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Abstract. We consider the horizontal plane at eye height, that is all objects seen at the horizon.
Although this plane visually degenerates into a line in the visual field, the ‘depth’ dimension
nevertheless gives it a two-dimensional structure. We address the problem of intrinsic curvature
of this plane. The classical geometric method is based on Gauss’s original definition: The angular
excess in a triangle equals the integral curvature over the area of the triangle. /Angles were
directly measured by a novel method of exocentric pointing. Experiments were performed out-
side, in the natural environment, under natural viewing conditions. The observers were instructed
not to move from a set location and to maintain eye height, but were otherwise free to perform
eye, head, and body movements.

We found angular excesses and deficits
of up to 30°. From these data we constructed the metric. The curvature changes from elliptic in
near space to hyperbolic in far space. At very large distances the plane becomes parabolic.

1 Introduction

People routinely commit appreciable and typically systematic errors when asked to
estimate geometrical properties of their environment from a fixed vantage point((Battro
et al 1976, 1978; Wagner 1985): This is not surprising in view of the fact that these geo-
metrical properties are only implicitly specified by the retinal image(s).

(Pirenne 1970). The
geometry of the visual field is that of the simultaneous presence of variously colored
patches. The visual world involves an additional ‘depth’ dimension. Depth properties
are specified by binocular disparities and optic flow, and by a varied bouquet of ‘depth
cues’. The former involve problems of ‘correspondence’ (simultaneously between the
retinal images in the case of binocular disparities, successively in the case of optic
flow), and various prior assumptions, but no interpretations of the retinal illuminance
structures. The latter involve such interpretations.

Our experiments were performed in the natural environment, an open field under
bright daylight conditions with everything in plain sight. No doubt the observers use
large parts of the visual field in order to estimate the depth of objects that appear on
their horizon. When we mention ‘points’ or ‘lines’, these have to be understood as
mere formal abstractions, not realities. Since we are primarily interested in the ‘depth’
dimension we limit our investigations to the horizontal plane through the eyes. This
plane appears as a line in the visual field—the so called ‘horizon’ of the observer. Of
course, we have in mind geometry here; in reality the horizon need not be specified
optically, nor do we confine our research to points. The azimuth is measured along
the horizon and is a dimension that is measured in the visual field. Depth is a ‘quality’
of points on the horizon.

Visually perceived distance, that is ‘depth’, usually has been studied under tightly
controlled conditions in the laboratory. Such conditions typically involve extreme stimulus
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reduction, say a few luminous points in the dark (nothing else visible, intensities carefully
balanced); extreme response reduction, say a forced binary choice; and extreme reduction
of the viewing conditions, say fixed head (probably a biteboard, at least a chinrest)
and possibly fixation instructions (Blank 1953, 1959; Indow et al 1962a, 1962b, 1963).
Under natural conditions most of these constraints are violated. ‘Natural conditions’ are
indeed the opposite of stimulus reduction; restricting viewing conditions is also at odds
with the ‘natural setting’. In our case we constrained location and eye height, but left
observers quite free to make eye, head, and (torsional) body movements; even turning on
the spot was allowed. We also designed a task that felt much more ‘natural’ to the
observers than the forced binary choice.

From an applied perspective, such studies under natural conditions are obviously
desirable. The scientific value, however, might be less obvious because such studies are
less controlled (or controllable) than the laboratory studies. The potential value of
studies of depth perception in natural environments arises from the likelihood that
observers may change tactics when granted additional freedom and optical structure:
Strictly controlled laboratory studies cover only part of the story.

The larger part of the theory of ‘depth perception’ is based upon a geometrical
analysis of bicentric perspective (Helmholtz 1867; Luneburg 1947). This is only natural,
in view of the fact that binocular disparity is about the only cue left to the observer in
the severely controlled conditions (a few luminous points in the dark). There appears
to be some consensus that the geometry of visual space (mainly that of the horizontal
plane at eye height) is governed by a Riemannian metric (that is a global field of local
metrics, ie the metric may change from point to point) and certainly is not Euclidean;
possibly it is a Riemannian space of constant negative curvature (Blank 1953, 1959;
Indow et al 1962a, 1962b, 1963). This is by no means the only theory, but its pervasive-
ness suggested to us that it might be of some interest to attempt to assess the validity
of such a description in more natural conditions. We do not assume that the space is of
constant curvature, since there are various reasons for doubt, even under controlled
conditions. We do assume that the space is Riemannian, and that it is isotropic. The
latter assumption is natural when the observer is allowed the freedom to turn on the
feet and perform arbitrary head and body rotations about the vertical; indeed, one
might say that isotropy is then enforced by the freedom—no visual direction is singled
out. Under controlled conditions this is different: clearly the ‘straight ahead’ direction
is special then. Under these assumptions we propose to determine the intrinsic curva-
ture as a function of distance from the observer.

The notion of intrinsic curvature was introduced by Carl Friedrich Gauss in a seminal
(in geometry) paper (see Gauss 1880) dating back to 1837.(Although the theory is arcane to
psychophysicists, some of its consequences are relatively easy to grasp. ‘Intrinsic’ curva-
ture differs from ‘extrinsic’ curvature: a flat piece of paper remains intrinsically flat when
you roll it into a cylinder or cone although its extrinsic curvature may change. Intrinsic
curvature is evident from certain non-Euclidean properties of figures. One example
treated by Gauss concerns the sum of interior angles of a triangle made up of geo-
desics (shortest arcs, the Euclidean straight lines). In the Euclidean plane the sum is
180°; any deviation (called ‘angular excess’) reveals an intrinsic curvature of the space.
The excess is proportional to the area of the triangle; the excess per unit area (‘specific
angular excess’) is a measure of the intrinsic curvature. Notice that its physical dimen-
sion is one over length squared, thus the inverse of the square root of the (absolute value
of the) specific angular excess has the dimension of length

Here is a very simple example: Consider the geographical triangle Amsterdam
(latitude 52° 21" north, longitude 4° 54’ east), Boston (42° 20’ north, 71° 5" west), and
Cape Town (35° 56" south, 18° 22" east). This triangle has an area of 38700000 km’.
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From Amsterdam, Boston is 5568 km at 20° 30" north of west, Cape Town is 9914 km
at 10° 52’ east of south, etc. The angle sum of the triangle is 234° 28.3": This differs
appreciably from the Euclidean 180°; thus the Earth is significantly curved. The specific
spherical excess is 0.00507 s of arc km *: (According to Gauss this equals the curvature
averaged over the triangle. One over the square root of this curvature equals 6378 km
which is the radius of the globe

Notice that the specific curvature is small, for instance the excess in an equilateral
triangle with sides of 1 km is only 0.002 s of arc: locally the Earth is quite flat.

We implemented a simple, direct method to measure angles in visual space. To the
best of our knowledge this has not been attempted before [closest is perhaps Ellis et al
(1991)], although some investigators have used judgments of perpendicularity. Perpen-
dicularity is special, however, because it assumes an angular metric. (For instance,
perpendicularity is undefined in the projective or affine plane.) We only required our
observers to indicate the direction in visual space from one point to another, neither point
coincident with the egocenter. Pointing from the egocenter is generally known as ‘aiming’
as in pointing a rifle or a telescope. Taking aim, or ‘egocentric pointing’, is a task that
can be fully performed in the visual field and involves no depth. Exocentric pointing
involves aiming from a location distinct from that of the observer. A common case of
judging exocentric pointing is in perceiving who looks at whom at a cocktail party.
We simply constructed a pointer that could be rotated by remote control (a radio link)
from the observer’s position. The observer sees both a target and the pointer and is
instructed to rotate the pointer such that—from the position of the pointer—the pointer
is aimed at the target. People find this a natural enough task to perform. By pointing
from A to B we essentially determine the (visual) direction AB as seen from C, where
A, B, and C are all distinct. By this method we may determine angular excess of any
triangle in visual space.

In this experiment we propose to find the integral curvature (Gauss’s “Curvature
Integra”; it equals the spherical excess) over the areas of equilateral triangles with the
observer situated at the barycenter. Processing of such pointing data should be trivial
since we merely need to follow Gauss’s example. The results do not imply a check on
the Riemannian property of visual space: Any result is interpreted as a space variant
intrinsic curvature. However, we directly address the problem of whether visual
space—granted its Riemannian character—is a space of constant curvature. This is of
some interest, since it remains unresolved in the literature (Indow 1991). The point is
of conceptual interest because only spaces of constant curvature allow congruence, or
the free movement of rigid bodies. This is indeed the heuristic behind Luneburg’s
hypothesis of constant curvature (Luneburg 1947).

2 Methods

We used a radiographically controlled pointer mounted on a tripod (see figure 1). The
pointer was a white cube of 25 cm edge length, pierced with an arrow, shaft thickness
1.5 cm, total length 125 cm. The arrow stuck out 50 cm at both sides. The arrow head
was 6 cm long and 3 cm in diameter. The cube was painted white, the arrow bright orange.
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Figure 1. Photograph of the equipment. Notice that this is a ‘mock-up” In the actual experiment
distances were generally larger, a smaller sphere was used, the bottom halves of the tripods
were lost in knee-high weeds and the horizon was more distant. The photograph provides a
good idea of the target (sphere at the right), the pointing device (the cube pierced with an arrow
in the middle), and the task of the observer (at the left). The observer held a transmitter and thus
controlled the pointing device directly while looking back and forth between target and pointer.
Notice the absence of any head-constraining device (biteboard or headrest): The observer was even
free to turn on the spot. Also notice that the experiment was not conducted in the dark and
that the target and pointer were not isolated luminous points but offered a number
of monocular cues next to binocular disparity. In the Luneburg— Blank tradition the paradigm
is insufficiently reduced and controlled. However, it is perhaps somewhat closer to natural
conditions.

The transmitter was a standard Futuba F16 and yielded precise control over the
orientation of the pointer. Targets were bright-orange spheres mounted on thin steel
rods, themselves mounted on tripods. Sphere size was different for the various distances:
the spheres subtended 20 &4 min of arc. Both pointer and targets were always at the
eye height of the observer.

Experiments were performed in an unkept meadow with weeds growing up to
knee and even waist height. Thus, it was typically not possible to see the base of the
tripods meet the ground plane. The meadow was an open area with some distant trees
and buildings visible, but no obvious landmarks. During the experiments we met with
bright weather, mostly blue sky with less than 1/8 cloud cover. In the course of the
experiments the sun’s direction changed appreciably.

The observer was instructed to keep the feet on a small platform and to stand
upright at all times. The observer was permitted eye movements, head rotations, and
torsions at the waist, even changes in placement of the feet (turning on the feet). The
explicit instruction was to point the arrow to the target, ie to point it in such a way that
someone at the pointer and using it as an aiming device would agree with the setting.
>
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Since the observers were not at the pointer (this is exocentric pointing, not aiming),
this was not easy, though most observers found the task a quite ‘natural’ one. At no
time were the observers informed of their settings. Three observers participated in the
experiment (the authors). All had normal acuity and binocular stereo vision.

Layout of positions was done with conventional geodesic aids (measuring tape
and theodolite). Locations were accurate to 10 cm, pointer orientations to about 1°.
This turned out to be sufficient, given the repeatability of the observer’s settings.

3 Experiment

The experiment itself was straightforward. The observer was positioned at the bary-
center of equilateral triangles of various edge lengths. The pointer was placed upon
one vertex, the targets on another vertex. We always averaged over settings in which
target and pointer were interchanged, thus assuming left/right symmetry. This technique
obviates the need for an absolute calibration of pointer orientation, thus increasing
accuracy. We also had the observer point at himself or herself: this effectively calibrates
the pointer orientation absolutely. Given this absolute calibration we were in a position
to check on left/right symmetry. We found no traces of left/right asymmetries through-
out the experiments. We averaged over symmetrical cases in order to simplify later
analysis. The data are then simply pointer orientation as a function of the size of the
triangles.

Since the target and pointer were at an angular distance of 120 deg on the horizon,
all observers found it necessary to make body and head turns in order to look back
and forth between them.

The essential pointing geometry is shown in figure 2. Here the observer at V points
the pointer P at the target T. The veridical pointing angle ¢ depends on the arc o
between the pointer and the target and on the ratio of their distances rp /ry:

sin v

The pointer is illustrated in two orientations in figure 3. Notice that—apart from binoc-
ular stereo—various monocular cues are available that might reveal the orientation of
the pointer. For instance, the ratios o/a or 1/(1 — 1) could be used, etc. Estimates
suggest that the monocular cues probably dominate at all distances with the possible
exception of the closest one. In this experiment ¢ = 120° and rp/rr =1, thus the
veridical pointing angle ¢ is 30°.

— /
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N/ Figure 2. The pointing geometry. Observer at V, pointer at P,
and target at T are in the horizontal plane at eye height. Thus
@%V the arc ¥ is a distance along the horizon. The veridical pointing
angle ¢ depends on the ratio of distances and this arc.
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e Figure 3. The pointer as it appears (schemati-
- cally) to the observer.

A
J

4 Results
The data are expressed in terms of the angle subtended by the visual direction to the
pointer and the exocentric pointing direction. Notice that the veridical value is 30°.
We found that the actual values differ significantly and systematically from this value.
In figure 4 we plot the actual values as a function of the size of the triangles. Notice
that the results obtained for the three observers are quantitatively and qualitatively
very similar, though different in detail: straight correlation (figures) yields R* values of
0.98 for AD-JK, 0.69 for JK-JL, and 0.74 for AD-JL. Linear regression reveals
slopes significantly different from unity and offsets different from zero: deviations for
AD are 75% those of JK with a 2.3° offset; those of JL are 48% those of AD with
13.8° offset (figure 5).

An intuitively satisfactory way to represent the results is to use the fact that two
points with directions attached to them define a unique circular arc. When we draw
such arcs for the triangular configuration (figure 6) we notice that triangles in the near

Observer
® AD
o JK

10 & JL

Error/®

Figure 4. Systematic deviations of the point-
ings. Standard deviations are indicated
by bars. The dotted line is the veridical
pointing. Notice that all observers commit
very significant pointing errors.
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Distance/m



Direct measurement of the curvature of visual space 75

AD JL

40
. °
~
=1
S
g
£ 30 °
o
B
£
o
£ °

. ®
20 JK o AD
20 30 40 20 30 40

Pointing direction/®

Figure 5. Scatterplots of the average pointings of individual observers.
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Figure 6. Raw settings of JK visualized in

10 terms of circular arcs. The units shown are
meters.
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field look ‘inflated’ (thus there will be an angular excess) whereas those in the far field
look ‘deflated’ (thus there will be an angular deficit).

Scatter in the settings is about 1.5° which appears to indicate remarkably accurate
performance.

4.1 Determination of the intrinsic curvature
In order to determine the intrinsic curvature we proceed by finding the integral curvatures
for the triangles (Gauss’s “Curvatura Integra™). The integral curvatures simply equal
the angular excesses, that is six times the actual pointing angles minus 180°. When
we consider two triangles of different size, then the integral curvature of the larger
triangle is the sum of the integral curvature of the smaller triangle (which is contained
in it) and the integral curvature of the complement of the larger by the smaller triangle.
Thus we obtain the integral curvature for triangular strips of various sizes by progres-
sive subtraction of the integral curvatures. Since these strips contain only a limited
range of distances, we obtain a measure of the specific excess, that is the intrinsic
curvature, as a function of distance by dividing by the areas of the triangular strips.
Thus far the data processing is fairly trivial. The results are collected in table 1
and figure 7. Clearly the intrinsic curvature changes systematically with distance from
the observer. Luneburg’s hypothesis that human optical space has to be one of the
classical spaces of constant curvature is not borne out in the present setting.
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Table 1. Table of Gaussian curvatures (m ) calculated from the angular excesses determined
by the equilateral-triangles experiment. The final column contains the estimated standard errors
in the curvature.

Range/m Subject

AD JK JL ¢
0.0-1.04 +2.2%x107! +4.4%x107" +5.4x%x107! 3.8x1072
1.04-2.07 —7.2x1072 —58x%x1072 —3.0x1072 1.3%x1072
2.07-4.15 —5.0x107° —1.1x107? —1.3x1072 3.2x107°
4.15-8.29 —29x%x1073 —2.8x1073 —62x107* 8.0x107*
8.29-11.06 —2.6x%x1073 —4.7%1073 —2.6x%x107° 7.7%107*

11.06—16.50 +6.7x107* +58x107* +1.8x1073 2.7x107*
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<
»

Gaussian curvature/m -
o
o
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Figure 7. The intrinsic curvature for a

= number of distance ranges for observer JK.
0 5 10 15

Distance/m

From the scatter in the data we find that the curvatures are typically very significantly
different from zero, except for a certain intermediate range that somewhat differs for
our three observers.

In order to do this we add a dimension to the horizontal plane at eye height.
This dimension is a purely formal one; it should not be confused with the vertical
dimension of physical space, for instance! The only value of this formal embedding
of the horizontal plane at eye height in a three-dimensional space is that it allows
visualization of the curvature. We assume the surface to be a surface of revolution,
reflecting the isotropic nature of optical space for an observer free to turn about the
vertical. This is an approximation since the observers did not exhaust all possible
head positions in any given task. However, it is clearly a reasonable first pass.

Because our data are rangewise constant, we may piece the ‘geodesic surface’
together from annular piece of surfaces of revolution of constant curvature (Spivak
1975; Struik 1950). One example would be a sphere, clearly a surface of revolution of
constant curvature. However, it is important to appreciate that arbitrary bendings leave
the intrinsic curvature invariant. Thus a cone has the same curvature as a plane
(namely zero) because a cone can be obtained by bending a plane. Likewise, if you slit
open a sphere by a meridian, you can bend it into a spindle-shaped body; and if you cut
off two polar caps, then cut by a meridian, you can open up the sphere to look like a
car-fender. Similarly, a variety of surfaces of negative constant curvature can be obtained
from the familiar ‘pseudosphere’. We apply the constraint that these annular pieces should
join together smoothly. Even then, some freedom (of bending) is left. This can be removed
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by applying a further constraint. We apply the constraint that the surface should be as
close to horizontal at the origin as possible. It turns out that we cannot satisfy this latter
constraint completely. The best solution still has a conical singularity at the origin.

A picture of the geodesic surface for observer JK is shown in figures 8 and 9. The
geodesic surfaces for the other observers are comparable. ‘Geodesics’ (or shortest connec-
tions between pairs of points) can be realized by pulling a string taut between the points,
constraining the string fully to the surface. The projections of such strings on the horizontal
plane at eye height will be curved. By construction of the geodesic surface, the geodesic
triangles on the geodesic surface will project exactly to the experimental results. Thus the
geodesic surface is one (particularly intuitive) way to represent the data.

Figure 8. The geodesic surface for observer JK. Although this rendering is in ‘true scale’ (all
numbers are meters, vertical and horizontal axes are identically scaled) this is not a surface of
the space we move in. The vertical dimension is a purely formal one. The units shown are meters.

20

-20

7.5

20

Figure 9. The geodesic surface for observer JK, vertical scale expanded. In this rendering the
conical singularity at the origin is very evident. The units shown are meters.
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The geodesic surface can be used to predict geodesics between any pair of points.
Consequently this representation of the data allows the prediction of any exocentric
pointing experiment on the basis of our present data.

The geodesic surfaces of the three observers are similar, though different in detail.
They are compared in figure 10.

Figure 10. The geodesic surfaces for
all observers compared. The graphs
are sections of these surfaces by a
vertical plane through the origin. The
units shown are meters. (The geodesic
surfaces are surfaces of revolution by
construction.)

6 Discussion

We have introduced a novel method to probe human optical space, namely that of
exocentric pointing. We have used this method to address the Luneburg hypothesis that
human optical space should be of constant (negative) curvature. This hypothesis is
clearly falsified by our data.

Existing data have predominantly been obtained under well-controlled conditions,
typically with stimuli reduced to a few luminous points in the dark. Under such
controlled conditions the only depth cue left is binocular disparity. In our case a far
richer bouquet of depth cues was available to the observers. Moreover, our observers
were free to make head movements (no biteboard), torsions at the waist, and were
even permitted to turn on the feet. The task was clearly different too; nothing similar
to exocentric pointing appears to have been used in the classical studies. There is thus
little reason to expect any close connection between these data. After Luneburg’s
work many researchers attempted to determine ‘the’ curvature of human optical space
(Blank 1953, 1959; Indow et al 1962a, 1962b, 1963). Eventually some concensus was
formed (Indow 1991) that the curvature might in fact not be constant, and our data
agree with this suggestion. However, as said above, our observers almost certainly
used different cues to perform a different task in a very different setting.

As remarked in the introduction, our experiment is no check on the validity of the
hypothesis that human optical space is of a fixed, Riemannian nature. On the face of
it this seems unlikely (though invariably assumed in the classical work), but we have
no independent check. In order to investigate this issue we should attempt verification
of predictions from our data that go beyond our data. The geodesic surface allows us
to predict results of arbitrary exocentric pointing tasks. One prediction that can imme-
diately be derived is very surprising indeed. Owing to the fact that there is a conical
singularity at the origin, we predict that points that are diametrically opposite to the
observer can be joined by two distinct geodesics. Thus we predict that the observer would
need to choose between two equally “visually correct’ exocentric pointing directions. From
the semitop angle of the conical singularity we predict a difference of 5°—10° between
such equally acceptable pointings: Thus such an effect is in the measurable range.
Although such a prediction appears prima facie rather unlikely, we have actual indica-
tions that such an effect may in fact occur. We hope to report on this in a subsequent
communication.
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