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I. INTRODUCTION

The problem of the propagation of electromagnetic energy around a
spherical body where the diameter of the sphere is large with respect to
the wavelength of the energy was first solved by Lord Rayleigh in terms
of an infinite series of spherical harmonics. The solution was practical-
1y useless from an engineering point-of-view because of the large number
of terms required to approximate the final a.nswér. Subsequently, G. N.
Watson developed a transformation which transformed the infinite series
into a contour integral which is then evaluated by the method of residues.
The residues of the integral involve asymptotic expansions of the Hankel
;t‘tmctions of order one-third or the Airy integrals. A second approach to
the problem, and the approach which serves as the basis of this paper is
that developed by Pryce (16) and Pekaris (15) in which the earth is as-
sumed to be flat and the atmosphere homogeneous. The solution now reduces
tc an infinite integral of zero-ordered Bessel functions. Schelleng and
Burrows (17) proposed a model wherein the earth was assumed to have a
modified radius of about 4/3 the actual radius and the earth’s atmosphere
was assumed to be homogeneous. This model was used to account for the
gradient of the refractive index of the earth?s atmosphere. All of these
models refer to the so-called '"nmormal mode" of propagation as distinguished
from the "turbulent scatterer" theory of propagation of electromagnetic
energy which will be discussed later. Very complete discussions of normsl
mode theory are included in: "Terrestrial Radio Waves" by Bremmer (3)
and Volume 13 of the M.I.T. Radiation Laboratory Series: "Propagation of

Short Redio Waves" by Kerr (12). In 1958, Carroll and Ring (4) published



the results of a very extensive investigation into the propagation of

radio waves by the normal modes of the atmosphere. These results indicated
that the classical "airless earth" modesl were not valid for calculating
the effects of the internal reflections of a stratified atmosphere. In
1959 Tukizi (18) published a theory which, while using a different approach
to the problem, achieved results which had excellent comparison with ex-
periment and, which are corroborated by this analysis. Tukizi's results
indicate the utility of the normel mode theory in predicting the strength
of the field in the diffraction region and especially in predicting the
radial attenuation of the field in the diffraction region.

The term "diffraction region" as referred to by Tukizi (18) and a
number of other authors stems from the theory that the presence of the
field over the horizon from the source is due to a diffraction process
caused by the curvature of the earth, Other authors call this same phe-
nomenon by different names; for example, Carroll and Ring (4) use the term
"Mwilight region". In this paper, the terminology which is favored by
the proponents of the "turbulent scatterer" theories will be used; "trans-
horizon field". This will mean that field which is over the horizon from
the source.

The other theory of propagetion of short radio waves over the horizon
was first introduced by Booker and Gordon (2) in 1950. Basically, the
Booker-Gordon theory is that spherical or elliptsoidal anomalies in the
refractive index act as scatterers of electromagnetic energy. These
anomelies, often called "blobs", are supposedly located in the common

volume of the transmitting and receiving antenna beams and serve to



scatter some of the transmitted energy down to the receiver. These "biobs™
are being formed continuously, reducing in size, and finally dissipating,
and are a direct manifestation of the turbulence of the atmosphere. The
turbulence can be described in a statistical fashion and there are sev-
eral theories concerning turbulence which serve as the basis for these
arguments (9, 19, 20). The adventage of the turbulent scatterer theory
is that the statistics of the turbulence lead directly to a statistical
character for the field in the diffraction region. In normal mode theory,
the atmosphere is assumed to be static, so that there is no statistical
character to the transhorizon field. The turbulent scatterer theory is
very attractive from a number of points-of-view, most of which involve the
statistical character of the field in the transhorizon region. The most
significant shortcoming in the turbulent scatterer theories 1s that the
intensity of the turbulence, or the variations in the index of refraction
in the "scattering blobs", is not sufficiently large to account for the
fields observed since in most cases, the common volume of the antennas

is very high in the troposphere.

At the present time the Booker-Gordon theory is most widely accepted
with the majority of the work being done in correllating the meteorolog-
ical phenomens with the field in the trenshoriZon region. A number of
good resumes of the Booker-Gordon theory and the various turbulence
theories are available (2, 9, 19, 20).

The present analysis uses the flat-earth approximation applied to the
normal mode theory of transhorizon propagation. The results reported by

Pryce (16) are acheived by a different technique and the analysis is extended



to include the effects of an inhomogeneous atmosphere with & constant
gradient of refractive index. Finally, a technique for approximating an
arbitrary profile of refractive index is developed and two model atmospheres
are considered. Field strengths calculated on the basis of this analysis
are compared with experimental data reported by Dinger, Garner, Hamilton

and Teachman (5) with good results.



IT. PROPAGATION IN A STRATIFIED ATMOSPHERE
A, Definition of the Problem

The problem to be considered is that of the propagation of electro-
magnetic energy around a spherical earth from a source located at some
point on or sbove the surface of the earth. The atmosphere of the earth
will be assumed to be spherically stratified; that is, the index of re-
fraction is a function of radius. The coordinate system for the spherical
earth is shown in Figure 1. The source is located at the point r = a + 4,
vhere a is the radius of the earth. Thus, d is the height of the source
above the surface of the earth.

The analysis is concerned with the transhorizon field only, since the
intent of the analysis is to develop an analytical technique which will
allow a piecewise-linear approximation to any profile of refractive index.
The transhorizon field will be solved for both magnetic and electric di~
pole sources located in an atmosphere having a linearly varying profile
of refractive index. This solution will be compared with the result ob-
tained by Pryce (16) for the case of a homogeneous atmosphere. This will be
the case of a profile of refréctive index with zero slope. The article by
Pryce (16) is the basis of the present analysis since the "earth-flattening"
transformation and the Airy Integral solution with its rapidly convergent
asymptotic expansion is a very attractive technique. It should be pointed
out that Pryce (16) solved for the cases of vertical and horizontal dipoles
rather than the cases of electric and magnetic dipoles considered in this

analysis. The essential difference lies in the fact that there are no



Figure 1. The spherical polar coordinates of the problem



azimuthal variations to consider when using the elementary dipoles as op-
posed to the more practical antennas of Pryce's analysis. The fact that
the elementary antemnas of this analysis are not practical antennas con-
figurations does not detract from the significance of the results because
it is the ratio of the energy in the transhorizon region to energy which
has traveled a corresponding distance in free-space which has direct ap-
plication in engineering problems. This ratio would be the same for any
antenna configuration of a given polarization. Thus, it is a simple mat-
ter to estimate the strength of the field in the transhorizon region from
the free-space field strength.

The aralysis will begin with Maxwell's equations from which Hertzian
vectors for both the magnetic and electric dipoles will be developed. The
components of the electric and magnetic fields for both types of polari-
zation will be expressed in terms of the Hertz vectors. The inhomogeneous
wave equation for the Hertz vector will be reduced to a pair of single-
dimensioned differential equations by the separation-of-variables tech-

nique. At this point the "flat-earth"approximation will be made. The

"flat-earth" approximation is a transformation from spherical-polar co-
ordinates to cylindrical coordinates. After the transformation has been
made, the two one-dimensional differential equations will be solved. The
Hertz vector will be found by weighting each term of a complete ortho-
normal set of solutions in one variable by an appropriate Green's function
of the other variable. The resulting expression will be the Hertz vector
for a monochromatic elementary dipole of unit strength. The Green's func-

tion technique is well suited to making a piecewise or sectionally-linear



approximation to an arbitrary continuous curve. The resulting indefinite
integrals are evaluated by means of the residue summation of the theory of
complex variables. The asymptotic expansion of the Airy integrals allows
the final expression, which is an infinite series, to be approximated by a

few terms.

B. Mexwell!s Equations for the
Inhomogeneous Atmosphere

Maxwell?’s equations in spherical-polar form for application to an in-

homogeneous atmosphere are:

VxZ(r, 0 4, t) = ~u

57—;7(1': o, ¢) t)
0 t

vV, xﬂ(r, 0, ¢’ t) = O'E(r, e, ¢, t) + €(r) BE(I’é 9{; ¢) t)

V. €(r)g(r; o, ¢) t) = pc

v 'ﬁ(r, e, ¢, t)=0

p—

Where E?(r, 0, ¢, t) is the electric-field-intensity vector, # (r, 6, ¢, t)
is the magnetic-field-intensity vector, ¢ is the conductivity of the med-
ium, p, is the conduction charge in the medium, €(r) is the dielectric
constant of the medium; in this case, the permittivity of the medium is a
function of the radial distance, and p is the permeability of the medium.
The radiation will be assumed to be monochromatic of frequency w; that

is, the time-dependence can be written in the form; ejwt. Under this

condition, Maxwell's equations can be written in time-independent spheri-

cal-polar fornm as;



Vx?(r, 0, 4) = 'ja.f(rj e, ¢)

VxH(r, 6, §) =0T (r, 6, §) + jo (r)E (x, 6, 4)

2 G(r)—l‘?(r) 6, §) = P

VeH(r, e ¢)=0

C. The Magnetic Dipole
A magnetic dipole of strength M is defined to be a loop of current of
magnitude I and radius r such that M = 1lim rI, and is characterized by

r—>o0
I~

the following field relationships:

Er=E¢=H9=O.
The formlation of the Hertz vector for a magnetic dipole in an inhomo=
geneous atmosphere shown here is due to Friedmen (7). Maxwell's equa-
tions for field components with no azimuthal variations in a charge-free

inhomogeneous non-conducting medium are:

VxE (r, ) = =jau H (r, 0) a
VxE (r, 8) = jo&(r) E (r, ©) b
Ve (r)E(r, 8) =0 c °
\Y -—I‘f(r, 8) =0 a

By Equation 3(c):

V.er)E(r,0)=0,
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E(r)_if(r, 8) = -juu Vx €(r57f; (r, @) . 4

The seemingly arbitrary form of Equation 4 is justified by the fact that
it is desired to develop a Hertz vector which is applicable to a magnetic
dipole. For this reason, the operation above and other somewhat arbitrary
definitions in the equations to follow are justified. Using Equation 4

in Maxwell’s equation, 3(b) leads to:

v x_ﬁh(r, 8) - w?p v x E(r)—rTm(r, ) =0 5a

or

Vx [ (r, 0) - ou (=) T (x, 8)] =0 5b
The expression in parentheses can be written as the gradient of a scalar:

—E.(r, e) - a@u €(r)i:fm (r, 0) = VL*kr, e) . 6
Solving Equation 6 for the magnetic field intensity—ﬁ'(r, 0), results in:

E(r, 9) = Fue() T, (r, 9 + vz, 0) 7

Equation 3{c) can be rewritten in terms of the Hertz vector as:

T ='j(‘q‘l € e

E (r, 6) 6] v x (r)Trm (r, o) . 8
Substituting Equations 7 and 8 into Equation 3(a) results in:

v x Ej(h?f v x e(r)_ﬁm(r, 9) - wgue(r)—ﬁm(r, 9) - ka(r, 8)=0. 9
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Substituting Equation 7 into Equation 3(d) results in:
u?u v - €(r)wﬁvg(r, e) + V2(¢)(r, 8) =10 . 10

Friedman (7) points out that the divergence of Equation 9 will result in
Fguation 10, therefore it will be sufficient to consider only Equation 9.

Assume that the Hertz vector is radially directed and given by the equation:

ﬁm (r, 9) =’§r rvu_(r, e) .
Again, this somewhat arbitrary assumption is justified by the fact that it
leads to the proper field components. Actually, this Hertz vector must
reduce to the classical free space Hertz vector if the medium is assumed
t0 be homogeneous and it is known that the free space Hertz vector has the
same direction as the source dipole. In both cases, the source dipole is

oriented radially.

— N U (r, o)
v x e(r)T\m (r, 0) = =2 e(r) L, 11

and

—= 3%y ou
Vx gy Ve T (x, 0) = :ar%_a?&c ot 95“%

— > 1 aUm anm
+a9 55 +5r?_9— . 12

By Equation 9, Equation 12 must be equal to:

a?p e(r) 8, rUm(r,O) ta, é—siglgl +a % _$£]£_$__ . 13

3 . . v — .
uating the coefficients of the unit vectors & and a. results in:
T e
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o
:.: anm KN l aAnt N __.[-_II_D' A, ,!,c's! cfa Y o Pﬂ% N
B e - - hadil o R A . - v
T 602 T o8 m  Oor
and
l8U111+82Um=£agy
TO6 Oroe roe °

Equation 15 can be integrated once with respect to © to give

dlr u (r,0)]
m
Sﬂ(r,g) = _TF——— .

Substituting Equation 16 into Equation 14 results in:

1 m, 1

m 2
= —= % > cot 5—5'+ wp€(r) r Um +

ou 52r U,
= 0,
ar2

15

16

17

Equation 17 is recognized as Helmholtz's equation in spherical polar co-

ordinates applied to a function with no azimuthal dependence. Thus, it

is shown that for the magnetic dipole case, the equation to be solved is

Ve U (r,0) + weu e(r) U, (r,8) =0

regardless of the stratification of the medium.

18

Once the scalar function Um(r,O) has been determined the Hertz vector

.

TT‘m(r,G) can be written and the components of the electromagnetic field

can be formulated.

The field components are:

3%ru 5
(2) B = 2 + u€(r)Um (a)
r
2
ONERES (e)
(c) H¢=O (£)

19
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The equation which mist be solved to determine the components of an
electromagnetic field propagating from a magnetic dipole located in an in-

homogeneous atmosphere is:

1 azum 1 aum 5 BarUm
;——'—2-+;C0tgw+w}l €(I‘)1'Um+ 220. 17
08 or
Assume a product-type solution of the form
Um(r,O) = R(r) o(0) . 20

Substituting Equation 20 into Equation 17 results in:
1t

1"t ] !
r2R 2rR 22 ) o
—— e — — .
R + r @ ue(r) + 5 + cot @ 5 0 2L

The separation constant.%s is defined such that:

1" b} 2
® + cot 60 +?\m0=o 22
and
2
i ! 7\
R+ Z-+ (Pue(r) - B )R=0 23
r
and
2
>
?\m 0.

At this point it will be appropriate to develop a corresponding set

of equations applicable to the electric dipole.
D, The Electric Dipole

An electric dipole of strength M is defined to be two charges of mag-

nitude Q, having opposite polaerity and located & distance d apart, such
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that M= 1im 4Q .

d—=o

As in the case of the magnetic dipole, the time-dependence of the radiation
will be assumed to be of the form, eJam. Actually, the electric dipole is
the radiating element, short compared with wavelength, which is used as an
initial example in elementary texts on antenna theory (1). The formla-
tion of the Hertz vector for the electric dipole again follows the work of
Friedman (7). Starting from Equation 3(d);

V-TH (r,8) = 0
“H (r,0) can be written as the curl of a Hertz vector,

H(r,8) =V x.TT; (r,0) . 24
Substituting Equation 24 into Equation 3(a) results in:

VxE (r,0) = ~jop Y x][(r,0) 258,

or

VxE (r,0) + Jan 11 (r,0) = 0 . 25

The expression in parentheses can be written as the gradient of a scalar

#(r,0).

T (r,0) + g 11 (r,0) = Y § (z,0) 26

Solving Equation 26 for the electric field intensity vector results in:

?(r,e) = -jcm'l—i(r,o) +V ¢ (r,0) 27
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Substituting Equations 24 and 27 into Maxwell's equations 3(b) and 3(c)

results in:

VxV x—_ﬁ—e(r,g) = wzu €(r)_ﬁ€(r,9) + jue(r) vV 4 (r,0) 28
and
-jau Voo €(r) Tre(r,G) +V * €(r)V é(r,8) = 0. 2

Again, it is noted that the divergence of Equation 28 is Equation 29; there-
fore, it will be sufficient to consider only Equation 28. Assume that the

Hertz vector to be radially directed and given by the equation:

—

TT (x,0) =% 1 U (r,0) . 30

Substituting into Equation 28 and equating the coefficients of the unit

—_. 3 .
vectors—gr and &, results in the two equations:

U 3%y

1 e, 1l ~ e 2 jae(r) gé__
2°°t95—5+ 2——8 2+mu€(r)Ue+ - r-O 31
r e
and
13 raUe_jmegr)gg .
ror 306 r )

Integrating Equation 32 once with respect to © results in:

1 BrUe(r,Q)
#(r,0) = T2 (T) ST . 33

Substituting Equation 33 into Equation 31 results in:

U 3%y rvyU
e e 2 juﬁ(r) d e _
o LLe(r)Ue R joe(r) =

1 cot © + 0 34

1
2 ) 2y 2

or
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1 aUs: 2

T ;—2-(:0'5 L) 8—51" W pelr) Ue

&
> X(]
he ]
Rl
o

Q/
°1c.f“
Ol

34
t b
€ (r BUe 1€ (r)

T E(r)dr r €(r) Ue = 0.

Equation 34 looks just like the corresponding equation which was developed
for the magnetic dipole except for the terms which are due to the gradient
in the permittivity of the medium. This difference is to be expected since
the Hertz vector is a measure of the electric field; and, since the elec-
tric flux density must be continuous, the electric field intensity must
vary on account of the inhomogeneities in the permittivity of the medium.
Just as in the case of the magnetic dipole, once the scalar Ue(r,Q) has
been determined, the Hertz vector is known and all the field components

cen be formulated. The field components for the electric dipole are:

E. = Ee:%ﬁ [_e(r) g? 'GT% r Ue + wgue(r) r Ue} )

2

-3 1 9
By = afiri T Soor T Ve b
E¢ = 0 (4

35

H = 0 d
r
Hg = 0 e

aue
i = -5 f

In the electric dipole case, the eguation which must be solved is:
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320, ~oU A 3 )
st irEt it fpeor oyt ael)
or r"9e r

! AU H
€ (r) 1€ (r)., _
B €(i“7 8 f‘ B ; Q(I‘) Ue =0

Assuming a product-type solution, that is:
Ue(r,O) = R(r) o(e) 36

Substituting into the differential equation and separating the variables

results in the two equations:

" 1 2

Q+cot99+7\eg=0 37
"1 ! ! 7\2 '
R+;(2-r€—§r—))R +((n2p€(r)--e2~-§e§:))R=O 38

e(r) T

Where the separation constant 7]2 is defined such that ﬂi > 0. The Equa-
tions 37 and 38 are quite similar to the corresponding equations for the
magnetic dipole, however, Equation 38 is more unwieldy than either of the
other equations. This analysis is confined to an atmosphere with a lin-
early-varying profile of refractive index. This means that the gradient
terms of Equation 38 will be & number rather than some function of radius.
Thus, certain simplifying assumptions can be made during the analysis. In
particular, when considering the portion of the atmosphere in which the
gradient of the refractive index is very small, Equation 38 reduces to the
equation developed for the magnetic dipole.

Having developed expressions suitable for determining the field com-

ponents of the electromagnetic wave propagating from either of the two
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source types, the next step is to convert from the spherical geometry of

the problem to the cylindrical geometry of the "flat-earth" approximation.
E. The Flat-Earth Approximation

The earth-flatting approximation is nothing more than a transforma-
tion from a spherical-polar geometry to & cylindrical geometry. The
transformation equations are:

N =2atinrfa

p=8ae

39

Where p represents radial distance or range and itrepresents height. These
are the same transformation equations used by Pryce (16) but reduced to

the case of no azimuthal variations. The transformation is such that a
cone with its apex at the earth's center becomes & cylinder and the sur-
face of the earth becomes a plane oriented such that the axis of the
cylinder is normal to the surface of the plane., The introduction of the
"earth-flatting" approximation is credited to Schelléng, Burrows and
Ferrell (17) who, in an effort to simplify the analysis of the transhorizon
field due to the curvature of the "rays" of energy from the source, decided
to transform to a coordinate system where the rays became straight lines.
This leads directly to the equivalent radius of the earth concept, or the
so-called 4/3 earth radius. Subsequent work considered the earth to be
flat which meant that the rays were bent upward. This is no problem if

one is interested in a solution of the differential equation governing

the propagation of energy as opposed to the ray-tracing technique. Pryce

(16) credits the final form of the transformation equations to C. L. Pekaris
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for the range transformation and to Prof. E. T. Copson for the height
transformetion. Pekaris has shown (15) that the error involved in meking
the small-angle approximation is less than 2% for ranges up to one-half
the radius of the earth. Copson pointed out that the height transforma-
tion'Vlﬂ a fn r/a is preferable to the somewhat more intuitive M=1r - a
because the geodesics correspond to straight lines in the first case and
only approximate straight lines in the second case.

The differential equation with 7], the height varieble, as the inde-
pendent variable will be referred to as the height-gain equation. The
differential equation having p, the radial variable, as the independent
variable, will be called the range equation. Pekaris analyzed the error
involved in approximating the height-gain equation by Stoke's equation and
concluded that the error becomes quite large at moderate heights. Koo and
Katzin (13) have shown that the height-gain equation can be made exact by
making a change-of-variable so that the height-gain equation becomes
Stoke'’s equation. It will be seen that the range equation transforms into
Bessel’s equation cf order zero with a parameter ?\/a. The solutions to
the transformed range equation will be zero-order Bessel functions and
the solutions of the transformed height-gain equation will be Airy inte-

grals.

¥, The Airy Integral

The Airy integrals, signified by Ai(z) and Bi(z) are solutions of

the differential equation known as Stoke's equation:
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~

YRR
‘-’*—252-’11 -zU(z)=0 40
dz

The differential equation is of second order; therefore, there are two

linearly independent solutions, Ai(z) and Bi(z), defined by the integrals:

es]

3
Ai(z) = i g- cos (sz + = ) ds 41
¢ 3
0
and
o0}
1 £ £
Bi(z) = = { exp (tz - 3—) + sin (tz + 3—)}dt 42
o

A complete discussion of the Airy integral is given in Jeffreys and
Jeffreys (11). The relationship between Airy integrals and the general
solution of Stoke's equation, Bessel functions of order one-third, is
given in The Annals of the Computation Laboratory of Harvard University,
Vol. II, entitled "Modified Hankel Functions of Order One-Third" (10).
The Airy integral solutions are shown to be superpositions of the Hankel
function solutions. The particular advantage of the Airy integral formu-
lation is rapid convergence property of the asymptotic series expansion
of the Airy integral solutions. The asymptotic expansions and their

associated intervals of convergence are listed below.

l - ' ARSY) -
Ai(z) 2 ep (2 ,3/2) {1 LS, 3/2 , 1:1'5 1L -5
2y ' 2! 48

1-7-13+5-11-17 -9/2

31 48°

+oeee 43

for -n < arg z < +7.



-1/4 5 3/2.). . 1.5 _-3/2 , 1°7°5°1l -3
Bi(Z)" i%:% Z / exp (g Z / )iyl + i?Zg z / + ——éngz— Z
b3
44
+ 1-7-13-5;)11-17 Z-9/2 .
31 48

for -1/3 1 < arg < + 1/3 x.

When arg z = n; set 2z =gaexp (jn) , which results in:

Ai(z) = Vl—z-ﬁ_,?'l/'* {P(gﬂ) sin (2/38%/2 + /1) - Q@) cos (2/53'75/2

45
+ 1{/4)}
. 2
Bi(z) = Vl—_ﬂ,'?l/é‘ EP(?) cos (2/3%93/2 + n/4) + Q(P) sin (2/3?3/ "
+ :t/4)}
vwhere
p@) 1 - LIS 3 | L7155 09 "
21 48 4! 48
and
-3/2 -9/2
15 1°7+13°5°7°11
Q(‘g)~m-§?’ S ¢ + o 48

It should be noted that the second term of each expansion is about one-
tenth of the first term for| z| = 1. The functions Ai(z) and Bi(z) are
chosen as the fundamental pair in such a way that one of the solutions )
Ai(z), would decrease exponentially along the positive real axis and that
both of the solutions would be of equal amplitude and oscillatory, but

differing in phase by :t/E radians, along the negative real axis. These
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solutions are most suitable for application to propagation problems he-
cause the first condition provides & solution applicable to weve propaga-
tion in a lossy medium such as the earth while the second condition pro-
vides a solution which represents an outgoing wave at large heights which
is one of the boundary conditions of this problem. In the particular
problem at hand, the dissipative medium, the earth, is the region of neg-
ative){ and the medium suitable for lossless propagation is the region of
positive?{ « It will be seen that on making a change of variable in the
height-gain equation to transform it into Stoke's equation, an inversion
of the 72 axis will be made thus making the Airy integral solutions ap-
plicable.

Two identities involving Airy integrals which will be of considerable

utility in the analysis to follow are;

Ailz exp (§ 2kn/3)] = exp (§ kn/3) [cos kn/3 Ai(z) - 153,sin kn/3
Bi(z) | 19
and
Bilz exp (j 2kn/3)] = exp (j kn/3) E,j \f;sin kn/3 Ai(z) + cos kn/3
Bi(z)] 50
Complete tables of Airy integrals and their derivatives and a tebulation
of the zeros of the Airy integrals and their derivatives are given in the
Mathemetical Tables Part-Vol. B (14). These tables allow ready evaluation
of the expressions which will be developed for the field components.
The Airy integral solutions will be used to formulate a system of

equations whose solution will be used to weigh each term of a complete
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orthonormal set of solutions of the differential equation in the other

veriable. The resulting integral will be the complete field solution.,

G. The Green's Function

The solutions of the differential equations governing the propagation
of electromagnetic energy around the earth must ﬁe modified to account for
the singularity at the source point. The Green's function is a function
of‘7Z'Which satisfies the boundary conditions at the earth's surface, repre-
sents an exponentially decaying wave inside the earth, represents outgoing
radiation at great heights above the surface of the earth, and whose de-
rivative has the proper discontinuity at the source point.

Assume that a dipole of unit strength is located at a height d above
the surface of the earth. It will be convenient to locate the @ = O line
through the dipole, such that the coordinates of the dipole are (a + d, 0).
This point will transform into the point (7Zd,0) in the cylindrical geometry
of the flat-earth approximation. The point discontinuity is represented by
Dirac-delta functions in the spherical-polar coordinate system. The differ-

ential equation which must be solved can be written as;

[D2(r,9) + ke]U =dlr - (a + d)]Cg(@) 51

where

Da(r,e)f:‘ Da(r) + D2(G) 52

Da(r,o) represents a second order differential operation which in

the case of a homogeneous atmosphere or a magnetic dipole 1n a spherically

atratified atmosphere is the Laplecian operator. In the case of an
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lectric dipele in an inhomogenecus spherically stratified atmosvphere the
2
D(

a

r,0) operator is not the Laplacian operator because of the grad €(r)
terms., The point discontinuity will retain its essential characteristics
through the transformation to the cylindrical coordinate system, thus E-

quation 51 transforms into:

[D'a(”fz,p) +x% U= S(’Z-"Zd) 8(p) 53

Where the primed superscripts merely indicate that a transformation has
been made. Since the dipole is monochromatic, the time-dependence can be
removed from the source by assuming an exponential time~dependence of the

form, egam. All of the field components have the same time-dependence so

the eJmt can be factored out of each term, thus reducing the problem to

one of static fields,

The problem can be solved by finding a complete orthonormal set of

solutions of the equation:
[D’a(p) +4% 6= 0 54

Fach term of the complete orthonormal set of solutions of Equation 54
will be weighted by a Green's function in the‘YLvariable. To see that
this procedure does indeed produce a solution of Equation 53, consider the
separated differential equations after transformation. These transformed

differential equations are:

[r%0) + (1 - A*)IR =S, 55

and
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L L 2
() +A!°] o= S(O)

i
LD?

($)]
[o2]

A complete orthonormal set of solutions of the equation:

[D%(p) + A%l 6= 0,

is a series expansion of a Dirac-delta function, that is

*
[0%(0) +3°%1 ), oa,(e) 3,(0) = &(o) , 57
im0
*
vhere the superscript means complex conjugate. It is necessary to find

a solution to the equation
[D%() + k2° - A1l b () 58

Where GOl;na) is the Green’!s function. The complete solution can be writ-

ten as:

va D A ayle) §A0) 59

imo
If Equation 59 is a solution of the differential equation, Equation 53,
then substitution of Equation 59 into Equation 53 should result in the

two-dimensional Dirac-delta function O (n-yh) Y (p).

20) + 121 2 alunden (0188, (0) =Stu) S(o) 60

im0

2
Separate D'"(,p) into D'QOQ) + D'Q(p) and move the operation inside the

summation sign.
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[

12 12 - * = 12
[0%,0) + 6171 ) %) § (6) g (0] ). ¥

i=0 1=0
61

2 2
+ D' (p) + k7] GOy,7,) eﬂi(p) Q//\i(o)

Add and su.btract?l’2 inside the parenthesis which contains the differential

operation and perform the indicated operation on the Green's function

*
[0%6p) + 1% -0 + D1%(0) + r%1 Gmy) @ (o) @ (0) 62

= 15 A5

This results in
2 2 *
) [D! +1°) ¢ e (0 63
Zi=o O (n) [013(p) + 9, 2, () % (©)

or

Sorng) (020) + 2021 ) o (0) e (0)

=D i i

which, by Equation 57, is

§ o) § (o).

Thus proving the validity of the technique.
The next step in the analysis will be to solve the separated equa-
tions for the two source types. The first source type to be considered

will be the magnetic dipole.



III. THE COMPLETE SOLUTION FOR THE MAGNETIC DIPOLE

The separated differential equations end the field equations govern-
ing the propagation of electromagnetic energy from a magnetic dipole in

an inhomogeneous medium are:

e"+coteo'+7\§e=o 64

2
!

R" + g%—-+ (a?pe(r) - -—% JR=0 65
r

E =0 66

r

E, =0 67

E¢ = -joit Re? 68

H, = o(R" + % Rt + a)auE(r) R) 69

Hy = (Rt + R/r) o! 70

By =0 71

The boundary conditions which must be satisfied at the earth-atmosphere
interface or at any other spherically stratified discontinuity in the re-
fractive index require matching of the tangential electric and magnetic
fields. Matching the boundary conditions at the earth's surface requires

that:
(B))y = (EQ)py 72

and
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(B Y -~ /1)) _—
Vel YTelII i

where the subscripts I and II refer to the earth and the atmosphere re-
spectively. Substituting into the expressions for these tangential com-

ponents of electric and magnetic field results in:

!

R, ©

1 %1 74

= 1
RII gII
r=a

and

b 1 ? !
(RI + RI/r) ol = (RII + RII/r) oL 75

=8 I=g

When considering the field inside the earth, it can be shown that the same
differential equations which were developed to describe the fields in the
earth’s atmosphere will be applicable provided €(r) is replaced by
9
e (1-L19
0
where 0 is the conductivity of the earth, w is the anguler frequency of
the source, and eo is the permittivity of vacuum. Transforming Equations

64 and 65 into the cylindrical coordirete system of the flat-earth approx-

imation results in:

2 2
a“e 1 ae , A N
-—-—2+—a-cotp/a$+-—2- e=0 6
dp a
and
9—25+l@+[w2ue(r) exp (2n/a) +A%/a®] R = 0 77
2 dyL 2“

The range equation, Lquation 76, will be simplified by using a series ex-

pansion for cot p/a, that is:



cot pfa ~1/(pfa) - (p/a)/5 + (p°[a")/45 + ... 78

Equation 76 can be rewritten as:

2 o
6 1d0 N 1d9,1 2,2 1 4,4
dp:a*pdp*aeg"pap[sp/a'45"/& + oued] 79

As mentioned in Section II-E, Pekaris (15) has shown that the error in-
volved in ignoring the right-hand side of Equation 79 is less than two-
percent at ranges up to one-half the earth's radius. The approximate range

equation can be written as:

2

‘QJ
no

+ ng+’/\2/a2 00 80
ap p dp

This equation is seen to be Bessel's equation of zero order with a parameter
‘ﬂ/é. The solutions are Jo(ﬂp/a) and No(ﬂp/a), where Jo(ﬂp/h) is the zero-
ordered Bessel function of the first kind and NOO\p/a) is the zero-ordered
Bessel function of the second kind. Because of the unbounded nature of
NOCQp/a) as p~>0, it will not be an allowed solution; therefore, the solu-

tion of the range equation is:

o(p) = C 3, (Ao/a) 81

vhere C 1s an arbitrary constant.

The second equation to be solved is the height-gain equation:

ii-g-+ % %R_;L-’- (wzue(r) exp (2y/a) - 7\2/9.2) R=0 82

At this point, it would be appropriate to change from a formulation in
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terms of the permittivity of the medium, E(r), to a formuiation in terms
of the index of refraction of the medium, n(r). The relationship between
the permittivity and the index of refraction is:

2

n
HE = ——= 83
C2

where C is the velocity of light. Equation 83 can be written

pe(r) = n(r)/c?
which can be substituted into the height-gain equation to give:
daR Ll
a an
ot n

The atmospheric model which will be used in this analysis will be assumed

2
(g% nz(r) exp (2nfa) - %?/az) Ra 0 84

to have an index of refraction with a uniform slope, that is:

dn
n(r) = n, + 3 (r - a) r>a, 85
from which n2(r) can be approximated by

2 2 dn
~= on  — - >
n“(r) n_+2n = (r - a) r>a 86

provided §§-< < 1l. Transforming Equation 86 into cylindrical coordinates

results in:
n2(r) = ng + 2no(%%) a (exp [Mfa 1 - 1) 87

The term (%%) is not transformed because it is a number which would be
known in any atmospheric model. Inserting Equation 87 into the height~gain

equation results in:
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"\

1 dl..2| - 2a dn : A7
= ¥ ol o |t T lexp (n/a) = L] |exp (2%/a) -A"/a" ¢ R
2 aan” L =7 & _} §

=0 88

Koo and Ketzin (13) suggest that changing to a new function

Va (r/a)l/ea R or RaVexp (-Wea).

When this substitution is made, the height-gain equation becomes:

2
—2l+{k§[l + %% [exp (M/a) - l]]exp (2n/a) - ﬁﬁf%&l V=0 89

vhere kg = w2n2/02. The factor exp (W/a) - 1 will be approximated by "/a
and the term exp (27¢a) will be approximated by 1 + 271/8.. These approxi-

mations reduce Equation 89 to:

N 2 k2
9_2_2‘3,[115_(?1+2/2)+ °(1+f‘-;—%)h]v=o 90
an a a 0
Making the substitution
-2
-fzg/s(a-m) 91
vhere
2
2 (A%+1/4)
o = ko - 5 g2
a
and
2
2k
0 a dn
B = -é—-' (l + H—' &) 93
o)
results in Stoke's equation:
12% - gv =0 94
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It should be noted that in the process of making the change in variable,
the 7Z axis undergoes translation and inversion; processes which lead to the
proper Airy integral solutions as was discussed in Section II-F.

To get the function U, it is necessary to find a complete orthonormal
set of solutions of the range equation. The solution must be finite at
p = 0 and go to zero as p~>»®, It has been established that the proper
solutions are Jo(ﬂ p/a), vhere the A's take on a number of velues. A com-
plete orthonormal set of the solutions, applicable to a pipe of radius b
and subject to the boundary condition that 6 be finite at p = O and 0 be
zero at p = b, is given by the equation;

ACRRRCE
§(o-p") = 3—2 i; » 95
= [Jl(ﬂib/a) ]

To expand this solution to the boundary conditions of the present problem,

it is necessary to take the limit as b >,

CS-(p-p')—-——>%Z: AL S (ﬂip 5 (Ai:') o

In the limit, the summation becomes an integral:

S<p-p'>=§ Dos Py ) an 97
a
0

For this problem, p' = 0, therefore:

g(p)=5 /—)\5 J (é—p-)d?\ 98

8
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To see that this is g dirac-delta function, it will be necessary to evalu-
ate the integral, Equation 98. This can be done quite readily by means

of Laplace Transform theory.

j 53 (3—) aA = 1—2- E (-s) J (-"-)7\(1?\ 99
S—>0 a 5
= lim ———I[?\J ( )] 100
S —=>0 a.

Taking the Laplace Transform of the quantity in the brackets results in:

1 Aoyi o L 5
aEZMJo(a )] 2 (1 2P 101

Teking the limit as s —=>o

. aEe )

it is seen that the integral is zero everywhere except at p = 0, at which
point it is undefined. Thus, the integral is a Dirac-delta function. To
see that the complete orthogonal set is normalized, it is necessary to

integrate the dirac-delta function over p.

o0 [ee]
§(o) odp = 1im S\ ps_dp 103
g s—>o J a( 52+02/a2)3/2
[e0]
S
a lim (-) =1 104
s—»0 2+;32/a2)l/2 o

thus proving that the set is normalized.

The next step is to find the Green's function. The differential
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equation which must be satisfied is:

2

v . 2 A1ja, XK dn
) + [ko - ( +2/ )+ ao (1 + f"l— E)n‘] V=20 105
an a o

which is transformed into Stoke's equation upon making a change of variable:

-§= 5‘2/5 (a+ By) 106

where O and P are functions of the medium. In the earth;

2
.2 0 (A“+1/4)
Oé-ko(l-we)- 5 107
o} a
2
o) . 0
ﬁ:-.—a—-(l-,]u—f) 108

In the atmosphere:

2
aﬂki_w 109

2
a
2
2k
dn
B=—(1+2 5 110
a nodr

(25 €) 6= (M-M) 111

The allowed solutions from which the Green's function must be formulated
are the Airy integrels, Ai-%) and Bi(-§). The boundary conditions on
the Green's function are that it must represent an outgoing wavé for large
positive N (large negativeg) , an exponentially decreasing wave for large

negative M (large positiveg) , the solutions must be continuous at the

earth's surface and at the source point, and have the proper discontinuity
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in derivative at the source point. By considering the asymptcotic from of
the Airy integrals, the appropriate solution for large positive )Lis
BBi(-€) - j AL(-€)]. This is the solution which will be used above the
source point OU’HE). Between the source point and the earth's surface,
the solution will just be a superposition of Airy integrals BAi(-S) +
CBi(-€). Inside the earth, the appropriate solution would be Q@ Ai(-%),
since this solution decays exponentially for large positive g The
boundary conditions are found by returning to Equations 74 and 75. Since
6 is not a function of the index of refraction, it is the same function

for all%y; therefore, Equations 74 and 75 can be written as:

GI = GII 112
and
aG aG
I II
d')?_ + C-l_/a. = Tﬁ: + GII/E. 113

Thus, the boundary conditions at the earth's surface require continuity
of the function and its first derivative. This leads to two independent
equations. The continuity of the Green's functions at the source point
results in another equation and the last equation which is required in order
to determine the coefficients of the Green's functions is obtained from
the equation:

2

[d—2 +(@+ ] G= 5("%-7&) . 114

4
Integrating this equation once with respect to 7 over the interval from

7@1 - € to'?h + € results in:
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;’h

-

giG = 115
-
Now the system of equations can be written:
(Bai(-g) +CBi(-g)) -DIBi(-§)-3a1(-§))l= 0
B (-5 )07 +Cai(-E Y -DUE(E) -l P -2
@ai(-g) 03hi(-§) -Cri(-g) o
Guai(-€ )62/ -@al(-g 8L/ - cal(-g )pll3 -0
To simplify the analysis, the following notation will be employed.
Aoy = M(-Ey) Boq = A (-§za)
Bpg = Bil-Eppy) By = Bi(Epy)
A, = Ai(-fLI&) A;a = Ai (-g_zh) 117
By = B1 (-§,) B;a = 3 (-&p,)
o 4 (8, e ()

It will also be very useful to denote the function Bif -§ -j Ai( -'§) by

£(%) vhich is in agreement with the notation used by Pryce (16). The

system of equations can be written in matrix notation as:
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0 Ay
1 1/3
0 AoaPs
A1&1 -A2a
v 1/3 1 1/3
AP AP

3

2d

5" alf3
BeatB 2

7

' 1/3
'Baase

-F r_,/?_l B
2d X
1 1/3

foaPs @

0 C

0 Fe)

I

118

0

L

—

The Green's function appropriate to the region between the earth's surface

and the source point is found by determining the coefficients@ a.ndC.

GM< %) =

f2d. [ Ai ( _g) laﬁé/ 28.- '&Bi/SA
1173 - 1/3 1 1/3
(A2d 2a"Poq 2@1)iB B oPs A'.La

2 #(- g)} 119

In the region above the source point, the Green's function is found by de-

termining the coefficientcd?) .

7€)

o> 7Ld) =

B

(A2d 24" 2d 2d

A )6

1/3

2d

It can be seen that a general Green'!s function can be formulated.

G(7(<: 7’C>) =

£(-5)

1

(AEd 24" 2d 2d

a8

Once the Green's function has been determined, U can be written as:

U

j =

(-Wea) Aa® 5 (Ao/a) o

1/3 1/3
aBE 28" aBl A2a T 150
1/3 1/3 oa |
01
1/5 ! 1/3
_§> Aia 2a aBl A 2a £ )
e o oL/ S
a2 o 18 l Ea
121
MM Us) 4A 120
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si A -R _A d he W i e Tra e mmmamdd mn oo
The expression "ed_Bed Boatoq 1S the Wreonskian of Stoke's eguation and

is equal to 1/x for all arguments. To see that this is true, consider
the two solutions of Stoke's equation, Ai(<4E) and Bi(-E). Being solutions

meens that:

—:“i-(—— S4i(8) = 0 123
az®

2
d Bl(-é
dg
Multiply the first equation by Bi(-8) and the second equation by Ai(-+2)

-eBi(-g =0 124

and subtract the two resulting equations to get:
2. . 2_.
Bi(-9) iﬁ%gl - Ai(2) d_BJ:‘ﬁeﬁa 0 125
= i

This is exactly

T% B(-g—ﬁﬁ Al -g)—-(-‘-‘?l:I 126

or

Bi(-3) ——]—“-(ﬁ - Ai(-® g_éB_lng = const. 127

Thus, the Wronskian is independent of =

The field component which must be known in order to determine the
energy density in the atmosphere is the radial component of the magnetic
field, Hr' Once Hr is known, it is a simple matter to compute the Poynting
vector since the ratio of E to H must be the intrinsic impedance of the

medium. The equation used to determine Hr is:

+ oPue(r)] U 128

d 24
H=l=5+0 %

dr
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In the cylindrical coordinates.

2
B, = exp ( -2}1/3.)[d +ld

+ W ue(r) exp (27/a)] U 129
of I

or
©

i< | e (e e () ot L facte) oo (o)
35 3 (Me/a)e(n, ") ad 130
a

The height-gain equation in cylindrical coordinates is:

[;L-— + i g’f Pue(r) exp(2¥/a) - A /a2] U= 131

from which it can be seen that the radial component of the magnetic field

is:
SR
B, = exp (-57/2a) J 7—\4: I (Ae/a) ol ) 4 A 132
a

This integral must be evaluated in order to determine the field in the
diffraction region. To facilitate evaluation of the integral, it will be
appropriate to change the variable of integration to f , defined byf:
B1/3

5 042. When this substitution is made the integral becomes:

1/2

© 0
exp(-Sn/Ea)§ BKi

) 6, M) aF 133

&.1/3

Where K = (—) and k= anc/(l.

The Green's function can be simplified somewhat by meking an approximation
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in the function defining propagation into the earth. That is:

A{(-@ = Ai(f+ Bi/%) ~_ _?1/2 Ai@’i) 134
n=o0 N=0
This is the large argument approximation to the Airy integral and, since
%ﬁl contains a large imaginary part due to the complex dielectric constant
of the earth, the asymptotic expansion is valid. The (éi + Bié% ) term is
approximated byﬁgg. This is allowed because the wave is assumed to atten-
uate rapidly and only has appreciable amplitude in region of small 7 .

With this approximation, the Green's function becomes

g’ (2’)51/3 1/3 1/5 g)
G(% ,h>) = 7:? (gﬂ-*-ﬁ /é'l ) é/{*ﬁ 7Z<) - i (?)Blfs 1/3 ]_/3 ()

135

2(P+ Bl/3n<)

Where g(%) = Ai(¥). This notation is used to show agreement with the re-

sults of Pryce since this is the notation that he used. If a further simpli-

3 -1
fication is made by denoting Be/ 1 /2511/3 by Tl’ the Green's function can

be written as:

1 1 g (‘?) + &(@)
%a%<,74->) = f(?‘*@ /7’(«>) {E(?*‘B /ak) - - (‘?)T . 1@) (f'*‘ﬁé/%)

2 136
Substituting this into the integral defining H results in:

0
E, = exp (-51/28) S s—fgl—’;—u EhE) 3, Uo- GV s

[gg+ﬁé/§n—<) g’(?)'r +8% f(?-*.ﬁl/a}z< js

137

f (i,”)'r +f(§ﬂ)
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Since the zero-ordered Bessel function decays very rapidly for imgginery
argument, the range of integration can be extended to the entire gaaxis
without adding significantly to the integral. If the large argument form

of the Bessel function is used, that is:

3 s p(1 - PRy ~ 1’ .- > cos (k p Lo Jk® - x/a) 138

the integral reduces to:

400
H = exp (-5U/2s) 5 K2p/3 | & = cos(i_p-8p/K7-/4)6 e, )37
=0 © 139

This simplification is possible because kop is a very large number; about
106 at a range of 50 miles and & frequency of 100 mes. Equation 139 cor-
responds exactly to Equation 12.7 of Pryce (16) except that a magnetic
field is considered here. The integral can be evaluated by the method of
residues because the denominator of the Green'’s function has an infinite

number of zeros in the complengpplane. Using the relationship

AL [Vexp(3n/3)] = & > WAD P 140

the denominator of the Green's function and consequently of the integral,

becones:

f'Cf)Tl + (%) = 2 exp(-jn/6) Ai[?pexp(jx/S)]Tl + Al Pexp(ja/3)]
141

Since Ai(z) is oscillatory along the line, arg z = x/3, there are an in-

finite number of poles of the integrand, whenever
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Ai{as EXP \Jn/’:))] ' T Ai[as exp (JII/’O)] = U, la2
Thus the integral can be evaluated by complex residue theory, and Pryce (16)

has shown that the integral can be expressed as:

H, = exp (-57/22) kgﬁé/ 3(2:r/kop)l/ 2 exp [j(3st/4-kop)] i
S

fa  + B /n>) £(a + 52/3%<)

: ‘exp (-Jasp/fiK2 ) 143
2 2
(1+7178)£%a)
B2
2 2 2 1/3
Where Be = 2ko/a, ko/a, ko = C2° , and 1/320 / 1/3
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IV, THE COMPLETE SOLUTION FOR THE ELECTRIC DIPOLE

The case of propagation from an electric dipole loecated in an inhomo-
geneous medium is somewhat more difficult to analyze than the case of the
magnetic dipole because the differential equations are more complicated.
However, it will be possible to make simplifying approximations at appropri-
ate points to facilitate the analysis. The separated differential equa-
tions and the field equations governing the propagation of electromegnetic

energy from an electric dipole in a spherically stratified inhomogeneous

medium are:
O"+cot90'+ﬂ§0=0 144
2
R" + %‘( re r)) R! + (o pe(r) -i—s- ri'rr) R=0 145
E = —35 [R" + X(2- re r))R’ + (Pue(r) - 2y 51 146
r We(r r ré(r

- =J ! '
E, e—(-'rLy(R/r+R ) e 147

H =20 143
r

Hy = 0 150
H¢ =2 -RQ! 151

1t
Equation 145 can be simplified somewhat by considering the term %}’T) .
This expression can be rewritten as 225%5% by means of Equation 83, Typi-
cally, n'(r) is a number on the order of 10-7/meter near the surface of

the earth; getting smaller at increasing heights, while n(r) is very close
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- .

to unity. Therefore,
! -
Eg%%% ~ 2x 10 7/meter .

The function exp (W/a) can be approximated by 1 + N/a, or exp (N/a) ~ 1.

The ‘earth's radius a is a large number, about 6.5 x 106 meters. The term

1
= (o) eegig can be neglected, but the term a exp(Ya)e(x) cannot be

) €(r)

neglected. Thus, Equation 145 can be approximated by:

%* i (- ‘ea‘r%%)‘) %%* {weue(r) exp (2y/a) - Ae/a2} R=0 152

The change of variable suggested by Koo and Katzin (13) becomes

R = v exp(-%/2a)b where b= (1 - 22&1&21 ),

o)

and the height-gain equation becomes:

’/\2+b2/4
(SR R
a

2
2 !
d—é+{k [l + 2an'(r) lexp (M/fa) - l]j{exp (ey/a) -
0 n
an o]
153
Meking the same approximations as in the magnetic dipole case and ignoring
the b2/432 term as being too small with respect to the other terms, re-

sults in
2
a

2 %
2 A 0 dn
)+ - (1 + n_o dr—)n] V=0 154

2
dv
-d-.:tz-‘l' [(ko -;‘—2'
which is the same as Equation 90 which was developed for the magnetic di-
pole case.

The boundary conditionc at the earth-atmosphere interface requires

continuity of the tangential electric and magnetic fields, which means
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that:
1 1
RIGI RIIGII 155
r=8 =3,
and
R R

1 I ! ! 1 II

=— (==+R.) 6 == (== ) o . 156

eI r I" I eII IT

r=8 r=3

When considering the field inside the earth, it can be shown that the same
differential equations which were developed to describe the field in the
earth’s atmosphere will apply provided €(r) is replaced by eo(l - %g—).

The range equation for the electric dipole case is the same as zhe
range equation for the magnetic dipole case, and is subject to the same
boundary conditions. Therefore, the solution developed in the preceeding
section will be applicable in this case also. Thus, the problem is re-
duced to finding the appropriate Green's function. The height-gain equa-
tion is somewhat different than the height-gain equation for the magnetic
dipole case, so the electric dipole analysis will begin with consideration
of the height-gain equation. In the cylindrical coordinate system, the

height-gain equation is:

aF’
WIFJ

e(r)

_i? . & exp(ﬂ/a)e (r)) {a?uE(r) exp (2n/a) -'Ae/ag

- exp("’l/a) e’(r)f R=0 157

a e(r)

The Airy integral solutions will also apply in the electric dipole
case, and the main difference will be due to the boundary conditions at

the earth's surface. The boundary conditions require that
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o= | 158
I II
G G
1 I,.."w_L1 (I
P (a +GI)=€o(a + G
e (1-19)

o

1

II)

These two boundary conditions lead to two independent equations. The other

two independent equations are the same as for the magnetic dipole case.

Thus the system of equations can be written as:

(a)
dSAi(-giid) + (:Bi(-E;Li) -95{Bi(-gild)-in(-jzld)] =0
1 ' (v)
@ ai(-E IId)BliéS +CBi(-§[Id)BJ£43 '%[Bi('g)
- (Bp) 1 8% n
(c)
Q. ai(-E,) -@ai(-§) -Cri(-F ) a0
(a)
ai(-5.) r(-&. ), Bi(-&. )
* Bi(ié%Ia)] =0
160

In matrix notation, and using the symbolism of the preceding section, the

system of equation becomes
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Mo Ao, B.. T i er 0
1/3 1/3 .
0 A2ePs B oaPs = dﬁé/ S ® 1
= 161
Ala -Aea -Bea 0 <: 0
1 Ala 1/5 1/3 1/3
Aty ) - (—_+Bea52 ) 0 L%— °

Evaluation of the matrix is simplified if one considers the relative sizes
of the terms in the fourth row. A good pictorial representation of the
Airy integrals of real arguments and their derivatives is shown on page
B-16 of The British Association For the Advancement of Science Mathematical
Tebles (14). Here it is seen that Ai(x) is a very well behaved function,
as is Ai(x) and both are of the same order of magnitude; Bi(x) and Bi(x)
are well behaved for negative arguments but increase exponentially for
positive arguments. In either case it is reasonable to ignore the term

which is divided by a , the earth's radius. Under this assumption, the

metrix equation becomes:

i (a1 T3l
0 Aoa Bog Tog a 0
1/3 1/3 1/3
0 AoaPs B2aPo T2a%2 ® 1
= 162
A oy “Bog, 0 C 0
1 1/3 1/3 1/3
e™1ah1 AP “B3eP2 0 . D LY

This matrix is the same as the matrix which was developed for the magnetic

dipole case except for the term %ﬁ-which is multiplying the derivative of
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applied if Bl/ /6’ is substituted for Bl/ . The general Green's function

for the electric dipole case can be written directly as:

. ~ 1/ 1/3 g'(@)15+e@) 1/3
6T = ?— 2@8,/7,) La@hey/ %) + T 2485 )] 165

where

1/3 _-1/2 -1/3 -1)

P G Y

To determine the energy-density in the transhorizon region, the field
component which must be known to the radial component of the electric

field, Er' The Equation which is used to determine Er is:

2 - SL’-E ", l re T ] - e’ r) =
E_ =[R2 - Z50R +§a> he(r) - SpE4fRl 6= 0 164

Consideration of the height-gain eguation for the electric dipole case

2
1 re!(r 2 A e!(r)
" = - ! - —
R+r(2 e R! + [wpe(r) r3 iz JR=0 165

indicates that the radial component of electric field is:

=1
H

o~ 3
= ﬁlg exp(p/28) exp (-n/a)/i-g I (Mefe) insm) aA 166
(e}

or

g o nia exp(-erb/2s) ﬂ 79 (’\p/a)G(? MM ) 167

r - w €(r) .

The integrand of Equation 167 is exactly the same as the integrand of

Equation 132 except that the Green's function in this case has 12
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substituted for Tl. The integral can be evaluated by means of complex

residue theory just as in the magnetic dipole case, with the result

E = ~Jje exp[=(2+b)W2a] l/S(QJt/k p)l/2 exp [J 3!t/4-k P)]Z

w €(r)

2(e +61/%) 2(a 65/ )

168
2 2
(1 + Ty as) f (as)
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There has been a great deal of published and unpublished experimental
work concerning the strength of the electromagnetic signal beyond the radio
horizon. In recent years, much of this experimental data has been taken
between two fixed locations with emphasis on the statistics of the field
in the transhorizon region. The statistics of the received signal would
ideally be correlated with the statistics of the turbulence of the atmo-
sphere. In fact, herein lies the key to the preference of the Booker=
Gordon (2) "scattering blob" theory over the traditionsl normal mode theory
which is the subject of this paper. The Green'!s function approach to the
solution of propagation in a stratified atmosphere could permit the in-
clusion of & time~varying atmosphere by using a time-dependent Green's
function. It would be assumed that the time-variations of the atmosphere
occur much slower than the frequency of the source. This subject will be
considered in somewhat greater detail as the Green's function solution is
extended to include elevated stratifications in the next section. At this
point it will be appropriate to compare a tTypical set of experimentally
measured field strengths with the field strength calculated by using the
results of Sections III and IV. The type of data which is most suitable
for comparison with the theory of this paper is not that which is taken
between two fixed points, but data which is taken from a radial path of
varying length., This leads to a plot of field strength versus distance,

A good set of data for this is given by Dinger, Gerner, Hamilton and
Teachman (5).

To show the validity of the flat-earth approximation, & comparison
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of the theoretical results of Section IIT with the data of Dinger, Garner.
Hamilton and Teachman (5) will be made. This data was taken from a trans-
mission path extending from the south shore of Massachusetts, near the

city of New Bedford, to a ship traveling along great circle courses to a
maximum distance of 630 nautical miles from the transmitter. A 10-kw,
412,85 mc transmitter feeding a 28-foot paraboliod antenna and a 40-kw,
412.85 mc transmitter feeding a 60-foot paraboliod antenna were used, with
the more powerful transmitter being used at the longer distances. The
receiving antenna sboard the ship was a 17-foot paraboliod. Both the trans-
mitting and the receiving antennas were horizontally polarized. Both the
transmitting antenna and the receiving antenna were located at a height of
about 95 feet above sea level. A plot of the results of this investigation
is shown in Figure 2. The theoretical model which is used for comparison
will be magnetic dipole., Actually, the comparison will be made between

the Hertz vector for free-space propagation and the Hertz vector for prop-
agation in a spherically-stratified atmosphere, which reduces to the free
space Hertz vector in an isotropic medium. The free space Hertz vector

for a unit dipole is:

exp (-jkp) 169

ﬂfs = 4xEP

The corresponding Hertz vector for a stratified medium is; by Equation 11,
. =1rU 170
m

For fields at the earth's surface,

nm =g U, 171
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The function U is given by equation

U= X % I (Ao/a) ¢ () 4 172
a

Or, upon making the change-of-variable

Z. 6'2/3 (ka AZJRY 173
where k = E and B = 2k / (L+ = 2 gﬁ ;.
O
"E)r +e(®)
U= 51/ 5 j cos(k p+3’o/aK2-n/4) [g(%”+f5l/ 3 N<) - Gl ]
4 £1(@)r +(%)
174

f(?-!-BJé/ éxk) ] ag

This is the same integral which was evaluated in Section III so the result

can be written directly as:

2kOD

2 l L X
U= 52/3 L exp (3 3n/4-kop)z: f(as+52/§,(>) f(as+62/7t<)

3 2
1+

a) f'g(as)
exp (-] asp/2K2 ) 175

The experiment wes carried out over sea water at a frequency of

412,85 mec. Using this information to evaluate Ty
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1/3 a_dn 1/3
L gL/3,"L/21/3 ('—) 1+ 755
1" "2%1 1 T 2

(o518 P - 42y - AgeR 12

T

176
- 1
K? 2/3
(=231 - g %/
T e
n_ dr
o
For sea water ¢ = 4 mhos per meter and €' = 81, Therefore,
. .
1-2a21-216 177
ko = 8,65 178
2
K= 3,05 x 10 179
and 5
(-a—o-)l/ = 2.87x 1072, 180
Thus,
T = 181

(2.87 x 1072)(1 ~ § 2.16) (a, - 3 20 x 10 5L/2

The root of the Airy integral; as, is a small positive number. If consid-
eration is limited to the first root, asﬁe 2.34, Under these conditions

Equation 181 can be approximated as:

T, X L 182

. (2.87 x 10'2) (1 - jo.16) (4.45 x 102(-450 )




b=t

e}

30/-110
1
[Tl' =30 . IT

Thus, the integral expression for U can be simplified to:

/3

#(a 6541 ) £(a t6L/%, )

1 .
U=8, 2k“p exp (§ 3n/4 - kop)
° ° £%(a_)
S

exp (-iasp/ZKz) .

Pryce (16) has shown that with this simplification,

0= 52/ ip o (3 30/ - ki p) g [0 (%)

exp [-(3+3) ap/eC]

where
{;Zx) = exp (j n/3) Ai [415 + exp (j n/3) x}/ﬁi(4xs)

a.nd.

o~

LUV

184

185

186

At great distances, the first term of the series is a good approximation,

that is:

= S e [ en Cacaorady

zkop

In this case

187
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21{2
A/3 To\i/3 . a dnif3 . . . -2, a2 dn.l/3
|/2 —\a/ \J.Tnodr/ = CeQOf X LV \J.'t'nodr)
188
N, =M = 28.9 meters.
Assume n, = 1.000.
Typically,
%;1— =¥ = -3 to -4 x lO-B/meter. 189
632_/3 = (3.1 % 10°2) 190
1/3 1/3
By N =By My = 0.93
2
!
11 (2ko 2/3
5= )
K k
o)
where
2 2 a dn
k't =k (l + — ar
Therefore:
(1 + 2 @)2/25
. dr
1 2 ,2/3 dn.2/3
K2 0 o 9.1 x 10
The expression for magnitude U reduces to:
(1.0125) (1 + & 88y2/3
2 no ar
lUJ=(3X10-2) 2—;"5 E (.93) exp |- 1
170 9.1 x 10
192

Once the magnitude of U is known, the magnitude of the Hertz vector is

easily obtained by multiplying by the earth?’s radius a
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6 -2 i
,rm=a]Ul=6.35xlO (3 x 10 )Wlekop rl(.ss)

a_ dn,2/3
-1.0125(2 + E; 5) 0
exp [- ] 193

9.1 x 10%

e ) Tl(x) | has been tabulated by Pryce (16) so that 17(.93) can ve
readily estimated, and is determined to be 1.04 or =< 1l. Thus . can be

evaluated as a function of p only.

4
o 188210 o [(1.115 x 107°)(L + = %)2/3 o] 194
q‘p

The desired quantity to be plotted will be the ratio of the trans-

b

horizon field to the value of the field in free space where there is no
earth to influence the field. This ratio, when expressed in decibels, ends
up as the difference hetween the amplitude of the transhorizon field in
db and the free space field in db. This difference is plotted on Figure 2,,
for four values of the gradient. It is seen that the attenuation rate
would be well predicted gradient refractive index %% , of about -leo's/
meter. This is not an unreasonable gradient above the ocean as is pointed
out by Tukizi (18) in his paper. The significant difference lies in the
fact that the experimental date is roughly 4 to 6 db stronger than pre-
dicted by the model.

There are & number of factors which could account for the 4 to 6 db
offset. It is doubtful that the approximations made by considering only
the first term of the asymptotic expansion of the Airy integrals would

contribute much more than a 10 to 15 percent error. One possible source
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of the error lies in the fact that the plot of experimental dste showm in
Figure 2 is really nothing more than a smooth approximation to a great
number of data points. Consideration of the plotted data points as shown
in Figure 7 of the paper by Dinger, et al. (S) indicates that the data
points cover a range of 10 to 20 decibels at any given distance. Thus, the
4 to 6 decibel discrepancy between the calculated curve and the "smoothed"
experimental curve is not as serious as it looks since the calculated curve

is still well within the range of the actual data points.
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VI. EXTENDING THE GREEN®S FUNCTION TO INCLUDE THE

EFFECTS OF ELEVATED STRATIFICATIONS

The linearly-sloping profile of refractive index provides a very sim-
ple analytical result when considering the propagation of electromagnetic
energy around & spherical earth with a spherically stratified inhomogene-
ous atmosphere. This atmospheric model is not very acceptable because the
profile of the refractive index becomes infinitely negative at large
heights. This fact, plus the fact that the atmosphere is seldom such that
the profile of the refractive index can be described by a simple mathe-
matical model, means that some technique must be developed whereby an arbi-
trary profile of the index of refraction can be approximated to & reason-
ably good degree of accuracy.

It will be shown that a Green's function can be formulated such that
any profile of refractive index can be broken down into a series of
straight-line segments each of which has a slope approximately equal to the
slope of the continuous function which represents the profile of the re-
fractive index evaluated at the appropriate point. In this way any ana-
lytical function which describes the profile of the refractive index can
be epproximeted by representing the earth's atmosphere as a series of con-
centric shells each of which has a linearly-varying profile of refractive
index. The general solution can be formulated by matching the tangential
components of the fields at the boundaries of the shells. Since the per-
mittivity of space is assumed to be continuous, the boundary conditions
will be satisfied if the Green's function and its derivative are continuous

at the boundary. BEach "shell” adds two more unknown coefficients which
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must be determined if it is desired to know the complete Green®s function

applicable at any height. The fact that there are two additional coeffi-

cients in the complete Green's function means that a complete solution re-
quires two additional independent equations. These additional independent
equations are given by matching the boundary conditionms.

In general, it is not necessary to determine the complete Green's
function applicable at any height, rather it is usually desired to know
the field close to the surface of the earth due to a transmitter located
over the horizon and close to the surface of the earth. This means that
the Green's function gpplicable in the first strata above the earth's sur-
face is sufficient and it is only necessary to solve for the coefficients
in this region. The rest of the atmosphere above the source and receilver
can be represented by an arbitrarily large number of stratifications. In
fact, it will be possible to express the result of the stratifications as
a summation of effects and, since there can be an arbitrary number of
stratifications, the sumation can be extended to an integral. This tech-
nique will allow rapid evaluastion of & profile which can be expressed as
an explicit mathematical function. Thus, the effect of an exponentially-
tapering profile of refractive index can be considered. It will be seen
that the simple linearly-varying model is a good approximation to the ex-
ponentially-varying atmosphere which is a more satisfying model because
the refractive index goes to unity at large heights. This technique is
also very useful to determine the effect of layered pertubations in the
refractive index.

If the atmosphere is divided into L concentric shells, each of which
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has a different slope of refractive index, the Creen's function will be
determined by solving a system of 2L equations for the unknown coefficients.
The boundary conditions are such that the solution in the earth represents
an exponentially decreasing wave, the solution above the Lth shell repre-
sents outgoing radiation, apd the solutions and their derivatives are con-
tinuous at the boundaries in the atmosphere. The boundary conditions at
the earth-atmosphere interface are the same as those considered in the sim-
Ple model having a linearly-tapered profile of refractive index. The com-
Plete system of equations is written in Matrix notation as shown in Equa-
tion 196. To define the Green's function in the first stratum of the at-

mosphere it would be necessary to determine Cy and 02 since

G(7L<7Q_ @) =ac (Cg) A1(+?fal4L )+ C (45) Bl(+54(31/ 5 195

It will be assumed that the receiver is not higher than the transmitter.
This assumption is merely for convenience in analysis and other situations
can be considered in the same fashion.

The coefficients Cl and C_, will be determined by applying Cramer's

2
Rule to the 2L x 2L matrix of Equation 196. In order to simplify the

analysis the matrix will be written as shown in Equation 197.
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Ty Ty L 0
T T-TI-T. T~T1.T-
¢/19,% ¢/1° K ¢/1° R ©
o g- Ty < g
-1 T-T,  T-1.,1-1. 2-1.2-T
0 /19 R ¢/T° v ¢/1® ¥
0 0 0 °Ig-
-1 2= _
0 0 0 m\am mﬂ
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B 0 0 0 0

196




63

4
u*u
e

urt-u
=%y

0

T-u‘u

-
- <]

B

~ufT- ~ufT-
T-u‘T Qd 2 T Gﬁ

T-u‘z-u

ol N -~
g OO Ty

-ufc- -ufc-~
T-u‘g-u, g-u‘g-u

0 0]

0

0

~ufo-
g-u‘g-u_
- “ -
g-u‘g-u
—ufH-
A

—ufc-
g-u‘g-u_

0

197

- “ -
F-u‘zg-u
~-u‘o-
F-u‘e-u
—ufH-
F-u‘y-u

F-u‘g-u

ﬁ -
g-u‘y-u,
g~-ufg-u

- ﬁ -
g-u‘g U,

g-uf,-u

s¢

12

ce

e

¢t

2%y
22

ST




64

This n x n matrix, n = 2L, can be reduced to ann - L x n - 1 matrix by

M

means of the relationship (8):

Det (;l i = a° et (an, -§Y) 198

Vhere d = a Al is then - 1 x n - 1 matrix formed by deleting the nth
row end the n colum of the n x n matrix of Equation 197. § is the
n-1x1 colum matrix foirmed by deleting a1 from column n of the origi-
nal matrix and U is the 1 x n - 1 row matrix formed by deleting a . from
row n of the original matrix. Thus, to evaluate the determinant of the
denominator matrix, the n x n matrix can be reduced toann - L xn - 1
matrix, and the result is a constant multiplying the determinant of an

n=-1xn-1mtrix.

2-n
Det (Den €y, Cp) =& " Det (2 A S 199
where
811 %12 %13
81 %o Foz
0
a A = 200
0
0
an-3,n-3 an-3,n~2 an-S,n-l
®n-2,n-3 *n-2,n-2 %n-2,n-1
0 annan-l,n-2 annan-l,n-l
— —
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0 o 0 T
0 0 0
0 0
$¥ = 201
0 0 0
0 0 0
0 0 0
0 a a
n-l,n n,n-2 n-l,n n,n-l
Thus
P11 P1o 213 T
Bo1 Bpp 8oz
0 8z5 8a3

a A - e 202

0

8‘n-3,n--2 an-S,n-l
an-2,n-2 an-2,n-l

1 1
an-l,n-2 an-l,n-l
L - —

Where

8! = g 203

n-1,n-2 nn an-l,n-2 B 8'n-l,n 8’n,n-2
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Then

Where A1 is the n = 1 x n -~ 1 matrix defined by Equation 202. If the

66

§ = -
an-l,n-l ®mn an-l,n-l

a, a
n-l,n n,n-1

2-n !
Det (Den Co 02) =a_ = Det A

1

]
process is repeated on the n - 1L x n - 1 matrix Al’ the result is:

Det (Den Cy» 02) =a

Where Ag is given by the matrix

and

87 3y, &z 0 0
85 8pp 8 0 0
0 a32
0
0
2

2 1
an-2,n-2 an-l,n-l an-2,n-2

2-n

= g! -
an-5,n-2 an-l,n-l an-.’:’;,n-2

3-n 2
1
an-l,n-l Det A2 .

@n-4,n-4 %n-4,n-3

.2
n=-3,n-2
2

a'n-2,n--2

&y-3,n-4 Pn-3,n-3

4n-2,n-4 %*n-2,n-3

]

!
an-l,n-2 an-S,n-l

- 1
an-l,n-2 8'n-2,n-l '

204

205

206

207

208

209
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as and a’ . _ are as defined earlier. At this stage. it is seen

U=t gllm=t =1~

that the matrix looks exactly like the original n x n matrix, that is non-
zero-entries in the last three positions of the bottom two rows, except
that this is an - 2 x n - 2 matrix. By continuing this process, it would
be possible to reduce the n x n matrix to a 4 x 4 matrix with some multi-

plicative constant in front.

81 P12 %z O
) 8y fp Bz O
Det (Den C,, C.) = {?onst} Det n-4 210
Y 2 0 825 Bzz Bz
0 a el
Y B4 %z %y
n-4 n-4 . . e
The 8zy and 844 terms are modified from the original terms in the n x n

matrix because of the successive reductions in the size of the matrix.
The other terms of the 4 x 4 matrix are the same as the corresponding terms
in the n x n matrix and incidently are the same terms as in the 4 x 4
matrix for the linearly-sloping profile.

This matrix reduction technique can also be used in evaluating the
determinants of the numerator matrices to determine the coefficients Cl

and c2. The matrices, whose determinants are desired, are:



Thum Cl = Det
and
Fhum C2 = Det

68

2y 7 ots
8y 0 8y O
O 1 ez 8y
0 0 am 8y
0 0 O aS4
g3 29 O
8y Fp 0 O
0 el Ay
0 a0 a8,
o 0 0 a,
0 0O O g4

35

45

55

65

0

0]

0

0

21l
0
#n-1,n-2 an-l,n-l an—l,n
an,n-2 an,n-l %
212
0
an-2,n-l 0
®n-1,n-2 ®n-1,n-1 *n-1,n
an,n-2 an,n-l ®an
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It is noted that in either case, except for the &£ x 4 submaitrix in the
upper left corner, the rest of the n x n matrix is the same as the cor-
responding part of the denominator matrix. If these matrices are re-

duced in the same way that the denominator matrix was reduced, the re-

sult is
= ]
1 0 By ©
Det (Ifum cl)'={cOnst}Det ay O 8y O : 213
(n-4)
0 L1 ag 8y
(n-4)
10 O By By |
and
81 8p 0 O
8m 8.22 0 0
Det (lfum C,) ={COnst}Det (n-t) 014
2 0 a 1 a
32 ?4 )
n~4
0 8 U %y
Where aéz-é) and ai2-4) and the multiplicative constant are the same as

defined for denominator. Thus, the Green's function applicable to the

first strata above the earth is given by the equation:
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8y 0 82 O &7 &,y OO I
a21 0 a23 0 aEl a22 0 0 (
(n-4)| Ai(5) + (n-4)| Bi(D
0 1 8zz Bz, | 0 8z 1 Bay
(n-4) (n-4)
0 0 a43 a44 0 a42 0] a44
G = 215
8y Bp &z O
8y B Bz O
o a a(n-é)
820 %33 34
(n-4)
0 8p %3 By

At this point, it is appropriate to consider the terms agz-4) and
ai2-4). Once these terms are known, the Green's function can be deter-

mined since all the other terms are known.

These terms will be evaluated by going back to the original n x n
matrix and examining the modified entries as the matrix is reduced. In

N s 1 1
the first reduction, the modified terms are 2] _1,n-1 and a n-1,n-2° These

terms are given by the equations

! = -
& n-l,n-1 ®an an-l,n-l an-l,n an,n-l 216
H = -
& n-1,n-2 8'n,n an-l,n-2 an-l,n an,n-2 e
where
ce e an e -
&n-1,n-1 'L %pn-1” L %mymn-2 T AL
/ y 218
1.1/3 1,1/3
®n,n T 1L #n-l,n ~ TPy #n-1,n-2 = Pr1

It will be necessary to use the approximation
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. . N3
1/% 1/% r.a

P =Py (L5 =)
L-1

219

to simplify the ensuing analysis. Inserting the values in the expressions

for the modified terms results in:

£1 B L8
1/3 L L TL-1
H = 3 - § ——
tp-1,n-1 = Py (W= ” ) 220
L-1
and
!
iy = pl/3 (W + LA ABL-l) 051
n-l,n-2 L-l 3 ﬁ
L-1

vhere W is the Wronskian of the differential equation from which the solu-

tions were taken.

In the second matrix reduction, the modified terms are a2

n-2,n-2 &4
an-S,n-E’ given by the equations
a? = g! a - a! 8 222
n-2,n-2 n-l,n-1 "n-2,n-2 n-l,n-2 "n-2,n-1
a2 = g! a - a! a 223
n-2,n-2 n-l,n-1 n-2,n-3 n-l,n-2 n-3,n-l
al and &' are carried over from the first matrix reduc-
n-1,n-1 n-l,n-2
tion and
v 1/3
B2mn-2 = P Fnzneo T ApaPra
- 224

= .3 N W

®2,n-1 = “Pro1 8nzone1 = BpaaPra

Substituting into the equations for the modified terms results in:
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n 1//7 r I} &0, 1 1
- = R~/" — - R A
N L W (A By - B A ) 225
3
L-1
£1 08
2 = 02/3 | e L I-1 ' '
23,02 = Prop | WL _— (AL By - By AL-l)} 226
L-1

If the thickness of a shell is reduced to infinistesimal dimensions as
will be done when the final summation process is reduced to an integral,

the expressions for the modified terms of the n-2 x n-2 matrix can be
1

1
further reduced because Ay By ; - By A ;—>Oand A B , - B A ,— W.

Under these conditions:

Tas)
2 _al/3 ., 1/3 L-1
#nos,n-2 P Tl WPy (1 35 -1) 2t
2 1/3
8n-2,n-2" Pra1 ¥ Ty 228

In the third reduction, the result is an n-3 x n-3 matrix, with the modi-

. 3
fied terms an-3,n-3 and an

3 n-4; given by the equations
J
3 2 2
®n-3,0-3 = ®n-2,n-2 *n-3,0-3 ~ %n-3,n-2 %n-2,n-3 229
3 2 2
#n-3,n-¢ = %n-2,n-2 %n-3,n-4 ~ *n-3,n-2 *n-2,n-4 230
where:
oot Rl/3 o 1/3
2-3,0-3 = PL-Prep #noz nea = Ao Proo
231

= B = A
®h2,0-3 © L2 “ne2,n-4  L-2

and
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"l /’Z l(/s 1_‘3 :
Briy=fp 1+ - ) D3P
L-2

Substituting into the defining equations for the modified terms of the

n-3 x n-3 matrix and ignoring product terms in &8, results in:

t !
3 ; B1/3 Ve (fL-l o L AﬁL-l)B J -
n-3 n-3 38L-2 SBL_l L-1
and
RiLAS) LS
3 1/3 ,1/3 L "Ll "L-l L2
®n-3,n-4 = 7 P P {W A ) AL-J 2o

The next matrix reduction will reduce the matrix to an n-4 x n-4 matrix

. ‘o N 4 4 o
with the modified terms an-é,n-4 and an 5,n-4' These modified terms re-
duce to:
4 1/3 1/3
2 n-a™ WP Prip Trop 235
1 !
K Ry 51/5 61/3 g1/3 | 5, (fL Py . 1 A514-2) 536
n-5,n-4 L-2 "L-2 | "L- 2 SﬁL-l SﬁL_e

It is evident that a pattern has been established and it would be possible

to write general expressions for aiz -4) and aéz 4). These general expres-
sions are:
(n-4) _
a44 = const f2 237

LM TP £1 08
(n-¢) _ /3 ., 1,372, ta7s ... L TLa
8.34 = const 52 f2 + g( B + + + —BI:T 238

Since these two terms are the only non-zero entries in the fourth colwumn

of the reduced matrices which define the Green's function, the const can
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be factored out of each matrix and consequently cancel out of Green's
function completely. The Green's function for the stratified atmosphere

is similar to the Green's function developed for the linearly-varying at-

(n-4)
34

If the Green's function given by Equation 215 is evaluated in terms of

mosphere with the difference being a result of the modified term a

the solutions of the last section, the result is:

& 31/3
G = __14—1;_7—— g%+ Bjé/gt ) -
2

Te@@sts )2 @iell5, )
v oy [ @@L ) -
[6@he,e @] c@el5 ) - 2 g(?+f32/nd)f'(’{)]} st

T (@'Hlf'((f) - % 58(?)1' (%*‘51/ 3 -f(‘g’)g@’+81/ 3
v (g (z’)fwl/ ; f*(?)g@wm )

Vhere S is the stratification function for the atmosphere above the trans-

mitter
Bl/s 1 M8 A s, £!1 08 £1 08
2 5 2 4 3 5 5 s e L L-l
S= 3 B + B + 5 + + ———?;———~ 240
2 3 5 L-1

Below the transmitter, the atmosphere is assumed to have a linearly-vary-
ing profile of refractive index. It should be noted that if S = 0, the
Green's function reduced to the Green's function developed in the linearly-
varying profile enalysis. This result is reasonable since for this case

the stratification function is identically zero because the /8's are all
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Zero. 1is Green's function developed for this case is somewhat unwieldy.,
but in an actual example some simplifying assumptions can be made. At
this point it is of interest to consider two examples. First, the effect
of an exponentially varying profile of refractive index will be consid-
ered. The second exsmple will consider the effect of a layered perturba-
tion in the profile of refractive index.

The first model which will be considered is the exponentially varying

profile of refractive index. This profile will be defined by the equation:
-4 4
n{r) = 1.000000 + 4 x 10 El - exp [-(r-a)/10 ]% r>a 241

It is desired to know the stratification function:

CRCN ) 242

2
S =
3 ﬁz B.o.

£1($p + B:ILJ/%L) 2Py ]
+

ABL-l

51/5[ 0@+ 65, m, @+ 85,
+ +

3

The various components of the stratification function are defined as fol-

lovs.
2
a dn
ﬁL—T(l'l'ad? ) 243
I"-’-'I‘L
2/3 ;.2 ,2,2
z”L=5L (- ~A%/a%) 244

In the Airy Integral solutions, whose derivatives are part of the strati-
fication function, it will considerably simplify the analysis if the argu-
/3 1/
B s . i i i ] i i bl
ment%§_+ 8] vLi is replaced by ?f+ 5) QQ i This simplification intro

duces an error of less than 20%. The increased ease of analysis is a
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small price to pay for the error. The derivative of tha Adwmr intoerod

&L g e

solution (¥ + BY) can be written as:

!
T (L+ Bni) = exp (3n/6) AL [(L+ Sni) exp (jn/3)] . 245
Equation 243 can be used to formulate:
2 2
2k a dn 2k a dn
o, = Utrgm | )T Oy )
—_—= ° r=1, ° r=r
Il
BL 246
2
a

2
This equation is simplified by using Eg_ for all the B's. Equation 246

can be simplified to

08,

—t24x10° %— exp [-(r-a)/lﬂ4] [1 - exp (-Ar/log)]. 247

Bi o}
This can be written in approximste form as:

12

ABi _tax 10°
B. n

1 0

exp [-(ri-a/104)] e, 248

Or, setting r,-as hi and a = 6.35 x 106 meters, Equation 248 can be

written as:

L8,

—B%»= 2.54 x 10°

1

S exp (-10”4hi) L, 249

The stratification function can now be written as

1/
5=8

3 . L 1
gzg (jn/6) (2.5¢ x 10™°) > Ail%exp (3n/3) + ﬁ%{sexp (3n/3)]
i=3 1

exp (-10"4hiohi) 250
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1 S~ W wmmmman AT mm e e L
T +the Q+'wo+w-F'-1 nv:-i--sr\n: oo 4::_::: to bha eIy Clsol uu&\_’w‘b_‘_’ vu.C Sudu=

mation of Equation 250 can be extended into the integral

-5
5 B1/3 2.54 x 10 g Al + ﬁl/3 exp(j1/3)] exp(-10"*n)an ,
3W h, 251

vhere Lexp(jn/3) = <@ vhich is the root of the denominator of the Green's
function, The upper limit of the integral has been extended to infinity.

The number -& has not been determined as yet for this case, but it should

not be much different than the root a of the linearly-varying atmosphere.
The derivative of the Airy Integral A£(41 + ﬁl/EJ exp [jn/3] ) can be

approximated by the first term of the asymptotic expansion

2

1/4 exp (-2/3 z3/ ) 252

Ai(z) -

Z
o {7

Substituting this expression into the integral defining S results in:

-6 .
= - B e/t | | onx explsn/s] Y e Lo/t
s1x W h 253

o
+ x exp(jn/3) )5/2 - 107%] ah
where x = BlA%‘ + To see the effect of the exponential atmosphere on the
transhorizon field it is necessary to estimate the magnitude of the strat-
ification function S. If S is not infinitely large, the linearly-tapering
solution will be a reasonable approximation to the solution in an expo-
nentially tapering atmosphere. To get an idea of the size of the integral,

consider the behavior of the integrand at reasonably large values of x.
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The integrand can be approximated as

exp(jn/12) [51/3a£n(§§E) ]1/4 exp i-j%[ﬁl/salniéggl ]3/2 %
254

exp f[ﬁl/ 3auzn(%)]l/ 2 {%9‘- - 10’%}

The integrand oscillates rapidly with increasing h and it rises ex-
ponentially to some value then levels off and drops to zero as the exp
(-10-4h) term takes control. There will be some contribution to the inte-
gral for some velues of x but even though the integrand rises quite rapid-
ly for intermediate values of x, the oscillations of the integrand occur
with shorter and shorter periods so that the net contribution is probably
quite small. This is a hueristic argument which is borne out by the com-
parison with experiment. An exact analytical solution would be desirable
only in that it would determine a different root of the denominator of the
Green's function, and once a different root of the denominator of the
Green's functions were established, different gradients of the refractive-
index would be used to establish a correlation with experiment. This is
all true as long as the integral is of & reasonable value. If the inte=-
gral is infinitely large, then there would be only one root & and it
would be zero. This would in turn mean that the field would not exhibit
an exponential radial dependence which contradicts experimental evidence.

A second stratification example which will be considered is that of
an isolated layer in the upper atmosphere. Consider the profile of the
refractive index to be as shown in Figure 3. If the effect of the ex-

ponential atmosphere is ignored, it is necessary to consider only the
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portion of the atmosphere from hO to hO + L. The stratification function

can be written as:

h +L
0 !
S = exp (jn/s)g Ai [+ x exp (§n/3)] —“ﬁﬁ sin ?Lﬁ dh 255
h
e}

Using an asymptotic expansion of the Airy integral for large x, the strati-

fication function reduces to

h 4L,
. (0]
S = %Q%Mif % sin o3 L exp (3 x4 /2)
ho
sin 22 an 256

Again, in order to evaluate this integral, a number of aspproximations
will be made, namely:
1/4 1 1/4
X / =~ (B /Sh) /

xl/ez (Bl/sh )1/2 057
xs/ex_ (ﬁl/sh)s/e

Using the approximation; ho > > L, the stratification integral can be

written as:

8 P (Bho)l/4 e}m{g oc(_sho)l/2§ exp {-3[2/3 (Bho)s/e - 1:/413

j’ exp [-j(ﬁl/sho)l/ah] sin 21_3?1_ dh

o)
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g—% (Bl/ 3ho)l/  expl 3 a(Bho)l/ 2/2] exp 2-3[2/3(51/ 5h0)5/ 2-n/4]}

-
=

51/3 -1

h L
2 )? [1 - exp (-jﬁl/sho L) ] 258

1-( 2

The term Bl/3h0 L/2x is, in general, much greater than one, therefore E-

quation 258 can be rewritten as:

5 o(pn )1/2
s e (s 5‘n0)l/ top —— 2 expf-3l2/5(8Y/ 3ho)3/ 2_x/alf
.(___.__2 ﬁ° ) (1 - exp (-jBl/sho L)]
3(en ) %
£ (6 0 )% expl——2——Jexpl-3(Xpn )¥/2-FiLesp(-36M/ %0 1) -1
i Bl/ L. 260
( (o] )2
exn

There are several significant features of this result which are worthy
of note. TFirst, the integral becomes larger as the height of the pertuba-
tion becomes larger. This is reasonable because the perturbation acts as
e source of partially reflected wavelets. Thus, the higher the source is
above the earth, the stronger is the resulting field. Secondly, the re-
flected wave is a function only of the end points of the perturbation,
thet is, a function of the width or thickness of the perturbation. This
fact was pointed out by Friis, Crawford and Hogg (8). The reflected wave

is directly proportional to the intensity of the perturbation in the
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refractive index and becomes larger with decreasing T.. These character-
istics are to be expected since increased £P or decreased L mean that the
gradients are greater.

Consider an example using the preceding theory. The Green's function

A
defined by Equation 248 can be simplified by setting Tl =0, in

2%+ 85,

G
- 51/3

)
g( L+ ﬁé/ %)
dzes 840
ez 875 ) - £ | e@e@e®3 ) etast]

292 [ e @R )-2(eies3)] .

261

The stratification function will be evaluated for the following parameters:

gl/s = 3x107°
L = 100 meters
. 262
h0 = 10" meters
8 =10
Inserting these values, the stratification function S becomes:
%xs x 10710 exp (152) [exp (-31732) - 1]
=10
23 x 10 7 exp (15¢) (-1.94 + j 342) 263
a6 x 10710 exp (152) exp (5 170°)

At this point one can draw some general conclusions which lead to an

approximate form of the final answer, The complete integral is evaluated
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by determining the sum of the residues of the poles of the inteorond.

The poles of the integrand are determined by finding the zeros of the

denominator of the Green's function. That is, the equation

1) - £ [g@e(g+ B9 ) - 2D+ 831 = 0 o6
The functions £{¥) and glu?)f(¥+ 61/2’d) - 2(¥)eg(L+ Bl/a%,d) are of com-

parable magnitude, so the magnitude of % has to be about unity. This

would enable an estimate of the size of C.

10

6 x 10 exp (152)= 1
adal.4 265
P
or as - =l

Now, this value of a, can be used in the distance dependence of the
Equation 194, developed earlier for the case of a dipole radiating into
an atmosphere with a linearly-varying index-of-refraction. If the at-
mospheric perturbation of this example is combined with the model used to
compare with the experimental results of Section IV, the resulting Hertz

vector is:

4
7= 1‘—%?—__'3‘—30— exp [-(6.7 x 10°)(1 + & %)2/3 o] 266
0

A comparison of the results of Section IV with a plot of Equation 266 is
shown in Figure 4 to indicate the effect of the stratified perturbation.
The model of the preceding example is considerably simplified in an

effort to get an idea of the effect of the stratification. A more detailed
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look into the effect of the stratification of the atmosphere would revesl
additional information which would be useful but it is questionable whether
this information is worth the additional analytical effort. TFor example,
a root of the denominator of the Green's function has been determined
which is a negative real number. The actual rcot of the denominator would
not, in general, be a real number; rather, it would be complex because the
stratification is, in general, complex. The effect of a complex rcot
would be to put an additional sinusoidal p dependence into the solution.
This is not unreasonable since it would be expected that the reflections
from the stratified anomaly would set up an interference pattern in the
redial direction. The complex root would not be expected to have a phase
angle much different than n radians, because the term which was suppressed

in the phase of the stratification integral was

e [3(8% %0 )/ 2/2)

vhere O is a negative number. This means that the phase will change quite
rapidly with &, since (f3l/3ho)l/2 is a reasonably large number. Thus, one
would expect that the phase of the root of the denominator of the Green's

function would be altered only slightly.
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Figure 3. The profile of a stratified anomaly in the refractive
index
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The earth-flattening approximation coupled with the Airy Integral
solutions of the resulting differential equations provides a simple,
readily understood technique for evaluating the strength of the fields
over the horizon from a radic transmitter. The Green's function approach
to the formulation of the compiete solution allows considersble utility
in extending the results obtained for the simple models of the earth's
atmosphere, In this analysis, the Green's function is modified to in-

clude the effects of stratified perturbations in the refractive index

of the atmosphere. Further, the Green's function can be formulated with
an explicit time dependence which will permit the effect of slow temporal
variations in the structure of the atmosphere to be considered. This
modification would then bridge the gap between the "turbulent scatterer"
theory and the normal mode theory.

The results of the analysis are compared with data teken from a trans-
horizon propagation experiment conducted over the ocean. There is good
agreement between the modest amount of reliable experimental data and the
results of this analysis; thus substantiating in large measure the valid-
ity of this technique. The possibility of using a time-dependent Green's
function to develop a model for the time-variant atmosphere was not pur-
sued further because there is no experimental data with vhich to make a
comparison.,

It is impossible to go through analysis on a subject of this nature

without slighting many ramifications of the problem. Such is the case in
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this analysis. There are several areas of the investigation which should
be carried through to a more detailed conclusion. These include the de-
tailed evaluation of the effects of perturbations in the structure of the
atmosphere and the use of a time-dependent Green's function to include the
statistics of a time-varying atmosphere into normal-mode theory. The rea-
son these topics were merely mentioned or given superficial treatment is
that the subsequent analysis are considered worthy of individual reports.
It is intended that this analysis will serve as the foundation on which

to treat these topics in more detail.
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