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I. INTRODUCTION 

The problem of the propagation of electromagnetic energy around a 

spherical body where the diameter of the sphere is large with respect to 

the wavelength of the energy was first solved by Lord Rayleigh in terms 

of an infinite series of spherical harmonics. The solution was practical­

ly useless from an engineering point-of-view because of the large number 

of terms required to approximate the final answer. Subsequently, G. If. 

Watson developed a transformation which transformed the infinite series 

into a contour integral which is then evaluated by the method of residues. 

Die residues of the integral involve asymptotic expansions of the Hankel 

functions of order one-third or the Airy integrals. A second approach to 

the problem, and the approach which serves as the basis of this paper is 

that developed by Pryce (16) and Pekaris (15) in which the earth is as­

sumed to be flat and the atmosphere homogeneous. Hie solution now reduces 

to an infinite integral of zero-ordered Eessel functions. Schelleng and 

Burrows (17) proposed a model wherein the earth was assumed to have a 

modified radius of about 4/3 the actual radius and the earth's atmosphere 

was assumed to be homogeneous. This model was used to account for the 

gradient of the refractive index of the earth's atmosphere. All of these 

models refer to the so-called "normal mode" of propagation as distinguished 

from the "turbulent scatterer" theory of propagation of electromagnetic 

energy which will be discussed later. Very complete discussions of normal 

mode theory are included in: "Terrestrial Radio Waves" by Bremmer (3) 

and Volume 13 of the M.I.T. Radiation Laboratory Series : "Propagation of 

Short Radio Waves" by Kerr (12). In 1958, Carroll and Ring (4) published 
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the results of a very extensive investigation into the propagation of 

radio waves by the normal modes of the atmosphere. These results indicated 

that the classical "airless earth" modesi were not valid for calculating 

the effects of the internal reflections of a stratified atmosphere. In 

1959 Tukizi (18) published a theory which, while using a different approach 

to the problem, achieved results which had excellent comparison with ex­

periment and, which are corroborated by this analysis. Tukizi's results 

indicate the utility of the normal mode theory in predicting the strength 

of the field in the diffraction region and especially in predicting the 

radial attenuation of the field in the diffraction region. 

The term "diffraction region" as referred to by Tukizi (18) and a 

number of other authors stems from the theory that the presence of the 

field over the horizon from the source is due to a diffraction process 

caused by the curvature of the earth. Other authors call this same phe­

nomenon by different names; for example, Carroll and Ring (4) use the term 

"Twilight region". In this paper, the terminology which is favored by 

the proponents of the "turbulent scatterer" theories will be used; "trans-

horizon field". This will mean that field which is over the horizon from 

the source. 

Hie other theory of propagation of short radio waves over the horizon 

was first introduced by Booker and Gordon (2) in 1950. Basically, the 

Booker-Gordon theory is that spherical or elliptsoldai anomalies in the 

refractive index act as scatterers of electromagnetic energy. These 

anomalies, often called "blobs", are supposedly located in the common 

volume of the transmitting and receiving antenna beams and serve to 
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scatter some of the transmitted energy down to the receiver. These 'mobs" 

are being formed continuously, reducing in size, and finally dissipating, 

and are a direct manifestation of the turbulence of the atmosphere. The 

turbulence can be described in a statistical fashion and there are sev­

eral theories concerning turbulence which serve as the basis for these 

arguments (9, 19, 20). The advantage of the turbulent scatterer theory 

is that the statistics of the turbulence lead directly to a statistical 

character for the field in the diffraction region. In nonoal mode theory, 

the atmosphere is assumed to be static, so that there is no statistical 

character to the transhorizon field. The turbulent scatterer theory is 

very attractive from a number of points-of-view, most of which involve the 

statistical character of the field in the transhorizon region. The most 

significant shortcoming in the turbulent scatterer theories is that the 

intensity of the turbulence, or the variations in the index of refraction 

in the "scattering blobs", is not sufficiently large to account for the 

fields observed since in most cases, the common volume of the antennas 

is very high in the troposphere. 

At the present time the Booker-Gordon theory is most widely accepted 

with the majority of the work being done in correllating the meteorolog­

ical phenomena with the field in the transhorizon region. A number of 

good resumes of the Booker-Gordon theory and the various turbulence 

theories are available (2, 9, 19, 20). 

The present analysis uses the flat-earth approximation applied to the 

normal mode theory of transhorizon propagation. Die results reported by 

Pry ce (16) are acheived by a different technique and the analysis is extended 
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to include the effects of an inhomogeneous atmosphere with a constant 

gradient of refractive index. Finally, a technique for approximating an 

arbitrary profile of refractive index is developed and tvo model atmospheres 

are considered. Field strengths calculated on the basis of this analysis 

are compared with experimental data reported by Dinger, Garner, Hamilton 

and Teachman (5) with good results. 
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II. PROPAGATION H A STRATIFIED ATMOSPHERE 

A. Definition of the Problem 

The problem to be considered is that of the propagation of electro­

magnetic energy around a spherical earth from a source located at some 

point on or above the surface of the earth. The atmosphere of the earth 

will be assumed to be spherically stratified; that is, the index of re­

fraction is a function of radius. The coordinate system for the spherical 

earth is shown in Figure 1. The source is located at the point r = a + d, 

where a is the radius of the earth. Thus, d is the height of the source 

above the surface of the earth. 

The analysis is concerned with the transhorizon field only, since the 

intent of the analysis is to develop an analytical technique •which will 

allow a piecewise-linear approximation to any profile of refractive index. 

The transhorizon field will be solved for both magnetic and electric di­

pole sources located in an atmosphere having a linearly varying profile 

of refractive index. This solution will be compared with the result ob­

tained by Pryce (16) for the case of a homogeneous atmosphere. This will be 

the case of a profile of refractive index with zero slope. The article by 

Pryce (16) is the basis of the present analysis since the "earth-flattening" 

transformation and the Airy Integral solution with its rapidly convergent 

asymptotic expansion is a very attractive technique. It should be pointed 

out that Pryce (16) solved for the cases of vertical and horizontal dipoles 

rather than the cases of electric and magnetic dipoles considered in this 

analysis. The essential difference lies in the fact that there are no 
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Figure 1. The spherical polar coordinates of the problem 
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azimuthal variations to consider when using the elementary dipoles as op­

posed to the more practical antennas of Pryce's analysis. The fact that 

the elementary antennas of this analysis are not practical antennas con­

figurations does not detract from the significance of the results because 

it is the ratio of the energy in the transhorizon region to energy which 

has traveled a corresponding distance in free-space which has direct ap­

plication in engineering problems. This ratio would be the same for any 

antenna configuration of a given polarization. Thus, it is a simple mat­

ter to estimate the strength of the field in the transhorizon region from 

the free-space field strength. 

The analysis will begin with Maxwell's equations from which Hertzian 

vectors for both the magnetic and electric dipoles will be developed. The 

components of the electric and magnetic fields for both types of polari­

zation will be expressed in terms of the Hertz vectors. The inhomogeneous 

wave equation for the Hertz vector will be reduced to a pair of single-

dimensioned differential equations by the separation-of-variables tech­

nique. At this point the "flat-earth"approximation will be made. The 

"flat-earth" approximation is a transformation from spherical-polar co­

ordinates to cylindrical coordinates. After the transformation has been 

made, the two one-dimensional differential equations will be solved. The 

Hertz vector will be found by weighting each term of a complete ortho-

normal set of solutions in one variable by an appropriate Green's function 

of the other variable. The resulting expression will be the Hertz vector 

for a monochromatic elementary dipole of unit strength. The Green's func­

tion technique is well suited to making a piecewise or sectionally-linear 
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approximation to an arbitrary continuous curve. The resulting indefinite 

integrals are evaluated by means of the residue summation of the theory of 

complex variables. The asymptotic expansion of the Airy integrals allows 

the final expression, which is an infinite series, to be approximated by a 

few terms. 

B. Maxwell's Equations for the 
Inhomogeneous Atmosphere 

Maxwell's equations in spherical-polar form for application to an in-

homogeneous atmosphere are: 

v x £ (r, 9, f ,  t) = -n  ̂

V x 7~/(r, 9, </>, t) = a£(r, 9, /, t) + e(r)  ̂̂  

V • e(r)£(r, 9, /, t) = pQ 

V • >f (r, 9, /, t) = 0 

Where £r(r, 9, pf, t) is the electric-field-intensity vector, 7/ (r, 9, /, t) 

is the magnetic-field-intensity vector, a is the conductivity of the med­

ium, pc is the conduction charge in the medium, e(r) is the dielectric 

constant of the medium; in this case, the permittivity of the medium is a 

function of the radial distance, and p is the permeability of the medium. 

The radiation will be assumed to be monochromatic of frequency œ; that 

is, the time-dependence can be written in the form; ê "*. Under this 

condition, Maxwell's equations can be written in time-independent spheri­

cal -polar form as; 
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V x E (r. oQ = -jauH (r, 9, /) 

V x H (r, 9, <f>) = a E (r, 9, <f>) + jm (r) E (r, 9, <f>) 
2 

V • e(r) E (r, 9, /) = 

V • if(r, 9, <f>) = 0 

C. The Magnetic Dipole 

A magnetic dipole of strength M is defined to be a loop of current of 

magnitude I and radius r such that M = lim rl, and is characterized by 
r -*-o 
J—>-00 

the following field relationships : 

Er = B,r He = 0 • 

The formulation of the Hertz vector for a magnetic dipole in an inhomo-

geneous atmosphere shown here is due to Friedman (7). Maxwell's equa­

tions for field components with no azimuthal variations in a charge-free 

inhomogeneous non-conducting medium are: 

V x E (r, 9) = -jcqj. H (r, 9) a 

V x H (r, 9) = jof(r) E (r, 9) b 
3 

V ' £ (r) E (r, 9) = 0 c 

V (r, 9) = 0 d 

Ey Equation 3(c): 

V . e(r)~E (r, 9) = 0 , 
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s(r) E (r, 9) can "be written as the curl of a vector e(r)1T (r, 9). mat 
ill 

is; 

e(r) E (r, 9) = -jô i V x ̂ (rjTT̂  (r, 9) » 4 

The seemingly arbitrary form of Equation 4 is justified by the fact that 

it is desired to develop a Hertz vector which is applicable to a magnetic 

dipole. For this reason, the operation above and other somewhat arbitrary 

definitions in the equations to follow are justified. Using Equation 4 

in Maxwell's equation, 3(b) leads to: 

The expression in parentheses can be written as the gradient of a scalar: 

Solving Equation 6 for the magnetic field intensity H (r, 9), results in: 

V x H (r, 9) - cu2n V x e(r)TT̂ (r, 9) = 0 5a 

or 

V X [H (r, 9) - œ2H e(r) TTJr, 9)] » 0 

6 

7 

Equation 3(c) can be rewritten in terms of the Hertz vector as: 

E(r, 9) = iffy Vxe(r)TTm (r, 6) . 8 

Substituting Equations 7 and 8 into Equation 3(a) results in: 

V x 77TT v x e(r)TT (r, 9) - co2̂ e(r)T[ (r, 9) - vY(r, 9) = 0. 9 
t- ̂  x / in in 
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Substituting Equation 7 into Equation 3(d) results in: 

(Mi V • e(r) 1 \ m(r, 9) + V2 (r, 9) = 0 . 10 

Friedman (7) points out that the divergence of Equation 9 will result in 

Equation 10, therefore it will be sufficient to consider only Equation 9. 

Assume that the Hertz vector is radially directed and given by the equation: 

TTm (r, 6) ="ar r Û  (r, 9) . 

Again, this somewhat arbitrary assumption is justified by the fact that it 

leads to the proper field components. Actually, this Hertz vector must 

reduce to the classical free space Hertz vector if the medium is assumed 

to be homogeneous and it is known that the free space Hertz vector has the 

same direction as the source dipole. In both cases, the source dipole is 

oriented radially. 

—ï du (r, 9) 
V x e(r)TTm (r, 9) = e(r) — , 11 

and 

, ==. r, . ÔU 

v x ̂  v X e(r)IT(r, 9) - -ar|? + - Cot 9 ̂  

*4i %-$?} • 

Ey Equation 9, Equation 12 must be equal to: 

 ̂e(r)lT rUm(r,9) +% â̂ '9' +tfl • 13 

Equating the coefficients of the unit vectors if and results in: 
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and 

, a^u du__ n ^(D 
— 9; -u ±  ̂O ,—-U J- >-<-> - TT U/ -
r dQ2 ' r 09 " ~ - " "m " dr " 

i aum + s\ iaC 
?5~ë+5?Sê-?Sê' 15 

Equation 15 can "be integrated once with respect to © to give 

JflM) -

Substituting Equation 16 into Equation 14 results in: 

i A du d2r U 

16 

17 

Equation 17 is recognized as Helmholtz's equation in spherical polar co­

ordinates applied to a function with no azimuthal dependence. Thus, it 

is shown that for the magnetic dipole case, the equation to be solved is 

V2 Um (r,©) + œ2n e(r) U (r,9) =0 18 

regardless of the stratification of the medium. 

Once the scalar function U (r,9) has been determined the Hertz vector 

TT"m(r,9) can be written and the components of the electromagnetic field 

can be formulated. The field components are : 

Er = 0 (a) Hr = 1 + H£(r)Um (d) 
d r 

E9=° He = ?èe* <e> 18 

dU 
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The equation "which must he solved to determine the components of an 

electromagnetic field propagating from a magnetic dipole located in an in-

homogeneous atmosphere is: 

. A i du 0 d2rU 

r ~~f + r COt 9 5T + œ ̂  €(r) r Um + T = 0 ' 17 
r 09 r dti m dr 

Assume a product-type solution of the form 

Um(r,0) = R(r) 6(0) . 20 

Substituting Equation 20 into Equation 17 results in: 

TT~ + IT" + ̂ m2ne(r) + |- + cot 6 |- = 0 . 21 

2 
The separation constant ̂  is defined such that: 

" » . ? 
0 + cot e 9 + A 0 a o 22 

m 

and 
, /\2 

R + — + (co2ne(r) - —| ) R « 0 23 
r 

and 

\2>0-
At this point it will be appropriate to develop a corresponding set 

of equations applicable to the electric dipole. 

D. The Electric Dipole 

An electric dipole of strength M is defined to be two charges of mag­

nitude Q, having opposite polarity and located a distance d apart, such 
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that M - lin dQ . 

d-"> o 

As in the case of the magnetic dipole, the time-dependence of the radiation 

will be assumed to be of the form, ê "*. Actually, the electric dipole is 

the radiating element, short compared with wavelength, which is used as an 

initial example in elementary texts on antenna theory (l). The formula­

tion of the Hertz vector for the electric dipole again follows the work of 

Friedman (7). Starting from Equation 3(d); 

V -lf(r,9) = 0 

H (r,©) can be written as the curl of a Hertz vector, 

H (r,©) = V x 71̂  (r,©) . 24 

Substituting Equation 24 into Equation 3(a) results in: 

V x E (r,©) = -jcqi V xTTe(r,0) 25a 

or 

V xlT(r,6) + jonTf̂ (r,e) = 0 . 25b 

The expression in parentheses can be written as the gradient of a scalar 

<f>{ r,©). 

E (r,9) + jonTTg(r,e) « V / (r,9) 26 

Solving Equation 26 for the electric field intensity vector results in: 

E (r,9) = -j<4iTT (r,©) + V <f> (r,9) 27 
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Substituting Equations 24 and 27 into Maxwell's equations 3(b) and 3(c) 

results in : 

V x V x TTg(r,@) =» co2n e(r) 7Tg(r,9) + ja£(r) V / (r,9) 28 

and 

-jqi V • e(r) TT (r,9) + V • e(r)V pf(r,@) = 0. 29 

Again, it is noted that the divergence of Equation 28 is Equation 29; there­

fore, it will be sufficient to consider only Equation 28. Assume that the 

Hertz vector to be radially directed and given by the equation: 

Tfe(r,9) ="ar r Ug(r,0) . 30 

Substituting into Equation 28 and equating the coefficients of the unit 

vectors"ar and aQ, results in the two equations : 

du _ d̂ U 

r r d 9 

and 

hoot 8 st + hrJ?+ ̂ e(r) "e + 0 si 

Integrating Equation 32 once with respect to 9 results in: 

drU (r,9) 

T̂'9) - wun —i— 33 

Substituting Equation 33 into Equation 31 results in: 

h00t 8 s~t+ h rj+ ro2|je(r)ue+ & jsirfy= 0 54 

or 
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y! T co?Hb(r) ue 

34 

Equation 54 looks just like the corresponding equation which vas developed 

for the magnetic dipole except for the terms which are due to the gradient 

in the permittivity of the medium. This difference is to be expected since 

the Hertz vector is a measure of the electric field; and, since the elec­

tric flux density must be continuous, the electric field intensity must 

vary on account of the inhomogeneities in the permittivity of the medium. 

Just as in the case of the magnetic dipole, once the scalar Ug(r,6) has 

been determined, the Hertz vector is known and all the field components 

can be formulated. The field components for the electric dipole are: 

b 

a 

^ = 0 
c 

35 

H = 0 d 
r 

e 

dU 
e 

f 
" W 

In the electric dipole case, the equation which must be solved is: 
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.au . a^u _ au 
e , -L , _ e , ,'d 

i+ ?§"î + Hzi? + -2cot 9 r! + mt*M u, 

îM !ik. i lM u .o 

à t' 1 " r r à 9 r 

du 

si - ? "e 

Assuming a product-type solution, that is: 

U (r,e) = R(r) 9(9) 36 

Substituting into the differential equation and separating the variables 

results in the tvo equations: 

" « . p 
9 + cot 9 9 + A 9 = 0 37 

e 

2 

R" + i (2 - r ) Rf + (a)2(i€(r) - — - y4 ) R - 0 38 
e(r) r v ' 

2 .2 
Where the separation constant ̂  is defined such that > 0. The Equa­

tions 37 and 38 are quite similar to the corresponding equations for the 

magnetic dipole, hovever, Equation 38 is more unwieldy than either of the 

other equations. This analysis is confined to an atmosphere vith a lin­

early-varying profile of refractive index. This means that the gradient 

terms of Equation 38 will be a number rather than some function of radius. 

Thus, certain simplifying assumptions can be made during the analysis. In 

particular, vhen considering the portion of the atmosphere in which the 

gradient of the refractive index is very small, Equation 38 reduces to the 

equation developed for the magnetic dipole. 

Having developed expressions suitable for determining the field com­

ponents of the electromagnetic wave propagating from either of the tvo 
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source types, the next step is to convert from the spherical geometry of 

the problem to the cylindrical geometry of the "flat-earth" approximation. 

E. The Flat-Earth Approximation 

The earth-flatting approximation is nothing more than a transforma­

tion from a spherical-polar geometry to a cylindrical geometry. The 

transformation equations are: 

= a in r/a 

39 
p = a 9 

Where p represents radial, distance or range and "̂ represents height. These 

are the same transformation equations used by Pryce (16) but reduced to 

the case of no azimuthal variations. The transformation is such that a 

cone with its apex at the earth's center becomes a cylinder and the sur­

face of the earth becomes a plane oriented such that the axis of the 

cylinder is normal to the surface of the plane. The introduction of the 

"earth-flatting" approximation is credited to Schelleng, Burrows and 

Ferrell (17) who, in an effort to simplify the analysis of the transhorizon 

field due to the curvature of the "rays" of energy from the source, decided 

to transform to a coordinate system where the rays became straight lines. 

This leads directly to the equivalent radius of the earth concept, or the 

so-called 4/3 earth radius. Subsequent work considered the earth to be 

flat which meant that the rays were bent upward. This is no problem if 

one is interested in a solution of the differential equation governing 

the propagation of energy as opposed to the ray-tracing technique. Pryce 

(16) credits the final form of the transformation equations to C. L. Pekaris 
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for the range transformation and to Prof. E. T. Copson for the height 

transformation. Pekaris has shown (15) that the error involved in making 

the small-angle approximation is less than 2$ for ranges up to one-half 

the radius of the earth. Copson pointed out that the height transforma­

tion » a £n r/a is preferable to the somewhat more intuitive 7̂ = r - a 

because the geodesies correspond to straight lines in the first case and 

only approximate straight lines in the second case. 

The differential equation with >|, the height variable, as the inde­

pendent variable will be referred to as the height-gain equation. The 

differential equation having p, the radial variable, as the independent 

variable, will be called the range equation. Pekaris analyzed the error 

involved in approximating the height-gain equation by Stoke's equation and 

concluded that the error becomes quite large at moderate heights. Koo and 

Katzin (13) have shown that the height-gain equation can be made exact by 

making a change-of-variable so that the height-gain equation becomes 

Stoke's equation. It will be seen that the range equation transforms into 

Vessel's equation of order zero with a parameter A/a. The solutions to 

the transformed range equation will be zero-order Bessel functions and 

the solutions of the transformed height-gain equation will be Airy inte­

grals. 

F. The Airy Integral 

The Airy integrals, signified by Ai(z) and Bi(z) are solutions of 

the differential equation known as Stoke's equation : 
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u y7 - z U(z) = 0 40 

dz 

The differential equation is of second order; therefore, there are two 

linearly independent solutions, Ai(z) and Bi(z), defined by the integrals : 

Ai(z) = -
x it 

3 
cos (sz + 2— ) ds 41 

and 

00 

Bi(z) = ̂  I | exp (tz - |-) + sin (tz + dt 42 

A complete discussion of the Airy integral is given in Jeffreys and 

Jeffreys (ll). The relationship between Airy integrals and the general 

solution of Stoke's equation, Bessel functions of order one-third, is 

given in Die Annals of the Computation Laboratory of Harvard University, 

Vol. II, entitled "Modified Hankel Functions of Order One-Third" (10). 

The Airy integral solutions are shown to be superpositions of the Hankel 

function solutions. The particular advantage of the Airy integral formu­

lation is rapid convergence property of the asymptotic series expansion 

of the Airy integral solutions. The asymptotic expansions and their 

associated intervals of convergence are listed below. 

Ai(z)̂ _L t-i exB (_! ,3/8) L . 1=5 z-3/2 + kl̂ ll z-3 

8f? 3 I 1,48 2! 48' 
2 

1'7'13'5'11'17 _-9/2 . 
= z ' + • • • 43 

3Z 48 

for -it < arg z < +it. 
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Bi(z) •  ̂s"1'4 exp <§ Z3/2)[l + Ma z"5/2 + Z": 

44 
. 1-7-13-5-11-17 „-9/2 , 
T ^ Z T • e • 

5! 48 

for -l/3 jt < arg < + l/3 it. 

When arg z = nj set z =5?exp (jit) , which results in: 

Ai(z) = sin (2/3%̂  + it/4) " 9® =os (2/3̂ 2 

T 45 

+ %/4)y 

Bi(z) - l/4[ï(?I cos (2/3̂ /2 + V4) + <Hf) sin (2/3f5̂  

+ *A)} 

where 

P(f)̂ l - ̂ f̂3 + 1-7-13.19-5.11.13.19 + ___ 47 

21 482 4! 484 

and 

<*?> ~ P® ̂"3/2 - W-15T'U f "9/2 + 
3 J 48 

48 

It should be noted that the second term of eauh expansion is about one-

tenth of the first term for | z | = 1. The functions Ai(z) and Bi(z) are 

chosen as the fundamental pair in such a way that one of the solutions, 

Ai(z), would decrease exponentially along the positive real axis and that 

both of the solutions would be of equal amplitude and oscillatory, but 

differing in phase by it/2 radians, along the negative real axis. These 
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solutions are most suitable for application to propagation problems be­

cause the first condition provides a solution applicable to vave propaga­

tion in a lossy medium such as the earth while the second condition pro­

vides a solution which represents an outgoing wave at large heights which 

is one of the boundary conditions of this problem. In the particular 

problem at hand, the dissipative medium, the earth, is the region of neg­

ative and the medium suitable for lossless propagation is the region of 

positive 7̂  . It will be seen that on making a change of variable in the 

height-gain equation to transform it into Stake's equation, an inversion 

of the axis will be made thus making the Airy integral solutions ap­

plicable . 

Two identities involving Airy integrals which will be of considerable 

utility in the analysis to follow are; 

Ai[z exp ( j 2kit/3)] = exp ( j krt/3 ) ĵ cos kit/3 Ai(z) - sin krt/3 

Bi(z)J 49 

and 

Bi[z exp (j 2krt/3)] = exp (j krt/3) fs sin krt/3 Ai(z) + cos krt/3 

Bi(z)J 50 

Complete tables of Airy integrals and their derivatives and a tabulation 

of the zeros of the Airy integrals and their derivatives are given in the 

Mathematical Tables Part-Vol. B (14). These tables allow ready evaluation 

of the expressions which will be developed for the field components. 

The Airy integral solutions will be used to formulate a system of 

equations whose solution will be used to weigh each term of a complete 
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orthonormal set of solutions of the differential equation in the other 

variable. The resulting integral will "be the complete field solution, 

G. The Green's Function 

The solutions of the differential equations governing the propagation 

of electromagnetic energy around the earth must be modified to account for 

the singularity at the source point. The Green's function is a function 

of -which satisfies the boundary conditions at the earth's surface, repre­

sents an exponentially decaying wave inside the earth, represents outgoing 

radiation at great heights above the surface of the earth, and whose de­

rivative has the proper discontinuity at the source point. 

Assume that a dipole of unit strength is located at a height d above 

the surface of the earth. It will be convenient to locate the 0=0 line 

through the dipole, such that the coordinates of the dipole are (a + d, 0). 

This point will transform into the point (7%.,0) in the cylindrical geometry 

of the flat-earth approximation. Hie point discontinuity is represented by 

Dirac-delta functions in the spherical-polar coordinate system. The differ­

ential equation which must be solved can be written as; 

[D2(r,9) + k2]U « cf[r - (a + d)] (©) 51 

where 

D2(r,9)s" D2(r) + D2(e) 52 

2 
D (r,9) represents a second order differential operation which in 

the case of a homogeneous atmosphere or a magnetic dipole in a spherically 

atratified atmosphere is the Laplacian operator. In the case of an 
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electric dipole in an inhomogeneous spherically stratified atmosphere t.hp 

D (r,0) operator is not the Laplacian operator because of the grad e(r) 

terms. The point discontinuity will retain its essential characteristics 

through the transformation to the cylindrical coordinate system, thus E-

quation 51 transforms into: 

ED,2(7t,p) + k'2 ]U = S { p )  53 

•Where the primed superscripts merely indicate that a transformation has 

been made. Since the dipole is monochromatic, the time-dependence can be 

removed from the source by assuming an exponential time-dependence of the 

form, ê *̂. All of the field components have the same time-dependence so 

the ê  ̂can be factored out of each term, thus reducing the problem to 

one of static fields. 

Hie problem can be solved by finding a complete orthonormal set of 

solutions of the equation: 

[D'2(p) + ̂ '2] 0=0 54 

Each term of the complete orthonormal set of solutions of Equation 54 

will be weighted by a Green's function in the 7̂  variable. To see that 

this procedure does indeed produce a solution of Equation 53, consider the 

separated differential equations after transformation. These transformed 

differential equations are: 

[D'2(7[) + (k'2 --A'2)]R=5(7L-̂ ) 55 

and 
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lD:̂ (p)TÂ!̂ J 8 s (̂P) 56 

A complete orthonormal set of solutions of the equation: 

[D»2(p) + A2] 9=0, 

is a series expansion of a Dirac-delta function, that is 

[D'2(p) +X'2] 2̂  9A.(p) 9̂ .(0) = £(p) , 57 
i»o 

•where the superscript means complex conjugate. It is necessary to find 

a solution to the equation 

[D»2(x) + k»2 - v2]G =S(7i-nd) 58 

Where G(7l,'>̂ ) is the Green's function. The complete solution can toe -writ­

ten as: 

U= G(7LF\) 9a.(p) 9 A.(0) . 59 
i=o 

If Equation 59 is a solution of the differential equation, Equation 53, 

then substitution of Equation 59 into Equation 53 should result in the 

t w o - d i m e n s i o n a l  D i r a c - d e l t a  f u n c t i o n  S S { p ) .  

[D'2(̂ p) + k'2] G(?t,̂ )9Ài(p)9Ai(0) =<̂ (M.-̂ )6(p) 60 
1»0 

2 2 2 
Separate D' {\}p) into D1 (fy) + D* (p) and move the operation inside the 

summation sign. 
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!>2ty,p) + k'2] G(VO 6 (P) 6 (0) = 27̂  I'D' (yi) 
H=o * ̂ i *i 3̂ 0 

61 

+ D'̂ (p) + k2] G(%) @ (p) 8 (0) 
A± "A £ 

2 
Add and subtract ̂ ' inside the parenthesis which contains the differential 

operation and perform the indicated operation on the Green's function 

[D'2C%) + k'2 -%'2 + D'2(p) +?l'2] 0 (p) @* (0) 62 
n=6 î Ai 

This results in 

[D'̂ (P) % (P) % (0) 63 
i=o " î î 

or 

[D'2(p) +%'2] 9 (p) 9* (0) 
i=o  ̂i 

which, by Equation 57, is 

<Si (%-%%) f(p). 

Thus proving the validity of the technique. 

The next step in the analysis will be to solve the separated equa­

tions for the two source types. The first source type to be considered 

will be the magnetic dipole. 
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III. THE COMPLETE SOLUTION FOR THE MAGNETIC DIPOLE 

The separated differential equations and the field equations govern­

ing the propagation of electromagnetic energy from a magnetic dipole in 

an inhomogeneous medium are: 

9" + cot 6 0» + 7l2 9 = 0 64 
m 

R" + ——— + (u>2̂ e(r) - —% ) R = 0 65 
r r 

E^ = 0 66 

EQ = 0 67 

= - jcoP- R8* 68 

E = 8(R" + |RI + m2KG(r) R) 69 

H = (Ri + R/r) 9' 70 

ay = 0 71 

The boundary conditions which must be satisfied at the earth-atmosphere 

interface or at any other spherically stratified discontinuity in the re­

fractive index require matching of the tangential electric and magnetic 

fields. Matching the boundary conditions at the earth's surface requires 

that: 

<Vi =( Vn 72 

and 
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fïT ) - /TJ 1 -

vD'i X"9'II 

•where the subscripts I and II refer to the earth and the atmosphere re­

spectively. Substituting into the expressions for these tangential com­

ponents of electric and magnetic field results in: 

Bi 6i " Rn en 
r=a 

74 

r=a 

and 

(Ri+ Vr' eî (R|l + Rjj/r) 9-f-j-

r=a 

75 

r=a 

When considering the field inside the earth, it can be shown that the same 

differential equations which were developed to describe the fields in the 

earth's atmosphere will be applicable provided e(r) is replaced by 

e„ 
o 

where a is the conductivity of the earth, m is the angular frequency of 

the source, and is the permittivity of vacuum. Transforming Equations 

64 and 65 into the cylindrical coordinate system of the flat-earth approx­

imation results in: 

and 

A + icotp/a|i+^ e=0 

dp a 
76 

d̂ R 
t + a I* + [cû €(r) exp (ZHJS.) +̂ 7»̂  R = 0 

2 ,  2 ,  

d-n. 

77 

The range equation, Equation 76, will be simplified by using a series ex­

pansion for cot p/a, that is: 
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cot p/a ~-l/(p/a) - (p/a)/3 + (pv/a")/45 + ... 78 

Equation 76 can be rewritten as: 

As mentioned in Section II-E, Pekaris (15) has shown that the error in­

volved in ignoring the right-hand side of Equation 79 is less than two-

percent at ranges up to one-half the earth's radius. The approximate range 

equation can be written as: 

â-| + i + fl2/a2 s s:0 80 
ap2 pdp 

This equation is seen to be Bessel's equation of zero order with a parameter 

"A/a. The solutions are JQ(̂ p/a) and NQ(/lp/a), where J (flp/a) is the zero-

ordered Bessel function of the first kind and KQ(ftp/a) is the zero-ordered 

Bessel function of the second kind. Because of the unbounded nature of 

NQ^PA1) as p->0, it will not be an allowed solution; therefore, the solu­

tion of the range equation is: 

9(p) = C JQ (Ap/a) 81 

where C is an arbitrary constant. 

The second equation to be solved is the height-gain equation : 

§̂+ ™ + ("Aie(r) exp (2%/a) - ft2/a.2) R = 0 82 
d>|_ a L 

At this point, it would be appropriate to change from a formulation in 
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terms of the permittivity of the medium, tfr). to a formulation in terms 

of the index of refraction of the medium, n(r). The relationship between 

the permittivity and the index of refraction is: 

2 
HE = ZL 83 

C 

where C is the velocity of light. Equation 83 can be written 

H€(r) = n2(r)/C2 

which can be substituted into the height-gain equation to give: 

4 + a E n2(r) exp (2Va) - A2/a2) R = 0 84 
a>C  ̂ cd 

The atmospheric model which will be used in this analysis will be assumed 

to have an index of refraction with a uniform slope, that is: 

n(r) ano  +  | £ ( r - a )  r > a, 85 

2 
from which n (r) can be approximated by 

n2(r) (%n2 + 2nQ gg (r - a) r > a 86 

provided ̂  < < 1. Transforming Equation 86 into cylindrical coordinates 

results in: 

n2(r) » n2 + 2nQ(|~) a (exp [Va ] - l) 87 

The term (—) is not transformed because it is a number which would be 

known in any atmospheric model. Inserting Equation 87 into the height-gain 

equation results in: 
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A -1 r B ̂  W&) - ij] (2V&) « 

= 0 88 

Koo and Kàtzin (13) suggest that changing to a nev function 

V a (r/a)1/28, R or R = V exp (-71/28.) . 

When this substitution is made, the height-gain equation becomes : 

4 + [l + ̂  [exp (Va) - 1] Jexp (2̂ a) - î 5t|Zàljv= o 89 

2  2  2 / 2  
where k = w n /C . The factor exp (Vl/a) - 1 vill be approximated by ?%/a 

and the term exp (27l/a) vill be approximated by 1 + 2W/a.. These approxi­

mations reduce Equation 89 to: 

A [ka.flgsiMt^(i + 5.^]v.o 90 

d%L a2 * *o 

Making the substitution 

-f = P"2//5 (a - pn) 91 

•where 

a„k=.^|Zi) 

a 

and 
2 

P-3 < 1  +  M> 
0 

93 

results in Stoke1 s equation : 
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It should he noted that in the process of making the change in variable, 

the axis undergoes translation and inversion; processes which lead to the 

proper Airy integral solutions as was discussed in Section II-F. 

To get the function U, it is necessary to find a complete orthonormal 

set of solutions of the range equation. The solution must he finite at 

p = 0 and go to zero as p->°°. It has been established that the proper 

solutions are Ĵ p/a), where the A's take on a number of values. A com­

plete orthonormal set of the solutions, applicable to a pipe of radius b 

and subject to the boundary condition that © be finite at p = 0 and 9 be 

zero at p = b, is given by the equation; 

To expand this solution to the boundary conditions of the present problem, 

it is necessary to take the limit as b -><». 

95 

00 

96 

In the limit, the summation becomes an integral : 

CO 

97 

o 

For this problem, p1 = 0, therefore : 

CO 

98 

o 
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To see that this is a dirac-delta function, it vill "be necessary to evalu­

ate the integral, Equation 98. This can be done quite readily by means 

of Laplace Transform theory. 

CO 00 

f \ J0 (â ) = lim 2̂ T exp (-s%) JQ(̂ )AdA 
J a s —>"0 8, J 
0 0 

99 

= lira A J (̂ 2. )] 100 
s —̂  o a, 

Talcing the Laplace Transform of the quantity in the brackets results in: 

T̂ -Vr11 - h . 2 *8, 2.3/8 101 

a a (s + p /a ) ' 

Taking the limit as s->o 

p P % P %/p 
aS( p) 102 

s-»o a2(s2+p2/a2)3/2 

it is seen that the integral is zero everywhere except at p = 0, at vhich 

point it is undefined. Thus, the integral is a Dirac-delta function. To 

see that the complete orthogonal set is normalized, it is necessary to 

integrate the dirac-delta function over p. 

CO 

£(p) — - — 1 — 
pdp " s'-ï'o Jo ?ÛVÂ¥75 103 

llm r 2. 2/ 2.1/2 
s->o (s +p /a ) ' 

= 1 104 

o 

thus proving that the set is normalized. 

The next step is to find the Green's function. The differential 
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equation which must be satisfied is: 

~ (i + ~ ̂)>l] V = 0 105 
° a a or 

•which is transformed into Stoke1s equation upon making a change of variable 

-g"= p"2/3 (a + 106 

"where C£ and P> are functions of the medium. In the earth; 

o  -  \ 2 1 0 7  

o a 

2k2 

P • -r ( 1  - 3  s ' 108 

In the atmosphere : 

a = k2 - +V4) 109 

a 

2k2 
P = + 110 

o 

In either case, the equation to be solved is: 

a2 
(—"ô G = (yi-Tl) 111 

af 

The allowed solutions from which the Green's function must be formulated 

are the Airy integrals, Ai(-Ŝ ) and Bi(-Ç). The boundary conditions on 

the Green's function are that it must represent an outgoing wave for large 

positive (large negative £), an exponentially decreasing wave for large 

negative71 (large positivê ), the solutions must be continuous at the 

earth's surface and at the source point, and have the proper discontinuity 
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in derivative at the source point. By considering the asymptotic from of 

the Airy integrals, the appropriate solution for large positive is 

SD[Bi(-̂ ) - j Ai(-̂ )]. This is the solution which will be used above the 

source point Between the source point and the earth's surface, 

the solution will just be a superposition of Airy integrals fg>Ai(-§) + 

C.Bi(-^). Inside the earth, the appropriate solution would be Q_Ai(-g), 

since this solution decays exponentially for large positive The 

boundary conditions are found by returning to Equations 74 and 75. Since 

9 is not a function of the index of refraction, it is the same function 

for all7%; therefore, Equations 74 and 75 can be written as: 

Gi - Gn 112 

and 

dG dG 

d^+ <va - -«r V* m  

Hlus, the boundary conditions at the earth's surface require continuity 

of the function and its first derivative. This leads to two independent 

equations. The continuity of the Green's functions at the source point 

results in another equation and the last equation which is required in order 

to determine the coefficients of the Green's functions is obtained from 

the equation: 

,2 
[—p + (a + PA)] G = <6(7I -VL)  . 114 

Integrating this equation once with respect to "7̂ over the interval from 

7̂  - £ to 7̂  + e results in: 
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+e 

V€ 

= 1 115 

Now the system of equations can be written : 

ffiM-g,) +CM(-§i) 0 

+CBi(-|l)P̂ 3 -S>[Bi(-fd) -,jAi(-fd)] P̂ 3 = 1 

_ 116 
Ai(-̂ ) -03Ai(-?a) -CBi(-̂ ) = 0 

aĵ -fje1/3 -CBÎ(-̂ )̂ /3 

To simplify the analysis, the following notation will be employed. 

= 0 

*2d" Aî "§:id̂  

il 

-
7
 

Al ("%Id̂  

B2d = Bl̂ "Çld̂  V 

A2a" Al̂ "̂ tlâ  4a' Al ̂ "?Iâ  

B2a = V Bl ̂ "§Iâ  

4a" 
Ai (-#%) 

4a = 
AÎ (-%) 

117 

It will also be very useful to denote the function Bi( -5) -j Ai( by 

f(̂  "which is in agreement with the notation used by Pry ce (16). The 

system of equations can be written in matrix notation as: 
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0 a 
'dO. 

B 
•<da 

r
 S
 

<*-i Ijf n 

0 ® l 

V •v -Baa 
0 c 0 

-ti" -vf 0 % 0 

118 

The Green's function appropriate to the region between the earth's surface 

and the source point is found by determining the coefficientŝ  and(2,. 

G(%< \) = 2d 

(A2dB2d~B2dA2d̂  

119 

In the region above the source point, the Green's function is found by de­

termining the coefficient ̂  . 

aQl>\) 
f(-e 

(A2dB2d~B2dA2d̂  

;X->zX 
2d '2d 

120 

It can be seen that a general Green's function can be formulated. 

?(-&) 
G(%<'%>) = 

(A2dB2d"B2dA2d̂ 2̂  

121 

Once the Green's function has been determined, U can be written as: 

CO 

U = j" exp (-n/2a) ̂ /a2 Jq (Ap/a) G(>(<,̂ >) d\ 122 
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i i 
The expression A Bpfl -B̂ A,̂  is the Wronskian of Stoke ' s equation and 

is equal to l/jt for all arguments. To see that this is true, consider 

the two solutions of Stoke ' s equation, Ai(-g) and Bi(-̂ ). Being solutions 

means that: 

d - ̂ Ai(-§) = 0 123 

d2Bi(̂  

d@2 
%Bi(-̂  = 0 124 

Multiply the first equation by Bi(-̂  and the second equation by Ai( -Ç) 

and subtract the two resulting equations to get: 

Bi(-g d A1̂  - Ai(̂  d = 0 125 

a# *9 

This is exactly 

a§ - M(̂ ) = 0 126 

or 

Bi(-g) - Ai(-§) |—= const. 127 

Thus, the Wronskian is independent of . 

The field component which must be known in order to determine the 

energy density in the atmosphere is the radial component of the magnetic 

field, Hr« Once H is known, it is a simple matter to compute the Poynting 

vector since the ratio of E to H must be the intrinsic impedance of the 

medium. The equation used to determine is: 

H = + 7 I- + co2ge(r)] U 128 
r dr 
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111 the cylindrical coordinates. 

2 
E = exp (-2ty/a) + - |r- + w2p.e(r) exp (2̂ /a)] U 129 
r dOt a ™ 

or 

H 
r 

CO 

= exp ('-25(/a) exp (-̂ /2a) œ2[i€(r) exp (2%/a)] 

% J"o (̂ p/a)G(̂ '%>) dA 130 
a 

The height-gain equation in cylindrical coordinates is: 

+ - |- + œ2n€(r) exp(2̂ a) - /\2/a2] U = 0 131 

from -which it can he seen that the radial component of the magnetic field 

is: 

Er = exp (-5%/2a) 

00 
a3 
 ̂(̂ p/a) G(X>,7̂ ) d A 132 

8, 

This integral must he evaluated in order to determine the field in the 

diffraction region. To facilitate evaluation of the integral, it vill be 

appropriate to change the variable of integration to defined by f3 => 

l/3 
Pg CKg. When this substitution is made the integral becomes : 

K2 

e%p (-5?y2a) F Ê___ (1 -̂ /K2) [k̂ p(l -Ŝ K2)̂ 2] df 133 

-CO 

k a , 
Where K = (~g~) and kQ = on J C. 

The Green's function can be simplified somewhat by making an approximation 
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in the function defining propagation into the earth. That is: 

Ai( -i, 

?L=o 

= Ai(̂ +  ̂_<̂ /2 Ai(̂ ) 154 

fl-o 

is 

This is the large argument approximation to the Airy integral and, since 

 ̂contains a large imaginary part due to the complex dielectric constant 

of the earth, the asymptotic expansion is valid. The ) term 

approximated by ̂ . This is allowed because the wave is assumed to atten­

uate rapidly and only has appreciable amplitude in region of small. 

With this approximation, the Green's function becomes 

2 

f(f + 

135 

Where g(4?) = Aiféf). This notation is used to show agreement with the re­

sults of Fryce since this is the notation that he used. If a further simpli­

fication is made by denoting by T ,̂ the Green's function can 

be written as: 

2̂ 

g (?K + g(̂ ) 

f + f (̂ ) 
136 

Substituting this into the integral defining results in: 

-K2 

H. = exp (-5)(/2a) | (l 

& P g 

g.T)vsf? 
f (̂ T1+f(̂ ) 

137 
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Since the zero-ordered Bessel function decays very rapidly for imaginary 

argument, the range of integration can be extended to the entire axis 

without adding significantly to the integral. If the large argument form 

of the Bessel function is used, that is: 

Jo [kQp(l -f/K2)1/2] — Î Çcos (kQp -fp/K2 - jr/4) 138 

the integral reduces to: 

J" 

H
r = exp (-5H/2a) J cos(k̂ p-̂ p/K2-rt/4)G(f;̂ ,%̂ )df 

-» ° 139 

This simplification is possible because kQP is a very large number; about 

10̂  at a range of 50 miles and a frequency of 100 mes. Equation 139 cor­

responds exactly to Equation 12.7 of Eryce (16) except that a magnetic 

field is considered here. The integral can be evaluated by the method of 

residues because the denominator of the Green's function has an infinite 

number of zeros in the complex plane. Using the relationship 

Ai [-%)exp( j%/3)] = GXP' f (p) 140 

the denominator of the Green's function and consequently of the integral, 

becomes : 

f+ = 2 exp(-j«/6) Ai[f̂ expC 0̂ /3)3̂  + Ai[̂ exp( jit/3)] 

141 

Since Ai(z) is oscillatory along the line, arg z = jt/3, there are an in­

finite number of poles of the integrand, whenever 
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..'r /. /-M . . r , t » n 
cap \jA/vyj ^ t AxLa^ exp lj%/Ojj = U. 1 é'id 

Thus the integral can be evaluated by complex residue theory, and Eryce (16) 

has shown that the integral can be expressed as: 

H = exp (-571/28.) k2py3(2it/k P)1̂ 2 exp [j(3jt/4-k p)3 
r o c. o o •- v 

s 

(1 + TI as) f'2(as) 

2 2 

Where = 2k2/a, k2/a, k2 = , and ̂  • 
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r/. THE COMPLETE SOLUTION FOR THE ELECTRIC DIPOLE' 

The case of propagation from an electric dipole located in an irihomo-

geneous medium is somewhat more difficult to analyze than the case of the 

magnetic dipole because the differential equations are more complicated. 

However, it will be possible to make simplifying approximations at appropri­

ate points to facilitate the analysis. The separated differential equa­

tions and the field equations governing the propagation of electromagnetic 

energy from an electric dipole in a spherically stratified inhomogeneous 

medium are: 

9" + cot 9 9» + ̂  9 = 0 144 

2 

R" + Rl + (m2̂ c(r) - ~§ - R = 0 145 

Er - 5% [R" + + (<°2Nr) e 146 

E9 = ifrj (R/r + R,) 9' 147 

Ê  = 0 148 

Ĥ  = 0 149 

= 0 150 

H, = -RQ» 151 

e f fr) 
Equation 145 can be simplified somewhat by considering the term y . 

2n'(r) 
This expression can be rewritten as —̂ trj ̂  means Actuation 85. lypi-

cally, n'(r) is a number on the order of 10 /meter near the surface of 

the earth; getting smaller at increasing heights, while n(r) is very close 
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to unity. Therefore. 

€
£|̂ | 2 x 10 ̂ /meter . 

The function exp OVa) can be approximated by 1 + ̂l/a, or exp (H/a) ̂  1. 

The earth's radius a is a large number, about 6.5 x 10̂  meters. The term 

exp (Va) e (r) can neglected, but the term a cannot be 
a e(r; ' e(r) 

neglected. Thus, Equation 145 can be approximated by: 

-̂§+ ̂  (1 -  ̂+ [o)V(r) exp (2Va) - A2/a2 ] R » 0 152 
d>i o \ 

The change of variable suggested by Koo and Katzin (15) becomes 

R = v exp( ->]/2a)b where b = (l - 2â  ̂  ) , 

and the height-gain equation becomes : 

n 
o 

2 2 

jk2 il + 2an'(r) [exp (Va) - 1] 1 exp (2Va) - } V = 0 
dVj_ L 0 L o J a j 

155 
Making the same approximations as in the magnetic dipole case and ignoring 

2 2 
the b /4a term as being too small with respect to the other terms, re­

sults in 

+ [(ko -\} + ~r"(1 + |- v a 0 154 

d-̂  a o 

which is the same as Equation 90 -which was developed for the magnetic di­

pole case. 

The boundary conditions at the earth-atmosphere interface requires 

continuity of the tangential electric and magnetic fields, which means 
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that: 

Riei = Enen 

and 

1_ 
e„ 

R, 

r=a 

i » 

155 

r=a 

<r+ Bi> ei 

r=a 

156 

r=a 

When considering the field inside the earth, it can be shown that the same 

differential equations "which were developed to describe the field in the 

earth's atmosphere will apply provided e(r) is replaced by e (l -
o 

The range equation for the electric dipole case is the same as the 

range equation for the magnetic dipole case, and is subject to the same 

boundary conditions. Therefore, the solution developed in the preceeding 

section will be applicable in this case also. Thus, the problem is re­

duced to finding the appropriate Green's function. The height-gain equa­

tion is somewhat different than the height-gain equation for the magnetic 

dipole case, so the electric dipole analysis will begin with consideration 

of the height-gain equation. In the cylindrical coordinate system, the 

height-gain equation is: 

d̂ R 

dH, 

2+ 1  (I - 8 §UpW(r) exp 0,/a) - *2/a 

157 

The Airy integral solutions will also apply in the electric dipole 

case, and the main difference will be due to the boundary conditions at 

the earth's surface. The boundary conditions require that 
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n -+ a 
"I "II 

- ir> 
(r+4> = r^?+4i> 

o 

These two boundary conditions lead to two independent equations. The other 

two independent equations are the same as for the magnetic dipole case. 

Thus the system of equations can be written as: 
(a) 

$>Ai(-£=Id) + CBi(-̂ Id) - ̂  [Bi(-̂ Id)-jAi(-ĵ Id)] =0 

®Ai(-?iia)en5 +CBi("lia)pn5 Cl) 

" 1 ̂  = «• 

(c) 
= 0 a AK-fj -CM-ÇJ lia' 

a[̂ 4> + A.(_g )]jg 

lia 

e» a 
pi 

(a) 

= 0 

160 

In matrix notation, and using the symbolism of the preceding section, the 

system of equation becomes 
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-I-.-
cu 

1 

-A 

= V2/5 

-B 

-f pl/3 
2d 2 

~ G ~  n 

% +1 

C 0 

0 

161 

0 Â  ̂ B, 

0 

4.a "2a "2a 

0 

Evaluation of the matrix is simplified if one considers the relative sizes 

of the terms in the fourth row. A good pictorial representation of the 

Airy integrals of real arguments and their derivatives is shown on page 

B-16 of The British Association For the Advancement of Science Mathematical 

Tables (14). Here it is seen that Ai(x) is a very well behaved function, 

as is Ai(x) and both are of the same order of magnitude; Bi(x) and Bi(x) 

are well behaved for negative arguments but increase exponentially for 

positive arguments. In either case it is reasonable to ignore the term 

which is divided by a, the earth's radius. Under this assumption, the 

matrix equation becomes : 

0 
A2d B2d "f2d ~(f 0 

0 V/3 +1 

â -Â2a "B2a 
0 C 0 

0 © 0 

162 

This matrix is xhe same as the matrix which was developed for the magnetic 

dipole case except for the term which is multiplying the derivative of 
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the solution in the earth. The solution of the preceding section can be 

applied if is substituted for The general Green's function 

for the electric dipole case can be written directly as: 

= -TTs 4-  ̂̂  ̂(5») )] ̂ 3 

where 

T2 " 

To determine the energy-density in the transhorizon region, the field 

component "which must be known to the radial component of the electric 

field, Er« The Equation which is used to determine Ê  is: 

E, = - [B"+?(2 - + e=o m 

R" + J (2 - £F^P- H' + [A>2|IE(R) ] E - 0 165 

Consideration of the height-gain equation for the electric dipole case 

2 

r̂  

indicates that the radial component of electric field is: 

00 

. r ^3 
Er = œ \ exP("W2a) exp (->i/a) — jjTtp/a) Cfjf} dA 166 

or 

-ja exp(-a-b)?t/2a) 
E 
R M E(R) 

A 
4 "o 
J (̂ p/a)G(f;)̂ ,̂  ) d% 167 

a 

The integrand of Equation 167 is exactly the same as the integrand of 

Equation 132 except that the Green's function in this case has T 
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substituted, for T„. The integral can be evaluated by means of complex 

residue theory just as in the magnetic dipole case, with the result 

_ -ja ezp[-(2tb)%/2a] Â at/k p)1/2 exp [j(3it/4-k p)] 

œ e(r) ° d 0 0 ŝ l 

f(yPa/̂ .>) f(a5+e2/̂ <) 

(l + T2 as) f (a2) 
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V= COMPARISON WITH EXPS.BŒ1AL DATA. 

There has been a great deal of published and unpublished experimental 

•work concerning the strength of the electromagnetic signal beyond the radio 

horizon. In recent years, much of this experimental data has been taken 

between two fixed locations with emphasis on the statistics of the field 

in the transhorizon region. The statistics of the received signal would 

ideally be correlated with the statistics of the turbulence of the atmo­

sphere. In fact, herein lies the key to the preference of the Booker-

Gordon (2) "scattering blob" theory over the traditional normal mode theory 

•which is the subject of this paper. The Green's function approach to the 

solution of propagation in a stratified atmosphere could permit the in­

clusion of a time-varying atmosphere by using a time-dependent Green's 

function. It would be assumed that the time-variations of the atmosphere 

occur much slower than the frequency of the source. This subject will be 

considered in somewhat greater detail as the Green's function solution is 

extended to include elevated stratifications in the next section. At this 

point it will be appropriate to compare a typical set of experimentally 

measured field strengths with the field strength calculated by using the 

results of Sections III and IV. The type of data which is most suitable 

for comparison with the theory of this paper is not that which is taken 

between two fixed points, but data •which is taken from a radial path of 

varying length. This leads to a plot of field strength versus distance. 

A good set of data for this is given by Dinger, Garner, Hamilton and 

Teachman (5). 

To show the validity of the flat-earth approximation, a comparison 
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of the theoretical results of Section III with the data of Dinger, Garner. 

Hamilton and Teachman (5) will be made. This data was taken from a trans­

mission path extending from the south shore of Massachusetts, near the 

city of New Bedford, to a ship traveling along great circle courses to a 

maximum distance of 630 nautical miles from the transmitter. A 10-kw, 

412.85 mc transmitter feeding a 28-foot paraboliod antenna and a 40-kw, 

412.85 mc transmitter feeding a 60-foot paraboliod antenna were used, with 

the more powerful transmitter being used at the longer distances. The 

receiving antenna aboard the ship was a 17-foot paraboliod. Both the trans­

mitting and the receiving antennas were horizontally polarized. Both the 

transmitting antenna and the receiving antenna were located at a height of 

about 95 feet above sea level. A plot of the results of this investigation 

is shown in Figure 2. The theoretical model which is used for comparison 

will be magnetic dipole. Actually, the comparison will be made between 

the Hertz vector for free-space propagation and the Hertz vector for prop­

agation in a spherically-stratified atmosphere, which reduces to the free 

space Hertz vector in an isotropic medium. The free space Hertz vector 

for a unit dipole is: 

The corresponding Hertz vector for a stratified medium is; by Equation 11, 

it = r U 170 
m 

For fields at the earth's surface, 

n = a U . 171 
m 
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The function U is given by equation 

U 

CO 

r % Jg (4p/a) G a% 172 

Or, upon making the change-of-variable 

f = p-2/3 (k2 .*2/a2) , 173 

•where k = ̂  and £ = 2k /a(l + — —) , 
o C o' x n dr ' • 

o 

H = it n 

AOP V UOO 

rf" g, 

cos(k p+̂ p/SK2-ir/4) fg(?+Pp̂ <) - — 
0 c. „, 

l/?  ̂ g •(g)i]L-i-e(?) 

f (%»)?,+f(%) 

1 a? 

174 

This is the same integral "which vas evaluated in Section III so the result 

can be written directly as: 

2̂  exp (j 3it/4-kop) 
o / 1 

f(as+Pî/̂ >) f(aR+Pp'/̂ <) s 2 

( 1  +  a , )  f ' ^ )  

exp (-j aop/2K2) 175 

The experiment -was carried out over sea water at a frequency of 

412.85 mc. Using this information to evaluate 
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2kc 
,0xl/3 ( a ana/3 

,1. PV|,-i/^. + 

2k2 

and 
2k2 

("a2"̂ 3 = 2.87 x 10~2 

Thus, 

176 

- M - i ̂-i2/s 

("rli 
o 

For sea water a = 4 mhos per meter and G1 = 81. Therefore, 

1 ~ Hi " 1 " j 2,16 177 

k = 8.65 178 
o 

K = 3.05 x 102 179 

180 

T a ' "a i /o • 181 
(2.87 x 10 *)(1 - j 2.16) (a - j 20 x 10*)̂  ̂

The root of the Airy integral; a , is a small positive number. If consid-
s 

eration is limited to the first root, a % 2.34. Under these conditions 

Equation 181 can he approximated as: 

T, % 0̂  ô 182 
(2.87 x 10 ) (1 - J2.16) (4.45 x 10'7-45 ) 



Thus, the integral expression for U can be simplified to: 

'1/5fïr? =» W4 - v> Ç fK+^<) u=|32' 1 âT 6X5 

f,2(as) 

exp (-ia p/SEC2) . 185 

Pryce (16) has shown that with this simplification, 

« - (j 311/4 - kop) 17 
' o s 

exp [-( ̂ 3+j) a P/2K2] 186 

where 

[lx) = exp (j Jt/3) Ai [-a + exp (j Jt/3) x]/Ai(-a ) 

and 

C<s = exp (-2j jt/3) ag 

At great distances, the first term of the series is a good approximation, 

that is: 

i  u i  «  P y s  
i  2k p 

o 
Î P2̂ >) exp (-2.0249/2K2) . 

187 

In this case 
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2 
-, /„ 2k , /„ T-L/O t O x-L/ O /. a drixi/5 - --2 /. 

V-1- T n dr; 
o 

CL.OI JL 1U II t- — T—J • 
x n dr 

a_ dn.l/:ï 

0 

= 28.9 meters. 

Assume n = 1.000. 
o 

Typically, 

188 

dn 
dr 

= Y = -3 to -4 x lÔ /meter. 189 

P̂ 3 = (3.1 x 10"2) 190 

l̂\< = = 0.93 

1 1 

where 

= ko(1 + r s' 
o 

Therefore : 

(i + !- B)2/5 

^-(^) 2 / 5 d^^) 2 / 5  

n dr 
o 

V? 'V 
n dr 
o 9.1 x 10 

191 

The expression for magnitude U reduces to: 

Uj = (3 x 10"2) -j^Ç7 (.93) exp 

(1.0125) (1 + §)2//5p. 
o 

9.1 x 10 

192 

Once the magnitude of U is known, the magnitude of the Hertz vector is 

easily obtained by multiplying by the earth's radius a 



57 

- a |U | = 6.35 X 10S(3 X 10"2) ^ (.G3) 

-1.0125(1 + j|- g)2/3p 

exp [ ] 193 

9.1 x 104 

in] î>) | has been tabulated by Pry ce (16) so that f̂ ( .93) can be 

readily estimated, and is determined to be 1.04 or % 1. Thus « can be 

evaluated as a function of p only. 

= 7-8̂  10 exp [-(1.115 x 10"5)(1 + a ̂ )2/5 p] 194 

I? 

The desired quantity to be plotted will be the ratio of the trans-

horizon field to the value of the field in free space where there is no 

earth to influence the field. This ratio, when expressed in decibels, ends 

up as the difference between the amplitude of the transhorizon field in 

db and the free space field in db. This difference is plotted on Figure 2,, 

for four values of the gradient. It is seen that the attenuation rate 

would be well predicted gradient refractive index , of about -5x10 

meter. This is not an unreasonable gradient above the ocean as is pointed 

out by Tukizi (18) in his paper. The significant difference lies in the 

fact that the experimental data is roughly 4 to 6 db stronger than pre­

dicted by the model. 

There are a number of factors which could account for the 4 to 6 db 

offset. It is doubtful that the approximations made by considering only 

the first term of the asymptotic expansion of the Airy integrals would 

contribute much more than a 10 to 15 percent error. One possible source 



58 

of the error lies in the fact that the plot of experimental data shown in 

Figure 2 is really nothing more than a smooth approximation to a great 

number of data points. Consideration of the plotted data points as shown 

in Figure 7 of the paper by Dinger, et al. (5) indicates that the data 

points cover a range of 10 to 20 decibels at any given distance. Thus, the 

4 to 6 decibel discrepancy between the calculated curve and the "smoothed" 

experimental curve is not as serious as it looks since the calculated curve 

is still well within the range of the actual data points. 
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VI. EXTENDING xELE GREEN'S FUNCTION TO UNCLUI/E THE 

EFFECTS OF ELEVATED STRATIFICATIONS 

The linearly-sloping profile of refractive index provides a very sim­

ple analytical result when considering the propagation of electromagnetic 

energy around a spherical earth vith a spherically stratified irihomogene-

ous atmosphere. This atmospheric model is not very acceptable because the 

profile of the refractive index becomes infinitely negative at large 

heights. This fact, plus the fact that the atmosphere is seldom such that 

the profile of the refractive index can be described by a simple mathe­

matical model, means that some technique must be developed whereby an arbi­

trary profile of the index of refraction can be approximated to a reason­

ably good degree of accuracy. 

It will be shown that a Green's function can be formulated such that 

any profile of refractive index can be broken dovn into a series of 

straight-line segments each of vhich has a slope approximately equal to the 

slope of the continuous function vhich represents the profile of the re­

fractive index evaluated at the appropriate point. In this way any ana­

lytical function vhich describes the profile of the refractive index can 

be approximated by representing the earth's atmosphere as a series of con­

centric shells each of vhich has a linearly-varying profile of refractive 

index. The general solution can be formulated by matching the tangential 

components of the fields at the boundaries of the shells. Since the per­

mittivity of space is assumed to be continuous, the boundary conditions 

vill be satisfied if the Green's function and its derivative are continuous 

at the boundary. Each "shell" adds tvo more unknown coefficients which 
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must be determined if it is desired to know the complete Green's function 

applicable at any height. The fact that there are two additional coeffi­

cients in the complete Green's function means that a complete solution re­

quires two additional independent equations. These additional independent 

equations are given by matching the boundary conditions. 

In general, it is not necessary to determine the complete Green's 

function applicable at any height, rather it is usually desired to know 

the field close to the surface of the earth due to a transmitter located 

over the horizon and close to the surface of the earth. This means that 

the Green's function applicable in the first strata above the earth's sur­

face is sufficient and it is only necessary to solve for the coefficients 

in this region. The rest of the atmosphere above the source and receiver 

can be represented by an arbitrarily large number of stratifications. In 

fact, it will be possible to express the result of the stratifications as 

a summation of effects and, since there can be an arbitrary number of 

stratifications, the summation can be extended to an integral. This tech­

nique will allow rapid evaluation of a profile which can be expressed as 

an explicit mathematical function. Thus, the effect of an exponentially-

tapering profile of refractive index can be considered. It will be seen 

that the simple linearly-varying model is a good approximation to the ex­

ponentially-varying atmosphere which is a more satisfying model because 

the refractive index goes to unity at large heights. This technique is 

also very useful to determine the effect of layered pertubations in the 

refractive index. 

If the atmosphere is divided into L concentric shells, each of which 
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has a different slope of refractive index, the Green's function will be 

determined by solving a system of 2L equations for the unknown coefficients. 

The boundary conditions are such that the solution in the earth represents 

an exponentially decreasing wave, the solution above the shell repre­

sents outgoing radiation, and the solutions and their derivatives are con­

tinuous at the boundaries in the atmosphere. The boundary conditions at 

the earth-atmosphere interface are the same as those considered in the sim­

ple model having a linearly-tapered profile of refractive index. The com­

plete system of equations is written in Matrix notation as shown in Equa­

tion 196. To define the Green's function in the first stratum of the at­

mosphere it would be necessary to determine and (% since 

G(7L<:\;0 - ). 195 

It will be assumed that the receiver is not higher than the transmitter. 

This assumption is merely for convenience in analysis and other situations 

can be considered in the same fashion. 

The coefficients Ĉ  and will be determined by applying Cramer's 

Rule to the 2L x 2L matrix of Equation 196. In order to simplify the 

analysis the matrix will be written as shown in Equation 197. 
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This n x n matrix, n = 2L. can be reduced to an n - 1 x n - 1 matrix by 

means of the relationship (6): 

Bet 
\ S 

y o 
d2-n Bet (dAj, 198 

Where d = is the n - 1 x n - 1 matrix formed by deleting the n 
th 

rov and the n̂  column of the n x n matrix of Equation 197. S is the 

n - 1 x 1 column matrix formed by deleting a__ from column n of the origi­

nal matrix and Tis the 1 x n - 1 rov matrix formed by deleting a from 
nn 

rov n of the original matrix. Thus, to evaluate the determinant of the 

denominator matrix, the n x n matrix can be reduced to an n - 1 x n - 1 

matrix, and the result is a constant multiplying the determinant of an 

n - 1 x n - 1 matrix. 

Bet (Ben Ĉ , Ĉ ) = â n Bet (â  -0) 199 

where 

a 
nA 

all ai2 

a21 a22 

13 

a 
23 

200 

a 
n-3,n-3 

n-2,n-S 
0 

an-3,n-2 an-3,n-l 

an-2,n-2 an-2,n-l 
a a — _ a a .. 
nil n-l,n-2 nn n-1,n-1 
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I 0 0 0 

0 0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

a , a _ a n a _ 
n-l,n n,n-2 n-l,n n,n-l 

Thus 

HJ. ai2 al3 

a21 a22 a23 

a32 a33 

an-3,n-2 an-3,n-l 

an-2,n-2 n-2,n-1 

n-1,n-2 n-1,n-1 

Where 

a = a 
'n-1, n-2 nn n-1,n-2 n-l,n n,n-2 

203 
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= a a - a a 

Then 

'n-1,n-1 nn n-1,n-1 n-l,n n,n-l 

Det (Den C,, C.) = a2"n Det hi 
1 2 nn I 

204 

205 

Where Â  is the n - 1 x n - 1 matrix defined by Equation 202. If the 

i 
process is repeated on the n - 1 x n - 1 matrix Â , the result is: 

Det (Den C , C ) = a' 
2-n 

, 2  .  
Where Â  is given by the matrix 

all H
p
 

ro
 

ai3 
0 0 

a21 a22 a23 
0 0 

0 a32 

and 

3-n 
a1 

1' 2Z nn n-1,n-1 
Det A' 

2 ' 

0 

0 

an-4,n-4 an-4,n-3 0 

0 an-3,n-4 an-3,n-3 
a2 
n' 

0 an-2,n-4 an-2,n-3 
2 
a 
n' 

206 

207 

= a1 - a1 
n-3,n-2 n-1,n-1 n-3,n-2 n-1,n-2 n-3,n-l 

2 
a - a' a 

n-2,n-2 n-1,n-1 n-2,n-2 n-1,n-2 n-2,n-1 ' 

208 

209 
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a' _ _ and a® _ . are as defined earlier. At. this st-Rov», it. is seen 
U-i-jÛ-JL ll-X}l±-e ~ ' 

that the matrix looks exactly like the original n x n matrix, that is non-

zero-entries in the last three positions of the "bottom two rows, except 

that this is a n • 2 x n • 2 matrix. By continuing this process, it would 

he possible to reduce the n x-n matrix to a 4 x 4 matrix with some multi­

plicative constant in front. 

Det (Den Ĉ , Ĉ ) - ̂ ConstJ Det 

n-4 n-4 
The â  and a.̂  terms are modified from the original terms in the n x n 

matrix because of the successive reductions in the size of the matrix. 

The other terms of the 4x4 matrix are the same as the corresponding terms 

i n  t h e  n  x  n  m a t r i x  a n d  i n c i d e n t l y  a r e  t h e  s a m e  t e r m s  a s  i n  t h e  4 x 4  

matrix for the linearly-sloping profile. 

This matrix reduction technique can also be used in evaluating the 

determinants of the numerator matrices to determine the coefficients 

and Cg. The matrices, whose determinants are desired, are: 

11 *12 a13 ° 

a81 22 23 
- n-4 

*32 a33 34 
n n-4 
0 a42 43 44 

210 
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l'îum = Det 

and 

îîum Cg = Det 

"il 

a, 

0 
13 

21 

0 1 a, 

0 *23 ° 

0 0 

n I fN 

0 

33 34 

0 a43 a44 

a, 
35 

a 
'45 

a54 a55 

211 

° an-l,n-2 an-l,n-l an-l,n 

0 a 0 a T a 
n,n-2 n,n-l nn 

*11 *12° 

a21 a22 ° 

0 

0 

0 

0 

a32 1 

*42° 

0 0 

0 0 

0 

0 

34 

a 
44 

0 

0 

35 

45 

a54 a55 

a64 *65 

212 

n-2,n-1 

0 

0 

0 a t n a n . a n n-1,n-2 n-1,n-1 n-l,n 

0 &  ̂„ a a 
n,n-2 n,n-l nn 
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It is noted that in either case, except lor the 4x4 sutmatrix in the 

upper left corner, the rest of the n x n matrix is the same as the cor­

responding part of the denominator matrix. If these matrices are re­

duced in the same vay that the denominator matrix vas reduced, the re­

sult is 

Det (Num Ĉ ) =|Constj Det 

and 

all 
0 

a!3 
0 

a21 
0 

S23 
0 

0 1 a53 
1 

a. 

Det ( Num C ) =[ConstlDet 

0 a 

all ai2 

a21 a22 

0 a32 

0 
a42 

(n-4) 
54 

(n-4) 
'43 44 

0 0 

0 0 

a, 
(n-4) 
34 
(n-4) 
44 

213 

214 

(n-4 ) (n-4) 
Where â  and ax and the multiplica.tive constant are the same as 

defined for denominator. Thus, the Green's function applicable to the 

first strata above the earth is given by tie equation: 
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a21 ° a23 ° 

° 1 a33 4r4) 

° ° S43 aM-4) 

G = 

Ai(̂ 5 + 

n n 
"1 1 HO 

0 0 

32 

42 
0 a 

all a12 al5 

a21 a22 a23 

a32 a33 

a4-2 a43 

(n-4) 
34 
(n-4) 
44 

(n-4) 
34 

(n-4) 
'44 

Bi(-# 

215 

At this point, it is appropriate to consider the terms â  ̂  and 

â Y ̂ • Once these terms are known, the Green's function can be deter-
44 

mined since all the other terms are known. 

These terms will be evaluated by going back to the original n x n 

matrix and examining the modified entries as the matrix is reduced. In 

the first reduction, the modified terms are a' , -, and a1 . These 
' n-1,n-1 n-1,n-d 

terms are given by the equations 

a' = a a a 
n-1,n-1 nn n-1,n-1 n-l,n n,n-l 

216 

= a a - a ,, a 
n-1,n-2 n,n n-1,n-2 n-l,n n,n-2 

217 

where 

-l,n-l = an,n-l ~ \ an,n-2 = \ 

an,n " "fL an-l,n = 'fLPL-l an-l,n-2 VL-1 

218 

It will be necessary to use the approximation 
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AA 
1 /? 1 /? . , 
Pr' " = Pr' n (1 + 1/5 —̂  ) 219 

PL-1 

to simplify the ensuing analysis. Inserting the values in the expressions 

for the modified terms results in: 

i/3 fr* B  ̂
aA_l,n_l = j%l - j \ 

ÔPL-1 

and 

•i-w - <45 <« + 

L-l 

-where W is the Wronskian of the differential equation from -which the solu­

tions were taken. 

p 
In the second matrix reduction, the modified terms are a _ _ and 

n-2,n-2 
2 

an-3 n-2' given ̂  tile equations 

an-2,n-2 Bn-l,n-l an-2,n-2 an-l,n-2 an-2,n-l 222 

an-2,n-2 &n-l,n-l Bn-2,n-3 an-l,n-2 an-3,n-l 22̂  

a' and a' are carried over from the first matrix reduc-
n-x,n-x n-o.,n-d 

tion and 

' ,1/3 
a 
n -2,n-2 " -AL-1 an-3,n-2 ~ ̂ L-l̂ L-l 

224 

an-2,n-l = "BL-1 &n-3,n-l = BL-1PL-1 

Substituting into the equations for the modified terms results in: 



72 

' /? 
» R-/ ~ 

an-2,n-2 = PL-1 WfL-l + 
3P 

 ̂BL~1 " BL 4,-1' 
L-l 

225 

a = e2/3 
n-3,n-2 L-l WfL-l + 

L̂_l 

3 P. 
 ̂BL-1 " \ 4-1̂  

L-l 

226 

If the thickness of a shell is reduced to infinistesiml dimensions as 

"will "be done "when the final summation process is reduced to an integral, 

the expressions for the modified terms of the n-2 x n-2 matrix can "be 

t i 
further reduced because 0 and  ̂̂ —̂*• W. 

Under these conditions : 

2 
-3,n-2~ ï - ï  f i- l  W  P£-l t1  +  227 

an-2,n-2 ' L̂-l W fL-l 
228 

In the third reduction, the result is an n-3 x n-3 matrix, "with the modi-

3 3 
fied terms a » , and a „ . ; given by the equations 

n-3,n-3 n-3,n-4 

3 2 a 2 
an-3,n-3 &n-2,n-2 n-3,n-3 &n-3,n-2 %-2,n-3 

229 

3 _ 2 2 
an-3,n-4 an-2,n-2 Bn-3,n-4 an-3,n-2 &n-2,n-4 ' 

230 

vhere: 

n-3,n-3 
B' bV3 a . / =1/3 

L-2I.-2 n-3,n-4 L-2 PL-2 

a = B a = A 
n-2,n-3 L-2 n-2,n-4 L-2 

231 

and 
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% " ̂-2 ̂  + 
3P. 

) 232 

L-2 

Substituting into the defining equations for the modified terms of the 

n-3 x n-3 matrix and ignoring product terms in results in: 

3 _ - *1/3 
an-3,n-3 ~ "J PL-2 

L-2 L-l 
233 

and 

n-3,n-4 
-w py? pys 

L-2 ̂ L-l 
L-l L-2 

1, 
234 

The next matrix reduction will reduce the matrix to an n-4 x n-4 matrix 

4 4 
•with the modified terms a . . and a c .. These modified terms re-

n-4,n-4 n-5,n-4 

duce to: 

an-4,n-4= "W PL-2 fL-2 235 

n-5,n-4 
-W pVS pl/S pl/3 

L-l L-2 L-2 236 
L-l L-2 

It is evident that a pattern has been established and it -would be possible 

(n-4) (n-4) 
to -write general expressions for â _ and . These general expres­

sions are : 

(n-4 ) 
a;, = const f 
44 2 

237 

= const pj/3 f. + + fL ^L-1 

"2 3̂  Pr p„ Pr 
238 

2 3 ''L-l J 

Since these two terms are the only non-zero entries in the fourth column 

of the reduced matrices which define the Green's function, the const can 
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be factored out of each matrix and consequently cancel out of Green's 

function completely. The Green's function for the stratified atmosphere 

is similar to the Green's function developed for the linearly-varying at­

mosphere vith the difference being a result of the modified terra a3̂ "̂ * 

If the Green's function given by Equation 215 is evaluated in terms of 

the solutions of the last section, the result is : 

G = 

w s W 
g(5f+ ) 

s 
w 

1 g(̂ f g'+rf/i 4 ) 

+ ̂ [g'̂ fe+P̂ Xa)-

f(r)+yf?) -1 

239 

Where S is the stratification function for the atmosphere above the trans­

mitter 

P' 
1/3 

S = 
f.ze f'43 

T = + % + + 
p. pc PT 

240 
2 "3 '"5 rL-l J 

Below the transmitter, the atmosphere is assumed to have a linearly-vary­

ing profile of refractive index. It should be noted that if S = 0, the 

Green's function reduced to the Green's function developed in the linearly-

varying profile analysis. This result is reasonable since for this case 

the stratification function is identically zero because the 43's are all 
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zero= This Green's function developed for this case is somewhat unwieldy, 

but in an actual example some simplifying assumptions can be made. At 

this point it is of interest to consider two examples. First, the effect 

of an exponentially varying profile of refractive index will be consid­

ered. The second example will consider the effect of a layered perturba­

tion in the profile of refractive index. 

The first model which will be considered is the exponentially varying 

profile of refractive index. This profile will be defined by the equation : 

n(r) = 1.000000 + 4 x 10-4£ 1 - exp E-(r-a)/l04]̂  r > a 241' 

It is desired to know the stratification function : 

S = — 
p1/3 r 

3 + •" 242 
P2 + Po 

f<L + 4/V 4̂ 1 

+  ̂

The various components of the stratification function are defined as fol­

lows. 

+ r I 
o 

) 243 

r=rT 

In the Airy Integral solutions, whose derivatives are part of the strati­

fication function, it will considerably simplify the analysis if the argu­

ment ̂  is replaced by This simplification intro­

duces an error of less than 20$. The increased ease of analysis is a 
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small price to Day for the error. The derivative nf t>»e Air".' integral 

solution f ' + %) can be written as : 

£'(Çf+ P̂ ) = exp (jrt/6) Ai P>Lj_) exp (jjt/5)] . 245 

Equation 243 can be used to formulate : 

2k , a dn 
~ u + r a? L _ 0 

(3t " 
r=L 

n dr 
o r=r. 

LU 

2k 
a 

246 

2k 
This equation is simplified by using for all the P's. Equation 246 

can be simplified to 

pi 
= 4 x 10"8 — exp [-(r-aj/io*] [l - exp (-Ar/lO*)]. 247 

n 

This can be written in approximate form as: 

IT = 4a X 10 exp [-(r -a/104)] Ar 
i o 

248 

Or, setting r_̂  - a = h_ and a = 6.35 x 10 meters, Equation 248 can be 

written as: 

_ s  

-p- = 2.54 x 10 exp (-10 iî ) 249 

The stratification function can now be written as 

g = P / (jm/6) (g ̂  ̂  ̂Ai[̂ exp (ĵ /3) + P̂ exp (ĵ /3)] 
i=3 i 

exp (-10 ) 250 
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Tf t>>» =f™+ifi??.ticn:: arc tckczi to to very close together, llic ouiu-

mation of Equation 250 can be extended into the integral 

00 

S = P1/5 2-54 x 10 \ Ai[-a + p1/3 exp(jit/3)l exp(-lO'li)dh , 

5 w K 
•where %exp(jrt/3) = -CC which is the root of the denominator of the Green's 

function. The upper limit of the integral has been extended to infinity. 

The number -d has not been determined as yet for this case, but it should 

not be much different than the root ag of the linearly-varying atmosphere. 

The derivative of the Airy Integral Ai(-C£ + exp [jrt/3] ) can be 

approximated by the first term of the asymptotic expansion 

i 
— z1/4 exp (-2/3 z3/2 

Substituting this expression into the integral defining S results in: 

Ai(z) % z ' exp (-2/3 z ' ) 252 

2f? 

25.4xl0"6 
e; J I -QH-x exp( jîr/3)]1/4 exp [-2/3(-a 

B-P W hQ 253 

+ x eac3»(jit/3) )3/2 - 10_4h] ̂  

l/3 
where x = P zvĵ  . To see the effect of the exponential atmosphere on the 

transhorizon field it is necessary to estimate the magnitude of the strat­

ification function S. If S is not infinitely large, the linearly-tapering 

solution will be a reasonable approximation to the solution in an expo­

nentially tapering atmosphere. To get an idea of the size of the integral, 

consider the behavior of the integrand at reasonably large values of x. 
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The integrand can he approximated as 

e: ixp(j:r/l2) [P̂ afn(̂ ) exp [-j§[P̂ afn-̂  ̂]3/2] 

254 

exp f [pl/3a,̂ )]l/2 ̂  

The integrand oscillates rapidly with increasing h and it rises ex­

ponentially to some value then levels off and drops to zero as the exp 

gral for some values of x but even though the integrand rises quite rapid­

ly for intermediate values of x, the oscillations of the integrand occur 

with shorter and shorter periods so that the net contribution is probably 

quite small. This is a hueristic argument which is borne out by the com­

parison with experiment. An exact analytical solution would be desirable 

only in that it would determine a different root of the denominator of the 

Green's function, and once a different root of the denominator of the 

Green's functions were established, different gradients of the refractive-

index would be used to establish a correlation with experiment. This is 

all true as long as the integral is of a reasonable value. If the inte­

gral is infinitely large, then there would be only one root Ct and it 

would be zero. This would in turn mean that the field would not exhibit 

an exponential radial dependence which contradicts experimental evidence. 

A second stratification example which will be considered is that of 

an isolated layer in the upper atmosphere. Consider the profile of the 

refractive index to be as shown in Figure 5. If the effect of the ex­

ponential atmosphere is ignored, it is necessary to consider only the 

There will be some contribution to the inte-
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portion of the atmosphere from hQ to ĥ  + L. The stratification function 

can be written as: 

h +L 

S = exp (jit/6) \ Ai [-a + x exp ( j%/3)] sin dh 255 

i 
Using an asymptotic expansion of the Airy integral for large x, the strati­

fication function reduces to 

s = e*?( ;)*/*)«# x1/4 sin 2/3 exp ( 3 /g) 

h 

sin dh 256 

Again, in order to evaluate this integral, a number of approximations 

will be made, namely: 

xl/4̂ ,Ol/5h)l/4 

(P̂ Al)1/2 257 x 

x" 

Using the approximation; hQ > > L, the stratification integral can be 

written as: 

IS T5L ̂ HO^1//4 exp̂ aOho)1/̂  exp ̂ -J[G/3 (PHQ)3/2 - JT/4]^ 

L 

exp [-j(P̂ 3h )"Ly/'2h] sin dh 
O Jj  
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~ (P1/5^)1/4 exp[ 3 a(Pho)1//2/2] exp£-j[2/3(p1/̂ h.o)3̂ 2-it/4]J 

258 

The term (3 ' hQ L/2JT is, in general, much greater than one, therefore E-

quation 258 can be rewritten as: 

There are several significant features of this result which are worthy 

of note. First, the integral becomes larger as the height of the pertuba-

tion becomes larger. This is reasonable because the perturbation acts as 

a source of partially reflected wavelets. Thus, the higher the source is 

above the earth, the stronger is the resulting field. Secondly, the re­

flected wave is a function only of the end points of the perturbation, 

that is, a function of the width or thickness of the perturbation. This 

fact was pointed out by Friis, Crawford and Hogg (8). The reflected wave 

is directly proportional to the intensity of the perturbation in the 

259 

zv 

260 
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refractive index and becomes larger with decreasing T.. These character­

istics are to be expected since increased £P or decreased L mean that the 

gradients are greater. 

Consider an example using the preceding theory. The Green's function 

A 
defined by Equation 248 can be simplified by setting = 0, in 

f(̂ + 
g(^+ ) 

g(%9f(f+ J"' 

_ Jg(^P^j} 

261 

The stratification function will be evaluated for the following parameters : 

p1/3 -Sx lo"2 

100 meters 

h =10 meters 
o 

262 

^P =10 
-3 

Inserting these values, the stratification function S becomes : 

| A 3 x 10"10 exp (15a) [exp (-jl732) - l] 

3 x 10'10 exp (150!) (-1.94 + j 342) 

6 x 10"10 exp (15a) exp (j 170°) 

263 

At this point one can draw some general conclusions which lead to an 

approximate form of the final answer. The complete integral is evaluated 
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"by determining the sum of the residues of the poles of the in+emrncL 

The poles of the integrand are determined by finding the zeros of the 

denominator of the Green's function. That is, the equation 

- § [g(%9f(4f+ P̂  ) - f(#g(#+ P̂  )] = o 264, 

The functions f(̂ ) and gVoO?(ff + )̂ - f(̂ )g(̂ f + P̂ ^̂ t are of com-

g 

parable magnitude, so the magnitude of ̂  has to be about unity. This 

would enable an estimate of the size of a. 

6 x 10"10 exp (152)<% 1 

a<vl.4 265 

* 
or a = -1.4 

s 

Now, this value of ag can be used in the distance dependence of the 

Equation 194, developed earlier for the case of a dipole radiating into 

an atmosphere with a linearly-varying index-of-refraction. If the at­

mospheric perturbation of this example is combined with the model used to 

compare with the experimental results of Section IV, the resulting Hertz 

vector is: 

a = 7,86 X 10 exp [-(6.7 x 10"6)(l + a ||)2/5 p] 266 

A comparison of the results of Section IV with a plot of Equation 266 is 

shown in Figure 4 to indicate the effect of the stratified perturbation. 

The model of the preceding example is considerably simplified in an 

effort to get an idea of the effect of the stratification. A more detailed 
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look into the effect of the stratification of the atmosphere would, reveal 

additional information which would be useful "but it is questionable whether 

this information is worth the additional analytical effort. For example, 

a root of the denominator of the Green's function has been determined 

which is a negative real number. The actual root of the denominator would 

not, in general, be a real number; rather, it would be complex because the 

stratification is, in general, complex. The effect of a complex root 

would be to put an additional sinusoidal p dependence into the solution. 

This is not unreasonable since it would be expected that the reflections 

from the stratified anomaly would set up an interference pattern in the 

radial direction. The complex root would not be expected to have a phase 

angle much different than % radians, because the term which was suppressed 

in the phase of the stratification integral was 

exp 

where a is a negative number. This means that the phase will change quite 

rapidly with (%, since is a reasonably large number. Thus, one 

would expect that the phase of the root of the denominator of the Green's 

function would be altered only slightly. 
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à 

0 = /30+ ̂ (l-coŝ p) 

a + h0 - r - a + h0+ L 

Figure 3. The profile of a stratified anomaly in the refractive 
index 
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VII. CONCLUSIONS 

The earth-flattening approximation coupled with the Airy Integral 

solutions of the resulting differential equations provides a simple, 

readily understood technique for evaluating the strength of the fields 

over the horizon from a radio transmitter. The Green's function approach 

to the formulation of the complete solution allows considerable utility 

in extending the results obtained for the simple models of the earth's 

atmosphere. In this analysis, the Green's function is modified to in­

clude the effects of stratified perturbations in the refractive index 

of the atmosphere. Further, the Green's function can be formulated with 

an explicit time dependence which will permit the effect of slow temporal 

variations in the structure of the atmosphere to be considered. This 

modification would then bridge the gap between the "turbulent scatterer" 

theory and the normal mode theory. 

The results of the analysis are compared with data taken from a trans-

horizon propagation experiment conducted over the ocean. There is good 

agreement between the modest amount of reliable experimental data and the 

results of this analysis; thus substantiating in large measure the valid­

ity of this technique. The possibility of using a time-dependent Green's 

function to develop a model for the time-variant atmosphere was not pur­

sued further because there is no experimental data with which to make a 

comparison. 

It is impossible to go through analysis on a subject of this nature 

without slighting many ramifications of the problem. Such is the case in 
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this analysis. There are several areas of the investigation which should 

he carried through to a more detailed conclusion. These include the de­

tailed evaluation of the effects of perturbations in the structure of the 

atmosphere and the use of a time-dependent Green's function to include the 

statistics of a time-varying atmosphere into normal-mode theory. The rea­

son these topics were merely mentioned or given superficial treatment is 

that the subsequent analysis are considered worthy of individual reports. 

It is intended that this analysis will serve as the foundation on which 

to treat these topics in more detail. 
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