matics. In fact, we may consider this originally practical problem as the begin¬ 

ning of one of the roads which have led to the establishment of geometries differ¬ 

ent from the Euclidean geometry. In Gauss' theory of curved surfaces conditions 

were given for isometric transformation of surfaces onto each other. Riemann, 
after Gauss, generalized thbse results to manifolds of three and more dimensions 

and formulated their significance for the general space problem. The general re¬ 

sult is as follows : The geometry In a manifold can be derived from its metric, 

i.e., from a rule for measuring the size of small line elements. Two such mani¬ 

folds can be coordinated Isometrically to each other only under certain conditions 

which the metric of the first manifold must satisfy in relation to the metric of 

the other. If the second manifold is Euclidean, then these conditions give the 

answer to the question of whether an isometric Euclidean map of the first manifold 
can be constructed. Manifolds where the answer Is negative are called non-Euclid- 

ean; In this case no Euclidean map can be considered as true in all respects. 

Suppose now that we study visual sensations by the Euclidean map obtained 

by projection from two centers, or, in fact, by any other Euclidean map. This 

means that we try to interpret visual observations by applying indiscriminately 
the relations of Euclidean geometry. If the visual space should be non-Euclidean, 
then any conclusion we draw from our results must be questioned and we must expect 

eventually to find contradictions with observations. Such contradictions then can 

be eliminated only by reinterpreting our observations in a non-Euclidean visual 

space. 

2. We can explore our environment in an entirely different way, namely, by 

physical measurements. With the aid of certain general principles the results of 

these measurements are combined mathematically and the environment Is recognized 
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INTRODUCTION 5 

as a manifold of physical objects. Their qualities are principally different from 
the sensed qualities of visual perception. Instead of colors and brightness we 

obtain optical qualities referring to reflection or transmission of light waves. 
Instead of sensed form and localization we have measured physical form and physical 
localization in a three-dimensional space. We shall call this space the physical 

space and have to distinguish it carefully from the visual space. We assume the 
physical space to be Euclidean in what is to follow. This is certainly justified 
in the environment where sensory depth perception by binocular vision is effective. 

Of course there is a certain relationship between the two spaces. This 
relation is established by the stimuli provided by the light which is emitted or 

reflected by physical objects. A small part of this radiated energy Is picked up 
by the dioptric system of our eyes and, by certain electrical and chemical dis¬ 

turbances, transmitted to the brain. The immediate and definite character of the 
associated visual sensation may tempt us to the belief that it is determined In 

all its qualities by these light stimuli. Indeed, if we subscribe to the projec¬ 

tion theory of binocular vision, we tacitly make this assumption, since we Identify 

physical and visual space. But even by considering these spaces as metrically 

different we can still believe in a necessary one-to-one correspondence of physical 

and visual space. A configuration of physical objects seems to create, by neces¬ 
sity, one and the same visual sensation for a given observer. 

However, this belief does not stand a critical test. Actually, a visual 

sensation is the response of a living organism to physical stimuli. Thus we can 

scarcely hope to find the explanation of visual sensations and their sensed quali¬ 

ties in the complicated chain of physical events by which the organism is stimu¬ 

lated. We must take account of other factors which are given by the organism it¬ 
self and not by the stimuli. These are psychological factors determined by the 

purposes, expectations, and the experiential background of the observer. 

By adopting this point of view we have to consider the following possibil¬ 
ity. Objects can be identical in certain aspects of physical form and localiza¬ 

tion but are seen as objects which differ in these aspects. Vice versa, two sen¬ 
sations can be Identical in all their qualities though related to different physi¬ 

cal objects. That this is true even in the realm of binocular vision Is clearly 
shown by some experiments carried out at the Dartmouth Eye Institute. A set of 

rooms with curved walls has been constructed; the walls are provided with curved 

window patterns. Every one of these distorted rooms gives the appearance of the 
same rectangular room, i.e., the same sensation is related to an Infinite set of 

physically different rooms. In a second experiment, perspective patterns are 

drawn upon a vertical board. The apparent localization of the board changes 

strikingly if the pattern is varied though physically the board is not moved. An 

Infinite set of apparently different localizations thus can be related to the same 

physical localization. ^We stress the point that in both demonstrations the ob¬ 
servation is binocular. 

We conclude from the above experiments that It "would be futile to attempt 
to express the relation of visual and physical space in the form of a necessary 
one-to-one correspondence. The qualities of visual sensations are not uniquely 
determined by the physical stimuli. Since, on the other hand, we cannot consider 
sensations and stimuli as entirely unrelated, we are forced to the conclusion that 
only certain special elements of visual sensations are determined by the stimuli. 

*The80 demonstrations have been designed by A. Ames, Jr. The mathematical analysis of the exper¬ 
iments has been given by A. Stein. 
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The, essence of the following theory will he that, in fact, there exist immutable 

relationships but that they are confined to the assignments of apparent size to 

physical line elements. Consider two infinitely close luminous points in the 

physical 3pace. Our hypothesis is that their apparent relative distance is deter¬ 

mined by the physical coordinates of the two points. For these differential or 

primitive size sensations and only for these we shall assume a necessary function¬ 

al dependence upon the cooresponding differentials of the stimuli. 

We stress the point that this relation of apparent size to physical qual¬ 

ities of localization is purely a mathematical relation. It does not Introduce 

the concept of physical causality and thus does not express sensory size qualities 

by physical units. In fact, it Is a relation of two geometrical manifolds to each 

other: The visual space obtained by psychometric coordination and the geometrical 

manifold which represents the physical space. 

Our postulate Is clearly compatible with the fact that visual sensations 

are not uniquely determined by the stimuli. Indeed, an actual sensation requires 

in addition to assigning size to its differential elements the Integration of these 

elements to a unity. Thus arbitrary parameters of Integration are available. These 

parameters are chosen by the observer and, in the choice, he depends on his psy¬ 

chological condition. 

The mathematical expression for the apparent size of a line element In 

terms of Its physical coordinates can be found by analyzing certain observations, 

i.e., by an inductive empirical investigation. On the other hand, this expression 

establishes a Riemannian metric for the visual space, namely, a rule for measuring 

the size of lnifinltely small line elements. Though referring to the infinitely 

small, it nevertheless already determines the general character of the visual 

space. It thus must give us the answer to the question whether or not the visual 

space Is Euclidean. Our answer will be that, in fact, the metric of visual sensa¬ 

tions is non-Euclidean. In particular we hope to demonstrate that the geometry of 

the visual space is the hyperbolic geometry of Lobachevski. 



Section 1 

PSYCHOMETRIC COORDINATION 

1.1. It seems to be paradox, at first sight, to Introduce the concept of 

a metric in a manifold of sensations, i.e., the concept of measuring psychological 

qualities by coordination of numbers. Indeed, psychological manifolds, like heat 

sensations, or sensations of brightness, do not seem to be provided with a metric. 

We may say that sensation' Si is greater or smaller than sensation S2, but not how 

much greater or smaller. How then can we speak about a manifold of sensations of 

space which has a non-Euclidean metric? 

It is, however, problematic whether greater or smaller is the only prop¬ 

erty of psychological manifolds which we may recognize. Consider, for example, 

the sensation of pitch in sound perception. If trained, we are well able to com¬ 
pare three pitch sensations 

Si, S2, S3 

i.e., to judge whether the contrast (S2S3) is greater or smaller than the contrast 
(SiS2). 

In space sensations a similar phenomenon may be observed. Let us consider 

for example, the sensation of height. The contrast (SiS2), between two such sen- 

,, g3 sations, is Interpreted as the size of the object between Sx and S2. 

Obviously we are in the position to judge whether (SiS2) is greater or 

. smaller than (S2S3). We also may say that, by our sensations of height, 

we assign vertical size independent of vertical localization. 
S| ^ ^ 

We shall show next that recognition of greater and smaller and 

recognition of greater and smaller contrast implies the existence of a 

metric and that this metric is in essence uniquely determined. 

1 ■ ^‘ Let us first, tor simplicity's sake, consider a one-dimensional man¬ 

ifold of sensations. Our problem is to coordinate numbers, x, to the sensations, 

S, of this manifold. This, of course, can be done in a great variety of ways; let 

x = x(S) (1.21) 

be such a coordination, and let us also assume that the manifold of coordinated 

numbers, x, 1orms a continuous manifold. However, we require that this coordina¬ 
tion shall be such that 

x(S2) > x(Si) if S2 > Si 

and that 

x(S3) - x(S2) > x(S2) - x(Si) 

if the contrast (s3s2) > (S2Si) 

(1.22) 

Only if these conditions are satisfied can we consider the coordination as repre 

sentlng the characteristics 01 the sensations in question. 
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We 3how next that the "function" x(S) is In Its essentials uniquely deter¬ 

mined. Indeed, let X = X(S) be another coordination of the type (1.22). Then we 

may consider X as a mathematical function of x. This follows from the fact 

that to every sensation S there belongs one and only one number x and also one 

and only one number X. Consequently to a given number x there belongs one and 

only one number X, l.e., X = f(x). Furthermore, from x2 > Xi it follows that 

S2 > Si and thus X2 > Xi. Finally, from x3 - x2 > x^ - x± that (S3S2) >(S2Si) 

and thus that X3 - X2 > X2 - Xi. Thi3 means that the function X = f(x) must 

satisfy the conditions 

f(x2) > f(xi) if x2 > xi 

(1.25) 
f(x3) - f(x2) > f(x2) - f(xO if x3 - x2 > x2 - Xi 

whatever number Xi and x2 may be. 

From the last condition (1.25) and from the continuity of the function 

f(x), it follows that 

f(x3) - f(x2) = f(x2) - f(xi) (1.24) 

if x3 - x2 = x2 - xi. 

This last result we may formulate as follows: 

If x2 is the arithmetic mean 

VWj! x2 = ?(xi + x3) (1-25) 

of two numbers xi, x3, then the value f(x2) of the function f(x) 

at x2 is also the arithmetic mean of the values f(xi) and f(x3), 

i . e ., 

f(x2) = \ [f(xi) + f(x3)] (1.26) 

The only continuous functions f(x) satisfying this condition for any two 

values Xi, x3 are the linear functions 

X = f(x) = ax + b (1.27) 

where a and b are arbitrary constants. 

The arbitrariness of the constant a means that no absolute size is given 

but only relative size. (Change of unit of size.) The-arbitrariness of b means 

that the origin or the scale Is undetermined. 

In these limits, however, we see that the psychometric coordination o_f 

numbers To sensations "is uniquely determined, if the sensations allow recognition 

of greater and smaller and of greater and smaller contrast. 

We mention that this result can be obtained under very much weaker condi¬ 

tions. We need only to require that contrasts (SiS2) (S2S3) can be compared if 

S2 and S3 lie in the immediate neighborhood of Si. 

1 5. In the case of sensation manifolds of more than one dimension, we 

have to proceed a little differently. Let us consider a two-dimensional manifold 

of sensations and coordinate these sensations S to the points P of a two- 
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dimensional manifold m of points. The geometric relations in the point manifold 
shall be determined by a quadratic differential. 

da2 = edx2 + 2fdxdy + gdy2 
(1-51) 

where x, y are the coordinates 

The above differential 

determines the distance of two 

oi a point P and e, f, g functions of x, y. 
* 

is called the metric of the point manifold; it 

neighboring points P = (x,y) and P' = (x+dx, y + dy). 

We assume again that it is possible to 

l.e., to recognize whether the contrast (SiS{) 

greater, equal to, or smaller than the contrast 
and S2. 

compare contrasts of 

of two sensations Si 

(S2S2) of two other 

sensations 

and S{ is 

sensations S2 

if 

We now require the coordination of sensations S and points P to be such 

R disi_P tha _ -fie distances day and da2 of the points Pi, p{ and P2, P2 

give a true measure of the contrasts (SiS|) and S2S2), of two 

pairs coordinated "neighboring" sensations Si, Si and S2, S2. 

R. d-52 In other vopd3, ve require that 

eidx? + 2fidxidyi + gidy? = e2dx| + 2f£dx2dy2 + g2dyf = dal (1-32) da? 

(Sisi) = (s2s2) 

and vice versa. 

Only with this condition satisfied can the coordination of 

points be considered as representing truly the characteristics of 

in question. We shall call it a psychometric coordination. 

sensations and 

the sensations 

Let us now assume that, for a given manifold of 

metric coordination is possible. Then we can show that, 

manifold m and its metric are uniquely determined. 

sensations, such a psycho¬ 

in essence, the point 

Indeed, let M be another manifold of points and 

dl2 = EdX2 + 2FdXdY + GdY2 

its metric expressed In certain coordinates X, Y. 

Let us assume that our given manifold of sensations 
psychometrlcally to M so that always 

(1-33) 

can be coordinated 

df! | dzi if (SiS{) | (s2si) 
(1.34) 

and vice versa. Since the sensations 

ence to the points (x, y) of m as well 

that X, Y must be functions of x, y: 

o are coordinated in one-to-one correspond- 

as to the points (X, Y) of M, it follows 

x = x(*,y) 

Y = Y(*,y) 

We conclude furthermore by (1.32) $nd (1.34); 

(1-35) 

♦In § 3 the concept of a metric is explained in greater detail. 
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The inequalities 

eidx? + 2f1dx1dy1 + gidy? t e2dxf + 2f2dx2dy2 + g2dyl 

laply the corresponding inequalities 

EidX? + BFidXidYi + GdY? = E2dX§ + 2F2dX2dY2 + G2dY§ 

Uyi; dx2, dy2; and xi, yij x2, y2 may be. 

not difficult to see that this is possible only if the quadratic 
da and dZ2 are related by the identity df2 = ada2 or 

EdX + 2FdXdY + GdY2 = a(edx2 + 2fdxdy + gdy2) (I.36) 

’•'here a is a constant. 

pother words: By submitting the differential dZ2 of M to the transfor- 
£a|_lon (JL • 35 j. the differential dq^ is obtained multiplied with a constant a. As 

~e_ci"e, we may interpret thi3 appearance of an arbitrary constant a as indicat- 

■Ln& the arbitrariness of the unit of 3ize In psychometric evaluation. 

In general It Is not possible to transform a given quadratic differen¬ 
tial edx + 2fdxdy + gdz2 into another one EdX2 + 2FdXdY + GdY2 with arbitrarily 

chosen coefficients E, F. G. The result that, in the case of the above differen¬ 
tials dcr and dX2, such a transformation is possible, points to the fact that, 

geometrically, the point manlfolds rn and M are identical. The points of M are 

Identical with the points of m but characterized by different numbers X, Y instead 

1, I»e., by different coordinates. It is clear that the geometrical charac- 
teristics of a point manifold must be independent of the choice of the coordinate 
system. 

It may be mentioned again that the above result already follows If all the 
three sensations Sj, S2, S2 lie in an infinitesimal neighborhood of Si; recogni¬ 

tion of greater or smaller contrast thus Is required only if two pairs of sensa¬ 
tions Si, S{; S2, S^ are sufficiently near to each other. 

1.4. A similar consideration for sensational manifolds of three dimensions 
leads to an analogous result. If a psychometric coordination of sensations to a 
point manifold is at all possible, then there exists only one such manifold. The 

geometrical distance of two neighboring points P and P' given by a quadratic dif¬ 
ferential 

• da2 = gudx2 + g22dy2 + g33dz2 + 2gi2dxdy + 2gi3dxdz + 2g23dydz (1.4l) 

measures the contrast of the two associated neighboring sensations S and S'. The 

unit of the contrast size is the only Indeterminacy In this coordination. 

The question whether or not a geometrical manifold actually fits a given 
manifold of sensations according to the above contrast requirements can only be 

answered by an empirical investigation. For example, as to the space sensations 

oL binocular vision, we have no right to assume a priori that the Euclidean space, 
l.e., a manifold with the metric 

da2 = dx2 + dy2 + dz2 

truly represents its characteristics. 

whatever dxx. 

It is 

differentials 
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In the following, we shall assume the possibility of psychometric coordin¬ 

ation o_ 7ioual space sensations to a geometrical manifold. We shall also assume 

cnat contrasts of space sensations can be compared. This means we may compare the 

sizes of two arbitrary line elements in space even if these line elements are not 

atiachen _o the same base point. We then know from the above result that there 

exists cmy one geometrical manifold which represents the characteristics of binoc¬ 

ular vision psychometrically. Our aim is to determine this manifold. 



Section 2 

BIPOLAR COORDINATES 

In order to facilitate the mathematical investigation of our problem, we 

Introduce first a suitable bipolar coordinate system. Thi3 system allows us to 
characterize a point of the physical, space by three angles a, 3,9 instead of by 

three Cartesian coordinates x, y, z. We shall discuss in this section the rela¬ 

tion of these two coordinate systems. 

2.1. The Cartesian coordinate system is oriented relative to the observer 
as follows: His eyes are at the points y = — 1 of the y-axis, the x,y-plane is 

z his horizontal plane, the x,z-plane his median 

plane. We assume first that the observer 
views his environment without head movements 

so that--to be more precise--the centers of 

rotation of his two eyes remain at the points 
y = — 1 of the y-axis. We now construct a 

plane through the y-axis and through a point 
P of coordinates x, y, z. This plane is 

called the plane of elevation of the observed 
point. Let 9 be the angle of elevation, i.e., 

the angle of the plane of elevation with the 

horizontal plane. We draw next, in the plane 
of elevation, two lines from the eyes to the 

a and 3 are the angles of these lines with the y-axis. As indicated in 

Fig. 1, we measure the angle a from the positive direction of the y-axis, but 3 

from the negative direction. 

One verifies easily that the relation between the linear coordinates 

x, y, z and the angular coordinates a, 3> 9 given by the formulae 

point P. 

2 cos 9 
x = 

cot a + 
9 ' 

cot 3 

cot a - cot 3 
y = cot a + cot 3 ’ 

2 sin 0 
Z = 

cot a + cot 3 ’ 

The transformation of the x, y, 

everywhere regular except on the y-axis. 

treats each plane of elevation alike, we 

of the horizontal plane. In thi3 case z 

X = 
2 

cot a + cot 3 * 

y = 
cot a - cot 3 

cot a + cot 3 

cot a = 

.cot 3 = 

y + 1 

\fi x2 + z‘ 

l - y 

/! 2 , 2 
X + Z 

(2.11) 

cot 9 = — 
z 

3, 9 space is 

= 0; 9 

cot a = 

= 0, and thus 

1 + y 

(2.12) 

cot p 
X 
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Fig. 2 

0> 

We Illustrate this transformation of the 

x,y-plane into the angular a, 3-plane by deter¬ 

mining the region of the a, 3-plane which cor¬ 
responds to the right half-plane x = 0. 

This region is bounded by the y-axis and an ideal curve infinitely far 
away. The values of the angular coordinates a, 3 on the boundary are given In 
Fig. 2. They determine immediately the boundary of the domain of the a, 3-plane 
which corresponds to the half-plane x = 0 (Fig. 3). 

We conclude that the half-plane x = 0 is transformed into the Interior of 
the triangle shown in Fig. 3. To every point x > 0 there belongs one and only one 

point a, 3 in the Interior of this triangle. The transformation thus is regular 

in all interior points. As to the transformation of the boundary elements, we 

notice, however, a striking irregularity. The two eyes are transformed into two 
lines of the a, 3-plane. The sections -1< y < 1, y < -1, y > 1 of the y-axis, on 

the other hand, are compressed into 3 separate points (0, 0); (k, 0); (0 n) 
respectively. 

The significance of the bipolar coordinates for the physiological aspects 
of binocular vision is easily understood. Let us assume that the two eyes are in 

the 'primary position," l.e., the optical axes are parallel to the x-axis. Then 

a point P with coordinates a, 3, 0 is projected onto the retina of the right e-e 

with spherical coordinates (a, 0) and onto the retina of the left eye with soherl- 

cal coordinates (3, 0). Indeed, the planes of elevation 0 = const. Intersect the 

two retinae in longitudinal sections, l.e., great circles through the retinal 

points on the y-axis. The cones a = const, intersect the retina of the right e^e 
in lateral sections, l.e., circles of latitude around the y-axis. The cones 
3 = const, give.the lateral sections of the left eye. (Fig. 4) 

Fig. 4 
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We also notice that a line element (dx, dy, dz) attached to a point P will 
be projected as a line element (da, d0) onto the right retina and as (-dp, d0) 
onto the left retina. da, dp, d9 thereby may be found from dx, dy, dz by differ¬ 
entiating the equations (2.11). 

The quantity d0 determines the vertical extension of the line element, the 
quantity da + dp., the horizontal disparity, and finally -?(dp - da), the horizon¬ 
tal extension. 

As is well known in binocular vision, the sensation of depth is directly 
related to the horizontal disparity. Clearly, it would vanish if we let the dis¬ 
tance of the two eyes converge to zero. By the mechanism of our vision the two 

retinal images are seen as one fused image, provided that the horizontal disparity 
is not too great. The disparity in the horizontal direction, i.e., the difference 
of extension of the two images parallel to the y-axis, is perceived as a new space 

dimension of the line element, namely, depth, in addition to vertical and horizon¬ 
tal extension. 

It is characteristic for our bipolar coordinates that the two Images of a 

line element in space (dx, dy, dz) must have the same vertical extension d0 on the 

retina. It i3, however, easily possible by artificial means, for example in a 
stereoscope or haploscope, to provide the eyes with individual images which have 

different vertical extensions d9i and d02. Mathematically this would mean offer¬ 

ing to the observer line elements from a four-dimensional manifold da, dp, d9i 

and d92. However, even if this vertical disparity d9i - dO2 is small enough that 
a fused image is seen, there is no sensation of a new space dimension. In other 

words, our mind refuses to digest the well-meant offer of four-dimensional line 

elements--either the two images are not fused or, if fused, the vertical disparity 

is completely ignored. 

The bipolar coordinates a, P, 0 preserve their good physiological meaning 

if the eyes do not remain in the primary position but view objects directly by 

convergence. The angles a, p, 9 then determine the position of the two optical 

axes of the eyes. A point P then is projected into the center of the retina 

(fovea), the region of clearest vision. Also a line element (dx, dy, dz) attached 

to P is observed in the center of the retina. Its Images, however, are still 

characterized by the bipolar differentials (da, d0) and (dp, d0). d0 determines 

the vertical extension; -^(dp - da), the horizontal extension; da + dp, the hori¬ 

zontal disparity. Again da + dp is sensed as depth. 

It is true that eye movements are of a more complicated nature than as¬ 

sumed above. If the optical axes of the byes are moved to converge at a point P 

which is not in the horizontal plane, then this movement Is accompanied by well- 

determined rotational movements of the retina around the optic axis. This tor¬ 
sional movement of the eyes has the effect that retinal points on the horizontal 

section (0 = 0) in Fig. 4, do not lie, after the movement towards P, in the plane 

of elevation through P. In other word3, our differentials (da, d9); (dp, d0) do 

not determine directly the location of the images of a line element in a coordi¬ 

nate system solidly engraved on the retina. In such a system we would obtain two 

sets of differentials--(da*, d0i*) and (-dp*, d02*) for the right and left eye 

respectively--which, of course, can be’ found from (da, dp, d9) if the mechanism of 

torsion is known. It is-a problem which of these different coordinates are sig¬ 

nificant for the interpretation and localization of the original line element: the 

coordinates da, dp, d0 in cur bipolar system oriented on the base line between 

both eyes, or the coordinates (da*, d0i*), (-dp*, dO2*) in systems solidly at¬ 

tached to the retinae. 
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The following consideration seems to favor the assumption that the bipolar 

differentials give the significant clues for interpretation and localization, if 

the line element is viewed with both eyes. Consider 

two line elements with d9 = 0, I.e., line elements 

which lie in a plane of elevation. It is quite In¬ 

conceivable that the fact of their lying in a plane 
of elevation will not be recognized directly in 

spite of the fact that none of the quantities d9i*. / 
/ 

/ 
/ 

Big. 5 

namely, orientation relative 

however, is expressed in our bipolar coordinates. 

d02 In the solidly attached coordinate systems 
vanishes. If the same combination of line elements, 
however, is viewed only with one eye, we can judge 

Its orientation probably only by referring to fixed 

coordinate lines on the retina. Binocular vision 
thus gives us, in addition to depth perception, a 

greater certainty In directional localization, 
to the base line of the two eye3. Exactly this fact. 

For this reason we shall base our considerations in the following upon the 
bipolar coordinates a, 3, 0 and disregard torsional movements of the eyes. 

2.2. Modified bipolar coordinates. For many purposes it Is advantageous 
to use a modification of the bipolar coordinates a, {3, 0 which expresses more di¬ 
rectly their physiological meaning. 

We introduce the bipolar latitude 

9 = i(P - a) 

and the bipolar parallax 

V = n - a - 3 

(2.21) 

(2.22) 

For a discussion of these modified coordinates y, 9, 9 we may confine ourselves 
to the horizontal plane 9=0. 

The meaning of yis clear; the angle subtended by 

the lines of sight at the point of convergence, P. 

Obviously, y may vary from 0 to n. For the inter¬ 

pretation of 9 construct the circle through P and 
the eyes R and L. (Vieth-Muller circle.) The 

x-axls is intersected at P0 and Q0 by this circle. 

One easily proves that the angle under which the 

arc P0P appears from either R, L, or Q0 is equal 
to 9 = -§(3 - a). This shows that it is justified 

to interpret 9 as determining the lateral position 
of a point P. 

A line element (dx, dy, dz) attached to a 
point P can be characterized by the differentials 

dY, d9, d9 . From our former considerations it 
follows that 19 and d0 determine the lateral and 

vertical extension of the retinal Images and that dy measures the horizontal dis¬ 
parity. The latter is sensed as depth extension of the line element. 
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One proves readily that the relation between Cartesian coordinates x, y, z 

and bipolar coordinates y, 9, 0 is given by the formulae: 

cos 29 + cos y 
X 

sin y 

y - 
sin 2 9 

s I n y ’ 

z 
cos 29 + cos Y 

sin y 

the horizontal plane 

X 
cos 29 + cos y 

sin y 

y = 
s in 29 

sin y 

cos 0, 

sin 0, 

tan Y 

tan 29 = 

tan 0 = 

2 /x2 + z2 

x2 + y2 + z2- 1 

2y y/x2 + z2 

x2 + z2 - y2+ 1 

tan y = 
2x 

2 2 , 
x + y - 1 

_ 2xy 
tan 29 = —g-—2 

(2.23) 

(2.24) 

x - y + 1 

It follows that the curves y = const, are given by the Vieth-Muller cir¬ 

cles through the eyes: 

x2 + y2 - 2x cot Y = 1 (2.25) 

and the curves 9 = const, by the hyperbolae of Hlllebrand 

-x2 + y2 + 2xy cot 29 = 1 (2.26) 

through the eyes. These hyperbolae have the asymptotes 

y = x tan 9 (2.27) 

i.e., lines through the origin of direction 9. At any practical distance the 

hyperbolae 9 = const, coincide with these lines, as can be seen in Fig. 7* This 

demonstrates again the justification of Interpreting 9 as characteristic for the 

lateral position of a point P and d9 as lateral extension of a line element. 

In order to investigate the regularity of the transformation (2.23), let 

us determine the domain of the Y, 9-plane into which the half-plane x = 0 is 

transformed. Fig. 8 shows the values of 9 and Y on the boundary of the half-plane 

x = 0. At infinity we have y = 0. 

At the right eye: y - 29 = rc 

At the left eye: Y + 29 = n; 

This gives as domain in the y, 9-plane a triangle bounded by sections of the lines 

Y - 0, y - 29 = 7t, y + 29 = 71. The eyes are stretched into the lines 

y - 29 = 71 

and 
Y + 29 = n 
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The remaining sections of the y-axis are compressed into three single points 

(0, 71/2); (0, -n/2) ; (n, 0). The transformation is regular at interior points 

but highly irregular on the boundary. 

2.3. Simplified relations between Cartesian and bipolar coordinates. In 

many practical applications we can replace the relations (2.23) by simplified 
approximate formulae by considering the distance of the eyes and thus the bipolar 

parallax y as small. We may replace in (2.23) sin y by y and cos y by 1, and ob¬ 

tain 

2 cos2 9 cos 9 
x = ---— 

Y 
Y 

2 /x2 -t z2 

x2 + y2 + z2 

y 
2 sin 9 cos 9 

Y 
tan 9 

y 
r~2 : i2 

yx + z 

(2..31) 

2 cos2 9 sin 9 . a 

--£- , tan 0 
Y 

z 

X 

These relations may be used safely lor objects which are far enough away 

from the eyes (x > 30, for example). 

In the horizontal plane we havd 

2 cos 9 
x = -:- , 

Y 

2x 
2 , 2 

x + y 

y - 
2 sin 9 cos 9 

Y 
tan 9 = I 

x 

The curves y = const, are now circles 

x2 + y2 - 2y x 0 

through the 

The 

point x = y = 0 with centers on the x-axis. 

curves 9 = const, are the straight lines> 

y = x tan 9 

(2.32) 

(2.35) 

(2.34) 

through the origin (Fig. 10). 
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This result allows us easily to 
determine the domain in the y, 9-plane 

into which the half plane x = 0 is trans¬ 

formed. y can assume all values between 
00 and 0, and 9 all values between - tc/2 

and + n/2. The transformation is regular 
at all Interior points x > 0. 

The irregularity of the boundary 
coordination is illustrated In Fig. 11 
and Fig. 12. 

dot! = da2 or d Yi = d y2 

dPi C\J 
C

C
L

 

II d 9i = d9s (2.41) 

d0x = d02 dGi = d02 

Su^h line elements give to an observer the same binocular clues on the 

retinae, i.e., the same horizontal disparity dy, the same lateral extension d9 

and the same vertical extension d0. For this reason we call such line elements 
binocularly equivalent. 

Since most external objects may be considered as configurations of line 
elenients--a curve in space is a one-parameter manifold of line elements, a surface 

in space a two-parameter manifold of line elements--we may extend the concept of 
equivalence to such configurations. 
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Consider, for example, a curve in space. We may characterize it by three 
functions 

a = a (t) 

3 = 0(t) (2.42) 

0 = 0 (t) 

■where t is a parameter. Another curve in space must be considered equivalent to 
this curve it its line elements da1, d3 1 , d01 are equal to the line elements of 
the original curve. This obviously is the case then and only then if 

a' = a(t) + 6 

P' = 0(t) + e (2.43) 

6 • = 0 (t) + X 

6, e, X being arbitrary constants. 

In a similar manner we obtain equivalent surfaces. A surface Is obtained 
In parametric form by three functions. 

a = a(s, t) 

3 = 3(3, t) (2.44) 

0 = 0 (s, t) 

which determine a two-parameter manifold of line elements 

da = a8 ds + at dt 

d0 = 3S ds + 3t dt (2.45) 

d0 = 0a ds + 01 dt 

Another surface a1, 3', 9' ds equivalent to this surface if its line ele¬ 
ments da', dp', d01 can be coordinated to the original line elements such that 

da' = da 

d 3' = dp 

d01 = d0 

This leads immediately to the result that an equivalent surface must have 

the form 

+ 6 

+ e (2.46) 

+ X 

where §, e, X are arbitrary constants. 

a1 = a(s, t) 

3' = 3(3, t) 

0' = 0(s, t) 
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We may integrate the above results from a more general point of view by 
interpreting the relations 

a ' = a + 5 

0' = 3 + e- (2.47) 

O' =0 + X 

as a group of transformations of the angular a, (3, 0 3pace. In fact, they repre¬ 

sent the simplest type of transformations of this space, namely, translatory 

shifts. If these transformations, however, are formulated in the Cartesian 

y> z coordinates, an interesting and in no way trivial group of transformations 
of the physical x, y, z space is obtained. A general investigation of these 

transformations should give us many general results interesting for binocular 

vision. Any configuration submitted to such transformation will be seen by the 

same sequence of retinal images before and after the transformation. For this 

reason we shall call the transformations (2.47) iseikonic transformations. Math¬ 

ematically we recognize Immediately a characteristic feature of these transforma- 
tions. A cone a = const, through the right eye is transformed into another cone 
through this eye. Similarly a cone 0 = const, through the left eye into another 

such cone. These two basic sets of cones thus are transformed without distorting 
but only interchanging the individual cones. 

ii" we prel er the use of the modified coordinates y, 0 we can express 
iseikonic transformations by the relations 

Y' = Y + x 

9' = <p + a (2.48) 

0’ = 0 + X 

where x, o, X are arbitrary constants. 

Two configurations of objects such that the one can be transformed into 
the other by an iseikonic transformation are called equivalent configurations. 

2•5• Significance of iseikon!c transformations. We ask the question: Are 
two equivalent configurations of objects indistinguishable in binocular vision? 
Inoeed, both can be observed by identical sequences of images on the retinae. 

With regard to the above question, we can have two extremely opposite 

points of view. If we subscribe to the "projection theory" that our eyes are a 

kind of measuring device for the angular coordinates Y, 9, 0 and that the results 
of the measurements are directly transformed by our mind into space sensations, 

then equivalent configurations are sensed as different. However, if we believe 

the actual values of y , <p , 0 (i.e., the convergence of the eyes, the relation of 

the optical axes to the median and horizontal plane) are of no consequence and 

the sequence of retinal Images provides the only stimulus for sensations, then 

equivalent configurations are absolutely indistinguishable, even in binocular 
vision. The coserver depends upon intellectual clues such as perspective to 

choose the one or the other physical realization of equivalent configurations. 

The second hypothesis can be supported by actual experiments. Ames 

(Dartmouth Eye Institute) has shown experimentally that to a given surface a whole 
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family of surfaces belongs which may he interpreted as the original surface if 

suitable perspective patterns are drawn on the "wrong" surface. For example, to 
a rectangular room there belongs a family of non-rectangular rooms which are bi- 
nocularly indistinguishable from the original room. If the walls are provided 

with certain distorted windows which correspond to rectangular windows in the or¬ 
iginal room, then the visual sensation of the distorted room is that of a rectan¬ 

gular room. Indeed, the observer knows that windows are rectangular and thus in 

his sensation he chooses the physical realization of the impinging pattern which 

fits this notion. 

It is possible to construct mathematically such a family of distorted 

rooms with the aid of iseikonic transformations. The result is a set of distorted 

rooms equivalent to the original rectangular room. Rooms which have been con¬ 
structed on this basis. Indeed, give, at least approximately, the above-described 

effect. For this reason we shall derive In the two following sections the mathe¬ 

matical equations for distorted rooms equivalent to a given rectangular room. 

The experiments with distorted rooms seem thus to be fully explained by 

the above hypothesis that the actual values of 9, 0 and especially the value of 

the convergence y are Insignificant for the visual sensations. However, this the¬ 
ory leads us Into difficulties when we try to understand the psychological fact 

of judging size Independent of localization. Indeed, two line elements (dxi, dyi, 

dzi)and (dX2, dy2, dZ2) can have the same bipolar characteristics dy, dq>, d0, and 
still be of entirely different physical size. If these "local signs" dy, dq>, d9 
are the only basis for visual sensations, then It Is hard to understand how we can 

judge the difference in actual size with such remarkable accuracy. Is this judg¬ 
ment obtained purely by former experience, or is it at least partly an element of 
direct visual sensation? In other words, is judgment of size only the result of 
training, or can we assume that it has developed from a seed which Is an Immutable 

part of primitive sensation of space? 

The-fact that two line elements can have the same impinging characteris¬ 
tics dy, dcp, d0, but different apparent linear size, forces us to reconsider the 

significance of the absolute values y, 9, 0, especially of the convergence y. We 

shall. In §4, relate the apparent size ds of a line element dy, d9, d0 to the 
bipolar parallax, y, i.e., to the convergence of the eyes. We shall not attempt 
to explain this relation of size estimation to convergence physiologically, but 

shall consider it as a hypothesis necessary for the solution of our problem: To 

establish a metric for the manifold of visual sensations. 

By the introduction of the convergence y as a significant element of bi¬ 

nocular vision, we have to conclude that equivalent configurations can not be 

truly indistinguishable. However, we shall see that our postulated relation of 

apparent size and convergence does not necessarily mean absolute localization In 

space. On the contrary, the special functional relation of both which we shall 

establish In §6 allows an even greater group of configurations metrically equiva¬ 

lent to a given configuration. This means that a group of transformations of the 

space exists which transforms a given configuration Into other ones with identical 

binocular characteristics. These transformations we shall call rigid transforma- 

tions, and two configurations of this type, congruent configurations. Instead of 

a three-parameter group as the iseikonic transiormatlons, we shall -ind a six- 

parameter group of rigid transformations. Ames's postulate of the existence of a 

group of surfaces Indistinguishable from a given surface thus Is evqn more guaran¬ 

teed, if we Introduce into binocular vision the convergence y as a significant 

factor. 

alan
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In. §8 we shall derive a set of distorted rooms with Vails congruent to 

the plane walls of a rectangular room. The result will be, that these congruent 

rooms are nearly identical with the equivalent rooms to he derived in §2.6 and 

3 2.7, though obtained from entirely different mathematical principles. We thus 

may consider equivalent rooms as a good approximation of congruent rooms. However, 

we shall see that the differences between both types are great enough to be easily 

observable. To compare the Impressions of both types of rooms as to the convic¬ 

tion of seeing an ordinary rectangular room can be considered a direct test of the 
two theories. 

2.6. The distorted room equivalent to a rectangular room. We assume that 
the walls of an originally rectangular rooms are given by the planes 

x = x0 

y - -y° (2.61) 

Z = ±Zo 

We consider a special iseikonlc transformations of the space represented 
by the relations 

Y' = Y + T 

<P' = <J> (2.62) 

0 ' = 0 

where t is an arbitrary constant. The plane walls of the original room are trans¬ 
formed into equivalent curved surfaces. Any pattern drawn on these plane surfaces 

is transformed into an equivalent pattern on the, curved surfaces and will be seen 

by the same binocular characteristics dy' = dy; dtp' = d<p; d0 ' = d0 as the original 

pattern. The only difference is the absolute value of the convergence of the eyes. 

12 2- special part of the plane walls is observed with an angle of convergence y 

then the corresponding part on the equivalent curved wall is seen with an angle' 

Y1 = Y + t. The assumption that the convergence of the lines of sight is immate- 

r2ai for binocular space sensation then leads to the consequence that the observer 
sees the equivalent curved walls as plane if a suitable pattern on the walls in¬ 
duces him to this interpretation. 

Before we derive analytic expre3- 
B sions for the curved walls, let us con- 

sider a simple topological method which 

allows us easily to determine the general 

shape of these walls. We determine for 

this purpose the curves in the y, 9-plane 

which correspond to the rectangular cross 

x0 section of the original room with the hori¬ 
zontal plane. The front wall x = x0 be¬ 

comes a curve symmetrical to the y-axls 

which reaches infinity (y = 0) at the 

points cp = ± n/2. The side wall y = yQ 

: may be considered as a line connecting a 

point y0 > 1 of the y-axis with a point 

at 00 for which 9 = 0. Consequently, its Fig. 13 
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image in the y, 9-plane is a curve from the point (0, x/2) to the point (0, 0). 

This consideration leads to Fig. 14, where the shaded region corresponds to the 

interior of the rectangle of Fig. 15* 

We now submit the y, 9-plane to the transformation y' = y + x. Let us 

first assume that x < 0. The curve ABCD is shifted to the left by this tranalor- 

matlon and thus is located in the basic triangle as shown in Fig. 15* The front 

wall extends from B to 00 (y = 0) and reaches this line at a value of 9c* < 71 /2 • 
Consequently it must be a curve of hyperbolic shape in the x,y-plane, a curve 

which is symmetric to the x-axis and approaches °° asymptotically with the angles 

± 9c* where 9c* < 7t/2. The side walls go from B (or C) directly to y = 0, and ^ 

reach it at 9-values smaller than n/2 but greater than the values 9c* of he front 
wall. This means that the side walls also give hyperbola-shaped curves which 

Fig. 16 
Fig. IT 
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approach °= with an asymptote steeper than the asymptotes of the front wall. From 

these considerations it follows that the equivalent room must have a cross sec¬ 

tion with the horizontal plane as illustrated in Fig. 16. The analytic investi¬ 

gation shows that the curves are in fact true hyperbolae. 

We consider next the case t> 0. Now the curve ABCD in Fig. 14 is shifted 

towards the rh and located in the basic triangle as shown In Fig. 17* The 

extension of the front wall beyond B goes di¬ 

rectly to the upper or lower boundary line and 

thus in the x,y-plane to one of the eyes. It 

goes through the other eye if extended beyond 

C. Thus it must be an elliptically shaped 

curve symmetric to the x-axis and passing 

through the eyes. The upper side wall goes to 

the upper boundary line and thus to the left 

eye in the x,y-plane. Its extension beyond B 

reaches y = 0 at a negative value of 9<= > -x/2. 

This leads to the equivalent room whose cross 

section with the horizontal plane Is shown In 

Fig. 18 

The analytical treatment will show 

that the curved walls really intersect the 

horizontal plane in an ellipse and two hyper¬ 

bolae . 

2.7. The distorted room equivalent to a rectangular room. (Analytical 

derivation) Since the dimensions of the room are quite large compared with the 

distances of the eyes, we shall use the simplified relations (2.31) for our pur¬ 

pose. 

From these formulae it follows that the transformation 

\ 

y' = y + x 

9' = 9 (2.71) 

0' = 0 

In the y, <p, 0 space may be written in Cartesian coordinates as follows: 

y/ X ' 2 + Z ' 2 
/ 2 , 2 

\f X + Z 

x'2 + y'2 + z'2 
2 , 2 , 2 

x + y + z 

y y 
— 

/x*2 + X'2 
/ 2 , 2 

/x + z 

z' z 

x1 

(2.72) 

X 
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The last tvo equations may be replaced by 

y 

z' z 

X' X 

(2.73) 

We now Introduce y' 
y z 

x' and z' = — x' In the first equation, and obtain 

= 1 + ir 

x 

2 , 2 , 2 

x x + y + z 

2 / 
Combined with (2.73) this leads to the formulae 

2 , 2 
X + z 

(2.74) 

x' - 

1 + I. 

2 2 2 
x + y + z 

2 /x2 + z2 

y y 

X2 + 
2 , 2 

+ Z 

1 + I / 
2 , 2 

X + Z 

(2.75) 

z 1 

i +1 
2 , 2 2 

X + y + 2 

2 , 2 
X + z 

between Cartesian coordinates. 

The inversion of these formulae Is simply obtained by replacing x by - x, 

1. e., we have 

x 
. 2 

+ z 

-f z 

72 

2 

y y 
_T 

2 — 

+ + z 

X ' 2 + z ' 2 

(2.76) 

z 1 
Z = -3-^ 

r x' + y'2 + z' 

' 2 yx-2 + z's 

The last equations give us Immediately the equations for the curved walls 

of our distorted room. Indeed, since the plane walls of the original room are 

given by the planes x = Xo, y = yo, z = z0, where x0, yo, z0 are constants, it 

follows by (2.76) that (we use x, y, z instead of x', y', z') the equivalent 

walls are determined by the surfaces 
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x = 
2 2 2 

1 _ 1 x + y + z 

2 r 2 2 
s/X + Z 

y = 
A X x2 + y2 + z2 

/o V ’ 2 A2~7—2- v yx + z 
(2.77) 

Z = Zn 1 - - 
T X2 + V2 + Z2 

2 /“ 2 2 
/X + Z 

with t as arbitrary parameter. 

The cross sections with the horizontal plane (z = 0) are given by the 
curves: 

(2.78) 

One recognizes immediately that these curves are conic sections, namely, hyper¬ 

bolae if x < 0, and ellipses (front wall) and hyperbolae (side walls) if x > 0 in 
agreement with our former results. 

We remark in general that each plane of elevation z = x tan 9 is inter¬ 

sected in conic sections by our surfaces. Furthermore: The front wall Inter¬ 

sects the median plane y = 0 in a conic section, namely 

Finally we remark that the side walls are surfaces of revolution 

with the y-axis 

y = Jo 
+ y 

2 \ 

as axis of revolution. 

p = /x2 + z2 

(2.79) 

(2.791) 

By move- 2-8. Angular coordinates lor observa11on with head movements, 

ments of the head we are in a position to view the neighborhood of any point, 

symmetrical convergence of the eyes. We 
not only in d: rect vision but also in 

assume that the head rotates about a center of rotation so 

that the eyes are moved on a sphere around this center. The 

base line of the eyes loses its significance for directional 

orientation. It is replaced by a reference line given by the 

position of our shoulders, and we can assume that this refer¬ 

ence line remains in our consciousness if we move our head. 

Similarly we are conscious of the position of the horizontal 

plane normal to the direction of the gravitational force. 

For this manner of observation we introduce suitable 

systems of Cartesian and angular coordinates. 

The x,y-plane shall be the horizontal plane and the 

y-axis shall coincide with the direction of the'shoulders. 
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We place the origin of the coordinate system at the 

center of rotation of our head. 

We replace this Cartesian system by an angu¬ 

lar system as follows. We determine the plane of 

elevation of a point by the plane through P and the 

y-axis. Let 0* be its angle with the horizontal 

plane. We draw then In this plane the line which 
connects the origin 0 with P. We characterize this 

line by its angle (90 - 9 *) with the y-axis. The 
angles of elevation 0* and the lateral angle 9* then 
correspond to longitude and latitude on a sphere 
with two poles on the y-axis. The distance OP of a 

point from the origin finally is characterized by 
the parallax Y* at P with the eyes as basi3. Accord¬ 
ing to our assumption, we consider the lines of sight 

RP and LP as always symmetrical to the radius vector 

OP. 

The relations of the Cartesian coordinates 

‘x, y, z to the angular coordinates are simple. Let 
d be the distance of the base line RL from the center 

of rotation 0. Then 

OP = d + cot Y* /2 

x = (d + cot y* /2) cos tp* cos 0* 

y = (d + cot y * /2) sin 9 * (2.81) 

z = (d + cot Y * /2) cos 9 * sin0* 

A line element 

terms of our angular di 

at the same tine the si 

line element, namely, t 
vertical extensions d<? + 

(dx, dy. dz) attached to a point P, can be expressed in 

f f erentials dy*, dcp*, d0 *. These differentials determine 

gnificant characteristics of the retinal images of the 
disparity dy* Interpreted as depth and the lateral and 

and d6 *. 

We may assume that the base line RL of our eyes remains approximately 

horizontal if we move the head according to a habit established in the past. 
Thus we may call the disparity dy* also in this case the horizontal disparity. 

The assumption of a base line which remains 

horizontal Is, however, not essential for our theory. 
9^0 existence of a well-established habit we can cer¬ 

tainly expect, since otherwise repeated fixation of 

the same line element would result in erratic judgment 

of depth In accordance with different disparities dy*. 

'If a given configuration of objects is ob¬ 

served with the head In fixed position and then with 

moving head, then it is not self-evident that the two 

Interpretations are identical. Indeed, one can easi¬ 

ly demonstrate that this Is not the case. For this 

purpose we construct a number of marks (for example, 

pins) arranged at equal distances on a Vieth-Muller 
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circle through the eyes. If these pins are observed with the head in fixed posi¬ 

tion, they give the impression of being arranged on a circle with the observer 
at its center. This impression does not remain if the pins are viewed with moving 

head. 

On the other hand, let us consider two configurations of points which are 

physically entirely different, namely 

and 

= (d + cot Yi/2) cos cos 91 

y j* = (d + coty1/2) sincp^ 

zp = (d + coty^/2) cos 9^ sin 9 ^ 

*1 

zi 

cos 2cp^ + cos y i 

sin y ^ 

sin 2<p1 

siny 

cos 2 + cos yi 

sinYi 

cos 0 

sin 9 i 

(2.82) 

(2.8J) 

where the quantities y i, cp^, 0 ^ are in both configurations the same. 

We observe the configuration (2.82) with moving head and symmetrical con¬ 

vergence of the eyes, but the configuration (2.85) with the head in fixed position 
and asymmetrical convergence of the eyes. 

We shall adhere in the following jto the hypothesis that the observer is 

led to an identical sensation in both configurations and that he interprets both 
configurations as identical. 

This hypothesis may be tested easily enough by experiment. For example, 

we can construct a network of wires obtained by rotating the Vieth-Muller circle 

in Fig. 21 around the base line of the eyes. The result is a network on a torus 

surface as illustrated in Fig. 22. According to our hypothesis this network would 

appear, if observed with fixed head, as a spherical network with the observer as 

center. The vires indicate the circles of longitude and latitude on this sphere. 

The same sensation would be obtained if an actual spherical network (Fig. 25) is 

observed with moving head so that the individual 

parts of the network are seen in symmetrical con¬ 

vergence . 

The above-formulated principle seems to con¬ 

tradict, at first sight, our common experience. It 

certainly implies that from the same physical con¬ 

figuration of objects different sensations may be ob¬ 
tained, depending upon the manner of observation: 

with head in fixed position or with moving head. 

Moreover, since head and eye movements may be com¬ 

bined in an Infinity of variations, we must expect 

that the same physical configuration can lead the 

observer to an infinite variety of sensations. Still, 
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we are convinced that all these differ¬ 

ent views are associated with the same 
and unchanged environment. 

Is this conviction the result 
only of experience, i.e., correlated to 
a judgment of probability based on repi- 
tition of similar observations in the 
past? This may be the explanation, but 
we are by no means forced to consider 
this the only possible explanation. It 
is possible that all these different 

interpretations have an invariant ele¬ 
ment in common, and that this invariant 

element is the criterion which gives us the conviction of seeing the same exter¬ 

nal configuration. We may compare this with constructing two different maps of 

the same configuration by using two different principles of mapping. In fact, 

we may describe an interpretation of a configuration of objects as a coordination 
or a mapping of sensations to the Euclidean screen of our intuitive mathematical 

thinking. To formulate mathematically the invariant element which both Euclidean 

maps have In common--namely, the same non-Euclidean metric relations--will be one 
of the subjects of the next sections. 



Section 3 

CHARACTERIZATION OF A METRIC BY QUADRATIC DIFFERENTIALS 

^ie 11161 ri c of a. man if old of point3 is defined as a rule for determln- 
in 

3-1 _ 
ing tne size of objects in this manifold. It Is a significant mathematical fact 

that it is sufficient to formulate this rule for small objects, indeed, "infini¬ 
tesimally" small objects. We illustrate this by the example of the Euclidean 

plane. We introduce Cartesian coordinates x, y and consider two points Pi = (x, y) 
and P2 = (x + dx, y + dy) where dx and dy are the differential increments of 

the coordinates x, y. The line element ds connecting 
y the two points then is characterized by the differential 

(dx, dy), and its size ds Is given by Pythagoras' theo¬ 
rem : 

ds 

We also may say that 

ratic differential 

= \/dx‘ + dy (3-11) 

the size is determined by the quad- 

ds = dx2 + dy‘ (3-12) 

which again is an analytical formulation of Pythagoras' theorem. This quadratic 

differential (3-12) is the mathematical expression for the metric of the Euclidean 

plane. By purely analytical methods one is in the position to derive the theorems 

of Euclidean geometry from the fundamental differential (3.12). It is clear that 

this fact is by no means self evident, since it means that a metric (3.12) refer¬ 

ring to points which are infinitely close also determines metric relations of 

points which are far apart. We may consider the differential (3-12) as an Incon¬ 

spicuous seed out of which we may develop the whole organism of Euclidean geometry 
with all its variety of relations. 

is, we 3how how Intimately the measurement of angles is 

nt of size through the quadratic differential (3.12). Let 
us consider two line elements PXP2 and PiP3 attached to 

the point Pi. We denote their differential coordinates by 
(dx, dy) and (6 x, 6y). Then it follows that the. angle 

included by the two line elements is given by the formula: 

_dx 6x + dy fry 

003 u = yfa* + dy2 . /6x2 + by2 (3-!3) 

The expression dx • 5x + dy • 6y is called the mixed 

quadratic differential associated with (3.12). Hence the 

angular metric follows directly from the original metric 
of size. 

The step from the infinitely small to the finite 
is represented by the problem of geodesic lines, i.e., by the problem of finding 

among all curves connecting two given points P0 and ?1 the special curve which 

To illustrate th 
related to the measureme 

Fig. 25 
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has the shortest length. The length of such a connecting curve is obtained by 

summation of the size of its line element, i.e., by the in- 

tegral 

S = J /dx2 + dy2 (3*1^0 

and our problem means to determine among all curves connect¬ 

ing P0 and Pi one for which this integral assumes a minimum 

value. This problem 

J /dx2 + dy2 = Minimum (3.15) 

Fig. 26 

course, in our case. 

can be solved by purely analytical methods, and leads, of 

to the Euclidean straight line between Po and Pi. 

^.2. Let us next consider a metric manifold of two dimensions in general. 

We characterize the points P of the manifold by coordinates x, y in a suitably 

chosen coordinate system. The size d3 of a line element connecting two neighboring 

points (x, y) and (x + dx, y + dy) is given by the general quadratic differential 

ds2 = Edx2 + 2Fdxdy + Gdy2 (3.21) 

where E(x, y), F(x, y), G(x, y) are given functions of x, y. 

In the above example of the Euclidean plane we have E=G=1, F = 0. 
2 

If the manifold is a sphere of radius one, we have E = 1, F = 0, G = sin x so that 

ds2 = dx2 + sin2 x • dy2 (3.22) 

The coordinates x, y in this case are related to the latitude cp and the longitude 

0 on the sphere, namely: 

x = 7l/2 - 9 

Y = 9 

(3.23) 

The geometry in our manifold can be developed by purely analytical methods 

from the differential (3.21). For example, the angle co included by two line ele¬ 

ments (dx, dy) and (6x, 6 y) attached to the same point (Fig. 25) is now given by 

the expression 

F,dx6x + F(dx5y + 6xdy) + GdySy_ fb.24) 

cos a) = yEdy,2 + 2Fdxdy + Gdy2 • /e&x2 + 2F6x6y + G6y2 

and thus directly related to the basic quadratic differential (3.21). From the 

infinitely small we go to the finite by the problem of geodesics: To find, among 

all curves connecting two points Po,Pi, the one t op which the length 

S = f v^dx2 + 2Fdxdy + Gdy2 (3-25) 

assumes a minimum value. 

These curves are called Geodesics; they have a similar significance in our 

general metric manifold as the straight lines in the Euclidean plane. 
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We mention another property of Geodesics which Is significant for a prob¬ 

lem in space perception treated later on. It is possible to relate the concept 

of parallelism of line elements which are not attached to the same point to the 

quadratic differential (3-21). Consider a line element attached to a point Po- 

We wish to transfer this line element from P0 to another 

point Pi along a given path C, but in such a way that it 

does not change its direction. The analytic conditions 

for this parallelism of two line elements (Parallelism 

of Levi-Civita) can be shown to be directly related to the 

basic quadratic differential (3-21), i.e., to the metric 

of size. Without formulating this condition here, we only 

mention the fact that the line elements of geodesic lines 

are always parallel. This means the result of constructing 

a curve by attaching line elements to each other without 

change of direction Is again a geodesic line, i.e., the 

shortest connection between two of its points (Fig. 28). 

This is, of course, quite clear In the Euclidean plane, 

but it 

*-X 

y 
is true also in non-Euclidean geometries charac¬ 

terized by other metric differentials. 

3*3* The above considerations illustrate the basic 

^ significance of the metric differential (3.21) for the 

geometry of a manifold of points. We may call it the 

"cede script" of this geometry. It allows us to replace 

geometrical relations by relations of numbers and geometrical methods by analytical 

methods. And in the end this is based upon the Cartesian idea of coordinating 

geometrical elements, namely, points, to numbers by introducing a coordinate sys¬ 

tem. Obviously, a certain arbitrariness is revealed here. The coordination of 

numbers to points can be dene in a great variety of ways. Let us illustrate this 

situation again by the Euclidean plane. If, instead of Cartesian coordinates, we 

choose, for example, polar coordinates, then the same point of the plane receives 

an entirely different pair of numbers. There seems to be an almost unlimited range 

of different coordinate systems which we may introduce in cur Euclidean plane. 

Mathematically this is expressed by the fact that we may introduce new coordinates 

^, rj by a transformation 

X = f U, R ) (3-31) 

y = sU, t)) 

of the original Cartesian coordinates x, y into new coordinates Jj, tj . (The func¬ 

tions f and g are completely arbitrary.) A point P of the Euclidean plane then is 

located In a system of curved coordinated lines instead of a system of rectilinear 

lines (Fig. 29). By submitting the quadratic differential 

(3-12) to the transformation (3-31) we obtain again a quad¬ 

ratic differential, but of a more general type 

ds = Ed£2 + 2Fd£dr, + Gdr]2 (3.32) 

where the functions E(£, r] ) , F(£, rj), G(5 , rj) are given by 

Fig* 29 
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E = f£2 + g^2 (3-33) 

F = f^fT; + 

G = fn2 + Sr) 

This shows that the differential (5-12) may appear in an infinite number 

of mathematical variations (5*52), depending upon the coordinate system chosen 

for assigning numbers to the points of the Euclidean plane. In polar coordinates 

r = £, 9 = 7), for example, we have 

ds' = d£2 + £2 dr,2 

By cnoosing the bipo]ar coordinates explained In 2.5, 

we have, letting 

ds2 = 4 

Y = £ > <p = ’I • 

2 2 s in n cps 
Q- + 

dE,. drj dr]' 

Obviously the relations of the Euclidean geometry itself cannot depend 

upon the special choice of the coordinate system and thus upon the special analytic 

form of the differential (5*12). Hence we conclude that 

all 'these variations (5-32) must have an element in common 

which expresses the fact that the geometry developed from 

any of them is Euclidean. This means, for example, that 

the angle <o between two line elements characterized by 

its differentials in a £, r, system: d£, drj; 6 £ , 6 r], and 

computed by the formula: 

+ dr]5£) + Gdr]6r] 
-F 3-3*0 

Ed£&£ + F(d£6; 

003 “ >/Ed£2 + 2Fd^dr] + Gdr)2 /e6£2 + 2F5E,bri + Gbr) 

based upon the quadratic differential (5-32) must be the same as the angle found 

by (5-13). 

Furthermore, the geodesic lines of the differential (3-32), i.e., uie 

curves for which the Integral 

Ed£2 + 2Fdcdr] + Gdr]' 

assumes a minimum, must be given by functions vhlch In the curved coordinate sys- 

tem lead to the straight lines of the Euclidean plane. 

The property which all the quadratic diit erentials 

(5.52) have in common obviously is that they are obtained 

from (5.12) by a transformation of the coordinates. Vice 

versa, we may say that, by a suitable transformation of the 

coordinates, the line element (5-32) can be transformed 

Into the normal form (5.12). 

5.4. The above consideration leads us to the ques¬ 

tion: Suppose a geometrical manifold is given, and, after 

choosing a coordinate system in it, we obtain a metric 

differential 
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ds2 = Ed%2 + 2Fd!-dr) + Gdrj2 (3-41) 

where E, F, G, are known functions of % and rj . Is it then always possible to 
find a transformation 

x = ffe , tj ) (3.42) 

y = g(E , rj ) 

of the coordinates such that in the new coordinate system the line element (3*41) 

assumes the Euclidean form ds2 = dx2 + dy2? Since the transformation (3*42) is 

the analytical expression for drawing in the Euclidean x,y-plane a map of the 

given metric manifold (3*41), it then would be possible to obtain a plane isomet¬ 

ric map of the given two-dimensional manifold. •In other words : Euclidean meas¬ 

urements of size on the plane map would give the size of objects in the original 
manifold (3.4l). 

The answer to our question, however, is negative: Unless the functions 
E, F, G -satisfy a certain mathematical condition, the desired transformation is 

impossible. Indeed, if the functions E, F, G are given, then the equations (3*33) 
represent a system of three partial differential equations of first order for two 

unknown functions f(l-, rj ) and g(£ , j] ) . The system, obviously. Is overdetermined 
and in general will have no solution. A solution can be expected only If the 

functions E, F, G satisfy a certain mathematical condition. If we interpret the 
geometry associated with a quadratic differential 

ds2 = Edx2+ 2Fdxdy + Gdy2 (3.43) 

as the geometry on a curved surface in the three-dimensional Euclidean space—as 

we always can-then the formulation of the above condition is given by Gauss' 

theorems egregium: The Gaussian Curvature K of a surface can be derived from the 
coefficients E, F, G of the metric differential (3.43). The curvature K of the 

Euclidean plane is zero, and, as a geometrical quantity, must be zero for any 

choice of the coordinate system. This means, for a differential (3*43) which 

has been obtained from the Euclidean differential ‘ds2 = dx2 + dy2 by transforma¬ 

tion of the coordinates, that the result of introducing the functions E, F, G 

into the Gaussian expression for E mus l be identically zero. Also the reverse is 

true: If the i unctions E, F, G satisfy the condition K = 0, then a transformation 
(3*42) can be found which transforms the differential (3.43) into the normal 

Euclidean form ds2 = dx2 + dy2. A line element (3*43) of this special type is 
called a Euclidean line element. 

It is not difficult to give examples of non-Euclidean line elements. The 
geometry on a sphere of radius one is characterized by the metric differential 

ds2 = dx2 + sin2 x dy2 (3.44) 

where <p = n/2 - x is the latitude and 9 = y the longitude on the sphere. The 

Gaussian curvature K has the constant value K = + 1, and it is impossible to trans 

form this line element into the Euclidean form (3*12) for which K = 0. The non- 

Euclidean geometry developed from (3*44) is called the elliptic geometry. 

Another example is given by the quadratic differential 

ds2 = dx2 + slnh2 x dy2 (3.45) 
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and I3 distinguished by the fact 

value K = -1. The corresponding 
geometry. 

that its Gaussian curvature has the constant 

special non-EuclIdean geometry is the hyperbolic 

The three geometries based on the line elements (3.12) (3 lit) and (3 4n) 

™it6d ££ £2il£tant curvature, since the Gaussi^ curvature^K Is ^ 

t‘“ ' Wt“ay aYect that thase geometries are of special Interest as compared 
great variety of other non-Euclldean geometries In vhlch K Is variable 

Irom point to point. 

By introducing other 
we obtain a great variety of 

entials. We mention Riemann' 

coordinates in the manifolds of constant curvature 

diflerent forms of the associated quadratic differ- 
s normal form 

ds 
2 di/ + dr/ 

+ | k(52 + p2) 2 
(3-46) 

by which these geometries can be represented simultaneously 
Gaussian curvature. For K = 1, 0, -1 we obtain the elliptic 
perbolic geometry respectively. 

K being the constant 

Euclidean, and hy- 

3-5- Geometrical manifolds of three dimensions may be treated in a similar 
manner. The solid Euclidean geometry, for example, can be derived from the quad¬ 
ratic differential 

ds2 = dx2 + dy2 + dz2 

The Euclidean angle gj between two line elements (dx, dy, dz) and 
(5 x, 8y, 8z) is given by the expression 

(3-51) 

cos (i) 

z 

tesimally distant points 

quadratic differential 

_dxSx + dySy + dz5z_ 

/dx2 + dy2 + dz2 • /6x® + 6 y2 + Sz2 
(3-52) 

The problem of finding the shortest connection of two 
points P0 and Pi introduces finite elements into the 

geometry, namely, the geodesic lines. On these geode¬ 
sics the integral 

/ /dx2 + dy2 + dz2 assumes a minimum 

value; the geodesics of the Euclidean space are, of 
course, the straight lines in space. 

We may characterize in general the points of a 
three-dimensional manifold by three suitable coordinates 
x, y, z and determine the distance ds of two infini- 

(xj Y, z) and (x + dx, y + dy, z + dz) by the general 

ds - gu dx2 + g22dy2 + g33dz2 + 2g12dxdy + 2g13dxdz + 2g23dydz (3-53) 

where the six coefficients gilc are given functions of x, y, z. The angle of two 

line elements (dx, dy, dz) and (5x, 6 y, 8z) attached to the same point P can* then 
be found with the aid of (3*53), namely, by the expression 

(ds, 6 s) 
cos « 

/[da, diy*/(6 s, 6sT] 
(3.54) 
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where (d3, da) and (5 s, 6 s) are the quadratic differentials 

(ds, ds) = gudx + g22dy2 + g33dz2 + 2g12dxdy + 2g13dxdz -t 2g33dydz 

(6s, 6s) = gu6x2 + g226y2 + g336z2 + 2g126x6y + 2g135x6z + 2g23&y6z 

and (ds, 6s) the mixed quadratic differential 

(ds, 6s) = giidx&x + g22dy6y + g33dz6z + gl2(dx6y + 6xdy) + g13 (dx6z + 6xdz) 

+ g23 (dy6z + 5ydz) 

The geodesics finally are determined by the solution of the problem of 
variation 

S I^glldx2 + ^22dy + g33dz + 2g12dxdy + 2g13dxdz + 2g23dydz = Minimum (3.55) 

3-6. The special analytic form of the differential (3.51) of the Euclidean 

^ °n the 3PeCial Ch0iGe °f a octangular Cartesian coordinate 
system. By introducing other coordinates by a transformation 

X = TJ, 0 

y = z(z> t} , 0 

z = M? , 7] , c) 

(3.61) 

°f analytlc representations of (3-51) may be obtained, namely 
quadratic differentials of the general form ’ 

ds = gud? + g22d7j + g33d t,2 + 2g12d£d T) + 2g13d^dC + 2g23d71d£ (3-62) 

p’iv certain fnno11 nnq c y -« 
tion. of tv,* ^ , certain 1 unctions of £, q, £, namely, quadratic combina¬ 
tions of the first derivatives of the functions f, g, h: 

hi = fp2 + gc2 + h 2 

g22 = fn2 + g^2 + h^2 

>? 

A 

g33 = f ^ + g £ + h £ 

gl2 = f?fq + 

613 = fB,fC + g^Sc + h?hc 

gsa = f Tjf ? + gqg^ + 

(3.63) 

All these different forms have in common the fact that a transformation can be 
found which transforms (3.62) into the Euclidean normal form [” h 1 e 

tries derived t rom these differentials thus have the character of the soliS 
Euclidean geometry. iiU 

ferentlalh(3 “wh^h^ U’))0wlns probleffl; Consider a general quadratic dif- 

^ M 52 possible to 8111 

general such a transformation is impossible. InTa-t —hZ-t ' 1 

obtain for the three functions f, g, h, of a transformation (3*61), a sjlTem ™ 
(3.63) of six quadratic differential equations. This system is overdetenSined 
and has thus, in general, no solution. In order to insure the existence of a 

solution, three conditions must be satisfied by the coefficients gik. These 
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conditions can be derived from Riernann13 Tensor of Curvature. a generalization of 

Gau33 curvature to the case of manifolds of three dimensions. The three essen¬ 
tial components of Riernann's tensor can be expressed in terms of the functions 

glk and their derivatives. If the differential (3-62) represents a Euclidean line 

element, then all components of Riernann'3 tensor are Identically zero. Vice ver- 

sa if the components of this tensor are Identically zero, then a transformation 
(3.61) may be found which transforms (3-62) Into the Euclidean normal form (3-51), 

so that the manifold in question is isometric to the Euclidean space. This re¬ 

sult implies the remarkable fact that the question whether or not a given metric 
manifold of three dimensions is Euclidean can be answered by measurements in the 

manifold Itself. It means the curvature of such a manifold can be recognized 

even if observation from a viewpoint In an additional fourth dimension is impos¬ 
sible. 

3.7. Among the general metric differentials 

ds = gudx2 + g2sdy2 + g3sdz2 + 2g12dxdy + 2g13dxdz + 2g23dydz (3-71) 

there exists a special group distinguished by the property that Riernann's tensor 

0l curvature I3 constant, l.e., its three components are Independent of the lo¬ 
calization. Riernann ha3 shown that all these line elements of constant curvature 

can be transformed into a normal form similar to (3*^6) In case of two dimensions: 

ds2 = d£2 + dn2 + dC 

[L + £ K (^2 + T!2 + C2)] 
(3.72) 

where K is a constant, namely, the cobstant Riemannian curvature of the three- 
dimensional manifold. 

For K = 0 we obtain the Euclidean geometry: 

ds2 = dc2 + dr]2 + dC2 

For K < 0, for example K = + 1, the elliptic geometry: 

ds2 = 
d^2 + dii2 + df 

E n2 + f)] 

For K > 0, for example K = -1, the hyperbolic geometry 

d e + d t] + d 
ds2 = 

E-i< f + n2 + t2)] 

(3.73) 

(3.74) 

(3.75) 

Instead of Riernann's normal fora, we shall use later on another form which 
Is found by (3-72) by introducing polar coordinates 

^ = R cos 9 cos 0 

N = R sin 9 (3-76) 

£ = R cos 9 sin 0 
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This gives 

^ 2 _ dR + R (d cp2 + cos2^ d 02) 

(i +f R2)2 

(3-77) 

The geodesic distance D of a point P from the origin ob¬ 

viously Is obtained by summing up line elements ds which 

have no lateral or vertical extension d <p and d 0. Hence 

D 4 dR 

° K 2 
1 + 4 R 

2 
= arc tan (\ /K R) (3-78) 

By introducing this geodesic distance D instead of R in (3.77), we find 
the line element 

ds = dD2 + M2 (d<p2 + cos2<p d 0 2) (3.781) 

where M Is the function 

M 
/K 

sin /K D (3-782) 

This function may be interpreted as determining the linear size of a line element 

with no depth extension (dD = 0) but only lateral extension given by the angular 

coordinates dq>, d0 . -The dependence of this size factor M on the distance D Is 
given by (3.782), I.e., it Is 

M = sin D In the elliptic case K = 1 

M = D in the Euclidean case K = 0 

M = sinh D in the hyperbolic case K = -1 

(3.783) 

element is advantageous. We submit (3.78I) to the f 

K = 1: - tan D = a (y + n) 

K = 0: - log -jy D = a (y + p) 

K = -1: - t a nh-^ D = 0 (Y + H) 

(3.79) 

where a and g are constants and y a variable replacing the distance D. It follows 
quite easily that 

K = 1: ds2 = 
1 

cosh a (y + 

K = 0: ds2 = 2 e_2cI ^7 + P) 

K = -1: ds2 = 
1 -——---- 

sinh2 a (y + p ) 

2d y2 + d<p2 + cos2qp d02j- 

|a2d y2 + dqj2 + cos2cp d02} 

2d y2 + d0 2 + cos2q; d02J 

(3-791) 
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All these line elements have the same general form 

where the 

ds2 = M2 (a2 dy2 + 

size factor M(y) is given by 

cosh or ( y + |i ) 

M = 2e"7(Y+|i) 

s i nil a ( y + jj. ) 

dtp2 + cos2<p dO^) (3.792) 

the functions 

in case of the elliptic geometry 

in case of the the Euclidean geometry 

in case of the hyperbolic geometry. 

2-8. Cons tancy ol s 1 ze . R1 g i d t ransf orrna t ions . The Euclidean geometry is 

distinguished by the fact that objects can be moved without changing their size 
oi their other metric characteristics. A triangle in the Euclidean plane can be 

moved freely in thi3 plane to any other position without distortion of it3 char¬ 
acteristics. The result is a triangle congruent to the original one. 

A movement of objects in a metric manifold can be described mathematical¬ 

ly by a point transformation of the manifold in itself. This means, for example. 
In a Euclidean plane, that to any point (x, y) another point (x1, y') is coor¬ 
dinated 

x' = f(x, y) 

Y' = g(x, y) 
(3.81) 

namely, the point (x1, y') to which an object located at x, y Is moved. Such a 

point transformation is principally different from a transformation (3-31) of a 

coordinate system, although both are mathematically represented in a similar way. 

In (3-21) the same point of a plane Is associated with different numbers, i.e., 
the points are considered fixed but the coordinate system is changed. In (3.81), 

however, we keep the same coordinate system but Interchange the points of the 

plane. Suppose now that a configuration of objects x, y i3 transformed into a 
configuration x', y', by (3.81). Since the coordinate system Is unchanged, we 
have the same metric differential ds2 = dx2 + dy2 before and after the transforma¬ 

tion (3.8I), and thus we must expect in general that the new configuration x', y' 
is metrically different from the original configuration. This distortion is a 
consequence of the fact that 

dx'2 + dy'2= ds'2= (f* + gx) dx2 + 2(fxfy 
2 2 2 

al not Identical with dx + dy = ds . 
+ SxSy) dxdy + (fy2 + g2) dy2 is in gener- 

There exist, however, in the Euclidean plane, special transformations 

(3*8l) which preserve the metric of a configuration, i.e., transformations for 

which 

dx' + dy' = dx2 + dy2 (2-82) 

These special transformation are called rigid transformations of the plane, 

and are given by the three-parameter group of transformations 

x' = x cos to - y sin to + a 

y' = x sin to + y cos to + b 

(2-82) 



CHARACTERIZATION OF A METRIC BY QUADRATIC DIFFERENTIALS 39 

where <o, a, b are arbitrary constants. The transformations (3.83) can be de¬ 

scribed as rotations around the origin by an angle a) plus an additional transla- 

tory shift. If any configuration of objects is submitted to such a transforma¬ 

tion, then the resulting configuration is congruent to the original one. 

In a similar manner we may determine the rigid transformations of the 

three-dimensional Euclidean space. It is a six-parameter group of transforma¬ 

tions characterized by rotations around the origin (3 parameters) plus an addi¬ 

tional translatory shift (3 parameters). 

By these groups of transformations we thus may move any line element dx, 
dy, dz to any other position and direction without changing its size. We can say 

that the existence of such transformations is a necessary and sufficient condition 

for the existence of objects independent of localization, i.e., objects may be 

moved freely without distorting their metric characteristics. 

The existence of a group of rigid transformations of sufficiently great 

number of parameters (6 in three dimensions; 3 in two dimensions) so that complete 

movability of objects Is insured, is by no means self-evident. Indeed, in the 

case of a general quadratic differential ds2 we must expect that no transforma¬ 

tion of this type exists; objects in such a manifold are frozen to their positiors 

any movement will result In a distortion of their metric characteristics. 

The remarkable feature of the geometries of constant curvature is now that 

In all three types, elliptical, Euclidean, hyperbolic, the same complete movabili¬ 

ty ot objects is found. Indeed, this is Rlemann's result: These geometries are 

the only ones which have this character. Other metric differentials may allow 

partial movability, i.e., possess a group of rigid transformations of lower number 

of parameters with the result that objects may be moved Into certain restricted 

positions, but only the three quadratic differentials of constant curvature allow 

objects to be moved into any position without distortion of their metric charac- 

terlstlcs. These three geometries thus are the only ones with true size constancy, 

We shall, later on, discuss the rigid transformations of the hyperbolic geometry 

in mathematical detail, and recognize their significance for binocular vision. 



Section 4 

THE PSYCHOMETRIC OF VISUAL SENSATIONS 

4.1. We have recognized in $2 the physiological significance of the angu¬ 
lar differentials dy, dcp, d0 for the binocular observation of a physical line ele¬ 
ment (dx, dy dz). These angular differentials determine directly the essential 
characteristics of the images of the line element on the retinae of the observer, 
provided his head remains in a fixed position. If, on the other hand, the line 
•element is observed with moving head, then the eyes are directed in symmetrical 

convergence towards the line element, and its retinal images are given by the dif¬ 
ferentials dy*, d<p*, d0* as explained in §2.8. 

Our problem in this section is the sensation of size which we have when 
observing a given physical line element. Our basic assumption is that assignment 

of size to physical line elements is a primitive sensation, i.e., a sensation com¬ 
pletely determined by the physical characteristics of the line element. Though 

the retinal images of a line element are determined by the above angular differ¬ 
entials, we do not sense these differentials as angles but as linear quantities. 

Even objects as far away as the moon or clouds appear to have a certain linear 

size which, of course, is in no way identical with their actual physical size. 

This transformation of angular into linear distances is quite characteristic for 

our visual sensations, and, in the case of uniocular vision, can be demonstrated 

by a simple experiment. An angular wedge made from cardboard is placed in front 

of one eye of the observer so that the vertex of the angle 

coincides with the center of rotation of the eye. The wedge 

may be vertical or horizontal or in intermediate position. 

With the other eye closed, the legs of the wedge do not ap¬ 

pear converging but parallel to each other, i.e., as two 

lines which have a constant linear distance from each other. 
Physically they include, however, a constant angle. We may 

Fig. 35 express this peculiar situation by saying that the angular 
coordinates of a polar system are interpreted as linear co¬ 

ordinates of a Cartesian system. 

The assignment of linear size to angular impingements should not be under¬ 
stood as assigning physical length measurable in cm. to the objects. We may do so 

by intellectual association of sensation and- physical experience, but the primi¬ 

tive act of transforming angles into size is based on physiological units quite 
different from units of physical length. However, the character of these physio¬ 
logical units is not the problem we are here concerned with. From a geometrical 

point of view we need not be interested in the unit employed in size assignments. 
The metric characteristics of the visual apparent space are entirely independent 
of the physiological dimensions of this unit. 

4.2. Let us now consider a physical line element (dx, dy, dz) attached to 

a point P - (x, y, z) of the physical space. By using bipolar coordinates we may 

characterize the base point P by the three angles y, <p, 0 and the line element by 

the differentials dy, dcp, d0 . These differentials can be found from dx, dy, dz by 

differentiating the formulae 
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x 
cos 2 cp + cos y 

sin y 
cos 0 

sin 2 9 

sin y 
(4.21) 

CDS 2 Cp + COS Y 
z = —-L-L sin 0 

sin y 

which relate Cartesian and bipolar coordinates. 

We observe this line element with fixed head so that the optical axes of 
the eyes converge at P. Our assumption is that the observer is led to a definite 
sensation of the size and that this apparent size ds is a function of the differ¬ 
entials dy, dcp, d0, namely, given by a quadratic, differential 

ds = C2 (gn dy2 + g22 dcp2 + g33 d02 + 2g12 dydcp + 2g13 dyd0 + 2g23 dcpd0) 

(4.22) 

The coefficients gik are functions of the coordinates y, cp, 0 of the base point P. 

The constant C determines the unit of the apparent size, which, as we point out 
again, is not a unit of physical length. Since this constant is immaterial for 

the geometry based upon the differential (4.22), we shall omit it in the follow¬ 

ing and thus assume C = 1. The size ds of the line element dy, dcp, d0 thus will 
be a pure number of our number system. 

4.3. Let us next observe the above line element with moving head so that 

the eyes are directed In symmetrical convergence towards the point P. We now 
characterize the point P by the angular coordinates y*, cp*, 0* of §2.8 and the 

line element by the differentials dy*, dcp*, d0*, which are found from dx, dy, dz 
by differentiating the equations 

X = (a + cot i Y*) cos 9 * cos 0 * 

y = (a + cot ir*) sin 9 * (4.31) 

z = (a + cot i Y*) cos 9 * sin 0 * 

relating the coordinates x. y> z and Y*> 9*, 0 * ^ 

The apparent size ds* which we assign to our line element by this manner 
01 observation is based upon the differentials dy*, dcp*, d0* and upon the coor¬ 

dinates 9*, y*, 0* of the point P. Indeed, the differentials dy*, dcp*, d0 * de¬ 

termine the psychologically significant characteristics of the retinal images of 
the line element and y*, 9*, 0*, the position of the eyes and their optical axes. 

The principle formulated in §2.8 about the relationship of observations with fixed 
and moving head enforces the implication that ds* can be found from y*, 9* Q* by 

t*16.35"6 formula as ds from y, 9,0. This means that ds* is given by the quadratic 
differential 

ds*2 = gn dy*2 + g22 d9*2 + g33 d0*2 + 2g12 dy*d9* + 2g13 dy* d0 * + 2g23 

where the coefficients g 

Sik (Y, ? ■ 6 ) in (4.22) . 

d9* d0* (4.32) 

(y*, y*> 9*) are the same functions as the coefficients 
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Indeed, consider the following pair of two different physical line ele¬ 
ments : 

(dx, dy, dz) at a point P = (x, y, z) and 

(dx*, dy*, dz*) at a point P* = (x*, y*, z*) 

Let the first one be chosen arbitrarily and be given by the bipolar dif¬ 
ferentials dy, dcp, d0 and the base point P = (y, cp , 0). We determine the second 
base point P* by its coordinates (y *, <p*, 0 *) for head movements requiring that 

Y * = Y 

cp * = <p 

0 * = 0 

We next construct the line element (dx*, dy*, dz*) at P* by the condition 
that, with regard to the coordinates (y*, cp*, 0*) it shall have the differentials 

d y* = d y 

dcp* = d<p 

do* = d0 

The second line element thus has the same coordinates in the y*, <p*, 0* system 

for head movements as the first one in the bipolar y, cp, 0 system for observation 

with fixed head. Obviously, the second line element is uniquely determined by the 

first one. From the general principle of §2.8, it now follows that the same size 

sensation must be obtained if the first line element is observed with fixed head 
and the second with moving head. If this be true for any such pair of line ele¬ 

ments, then the quadratic differentials (4.22) and (4.32) must be formally identi¬ 

cal . 

4.4. The above result has the consequence that to the same physical line 

element (dx, dy, dz) a different size will be assigned if it is first viewed with 
fixed and second with moving head. Let us first consider an observation with 

fixed head. With the aid of the relations (4.21) we express the quadratic dif¬ 
ferential (4.22) by the Cartesian coordinates x, y, z and their differentials 
dx, dy, dz. The result of this transformation is a quadratic differential of the 

form 

ds2 ^ Andx2 + A22dy2 + A33dz2 + 2Ai2dxdy + 2Ai3dxdz + 2A23dydz (4.4l) 

where the coefficients Alk are certain functions of x, y, z. It determines di¬ 

rectly the apparent size of the physical line element dx, dy, dz observed at the 

point P = (x, y, z). 

On the other hand, let us observe the same line element with moving head 

and thus direct the eyes in symmetrical convergence towards the point P. We nov 

transform the differential (4.32) which Is formally identical with (4.22) with the 

aid of the relations (4.31), and obtain another quadratic differential 
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ds*2 = Bi idx + B22dy + B33dz + 2Bi2dxdy + 2Bisdxdz + 2B23dydz (4.42) 

The coefficients B^ (x, y, z) are of course not the same as the coefficients 
Aik(x, y, z) in (4.4l), and consequently the apparent size ds* of our line ele¬ 

ment differs in general from its apparent size ds. 

However, we know that the two quadratic differentials (4.4l) and (4.42) 

have been obtained by transformation from two differentials (4.22) and (4.32) 
which are formally identical. In other words, they are the result of two differ¬ 
ent transformations of the same basic quadratic differential 

ds2 = gudy2 + g22dcp2 + g33d0 2 + 2gi2dyd0 + 2g13dyd0 + 2g23d<pd0 (4.43) 

We may also say that both differentials (4.4l) and (4.42) can be transformed into 

each other. We have seen In §3 that this property of two metric differentials es¬ 

tablishes an intimate relationship between them, namely, that both differentials 

characterize the same invariant geometry but in different coordinate systems. 
They are different analytic expressions for the same metric, and the geometries 

developed from them are identical. 

By observing the same physical configuration, whether with fixed or moving 

head, we find in ourselves the conviction that the resulting sensations, though 

actually different, belong to the same unchanged environment of objects. In our 

theory, this conviction of observing the same objects but by different methods of 

observation finds its mathematical expression in the fact that the two quadratic 

differentials associated with these sensations represent the same Invariant 

geometrical relations. 

4.5. Our problem Is to determine the coefficients gllc(y, 9, 0) of the 

basic quadratic differential 

ds2 = gudy2 + g22dq>2 + g33d02 + 2g12dyd9 + 2gi3dyd0 + 2g23dq>d0 (4.51) 

In general we shall interpret 9, 9, 0 as bipolar coordinates referring to observa¬ 

tion with fixed head. However, in this section, we shall base our discussion 
upon observation with moving head. We know the corresponding differential 

ds2 = gudy*2 + g22d9*2 + g33d0*2 + 2g12dy*d0* + 2gi3dy*d0* + 2g23d9*d0* 

(4.52) 

must be formally identical with (4.51). Hence we are sure that any information 

obtained about the functions glk by observation with moving head can be used di¬ 

rectly for the metric (4.51) of the sensations associated with observation with 
fixed head. 

Observation with moving head as described in §2.8 must be considered as 

spherically symmetrical to the origin. Indeed, we can safely assume that two line 

elements (dx, dy, dz) and (dx', dy1, dz1) of equal length, located at the same 

distance R from the observer and including the same angle with the corresponding 
lines of view are judged to be of equal size (provided that we turn our head 

towards them). Mathematically we may express this as follows: Rotations of the 

space around the origin must not change the metric differential (4.52). In other 

words, these rotations must be rigid transformations of the differential (4.52). 
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It is not difficult to prove that this condi¬ 

tion i3 satisfied then and only then if (4.52) 
has the form 

ds*2 = A2(y*) dy*2+M2(y*) (dtp*2 + cos2<p* d0*2) 

(4.53) 

where A(y*) and M(y*) are arbitrary functions 

of y* alone.*) 

Since the differentials ds* and ds are 

formally identical, we conclude that the metric 

differential (4.51) for observation with fixed head must also have the general 

form 

ds‘ A2(y) d y2 + M2(y) (dcp2 + cos2cp d02) (4.54) 

where y, <p, 0 are the ordinary bipolar coordinates. Instead of six unknown func¬ 
tions gijj- of three variables y, cp, 0 there are only two functions A(y) and M(y) 

unknown in (4.54). With this simplification we abandon the discussion of ob¬ 

servations with moving head and confine ourselves in the following to the in¬ 
vestigation of visual sensations associated with observation with fixed head. 

4.6. The function M(y) in (4.54) determines the apparent size of a line 

element dcp, d0 which has no disparity dy. The function A(y) gives the depth ex¬ 
tension of a line element with disparity dy but with no lateral or vertical ex¬ 

tension d<p, d0. By summing up line elements of the latter type, we obtain the 

apparent distance D of two points P0 and P from each other 

D = Y A(y) dy ' (4.6l) 

J Yo 
The arbitrariness of the functions M(y) and A(y) illustrates the fact that there 

Is no general relation between the concepts of size and distance, i.e., of size 

and localization. 

We show next that in the case of binocular vision there exists such a 

relation. Let us consider two line elements (dx, dy, dz) and (dx1, dy', dz1) 

located at two different points of the same radius vector. Without loss of gen¬ 

erality, we may assume that the line elements are lying in the horizontal plane 

on the x-axis. Let us assume that both line elements have the same bipolar dif¬ 
ferentials, i.e.. 

d,c' - dlC (4.62) 

d<p1 = dcp 

so that we observe the same Impinging angular 
characteristics in the two cases. We determine 

the apparent angle co which these line elements 

Include with the x-axis, i.e., with two line 

elements 

Fig. 37 6y' = by 
(4.63) 

6<p' = 69 = 0 

*A proof can. be found in: Levi-Civita, Der absolute Differential Calcul, Berlin: 1928, pp. 278-285. 
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The apparent angle w Ip given by the formula (refer to 3-5^) • 

A2(Y)dy5y+ M2(y)d<p5<p 
cos co = 

V^A2 (y )dy2 + M2(y)dcp2 • sJ~P?(y~) b^~+ M2 ( y) Sep5" 

i.e., on account of (4.63) by 

A (Y)dy 1 
cos co — 

\fhZ (Y) by2 + M2 (y) a<p‘ 

Similarly we find co' by 

i +£kl 
A (y) Vdy. (3?)‘ 

COS (0 

^G?)‘ 

(4.64 

(4.65) 

We notice that the two angles co and co' are different unless the ratio 

A(y)/M(y) is Independent of y, i.e., equal to a constant q. 

Actually, two such line elements on the same line of view which give the 
same angular impingement dy, d<p are seen as parallel. Hence we conclude that 

A(y) =uM(y), and thus that the binocular metric must have the form 

ds2 = M2(y) (q2dy2 + dtp2 + cos2cp d02) (4.66) 

which reduces our problem to the problem of finding only one function M(y ), the 
size factor of a line element with no disparity dy. 

The constant a Is a constant depending upon the individual observer; It 

determines the sensitivity of depth perception through disparity dy as compared 

with size perception through lateral and vertical angles d9 and d@. We know 

that the angular threshold of disparity which gives the sensation of depth is con¬ 

siderably smaller than the angular threshold for recognition of size difference. 
This means that cr must be expected to be considerably greater thdn 1. 

The apparent distance D of two points P0 and Pi on the x-axis (or any 

other line to the origin) is given by the integral 

yf 
D = a / M( y)dy (4.67) 

Ao 

which establishes the relation of apparent distance to apparent size in binocular 
vision. 

We mention finally a simple demonstration which shows that line elements 

attached to points of the x-axis with the same angular coordinates dy, d^ are 

seen as parallel. We construct a .simple chessboard pattern of the type shown in 
Fig. 38 and place it normal to the horizontal plane so that an angle w ^ 9O0 is 

Included with the x-axis. By crossing our eyes at a point P0 of the x axis so 
that the squares of the pattern are fused in pairs (1, 2). (2, 3), (3, 4), etc., 

a smaller pattern is seen at some other position (not necessarily P0). However, 

the resulting pattern appears to be parallel to the original one. The angular 

impingement dy, d<p obviously is unchanged by this observation, the angles y of 

convergence, however, are different. 
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4.7- The result (4.66) leads us to an 

Interesting demonstration. We construct on a 

Vieth-Muller circle a number of small vertical 

rods. Since, for these rods, dy = dq? = 0, we 

have by (4.66) for their apparent size the ex¬ 

pression 

ds = M(y) cos 9 d 0 (4.71) 

Since M(y) Is constant on the Vieth-Muller cir¬ 

cle, it follows from (4.71) that the apparent size of the rods is proportional to 

the expression cos 9 d0. If new the physical height, h, of the rods is chosen 

such that cos 9 dO is a constant, then the rods will have the same apparent 

height and thus appear to form a circular fence of equal height with the observer 

as center. 

Since the physical height of a rod d0 at the latitude 9 on the Vieth- 

Muller circle is approximately given by the relation 

h = 2R cos2cp dO (4.72) 

we conclude that our rods must decrease according to the law 

h = h0 cos 9 (4.73) 

if they are to have the same apparent height. The constant h0 is the height of a 

rod on the x-axis. 

4.8. The remaining problem is to determine the size factor M(y) of the 

quadratic differential (4.66). We shall do this in the following sections by 

evaluating certain observable facts. In this section, however, we shall first in¬ 

vestigate the simplest hypothesis about M(y), namely M(y) = const. This assump¬ 

tion would mean that the angular impingements dy, d9, d0 and their retinal Images 

are the only significant clues for visual sensations; the absolute value of y, 

i.e., the convergence of the eyes, is without significance. Without loss of gen¬ 

erality, we may assume M = 1 and thus have 

ds2 = a2dy2 + d92 + cos29 d02 (4.8l) 

We notice that, in every plane of elevation,© = const., a Euclidean differential 

ds2 = u2dy2 + d02 (4.82) 

is obtained so that the plane geometries In these planes must be Euclidean. Yet 

these plane Euclidean geometries do not supplement each other to a Euclidean 

geometry of the three-dimensional space. In fact, one can show without difficulty 

that the quadratic differential (4.8l) is non-Euclldean. 

We notice readily that the differential 

(4.8l) preserves Its mathematical form if sub¬ 

mitted to the transformation 

y' = y + T 

9• = 9 (4.83) 

0i = 0 + X 

Fig- 39 
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depending on the arbitrary parameters t and X . These transformations form a sub¬ 

group of the general iseikonic transformations 

Y' = Y + X 

9 r = 9 + a* (4.84) 

0 > = 0 + X 

which we have discussed in §2.5, and we conclude that the transformations of this 
subgroup (4.8^) represent rigid movements in the non-Euclidean geometry based upon 

the differential (4.8l). However, we see also that the complete group (4.84) of 

iseikonic transformations does not give the rigid movements of our geometry. In¬ 
deed the differential (4.8l) changes its form in case a* ^ 0. 

It is not difficult to determine the complete group of rigid transforma¬ 

tions which belong to the quadratic differential (4.8l). It consists of the spe¬ 
cial iseikonic transformations 

Y- = Y + T (4.85) 

and those transformations of 9, 9 into 9' , 0 ' which do not change the quadratic 

differential d<p2 + cos2qpd92. Since d<p2 + cos2cpd02 is the line element on a sphere 

of radius one, and since this line element preserves its form by any rotation of 

the sphere about its origin, we recognize that the desired transformations of 9, 

9 Into 9', 0' must be isomorphic to the three-parameter group of spherical rota¬ 

tions. We thus obtain a four-parameter group of rigid transformations for our 

geometry (4.8l). Complete movability of objects requires, however, the existence 
of a six-parameter group of rigid movements, as we have seen in §3.8. Hence we 

conclude that the geometry based upon (4.8l) does not provide complete movability. 
This already seems to indicate that our above hypothesis M(y) = 1, which denies 

the significance of convergence for space perception, has to be revised: It is 

contradictory to the conviction which accompanies our visual sensations that ob¬ 

jects can be moved to any position without changing their metric characteristics. 

We can easily find another Indication that the assumption M(y ) = 1 cannot 

be defended. The geodesic lines in the horizontal plane, i.e., the solutions of 
the minimum problem 

Minimum 

are given by the curves 

T = a y + b (4.86) 

where a and b are arbitrary constants. 

Since geodesic lines have the property that all their line elements have 
the same unchanged direction, we conclude that a number of marks arranged on such 
a curve will give the impression of arrangement on an apparent straight line. 

Curves of this type are called Horopters; in particular those curves which are syra 

metrical to the x-axls are known as Frontal plane horopters. From (4.86) it fol¬ 

lows readily that these frontal plane horopters are given by the curves y = const, 

by the Vleth-Muller circles. But we know already that Vieth-Muller circles appear 
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flatter than, they are but not yet plane, namely, as circles with the observer as 

center. Furthermore, It Is well known that the actually observed horopters are 

curves of the type shown in Fig. 40. We conclude that the horopter phenomenon 
cannot be explained by the hypothesis M(y) = 1. 

4.9* We base our next hypothesis about 

M(y) upon the psychological conviction that the 
visual shape and 3ize of objects can be repeated 
in any position and orientation. Thl3 conviction 

makes U3 consider shape and form of an object as 
qualities which are independent of localization. 
We also may say that we are convinced that any ob¬ 

ject can be moved as a visually rigid body to any 

desired position and orientation and the result of 
this movement is an object metrically congruent to 

the original object. We must, however, not assume that such a movement of an ob¬ 

ject is necessarily the same as a physical movement in a Euclidean space. In 

fact, we know the opposite is true: apparent shape and size of an object do not 

remain unchanged, when it is moved physically. Consequently we prefer to formu¬ 

late the conviction about the complete movability of visual objects as follows: 

To any conflguration of objects there exists a six-parameter set of configurations 

which, in all their metrical characteristics, are visually congruent to the origi¬ 

nal configuration. This psychological fact, that metrical form and localization 

of objects are considered as Independent, would be hard to understand If the 
geometry of our visual sensations did not Itself provide what we have called above 

complete movability of objects. This, however, is possible only If the quadratic 
differential (4.66) represents a geometry of constant curvature. It follows from 

§3*79 that we should expect the factor M(y) to be one of the three functions 

M(y) 

M(y) 

1_ 
cosh a (y + p) 

2e-o(Y+n) (4.91) 

sinh a (y + p) 

In the first case the geometry is elliptic, in the second. Euclidean, in 

the last, hyperbolic. In addition to a another individual constant, P, enters 

these expressions. It determines the limit which the size factor M(y) approaches 

if y _► 0, i.e., if the object is physically moved far away. It also is closely 

related to the apparent distance at which we place objects 01 infinite physical 

distance. 

We have yet no means of deciding which one of the three functions (4.91) 

has to be chosen for our problem. We shall, however, in the following, accumulate 
evidence obtained by theoretical considerations and by experimental results that 

M(y ) is given by the last function 

^ sinh a (y + p ) 

so that the metric of our space sensations is hyperbolic, namely, 

quadratic differential 

(4.92) 

given by the 
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d32 = 
sinh a ( y + n) rP dy + dtp' + co329 d02^ (4.93) 

We may take as a first indication the fact that the hyperbolic metric la 
best 3uited for approximate coincidence of physical and apparent size In a suf¬ 
ficiently large Interval. 

Let us assume that an observer, by systematic training or experience, is 
in the position to change his constants cr and n. We shall demonstrate that the 

observer can Improve his size judgment by changing the constant p from positive 
values gradually to zero if the metric is hyperbolic but not if it I3 elliptic or 
Euclidean. 

It Is clear that the limiting value M(0) for objects at infinity is the 

greater In all three cases the smaller H is. Its greatest value is assumed for 

M- = 0, and obviously this represents the best approximation of apparent size to 
physical size. Let us therefore consider this best case in the three metrics 
(4.91)• We have 

M(y) 

m(y ) 

M(y) 

1_ 

cosh a y 

2 

1 

sinh a y 

(4.94) 

The limits at y = 0 are M(0) - 1 in case of the elliptic, M(0) = 2 in case 
of the Euclidean, but M(0) = 00 in case of the hyperbolic geometry. Only the hy¬ 

perbolic metric thus may approach the physical situation that the size of objects 
subtending equal angles increases beyond all bounds. 

To illustrate this, let us consider the apparent size ds of an object of 
constant physical size dh If moved in the physical space. We have d9 = dh 
tan y/2 and hence, assuming 9=0, d9 = dy =0: 

ds dh 
tan y/2 

cosh ct y 

ds 2dh 
tan y/2 

" ~~e° V (4.95) 

ds 
tan y/2 

sinh a y 

We conclude from (4.95) that the ratio ds/dh of apparent to physical size con¬ 

verges to zero if the object is moved towards infinity and if the metric is ellip¬ 

tic or Euclidean. In the hyperbolic case, however. It reaches asymptotically a 

constant value ds/dh = 7^, so that ds/dh remains constant in a great Interval. 

This situation is shown in Fig. 4l where the three curves ds/dh as function of 

x = cot y/2 are drawn. In case ji / 0 all three functions approach zero, but only 

the hyperbolic metric allows by variation of |x to retard this approach effectively 

and thus to improve subjective 3ize estimation in regard to agreement with objec¬ 
tive physical size. 
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Section 5 

DERIVATION OF THE HYPERBOLIC METRIC OF VISUAL SENSATIONS 

5.1. We shall discuss in this section facts of ohservation which support 
the hypothesis that the psychometric of visual sensations Is the hyperbolic metric 
of constant curvature. Our problem is to determine the factor M(y) in the quad¬ 
ratic differential 

Without loss 
jects distributed in 

plane is represented 

ds2 = M2(y ) (<j 2dy2 + 

of generality we may 

the horizontal plane 

by the differential 

dqp2 + cos 2<pd0 2) 

confine ourselves to 
9=0. The apparent 

(5.11) 

observation of ob- 

geometry In this 

d32 = M2 (Y)(cr2dY2 + d<p2) (5-12) 

It determines the apparent size ds of a horizontal line element given by the bi¬ 

polar differentials dy, dq> and observed at a point (y, 9) of the horizontal plane. 

5.2. Observations on Vieth-Muller circle's. Our first demonstration is 
based upon certain observations referring to properties of Vieth-Muller circles. 

We construct two horizontal bundles of straight lines from the two eye points 
y = 11 of the y-axis. The angles Act and Af3 between neighboring lines shall be 
constant, i.e.. Act = A3 = constant. (Fig. 42) For the actual demonstration it is 

advisable to use two bundles of illuminated threads of different color (for exam¬ 
ple red and green) stretched out in a dark room. However, the effect described 

in what is to follow can already be observed by simply drawing two bundles of red 

and green lines on a plane sheet of paper. Let us assume in the following that 
the red bundle has Its vertex at the left eye L and the green bundle at the right 
eye R. We have indicated in Fig. 42 the green bundle by solid lines and the red 
bundle by dotted lines. The lines of the two bundles intersect each other in 

pairs on a set of Vieth-Muller circles which determine on the x-axis points PQ, 
Pi, P2, P3, P4, etc., accumulating near the origin. 

We now bring our eyes into a position exactly above the points R and L, 
and observe the bundles from this position by converging at the points of the 

Vieth-Muller circle through P0. Instead of two bundles we see one bundle of fused 

lines which intersect the Vieth-Muller circle through P0 at regular distances. 
However, these lines do not lie in the horizontal piano; they are space curves in¬ 

tersecting the horizontal plane on points of the Vieth-Muller circle. This ef¬ 

fect can be made very striking by observing in a dark room the Illuminated threads 

with a green filter in front of the right eye and with a red filter in front of 

the left eye. This, of course, has the result of weakening the stimulus of the 

red lines on the right eye and the stimulus of the green lines on the left eye. 

If, on the other hand, we observe the colored lines against a white background-- 

as is the case when the lines are drawn on a white sheet of paper--a red filter 

has to be used in front of the right eye and a green filter In front of the left 
eye. 
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The appearance of the fused lines is that of straight lines arranged on 

a circle around the observer. In fact, we know that the Vieth-Muller circle it¬ 

self appears to the observer as a circle around the point 0 of the horizontal 

plane vertically below the apparent center C of observation. We also observe 

that these straight lines are perpendicular to the lines of view connecting the 

"egocenter" C with the points of the Vieth-Muller circle. Now, the lines of 

view form a cone with C as vertex and the Vieth-Muller circle as base; conse¬ 

quently our fused lines are normal to this cone. The surface formed by them 

must also be a cone with the Vieth-Muller circle as base and a vertex 0 at some 

position above the origin. This result is illustrated in Fig. 45. We have to 

interpret this figure as a Euclidean map of an apparent surface formed in a visu¬ 

al sensation. It represents the interpretation which we give to our sensation, 

namely, that of a circular cone with Its vertex on the Z-axis of a Euclidean, 

Y, Z space. We denote the Cartesian coordinates in this space intentionally 

X, Y, Z in order to indicate that it is by no means identical with the physical 

space. 

Let us now converge at the points of the Vieth-Muller circle through Pi. 

We observe the same phenomenon with the difference that the fused lines intersect 
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the horizontal plane at the VIeth-Muller circle 

through Pi. Again they form a surface inter¬ 
pretable as a Euclidean circular cone with its 

vertex Qi on the Z-axis. This cone is normal 

to the cone through the observation center C 

and the Vieth-Muller circle. However, the ap¬ 

parent radius of the base circle has decreased 

with the effect that the fused lines appear to 

have a somewhat smaller distance from each other. 

By changing the convergence of the eye3 in suc¬ 
cession to the points of the Vieth-Muller cir¬ 

cles through Po, Pi, P2 . • • -we observe a 
sequence of circular cones with decreasing ap¬ 

parent radii Ro, Ri, R2 • • • • and distances 
of the fused lines decreasing In the same ratio. 

We point out that this sequence of apparent 

radii is not proportional to the sequence of 

physical radii of the Vieth-Muller circles. 

The significance of a cone artificially 

created in the above manner Is that it provides 

the observer with a background towards which he 

may project the horizontal plane. It estab¬ 

lishes the possibility of observing objects in the horizontal plane without chang¬ 
ing the convergence of the eyes simply by taking care that the background does not 

change its position. With a little practice it is possible to scrutinize even 

objects which are far away from the Vieth-Muller circle of convergence without 

varying the position of the background, i.e., without changing the convergence of 

the eyes. The impression associated with this manner of observation is that of a 
uniocular projection of the horizontal plane towards the conical background, the 

point C being the center of projection. We shall refer in the following to this 

peculiar projection as Cyclopean projection. Binocular vision has a twofold 

office in Cyclopean projection: To create a conical background for uniocular pro¬ 

jection, and to determine on the background a linear scale of size which Is pro¬ 

portional to the apparent radius R of the base circle of the cone. 

In general, any actual point of the horizontal plane is seen as double 

when observed by Cyclopean projection, i.e., we see two images on the background. 

Only the points of the basic Vieth-Muller circle itself are seen as single. There 

exist, however, certain extended curves which do not appear doubled. The Vieth- 

Muller circles themselves are such curves, since their two projected Images co¬ 

incide on the background. Yet every individual point of these curves has two 

different points of the image curve a3 projection. The Vieth-Muller circles ap¬ 

pear on the conical background as a system of circles of latitude, which--at 

least in the neighborhood of the base circle--are nearly equidistant. 

In addition to the Vieth-Muller circles there are two other sets of curves 

which appear single: The two bundles of red and green lines In Fig. ■4-2. Though 

each line of these bundles has two separated Images, we fuse one of them with a 

generating line of the background and thus see only the other image as an object 

of the horizontal plane projected upon the background. It becomes a curve on the 

background which intersects the fused lines at equal apparent angles. The result 

of viewing the total system of curves drawn In Fig. 42 In Cyclopean projection-- 

namely, the Vieth-Muller and the two bundles through the eyes--is shown In Fig. 44. 
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size of subdivisions of these 

background, the greater this 
cone. 

Ne remark that the oblique red and green 
lines in Fig. 44 are the result of a unlocular pro¬ 

jection. The green lines are obtained by project¬ 
ing the green lines of Fig. 42 with the left eye 
and similarly the red lines by projecting the red 
lines of Fig. 42 with the right eye. The impres¬ 

sion of the observer, however, is in both cases 

that ol uniocular projection from the same apparent 
projection center C. 

In general, it is possible to interpret 
the above curves also as curves of the horizontal 

x>Y~Plane and not as curves on the cone. However, 
this alternative disappears more and more when 

other clues are eliminated in the observation, i.e., 
when the experiment is carried out in a dark room. 

We also notice that the compulsion to see the curves 
on the background becomes greater and greater the 

lower our eyes are placed with respect to the hori¬ 

zontal plane. Moreover, we base our judgment of 

lines more and more on their apparent size upon the 

compulsion becomes to localize our curves on the 

The above observations indicate that we may consider the act of assigning 
size to the horizontal line elements by binocular observation in the horizontal 
plane as a limiting case of Cyclopean observations from above the plane. 

This intimate relationship of binocular vision and Cyclopean projection 
is more readily understood by the following consideration. Consider the two 
points P0 and P in Fig. 42. The point P is chosen intentionally on one of the 

lines through the left eye. By Cyclopean projection we obtain, on the background 
through P0, one image of PG but two images Q and Q' of P (Fig. 45). The image Q' 

is produced by the left eye; it lies on one of the fused lines of ’the cone and 

thus helps to establish the background. Let us now assume that the right eye 

dominates in localizing objects relative to the ob¬ 
server. Then the image Q will be interpreted as 
the apparent projection of the point P onto the 

background, and thus the line element~P0Q on”the 

cone as the projection of the line element P0P. 

Since this projection is uniocular, we determine 

the size of PQP by the size of its projection P0Q 
on the background (Emmert's law). 

The above analysis of the mechanism of as¬ 
signing 3lze to horizontal line elements by binocu¬ 

lar vision can be applied to any such line element. 

Let us consider two arbitrary neighboring points 

Po and P of the physical x,y-plane. We connect the 

two points with the left eye and the point P0 with 

the right eye. Next we construct the Vieth-Muller 

circle through P0 and draw a line from it3 inter¬ 

section point A with LP towards the right eye 

(Fig. 46). This configuration is viewed from 

above with the effect that the point P is seen as Fig. 45 
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a point Q on a Cyclopean background. This background is indicated by two fused 

lines which intersect the horizontal plane at the points P0 and A of the Vieth- 

Muller circle. Indeed, as above, the image Q' of P produced by the left eye lies 
on the fused line through A and thus supports the establishment of the background. 
The image Q from the dominating right eye determines the Cyclopean projection of 

P onto the background, and the distance of P0 from. P is estimated by the distance 
of Q from PQ. A similar construction can obviously be made if the left eye should 

be the dominating eye and determines the localization of objects relative to the 
observer. By gradually lowering our point of observation, the result of Cyclopean 

size estimation becomes gradually the binocular size ds of P0P based upon the as¬ 

sociated differentials dy and dtp. 

We shall now demonstrate that the above interpretation of binocular vision 

as uniocular projection against a variable conical background induces in the hori¬ 
zontal plane a hyperbolic metric. First we introduce, on the cone, certain angu¬ 

lar coordinates co and y. The declination w is the angle which the line through C 

and a point Q on the cone includes with the horizontal plane. The azimuth y Is 

the angle which a plane through the Z-axis and the point Q includes with the 

X,Z-plane (Fig. 48). Since u and y are actually spherical coordinates determining 

the direction of the projection lines through C, we can also characterize the 

points P of the X,Y-plane by these coordinates. The angle u determines the ap¬ 
parent declination and v the apparent azimuth of a point P of this plane If ob¬ 

served from C. 

It is easy to express the distance ds of 
two neithboring points P0 and Q on the cone by 

the above coordinates. We assume that P0 lies 

on the base circle of the cone. We find the 
formula 

ds2 = h2 ( d(0g • + cot2ud\y2N\ (5.21) 
yain w ) 

where h is the apparent height of C above the 

X,Y-plane. Since the distance of P0Q.measures 

also the apparent distance of the points P0P in 

the horizontal plane, we find that the metric 

introduced in this plane by Cyclopean projection 
has the form 

sin2w 

Fig. U8 
+ cot^o dy2 (5.22) 
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The constant factor h2 in (5.21) has been dropped, 3ince it is insignificant for 

metric relations. Thi3 means, in other words, that the Cyclopean metric has, in¬ 

dependent of the position of the center C of observation, the same mathematical 
form (5.22) if expressed in the coordinates w, y of the plane. 

We transform the differential (5-22) by introducing the apparent distance 
D: 

D - AlWV - 106 | (5-23) 

The result is 

ds2 = dD2 + sinh2Ddv2 (5.24) 

and thus the line element of the hyperbolic geometry. Since the binocular metric 
of the horizontal plane can be ■ considered as a limit Of metrics of Cyclopean pro¬ 
jections with decreasing projection heights, and since these Cyclopean metrics all 

have the same form (5*24), It follows that the binocular metric itself must have 
the form of the hyperbolic geometry. 

It remains to express the differential (5*24) by the bipolar coordinates 

Y, 9 of the x,y-plane. The apparent azimuth W, obviously, is identical with the 

bipolar latitude 9, so that we.may write 

ds2 = dD2 +'sinh2Dd92 {5.25) 

We know, on the other hand, the general form of ds2 in terms of y and <p, namely, 

ds2 = M2(y)(a 2dy2 + d<p2) (5-12) 

By identifying the two differentials (5-12) and (5.25) we obtain the relations 

M(y) = sinh D 

The last equation yields 

tanh 

dD , , ^ 
— = -aslnh D 
dy 

AD = e-a(Y^) 

(5-26) 

(5.27) 

where n is a certain constant. Since 

2 tanh D 
M(y) = sinh D = -rr~ 

1 - tanh D 

we find by (5.27) that 

^ sinh a (y + |x) 
(5-28) 

and hence the differential 

ds 
2 

1_ 

3 Inh2tr (y +|i) 
( ct 2 dy 2 + d9 2) (5.29) 
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This Implies that the three-dimensional differential (5-11) must have the form 

ds = -—- (a2 dy2 + d<j>2 + cos^dG2) (5.291) 
sinh a (y + fi) 

and this means that binocular vision establishes a hyperbolic manifold of sensa¬ 
tions. 

5-3- The ■ interpretation of the Cyclopean background as a cone is not es¬ 
sential for the result of the preceding section. Only a small part around the 

base circle of the background Is used for Cyclopean projection in any instance. 
Thus any surface which coincides with this part of the cone would lead to the 
same result, i.e., to the same metric differential 

ds2 = 
d(o‘ 

sin2o 
+ cot2o d92 (5.31) 

expressed in apparent declination « and apparent azimuth vj/ • For example, a sphere 
around the center of observation, C, which intersects the X,Y-plane along the base 

circle serves our purpose equally well. The fused lines would be interpreted as 

meridians on this sphere and the Vieth-Muller circles as circles of latitude. 

This is readily understood by the fact that in a uniocular viewr such a system of 

curves allows a multitude of interpretations, for example, that of a sphere or a 

cone. As we have seen, Cyclopean projection is Interpreted by the observer as 
such a uni’oculap view. 

In order to transform the quadratic differential (5.31) into the final 

form (5.29)-, ve have made use of a former result, namely, that In the bipolar 
system Y, 9, It must have the general form (5-12). Independent of this result we 
can derive the desired transformation as follows. We remark as before that the 

apparent azimuth _is identical with the bipolar latitude, i.e. , we have 9 = cp . We 
also know by observation that the Vieth-Muller circles y = const, are imaged as 

circles of latitude « = const, upon the background. Hence it follows that u must 

be a function of y alone: o = o> (y) . The problem is to determine this relation 
of the apparent declination co to the bipolar parallax y. 

We consider for this purpose the two bundles of red and green lines in 
• ^2. Since a = const, and 3 = const, in these bundles, we conclude that 

their equations in the y, 9-plane are 

y - 2 9 = cons t. 

Y + 29 = const. 

In differential form we may write 

Of. _ + 2 
d9 

(5-32) 

(5-33) 

In they, 9-plane these curves thus are represented by two systems of equidistant 

parallel lines (Fig. 49). If the two red and green bundles of Fig. 42 are ob¬ 

served by Cyclopean projection from above the plane, then they appear, as we have 
seen, as curves on the background which Intersect the meridians 9 ^ const. at 

constant apparent angles. By Interpreting the background as a sphere around C, 

alan
Highlight

alan
Highlight

alan
Highlight
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the apparent angles are equal to the corresponding an¬ 

gles on the sphere itself and our curves - may be inter¬ 
preted as loxodromes on the sphere. These are the 
curves on which a ship travels without changing its 
course, i.e., its angle with the -meridians. They are 

characterized by the condition 

dco 
:os (j d<p. 

= const. (5-54) 

which states nothing but that the tdngent of the angle 

with the meridians-' Is a constant along the curve. If 
Fi8- 49 the background la Interpreted as a cone, the apparent 

angle with the meridians.Is not equal to actual angles 
on the cone but still its tangent is given by the expression (5*3*0 

We may formulate our observation as follows: A physical curve on which 
d v i d (i) 
r1- = —2 is seen in Cyclopean projection as a curve on which - = const. As 
d<P cosco dcp 
w Is a function of y alone, it follows from 

d co _ co' (y) dy 

cosiodcp cos co(y) d<p (5*35) 

that on any particular straight line 2 of Fig. 49; thb expression 
co 

dcp " coscoCy) 
remains constant. Since this expression Is a function of y alone. It follows 

that it must be Independent of y, i.e., we have 

(.Y1. . 
cos co(Y) 

where a is a constant. 

By integration it follows that 

= <7 (5*36) 

log tan | - f = (y +M-) (5-37) 

where (i. is another constant We may also write 

- (y+f) 
tan ( 4 ' 2 

= e 

and hence 

tan — = cot <*> = 
sinh a(y+y.) 

(5*38) 

By (5.31) and (5*38) it follows that the Cyclopean line element (5*31) ex¬ 

pressed in y and 9 must have the form 

ds2 = 
sinh2 a (y + p0 

In agreement with our former result. 

- (a2 dy2 +■dy2) (5*39) 

5.4. The hyperbolic metric of visual sensations and the relativistic met¬ 

ric of time-space manlfolds. In the preceding discussion we have tacitly assumed 
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that the physical space is a Euclidean manifold. We are certainly justified in 

making this assumption for the domain in which binocular vision is of practical 

importance to us. Still, our conclusion that visual sensations form a non- 

Euclldean manifold seems to imply a result which is unsatisfactory: Visual and 

physical perception of our external environment are contradictory to each other. 
From a principal point of view It is therefore significant that It is possible to 

remove this: contradiction. We shall show in this section that. In fact, the two 
perceptions are not contradictory: Physical observation leads to a hyperbolic 
metric If discussed from a relativistic point of view. On 'the other hand, this 

-result will give us new evidence for the hyperbolic metric of binocular vision. 

We confine ourselves to observations of the horizontal plane. Let us 
assume that a uniocular observer Is placed at the height h above the horizontal 

plane. Objects in this plane are revealed to him 
by light signals emitted from the point P of the 

plane. The light signals which reach C at the 

time t = 0 give to the observer the clues for his 

visual sensation and are combined to an apparent 

distribution of objects in this plane at one par¬ 

ticular time moment of his individual time scale. 

X 

Fig. 50 

It is clear that In our assumed x, y, z, 
coordinate system this combination does not refer 

to simultaneous events. The light signal which 

reaches the observer C at the time t = 0 was 
emitted from P at the time 

t - x2 + y2 + h2 (5-41) 

where c Is the velocity of light. 

Consequently: The physical space-time manifold which is knitted together 
by the observer at t = 0 to one sensation of space _is_ not the manifold z = 0, 

f = Q In our physical coordinate system. However, it Is the two-dimensional man¬ 
ifold. 

2,2 2 
C t - X y = h 

z = 0 
(5-42) 

of- the physical x, y, z, t space. 

The metric relations of the four-dimensional space-time world are now de¬ 
termined by the general line element 

ds2 = dx2 + dy2 + dz2 - c2dt2 (5.43) 

according to the theory of relativity. This is a "pseudo-Euclidean" line ele¬ 

ment; it has, like Euclidean line elements, the form of an algebraic sum of the 

squares of the differentials. It would be truly Euclidean if -c2dt2 could be 
replaced by +c2dt2. 

The general line element (5*4?) now determines the metric of any manifold 

of less dimensions which is embodied Into the four-dimensional space-time world. 

It does this In a similar way a3 the Euclidean line element of the three-dimen¬ 
sional space 

ds2 = dx2 + dy2 + dz2 

In the case of surfaces or curves embodied in the Euclidean space. 
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Which raetric ia nov Introduced by (5-43) in the two-dimensional manifold 
(5- 2) . Ne f ir3t write this manli old In the following parametric form 

ct = -h cosh.D 

x = h sinh D cos 9 

(5-44) 
y = h 3inh D sin 9 

z = 0 

where D and 9 are the variable parameters. 

We have 

cdt = -h sinh D dD 

dx = h( cosh D cos 9 dD - sinh D 3in9d?) 

dy = h(cosh D sin9 dD + sinh D cos 9 d9) 

dz = 0 

(5.45) 

and hence 

ds2 = dx2 + dy2 + dz2 - c2dt2 = h2(dD2 + sinh2 Dd92) (5-46) 

i.e., the metric of the hyperbolic geometry. 

We thus cannot be surprised that the geometry in which our visual sensa¬ 
tions form themselves is the non-Euclidean hyperbolic geometry. Indeed, our re¬ 
sult means that already the physical events which are the direct basis for our 

Instantaneous sensation are forming in the physical world a manifold with a hyper¬ 
bolic metric. 

5.5. The preceding theoretical considerations give us strong evidence that 

the psychometric of our spatial sensations is determined by the hyberbolic differ¬ 
ential 

ds2 = -—- (a2dy2 + d92 + cos29dG2) 
sinh a (Y + M-) 

The evidence is certainly strong enough to justify deriving the mathematical Im¬ 

plications of the above metric for binocular vision. If these consequences then 

represent observable and measurable phenomena we are given the means of obtaining 
additional evidence for the support of our theory. 

We shall apply our theory In the following to mree significant phenomena 
of binocular vision; (1) The problem of the Frontal Plane Horopter where curves 

which appear as straight are physically curved. (2) Hillebrand's Alley Problem 

where walls which are physically not parallel are seen as a parallel alley. 

(3) The problem of the distorted room which appears to be rectangular. 

We shall see that all these phenomena are a direct consequence of our 

theory and that they provide us with the possibility of testing the theory by the 

results of measurements. We shall also find, by comparing the results of measure¬ 

ments with the implications of the elliptic and Euclidean metrics that only the 

hyperbolic geometry can explain certain facts of observation. 
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GEODESIC LINES: THE HOROPTER PROBLEM 

6.1. With the aid of the quadratic differential 

ds2 = M2(y)(CT2dy2 + d?2 + co329d92) (6.11) 

we are In a position to assign a linear size to the impinging characteristics 

dYs ^9, d9 of a small section of a line. If we converge at a point P0 of the 

physical space, a rectilinear Cartesian coordinate system In the neighborhood of 

Po 13 established In which <7Mdy, Md9, Mcos9d0 

are the coordinates of a neighboring point Pi. 
To this neighborhood of PQ we then apply a 

Euclidean metric which leads to the expression 

(6.11). By moving our eyes to another point P 

a similar Euclidean system is formed for the 
neighborhood of this point, but different yard¬ 

sticks are used for the evaluation of the physi¬ 

cal quantities dy, d9, d@. Observation with 
eye movements thus requires connecting the re¬ 
sults of these different measurements to a 

unity, l.e., to a sensation of a finite section 
of space. 

to the problem of Integration of the above dif¬ 
ferential (6.11). Since mathematical integration always gives a set of solutions, 
l.e., contains parameters which may be assigned arbitrarily, we recognize the 

possibility of different interpretations of the same Impinging characteristics. 

The former experience of the observer, his present purposes and other psychologi- 

cal factors will influence him In the choice of such arbitrary elements in inte¬ 

grating the primitive sensations (6.11) to a unity. It thu3 can be seen that the 

hypothesis of immutable elements in our sensations Is not contradictory to an un¬ 

limited variety of results In integrating a manifold of Immutable primitive sensa¬ 
tions to a total unity. 

There are, however, certain Integration processes in which arbitrary in¬ 
terpretation has no place. The curves which determine the shortest connection 

between two points or the curves which are the result of attaching line elements 

to each other without change of apparent direction are uniquely determined by the 

differential (6.11). These geodesic lines of the metric (6.11), l.e., the ap¬ 

parent straight lines in our sensations, are invariant elements’and do not allow 
other interpretations. For the absolute localization In the apparent space we 

have stil_L. a tree choice. However, the impression that they are straight, l.e. 

that they are geodesic lines. Is enforced by the metric differential (6.11) itself 
and thus beyond our control. 

Curves which are apparently straight are of great Interest in visual 

science. Helmholtz noticed the fact that vertical threads arranged by an observer 

in fixed head position to form an apparent frontal parallel plane are not actually 

Fig. 51 

Mathematically this leads 
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ar.ranged on a physical plane. The shape of the physical surface which appears to 
be plane varies with the distance from the observer. The shape of their cross 

section with the horizontal plane is schematically shown in Fig. 40. We shall 

apply our theory to this problem, and by identifying the horopter curves with 

geodesic lines of our metric (6.11), we shall find that the geodesic lines of the 
horizontal plane which are symmetrical to the x-axis form a set of curves exactly 
of the observed type. 

of 

'J 

Another classical problem is also closely related to the geodesic lines 
our metric: Hillebrand's Alley Problem. If we determine on the frontal plane 

horopters points which have the same geodesic dis¬ 

tance from the x-axls, two curves are obtained 
(Fig. 52) which have the same apparent (geodesic) 
distance from each other. They thus should give 

the impression of an alley formed by equidistant 

walls. Again we shall find that the curves which 
follow from our theory are of the type observed by 
Hillebrand, who firBt made the experiment. 

Instead of constructing two equidistant 
curves, we may also ask for curves which are 

straight and parallel to each other and symmetric 
to the x-axis. We shall see that these two sets of 

curves are only identical if our metric (6.11) is 
Euclidean. They are different curves in the elliptic and hyperbolic geometry. 

Our mathematical result will be that in the hyperbolic geometry the curves of 

equal distance lie outside the curves of parallel direction, but that the situa¬ 

tion is reversed In the elliptic geometry. Blumenfeld, who repeated Hillebrand's 
experiments with greater precision, found that the two Instructions lead the ob¬ 

server to different curves, with the curves of equal distance being outside the 

curves of parallel direction. This experimental result we then have to consider 

as additional strong evidence that the metric of binocular space sensations Is 

given by the hyperbolic differential (6.11) with 

Pig- 52 

M(y) 
_1 

sinh ct(y + n) (6.12) 

6.2. We determine the geodesic lines of the metric (6.11) as solutions of 

the problem of variation 

M(y) vA dy2 + dcp2 + cos2cpd02 = Minimum (6.21) 

We may solve this problem simultaneously for all the three geometries by writing 

M(y) in the form 

m(y) 
_2_ 

^(y+f) + ee-<x(y+n) 
(6.22) 

where e = -1, 0, +1 for the hyperbolic. Euclidean, and elliptic geometry respec¬ 

tively. 

For the discussion of the solutions it will be advantageous to use, in¬ 

stead of y, 9, 0 other variables 
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£ = p COS 9 cos 0 

7] = p sin 9 (6.23) 

where 

£ = p cos9 sin 0 

P = y52 + n* + C1 = e~CT (y U) (6.24) 

The problem (6.21), In these variables, assumes the spherically symmetri¬ 

cal form 

2 —+ liri +-.diL = Minlmura (6.25) 
1 + ep‘ 

related to Riemann's normal form 

ds2 = (d£2 + dr]2 + dC2) 
(1 + £P2)2 

of the metric of manifolds of constant curvature. 

We see from (6.25) that, in the £, 7), C space, our problem is formally 
identical to finding the light rays In a medium of index of refraction 

1 
n = 

1 + ep' 
(6.26) 

It is a medium in which the optical substances are arranged in concentric spheri¬ 

cal layers around the origin. 

In case e = 0 we have a homogeneous medium n = 1, and the light rays are 

the straight lines of the £, r), £ space. 

In case e = 1 (elliptic geometry) we obtain 

1 

a medium well known as "Maxwell's Fisheye." 

Finally the hyperbolic geometry, z = -1, 

a medium 

(6.27) 

may be represented optically by 

(6.28) 

in which the Index of refraction increases from 1 to ® if p varies from 0 to 1. 

(Poincare's model of hyperbolic geometry.) 

The Interpretation of the three geometries as an optical medium of spheri¬ 

cal symmetry makes it quite obvious that, in the £ , *) , C space, the geodesic 
lines (light rays) are plane curves. Indeed, a light ray in such a medium will 

remain in the plane which is determined by the origin and any one of the line ele¬ 

ments of the ray. Thus if we have found all the geodesic lines in the q-plane, 

we can find all other geodesic lines simply by rotating this plane around the or¬ 

igin into any other position. In other words, we may consider our problem as 

solved If we know the geodesic lines in the -plane. 
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ine u. e-nark, however, that the actual horopters In the physical x, y, z space 
are In general not plane. We obtain these .horopters by expressing the equation of 
the geodesic lines in the E, , r,, £ space first by the angular coordinates y, 9, 0 

and then with the aid of the relations (2.23) or (2.31) by the physical coordinates 

x> Vf z* Tne resulting curves are plane only if. In the q, £ space, the geo¬ 
desic line lies in a plane through the q-axls; Indeed, in this case, they lie in 

the same plane of elevation 0 - const. However, if a geodesic line is sought which 

connects two points in different planes of elevation, then the resulting curve Is 
plane only In exceptional cases (for example, if the two points lie in the median 
plane y = 0). 

We shall confine ourselves in the following to the plane geodesic lines, 
in particular to those which lie in the horizontal plane; the frontal plane horop¬ 
ter and the alley curves are curves of this type. 

6.3- Before solving the problem of variation (6.21) or (6.25), let U3 

study the transformation of the horizontal x, y-plane into the £, r]-plane which is 
expressed by (6.23). As in §2, we do this by constructing the domain in the 

0-plane into which the half-plane x = 0 of the horizontal plane is transformed. 

Since { can vary from ti to zero, it follows that p = y/i-2 + q 2 may vary 
from 

t0 Px = e~a^ (6.31) 

Consequently the half-plane x > 0 must be imaged Into some domain inside 
the circular ring enclosed by two circles of radius PD and Pi. The latter circle 

represents the infinity of the horizontal plane (y = 0). Both p0 and pi are 
smaller than one. 

We have seen that the two eyes. In the y, 9-plane, are given by the 

straight lines 

2<p + y = n 

-2cp + y = n 
(6.32) 

By p = e + it follows that, 

by the logarithmic spirals 
in the t, q-plane, these eye3 are represented 

P = Poe20? 

P = P0e"2 °? 

(6.33) 

This leads to the boundary coordination illustrated in Fig. 53. The half-plane 

x > 0 is Imaged into a sickle-shaped figure which lies inside the unit circle 
of the £ , r] -plane. 
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6.4. The geodesic lines of the horizontal plane (Horopters). The geodesic 
lines of the horizontal plane are the solutions of the problem of variation 

fHY) /^2 dy2 + d<?2 = Minimum 

or, in terms of the coordinates £, q : 

f v/chp + dr)" 

J 1^2 1 + e p 
= Minimum 

(6.41) 

(6.411) 

It is mathematically a little simpler to treat the problem in the first 
form (6.4l). For this purpose we introduce the variable 

T = U(Y+ fi) 

and consider 9 as function of t. Then it follows 

where 

/m(x) v^T 

M(t ) 

91 dx = Minimum 

1 

(6.42) 

(6.43) 

T -T 
e + £ e 

The solutions of the problem, l.e., the geodesic lines, must satisfy 
Euler's differential equation which in our case has the simple form 

_d_ 

dx 
M9 

It follows 

or 

VI + 9 

M9 

I 2 
= 0 

= const. = C 

9' = C 

y/l + 9'2 

1 / l \ 
4- £ 6 ) 

N/1 - + ee T) 

(6.44) 
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With the aid of the relations 

i(eT + ee“T)• 1/ T 
“ 2 ( e - ee~T) 

i(eT - ee"1)' 

e <D 
H|CVI 

II 

-T 
+ ee ) (6.45) 

i(eT + ee‘T)2 

we can write (6.44) in the form 

1 ( T 
- T (e - e e~T ) 2 = e 

where 

T ' 

1 / T -T . 
•g(e - ee ) 1 

V^2 - "T(e 1 - £e"X): 

1 
k 

C 

/r^c2 

(6.46) 

is again a constant. The condition (6.46) can.be integrated directly and leads 
to the equation 

or 

1 T _ T 
9 = T0 + arc cos — (e - ee ) 

c~ K 

2 k cos (T - To) = eT - ee~1 (6.47) 

in which k and' to are arbitrary constants of integration. We thus obtain, rein¬ 
troducing y by t = cr(y + (i) the two-parameter set of geodesic lines 

2 k cos(t - cpo) (y + h) - e e 
-a(y + fi) 

(6.48) 

depending upon the parameters k and cpQ. 

By now giving to e the values -1, 0, +1, we have the result that the hori¬ 

zontal geodesic lines of the three geometries of constant curvature are given by 
the following curves: 

Hyperbolic geometry: cosh cr (y + u) = k cos(qp - qpo) 

Euclidean geometry: eCT(Y + M-) = 2k cos(t - To) (6.49) 

Elliptic geometry: sinh o(y +n) = k cos(t - To) 

Since k = ® is a permissible constant, we conclude that the hyperbolae 
T = const, are geodesic lines in all three geometries. 

6.5* We are especially interested in those geodesic lines which are sym¬ 
metrical to the x-axis, since these curves represent the frontal plane horopters 

of binocular vision. Since symmetry to the x-axis means that the two values ±9 

must belong to any value of y, it follows that the parameter To In (6.49) must 

have the value To = 0. 

The frontal plane horopters thus are given by the curves 

cosh ff(Y + n) = k cos T 

ea (y + M-) = 2 k cos t 

sinh a(y+n) = k cos q> 

Hyperbolic geometry: 

Euclidean geometry: 

Elliptic geometry: 

(6.51) 
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The constant k characterizes the point x0 vhere the horopter intersects 
the x-axis. Indeed, for cp = 0 ve have in the three cases 

k = cosh cr (y0 + (i) 

k = iea(Yo + 

k = sinh o’ (Yo + 4) 

vhere yQ then determines the point xQ by 

(6.52) 

form 

Xo = cot Yo (6.53) 

V/ith the aid of (6.32) we may write the frontal plane horopters in the 

. cosh a(y + jjl) 
Hyperbolic geometry: ---y-= cos q> 

cosh cr (Yo + p.) 

(6.54) Euclidean geometry: e°^ Y°) = cos 9 

PV] , ,. , sinhcr(y + li) 
Elliptic geometry: = cos © 

sinha(yo + p.) r 

Since the right side cannot be larger than one, and since on the left side 
we have functions of y which are monotically increasing, we conclude that on all 
of these curves 

Y * Yo (6.55) 

In other words: The frontal plane horopters lie outside the Vieth-Muller 
circle through the median point xQ of the horopters (Fig. 54). 

Fig. 54 

6.6. The geodesic lines of the horizontal plane assume a remarkably simple 
form if the £ , r\ map of our geometries is chosen. Ve know that these geodesic 

lines then are given by the llghc rays In a medium of index of refraction 

n = 
1 + ep 

(6.61) 

We obtain these "light rays" by Introducing p = e~a^Y+4) Jn thQ general 
equation (6.48). This gives 
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2k p cos(9 - To) 
-1 2 = 1 - sp (6.62) 

S2 + n2) + 2(S.So + n.rio) = 1 (6.63) 

So = k C03 To, >1o = .k sin cp0. 

Obviously these curves are circles in case of the hyperbolic or elliptic 
geometries (e = — l), and straight lines in the Euclidean case (e = 0). 

Without 103s of generality we may assume rj0 = 0 and thus discuss only the 
frontal plane horopters symmetrical to the ^-axis. Indeed, all other geodesic 

lines may be obtained from these special geodesic lines simply by rotation around 
the origin £ = 7] = 0. 

In the hyperbolic case, e = -1, we write the resulting equation in the 
form 

(5 - S0)2 + V2 = - l (6.64) 

and recognize a circle around a point f;0 > 1 of the %-axis which Intersects the 

unit circle at right angles (Fig. 55)• The geodesic- lines of the hyberbollc 

Fig. 55 

geometry thus are resresented in the i-, rj map of this geometry by the circles 

which Intersect the unit circle at right' angles. 

In the elliptic case we have 

(S + So)2 + 42 = 1 + S o (6.65) 

and recognize a circle around the point -£0 which goes through the points r) = -tl 

of the unit circle (Fig. 56). The geodeslc lines of the elliptic geometry thus 
are given by the circles which Intersect the unit circle at two points at oppo¬ 

site ends of a diameter. 

The geodesic lines of the Euclidean geometry finally are simply the 

straight lines of the r)-plane (Fig. 57)* 
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6.J. The above results can be used in a simple 

way to determine the general form of the horopter 

curves in the physical x,y-plane. We have seen 

(Fig. 53) that the half-plane x * 0 is represented in 

the ’l-plane by a moon-shaped domain. If we draw In 

this domain the horopter curves of the hyperbolic ge¬ 

ometry, for example, we observe Immediately that these 

curves are divided into two groups (Fig. 58)• The 
curves of the first group go from the median point, 

directly towards the boundary circle p = px (infin¬ 

ity of the x,y-plane) without leaving the domain. The 

curves of the second group, however, cross first the 

red lines (eyes), leave the domain, cross the same 

red lines again, and then reach p = p 1 in the original domain. These two groups 
are separated by one horopter which just touches the red lines. 

This means, in the x,y-plane, that the horopter curves of the first group 
go from a point x m of the x-axis without leaving the half-plane x = 0, towards 
infinity which is reached, asymptotically at a certain angle 

?co < ti/2. 

The curves of the second group go from their median point x m to the eyes, cross 

Into the left half-plane x < 0, loop back through the eyes into the right half¬ 

plane, and approach infinity asymptotically. This general behavior Implies that, 
for great values of xm, the horopters must be convex towards the left and for 

small values of xm concave to the left. At a certain median point xm = xQ, the 

horopter will be nearly flat. This is Illustrated In Fig. 59, where a schematic 
drawing oi these curves is given. For a numerically correct picture refer to 
Fig. 71. 

The geodesic lines of our hyperbolic geometry thus have, in the x,y-plane 

a general form which agrees perfectly with the horopter curves determined'by'ex¬ 

periment in the neighborhood of the x-axis. However, we cannot consider this as 
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evidence for the hyperbolic geometry, since the two other geometries furnish 

horopter curves with the same phenomenon: changing. In the neighborhood of a point 

X? J ® X"aXi!' fr0m.COncave to convex curves. This can be seen by replacing in 
~g‘ 5 e geodesic lines of the hyperbolic geometry by the proper geodesic lines 

oi the Euclidean and elliptic geometry (Fig. 60). 

Euclidean Geometry Ell.pt.ca/ Geometry 

Fig. 60 

6.8. The phenomenon that frontal plane horopters are concave In the neigh¬ 
borhood of the observer but convex at greater distances can obviously be used for 

a numerical test of the theory. We determine for this purpose in this section the 

curvature of the horopter curves on the x-axis. We carry out the calculation only 
for the hyperbolic metric. 

The frontal plane horopters of the hyperbolic metric are given by the 
first equation (6-54) : 

In the neighborhood of 9 

cosh g(y +F ) 
cosh a ( Yq + p) 

0, we have 

cos 9 (6.81) 

and 

cosh a(Y + h) 

Hence we may 

= cosh cr(Y0 + N) + a sinh cr(Yo + F) Ay + 

cos 9 = 1 - -|92 +. 

replace (6.8l) by 

AY = - ^ coth a ( Yq +N)?2 (6.82) 

If we are Interested only in the shape which the curves have in the immediate 
neighborhood of the x-axis. 
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We next have to translate the relation (6.82) Into Cartesian x,y coor¬ 
dinates. From the transformation formulae 

x = 

y = 

cos 29 + cos Y 

slnl' 

3 in 2q> 
(6.83) 

sin y 

we conclude for small values of 9 that 

■ _ 1 - 2y2 + cos Yo - sin YpAy 

sin Yo + cos YqAy + 

1 + cos Yo 

sin Yo 
•4 1 

29: ay 
1 + cos Yo Sin Yo 

+ 

.} (6.84) 

The expression on the right side contains all terms of second order in 9 since 

Ay Is by (6.82) of second order in 9 so that (AY)2, etc., may be omitted for our 
purpose. 

By subtracting xG = from (6.84), we find 

Ax 
1 + cos Y( 

sin Yo 

Now, if using (6.81), 

29' 
+ 

Ay 

1 + cos Yo sin Yo 

Ay = C'9 

we obtain 

(6.85) 

(6.86) 

(6.87) 

. 1 + cos Yo 1 Ax = _ ---L° (2 tan Ayo + c) 2 

sin yo 

The second equation (6.83) gives to a sufficient approximation 

9 = sin yo y 

and thus, by introducing this in (6.87), we have 

Ax = -I 0032 (2 tan iYo + 0)y= (6.88) 

(6 86) Thi3 13 3 Parab°la whlch ha3 the 3ame curvature K as the original curve 

We thus may formulate the theorem: If a curve which is symmetrical to 
the x-axls has, for small values of 9, the development - 

ay = C92 + . 

then the curvature of this curve on the x-axls is given by the expression 
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With the aid of this result we obtain the curvature of the horopter curves 

(6.8l) by Introducing from (6.82) the value 

C = - — coth c(y6 + p) 

It follows 

K = + cos2 -|yo { -2 tan j?yo + 7^ coth o(yo + p)J (6.891) 

in which Y0 characterizes the point x0 = cot -|yo where the horopter Intersects the 

x-axis. 

The sign of K is given by the bracket in (6.891); this bracket approaches 
-°° if Yo -*• n , i.e., if x0 -*• 0. It approaches asymptotically the positive value 

— coth au if x0 -> <*,, i.e., y0 -> 0. Consequently it must be zero at some point 
2tx ~ 
x0 in between. For the computation of thl3 special value x0, we have the equation 

K = 0, i.e., by (6.89I): 

Y 1 
tan -f tanh a (yo + f) = ^ (6.892) 

Since x0 = cot -§Yo, we may write this equation as follows 

x0 = 4o tanh ct(yo + F ) 

and conclude immediately that 

x0 < 4 

(6.893) 

(6.894) 

We can use the equation (6.892) and, more generally, the observable curva¬ 

ture relation (6.891) In order to determine the individual constants a and p of 

our hyperbolic metric. 

In the next section we shall find another method based on the alley exper¬ 

iments. For one of Blumenfeld's observers (Lo) the constants a and p have been 

calculated on the basis of Blumenfeld's data: 

a = 14.58 

p = 0.0809 
(6.895) 

We use these values for the calculation of yo from the transcendental 

equation (6.892). 

The result is 
Yo = 2.°36 

and hence 

x0 = cot Yo/2 = 48.7 

The Interpupillary distance of Blumenfeld's subject is 3O.5 mm. Hence we 

find that for this observer a frontal plane horopter at Xo = 148.2 cm. should have 

the curvature K = 0, i.e., coincide practically with a curve whloh Is phys1ca11y 

straight. 
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6.9. It is easy to carry out similar calculation, for the Euclidean and 

elliptic geometry. From (6.54) it follows 

a 1 2 
AY = -^ 9 

(6.91) 

Ay 
2ct 

tanh a(yo + hOt* 

for the Euclidean and elliptic horopters respectively. We Introduce the constants 

C which follow from (6.91) in our general theorem (6.89) and obtain formulae for 

the curvature K of the horopters: 

Euclidean Geometry: K = cos2 ^Yo (7^ - 2 tan -gYoj 

Elliptic Geometry: K = cos2 -§Yo 

The curvature K Is zero for a value Yo which satisfies the equations 

. iv 1 
tan ¥Yo = 7^: 

tan -§Y0 coth a(y0 + p) = -^ 

respectively. By introducing Xo = cot -“Yo, we obtain 

Euclidean Geometry: x0 = 4a 

Elliptic Geometry: xQ - 4a coth cr(Yo + P-) 

2a 

tanh cr( Yq + M-) 

(6.92) 

2a 
- tan -§Yo, 

(6.95) 

(6.94) 

The difference between the three geometries thus reflects upon the rela¬ 

tion of the constant a to the position x0 where the frontal plane horopter Is 

physically plane. Indeed, we have the Inequalities 

Xo < 4a (Hyperbolic geometry) 

x0 = 4a (Euclidean geometry) (6.95) 

to 
■=

t 

A
 O
 

X
 (Elliptic geometry) 



Section 7 

THE ALLEY PROBLEM 

Fop the application of our theory to the alley problem, we distinguish 
with Blumenfeld*) two types of alleys: alleys which are formed by walls of equal 

apparent distance, and alleys formed by apparently parallel walls. The curves 
where the walls Intersect the horizontal plane are, for brevity, called Pis tance 
Curves and Parallel Curves. 

Our first problem is to interpret these curves mathematically, i.e., to 
find mathematical conditions which describe adequately the psychological impres¬ 
sions of equality of distance and of parallelism. Thi3 problem is easily solved 
in the case of the distance curves, but we shall find that the concept of paral¬ 
lelism Involves certain difficulties. The reason for this difficulty can be seen 

in the fact that parallelism of lines has an immediate and intuitive meaning only 

in the Euclidean geometry. 

7.1. Distance Curves. The basis for the construction of aidlstance alley 

are the frontal plane horopters, i.e., the geodesic lines symmetrical to the 

y x-axis. Consider, for example, the geodesic 

through P0 and determine a point Q0 on this line 
which has a given geodesic distance 5 from P0- 

Similarly, on another geodesic through Pi we can 

find a point Qi which ha3 the same geodesic dis¬ 

tance from Pi. By doing this for the whole set 

of geodesic lines, a curve is obtained by the 

points Q which has a constant geodestic distance 

S from the x-axis. If we determine a similar 

curve symmetrically located on the other side of 

the x-axis, an alley is found in which the two 

walls have the constant geodesic distance 2S from 

each other. We expect that these alleys are the mathematical expression for the 

observed Distance Alleys. 

We determine the equations of the distance curves simultaneously for all 

three geometries in question. On account of (6.48) we have for the frontal plane 

horopters the equation 

2 k cos 9 = e Y*H) e e -a(y+n) 
(7.11) 

where e = -1, 0, + 1 for the hyperbolic, Euclidean, and elliptic geometry respec¬ 

tively. By introducing temporarily the variable 

= ff(Y M-) 

ve may write 

2 k cos 9 = e T - ee T (7-12) 

♦Blumenfeld, Walter: Untersuchungen liber die scheinbare Gr'dase lm Sehraume. Z.f. Psychol. u. 

Physiol, d. Sinnescrg., 65: 24l-Ul6, 1915* 
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The geodesic distance S of a point Q on such a curve from the median point 

P ( 9 = 0) is given by the Integral 

9 

S = 2 
\/dT2 + dtp2 
-d 9 e 1 + e e (7-13) 

We consider x as function of 9 (given by 7*12), and thus have to evaluate 
the integral 

S = 2 
p y 1 + 7T 
/ _x x d 9 

e + e e 

Wow, from (7.12) It follows that 

-2 k sin 9 = (ex + ee-T) x' 

and hence 

1 + x 
k2 sin2 9 + ir(eT + se T)2 

T(ex + e'e-x)« 

With the aid of the Identity 

i(eT + e~T)^ = i(eT - e e_x)2 + e 

and by taking (7-12) into account, we may write (7-l4) as follow: 

1 + X 
k + e 

~(eT + e e x) 

so that our integral (7.131) becomes 

S = v/k2 + 

9 
d 9 

i(e'l+ e e~ T)2 

From (7«l4l) it follows that 

1r(eT + e e x)2 = k2 cos29 + 

and hence 

9 
d 9 

S - \/ k + e / ,2 2 
/ k cos 9 + e 

= — arc tan 
v42 + - tan * 

We write this last result in the form 

1 

A 
tan S = 

e tan 9 

(7.131) 

(7.14) 

(7-141) 

(7.15) 

(7.16) 

(7.161) 

(7.17) 

It determines the geodesic distance S of a point of latitude 9 which lies on the 
horopter determined by the constant k. 
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Finally we eliminate the constant k with the aid of (7.11). We first 
'rite (7-17) a little differently by using the identity 

It foilow3 

v/T 

>in /F S 

3in yTT S = 

and hence by (7.11) and (7.l4l): 

— sin y/T S 
ve 

tan y/e~ S 

1 + tan2 s/T S 

3 in 9 

e + k cos m 

2 s in 9 

e T + e e T 

or by reintroducing y by t = o-(y + fi) : 

sin vT" S = 
2 s in 9 

VT ' ' Pff(Y + n) + e cr(Y+fJ- ) 

(7.18) 

(7-181) 

The equation (7-181) determines the geodesic distance of any point of the hori¬ 
zontal plane from the x-axis in terms of Its bipolar coordinates y, 9. Finally, 

we assign to e Its values -1, 0, + 1 and have the result 

that the geodesic distance of a point Q from the x-axis 
is given by the functions: 

Hyperbolic Geometry: sinh S = 

Euclidean Geometry: 

Elliptic Geometry: 

sin 9 

sin S = 

sinh cr( y + M-) 

S = 2 sin 9 e~ a(7+v) (7-19) 

sin 9 

cosh a ( y + (j.) 

The distance curves are characterized by the condition that the geodesic 

distance from the x-axis is constant. Thus these curves are given by the equa- 

tIons: 

Hyperbolic Geometry: 3inh <r(y + n) - sin 9 

Euclidean Geometry: ea^+M^ = 2 C 3ln 9 

Elliptic Geometry: cosh a(y + n) = C sin 9 

where C is a constant. 

(7.191) 

7.2. For the discussion of the distance curves (7.191), we introduce 

again the r) map of the three geometries obtained by the transformation 

£ = e r ^ cos 9 

n = e-°(Y+n) am 9 

o = yfTV =, e-ff(Y+n) 

(T.21) 

Ve write the three distance curves (7.191) In the unified form 
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etf(y+fO + e e v 1 ' = 2 C sin <p 

and find, in the £, r]-plane: 

(7-22) 

1 + ep2 = 2 C p sin 9 

or 

eU2 + 712) — 2 C rj +1 = 0 (7.23) 

For e = -1 (Hyperbolic geometry) this is the equation of circles 

£2 + (tj + C)2 = 1 + C2 (7.231) 

which all go through the points 7^ = 0, £ = ± 1 of the unit circle and thus have 
their center -C on the r)-axis. 

In case e = 0 (Euclidean geometry), we find the straight lines 

1 
4 = 

2C (7.232) 

parallel to the £-axls. 

In case of e = +1 (Elliptic geometry) we obtain 

^2 - (n - c)2 = c2 - 1 (7.233) 

i■e* i circles around points C of the 7]-axis which intersect the unit circle at 
right angles. 

The three types of curves are shown in Fig. 63. We conclude immediately 
tnat the actual alleys in the x,y-plane must go to the eyes and approach infinity 
asymptotically with a certain direction 

n/2 

It follows that these curves must have 

the general form shown In Fig. 64, 

which is in agreement with experimental 
results. 

7-3- Parallel Curves. The 
mathematical formulation of the psycho¬ 

logical impression that an alley has 

S parallel walls Is not immediately as 

clear as in case of distance alleys. 

In fact, we can easily give different 

mathematical concepts of parallelism 

and defend them with equally good argu¬ 
ments . 

The statement that two lines 
elements not attached to the same 

point are parallel has no absolute 

meaning in non-Euclidean geometries. 
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It is true that Levl-Civita'3 concept of parallel transfer allows us to move a 

given line element d/0 along a given curve C to another position Pi "parallel 
with itself," i.e., without apparent change of direction. However, the result 

H 

of this transfer depends on the chosen curve C. A 
different result will he obtained if another curve 

is chosen on which the line element is transferred. 

The Euclidean geometry is the only one in which par¬ 
allel transfer is independent of the path C so that 

a statement regarding the parellelism of two line 

elements not attached to the same point has an abso¬ 

lute meaning only in this special geometry. 

From this consideration it follows that 
only in the Euclidean geometry will the instruction 

to construct alleys with parallel walls without pay¬ 

ing attention to the distance of the walls lead the 

observer to a uniquely determined reaction. If, 

however, as we have good reason to assume, the metric of binocular vision is non- 

Euclidean, a uniquely determined reaction cannot be expected, and thus a more 
specified instruction must be given. We shall discuss in the following two dif¬ 
ferent types of "Parallel Alleys" which may be considered as two different inter¬ 

pretations of Blumenfeld's experimental parallel alleys. We are forced to this 

ambiguity since the experiments have apparently been carried out without such 

specified instructions. We shall consider the second of the following interpre¬ 

tations (7.5) as the one which represents Blumenfeld's experiments with greater 

probability. 

Fig. 65 

7.4 Parallel Curves (1st type). We assume that P0 and Q0 are two fixed 

points symmetrical to the x-axis. Let <9 = 90 be the "hyperbola of sight" 

through P0 so that the straight line 0Po includes an angle with the x-axis prac¬ 

tically equal to 90- The observer is asked to move a point Pi in such a position 

that the line P0Pi includes with 0Po the same apparent angle 9o as 0Po with the 

x-axis (Fig. 66). The process is continued with Pi, Qi as fixed, and two other 
points P2, Q2 moved into position. As a result two alleys are obtained with walls 

which are parallel in the sense that two individual opposite wall sections seem 
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namely, according to (3-24) given by 

to be parallel to the median plane. Note 
that nothing is required vlth regard to 

the impression which the curves give in 
their total extension. 

It is easy to find the equations 
for these curves. Let (dy, dtp) be the 
line element of the curve at P0 and (6 y, 
&T = 0) the line element of the curve 

9 = 9o at P0. The two line elements in¬ 
clude an apparent angle w with each other. 

This angle is determine by the quadratic 
differential 

ds2 = M2 (y) (a2 dy2 + dtp2) (7-41) 

formula 

_M2 (y) (q2 d y6y + d tpSqj )_ 

- \/m~2 (y) (a2 dy2 + d92) /m2 (y) (a2 Sy2 + 6<p2) 
(7-42) 

We notice immediately that M(y) cancels in this formula so that the ap¬ 
parent angle o is independent of the choice of M. It is the same not only for 

the three geometries of constant curvature, but also for any other non-Euclidean 
geometry which has a metric of the type (7.41). 

Since 69 = 0, we find 

as expression 
const. If we 

cpndition 

COS (0 
gdy 

Vct2 dy2 + d92 
(7.4-5) 

for the apparent angle of the curve with the lines of sight 9 = 

require that u = 9o, or in general w = 9, we obtain from (7-43) the 

or 

cos 9 
o' d Y_ 

\/o2 dy2 + d92 

d 9 
j = crtan 9 
dy T 

(7-44) 

(7.45) 

The solution of this differential equation is 

eCTY = C sin 9 

where C is a constant of integration. 
(7.46) 

. We P°int °ut again that these "Parallel Curves" are entirely independent 
of the function M(y). We also notice that they are identical with the distance 
curves (7-191) of the Euclidean geometry. 

In the Euclidean geometry Distance Alleys and Parallel Alleys are 
identical. 

We shall find a similar result in the next section where a different 
mathematical lormulation of parallel alleys is discussed. 

By introducing the variables 5, rj by (7-21) in the equation (7-46) we ob¬ 
tain, of course. 

4 const. 
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so that the straight line3 of the r)-plane parallel to the £-axis may be inter¬ 
preted a3 representing parallel alleys in all three geometries. 

This interpretation of the straight lines 7] = const, in the £, 7^-plane 

leads us to an important conclusion. Let us .assume that a distance alley and a 

parallel alley of the above type have been constructed, both alleys starting 
from a fixed pair of end-points P and Q (Fig. 64). The parallel alley, imaged 

into the £, r]-plane (Fig. 63), is given by the straight line through P parallel 

to the {--axis, and is identical with the distance curve through P only if the 
metric is Euclidean. The very fact that distance and parallel alleys are found 

to differ points out that the visual metric cannot be Euclidean. 

Moreover, we see in Fig. 63 that--going from P to the eyes--the distance 

curve lies above the parallel curve if the geometry is hyperbolic and below this 

curve if the geometry is elliptic. 

This means in the x,y-plane that the distance curve lies outside the 

parallel curve if the geometry is hyperbolic and inside if the geometry is ellIp! 

tic. 

The alley experiments thus give us the possibility of deciding by experi¬ 

ment which metric is characteristic for our spatial sensations. Blumenfeld's 
data show clearly that the distance curves lie outside the parallel curves. Thus 
if we are allowed to identify his parallel alleys with the above-discussed alleys, 

we must conclude that the psychometric of space sensations is hyperbolic. 

In the next section we shall consider another type of parallel alleys 
which, if identified with Blumenfeld's alleys, leads to the same conclusion. 

7.5. Parallel Curves (2nd type). Neither the distance curves nor the 

parallel curves of J.h are geodesic lines if the metric is hyperbolic or elliptic. 

They are geodesic lines, however, in the Euclidean geometry. 

Thus these curves will not appear straight if we observe them by paying 

attention to their total depth extension. In view of this fact, we now change 

the instruction for the observer: By paying special attention to the walls as a 

whole he is to arrange the points so that they appear on two straight lines par¬ 
allel to the x-axis. Consequently the resulting curves must be given mathematical¬ 

ly by geodesics, i.e., they must be two curves of the set (7.43). 

e(c2 + rj2) + 2( $ £0 + rJ No) = 1 (7.51) 

in the £, n map of our geometries. 

We also know that the second curve must be the mirror image of the first 

curve with regard to the f-axis. 

Obviously there are infinitely many pairs of geodesics of this type; in 

fact, we may choose the first curve arbitrarily from (7-31) an(l then pair it with 

its mirror image 

s(^2 + r,2)+2(^^o~ N No) = 1 (7*32) 

to an alley with walls erected on two straight lines. 

In order co pick out among the geodesic lines pairs which give the ap¬ 

pearance of being parallel to the median plane, we use a sort of principle of 
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correspondence. It is clear that in case of the Euclidean geometry (e = 0) the 

desired pairs are given by = 0 in (7*51) 30 that 

?! = + 
- 2t)0 

(7-53) 

where r)0 is an arbitrary constant. 

We now uphold the same principle in case of the other geometries: 

Two alley curves appear to be parallel to the median plane if they are found 

from the general set (7 -51) by the same prlnclple ( = 0) which determines paral¬ 

lel alleys in case of the Euclidean geometry. 

This consideration leads us to the result that the special geodesic lines 

e U2 + 'n) + 2 7] 7] o = 1 (7-54) 

in which rj 0 I3 an arbitrary constant will give the Impression of an apparently 

straight line "parallel" to the median plane. Obviously these curves are circles 

in the £, r]-plane symmetrical to the rj-axls if e / 0. 

In case of the Hyperbolic Geometry (e = -1), we get the circles 

£2 + (71-Tlo)2 = 71o2 - 1 

normal to the unit circle and centered around a point rj 0 of the 7^-axis. 

In case of the Elliptic Geometry we have the circles 

£2 + (t] + 7") o ) 2 = Tjo2 + 1 

(7-55) 

(7.56) 

through the points £ = + 1 of the E,-axis and thus also centered around a point -7i0 

of the 7>axis. For the graphical illustration of these curves we can use Fig. 63 

and Fig. 64, but we have to interchange the legends "Hyperbolic Geometry" and 

"Elliptic Geometry." 

By introducing, instead of £, 7] the variables y, 9, we obtain from (7-55) 
and (7.56) the following result: 

curves 
Parallel alleys according to the above instructions are given by the 

Hyperbolic Geometry: cosh o (y +g) = c sin 9 

Euclidean Geometry: eCT(Y + -u) = 2 C sin 9 

Elliptic Geometry: si nil <j(y + u) = C sin 9 

where C is an arbitrary constant. 

(7-57) 

For the interpretation of Blumenfeld's parallel alleys we shall consider 

the mathematical definition of parallel curves given In this section to be the 

one which has the greatest probability. We shall justify this point of view in 

the next section. 

We may collect the results of 7.3 and 7.5 with regard to Distance-and 

Parallel Alleys in the following table. 
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Hyperbolic Geometry: 

Distance Curves 

Parallel Curves 

Euclidean Geometry: 

Distance Curves 

Parallel Curves 

Elliptic Geometry: 

Distance Curves 

Parallel Curves 

A: slnhc (y + n) = C sin 9 

B: coshu (y + (i.) = C sin 9 

<7(y +n) = 2 C sin 9 

B: cosher (y + u) = 6 3^-n T 

A: sinher (y + n) = C sin 9 

By disregarding the Euclidean case, we thus recognize that only two dif¬ 

ferent types of curves are involved, namely. 

Type A: sinher (y + jj.) = C sin 9 (7.58) 

Type B: cosher (y + p.) = C sin 9 

Curves of the type A represent the Distance Curves of the Hyperbolic 

Geometry and thT"Parallel Curves of the Elliptic Geometry. Curves of the ^ype B 

represent the Parallel Curves of the Hyperbolic Geometry and the Distance Curves 

of the Elliptic Geometry. 

In the r] -plane these curves A and B are given by the circles shown in 

Fig. 67. Starting from a point P we see that the A-curve lies always above the 

B-curve in the regxon between P and the eyes. This means in the x,y-plane that 

the A-curves lie always outside the B-curves and that both curves approach one of 

the eyes (Fig. 64). 

This means for our a-lley problem: 

Consider a Distance Alley and a Parallel 

Alley both starting at the same fixed 

point P (and its mirror image Q) . 

If the geometry is hyperbolic, 

then the Distance Alleys lie out side 

the Parallel Alleys. 

If the geometry is .elllptic, then 

the ParalTel Alleys lie outside the 

Distance Alleys. 

If the geometry is Euclidean, 

then Parallel Alleys and Distance Alleys 

are identical. 

Blumenfeld's data demonstrate 

that Parallel Alleys and Distance Alleys 

are different, and that the Distance 

Alleys lie outside the Parallel Alleys. 

Hence we are forced again to the conclu 

sion that the proper geometry for our 

spatial sensations is the Hyperbolic 

Geometry. 

Fig. 67 
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7.6. It is not difficult to support the principle of correspondence used 

in the previous section hy arguments of a m ore principal nature. Ve may consider 

the often used rj maps of the apparent horizontal plane as a plane map of the 

actual sensation of objects in the physical horizontal plane. It is of course not 

a perfect map since ve must require from a perfect map that it must give immediate¬ 

ly the correct linear and angular relations of the sensational manifold. We know 

that such a map is impossible. However, the £,, rj map illustrates directly certain 

features of our sensations, for example, the fact that the Vieth-Muller circles 

y = const, are seen as circles around the observer. Indeed, these circles are 

represented by the circles 

^ 2 + „ 2 = p = e"1 lY * ^ = const. (7.61) 

in the E,, 7]-plane. Furthermore, the "hyperbolae of sight" 9 = const, are given by 

the radial line r\/E, = const, in the E,, rj -plane, and thus the E,, q map describes 

directly the apparent significance of these hyperbolae. 

Even more important is the fact that the E,, q map is conformal, i.e., that 

the Euclidean angles on the map are equal in size to the non-Euclidean apparent 

angles given to us by the metric of our space perception. Indeed, consider two 

line elements (d£, dr)) and (S£ , 6 r) ) attached to a point P. The Euclidean angle 

on the £ , rj map is given by the formula 

\ d^6^ + d r) 6 7] 

cos u = i/as2 + d.,2 /ss'+sn2 (7'62) 

The apparent angle co * of the two corresponding line 

elements (dx, dy) (6x, 6 y) in the physical plane, 

however, is determined by the metric differential 

ds2 = n2 (£, rj) (dJ=2 + dr]2) (7-63) 

where 

Fig. 68 as we have seen In 6.2. 

By applying the general formula (3-24) for the angle co*, we get 

_h2(d^ 5%+dri 5r?_ = d q 5 5 + dr)5r) 

cos CO * = 
/n2 (d£2 + dr]2) \/n2 "(6£2 + Sq2) /d£2 + dr] 2 \/S£2 + 6t] 2 (7-64) 

and we see immediately that 

cos co* = cos co, i.e., co * = co 

This proves our statement, that the E,, T] map is conform, i.e., that the 

apparent, non-Euclidean angles are directly given by the Euclidean angles of the 

map. 

The apparent place of the observer- Is the center E, = r) = 0 from which the 

lines of sight 9 = const, seem to emerge and around which the Vieth-Muller circles 

y = const, are apparently located. He observes the horizontal half-plane, i.e., 

the often illustrated sickle-shaped part of the E, , q map, through the receiving 

set represented by the logarithmic spirals 

= p e i2<J9 
o P (7-63) 2 
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The ^-axle of the map represents the median line of the observer and, 

since the map is conform, the r)-axi3 must represent a direction apparently normal 

to the median line. This direction, of course, no longer lies in the field of 

view, but, without doubt, the observer is conscious of it. An alley with straight 

walls thus will be interpreted as parallel to the median line if the imagined ex¬ 

tensions of the walls approach the apparent Y-axis of the observer at right 

angles. In the conformal f;, r) map such alleys thus must be given by geodes 1 c 

ne3 wh 1 ch are normal to the r) -ax is. By (7-51) it follows that such geodesic 

lines must have the form (7-54), namely 

£ (5 2 + n 2) + 2 TJ T} o = 1 (7-66) 

which leads U3 back to the parallel curves of the preceding section. 

[ .7 • The imperfection of the £ , 7] map has to be seen in the fact that it 

gives directly only the correct apparent angles. We know that an isometric 

Euclidean map which gives directly the 3ize (and thus also angles) is impossible. 

However, we can easily construct another significant map which, at least, repre¬ 

sents the quality of "straightness" directly. This means that the Euclidean 

straight lines of the map represent the geodesic lines of the non-Euclidean mani- 

1 olds in question. This so-called projective map (Klein's Model) is obtained by 

submitting the 5, r\ map to a "radial distortion." 

R (7-71) 

In case e = 0 this new map is a similarity transformation of the £, q map. 

In case e = -1 (Hyperbolic geometry) the unit circle p < 1 is transformed 
Into the unit circle R t 1. 

However, for e = 1 (Elliptic geometry), the unit circle p < 1 is expanded 
over the whole plane. 

By introducing 

X = R cos <p 

Y = R sin 9 
(7-72) 

we may express the transformation (7-71) as a transformation of the physical 

x,y-plane into the X,Y-piane, namely, in terms of bipolar coordinates y, 9: 

_ 2 cos 9__ 
X ~ ToTy “+ M J~1 e :<r (Y + H ) (7-73) 

Y eff (y + H ) - e-<jTy + H) (7-73) 

which takes the place of the transformation (7.21). 

It can be seen that the geodesic lines in all three geometries are given 

by the straight lines of the X, Y map. Indeed, in £, q coordinates, we have 

found in (6.62) the equation for geodesic lines 

1 - e p' 
= 2 k cos (9 - 90) (7-74) 
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Hence, It follows with the aid of (7.71) that their equation in the X,Y-plane is 

R cos (9 -90) = const. 
or 

X cos 90 + Y sin 9 o = const, 

which is the equation of a straight line. 

(7.75) 

The metric quadratic differential in these new coordinates X, Y or R, 9 
has now the form 

ds = L 
4 

dX + dY r2 _+ e (YdX - 

[1 + e (X* + Y^)]^ 
XdY) dR* 

(1 + e R ) rr"? + 
R* 

1 + e R‘ 
d? (7-76) 

as one easily verifies. 

If we consider the X,Y map as another attempt to interpret our sensations 
in a Euclidean realization, we may say that it represents truly the quality of ap¬ 

parent straightness. However, it is not in the least conform and thus does not 
allow us to determine apparent angles from the angles of the map. 

Except for the angles 9 of the lines of sight at the origin! Indeed, the 
hyperbolae of sight 9 = const, are still given by the straight lines through the 

origin in the X,Y-plane, and their angles with each other are equal to the appar¬ 
ent, non-Euclidean angles. Also the property of Vieth-Muller circles to appear 
as circles around the observer is truly represented on our map. Thus if any visual 
curve includes an apparent right angle with a radial line, then its image on the 

X,Y map will do the same. As before, the "egocenter^ of the observer has to be 
identilied with the point X = Y = 0 on the map. He observes a section of the 

X,Y-piane through a "receiving set" of a 

y similar form as in the case of the 7} 

map. The physical half-plane x l 0 lies 
between two circles of radius R0 and Ri 
given by 

and 

Ro = 

Ri = 

yn 71 + (X )  e e 7^(ri + u) 

- £ e -ap 

the latter corresponding to the infinity 

of the physical space. The two eyes are 

represented by the two curves of spiral 
type 

R Po 
e + 2CT9 

1 - £p02 e- 4 a T 

as shown in Fig. 69. 

(7.77) 

Fig. 69 

The X-axis determines the median line of the observer and the Y-axis 

since the map is coniorn at the point 0, a direction in the consciousness of the 
observer normal to the median line. 
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Alleys with straight wall3 are given by a pair of Straight lines In the 
X,Y-plane symmetrically located to the X-axis. Among these pairs we have the 

special one3 Y = + C which are, on the X,Y map, parallel to the X-axis and thus 
seem to approach the Y-axis at right angles. We suspect with great probability 

that it is thl3 special property which is interpreted by the observer as "paral¬ 
lel to the median plane." (Fig. 69). 

The curves in the physical x,y-plane which correspond to the parallel 
alleys Y = + C of the X,Y map can readily be found by (7.73), namely 

e cr( Y + K ) _ £ e-oi Y *■ l* ) = +£aln,, (7.78) 

These curves, however, are identical with the parallel curves of § 7-5. 

7.8. We conclude our discussion of the Alley Problem by outlining a simpl 
method of calculating the constants a and p from alley observations. We deter¬ 

mine for this purpose first the asymptotes of the curves A and B given by equa¬ 
tion (7-58). For small values of y we may write 

A: sinh. ap + a cosh apy = C sin <p0 + C cos 90A9 

B: cosh ap + a sinh crpy = C sin <p0 + C cos cpoAqp 
(7.81) 

Hence it follows that, in this region of small y, the curves follow the approxi¬ 
mate equations 

A: A9 = — tan <p0 y 

B: Acp = at tan cpQ y 

where t is the constant 

t = tanh ap 

and 90 the angle of the asymptote with the x-axis. 

In order to translate the conditions (7.82) into x,y coordinates, 

develop the equation 

(7-82) 

(7/83) 

we 

y sin 2 SL, 
x cos 2 + cos y 

with respect to y, considering only terms of order zero and one. 

We find readily 

(7-84) 

y 
Acp 

— = tan 9 o + -2 
x cos 9o 

This gives by (7.82) for curves of the type A: 

From the equation 

y a tan cp0 
^ = tan 9 o + --' Y x t cos 90 

cos 29 + cos y 
x = ---—-L- 

sin y 

(7-85) 

(7-86) 

we find with sufficient approximation that 
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x = 
1 + cos 2 To 2 cos' To 

2 -* c 

and hence by introducing y = ——-— in (7-86) that the equations of the 

asymptotes of the curves (7-58) are 

2a 
A: y = x tan To + ~ tan To 

L 

B: y = x tan To + 2 a t tan qp< 
(7-87) 

The latter is found from the first one by replacing t by l/t. 

Let us now assume that a distance and a parallel alley through a point P 

y 

2 a t 

have been set up and that the distancq 

alley lies outside the parallel alley, 
so that the metric is hyperbolic. Let 
us assume that the distance curve has 

the asymptote (found by graphing the ob¬ 
servation data) 

y = ax + b (7-88) 

and that the parallel curve has the 
asymptote 

y = a'x + b' (7.881) 

Then it follows from (7.87) that 

b 

* b^ (7.89) 
a ' 

By multiplication 

By division tanh a ji 

(7.891) 

i.e., two simple equations for the individual constants a and ji of the observer. 

An evaluation of Blumenfeld's experiments on this basis has given the 
following values of a and (x for one of his subjects (L0) 

a = 14.58 

t = 0.827 (7.892) 

M = 0.0809 

Since the experiments are not quite sufficient for a trustworthy deter¬ 

mination oi the above constants, the above values should be considered only as 
giving the order of magnitude we have to expect. 

The horopter and alley curves illustrated in Fig. 71 are based on the 

above constants; nothing more is intended here than to give a general impression 
of the shape of our theoretical curves. 
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Section 8 

RIGID TRANSFORMATIONS OF THE HYPERBOLIC SPACE 

8.1. We shall derive in this final section the rigid transformations of 
the hyperbolic space. We have considered the existence of «=6 transformations of 
this type as the mathematical expression of the conviction associated with visual 
sensations that objects have size and form independent of their localization. An 

object, like a solid body, can be moved in space to any desired position without 

changing its geometrical form. This possibility of a solid geometry is well known 
to us in the realm of the Euclidean geometry. 

It is, however, not restricted to this geometry; both the elliptic and hy¬ 
perbolic metric are distinguished by the fact that just as many transformations 
exist to move a given object as a solid body to any desired position. 

In the following, we shall confine ourselves to the hyperbolic geometry, 
since we nay consider it now as the proper geometry for binocular visual sensa¬ 

tions. We shall recognize the existence of cc6 hyperbolic "movements"; it is not 

difficult to show that these 0:6 movements are the only ones which exist, but, for 
the proof, we refer the reader to the literature on this subject. Detailed formu¬ 

lae will be given for a special one-parameter group of hyperbolic movements which 
are of importance for the construction of distorted rooms. 

8.2. Hyperbolic rotations. The simplest description of the hyperbolic move 
ments can be given in the £, r), £ space, where the hyperbolic metric has the form 

ds 
2 

Our problem is to find 

dE,2 + dr]2 + dC2 

[1 - U2 + r)2 + C2)]2 

point transformations 

(8.21) 

S' = f*U, 7), 0 

7)' = sU> 7], 0 (8.22) 

V = h(S, 7], 0 
such that the metric differential (8.21) preserves its form. This means the valid 
ity of the Identity 

d£,’2 + dn1 2 + dC 2 _ d^2 + dp2 + dc2 

[1 _ (?:.2 + r,’2 + Z'2)]2 ‘ [i . (^2 + + £2)]2 (8’25) 

I*, is immediately clear that the 00 rotations of the 7^, £ space around 
the origin die rigid movements of the hyperbolic geometry. Indeed, these rota¬ 
tions are given by the linear transformations 

- Ai 1 f; + A12T) + Ai3^ 

tT = A2i£ + A 22r) + A23C (8.24) 

C = A31 ^ + A32T] + A33 £ 

where the matrix (A^) Is orthogonal, i.e., satisfies the six orthogonality condi- 
conditions 
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'0, I k 
< 

1, i = k 

(8.25) 

Six conditions between nine coefficients allow a three-parameter degree of 

freedom which expresses the fact that 01:3 different rotations are possible 

A direct consequence of the conditions (8.25) la 

r 1 2 , , 2 , y , 2 K2 _, 2 , ~2 £ 1 + 7] + C = E, + 7] + C 

dE' 2 + d T)'2 + d C2 = d^2 + dr]2 + d£2 

(8.26) 

and hence we recognize by (8.23) that these °° rotations are rigid transformations 

of the metric (8.21). 

We also notice that the interior of the unit sphere E2 + r)2 + £2 = 1 ia 

transformed into the Interior of the unit sphere E'2 + t]'2 + E' =1- In partic¬ 

ular, the points on the sphere E2 + 7]2 + £2 = 1 remain on this sphere. 

The rotations. (8.24) of the r), E space around the origin determine a 

group of transformations in the physical x, y, z space which is not quite as obvi¬ 

ous. We obtain this physical group by using the relations of the coordinates 

E, 4, E to the physical bipolar coordinates y, 9, 0. 

6 , e-a(Y+8) cos 9 cos 0; V 
e-c(y ’+n) cos 91 cos 0' 

n = e-°(Y+,l) sin 9J 4' 
= e-a(y'+n) sin 9* (8.27) 

c „ e-»(Y+tO cos 9 sin 0; 4' 
e-a(y'+n) cos 9' sin 01 

The transformation (8.24) then assumes the form 

Y' = Y 

<p' = F(9, 0) (8.28) 

9' = G(9, 0) 

The first relation states that the points on a Vieth-Muller Torus y = const, 

remain on this torus but are shifted into other positions. 

Already these simple rotations (in the E, 7], E space) will transform a 
rectangular room into a distorted room, and we expect that the distorted room will 

be Interpreted as rectangular If suitable clues are provided. 

8.3. Hyperbolic reflections. Another group 

of simple rigid transformations can be found direct¬ 

ly. Let us consider a plane aE + brj + cE = 0 

through the origin of the E, t) , E space. Let a, b, c 
be the direction cosines of its normal. By "reflect¬ 

ing" a point P on this plane we obtain an associated 

point P' on the other side of the plane. A config¬ 

uration of points Pi thus is replaced by its "mirror 

image" P'i* In order to express these point trans¬ 
formations analytically we use the vector notation 

Fig. 72 
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H = U, 7), O 

H' = (5, 7)\ C) (8.31) 

N = (a, b, c) 

and can express our transformation by the vector relation 

H' = H - 2(H.N) N 

By reintroducing coordinates, we find 

(8.32) 

5' = (1 - 2a2) i- - 2abr] - 2acC 

N' = -2ab^ + (1 - 2b2) r) - 2bc £ 

C = -2ac?- - 2bcr] + (1 - 2c2) £ 

(8.35) 

as the general transformation which represents the reflection on a plane normal to 
the unit vector N = (a, b, c) . 

It is quite obvious that these transformations are rigid, i.e., that the 

identity (8.23) is satisfied. We can, of course, verify this fact formally with 
the aid of the relations (8.33). 

The associated transformations of the physical x, y, z space can be found 

by replacing the variables £, tj, C anl V, rj' , & in (8.33) by the bipolar coor¬ 
dinates y, 9, 0 and y1 , 9', 0' with the aid of (8.27). The resulting "hyperbolic" 

reflections of the physical x, y, z space are only in exceptional cases actual 

physical reflections, namely, only if the "mirror" is a plane of elevation or the 

median plane. In all other cases, "hyperbolic" reflection will introduce distor¬ 
tion of the physical shape. 

The mirror transformations (8.33) are not hyperbolic movements In the 
proper sense. This Is because a right-hand coordinate system will be transformed 

In.cO a left-hand system. Two mirror transformations in succession on two differ¬ 

ent mirrors, however, determine a true hyperbolic movement, namely, a rotation of 
the type discussed in 8.2. 

*• 

We note again that the Interior of the unit sphere is transformed Into 
>-hIs Interior and that the points on the unit sphere remain on this sphere. 

8.4. Inversions. Hyperbolic translatory shifts. The only true hyperbolic 
movements we^ave found thus far are the "rotations of 8.2. We know that ther 

must exist -6 rigid movements, and thus we have to find the remaining ~3 transfor¬ 

mations which, in the Euclidean geometry, are known as translatory shifts. 

We remark first that the r), £ map of the hyperbolic geometry is con- 
for—aI (refer to 7*6), i.e., the Euclidean angles on the map are equal to the non- 

Euolidean hyperbolic angles. Since rigid transformations do not change the non- 

Eu^lidean angles, we conclude that the associated transformations (8.22) In the 
Euclidean £, tj, £ map must be conformal transformations of the C space. 

This result allows us to narrow down the range considerably. In fact ac¬ 
cording to Dupin's Theorem: > 
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Rotations, Reflections and Inversions on spheres are the only conformal 

transformations of the three-dimensional space. 

Of course, any composition of these three different types is again a con¬ 

formal transformation. 

We have considered the rotations and reflections already in the preceding 

sections. We have found that those particular rotations and reflections which 
transform the interior of the unit sphere B,2 + r)2 + £2 = 1 into the interior of 

the unit sphere ^|2 + R12 + C12 = 1 are rigid transformations of the hyperbolic 

geometry. We also found that points on the unit sphere remain on the unit sphere. 

Indeed, the rotations around the origin and the reflection on planes through the 
origin are the only transformations of this type which have the above two charac¬ 

teristic properties. 

This consideration leads us to the suspicion that the particular inver¬ 

sions which transform the interior of the unit sphere into itself will be aga^n 
rigid transformations of the hyperbolic 

geometry. In general, an Inversion Is 

obtained as follows. We consider a 

sphere of radius D around a point C 

with coordinates (a, b, c). To any 

point P a point P' is associated (its 
conjugate point with respect to the 
sphere) by the geometrical construction 

illustrated In Fig. 73- Obviously P« 
lies on the line CP, and one verifies 

easily the relation 

(CP) (CP') = D2 

This leads to the analytical relation between coordinated points 

(8.41) 

^ ~a D (£-a)2+(Jl-b)2 + (C-c)2 

. . __ (8.42) 

* (*- a)2 + ( T) - b)2 + (t - c)2 

2 _ ( - C-__ 

C ° = D U - a)2 + ( n - b)2 + K - c)2 

We observe that the interior of the sphere around C is transformed into 

the exterior by these transformations and vice versa. We mention as a character¬ 

istic property of these inversions that any sphere in the £, N, C space has a 

sphere in the rj •, V apace as an image. 

We next determine the particular Inversions among the * transformations 

(8.41) which transform the interior of the unit sphere into Itself. We consider 

for this purpose in Fig. 73 a sphere around C0 which intersects the sphere around 

C at right angles along a circle through AB. The points on this circle obviously 

remain fixed by the transformation. Furthermore, since the transformation is con 

formal, the image of the sphere around C0 must be again a sphere which intersects 

the basic sphere around C in the same circle and also at right angles. Since 
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there exists only one sphere with these 

properties, we conclude that the image 
is identical with the original. We thus 

may formulate the theorem: 

Any sphere which Intersects the 
haste sphere of the inversion (8.42) at 
right angles is transformed into Itself. 

Now, if we wish that the unit 

sphere be transformed into itself, we 
must choose the inversion sphere such 

that it intersects the unit sphere at 

right angles. This means that its 
radius D and the coordinates (a, b, c) 

of Its center are related by the equation 

(Fig. 74) 

D2 = a2 + b2 + c2 - 1 (8.43) 

We thus obtain the 00 particular inversions 

Z* - a = (a2 + b2 + c2 - 1) 

7)* - b = (a2 + b2 + c2 - 1) 

C* - c = (a2 + b2 + c2 - 1) 

a 

U - a)2 + (4 - b)2 + (C - c)2 

_1_- b_ 

(5 - a)2 + (t) - b)2 + K - c)2 

__C - c_ 

(S - a)2 + (r, - b)2 + K - c)2 

(8.44) 

which transform the Interior of the unit sphere into itself. 

These transformations (8.44) are Indeed rigid transformations of the hy¬ 
perbolic geometry. One verifies by elementary calculation that 

1 _ z,*2 _ n*2 - c*2 

and 

d£*2 + dr)*2 + d£*2 

a2 + b2 + c2 - 1 

U ~ a)2 + (rj - b)2 + (C - c)2 

(a2 + b2 + c2 - l)2 

IU - a)2 + (i) - b)2+ (C - c)2]: 

(1 - ^ - N2 - C2) 

(8.45) 

, (d& + dn2 + d;2) 

It follows that 

dij*2 + dr)*2 + d C*2 _ d^2 + dr)2 + dC2 

(i - e*2 _ H (1 - 5“ - n2 - c2)2 
(8.46) 

'and thus the rigid character of (8.44). 

Our transformations (8.44) are, however, not hyperbolic movements. If, 

for example, C lies on the ^-axis, then we readily see that the directions of the 
original £, r\, £-axls are transformed into directions which form a left-hand co¬ 

ordinate system. We can remove this defect simply by an additional reflection. 
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We choose as a mirror plane--quite arbitrarily--the q, {--plane. A point 

£*, rj*, C* is transformed, by reflection on this plane, into 

(8.47) 

V = C 
By submitting the transformed points {•*, r]*, to this additional reflection, we 

obtain the following three-parameter set of true hyperbolic movements 

5' + a = -(a2 + b2 + c2 - 1) 

n' + b = (a2 + b2 + c2 - 1) 

V - c = (a2 + b2 + c2 - 1) 

depending upon the three parameters a, 

group of rotations 8.2 to the complete 

the hyperbolic geometry. 

,_5 - a ._ 

(5 - a)6 + (7!.- b)2 + K - c)2 

_ri - b_ (8.48) 

U - a)2 + (7) - b)2 + (c - c)2 

_C - c_ 

U - a)2 + (n - b)2 + (c - c)2 

b, c. It supplements the three-parameter 

six-parameter group of rigid movements of 

8.5. With regard to the practical problem of the distorted room, we are 

Interested especially in those transformations which leave the position of the 

horizontal plane and of the median plane unchanged. Rotations of the type 8.2 
thus are excluded. For similar reasons it follows that b = c = 0 In (8.44) and 

(8.48). Hence we find the one-parameter group of transformations determined by 

the inversion 

= a + (a2 - 1) 

n* = (a2 - !) 

C* = (a2 - 1) 

and the reflection on the rj, C-plane: 

V = 

n' = 

c = 

5 - a_ 

(S - a)2 + b2 + C2 

U - a)2Vr,2 + C2 

_C_ 

U - a)2 + n2 + C2 

-**■ 

n* 

(8.51) 

(8.52) 

The center of the Inversion sphere lie3 at the point a of the {--axis; it 

intersects the unit sphere at right angles and thus has the radius 

D 
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4 

By combining the equations (8.51) and (8.52), we obtain the transformation 

2 t \ 5 - a 
V = -a - (a - 1) 

U - a)2 + N2 + C2 

(a2 - 1) 
U - a)2 + TJ2 + C 

(8.55) 

- (a2 - 1) 
U - a) + C 

which is the basis for the construction of distorted rooms In the realm of hyper¬ 
bolic congruence. 

8.6. The simplicity of the equations (8.55) in the 5, 7), £ space is, un¬ 
fortunately, not preserved In the physical x, y, z space. The equations between 
bipolar coordinates y, 9, 0 and y1, 9', 01 are already complicated enough. We 

obtain these equations from (8.55) with the aid of the relations (8.27). Intro¬ 

duction of Cartesian coordinates x, y, z and x', y', z' then complicates the 
formulae even more. 

In view of this, a numerical procedure for the design of a distorted room 
Is Indicated which is based upon the transformation (8.53) In the £, q, space. 

For this purpose we establish first direct relations between the physical 
coordinates x, y, z and the coordinates £, rj, C. 

The variables r), 
by the formulae 

C and the bipolar coordinates y, cp, 0 are connected 

-a(y+|i) 
£, = e cos 9 cos 0 

r, , e-°(Y+|l) 

t = e“ °(Y+H) 

sin 9 

cos 9 sin 0 

(8.61) 

For the relation of Cartesian coordinates x, y, z and bipolar coordinates 
y, 9, 0 we may. In our present problem, safely use the simplified formulae 
(2.31 .. . ) : 
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Y = 
g A8 + zg 

x2 + y2 + z2 

tan 9 = 
/~5—;-5 

v/x + z 
(8.62) 

tan t = 

We notice Immediately that 

tan cp 

/ x + z 

tan 0 = — = 
x 5 

v42~ + c2 

from which it follows that 

Z = R 
x £ 

z _ C 

x £ 

We write these last equations in the form 

S = Xx 

= xy 

C = Xz 

where X is a certain function of x, y, z or of 71, 

In order to determine X we use the relation 

/c2 2 ~ T2 -crp - - '/x—+_z... 
v7£ + 4 + 1 = e e x2 + y2 + zs 

(8.63) 

(8.64) 

(8-65) 

which follows from (8.6l) and (8.62) 

We first introduce the expressions (8.64) on the left side of (8.65). It 
follows 

e- 8 <j\A2 + z2 

X = e~q’a x2 + y2 + z2 

/ 

(8.66) 
x + y + z 

obtain 
Next we replace x, y, z on the right side of (8.65) by — £ ; 7] ; — £ and 

AAA 

/„ 2 . 5 ' -C7JI -2aX Vc2 + r1 
✓ 5 + 0 + C = e e JYu:-h. 

+ n2 + C2 
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This leads lo the expression of X in £;, r|, 

X = 
_L (Z2 + 42 + Cg)(a,u + log A2 + ri2 +~T?) 
2 <s 

A + c2 

With these expressions for X ve get from (8.64) the desired formulae; 

- 2a A 'x2 + z2 

j; = e x °P-X x2 + y2 + z‘ 

x + y + z 

2 g y/x2 -f z2 

r, = e" °*V + y2 + z2 

/■ 
2 2 2 x + y + z 

2a/ x + z 

C = e"afiz x2 + y2 + z2 

A2 + y2 + z2 

and the reversed formulae 

x = -2^ As + c: 

y = -2qt\ 

z = -2<j£ 

U2 + 42 + C2)(ap + log 42 + r)2 + £2) 

_A2 + t2_ 
(^2 + T}2 + C2)(ag + log v^2 + 71 2 + C2) 

_ 

(^2 + r]2 + C2) (an + log \/^2 + n2 + c2) 

(8.67) 

(8.68) 

(8.69) 

With-the aid of the formulae (8.68) and (8.69) we can now design the dis¬ 
torted room as follows. We choose on the rectangular walls of the original room 

a suitable network of points (xp yj, zi)- 

We determine the associated points (f^, *U>Ci) 

z in the £, rj, £ space with the aid of the 

formulae (8.68). We next apply the trans¬ 

formation formulae (8.53), and obtain the 

transformed points (£±', rj , C i') • The 
parameter, a, thereby Is determined by the 

position Pi into which the frontal point PQ 
is to be moved. Finally by (8.69) the 

transformed points (xi», y i', z ±') in the 
physical space are determined. 

Fig. 76 

This distorted network of points 

(x i', yi', Zi') then is the frame of the me¬ 
chanical construction. Additional points 
can be found by interpolation. 
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The above outline shows that the design of a distorted room which is hy- 

perbolically congruent to a rectangular room requires a considerable amount of 

numerical computations. We notice also that it can only be carried out if the 
constants c and p have been determined before. Theoretically a particular dis¬ 

torted room will be seen as a rectangular room only by a person who has the con¬ 
stants c and p used for the construction of the room. Whether or not individual 

differences are significant can, of course, be found only by the actual experiment. 

£ 

8.7. Topological discussion of distorted rooms congruent to a rectangular 

room. The general form of distorted rooms congruent to a given rectangular room 
can be derived by a method similar to that in § 2.6. 

We determine for this purpose the curves in the S, q- 
plane which correspond to the rectangular cross sec¬ 

tion of the given room with the x,y-plane (Fig. 13)- 

The front wall x = x0 is represented by a curve sym¬ 
metrical to the S-axis which arrives at Infinity, i.e., 
on the circle p = pi with the azimuth 9 = — n/2. The 

side wall y = y0 can be described as a curve connect¬ 

ing a point y0 > 1 of the y-axis with a point at in¬ 
finity for which 9=0. Thus, its image In the S, T)- 
plane is a curve from the point (0, pi) of the 
7}-axi3 to the point (pi, 0) of the £-axis. This leads 

to Fig. 77 where the shaded region indicates the in¬ 
terior of the room. We mention that, in an exact draw¬ 

ing, the corner angles on the map give directly the 

Fig. 77 apparent non-Euclidean angles of the visual sensation 
related to the given rectangular room. This follows 

from the fact that the S, q map is a conformdl image of the visual sensations. 

We wish to construct a congruent distorted room such that the front-wall 

Intersects the x-axis at a given point Xi different from the original frontal 

point x0. The corresponding points So and Si in the S, q-plane can be found by 

the relations 

£0 = e 
-<r( Y0+!1) 

-a(Yi+p) 

x0 = cot Yo/2 

xi = cot \i/2 

(8.71) 

which show that 

kx = e 

£1 > £0 if xi > x0 and £1 < £0 if xi < xo 

We next determine the parameter a in (8-59) 8y the condition that the 

frontal point So be transformed into the point Si. This means, on account of 

(8.53) that these points are related by the equation 

(8.72) 

from which it follows that 

(8.73) 

Since both So and Si are smaller than one, we conclude that a > 0 if Si < S°> i-e*, 

xi < xo, and a < 0 if S1 > So, i.e., if xi > xQ. The center, a, of the inversion 



RIGID TRANSFORMATIONS OF THE HYPERBOLIC SPACE 99 

sphere thus lies on the positive ^-axis if the frontal point Xi of the distorted 

room is closer to the observer than the point Xo• It lies on the negative 5-axis 

if the frontal point xi is farther away than x0. 

The geometric interpretation of a as the abscissa of the center of a 
sphere which intersects the unit sphere at right angles implies that always 

|a | > 1. We prove that analytically by (8.79) a3 follows. Since |5o I < 1 and 

|5i| < 1, we conclude that always (1 - 5o)(l + 5i) > 0 and also that 
(1 + l=o)(l - £i) > 0. We write these inequalities In the form 

1 - 5o- > %o - 

1 - £o* 5l > £l “ 

which means that 
1 - ^o-^i > Uo | 

and hence 

la 
oJi_ , , 

l5o - 5x1 

With the aid of this result we can formulate our information about the parameter, 
a, more precisely: In case of an interior distorted room Xi < Xo, we have a > 1; 

in case of an exterior room Xi > x0, we have a < -1. 

Let us now investigate in which direction the points of the curve ABCD in 

Fig. 77 move if the frontal point is transformed into 5i. For this purpose we 

write the. first equation (8.59) in the form 

5 - V 
a (i -m2 - 52). - (1 - - n2) 

U - a)2 + ri2 
(8.74) 

remembering that 5 = 0 in the horizontal plane. Since the denominator 

(5 - a)2 + r\2 is always positive, it follows that the sign of 5 - 5' is deter¬ 
mined by the sign of the numerator 

N = a(l + n2 - £2) - 5(1 - 52 - n2) (8.75) 

The second term Is never positive on the boundary curve of Fig. 77* The sign of 

the first term is given by the sign of the parameter aa since the bracket 
1 + T]Z - cannot be negative. 

Consider now the case £i > £o of an exterior room. We know that a < -1 

and hence that N <0, i.e., 5- < 0. This means that every point of the curve 
ABCD moves with E-o towards the right. 

Consider next the case < 5o of an interior room. Since a >1, In 

this case, and 1 + rf - %2 * 1 - rf - £2, we conclude by (8.75) that 

n > (a - 5)(i - £2 - n2) 

However, the quantity a - 5 is certainly positive, since a > 1 > 5. Conse¬ 

quently N > 0 and thus 5 - > 0. Thus every point of the curve ABCD moves with 
5o to the left. 
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We summarize the above results: If the curve ABCD Is submitted to a rigid 
^ransforma11on of the special type (8.53), then all the curve points move simul¬ 

taneously either to the right or to the left, depending on the direct i^Tin which 
-frontal point la moved. 

The transformed curves thus must be localized in the manner indicated in 
Fig. 78 and Fig. 79. 

Fig. 79 

Fig- 78 represents the r] image of an interior distorted room. It allows 
us to determine the general form of such a room in the physical~x7y-plane. The 

front wall is a curve which approaches the two eyes if extended beyond the corner 

points B and C. The side walls go from the corner points directly to the eyes. If 
extended beyond B and C they meet each other at a finite point of the x-axis 
(Fig. 80). 

In a similar manner we find the general form of an exterior distorted room 
by Fig. 79. The front wall goes from the point xi asymptotically towards infinity. 

The side walls reach the Infinity of the plane at two different asymptotic angles, 
and thus are curves which, like hyperbolae, have two asymptotes (Fig. 8l). 

Fig. 60 Fig. 8l 
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8.8. We 3ee by the above discussion that congruent rooms determined by the 

rigid hyperbolic movement (8.53) have the same general form as the equivalent 
rooms discussed in §2.6. This is a rather surprising result in view of the fact 
that tvo entirely different mathematical principles of construction have been em¬ 

ployed. It explains, on the other hand, why actual rooms, constructed on the 

basis of Iseikonic equivalence, approach the impression of rectangularity already 

to a considerable degree. 

It Is not difficult to explain this interesting result. We have seen In 

§4.8 that the iseikonic transformation 

Y1 = Y + T 

<p' = 9 

0' = 0 

Is a rigid transformation of the metric 

(8.81) 

ds2 = Mo (c 2 dy2 + d 92 + cos2q> d02) (8.82) 

where M0 Is a constant. This transformation is the basis of the construction of 

the above equivalent rooms. The transformation (8-53), on the other hand, is a 

rigid transformation of the differential 

ds2 = M2(y)(cj2 dy2 + d<p2 + cos2<pd02) (8.83) 

where M(y) = -7-r . In a domain where M(y) varies only slowly we thus 
sinh cr( y + g) 

expect approximately the same result from both transformations. Such a domain, 
however. Is a region of small y-values, i.e., a region sufficiently far away from 

the observer. The limits of this region depend on the size of the constant g. 
Observers with a small g-value will notice the differences between both types of 

rooms sooner than observers with large g-values. 

In general, we must expect the differences to be greater in the neighbor¬ 

hood of the eyes, since M( y) varies rapidly in this region. Thus, differences be¬ 
tween equivalent and congruent rooms will be more noticeable the smaller the or¬ 

iginal rectangular room'is assumed to be or the nearer to the eyes the new frontal 

point Xi is chosen. 

The close numerical approximation of congruent rooms by equivalent rooms 

is illustrated in Fig. 82, which shows an actual computed example.* The dimen¬ 

sions of the original room are 1.8 x 2.4 m. The drawing shows the two different 

types of rooms by two pairs of horizontal cross sections belonging to the interior 

frontal point xi = 1.5 m. and to the exterior frontal point xi = 3*3 m. , respec¬ 

tively. 

*This example is taken from a detailed mathematical investigation of the problem of distorted 

rooms by Dr. A. Stein, which Is to to be published in the near future. 



CONCLUSION 

The applj_caions discussed in the last three chapters give ample evidence 
about the fruitfulness of the idea of considering the visual space as a RIemannian 
manifold. They also show the primary importance of the problem of finding the 
mathematical form of the metric of the visual space. We have demonstrated how 
this problem can be solved by an analysis of suitably chosen observations. Our 

conclusion has been that the geometry of the visual space Is the hyperbolic geome¬ 
try of Lobachevski, represented by the quadratic differential 

d32 = 

s inh a ( y + p ) 
(a2 dy2 + dtp2 + cos2<pd02 ) 

This formula establishes, on the other hand, a relation between the visual and 
physical space. It expresses the general'hypothesis that, for an individual ob¬ 
server, the apparent size, ds, of a line element is uniquely determined by its 

physical coordinates, i.e., by the bipolar differentials dy, d<p, d0 and by the 

parallax y of the base point of the line element. According to the above formula 
judgment of visual size is not only based upon the angular differentials dy dtp 

d0. It also depends upon the localization, y, of the line element. Our sells of 
size seems to contract with increasing values of y, namely, proportional to the 

expression l/sinh o( y + p). Such a well-defined contraction can probably be under¬ 

stood only If there is a physiological basis for it, either In the dioptric system 

of the eyes, on the retina. In the transmission to the brain, or In the cortex it¬ 
self. However, we do not attempt to maky any hypothesis about this question. 

The above mathematical form of the visual metric can, of course, not be 

considered as absolutely insured. Though our discussion has given a considerable 

amount of evidence for the hyperbolic geometry, careful quantitative tests have 
yet to be made. Any prediction derived mathematically from the metric differen¬ 

tial gives us suen a quantitative test. Our above applications represent only a 

small part of the implications of our theory. The laws of pictural reproduction 

o visual sensations, i.e., of the aesthetic impression of an environment, can be 

derived without principal difficulty. This would give us a theory of visual per¬ 

spective quite different from the perspective based on projection from one center. 

urthermore, it should be possible to find new directives for the design of binoc¬ 

ular instruments such as binocular microscopes or range finders. The final test 
of our theory then rests upon the consistency of such applications. 

It is ciear that any specific application requires the knowledge of the 

constants cx and u in our metric. These constants are probably quite different for 
different observers and even for the same observer at different periods of his 

P°3slble that the values of these constants are related to the 
individual dilterences of persons with regard to certain technical abilities. 

For the problem of measuring these constants it Is of Interest that the 
above metric can be expressed in a more general form. We write 

3 inh ct ( y + n) = (eaY + k e~CTY) 
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vhere K = -e 2By introducing this expression and suppressing the constant 
factor e~2a^, we obtain 

ds2 = 
aY+ K e~ aY. 

(a2 dy2 + dq)2 + cos2 9 d02) 

depending on the individual constants a and K, Instead of on a and p.. If we in¬ 
troduce new coordinates r), C by the transformation 

- o Y 
£ = 2e cos 9 cos 0 

„ - cry 
r] - 2e sin 9 

- cry 
C = 2e cos 9 sin 0 

we obtain RIemann's normal form (5-72) 

,2 <U2 + dn2 + dC2 
ds = - 

[1 + i K U2 + r,2 + £2) ]2 

This shows that K = -e 2 i3 the constant Riemannian curvature of the visual 

space. 

In the case of the hyperbolic geometry we have of course K < 0. However, 

since ct and K are constants to be determined experimentally, we may abandon the 

hypothesis K < 0 and leave the answer to the experiment. In other words, we need 
not exclude that K may have values K ? 0. Since in this case the geometry is 

Euclidean or elliptic, we thus consider it possible in principle to find observers 

with a Euclidean or elliptic visual space. We still assume that the visual space 
is a space of constant curvature. But whether hyperbolic. Euclidean or elliptic 

is decided by the experimental result of K being negative, zero, or positive. 

From this point of view, we recognize that a survey of a great number of 

persons with respect to the constants a and K must be in Itself an interesting 

statistical investigation. It will give us information about the question whether 

or not there exist significant personal differences in the relation of physical 

and visual perception. For personal K-values near -1 sensed size and physical 
size approach each other so that visual and physical space are practically identi¬ 

cal in a large domain. For negative K-values near zero or even more for positive 

K-values, this approximation must be poor: Visual and physical space are far 

apart. 

By the evaluation of the alley experiments we find for Blumenfeld's ob¬ 

server Lo the curvature K = -O.O95. However, this result is only a rough esti¬ 

mate which we have used for illustration. We are certainly not justified in bas¬ 

ing any practical application of our theory on it. For such applications it is 

necessary to obtain, as a first step, a wide range of careful experimental meas¬ 

urements of the constants a and K. 
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