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ABSTRACT

The history of deformation of the earth's surface due to the removal of the Holocene
and latest Pleistocene ice sheets is recorded in the global sea-level record. Recent
advances in collection and dating of sea-level data, and computing technology have made
possible high-resolution, high-precision numerical modelling of deglaciation events.
Currently available mathematical formulations for the earth's response to surface loading
are ill-suited to such high-resolution modelling however, suffering from numerical
instability or excessive computational cost. In this thesis, the suitability of established
techniques for modelling short wavelength surface load problems is closely examined.
Achieving high resolution with the conventional spherical harmonic scheme has
previously been shown to be prohibitively expensive computationally, the numerical
instability or physical inappropriateness of associated harmonic analysis procedures is
demonstrated here. The earth is then modelled as a flat, semi-infinite half-space and a
new formalism developed that is exceptionally stable at depth, based on the wave
propagation technique of seismology. This formalism is extended to include the effect of
pre-stress and dilatation and their relative effects considered in detail. In the visco-elastic
case, pre-stress advection is demonstrated to be critical in forcing deformation toward
equilibrium with the load, and dilatation is shown to be largely negligible provided pre-
stress is included. The new formulation is then tested numerically to establish its stability
as part of a large super-position problem. The stability of numerical inversion schemes
for the Fourier and Laplace transforms is also established, and their impact on the
implementation of the wave propagation technique found to be small provided sufficient

care is taken in choosing the inversion procedure to be used and their various input

parameters.
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The analytical complexity of the propagator matrix techniques developed in chapter
j‘ 2 is initially reduced by neglecting pre-stress advection and dilatation. These terms are
indispensable if the results of our modelling are to have any physical validity however,
1 and are reintroduced into the formalism for the propagator matrix procedures in Chapter
| 4. The effect of each term singly and combined is considered in the visco-elastic regime,

the analysis is also extended to the the incompressible case, and finally the procedure is

tested for stability as part of a superposition scheme.
Chapter 5 summarises the results of the previous chapters and discusses their

consequences and potential applications. The chapter and thesis close by considering

possible refinements that may be made in future implementations to the techniques

| developed here.
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Johnston 1993) but a detailed discussion of these considerations is beyond the scope of
the current work.

On seismic time scales the crust and mantle behave as elastic solids while the outer
core acts as a liquid and the inner core as some sort of slurry. On longer time scales (of

about 100 yrs) the mantle seems to convect as a liquid. Rebound data indicate that for
deformations over glacial time scales (of 10°—10° years) there is an initial 'elastic’

component of deformation followed by an extended period of viscous creep indicating
some sort of viscoelastic theology (Lambeck, Smither & Johnston 1997). In fact we will
assume that the earth (with the exception of the fluid core) is a Maxwell viscoelastic body
since for such a body the constitutive equations have the simplest possible form consistent
with the properties discussed above. Petrological and laboratory evidence indicates that
mantle material actually has a more complicated non-linear rheology (see for example
Ranalli 1982) but model results obtained assuming the earth to be 'effectively' a Maxwell
viscoelastic body have so far proven sufficiently accurate to obviate the need to consider
more complicated models (see for example Lambeck 1993a,b, Peltier & Andrews 1976,
Wu & Peltier 1983).

Mindful of these assumptions, in this chapter we will review the theory for the
deformation of a radially stratified, spherical, Maxwell viscoelastic body under surface
loading from its foundations in continuum mechanics, paying particular attention to the
Love number derivation (bearing in mind that the SCHA technique uses associated
Legendre functions of non-integral degree). We will then discuss the global technique's
applicability to short wavelength problems and perform a similar derivation and analysis
of the SCHA and ASHA procedures.
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§1.1.1 The Initial State
We assume that the body we are considering is initially in hydrostatic equilibrium.

11\ This is not entirely the case in the earth today as is demonstrated by the existence of
1 gravity anomalies, but should be a reasonable assumption for the most part. If we also

assume that initially the only force acting on our body is self-gravitation then the initial

field satisfies the relations:

t(O) — p(O)I

(1.1.42)
Vpi= 0 Vot (1.1.4b)
U St (1.1.4c)

where p is pressure and I is the Kronecker delta tensor (see Wolf 1991).

| §1.1.2 The Incremental Field Equations
‘g Rather than modelling the total response of the body to a force it is useful to

consider only perturbations or increments from the initial state. The various properties of

a body may be expressed as functions of either current position (the Eulerian formulation)
3 or initial state (the Lagrangian formulation). It is easier to express boundary conditions
‘r using the Lagrangian framework but both are capable of expressing perturbations in the

quantities we are interested in.
We will adopt the incremental notation of Wolf (1991) given in table 1.1 below:

f'f Property Lagrangian Formulation Eulerian Formulation
particle . x(L, 1)

‘ position I{x.1) !

: displacement u(x, t)=1(x,1)-x Ulx, 1) Ulx, 1) =1-x(1, 1)
fimerion lx 1 AL 1)

‘ initial value E= =0 FO1)=FlL, 0)

( material increment £x) = flx, 1) - £Olx) FOlr)=F(t. ) - FOl+(1. 1)
| locatinerementt | ==t | FOR=HL)=F

Table 1.1: Notation for local and material increments in Eulerian and Lagrangian forms.
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Given a function f the material increment f @(X) is the change in the function for

the particle X while the local increment f (A)(X) is the change in the function at the
position currently occupied by X . Assuming infinitesimal perturbations the material and

local increments may be related using a Taylor series expansion:

f(@zf(A) +u-Vf(0) (115)

which is accurate to first order.
Substituting this expression into the inertial and gravitational equations (1.1.1) and
(1.1.3), and noting that for the problem of glacial rebound the acceleration term on the

right hand side of the inertia equation may be neglected, yields the incremental forms of

the equations:
V. t(b) it V( p(O)g(O) : u) i+ p(A)g(O) + p(o)g(A) =0 (1.1 6)
V2@ = _4nGp® (1.1.7)

where g is the acceleration due to gravity and 18 given by:

g=Ve¢ (1.1.8)

and is taken to point upwards.
The local increment in density is given by the incremental form of the continuity

equation (1.1.2):

p<A>=-V-(p<°>u) (1.1.9)

This term assumes a particular convenient form inside a region of uniform density where
it becomes the product of the original density field and the divergence of the deformation

(also called the dilatation). I will hereafter refer to the component of (1.1.6) containing

p4 as the internal buoyancy term.

The second term in equation (1.1.6) is the pre-stress advection term which
represents the fact that before the current stress field was applied the body under
consideration was already under stress due to its own weight as a result of its hydrostatic
initial condition. The pre-existing stress field (the pre-stress) advects with the deformed
material within the body and is super-imposed by the new stress field.

The pre-stress and internal buoyancy terms are both crucially important in assuring
the physical meaningfulness of our modelling, particularly for deformations of the scale

that typically occur in analyses of glacial rebound. The nature and magnitude of their
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effect will be discussed extensively when we come to model the deformation of a flat
semi-infinite half-space in chapter 4.

The incremental field equations take a simpler form inside a liquid since an inviscid
material cannot support any shear stresses and there is no dilatation since a fluid can
instantaneously move to dissipate any increase in pressure (except in the case where the
increase is hydrostatic). Since there is no dilatation there will be a local density gradient
(radial in the case of a sphere, vertical in the case of a flat semi-infinite half-space). From

(1.1.9) we see that for a spherical body the local change in density is given by:

ap@) ,
(A)F=F U= — ©) U,
5 ( or o (1.1.10)

where we have used the prime (') to denote differentiation with respect to r.
Using (1.1.6), (1.1.7) and (1.1.10), noting that there is no dilatation, and setting

9 = 0 yields the incremental field equations for an inviscid body such as the core:

i i ol il

_V| 0@ o® . yl+ p® y 0@ _ pO @ =
(P g u) pUug P8 (1.1.12)
s e (1.1.13)
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1.2 Boundary Conditions

Throughout an elastic body the absence of cavitation, cracking and slip requires that
| the deformation, gravitational potential, and normal stress be everywhere continuous. At
: a layer boundary, the partition between two different rheological regimes, there may be a

discontinuity in the density or elastic moduli of the material. Regardless of any such

inhomogeneity, given the vector normal to the boundary, n , the quantities u,, 6? , and

Zj n®z?  and n© - (V ¢ — 47'5Gp(°)u) must be continuous across the boundary. The

third of these boundary conditions is obtained by integrating the inertia equation (equation

(1.1.6)) and letting the thickness of the pillbox approach zero while the last is given by

repeating this integration, applying the convergence theorem, using the form for the
internal buoyancy term given in (1.1.9), and letting the thickness of the pillbox again

approach zero (see Cathles 1975, p17). Doing so yields:

O:f V-(V¢(A)—47er(O)u)dV=j(V¢(A)—471:Gp<°>u)-a’a
v 5

(1.2.1)
= dAn |Vo® - 47Gp®u]
Letting the height of the pillbox approach zero causes the area of the side of the cylinder to
vanish and we get the boundary condition we require. Note that for a phase boundary the
| boundary conditions are different since (1.1.9) no longer applies the effect of this
contribution has been considered for the spherical case by Johnston, Lambeck & Wolf

i (1996) but is beyond the scope of the present work.

We will assume that these boundary conditions hold at all internal boundaries except
the core-mantle and free surface boundaries which we will discuss shortly.

It should be noted that in the case of a stratified sphere, the normals to the layer
boundaries are simply radial vectors so that the third of the boundary conditions given
above corresponds simply to continuity of the radial components of shear stress, 7,4 and

t.., and the radial stress itself, z,,. Analogously, for a flat, stratified half-space the

rQ s

condition guarantees continuity of the vertical components of shear stress, 7., and ¢, and
the vertical component of stress 7_. .

At the core-mantle boundary the situation is complicated (Dahlen 1974, Dahlen and
Fels 1978) by the presence of a thin boundary layer inside which the dilatation 1s non-zero
and the radial and tangential components of deformation change rapidly. If this layer is

neglected then the deformation appears to be discontinuous across the core-mantle

boundary. The perturbation to the gravitational potential and its gradient are continuous
and smooth through the boundary layer so that the potential is continuous across the

boundary. Since the core-mantle boundary layer represents a chemical transition and is
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therefore governed by (1.1.9), the effective discontinuity in the gravity perturbation is a
function of the effective discontinuities in density and radial deformation. The
mathematical implementation of these boundary conditions will be discussed in greater
detail during the spherical harmonic formulation in section 1.5.

For a flat semi-infinite half-space additional internal boundary conditions are given
by a simple physical principle: all perturbations must tend to zero as distance from the
source of deformation tends toward infinity.

At the surface we will restrict our attention to the case of an external force applied
normal to the surface of the body for which there is no traction, in particular a surface
load whose initial force per unit mass would be g{©, the gravitational acceleration of the
body at the surface (in both the spherical and the flat earth cases this value will be constant
over the free surface). Outside the body we also have that p® =0 and the local
increment in gravitational potential satisfies Laplace's equation (V* ¢(“) =(0). Our other
surface boundary conditions are given by observing that perturbations to gravity and
potential must tend towards zero with increasing distance from the body. The
mathematical formulation of the surface boundary conditions for a spherical body will be

discussed in more detail in section 1.5.3.




1

|
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, 1.3 Constitutive Equations
| §1.3.1 Constitutive Equation for an Elastic Body
For deformations with sufficiently small gradients of displacement in a Cartesian

coordinate system the various components of strain, &; , are defined:

8ui al/‘j

A3
£;= e
“ ;7] o @3- 1)

where the u, represent the corresponding components of displacement (see for example

Fung 1965). The material increment in stress, ¢ is related to the strain by the

constitutive equation. For an elastic solid the constitutive equation has the form:

9= A(V-u)l +2ue 59

where A and u are the Lamé parameters of the body. Noting from (1.3.1) that

3
Vou= kzl Ex we may rewrite (1.3.2) in component form:

e 1(5,-1- ekk) +2UE;

I

(1.3.3)
3
| where we have adopted the Einstein summation convention & = k; Exk -
! Setting i = j in (1.3.3) and summing, we see that:
5) _
o —(3l+2u)ekk (1.3.4)

i which shows the effect of the bulk modulus of the body K = A + 244/3

§1.3.2 Constitutive Equation for a Maxwell Visco-elastic Body
We wish to model the deformation of the earth which initially has shear strength like
an elastic body but under continuous stress loses its rigidity and behaves something like a

Newtonian fluid. For such a material the constitutive equation has the form:

J
i) “(r@— 5”3[5* ) A 05eu ) + 218,
@le355)

where 7 1s the viscosity of the fluid.

Setting i = j in (1.3.6) and summing yields a system directly equivalent to (1.3.4):

19 =(34+2u) & 1.5.6)
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1 ) msl m;
ri = (mi_ 1)!}1—?},- dSmf—l(f(S)(S—Si) ) 1.5.57

Residues are particularly important in the calculation of the inverse Laplace
transform since the most convenient technique for evaluating the inverse integral given in
(1.3.7) is by closing a path to include all of the poles of the function (assuming that they
are distributed through a bounded region), and then invoking the residue theorem (see for
example Kreyszig 1983). The residue theorem states that the integral of a function around
a closed curve is equal to the sums of the residues of the poles of the function that lie

inside it (this assumes that they are distinct and that none of the singularities are essential).

In the case of the inverse Laplace transform the function e has no poles so all of
the poles of the integrand must be due to f(s) . Using a Bromwich path (see for example
Krylov and Skoblya 1977) to close the curve of integration means that the inverse integral
is simply the sum of the residues of the integrand, which are themselves related to the
residues of f(s) (the integral around the closure approaches zero for sufficiently large

values of T by the Jordan Lemma).

§1.3.4 Applying the Correspondence Principle to a Maxwell Fluid
Laplace transforming (1.3.5) and (1.3.6) yields the alternative form for the

constitutive equations for a Maxwell visco-elastic body:

) 5, +(9) ¥ 0. € et il s 0,
t(§)(s) Yy tkk(s) _ 2us (8U(S) - _183_""@)) =2 (s)(gij S) — —U-%k@) (1.3.10)

y 3 = S

fio(s) = (34 +2) Es) (N

where s 1s the Laplace transform variable.
Substituting (1.3.11) into (1.3.10) yields the transformed constitutive equation for a
Maxwell fluid:

i%s) = ;1’(5)(5,-, Ekk(s)) + 201 (s)fs) (1.3.12)

A ¥
>
e
ta
N——
Il
0

(8)(v-als)) I + 28 (s)s) (1.3.13)

This is directly analogous to (1.3.2) so that the constitutive equation for a Maxwell fluid
may be transformed to a form identical to that of an elastic solid with Lamé parameters

dependent on s and related to the original values by the equations:
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1.4 Properties of Spherical Harmonic Functions
Mathematically modelling the behaviour of a spherical body is most conveniently
done in spherical polar coordinates (see for example Farrell & Clark 1976). One of the

most natural tools for such an analysis are the spherical harmonic functions. We shall

follow the development of Johnston (1993)

§1.4.1 Spherical Harmonic Functions
The normalised spherical surface harmonics are a set of orthogonal harmonic

functions on the surface of sphere. They arise naturally in the mathematical analysis of
gravitational and magnetic potentials or any conservative field.

By separation of variables we see that Laplace's equation in spherical polar

coordinates 1s

bic ol e o 40 liosr Ok i O 182f
Af(r,@,qo)—vf—”’z 87('237)+sin 9-8—5(8111989)+sin203§02 (ES 0

where r is radial distance from the origin, 6 is co-latitude, and ¢ is longitude. This

equation has linearly independent solutions of the form:
ﬁm(r, 6, go) = (anmrﬂ e (n+ 1)) [Anm COS (mgp) + B, sin (mqp)} an(cos 9) (1.4.2)

where a,.. b, . A, and B, are arbitrary constants, and P,, is the associated Legendre
function of degree n and order m (see for example Abramowitz & Stegun 1972) which

satisfies Legendre's associated differential equation:

2 d 2
{2152+ oo+ )2 r=c 143

The f, given in (1.4.2) are finite, continuous and single-valued at all points inside
a sphere only if all b,,, are zero and both m and n are positive integers. In this instance
the P, are in fact polynomials (see for example Spiegel 1968) and have the property that

for )m] S, 16 (x) = (. Restricting our attention to the case b,, =0, m and n integers

nm

such that | m | <n we may define fully normalised spherical surface harmonics:

cos m@ >m 20

n
sin\mlqo O>m

Vv

Y,.(6.0)= K,,P,(cos 6) (1.4.4)

where the constant term K, , 1s defined




Deformation of a Spherical Body by Surface Loading Page 21

J
(ST

o (2n+1)(2—5m0)F(n—’m|+ 1) e
F(n+]m|+1) .13

By the theory of Sturm-Liouville boundary value problems (see for example Boyce
& DiPrima 1977) these functions satisfy the relation:

J” 46 sin 0 f d9 Y, (6. 9)Y, . (6, 9)=473, , 8, .. (1.4.6)
0 0

which makes them particularly convenient when trying to approximate a function over the
surface of a sphere using least squares (see for example Kreyszig 1983).

Another important property of Legendre polynomials (which correspond to the case
m=0) is their generating function (see for example Spiegel 1968). Given two scalar

quantities, ¢ and x, with x lying in the region [—1, 1] , the following equivalence holds

1 _ N n
JPmTe Zb Bl (1.4.7)

From the theory of harmonic functions we have that any suitably well-behaved
function (i.e. continuous, differentiable and non-singular almost everywhere) over a
closed, regular region may be approximated to arbitrary accuracy in that region with an
harmonic function (see, for example, Gilbarg & Trudinger 1983). So that over the

surface of a sphere any such function may be written as an infinite sum of surface

harmonics, i.e. there exist coefficients F,, such that:

lim LndG sin GLM do (FN(Q, (p)—F(Q, (/)))2 =0 (1.4.8)

N — oo

where the functions F), have the form:

n

F\(6, ¢)= io 2 F.Y,[(6 9 (1.4.9)

In fact using the method of least squares to minimise (1.4.8) for each value of N and

applying (1.4.6) we see that the F,,, are given by the relation:
1 n ' 2n
an=zgf0 d6 sin HL de Y,,(6. ¢)F(6, ¢) (1.4.10)

and are notable for being independent of V.
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A spherical surface harmonic of degree 7 is defined as any function of the form:
ZlE e = e e e (1.4.11)

where the coefficients c,,, satisfy the constraint:

n

DR (1.4.12)

The gradient of a spherical harmonic function may be written:

¢ 07,
rsin @ 0¢

~|»

Y,
VY,(6, 0)=7 54 + (1.4.13)
(see for example Spiegel 1968), where 6 and @ are the unit latitudinal and longitudinal
vectors respectively and we have used the fact that surface spherical harmonic functions
do not vary radially and so have no radial component to their gradient.

From (1.4.2), (1.4.3) and (1.4.4) we have the following properties of surface

spherical harmonic functions:

Vi v,(6. 9))=0 (1.4.14)

1 ir ST J°Y,
11 4 (Sln089)+sir11298§02

—— ey (1.4.15)

Y nin+1)9Y Y 97,
Vz( n):_( ) iy o (aen+2cot98q)2) (1.4.16)
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5= (2] Yn(u; +%un) (1.5.5a)
_li rv oYl o ol (1.5.5b)
8’9__2—,1=0(a-) 30 —r'+Vn+ Y, sl
1 ry9u, o on-1 )
i 2sm9,§o(5) 55(7”” 7V (h2.0€)
— 3 nl azYn
899:,1;)(5) 7l %Y, +, Y (1.5.5d)
2
Py - n ] aYn Vn a Yn
gfpcv"nz::o (5) 7|, Y, +v,cotd 50 i’ 0 09 (1IE5:5¢)
2
Ry % |9, Y
894’—,1; (a) rsin G(B(pGO_COt HTQ) (-3.38)

The radial component of the strain tensor, 7- £, contains no toroidal component and
since the material comprising the body has a linear rheology, the radial component of the
stress tensor must also have no toroidal component. The radial component of the material

increment in stress may therefore also be written as an infinite sum of spherical harmonic

components:
Ao 2“0 (%)" (Tm(r) Yn(9, qo)f + rTgn(r)V Yn(H, q))) (1.5.6)

In practice we are interested only in the problem of calculating the deformation of a
Maxwell visco-elastic body which, as we saw in the previous section, may be reduced to
that of calculating the deformation of an elastic body for a range of Lamé parameter values
in the frequency domain and then inverting back to the time domain. From (1.5.5),
(1.5.6), and the constitutive equation for an elastic body (1.3.2), we see that the spherical

harmonic coefficients of stress must satisfy the relations:

nin+1
Tm:}{(u,:+n-;:2un_ (r )vn)+2y(u;+%un) 5.7
Ten:ﬂ(#w;ﬂ;lvn) (1.5.8)
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G . o 0Y |, T 2;1(1 —n) 7 2,u(n2+n— 1)

! o n + 3 m 4
J] G(Vt( ))zngo(%)—a_e T9n+n—r—T9n+ 7 =+ % un——#un— 2 v,
*

| (1.5.14)

| . : . : R
1 These expressions may be substituted back into the incremental form of the inertial

equation (1.1.6) to give:

nin + 1 4duin—1
T +2T ——L—lTen+—£L’3—)un+47uu;+p(°)(qn+4nGp(O)un—%-)

m r m ¥

7

’5‘ ’ nin+1
+ 50 un(; 0 g(o)) il : )vn(zrﬂ _ 40 p(o)) =0

| (1.5.15)

) T, 2u(l-n) o4, 2;1(n2+n—1) ) g0 )
+n”,*,'3T9n+r+ (r2 un—T‘uun— > vn—pr un+£r—¢,,=0

z

6n

(1.5.16)

| where we have used equation (1.5.11) to substitute for the perturbation in gravitational
| acceleration, and g© is the initial value for the magnitude of the acceleration due to
gravity which we may see from (1.1.8) is given by U= ¢(°)’ for a radially symmetric

%f‘ earth. This may be substituted into the initial gravitational equation (1.1.4c) to show that:

) 25’(0)
g(O) =475Gp(0)_ = (1.5.17)

This expression may in turn be substituted back into (1.5.15) and (1.5.16) to produce a
| closed set of differential equations comprising (1.5.7), (1.5.8), (1.5.11), (1.5.12),
,;é (1.5.15), and (1.5.16).

}H This form for the system of equations is almost identical to that given for the fully
| non-adiabatic case by Johnston (1993), whose derivation we have largely followed, and
is analogous to that given by Longman (1962).

The system of equations may be re-written in Runge-Kutta form by defining the

M vector:

‘ n
yn = (una Vn, Trn? TQn’ ¢n’ qu) (1518)

| j‘ai which satisfies the differential equation:
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| d
U 22 = A,(1), (1.5.19)

{ The entries of A, may be calculated from the formulae given above:

JT

54 e ﬂ,n(n+ 1) 1 0 . :

| r T Br B

i 1 1 - 1

| —= s 0 o 0 0

Ay 4000 n{n+1 4 nln+1 (0)

[ rz?’_ Prg (r2 )(p(o)g(o)r_zy) ___l’f_% ( . ) ,Ur _ 0

| A =

¢ (0) o(0) _ 2 (0)

g 2" 77}2_(,1 n+1)(y+u)_2ﬂ) __ﬁl_r e
| 472G pO 0 0 GRS

il 0) n(n+1)47G pl nin+ 1
W,; T (10 L. N (13) NP9
1‘3 (1.5.20)
i

} where f=K +4H1/3 and y=3K1/3.

|

l

I §1.5.2 Spherical Harmonic Formulation for a Liquid Core
Applying the spherical harmonic coefficient notation to the incremental core

‘!" equations (1.1.11), (1.1.12) and (1.1.13) yields the following system of differential

equations for the spherical harmonic coefficients in the core:

Il

| : g

¢n=qn—(”}51 + (O)p 0, (L5 200
i 8

I

| " n(n + 1) 417G p©) X (n +1) 472G p0

‘ qn = 2 N g(o) ¢, — 2 + g(o) dn (RS2
T.=0 (1.5.23)
I

: T =0 (1.5.24)
I y

U, =~ 1.5.25
| r )

| Vn = U, O U,

{1 n(n+ 1) n(n+ 1) (5 26)
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i These equations do not apply if the increase in pressure is hydrostatic (i.e. for the
J case where n = 0) where the dilatation and material increment in the stress tensor are both
! non-zero.

4 Equations (1.5.21) and (1.5.22) may be solved as a Runge-Kutta system with two
independent solutions. One of these solutions produces a singularity at the origin when
| substituted into (1.5.25) and so may be neglected. Assuming that for small values of r

| the solutions take the form of a power series gives the following form for the bounded

solution:

475G pY)

0. =C, qn_-_cl(%———g@— (1.5.27)

| "}’ where C, is a constant to be determined from the boundary conditions at the surface via
'l the core-mantle boundary. Although the form for g, given in (1.5.27) is not bounded at
a‘ the origin, the local increment of gravitational acceleration, which from (1.5.10) has the

form g,r*, is well-defined for all values of » for n>1 (again the case n=0 must be

The behaviour of the solutions in the mantle and at the surface is insensitive to the
properties of the inner core so that the simplifying assumption that the inner core 1S

I

4

, considered separately).

3

|

comprised of an inviscid fluid will have a negligible effect on the predicted deformation of

the mantle and lithosphere.

§1.5.3 Boundary Conditions
W[*‘ Our assumption of radial symmetry means that the boundaries between layers with

different rheological properties will be a series of concentric spheres centred for
'i convenience on the origin.

| As was discussed in section 1.2 the boundary conditions within an elastic body
consist of the requirement of continuity in the radial stress, gravitational potential, and
| displacement throughout the body, and the gravitational boundary condition given in

equation (1.2.1). The first three conditions translate to continuity of the corresponding

] spherical harmonic coefficients defined in equations (1.5.2), (1.5.3) and (1.5.6). If we
‘d then consider the continuity of the spherical harmonic components of the quantity g

defined in equation (1.5.11) we see that:

(2.0 =|a.(r)r ] ~[a. ()] - 4= G[P(‘-’) (r) (r)]i (1.5.28)

fr
I which is equal to zero from equation (1.2.1)
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.'=J Toula)=0 (1.5.30)
!
| T.(a)=-¢"(a) (1530

Outside the body p) =0 so that the local increment in potential satisfies Laplace's
! equation. Substituting into (1.5.9), integrating, applying the condition that the increment

in potential must approach zero as radial distance tends to infinity, and using the definition

of g, yields the following equations outside the body (i.e. for r > a):

¢ =-2tl (1.5.32)
| g =259, (1.5.33)

To calculate the local increment in density at the Earth's surface under a load of

| magnitude }"H(B, (o), we assume that the added mass of the load lies inside a layer of

| negligible thickness just above the earth's surface. We then calculate the change 1n

| density for a small pillbox of material of height Ak and volume AV = AhAA (where AA
is the area of the ends of the pillbox) that includes the added mass but lies mostly below
the earth's surface. The mass of the load material is, to first order, Y,!(E?, c;p)AA . Letting
the volume of the pillbox become arbitrarily small but keeping the mass added constant
we may substitute back into (1.1.9) to show that the local increment in density 1s given:

p ==V '(P(D)HH) +7,(6, @)“AA—?/ (1.5.34)

| Substituting this into the gravitational equation, (1.1.7), allowing the dimensions of

| the pillbox to approach zero, integrating, and applying the divergence theorem gives:

~4nGdA Y, (6, ¢) =_f V. ((v 9) - 4:er“”u,,)dv
.

(Vo) —4nG o%u,|

=dAn-

We can use equations (1.5.11) and (1.5.32) to rewrite (1.5.35) entirely in terms of

spherical harmonic coefficients. Doing so yields:

g,(a”)+4nGp" (@ )u,(a) -+ ¢,(a") = g,(a") = - 47 G (1.5.36)

[
[ : : !
11! Equations (1.5.30), (1.5.31) and (1.5.36) comprise the surface boundary

conditions for a load on the surface of a sphere and may be combined with the boundary
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conditions at the core mantle boundary given in (1.5.27) and (1.5.29). There will be
three linearly independent vector solutions and the solution we want will be a linear

combination of these three. For example let y, be the solution to the system for the case

when C; = 6, then our solution vector y may be written y = C.,y;.

| §1.5.4 Love Numbers
Love numbers are a useful tool in modelling the response of a spherical body to

loading by surface harmonic functions. They are a set of independent, dimensionless,
' depth-dependent quantities defined in terms of the gravitational potential of the surface
load. If the gravitational potential of the load may be written as a sum of spherical

|
| ;
?! harmonic components ¥, (r)(g) i, ,,(9, go) then the Love numbers (see for example Love

1927) satisfy the relations:

| u(r, 0, ¢) = ;} ;(/g)((:)) (g)n[hn(r) Y,(6, ¢)F + L(r)V Y, (6, q))] (1.5.37)

| w

; (r, 6, ¢)= 3 1+, (%) Y.(6. 0) (1.5.38)

5

|\ where the k,y, Y, term represents the contribution of the perturbation in gravitational

potential due to the load.
l The gravitational potential at a point (r, o) (p) due to a distribution of mass with

spherical harmonic components Yn(Q' ! qo’) over the surface of a sphere of radius a 1s:

27T

: : . Y,(6, ¢)de’
2 w(n)(&) T.(6. 9)=Ga d@'mné"J e (1:5199)

0

1 f

where « is the angle between the rays from the origin that pass through the points
i (a, g, (p’) and (r, o, go) . The form of the cosine of & may be deduced from the law of

cosines for a spherical triangle (see for example Spiegel 1968) and is given in equation

(1.5.44) below.
u Substituting (1.4.6) for the denominator in the integrand in equation (1.5.39) and
1

applying the orthogonality relation for spherical harmonic functions yields:
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&) 1(0.0)=0a | avsno [ a0k (6.0) (5] Pfeosc

0

| = Ga(%)nﬁr d@'sin@'fﬁ de’ Yn(Q’, (D')Pn(cos a)

0

= 214G (1Vy (6, ¢) (1.5.40)

By direct comparison with (1.5.2) and (1.5.3) we see that the Love numbers may

be related to the spherical harmonic coefficients of deformation and gravitation by the

equation:

v, (r) (1.5.41)

| §1.5.5 Loads of degree 1 or 0
! Surface loads of degree 1 require separate treatment (Farrell 1972) since for such a
]

load the earth's centre of mass is translated. The combined centre of mass of the earth and

l load remains stationary however, and surface deformation can only be measured relative
| to the earth's centre of mass. This is not a problem for loads of other order since the
‘ centre of mass of such loads coincides with the centre of mass of the earth.

For the degree 1 problem the differential equations have a non-trivial solution to the
| homogeneous boundary value problem (the case where at the surface of the sphere

¥ =0 and p¥=-Vv. (p(o)u) , and at the core-mantle boundary the C, are all taken to be

zero). This solution, y#, has the form:

% \
4 (1.5.42)

Given a solution to a particular non-homogeneous boundary value problem, y;, we
may construct a new solution to the boundary value problem, yf =y’ + cyf , where c 1s
an arbitrary constant. We may use this extra degree of freedom to choose ¢ such that the
displacement of the centre of mass of the load-earth system is zero. For the degree 1

boundary value problem any solution to the system of differential equations (1.5.19) that

satisfies any two of the boundary conditions (1.5.30), (1.5.31), and (1.5.36) will
automatically satisfy the third.
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Given an arbitrary degree 1 surface harmonic defined:

Y,(6, (p)=,§1 o ioso) (1.5.43)

there is a point (a, g, go*) on the surface of the sphere such that ¥ 1(9, (p) =3 cos
where « here represents the same quantity as defined for equation (1.5.39). The form

for the cosine may be deduced from the law of cosines for spherical triangles:

cos ¢ = cos Bcos " + sin QSinG*cos(go— (0*) (1.5.44)

which in turn allows us to express the coefficients of Y, (9, go) in the following form:

¢, =sin@’sin@ Glo =1c0S\6 ¢, =Cos @ sin & (1.5.45)

So that the load and its associated deformation are symmetric about the radial position

vector r~ of the point (a, g, go*) :
The shift in the centre of mass of the earth must balance the shift in the centre of

mass of the load which is given by (Farrell 1972):

- ()—¢1()

=7 1(6.0)5 ¢(a) (1.5.46)

u

com

where 7~ is the unit vector in the direction of " .
To calculate the Love numbers relative to the centre of the earth rather than some
generalised origin we must subtract the shift in the earth's centre of mass from the

displacement coefficients. Doing so, and retaining the notation we introduced earlier,

yields the expressions (again due to Farrell 1972):

h,=h +k; L=5+k o=l (1.5.47)

which define the displacement due to the degree 1 load.

A degree 0 load corresponds to a force applied uniformly over the surface of the
body. The resulting surface deformation will correspondingly be uniform and entirely due
to hydrostatic compression of the material within the body. We are interested primarily in
modelling surface loading of the earth by ice sheets and their associated waterloads,
which, because of conservation of mass of the ice and water within the system, will never

have a component degree O so that a detailed analysis of this case is unnecessary in this

‘particular instance.
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i 1 [©’sinf+6 cosb [ S RO 2 S
i‘ Sine( 0 )+ Sinze(ﬁ)— ( R )— i o2y

Using an analogous line of reasoning we see that there exists a second constant

| quantity, y, , such that:

| (22 (1.6.3)

which may be substituted back into (1.6.2) to yield:

! sin 6 in’

| @S ’ X
| O”sin 6 +0 cos@+(sm2 +X1)@=O (1.6.4)

By substituting 77 = cos @ into this equation we obtain the governing differential equation

J ORIl

b
| &o-mge)eloue-Erfoo aes

where Y, = vl(v1 + 1) and y,=-15. This is simply Legendre's associated differential
‘ equation which has as its solutions the associated Legendre functions of the first and
1} second kind of degree v, and order v,, Pvlvz(n) and 0, vl(n) respectively (see for
!C example Abramowitz & Stegun 1972). Associated Legendre functions of the second
kind, sz vl(n) , are undefined at the poles and are therefore neglected when modelling
' physical quantities.

If the order v, is imaginary or non-integral then the solution, ¥, , of equation
‘ (1.6.3) is either aperiodic or has a period that is not an integral fraction of 27, so that
i 1902((,0) # ﬁvz(go + 27[) , which is clearly undesirable since it implies that ¢, is multi-
| valued on the surface of a sphere. We therefore require that v, be an integer (due to the

symmetry of the trigonometric functions we can without loss of generality assume v, 18

positive) so that equation (1.6.3) has solutions of the form:

|
I 3,.(¢)=4,,cos v, ¢+ B, sin v, @ (1.6.6)
(

where A, and B, are arbitrary constants determined by boundary conditions. These

f[ functions are clearly mutually orthogonal over the interval [O, 2 n] :

J : : :

i When the form for Z used in (1.6.5) is substituted back into (1.6.2) we see that
[

the equation has solutions:
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i) = G g (1.6.7)

The second term in this expression is undefined at the origin when Re(vl) >—1 while the
first term is undefined for Re(vl) <0 so that for most of the quantities we model we
require Re(vl) >0 and D,=0. With appropriately defined constants our solutions to

equation (1.6.1) will therefore be sums of components of the form:

Jor v (r, 0, (p) =C,, r”l(szcos 0V,¢ + B, sin vzgo)Pvlvz(cos 6)
=C,, rvl(szlevz + szle_%) (1.6.8)

The usefulness of this formulation is largely dependent on the orthogonality of
terms of this type over the region [O, 71'] X [O, 275] . This orthogonality is a result of the
orthogonality of both the trigonometric functions on [O, 275] (this establishes mutual

orthogonality for different values of v, ) and the associated Legendre functions on [0, 7:]

(which establishes mutual orthogonality for different values of v, ).

The orthogonality of trigonometric functions whose periods are integral fractions of
27 is an elementary identity of calculus and forms the basis of Fourier analysis (see for
example Kreyszig 1983). The orthogonality of the associated Legendre functions is a

similar though rather more complicated issue we will examine in slightly greater detail to

utilise some of its more general properties.

§1.6.2 Theory of Sturm-Liouville Boundary Value Problems
A complete set of solutions to equation (1.6.5) is generated by solutions to the

associated boundary value problems. Requiring that our solution be continuous and finite
throughout the region [O, 71-] constrains v, to be a positive integer. We also apply two

boundary conditions, one at the pole, =0 :

@ 0] 1= 10N iR s =10
(1.6.9)

and at the equator, 6 =" :
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d _ :
96 o (cos 9) A 0 fork+meven

(1:6:15)
in(cos 5): 0 fork+ m odd

where we should note that in general the exact value of n, is dependent on the order m,
and that in the standard spherical harmonic analysis scheme we have & = f’% and n, = k.

The advantage of this type of analysis is that for small values of ¢ the values of n,

are quite widely spread as we see from the approximate relations (De Santis 1985):

n, = 2?% (k + 0.5) =02

(1.6.16)
T

My = = 2_95
So that the number of coefficients that need to be calculated in order to model a
surface feature to a given resolution is greatly reduced. For example, as we have already
seen, if we want to model a feature of radius 100 km we would have to expand to at least
degree 200. If we were to use spherical cap analysis over a cap of angular radius ¢ then
we would need to expand our functions to degree n,  where K, 1s the smallest integer

such that:
E’g' |
Kon 2200.5 52 ~ 0.5 = 128 £-0.5 (1.6.17)

The latitudinal resolution of a given surface harmonic expansion is determined by
the maximum degree of the expansion while the longitudinal resolution is a function of
the maximum order of the expansion. In a conventional spherical harmonic analysis these
two quantities are the same. But more generally, the order of expansion required to

resolve a feature of diameter € (as in equation (1.6.13)) at colatitude 6 1s given by:

s (0) = EQGND (1.6.18)
In general though the features being modelled will be closer to the centre of the cap than
the edge, otherwise the assumption that deformation and stress due to the load are zero at
the edge of the cap may not apply. This being the case it is normally adequate to set
Mpax = Kmay - the maximum value taken by the index & .

The number of coefficients that need to be calculated to achieve a given resolution 1s
therefore substantially smaller than in the conventional spherical harmonic analysis for the

same resolution. Modelling a 100 km diameter feature inside a cap of angular radius 10°
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| gives k,,, =23 yielding a total of 601 coefficients, less than two percent of that required
E to achieve comparable resolution in the conventional analysis.

| The price of this reduction in the number of coefficients is two-fold. Firstly, the
associated Legendre functions of non-integral degree are simply more expensive to
calculate numerically than the associated Legendre polynomials of integral degree,
requiring significant numerical effort even to determine appropriate values of n, . More
importantly, moving to the Legendre functions of non-integral degree results in a loss of
orthogonality between functions from Z,, and G,, over the region [0, é] X [0, 211'1. We
still have orthogonality within each set, since this is still a Sturm-Liouville problem but
the symmetry property that gave us a completely orthogonal system is no longer
guaranteed, a result of the singularities outside the cap. As a result of this there 1s a

significant increase in the computational cost of calculating the coefficients of the surface
harmonics since many of the cross-multiplication terms in the least squares problem are
| non-zero.

| In this instance, the difference between our spherical harmonic approximation and

the function being approximated is represented by the integral in equation (1.4.8):

J:dﬁsm EJ;T dqo(FN(t?, &;D]-F(B, gp))h=-1)~ (1.6.19)

o —r i

where the approximating function, £, 1s given:

| F(6.0)=X 3 FLv.(60) (1.6.20)

n=0m==n

The coefficients of the approximating series are chosen to minimise the quantity Dy in
equation (1.6.19), so that for each value of n and m the coefficients of our spherical

harmonic expansion are given by the relation:

ar s In
| : ;’f’;j = zﬁu f d6sin 6 f dg Y,.(6. ¢)Y,(6. 0)

nm

(1.6.21)
- zf do sin @ f do Y,,(6. 0)F(6, ¢)=0

q In the case considered in equation (1.4.9) only one of the integrals in the
i

summation in this expression is non-zero. Removing orthogonality between surface

U harmonics introduces the linear system above, making the coefficients dependent on the
degree, N , of the approximation, and prone to numerical error due to the instability of the

system of linear equations.
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dO  1d0 X Xlg_
de,z"'gdg"' 6,:"'52)@“‘0 (1.6:23)

The solutions to this equation are finite and continuous over the surface of the sphere only
when ¥, =.s3k(k+ l) and y,=-m’ for k, m positive integers. An approximate
solution to equation (1.6.23) is then given by the associated Legendre polynomial
Pk"‘(cos 6"). De Santis acknowledges that the new latitude € is no longer always small
enough for the approximation @ =sin& to hold so that equation (1.6.23) is not strictly
equivalent to equation (1.6.4), but uses the associated Legendre polynomials as
approximate solutions to achieve reasonable agreement with the SCHA technique.
Mapping from a cap onto a sphere is a powerful analytical tool that would allow us to
very conveniently perform calculations over small regions with great accuracy and speed
but its validity needs to be closely examined. In the case of modelling the earth's
geomagnetic potential the problem is largely a mathematical one of approximating a given
function by surface harmonics with only a few constraints placed by the physical
processes involved. The problem of calculating the deformation of a spherical body
under a surface load is however rather different, the physics of the processes involved
must be faithfully reproduced in the mathematical model for the results obtained to have
any significance.

Figure 1.2 illustrates the effect of magnifying the region of interest. The mapping
from cap to hemisphere has two immediate and completely artificial consequences, it
greatly exaggerates the effect of sphericity and alters the lateral scale of the problem.

a) b)

Figure 1.2: Illustration of the effect of the ASHA technique, the spherical cap (fig. a) is mapped onto the

sphere (fig. b) with consequent lateral expansion of the load, exaggerated sphericity, and anisotropy.
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The stresses due to a surface load are significant to depths comparable to the lateral
extent of the load, translation from a cap onto a sphere greatly increases the apparent
width of the load and therefore the depth to which it will stress the earth, so that the
ASHA technique immediately produces unphysical behaviour when applied to the
problem of surface deformation. The most significant effect of the mapping however, is
that it renders the body in question anisotropic, severely complicating the form of the
constitutive equation, and invalidating much of the formalism developed for the Love
number calculations.

As with the TOSCA scheme, the mathematical convenience of the ASHA procedure
is undermined by the physical inappropriateness of its formulation. The price of the
promised numerical convenience is that the procedure requires fundamental modifications

to the mathematical formalism of the problem, modifications that render the system

analytically intractable.
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The first and oldest of these techniques is an early approach developed by
McConnell (1965) that relies on explicitly solving the equilibrium equations throughout
the body, while the second is a slightly more conventional propagator matrix approach
discussed by Cathles (1975) that uses McConnell's direct solution technique to apply the
boundary condition in the bottom layer of the stratification but propagates the solution to
the surface using a slightly more elegant and theoretically convenient technique from the
theory of differential equations. The third is a variation of this traditional propagator
matrix technique developed by Kennett (1981) originally designed to model elastic wave
propagation through a stratified medium.

I will adapt each of these techniques to three dimensional Cartesian coordinates (the
most convenient regime for examining the deformation due to a rectangular load), and
examine their numerical stability and suitability to the problem we wish to discuss, with
particular attention to the accuracy of the calculations at depth. The final section of the
chapter will be devoted to a detailed discussion and comparison of the numerical
performance of each of the techniques introduced and an analysis of their numerical
stability. Our ultimate goal of course is to use the most appropriate numerical technique

as part of a formal inverse procedure.
We will start with a reformulation of the problem of the surface deformation of an

elastic body using Cartesian coordinates.
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! 2.1 Formulation of the Problem

4 We will consider a homogeneous, semi-infinite, elastic body with boundary x; =0,
qJ with x, increasing in the downward direction (into the solid). We will denote the
1\‘ component of displacement in the direction of the axis e; by u; and the various

! components of material incremental stress by tfj‘” . The form of the components of stress

are given by the constitutive equation for an elastic body:

ou du, Ju,
= A0 53 +#(axj + axj) (2.1.1)

with repeated indices indicating summation as per the Einstein convention and 0y

representing the Kronecker delta function.
As in chapter 1 (equation 1.5.4) we define the dilatation, A, to be the divergence of

the deformation field:

du, du, Ou, Ol

A :8)61( =8X1 ls axz +ax3 (23152)

If we once again assume that the acceleration terms are small enough to be neglected (as
discussed in section 1.1) and neglect the effect of pre-stress and internal buoyancy (to be

[ reintroduced in chapter 4), then the equations of motion may be written (e.g. Love 1927):

e ———

4]

| (4 +1)§8 +uViu =-pf 2.13)

! for all values of j, where V° denotes the Laplacian operator, the f are the various

components of the body force per unit mass, and A and { are the Lamé parameters of the

elastic body.

—— —— e
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2.2 Basic Propagator Matrix Analysis
This analysis is based on obtaining direct analytical solutions to the governing

system of differential equations throughout the body and applying the appropriate
boundary conditions as discussed by McConnell (1965). We now follow his analysis and
transform the problem into that of solving a set of 3 simultaneous first order differential

equations using Fourier transforms. We Fourier transform all of the quantities in

equations (2.1.2) and (2.1.3) with respect to x, and x, using transform variables v; and
Vv, respectively.
Let X, be the Fourier transform of u;, let A denote the Fourier transform of A,

and let 7; be the Fourier transform of tfj& . Then make the following definitions:

Z,=—iX,. Z,=—iX, . Z,=-X, . P=(A+p)A

>) bl

(2.2.1)
Tis=—iT; ;5 Tos=—iTy 5 T53=—1Ts

where i in this case is defined by the relation i° =—1. We assume in this case that
there is no body force acting inside the body we are considering (i.e. that the components
of the body force, f in (2.1.3), are everywhere zero throughout the body). Then, upon
transforming equations (2.1.2) and (2.1.3), substituting the quantities defined above 1nto

the resulting expressions and rearranging we see that within the body:

:833 ~(v? +v§-ﬂ Z, =" ﬁﬂf (2.2.2a)
La% ~(v? +v§>i Z,=" %5 (2.2.2b)
:833 _ [ +v§): Z3=%§x% (2.2.2¢)
Wz iz, +%§—j= _/l}-)i—u (2.2.3)

a2

where 0., represents the second order linear differential operator =T
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§2.2.1 Solving the Equilibrium Equations
We want to evaluate the stress and deformation terms throughout the body by

solving this set of simultaneous differential equations and then inverting from the

transform domain. We begin by defining the quantity k, =1+ % , rearranging (2.2.3)

and substituting into equations (2.2.2) to yield:

— 2 . s dZ;

833 —((ko -+ 1)1/1 =+ Vz“) Zl —kOV1V2 22 =k0vl ix; (2243)
; 2 0Z

d33 —(Vf +<ko ot 1)"2) Z,—koviv, Z, :kovza'j" (2.2.4b)

L J

=y dZ; dZ,

(ko + 1) 833 —(v; +v2~) T =l _E—x: +v28_x3 (2.2.4¢)

where . Rearranging (2.2.4b), substituting into (2.2.4c) and simplifying gives:
8221 . 1 2
W e v2+v2{v2+k +1v]Z
1 e (1 2) 1 ko v, (1 2) 1 (0 )2 2
(22255)

2 2 a?_ 84 2
(ko +2)v, +2(ky + 1)4—8% + (ko +1) axf;

Equations (2.2.4a) and (2.2.4b) may be combined to yield the following

equivalence:

9°Z,

>
dx;

v, _(vf +v22) 7| = a2z§ —(vf +V§) Z, (2.2:6)

X3

which may be incorporated back into (2.2.5). Collecting like terms, simplifying and
removing unnecessary constant factors yields the biharmonic equation:
0’z

2 2 2\2
==+ +1) 2, =0 2.2.7)
3

84
axf‘f - 2(1}% + vf)

We may immediately see that equation (2.2.7) has solutions of the form:
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PN e AN et By

|

e(ZX3 C

A+2u
A+u )

(2.2.9¢)

+v,e 3D +v,e B E +a{ax3+(———lﬁﬂ)}e‘ax3F

v
If we let w be the deformation and stress vector (Zl, e S Joes i T33) and let

i
y be the vector (A, B,C,D,E, F ) then we have My =w where the entries of M are

given by equations (2.2.8) and (2.2.9) above and more explicitly in section A.1. If we

set ,=0 in M the resulting matrix is equivalent to that given for the two dimensional

case by McConnell (1965), as would be expected.

§2.2.2 Application to a Stratified Body

We will now assume that our elastic halfspace is stratified into N uniform layers as

illustrated in Figure 2.1, where the Lamé parameters for the n—th layer are A, and u,,
and the lower boundary is the plane x; = h, . We will take the upper boundary of the first
Jayer to be the surface of the body x, = h, = 0, while the bottom layer is taken to be semi-

infinite so that A, = oo.

o, =y =10
/’1’1’ :ul
x; = hy
A s
5o =il
Xy =hy_,
Aws Hy

Figure 2.1: Side on view of a layered elastic half-space. The bottom of the n-th layer has

depth x; = h,, the top of the first layer is the upper boundary of the half-space x; = 0.
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B —

Using the analysis outlined in section 2.2.1 we see that at any point inside the 7-th
layer (i.e. if b, Sx:5h,) w(x;:,) = Mn(x3)y,, , Where ¥, = (A,,, B C B R R | and
the entries of M,,[x;;) are obtained by substituting x,, 4,, and g, into A.l. It should be
remembered that the entries of the matrices M, are in fact functions of v, and v, and that
we have temporarily suppressed this dependence for ease of notation.

As discussed in section 1.3 the boundary conditions between layers are simply

continuity of the various components of stress and displacement, this continuity 1s

inherited by the Fourier transforms of these functions as a matter of course.

Mathematically, this may be expressed

Mﬂ(hn)yn = Mn + l(hr:)yn + 1 (22 103)

and may be rewritten:
= [(M(h)) M, l(hn)] Yol (2.2.10b)

Applying (2.2.10b) recursively we see that at the surface:

w(0) = M,(0) Yu

IT (mn)) M, (n,)

el

Ly (22.11)

Once we have determined y, we can use (2.2.10) to evaluate the components of
displacement and stress at any depth within the solid. The lateral variation of these

quantities will be given when we invert from the transform domain.

§2.2.3 Boundary Conditions
Physically, we require that the various components of stress and deformation due to

the surface load obey the regularity condition. That is, that they be finite and continuous
inside the body and further, that they approach zero as distance from the load becomes
arbitrarily large. In the bottom-most layer of the stratification, x;, 2 hy_, , depth may
become arbitrarily large, we therefore require that the magnitude of the various
components of stress and displacement decrease with depth within this layer (this need not

necessarily be the case near the surface of the body but it is certainly true inside the
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| bottom-most layer of the stratification). Applied to our formulation this requirement
| means that A, , By, and Cy must all be equal to zero.

<i At the surface the vertical stress, #2, will be specified by the normal loading
1‘ function, and the shearing stresses, 12 and 70 will both be zero. Hence equation

(2.2.11) becomes:

J; Zl

] 0

[f %2 0

| 3 " 0

: 0 - L B, (2.2.12)
0 E,

where ¢ is the Fourier transform of the loading function. We can rearrange (2.2.12) by

j collecting all of the unknowns into the one vector. This yields:

]

I 0 -1 0 0 Lylslhel|[ 4

| 0 0 -1 0 Lybske|| Z
0 = 0 0 -1, Lis L Zs
0 O el L D)
° 0 0 0 lylsls|| Ew

| A "z) 0 O Ol s

1 -

|

| =Ku @203

The problem has now been reduced to solving this set of simultaneous linear

equations. In order to evaluate the entries of the vector u for particular values of

| v, and v, we need to first evaluate ¢ and the entries of K at this point, substitute these
| values into (2.2.13) and then solve. The resulting values of D,, E,, and F, can then be
used along with equations (2.2.10) and (2.2.11) to determine the components of stress
| and displacement at any depth within the body.

For a uniform load of magnitude p applied over the rectangular area S defined to be

| the set of points (xl, X, xg) such that —a<x;<a;-b<x,<b;x,=0, the Fourier
transform, ¢, of the loading function may be found in any table of Fourier transforms

(see for example Spiegel 1968) and is given by:

4 p sin (a vl) sin (b v2)

Q)(Vl’ VZ) = vV,

(2.2.14)
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In practice it will be necessary to solve (2.2.13) over a grid of values of v, and v, and
then invert the results using a numerical technique (see for example Press et. al. 1986) to
give the desired function values over a corresponding grid in the space domain. This
being the case it is more appropriate to use a numerically derived value for the Fourier

transform of the loading function than the theoretical value given in (2.2.14).

§2.2.4 Discussion
The procedure outlined above has several distinct advantages. One of its most

attractive features is that it is relatively uncomplicated theoretically, which makes it
convenient to implement numerically. Also, the formulation of the problem is one that
makes it relatively easy to calculate the stress and displacement at depth, a desirable
property when interpreting the rheological implications of a given loading history.

It also however has several shortcomings. One of the most significant of which is
that the entries of the matrices M, in equation (2.2.10a) include both exponentially
growing and decaying terms making matrix manipulation numerically unstable at large
depths. Also of some concern is the fact that the propagation procedure involves
numerically calculating the inverses of a series of matrices (or at least solving the
associated linear systems at each layer boundary) which makes the technique
computationally expensive and particularly prone to numerical instability given the large
variation in the magnitude of the entries at depth. A detailed review of the numerical
performance of this procedure and discussion of its limitations will be given in section
D5
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2.3 Conventional Propagator Matrix Analysis

In the previous section we derived an explicit analytical form for the solution of the
governing differential equations within each layer. The coefficients of the solutions were
then chosen inside each layer so as to guarantee agreement with the boundary conditions
of the system.

In the conventional propagator matrix technique we apply exactly the same
boundary condition in the bottom-most layer as we did in the last procedure . Having
obtained an explicit form for the solution at this point, we propagate it using a technique
from the theory of differential equations (see for example Braun 1983). In practice this
technique requires significantly more analytical effort than the basic procedure outlined
above but in return it avoids excessive matrix manipulations and provides increased
numerical stability. We will discuss the theoretical foundations of this procedure in some
detail as it also forms the basis for the wave propagation technique we derive in the next
section.

Applying Fourier transforms to the quantities in (2.1.1), and using the identities

given in (2.2.1) we may immediately see that:

a.z] - Tlﬁ 821 _ T_}_x
ﬁmv,23+7 E_VEZE +'—ﬂ"
2.3.1)
azx 1 -
a-xl1 = ;{ =i 2# (rﬁ o Z{‘LJ‘IEI + VZZE))

Taking the derivative with respect to x, of equations (2.3.1) and then substituting (2.2.4)

into the resulting expressions yields:

ol

a.ln: = 7] :.# ﬂzl(‘f‘(ﬂ +.U-) v +(ﬂ +2;,1) uf) + vz, (3/1 +2,u) + ,h;‘]‘m)
E)ng . 1 7 3,;1’ 3 /‘{ 2 /1 ) At
aJ{':; =) :I-p: HviVa4, ( + :-J--L) ar ,leg(( s 2‘[,[] Vi + 4( 'f",H] 1,-?) AL p._ﬂ['“

ox: "("’:Tm i V:T:.x] (2,35
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It should be noted here that we are once again assuming that there are no body
forces acting within the body. Equations (2.3.1) and (2.3.2) constitute a system of 6

simultaneous first order differential equations. The governing equation of this system

may be written:

ow _
o A (2.3.3)

where the entries of A may be found from (2.3.1) and (2.3.2) and W 1is correspondingly

defined to be the vector whose entries are the modified transforms of the various
. . i
components of stress and deformation (l.e. W= (Zl, Z 02l ol T33) ) .

It should be noted that the coefficients in equations (2.3.1) and (2.3.2) (the entries

of the matrix A ) are dependent only on A, u, v;, and v, , and not on x, except insofar as 4

and U are depth dependent.

Defining k, so that k, = (A + 2,u)_1 , A may be written explicitly:

0 0 v % 0 0

0 0 v, 0 ;17 0

e — kA, — kA, 0 0 0 k
p(4 k(A + ) v + vg) k34 +2u)vy, 0 0 0 kv

klu(% +201) v, u(vf +4 k(2 + ) vi) 0 0 0 kv,
0 0 0 -V, —V, 0

(2.3.4)

From the general theory of differential equations (again see Braun 1983) we see that

if we have a scalar function w that satisfies the equation:

%% = flx)w (2.3.5)

for some function f, then w has the form:

" f(w) dx

Lt ef"o (2.3.6)
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where w, =w(x0). Assuming we are in a region of the halfspace where the Lamé

parameters do not vary with depth (i.e. where the matrix A is constant with respect to x; )

then using (2.3.6) we see that analogously, the solution to (2.3.3) is:

w(x;) = exp ( f : A(x) dx3’) = el ~ 8w, (2.3.7)

§2.3.1 Calculating the Exponential of a Matrix

We may extend the definition of the exponential of a scalar to the case of an arbitrary
m X m matrix A using the Taylor series expansion of the exponential function:
A2

=1 +A 5t (2.3.8)

euzoA

n
n!

where I is once again the Kronecker identity matrix. This definition is valid for both

scalar values of A (corresponding to the case where m =1 ) and the case where A 1s a
square matrix. In the latter instance however, equation (2.3.8) is not a particularly
convenient expression to evaluate directly for m=>2. Instead it is usually more

appropriate to apply a standard technique from linear algebra (see for example Strang

1980).
Consider an m xm matrix A with m linearly independent eigenvectors,

b.,b,, .. b, , each with corresponding eigenvalues ¢, &, .... &, . We then define the

diagonalising matrix of A to be the matrix, D that satisfies the equation:
D 'AD = A (22359)

where A = diag (al, 0% oo am) is the matrix whose diagonal entries are the eigenvalues

of A and whose non-diagonal entries are zero.

Pre-multiplying both sides of equation (2.3.9) by D it is clear that the columns of
D are the eigenvectors b,, b,, .... b, . Post-multiplying both sides by D™' similarly
shows that the rows of D' are the left-eigenvectors of A , y7, ¥/, ... yI (the solutions to

the equation y/A = oy’ ).

Rearranging equation (2.3.9) and substituting back into equation (2.3.8) gives:
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(DAD™')(DAD™')  (DAD™')(

pap”) (o0

A -]
e =1 +DAD  + 5 + G +....
DA (DD' 1) AD"' DA (DD' ‘] A (DD' ') AD
=] + DAD™' + i e
2 6
e DADE S DATDT
=] DA eE—
= De D"’ (2.3.10)

but e* = diag (rz"l, e’ ... e“m) , so that once D is known we may easily calculate e” .

In the case where A is an m xm matrix but has only k linearly independent
eigenvectors, b, b, .... b, , with corresponding eigenvalues, ¢, &, .... @, , and k<m,
we may still evaluate e” using a generalisation of the diagonalisation technique outlined

above.
It may be shown (see for example Strang 1980) that for the matrix A there exists a

matrix D such that:

A0 0 -0
0 A 0 -0
D'AD =A=| 0 0 A,--- 0 (2.3.11)

where A is a block diagonal matrix whose non-diagonal entries are all zero and whose

diagonal entries, A,, are block matrices of the form:

g I O = 0

| 0 o | 0
A= ORI S oy : (23012

: S

0 0 -+ 0 «

——— e
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=D(§O ﬁn’,‘n)p" =AD" (23.15)

where the f, are the Taylor series coefficients for . Again applying the Taylor series

formulation for f and noting that all of the off-diagonal entries of A are zero, it is clear
that the i—th diagonal element of f(A) 1s f(oci) and that the off-diagonal elements are
zero ie. f(A)= diag ( il ilenly = f(am)) .

We now define M' to be the m X m matrix whose only non-zero entry is Mf,- =

and note that:

M = azlm_[(/(lxl__ogl)

1 J
i

.
Ho

(2.3.16)
A= M

i=1
Substituting back into (2.3.15) and again using the fact the off-diagonal entries of A and

M’ are zero yields:

n (A — ol
=2 /() Hl(_a‘%) (2.3.17)

which 1s the standard form for this type of expression (see for example Gantmacher
1960). The case where two of the eigenvalues are equal (i.e. & =&, for some ¢ and ;)

may be considered by letting &; = &; + € in (2.3.17) and letting € approach zero. Doing

so yields:




————— ——
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=il
ij L

(Im[ A—ak1)+ kgf(ak) ﬁ(A—oc,I)

iz I a-q

- & |- § (5] 1

L

(2.3.18)

which is the same result as that given by Gantmacher (1960).

We may obviously use (2.3.18) to calculate e* directly except that taking the limit
as £ approaches zero becomes prohibitively complicated when the matrix A has more
than two identical eigenvalues. In the case of the matrix A given in (2.3.4) however,
(2.3.18) may be used in conjunction with the Jordan form approach to give an explicit

form for e* . In this case we are interested in calculating the exponential of a 2 x 2 matrix,

Q , of the form:

_|
Q _( oZ az)z) (2.3.19)

which may be substituted back into (2.3.18) to yield:
“ eCOZ Ze(DZ
€= g o= (2.3.20)

§2.3.2 Application to the Problem of an Elastic Medium
The characteristic equation of the matrix A given in (2.3.4) is:

det(A - oif)=(cf — 02 =0 (232

where « is as defined for equation (2.2.8). Equation (2.3.21) has two solutions, both of
order 3, ¢,;=0a and 04ss=—&. These eigenvalues each have two corresponding

linearly independent eigenvectors of the form:
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Vv, Vi
— )
0 — 0
= d = P,
d,, =p, e 25 =B 5 i (2.3.22)
— v, 0 4 2,05 5
0 —2uc’

where 8, and [, are constant scaling factors to guarantee orthonormality of the system.

For both i=1,4 the equation (A—oc,-l)xzd,. has no solution so that the

generalised eigenvectors of A (as defined in equation (2.3.13)) are the solutions to this

k,v,
(02X
k,v,

(02X
k

dis =B\ 1y, (2.3.23)
HY,
MO 6

equation for i =2, 5 and may be written:

where we have defined a new quantity k, so that

L = A+3uU
2 2(;“_#) (2.3.24)
These vectors d; form the columns of the matrix D that gives the Jordan form of
the matrix A given in equation (2.3.4). Solving the equations for the left-eigenvectors of

A gives corresponding solutions:

‘UVQ al 4 2‘UVI %,6
—H O 4 20,036
— 0 2 Lo?
V=B e, (2.3.252)
_12, V2
01 6

The generalised left-eigenvectors of A take the form:
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Hv,
HY,
.uazs
Yos =Pa| vl (2.3.25b)
\ kzvz }

1 > A+2u
Setting 3B, = 2l @y g, and o =4 ( A )az in the above expressions gives:

yd, =0 ifi #] yd =y,d, =2,U052a1,4ﬁ1[31,4=1
(2:326)
A +2u
Y, d, =y;-d; =ys-ds =y -dg =4,U( A+ ) o
where it is usual to choose 8, = B, = . With these relations holding it is clear that

D' is the matrix whose rows are y; .

When combined these results yield a convenient form for the matrices D and D™
such that (2.3.11) holds for the matrix A given in (2.3.4). It remains only to calculate
the matrix e’* where z=x;—x) and A, the Jordan form of A, can be calculated from

(2.3.11) and (2.3.12):

a0 ot
Ol 0 O0 O
MO RO E0 &0 0
AN= 00 0-00 0 (223520
0 0 0 0 -l
0 0 0 0 0 -«
Using (2.3.15) and (2.3.21) gives:
2 (DR (N QR0 =)
O e zess OF 08 0
i Dl G e B G (G e )
e =
U SpaIgE GoreaRsg R0 (2.5:2:6)
O RO () SO (7o
(R () (N (o<
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This last boundary condition may be introduced by noting that from section 2.2.2

we have:
e N 7 T (2.3.33)

using the same definitions for M, andy, as were given in equation (2.2.10a).

Substituting back into (2.3.33) and applying the layer boundary conditions yields:

N
w(0) = {Hl eAnZn}MN(hN_ ne (2.3.34)
which may be re-written:
e 0
% 0
X
Sl (2.3.35)
N
0 E,
¢(vl’v1) Fy

We may again collect all the unknowns onto the one side of the equation as we did

in section 2.2.3 and so reduce the problem to solving the equation:

0 -1 0 0 g4 &5 &6 Z,

0 0 -1 0 g &5 & gz

0 — 0 0 -1 g3 &5 &3 3
= 2.3.36
8 0 O 0 gu 85 &4 D, ( )

0 0 O g5 &ss5 &s6 Ey

¢(V1’v1) 0 O O ge &5 &es Fy

=/

where ¢ is the loading function discussed in section 2.2.3, and the entries of J may be

calculated from (2.3.34), A.1, and A.2.
As in McConnell's analysis we calculate the matrix J and solve (2.3.36) over a grid

of values for v, and v, , and then invert from the Fourier domain to get the solution in real

space.




Deformation of a Stratified Semi-Infinite Elastic Body Page 68

§2.3.5 Discussion
Like the basic propagator matrix technique the advantages of this procedure are its

relative theoretical simplicity (particularly when applied to the two dimensional problem)
and the ease with which it may be adapted to calculate the stress-deformation vector at
depth. The slightly more complex theoretical development has however eliminated the
need to calculate the inverse matrices used by the basic technique which should make this
procedure somewhat more robust numerically.

Directly solving the equations of motion in the bottom-most layer however retains
the problem of significant variation in the magnitude of the matrix entries at large depths.
Also of some concern is the fact that the entries of the matrices e4-% consist largely of
cosh and sinh functions. At large depths a computer with finite accuracy will be unable to
distinguish between these functions which will render the system prone to numerical error

in the solving routines. These issues will be discussed in greater detail in section 2.5.
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We follow Kennett by defining two classes of contribution to the stress-
displacement vector and the field vector, the up-going and down-going components. We
define an up-going vector quantity to be any vector function whose magnitude increases
as depth increases and a down-going vector quantity to be any vector function whose
magnitude decreases as depth increases. These definitions coming from the fact that

physically, waves decay as they travel further from from their source.

Letting z = x; —x; and defining matrices E(z) and E’(z) so that:

e 0 0 e 0 0
E[Z)=| 0 e* ze™ Efz)=] 0 e= —ze™ (2.4.5)
0 0 = 0 0 =

then from (2.4.3) and (2.3.28) it is clear that in a region of the halfspace with uniform
elastic properties we may choose D to be the matrix defined in (2.3.22), (2.3.23), and
(2.3.24) that gives the Jordan form of A. Then substituting the Jordan form from

equation (2.3.11) into the definition of the field propagator matrix yields:

e
0 e® zz®* 0 0 O
0 0 ¢ 0 0 0
L =(Z) S I e
0 0 0 0 e% g™
0 0 0 0 0 =
Ez) 0
SRR
0 E’(— z)
= 0[xs, x5) v{xS) (2.4.6)

Thus at any point inside a stratified halfspace the field vector v has both an up-going

component, represented by the vector ¢, , and a down-going component, represented by

the vector @, .
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Figure 2.2b: The displacement curves uJ (xg) and u; (xj) due to a surface load at the origin (xg =0),

plotted against depth, x; . u$ (xg) was calculated for a uniform elastic body of rigidity 3.6x10' Pa, and

bulk modulus 6.5x10°Pa. u} (x3) was calculated for an half-space identical to that used for ug(x3)

except for a layer boundary at 50 km below which the rigidity and bulk modulus were both halved.
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Figure 2.2c: Difference between displacement fields, Au;, (x3)= U, (xg) —ud (xg) , plotted against depth.
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Figure 2.2d: Up-going components of the difference in displacement fields Au, (xg) = (xe) —ul (xg) Seilihe

residual down-going component is of the order of 10”° m and is not shown in the figure.

include internal reflections and reverberations between the surface and the layer boundary.
Analogously, we would therefore expect the difference between the two distributions in
the static case to include both an up-going component (corresponding to reflection off the
layer boundary) and a significantly smaller down-going component (corresponding to the
up-going component in turn being reflected off the surface layer).

The numerical results obtained for the two displacement curves, ud and u;, are

shown in figure 2.2b. u was calculated for a uniform elastic body of bulk modulus

6.5x10" Pa and rigidity 3.6x10" Pa , while u! was calculated for a half-space identical
to the first except for a layer boundary at depth 50 km, below which both bulk modulus
and rigidity were halved. Both deformation fields are due to a square surface load of side

100 km corresponding to an ice sheet of uniform thickness, 400 m, centred on the origin.

The difference between the two deformation fields, Au, (x3) = i (x3) - u3 (x3) , 1S
given 1n figure 2.2c, which shows that the contribution due to the inserted layer boundary
throughout the uppermost layer is dominated by two separate up-going components,

illustrated explicitly in figure 2.2d. The down-going component of the difference between

the two fields, not shown in the figure, was of the order of 10™° m.
In the dynamic case reflection off a layer boundary may be defined as the effect of
that boundary on the stress-displacement vector in the region above it. This example

demonstrates that a completely analogous effect occurs even in the static case. It is




Deformation of a Stratified Semi-Infinite Elastic Body Page 75

therefore mathematically and conceptually appropriate to retain both the notation and

terminology of wave-propagation in the zero frequency case.

We now consider a region of a halfspace, x§<x;<x3, sandwiched between two
uniform layers, inside which the elastic parameters of the body are allowed to vary with

depth. If we consider a stress-displacement field (represented by the field vector) being

propagated from x?— to X3+ then from the definition of the field propagator matrix in

equation (2.4.3), we have that v(x? —) = Q(J@O o +) V(X% +) . This may be re-written:

0 L O, On|l®,
v(x) =( 4500) i ( %) (2.4.7)

where the Q,; are 3 x 3 matrices whose entries are taken from the corresponding parts of

the matrix @, and the @, ,, are 3 x 1 vectors representing the corresponding up-going
and down-going entries of the field vector v(x§) We know from (2.4.6) that v(x:? —) and

v(x§ +) may be written in this form inside a uniform region of the halfspace and from
continuity must therefore also have this form at the upper and lower boundaries of the
region we are considering. We may now define the transmission and reflection matrices

for the up and down-going components of the field vector.

Consider a source of deformation at depth x3 < x that produces only a down-going

component of deformation and assume that there are no other sources of deformation
within the body. Then the down-going component of the field vector at xi+ will be the

portion of the down-going deformation at xJ— that has been transmitted from x{— to
x2+ . We are not yet considering the effect of any layer boundaries below x; = x; so that

there will be no up-going component of deformation at this level due to the source at x3 ,

and the up-going component of the stress-displacement field at x{— will be the reflected

portion of the initial down-going displacement field. Defining reflection and transmission

matrices R, and T’ for down-going field components such that:

¢D2 = ngfpoo ¢Uo = R32¢DO (2.4.8)

then substituting into (2.4.7) yields:

D, 0, 0O, ( 0 )
= (2.4.9)
( ¢m) 0, 0 Do,
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from which it 1s clear that:
- 2 -1
I =05 RA=0H o) (2.4.10)

Similarly, if we consider a source of deformation at depth x3 > x; that produces

only an up-going component of deformation and assume that there are no other sources of
deformation within the body, then the up-going component of the field vector at x§— will
be the portion of the up-going deformation at x;+ that has been transmitted from x;+ to

x9—. We are not yet considering the effect of any layer boundaries above depth x; = x3

so that there will be no down-going component of deformation due to the source at x3,

and the down-going component of the stress-displacement field at x;+ will be the
reflected portion of the initial up-going displacement field. If we define reflection and

. . . 2 .
transmission matrices R, and T,” for up-going field components such that:

Dy, = T22¢02 D, = R32¢U2 (2l

then substituting back into (2.4.7) yields:
(@UO) = 0, 0,
V0L 0

Ty =0 - le(sz)- 1Q21 R = (sz)— 1Q21 (2.4.13)

(gzz) (2.4.12)

from which it 1s clear that:

We may use the forms for the reflection and transmission matrices given In
equations (2.4.10) and (2.4.13) to rewrite the field propagator matrix 0 . Doing so yields
one of the fundamental relations in the formalism of the wave propagation procedure, the

partition equation:

O(x-, x3+) = (2.4.14)

which relates the reflection and transmission matrices to the field propagator matrix.
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§2.4.2 Composite Reflection and Transmission matrices

Consider the case of two adjacent regions of the halfspace wedged between two

uniform layers as illustrated in Figure 2.3 below.

Uniform Layer 1

Xy =X
Region 1
Ny =
Region 2
=
Uniform Layer 2

Figure 2.3: Side on view of two adjacent regions of the half-space

wedged between two uniform layers.

Each region having its own elastic properties which may vary with depth, and
corresponding transmission and reflection matrices. We would like to calculate the overall
transmission and reflection matrices for the two regions considered as a whole.

The chain rule for the field propagator matrix Q is given in equation (2.4.4),
substituting the general form of the partition equation (equation (2.4.14)) back into this

expression yields:

0, %) =

T -R(T] R R | -Ry(T) RS RATT

S I

= 0[x, x!)Q(x}, 23) (2.4.18)

By identifying the corresponding matrix entries we may immediately see that:
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§2.4.3 Application to a Stratified Body
If we consider the case of a stratified body as discussed in section 2.2.2 then we

may use the forms for the composite reflection and transmission matrices given in

equation (2.4.20) to construct reflection and transmission matrices for the halfspace as a

whole.
In the case where both x; and x) lie inside the n-th layer of the halfspace we may

choose D, to be the matrix that yields the Jordan form of A, (i.e. the matrix that satisfies
equation (2.3.11)). From section 2.3.3 we see that if A4, and y, do not vary with depth
then neither do the entries of D,. Upon substituting D, for D , equations (2.4.2) and
(2.4.3) become:

e AR AE [(D,,)_ (D.A(D) I)D} v=Ap (2.421)

D) (D) D ple)=ev(e) @422

W) =

v(x) =[] ek I,

The form for the eigenvalues in this case is completely independent of depth (from
equation (2.3.21)), so the entries of the matrix A, are independent of the layer number,

n. This is not the case once pre-stress advection or internal buoyancy are included
however, as we shall see in chapter 4, so it is useful to retain this notation.

Within each layer of the halfspace the forms for the field propagator matrix given in
equations (2.4.6) and (2.4.22) hold. Noting that

v(xg) = Q(xé’, x3) v(x3) = Q(xg’ x3) Q(x3a xg) v(xg) (2:4:28)

gives the relation:

Q(xp xg) = [Q(xg’ xs)}_l (238524

Applying this result to the field propagator matrix of a uniform layer (given in equation

(2.4.6)) yields:

Ot = = (2.4.25)
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Which may also be obtained by substituting -z for z in (2.4.6). This result may be
compared with the the partition equation, (2.4.14), to give explicit forms for the reflection

and transmission matrices of a uniform layer of thickness z,, lying between

% =, and st
T; = Ez,) T=E R, =0 R, =0 (2.4.26)

using the same definition for z, as was given in section 2.3.3 (i.e. z,=h,_,—h,).
The situation at the boundary between two layers at depth x; = 4, 1s illustrated in

Figure 2.4 below.

Layer n: -3—% =AW =[DnA(Dn)-le
3

Layer n +1: g;i =AW :[Dn+1A(Dn+1)“]w
3

Figure 2.4: Side-on view of the boundary between two layers and the equations that hold

either side of the boundary.

From continuity of the stress-displacement vector across the boundaries between

layers we have:
v(h,~) = [(Dn_ 1)"1Dn} v(h,+) = 0Q(h, - h,+)v(h, +) (2.4.27)

We may then apply the partition equation, (2.4.14), to this result to obtain the
reflection and transmission matrices for the boundary. We may also use equation
(2.4.26) to obtain the reflection and transmission matrices for a uniform layer. Once both
sets of matrices have been determined they may be combined by applying the form for
composite reflection and transmission matrices given in equation (2.4.20). Repeated
applications of these results allows us to evaluate the field propagator matrix, @,
throughout the entire half-space, starting from the bottom-most layer and working
upwards to the surface.

To illustrate our recursive procedure consider Figure 2.5 below. Starting from A, +

we may apply equation (2.4.27) to calculate the reflection and transmission matrices for

the boundary x, = k, . Then at any boundary layer s, we assume we have been able to
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calculate the reflection and transmission matrices for the region [hn+1—, h N+] (using

equation (2.4.27) will yield the reflection and transmission matrices for the bottom-most

layer boundary [h v—s N N+] so that our procedure has a starting point).

Substituting the forms for the transmission and reflection matrices given in
equations (2.4.26) and (2.4.27) into the recursion relation (2.4.20) allows us to calculate
the reflection and transmission matrices for the region [hn—, hn+1_]' Applying the
recursion relation (2.4.20) again then allows us to combine our results for both regions

and obtain reflection and transmission matrices for the region [hn—, h N+] . We may then

move on to the next layer in the body.

h,—
=, h+
X3 = hn+1
X3 =hy_,
Uniform Layer

Figure 2.4 Application of recursive procedure upwards from the bottom layer.

We may derive explicit expressions for the transmission and reflection matrices
during each step in our recursive procedure. For ease of notation we make the following

definitions:

RU,D(X3) = RU,D(XB’ hy +) TUp(xs) =i U,D(x37 hy ’*‘)
(2.4.28)

r U,D(—x3) = RU,D(x3 X3 +) 4 U,D(x3) = U,D(x3 = X3 +)

Using these definitions, the recursion relation (2.4.20), and the form for the transmission
and reflection matrices of a uniform layer (given in equation (2.4.26)) yields the identities

given in equation (2.4.29) below.
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Ro{P, +) = Tl +, s =) Rol 1 =) Tl +, By =)

= Bz, )R (B, -) Ez,..)

Ty +) = T Byar =) Tof o+ B =) = Tylhe =) E 2,0
(2.4.29)
Tyl +) = Tef b + oy =) Tl =) = E(1) T s -

R(h,+)=R[h,., -]

Now using the recursion relation, (2.4.20), to combine this result with the reflection and

transmission matrices of a boundary (given by equation (2.4.27)) yields:

-1

ol

Ry(h, ) =ro{h,)+ t.[{h,) R,(h, +) [1 —ry{h, )RR, +)
Ry(h,—) = Rofh, +) + Tofh, +)ro[n,) [1 Ry, +) rU(h,l)}_ T, +)

I-r{h)R,(n, +)] 1sz(h,l)

(2.4.30)

T,(h,~) = T,(h,+)

T,h,-) = t,(h,) [1 - R,(h, +)ru(hn)J—lTU(hn +)

It 1s worth noting again that we are effectively considering the zero frequency case
and our waves are not actually travelling through the body but are static deformations. So
there is in fact no transmission or reflection due to the internal layer boundaries in the
normal sense, but as discussed earlier there is behaviour analogous to transmission and
reflection. The transmission and reflection matrix notation also provides a convenient
formalism for analysing the zero frequency problem and the similarity in the governing

equations of the static and dynamic regimes means that the same relations hold in both

settings.
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$§2.4.4 Introducing the Source of Deformation

We wish to consider the case of a body that has been deformed from its equilibrium
state by some force applied within it, in particular the case where this force takes the form
of a vertical stress applied at the surface of the body. It is standard in this procedure to
consider such a surface load as the limiting case of an internal source of deformation
restricted to a small region that is allowed to approach the surface. We start therefore, by
considering a general stress applied somewhere within the body, and developing a
technique for calculating the value of the stress-displacement vector due to this stress at
any other point within the body below the level of the source, and then allow first the
source of deformation and then the receiver to approach the surface.

We consider then a stratified half-space as discussed in section 2.2.2 with a zero
stress condition applying at the surface and some source of deformation, represented by

the stress-displacement vector ¥, applied within the body. In each layer of the halfspace
we define a fundamental solution matrix B, whose columns are linearly independent

solutions of the governing equation, (2.3.3), (where we have substituted A, for A ), so

that for some constant coefficient vector ¢, , we have that w(x3) = B,,(x3)cn . The existence

of such a set of solutions 1s guaranteed by the theory of differential equations (see for

example Braun 1983). We also define a corresponding field matrix V, such that at any

depth within the body Bn(x3) =D, Vn(x3) (analogous to the field vector v defined earlier).

From (2.1.3) we see that the forcing term ¥ must be introduced into the field
equations. Restricting our attention to the n-th layer of a stratified halfspace equation
(2.3.3) becomes:

0., W(x;) = A, w(x;) + %x;) (2.4.31)

where d_ represents the linear differential operator 88? .
? 3

We once again follow the analysis of Kennett (1981) and note from the definitions

of the propagator matrix, P, defined in equation (2.4.1), and the fundamental solution

matrix, B,, defined above, that since the columns of B, are solutions of (2.3.3),

Bn(x3) =P (x3, x_?) Bn(xg) , so that where both x; and xJ lie inside the n-th layer of the

stratification we have:

P(x;, )= B,(x;)(B,(x3)] (2.4.32)
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which may be combined with the governing equation, (2.3.3), to show that:
. Pl x8)' |20 B(x)B,(x) | = B)o.[Bx) |

=~ B,()B(x] 2. [B,x)|Bx)" =

= _I.Bn(x.?) B,,(xj)' I}A”Bn(xa)ﬂn("‘ﬁ)_] ==h (x-“‘ x-g‘]) A,

where we have used the general 1dentity O = E}A.(B B ') = B(a_‘.B' ') + (BA. B) B

Premultiplying (2.4.31) by P(x;,. .r:'i')_l and rearranging yields:

)';I P(x_i., x:'f)_ I %)= P(x?, x-j) Ax,) = P(xg, xg’)_ lla_l.JW(IJ - P(xj, x?) lA,, w(x,)

| '_ (2.4.34)
| ~ BIH[P():;. .r.f{’)"' 'w(x;,)

I

i which may be integrated and then rearranged to yield:

! w(x_x) - P(x3, x?)w(x;?) + J:: P(x;; é') }{C) d¢ (2.4.35)

We wish to consider the case where our source of deformation 1s confined to the

plane x; = x3, so that ¥ has the form:

Kx;) =¥ 6(3'3 = .r:f) o )@_5’():3 -*.rf) (2.4.36)

where & in this case is the Dirac delta function and & its derivative with respect to x; .

We will assume that the source lies within the n—th layer of the stratification

i jjech e h,,). The form of equation (2.4.36) covers a large class of sources of

deformation, and in particular the case of a force applied only across the boundary x, =0 .

Substituting this term back into equation (2.4.35) gives the integral the form:

J‘; P(x;,, £\ L) d¢ = H(x;; = xf) P(x_q. xf)[yi + 'J*&A,,]

(2.4.37)
= H (x_; - x;tf) P(x._], .rjif) 4
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where H 1is the Heaviside step function. Equation (2.4.37) therefore defines a

discontinuity in the stress-displacement vector w :
wxd +)-w(x -)= ¥ (2.4.38)

From equation (2.4.36) we see that for this class of body forces the governing
equation (2.4.31) has the same form as equation (2.3.3) for all x;#x5. All of the
relations we have derived so far are therefore still valid in these regions, we need simply

to include the effect of the stress-displacement discontinuity ¥ at x; = x3 .

§2.4.5 Boundary Conditions for a Buried Source of Deformation
At the surface, we can see immediately from the definition of the propagator matrix

P that the surface vector, S, due to the stress-displacement discontinuity ¥ at depth

x; =Xx; 1S given by:

S= (‘g‘:) = P(0,x) ¥ (2.4.39)

where S, is the 3 x 1 vector whose entries are the various components of displacement
and S; 1s the 3 x 1 vector whose entries are the various components of stress. That S
may be written 1n this form 1s a direct consequence of the definition of the stress-
displacement vector w .

The total stress displacement vector at the surface must satisfy the zero stress

boundary condition and may therefore be written:

Wo

w(0) =( g ) (2.4.40)

The stress-displacement vector at a depth just below the source of deformation may
be related to the stress-displacement field in the bottom-most layer using the propagator
matrix P :

w(xs +) = P(xs, by Jw(hy_)) (2.4.41)

We may then use (2.4.38) to calculate the stress-displacement vector at a depth just above

the source of deformation:
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w(xs =) = P(x5, hy_ )w(hy_,) - ¥ (2.4.42)

which may in turn be propagated to the surface using the propagator matrix P :

w(0) = P(0, x3)w(x3 ) = P(0, hy_)w(hy_,) — P(0. x3) ¥
(2.4.43)
=P(0, hy_,|w(hy_,) - S

We now consider the boundary condition in the bottom-most layer where we
require that displacement must be a down-going quantity (1.e. that it must decrease as
depth increases). From the form of the field propagator matrix for a uniform layer given
in equation (2.4.6), it is clear that within any such layer the solution of the governing
equation (2.3.3) may be written as a linear combination of three down-going and three up-
going vector functions, we may therefore take these up-going and down-going vectors to
be the basis functions for our solution space. In the bottom-most layer of the stratification
we may take the fundamental solution matrix, B, , to be the matrix whose columns are the
up-going and down-going basis vectors of our solution space. Without loss of generality
we may take the first three columns of B, to be the up-going basis vectors and the last

three columns to be the down-going basis vectors. Our solution vector will then be a

linear combination of the last three columns of B, and may be written:
wit-1) =B )| 0
Nl e, (2.4.44)

Where C, 1s a 3 x 1 constant vector whose entries will be determined by the boundary
conditions applied at the surface of the body.

We are still free however to specify the initial values for our solution space basis
vectors (1.e. we are free to choose a value for the field matrix Vn(xg’) at some point, x3,

within the layer). In this case we choose Vn(hn_ 1) =1 , which, from the definition of V_,
yields:

BN(hN—l +) = DN(hN—I +) (2.4.45)

Substituting this result into the form for the solution vector in the bottom-most layer
given in equation (2.4.44), and the resulting expression into equation (2.4.43) yields a

form for the stress-displacement vector at the surface:
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w(0) = [P(O, P DN](CON) ~-S = F(0, hy_, +)(C(’)N)_S (2.4.46)

which may be taken as a definition of the transform propagator matrix, F .

From the definition of the field propagator matrix Q (equation (2.4.3)) we have:

(0 +, hy_, +)=D(0+] " P(0, hy_,)D(hy_, +) (2.4.47)

which may be combined with the definition of the transform propagator matrix to give:

F(0, hy_, +)=D(0+)Q(0 +, Ay _, +) -D, Q(o + By +) (2.4.48)

If we partition the matrix D, into 3 X 3 sub-matrices:

m m
D, =( Y D) (2.4.49)
Ry, Rp

and adopt the following notation for the reflection and transmission matrices of the half-

space as a whole:

Ry p= RU,D(O +, Ay +) iy w= g D(O + Ay +) (2.4.50)

then upon substituting the partition equation and these last two results into equation
(2.4.48) we may re-write the transform propagator in terms of the sub-partitions of D,

and the reflection and transmission matrices of the half-space as a whole:
Fia
F(O, hN—l +) 2 11 12
F21 F22
(2.4.51)

(mU m) e e o e
{yRr (@)

where the F, are 3 x 3 sub-matrices of F .
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Now substituting this result, the definition of the surface vector, (2.4.39), and the
surface boundary condition, (2.4.40), into the form given in equation (2.4.46) for the

stress-displacement vector at the surface yields:

Wollie F, Fy,\[0 B Sy
0 Bl lle. S, (2.4.52)
from which we immediately see that:

G = s 21453)

which may in turn be used to show that:
Wo =(F12F22_1) Sr— Sy (2.4.54)

We may then use (2.4.51) to derive explicit formulae for the matrices F,, and F,, :

Fyp=(my +m, RT3 Fo=(ny +nyR3)(15") (2.4.55)
which may be substituted into (2.4.54) to yield:
W, = (mD + mURODN)(nD + nUR%N)_1 S-S
(2.4.56)
by (mD & mURgN) 1 -RRY| (n)'S, -8,

where R=—n,"'n, .

We may use this expression to calculate the surface displacement in the case we are
considering (where we may take S, =0 and the only non-zero entry in the vector S, 1s
the vertical component of stress which is given by the loading function ¢ ). But we will

first develop a technique for calculating the stress-displacement vector at any point within
the body.
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§2.4.6 Buried Sources and Receivers
At any depth x; within the body we may write the field vector v(x3) in terms of its

up-going and down-going components:

Vil x;)

VD(x3)

xs) =

(2.4.57)

Now at the level of the source there is a discontinuity in the field vector v,
corresponding to the discontinuity in the stress-displacement vector w. From the

definition of the field vector we see that this discontinuity, 2, is given by:
. > o
)] = 2t = ( 55 |= D) ¥ (24.58)
D

then from this result and the definition of the field vector in equation (2.4.3) we see that:

W5 =) = v(x +) = Z(x3) = Qx5 +, Ay |o{By_, +) - 2(xS) (2.4.59)

For notational convenience we define:
R} = Ry(x$+ hy_, +) = e (2.4.60)

with similar notation for the other transmission and reflection matrices for these regions.
We take the receiver (the point at which we wish to calculate the stress-displacement

vector) to be at depth x¥ inside the body.
Consider the case where the receiver lies below the the source of deformation (i.e.

where x; < x¥ < h,_,) then since there are no sources below the receiver the up-going
component of the field vector at this point is simply the total reflected portion of the down-

going component. This may be written:

vU(xf) = RD(xf, i 1)vD(xf) (2.4.61)

Similarly, if our receiver lies above the source of deformation we have that:

vo(xf) = R {0, xE)v (%) (2.4.62)
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From the regularity condition in the bottom-most layer we know that there is no up-
going component of the field vector in this region (1.e. v{_,(hN_I +):0). Using the
notation of (2.4.60) we may apply this last expression, equation (2.4.61), and the

partition equation, (2.4.14) to equation (2.4.59) to yield:

v(x3 -) r - e R 0 53
0S s = ) ) - 53 (2.4.63)
Ry 'l-'U(xﬁ —-] _(TSN) lRffN (TSN) ! VD(]?N—] +) D
We may eliminate Vu(h,u_ | +) from this expression to show that:
vy(x =) = R | Ry v (a3 =) + E}’;J 2 5l (2.4.64)

So that from (2.4.62) and (2.4.64) we may derive expressions for both components of

the field vector just above the source of deformation:

=) =[1-RS'RY] (RS2, - =)
(2.4.65)

S _)\= R =
Vﬂ(xj “) i Ru Vu(-".’; ')

Using (2.4.58), (2.4.59), (2.4.61), (2.4.65), and the fact that for any two square
matrices A and B for which the relevant inverses exist we have the relations
A (I —~ A)_l = (I - A)_l —I and A(I - BA)_] = (I - AB)" ‘A we may similarly derive
expressions for the up-going and down-going components of the field vector just below
the source of deformation. Doing so yields:

vp(as +) = [I - R Rf_;”}' | (}:; SRy I;)
(2.4.66)
Pu(xf +) =Ry ,;(.1:;? +)

Given that we are only interested in displacements due to surface loads we need

only consider the case where the receiver lies below the source of deformation .

In this case we may use the definition of the field propagator matrix and its inverse
in equations (2.4.3) and (2.4.24) to show that:




[
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v(xf) = Q(xf, % +) v(xd +) = Q(,r_f +, xf)_ | v(.r.;-f +') (2.4.67)
From (2.4.14) we then see that:
} T'?:N il = T.‘j:f\’ =1 RS
o+ )] = ) | ) I (2.4.68)
RAG I - RAR R

which may be substituted back into (2.4.67) to yield:

Valxf] =

) =- ) - Rt )

i e )]”n( +]
| (2.4.69)

Using the recursion relation in equation (2.4.20) we may write R, in terms of

T Th R
into (2.4.69) and applying the matrix identities we used to derive (2.4.66) yields:

SR EN i ! 4 - . .
) R;" and R;" . Substituting the resulting expression for the reflection matrix

wlaf) = 1= RERE] 13w +) (2.4.70)

We may then extend (2.4.49) to D(.r_{") , and use equation (2.4.70), the definition of

the field vector, v, and the relations between its up- and down-going components given

in equations (2.4.61) and (2.4.66) to derive the displacement vector at xf :

we=|mb+mb RO 1-RERY| T[1-RORS] (55-RESS) @471

which allows us to calculate the deformation at any point inside the body.
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§2.4.7 Surface Loads and Receivers
If we consider a point x; that lies above the source then from the general form of the

surface stress-displacement vector given in equation (2.4.46), and the surface boundary

condition given in equation (2.4.52) we have that:

(W°)=F(o, x)o{xs) = Files) Fils] | vk (24.72)

0 F,(x;) Fylx) || vo(x,)

We may now use (2.4.65) and (2.4.72) to show:
VD(X3) = RU(Oa x3) vu(x3) = (F 22(353))— lEzl()%) Vu(x3) (2.4.73)

Now as X; approaches zero and we enter the upper-most layer of the stratification, we
have that F (0, x3) =D(x3) =D, , which may be combined with the partitioning of D,
(equation (2.4.49)), the form for the stress-displacement vector at the surface given in

equation (2.4.56), and the above result, to show that:

~

R,(0,0+) = (Fzz(o +))_1F21(0 H)=-nyn, =R A

We may immediately apply this result to find the displacement vector just below the
surface. Using (2.4.74) and noting that there are no layer boundaries and negligible

attenuation of the stress-displacement vector between the source and the receiver since

xf— x5 =0 (sothat R =0and T;" =1 ) we have that R>° = R . This in turn yields:

. <y b . ¥
Wo. =My +mUR%N_ -I—RR?)N} (Zg-RZ%)
(2.4.775)

i 1 =l
= |m, +m,R) 1 + nUR%N} (nDZf,)J +nUZf,)

Noting that 'f’(O) =(SW ST>T=DIZ(O) we see that S;= (n02%+nUEZ) so that
(2.4.75) may be rewritten:

Wort= [mD s> mUR?)N:| [nD i nUR%NT IST (2.4.776)

which we could have obtained from (2.4.56) by setting S,, =0 :
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This total surface deformation is all we are in fact interested in, the case we are
considering does not require us to allow non-zero values of the discontinuity in
displacement, S,, , in our form for the source of deformation. We instead specify the
vertical stress at the surface through the stress vector S, and calculate the total resulting
surface deformation.

Although we could have used (2.4.56) to yield the form for the surface
deformation, the formalism of sections 2.4.6 and 2.4.7 is necessary if we want to
calculate deformation or stress throughout the body. While we could propagate from a
surface vector into the body, doing so without the proper methodology re-introduces
exponentially growing terms and undermines the central strength of the procedure.
Maintaining complete decoupling of exponentially increasing and decreasing terms 1s
strictly necessary.

As in the previous two procedures we use this technique to obtain the deformation
over a grid of values in the transform domain and then numerically transform to get the

stress-displacement field in the spatial domain.

§2.4.8 Discussion
This procedure is significantly more theoretically complicated than either of the

procedures discussed previously. Despite this it is still reasonably simple to implement
numerically though it is less conveniently adapted to determining the stress-displacement

vector at depth.

The principle advantage of this technique is that the reflection matrix Ry is

calculated recursively using (2.4.27), (2.4.29), and (2.4.30) which contain no

exponentially growing terms (E” and E containing positive exponentials of z, which are
defined to be negative), as compared with the propagator matrix techniques developed in
sections 2.2 and 2.3. This substantially reduces the variation in magnitude of the matrix

entries, making the procedure correspondingly more robust numerically.

. . . _1
The inverse matrices we are required to calculate are all of the form [A + B]

where B may be a matrix with exponentially decaying entries but A has no depth-

dependence at all (A is usually either a sub-matrix of some D, or the identity matrix as in
(2.4.75) or (2.4.71)) so that the sum of the matrices approaches A as the entries of B get
smaller. This has the effect of keeping variation in the magnitude of the matrix entries to
an acceptable level, so that they are not particularly prone to computational inaccuracies
during numerical matrix manipulation. A second consequence of this property is that the

inverted matrices do not contain any exponentially increasing terms.
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2.5 Numerical Stability of Propagator Matrix Techniques
§2.5.1 Surface Deformation due to a Square Load: Analytical Technigues

While any two numerical techniques may be consistent, absolute accuracy can only
be determined by direct comparison with analytical results. In small-scale engineering
problems it is standard (see for example Timoshenko & Goodier 1970, Love 1927) to
neglect internal buoyancy and pre-stress advection. This simplification often makes
analytical solutions possible and in the particular case of a unit load over a square of side
a on the surface of a uniform elastic half-space, the deformation at the centre of the load
1s given by (Timoshenko & Goodier 1970):

M =0.56a

u3(0]=%1n(1+ﬂ)a#(ﬂ+ﬂ) m

(250

where A and {4 are the Lamé parameters of the body. A similar form may also be

obtained for the average deformation over the area of the load:

(JL+ E,u)

ui'=0.475a . (}L - ;,l)

(2:5.2)

Both forms agree very well with the analysis by Love (1929) in which he derives the
form for the deformation due to a rectangular surface load on a flat semi-infinite half-
space. It 1s worth considering Love's formulation in a little detail as it illustrates some of

the difficulties of the engineering approximation.
L ] ] L] L] T u .
Given an arbitrary point in the body x = (x,, Xa .x_n,) and a point on the surface of

r i # T . . '
the body x = (In X, 0) , we define the distance function between the two:

2 2 2
r(.r, .r) = ((xl - x;]' + (x.j - xi_,)' + x_%) (2.5.3)

We then define the logarithmic and Newtonian potentials:

F(x)=ffs In (x_; + r{x,x’))dx; dx;, (2.5.4)

V(x)= ff r(x..r")"' dx; dx; | (2.5.5)
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where S is the region over which the load is applied. Both integrands become singular at
points inside the region S which raises the issue of analyticity. In his analysis Love
constructs a region, 2, of radius £ around each singularity and allows € to approach
zero. An explicit analytical form 1s found by changing to polar coordinates inside 2 and
considering the limit. Failure to carefully consider the issue of analytical behaviour can
lead to analytical expressions with hidden singularities (see for example Sneddon 1951).
In the absence of external forces, solutions to equation (2.1.3) can be written in
terms of the the logarithmic and Newtonian potentials (Love 1929). The vertical

component of surface deformation, for example, is given by

A+2
1 ( 2l xﬂ) (2.5.6)

ST drp| T u ox; ox

Defining the quantity A(x) to be 0.25, 0.5, or 1, depending on whether x lies on a

corner, an edge, or wholly within S, the form for the derivatives in this expression is:

%:M_zr(x,x')‘ldx;dyg +Alx)ze (2.5.7)
g_)‘éz_“&z% (e, 2] dx; dx; - Alx)m (2.5.8)

which guarantees that our analytical solution is well behaved throughout the body, in
particular directly under the load, and makes an ideal comparison for our numerical

results.

§2.5.2 Numerical Stability of the Propagator Matrix Techniques

Figure 2.6 1llustrates a comparison of the numerical procedures developed in the
previous sections and the analytical technique developed by Love. The results shown are
for a 400 m thick ice sheet with a side of 100 km and centred on the origin. The body

was taken to be uniform with a bulk modulus of 6.5x10°Pa and a rigidity of

3.6x10'"° Pa, and the calculation was performed over a grid of 1024 x 1024 data points,

uniformly spaced at a distance of 2 km . The cross-section shown in the figure
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Figure 2.6: Comparison of results for the basic, conventional and wave propagator matrix techniques of

McConnell (1965), Wolf (1985a) and Kennett (1981) against the analytical procedure of Love (1929)

was taken along the x, -axis though the fit is uniformly good over the surface of the half-
space, all of the techniques considered giving agreement to the analytical solution within
2.5 percent and according very well with the expressions given by Timoshenko in
equations (2.5.1) and (2.5.2).

Having determined that our numerical solutions agree with the analytical solutions
we can compare the numerical stability of the three techniques with depth.

One simple test is to determine the surface deformation of a two layer elastic body,
and 1n a series of increments move the internal boundary deeper and deeper into the body.
Then as the depth of the layer boundary increases, the deformation at the surface should
asymptotically approach that expected for a uniform half-space with the physical
properties of the upper layer.

To maximise numerical stability, a scaling factor was introduced into the
conventional propagator matrix technique. The entries of the propagator matrix being
uniformly scaled by a factor of e~ *"¥! which was removed in the final stages of the
calculation. The results of a series of tests are given in figure 2.7.

The results shown in the figure were calculated for a 400 m thick ice sheet of side
100 km for a body in which the bottom layer has half the rigidity and bulk modulus of
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Figure 2.7: Results for surface deformation under the centre of a square load of side 100 km over a two-
layered half-space. Results are plotted against the depth of the layer boundary which is moved steadily
deeper into the body.

the upper-most (in the upper layer the bulk modulus and rigidity take values of
6.5x10"° Pa and 3.6x10'° Pa respectively). We see from the figure that, as predicted,

as the depth of the layer boundary increases the surface deformation under the centre of
the load approaches that expected for a uniform half space, calculations for a stratified
half-space were only performed to a depth of 5 000 km and compared with the result for a
uniform body. We can also see that the basic propagator matrix suffers catastrophic
numerical errors when the layer depth is between 70 and 80 km and the conventional
technique breaks down between 150 and 160 km.

Scaling the entries of the various component matrices increases the robustness of
the conventional technique without at all affecting the stability of the basic propagator
matrix procedure. In both techniques the source of the numerical instability is the
opposing signs of the exponential terms. Taking the conventional technique as an
example, as depth increases there quickly ceases to be any significant difference between
the cosh and sinh terms in the propagator matrix and it becomes degenerate, scaling
removes any problems with the absolute magnitude of the matrix entries themselves but

cannot combat the degeneracy of the matrix at depth. This effect is magnified in the basic
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, these dimensions the component wave numbers take integer values between 0 and N, ).
Jl This gives us the following result for the maximum value of the exponential term, ¢, in

i the units of our numerical formulation:

b aay L ﬁTCNxZ ¥ ﬁj‘[z
4 max(e )—GXP(W)_GXP(T (259)

| The form for equation (2.5.9) shows that 1t 1s not the actual depth that limits the
H numerical stability of the conventional technique but rather the dimensionless depth,
| normalised in terms of grid-spacing. Having restricted our attention to relatively small
f' loads we need a fine grid spacing to keep the resolution of the load high, which limits the
| depth to which the basic and conventional techniques remain stable.
| Equation (2.5.9) demonstrates that any increase in 0x will proportionately increase
I the depth to which the standard propagator matrix procedures are valid. The results for
figure 2.7 were obtained for a grid spacing of 1 km and may therefore be viewed as

illustrating behaviour with dimensionless depth.
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2.6 Discussion
The basic and conventional flat earth propagator matrix techniques developed in this

chapter have been shown to suffer significant numerical limitations. These limitations do
not affect their suitability to the problems to which they have so far been applied. The
scales in these problems have been large enough that the exponential terms in the
propagator matrices do not get small enough to cause rounding errors to be significant.

The implementation of either a direct inverse procedure or forward modelling
application that relies on superposition of the deformation due to small unit loads requires
a numerical technique that provides stability at depths significantly larger than the width
of the load. For such an application the wave propagation technique is ideal, its analytical
complexity is more than justified by its stability and flexibility. The three dimensional
Cartesian formulation given here allows loads of any geometry to be modelled accurately
at any depth.

The major limitation of the wave propagator technique to this point is the failure to
include either pre-stress advection or internal buoyancy. The deformation due to seismic
sources is not large enough that either of these terms is significant but pre-stress cannot
be neglected when modelling rebound problems. The formulation given here forms the
basis of a flexible and powerful flat earth technique for modelling rebound problems,
however, the effects of both pre-stress and internal buoyancy must be considered before
it may be meaningfully applied to a physical rebound problem. The inclusion of these
terms does not require significant modification of the procedure itself and will be
discussed in chapter 4, while the extension to a Maxwell visco-elastic body and the
details of the numerical implementation will be developed in greater detail in the next

chapter.
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3.1 The Fast Fourier Transform
The Fourier transform and its inverse defined in section 1.3.3 take a slightly simpler

form in the case of a symmetric function such as the vertical displacement of an elastic
half-space by a symmetric load. If we let 1% (x) be the vertical displacement of an elastic
half-space due to a surface load distribution p(x) that 1s symmetric about x =0 then

uf (x) will also be symmetric about the origin and the Fourier transform takes the form:

]’(ug’ (x)) = ﬁé’(v) = Ji ug’(x) e dy= f: uf (x)(cos(wc) - isin(Vx))dx

J: ut (x)cos (vx)dx + f_i uf (x)cos (vx)dx

—1 J: ug’(x)sin(vx)dx +J: ug’(x)sin(Vx)dx

oo

=f: ug’(x)cos(Vx)dx+f u5 (—=x)cos (- vx)dx

0

oo

—1 fow uf (x) sin(vx)a’x +J uy (—x) sin(— Vx)dx

0

=2f°° uz (x)cos (vx)dx (3.1.1)

similarly, the inverse integral takes the form:
7_1(ﬂ§(v))=%fm ﬁ§(v)cos(vx)dv=u§(x) G2
0

The horizontal components of displacement are anti-symmetric (i.e. they satisfy the
relation uf (—x) = —ug(x) rather than (—x) = 7} (x) ), so that when substituted into the
above definitions the results are Fourier sine transforms rather than cosine transforms.
the analytical and numerical properties of both are very similar however and without loss

of generality we will restrict our attention to the particular case of cosine transforms.

Both the transform and the inverse transform involve infinite integrals. This is
something of a problem when evaluating them numerically, unless the function being
transformed only has finite support (i.e. there is only a finite region in which the function
1s non-zero) or asymptotically approaches zero as x becomes large, and does so quickly
enough to allow the integral to converge (which is true of the particular case of the

deformation of an elastic halfspace under a finite surface load). In either case we can
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approximate the actual transform by considering larger and larger finite regions of

integration, using the identity:

lim Jw ut(x)cos (vx)dx =0 (3.1.3)

so that for sufficiently large values of a we have:
f ug’(x)cos (Vx)dx = L?f(v) (3.1.4)
0

The equality would be exact if [0, a] included the entire support of uf (x) ;

Numerically, we are faced with the problem of approximating the Fourier transform
of a function from its value at a set of discrete points. The calculation required to perform
the inverse transform is almost identical and need not be considered as a separate case.
The most efficient technique for calculating the necessary integral is the Fast Fourier
Transform or FFT (see for example Press et. al. 1986). This technique implicitly
assumes the function being transformed has finite support, normally taken to lie within
[O, 7{] , though by scaling appropriately it may be applied over any region. In its normal
numerical implementation, it also assumes that the function values are evenly spaced
throughout this region and that the total number of points at which the function is being
sampled is a power of 2 (for optimal computational efficiency).

This last property allows no other technique for increasing the number of sampling
points than doubling them, which effects the cost of actually performing the transform
(which is an O(Nlog, N) operation where N is the number of data points for which the
transform 1s being calculated), and can be a severe limitation in cases where obtaining the
function values requires a great deal of computational effort (such as for example an

application of the wave propagation technique).
Sull letting uf (x) be the deformation at the point x due to a point load at the origin,

then the deformation due to a load distribution p(x) has the form:

ué’(x):f: uf(x—xo)p(xo)a’xo (3.1.5)

Applying Fourier transforms and invoking the Convolution Theorem (see for example
Spiegel 1968) yields:

% (v)=a3(v)p(v) (3.1.6)
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This allows us to restrict our attention to the deformation due to a point load at the origin,
where we have ﬁ(V) =1. Once we have calculated the response of a given half-space to

a point load in the transform domain we multiply it by the transform of the loading
function and invert to get the deformation in the spatial domain.

If we perform our analysis for a function in the region [O, N Sx] for a fixed integer
N , then the sample spacing, dx , between consecutive data points limits the accuracy with
which we can model features in the spatial domain . If our data points are widely spaced
then we will lose much of our power to resolve high frequency features. The Nyquist

critical frequency (vc = 6x) 1s the largest frequency for which we can numerically
calculate the Fourier transform, any power in the transform function at higher frequencies

will be aliased back into the interval [0, v,
In this particular application we start our analysis in the frequency domain, our data

spacing there will be /sx and we will lose any contributions from frequencies smaller than
this or larger than the Nyquust critical frequency. Our accuracy at these shorter and longer
wavelengths is therefore adversely affected by aliasing. Figure 3.1 shows the effect of
sample-spacing on evaluation of the sine function in the Fourier transform domain, the
larger the spacing between data points compared with the frequency of sine curve, the
poorer the fit of the transform function until the high frequency features of the original
function are lost. Care should be taken to ensure that the sample spacing and the number
of data points are chosen so that the correct range of frequencies are considered in our

numerical scheme and the behaviour of the deformation function is modelled with

adequate resolution.
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Figure 3.1: Plot of sine function in the transform domain for different sample-spacings.
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A more significant risk of numerical error is posed by the analytical properties of
propagator matrix procedures however. Examining the governing matrix of equation
(2.3.4) we see that our flat earth techniques break down at the origin in the frequency
domain (v, =0, v,=0), where the eigensystems become completely degenerate. The
origin corresponds to a load of infinite lateral extent so that after applying the inverse
transform, this indeterminacy results in a constant offset in the resulting function values
from their true values as the transform routine is unable to correctly locate the origin.
However, since we know that the function we are modelling, uf (x.), approaches zero as
X becomes large, we can assume that the value our inverse transform yields at the far
corner of the grid from the origin in the space domain 1s in fact zero and translate all the
other values accordingly. The accuracy of this approximation is dependent on the lateral

extent of our grid and the rate at which the deformation approache;s ZEero.

Figure 3.2 illustrates the effect of this assumption. The results were obtained for a
uniform elastic body with a bulk modulus of 6.5x 10" Pa and a rigidity of 3.6x10"Pa.
Test runs were performed over a series of grids, ranging in size from 64x64 to
1024 <1024 data points with constant data spacing of 2 km. The results were compared
with those for the analytical technique of Love (1929) for an ice sheet 400 m thick and
side 100 km centred on the origin, the cross-sections shown were taken along the x, -axis
though the resulting trends were consistent across the surface of the half-space.

The qualitative behaviour of the numerical models was good for all grid sizes

though agreement with the analytical solution was unsatisfactory until the lateral extent of
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Figure 3.2: Comparison of results of numerical models for different grid sizes for deformation due to a

square load of side 100 km centre on the origin. Cross-sections are taken along the x, -axis.
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the grid was approximately ten times that of the load, when the difference fell below 5
percent. The error fell to less the 2.5 percent when the grid was 20 times the size of the
load (that is, for a grid of 512x512 data points since we only have to model the
deformation throughout the first quadrant where the load has a side of 50 km, results for
the rest of the body may be obtained by symmetry relations), and less than one percent for
the maximum grid size considered. The results for small grid sizes provide accurate
results for spatial gradients and trends, but the larger grids are well within the capacity of
available computing technology and should be used where possible.

A second series of runs were performed in which the grid size was kept constant at

10241024 data points and the grid spacing was varied from 1 km up to 5km or
between two and ten percent of the width of the load. Within this range the choice of
spacing was found not to have a significant effect on the accuracy of the modelling
procedure with accuracy improving slightly as the grid became coarser (in other words, as
the grid became larger with respect to the load being modelled). One significant feature of
the Fourier transform approximation for a square load is that in order to achieve best fit,
the value of the data points at the edge of the load should be halved so as to avoid
oscillations.

Using Fourier transforms as part of any numerical implementation requires that care
be taken when choosing both grid size and spacing so as to guarantee adequate
representation of the data and to minimise errors due to data aliasing and translation of the
origin. For elastic rebound problems on a flat half-space, the lateral extent of the grid
over which the calculations are to be performed should be at least ten times as large as the
feature being modelled, and preferably between twenty and forty times the width of the
load. A grid-spacing of ten percent the width of the load was generally found to be
adequate, provided due care was taken at the edge of the load to avoid introducing

oscillatory behaviour.
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3.2 The Laplace Transform: Numerical Evaluation of the Mellin Integral
As defined in section 1.3.3, and as with the Fourier transform above, the Laplace
transform and its inverse both involve integrals over regions of infinite extent, but in any
numerical formulation we will only be able to evaluate the function over a discrete set of
points. The inversion of the Laplace transform therefore also involves calculating an
infinite integral from function values given for a finite number of data points. The
problem in this case is significantly more difficult however, as we shall discuss below.
From the form for the inverse Laplace transform (otherwise known as the Mellin
integral) given in equation (1.3.7) and the Residue Theorem (see for example Kreyszig
1983) we see that the inverse transform of an almost everywhere regular function may be
calculated by summing the residues of the transform function throughout the entire
complex plane. Numerically locating the transform function's poles and evaluating their
residues is computationally very expensive unless there 1s some way of limiting the search
to a particular region in the complex plane. Even if the nature and distribution of the poles
is somehow restricted it is still very difficult to guarantee that all the poles of the function
will be found unless there is some further constraint on the number of poles the transform
function will have. The chance of missing a pole can however be minimised by using a
rigorous enough search over the region of interest but only at commensurate increase in
the numerical cost, and for the problem of Love number calculations the complexity of the

functions involved is often prohibitive.

For an impulse function in the time domain, S(t) , the visco-elastic deformation at a
given point through time will, assuming regularity, consist of the elastic deformation at
time zero (the elastic deformation, assumed to be instantaneous) followed by a gradual

relaxation to the undeformed state. This may be expressed mathematically:

us(t) = u5 8(t) + X reemss (3.2.1)

where the r, are the residues and the —s, the poles of the Laplace transform of the

deformation. The transform of the deformation function then takes the form:

& ]
i(s)—uf = 2 r (s +5,) (3.2.2)

The deformation for loads with a more complex dependence on time is again a simple
implementation of the Convolution Theorem. In practice the deformation is in fact broken
up into components that are easier to calculate numerically (Love numbers for a spherical

model or functions of wave numbers in the case of a flat earth) but each of these
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components has the form of (3.2.1) so that on re-combining, the total deformation
inherits the same form.

As discussed above, determining the location of all of the poles of a given complex
function is a very difficult numerical exercise, especially if the number and location of the
poles is not constrained in some way. This approach however forms the basis of the
normal mode technique developed by Wu (1978) and Peltier (1985). We may consider as

an illustrative example the expression for surface deformation given in equation 2.4.76:
ON on]| !
w0+:[mD+mURDH”D+nURDJ St Gr23)

Considering this quantity as a function of the transform variable s we see that the poles of

W, +(s) will be those values of s for which the secular determinant of n, + n, R}’ is zero.

This is because the general form for the inverse of a matrix A is given by

AR= A*(det A)_l where A” denotes the adjugate matrix of the system, its elements
being the corresponding cofactors of the matrix A (see for example Strang 1980). If the
elements of A are all finite then the elements of the adjugate matrix must also be finite, so
that the only possibility for the expression to become singular is for the determinant to
approach zero. An inversion of (3.2.3) may therefore be performed by searching for a
complete set of zeroes of the determinant of n, + ny R} , and calculating the residues of
the entries of the adjugate matrix at each of the poles.

This approach is particularly numerically intensive, requiring an iterative routine to
determine the location of the zeroes of the determinant, each iteration requiring
recalculation of the matrix to be inverted and its determinant, and the procedure ending
with a calculation of the residues of the cofactors.

Algebraic and physical considerations may be used to constrain the total number of
poles the system has (see, for example, Wu & Ni 1996, Vermeersen, Sabadini, & Spada
1996a). Numerical instability may however become a serious concern if the iteration
procedure 1s not confined to an appropriate region of the complex plane.

In the calculation of glacial rebound, a less numerically intensive inversion
technique is often employed. Of these perhaps the most notable is the pure collocation
technique proposed by Schapery (1962) (see also Mitrovica & Peltier 1992) where a set
of exact poles is replaced by a set of hopefully similar values of the transform variable
chosen a priori.

In the collocation approach we approximate the deformation given in equation
(3.2.1) by the function:

N
u;(t)=u355(t)+k; Rke‘sz" (310.4)
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where the s; are chosen a priori to coincide as closely as possible with the values that
might reasonably be expected for the exact modes of relaxation. The coefficients R, are
then chosen to give the best fit of i, to the transform function, i, , so that they satisfy the

equation:

N

: s o -1
Hi*(sf)'“-&:;;g (SJ' +Sk) Rk:;; G Ry (@02.5)
This technique is however prone to a number of numerical instabilities. If the

number of collocation points, N, is too large, or the spacing between them is too small
instability in the pivot points of the matrix (é’ J.k) may result (see for example Mitrovica &

Peltier 1992). Numerical instability in the calculation of the quantity ii, (sj) may also
occur if the sample points chosen are inappropriately small. Johnston (1993) suggests
that pivot stability may be addressed by considering instead the associated problem:

&;(s;)r uk = S;(S} + S;)_ l & = ;ﬁi LBy (3.2.6)

=l 'Sk

which significantly reduces the condition number of the matrix (¢;). This adjustment is
doubly attractive when considering Heaviside and stepwise linear loading functions where
the quantity R, = ®.. is a more useful quantity to calculate. The form for these terms
illustrates an important source of numerical error for the collocation technique. Love
number calculations are often inaccurate for very small values of the transform variable s
(Johnston, personal communication). Even very small errors in this case are magnified
by the division by s and can have a significant effect on the final form of the function as
we shall see later.

The accuracy of the collocation technique depends also on how closely the
parameters s, approximate the body's actual modes of relaxation. The lack of a formal
system for selecting these various parameters to give optimal accuracy and the technique’s
susceptibility to numerical instability makes it rather suspect and the development of a
more robust and numerically convenient procedure for inverting from the transform
domain is one of the most significant outstanding theoretical problems in the field of
visco-elastic loading problems.

Wu & Peltier (1982) employ a mixed collocation technique in which the poles of the
transform function are found as for the normal mode analysis scheme and the residues
found by solving an equation analogous to (3.2.6) rather than determine them directly
though this represents only a marginal numerical saving and is prone to the same
limitations as the normal mode technique in the compressible case where the regularity of

the transform function is prone to failure.
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The collocation procedures are in fact a special case of a larger class of numerical
techniques for inverting from the transform domain that centre on approximating the

function as a sum of powers of exponentials.
A more direct implementation of this class of technique was first proposed by
Erdélyi (1943), (see also Papoulis 1956, Lanczos 1957, Davies & Martin 1979), this

method relies on the expansion of #; (Z) in terms of Legendre polynomials of even order:

u(f)= 2 a,P,,(e) (3.2.7)

Applying the Laplace transform to (3.2.7), letting s = (2k + l)r, using the change of
variable x = e™", consulting standard tables of integrals (see for example Gradshteyn &

Ryzhik 1980), and simplifying the resulting expression gives:

rii (2K + 1)) =

oo

U, (l‘) e~ (2k+1)rt gy

~
S

i P2n —rt 2k+1)rtdt

2k dx

i
o), 2l

I
IIM8

v 2P 2k
(k n) (k Bt 3/2)

I
nM8

a,

i (k—n+1) .
=0 2(k+112) (3.2.8)
where we define ( j)n :
e[ 1 drn=e
’LIO(]+m) aliter

BE259)

The system of equations (3.2.9) may be solved recursively to get the coefficients of the
Legendre polynomials, a,, in (3.2.7) to whatever degree of accuracy is required.

In the techniques so far discussed we have chosen an expansion for the
deformation, u3(t), and determined the values of the coefficients of expansion by
collocation. It is however often more appropriate to expand for the transform function,

although rather than expand in powers of s or ¢ ™, we use instead inverse powers of
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s represented by a new variable z based on a bilinear transform: z= (”“)/(HC). The

quantities a and c are constants chosen such that ¢ > a, the transform mapping the

region [- (a+9)/, , oo] onto [—1, 1] :

Of the various forms of this technique many require evaluation of the transform
function at points away from the real axis. In the case of either Love number or
propagator matrix calculations we see from (1.3.13) and (1.3.14) that complex values of
s result in complex values for the Lamé parameters which makes computation possible
but cumbersome. A bilinear procedure requiring evaluation of the transform function
only along the real axis would ideally suit our needs.

Piessens (1972) proposes a class of such techniques in which he approximates the
transform function with a series of Jacobi polynomials of z. He focuses particularly on
the special case of Chebyshev polynomials and we will follow his example. In this

approach we write the transform function in the form:

L~t3(s)=s‘(a+1)r§6 a, Tn(l —bs‘l) (3.2.10)

where o 1s a constant chosen so that for the transform function under consideration the

following relation holds for large values of s :
fi(s) ~ s~(@+1) (3.2.11)

From (3.2.2) and the Convolution Theorem we see that for the particular case of the
deformation of an elastic body under a Heaviside or stepwise linear load, &« =0 and may

be neglected in our treatment.

Inverting (3.2.10) term by term we write:

w(t)= 3 a, T(%) (3.2.12)

where the functions ¥, can be evaluated in a number of ways. For small values of n the

inversion can be done term by term:
VA (x) — |
el -2 (3.2.13)

‘PQ(x): 8 s ay
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Then these terms can be used to start one of two recursion schemes. The first uses the

recursion relation for Chebyshev polynomuals (see for example Spiegel 1968):

Tz o (3.2.14)

Substituting for x and inverting yields:
‘Pn(x) =7 ‘I’n_l(x) - 'f’n_z(x) —4f0x 'f’n_l(x')dx' (3.2.15)

This approach has the advantage of analytical simplicity but makes numerical evaluation
rather expensive as the polynomials have to be considered as power series. An alternative

formulation is to view the ¥, as generalised hypergeometric functions and apply Sister

n

Celine's technique (Rainville 1960) which yields the recursion relation in the form:
- 'Pn(x) = (A + Bx) 'P,l_l(x) + (C + Dx) ‘I’n_z(x) + E ‘Pn_3(x) (3.2.16)

for n > 2 . The coefficients in this relation are found to be:

A_(n—U%2n—ﬂ_2 o n=1)3=7)

F n(n——Z) ? T n(n—Z)
Bedm C=-(1+A+E) @219
D=4@—Q
n(n—2)

The coefficients from (3.2.10) are given by a least squares analysis (see for

example Spiegel 1968):

=258 [ o(g1- 27 1,3

_2-0, [ CD(Z)(I —zz)_l/z cos(n cos‘lz)dz

J-1

:Egﬁuﬁndam@amh¢w¢ (3.2.18)

which can be approximated numerically:

N

anz(Z-— 5On) - (D(COS %)COS(” (Pk) (B9

k
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where we define:

gokz(%cjll)% @(z):b(l —z)—lﬁ(b(l —Z)—l) (2222

It is standard to choose N in (3.2.19) to be the degree of approximation of the
transform function, so that (3.2.10) and (3.2.12) become finite sums to N .

§3.2.1 Comparison of Numerical Techniques for Evaluating the Mellin Integral

Since its development by Schapery (1962) the pure collocation technique has been
widely used by investigators of glacial rebound (Peltier 1974, 1976, Nakada & Lambeck
1987) and one of the more popular techniques used in this field for inverting the Laplace
transform. It suffers from a number of significant limitations however which have not so
far been satisfactorily resolved and have led some workers to avoid it wherever possible.
In this section we will compare the performance of the pure collocation technique with the
alternative procedures presented above and attempt to develop some criteria for
determining the applicability of each.

Inversion of the Laplace transform is most frequently required during Love number
calculations, making this problem the most suitable for comparison of the techniques so
far discussed. Figure 3.3 shows the results of Love number calculations performed using
normal mode analysis, collocation, bilinear transformation, and Legendre polynomial
approximation. The results given are for an incompressible body with rigidity and density
calculated numerically from the PREM model of Dziewonski & Anderson (1981) and
averaged over each region in the body, the lithosphere, low viscosity channel, upper
mantle, lower mantle, and core. The lithosphere in this model is taken to be elastic and 70

km thick, the low viscosity channel extends from the base of the lithosphere to the 400 km

discontinuity and has a viscosity of 3x10°° Pa s, and the remainder of the upper mantle

;g glven a viscosity of 10°' Pas. From the 670 km discontinuity to the core mantle
boundary, the viscosity is taken to be 10** Pas while the core itself is treated as being
liquid.

The agreement between the normal mode and bilinear results is initially exact to

within machine accuracy but rapidly deteriorates until the bilinear transform is no longer
producing reasonable results by approximately 8 x10°yr years. Increasing the scaling

factor b in equation (3.1.16) to try and expand this region of agreement adversely affects
the accuracy of the integral in equation (3.1.25). The results given in the figure are

typical for values of b ranging between 0.03 and 0.1, with N between 60 and 90.
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1 Comparison of results for numerical inversion of the Laplace transform for the Love numbers of an

incompressible body using normal mode, pure collocation, bilinear, and Legendre approximations.

| The agreement between the normal mode technique and the Legendre polynomial
| approximation 1s very good except for very short time-scales (less than approximately
ﬁ‘ 2% 10’ yr) on which the Legendre polynomial procedure is not entirely stable. The
results 1n the figure are typical for values of the scaling factor r in equation (3.2.7)
(:1 ranging between 0.03 and 0.1, with the Legendre polynomial series truncated between

degree 10 and 15. Solving the recursive linear system in equation (3.2.8) is prone to

numerical error if the maximum degree in the summation is too large. The exact limit
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depends on both the earth model and the degree of the Love number being calculated, for
the model considered here the cut off was at degree 18.

The agreement between the collocation technique and the normal mode procedure is
excellent on all time scales. The results from the figure are typical for a wide range of

input variables from 25 to 44 collocation points spaced uniformly between 2 to 3 points
per decad in log,,s -space and starting from a lower bound of 10”"s™! (corresponding to

time scales of the order of 3x10°yr ).

Considering only an incompressible body allows us to apply the normal mode
technique for comparison, moving to a compressible body, however, renders the normal
mode technique rather difficult to implement numerically for earth models with either a
thin lithosphere or a low viscosity upper mantle. The increased complexity of the
rheological model in turn complicates the behaviour of the secular determinant of the
governing matrix to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>