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A theoretical treatment of binocular space perception based on the methods of Rudolph K. Luneburg.
A simplified axiomatics is employed. New experimental results are brought within the framework of the
theory. The experimental evidence is seen to support Luneburg’s hypothesis as to the hyperbolic character
of visual space. The relation between visual and physical coordinates proposed by Luneburg is found to
hold only as a special case of a more general transformation.

1. AIMS AND LIMITATIONS

HE ultimate objective of a theory of three-
dimensional space perception is to state in some
precise way what an observer really ‘“‘sees” when he
looks out upon the physical world. Such an ambitious
undertaking, stated in all generality, goes far beyond
the scope of the theory presented here. So many and
various are the factors contributing to the perception
of space that it becomes impossible to comprehend
their effects when all are considered together. It is
necessary to isolate a limited number of factors, at
best one, and to consider the effect of this restricted
set of factors in an environment as free as possible from
the contamination of other influences.

The Luneburg theory is concerned with the sole
factor of binocularity. No attempt will be made here to
account for the known three-dimensional effects
attributable to perspective, color, brightness, etc. To
insure that only the one factor of two-eyedness is
present requires a certain amount of elaborate precau-
tion in experiment. The optimum results are obtained
when the subject is allowed to view only simple con-
figurations consisting of lights so tiny as to approach the
mathematical ideal of a point. The lights are adjusted
to appear of equal intensity to the subject and so low
that there is no perceptible surrounding illumination.
The only factor remaining under these conditions
besides binocularity would be accommodation and it
has been shown that the effect of accommodation in
this situation is not important.?=3 It cannot be empha-
sized too strongly that experiments conducted without
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1C. J. Campbell, “An experimental investigation of the size
constancy phenomenon” (Columbia University thesis, 1952).
Campbell explored carefully the role of accomodation under
precisely these conditions.

2 A.v. Tschermak-Seysenegg and P. Boeder (trans.), Introduction
to Physiological Optics (Charles C. Thomas, Springfield, Illinais,
1952), p. 189 1.

3 A. Linksz, Physiology of the Eye, (Grune and Stratton, New
York, 1952), Vol. 2 (Vision). This work contains a very readable
discussion of the factors involved in visual space perception.

these precautions cannot be expected to give results
comparable to those cited here.

The problems engendered by including the factor of
motion are again too complicated to be brought at once
within the scope of the theory. Motion is avoided by
fixing the subject’s head in a headrest and he is exposed
only to static stimuli. However, no artificial restriction
is placed on the subject’s binocular function. The
subject makes his observations by allowing his eyes to
rove at will over the entire range of the stimulus
configuration until a stable perception of the geometry
of the situation is achieved.

The objective of the Luneburg theory is to establish
the relationship between the physical space and the
binocular visual space. In other words, it offers an
answer to the question, what connection is there
between the physical stimuli of form and localization
and the qualities of form and localization that we
perceive in binocular vision. To those who feel that we
see the physical space just as it is, the question seems
pointless. So intimately and reliably do our visual
and proprioceptive senses bring us into contact with
the objects distributed in our physical surroundings,
that we are ordinarily completely oblivious of the
distinction that can be made between the world as
measured by our yardsticks and the world as measured
by our senses. We must be prepared to abandon
primitive intuition in these regards. No one would
insist that a color is perceived as a particular blend of
electromagnetic vibrations. On the contrary, we think
of a color as a perception, a concept quite apart from
the stimulus, and ask what stimuli give a perception
of that kind. Much the same approach will be taken
to the problems of binocular vision.

Once the dichotomy between physical and sensory
measurement is recognized there is nothing remarkable
in the demonstrable fact that the binocular visual
space is non-Euclidean. What is remarkable is that so
many visual observations are encompassed in one of
the simplest of geometries, the hyperbolic geometry of
Bolyai and Lobachewski, the Riemannian geometry of
constant negative curvature.
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2. THE GEOMETRY OF BINOCULAR VISUAL SPACE

2a. Existence of the Metric

To characterize the binocular visual geometry, a
visual ‘“yardstick” is utilized in a manner not very
different from the way in which a measuring stick is
used to determine the geometrical characteristics of the
physical world. Consider, for example, a binocular
stimulus consisting of three points of light Qy, Qs, Q3. A
subject presented with such a stimulus will perceive
three points Pi, Py, P in a three-dimensional continuum
and will be able to distinguish inequalities among the
distances between pairs of points. He might say, for
example, that the distance between P; and P; is larger
than that from P, to Pi;. The subject may even take
the first distance as a unit and characterize the second
numerically as being so many times larger or smaller
than the first. Such visual relationships of size need not
have any directly obvious connection to the physically
measurable relations in the stimulus configuration.

By taking some fixed visual distance as a standard
unit, it would be possible at least in conception to
determine any other visual length in terms of that unit.
In this way a positive numerical value D(P;, Ps) could
be assigned to the distance between any pair of points
Pj, Psin the visual space. Once such a function of two
points was determined, it would be expected that any
other function constructed in the same way would
differ from D(P;, P2) only in a positive constant factor
depending on the choice of unit.

It is not difficult to show experimentally that there
is a subjective sense of straightness in the visual space.
Given three points Py, Ps, P; a subject judges readily
whether or not the point P; lies on a line with P; and
P,. (Configurations which are sensorially straight need
not, of course, be physically straight.#®) In fact, the
sense of alignment is one of the strongest characteristics
of binocular visual perception. This sense of straightness
may be described in terms of the visual distance function
by the inequality

D(Py, Py)-+D(Ps, P3) 2 D(Py, P3).

This inequality expresses the idea that it is not shorter
to go from P; to P; by way of a third point P, than
it is to go “straight” from P to P3. Thus, three points
are seen on a straight line if and only if the relation
above is an equality. In order to distinguish between
physical straightness and the visual sense of straight-
ness, a configuration which is visually straight will be
called a visual geodesic.

The foregoing considerations suggest that the
binocular visual space may be described mathematically

4 Helmholtz, v. Kries, and Southall (trans.), Physiological
Optics (Optical Society of America, Rochester, New York, 1925),
Vol. 3, p. 318.

5 Hardy, Rand, Rittler, and Blank, “The geometry of binocular
space perception,” (Final Report to U. S. Office of Naval Research
from the Knapp Memorial Laboratory of Physiological Optics,

Columbia University College of Physicians and Surgeons, New
York, 1953), Fig. 19.
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as a metric space. This means that there exists a visual
distance function or metric D(Py, P,), satisfying the
following conditions:

(A1) D(P, P)=0.
A point has zero distance from itself.
(AZ) D(Pl, P2)=D(.P2, .P1)>0, if P1?5P2.

If Py and P, are distinct points then the distance
belween them is positive and independent of the order in
which the poinis are taken.

(A3) D(Py, P2)+D(Ps, P3) 2 D(Py, Ps).

For all points P1, Py, P, the distance from Py to P3 by
way of any third point Py is not shorter thaw that from
P 1 to P 3.

Such a function D(P;, P2) is called a metric. For
such a metric to have significance as the yardstick of
visual measurement it must satisfy in addition the
following conditions:

(B1) If the distance between Py and P is sensed as
greater than that between Py and Py, then

D(Py, Py)>D(Ps, Py).

(B2) Points Py, Py, Py are sensed as being on a straight
line if and only if

D(Py, Py)+D(Py, P3)=D (P, P3).

A function D(P;, P) satisfying the conditions 4 and
B is called a metric or psychometric distance function for
binocular visual space.

2b. The Indeterminacy of the Metric

The function D(P;, P,) is not completely determined
by the conditions of Sec. 2a. In fact, it is clear that the
function will satisfy these conditions if multiplied by
any positive constant whatever. That such an indeter-
minacy exists is not surprising for it amounts simply to
freedom in the choice of a unit. Under the following
general assumptions it can be shown that this kind of
indeterminacy is the only one possible:

(C) The visual space is convex.

Between every pair of distinct points Py, Py of the visual
space, there is another point Py on the straight segment
between Py and Ps.

In terms of the metric, this condition implies the
existence of a point P; satisfying the equation

D(Pl, P3)+D(P3, P2)=D(P1, Pg).
(D) The visual space is compact.

Every infinite set of points of the visual space has at
least one cluster point,

For an infinite sequence of points, P, Ps, P, . . .,
P;, . . . this condition states the existence of a point
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P of the visual space such that for some subsequence
P/, P/, Py, ... P/, ... the points P/ approach
P in the limit, ’ ,
limD(P, P/)=0.
170

Under this pair of conditions, the metric must be
completely determined to within a constant positive
factor.® Furthermore, there is nothing in these condi-
tions to conflict even with naive intuition, except
perhaps for the necessity of considering infinite ag-
gregates of points.

The class of compact convex metric spaces is so
large that it becomes necessary to postulate further
properties of the visual space in order to reduce the
latitude of choice. This can be done with great simplicity.

2c. The Hyperbolic Character of Visual Space’

It is in reasonable accord with experience to postulate
the existence of visual perceptions of planeness. Such a
perception would be described by the postulates:

(E1) Every triple of points in the visual space is con-
tained in a visual plane.

(E2) Together with any pair of points in a visual plane,
the plane contains the segment of visual geodesic joining
them.

A geometry possessing surfaces which satisfy these
properties is called Desarguesian.

Experience again permits the supposition that the
visual space is Euclidean in the small, for we are not
generally aware of any distortion in viewing small
configurations such as geometrical diagrams on a
printed page. This could only be the case if the geometry
were Euclidean in the small, no matter what the relation
between physical and visual coordinates. This state of
affairs is described by the postulate:

(F) The visual geomelry is locally Euclidean.

The property (F) is perhaps the simplest way of
characterizing the visual geometry as Riemannian.

The surprising fact is that a geometry which is both
Desarguesian and Riemannian can be only one of three,
the Riemannian spaces of constant positive, zero, and
negative Gaussian curvature.

The Riemannian geometry of zero curvature is
precisely ordinary Euclidean geometry. The elliptic
geometry of constant positive curvature is familiar to
us in the two-dimensional case as the geometry on the
surface of the sphere. The geometry of constant negative
curvature is the hyperbolic geometry of Lobachewski
and Bolyali.

¢ R. K. Luneburg, “Metric methods in binocular visual percep-
tion,” in Studies and Essays, Courant Anniversary Volume,
(Interscience Publishers, Inc., New York, 1948).

" This kind of axiomatics has been given a thoroughgoing

treatment elsewhere (see H. Busemann, Melric Methods in
Finsler Spaces (Princeton University Press, Princeton, 1942)).
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F16. 1. Blumenfeld alleys. Schematic representation of exper-
imental settings. — — — — Parallel alley. Distance alley.

It is not difficult to discover which of the three is
the correct model for the binocular visual space. The
answer is contained in the now classic alley experiment
of Blumenfeld.?® In Blumenfeld’s experiment two rows
of lights on either side of the median plane are exhibited
to the subject in the horizontal plane of the eyes. The
farthest pair of lights is fixed symmetrically with respect
to the median plane and the subject is asked first to
construct a ‘“‘parallel alley”” and then a “distance alley”
extending toward him from the fixed lights. To construct
a parallel alley the subject arranges the lights in two
rows symmetric to the median which give him the
impression of being straight and parallel to each other.
The distance alley, on the other hand, is a physical
arrangement of rows symmetric to the median in which
the visual separation between the two points of a
symmetric pair is kept constant and equal to the visual
distance between the two fixed points. Luneburg
assumed that the parallel alleys are normals to the
sensed frontal plane and subsequent experiment has
shown this interpretation to be correct.®

The result of the Blumenfeld alley experiment is
typically of the form depicted in Fig. 1. The parallel
alley is set nearer to the median than the distance
alley. Since the two criteria, equidistance and parallel-
ism, do not give the same result, it is clear that the
geometry is not Euclidean. If the geometry were elliptic,
then as noted above, in the two-dimensional case, it has

8 W. Blumenfeld, Z. Psychol. u. Physiol. d. Sinnesorgane 65,
241 (1913).
® Hardy, Rand, and Rittler, Arch. Ophthalmol. (Chicago) 45,

" 53 (1951).
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Fic. 2. Blumenfeld alleys. Representation of a spherical surface
exhibiting the impossibility of making the visual space conform
to an elliptic model. — — — — Parallel alley. Distance alley.

an isometric representation on the surface of a sphere.
In this representation, let the axis along which the
sensed directions of left and right are represented be the
equator. The parallel alleys will then consist of segments
of two great circles normal to the equator and passing
through the poles. The distance alleys will be segments
of circles of latitude perpendicular to the equator (Fig.
2). Hence, in the elliptic geometry, the distance alley
falls nearer to the median than the parallel alley. This
observation leaves only one possibility. The geometry
of the binocular visual space must be hyperbolic.

2d. The Hyperbolic Metric

Luneburg chose as coordinate axes the sensed lateral,
frontal, and vertical directions. To correspond to these
axes he chose coordinates (£, 9, {). The origin (0, 0, 0)
represents the subjective center of observation. The
subjective frontal, medial, and horizontal planes are
given by the equations =0, 7=0, =0, respectively.
In the hyperbolic geometry it is possible to choose such
coordinates (£, 1, {) so that the distance D between two
points (£1, 71, 1) and (£s, 9, £2) of the visual space is
given by

KD
sinh(———-
2 C

K 3
Z{ (E1— £2)*F (m—n2)*+ (§1—2)%}

- o

K K
(50
4 4

ALBERT A. BLANK

Vol. 43

where p2=Et2+né+¢# (4=1,2). The constant C is
the factor of indeterminacy in the metric and K is the
absolute value of the Gaussian curvature.'®

Though this metric is useful in giving a very simple
mapping of the hyperbolic space into Euclidean space,
it is more convenient for the purpose of this paper to
use polar coordinates (r, o, #). These coordinates are
connected with the coordinates (£, , {) through the
transformation equations

E=p cos¢p cosd,
7=p sing, @
{=p cosgp sind,

and the radial coordinate 7 is given by

2 r
p= (£+n’+{?)t=—tanh-. ©)
K 2
If the standard form of the metric D is taken by
setting C=1, then the metric is given in terms of the
polar coordinates by

coshD = coshr; coshry— sinhr; sinhrs{cos(p:— ¢1)
—cosgpy cospy[ 1—cos(@—31) ). (4)

The radial coordinate r is to be interpreted as a
quantity measuring sensed distance from the subject in
relation to other sensed distances. It cannot be equated
to any conception of the subject as to the absolute
distance of points. The equation r=constant represents
a locus of points having the appearance of equidistance
from the subject. It describes the subject’s sensation
of a sphere with himself at the center. The coordinate ¢
represents the perceived angle of elevation above the
subjective horizontal. The perceived angle of deviation
from the subjective median plane is given by the
coordinate ¢. On the sphere r=constant, the curves
d=constant represent meridians of longitude passing
through poles on the left and right of the subjective
center. The curves gp=constant on the visual sphere
represent latitude circles parallel to the subjective
median plane.

It is a simple matter to derive the laws of hyperbolic
plane trigonometry from the metric (4). The right-
triangle laws of ordinary trigonometry have similar
counterparts in the hyperbolic space. Let 4, B, C denote
the angles of a right triangle with C=90° and let
a, b, ¢, respectively, denote the sidelengths of the
opposite sides, ¢ being the hypotenuse. The counterpart
of the Pythagorean theorem is

coshc= cosha coshbd. %)
The angle functions are given by

sind =sinha/sinhe, (6)

cosA = tanhd/tanhc, (N

tanA = tanha/sinhe. (8)

10 R, K. Luneburg, J. Opt. Soc. Am. 40, 627 (1950).
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For small triangles it may be seen that the hyperbolic
laws approach the Euclidean ones. This is the meaning
of the postulate (F) that the geometry is locally
Euclidean. ‘

Although the character of the visual space has been
determined and the metric written down explicitly,
the problem is only half solved. It is necessary also to
determine the relation between the visual coordinates
(r, ¢, ¥) and the coordinates of physical space.

3. RELATION OF VISUAL TO PHYSICAL SPACE

In binocular space perception, as in the perception of
color, the same perception may arise in many different
ways. There is an extensive category of stimuli all of
which produce the same effect. The first and most
appealing evidence to appear in support of this point
were the equivalent rooms of A. Ames constructed at
the Dartmouth Eye Institute. In these constructions,

F16. 3. Schematic rep-
sentation of the Ames
rooms,

Ames succeeded by empirical methods in building a set
of distorted rooms which were indistinguishable from a
given rectangular room with respect to binocular vision.
The walls of these rooms could, in fact, have marked
curvature as indicated in Fig. 3. _

Luneburg found two possible ways to account for a
result of this kind.!* The first possibility he considered
was that the distorted rooms are equivalent in that
they supply the same binocular clues; the sequence of
retinal images in gazing from point to point of one room
is the same as that for any of the others. The second
hypothesis was that the distorted rooms are related to
the rectangular original by translatory displacements
of the visual hyperbolic space. Although Luneburg
favored the latter point of view and explored its
consequences in his papers, he could have proceeded
just as easily from the other hypothesis and arrived by

1 R, K. Luneburg, Mathematical Analysis of Binocular Vision
(Princeton University Press, Princeton, 1947), pp. 17ff and

pp- 89ff.
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F16. 4. Bipolar coordinates of a physical point.

the same methods at results just as plausible and
internally self-consistent. Without experimental evi-
dence to guide him he took the second and somewhat
simpler choice. Only recently, after several years of
laboratory work has it become clear that the other
course is the correct one.

3a. The Bipolar Coordinates

The position of a point in physical space will be fixed
by means of special angular coordinates, and these
coordinates will be seen to have a profound intrinsic
significance for binocular visual perception.

The physical situation is idealized somewhat by
localizing the eyes at points in a horizontal plane. In
practice, these points may be taken to be the rotation
centers of the eyes. Let Q denote any binocularly
effective point and let R and L denote the right and
left eyes, respectively (Fig. 4). The lines RQ and LQ
are called the lines of sight and the angles made by
the lines of sight with the base segment RL are denoted,
respectively, by @ and 8. The position of the point Q is
uniquely defined by three bipolar coordinates:
the bipolar parallax v, the angle of convergence between
the lines of sight,

(9a)

the bipolar latitude ¢, the average direction of the lines of
sight measured counterclockwise with respect to the
median plane,

'Y=7I"—'O!—ﬁ,

o=%(B—0a), (9b)

the elevation 0, the angle made by the plane RQL with
the horizontal plane.

By means of the bipolar coordinates the phenomenon
of the equivalent rooms can be described mathematically
in a particularly elegant way.

3b. Equivalent Configurations. Iseikonic
Coordinates

Luneburg first approached the phenomenon of the
equivalent rooms with the hypothesis that such
structures provide identical binocular clues to the
subject. If it is assumed that two sets of binocular
stimuli are equivalent when the sequence of retinal
images in looking from point to point is the same for
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both, then it is possible to describe the relation between
the rooms very simply. The bipolar coordinates v/, ¢,
0’ of the points of one are related to the associated
points v, ¢, 0 of another through an iseikonic trans-
Sformation,

Y'=v+N, ¢'=¢+tp, 0=0+y, (10)

where A, u, v are constants. In particular, the Ames
rooms could be constructed by employing the special
transformation

Y'=v+\ o¢'=¢, 0'=0.

It is not necessary for the immediate purposes of this
paper to assume anything concerning the hypothesis
which led to these transformations. It is sufficient to
note here that the validity of the transformations has
been established experimentally, at least in the two-
dimensional case, §=0.

Since the binocular metric relations between the
points of a configuration are not changed by iseikonic
transformation it is convenient to express the visual

Q
b4
Fic. 5. The Vieth-
Miiller circle, y=
constant.
L R

coordinates in terms of coordinates invariant under
iseikonic transformation rather than directly in terms
of the bipolar coordinates. For any particular stimulus
configuration this is accomplished by singling out three
values <o, ¢o, 0o associated with the configuration
and setting

I‘=7_'YO: (I)=¢_¢01 0=0—0,. (11)

The three values T', ®, © are called iseikonic coordinates
and it is clear that they are invariants under iseikonic
transformation.

The values <o, ¢o, 8o may be chosen arbitrarily.
However, for reasons which will appear subsequently,
the value of v, is always chosen as the smallest value of
v in the configuration under consideration. Thus, for
points of the configuration for which the convergence
is a minimum, I'=0. For all points of stronger con-
vergence, T' is positive.
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3c. Visual Orientation and Perceived Direction

A subject will usually orient himself so that the
subjective frontal, median, and horizontal planes
described in Sec. 2d are correctly coordinated with the
corresponding principal planes of objective physical
space. This coordination can easily be upset, in a
moving airplane or seagoing vessel, for example.
Indeed the possibility of such a dislocation of the senses
is suggested by the iseikonic transformations. However,
for the moment, the important fact is that a correct
coordination of the principal visual planes with the
corresponding physical planes is possible.

Two physical points Q; and Q» will lead to the percep-
tion of points P; and P, lying in the same direction
from the subject, if and only if they both have the same
angular coordinates ¢ and 6. In other words, when the
¢ and 8 coordinates of two points are the same, the
subject will perceive the two points as being in line
with his subjective center of observation. It follows
that the hyperbolas 6=constant, ¢=constant of
physical space, are interpreted as radial lines ¢=con-
stant, ¢=constant in the visual space.

Moreover, equal changes in the physical coordinates
¢ and 6 are perceived as equal changes in the visual
coordinates ¢ and &#. When the subjective orientation
of the principal planes agrees with the physical orienta-
tion, it follows that we may set ¢=¢, #=0. In general,
with allowance for the iseikonic transformations, it
may be stated that perceived differences in ¢ and ¢ in
looking from one point to another are equal to the
respective differences in ¢ and 4. .

3d. Perceived Radial Distance. The
Vieth-Miiller Torus

Once the relations between visual direction and
physical coordinates are understood, the determination
of the relation between the visual radial coordinate
and the physical coordinates can be determined
empirically. It is found on experiment that the loci in
the horizontal plane §=0 which give the impression of
circles about the subjective center are very nearly the
Vieth-Miiller circles y=constant.? These are the one-
parameter family of circles in the horizontal plane
passing through the ocular centers R and L. Thus, for
a given point Q, the physical locus of points which
gives the impression of being at the same distance from
the subjective center as Q is the Vieth-Miiller circle
through Q (Fig. 5).

The surface y=constant which is generated by rotat-
ing the Vieth-Miiller circle about the axis LR is known
as a Vieth-Miiller torus. On the basis of the above
experiment it will be assumed that a Vieth-Miiller
torus 1s perceived as a sphere about the subjective
center. The toruses y=constant are mapped onto
spheres r=constant in the visual space.
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3e. Equations for the Visual Coordinates

The result of Sec. 3¢ suggests setting

o=3, 9=0, (12a)

where ¢, ¢ are the sensory angular coordinates and
®, © are the iseikonic coordinates of (11). It will be
recalled, however, that ® and © depend on the arbitrary
parameters ¢ and 6o. It does not matter, nevertheless,
what particular values of ¢ and 6y are chosen. The
choice of different values of ¢y and 8, would amount to
changing the values of ¢ and & by constants. Such a
transformation would be simply a special rotation of
the hyperbolic visual space. Since the metric relations in
the visual space are not changed by rotation, one
arbitrary choice of ¢ and 6, will do as well as any other.
In practice these values are chosen in any convenient
way.

The situation is somewhat different when the result
of Sec. 3d is considered. The experiment suggests that
the visual radial coordinate r is some unspecified
function of T,

r=r(T). (12b)

It is not true that freedom in the value of v, may be
allowed, for a change in the value of the radial co-
ordinate alone cannot possibly be a rigid transformation
of the hyperbolic space. In other words, if a relation of
the form (12b) is valid, then a change in the value of
vo would result in a change in the distance relationships
described by the metric (4). For the relation (12b) to
hold, then, the value of v, must be determined by the
stimulus configuration.

There remains the unpleasant possibility that the
value of o might depend in some very complicated way
upon the stimulus configuration presented to the
subject. The experimental determinations of r show,
however, that the points which have the minimum
value of vy for any particular configuration under
consideration, must always be assigned the same value
w of the radial coordinate, independently of the con-
figuration. In other words, the points of greatest
sensed distance from the subject, whatever the total
stimulus configuration, are always located at the same
fixed hyperbolic distance w from the subjective center.
The visual space is bounded and in any stimulus
situation the points of greatest visual distance are
located exactly on the boundary. This result is in
accord with the fact that for all observation and
experimernit there is nothing in our perceptions corre-
sponding to the ideas of infinitely far away or infinitely
large. The sky over our heads is a finite dome. The
sun is a disk which sometimes has been compared in
size to a dime. '

In any stimulus situation, the value of 7, is then
taken to be the least among all points available to the
binocular vision of the subject. Thus, under this
convention, I' will be zero for the points of greatest
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sensed distance and positive for those sensed as being
nearer.

The relations between the visual and physical co-
ordinates are, in summary,

r=r(l), ¢=%, ¢=6, (13a)

where T, @; © are related to the bipolar coordinates
through the equations,

(IJ=¢)—¢0’ ®=0—007 (13b)

the values of ¢o and 6, being arbitrary, and the value
of ¢ being chosen as above.

The significant fact about Egs. (13a) is that it is
only necessary to determine the single function 7(T")
for a given subject in order to have a complete charac-
terization of his visual space. In practice, it may even
be possible to express 7(I') in terms of a limited number
of parameters and so be able to describe an individual’s
visual space in terms of a few characteristic constants.
It is to be stressed that the function 7(T') will not
necessarily be the same for different subjects. On the
other hand, nothing is known about the mean behavior
of man in this regard, and an investigation of that
point would have considerable significance.

In Luneburg’s papers®®1 it was assumed that the
radial coordinate is a function of v. It is clear from the
present point of view, that this would be valid only in
the special case when all the configurations under
consideration are restricted to have the same value for
Yo. Since the value of vy, in daily life is extremely
frequently close to zero the difference between the
two ideas would not ordinarily lead to great apparent
discrepancies.

On the basis of the theory it is possible to determine
a function »(I") which will completely specify the visual
space for a given subject. On the other hand, the
usefulness of the theory rests upon the possibility of
determining such a function. It remains therefore to
show how the function is determined in practice and
to give the results obtained.

I'=y—7,,

4. THE EXPERIMENTAL DETERMINATION OF r(I")

By using the hyperbolic right-triangle laws (5), (6),
(7), (8) it is not difficult to devise trigonometric methods
for determining r(I'). For experimental convenience,
all determinations of the function were made in the

. horizontal plane §=0. There would be no difficulty, in

theory, in doing experiments involving the third
coordinate, but the laboratory arrangements would
have to be more elaborate than those which were
available. In the following, three methods employed for
the determination of 7(T') are described.,

The difficult and tedious experimental work was
performed at the Knapp Laboratory of Physiological
Optics of the Institute of Ophthalmology in New York
under the direction of L. H. Hardy by G. Rand and
M. C. Rittler.® This paper could not have been com-
pleted without their ableness and persistence.
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4a. The Blumenfeld Alleys

Blumenfeld’s experiment, Sec. 2c, is not merely
striking evidence of the hyperbolic character of visual
space. It can be used also to measure the function 7(I').

In this experiment, two rows of # lights each are set
down in the horizontal plane, one row to the left and
one to the right of the median. The lights in the left
and right rows will be denoted by Q:” and Q;F, respec-
tively, (1=1,2,3, . . ., ). The two lights Q;% and Q;®
of a pair are located on a fronto-parallel line, known as
the station [4], but no other restriction is placed upon
them. However, the two lights at the most distant
station are completely fixed in positions symmetric to
the median. The stations [1], [2], [3], . . ., [#] are
labeled in order of increasing nearness to the subject.
Thus, at the beginning of any experiment the lights
will be set in more or less irregular rows as in Fig. 6.

F1G. 7. Schematic representation of parallel alleys in visual space.
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The subject is asked to construct a parallel alley
according to the instruction:

() Keeping the most distant pair of lights fixed
arrange the two rows of lights so that they appear to
be straight, parallel to each other, and parallel to
the median.

The distance alley is constructed by shutting off all the
lights except the fixed pair at station [1] which is
taken as a standard and a test pair at any of the
stations [4]. The subject is asked to set the test pair
according to the instruction:

(b) Set the nearer pair of lights symmetrically so that
the distance between the two lights appears to be the
same as that for the fixed lights.

The results obtained with the instructions (a) and
(b) show the characteristic differences of Fig. 1. If all
the distance settings in (b) are exhibited simultaneously

-0

o

Fic. 8. Schematic representation of distance alleys in visual space.

to the subject upon completion of the experiment, the
two rows of lights appear to be neither parallel nor
straight.
The iseikonic coordinates in this experiment are
taken as
P=y—71, ®=9¢, (14)

where 1, is the bipolar parallax for the fixed points at

_ station [1].

The parallel alleys are characterized in the visual
space as visual geodesics, located symmetrically with
respect to the subjective”median, which intersect the
subjective frontal plane perpendicularly (Fig. 7). Let
Y denote the hyperbolic distance of the point of inter-
section from the subjective center and let P=(r, ¢)
denote a variable point on thel left-hand alley. The
equation of the curve is given by the right-triangle
formula (7) as

. E
sing=cos| 5— qo) =tanh¥/tanhr.

3 (15a)
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The value of ¥ is determined by the coordinates of the
fixed point P, through the equation

tanh¥ =tanhw sine;, (15b)

where w=7(0). The equation of the parallel alley in
visual coordinates is therefore

(16)

The distance alleys, on the other hand, are character-
ized as the loci of constant perceived distance d from
the median (Fig. 8). For a variable point P=(r, ¢)
on the left-hand locus, Eq. (6) gives

tanhz sin = --tanhw sine;.

sing=sinhd/sinhr. (17a)

Q

F16. 9. Inter- Qg
sections of a
Vieth-Miiller cir-
cle with a pair
of & Blumenfeld
alleys.

R

The value of d is determined by the position of the point
P, according to the relation

sinhd= sinhw sin ;. (17b)

The equation for the distance alley in visual space must
then be
sinhz sin o= z=sinhw sin ;. (18)

Let Q4= (T, o) and Q,= (T'y, ¢,) be the intersection
of a Vieth-Miiller circle with the left-hand distance
and parallel alleys, respectively (Fig. 9). Since both
points have the same coordinate Ty, the visual radial
coordinate 7o=7(T'y) is the same for the two points.
These values are set in Egs. (16) and (18) to yield

tanhr, sing,= tanhw sing;,
sinhry sing 4= sinhw sing;.

The value of 7o may readily be eliminated from these

equations to give an equation for w,

sin’p 4— sinp,
cosh?y=———— (19)

sin’$,,— sin’py
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Fic. 10. The double Vieth-Miiller circles. Three-point experiment.

Once the value of w=7(0) is obtained, the values of 7
for other values of T' can be determined from the settings
of the alleys through Egs. (16) and (18).

4b. The Double Vieth-Miiller Circles

These experiments were designed by Luneburg.!®
They are of special interest in that the subject is
required only to make visual matches of size. They
have uniformly indicated the hyperbolic character of
visual space.

(2) The Three-Point Experiment

Consider the two Vieth-Miiller circles defined by the
equations y="+o, Y="1, with yo<7v1. A point Qo= (yo,
do) is fixed on the outer circle and a point Q1= (y1, ¢1)
is fixed on the inner circle. A variable point Qs= (v, ¢2)
is allowed to take any position on the outer circle
(Fig. 10). The iseikonic coordinates for this configur-
ation are given by taking o and ¢o as the parameters in
(13b). The corresponding points of visual space will be
Py= (v, 0), P1=(r1, ¢1), and Py= (w, ¢,), respectively,
where

P1=¢1— o, Pa=¢2—o
and
W=7 (O) ’

The subject is instructed to set the point Q; in the
position where the sensory distance P,P, is matched
to the distance PoP;. For a setting of this kind, the
metric (4) immediately gives the equation

r1=7(y1—"7o).

cosh?w— sinh?%w cosge= coshr; coshw— sinhr; sinhw cose:,
whence,

cospe=1m Cosp1+b (20a)
and the coefficients
sinhr, cosh?w— coshw coshr;
m= , b= (20b)
sinhw sinh%w
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F16. 11. The double Vieth-Miiller circles. Four-point experiment.

are constants depending only on the value y;—v, and
not the particular values ¢; and ¢,. Consequently, if
different values of ¢;=¢;1— ¢y are taken and the corre-
sponding values of @a=dps—¢o found experimentally,
the plot of cosep, as ordinate against cose; as abscissa
should be a straight line. The experimental findings do
conform to this expectancy. Luneburg showed that
such a result implied constant Gaussian curvature for
the visual space.

The values of m and b are easily determined from the
graph of cose: against cose;. The value of w, obtained
by eliminating 7; from Egs. (20b), is given by

b?

S 1
(1—b)—m? D

cosh’w=

Q

e
E

Fi16. 12, Equipartitioned parallel alleys.
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Given w, the value of 7; is found from the equation
(20b) for m.

If w is to be a real quantity the left side of (21) must
be greater than unity. The fact that this is so, as an
experimental result, provides further evidence for the
hyperbolic character of the geometry. It is not difficult
to show that the geometry is hyperbolic, Euclidean, or
elliptic according to whether m? is greater than, equal
to, or less than 1—2b.

In practice, it is found that the experimental limit-
ations are such that the constants # and b cannot be
determined with sufficient accuracy. What is done
instead is to determine by extrapolation the value ¢ of
cospe at ¢1=0. This can be done with considerable
accuracy. A more precise determination of # is provided
by the following experiment and & is given by b=a—m.

(i) The Four-Point Experiment

This experiment is executed on the same pair of
Vieth-Miiller circles as the three-point experiment. Let
01=(v1, ¢1) and Q2= (y1, ¢2) be two points fixed on
the inner Vieth-Miiller circle, and let Q3= (v, ¢3) and
Q1= (vo, ¢4) be variable points on the outer circle
(Fig. 11). The corresponding sensed points are denoted
by Py, Ps, Ps, P4, respectively. The subject is instructed
to set the points Q3 and Q4 so that the sensory distance
between the points P; and P; of the visual space is equal
to that between Py and Ps. Set r1=r(y1—7v0) as in the
three-point experiment, and put

Ar=¢s—~¢1, As=cs—es.
From the metric (4) it follows immediately that
cosh®w— sinh%w cosAq= cosh?,—sinh?; cosA;,

whence, )
sinh?; 1—cosA,
2_ —

m = .
sinh®w  1—cosA,
The trigonometric identity
1—cosA=2 sin22A

gives the simple relation

sinhr; sinZA,

m= = (22)

sinhw sinfA;
This value of m may then be used for a better determin-
ation of b as indicated above.

From the values of m and b we may then calculate
the value of w from (21). Once the value of w is obtained
experimentally, the three-point experiment need no
longer be used; by repeated use of the four-point
experiment with differing values of I'=vy;—v,, the
values of 7(I') can be calculated from (22).

4c. Equipartitioned Parallel Alleys

This experiment is significant in that the calculation
of the radial coordinate 7 is altogether independent of



September 1953 LUNEBURG THEORY OF BINOCULAR VISUAL SPACE

any hypothesis concerning the dependence of 7 on the
physical coordinates. This is not the case in the preced-
ing two experiments. The results of this experiment can
therefore be considered as an independent check on the
assumption r=r(T).

The subject is shown two rows of three lights on
either side of the median and instructed to arrange
them in a parallel alley as in 4a. In addition, he is
instructed to locate the intermediate light in each row
at a position exactly midway in distance between the
two end lights. The configuration so constructed is
called an equipartitioned parallel alley.

Let Q1, Q2, Q3 denote the points in the left-hand row
in order of decreasing distance from the subject (Fig.
12). The light Q; is fixed and the light Qs is permitted
to move only along a fronto-parallel line as in Sec. 4a.
The light Q, may be moved freely in the two dimensions
of the horizontal plane. Let the coordinates of the
points be denoted by ,

Qf= (‘Yt’; ¢t) (1:= 1,2, 3)'
Iseikonic coordinates for this configuration are given by
P=y—v, ®=¢.

The points P; in visual space corresponding to the
points Q; will have coordinates (r;, ¢.) satisfying Eq.
(15a)

tanhr; sing;=tanh?. (23)

The value ¥, determined from the condition that the
sensory distances PP, and P, P; are equal, is found to
satisfy the equation

2—(S+1)
sinh?Y = tan2(02[——“1, (24)
(S+1)—28T
where
tane, taneps
= ’ = (24&)
tane; tang;

The values 7; may be found from the value of ¥ through
Eq. (23). From r1=7(0)=uw, it follows that

tanhw=tanh¥ /sine;. (25)

The equipartitioned alleys also give evidence that the
geometry is hyperbolic. This is a consequence of the
fact that the expression on the right in (24) is found
experimentally to be positive. If it were zero or negative
the result would mean that the geometry is Euclidean
or elliptic in the respective cases.

4d. The Function »(T")

In Fig. 13 the experimental values of 7(I') are given
for two different subjects and for all three of the
experiments described. It is noteworthy that individual
differences are clearly brought out. The values of the
function obtained for MCR are significantly lower than
those for GR.
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F16. 13. Experimentally determined values of #(T') for two
subjects. O Blumenfeld alleys. 4 Double Vieth-Miiller circles.
M Equipartitioned parallel alleys.

5. THE TIME-DEPENDENT METRIC

All considerations, up to this point, have been
restricted to stimulus patterns which are fixed with
respect to the observer. The problem of including effects
due to motion is especially interesting since it appears
to be necessary to employ a space-time metric analogous
to that of relativity theory. Obviously, there is a
limiting value to the sensation of velocity, since a

. moving light will produce only the sensation of a streak

if it moves rapidly enough. If the homogeneity of visual
space is preserved when motion is allowed, it is to be
expected that the space-time metric would take the
form

¢t —ds?, (26)
where ¢ is the limiting velocity in the visual space and
ds?, if motion is limited to the horizontal plane, is

ds*= dr*—sinh*d ¢% 27

The constant ¢, when determined, would probably be
found to be connected to the maximum angular velocity
of eye movements.

These considerations suggest the possibility that
something like the Lorentz contraction of physics ought
to be a part of our visual sensations. In fact, both Dr.
Luneburg and the author, on separate occasions, had
the good fortune to observe such an effect; that is, an
apparent foreshortening in the direction of motion of
rapidly moving objects.



